prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import csv, os import numpy as np import pandas as pd import argparse if __name__ == "__main__": # Parse arguments for the script parser = argparse.ArgumentParser(description='Run the conformal map with options.') parser.add_argument("-i", "--input", help="input folder that stores log files") parser.add_argument("-o", "--output", help="output folder to write combined data") parser.add_argument("-n", "--name", help="name of the combined output file") parser.add_argument("--use_mpf", action="store_true", help="True for multiprecision logs") parser.add_argument("--max_itr", type=int, help="number of iterations for the combined logs", default=500) args = parser.parse_args() # Get list of log files logs = os.listdir(args.input) if args.use_mpf: logs = [f for f in logs if f.endswith("_mpf.csv")] else: logs = [f for f in logs if f.endswith("_float.csv")] max_grads = [] for f in logs: max_grads.append([]) log_path = os.path.join(args.input, f) with open(log_path, newline='') as csvfile: grad_reader = csv.DictReader(csvfile, delimiter=',', quotechar='|') # Get the max error values (the first column is the iteration number) for row in grad_reader: max_grads[-1].append(row[' max error']) # Ensure each log is the requested number of iterations if(len(max_grads[-1])>=args.max_itr): break while(len(max_grads[-1])<args.max_itr): max_grads[-1].append(max_grads[-1][-1]) # Save the max_grads as a csv file max_grads = np.array(max_grads,dtype=float).T max_grads_df =
pd.DataFrame(max_grads)
pandas.DataFrame
# pylint: disable=E1101,E1103,W0232 import operator from datetime import datetime, date import numpy as np import pandas.tseries.offsets as offsets from pandas.tseries.frequencies import (get_freq_code as _gfc, _month_numbers, FreqGroup) from pandas.tseries.index import DatetimeIndex, Int64Index, Index from pandas.tseries.tools import parse_time_string import pandas.tseries.frequencies as _freq_mod import pandas.core.common as com from pandas.lib import Timestamp import pandas.lib as lib import pandas.tslib as tslib import pandas.algos as _algos #--------------- # Period logic def _period_field_accessor(name, alias): def f(self): base, mult = _gfc(self.freq) return tslib.get_period_field(alias, self.ordinal, base) f.__name__ = name return property(f) def _field_accessor(name, alias): def f(self): base, mult = _gfc(self.freq) return tslib.get_period_field_arr(alias, self.values, base) f.__name__ = name return property(f) class Period(object): __slots__ = ['freq', 'ordinal'] def __init__(self, value=None, freq=None, ordinal=None, year=None, month=1, quarter=None, day=1, hour=0, minute=0, second=0): """ Represents an period of time Parameters ---------- value : Period or basestring, default None The time period represented (e.g., '4Q2005') freq : str, default None e.g., 'B' for businessday, ('T', 5) or '5T' for 5 minutes year : int, default None month : int, default 1 quarter : int, default None day : int, default 1 hour : int, default 0 minute : int, default 0 second : int, default 0 """ # freq points to a tuple (base, mult); base is one of the defined # periods such as A, Q, etc. Every five minutes would be, e.g., # ('T', 5) but may be passed in as a string like '5T' self.freq = None # ordinal is the period offset from the gregorian proleptic epoch self.ordinal = None if ordinal is not None and value is not None: raise ValueError(("Only value or ordinal but not both should be " "given but not both")) elif ordinal is not None: if not com.is_integer(ordinal): raise ValueError("Ordinal must be an integer") if freq is None: raise ValueError('Must supply freq for ordinal value') self.ordinal = ordinal elif value is None: if freq is None: raise ValueError("If value is None, freq cannot be None") self.ordinal = _ordinal_from_fields(year, month, quarter, day, hour, minute, second, freq) elif isinstance(value, Period): other = value if freq is None or _gfc(freq) == _gfc(other.freq): self.ordinal = other.ordinal freq = other.freq else: converted = other.asfreq(freq) self.ordinal = converted.ordinal elif isinstance(value, basestring) or com.is_integer(value): if com.is_integer(value): value = str(value) dt, freq = _get_date_and_freq(value, freq) elif isinstance(value, datetime): dt = value if freq is None: raise ValueError('Must supply freq for datetime value') elif isinstance(value, date): dt = datetime(year=value.year, month=value.month, day=value.day) if freq is None: raise ValueError('Must supply freq for datetime value') else: msg = "Value must be Period, string, integer, or datetime" raise ValueError(msg) base, mult = _gfc(freq) if mult != 1: raise ValueError('Only mult == 1 supported') if self.ordinal is None: self.ordinal = tslib.period_ordinal(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, base) self.freq = _freq_mod._get_freq_str(base) def __eq__(self, other): if isinstance(other, Period): return (self.ordinal == other.ordinal and
_gfc(self.freq)
pandas.tseries.frequencies.get_freq_code
import os import warnings import numpy as np import pandas as pd from gisutils import df2shp, project from shapely.geometry import Point from mfsetup.fileio import append_csv, check_source_files from mfsetup.grid import get_ij from mfsetup.sourcedata import TransientTabularSourceData from mfsetup.tmr import Tmr from mfsetup.wateruse import get_mean_pumping_rates, resample_pumping_rates def setup_wel_data(model, for_external_files=True): """Performs the part of well package setup that is independent of MODFLOW version. Returns a DataFrame with the information needed to set up stress_period_data. """ # default options for distributing fluxes vertically vfd_defaults = {'across_layers': False, 'distribute_by': 'transmissivity', 'screen_top_col': 'screen_top', 'screen_botm_col': 'screen_botm', 'minimum_layer_thickness': model.cfg['wel'].get('minimum_layer_thickness', 2.) } # master dataframe for stress period data columns = ['per', 'k', 'i', 'j', 'q', 'boundname'] df = pd.DataFrame(columns=columns) # check for source data datasets = model.cfg['wel'].get('source_data') # delete the dropped wells file if it exists, to avoid confusion dropped_wells_file = model.cfg['wel']['output_files']['dropped_wells_file'].format(model.name) if os.path.exists(dropped_wells_file): os.remove(dropped_wells_file) # get well package input from source (parent) model in lieu of source data # todo: fetching correct well package from mf6 parent model if datasets is None and model.cfg['parent'].get('default_source_data') \ and hasattr(model.parent, 'wel'): # get well stress period data from mfnwt or mf6 model parent = model.parent spd = get_package_stress_period_data(parent, package_name='wel') # map the parent stress period data to inset stress periods periods = spd.groupby('per') dfs = [] for inset_per, parent_per in model.parent_stress_periods.items(): if parent_per in periods.groups: period = periods.get_group(parent_per) if len(dfs) > 0 and period.drop('per', axis=1).equals(dfs[-1].drop('per', axis=1)): continue else: dfs.append(period) spd = pd.concat(dfs) parent_well_i = spd.i.copy() parent_well_j = spd.j.copy() parent_well_k = spd.k.copy() # set boundnames based on well locations in parent model parent_name = parent.name spd['boundname'] = ['{}_({},{},{})'.format(parent_name, pk, pi, pj) for pk, pi, pj in zip(parent_well_k, parent_well_i, parent_well_j)] parent_well_x = parent.modelgrid.xcellcenters[parent_well_i, parent_well_j] parent_well_y = parent.modelgrid.ycellcenters[parent_well_i, parent_well_j] coords = project((parent_well_x, parent_well_y), model.modelgrid.proj_str, parent.modelgrid.proj_str) geoms = [Point(x, y) for x, y in zip(*coords)] bounds = model.modelgrid.bbox within = [g.within(bounds) for g in geoms] i, j = get_ij(model.modelgrid, parent_well_x[within], parent_well_y[within]) spd = spd.loc[within].copy() spd['i'] = i spd['j'] = j df = df.append(spd) # read source data and map onto model space and time discretization # multiple types of source data can be submitted elif datasets is not None: for k, v in datasets.items(): # determine the format if 'csvfile' in k.lower(): # generic csv # read csv file and aggregate flow rates to model stress periods # sum well fluxes co-located in a cell sd = TransientTabularSourceData.from_config(v, resolve_duplicates_with='sum', dest_model=model) csvdata = sd.get_data() csvdata.rename(columns={v['data_column']: 'q', v['id_column']: 'boundname'}, inplace=True) if 'k' not in csvdata.columns: if model.nlay > 1: vfd = vfd_defaults.copy() vfd.update(v.get('vertical_flux_distribution', {})) csvdata = assign_layers_from_screen_top_botm(csvdata, model, **vfd) else: csvdata['k'] = 0 df = df.append(csvdata[columns]) elif k.lower() == 'wells': # generic dict added_wells = {k: v for k, v in v.items() if v is not None} if len(added_wells) > 0: aw =
pd.DataFrame(added_wells)
pandas.DataFrame
import gc import os import os.path as osp from typing import Sequence, Union, List, Generator, Optional, Tuple import math import numpy as np from tqdm import tqdm, trange import torch import torch.cuda.amp as amp from torch import nn from torch import Tensor import matplotlib.pyplot as plt import pandas as pd from ._misc import text_styles, TrivialContext class DefaultConfig: def __init__(self): self.checkpoint_dir = '' self.run_name = f'test' # training self.train_batch_size = 32 self.val_batch_size = 32 self.start_epoch = 0 self.end_epoch = 1 self.optimizers = torch.optim.AdamW self.optimizer_params = {'lr': 3e-4, 'weight_decay': 1e-3} self.schedulers = [] self.scheduler_params = [] # means we step the scheduler at each training iteration # the other option is 'epoch' self.scheduler_interval = 'step' # whether or not the scheduler requires the step or epoch as an input # argument self.scheduler_interval_eval = '[]' self.criteria = [torch.nn.BCEWithLogitsLoss()] self.clip_grad_norm = -1 # automatic mixed precision https://pytorch.org/docs/stable/notes/amp_examples.html self.use_amp = False # whether we are aiming to maximize or minimize score self.score_objective = 'max' def merge_config(custom_config): config = DefaultConfig() for prop, value in vars(custom_config).items(): if prop.startswith('_'): continue setattr(config, prop, value) # for backwards compatibility try: config.schedulers = config.scheduler except AttributeError: pass try: config.optimizers = config.optimizer except AttributeError: pass try: config.criteria = config.criterion except AttributeError: pass return config class Fitter: """ May need to override: - prepare_inputs_and_targets - compute_losses - compute_scores - collate_targets_and_outputs (for validation) - forward_train (if you have more than one model) - forward_validate (if you have more than one model) - on_start_epoch - on_validate_end """ def __init__(self, models, data_loaders, device, config=None, n_val_iters=0, id_key='', load=''): """ a list of models may be provided, but then a list of optimizers and a list of schedulers of the same lengths are also expected `n_val_iters` lets us specify how often to do validation in intervals of train iterations `id_key` is used during validation with inspect=True. The idea is that one of the keys in the dataset __getitem__ return value corresponds to a datapoint id. This key is then returned alongside a list of vaidation results. It lets us inspect a particular data point. See `validate` method for more info """ self.models = models if not isinstance(self.models, Sequence): self.models = [self.models] [model.to(device) for model in self.models] self.data_loaders = data_loaders self.device = device # Keep original config in case we want to reset it after lr sweep self.original_config = config if config is not None: self.config = merge_config(config) else: self.config = DefaultConfig() self.reset_fitter_state() self._n_train_iters = len(self.data_loaders.train_loader) if n_val_iters > 0 and n_val_iters <= len(self.data_loaders.train_loader): self.n_val_iters = n_val_iters else: if n_val_iters > len(self.data_loaders.train_loader): print("Warning: Clipping n_val_iters to max train iters") self.n_val_iters = len(self.data_loaders.train_loader) if load: self.load(load) # For validation debug self.id_key = id_key # Automatic mixed precision if self.config.use_amp: self.scaler = amp.GradScaler() self.train_forward_context = amp.autocast else: self.train_forward_context = TrivialContext # Check score objective assert self.config.score_objective in ['min', 'max'], \ "config.score_objective must be either 'min' or 'max'" # Handle multiple losses if not isinstance(self.config.criteria, Sequence): self.config.criteria = [self.config.criteria] # Make sure that there is a weighting for the losses in case it wasn't # provided in the config if hasattr(self.config, 'criteria_weights'): assert (len(self.config.criteria_weights) \ == len(self.config.criteria)), ("config.criteria_weights " "must be same length as config.criteria") self.loss_weights = self.config.criteria_weights else: self.loss_weights = [1.] * len(self.config.criteria) def reset_fitter_state(self): """ NOTE: I haven't done a thorough check to make sure I'm not missing anythin """ self.reset_history() self.reset_optimizers() self.reset_schedulers() self.best_running_val_loss = np.float('inf') if self.config.score_objective == 'max': self.best_running_val_score = -np.float('inf') elif self.config.score_objective == 'min': self.best_running_val_score = np.float('inf') self.epoch = self.config.start_epoch def reset_optimizers(self): optimizers = self.config.optimizers if not isinstance(optimizers, Sequence): optimizers = [optimizers] assert len(optimizers) == len(self.models), \ "Must provide as many optimizers as models" optimizer_params = self.config.optimizer_params if not isinstance(optimizer_params, Sequence): optimizer_params = [optimizer_params] self.optimizers = [] for opt, ops, m in zip(optimizers, optimizer_params, self.models): self.optimizers.append(opt(m.parameters(), **ops)) def set_lrs(self, lrs: Union[Sequence[float], float]): """ manually set the lrs of the optimizers """ if not isinstance(lrs, Sequence): lrs = [lrs] assert len(lrs) == len(self.optimizers), \ "Must provide as many lrs as there are optimizers" for lr, optim in zip(lrs, self.optimizers): for g in optim.param_groups: g['lr'] = lr def reset_schedulers(self): schedulers = self.config.schedulers if not isinstance(schedulers, Sequence): schedulers = [schedulers] if len(schedulers) > 0: assert len(schedulers) == len(self.models), \ "Must provide as many schedulers as models" else: self.schedulers = [] return scheduler_params = self.config.scheduler_params if not isinstance(scheduler_params, Sequence): scheduler_params = [scheduler_params] assert len(scheduler_params) == len(schedulers), \ "Must provide as many sets of scheduler_params as schedulers" self.schedulers = [] for sched, sps, opt in zip(schedulers, scheduler_params, self.optimizers): self.schedulers.append(sched(opt, **sps)) def reset_history(self): self.history = {} optimizers = self.config.optimizers if not isinstance(optimizers, Sequence): optimizers = [optimizers] for i in range(len(optimizers)): self.history[f'lr_{i}'] = [] self.history[f'grad_norm_{i}'] = [] def forward_train(self, inputs, targets): """ A single forward pass for training. usually this is straight forward but one might want to be more specific where there are multiple models """ return self.models[0](*inputs) def train_iteration(self, inputs, targets): """ what needs to happen during one train loop iteration """ for optimizer in self.optimizers: optimizer.zero_grad() with self.train_forward_context(): outputs = self.forward_train(inputs, targets) losses = self.compute_losses(targets, outputs, mode='train') if not isinstance(losses, Sequence): # backwards compatibility losses = [losses] loss = sum( [l * w for l, w in zip(losses, self.loss_weights)]) if self.config.use_amp: self.scaler.scale(loss).backward() # this next line makes sure getting/clipping grad norm works for optimizer in self.optimizers: self.scaler.unscale_(optimizer) else: loss.backward() grad_norms = [] for model in self.models: if self.config.clip_grad_norm > 0: grad_norms.append(nn.utils.clip_grad_norm_(model.parameters(), self.config.clip_grad_norm)) else: # NOTE assumes l2 norm grad_norms.append(torch.norm(torch.stack([torch.norm( p.grad.detach(), 2) for p in model.parameters() \ if p.grad is not None]), 2)) if self.config.use_amp: # scaler.step knows that I previously used scaler.unscale_ for optimizer in self.optimizers: self.scaler.step(optimizer) self.scaler.update() else: for optimizer in self.optimizers: optimizer.step() return losses, grad_norms def fit(self, overfit=False, skip_to_step=0, save=True, bail=float('inf'), verbose=0): """ `skip_to_step` cycles through the train loader without training until that step is reached. Useful for diagnosing a bug appearing at a specific location in the train cycle """ overfit_data = None # in case we want to try overfitting to one batch epoch_bar = trange(self.epoch, self.config.end_epoch, disable=(verbose != 1)) for epoch in epoch_bar: # hook for tasks to do when starting epoch self.on_start_epoch() # train [model.train() for model in self.models] total_train_losses = [] train_preds = 0 train_bar = tqdm(self.data_loaders.train_loader, disable=(verbose != 2)) train_bar.set_description(f'Epoch {epoch:03d}') self.train_step = 0 for data in train_bar: if skip_to_step > 0 and self.train_step < skip_to_step: self.train_step += 1 continue if overfit: if overfit_data is None: overfit_data = data else: data = overfit_data # get inputs and targets inputs, targets = self.prepare_inputs_and_targets(data, mode='train') # train step losses, grad_norms = self.train_iteration(inputs, targets) # scheduler # first keep track of lr to report on it lrs = [] for optimizer in self.optimizers: lrs.append(optimizer.param_groups[0]['lr']) for scheduler in self.schedulers: if self.config.scheduler_interval == 'step': args = eval(self.config.scheduler_interval_eval) scheduler.step(*args) # logging if isinstance(inputs[0], Sequence): # Handle first input is a list instead of a Tensor batch_size = inputs[0][0].shape[0] else: batch_size = inputs[0].shape[0] with torch.no_grad(): # train_losses is just the item() version of losses for reporting train_losses = [l.item() for l in losses] for i, tl in enumerate(train_losses): if len(total_train_losses) == 0: # make train losses the right length total_train_losses = [0.] * len(train_losses) while len(total_train_losses) < i+1: total_train_losses.append(0.) total_train_losses[i] += tl * batch_size # unaverage train_preds += batch_size kwargs = {f'lr_{i}': f'{lr:.2E}' for i, lr in enumerate(lrs)} kwargs.update({f'grad_norm_{i}': f'{grad_norm:.3f}' \ for i, grad_norm in enumerate(grad_norms)}) kwargs.update({f'train_loss_{i}': f'{l:.3f}' \ for i, l in enumerate(train_losses)}) train_bar.set_postfix(**kwargs) for i, l in enumerate(train_losses): if not f'train_loss_{i}' in self.history: self.history[f'train_loss_{i}'] = [] self.history[f'train_loss_{i}'].append(l) for i, (lr, grad_norm) in enumerate(zip(lrs, grad_norms)): self.history[f'lr_{i}'].append(lr) self.history[f'grad_norm_{i}'].append(grad_norm.item()) # bail out if loss gets too high for i, l in enumerate(train_losses): if l > bail: print(f"loss_{i} blew up. Bailed training.") return if math.isnan(l): msg = f"WARNING: NaN loss_{i}" if self.config.use_amp: msg += " Heads up: this may be a side effect of using AMP." msg += " If so, the gradient scaler should skip this step." print(msg) # if bail is set to a specific number, bail if bail < float('inf'): return # validate every val_itrs if (self.train_step + 1) % self.n_val_iters == 0: if self.data_loaders.val_loader is not None: val_losses, val_scores = \ self.validate(verbose=(verbose == 2)) else: val_losses, val_scores = [], [] for i, l in enumerate(val_losses): if not f'val_loss_{i}' in self.history: self.history[f'val_loss_{i}'] = [] self.history[f'val_loss_{i}'].append(l.item()) for i, s in enumerate(val_scores): if not f'val_score_{i}' in self.history: self.history[f'val_score_{i}'] = [] self.history[f'val_score_{i}'].append(s) # best loss is based on sum of losses # TODO decide if I want to use running avg # and if so, make it possible to decide on length running_val_loss = 0 for i in range(len(val_losses)): running_val_loss += np.mean(self.history[f'val_loss_{i}'][-1:]) if save and running_val_loss <= self.best_running_val_loss: self.best_running_val_loss = running_val_loss self.save(f'{self.config.run_name}_best_loss.pt') if 'val_score_0' in self.history: running_val_score = np.mean(self.history['val_score_0'][-1:]) sign = 1 if self.config.score_objective == 'min' else -1 if save and sign*running_val_score <= sign*self.best_running_val_score: self.best_running_val_score = running_val_score self.save(f'{self.config.run_name}_best_score.pt') [model.train() for model in self.models] self.train_step += 1 # step scheduler on epoch if self.config.scheduler_interval == 'epoch': for scheduler in self.schedulers: args = eval(self.config.scheduler_interval_eval) scheduler.step(*args) if verbose == 1: kwargs = {f'val_loss_{i}': f"{l.item():.3f}" for i, l \ in enumerate(val_losses)} kwargs.update({f'val_score_{i}': f"{s:.3f}" for i, s \ in enumerate(val_scores)}) kwargs.update({f'train_loss_{i}': f"{l/train_preds:.3f}" \ for i, l in enumerate(total_train_losses)}) kwargs.update({f'lr_{i}': f"{lr:.2E}" for i, lr in enumerate(lrs)}) epoch_bar.set_postfix(**kwargs) if verbose == 2: for i, (tl, vl) in enumerate(zip(total_train_losses, val_losses)): msg = f"\nAverage train / val loss {i} " msg += f"{text_styles.BOLD}{(tl/train_preds):.5f}{text_styles.ENDC}" msg += f" / {text_styles.BOLD}{(vl):.5f}{text_styles.ENDC}. " print(msg + '\n', flush=True) self.epoch = epoch + 1 if save and self.config.run_name: self.save(f'{self.config.run_name}_last.pt') if save and self.config.run_name: self.save(f'{self.config.run_name}_epoch{self.epoch:02d}.pt') def on_start_epoch(self): """ tasks to do when starting in epoch, overwrite me """ pass def prepare_inputs_and_targets(self, data, mode='val'): """ This method probably needs to be overriden Return a list of batches of inputs (each index in the list will be treated as a positional argument for the model's forward), and a single batch of targets. Multiple targets may be returned in any format you desire, but then you'll have to modify `compute_losses`, `compute_scores`, and `collate_targets_and_outputs` to handle it. Don't forget to move whatever is necessary to `self.device`! """ assert mode in ['train', 'val'], "`mode` must be either 'train' or 'val'" return [data['inp'].to(self.device)], data['target'].to(self.device) def forward_validate(self, inputs): """ a single forward pass for validation. usually this is straight forward but one might want to be more specific where there are multiple models """ return self.models[0](*inputs) def validate(self, inspect=False, loader=None, use_train_loader=False, verbose=True) -> Tuple[float, List[float]]: """ inspects lets us retrieve more information than just the validation score and loss if `loader` is not provide, `self.val_loader` is used by default if `use_train_loader` is set, `self.train_loader` is used """ [model.eval() for model in self.models] ls_outputs = [] ls_targets = [] if inspect and self.id_key != '': ids = [] # for debugging purposes if loader is None: if not use_train_loader: loader = self.data_loaders.val_loader else: loader = self.data_loaders.train_loader elif use_train_loader: print("Warning: You have provided a loader but also set `use_train_loader` to true") val_bar = tqdm(loader, disable=(not verbose)) for data in val_bar: inputs, targets = self.prepare_inputs_and_targets(data, mode='val') with torch.no_grad(): outputs = self.forward_validate(inputs) ls_targets.append(targets) ls_outputs.append(outputs) if inspect and self.id_key != '': ids += list(data[self.id_key]) targets, outputs = self.collate_targets_and_outputs(ls_targets, ls_outputs) with torch.no_grad(): losses = self.compute_losses(targets, outputs, mode='val') if not isinstance(losses, Sequence): # backwards compatibility losses = [losses] scores = self.compute_scores(targets, outputs, mode='val') if not isinstance(scores, Sequence): # backwards compatibility scores = [scores] if verbose: print(''.join([f', val_loss_{i}: {s:.3f}' \ for i, s in enumerate(losses)]) + \ ''.join([f', val_score_{i}: {s:.3f}' \ for i, s in enumerate(scores)]), flush=True) if inspect: ret = {f'loss_{i}': l for i, l in enumerate(losses)} ret.update({'targets': targets, 'outputs': outputs}) ret.update({f'score_{i}': s for i, s in enumerate(scores)}) if self.id_key != '': ret['id'] = ids return ret self.on_validate_end(targets, outputs) return losses, scores def on_validate_end(self, targets, outputs): """ post-validation hook, might be useful for showing something like an example """ pass def collate_targets_and_outputs(self, ls_targets, ls_outputs): """ During validation, targets and outputs are concatenated into a list depending on the nature of these, we might want to overwrite the way that the are collated prior to computing loss and score By default, we have the naive implementation where `ls_targets` and `ls_outputs` simply need to be concatendated note that we send targets and outputs to cpu TODO: Make this handle inputs as well so that we can visualize images """ targets = torch.cat([t.cpu() for t in ls_targets], axis=0) outputs = torch.cat([o.cpu() for o in ls_outputs], axis=0) return targets, outputs def compute_loss(self, targets, outputs, mode='train'): """ Here for backwards compatibility. `compute_losses` is the one that's used in other places, but that just calls this. """ return [c(outputs, targets) for c in self.config.criteria] def compute_losses(self, targets, outputs, mode='train'): """ Compute a loss (or multiple losses if the config specifies a sequence of criteria) NOTE: This points to compute_loss for backwards compatibility. This is the "official" one called in other places in the code NOTE: If you need to handle multiple targets AND multiple losses you will have to override this. """ return self.compute_loss(targets, outputs, mode=mode) def compute_score(self, targets, outputs, mode='val') -> Union[Sequence[float], float]: """ Backwards compatibility via compute_scores. This method MUST be overriden if you want to compute scores """ return [] def compute_scores(self, targets, outputs, mode='val') -> Union[Sequence[float], float]: """ Return a list of scores based on the targets Note that the order of scores affects two things: 1. For the purpose of saving on best score, the first of the scores is used. 2. For the purposes of plotting scores, the first of the scores is used\ NOTE: This points to compute_score for backwards compatibility. This is the "official" one called in other places in the code """ return self.compute_score(targets, outputs, mode='val') def test(self, loader=None, verbose=True) -> Generator[ Tuple[Tensor, Optional[List[str]]], None, None]: """ Similar to `validate` method, but not expecting targets. Returns a generator of outputs and ids if self.id_key is specified Note that this uses `forward_validate` method """ [model.eval() for model in self.models] if self.id_key == '': print("Warning: You have not set an id_key. Results won't have ids.") if loader is None: print("Warning: No loader provided. Default to val_loader") loader = self.data_loaders.val_loader # test_bar = tqdm(loader, disable=(not verbose)) for data in loader: inputs = self.prepare_inputs_and_targets(data, mode='test') with torch.no_grad(): outputs = self.forward_validate(inputs) if self.id_key != '': yield outputs, list(data[self.id_key]) else: yield outputs def plot_history(self, plot_from=0, sma_period=5): fig, ax = plt.subplots(2, 2, figsize=(20,10)) ax = ax.flatten() # train loss max_losses = 3 # maximum number of loss traces to plot x_axis = np.arange(1, len(self.history[f'train_loss_0'])+1)/self._n_train_iters for i in range(max_losses+1): if f'train_loss_{i}' not in self.history: break if i == max_losses: print(f"Warning: Max number of loss traces ({max_losses}) " \ + "exceeded. Not all losses are plotted") break train_loss = pd.Series(self.history[f'train_loss_{i}'][plot_from:]) ax[0].plot(x_axis[plot_from:], train_loss, alpha=0.5, label=f'train_loss_{i}') ax[0].plot(x_axis[plot_from:][sma_period-1:], train_loss.rolling(window=sma_period).mean().iloc[sma_period-1:].values, label=f'train_loss_{i}_smoothed') # val loss vals_per_epoch = self._n_train_iters//self.n_val_iters x_axis = np.arange(1, len(self.history['val_loss_0']) + 1)/vals_per_epoch for i in range(max_losses+1) or i == max_losses: if f'val_loss_{i}' not in self.history: break ax[0].plot(x_axis[(vals_per_epoch * plot_from)//self._n_train_iters:], self.history[f'val_loss_{i}'][(vals_per_epoch * plot_from)//self._n_train_iters:], label=f'val_loss_{i}') ax[0].legend() ax[0].set_xlabel('epoch') ax[0].set_ylabel('loss') ax[0].grid() title = f"Best train_loss_0: {min(self.history['train_loss_0']):0.3f}" if len(self.history['val_loss_0']): title += f". Best val_loss_0: {min(self.history['val_loss_0']):0.3f}" ax[0].set_title(title) # val metrics if 'val_score_0' in self.history and len(self.history['val_score_0']): ax[1].plot(x_axis[(vals_per_epoch * plot_from)//self._n_train_iters:], self.history['val_score_0'][(vals_per_epoch * plot_from)//self._n_train_iters:]) ax[1].set_xlabel('epoch') ax[1].set_ylabel('score') ax[1].grid() if self.config.score_objective == 'max': title = f"Best val_score_0: {max(self.history['val_score_0']):0.3f}" elif self.config.score_objective == 'min': title = f"Best val_score_0: {min(self.history['val_score_0']):0.3f}" ax[1].set_title(title) # lrs x_axis = np.arange(1, len(self.history['train_loss_0'])+1)/self._n_train_iters legend = [] for i in range(len(self.optimizers)): ax[2].plot(x_axis[plot_from:], self.history[f'lr_{i}'][plot_from:]) legend.append(f'lr_{i}') ax[2].set_xlabel('epoch') ax[2].set_ylabel('lr') if len(legend): ax[2].legend(legend) ax[2].grid() # grad norms x_axis = np.arange(1, len(self.history['train_loss_0'])+1)/self._n_train_iters legend = [] for i in range(len(self.optimizers)): ax[3].plot(x_axis[plot_from:], self.history[f'grad_norm_{i}'][plot_from:]) legend.append(f'grad_norm_{i}') ax[3].set_xlabel('epoch') ax[3].set_ylabel('grad_norm') if len(legend): ax[3].legend(legend) ax[3].grid() return fig, ax def lr_sweep(self, start_lrs: Sequence[float], gamma: float, bail=np.float('inf')): """ Run an lr sweep starting from `start_lrs` (provide as many lrs as there are optimizers) and with exponential growth rate `gamma` (> 1) `bail` is the loss at which training stops """ if not isinstance(start_lrs, Sequence): start_lrs = [start_lrs] assert len(start_lrs) == len(self.optimizers), \ f"Must provide as many starting lrs as there are optimizers: {len(self.optimizers)}" if len(start_lrs) > 1: for i, (lr, _) in enumerate(zip(start_lrs, self.config.optimizer_params)): self.config.optimizer_params[i]['lr'] = lr else: self.config.optimizer_params['lr'] = start_lrs[0] self.config.schedulers = [torch.optim.lr_scheduler.ExponentialLR]*len(start_lrs) self.config.scheduler_params = [{'gamma': gamma}]*len(start_lrs) self.config.scheduler_interval_eval = '[]' self.config.scheduler_interval = 'step' self.reset_fitter_state() self.fit(verbose=2, save=False, bail=bail) self.plot_lr_sweep() # now clean up if self.original_config is not None: self.config = merge_config(self.original_config) else: self.config = DefaultConfig() self.reset_fitter_state() print("LR sweep done and fitter state has been reset") def plot_lr_sweep(self, sma_period=5): num_lrs = len(self.optimizers) fig, ax = plt.subplots(1, num_lrs, figsize=(10*num_lrs,5)) if num_lrs > 1: ax = ax.flatten() else: ax = [ax] max_losses = 3 # maximum number of loss traces to plot for i in range(num_lrs): for j in range(max_losses+1): if f'train_loss_{j}' not in self.history: break if i == max_losses: print(f"Warning: Max number of loss traces ({max_losses}) " \ + "exceeded. Not all losses are plotted") break loss =
pd.Series(self.history[f'train_loss_{j}'])
pandas.Series
import os import shutil import time import pickle from datetime import datetime from filelock import Timeout, FileLock import zarr from numcodecs import Blosc import pandas as pd import numpy as np import scipy as sp import scanpy as sc import anndata as ad from anndata._io.zarr import read_dataframe, read_attribute, write_attribute from status.status_functions import * from plotting.multi_color_scale import MultiColorScale from tasks.tasks import write_dense save_analysis_path = "/srv/www/MiCV/cache/" selected_datasets_path = "/srv/www/MiCV/selected_datasets/" user_dataset_path = "/srv/www/MiCV/user_datasets/" lock_timeout = 60 use_zarr = True ### the actual helper functions ### TODO: break all of this up into specific modules def generate_adata_from_10X(session_ID, data_type="10X_mtx"): data_dir = save_analysis_path + str(session_ID) + "/raw_data/" if (data_type == "10X_mtx"): adata = sc.read_10x_mtx(data_dir, cache=False) elif (data_type == "10X_h5"): adata = sc.read_10x_h5(data_dir + "data.h5ad") else: print("[ERROR] data type not recognized - returning None") return None cache_adata(session_ID, adata) return adata def load_selected_dataset(session_ID, dataset_key): dataset_dict = { "00001": "Michki2020", "00002": "Cocanougher2020", "00003": "Davie2018", "00004": "10X5KPBMC", "00005": "Sharma2020", "00006": "Zeisel2018" } filename = dataset_dict[dataset_key] if (filename is None): return None else: filename = selected_datasets_path + filename adata = sc.read_h5ad(filename + ".h5ad") state = {"filename": str(dataset_dict[dataset_key]), "# cells/obs": len(adata.obs.index), "# genes/var": len(adata.var.index), "# counts": int(np.sum(adata.obs["total_counts"]))} cache_state(session_ID, state) adata = cache_adata(session_ID, adata) return adata def cache_adata(session_ID, adata=None, group=None, store_dir=None, store_name=None): if ((store_dir is None) or (store_name is None)): save_dir = save_analysis_path + str(session_ID) + "/" filename = save_dir + "adata_cache" chunk_factors = [150, 3] #faster, hot storage else: save_dir = store_dir filename = save_dir + store_name chunk_factors = [3, 3] #slower, cold storage if not (os.path.isdir(save_dir)): try: print("[DEBUG] making directory:" + str(save_dir)) os.mkdir(save_dir) except: return None lock_filename = (save_analysis_path + str(session_ID) + "/" + "adata.lock") lock = FileLock(lock_filename, timeout=lock_timeout) compressor = Blosc(cname='blosclz', clevel=3, shuffle=Blosc.SHUFFLE) zarr_cache_dir = filename + ".zarr" attribute_groups = ["obs", "var", "obsm", "varm", "obsp", "varp", "layers", "X", "uns", "raw"] extra_attribute_groups = ["X_dense", "layers_dense"] if (adata is None): # then -> read it from the store if (os.path.exists(zarr_cache_dir) is True): store_store = zarr.DirectoryStore(zarr_cache_dir) store = zarr.open_group(store=store_store, mode='r') if (group in attribute_groups): # then -> return only that part of the object (fast) group_exists = adata_cache_group_exists(session_ID, group, store=store) if (group_exists is True): ret = read_attribute(store[group]) else: ret = None #store_store.close() return ret elif (group is None): # then -> return the whole adata object (slow) #adata = ad.read_zarr(zarr_cache_dir) d = {} for g in attribute_groups: if (g in store.keys()): if (adata_cache_group_exists(session_ID, g, store=store)): if (g in ["obs", "var"]): d[g] = read_dataframe(store[g]) else: d[g] = read_attribute(store[g]) #store_store.close() adata = ad.AnnData(**d) if not (adata is None): return adata else: print("[ERROR] adata object not saved at: " + str(filename)) return None else: # then -> update the state dictionary and write adata to the store if (group is None): cache_state(session_ID, key="# cells/obs", val=len(adata.obs.index)) cache_state(session_ID, key="# genes/var", val=len(adata.var.index)) if ("total_counts" in adata.obs): cache_state(session_ID, key="# counts", val=int(np.sum(adata.obs["total_counts"]))) else: cache_state(session_ID, key="# counts", val=int(np.sum(adata.X))) elif (group == "obs"): cache_state(session_ID, key="# cells/obs", val=len(adata.index)) elif (group == "var"): cache_state(session_ID, key="# genes/var", val=len(adata.index)) with lock: store_store = zarr.DirectoryStore(zarr_cache_dir) store = zarr.open_group(store=store_store, mode='a') if (group in attribute_groups): # then -> write only that part of the object (fast) if (group == "var"): if (np.nan in adata.var.index): adata.var.index = pd.Series(adata.var.index).replace(np.nan, 'nanchung') adata.var["gene_ID"] = pd.Series(adata.var["gene_ID"]).replace(np.nan, 'nanchung') adata.var["gene_ids"] = pd.Series(adata.var["gene_ids"]).replace(np.nan, 'nanchung') write_attribute(store, group, adata) # here "adata" is actually just a subset of adata # write dense copies of X or layers if they're what was passed if (group == "X"): dense_name = "X_dense" write_dense.delay(zarr_cache_dir, "X", dense_name, chunk_factors) if (group == "layers"): for l in list(adata.keys()): #layers was passed with parameter name "adata" dense_name = "layers_dense/" + str(l) write_dense.delay(zarr_cache_dir, "layers/" + l, dense_name, chunk_factors) #store_store.flush() #store_store.close() lock.release() else: # check that necessary fields are present in adata object if not ("leiden_n" in adata.obs): if ("leiden" in adata.obs): adata.obs["leiden_n"] = pd.to_numeric(adata.obs["leiden"]) if not ("cell_ID" in adata.obs): adata.obs["cell_ID"] = adata.obs.index if not ("cell_numeric_index" in adata.obs): adata.obs["cell_numeric_index"] = pd.to_numeric(list(range(0,len(adata.obs.index)))) for i in ["user_" + str(j) for j in range(0, 6)]: if not (i in adata.obs.columns): adata.obs[i] = ["0" for k in adata.obs.index.to_list()] if not ("gene_ID" in adata.var): adata.var["gene_ID"] = adata.var.index # make sure that there are no "nan" genes in the var index if (np.nan in adata.var.index): adata.var.index = pd.Series(adata.var.index).replace(np.nan, 'nanchung') adata.var["gene_ID"] = pd.Series(adata.var["gene_ID"]).replace(np.nan, 'nanchung') adata.var["gene_ids"] = pd.Series(adata.var["gene_ids"]).replace(np.nan, 'nanchung') # save it all to the cache, but make dense copies of X and layers write_attribute(store, "obs", adata.obs) write_attribute(store, "var", adata.var) write_attribute(store, "obsm", adata.obsm) write_attribute(store, "varm", adata.varm) write_attribute(store, "obsp", adata.obsp) write_attribute(store, "varp", adata.varp) write_attribute(store, "uns", adata.uns) write_attribute(store, "raw", adata.raw) write_attribute(store, "X", adata.X) write_attribute(store, "layers", adata.layers) # making dense copies of X and layers (compressed to save disk space) dense_name = "X_dense" write_dense.delay(zarr_cache_dir, "X", dense_name, chunk_factors) for l in list(adata.layers.keys()): dense_name = "layers_dense/" + str(l) write_dense.delay(zarr_cache_dir, "layers/" + l, dense_name, chunk_factors) #store_store.flush() #store_store.close() lock.release() # set the file mod and access times to current time # then return adata as usual os.utime(zarr_cache_dir) return adata def adata_cache_exists(session_ID): save_dir = save_analysis_path + str(session_ID) + "/" filename = save_dir + "adata_cache" zarr_cache_dir = filename + ".zarr" if (os.path.exists(zarr_cache_dir) is True): return True return False def adata_cache_group_exists(session_ID, group, store=None): save_dir = save_analysis_path + str(session_ID) + "/" filename = save_dir + "adata_cache" zarr_cache_dir = filename + ".zarr" if (store is None): try: store_store = zarr.DirectoryStore(zarr_cache_dir) store = zarr.open_group(store=store_store, mode='r') keys = list(store.group_keys()) #store_store.close() except: return False else: keys = list(store.group_keys()) if (group in keys): return True else: return False def cache_gene_list(session_ID, gene_list=None): filename = save_analysis_path + str(session_ID) + "/gene_list_cache.pickle" lock_filename = filename + ".lock" lock = FileLock(lock_filename, timeout=20) if (gene_list is None): if (os.path.isfile(filename) is True): with open(filename, "rb") as f: gene_list = pickle.load(f) else: print("[ERROR] gene list cache does not exist at: " + str(filename)) gene_list = None return gene_list else: gene_list.sort(key=str.lower) with lock: with open(filename, "wb") as f: pickle.dump(gene_list, f) return gene_list # returns a list of cell_IDs # expects a list of lists of datapoint dictionaries def get_cell_intersection(session_ID, list_of_selections, pt_min=0, pt_max=1): obs = cache_adata(session_ID, group="obs") cell_intersection = set(obs.index.to_list()) for cell_list in list_of_selections: if (cell_list in ["", 0, None, []]): continue cell_set = set() for cell in cell_list["points"]: cell_ID = (cell["text"]).rsplit(" ", 1)[-1] cell_set.add(cell_ID) cell_intersection &= cell_set if ("pseudotime" in obs): if ((pt_min > 0) or (pt_max < 1)): for cell in list(cell_intersection): if ((obs.loc[cell, "pseudotime"] < pt_min) or (obs.loc[cell, "pseudotime"] > pt_max)): cell_intersection.remove(cell) return cell_intersection # returns dictionary of points that are in all violin selections # across all genes that could be selected on def get_violin_intersection(session_ID, violin_selected): if (violin_selected is None): return None # test which traces (genes) cells were selected from curves = set() for cell in violin_selected["points"]: curves.add(cell["curveNumber"]) if (len(curves) == 0): # no cells selected - return None return None # get cells selected in each of these curves cells_in_curves = [set() for curve in curves] if (len(cells_in_curves) == 1): return violin_selected for cell in violin_selected["points"]: n = cell["curveNumber"] if (n in curves): cell_ID = (cell["text"]).rsplit(" ", 1)[-1] (cells_in_curves[n]).add(cell_ID) # do the intersection cell_intersection = cells_in_curves[0] for cell_set in cells_in_curves: cell_intersection &= cell_set # get the final list of points in dict format points = [] for cell in violin_selected["points"]: cell_ID = (cell["text"]).rsplit(" ", 1)[-1] if (cell_ID in cell_intersection): points.append(cell) return {"points": points} def get_pseudotime_min_max(session_ID, selected): if (selected in ["", 0, None, []]): return [0,1] x_vals = [] for point in selected["points"]: x_vals.append(point["x"]) if (len(x_vals) == 0): return [0,1] x_min = np.min(x_vals) x_max = np.max(x_vals) return [x_min, x_max] def get_ortholog_data(session_ID, selected_gene): filename = (save_analysis_path + "dmel_human_orthologs_disease_fb_2019_05.csv") ortholog_data =
pd.read_csv(filename, sep="\t")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Sat Feb 13 13:59:04 2021 @author: saidsa """ from copy import deepcopy import pandas as pd import numpy as np from numpy.linalg import inv from Stock import Stock from scipy.stats import norm def normalize (x): #Scaling positive values so that they sum up to 1 x[x>0.001] = x[x>0.001] / x[x>0.001].sum() #Scaling negative values so that they sum up to -1 x[x<-0.001] = x[x<-0.001] / - x[x<-0.001].sum() return x def stock_obj_arr_to_return_mat(stock_obj_arr): output_dict = {} for s in stock_obj_arr: output_dict[s.ticker] = s['PriceClose'] price_df = pd.DataFrame(output_dict) returns_df = price_df.pct_change(1) return returns_df.dropna() def stock_obj_arr_to_signal_mat(stock_obj_arr, signal_func): output_dict = {} for s in stock_obj_arr: output_dict[s.ticker] = signal_func(s) signal_df = pd.DataFrame(output_dict) return signal_df.dropna() def return_mat_to_rolling_var_covar_dict(returns_mat, window=126, shrinkage_factor=0.8): var_covar_ts = {} for i in range(len(returns_mat)-window): dt = returns_mat.index[i+window] ret_mat = returns_mat.iloc[i:i+window, :] var_cov = ret_mat.cov() * 252 # Apply shrinkage factor # Reduce the off_diagonal terms => cov but not var # Easier to generate inv matrix var_cov = var_cov * shrinkage_factor + \ (1.0-shrinkage_factor)*np.diag(np.diag(var_cov)) var_covar_ts[dt] = var_cov return var_covar_ts def invert_var_covar_dict(var_covar_ts_dict): inv_var_covar_ts = deepcopy(var_covar_ts_dict) for dt, var_cov_mat in var_covar_ts_dict.items(): #Updating the values inside inv_var_covar_ts to preserve the structure #when doing inverse inv_var_covar_ts[dt].loc[:, :] = inv(var_cov_mat) return inv_var_covar_ts def MVOpt_LS_Fixed_risk(r, Sig, s, Sig_inv = None): # r is the returns vector for a given day # Sig is the var_covar mat for a given day # s is a fixed level of risk for the portfolio # Given a returns vector, a var_covar matrix, and a specified level of risk, # we want to construct a Long Short Portfolio that maximizes returns with respect # to weights such that the sum of weights is = 0 (constraint 1) # and the variance if the portfolio is equal to s (constarint 2) if Sig_inv is None: Sig_inv = inv(Sig) o = np.ones_like(r) lam_2_num = o.T.dot(Sig_inv).dot(r) lam_2_den = o.T.dot(Sig_inv).dot(o) lam_2 = lam_2_num / lam_2_den r_lam2_1 = r - lam_2 * o lam_1_mat_prod = r_lam2_1.T.dot(Sig_inv).dot(r_lam2_1) lam_1 = np.sqrt(lam_1_mat_prod/(4 * s)) w = (1/(2*lam_1)) * Sig_inv.dot(r_lam2_1) return w def MVOpt_LS_Fixed_risk_beta(r, Sig, s, beta, Sig_inv = None): # adding 3rd constraint: weights * beta = 0 => hedging portfolio # beta vector same shape as returns, for a given day, we have a vector of betas # and a vector of returns if Sig_inv is None: Sig_inv = inv(Sig) o = np.ones_like(r) o_sig_o = o.T.dot(Sig_inv).dot(o) o_sig_b = o.T.dot(Sig_inv).dot(beta) b_sig_o = beta.T.dot(Sig_inv).dot(o) b_sig_b = beta.T.dot(Sig_inv).dot(beta) o_sig_r = o.T.dot(Sig_inv).dot(r) b_sig_r = beta.T.dot(Sig_inv).dot(r) lam_2, lam_3 = inv([[o_sig_o, o_sig_b], [b_sig_o, b_sig_b]]).dot([o_sig_r, b_sig_r]) r_lam_2_lam_3 = r - (lam_2 * o) - (lam_3 * beta) r_sig_r = r_lam_2_lam_3.T.dot(Sig_inv).dot(r_lam_2_lam_3) lam_1 = np.sqrt(r_sig_r / (4 * s)) w = (1/ (2 * lam_1)) * Sig_inv.dot(r_lam_2_lam_3) return w def MVOpt_L_Min_Var(Sig, Sig_inv = None): if Sig_inv is None: Sig_inv = inv(Sig) o = np.ones(Sig.shape[0]) lam_1 = 1/ (o.T.dot(Sig_inv).dot(o)) w = lam_1 * Sig_inv.dot(o) return w class MeanVarianceOptimization(object): def __init__(self, stock_arr, s = 0.35, shrinkage_factor=0.80): self.stock_arr = [Stock(s) if isinstance(s, str) else s for s in stock_arr] self.s = s self.shrinkage_factor = shrinkage_factor self.returns_df = stock_obj_arr_to_return_mat(self.stock_arr) self.returns_shifted_df = self.returns_df.shift(1) self.var_covar_ts = return_mat_to_rolling_var_covar_dict(self.returns_df, window=126, shrinkage_factor=self.shrinkage_factor) self.inv_var_covar_ts = invert_var_covar_dict(var_covar_ts_dict=self.var_covar_ts) self.expected_returns_df = self.returns_df.rolling(window = 126).mean().shift(1).dropna()*252 self.weights_df = self.build_weights() def build_weights(self): weights_dict = {} for dt, Sig_inv in self.inv_var_covar_ts.items(): # for a given day, construct the weights of your protfolio r = self.expected_returns_df.loc[dt,:] Sig = self.var_covar_ts[dt] w = MVOpt_LS_Fixed_risk(r = r, Sig = Sig, s = self.s, Sig_inv = Sig_inv) weights_dict[dt] = w weights_df = pd.DataFrame(weights_dict).T return weights_df class MinVarianceOptimization(object): def __init__(self, stock_arr, shrinkage_factor=0.80, window=126): self.stock_arr = [Stock(s) if isinstance(s, str) else s for s in stock_arr] self.shrinkage_factor = shrinkage_factor self.window = window self.returns_df = stock_obj_arr_to_return_mat(self.stock_arr) self.returns_shifted_df = self.returns_df.shift(1) self.var_covar_ts = return_mat_to_rolling_var_covar_dict(self.returns_df, window=self.window, shrinkage_factor=self.shrinkage_factor) self.inv_var_covar_ts = invert_var_covar_dict(var_covar_ts_dict=self.var_covar_ts) self.weights_df = self.build_weights() def build_weights(self): weights_dict = {} for dt, Sig_inv in self.inv_var_covar_ts.items(): # for a given day, construct the weights of your protfolio Sig = self.var_covar_ts[dt] w = MVOpt_L_Min_Var(Sig = Sig, Sig_inv = Sig_inv) weights_dict[dt] = w weights_df = pd.DataFrame(weights_dict).T return weights_df class SimpleBlackLitterman(object): def __init__(self, stock_arr, signal_func_arr, signal_view_ret_arr, A=1.0, tau=1.0, shrinkage_factor=0.80): self.stock_arr = [Stock(s) if isinstance(s, str) else s for s in stock_arr] self.signal_func_arr = signal_func_arr self.signal_view_ret_arr = signal_view_ret_arr self.A = A self.tau = tau self.shrinkage_factor = shrinkage_factor self.returns_df = stock_obj_arr_to_return_mat(self.stock_arr) self.returns_shifted_df = self.returns_df.shift(1) self.weights_df = self.build_weights() self.weights_shifted_df = self.weights_df.shift(1) self.var_covar_ts = return_mat_to_rolling_var_covar_dict(self.returns_df, window=126, shrinkage_factor=self.shrinkage_factor) self.inv_var_covar_ts = invert_var_covar_dict(var_covar_ts_dict=self.var_covar_ts) self.implied_returns_df = self.generate_implied_returns() self.signal_df_dict = {'signal_'+str(i):self.build_signal_df(sf).dropna() \ for i, sf in enumerate(self.signal_func_arr)} self.signal_ts_dict = self.generate_signal_ts_dict() self.link_mat_ts = self.generate_link_mats() self.view_var_covar_ts = self.generate_view_var_covar_mats() self.view_inv_var_covar_ts = self.generate_view_inv_var_covar_mats() self.black_litterman_weights_df = self.generate_black_litterman_weights() def build_weights(self): output_dict = {} for s in self.stock_arr: output_dict[s.ticker] = s['PriceClose'] * s['ShareIssued'] marketcap_df = pd.DataFrame(output_dict).dropna() weights_df = marketcap_df.apply(lambda x: normalize(x), axis = 1) return weights_df def generate_implied_returns(self): implied_returns_dict = {} for dt, var_cov_mat in self.var_covar_ts.items(): if dt in self.weights_shifted_df.index: weigts_arr = self.weights_shifted_df.loc[dt, :] implied_returns_arr = self.A*var_cov_mat.dot(weigts_arr) implied_returns_dict[dt] = implied_returns_arr implied_returns_df = pd.DataFrame(implied_returns_dict).T.dropna() return implied_returns_df def build_signal_df(self, signal_func): signal_dict = {} for stock_obj in self.stock_arr: stock_signal_ts = signal_func(stock_obj) stock_ticker = stock_obj.ticker signal_dict[stock_ticker] = stock_signal_ts signal_df = pd.DataFrame(signal_dict) return signal_df def generate_signal_ts_dict(self): dts = None for signal_label, signal_df in self.signal_df_dict.items(): if dts is None: dts = signal_df.index else: dts = dts.intersection(signal_df.index) output_dict = {} for dt in dts: date_dict = {} for signal_label, signal_df in self.signal_df_dict.items(): date_dict[signal_label] = signal_df.loc[dt, :] date_df = pd.DataFrame(date_dict).T output_dict[dt] = date_df return output_dict def generate_link_mats(self): link_mat_ts = {} for dt, signal_raw in self.signal_ts_dict.items(): link_mat_ts[dt] = signal_raw.apply( lambda x: 2*((x.rank() - 1) / ( np.sum(~np.isnan(x)) - 1)) - 1, axis=1).fillna(0) return link_mat_ts def generate_view_var_covar_mats(self): view_var_covar_ts = {} for dt, var_cov_mat in self.var_covar_ts.items(): if dt in self.link_mat_ts: P = self.link_mat_ts[dt] Sigma = self.var_covar_ts[dt] Omega = self.tau*P.dot(Sigma).dot(P.T) # Apply shrinkage factor Omega = Omega * self.shrinkage_factor + \ (1.0-self.shrinkage_factor)*np.diag(np.diag(Omega)) view_var_covar_ts[dt] = Omega return view_var_covar_ts def generate_view_inv_var_covar_mats(self): view_inv_var_covar_ts = deepcopy(self.view_var_covar_ts) for dt, view_var_cov_mat in self.view_var_covar_ts.items(): view_inv_var_covar_ts[dt].loc[:, :] = inv(view_var_cov_mat) return view_inv_var_covar_ts def generate_black_litterman_weights(self): black_litterman_weights_dict = {} for dt, view_inv_var_cov_mat in self.view_inv_var_covar_ts.items(): if dt in self.implied_returns_df.index: black_litterman_weights_dict[dt] = self.tau*(self.inv_var_covar_ts[dt].dot(self.implied_returns_df.loc[dt])) \ + self.link_mat_ts[dt].T.dot(view_inv_var_cov_mat).dot(self.signal_view_ret_arr) black_litterman_weights_df = pd.DataFrame(black_litterman_weights_dict).T return black_litterman_weights_df class PairTradingPortfolio(object): def __init__(self, stock_obj1 , stock_obj2, signal_func, flip_signal=False): self.stock_obj1 = stock_obj1 self.stock_obj2 = stock_obj2 self.signal_func = signal_func self.flip_signal = flip_signal self.stock_obj1_signal_ts = signal_func(stock_obj1) self.stock_obj2_signal_ts = signal_func(stock_obj2) self.relative_signal_ts = None self.stock_obj1_wght_ts = None self.stock_obj2_wght_ts = None self.stock_obj1_return = self.stock_obj1['PriceClose'].pct_change(1) self.stock_obj2_return = self.stock_obj2['PriceClose'].pct_change(1) def relative_scaling(self, window = 90): self.relative_signal_ts = (self.stock_obj1_signal_ts / self.stock_obj2_signal_ts).rolling(window = window).apply(lambda x: (x[-1] - x[0:-1].mean())/(x[0:-1].std())) if self.flip_signal: self.relative_signal_ts = -1 * self.relative_signal_ts self.stock_obj1_wght_ts = self.relative_signal_ts.apply(lambda x: (norm.cdf(x) * 2) - 1) self.stock_obj2_wght_ts = -1 * self.stock_obj1_wght_ts self.portfolio_return_ts = self.stock_obj1_wght_ts.shift(1) * self.stock_obj1_return + \ self.stock_obj2_wght_ts.shift(1) * self.stock_obj2_return def relative_differencing(self, window = 90): self.relative_signal_ts = (self.stock_obj1_signal_ts - self.stock_obj2_signal_ts).rolling(window = window).apply(lambda x: (x[-1] - x[0:-1].mean())/(x[0:-1].std())) if self.flip_signal: self.relative_signal_ts = -1 * self.relative_signal_ts self.stock_obj1_wght_ts = self.relative_signal_ts.apply(lambda x: (norm.cdf(x) * 2) - 1) self.stock_obj2_wght_ts = -1 * self.stock_obj1_wght_ts self.portfolio_return_ts = self.stock_obj1_wght_ts.shift(1) * self.stock_obj1_return + \ self.stock_obj2_wght_ts.shift(1) * self.stock_obj2_return def get_returns(self): self.portfolio_return_ts = self.stock_obj1_wght_ts.shift(1) * self.stock_obj1_return + \ self.stock_obj2_wght_ts.shift(1) * self.stock_obj2_return return self.portfolio_return_ts class SingleSignalPortfolio(object): def __init__(self, stock_obj_arr, signal_func): self.stock_obj_arr = stock_obj_arr self.signal_func = signal_func self.n_stocks = len(stock_obj_arr) self.signal_df = None returns_dict = {} for stock_obj in self.stock_obj_arr: returns_dict[stock_obj.ticker] = stock_obj['PriceClose'].pct_change(1) self.returns_df = pd.DataFrame(returns_dict).dropna() def relative_ranking(self): signal_dict = {} for stock_obj in self.stock_obj_arr: stock_signal_ts = self.signal_func(stock_obj) stock_ticker = stock_obj.ticker signal_dict[stock_ticker] = stock_signal_ts self.signal_df =
pd.DataFrame(signal_dict)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 15 16:41:37 2018 @author: krzysztof This module contains utilities useful when performing data analysis and drug sensitivity prediction with Genomics of Drug Sensitivity in Cancer (GDSC) database. Main utilities are Drug classes and Experiment class. All classes beginning with a word "Drug" represent the compound coming from GDSC. There is a separate class for every corresponding experiment setup and genomic feature space. All Drug classes contain methods for extraction and storage of proper input data. Available data types include: gene expression, binary copy number and coding variants, and cell line tissue type. The set of considered genes is represented as "targets" attribute of Drug classes. The Experiment class is dedicated for storage and analysis of results coming from machine learning experiments. Actual machine learning is done outside of a class. The Experiment class have methods for storage, analysis and visualisation of results. Classes: Drug: Basic class representing a compound from GDSC. DrugWithDrugBank: Inherits from Drug, accounts for target genes from DrugBank database. DrugGenomeWide: Inherits from Drug, designed for using genome-wide gene exression as input data. DrugDirectReactome: Inherits from DrugWithDrugBank, uses only input data related to target genes resulting from direct compound-pathway matching from Reactome. DrugWithGenesInSamePathways: Inherits from DrugWithDrugBank, uses only input data related to genes that belong in the same pathways as target genes. Experiment: Designed to store and analyze results coming from machine learning experiments. """ # Imports import pandas as pd import numpy as np import time import pickle import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr import collections # Sklearn imports from scipy.stats import pearsonr from sklearn.linear_model import ElasticNet from sklearn import model_selection from sklearn import metrics from sklearn import preprocessing from sklearn.dummy import DummyRegressor from sklearn.pipeline import Pipeline from sklearn import feature_selection from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor from sklearn.base import clone # General imports import multiprocessing import numpy as np import pandas as pd import time import sys import dill import warnings import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr import collections # Sklearn imports from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestRegressor from sklearn import model_selection from sklearn.pipeline import Pipeline from sklearn import metrics from sklearn.dummy import DummyRegressor from sklearn.linear_model import Lasso, ElasticNet from stability_selection import StabilitySelection ################################################################################################################# # Drug class ################################################################################################################# class Drug(object): """Class representing compound from GDSC database. This is the most basic, parent class. Different experimental settings will use more specific, children classes. Main function of the class is to create and store input data corresponding to a given drug. Five types of data are considered: gene expression, copy number variants, coding variants, gene expression signatures, and tumor tissue type. Class instances are initialized with four basic drug properties: ID, name, gene targets and target pathway. Data attributes are stored as pandas DataFrames and are filled using data files from GDSC via corresponding methods. Attributes: gdsc_id (int): ID from GDSC website. name (string): Drug name. targets (list of strings): Drug's target gene names (HGNC). target_pathway (string): Drug's target pathway as provided in GDSC annotations. ensembl targets (list of strings): Drug's target genes ensembl IDs. Can have different length than "targets" because some gene names may not be matched during mapping. Ensembl IDs are needed for gene expression data. map_from_hgnc_to_ensembl (dictionary): Dictionary mapping from gene names to ensembl IDs. Created after calling the "load_mappings" method. map_from_ensembl_to_hgnc (dictionary): Dictionary mapping from ensembl IDs to gene names. Created after calling the "load_mappings" method. total_no_samples_screened (int): Number of cell lines screened for that drug. Created after calling the "extract_drug_response_data" method. response_data (DataFrame): DataFrame with screened cell lines for that drug and corresponding AUC or IC50 values. Created after calling the "extract_drug_response_data" method. screened_cell_lines (list of ints): list containing COSMIC IDs representing cell lines screened for that drug. Created after calling the "extract_screened_cell_lines" method. gene_expression_data (DataFrame): DataFrame with gene expression data, considering only target genes. Created after calling the "extract_gene_expression" method mutation_data (DataFrame): DataFrame with binary calls for coding variants, considering only target genes. Created after calling the "extract_mutation_data" method. cnv_data (DataFrame): DataFrame with binary calls for copu number variants, considering only target genes. Created after calling the "extract_cnv_data" method. tissue_data (DataFrame): DataFrame with dummy encoded tumor tissue types in screened cell lines. Dummy encoding results in 13 binary features. Created after calling the "extract_tissue_data" method. full_data (DataFrame): DataFrame with combined data coming from given set of genetic data classes. Methods: Instance methods: __init__: Initialize a Drug instance. __repr__: Return string representation of an instance, as a command which can be used to create this instance. __str__: Return string representation of an instance. extract_drug_response_data: Generate a DataFrame with drug-response data. extract_screened_cell_lines: Generate a list of COSMIC IDs representing cell lines screened for that drug. extract_gene_expression: Generate a DataFrame with gene expression data for drug's screened cell lines extract_mutation_data: Generate a DataFrame with binary calls for coding variants. extract_cnv_data: Generate a DataFrame with binary calls for copy number variants. extract_cnv_data_faster: Generate a DataFrame with binary calls for copy number variants. extract_tissue_data: Generate a DataFrame with dummy encoded tissue types. extract_merck_signatures_data: Generate a DataFrame with gene expression signatures provided by Merck. concatenate_data: Generate a DataFrame containing all desired genetic data classes. Available data classes are: gene expression, coding variants, cnv variants and tissue type. create_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data and saves it in corresponding instance's field. return_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data but does not save it. Class methods: load_mappings: Load appropriate dictionaries mapping between ensembl and HGNC. Static methods: create_drugs: Create a dictionary of Drug class objects, each referenced by it's ID (keys are drug GDSC ID's) load_data: Load all needed data files as DataFrames with one function call. """ # Class variables map_from_hgnc_to_ensembl = None map_from_ensembl_to_hgnc = None # Instance methods def __init__(self, gdsc_id, name, targets, target_pathway): """Intiliaze the class instance with four basic attributes. "Targets" are gene names and get mapped into Ensembl IDs using class mapping variable.""" self.gdsc_id = gdsc_id self.name = name self.targets = targets self.target_pathway = target_pathway self.ensembl_targets = [] for x in self.targets: try: self.ensembl_targets.append(self.map_from_hgnc_to_ensembl[x]) except KeyError: pass def extract_drug_response_data(self, sensitivity_profiles_df, metric="AUC"): """Generate a DataFrame containing reponses for every cell line screened for that drug. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. metric (string): Which statistic to use as a response metric (default "AUC"). Returns: None """ df = sensitivity_profiles_df[sensitivity_profiles_df.DRUG_ID == self.gdsc_id][ ["COSMIC_ID", metric]] df.columns = ["cell_line_id", metric] # Insert column with samples ID self.total_no_samples_screened = df.shape[0] # Record how many screened cell lines for drug self.response_data = df # Put DataFrame into corresponding field def extract_screened_cell_lines(self, sensitivity_profiles_df): """Generate set of cell lines screened for that drug. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. Returns: None """ self.screened_cell_lines = list( sensitivity_profiles_df[sensitivity_profiles_df.DRUG_ID == self.gdsc_id]["COSMIC_ID"]) def extract_gene_expression(self, gene_expression_df): """Generate DataFrame of gene expression data for cell lines screened for this drug, only considering drug's target genes. Arguments: gene_expression_df (DataFrame): Original GDSC gene expression DataFrame. sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. Returns: None """ cell_lines_str = [] # Gene expressesion DF column names are strings for x in self.screened_cell_lines: cell_lines_str.append(str(x)) cl_to_extract = [] for x in cell_lines_str: if x in list(gene_expression_df.columns): cl_to_extract.append(x) # Extract only cell lines contained in gene expression data gene_expr = gene_expression_df[ gene_expression_df.ensembl_gene.isin(self.ensembl_targets)][["ensembl_gene"] + cl_to_extract] gene_expr_t = gene_expr.transpose() columns = list(gene_expr_t.loc["ensembl_gene"]) gene_expr_t.columns = columns gene_expr_t = gene_expr_t.drop(["ensembl_gene"]) rows = list(gene_expr_t.index) gene_expr_t.insert(0, "cell_line_id", rows) # Insert columns with cell line IDs gene_expr_t.reset_index(drop=True, inplace=True) gene_expr_t["cell_line_id"] = pd.to_numeric(gene_expr_t["cell_line_id"]) self.gene_expression_data = gene_expr_t # Put DataFrame into corresponding field def extract_mutation_data(self, mutation_df): """Generate a DataFrame with binary mutation calls for screened cell lines and target genes. Arguments: mutation_df: DataFrame with original mutation calls from GDSC. Returns: None """ targets = [x + "_mut" for x in self.targets] df = mutation_df.copy()[ mutation_df.cosmic_sample_id.isin(self.screened_cell_lines)] df = df[df.genetic_feature.isin(targets)][["cosmic_sample_id", "genetic_feature", "is_mutated"]] cosmic_ids = [] genetic_features = {} for feature in df.genetic_feature.unique(): genetic_features[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) df_cl = df[df.cosmic_sample_id == cl_id] for feature in genetic_features: mutation_status = df_cl[ df_cl.genetic_feature == feature]["is_mutated"].iloc[0] genetic_features[feature].append(mutation_status) df1 = pd.DataFrame() df1.insert(0, "cell_line_id", cosmic_ids) # Insert column with samples IDs for feature in genetic_features: df1[feature] = genetic_features[feature] self.mutation_data = df1 # Put DataFrame into corresponding field def extract_cnv_data(self, cnv_binary_df): """Generate data containing binary CNV calls for cell lines screened for the drug. Arguments: cnv_binary_df: DataFrame from GDSC download tool with CNV data. Returns: None """ df = cnv_binary_df[cnv_binary_df.cosmic_sample_id.isin(self.screened_cell_lines)] features_to_extract = [] # Map drug's targets to CNV features (segments) for row in cnv_binary_df.drop_duplicates(subset="genetic_feature").itertuples(): feature_name = getattr(row, "genetic_feature") genes_in_segment = getattr(row, "genes_in_segment").split(",") for target in self.targets: if target in genes_in_segment: features_to_extract.append(feature_name) # If target is in any segment, add it to the list features_to_extract = list(set(features_to_extract)) df = df[df.genetic_feature.isin(features_to_extract)] cosmic_ids = [] feature_dict = {} # Separate lists for every column in final DataFrame for feature in df.genetic_feature.unique(): feature_dict[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) for feature in feature_dict: status = df[ (df.cosmic_sample_id == cl_id) & (df.genetic_feature == feature)]["is_mutated"].iloc[0] feature_dict[feature].append(status) new_df = pd.DataFrame() for feature in feature_dict: new_df[feature] = feature_dict[feature] new_df.insert(0, "cell_line_id", cosmic_ids) self.cnv_data = new_df def extract_cnv_data_faster(self, cnv_binary_df, map_cl_id_and_feature_to_status): """Generate data containing binary CNV calls for cell lines screened for the drug. Faster implementation than original "extract_cnv_data" by using mapping between genes and genomic segments. Arguments: cnv_binary_df: DataFrame from GDSC download tool with CNV data. Returns: None """ df = cnv_binary_df[cnv_binary_df.cosmic_sample_id.isin(self.screened_cell_lines)] features_to_extract = [] # Map drug's targets to CNV features (segments) for row in cnv_binary_df.drop_duplicates(subset="genetic_feature").itertuples(): feature_name = getattr(row, "genetic_feature") genes_in_segment = getattr(row, "genes_in_segment").split(",") for target in self.targets: if target in genes_in_segment: features_to_extract.append(feature_name) # If target is in any segment, add it to the list features_to_extract = list(set(features_to_extract)) df = df[df.genetic_feature.isin(features_to_extract)] cosmic_ids = [] feature_dict = {} # Separate lists for every column in final DataFrame for feature in features_to_extract: feature_dict[feature] = [] for cl_id in df.cosmic_sample_id.unique(): cosmic_ids.append(cl_id) for feature in feature_dict: status = map_cl_id_and_feature_to_status[(cl_id, feature)] feature_dict[feature].append(status) new_df = pd.DataFrame() for feature in feature_dict: new_df[feature] = feature_dict[feature] new_df.insert(0, "cell_line_id", cosmic_ids) self.cnv_data = new_df def extract_tissue_data(self, cell_line_list): """Generate (dummy encoded) data with cell line tissue type. Arguments: cell_line_list (DataFrame): Cell line list from GDSC. Returns: None """ df = cell_line_list[ cell_line_list["COSMIC_ID"].isin(self.screened_cell_lines)][["COSMIC_ID", "Tissue"]] df.rename(columns={"COSMIC_ID": "cell_line_id"}, inplace=True) self.tissue_data = pd.get_dummies(df, columns = ["Tissue"]) def extract_merck_signatures_data(self, signatures_df): """Generate data with gene expression signature scores for GDSC cell lines, provided by Merck. Arguments: signatures_df (DataFrame): DataFrame with gene signatures for cell lines. Returns: None """ # Compute list of screened cell lines as strings with prefix "X" in order to match # signatures DataFrame columns cell_lines_str = ["X" + str(cl) for cl in self.screened_cell_lines] # Compute list of cell lines that are contained in signatures data cls_to_extract = [cl for cl in cell_lines_str if cl in list(signatures_df.columns)] # Extract desired subset of signatures data signatures_of_interest = signatures_df[cls_to_extract] # Transpose the DataFrame signatures_t = signatures_of_interest.transpose() # Create a list of cell line IDs whose format matches rest of the data cl_ids = pd.Series(signatures_t.index).apply(lambda x: int(x[1:])) # Insert proper cell line IDs as a new column signatures_t.insert(0, "cell_line_id", list(cl_ids)) # Drop the index and put computed DataFrame in an instance field self.merck_signatures = signatures_t.reset_index(drop=True) def concatenate_data(self, data_combination): """Generate data containing chosen combination of genetic data classes. Arguments: data_combination: List of strings containing data classes to be included. Available options are: "mutation", "expression", "CNV", "tissue", "merck signatures". Returns: None """ # Create a list of DataFrames to include objects = [self.response_data] if "mutation" in data_combination and self.mutation_data.shape[0] > 0: objects.append(self.mutation_data) if "expression" in data_combination and self.gene_expression_data.shape[0] > 0: objects.append(self.gene_expression_data) if "CNV" in data_combination and self.cnv_data.shape[0] > 0: objects.append(self.cnv_data) if "tissue" in data_combination and self.tissue_data.shape[0] > 0: objects.append(self.tissue_data) if "merck signatures" in data_combination and self.merck_signatures.shape[0] > 0: objects.append(self.merck_signatures) # Find intersection in cell lines for all desirable DataFrames cl_intersection = set(list(self.response_data["cell_line_id"])) for obj in objects: cl_intersection = cl_intersection.intersection(set(list(obj["cell_line_id"]))) objects_common = [] for obj in objects: objects_common.append(obj[obj["cell_line_id"].isin(cl_intersection)]) # Check if all DataFrames have the same number of samples no_samples = objects_common[0].shape[0] for obj in objects_common: assert obj.shape[0] == no_samples obj.sort_values("cell_line_id", inplace=True) obj.reset_index(drop=True, inplace=True) cl_ids = objects_common[0]["cell_line_id"] df_concatenated = pd.concat(objects_common, axis=1, ignore_index=False) metric = self.response_data.columns[-1] # Extract the name of metric which was used for sensitivity sensitivities = df_concatenated[metric] df_concatenated = df_concatenated.drop(["cell_line_id", metric], axis=1) df_concatenated.insert(0, "cell_line_id", cl_ids) df_concatenated.insert(df_concatenated.shape[1], metric, sensitivities) self.full_data = df_concatenated def create_full_data(self, sensitivity_profiles_df, gene_expression_df=None, cnv_binary_df=None, map_cl_id_and_feature_to_status=None, cell_line_list=None, mutation_df=None, merck_signatures_df=None, data_combination=None, metric="AUC"): """Combine extraction methods in one to generate a DataFrame with desired data. When calling a function, original DataFrames parsed should match strings in data_combination argument. If any of the "_df" arguments is None (default value), the corresponding data is not included in the output DataFrame. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. gene_expression_df (DataFrame): Original GDSC gene expression DataFrame. cnv_binary_df (DataFrame): DataFrame from GDSC download tool with CNV data. cell_line_list (DataFrame): Cell line list from GDSC. mutation_df (DataFrame): DataFrame with original mutation calls from GDSC. data_combination (list): list of strings containing data classes to be included. Available options are: "mutation", "expression", "CNV, "tissue", "merck signatures". metric (string): Which statistic to use as a response metric (default "AUC"). Returns: DataFrame containing desired data for the drug """ # Call separate methods for distinct data types self.extract_screened_cell_lines(sensitivity_profiles_df) self.extract_drug_response_data(sensitivity_profiles_df, metric) if type(gene_expression_df) == type(pd.DataFrame()): self.extract_gene_expression(gene_expression_df) if type(cnv_binary_df) == type(pd.DataFrame()): self.extract_cnv_data_faster(cnv_binary_df, map_cl_id_and_feature_to_status) if type(cell_line_list) == type(pd.DataFrame()): self.extract_tissue_data(cell_line_list) if type(mutation_df) == type(pd.DataFrame()): self.extract_mutation_data(mutation_df) if type(merck_signatures_df) == type(pd.DataFrame()): self.extract_merck_signatures_data(merck_signatures_df) self.concatenate_data(data_combination) return self.full_data def return_full_data(self, sensitivity_profiles_df, gene_expression_df=None, cnv_binary_df=None, map_cl_id_and_feature_to_status=None, cell_line_list=None, mutation_df=None, merck_signatures_df=None, data_combination=None, metric="AUC"): """Compute full data with desired data classes and return it, but after that delete data from instance's data fields in order to save memory. When calling a function, original DataFrames parsed should match strings in data_combination argument. If any of the "_df" arguments is None (default value), the corresponding data is not included in the output DataFrame. Arguments: sensitivity_profiles_df (DataFrame): DataFrame of drug response data from GDSC. gene_expression_df (DataFrame): Original GDSC gene expression DataFrame. cnv_binary_df (DataFrame): DataFrame from GDSC download tool with CNV data. cell_line_list (DataFrame): Cell line list from GDSC. mutation_df (DataFrame): DataFrame with original mutation calls from GDSC. data_combination (list): list of strings containing data classes to be included. Available options are: "mutation", "expression", "CNV, "tissue", "merck signatures". metric (string): Which statistic to use as a response metric (default "AUC"). Returns: DataFrame containing desired data for the drug """ full_df = self.create_full_data(sensitivity_profiles_df, gene_expression_df, cnv_binary_df, map_cl_id_and_feature_to_status, cell_line_list, mutation_df, merck_signatures_df, data_combination, metric) if type(gene_expression_df) == type(pd.DataFrame()): self.gene_expression_data = None if type(cnv_binary_df) == type(pd.DataFrame()): self.cnv_data = None if type(cell_line_list) == type(pd.DataFrame()): self.tissue_data = None if type(mutation_df) == type(pd.DataFrame()): self.mutation_data = None if type(merck_signatures_df) == type(pd.DataFrame()): self.merck_signatures = None self.full_data = None return full_df def __repr__(self): """Return string representation of an object, which can be used to create it.""" return 'Drug({}, "{}", {}, "{}")'.format(self.gdsc_id, self.name, self.targets, self.target_pathway) def __str__(self): """Return string representation of an object""" return "{} -- {}".format(self.name, self.gdsc_id) # Class methods @classmethod def load_mappings(cls, filepath_hgnc_to_ensembl, filepath_ensembl_to_hgnc): """Load dictonaries with gene mappings between HGNC and Ensembl (from pickle files) and assign it to corresponding class variables. Ensembl IDs are needed for gene expression data. This method should be called on a Drug class before any other actions with the class. Arguments: filepath_hgnc_to_ensembl: file with accurate mapping filepath_ensembl_to_hgnc: file with accurate mapping Returns: None """ cls.map_from_hgnc_to_ensembl = pickle.load(open(filepath_hgnc_to_ensembl, "rb")) cls.map_from_ensembl_to_hgnc = pickle.load(open(filepath_ensembl_to_hgnc, "rb")) # Static methods @staticmethod def create_drugs(drug_annotations_df): """Create a dictionary of Drug class objects, each referenced by it's ID (keys are drug GDSC ID's). Arguments: drug_annotations_df (DataFrame): DataFrame of drug annotations from GDSC website Returns: Dictionary of Drug objects as values and their ID's as keys """ drugs = {} for row in drug_annotations_df.itertuples(index=True, name="Pandas"): gdsc_id = getattr(row, "DRUG_ID") name = getattr(row, "DRUG_NAME") targets = getattr(row, "TARGET").split(", ") target_pathway = getattr(row, "TARGET_PATHWAY") drugs[gdsc_id] = Drug(gdsc_id, name, targets, target_pathway) return drugs @staticmethod def load_data(drug_annotations, cell_line_list, gene_expr, cnv1, cnv2, coding_variants, drug_response): """Load all needed files by calling one function and return data as tuple of DataFrames. All argumenst are filepaths to corrresponding files.""" # Drug annotations drug_annotations_df = pd.read_excel(drug_annotations) # Cell line annotations col_names = ["Name", "COSMIC_ID", "TCGA classification", "Tissue", "Tissue_subtype", "Count"] cell_lines_list_df = pd.read_csv(cell_line_list, usecols=[1, 2, 3, 4, 5, 6], header=0, names=col_names) # Gene expression gene_expression_df = pd.read_table(gene_expr) # CNV d1 = pd.read_csv(cnv1) d2 = pd.read_table(cnv2) d2.columns = ["genes_in_segment"] def f(s): return s.strip(",") cnv_binary_df = d1.copy() cnv_binary_df["genes_in_segment"] = d2["genes_in_segment"].apply(f) # Coding variants coding_variants_df = pd.read_csv(coding_variants) # Drug-response drug_response_df = pd.read_excel(drug_response) return (drug_annotations_df, cell_lines_list_df, gene_expression_df, cnv_binary_df, coding_variants_df, drug_response_df) ################################################################################################################# # DrugWithDrugBank class ################################################################################################################## class DrugWithDrugBank(Drug): """Class representing drug from GDSC database. Contrary to the parent class Drug, this class also incorporates data related to targets derived from DrugBank, not only those from GDSC. Main function of the class is to create and store input data corresponding to a given drug. Four types of data are considered: gene expression, copy number variants, coding variants and tumor tissue type. Class instances are initialized with four basic drug properties: ID, name, gene targets and target pathway. Data attributes are stored as pandas DataFrames and are filled using data files from GDSC via corresponding methods. In general, all utilities are the same as in parent Drug class, with an exception of "create_drugs" method, which is overloaded in order to account for target genes data coming from DrugBank. Attributes: gdsc_id (int): ID from GDSC website. name (string): Drug name. targets (list of strings): Drug's target gene names (HGNC). target_pathway (string): Drug's target pathway as provided in GDSC annotations. ensembl targets (list of strings): Drug's target genes ensembl IDs. Can have different length than "targets" because some gene names may not be matched during mapping. Ensembl IDs are needed for gene expression data. map_from_hgnc_to_ensembl (dictionary): Dictionary mapping from gene names to ensembl IDs. Created after calling the "load_mappings" method. map_from_ensembl_to_hgnc (dictionary): Dictionary mapping from ensembl IDs to gene names. Created after calling the "load_mappings" method. total_no_samples_screened (int): Number of cell lines screened for that drug. Created after calling the "extract_drug_response_data" method. response_data (DataFrame): DataFrame with screened cell lines for that drug and corresponding AUC or IC50 values. Created after calling the "extract_drug_response_data" method. screened_cell_lines (list of ints): list containing COSMIC IDs representing cell lines screened for that drug. Created after calling the "extract_screened_cell_lines" method. gene_expression_data (DataFrame): DataFrame with gene expression data, considering only target genes. Created after calling the "extract_gene_expression" method mutation_data (DataFrame): DataFrame with binary calls for coding variants, considering only target genes. Created after calling the "extract_mutation_data" method. cnv_data (DataFrame): DataFrame with binary calls for copu number variants, considering only target genes. Created after calling the "extract_cnv_data" method. tissue_data (DataFrame): DataFrame with dummy encoded tumor tissue types in screened cell lines. Dummy encoding results in 13 binary features. Created after calling the "extract_tissue_data" method. full_data (DataFrame): DataFrame with combined data coming from given set of genetic data classes. Methods: Instance methods: __init__: Initialize a Drug instance. __repr__: Return string representation of an instance, as a command which can be used to create this instance. __str__: Return string representation of an instance. extract_drug_response_data: Generate a DataFrame with drug-response data. extract_screened_cell_lines: Generate a list of COSMIC IDs representing cell lines screened for that drug. extract_gene_expression: Generate a DataFrame with gene expression data for drug's screened cell lines extract_mutation_data: Generate a DataFrame with binary calls for coding variants. extract_cnv_data: Generate a DataFrame with binary calls for copy number variants. extract_tissue_data: Generate a DataFrame with dummy encoded tissue types. concatenate_data: Generate a DataFrame containing all desired genetic data classes. Available data classes are: gene expression, coding variants, cnv variants and tissue type. create_full_data: Combines above data extraction methods in order to create desired input data for the drug with one method call. Returns the full data. Class methods: load_mappings: Load appropriate dictionaries mapping between ensembl and HGNC. Static methods: create_drugs: Create a dictionary of DrugWithDrugBank class objects, each referenced by it's ID (keys are drug GDSC ID's). Includes also target data coming from DrugBank. load_data: Load all needed data files as DataFrames with one function call. """ def create_drugs(drug_annotations_df, drugbank_targets_mapping): """Create a dictionary of DrugWithDrugBank class objects, each referenced by it's ID. Add also target data coming from DrugBank. Arguments: drug_annotations_df (DataFrame): DataFrame of drug annotations from GDSC website. drugbank_targets_mapping (dictionary): Dictionary with mapping from drug ID to it's targets from drugbank database. Return: Dictionary of DrugWithDrugBank objects as values and their ID's as keys. """ drugs = {} for row in drug_annotations_df.itertuples(index=True, name="Pandas"): name = getattr(row, "DRUG_NAME") gdsc_id = getattr(row, "DRUG_ID") targets = getattr(row, "TARGET").split(", ") # Add targets from DrugBank (if drug is matched) and take a sum if gdsc_id in drugbank_targets_mapping: targets = list(set(targets + drugbank_targets_mapping[gdsc_id])) target_pathway = getattr(row, "TARGET_PATHWAY") # Create DrugWithDrugBank instance and put it into output dictionary drugs[gdsc_id] = DrugWithDrugBank(gdsc_id, name, targets, target_pathway) return drugs def load_data(drug_annotations, cell_line_list, gene_expr, cnv1, cnv2, coding_variants, drug_response, drugbank_targets): """Load all needed files by calling one function. All argumenst are filepaths to corrresponding files.""" # Drug annotations drug_annotations_df = pd.read_excel(drug_annotations) # Cell line annotations col_names = ["Name", "COSMIC_ID", "TCGA classification", "Tissue", "Tissue_subtype", "Count"] cell_lines_list_df = pd.read_csv(cell_line_list, usecols=[1, 2, 3, 4, 5, 6], header=0, names=col_names) # Gene expression gene_expression_df = pd.read_table(gene_expr) # CNV d1 = pd.read_csv(cnv1) d2 = pd.read_table(cnv2) d2.columns = ["genes_in_segment"] def f(s): return s.strip(",") cnv_binary_df = d1.copy() cnv_binary_df["genes_in_segment"] = d2["genes_in_segment"].apply(f) # Coding variants coding_variants_df =
pd.read_csv(coding_variants)
pandas.read_csv
import itertools import operator from os.path import dirname, join import numpy as np import pandas as pd import pytest from pandas.core import ops from pandas.tests.extension import base from pandas.tests.extension.conftest import ( # noqa: F401 as_array, as_frame, as_series, fillna_method, groupby_apply_op, use_numpy, ) from pint.errors import DimensionalityError from pint.testsuite import QuantityTestCase, helpers import pint_pandas as ppi from pint_pandas import PintArray ureg = ppi.PintType.ureg @pytest.fixture(params=[True, False]) def box_in_series(request): """Whether to box the data in a Series""" return request.param @pytest.fixture def dtype(): return ppi.PintType("pint[meter]") @pytest.fixture def data(): return ppi.PintArray.from_1darray_quantity( np.arange(start=1.0, stop=101.0) * ureg.nm ) @pytest.fixture def data_missing(): return ppi.PintArray.from_1darray_quantity([np.nan, 1] * ureg.meter) @pytest.fixture def data_for_twos(): x = [ 2.0, ] * 100 return ppi.PintArray.from_1darray_quantity(x * ureg.meter) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): if request.param == "data": return data elif request.param == "data_missing": return data_missing @pytest.fixture def data_repeated(data): """Return different versions of data for count times""" # no idea what I'm meant to put here, try just copying from https://github.com/pandas-dev/pandas/blob/master/pandas/tests/extension/integer/test_integer.py def gen(count): for _ in range(count): yield data yield gen @pytest.fixture(params=[None, lambda x: x]) def sort_by_key(request): """ Simple fixture for testing keys in sorting methods. Tests None (no key) and the identity key. """ return request.param @pytest.fixture def data_for_sorting(): return ppi.PintArray.from_1darray_quantity([0.3, 10, -50] * ureg.centimeter) # should probably get more sophisticated and do something like # [1 * ureg.meter, 3 * ureg.meter, 10 * ureg.centimeter] @pytest.fixture def data_missing_for_sorting(): return ppi.PintArray.from_1darray_quantity([4, np.nan, -5] * ureg.centimeter) # should probably get more sophisticated and do something like # [4 * ureg.meter, np.nan, 10 * ureg.centimeter] @pytest.fixture def na_cmp(): """Binary operator for comparing NA values.""" return lambda x, y: bool(np.isnan(x.magnitude)) & bool(np.isnan(y.magnitude)) @pytest.fixture def na_value(): return ppi.PintType("meter").na_value @pytest.fixture def data_for_grouping(): # should probably get more sophisticated here and use units on all these # quantities a = 1.0 b = 2.0 ** 32 + 1 c = 2.0 ** 32 + 10 return ppi.PintArray.from_1darray_quantity( [b, b, np.nan, np.nan, a, a, b, c] * ureg.m ) # === missing from pandas extension docs about what has to be included in tests === # copied from pandas/pandas/conftest.py _all_arithmetic_operators = [ "__add__", "__radd__", "__sub__", "__rsub__", "__mul__", "__rmul__", "__floordiv__", "__rfloordiv__", "__truediv__", "__rtruediv__", "__pow__", "__rpow__", "__mod__", "__rmod__", ] @pytest.fixture(params=_all_arithmetic_operators) def all_arithmetic_operators(request): """ Fixture for dunder names for common arithmetic operations """ return request.param @pytest.fixture(params=["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"]) def all_compare_operators(request): """ Fixture for dunder names for common compare operations * >= * > * == * != * < * <= """ return request.param # commented functions aren't implemented _all_numeric_reductions = [ "sum", "max", "min", "mean", # "prod", # "std", # "var", "median", # "kurt", # "skew", ] @pytest.fixture(params=_all_numeric_reductions) def all_numeric_reductions(request): """ Fixture for numeric reduction names. """ return request.param _all_boolean_reductions = ["all", "any"] @pytest.fixture(params=_all_boolean_reductions) def all_boolean_reductions(request): """ Fixture for boolean reduction names. """ return request.param # ================================================================= class TestCasting(base.BaseCastingTests): pass class TestConstructors(base.BaseConstructorsTests): @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_no_data_with_index(self, dtype, na_value): result = pd.Series(index=[1, 2, 3], dtype=dtype) expected = pd.Series([na_value] * 3, index=[1, 2, 3], dtype=dtype) self.assert_series_equal(result, expected) # GH 33559 - empty index result = pd.Series(index=[], dtype=dtype) expected = pd.Series([], index=pd.Index([], dtype="object"), dtype=dtype) self.assert_series_equal(result, expected) @pytest.mark.xfail(run=True, reason="__iter__ / __len__ issue") def test_series_constructor_scalar_na_with_index(self, dtype, na_value): result =
pd.Series(na_value, index=[1, 2, 3], dtype=dtype)
pandas.Series
import networkx as nx import numpy as np import pandas as pd from tmp.utils import cols_attr, cols_glove, cols_empath # Gets mean and median between tweets tweets = pd.read_csv("../data/preprocessing/tweets.csv") tweets.sort_values(by=["user_id", "tweet_creation"], ascending=True, inplace=True) tweets["time_diff"] = tweets.groupby("user_id", sort=False).tweet_creation.diff() time_diff_series_mean = tweets.groupby("user_id", sort=False).time_diff.mean() time_diff_series_median = tweets.groupby("user_id", sort=False).time_diff.median() time_diff = time_diff_series_mean.to_frame() time_diff["time_diff_median"] = time_diff_series_median time_diff.to_csv("../data/features/time_diff.csv") users_attributes = pd.read_csv("../data/features/users_attributes.csv") users_content = pd.read_csv("../data/features/users_content.csv") users_content2 = pd.read_csv("../data/features/users_content2.csv") users_time = pd.read_csv("../data/features/time_diff.csv") users_deleted = pd.read_csv("../data/extra/deleted_account_before_guideline.csv") users_deleted_after_guideline = pd.read_csv("../data/extra/deleted_account_after_guideline.csv") users_date =
pd.read_csv("../data/extra/created_at.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Nov 08 13:41:45 2018 @author: behzad """ import numpy as np import pandas as pd A1=np.array([2,5.2,1.8,5]) S1 = pd.Series([2,5.2,1.8,5],["a","b","c","d"]) S2 = pd.Series([2,5.2,1.8,5],index= ["a","b","c","d"]) S2["c"] Q_heating = pd.Series([1150,1240,120],index=["wall","ceiling","door"]) # Were you will probabely make mistakes ! # remember that Series (starts with capital S) # remember the first item ia list you should0nt write it like this: pd.Series(1,3,3,2) Q_heating["door"] # of course we can repeat the same procedure we did with arrays Opaque_item_list = ["wall", "ceiling","door"] Opaque_U_list = [0.438,0.25,1.78] opaque_U_Series =
pd.Series(Opaque_U_list,index=Opaque_item_list)
pandas.Series
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, MultiIndex, ) import pandas._testing as tm def test_to_numpy(idx): result = idx.to_numpy() exp = idx.values tm.assert_numpy_array_equal(result, exp) def test_to_frame(): tuples = [(1, "one"), (1, "two"), (2, "one"), (2, "two")] index =
MultiIndex.from_tuples(tuples)
pandas.MultiIndex.from_tuples
# -*- coding: utf-8 -*- import warnings import numpy as np import pandas as pd from scipy.stats import mannwhitneyu, ttest_ind, chisquare, wilcoxon, fisher_exact from statsmodels.multivariate.manova import MANOVA from statsmodels.sandbox.stats.multicomp import multipletests from .utils import construct_formula, _categorical_table, _non_present_values_to_zero, \ _test_if_all_vals_equal, _create_result_table, _transform_p_dict, conf_interval, calc_mean_diff, calc_prop_diff def test_num_feats(zipper, feat_subset=None, method=None): """ Performs a hypothesis test to check if the value distributions of numerical features deviate signifcantly between the datasets. Currently t-test as a parametric and U-test as a non-parametric test are supported. :param zipper: Dictionary storing the feature values of the datasets in a list. Feature name is used as the key. :param feat_subset: A list containing feature names. If given, analysis will only be performed for the contained \ features. If not given all features will be considered. :param method: Specify which statistical test should be used. "u" for Mann-Whitney-U-test, "t" for t-test and \ "wilcoxon" for a Wilcoxon signed rank test. :return: dictionary storing the p_values of the analysis. Feature names are used as keys. """ # if no method is specified used Mann-Whitney-U-test as standard if method is None: method = "u" # initialize dictionary which stores the p_values p_values = dict() if feat_subset is None: feat_subset = zipper.keys() for feat in feat_subset: # run through all variables # initiate dict in dict for d1 vs d2, d2 vs d3 etc. per feature p_values[feat] = dict() for i in range(len(zipper[feat]) - 1): # select dataset1 for j in range(i + 1, len(zipper[feat])): # select dataset2 # handle the case that all values of current feature are equal across current datasets if _test_if_all_vals_equal(zipper[feat][i], zipper[feat][j]): warnings.warn( "Values of \"{}\" are the identical across the two datasets. It will be skipped.".format(feat), UserWarning) # delete already created dict for i, j in p_values and continue with next feature del p_values[feat] continue # only calculate score if there are values in each dataset if zipper[feat][i] and zipper[feat][j]: # calculate u-test and return p-value if method == "u": stat_test_result = mannwhitneyu(zipper[feat][i], zipper[feat][j], alternative="two-sided") # calculate t-test and return p-value elif method == "t": stat_test_result = ttest_ind(zipper[feat][i], zipper[feat][j]) elif method == "wilcoxon": stat_test_result = wilcoxon(zipper[feat][i], zipper[feat][j]) p_values[feat][i + 1, j + 1] = stat_test_result.pvalue # if one or both sets are empty else: p_values[feat][i + 1, j + 1] = np.nan return p_values def calc_conf_inv(zipper, feat_subset, df_names): """ Calculates the confidence intervals of means for numerical features. :param zipper: Zipper created from a DataCollection. :param feat_subset: An iterable of features for which the confidence intervals shall be calculated. :param df_names: Names of the dataframes in the DataCollection :return: """ confs = dict() for key in feat_subset: # turns zipper values into lists storing the number of entries of the respective features per dataset confs[key] = [np.round(conf_interval(z), 2) for z in zipper[key]] counts = pd.DataFrame(confs).transpose() counts.index.name = "features" counts.columns = [name+"conf." for name in df_names] return counts def calc_mean_diff_conf(zipper, feat_subset): """ Calculates the confidence intervals for numerical features. :param zipper: Zipper created from a DataCollection. :param feat_subset: An iterable of features for which the confidence intervals shall be calculated. :return: """ # initialize dictionary which stores the conf_invs conf_invs = dict() for feat in feat_subset: # run through all variables # initiate dict in dict for d1 vs d2, d2 vs d3 etc. per feature conf_invs[feat] = dict() for i in range(len(zipper[feat]) - 1): # select dataset1 for j in range(i + 1, len(zipper[feat])): # select dataset2 # only calculate score if there are values in each dataset if zipper[feat][i] and zipper[feat][j]: interval = np.round(calc_mean_diff(zipper[feat][i], zipper[feat][j]), 2) # indicator = True if 0 is not in the interval if interval[0] >= 0 or interval[1] <= 0: flag = True else: flag = False conf_invs[feat][i + 1, j + 1] = (interval, flag) # if one or both sets are empty else: conf_invs[feat][i + 1, j + 1] = (np.nan, np.nan) return conf_invs def calc_prop_diff_conf(zipper, feat_subset): """ Calculates the confidence intervals for numerical features. :param zipper: Zipper created from a DataCollection. :param feat_subset: An iterable of features for which the confidence intervals shall be calculated. :return: """ # initialize dictionary which stores the conf_invs conf_invs = dict() for feat in feat_subset: # run through all variables # initiate dict in dict for d1 vs d2, d2 vs d3 etc. per feature conf_invs[feat] = dict() for i in range(len(zipper[feat]) - 1): # select dataset1 for j in range(i + 1, len(zipper[feat])): # select dataset2 # only calculate score if there are values in each dataset if zipper[feat][i] and zipper[feat][j]: invs = calc_prop_diff(zipper[feat][i], zipper[feat][j], feat) # check for each factor of the categorical feature if 0 is in the CI or not and append it to dict for factor in invs: inv = invs[factor] # TODO: pass the counts over to the next function such that in can be included into the result table #count1 = invs[factor][0] #count2 = invs[factor][1] # indicator = True if 0 is not in the interval flag = inv[0] >= 0.00 or inv[1] <= 0.00 # save interval in dict try: conf_invs[factor][i + 1, j + 1] = (inv, flag) except KeyError: conf_invs[factor] = dict() conf_invs[factor][i + 1, j + 1] = (inv, flag) # if one or both sets are empty else: conf_invs[feat][i + 1, j + 1] = (np.nan, np.nan) return conf_invs def test_cat_feats(zipper, feat_subset=None, method=None, print_data=False): """ Performs hypothesis testing to identify significantly deviating categorical features. A chi-squared test is used. :param zipper: Dictionary storing the feature values of the datasets in a list. Feature name is used as the key. :param feat_subset: A list containing feature names. If given, analysis will only be performed for the contained \ features. If not given all features will be considered. :return: """ p_values = dict() # consider all features if no feature subset was specified if feat_subset is None: feat_subset = zipper.keys() # set default method to chi-square test if method is None: method = "chi" for feat in feat_subset: # initiate dict in dict for dataset1 vs dataset2, d1 vs d3 etc. per feature p_values[feat] = dict() for i in range(len(zipper[feat]) - 1): # select dataset1 for j in range(i + 1, len(zipper[feat])): # select dataset2 # count occurences of categorical features like in a confusion matrix for Chi2 tests test_data = [_categorical_table(zipper[feat][i]), _categorical_table(zipper[feat][j])] # fill missing keys in test data: test_data = _non_present_values_to_zero(test_data) # sort testing data by index(categories) to align the counts for the categories test_data = [data.sort_index() for data in test_data] # print testing data if specified if print_data: print(feat) print(pd.DataFrame(test_data)) print() if method == "chi": # skip feature if number of events per group is smaller than 5 if (test_data[0] < 5).any() or (test_data[1] < 5).any(): warnings.warn(feat + " has under 5 observations in one or more groups.", UserWarning) # calculate u statistic and return p-value p_val = chisquare(*test_data).pvalue elif method == "fisher": p_val = fisher_exact(test_data)[1] p_values[feat][i + 1, j + 1] = p_val return p_values def p_correction(p_values): """ Corrects p_values for multiple testing. :param p_values: Dictionary storing p_values with corresponding feature names as keys. :return: DataFrame which shows the results of the analysis; p-value, corrected p-value and boolean indicating \ significance. """ p_trans = _transform_p_dict(p_values) # get and drop features which are NaN to skip them in multitest correction nan_features = p_trans[pd.isnull(p_trans[0])] p_trans = p_trans.dropna(axis=0, subset=[0]) # extract p_value column to pass into multiple testing correction p_val_col = p_trans[0].sort_values() # add NaN features back to p_trans to include them into result table later on p_trans = pd.concat([p_trans, nan_features]) # raise Error if no p_values where calculated that can be passed into multiple test correction if p_val_col.values.size == 0: # unpack the p_values which are stored in 2 layer nested dicts. nested_values = [] for value in p_values.values(): nested_values.append(*value.values()) # if all p_values are nan, return an all nan result table if
pd.isnull(nested_values)
pandas.isnull
import pandas as pd import numpy as np import matplotlib.pyplot as plt #import sklearn from scipy import linalg, polyfit #import pulp import pickle from sklearn import linear_model from customClass import * from misc_utility.plot_utility import * from misc_utility.save_utility import result2csv from misc_utility.solvers import * from misc_utility.load_data import * INPUT_DIR = "/home/samuel/Documents/IGE/BdD/BdD_PO/" OUTPUT_DIR= "/home/samuel/Documents/IGE/inversionPO/figures/inversionLARS/" SAVE_DIR = "/home/samuel/Documents/IGE/inversionPO/results/inversionLARS/" list_station= ["Nice","Frenes","Passy","Chamonix", "Marnaz"] # list_station= ["Passy"] list_POtype = ["DTTv","AAv"] # plt.interactive(True) OrdinaryLeastSquare = False GeneralizedLeastSquare = False MachineLearning = True fromSource = True saveFig = True plotTS = True plotBar = True saveResult = True sum_sources = True plotAll = True if fromSource: name_File="_ContributionsMass_positive.csv" else: name_File="CHEM_conc.csv" # sort list in order to always have the same order list_station.sort() list_POtype.sort() # initialize stuff sto = dict() saveCoeff = dict() saveCovm = dict() pvalues = dict() for POtype in list_POtype: sto[POtype]=dict() print("=============="+POtype+"====================") s = pd.Series() cov_all = pd.Series() pie =
pd.Series()
pandas.Series
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import mars.dataframe as md import mars.tensor as mt from mars.tensor.core import TENSOR_CHUNK_TYPE, Tensor from mars.tests.core import TestBase from mars.dataframe.core import SERIES_CHUNK_TYPE, Series, DataFrame, DATAFRAME_CHUNK_TYPE from mars.dataframe.indexing.iloc import DataFrameIlocGetItem, DataFrameIlocSetItem, \ IndexingError, HeadTailOptimizedOperandMixin from mars.dataframe.indexing.loc import DataFrameLocGetItem class Test(TestBase): def testSetIndex(self): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) df3 = df2.set_index('y', drop=True) df3 = df3.tiles() self.assertEqual(df3.chunk_shape, (2, 2)) pd.testing.assert_index_equal(df3.chunks[0].columns_value.to_pandas(), pd.Index(['x'])) pd.testing.assert_index_equal(df3.chunks[1].columns_value.to_pandas(), pd.Index(['z'])) df4 = df2.set_index('y', drop=False) df4 = df4.tiles() self.assertEqual(df4.chunk_shape, (2, 2)) pd.testing.assert_index_equal(df4.chunks[0].columns_value.to_pandas(), pd.Index(['x', 'y'])) pd.testing.assert_index_equal(df4.chunks[1].columns_value.to_pandas(), pd.Index(['z'])) def testILocGetItem(self): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) with self.assertRaises(IndexingError): _ = df2.iloc[1, 1, 1] # index cannot be tuple with self.assertRaises(IndexingError): _ = df2.iloc[(1,), ] # index wrong type with self.assertRaises(TypeError): _ = df2.iloc['a1':] with self.assertRaises(NotImplementedError): _ = df2.iloc[0, md.Series(['a2', 'a3'])] # fancy index should be 1-d with self.assertRaises(ValueError): _ = df2.iloc[[[0, 1], [1, 2]]] with self.assertRaises(ValueError): _ = df2.iloc[1, ...] with self.assertRaises(IndexError): _ = df2.iloc[-4] with self.assertRaises(IndexError): _ = df2.iloc[3] # plain index df3 = df2.iloc[1] df3 = df3.tiles() self.assertIsInstance(df3, Series) self.assertIsInstance(df3.op, DataFrameIlocGetItem) self.assertEqual(df3.shape, (3,)) self.assertEqual(df3.chunk_shape, (2,)) self.assertEqual(df3.chunks[0].shape, (2,)) self.assertEqual(df3.chunks[1].shape, (1,)) self.assertEqual(df3.chunks[0].op.indexes, (1, slice(None, None, None))) self.assertEqual(df3.chunks[1].op.indexes, (1, slice(None, None, None))) self.assertEqual(df3.chunks[0].inputs[0].index, (0, 0)) self.assertEqual(df3.chunks[0].inputs[0].shape, (2, 2)) self.assertEqual(df3.chunks[1].inputs[0].index, (0, 1)) self.assertEqual(df3.chunks[1].inputs[0].shape, (2, 1)) # slice index df4 = df2.iloc[:, 2:4] df4 = df4.tiles() self.assertIsInstance(df4, DataFrame) self.assertIsInstance(df4.op, DataFrameIlocGetItem) self.assertEqual(df4.shape, (3, 1)) self.assertEqual(df4.chunk_shape, (2, 1)) self.assertEqual(df4.chunks[0].shape, (2, 1)) pd.testing.assert_index_equal(df4.chunks[0].columns_value.to_pandas(), df1.columns[2:3]) pd.testing.assert_series_equal(df4.chunks[0].dtypes, df1.dtypes[2:3]) self.assertIsInstance(df4.chunks[0].index_value.to_pandas(), type(df1.index)) self.assertEqual(df4.chunks[1].shape, (1, 1)) pd.testing.assert_index_equal(df4.chunks[1].columns_value.to_pandas(), df1.columns[2:3]) pd.testing.assert_series_equal(df4.chunks[1].dtypes, df1.dtypes[2:3]) self.assertNotEqual(df4.chunks[0].index_value.key, df4.chunks[1].index_value.key) self.assertIsInstance(df4.chunks[1].index_value.to_pandas(), type(df1.index)) self.assertEqual(df4.chunks[0].op.indexes, (slice(None, None, None), slice(None, None, None))) self.assertEqual(df4.chunks[1].op.indexes, (slice(None, None, None), slice(None, None, None))) self.assertEqual(df4.chunks[0].inputs[0].index, (0, 1)) self.assertEqual(df4.chunks[0].inputs[0].shape, (2, 1)) self.assertEqual(df4.chunks[1].inputs[0].index, (1, 1)) self.assertEqual(df4.chunks[1].inputs[0].shape, (1, 1)) # plain fancy index df5 = df2.iloc[[0], [0, 1, 2]] df5 = df5.tiles() self.assertIsInstance(df5, DataFrame) self.assertIsInstance(df5.op, DataFrameIlocGetItem) self.assertEqual(df5.shape, (1, 3)) self.assertEqual(df5.chunk_shape, (1, 2)) self.assertEqual(df5.chunks[0].shape, (1, 2)) pd.testing.assert_index_equal(df5.chunks[0].columns_value.to_pandas(), df1.columns[:2]) pd.testing.assert_series_equal(df5.chunks[0].dtypes, df1.dtypes[:2]) self.assertIsInstance(df5.chunks[0].index_value.to_pandas(), type(df1.index)) self.assertEqual(df5.chunks[1].shape, (1, 1)) pd.testing.assert_index_equal(df5.chunks[1].columns_value.to_pandas(), df1.columns[2:]) pd.testing.assert_series_equal(df5.chunks[1].dtypes, df1.dtypes[2:]) self.assertIsInstance(df5.chunks[1].index_value.to_pandas(), type(df1.index)) np.testing.assert_array_equal(df5.chunks[0].op.indexes[0], [0]) np.testing.assert_array_equal(df5.chunks[0].op.indexes[1], [0, 1]) np.testing.assert_array_equal(df5.chunks[1].op.indexes[0], [0]) np.testing.assert_array_equal(df5.chunks[1].op.indexes[1], [0]) self.assertEqual(df5.chunks[0].inputs[0].index, (0, 0)) self.assertEqual(df5.chunks[0].inputs[0].shape, (2, 2)) self.assertEqual(df5.chunks[1].inputs[0].index, (0, 1)) self.assertEqual(df5.chunks[1].inputs[0].shape, (2, 1)) # fancy index df6 = df2.iloc[[1, 2], [0, 1, 2]] df6 = df6.tiles() self.assertIsInstance(df6, DataFrame) self.assertIsInstance(df6.op, DataFrameIlocGetItem) self.assertEqual(df6.shape, (2, 3)) self.assertEqual(df6.chunk_shape, (2, 2)) self.assertEqual(df6.chunks[0].shape, (1, 2)) self.assertEqual(df6.chunks[1].shape, (1, 1)) self.assertEqual(df6.chunks[2].shape, (1, 2)) self.assertEqual(df6.chunks[3].shape, (1, 1)) np.testing.assert_array_equal(df6.chunks[0].op.indexes[0], [1]) np.testing.assert_array_equal(df6.chunks[0].op.indexes[1], [0, 1]) np.testing.assert_array_equal(df6.chunks[1].op.indexes[0], [1]) np.testing.assert_array_equal(df6.chunks[1].op.indexes[1], [0]) np.testing.assert_array_equal(df6.chunks[2].op.indexes[0], [0]) np.testing.assert_array_equal(df6.chunks[2].op.indexes[1], [0, 1]) np.testing.assert_array_equal(df6.chunks[3].op.indexes[0], [0]) np.testing.assert_array_equal(df6.chunks[3].op.indexes[1], [0]) self.assertEqual(df6.chunks[0].inputs[0].index, (0, 0)) self.assertEqual(df6.chunks[0].inputs[0].shape, (2, 2)) self.assertEqual(df6.chunks[1].inputs[0].index, (0, 1)) self.assertEqual(df6.chunks[1].inputs[0].shape, (2, 1)) self.assertEqual(df6.chunks[2].inputs[0].index, (1, 0)) self.assertEqual(df6.chunks[2].inputs[0].shape, (1, 2)) self.assertEqual(df6.chunks[3].inputs[0].index, (1, 1)) self.assertEqual(df6.chunks[3].inputs[0].shape, (1, 1)) # plain index df7 = df2.iloc[1, 2] df7 = df7.tiles() self.assertIsInstance(df7, Tensor) # scalar self.assertIsInstance(df7.op, DataFrameIlocGetItem) self.assertEqual(df7.shape, ()) self.assertEqual(df7.chunk_shape, ()) self.assertEqual(df7.chunks[0].dtype, df7.dtype) self.assertEqual(df7.chunks[0].shape, ()) self.assertEqual(df7.chunks[0].op.indexes, (1, 0)) self.assertEqual(df7.chunks[0].inputs[0].index, (0, 1)) self.assertEqual(df7.chunks[0].inputs[0].shape, (2, 1)) # test Series iloc getitem # slice series = md.Series(pd.Series(np.arange(10)), chunk_size=3).iloc[4:8] series = series.tiles() self.assertEqual(series.shape, (4,)) self.assertEqual(len(series.chunks), 2) self.assertEqual(series.chunks[0].shape, (2,)) self.assertEqual(series.chunks[0].index, (0,)) self.assertEqual(series.chunks[0].op.indexes, (slice(1, 3, 1),)) self.assertEqual(series.chunks[1].shape, (2,)) self.assertEqual(series.chunks[1].op.indexes, (slice(0, 2, 1),)) self.assertEqual(series.chunks[1].index, (1,)) # fancy index series = md.Series(pd.Series(np.arange(10)), chunk_size=3).iloc[[2, 4, 8]] series = series.tiles() self.assertEqual(series.shape, (3,)) self.assertEqual(len(series.chunks), 3) self.assertEqual(series.chunks[0].shape, (1,)) self.assertEqual(series.chunks[0].index, (0,)) self.assertEqual(series.chunks[0].op.indexes[0], [2]) self.assertEqual(series.chunks[1].shape, (1,)) self.assertEqual(series.chunks[1].op.indexes[0], [1]) self.assertEqual(series.chunks[1].index, (1,)) self.assertEqual(series.chunks[2].shape, (1,)) self.assertEqual(series.chunks[2].op.indexes[0], [2]) self.assertEqual(series.chunks[2].index, (2,)) def testILocSetItem(self): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) df2 = df2.tiles() # plain index df3 = md.DataFrame(df1, chunk_size=2) df3.iloc[1] = 100 df3 = df3.tiles() self.assertIsInstance(df3.op, DataFrameIlocSetItem) self.assertEqual(df3.chunk_shape, df2.chunk_shape) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df3.index_value.to_pandas()) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), df3.columns_value.to_pandas()) for c1, c2 in zip(df2.chunks, df3.chunks): self.assertEqual(c1.shape, c2.shape) pd.testing.assert_index_equal(c1.index_value.to_pandas(), c2.index_value.to_pandas()) pd.testing.assert_index_equal(c1.columns_value.to_pandas(), c2.columns_value.to_pandas()) if isinstance(c2.op, DataFrameIlocSetItem): self.assertEqual(c1.key, c2.inputs[0].key) else: self.assertEqual(c1.key, c2.key) self.assertEqual(df3.chunks[0].op.indexes, (1, slice(None, None, None))) self.assertEqual(df3.chunks[1].op.indexes, (1, slice(None, None, None))) # # slice index df4 = md.DataFrame(df1, chunk_size=2) df4.iloc[:, 2:4] = 1111 df4 = df4.tiles() self.assertIsInstance(df4.op, DataFrameIlocSetItem) self.assertEqual(df4.chunk_shape, df2.chunk_shape) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df4.index_value.to_pandas()) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), df4.columns_value.to_pandas()) for c1, c2 in zip(df2.chunks, df4.chunks): self.assertEqual(c1.shape, c2.shape) pd.testing.assert_index_equal(c1.index_value.to_pandas(), c2.index_value.to_pandas()) pd.testing.assert_index_equal(c1.columns_value.to_pandas(), c2.columns_value.to_pandas()) if isinstance(c2.op, DataFrameIlocSetItem): self.assertEqual(c1.key, c2.inputs[0].key) else: self.assertEqual(c1.key, c2.key) self.assertEqual(df4.chunks[1].op.indexes, (slice(None, None, None), slice(None, None, None))) self.assertEqual(df4.chunks[3].op.indexes, (slice(None, None, None), slice(None, None, None))) # plain fancy index df5 = md.DataFrame(df1, chunk_size=2) df5.iloc[[0], [0, 1, 2]] = 2222 df5 = df5.tiles() self.assertIsInstance(df5.op, DataFrameIlocSetItem) self.assertEqual(df5.chunk_shape, df2.chunk_shape) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df5.index_value.to_pandas()) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), df5.columns_value.to_pandas()) for c1, c2 in zip(df2.chunks, df5.chunks): self.assertEqual(c1.shape, c2.shape) pd.testing.assert_index_equal(c1.index_value.to_pandas(), c2.index_value.to_pandas()) pd.testing.assert_index_equal(c1.columns_value.to_pandas(), c2.columns_value.to_pandas()) if isinstance(c2.op, DataFrameIlocSetItem): self.assertEqual(c1.key, c2.inputs[0].key) else: self.assertEqual(c1.key, c2.key) np.testing.assert_array_equal(df5.chunks[0].op.indexes[0], [0]) np.testing.assert_array_equal(df5.chunks[0].op.indexes[1], [0, 1]) np.testing.assert_array_equal(df5.chunks[1].op.indexes[0], [0]) np.testing.assert_array_equal(df5.chunks[1].op.indexes[1], [0]) # fancy index df6 = md.DataFrame(df1, chunk_size=2) df6.iloc[[1, 2], [0, 1, 2]] = 3333 df6 = df6.tiles() self.assertIsInstance(df6.op, DataFrameIlocSetItem) self.assertEqual(df6.chunk_shape, df2.chunk_shape) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df6.index_value.to_pandas()) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), df6.columns_value.to_pandas()) for c1, c2 in zip(df2.chunks, df6.chunks): self.assertEqual(c1.shape, c2.shape) pd.testing.assert_index_equal(c1.index_value.to_pandas(), c2.index_value.to_pandas()) pd.testing.assert_index_equal(c1.columns_value.to_pandas(), c2.columns_value.to_pandas()) if isinstance(c2.op, DataFrameIlocSetItem): self.assertEqual(c1.key, c2.inputs[0].key) else: self.assertEqual(c1.key, c2.key) np.testing.assert_array_equal(df6.chunks[0].op.indexes[0], [1]) np.testing.assert_array_equal(df6.chunks[0].op.indexes[1], [0, 1]) np.testing.assert_array_equal(df6.chunks[1].op.indexes[0], [1]) np.testing.assert_array_equal(df6.chunks[1].op.indexes[1], [0]) np.testing.assert_array_equal(df6.chunks[2].op.indexes[0], [0]) np.testing.assert_array_equal(df6.chunks[2].op.indexes[1], [0, 1]) np.testing.assert_array_equal(df6.chunks[3].op.indexes[0], [0]) np.testing.assert_array_equal(df6.chunks[3].op.indexes[1], [0]) # plain index df7 = md.DataFrame(df1, chunk_size=2) df7.iloc[1, 2] = 4444 df7 = df7.tiles() self.assertIsInstance(df7.op, DataFrameIlocSetItem) self.assertEqual(df7.chunk_shape, df2.chunk_shape) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df7.index_value.to_pandas()) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), df7.columns_value.to_pandas()) for c1, c2 in zip(df2.chunks, df7.chunks): self.assertEqual(c1.shape, c2.shape) pd.testing.assert_index_equal(c1.index_value.to_pandas(), c2.index_value.to_pandas()) pd.testing.assert_index_equal(c1.columns_value.to_pandas(), c2.columns_value.to_pandas()) if isinstance(c2.op, DataFrameIlocSetItem): self.assertEqual(c1.key, c2.inputs[0].key) else: self.assertEqual(c1.key, c2.key) self.assertEqual(df7.chunks[1].op.indexes, (1, 0)) # test Series # slice series = md.Series(pd.Series(np.arange(10)), chunk_size=3) series.iloc[:4] = 2 series = series.tiles() self.assertEqual(series.shape, (10,)) self.assertEqual(len(series.chunks), 4) self.assertEqual(series.chunks[0].op.indexes, [slice(None, None, None), ]) self.assertEqual(series.chunks[0].op.value, 2) self.assertEqual(series.chunks[1].op.indexes, [slice(0, 1, 1), ]) self.assertEqual(series.chunks[1].op.value, 2) # fancy index series = md.Series(pd.Series(np.arange(10)), chunk_size=3) series.iloc[[2, 4, 9]] = 3 series = series.tiles() self.assertEqual(series.shape, (10,)) self.assertEqual(len(series.chunks), 4) self.assertEqual(series.chunks[0].index, (0,)) self.assertEqual(series.chunks[0].op.indexes[0].tolist(), [2]) self.assertEqual(series.chunks[0].op.value, 3) self.assertEqual(series.chunks[1].index, (1,)) self.assertEqual(series.chunks[1].op.indexes[0].tolist(), [1]) self.assertEqual(series.chunks[1].op.value, 3) self.assertEqual(series.chunks[3].index, (3,)) self.assertEqual(series.chunks[3].op.indexes[0].tolist(), [0]) self.assertEqual(series.chunks[3].op.value, 3) def testDataFrameLoc(self): raw = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df = md.DataFrame(raw, chunk_size=2) raw2 = raw.copy() raw2.reset_index(inplace=True, drop=True) df3 = md.DataFrame(raw2, chunk_size=2) s = pd.Series([1, 3, 5], index=['a1', 'a2', 'a3']) series = md.Series(s, chunk_size=2) # test return scalar df2 = df.loc['a1', 'z'] self.assertIsInstance(df2, Tensor) self.assertEqual(df2.shape, ()) self.assertEqual(df2.dtype, raw['z'].dtype) df2 = df2.tiles() self.assertEqual(len(df2.chunks), 1) self.assertIsInstance(df2.chunks[0], TENSOR_CHUNK_TYPE) # test return series for index axis df2 = df.loc[:, 'y'] self.assertIsInstance(df2, Series) self.assertEqual(df2.shape, (3,)) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df.index_value.to_pandas()) self.assertEqual(df2.name, 'y') df2 = df2.tiles() self.assertEqual(len(df2.chunks), 2) for c in df2.chunks: self.assertIsInstance(c, SERIES_CHUNK_TYPE) self.assertIsInstance(c.index_value.to_pandas(), type(raw.index)) self.assertEqual(c.name, 'y') self.assertEqual(c.dtype, raw['y'].dtype) # test return series for column axis df2 = df.loc['a2', :] self.assertIsInstance(df2, Series) self.assertEqual(df2.shape, (3,)) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df.columns_value.to_pandas()) self.assertEqual(df2.name, 'a2') df2 = df2.tiles() self.assertEqual(len(df2.chunks), 2) for c in df2.chunks: self.assertIsInstance(c, SERIES_CHUNK_TYPE) self.assertIsInstance(c.index_value.to_pandas(), type(raw.columns)) self.assertEqual(c.name, 'a2') self.assertEqual(c.dtype, raw.loc['a2'].dtype) # test slice df2 = df.loc['a2': 'a3', 'y': 'z'] self.assertIsInstance(df2, DataFrame) self.assertEqual(df2.shape, (np.nan, 2)) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df.index_value.to_pandas()) self.assertNotEqual(df2.index_value.key, df.index_value.key) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), raw.loc[:, 'y': 'z'].columns) pd.testing.assert_series_equal(df2.dtypes, raw.loc[:, 'y': 'z'].dtypes) # test fancy index on index axis df2 = df.loc[['a3', 'a2'], [True, False, True]] self.assertIsInstance(df2, DataFrame) self.assertEqual(df2.shape, (2, 2)) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df.index_value.to_pandas()) self.assertNotEqual(df2.index_value.key, df.index_value.key) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), raw.loc[:, [True, False, True]].columns) pd.testing.assert_series_equal(df2.dtypes, raw.loc[:, [True, False, True]].dtypes) # test fancy index which is md.Series on index axis df2 = df.loc[md.Series(['a3', 'a2']), [True, False, True]] self.assertIsInstance(df2, DataFrame) self.assertEqual(df2.shape, (2, 2)) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df.index_value.to_pandas()) self.assertNotEqual(df2.index_value.key, df.index_value.key) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), raw.loc[:, [True, False, True]].columns) pd.testing.assert_series_equal(df2.dtypes, raw.loc[:, [True, False, True]].dtypes) # test fancy index on columns axis df2 = df.loc[[True, False, True], ['z', 'x', 'y']] self.assertIsInstance(df2, DataFrame) self.assertEqual(df2.shape, (2, 3)) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df.index_value.to_pandas()) self.assertNotEqual(df2.index_value.key, df.index_value.key) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), raw.loc[:, ['z', 'x', 'y']].columns) pd.testing.assert_series_equal(df2.dtypes, raw.loc[:, ['z', 'x', 'y']].dtypes) df2 = df2.tiles() self.assertEqual(len(df2.chunks), 2) for c in df2.chunks: self.assertIsInstance(c, DATAFRAME_CHUNK_TYPE) pd.testing.assert_index_equal(c.index_value.to_pandas(), df.index_value.to_pandas()) self.assertNotEqual(c.index_value.key, df.index_value.key) pd.testing.assert_index_equal(c.columns_value.to_pandas(), raw.loc[:, ['z', 'x', 'y']].columns) pd.testing.assert_series_equal(c.dtypes, raw.loc[:, ['z', 'x', 'y']].dtypes) df2 = df.loc[md.Series([True, False, True])] self.assertIsInstance(df2, DataFrame) self.assertEqual(df2.shape, (np.nan, 3)) pd.testing.assert_index_equal(df2.index_value.to_pandas(), df.index_value.to_pandas()) self.assertNotEqual(df2.index_value.key, df.index_value.key) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), raw.columns) pd.testing.assert_series_equal(df2.dtypes, raw.dtypes) df2 = df3.loc[md.Series([True, False, True])] self.assertIsInstance(df2, DataFrame) self.assertEqual(df2.shape, (np.nan, 3)) self.assertIsInstance(df2.index_value.to_pandas(), type(raw.loc[[True, False, True]].index)) self.assertNotEqual(df2.index_value.key, df3.index_value.key) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), raw.columns) pd.testing.assert_series_equal(df2.dtypes, raw.dtypes) df2 = df3.loc[md.Series([2, 1])] self.assertIsInstance(df2, DataFrame) self.assertEqual(df2.shape, (2, 3)) self.assertIsInstance(df2.index_value.to_pandas(), type(raw2.loc[[2, 1]].index)) self.assertNotEqual(df2.index_value.key, df3.index_value.key) pd.testing.assert_index_equal(df2.columns_value.to_pandas(), raw.columns) pd.testing.assert_series_equal(df2.dtypes, raw.dtypes) series2 = series.loc['a2'] self.assertIsInstance(series2, Tensor) self.assertEqual(series2.shape, ()) self.assertEqual(series2.dtype, s.dtype) series2 = series.loc[['a2', 'a3']] self.assertIsInstance(series2, Series) self.assertEqual(series2.shape, (2,)) self.assertEqual(series2.dtype, s.dtype) self.assertEqual(series2.name, s.name) with self.assertRaises(IndexingError): _ = df.loc['a1', 'z', ...] with self.assertRaises(NotImplementedError): _ = df.loc[:, md.Series([True, False, True])] with self.assertRaises(KeyError): _ = df.loc[:, ['non_exist']] def testLocUseIloc(self): raw = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], columns=['x', 'y', 'z']) df = md.DataFrame(raw, chunk_size=2) self.assertIsInstance(df.loc[:3].op, DataFrameIlocGetItem) self.assertIsInstance(df.loc[1:3].op, DataFrameIlocGetItem) self.assertIsInstance(df.loc[1].op, DataFrameIlocGetItem) # negative self.assertIsInstance(df.loc[:-3].op, DataFrameLocGetItem) with self.assertRaises(KeyError): _ = df.loc[-3] # index 1 not None self.assertIsInstance(df.loc[:3, :'y'].op, DataFrameLocGetItem) # index 1 not slice self.assertIsInstance(df.loc[:3, [True, False, True]].op, DataFrameLocGetItem) self.assertIsInstance(df.loc[[True, False, True]].op, DataFrameLocGetItem) raw2 = raw.copy() raw2.index = pd.RangeIndex(1, 4) df2 = md.DataFrame(raw2, chunk_size=2) self.assertIsInstance(df2.loc[:3].op, DataFrameLocGetItem) self.assertIsInstance(df2.loc['a3':].op, DataFrameLocGetItem) raw2 = raw.copy() raw2.index = [f'a{i}' for i in range(3)] df2 = md.DataFrame(raw2, chunk_size=2) self.assertIsInstance(df2.loc[:3].op, DataFrameLocGetItem) def testDataFrameGetitem(self): data = pd.DataFrame(np.random.rand(10, 5), columns=['c1', 'c2', 'c3', 'c4', 'c5']) df = md.DataFrame(data, chunk_size=2) series = df['c3'] self.assertIsInstance(series, Series) self.assertEqual(series.shape, (10,)) self.assertEqual(series.name, 'c3') self.assertEqual(series.dtype, data['c3'].dtype) self.assertEqual(series.index_value, df.index_value) series = series.tiles() self.assertEqual(series.nsplits, ((2, 2, 2, 2, 2),)) self.assertEqual(len(series.chunks), 5) for i, c in enumerate(series.chunks): self.assertIsInstance(c, SERIES_CHUNK_TYPE) self.assertEqual(c.index, (i,)) self.assertEqual(c.shape, (2,)) df1 = df[['c1', 'c2', 'c3']] self.assertIsInstance(df1, DataFrame) self.assertEqual(df1.shape, (10, 3)) self.assertEqual(df1.index_value, df.index_value) pd.testing.assert_index_equal(df1.columns_value.to_pandas(), data[['c1', 'c2', 'c3']].columns) pd.testing.assert_series_equal(df1.dtypes, data[['c1', 'c2', 'c3']].dtypes) df1 = df1.tiles() self.assertEqual(df1.nsplits, ((2, 2, 2, 2, 2), (2, 1))) self.assertEqual(len(df1.chunks), 10) for i, c in enumerate(df1.chunks[slice(0, 10, 2)]): self.assertIsInstance(c, DATAFRAME_CHUNK_TYPE) self.assertEqual(c.index, (i, 0)) self.assertEqual(c.shape, (2, 2)) for i, c in enumerate(df1.chunks[slice(1, 10, 2)]): self.assertIsInstance(c, DATAFRAME_CHUNK_TYPE) self.assertEqual(c.index, (i, 1)) self.assertEqual(c.shape, (2, 1)) def testDataFrameGetitemBool(self): data = pd.DataFrame(np.random.rand(10, 5), columns=['c1', 'c2', 'c3', 'c4', 'c5']) df = md.DataFrame(data, chunk_size=2) mask_data1 = data.c1 > 0.5 mask_data2 = data.c1 < 0.5 mask1 = md.Series(mask_data1, chunk_size=2) mask2 = md.Series(mask_data2, chunk_size=2) r1 = df[mask1] r2 = df[mask2] r3 = df[mask1] self.assertNotEqual(r1.index_value.key, df.index_value.key) self.assertNotEqual(r1.index_value.key, mask1.index_value.key) self.assertEqual(r1.columns_value.key, df.columns_value.key) self.assertIs(r1.columns_value, df.columns_value) self.assertNotEqual(r1.index_value.key, r2.index_value.key) self.assertEqual(r1.columns_value.key, r2.columns_value.key) self.assertIs(r1.columns_value, r2.columns_value) self.assertEqual(r1.index_value.key, r3.index_value.key) self.assertEqual(r1.columns_value.key, r3.columns_value.key) self.assertIs(r1.columns_value, r3.columns_value) def testSeriesGetitem(self): data = pd.Series(np.random.rand(10, ), name='a') series = md.Series(data, chunk_size=3) result1 = series[2] self.assertEqual(result1.shape, ()) result1 = result1.tiles() self.assertEqual(result1.nsplits, ()) self.assertEqual(len(result1.chunks), 1) self.assertIsInstance(result1.chunks[0], TENSOR_CHUNK_TYPE) self.assertEqual(result1.chunks[0].shape, ()) self.assertEqual(result1.chunks[0].dtype, data.dtype) result2 = series[[4, 5, 1, 2, 3]] self.assertEqual(result2.shape, (5,)) result2 = result2.tiles() self.assertEqual(result2.nsplits, ((2, 2, 1),)) self.assertEqual(len(result2.chunks), 3) self.assertEqual(result2.chunks[0].op.labels, [4, 5]) self.assertEqual(result2.chunks[1].op.labels, [1, 2]) self.assertEqual(result2.chunks[2].op.labels, [3]) data = pd.Series(np.random.rand(10), index=['i' + str(i) for i in range(10)]) series = md.Series(data, chunk_size=3) result1 = series['i2'] self.assertEqual(result1.shape, ()) result1 = result1.tiles() self.assertEqual(result1.nsplits, ()) self.assertEqual(result1.chunks[0].dtype, data.dtype) self.assertTrue(result1.chunks[0].op.labels, ['i2']) result2 = series[['i2', 'i4']] self.assertEqual(result2.shape, (2,)) result2 = result2.tiles() self.assertEqual(result2.nsplits, ((2,),)) self.assertEqual(result2.chunks[0].dtype, data.dtype) self.assertTrue(result2.chunks[0].op.labels, [['i2', 'i4']]) def testSetitem(self): data = pd.DataFrame(np.random.rand(10, 2), columns=['c1', 'c2']) df = md.DataFrame(data, chunk_size=4) df['new'] = 1 self.assertEqual(df.shape, (10, 3)) pd.testing.assert_series_equal(df.inputs[0].dtypes, data.dtypes) tiled = df.tiles() self.assertEqual(tiled.chunks[0].shape, (4, 3)) pd.testing.assert_series_equal(tiled.inputs[0].dtypes, data.dtypes) self.assertEqual(tiled.chunks[1].shape, (4, 3))
pd.testing.assert_series_equal(tiled.inputs[0].dtypes, data.dtypes)
pandas.testing.assert_series_equal
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result = read_json(json) tm.assert_frame_equal(result, df) df["foo"] = 1.0 json = df.to_json(date_unit="ns") result = read_json(json, convert_dates=False) expected = df.copy() expected["date"] = expected["date"].values.view("i8") expected["foo"] = expected["foo"].astype("int64") tm.assert_frame_equal(result, expected) # series ts = Series(Timestamp("20130101"), index=datetime_series.index) json = ts.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, ts) @pytest.mark.parametrize("date_format", ["epoch", "iso"]) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize( "date_typ", [datetime.date, datetime.datetime, pd.Timestamp] ) def test_date_index_and_values(self, date_format, as_object, date_typ): data = [date_typ(year=2020, month=1, day=1), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) result = ser.to_json(date_format=date_format) if date_format == "epoch": expected = '{"1577836800000":1577836800000,"null":null}' else: expected = ( '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}' ) if as_object: expected = expected.replace("}", ',"a":"a"}') assert result == expected @pytest.mark.parametrize( "infer_word", [ "trade_time", "date", "datetime", "sold_at", "modified", "timestamp", "timestamps", ], ) def test_convert_dates_infer(self, infer_word): # GH10747 from pandas.io.json import dumps data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] expected = DataFrame( [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] ) result = read_json(dumps(data))[["id", infer_word]] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_frame(self, date, date_unit): df = self.tsframe.copy() df["date"] = Timestamp(date) df.iloc[1, df.columns.get_loc("date")] = pd.NaT df.iloc[5, df.columns.get_loc("date")] = pd.NaT if date_unit: json = df.to_json(date_format="iso", date_unit=date_unit) else: json = df.to_json(date_format="iso") result = read_json(json) expected = df.copy() expected.index = expected.index.tz_localize("UTC") expected["date"] = expected["date"].dt.tz_localize("UTC") tm.assert_frame_equal(result, expected) def test_date_format_frame_raises(self): df = self.tsframe.copy() msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): df.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_series(self, date, date_unit, datetime_series): ts = Series(Timestamp(date), index=datetime_series.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format="iso", date_unit=date_unit) else: json = ts.to_json(date_format="iso") result = read_json(json, typ="series") expected = ts.copy() expected.index = expected.index.tz_localize("UTC") expected = expected.dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_date_format_series_raises(self, datetime_series): ts = Series(Timestamp("20130101 20:43:42.123"), index=datetime_series.index) msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): ts.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize("unit", ["s", "ms", "us", "ns"]) def test_date_unit(self, unit): df = self.tsframe.copy() df["date"] = Timestamp("20130101 20:43:42") dl = df.columns.get_loc("date") df.iloc[1, dl] = Timestamp("19710101 20:43:42") df.iloc[2, dl] = Timestamp("21460101 20:43:42") df.iloc[4, dl] = pd.NaT json = df.to_json(date_format="epoch", date_unit=unit) # force date unit result = read_json(json, date_unit=unit) tm.assert_frame_equal(result, df) # detect date unit result = read_json(json, date_unit=None) tm.assert_frame_equal(result, df) def test_weird_nested_json(self): # this used to core dump the parser s = r"""{ "status": "success", "data": { "posts": [ { "id": 1, "title": "A blog post", "body": "Some useful content" }, { "id": 2, "title": "Another blog post", "body": "More content" } ] } }""" read_json(s) def test_doc_example(self): dfj2 = DataFrame(np.random.randn(5, 2), columns=list("AB")) dfj2["date"] = Timestamp("20130101") dfj2["ints"] = range(5) dfj2["bools"] = True dfj2.index = pd.date_range("20130101", periods=5) json = dfj2.to_json() result = read_json(json, dtype={"ints": np.int64, "bools": np.bool_}) tm.assert_frame_equal(result, result) def test_misc_example(self): # parsing unordered input fails result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) error_msg = """DataFrame\\.index are different DataFrame\\.index values are different \\(100\\.0 %\\) \\[left\\]: Index\\(\\['a', 'b'\\], dtype='object'\\) \\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)""" with pytest.raises(AssertionError, match=error_msg): tm.assert_frame_equal(result, expected, check_index_type=False) result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]') expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @tm.network @pytest.mark.single def test_round_trip_exception_(self): # GH 3867 csv = "https://raw.github.com/hayd/lahman2012/master/csvs/Teams.csv" df = pd.read_csv(csv) s = df.to_json() result = pd.read_json(s) tm.assert_frame_equal(result.reindex(index=df.index, columns=df.columns), df) @tm.network @pytest.mark.single @pytest.mark.parametrize( "field,dtype", [ ["created_at", pd.DatetimeTZDtype(tz="UTC")], ["closed_at", "datetime64[ns]"], ["updated_at", pd.DatetimeTZDtype(tz="UTC")], ], ) def test_url(self, field, dtype): url = "https://api.github.com/repos/pandas-dev/pandas/issues?per_page=5" # noqa result = read_json(url, convert_dates=True) assert result[field].dtype == dtype def test_timedelta(self): converter = lambda x: pd.to_timedelta(x, unit="ms") s = Series([timedelta(23), timedelta(seconds=5)]) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) s = Series([timedelta(23), timedelta(seconds=5)], index=pd.Index([0, 1])) assert s.dtype == "timedelta64[ns]" result = pd.read_json(s.to_json(), typ="series").apply(converter) tm.assert_series_equal(result, s) frame = DataFrame([timedelta(23), timedelta(seconds=5)]) assert frame[0].dtype == "timedelta64[ns]" tm.assert_frame_equal(frame, pd.read_json(frame.to_json()).apply(converter)) frame = DataFrame( { "a": [timedelta(days=23), timedelta(seconds=5)], "b": [1, 2], "c": pd.date_range(start="20130101", periods=2), } ) result = pd.read_json(frame.to_json(date_unit="ns")) result["a"] = pd.to_timedelta(result.a, unit="ns") result["c"] = pd.to_datetime(result.c) tm.assert_frame_equal(frame, result) def test_mixed_timedelta_datetime(self): frame = DataFrame( {"a": [timedelta(23), pd.Timestamp("20130101")]}, dtype=object ) expected = DataFrame( {"a": [pd.Timedelta(frame.a[0]).value, pd.Timestamp(frame.a[1]).value]} ) result = pd.read_json(frame.to_json(date_unit="ns"), dtype={"a": "int64"}) tm.assert_frame_equal(result, expected, check_index_type=False) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize("date_format", ["iso", "epoch"]) @pytest.mark.parametrize("timedelta_typ", [pd.Timedelta, timedelta]) def test_timedelta_to_json(self, as_object, date_format, timedelta_typ): # GH28156: to_json not correctly formatting Timedelta data = [timedelta_typ(days=1), timedelta_typ(days=2), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) if date_format == "iso": expected = ( '{"P1DT0H0M0S":"P1DT0H0M0S","P2DT0H0M0S":"P2DT0H0M0S","null":null}' ) else: expected = '{"86400000":86400000,"172800000":172800000,"null":null}' if as_object: expected = expected.replace("}", ',"a":"a"}') result = ser.to_json(date_format=date_format) assert result == expected def test_default_handler(self): value = object() frame = DataFrame({"a": [7, value]}) expected = DataFrame({"a": [7, str(value)]}) result = pd.read_json(frame.to_json(default_handler=str)) tm.assert_frame_equal(expected, result, check_index_type=False) def test_default_handler_indirect(self): from pandas.io.json import dumps def default(obj): if isinstance(obj, complex): return [("mathjs", "Complex"), ("re", obj.real), ("im", obj.imag)] return str(obj) df_list = [ 9, DataFrame( {"a": [1, "STR", complex(4, -5)], "b": [float("nan"), None, "N/A"]}, columns=["a", "b"], ), ] expected = ( '[9,[[1,null],["STR",null],[[["mathjs","Complex"],' '["re",4.0],["im",-5.0]],"N\\/A"]]]' ) assert dumps(df_list, default_handler=default, orient="values") == expected def test_default_handler_numpy_unsupported_dtype(self): # GH12554 to_json raises 'Unhandled numpy dtype 15' df = DataFrame( {"a": [1, 2.3, complex(4, -5)], "b": [float("nan"), None, complex(1.2, 0)]}, columns=["a", "b"], ) expected = ( '[["(1+0j)","(nan+0j)"],' '["(2.3+0j)","(nan+0j)"],' '["(4-5j)","(1.2+0j)"]]' ) assert df.to_json(default_handler=str, orient="values") == expected def test_default_handler_raises(self): msg = "raisin" def my_handler_raises(obj): raise TypeError(msg) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, object()]}).to_json( default_handler=my_handler_raises ) with pytest.raises(TypeError, match=msg): DataFrame({"a": [1, 2, complex(4, -5)]}).to_json( default_handler=my_handler_raises ) def test_categorical(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = DataFrame({"A": ["a", "b", "c", "a", "b", "b", "a"]}) df["B"] = df["A"] expected = df.to_json() df["B"] = df["A"].astype("category") assert expected == df.to_json() s = df["A"] sc = df["B"] assert s.to_json() == sc.to_json() def test_datetime_tz(self): # GH4377 df.to_json segfaults with non-ndarray blocks tz_range = pd.date_range("20130101", periods=3, tz="US/Eastern") tz_naive = tz_range.tz_convert("utc").tz_localize(None) df = DataFrame({"A": tz_range, "B": pd.date_range("20130101", periods=3)}) df_naive = df.copy() df_naive["A"] = tz_naive expected = df_naive.to_json() assert expected == df.to_json() stz = Series(tz_range) s_naive = Series(tz_naive) assert stz.to_json() == s_naive.to_json() def test_sparse(self): # GH4377 df.to_json segfaults with non-ndarray blocks df = pd.DataFrame(np.random.randn(10, 4)) df.loc[:8] = np.nan sdf = df.astype("Sparse") expected = df.to_json() assert expected == sdf.to_json() s = pd.Series(np.random.randn(10)) s.loc[:8] = np.nan ss = s.astype("Sparse") expected = s.to_json() assert expected == ss.to_json() @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-10 05:00:00Z"), Timestamp("2013-01-10 00:00:00", tz="US/Eastern"), Timestamp("2013-01-10 00:00:00-0500"), ], ) def test_tz_is_utc(self, ts): from pandas.io.json import dumps exp = '"2013-01-10T05:00:00.000Z"' assert dumps(ts, iso_dates=True) == exp dt = ts.to_pydatetime() assert dumps(dt, iso_dates=True) == exp @pytest.mark.parametrize( "tz_range", [ pd.date_range("2013-01-01 05:00:00Z", periods=2), pd.date_range("2013-01-01 00:00:00", periods=2, tz="US/Eastern"), pd.date_range("2013-01-01 00:00:00-0500", periods=2), ], ) def test_tz_range_is_utc(self, tz_range): from pandas.io.json import dumps exp = '["2013-01-01T05:00:00.000Z","2013-01-02T05:00:00.000Z"]' dfexp = ( '{"DT":{' '"0":"2013-01-01T05:00:00.000Z",' '"1":"2013-01-02T05:00:00.000Z"}}' ) assert dumps(tz_range, iso_dates=True) == exp dti = pd.DatetimeIndex(tz_range) assert dumps(dti, iso_dates=True) == exp df = DataFrame({"DT": dti}) result = dumps(df, iso_dates=True) assert result == dfexp def test_read_inline_jsonl(self): # GH9180 result = read_json('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n', lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) @td.skip_if_not_us_locale def test_read_s3_jsonl(self, s3_resource): # GH17200 result = read_json("s3n://pandas-test/items.jsonl", lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_local_jsonl(self): # GH17200 with tm.ensure_clean("tmp_items.json") as path: with open(path, "w") as infile: infile.write('{"a": 1, "b": 2}\n{"b":2, "a" :1}\n') result = read_json(path, lines=True) expected = DataFrame([[1, 2], [1, 2]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) def test_read_jsonl_unicode_chars(self): # GH15132: non-ascii unicode characters # \u201d == RIGHT DOUBLE QUOTATION MARK # simulate file handle json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' json = StringIO(json) result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"]) tm.assert_frame_equal(result, expected) # simulate string json = '{"a": "foo”", "b": "bar"}\n{"a": "foo", "b": "bar"}\n' result = read_json(json, lines=True) expected = DataFrame([["foo\u201d", "bar"], ["foo", "bar"]], columns=["a", "b"])
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# =========================================================================== # # INDEPENDENCE MODULE # # =========================================================================== # '''Modules for analyzing indendence between variables.''' # %% # --------------------------------------------------------------------------- # # LIBRARIES # # --------------------------------------------------------------------------- # import collections from collections import OrderedDict import itertools from itertools import combinations from itertools import product import math import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy from scipy import stats import scikit_posthocs as sp import statsmodels.api as sm import statsmodels.formula.api as smf from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm # %% # ---------------------------------------------------------------------------- # # CORRELATION # # ---------------------------------------------------------------------------- # class Correlation: '''Class that computes the pairwise correlation between numeric variables and renders a heatmap ''' def __init__(self): self._corr = None pass def test(self, df, method='pearson'): self._corr = df.corr(method) return(self._corr) def pairwise(self, df, x, y, method='pearson', threshold=None): r_tests = pd.DataFrame() for xs, ys in zip(x,y): r = df[xs].corr(df[ys]) df_r = pd.DataFrame({'x':xs, 'y':ys}, index=[0]) df_r['r'] = r df_r['r_abs'] = np.absolute(r) df_r['strength'] = np.where(df_r.r_abs<0.2, 'Very Weak', np.where(df_r.r_abs<0.4, 'Weak', np.where(df_r.r_abs<0.6, "Moderate", np.where(df_r.r_abs<0.8, "Strong", "Very Strong")))) df_r['direction'] = np.where(df_r.r <0, "Negative", "Positive") r_tests = pd.concat([r_tests, df_r], axis=0) r_tests = r_tests.sort_values(by='r_abs', ascending=False) if threshold: r_tests = r_tests[r_tests.r_abs > threshold] return(r_tests) def corrtable(self, threshold=None): r_tests = pd.DataFrame() cols = self._corr.columns.tolist() for i in range(len(cols)): for j in range(len(cols)): if i != j: df_r = pd.DataFrame({'x': cols[i], 'y':cols[j], 'r': self._corr.iloc[i][j], 'r_abs': np.absolute(self._corr.iloc[i][j])}, index=[0]) df_r['strength'] = np.where(df_r.r_abs<0.2, 'Very Weak', np.where(df_r.r_abs<0.4, 'Weak', np.where(df_r.r_abs<0.6, "Moderate", np.where(df_r.r_abs<0.8, "Strong", "Very Strong")))) df_r['direction'] = np.where(df_r.r <0, "Negative", "Positive") r_tests = pd.concat([r_tests, df_r], axis=0) r_tests = r_tests.sort_values(by='r_abs', ascending=False) if threshold: r_tests = r_tests[r_tests.r_abs > threshold] return(r_tests) def corrplot(self): sns.heatmap(self._corr, xticklabels=self._corr.columns, yticklabels=self._corr.columns) # ---------------------------------------------------------------------------- # # INDEPENDENCE # # ---------------------------------------------------------------------------- # class Independence: "Class that performs a test of independence" def __init__(self): self._sig = 0.05 self._x2 = 0 self._p = 0 self._df = 0 self._obs = [] self._exp = [] def summary(self): print("\n*", "=" * 78, "*") print('{:^80}'.format("Pearson's Chi-squared Test of Independence")) print('{:^80}'.format('Data')) print('{:^80}'.format("x = " + self._xvar + " y = " + self._yvar + "\n")) print('{:^80}'.format('Observed Frequencies')) visual.print_df(self._obs) print("\n", '{:^80}'.format('Expected Frequencies')) visual.print_df(self._exp) results = ("Pearson's chi-squared statistic = " + str(round(self._x2, 3)) + ", Df = " + str(self._df) + ", p-value = " + '{0:1.2e}'.format(round(self._p, 3))) print("\n", '{:^80}'.format(results)) print("\n*", "=" * 78, "*") def post_hoc(self, rowwise=True, verbose=False): dfs = [] if rowwise: rows = range(0, len(self._obs)) for pair in list(combinations(rows, 2)): ct = self._obs.iloc[[pair[0], pair[1]], ] levels = ct.index.values x2, p, dof, exp = stats.chi2_contingency(ct) df = pd.DataFrame({'level_1': levels[0], 'level_2': levels[1], 'x2': x2, 'N': ct.values.sum(), 'p_value': p}, index=[0]) dfs.append(df) self._post_hoc_tests = pd.concat(dfs) else: cols = range(0, len(self._obs.columns.values)) for pair in list(combinations(cols, 2)): ct = self._obs.iloc[:, [pair[0], pair[1]]] levels = ct.columns.values x2, p, dof, exp = stats.chi2_contingency(ct) df = pd.DataFrame({'level_1': levels[0], 'level_2': levels[1], 'x2': x2, 'N': ct.values.sum(), 'p_value': p}, index=[0]) dfs.append(df) self._post_hoc_tests = pd.concat(dfs) if (verbose): visual.print_df(self._post_hoc_tests) return(self._post_hoc_tests) def test(self, x, y, sig=0.05): self._x = x self._y = y self._xvar = x.name self._yvar = y.name self._n = x.shape[0] self._sig = sig ct = pd.crosstab(x, y) x2, p, dof, exp = stats.chi2_contingency(ct) self._x2 = x2 self._p = p self._df = dof self._obs = ct self._exp = pd.DataFrame(exp).set_index(ct.index) self._exp.columns = ct.columns if p < sig: self._result = 'significant' self._hypothesis = 'reject' else: self._result = 'not significant' self._hypothesis = 'fail to reject' return x2, p, dof, exp def report(self, verbose=False): "Returns or prints results in APA format" tup = ("A Chi-square test of independence was conducted to " "examine the relation between " + self._xvar + " and " + self._yvar + ". " "The relation between the variables was " + self._result + ", " "X2(" + str(self._df) + ", N = ", str(self._n) + ") = " + str(round(self._x2, 2)) + ", p = " + '{0:1.2e}'.format(round(self._p, 3))) self._report = ''.join(tup) wrapper = textwrap.TextWrapper(width=80) lines = wrapper.wrap(text=self._report) if verbose: for line in lines: print(line) return(self._report) # ---------------------------------------------------------------------------- # # ANOVA # # ---------------------------------------------------------------------------- # #%% class Anova: ''' Computes Anova tests ''' def __init__(self): pass def aov_test(self, df, x, y, type=2, test='F', sig=0.05): df2 = pd.DataFrame({'x': df[x], 'y': df[y]}) df2 = df2.dropna() model = smf.ols('y~x', data=df2).fit() aov = sm.stats.anova_lm(model, typ=type, test=test) tbl = pd.DataFrame({ 'Test': 'Anova', 'Dependent': y, 'Independent': x, 'Statistic': 'F Statistic', 'Statistic Value': aov['F'][0], 'p-Value': aov['PR(>F)'][0] }, index=[0]) tbl['H0'] = np.where(tbl['p-Value']<sig, 'Reject', 'Fail to Reject') return(tbl) def aov_table(self, df, x=None, y=None, type=2, test='F', threshold=0): tests = pd.DataFrame() if x and y: df2 = pd.DataFrame({'x': df[x], 'y': df[y]}) df2 = df2.dropna() model = smf.ols('y~x', data=df2).fit() aov = sm.stats.anova_lm(model, typ=type, test=test) tbl = pd.DataFrame({ 'Dependent': y, 'Independent': x, 'Sum Sq Model': aov['sum_sq'][0], 'Sum Sq Residuals': aov['sum_sq'][1], 'df Model': aov['df'][0], 'df Residuals': aov['df'][1], 'F': aov['F'][0], 'PR(>F)': aov['PR(>F)'][0] }, index=[0]) tbl['Eta Squared'] = tbl['Sum Sq Model'] / (tbl['Sum Sq Model'] + tbl['Sum Sq Residuals']) tests = tests.append(tbl) elif x: dfy = df.select_dtypes(include='object') ys = dfy.columns for y in ys: df2 = pd.DataFrame({'x': df[x], 'y': df[y]}) df2 = df2.dropna() model = smf.ols('x~y', data=df2).fit() aov = sm.stats.anova_lm(model, typ=type, test=test) tbl = pd.DataFrame({ 'Dependent': y, 'Independent': x, 'Sum Sq Model': aov['sum_sq'][0], 'Sum Sq Residuals': aov['sum_sq'][1], 'df Model': aov['df'][0], 'df Residuals': aov['df'][1], 'F': aov['F'][0], 'PR(>F)': aov['PR(>F)'][0] }, index=[0]) tbl['Eta Squared'] = tbl['Sum Sq Model'] / (tbl['Sum Sq Model'] + tbl['Sum Sq Residuals']) tests = tests.append(tbl) elif y: dfx = df.select_dtypes(include=[np.number]) xs = dfx.columns for x in xs: df2 = pd.DataFrame({'x': df[x], 'y': df[y]}) df2 = df2.dropna() model = smf.ols('x~y', data=df2).fit() aov = sm.stats.anova_lm(model, typ=type, test=test) tbl = pd.DataFrame({ 'Dependent': y, 'Independent': x, 'Sum Sq Model': aov['sum_sq'][0], 'Sum Sq Residuals': aov['sum_sq'][1], 'df Model': aov['df'][0], 'df Residuals': aov['df'][1], 'F': aov['F'][0], 'PR(>F)': aov['PR(>F)'][0] }, index=[0]) tbl['Eta Squared'] = tbl['Sum Sq Model'] / (tbl['Sum Sq Model'] + tbl['Sum Sq Residuals']) tests = tests.append(tbl) else: dfx = df.select_dtypes(include=[np.number]) dfy = df.select_dtypes(include='object') xs = dfx.columns ys = dfy.columns for pair in list(itertools.product(xs,ys)): df2 = df[[pair[0], pair[1]]].dropna() df2 = pd.DataFrame({'x': df2[pair[0]], 'y': df2[pair[1]]}) model = smf.ols('x~y', data=df2).fit() aov = sm.stats.anova_lm(model, typ=type, test=test) tbl = pd.DataFrame({ 'Dependent': y, 'Independent': x, 'Sum Sq Model': aov['sum_sq'][0], 'Sum Sq Residuals': aov['sum_sq'][1], 'df Model': aov['df'][0], 'df Residuals': aov['df'][1], 'F': aov['F'][0], 'PR(>F)': aov['PR(>F)'][0] }, index=[0]) tbl['Eta Squared'] = tbl['Sum Sq Model'] / (tbl['Sum Sq Model'] + tbl['Sum Sq Residuals']) tests = tests.append(tbl) tests = tests.loc[tests['Eta Squared'] > threshold] tests = tests.sort_values(by='Eta Squared', ascending=False) return(tests) # ---------------------------------------------------------------------------- # # KRUSKAL # # ---------------------------------------------------------------------------- # #%% class Kruskal: ''' Class provides non-parametric methods for testing independence ''' def __init__(self): pass def kruskal_test(self, df, x, y, sig=0.05): '''Computes the Kruskal-Wallis H-test tests Args: df (pd.DataFrame): Dataframe containing data x (str): The name of the categorical independent variable y (str): The name of the numerical dependent variable Returns: DataFrame containing statistic and p-value ''' df = df[[x,y]].dropna() groups = {} for grp in df[x].unique(): groups[grp] = df[y][df[x]==grp].values args = groups.values() k = stats.kruskal(*args) columns = ['Test', 'Dependent', 'Independent', 'Statistic', 'Statistic Value', 'p-Value'] data = [['Kruskal', y, x, 'H-Statistic', k[0], k[1]]] r = pd.DataFrame(data, columns = columns) r['H0'] = np.where(r['p-Value']<sig, 'Reject', 'Fail to Reject') return(r) def kruskal_table(self, df, x=None, y=None, sig=0.05, sort=False): tests = pd.DataFrame() if x and y: test = self.kruskal_test(df, x, y) tests = tests.append(test) elif x: dfy = df.select_dtypes(include=[np.number]) ys = dfy.columns.tolist() for y in ys: df2 = df[[x,y]].dropna() test = self.kruskal_test(df2, x, y) tests = tests.append(test) elif y: dfx = df.select_dtypes(include='object') xs = dfx.columns.tolist() for x in xs: df2 = df[[x,y]].dropna() test = self.kruskal_test(df2, x, y) tests = tests.append(test) else: dfx = df.select_dtypes(include='object') dfy = df.select_dtypes(include=[np.number]) xs = dfx.columns.tolist() ys = dfy.columns.tolist() for pair in list(itertools.product(xs,ys)): df2 = df[[pair[0], pair[1]]].dropna() test = self.kruskal_test(df2, pair[0], pair[1]) tests = tests.append(test) if sort: tests = tests.sort_values(by=['Independent','Statistic Value'], ascending=False) return(tests) def posthoc(self, df, x, y): df = df[[x,y]].dropna() p = sp.posthoc_conover(df, val_col=y, group_col=x, p_adjust = 'fdr_bh') return(p) def sign_plot(self, df, x, y): p = self.posthoc(df, x, y) heatmap_args = {'linewidths': 0.25, 'linecolor': '0.5', 'clip_on': False, 'square': True, 'cbar_ax_bbox': [0.80, 0.35, 0.04, 0.3]} sp.sign_plot(p, **heatmap_args) # %% # ---------------------------------------------------------------------------- # # CORRELATION # # ---------------------------------------------------------------------------- # def correlation(df, x, y): ''' Computes the correlation between two quantitative variables x and y. Args: df (pd.DataFrame): Dataframe containing numeric variables x (str): The column name for the x variable y (str): The column name for the y variable Returns: Data frame containing the results of the correlation tests ''' df = df.dropna() r = stats.pearsonr(df[x], df[y]) test = pd.DataFrame({'x': x, 'y': y, "Correlation": r[0], "p-value": r[1]}, index=[0]) test['AbsCorr'] = test['Correlation'].abs() test['Strength'] = np.where(test["AbsCorr"] < .1, 'Extremely Weak Correlation', np.where(test["AbsCorr"] < .30, 'Small Correlation', np.where(test["AbsCorr"] < .5, 'Moderate Correlation', 'Strong Correlation'))) return(test) # ---------------------------------------------------------------------------- # # CORR_TABLE # # ---------------------------------------------------------------------------- # def corr_table(df, x=None, y=None, target=None, threshold=0, sig=None): '''For a dataframe containing numeric variables, this function computes pairwise pearson's R tests of correlation correlation. Args: df (pd.DataFrame): Data frame containing numeric variables x(str): Name of independent variable column (optional) y(str): Name of dependent variable column (optional) target(str): threshold (float): Threshold above which correlations should be reported. Returns: Data frame containing the results of the pairwise tests of correlation. ''' tests = [] if x is not None: for pair in list(itertools.product(x, y)): df2 = df[[pair[0], pair[1]]].dropna() x = df2[pair[0]] y = df2[pair[1]] r = stats.pearsonr(x, y) tests.append(OrderedDict( {'x': pair[0], 'y': pair[1], "Correlation": r[0], "p-value": r[1]})) tests = pd.DataFrame(tests, index=[0]) tests['AbsCorr'] = tests['Correlation'].abs() tests['Strength'] = np.where(tests["AbsCorr"] < .1, 'Extremely Weak Correlation', np.where(tests["AbsCorr"] < .30, 'Small Correlation', np.where(tests["AbsCorr"] < .5, 'Moderate Correlation', 'Strong Correlation'))) else: df2 = df.select_dtypes(include=['int', 'float64']) terms = df2.columns if target: if target not in df2.columns: df2 = df2.join(df[target]) for term in terms: df2 = df2.dropna() x = df2[term] y = df2[target] r = stats.pearsonr(x, y) tests.append(OrderedDict( {'x': term, 'y': target, "Correlation": r[0], "p-value": r[1]})) tests = pd.DataFrame(tests) tests['AbsCorr'] = tests['Correlation'].abs() tests['Strength'] = np.where(tests["AbsCorr"] < .1, 'Extremely Weak Correlation', np.where(tests["AbsCorr"] < .30, 'Small Correlation', np.where(tests["AbsCorr"] < .5, 'Moderate Correlation', 'Strong Correlation'))) else: for pair in list(combinations(terms, 2)): df2 = df[[pair[0], pair[1]]].dropna() x = df2[pair[0]] y = df2[pair[1]] r = stats.pearsonr(x, y) tests.append(OrderedDict( {'x': pair[0], 'y': pair[1], "Correlation": r[0], "p-value": r[1]})) tests = pd.DataFrame(tests) tests['AbsCorr'] = tests['Correlation'].abs() tests['Strength'] = np.where(tests["AbsCorr"] < .1, 'Extremely Weak Correlation', np.where(tests["AbsCorr"] < .30, 'Small Correlation', np.where(tests["AbsCorr"] < .5, 'Moderate Correlation', 'Strong Correlation'))) top = tests.loc[tests['AbsCorr'] > threshold] if sig is not None: top = tests.loc[tests['p-value']<sig] top = top.sort_values(by='AbsCorr', ascending=False) return top # ---------------------------------------------------------------------------- # # CRAMER'S V (Corrected) # # ---------------------------------------------------------------------------- # def cramers(contingency_table, correction=False): """ calculate Cramers V statistic for categorical-categorical association. If correction is True, it uses correction from Bergsma and Wicher, Journal of the Korean Statistical Society 42 (2013): 323-328 Args: contingency_table (pd.DataFrame): Contingency table containing counts for the two variables being analyzed correction (bool): If True, use Bergsma's correction Returns: float: Corrected Cramer's V measure of Association """ chi2, p = stats.chi2_contingency(contingency_table)[0:2] n = contingency_table.sum().sum() phi = np.sqrt(chi2/n) r, c = contingency_table.shape if correction: phi2corr = max(0, phi**2 - ((c-1)*(r-1))/(n-1)) rcorr = r - ((r-1)**2)/(n-1) ccorr = c - ((c-1)**2)/(n-1) V = np.sqrt(phi2corr / min((ccorr-1), (rcorr-1))) else: V = np.sqrt(phi**2/min(r,c)) return p, V # %% # ---------------------------------------------------------------------------- # # ASSOCIATION # # ---------------------------------------------------------------------------- # def association(df, x, y, z=None, sig=0.05): ''' Computes the association between two or three categorical variables. Args: df (pd.DataFrame): Dataframe containing categorical variables x (str): The column name for the x variable y (str): The column name for the y variable z (str): Optional column containing the z variable Returns: Data frame containing the results of the correlation tests ''' if z: df = df[[x,y,z]].dropna() ct =
pd.crosstab(df[z], [df[x], df[y]], rownames=[z], colnames=[x, y])
pandas.crosstab
import os from pathlib import Path import time from packaging import version import warnings import yaml import numpy as np import pandas as pd import rasterio from rasterstats import zonal_stats from shapely.geometry import LineString from gisutils import df2shp, get_authority_crs from sfrmaker.routing import find_path, renumber_segments from sfrmaker.checks import valid_rnos, valid_nsegs, rno_nseg_routing_consistent from sfrmaker.elevations import smooth_elevations from sfrmaker.flows import add_to_perioddata, add_to_segment_data from sfrmaker.gis import export_reach_data, project from sfrmaker.observations import write_gage_package, write_mf6_sfr_obsfile, add_observations from sfrmaker.units import convert_length_units, itmuni_values, lenuni_values from sfrmaker.utils import get_sfr_package_format, get_input_arguments, assign_layers, update import sfrmaker from sfrmaker.base import DataPackage from sfrmaker.mf5to6 import segment_data_to_period_data from sfrmaker.reaches import consolidate_reach_conductances from sfrmaker.rivdata import RivData try: import flopy fm = flopy.modflow mf6 = flopy.mf6 except: flopy = False class SFRData(DataPackage): """Class for working with a streamflow routing (SFR) dataset, where the stream network is discretized into reaches contained within individual model cells. Reaches may be grouped into segments, with routing between segments specified, and routing between reaches within segments based on consecutive numbering (as in MODFLOW-2005). In this case, unique identifier numbers will be assigned to each reach (in the rno column of the reach_data table), and routing connections between rnos will be computed. Alternatively, reaches and their routing connections can be specified directly, as in MODFLOW-6. In this case, MODFLOW-2005 input will be written with one reach per segment. Parameters ---------- reach_data : DataFrame Table containing information on the SFR reaches. segment_data : DataFrame Table containing information on the segments (optional). grid : sfrmaker.grid class instance model_length_units : str 'meters' or 'feet' model_time_units : str 's': seconds 'meters': minutes 'h': hours 'd': days 'y': years enforce_increasing_nsegs : bool If True, segment numbering is checked to ensure that it only increases downstream, and reset if it doesnt. package_name : str Base name for writing sfr output. kwargs : keyword arguments Optional values to assign globally to SFR variables. For example icalc=1 would assign all segments an icalc value of 1. For default values see the sfrdata.defaults dictionary. Default values can be assigned using MODFLOW-2005 or MODFLOW-6 terminology. """ # conversions to MODFLOW6 variable names mf6names = {'rno': 'rno', # 'node': 'cellid', 'rchlen': 'rlen', 'width': 'rwid', 'slope': 'rgrd', 'strtop': 'rtp', 'strthick': 'rbth', 'strhc1': 'rhk', 'roughch': 'man', 'flow': 'inflow', 'pptsw': 'rainfall', 'etsw': 'evaporation', 'runoff': 'runoff', 'depth1': 'depth1', 'depth2': 'depth2'} mf5names = {v: k for k, v in mf6names.items()} # order for columns in reach_data rdcols = ['rno', 'node', 'k', 'i', 'j', 'iseg', 'ireach', 'rchlen', 'width', 'slope', 'strtop', 'strthick', 'strhc1', 'thts', 'thti', 'eps', 'uhc', 'outreach', 'outseg', 'asum', 'line_id', 'name', 'geometry'] # order for columns in segment_data sdcols = ['per', 'nseg', 'icalc', 'outseg', 'iupseg', 'iprior', 'nstrpts', 'flow', 'runoff', 'etsw', 'pptsw', 'roughch', 'roughbk', 'cdpth', 'fdpth', 'awdth', 'bwdth', 'hcond1', 'thickm1', 'elevup', 'width1', 'depth1', 'thts1', 'thti1', 'eps1', 'uhc1', 'hcond2', 'thickm2', 'elevdn', 'width2', 'depth2', 'thts2', 'thti2', 'eps2', 'uhc2'] dtypes = {'rno': int, 'node': int, 'k': int, 'i': int, 'j': int, 'iseg': int, 'ireach': int, 'outreach': int, 'line_id': int, 'per': int, 'nseg': int, 'icalc': int, 'outseg': int, 'iupseg': int, 'iprior': int, 'nstrpts': int, 'name': object, 'geometry': object} # LENUNI = {"u": 0, "f": 1, "m": 2, "c": 3} len_const = {0: 1.0, 1: 1.486, 2: 1.0, 3: 100.} # {"u": 0, "s": 1, "m": 2, "h": 3, "d": 4, "y": 5} time_const = {1: 1., 2: 60., 3: 3600., 4: 86400., 5: 31557600.} # default values defaults = {'icalc': 1, 'roughch': 0.037, 'strthick': 1, 'strhc1': 1, 'istcb2': 223, 'gage_starting_unit_number': 250 } package_type = 'sfr' def __init__(self, reach_data=None, segment_data=None, grid=None, model=None, isfr=None, model_length_units="undefined", model_time_units='days', enforce_increasing_nsegs=True, default_slope=0.001, minimum_slope=0.0001, maximum_slope=1., package_name='model', **kwargs): DataPackage.__init__(self, grid=grid, model=model, isfr=isfr, model_length_units=model_length_units, model_time_units=model_time_units, package_name=package_name) # attributes self._period_data = None self._observations = None self._observations_filename = None # convert any modflow6 kwargs to modflow5 kwargs = {SFRData.mf5names[k] if k in SFRData.mf6names else k: v for k, v in kwargs.items()} # update default values (used in segment and reach data setup) self.defaults.update(kwargs) self.reach_data = self._setup_reach_data(reach_data) self.segment_data = self._setup_segment_data(segment_data) self.isfropt0_to_1() # distribute any isfropt=0 segment data to reaches # routing self._segment_routing = None # dictionary of routing connections self._rno_routing = None # dictionary of rno routing connections self._paths = None # routing sequence from each segment to outlet self._reach_paths = None # routing sequence from each reach number to outlet if not self._valid_nsegs(increasing=enforce_increasing_nsegs): self.reset_segments() # establish rno routing # set_outreaches checks for valid rnos and resets them if not # resets out reaches either way using segment data # not the ideal logic for MODFLOW 6 case where only # rno and connections are supplied self.set_outreaches() self.get_slopes(default_slope=default_slope, minimum_slope=minimum_slope, maximum_slope=maximum_slope) # have to set the model last, because it also sets up a flopy sfr package instance self.model = model # attached flopy model instance # self._ModflowSfr2 = None # attached instance of flopy modflow_sfr2 package object # MODFLOW-2005 gages will be assigned sequential unit numbers # starting at gage_starting_unit_number self.gage_starting_unit_number = self.defaults['gage_starting_unit_number'] @property def const(self): const = self.len_const[self._lenuni] * \ self.time_const[self._itmuni] return const @property def _itmuni(self): """MODFLOW time units code""" return itmuni_values[self.model_time_units] @property def _lenuni(self): """MODFLOW length units code""" return lenuni_values[self.model_length_units] @property def structured(self): if self.grid is not None: return self.grid._structured else: return True @property def model(self): return self._model @model.setter def model(self, model): self._model = model # update the sfr package object as well self.create_modflow_sfr2(model) @property def package_name(self): if self._package_name is None: if self.model is not None: self._package_name = self.model.name else: self._package_name = 'model' return self._package_name @package_name.setter def package_name(self, package_name): self._package_name = package_name @property def crs(self): if self._crs is None: self._crs = self.grid.crs return self._crs @property def crs_units(self): """Length units of the coordinate reference system""" return self.crs.length_units @property def segment_routing(self): if self._segment_routing is None or self._routing_changed(): sd = self.segment_data.groupby('per').get_group(0) graph = dict( zip(sd.nseg, sd.outseg)) outlets = set(graph.values()).difference( set(graph.keys())) # including lakes graph.update({o: 0 for o in outlets}) self._routing = graph return self._routing @property def rno_routing(self): if self._rno_routing is None or self._routing_changed(): # enforce valid rnos; and create outreach connections # from segment data and sequential reach numbering # (ireach values also checked and fixed if necesseary) self.set_outreaches() rd = self.reach_data graph = dict(zip(rd.rno, rd.outreach)) outlets = set(graph.values()).difference( set(graph.keys())) # including lakes graph.update({o: 0 for o in outlets}) self._rno_routing = graph return self._rno_routing @property def modflow_sfr2(self): """A `flopy.modflow.mfsfr2.ModflowSfr2` represenation of the sfr dataset.""" if self._ModflowSfr2 is None: self.create_modflow_sfr2() return self._ModflowSfr2 @classmethod def get_empty_reach_data(cls, nreaches=0, default_value=0): rd = fm.ModflowSfr2.get_empty_reach_data(nreaches, default_value=default_value) df = pd.DataFrame(rd) for c in SFRData.rdcols: if c not in df.columns: df[c] = default_value elif c != 'geometry': df[c] = df[c].astype(cls.dtypes.get(c, np.float32)) return df[cls.rdcols] def _setup_reach_data(self, reach_data): rd = SFRData.get_empty_reach_data(len(reach_data)) reach_data.index = range(len(reach_data)) for c in reach_data.columns: rd[c] = reach_data[c].astype(SFRData.dtypes.get(c, np.float32)) assert rd[c].dtype == SFRData.dtypes.get(c, np.float32) # assign kwargs to reach data for k, v in self.defaults.items(): if k in self.rdcols and k not in reach_data.columns: rd[k] = v return rd @classmethod def get_empty_segment_data(cls, nsegments=0, default_value=0): sd = fm.ModflowSfr2.get_empty_segment_data(nsegments, default_value=default_value) sd = pd.DataFrame(sd) sd['per'] = 0 for c in sd.columns: sd[c] = sd[c].astype(cls.dtypes.get(c, np.float32)) return sd[cls.sdcols] def _setup_segment_data(self, segment_data): # if no segment_data was provided if segment_data is None: # create segment_data from iseg and ireach columns in reach data # if if valid_nsegs(self.reach_data.iseg, increasing=False) and \ self.reach_data.outseg.sum() > 0: self.reach_data.sort_values(by=['iseg', 'ireach'], inplace=True) nss = self.reach_data.iseg.max() sd = SFRData.get_empty_segment_data(nss) routing = dict(zip(self.reach_data.iseg, self.reach_data.outseg)) sd['nseg'] = range(len(sd)) sd['outseg'] = [routing[s] for s in sd.nseg] # create segment_data from reach routing (one reach per segment) else: has_rno_routing = self._check_reach_routing() assert has_rno_routing, \ "Reach data must contain rno column with unique, " \ "consecutive reach numbers starting at 1. If no " \ "segment_data are supplied, segment routing must be" \ "included in iseg and outseg columns, or reach data " \ "must contain outreach column with routing connections." sd = SFRData.get_empty_segment_data(len(self.reach_data)) sd['nseg'] = self.reach_data.rno sd['outseg'] = self.reach_data.outreach # transfer supplied segment data to default template else: sd = SFRData.get_empty_segment_data(len(segment_data)) if 'per' not in segment_data.columns: segment_data['per'] = 0 segment_data.sort_values(by=['per', 'nseg'], inplace=True) segment_data.index = range(len(segment_data)) for c in segment_data.columns: values = segment_data[c].astype(SFRData.dtypes.get(c, np.float32)) # fill any nan values with 0 (same as empty segment_data; # for example elevation if it wasn't specified and # will be sampled from the DEM) values.fillna(0, inplace=True) sd[c] = values # assign defaults to segment data for k, v in self.defaults.items(): if k in self.sdcols and k not in segment_data.columns: sd[k] = v # add outsegs to reach_data routing = dict(zip(sd.nseg, sd.outseg)) self.reach_data['outseg'] = [routing[s] for s in self.reach_data.iseg] return sd @property def observations(self): if self._observations is None: self._observations = pd.DataFrame(columns=['obsname', 'obstype', 'rno', 'iseg', 'ireach']) return self._observations @property def observations_file(self): if self._observations_filename is None: if self.model is not None and self.model.version == 'mf6': self._observations_filename = self.package_name + '.sfr.obs' else: self._observations_filename = self.package_name + '.gage' return self._observations_filename @observations_file.setter def observations_file(self, observations_filename): self._observations_filename = observations_filename @property def period_data(self): if self._period_data is None: self._period_data = self._get_period_data() # index by period and rno if not self._period_data.index.names == ['per', 'rno']: self._period_data.set_index(['per', 'rno'], inplace=True) return self._period_data def _get_period_data(self): print('converting segment data to period data...') return segment_data_to_period_data(self.segment_data, self.reach_data) def add_to_perioddata(self, data, flowline_routing=None, variable='inflow', line_id_column=None, rno_column=None, period_column='per', data_column='Q_avg', one_inflow_per_path=False, distribute_flows_to_reaches=False): return add_to_perioddata(self, data, flowline_routing=flowline_routing, variable=variable, line_id_column=line_id_column, rno_column=rno_column, period_column=period_column, data_column=data_column, one_inflow_per_path=one_inflow_per_path, distribute_flows_to_reaches=distribute_flows_to_reaches) def add_to_segment_data(self, data, flowline_routing, variable='flow', line_id_column=None, segment_column='segment', period_column='per', data_column='Q_avg'): return add_to_segment_data(self, data, flowline_routing, variable=variable, line_id_column=line_id_column, segment_column=segment_column, period_column=period_column, data_column=data_column) @property def paths(self): """Dict listing routing sequence for each segment in SFR network.""" if self._paths is None: self._set_paths() return self._paths if self._routing_changed(): self._reset_routing() return self._paths @property def reach_paths(self): """Dict listing routing sequence for each segment in SFR network.""" if self._paths is None: self._set_reach_paths() return self._reach_paths if self._routing_changed(): self._reset_routing() return self._reach_paths def _set_paths(self): routing = self.segment_routing self._paths = {seg: find_path(routing, seg) for seg in routing.keys()} def _set_reach_paths(self): routing = self.rno_routing self._reach_paths = {rno: find_path(routing, rno) for rno in routing.keys()} def _reset_routing(self): self.reset_reaches() self.reset_segments() self._segment_routing = None self._set_paths() self._rno_routing = None self._set_reach_paths() def _routing_changed(self): sd = self.segment_data.groupby('per').get_group(0) rd = self.reach_data # check if segment routing in dataframe is consistent with routing dict segment_routing = dict(zip(sd.nseg, sd.outseg)) segment_routing_changed = segment_routing != self._segment_routing # check if reach routing in dataframe is consistent with routing dict reach_routing = dict(zip(rd.rno, rd.outreach)) reach_routing_changed = reach_routing != self._rno_routing # check if segment and reach routing in dataframe are consistent consistent = rno_nseg_routing_consistent(sd.nseg, sd.outseg, rd.iseg, rd.ireach, rd.rno, rd.outreach) # return True if the dataframes changed, # or are inconsistent between segments and reach numbers return segment_routing_changed & reach_routing_changed & ~consistent def repair_outsegs(self): """Set any outsegs that are not nsegs or lakes to 0 (outlet status)""" isasegment = np.in1d(self.segment_data.outseg, self.segment_data.nseg) isasegment = isasegment | (self.segment_data.outseg < 0) self.segment_data.loc[~isasegment, 'outseg'] = 0 def reset_segments(self): """Reset the segment numbering so that is consecutive, starts at 1 and only increases downstream.""" r = renumber_segments(self.segment_data.nseg, self.segment_data.outseg) self.segment_data['nseg'] = [r[s] for s in self.segment_data.nseg] self.segment_data['outseg'] = [r[s] for s in self.segment_data.outseg] self.reach_data['iseg'] = [r[s] for s in self.reach_data.iseg] self.reach_data['outseg'] = [r[s] for s in self.reach_data.outseg] self.segment_data.sort_values(by=['per', 'nseg'], inplace=True) self.segment_data.index = np.arange(len(self.segment_data)) assert np.array_equal(self.segment_data.loc[self.segment_data.per == 0, 'nseg'].values, self.segment_data.loc[self.segment_data.per == 0].index.values + 1) self.reach_data.sort_values(by=['iseg', 'ireach'], inplace=True) def reset_reaches(self): """Ensure that the reaches in each segment are numbered consecutively starting at 1.""" self.reach_data.sort_values(by=['iseg', 'ireach'], inplace=True) reach_data = self.reach_data segment_data = self.segment_data.groupby('per').get_group(0) reach_counts = np.bincount(reach_data.iseg)[1:] reach_counts = dict(zip(range(1, len(reach_counts) + 1), reach_counts)) ireach = [list(range(1, reach_counts[s] + 1)) for s in segment_data.nseg] ireach = np.concatenate(ireach) try: self.reach_data['ireach'] = ireach except: j=2 def set_outreaches(self): """Determine the outreach for each SFR reach (requires a rno column in reach_data). Uses the segment routing specified for the first stress period to route reaches between segments. """ self.reach_data.sort_values(by=['iseg', 'ireach'], inplace=True) self.segment_data.sort_values(by=['per', 'nseg'], inplace=True) if not self._valid_rnos(): self.reach_data['rno'] = np.arange(1, len(self.reach_data) + 1) self.reset_reaches() # ensure that each segment starts with reach 1 self.repair_outsegs() # ensure that all outsegs are segments, outlets, or negative (lakes) rd = self.reach_data outseg = self.segment_routing reach1IDs = dict(zip(rd[rd.ireach == 1].iseg, rd[rd.ireach == 1].rno)) ireach = rd.ireach.values iseg = rd.iseg.values rno = rd.rno.values outreach = [] for i in range(len(rd)): # if at the end of reach data or current segment if i + 1 == len(rd) or ireach[i + 1] == 1: nextseg = outseg[iseg[i]] # get next segment if nextseg > 0: # current reach is not an outlet nextrchid = reach1IDs[nextseg] # get reach 1 of next segment else: nextrchid = 0 else: # otherwise, it's the next rno nextrchid = rno[i + 1] outreach.append(nextrchid) self.reach_data['outreach'] = outreach def _valid_rnos(self): incols = 'rno' in self.reach_data.columns arevalid = valid_rnos(self.reach_data.rno.tolist()) return incols & arevalid def _check_reach_routing(self): """Cursory check of reach routing.""" valid_rnos = self._valid_rnos() non_zero_outreaches = 'outreach' in self.reach_data.columns & \ self.reach_data.outreach.sum() > 0 return valid_rnos & non_zero_outreaches def _valid_nsegs(self, increasing=True): sd0 = self.segment_data.loc[self.segment_data.per == 0] return valid_nsegs(sd0.nseg, sd0.outseg, increasing=increasing) def assign_layers(self, adjusted_botm_output_path='.'): """Assign model layers to SFR reaches, using the discretzation package in the attached model. New botm elevations for the model will be written to a text array file, if any streambed bottoms are below the model bottom. Parameters ---------- adjusted_botm_output_path : str Path for writing the text array of adjusted model bottom elevations, by default, '.' """ if self.model is not None and hasattr(self.model, 'dis'): botm = self.model.dis.botm.array.copy() idomain = None if self.model.version == 'mf6': idomain = self.model.dis.idomain.array.copy() else: bas6 = getattr(self.model, 'bas6') if bas6 is not None: idomain = bas6.ibound.array nlay = botm.shape[0] + 1 layers, new_botm = assign_layers(self.reach_data, botm_array=botm, idomain=idomain) self.reach_data['k'] = layers if new_botm is not None: outfiles = [] if len(new_botm.shape) == 2: write_layers = [nlay - 1] else: write_layers = list(range(nlay)) outpath = Path(adjusted_botm_output_path) for k in write_layers: outfile = outpath / f'{self.package_name}_layer_{nlay}_new_botm_elevations.dat' np.savetxt(outfile, new_botm[-1], fmt='%.2f') outfiles.append(outfile) msg = ('Sfrmaker pushed some model botm elevations downward' 'to accomodate streambed bottoms. New botm elevations' 'written to:\n') for f in outfiles: msg += f'{f}\n' print(msg) else: print('Need a model instance with a discretization package to assign layers. ' 'A model can be assigned to the SFRData.model attribute.') def create_modflow_sfr2(self, model=None, const=None, isfropt=1, # override flopy default of 0 unit_number=None, ipakcb=None, istcb2=None, **kwargs ): if const is None: const = self.const if model is not None and model.version != 'mf6': m = model # create an flopy mf2005 model instance attached to modflow_sfr2 object # this is a parallel model instance to self.model, that is only # accessible through modflow_sfr2.parent. As long as this method is # called by the @model.setter; this instance should have the same # dis and ibound (idomain) as self.model. # The modflow_sfr2 instance is used as basis for writing packages, # because it includes many features, like checking and exporting, # that ModflowGwfsfr doesn't have) # ibound in BAS package is used by mf5to6 converter # to fill in required "None" values when writing mf6 input elif model is None or model.version == 'mf6': model_ws = '.' if model is None else model.model_ws m = fm.Modflow(modelname=self.package_name, model_ws=model_ws, structured=self.structured) if model is not None: nper = 1 if 'tdis' in model.simulation.package_key_dict.keys(): tdis = model.simulation.package_key_dict['tdis'] nper = tdis.nper.array if 'dis' in model.package_dict.keys(): dis = model.dis botm = dis.botm.array.copy() idomain = dis.idomain.array.copy() nlay, nrow, ncol = botm.shape dis = fm.ModflowDis(m, nlay=nlay, nrow=nrow, ncol=ncol, nper=nper, top=dis.top.array.copy(), botm=botm) bas = fm.ModflowBas(m, ibound=idomain) # translate segment data # populate MODFLOW 2005 segment variables from reach data if they weren't entered if self.segment_data[['width1', 'width2']].sum().sum() == 0: raise NotImplementedError('Double check indexing below before using this option.') width1 = self.reach_data.groupby('iseg')['width'].min().to_dict() width2 = self.reach_data.groupby('iseg')['width'].max().to_dict() self.segment_data['width1'] = [width1[s] for s in self.segment_data.nseg] self.segment_data['width2'] = [width2[s] for s in self.segment_data.nseg] assert not np.any(np.isnan(self.segment_data)) # create record array for each stress period sd = self.segment_data.groupby('per') sd = {per: sd.get_group(per).drop('per', axis=1).to_records(index=False) for per in self.segment_data.per.unique()} # translate reach data flopy_cols = fm.ModflowSfr2. \ get_default_reach_dtype(structured=self.structured).names columns_not_in_flopy = set(self.reach_data.columns).difference(set(flopy_cols)) rd = self.reach_data.drop(columns_not_in_flopy, axis=1).copy() rd = rd.to_records(index=False) nstrm = -len(rd) self._ModflowSfr2 = fm.ModflowSfr2(model=m, nstrm=nstrm, const=const, reach_data=rd, segment_data=sd, isfropt=isfropt, unit_number=unit_number, ipakcb=ipakcb, istcb2=istcb2, **kwargs) # if model.version == 'mf6': # self._ModflowSfr2.parent = model return self._ModflowSfr2 def create_mf6sfr(self, model=None, unit_conversion=None, stage_filerecord=None, budget_filerecord=None, flopy_rno_input_is_zero_based=True, **kwargs ): if unit_conversion is None: unit_conversion = self.const if stage_filerecord is None: stage_filerecord = '{}.sfr.stage.bin'.format(self.package_name) if budget_filerecord is None: budget_filerecord = '{}.sfr.cbc'.format(self.package_name) if model is not None and model.version == 'mf6': m = model if 'tdis' in model.simulation.package_key_dict.keys(): tdis = model.simulation.package_key_dict['tdis'] nper = tdis.nper.array # create an flopy mf2005 model instance attached to modflow_sfr2 object # this is a parallel model instance to self.model, that is only # accessible through modflow_sfr2.parent. As long as this method is # called by the @model.setter; this instance should have the same # dis and ibound (idomain) as self.model. # The modflow_sfr2 instance is used as basis for writing packages, # because it includes many features, like checking and exporting, # that ModflowGwfsfr doesn't have) # ibound in BAS package is used by mf5to6 converter # to fill in required "None" values when writing mf6 input elif model is None or model.version != 'mf6': # create simulation sim = flopy.mf6.MFSimulation(version='mf6', exe_name='mf6', sim_ws='') m = flopy.mf6.ModflowGwf(sim) # create an sfrmaker.Mf6SFR instance from .mf5to6 import Mf6SFR sfr6 = Mf6SFR(self.modflow_sfr2) # package data # An error occurred when storing data "packagedata" in a recarray. # packagedata data is a one or two dimensional list containing the variables # "<rno> <cellid> <rlen> <rwid> <rgrd> <rtp> <rbth> <rhk> <man> <ncon> <ustrf> <ndv>" # (some variables may be optional, see MF6 documentation) packagedata = sfr6.packagedata.copy() if self.structured: columns = packagedata.drop(['k', 'i', 'j', 'idomain'], axis=1).columns.tolist() packagedata['cellid'] = list(zip(packagedata.k, packagedata.i, packagedata.j)) columns.insert(1, 'cellid') connectiondata = [(rno, *sfr6.connections[rno]) for rno in sfr6.packagedata.rno if rno in sfr6.connections] # as of 9/12/2019, flopy.mf6.modflow.ModflowGwfsfr requires zero-based input for rno if flopy_rno_input_is_zero_based and self.modflow_sfr2.reach_data['reachID'].min() == 1: packagedata['rno'] -= 1 zero_based_connectiondata = [] for record in connectiondata: zero_based_record = [] for rno in record: if rno is not None: if rno > 0: rno -= 1 elif rno < 0: rno += 1 zero_based_record.append(rno) #zero_based_record = tuple(i - 1 if i > 0 else i + 1 for i in record) if len(zero_based_record) == 1: zero_based_record.append(None) zero_based_connectiondata.append(zero_based_record) connectiondata = zero_based_connectiondata assert packagedata['rno'].min() == 0 #assert np.min(list(map(np.min, map(np.abs, connectiondata)))) < 1 # set cellids to None for unconnected reaches or where idomain == 0 # can only do this with flopy versions 3.3.1 and later, otherwise flopy will bomb if version.parse(flopy.__version__) > version.parse('3.3.0'): unconnected = ~packagedata['rno'].isin(np.array(list(sfr6.connections.keys())) - 1).values inactive = m.dis.idomain.array[packagedata.k.values, packagedata.i.values, packagedata.j.values] != 1 packagedata.loc[unconnected | inactive, 'cellid'] = 'none' packagedata = packagedata[columns].values.tolist() period_data = None if sfr6.period_data is not None: # TODO: add method to convert period_data df to MF6 input # raise NotImplemented("Support for mf6 period_data input not implemented yet. " # "Use sfrdata.write_package(version='mf6') instead.") pass mf6sfr = mf6.ModflowGwfsfr(model=m, unit_conversion=unit_conversion, stage_filerecord=stage_filerecord, budget_filerecord=budget_filerecord, nreaches=len(self.reach_data), packagedata=packagedata, connectiondata=connectiondata, diversions=None, # TODO: add support for diversions perioddata=period_data, # TODO: add support for creating mf6 perioddata input **kwargs) return mf6sfr def add_observations(self, data, flowline_routing=None, obstype=None, sfrlines_shapefile=None, x_location_column=None, y_location_column=None, line_id_column=None, rno_column=None, obstype_column=None, obsname_column='site_no', gage_starting_unit_number=250): self.gage_starting_unit_number = gage_starting_unit_number added_obs = add_observations(self, data, flowline_routing=flowline_routing, obstype=obstype, sfrlines_shapefile=sfrlines_shapefile, x_location_column=x_location_column, y_location_column=y_location_column, line_id_column=line_id_column, rno_column=rno_column, obstype_column=obstype_column, obsname_column=obsname_column) # replace any observations that area already in the observations table if isinstance(self._observations, pd.DataFrame): existing_obs = set(zip(self._observations['obsname'], self._observations['obstype'])) new_obs = set(zip(added_obs['obsname'], added_obs['obstype'])) exists_already = {obs[0] for obs in existing_obs.intersection(new_obs)} exists_already = self._observations['obsname'].isin(exists_already) self._observations = self._observations.loc[~exists_already] self._observations = self.observations.append(added_obs).reset_index(drop=True) for df in self._observations, added_obs: # enforce dtypes (pandas doesn't allow an empty dataframe # to be initialized with more than one specified dtype) for col in ['rno', 'iseg', 'ireach']: df[col] = df[col].astype(int) return added_obs def interpolate_to_reaches(self, segvar1, segvar2, per=0): """Interpolate values in datasets 6b and 6c to each reach in stream segment Parameters ---------- segvar1 : str Column/variable name in segment_data array for representing start of segment (e.g. hcond1 for hydraulic conductivity) For segments with icalc=2 (specified channel geometry); if width1 is given, the eigth distance point (XCPT8) from dataset 6d will be used as the stream width. For icalc=3, an abitrary width of 5 is assigned. For icalc=4, the mean value for width given in item 6e is used. segvar2 : str Column/variable name in segment_data array for representing start of segment (e.g. hcond2 for hydraulic conductivity) per : int Stress period with segment data to interpolate Returns ------- reach_values : 1D array One dimmensional array of interpolated values of same length as reach_data array. For example, hcond1 and hcond2 could be entered as inputs to get values for the strhc1 (hydraulic conductivity) column in reach_data. """ from sfrmaker.reaches import interpolate_to_reaches reach_data = self.reach_data segment_data = self.segment_data.groupby('per').get_group(per) segment_data.sort_values(by='nseg', inplace=True) reach_data.sort_values(by=['iseg', 'ireach'], inplace=True) return interpolate_to_reaches(reach_data, segment_data, segvar1, segvar2, reach_data_group_col='iseg', segment_data_group_col='nseg' ) def isfropt0_to_1(self): """transfer isfropt=0 segment properties to reaches, using linear interpolation. """ snames = {'strtop': ('elevup', 'elevdn'), 'strthick': ('thickm1', 'thickm2'), 'strhc1': ('hcond1', 'hcond2'), 'thts': ('thts1', 'thts2'), 'thti': ('thti1', 'thti2'), 'eps': ('eps1', 'eps2'), 'uhc': ('uhc1', 'uhc2'), } sd = self.segment_data.loc[self.segment_data.per == 0] for col, sdcols in snames.items(): if self.reach_data[col].sum() == 0 and \ sd[[*sdcols]].values.sum(axis=(0, 1)) != 0.: self.reach_data[col] = self.interpolate_to_reaches(*sdcols) def sample_reach_elevations(self, dem, method='buffers', buffer_distance=100, smooth=True ): """Computes zonal statistics on a raster for SFR reaches, using either buffer polygons around the reach LineStrings, or the model grid cell polygons containing each reach. Parameters ---------- dem : path to valid raster dataset Must be in same Coordinate Reference System as model grid. method : str; 'buffers' or 'cell polygons' If 'buffers', buffers (with flat caps; cap_style=2 in LineString.buffer()) will be created around the reach LineStrings (geometry column in reach_data). buffer_distance : float Buffer distance to apply around reach LineStrings, in crs_units. smooth : bool Run sfrmaker.elevations.smooth_elevations on sampled elevations to ensure that they decrease monotonically in the downstream direction (default=True). Returns ------- elevs : dict of sampled elevations keyed by reach number """ # get the CRS and pixel size for the DEM with rasterio.open(dem) as src: raster_crs = get_authority_crs(src.crs) # make sure buffer is large enough for DEM pixel size buffer_distance = np.max([np.sqrt(src.res[0] * src.res[1]) * 1.01, buffer_distance]) if method == 'buffers': assert isinstance(self.reach_data.geometry[0], LineString), \ "Need LineString geometries in reach_data.geometry column to use buffer option." features = [g.buffer(buffer_distance) for g in self.reach_data.geometry] txt = 'buffered LineStrings' elif method == 'cell polygons': assert self.grid is not None, \ "Need an attached sfrmaker.Grid instance to use cell polygons option." features = self.grid.df.loc[self.reach_data.node, 'geometry'].tolist() txt = method # to_crs features if they're not in the same crs if raster_crs != self.crs: features = project(features, self.crs, raster_crs) print('running rasterstats.zonal_stats on {}...'.format(txt)) t0 = time.time() results = zonal_stats(features, dem, stats='min') elevs = [r['min'] for r in results] print("finished in {:.2f}s\n".format(time.time() - t0)) if all(v is None for v in elevs): raise Exception('No {} intersected with {}. Check projections.'.format(txt, dem)) if any(v is None for v in elevs): raise Exception('Some {} not intersected with {}. ' 'Check that DEM covers the area of the stream network.' '.'.format(txt, dem)) if smooth: elevs = smooth_elevations(self.reach_data.rno.tolist(), self.reach_data.outreach.tolist(), elevs) else: elevs = dict(zip(self.reach_data.rno, elevs)) return elevs def set_streambed_top_elevations_from_dem(self, filename, elevation_units=None, dem=None, dem_z_units=None, method='buffers', **kwargs): """Set streambed top elevations from a DEM raster. Runs sfrdata.sample_reach_elevations Parameters ---------- filename : path to valid raster dataset Must be in same Coordinate Reference System as model grid. elevation_units : str Elevation units for DEM ('feet' or 'meters'). If None, units are assumed to be same as model (default). method : str; 'buffers' or 'cell polygons' If 'buffers', buffers (with flat caps; cap_style=2 in LineString.buffer()) will be created around the reach LineStrings (geometry column in reach_data). kwargs : keyword arguments to sfrdata.sample_reach_elevations Returns ------- updates strtop column of sfrdata.reach_data """ if dem is not None: warnings.warn('set_streambed_top_elevations_from_dem: dem argument is deprecated. ' 'Use filename instead.', DeprecationWarning) filename = dem if dem_z_units is not None: warnings.warn('set_streambed_top_elevations_from_dem: dem_z_units argument is deprecated. ' 'Use elevation_units instead.', DeprecationWarning) elevation_units = dem_z_units sampled_elevs = self.sample_reach_elevations(dem=filename, method=method, **kwargs) if elevation_units is None: elevation_units = self.model_length_units mult = convert_length_units(elevation_units, self.model_length_units) self.reach_data['strtop'] = [sampled_elevs[rno] for rno in self.reach_data['rno'].values] self.reach_data['strtop'] *= mult def get_slopes(self, default_slope=0.001, minimum_slope=0.0001, maximum_slope=1.): """Compute slopes by reach using values in strtop (streambed top) and rchlen (reach length) columns of reach_data. The slope for a reach n is computed as strtop(n+1) - strtop(n) / rchlen(n). Slopes for outlet reaches are set equal to a default value (default_slope). Populates the slope column in reach_data. Parameters ---------- default_slope : float Slope value applied to outlet reaches (where water leaves the model). Default value is 0.001 minimum_slope : float Assigned to reaches with computed slopes less than this value. This ensures that the Manning's equation won't produce unreasonable values of stage (in other words, that stage is consistent with assumption that streamflow is primarily drive by the streambed gradient). Default value is 0.0001. maximum_slope : float Assigned to reaches with computed slopes more than this value. Default value is 1. """ rd = self.reach_data assert rd.outreach.sum() > 0, "requires reach routing, must be called after set_outreaches()" elev = dict(zip(rd.rno, rd.strtop)) dist = dict(zip(rd.rno, rd.rchlen)) dnelev = {rid: elev[rd.outreach.values[i]] if rd.outreach.values[i] != 0 else -9999 for i, rid in enumerate(rd.rno)} slopes = np.array( [(elev[i] - dnelev[i]) / dist[i] if dnelev[i] != -9999 and dist[i] > 0 else default_slope for i in rd.rno]) slopes[slopes < minimum_slope] = minimum_slope slopes[slopes > maximum_slope] = maximum_slope self.reach_data['slope'] = slopes @classmethod def from_package(cls, sfrpackagefile, grid, namefile=None, sim_name=None, model_ws='.', version=None, model_name='model', package_name=None, linework=None): """Read SFR package file Parameters ---------- sfrpackagefile : file path Modflow-2005 or MODFLOW6 SFR package grid : sfrmaker.grid instance linework : shapefile path or DataFrame Contains linestrings for each reach; must have segment and reach, or reach number (rno in MODFLOW 6) information. Returns ------- sfrdata : sfrmaker.sfrdata instance """ # todo: finish SFRData.from_package raise NotImplementedError('SFRData.from_package not implemented yet.') if version is None: version = get_sfr_package_format(sfrpackagefile) if package_name is None: package_name, _ = os.path.splitext(sfrpackagefile) # load the model and SFR package if namefile is not None: model_ws, namefile = os.path.split(namefile) m = fm.Modflow.load(namefile, model_ws=model_ws, load_only=['SFR']) elif sim_name is not None: sim = flopy.mf6.MFSimulation.load(sim_name, 'mf6', 'mf6', model_ws) m = sim.get_model(model_name) else: if version != 'mf6': m = fm.Modflow(model_ws=model_ws) sfr = fm.ModflowSfr2.load(sfrpackagefile, model=m) else: sim = flopy.mf6.MFSimulation(sim_ws=model_ws) m = flopy.mf6.ModflowGwf(sim, modelname=model_name, model_nam_file='{}.nam'.format(model_name)) sfr = mf6.ModflowGwfsfr.load(sfrpackagefile, model=m) if m.version != 'mf6': reach_data = pd.DataFrame(m.sfr.reach_data) perioddata_list = [] for per, spd in m.sfr.segment_data.items(): if spd is not None: spd = spd.copy() spd['per'] = per perioddata_list.append(spd) segment_data = pd.concat(perioddata_list) else: pass return cls(reach_data=reach_data, segment_data=segment_data, model=m, grid=grid) @classmethod def from_tables(cls, reach_data, segment_data, grid=None, isfr=None): reach_data = pd.read_csv(reach_data) segment_data =
pd.read_csv(segment_data)
pandas.read_csv
import warnings from pathlib import Path from typing import Union warnings.simplefilter(action='ignore', category=FutureWarning) import pandas as pd import os import numpy as np import matplotlib.pyplot as plt import warnings from scipy.stats import linregress from thoipapy.utils import normalise_0_1, make_sure_path_exists warnings.filterwarnings("ignore") def save_BO_linegraph_and_barchart(s, bocurve_data_xlsx, BO_linechart_png, BO_barchart_png, namedict, logging, AUC_ser, plot_o_over_r=False): df_o_minus_r = pd.read_excel(bocurve_data_xlsx, sheet_name="df_o_minus_r", index_col=0) BO_scatter_png = str(BO_barchart_png)[:-12] + "scatter.png" ####################################################################################################### # # # Create a dataframe with AUBOC and AUC for individual protein (df_valid_indiv) # # # ####################################################################################################### # load AUBOC values as a series mean_o_minus_r_by_sample_ser = pd.read_excel(bocurve_data_xlsx, sheet_name="mean_o_minus_r_by_sample", index_col=0)["mean_o_minus_r_by_sample"] # select sample sizes 5 and 10 df_valid_indiv = df_o_minus_r.loc[[5, 10], :].T.copy() df_valid_indiv["AUBOC"] = mean_o_minus_r_by_sample_ser df_valid_indiv["ROC AUC"] = AUC_ser df_valid_indiv.sort_values("AUBOC", axis=0, ascending=False, inplace=True) """ df_valid_indiv should now have the results from BO curve and ROC for each protein AUBOC sample size 5 sample size 10 ROC AUC 3ij4_A-crystal 17.456522 1.913043 1.652174 0.714286 4wit_A-crystal 16.620000 2.000000 2.000000 0.622807 Q08345-ETRA 16.571429 2.809524 2.238095 0.842593 P04626-ETRA 16.456522 1.913043 1.652174 0.916667 P25189-ETRA 14.634615 2.038462 2.153846 0.812500 """ ####################################################################################################### # # # plot correlation between AUBOC and ROC # # # ####################################################################################################### # BO_barchart_png plt.close("all") # plt.rcParams.update({'font.size': 8}) figsize = np.array([3.42, 3.42]) * 2 # DOUBLE the real size, due to problems on Bo computer with fontsizes fig, ax = plt.subplots(figsize=figsize) # df_valid_indiv_scatter = df_valid_indiv[["AUBOC", "ROC AUC"]] df_valid_indiv.plot(kind="scatter", ax=ax, x="AUBOC", y="ROC AUC", alpha=0.7) # calculate linear regression for fitted line slope, intercept, r_value, p_value, std_err = linregress(df_valid_indiv["AUBOC"], df_valid_indiv["ROC AUC"]) # fit_fn = np.poly1d(linear_regression) # slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(x, y) x_first_last_dp = np.array([df_valid_indiv["AUBOC"].min(), df_valid_indiv["AUBOC"].max()]) y_fitted = x_first_last_dp * slope + intercept ax.plot(x_first_last_dp, y_fitted, label="$R^2$ : {:.2f}".format(r_value ** 2)) ax.set_xlabel("AUBOC") ax.set_ylabel("ROC AUC") ax.legend() fig.tight_layout() ax.grid(False) # BO_barchart_png = os.path.join(BO_curve_folder, "AUBOC_barchart.png") fig.savefig(BO_scatter_png, dpi=240) # simply normalise all between 0 and 1 for col in df_valid_indiv.columns: df_valid_indiv[col] = normalise_0_1(df_valid_indiv[col])[0] + 0.01 bocurve_data_xlsx: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/data/{s['setname']}_thoipa_loo_bo_curve_data.xlsx" BO_data_valid_indiv_csv: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/data/{s['setname']}_BO_curve_data_valid_indiv.csv" make_sure_path_exists(bocurve_data_xlsx, isfile=True) df_valid_indiv = df_valid_indiv.reindex(columns=["AUBOC", 5, 10, "ROC AUC"]) df_valid_indiv.columns = ["AUBOC", "sample size 5", "sample size 10", "ROC AUC"] df_valid_indiv.to_csv(BO_data_valid_indiv_csv) """ df_valid_indiv is now normalised within each column, and sorted by AUBOC AUBOC sample size 5 sample size 10 ROC AUC 3ij4_A-crystal 1.010000 0.789166 0.727758 0.724139 4wit_A-crystal 0.980317 0.810587 0.793133 0.594927 DDR1 [Q08345-ETRA] 0.978593 1.010000 0.837883 0.905371 ErbB2 [P04626-ETRA] 0.974516 0.789166 0.727758 1.010000 MPZ [P25189-ETRA] 0.909867 0.820061 0.822048 0.862866 """ ####################################################################################################### # # # plot barchart # # # ####################################################################################################### # BO_barchart_png plt.close("all") # plt.rcParams.update({'font.size': 8}) figsize = np.array([3.42, 3.42]) * 2 # DOUBLE the real size, due to problems on Bo computer with fontsizes fig, ax = plt.subplots(figsize=figsize) # replace the protein names df_valid_indiv.index = pd.Series(df_valid_indiv.index).replace(namedict) df_valid_indiv.plot(kind="bar", ax=ax, alpha=0.7) ax.set_ylabel("performance value\n(observed overlap - random overlap)") ax.legend() # (["sample size = 5", "sample size = 10"]) fig.tight_layout() ax.grid(False) fig.savefig(BO_barchart_png, dpi=240) ####################################################################################################### # # # plot linechart (combined data all proteins # # # ####################################################################################################### if plot_o_over_r: df_o_over_r =
pd.read_excel(bocurve_data_xlsx, sheet_name="df_o_over_r", index_col=0)
pandas.read_excel
r""" :mod:`util.time` -- Time utilities ================================== Common time methods. """ # Mandatory imports from pandas import to_datetime as pandas_to_datetime from pandas.tseries.offsets import DateOffset from dateparser import parse __all__ = ['to_datetime', 'set_time_range'] def to_datetime(time): r"""Extends :meth:`pandas.to_datetime` with some more date time format conversions. Parameters ---------- time : mixed A string or various datetime object. Returns ------- time : :class:`pandas.Timestamp` Pandas datetime object. """ if time is None: return if isinstance(time, object) and hasattr(time, 'datetime'): time = time.datetime elif isinstance(time, str): time = parse(time) return pandas_to_datetime(time) def set_time_range(start, end, implicit: bool = True, next_day: bool = True): """Set a time range based on various types. Parameters: ----------- start : various Set the start time. The type should be any of: `str`, :class:`datetime.datetime`, :class:`pandas.Timestamp`, :class:`numpy.datetime64` or :class:`obspy.UTCDateTime`. end : various Set the end time. Same formats as for ``start`` can be used to set the explicit time. If ``implicit`` is `True` the type can also be `int` or `float` such that ``end`` defines the duration. implicit : `bool`, optional Allow to set the time implicitely when `True` (default): - Use current time when start time is `None`. - Set start time to midnight and the end time to the next day when end time is `None` and ``next_day`` is `True`. If ``next_day`` is `False` end time becomes the last second of the day. - Use ``end`` as duration when type is either `int` or `float`. Negative duration will make ``start`` the end time. next_day : `bool`, optional If `True` (default), set the end time to the begin of the next day if ``implicit`` is `True` and end time is `None`. If `False`, end time becomes the last second of the day. Returns ------- period : tuple A tuple with (start, end), both of type :class:`obspy.UTCDateTime`. """ if not implicit and (start is None or end is None): raise ValueError('Start and end time should be defined!') start = to_datetime(start) or to_datetime('now') if implicit: if not end: start = start + DateOffset(days=0, normalize=True) end = start + DateOffset(days=1) if not next_day: end = end -
DateOffset(seconds=1)
pandas.tseries.offsets.DateOffset
# -*- coding: utf-8 -*- # This file as well as the whole tsfresh package are licenced under the MIT licence (see the LICENCE.txt) # <NAME> (<EMAIL>), Blue Yonder Gmbh, 2016 import pandas as pd import numpy as np from tests.fixtures import DataTestCase import mock from tsfresh.transformers.relevant_feature_augmenter import RelevantFeatureAugmenter class RelevantFeatureAugmenterTestCase(DataTestCase): def setUp(self): self.test_df = self.create_test_data_sample() fc_parameters = {"length": None} self.kind_to_fc_parameters = {"a": fc_parameters.copy(), "b": fc_parameters.copy()} def test_not_fitted(self): augmenter = RelevantFeatureAugmenter() X = pd.DataFrame() self.assertRaises(RuntimeError, augmenter.transform, X) def test_no_timeseries(self): augmenter = RelevantFeatureAugmenter() X = pd.DataFrame() y = pd.Series() self.assertRaises(RuntimeError, augmenter.fit, X, y) def test_nothing_relevant(self): augmenter = RelevantFeatureAugmenter(kind_to_fc_parameters=self.kind_to_fc_parameters, column_value="val", column_id="id", column_sort="sort", column_kind="kind") y = pd.Series({10: 1, 500: 0}) X = pd.DataFrame(index=[10, 500]) augmenter.set_timeseries_container(self.test_df) augmenter.fit(X, y) transformed_X = augmenter.transform(X.copy()) self.assertEqual(list(transformed_X.columns), []) self.assertEqual(list(transformed_X.index), list(X.index)) def test_evaluate_only_added_features_true(self): """ The boolean flag `evaluate_only_extracted_features` makes sure that only the time series based features are filtered. This unit tests checks that """ augmenter = RelevantFeatureAugmenter(kind_to_fc_parameters=self.kind_to_fc_parameters, filter_only_tsfresh_features=True, column_value="val", column_id="id", column_sort="sort", column_kind="kind") y = pd.Series({10: 1, 500: 0}) X =
pd.DataFrame(index=[10, 500])
pandas.DataFrame
import click import cooler from hicmatrix import HiCMatrix as hm import pandas as pd from hicprediction.createTrainingSet import maskFunc import numpy as np from hicprediction.predict import getCorrelation from hicprediction.utilities import getResultFileColumnNames import sklearn.metrics as metrics @click.option('-i1','--infile1',required=True, type=click.Path(exists=True,dir_okay=False,readable=True), help="Cooler matrix 1, 'Prediction', should be adjusted to only one chromosome") @click.option('-i2','--infile2',required=True, type=click.Path(exists=True,dir_okay=False,readable=True), help="Cooler matrix 2, 'Target', should be adjusted to only one chromsome") @click.option('-ws','--windowsize', type=click.IntRange(min=1), default=1e6, required=False, help="window size in basepairs") @click.option('-o','--outfile',required=True, type=click.Path(file_okay=True,writable=True), help="path and filename for outfile") @click.option('-pct','--predictionCellType',type=str, default="unknown", help="Cell type for prediction") @click.option('-mct','--modelCellType', type=str, default="unknown", help="Cell type(s) of model") @click.option('-mchr', '--modelChromosome', type=str, default="unknown", help="Chromosome used for training, e.g. chr1") @click.command() def computeMetrics(infile1,infile2,windowsize,outfile, predictioncelltype, modelcelltype, modelchromosome): #try loading HiC matrices try: hicMatrix1 = hm.hiCMatrix(infile1) hicMatrix2 = hm.hiCMatrix(infile2) except Exception as e: print(e) msg = "Could not load matrices, probably no cooler format" raise SystemExit(msg) #check bin sizes, must be equal / same matrix resolution binSize1 = hicMatrix1.getBinSize() binSize2 = hicMatrix2.getBinSize() if binSize1 != binSize2: msg = "Aborting. Bin sizes not equal.\n" msg += "Bin size 1: {0:d}, bin size 2: {0:d}" msg = msg.format(binSize1, binSize2) raise SystemExit(msg) numberOfDiagonals = int(np.round(windowsize/binSize1)) if numberOfDiagonals < 1: msg = "Window size must be larger than bin size of matrices.\n" msg += "Remember to specify window in basepairs, not bins." raise SystemExit(msg) #check chromosomes chromList1 = hicMatrix1.getChrNames() chromList2 = hicMatrix2.getChrNames() if chromList1 and chromList2: chrom1Str = str(chromList1[0]) chrom2Str = str(chromList2[0]) if chrom1Str != chrom2Str: msg = "Aborting, chromosomes are not the same: {:s} vs. {:s}" msg = msg.format(chrom1Str, chrom2Str) raise SystemExit(msg) if len(chromList1) != 1 or len(chromList2) != 1: msg = "Warning, more than one chromosome in the matrix\n" msg += "Consider using e.g. hicAdjustMatrix with --keep on the desired chromosome.\n" msg += "Only taking the first chrom, {:s}" msg = msg.format(chrom1Str) else: msg = "Aborting, no chromosomes found in matrix" raise SystemExit(msg) sparseMatrix1 = hicMatrix1.matrix sparseMatrix2 = hicMatrix2.matrix shape1 = sparseMatrix1.shape shape2 = sparseMatrix2.shape if shape1 != shape2: msg = "Aborting. Shapes of matrices are not equal.\n" msg += "Shape 1: ({:d},{:d}); Shape 2: ({:d},{:d})" msg = msg.format(shape1[0],shape1[1],shape2[0],shape2[1]) raise SystemExit(msg) if numberOfDiagonals > shape1[0]-1: msg = "Aborting. Window size {0:d} larger than matrix size {:d}" msg = msg.format(numberOfDiagonals, shape1[0]-1) raise SystemExit(msg) trapezIndices = np.mask_indices(shape1[0],maskFunc,k=numberOfDiagonals) reads1 = np.array(sparseMatrix1[trapezIndices])[0] reads2 = np.array(sparseMatrix2[trapezIndices])[0] matrixDf = pd.DataFrame(columns=['first','second','distance','reads1','reads2']) matrixDf['first'] = np.uint32(trapezIndices[0]) matrixDf['second'] = np.uint32(trapezIndices[1]) matrixDf['distance'] = np.uint32(matrixDf['second'] - matrixDf['first']) matrixDf['reads1'] = np.float32(reads1) matrixDf['reads2'] = np.float32(reads2) matrixDf.fillna(0, inplace=True) pearsonAucIndices, pearsonAucValues = getCorrelation(matrixDf,'distance', 'reads1', 'reads2', 'pearson') pearsonAucScore = metrics.auc(pearsonAucIndices, pearsonAucValues) spearmanAucIncides, spearmanAucValues = getCorrelation(matrixDf,'distance', 'reads1', 'reads2', 'spearman') spearmanAucScore = metrics.auc(spearmanAucIncides, spearmanAucValues) corrScoreOPredicted_Pearson = matrixDf[['reads1','reads2']].corr(method= \ 'pearson').iloc[0::2,-1].values[0] corrScoreOPredicted_Spearman= matrixDf[['reads1', 'reads2']].corr(method= \ 'spearman').iloc[0::2,-1].values[0] print("PearsonAUC", pearsonAucScore) print("SpearmanAUC", spearmanAucScore) columns = getResultFileColumnNames(sorted(list(matrixDf.distance.unique()))) resultsDf =
pd.DataFrame(columns=columns)
pandas.DataFrame
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(StringIO(data), sep=',') def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) assert data['A'].dtype == np.bool_ data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.bool_ data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) assert data['A'].dtype == np.float64 assert data['B'].dtype == np.int64 def test_read_nrows(self): expected = self.read_csv(StringIO(self.data1))[:3] df = self.read_csv(StringIO(self.data1), nrows=3) tm.assert_frame_equal(df, expected) # see gh-10476 df = self.read_csv(StringIO(self.data1), nrows=3.0) tm.assert_frame_equal(df, expected) msg = r"'nrows' must be an integer >=0" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=1.2) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), nrows=-1) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # with invalid chunksize value: msg = r"'chunksize' must be an integer >=1" with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=1.3) with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize='foo') with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(self.data1), chunksize=0) def test_read_chunksize_and_nrows(self): # gh-15755 # With nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # chunksize > nrows reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(pd.concat(reader), df) # with changing "size": reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=8, nrows=5) df = self.read_csv(StringIO(self.data1), index_col=0, nrows=5) tm.assert_frame_equal(reader.get_chunk(size=2), df.iloc[:2]) tm.assert_frame_equal(reader.get_chunk(size=4), df.iloc[2:5]) with pytest.raises(StopIteration): reader.get_chunk(size=3) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() assert len(piece) == 2 def test_read_chunksize_generated_index(self): # GH 12185 reader = self.read_csv(StringIO(self.data1), chunksize=2) df = self.read_csv(StringIO(self.data1)) tm.assert_frame_equal(pd.concat(reader), df) reader = self.read_csv(StringIO(self.data1), chunksize=2, index_col=0) df = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(pd.concat(reader), df) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # See gh-6607 reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) assert isinstance(treader, TextFileReader) # gh-3967: stopping iteration when chunksize is specified data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) assert len(result) == 3 tm.assert_frame_equal(pd.concat(result), expected) # skipfooter is not supported with the C parser yet if self.engine == 'python': # test bad parameter (skipfooter) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skipfooter=1) pytest.raises(ValueError, reader.read, 3) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_blank_df(self): # GH 14545 data = """a,b """ df = self.read_csv(StringIO(data), header=[0]) expected = DataFrame(columns=['a', 'b']) tm.assert_frame_equal(df, expected) round_trip = self.read_csv(StringIO( expected.to_csv(index=False)), header=[0]) tm.assert_frame_equal(round_trip, expected) data_multiline = """a,b c,d """ df2 = self.read_csv(StringIO(data_multiline), header=[0, 1]) cols = MultiIndex.from_tuples([('a', 'c'), ('b', 'd')]) expected2 = DataFrame(columns=cols) tm.assert_frame_equal(df2, expected2) round_trip = self.read_csv(StringIO( expected2.to_csv(index=False)), header=[0, 1]) tm.assert_frame_equal(round_trip, expected2) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') assert df.index.name is None def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = self.read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pandas-dev/pandas/master/' 'pandas/tests/io/parser/data/salaries.csv') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @pytest.mark.slow def test_file(self): dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salaries.csv') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems pytest.skip("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_path_pathlib(self): df = tm.makeDataFrame() result = tm.round_trip_pathlib(df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_path_localpath(self): df = tm.makeDataFrame() result = tm.round_trip_localpath( df.to_csv, lambda p: self.read_csv(p, index_col=0)) tm.assert_frame_equal(df, result) def test_nonexistent_path(self): # gh-2428: pls no segfault # gh-14086: raise more helpful FileNotFoundError path = '%s.csv' % tm.rands(10) pytest.raises(compat.FileNotFoundError, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) assert result['D'].isna()[1:].all() def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) assert pd.isna(result.iloc[0, 29]) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) s.close() tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') assert len(result) == 50 if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') assert len(result) == 50 def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') assert got == expected def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' # noqa result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') assert result['SEARCH_TERM'][2] == ('SLAGBORD, "Bergslagen", ' 'IKEA:s 1700-tals serie') tm.assert_index_equal(result.columns, Index(['SEARCH_TERM', 'ACTUAL_URL'])) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) tm.assert_series_equal(result['Numbers'], expected['Numbers']) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. assert type(df.a[0]) is np.float64 assert df.a.dtype == np.float def test_warn_if_chunks_have_mismatched_type(self): warning_type = False integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) # see gh-3866: if chunks are different types and can't # be coerced using numerical types, then issue warning. if self.engine == 'c' and self.low_memory: warning_type = DtypeWarning with tm.assert_produces_warning(warning_type): df = self.read_csv(StringIO(data)) assert df.a.dtype == np.object def test_integer_overflow_bug(self): # see gh-2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') assert result[0].dtype == np.float64 result = self.read_csv(StringIO(data), header=None, sep=r'\s+') assert result[0].dtype == np.float64 def test_catch_too_many_names(self): # see gh-5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" pytest.raises(ValueError, self.read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # see gh-3374, gh-6607 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep=r'\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # see gh-10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) assert len(result) == 2 # see gh-9735: this issue is C parser-specific (bug when # parsing whitespace and characters at chunk boundary) if self.engine == 'c': chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = self.read_csv(StringIO(chunk1 + chunk2), header=None) expected = DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # see gh-10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_empty_with_multiindex(self): # see gh-10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_float_parser(self): # see gh-9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_scientific_no_exponent(self): # see gh-12215 df = DataFrame.from_items([('w', ['2e']), ('x', ['3E']), ('y', ['42e']), ('z', ['632E'])]) data = df.to_csv(index=False) for prec in self.float_precision_choices: df_roundtrip = self.read_csv( StringIO(data), float_precision=prec) tm.assert_frame_equal(df_roundtrip, df) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" # 13007854817840016671868 > UINT64_MAX, so this # will overflow and return object as the dtype. result = self.read_csv(StringIO(data)) assert result['ID'].dtype == object # 13007854817840016671868 > UINT64_MAX, so attempts # to cast to either int64 or uint64 will result in # an OverflowError being raised. for conv in (np.int64, np.uint64): pytest.raises(OverflowError, self.read_csv, StringIO(data), converters={'ID': conv}) # These numbers fall right inside the int64-uint64 range, # so they should be parsed as string. ui_max = np.iinfo(np.uint64).max i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min, ui_max]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([x]) tm.assert_frame_equal(result, expected) # These numbers fall just outside the int64-uint64 range, # so they should be parsed as string. too_big = ui_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = self.read_csv(StringIO(str(x)), header=None) expected = DataFrame([str(x)]) tm.assert_frame_equal(result, expected) # No numerical dtype can hold both negative and uint64 values, # so they should be cast as string. data = '-1\n' + str(2**63) expected = DataFrame([str(-1), str(2**63)]) result = self.read_csv(StringIO(data), header=None) tm.assert_frame_equal(result, expected) data = str(2**63) + '\n-1' expected = DataFrame([str(2**63), str(-1)]) result = self.read_csv(StringIO(data), header=None) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # see gh-9535 expected = DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(self.read_csv( StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records( result), expected, check_index_type=False) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = next(iter(self.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(DataFrame.from_records(result), expected, check_index_type=False) def test_eof_states(self): # see gh-10728, gh-10548 # With skip_blank_lines = True expected = DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # gh-10728: WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # gh-10548: EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' pytest.raises(Exception, self.read_csv, StringIO(data), escapechar='\\') def test_uneven_lines_with_usecols(self): # See gh-12203 csv = r"""a,b,c 0,1,2 3,4,5,6,7 8,9,10 """ # make sure that an error is still thrown # when the 'usecols' parameter is not provided msg = r"Expected \d+ fields in line \d+, saw \d+" with tm.assert_raises_regex(ValueError, msg): df = self.read_csv(StringIO(csv)) expected = DataFrame({ 'a': [0, 3, 8], 'b': [1, 4, 9] }) usecols = [0, 1] df = self.read_csv(StringIO(csv), usecols=usecols) tm.assert_frame_equal(df, expected) usecols = ['a', 'b'] df = self.read_csv(StringIO(csv), usecols=usecols) tm.assert_frame_equal(df, expected) def test_read_empty_with_usecols(self): # See gh-12493 names = ['Dummy', 'X', 'Dummy_2'] usecols = names[1:2] # ['X'] # first, check to see that the response of # parser when faced with no provided columns # throws the correct error, with or without usecols errmsg = "No columns to parse from file" with tm.assert_raises_regex(EmptyDataError, errmsg): self.read_csv(StringIO('')) with tm.assert_raises_regex(EmptyDataError, errmsg): self.read_csv(StringIO(''), usecols=usecols) expected = DataFrame(columns=usecols, index=[0], dtype=np.float64) df = self.read_csv(StringIO(',,'), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) expected = DataFrame(columns=usecols) df = self.read_csv(StringIO(''), names=names, usecols=usecols) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" # noqa expected = DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # gh-8661, gh-8679: this should ignore six lines including # lines with trailing whitespace and blank lines df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # gh-8983: test skipping set of rows after a row with trailing spaces expected = DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_raise_on_sep_with_delim_whitespace(self): # see gh-6607 data = 'a b c\n1 2 3' with tm.assert_raises_regex(ValueError, 'you can only specify one'): self.read_table(StringIO(data), sep=r'\s', delim_whitespace=True) def test_single_char_leading_whitespace(self): # see gh-9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = np.array([[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]]) df = self.read_csv(StringIO(data)) tm.assert_numpy_array_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep=r'\s+') tm.assert_numpy_array_equal(df.values, expected) expected = np.array([[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]]) df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_numpy_array_equal(df.values, expected) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = np.array([[1, 2., 4.], [5., np.nan, 10.]]) df = self.read_csv(StringIO(data)) tm.assert_numpy_array_equal(df.values, expected) def test_regex_separator(self): # see gh-6607 data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep=r'\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) assert expected.index.name is None tm.assert_frame_equal(df, expected) data = ' a b c\n1 2 3 \n4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep=r'\s+') expected = DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) @tm.capture_stdout def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" # Engines are verbose in different ways. self.read_csv(StringIO(text), verbose=True) output = sys.stdout.getvalue() if self.engine == 'c': assert 'Tokenization took:' in output assert 'Parser memory cleanup took:' in output else: # Python engine assert output == 'Filled 3 NA values in column a\n' # Reset the stdout buffer. sys.stdout = StringIO() text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" self.read_csv(StringIO(text), verbose=True, index_col=0) output = sys.stdout.getvalue() # Engines are verbose in different ways. if self.engine == 'c': assert 'Tokenization took:' in output assert 'Parser memory cleanup took:' in output else: # Python engine assert output == 'Filled 1 NA values in column a\n' def test_iteration_open_handle(self): if PY3: pytest.skip( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break if self.engine == 'c': pytest.raises(Exception, self.read_table, f, squeeze=True, header=None) else: result = self.read_table(f, squeeze=True, header=None) expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) assert expected.A.dtype == 'int64' assert expected.B.dtype == 'float' assert expected.C.dtype == 'float' df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" df2 = self.read_csv(StringIO(data), sep=';', decimal=',') assert df2['Number1'].dtype == float assert df2['Number2'].dtype == float assert df2['Number3'].dtype == float def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,+Inf d,-Inf e,INF f,-INF g,+INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = self.read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = self.read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_raise_on_no_columns(self): # single newline data = "\n" pytest.raises(EmptyDataError, self.read_csv, StringIO(data)) # test with more than a single newline data = "\n\n\n" pytest.raises(EmptyDataError, self.read_csv, StringIO(data)) def test_compact_ints_use_unsigned(self): # see gh-13323 data = 'a,b,c\n1,9,258' # sanity check expected = DataFrame({ 'a': np.array([1], dtype=np.int64), 'b': np.array([9], dtype=np.int64), 'c': np.array([258], dtype=np.int64), }) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) expected = DataFrame({ 'a': np.array([1], dtype=np.int8), 'b': np.array([9], dtype=np.int8), 'c': np.array([258], dtype=np.int16), }) # default behaviour for 'use_unsigned' with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True) tm.assert_frame_equal(out, expected) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True, use_unsigned=False) tm.assert_frame_equal(out, expected) expected = DataFrame({ 'a': np.array([1], dtype=np.uint8), 'b': np.array([9], dtype=np.uint8), 'c': np.array([258], dtype=np.uint16), }) with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): out = self.read_csv(StringIO(data), compact_ints=True, use_unsigned=True) tm.assert_frame_equal(out, expected) def test_compact_ints_as_recarray(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) assert result.dtype == ex_dtype with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): result = self.read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) assert result.dtype == ex_dtype def test_as_recarray(self): # basic test with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True) tm.assert_numpy_array_equal(out, expected) # index_col ignored with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True, index_col=0) tm.assert_numpy_array_equal(out, expected) # respects names with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = '1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), names=['a', 'b'], header=None, as_recarray=True) tm.assert_numpy_array_equal(out, expected) # header order is respected even though it conflicts # with the natural ordering of the column names with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'b,a\n1,a\n2,b' expected = np.array([(1, 'a'), (2, 'b')], dtype=[('b', '=i8'), ('a', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True) tm.assert_numpy_array_equal(out, expected) # overrides the squeeze parameter with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a\n1' expected = np.array([(1,)], dtype=[('a', '=i8')]) out = self.read_csv(StringIO(data), as_recarray=True, squeeze=True) tm.assert_numpy_array_equal(out, expected) # does data conversions before doing recarray conversion with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' conv = lambda x: int(x) + 1 expected = np.array([(2, 'a'), (3, 'b')], dtype=[('a', '=i8'), ('b', 'O')]) out = self.read_csv(StringIO(data), as_recarray=True, converters={'a': conv}) tm.assert_numpy_array_equal(out, expected) # filters by usecols before doing recarray conversion with tm.assert_produces_warning( FutureWarning, check_stacklevel=False): data = 'a,b\n1,a\n2,b' expected = np.array([(1,), (2,)], dtype=[('a', '=i8')]) out = self.read_csv(StringIO(data), as_recarray=True, usecols=['a']) tm.assert_numpy_array_equal(out, expected) def test_memory_map(self): mmap_file = os.path.join(self.dirpath, 'test_mmap.csv') expected = DataFrame({ 'a': [1, 2, 3], 'b': ['one', 'two', 'three'], 'c': ['I', 'II', 'III'] }) out = self.read_csv(mmap_file, memory_map=True) tm.assert_frame_equal(out, expected) def test_null_byte_char(self): # see gh-2741 data = '\x00,foo' cols = ['a', 'b'] expected = DataFrame([[np.nan, 'foo']], columns=cols) if self.engine == 'c': out = self.read_csv(StringIO(data), names=cols) tm.assert_frame_equal(out, expected) else: msg = "NULL byte detected" with
tm.assert_raises_regex(ParserError, msg)
pandas.util.testing.assert_raises_regex
from contextlib import nullcontext as does_not_raise from functools import partial import pandas as pd from pandas.testing import assert_series_equal from solarforecastarbiter import datamodel from solarforecastarbiter.reference_forecasts import persistence from solarforecastarbiter.conftest import default_observation import pytest def load_data_base(data, observation, data_start, data_end): # slice doesn't care about closed or interval label # so here we manually adjust start and end times if 'instant' in observation.interval_label: pass elif observation.interval_label == 'ending': data_start += pd.Timedelta('1s') elif observation.interval_label == 'beginning': data_end -= pd.Timedelta('1s') return data[data_start:data_end] @pytest.fixture def powerplant_metadata(): """1:1 AC:DC""" modeling_params = datamodel.FixedTiltModelingParameters( ac_capacity=200, dc_capacity=200, temperature_coefficient=-0.3, dc_loss_factor=3, ac_loss_factor=0, surface_tilt=30, surface_azimuth=180) metadata = datamodel.SolarPowerPlant( name='Albuquerque Baseline', latitude=35.05, longitude=-106.54, elevation=1657.0, timezone='America/Denver', modeling_parameters=modeling_params) return metadata @pytest.mark.parametrize('interval_label,closed,end', [ ('beginning', 'left', '20190404 1400'), ('ending', 'right', '20190404 1400'), ('instant', None, '20190404 1359') ]) def test_persistence_scalar(site_metadata, interval_label, closed, end): # interval beginning obs observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) tz = 'America/Phoenix' data_index = pd.date_range( start='20190404', end='20190406', freq='5min', tz=tz) data = pd.Series(100., index=data_index) data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp(end, tz=tz) interval_length = pd.Timedelta('5min') load_data = partial(load_data_base, data) fx = persistence.persistence_scalar( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data=load_data) expected_index = pd.date_range( start='20190404 1300', end=end, freq='5min', tz=tz, closed=closed) expected = pd.Series(100., index=expected_index) assert_series_equal(fx, expected) @pytest.mark.parametrize('obs_interval_label', ('beginning', 'ending', 'instant')) @pytest.mark.parametrize('interval_label,closed,end', [ ('beginning', 'left', '20190406 0000'), ('ending', 'right', '20190406 0000'), ('instant', None, '20190405 2359') ]) def test_persistence_interval(site_metadata, obs_interval_label, interval_label, closed, end): # interval beginning obs observation = default_observation( site_metadata, interval_length='5min', interval_label=obs_interval_label) tz = 'America/Phoenix' data_index = pd.date_range( start='20190404', end='20190406', freq='5min', tz=tz) # each element of data is equal to the hour value of its label data = pd.Series(data_index.hour, index=data_index, dtype=float) if obs_interval_label == 'ending': # e.g. timestamp 12:00:00 should be equal to 11 data = data.shift(1).fillna(0) data_start = pd.Timestamp('20190404 0000', tz=tz) data_end = pd.Timestamp(end, tz=tz) - pd.Timedelta('1d') forecast_start = pd.Timestamp('20190405 0000', tz=tz) interval_length = pd.Timedelta('60min') load_data = partial(load_data_base, data) expected_index = pd.date_range( start='20190405 0000', end=end, freq='60min', tz=tz, closed=closed) expected_vals = list(range(0, 24)) expected = pd.Series(expected_vals, index=expected_index, dtype=float) # handle permutations of parameters that should fail if data_end.minute == 59 and obs_interval_label != 'instant': expectation = pytest.raises(ValueError) elif data_end.minute == 0 and obs_interval_label == 'instant': expectation = pytest.raises(ValueError) else: expectation = does_not_raise() with expectation: fx = persistence.persistence_interval( observation, data_start, data_end, forecast_start, interval_length, interval_label, load_data) assert_series_equal(fx, expected) def test_persistence_interval_missing_data(site_metadata): # interval beginning obs observation = default_observation( site_metadata, interval_length='5min', interval_label='ending') tz = 'America/Phoenix' data_index = pd.date_range( start='20190404T1200', end='20190406', freq='5min', tz=tz) # each element of data is equal to the hour value of its label end = '20190406 0000' data = pd.Series(data_index.hour, index=data_index, dtype=float) data = data.shift(1) data_start = pd.Timestamp('20190404 0000', tz=tz) data_end = pd.Timestamp(end, tz=tz) - pd.Timedelta('1d') forecast_start = pd.Timestamp('20190405 0000', tz=tz) interval_length = pd.Timedelta('60min') load_data = partial(load_data_base, data) expected_index = pd.date_range( start='20190405 0000', end=end, freq='60min', tz=tz, closed='right') expected_vals = [None] * 12 + list(range(12, 24)) expected = pd.Series(expected_vals, index=expected_index, dtype=float) fx = persistence.persistence_interval( observation, data_start, data_end, forecast_start, interval_length, 'ending', load_data) assert_series_equal(fx, expected) @pytest.fixture def uniform_data(): tz = 'America/Phoenix' data_index = pd.date_range( start='20190404', end='20190406', freq='5min', tz=tz) data = pd.Series(100., index=data_index) return data @pytest.mark.parametrize( 'interval_label,expected_index,expected_ghi,expected_ac,obsscale', ( ('beginning', ['20190404 1300', '20190404 1330'], [96.41150694741889, 91.6991546408236], [96.60171202566896, 92.074796727846], 1), ('ending', ['20190404 1330', '20190404 1400'], [96.2818141290749, 91.5132934827808], [96.47816752344607, 91.89460837042301], 1), # test clipped at 2x clearsky ('beginning', ['20190404 1300', '20190404 1330'], [1926.5828549018618, 1832.4163238767312], [383.1524464326973, 365.19729186262526], 50) ) ) def test_persistence_scalar_index( powerplant_metadata, uniform_data, interval_label, expected_index, expected_ghi, expected_ac, obsscale): # ac_capacity is 200 from above observation = default_observation( powerplant_metadata, interval_length='5min', interval_label='beginning') observation_ac = default_observation( powerplant_metadata, interval_length='5min', interval_label='beginning', variable='ac_power') data = uniform_data * obsscale tz = data.index.tzinfo data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) interval_length = pd.Timedelta('30min') load_data = partial(load_data_base, data) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_index = pd.DatetimeIndex( expected_index, tz=tz, freq=interval_length) expected = pd.Series(expected_ghi, index=expected_index) assert_series_equal(fx, expected, check_names=False) fx = persistence.persistence_scalar_index( observation_ac, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected = pd.Series(expected_ac, index=expected_index) assert_series_equal(fx, expected, check_names=False) def test_persistence_scalar_index_instant_obs_fx( site_metadata, powerplant_metadata, uniform_data): # instantaneous obs and fx interval_length = pd.Timedelta('30min') interval_label = 'instant' observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) observation_ac = default_observation( powerplant_metadata, interval_length='5min', interval_label=interval_label, variable='ac_power') data = uniform_data tz = data.index.tzinfo load_data = partial(load_data_base, data) data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1259', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1359', tz=tz) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_index = pd.DatetimeIndex( ['20190404 1300', '20190404 1330'], tz=tz, freq=interval_length) expected_values = [96.59022431746838, 91.99405501672328] expected = pd.Series(expected_values, index=expected_index) assert_series_equal(fx, expected, check_names=False) fx = persistence.persistence_scalar_index( observation_ac, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_values = [96.77231379880752, 92.36198028963426] expected = pd.Series(expected_values, index=expected_index) assert_series_equal(fx, expected, check_names=False) # instant obs and fx, but with offset added to starts instead of ends data_start = pd.Timestamp('20190404 1201', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1301', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) expected_index = pd.DatetimeIndex( ['20190404 1300', '20190404 1330'], tz=tz, freq=interval_length) expected_values = [96.55340033645147, 91.89662922267517] expected = pd.Series(expected_values, index=expected_index) assert_series_equal(fx, expected, check_names=False) def test_persistence_scalar_index_invalid_times_instant(site_metadata): data = pd.Series(100., index=[0]) load_data = partial(load_data_base, data) tz = 'America/Phoenix' interval_label = 'instant' observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) # instant obs that cover the whole interval - not allowed! data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) interval_length = pd.Timedelta('30min') with pytest.raises(ValueError): persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) @pytest.mark.parametrize('interval_label', ['beginning', 'ending']) @pytest.mark.parametrize('data_start,data_end,forecast_start,forecast_end', ( ('20190404 1201', '20190404 1300', '20190404 1300', '20190404 1400'), ('20190404 1200', '20190404 1259', '20190404 1300', '20190404 1400'), ('20190404 1200', '20190404 1300', '20190404 1301', '20190404 1400'), ('20190404 1200', '20190404 1300', '20190404 1300', '20190404 1359'), )) def test_persistence_scalar_index_invalid_times_interval( site_metadata, interval_label, data_start, data_end, forecast_start, forecast_end): data = pd.Series(100., index=[0]) load_data = partial(load_data_base, data) tz = 'America/Phoenix' interval_length = pd.Timedelta('30min') # base times to mess with data_start = pd.Timestamp(data_start, tz=tz) data_end = pd.Timestamp(data_end, tz=tz) forecast_start = pd.Timestamp(forecast_start, tz=tz) forecast_end = pd.Timestamp(forecast_end, tz=tz) # interval average obs with invalid starts/ends observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) errtext = "with interval_label beginning or ending" with pytest.raises(ValueError) as excinfo: persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) assert errtext in str(excinfo.value) def test_persistence_scalar_index_invalid_times_invalid_label(site_metadata): data = pd.Series(100., index=[0]) load_data = partial(load_data_base, data) tz = 'America/Phoenix' interval_length = pd.Timedelta('30min') interval_label = 'invalid' observation = default_observation( site_metadata, interval_length='5min') object.__setattr__(observation, 'interval_label', interval_label) data_start = pd.Timestamp('20190404 1200', tz=tz) data_end = pd.Timestamp('20190404 1300', tz=tz) forecast_start = pd.Timestamp('20190404 1300', tz=tz) forecast_end = pd.Timestamp('20190404 1400', tz=tz) with pytest.raises(ValueError) as excinfo: persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data) assert "invalid interval_label" in str(excinfo.value) def test_persistence_scalar_index_low_solar_elevation( site_metadata, powerplant_metadata): interval_label = 'beginning' observation = default_observation( site_metadata, interval_length='5min', interval_label=interval_label) observation_ac = default_observation( powerplant_metadata, interval_length='5min', interval_label=interval_label, variable='ac_power') # at ABQ Baseline, solar apparent zenith for these points is # 2019-05-13 12:00:00+00:00 91.62 # 2019-05-13 12:05:00+00:00 90.09 # 2019-05-13 12:10:00+00:00 89.29 # 2019-05-13 12:15:00+00:00 88.45 # 2019-05-13 12:20:00+00:00 87.57 # 2019-05-13 12:25:00+00:00 86.66 tz = 'UTC' data_start = pd.Timestamp('20190513 1200', tz=tz) data_end = pd.Timestamp('20190513 1230', tz=tz) index = pd.date_range(start=data_start, end=data_end, freq='5min', closed='left') # clear sky 5 min avg (from 1 min avg) GHI is # [0., 0.10932908, 1.29732454, 4.67585122, 10.86548521, 19.83487399] # create data series that could produce obs / clear of # 0/0, 1/0.1, -1/1.3, 5/5, 10/10, 20/20 # average without limits is (10 - 1 + 1 + 1 + 1) / 5 = 2.4 # average with element limits of [0, 2] = (2 + 0 + 1 + 1 + 1) / 5 = 1 data = pd.Series([0, 1, -1, 5, 10, 20.], index=index) forecast_start = pd.Timestamp('20190513 1230', tz=tz) forecast_end = pd.Timestamp('20190513 1300', tz=tz) interval_length = pd.Timedelta('5min') load_data = partial(load_data_base, data) expected_index = pd.date_range( start=forecast_start, end=forecast_end, freq='5min', closed='left') # clear sky 5 min avg GHI is # [31.2, 44.5, 59.4, 75.4, 92.4, 110.1] expected_vals = [31.2, 44.5, 59.4, 75.4, 92.4, 110.1] expected = pd.Series(expected_vals, index=expected_index) fx = persistence.persistence_scalar_index( observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data)
assert_series_equal(fx, expected, check_less_precise=1, check_names=False)
pandas.testing.assert_series_equal
# 3rd party import numpy as np import pandas as pd from pandas.api.extensions import ( ExtensionDtype, ExtensionArray, register_extension_dtype, register_series_accessor, register_dataframe_accessor, ) from uncertainties.core import AffineScalarFunc, Variable from uncertainties.unumpy import uarray # own project imports from .uarray import UArray @register_extension_dtype class UfloatDtype(ExtensionDtype): """A custom data type, to be paired with an ExtensionArray""" type = Variable # type: ignore # linter wants a property, but pandas validates the type of name # as a string via assertion, therefore: AssertionError if written # as a property name = "ufloat" # type: ignore _is_numeric = True _is_boolean = True @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype Return ------- type """ return UfloatArray class UfloatArray(ExtensionArray): """ The interface includes the following abstract methods that must be implemented by subclasses: * _from_sequence * _from_factorized * __getitem__ * __len__ * __eq__ * dtype * nbytes * isna * take * copy * _concat_same_type """ def __init__(self, variables, dtype=None, copy=False): self._data = UArray(variables) @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): """Construct a new ExtensionArray from a sequence of scalars.""" return cls(scalars, dtype=dtype, copy=copy) @classmethod def _from_factorized(cls, values, original): """Reconstruct an ExtensionArray after factorization.""" return cls(values) def __getitem__(self, item): """Select a subset of self.""" return self._data[item] def __len__(self) -> int: """Length of this array.""" return len(self._data) @property def _itemsize(self): from sys import getsizeof as sizeof return sizeof(Variable) @property def nbytes(self): """The byte size of the data.""" return self._itemsize * len(self) @property def dtype(self): """An instance of 'ExtensionDtype'.""" return UfloatDtype() def isna(self): """A 1-D array indicating if each value is missing.""" return np.array([isinstance(x, Variable) for x in self._data], dtype=bool) def take(self, indexer, allow_fill=False, fill_value=None): """Take elements from an array. Relies on the take method defined in pandas: https://github.com/pandas-dev/pandas/blob/e246c3b05924ac1fe083565a765ce847fcad3d91/pandas/core/algorithms.py#L1483 """ from pandas.api.extensions import take data = self._data if allow_fill and fill_value is None: fill_value = self.dtype.na_value result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill) return self._from_sequence(result) def copy(self): """Return a copy of the array.""" return type(self)(self._data.copy()) @classmethod def _concat_same_type(cls, to_concat): """Concatenate multiple arrays.""" return cls(np.concatenate([x._data for x in to_concat])) @register_series_accessor("u") class UfloatSeriesAccessor: def __init__(self, series): #self._validate(series) self._obj = series self._asuarray = UArray(series) # @staticmethod # def _validate(obj): # if obj.dtype != "ufloat": # raise TypeError("Dtype has to be 'ufloat' in order to use this accessor!") @property def n(self): return pd.Series(self._asuarray.n, index=self._obj.index, name=self._obj.name) @property def s(self): return pd.Series(self._asuarray.s, index=self._obj.index, name=self._obj.name) @register_dataframe_accessor("u") class UfloatDataFrameAccessor: def __init__(self, dataframe): #self._validate(dataframe) self._obj = dataframe self._asuarray = UArray(dataframe) # @staticmethod # def _validate(obj): # #! TODO # try: # UArray(obj) # except Exception as e: # raise e @property def n(self): return pd.DataFrame(self._asuarray.n, index=self._obj.index, columns=self._obj.columns) @property def s(self): return pd.DataFrame(self._asuarray.s, index=self._obj.index, columns=self._obj.columns) @property def sep(self): df =
pd.DataFrame(data=None, index=self._obj.index)
pandas.DataFrame
# Fundamental libraries import os import re import sys import time import glob import random import datetime import warnings import itertools import numpy as np import pandas as pd import pickle as cp import seaborn as sns import multiprocessing from scipy import stats from pathlib import Path from ast import literal_eval import matplotlib.pyplot as plt from collections import Counter from argparse import ArgumentParser os.environ['CUDA_LAUNCH_BLOCKING'] = "1" warnings.filterwarnings(action="ignore") # PyTorch, PyTorch.Text, and Lightning-PyTorch methods import torch from torch import nn, optim, Tensor import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torchtext.vocab import Vocab import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.callbacks.early_stopping import EarlyStopping # SciKit-Learn methods from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score from sklearn.preprocessing import LabelEncoder, KBinsDiscretizer, OneHotEncoder, StandardScaler from sklearn.model_selection import StratifiedShuffleSplit from sklearn.utils import resample from sklearn.utils.class_weight import compute_class_weight # TQDM for progress tracking from tqdm import tqdm # Custom methods from classes.datasets import CONCISE_PREDICTOR_SET from models.CPM import CPM_deep # Train CPM_deep def train_CPM_deep(TRAINING_SET, VAL_SET, TESTING_SET, TUNE_IDX, REPEAT, FOLD, OUTPUT_DIR, BATCH_SIZE, LEARNING_RATE, LAYERS, NEURONS, DROPOUT, ES_PATIENCE, EPOCHS, CLASS_WEIGHTS, OUTPUT_ACTIVATION): """ Args: TRAINING_SET (pd.DataFrame) VAL_SET (pd.DataFrame) TESTING_SET (pd.DataFrame) TUNE_IDX (str) REPEAT (int) FOLD (int) OUTPUT_DIR (str): directory to save model outputs BATCH_SIZE (int): size of minibatches during training LEARNING_RATE (float): Learning rate for ADAM optimizer LAYERS (int): number of hidden layers in feed forward neural network NEURONS (list of length layers): the number of neurons in each layer DROPOUT (flaot): the proportion of each dense layer dropped out during training ES_PATIENCE (int): patience during early stopping EPOCHS (int): maximum epochs during training CLASS_WEIGHTS (boolean): identifies whether loss should be weighted against class frequency OUTPUT_ACTIVATION (string): 'softmax' for DeepMN or 'sigmoid' for DeepOR """ # Create a directory within current repeat/fold combination to store outputs of current tuning configuration tune_model_dir = os.path.join(OUTPUT_DIR,'tune_'+TUNE_IDX) os.makedirs(tune_model_dir,exist_ok = True) # Create PyTorch Dataset objects train_Dataset = CONCISE_PREDICTOR_SET(TRAINING_SET,OUTPUT_ACTIVATION) val_Dataset = CONCISE_PREDICTOR_SET(VAL_SET,OUTPUT_ACTIVATION) test_Dataset = CONCISE_PREDICTOR_SET(TESTING_SET,OUTPUT_ACTIVATION) # Create PyTorch DataLoader objects curr_train_DL = DataLoader(train_Dataset, batch_size=int(BATCH_SIZE), shuffle=True) curr_val_DL = DataLoader(val_Dataset, batch_size=len(val_Dataset), shuffle=False) curr_test_DL = DataLoader(test_Dataset, batch_size=len(test_Dataset), shuffle=False) # Initialize current model class based on hyperparameter selections model = CPM_deep(train_Dataset.X.shape[1], LAYERS, NEURONS, DROPOUT, OUTPUT_ACTIVATION, LEARNING_RATE, CLASS_WEIGHTS, train_Dataset.y) early_stop_callback = EarlyStopping( monitor='val_AUROC', patience=ES_PATIENCE, mode='max' ) checkpoint_callback = ModelCheckpoint( monitor='val_AUROC', dirpath=tune_model_dir, filename='{epoch:02d}-{val_AUROC:.2f}', save_top_k=1, mode='max' ) csv_logger = pl.loggers.CSVLogger(save_dir=OUTPUT_DIR,name='tune_'+TUNE_IDX) trainer = pl.Trainer(logger = csv_logger, max_epochs = EPOCHS, enable_progress_bar = False, enable_model_summary = False, callbacks=[early_stop_callback,checkpoint_callback]) trainer.fit(model,curr_train_DL,curr_val_DL) best_model = CPM_deep.load_from_checkpoint(checkpoint_callback.best_model_path) best_model.eval() # Save validation set probabilities for i, (x,y) in enumerate(curr_val_DL): yhat = best_model(x) val_true_y = y.cpu().numpy() if OUTPUT_ACTIVATION == 'softmax': curr_val_probs = F.softmax(yhat.detach()).cpu().numpy() curr_val_preds = pd.DataFrame(curr_val_probs,columns=['Pr(GOSE=1)','Pr(GOSE=2/3)','Pr(GOSE=4)','Pr(GOSE=5)','Pr(GOSE=6)','Pr(GOSE=7)','Pr(GOSE=8)']) curr_val_preds['TrueLabel'] = val_true_y elif OUTPUT_ACTIVATION == 'sigmoid': curr_val_probs = F.sigmoid(yhat.detach()).cpu().numpy() curr_val_probs = pd.DataFrame(curr_val_probs,columns=['Pr(GOSE>1)','Pr(GOSE>3)','Pr(GOSE>4)','Pr(GOSE>5)','Pr(GOSE>6)','Pr(GOSE>7)']) curr_val_labels = pd.DataFrame(val_true_y,columns=['GOSE>1','GOSE>3','GOSE>4','GOSE>5','GOSE>6','GOSE>7']) curr_val_preds = pd.concat([curr_val_probs,curr_val_labels],axis = 1) else: raise ValueError("Invalid output layer type. Must be 'softmax' or 'sigmoid'") curr_val_preds.insert(loc=0, column='GUPI', value=VAL_SET.GUPI.values) curr_val_preds['TUNE_IDX'] = TUNE_IDX curr_val_preds.to_csv(os.path.join(tune_model_dir,'val_predictions.csv'),index=False) best_model.eval() # Save testing set probabilities for i, (x,y) in enumerate(curr_test_DL): yhat = best_model(x) test_true_y = y.cpu().numpy() if OUTPUT_ACTIVATION == 'softmax': curr_test_probs = F.softmax(yhat.detach()).cpu().numpy() curr_test_preds = pd.DataFrame(curr_test_probs,columns=['Pr(GOSE=1)','Pr(GOSE=2/3)','Pr(GOSE=4)','Pr(GOSE=5)','Pr(GOSE=6)','Pr(GOSE=7)','Pr(GOSE=8)']) curr_test_preds['TrueLabel'] = test_true_y elif OUTPUT_ACTIVATION == 'sigmoid': curr_test_probs = F.sigmoid(yhat.detach()).cpu().numpy() curr_test_probs =
pd.DataFrame(curr_test_probs,columns=['Pr(GOSE>1)','Pr(GOSE>3)','Pr(GOSE>4)','Pr(GOSE>5)','Pr(GOSE>6)','Pr(GOSE>7)'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Aug 12 18:24:12 2020 @author: omar.elfarouk """ import pandas import numpy import seaborn import scipy import matplotlib.pyplot as plt data = pandas.read_csv('gapminder.csv', low_memory=False) #setting variables you will be working with to numeric data['internetuserate'] = pandas.to_numeric(data['internetuserate'], errors='coerce') data['urbanrate'] =
pandas.to_numeric(data['urbanrate'], errors='coerce')
pandas.to_numeric
#!/usr/bin/env python # coding: utf-8 # version 0.1 2020/01/08 -- <NAME> import argparse from pathlib import Path import cartopy.crs as ccrs import cartopy.feature as cfeature import cmocean.cm as cmo import matplotlib.pyplot as plt import numpy as np import pandas as pd import xarray as xr # functions # def write_bc_for_pli(bc_fn, gcm, pli, quantity, method, depth_avg): """ append or write 3D boundary conditions for quantities bc_fn = path to write or append boundary condition data gcm = general circulation model output which contains boundary points (xr.DataArray) pli = table of boundary support points (pd.DataFrame) quantity = variable to output to the BC files (salinity or water_temp) depth_avg = flag to enable depth averaging """ with open(bc_fn, "a") as f: gcm_refd, ref_date = assign_seconds_from_refdate(gcm) for _, (x_pli, y_pli, pli_point_name) in pli.iterrows(): x_pli_east = x_pli + 360 if (quantity == "salinity") or (quantity == "water_temp"): bc_data = interpolate_to_pli_point( gcm_refd, quantity, x_pli_east, y_pli, pli_point_name, method ) # check valid depth point if bc_data is None: continue if depth_avg: write_ts_record(f, bc_data, pli_point_name, quantity, ref_date) else: write_t3d_record(f, bc_data, pli_point_name, quantity, ref_date) # in the case of velocity both components are interpolated elif quantity == "velocity": bc_data = interpolate_to_pli_point( gcm_refd, ["water_u", "water_v"], x_pli_east, y_pli, pli_point_name, method, ) # check valid depth point if bc_data is None: continue write_vector_t3d_record(f, bc_data, pli_point_name, quantity, ref_date) # in case of surf_el elif quantity == "surf_el": bc_data = interpolate_to_pli_point( gcm_refd, quantity, x_pli_east, y_pli, pli_point_name, method ) # check valid depth point if bc_data is None: continue write_ts_record(f, bc_data, pli_point_name, quantity, ref_date) def write_ts_record(f, bc_data, pli_point_name, quantity, ref_date): """ append or write time series boundary conditions for depth averaged quantities f = file descriptor for writing boundary condition output bc_data = data at with percent bed coords (xr.DataFrame) pli_point_name = name for entry quantity = variable to output to the BC files ref_date = date used to calculate offset of the record in seconds """ # get units for quantity if quantity == "salinity": quantbnd = "salinitybnd" units = "ppt" elif quantity == "water_temp": quantbnd = "temperaturebnd" units = "°C" elif quantity == "surf_el": quantbnd = "waterlevelbnd" units = "m" else: print('quantity needs to be either "salinity", "water_temp" or "surf_el"\n') raise ValueError # write a record f.write("[forcing]\n") f.write(f"Name = {pli_point_name}\n") f.write(f"Function = t3d\n") f.write(f"Time-interpolation = linear\n") f.write(f"Vertical position type = single\n") f.write(f"Vertical interpolation = linear\n") f.write(f"Quantity = time\n") f.write(f"Unit = seconds since {ref_date}\n") f.write(f"Quantity = {quantbnd}\n") f.write(f"Unit = {units}\n") f.write(f"Vertical position = 1\n") if quantity == "surf_el": for td, value in bc_data.to_dataframe()[quantity].iteritems(): value = f"{value:.05f}" f.write(f"{td} {value}\n") else: # write data after converting to dataframe and iterating over the rows for td, values in bc_data.to_dataframe()[quantity].unstack(level=-1).iterrows(): # take mean of values to get depth averaged value = values.mean() # see results of interpolation if value > 100.0: print( f"Problem with {quantity} exceeding maximum allowed value: {values.max():.03f} ppt." ) elif value < 0.0: print( f"Problem with {quantity} becoming negative: {values.max():.03f} ppt." ) print(f"Negative value for {quantity} has been set to 0.01 {units}.") value = 0.01 value = f"{value:.05f}" f.write(f"{td} {value}\n") f.write("\n") def write_vector_t3d_record(f, bc_data, pli_point_name, quantity, ref_date): """ append or write 3D boundary conditions for quantities f = file descriptor for writing boundary condition output bc_data = data at with percent bed coords (xr.DataFrame) pli_point_name = name for entry quantity = variable to output to the BC files ref_date = date used to calculate offset of the record in seconds """ if quantity == "velocity": vector = "uxuyadvectionvelocitybnd:ux,uy" quantbndx = "ux" quantbndy = "uy" x_comp = "water_u" y_comp = "water_v" units = "-" # no units for velocity in example provided by Kees else: print('quantity should be "velocity"\n') raise ValueError # convert percent from bed into formated string pos_spec = [f"{perc:.02f}" for perc in bc_data.perc_from_bed.data] pos_spec_str = " ".join(pos_spec[::-1]) # reverse order for D3D # write a record f.write("[forcing]\n") f.write(f"Name = {pli_point_name}\n") f.write(f"Function = t3d\n") f.write(f"Time-interpolation = linear\n") f.write(f"Vertical position type = percentage from bed\n") f.write(f"Vertical position specification = {pos_spec_str}\n") f.write(f"Vertical interpolation = linear\n") f.write(f"Quantity = time\n") f.write(f"Unit = seconds since {ref_date}\n") f.write(f"Vector = {vector}\n") # loop over number of vertical positions for vert_pos in range(1, len(pos_spec) + 1): f.write(f"Quantity = {quantbndx}\n") f.write(f"Unit = {units}\n") f.write(f"Vertical position = {vert_pos}\n") f.write(f"Quantity = {quantbndy}\n") f.write(f"Unit = {units}\n") f.write(f"Vertical position = {vert_pos}\n") # write data after converting to dataframe and iterating over the rows for td, values in ( bc_data.to_dataframe()[[x_comp, y_comp]].unstack(level=0).iterrows() ): # get componets as array in order to format for d3d input x_comp_vals = values[x_comp].values[::-1] # reverse order for D3D y_comp_vals = values[y_comp].values[::-1] # reverse order for D3D values = [ f"{x_comp_val:.03f} {y_comp_val:.03f}" for x_comp_val, y_comp_val in zip(x_comp_vals, y_comp_vals) ] values_str = " ".join(values) f.write(f"{td} {values_str}\n") f.write("\n") def write_t3d_record(f, bc_data, pli_point_name, quantity, ref_date): """ append or write 3D boundary conditions for quantities f = file descriptor for writing boundary condition output bc_data = data at with percent bed coords (xr.DataFrame) pli_point_name = name for entry quantity = variable to output to the BC files ref_date = date used to calculate offset of the record in seconds """ # get units for quantity if quantity == "salinity": quantbnd = "salinitybnd" units = "ppt" elif quantity == "water_temp": quantbnd = "temperaturebnd" units = "°C" else: print('quantity needs to be either "salinity" or "water_temp"\n') raise ValueError # convert percent from bed into formated string pos_spec = [f"{perc:.02f}" for perc in bc_data.perc_from_bed.data] pos_spec_str = " ".join(pos_spec[::-1]) # reverse order for D3D # write a record f.write("[forcing]\n") f.write(f"Name = {pli_point_name}\n") f.write(f"Function = t3d\n") f.write(f"Time-interpolation = linear\n") f.write(f"Vertical position type = percentage from bed\n") f.write(f"Vertical position specification = {pos_spec_str}\n") f.write(f"Vertical interpolation = linear\n") f.write(f"Quantity = time\n") f.write(f"Unit = seconds since {ref_date}\n") # loop over number of vertical positions for vert_pos in range(1, len(pos_spec) + 1): f.write(f"Quantity = {quantbnd}\n") f.write(f"Unit = {units}\n") f.write(f"Vertical position = {vert_pos}\n") # write data after converting to dataframe and iterating over the rows for td, values in bc_data.to_dataframe()[quantity].unstack(level=-1).iterrows(): # see results of interpolation if values.max() > 100.0: print( f"problem with {quantity} exceeding maximum allowed value: {values.max():.03f} ppt" ) elif values.min() < 0.0: print(f"problem with {quantity} becoming negative: {values.max():.03f} ppt") print(f"Negative values for {quantity} has been set to 0.01 {units}.") values.where(values > 0.01, 0.01, inplace=True) values = [f"{value:.05f}" for value in values] values_str = " ".join(values[::-1]) # reverse order for D3D f.write(f"{td} {values_str}\n") f.write("\n") def assign_seconds_from_refdate(gcm): """ This func assigns seconds from a user specified ref date as coords. This is how D3D interpolates the boundary conditions in time. gcm = model output to add coords to """ ref_date = gcm.time.data[0] ref_dt = pd.to_datetime(ref_date) ref_date_str = ref_dt.strftime("%Y-%m-%d %H:%M:%S") timedeltas = pd.to_datetime(gcm.time.data) - ref_dt seconds = timedeltas.days * 24 * 60 * 60 + timedeltas.seconds gcm = gcm.assign_coords(coords={"seconds_from_ref": ("time", seconds)}) return gcm.swap_dims({"time": "seconds_from_ref"}), ref_date_str def interpolate_to_pli_point( gcm_refd, quantity, x_pli_east, y_pli, pli_point_name, method ): """interpolates the quanitites to the sigma depths and pli coords gcm_refd = gcm with new time coordinates quantity = variable to output to the BC files (salinity or water_temp) x_pli_east = longitude of pli point in degrees east from meridian (GCM convention) y_pli = latitude """ if quantity == "surf_el": # interpolate to pli point and drop data below bed level at nearest gcm_refd point bc_data = gcm_refd[quantity].interp(lon=x_pli_east, lat=y_pli, method=method) return bc_data else: # interpolate to pli point and drop data below bed level at nearest gcm_refd point bc_data = ( gcm_refd[quantity] .interp(lon=x_pli_east, lat=y_pli, method=method) .dropna(dim="depth") .squeeze() ) # add coordinate for percent from bed. D3D uses this in its bc file format try: gcm_refd_zb = bc_data.depth[-1] # get bed level of gcm_refd point except IndexError: print( f"Depth invalid for {pli_point_name} at: {x_pli_east}, {y_pli}. Omitting point..." ) return None perc_from_bed = 100 * (-1 * bc_data.depth + gcm_refd_zb) / gcm_refd_zb bc_data = bc_data.assign_coords( coords={"perc_from_bed": ("depth", perc_from_bed)} ) return bc_data ### main loop ### if __name__ == "__main__": ### arguments ### parser = argparse.ArgumentParser() parser.add_argument( "nc", help="GCM NetCDF output containing boundary support points and duration of Delft3D simulation", ) parser.add_argument( "quantity", help='GCM variable. Must be either "salintiy", "water_temp", or "velocity"', ) parser.add_argument( "--pli-list", nargs="*", type=str, help="list of boundary support point polyline filenames", required=True, dest="pli_list", ) parser.add_argument( "--bc-filename", help="Optional filename for Delft3D boundary condition filename", type=str, dest="bc_filename", ) parser.add_argument( "--depth-avg", help="flag to enable depth averaged output", default=False, action="store_true", dest="depth_avg", ) parser.add_argument( "--interp-method", help="flag to enable depth averaged output", default="linear", type=str, dest="method", ) args = parser.parse_args() gcm = args.nc quantity = args.quantity pli_list = args.pli_list depth_avg = args.depth_avg method = args.method # validate arguments if ( (quantity != "salinity") and (quantity != "water_temp") and (quantity != "velocity") and (quantity != "surf_el") ): print( f'<quantity> was specfied as {quantity}, but should be either "salinity" or "water_temp".' ) raise ValueError # open gcm NetCDF output as Xarray dataset try: gcm = xr.open_dataset(Path(gcm), drop_variables="tau") except FileNotFoundError as e: print("<GCM output> should be path to GCM NetCDF output") raise e # set defualt boundary condition filename depending on quanitity bc_fn = args.bc_filename if bc_fn is None: if quantity == "salinity": bc_fn = Path("Salinity.bc") elif quantity == "water_temp": bc_fn = Path("Temperature.bc") elif quantity == "velocity": bc_fn = Path("Velocity.bc") elif quantity == "surf_el": bc_fn = Path("WaterLevel.bc") # pli files opened as Pandas DataFrames pli_points = [] for pli_fn in pli_list: print(f"Reading in file: {pli_fn}") pli = pd.read_csv( pli_fn, sep="\s+", skiprows=2, header=None, names=["x", "y", "point_id"] ) write_bc_for_pli(bc_fn, gcm, pli, quantity, method=method, depth_avg=depth_avg) # add points to list for visualization pli_points.append(pli) # concat pli points pli_points =
pd.concat(pli_points)
pandas.concat
import numpy as np import pandas as pd from scipy import stats import sys, os, time, json from pathlib import Path import pickle as pkl sys.path.append('../PreProcessing/') sys.path.append('../Lib/') sys.path.append('../Analyses/') import sklearn.linear_model as lm from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.metrics import balanced_accuracy_score as bac from joblib import Parallel, delayed import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.text import Text import seaborn as sns import analyses_table as AT import TreeMazeFunctions as TMF sns.set(style="whitegrid",font_scale=1,rc={ 'axes.spines.bottom': False, 'axes.spines.left': False, 'axes.spines.right': False, 'axes.spines.top': False, 'axes.edgecolor':'0.5'}) def main(sePaths, doPlots=False, overwrite = False): try: dat = AT.loadSessionData(sePaths) nUnits = dat['fitTable2'].shape[0] # univariate analyses. fn = sePaths['CueDesc_SegUniRes'] if ( (not fn.exists()) or overwrite): CueDescFR_Dat, all_dat_spl = CueDesc_SegUniAnalysis(dat) CueDescFR_Dat.to_csv(sePaths['CueDesc_SegUniRes']) if doPlots: plotCueVDes(CueDescFR_Dat,sePaths) plotUnitRvL(CueDescFR_Dat,all_dat_spl,sePaths) else: CueDescFR_Dat = pd.read_csv(fn) # decododer analyses fn = sePaths['CueDesc_SegDecRes'] if ((not fn.exists()) or overwrite): singCellDec,singCellDecSummary, popDec = CueDesc_SegDecAnalysis(dat) singCellDec['se'] = sePaths['session'] singCellDecSummary['se'] = sePaths['session'] popDec['se'] = sePaths['session'] singCellDec.to_csv(fn) singCellDecSummary.to_csv(sePaths['CueDesc_SegDecSumRes']) popDec.to_csv(sePaths['PopCueDesc_SegDecSumRes']) if doPlots: f,_ = plotMultipleDecoderResults(singCellDecSummary) fn = sePaths['CueDescPlots'] / ('DecResByUnit.jpeg') f.savefig(str(fn),dpi=150, bbox_inches='tight',pad_inches=0.2) plt.close(f) f,_ = plotMultipleDecoderResults(popDec) fn = sePaths['CueDescPlots'] / ('PopDecRes.jpeg') f.savefig(str(fn),dpi=150, bbox_inches='tight',pad_inches=0.2) plt.close(f) for unit in np.arange(nUnits): f,_ = plotMultipleDecoderResults(singCellDec[(singCellDec['unit']==unit)]) fn = sePaths['CueDescPlots'] / ('DecRes_UnitID-{}.jpeg'.format(unitNum) ) f.savefig(str(fn),dpi=150, bbox_inches='tight',pad_inches=0.2) plt.close(f) else: singCellDec = pd.read_csv(fn) singCellDecSummary = pd.read_csv(sePaths['CueDesc_SegDecSumRes']) popDec = pd.read_csv(sePaths['PopCueDesc_SegDecSumRes']) return CueDescFR_Dat, singCellDec,singCellDecSummary, popDec except: print ("Error", sys.exc_info()[0],sys.exc_info()[1],sys.exc_info()[2].tb_lineno) return [],[],[],[] def CueDesc_SegUniAnalysis(dat): trDat = dat['TrialLongMat'] trConds = dat['TrialConds'] nCells = len(dat['ids']['cells']) nMua = len(dat['ids']['muas']) nUnits = nCells+nMua # fixed variables (don't change with cell) locs = TMF.ZonesNames Trials = trConds[trConds['Good']].index.values nTrials = len(Trials) FeatIDs = {'A':[1],'Stem':[0,1,2],'Arm': [3,4]} Segs = FeatIDs.keys() HA = ['Home','SegA'] Stem = ['Home','SegA','Center'] L_Arm = ['SegE', 'I2', 'SegF', 'G3', 'SegG', 'G4'] R_Arm = ['SegB', 'I1', 'SegC', 'G1', 'SegD', 'G2'] # variable to be stored #uni_LvR_Analyses = {'Stats':{'Cue':{},'Desc':{},'Cue_Desc':{}},'Mean':{'Cue':{},'Desc':{},'Cue_Desc':{}},'SD':{'Cue':{},'Desc':{},'Cue_Desc':{}} } uni_LvR_Analyses = {'Cue':{'Stats':{},'Mean':{},'SD':{}},'Desc':{'Stats':{},'Mean':{},'SD':{}},'Cue_Desc':{'Stats':{},'Mean':{},'SD':{}}} Conds = ['Cue','Desc','Cue_Desc'] dat_meas = ['Stats','Mean','SD'] all_dat_spl = {} # only used for plotting as it has overlapping data points; not necessary to store it. for unitNum in np.arange(nUnits): # splits of data per cell dat_splits = {} for k in ['Cue','Desc']: dat_splits[k] = {} for kk in FeatIDs.keys(): dat_splits[k][kk] = {} dat_splits['Cue_Desc'] = {'Co_Arm':{},'L_Arm':{},'R_Arm':{}} if unitNum==0: for k in Conds: for ii in dat_meas: if ii=='Stats': for jj in ['T','P','S']: uni_LvR_Analyses[k][ii][jj] = pd.DataFrame(np.zeros((nUnits,3)),columns=dat_splits[k].keys()) else: for jj in ['L','R']: uni_LvR_Analyses[k][ii][jj] = pd.DataFrame(np.zeros((nUnits,3)),columns=dat_splits[k].keys()) if unitNum<nCells: tt = dat['ids']['cells'][str(unitNum)][0] cl = dat['ids']['cells'][str(unitNum)][1] fr = dat['TrialFRLongMat']['cell_'+str(unitNum)] #tR2 = dat['TrialModelFits']['testR2'][unitNum] #selMod = dat['TrialModelFits']['selMod'][unitNum] tR2 = dat['fitTable2']['testR2'][unitNum] selMod = dat['fitTable2']['selMod'][unitNum] else: muaID = unitNum-nCells tt = dat['ids']['muas'][str(muaID)][0] cl = dat['ids']['muas'][str(muaID)][1] fr = dat['TrialFRLongMat']['mua_'+str(muaID)] tR2 = dat['fitTable2']['testR2'][unitNum] selMod = dat['fitTable2']['selMod'][unitNum] # get mean fr per trial per partition mPartFRDat = pd.DataFrame(np.zeros((nTrials,3)),columns=FeatIDs) cue = trConds.loc[Trials,'Cues'].values desc = trConds.loc[Trials,'Desc'].values cnt =0 for tr in Trials: subset = (trDat['trID']==tr) & (trDat['IO']=='Out') for k,v in FeatIDs.items(): mPartFRDat.loc[cnt,k]=np.nanmean(fr[subset].values[v]) cnt+=1 # univariate cue and desciscion tests by maze part LvR = {} l = {} r = {} # First & Second analyses: Cue/Desc k = 'Cue' l[k] = cue=='L' r[k] = cue=='R' k = 'Desc' l[k]=desc=='L' r[k]=desc=='R' for k in ['Cue','Desc']: LvR[k] = pd.DataFrame(np.zeros((3,3)),index=Segs,columns=['T','P','S']) for kk in Segs: lfr = mPartFRDat[kk][l[k]] rfr = mPartFRDat[kk][r[k]] temp = stats.ttest_ind(lfr,rfr) LvR[k].loc[kk,'T'] = temp[0] LvR[k].loc[kk,'P'] = temp[1] dat_splits[k][kk]['l'] = lfr.values dat_splits[k][kk]['r'] = rfr.values LvR[k]['S'] = getSigLevel(LvR[k]['P']) # thir analysis: Correct v Incorrect by L/R arm k = 'Cue_Desc' LvR[k] = pd.DataFrame(np.zeros((3,3)),index=['Co_Arm','L_Arm','R_Arm'],columns=['T','P','S']) l = {} r = {} kk = 'Co_Arm' l[kk] = mPartFRDat['Arm'][(cue=='L')&(desc=='L')] r[kk] = mPartFRDat['Arm'][(cue=='R')&(desc=='R')] kk = 'L_Arm' l[kk]=mPartFRDat['Arm'][(desc=='L')&(cue=='L')] r[kk]=mPartFRDat['Arm'][(desc=='L')&(cue=='R')] kk = 'R_Arm' l[kk]=mPartFRDat['Arm'][(desc=='R')&(cue=='L')] r[kk]=mPartFRDat['Arm'][(desc=='R')&(cue=='R')] for kk in ['Co_Arm','L_Arm','R_Arm']: temp = stats.ttest_ind(l[kk],r[kk]) LvR[k].loc[kk,'T'] = temp[0] LvR[k].loc[kk,'P'] = temp[1] dat_splits[k][kk]['l'] = l[kk].values dat_splits[k][kk]['r'] = r[kk].values LvR[k]['S'] = getSigLevel(LvR[k]['P']) # aggreagate results. mlr = {} slr = {} for k,v in dat_splits.items(): mlr[k] = pd.DataFrame(np.zeros((3,2)),index=v.keys(),columns=['L','R']) slr[k] = pd.DataFrame(np.zeros((3,2)),index=v.keys(),columns=['L','R']) cnt = 0 for kk,vv in v.items(): l = vv['l'] r = vv['r'] mlr[k].loc[kk] = [np.mean(l),np.mean(r)] slr[k].loc[kk] = [stats.sem(l),stats.sem(r)] cnt+=1 for k in Conds: # keys : Cue, Desc, Cue_Desc for ii in dat_meas: if ii=='Stats': for jj in ['T','P','S']: if unitNum == 0: uni_LvR_Analyses[k][ii][jj] = pd.DataFrame(np.zeros((nUnits,3)),columns=LvR[k].index.values) uni_LvR_Analyses[k]['Stats'][jj].loc[unitNum] = LvR[k][jj] else: for jj in ['L','R']: if unitNum == 0: uni_LvR_Analyses[k][ii][jj] = pd.DataFrame(np.zeros((nUnits,3)),columns=LvR[k].index.values) uni_LvR_Analyses[k]['Mean'][jj].loc[unitNum] = mlr[k][jj] uni_LvR_Analyses[k]['SD'][jj].loc[unitNum] = slr[k][jj] all_dat_spl[unitNum] = dat_splits # reorg LvR to a pandas data frame with all the units CueDescFR_Dat = pd.DataFrame() for k in Conds: cnt = 0 for kk in ['Mean','SD']: for kkk in ['L','R']: if kk=='Mean': valName = 'MzFR_'+ kkk elif kk == 'SD': valName = 'SzFR_' + kkk if cnt==0: y = uni_LvR_Analyses[k][kk][kkk].copy() y = y.reset_index() y = y.melt(value_vars = uni_LvR_Analyses[k][kk][kkk].columns,id_vars='index',var_name='Seg',value_name= valName) y['Cond'] = k else: z = uni_LvR_Analyses[k][kk][kkk].copy() z = z.reset_index() z = z.melt(value_vars = uni_LvR_Analyses[k][kk][kkk].columns,id_vars='index',value_name= valName) y[valName] = z[valName].copy() cnt+=1 for jj in ['T','P','S']: z = uni_LvR_Analyses[k]['Stats'][jj].copy() z = z.reset_index() z = z.melt(value_vars = uni_LvR_Analyses[k]['Stats'][jj].columns ,id_vars='index', var_name = 'Seg', value_name = jj) y[jj] = z[jj] CueDescFR_Dat = pd.concat((CueDescFR_Dat,y)) CueDescFR_Dat['Sig'] = CueDescFR_Dat['P']<0.05 CueDescFR_Dat.rename(columns={'index':'unit'},inplace=True) return CueDescFR_Dat, all_dat_spl def CueDesc_SegDecAnalysis(dat): nPe = 100 nRepeats = 10 nSh = 50 njobs = 20 trConds = dat['TrialConds'] trDat = dat['TrialLongMat'] nUnits = dat['fitTable2'].shape[0] gTrialsIDs = trConds['Good'] Trials = trConds[gTrialsIDs].index.values nTrials = len(Trials) allZoneFR,unitIDs = reformatFRDat(dat,Trials) CoTrials = trConds[gTrialsIDs & (trConds['Co']=='Co')].index.values InCoTrials = trConds[gTrialsIDs & (trConds['Co']=='InCo')].index.values nInCo = len(InCoTrials) TrSets = {} TrSets['all'] = np.arange(nTrials) _,idx,_=np.intersect1d(np.array(Trials),np.array(CoTrials),return_indices=True) TrSets['co'] = idx _,idx,_=np.intersect1d(np.array(Trials),np.array(InCoTrials),return_indices=True) TrSets['inco'] = idx cueVec = trConds.loc[gTrialsIDs]['Cues'].values descVec = trConds.loc[gTrialsIDs]['Desc'].values predVec = {'Cue':cueVec, 'Desc':descVec} nFeatures = {'h':np.arange(1),'a':np.arange(2),'center':np.arange(3),'be':np.arange(4),'int':np.arange(5),'cdfg':np.arange(6),'goal':np.arange(7)} def correctTrials_Decoder(train,test): res = pd.DataFrame(np.zeros((3,4)),columns=['Test','BAc','P','Z']) temp = mod.fit(X_train[train],y_train[train]) res.loc[0,'Test'] = 'Model' y_hat = temp.predict(X_train[test]) res.loc[0,'BAc'] = bac(y_train[test],y_hat)*100 # shuffle for held out train set mod_sh = np.zeros(nSh) for sh in np.arange(nSh): y_perm_hat = np.random.permutation(y_hat) mod_sh[sh] = bac(y_train[test],y_perm_hat)*100 res.loc[0,'Z'] = getPerm_Z(mod_sh, res.loc[0,'BAc'] ) res.loc[0,'P'] = getPerm_Pval(mod_sh, res.loc[0,'BAc'] ) # predictions on x test y_hat = temp.predict(X_test) res.loc[1,'Test'] = 'Cue' res.loc[1,'BAc'] = bac(y_test_cue,y_hat)*100 res.loc[2,'Test'] = 'Desc' res.loc[2,'BAc'] = bac(y_test_desc,y_hat)*100 # shuffles for ytest cue/desc cue_sh = np.zeros(nSh) desc_sh = np.zeros(nSh) for sh in np.arange(nSh): y_perm_hat = np.random.permutation(y_hat) cue_sh[sh] = bac(y_test_cue,y_perm_hat)*100 desc_sh[sh] = bac(y_test_desc,y_perm_hat)*100 res.loc[1,'Z'] = getPerm_Z(cue_sh, res.loc[1,'BAc'] ) res.loc[1,'P'] = getPerm_Pval(cue_sh, res.loc[1,'BAc'] ) res.loc[2,'Z'] = getPerm_Z(desc_sh, res.loc[2,'BAc'] ) res.loc[2,'P'] = getPerm_Pval(desc_sh, res.loc[2,'BAc'] ) res['nSeUnits'] = nUnits return res def balancedCoIncoTrial_Decoder(pe,feats): res = pd.DataFrame(np.zeros((2,4)),columns=['Test','BAc','P','Z']) # sample correct trials to match the number of incorrect trials. samp_co_trials = np.random.choice(TrSets['co'],nInCo,replace=False) train = np.concatenate( (TrSets['inco'], samp_co_trials )) test = np.setdiff1d(TrSets['co'], samp_co_trials) X_train = allZoneFR.loc[train,feats].values X_test = allZoneFR.loc[test,feats].values Y_cue_train = predVec['Cue'][train] Y_desc_train = predVec['Desc'][train] Y_test = predVec['Cue'][test] # cue and desc trials are the on the test set. # model trained on the cue res.loc[0,'Test'] = 'Cue' cue_mod = mod.fit(X_train,Y_cue_train) y_cue_hat = cue_mod.predict(X_test) res.loc[0,'BAc'] = bac(Y_test,y_cue_hat)*100 cue_sh = np.zeros(nSh) for sh in np.arange(nSh): y_perm = np.random.permutation(Y_test) cue_sh[sh] = bac(y_perm,y_cue_hat)*100 res.loc[0,'Z'] = getPerm_Z(cue_sh, res.loc[0,'BAc'] ) res.loc[0,'P'] = getPerm_Pval(cue_sh, res.loc[0,'BAc'] ) # model trained on the desc res.loc[1,'Test'] = 'Desc' desc_mod = mod.fit(X_train,Y_desc_train) y_desc_hat = desc_mod.predict(X_test) res.loc[1,'BAc'] = bac(Y_test,y_desc_hat)*100 desc_sh = np.zeros(nSh) for sh in np.arange(nSh): y_perm = np.random.permutation(Y_test) desc_sh[sh] = bac(y_perm,y_desc_hat)*100 res.loc[1,'Z'] = getPerm_Z(cue_sh, res.loc[1,'BAc'] ) res.loc[1,'P'] = getPerm_Pval(cue_sh, res.loc[1,'BAc'] ) return res def IncoTrial_Decoder(train,test): res = pd.DataFrame(np.zeros((3,4)),columns=['Test','BAc','P','Z']) temp = mod.fit(X_train[train],y_train[train]) res.loc[0,'Test'] = 'Model' y_hat = temp.predict(X_train[test]) res.loc[0,'BAc'] = bac(y_train[test],y_hat)*100 # shuffle for held out train set mod_sh = np.zeros(nSh) for sh in np.arange(nSh): y_perm_hat = np.random.permutation(y_hat) mod_sh[sh] = bac(y_train[test],y_perm_hat)*100 res.loc[0,'Z'] = getPerm_Z(mod_sh, res.loc[0,'BAc'] ) res.loc[0,'P'] = getPerm_Pval(mod_sh, res.loc[0,'BAc'] ) # predictions on x test y_hat = temp.predict(X_test) res.loc[1,'Test'] = 'Cue' res.loc[1,'BAc'] = bac(y_test_cue,y_hat)*100 res.loc[2,'Test'] = 'Desc' res.loc[2,'BAc'] = 100-res.loc[1,'BAc'] # shuffles for ytest cue/desc cue_sh = np.zeros(nSh) for sh in np.arange(nSh): y_perm_hat = np.random.permutation(y_hat) cue_sh[sh] = bac(y_test_cue,y_perm_hat)*100 res.loc[1,'Z'] = getPerm_Z(cue_sh, res.loc[1,'BAc'] ) res.loc[1,'P'] = getPerm_Pval(cue_sh, res.loc[1,'BAc'] ) res.loc[2,'Z'] = getPerm_Z(100-cue_sh, res.loc[2,'BAc'] ) res.loc[2,'P'] = getPerm_Pval(100-cue_sh, res.loc[2,'BAc'] ) return res with Parallel(n_jobs=njobs) as parallel: # correct trials Model: coModsDec = pd.DataFrame() popCoModsDec = pd.DataFrame() try: nFolds = 10 y_train = predVec['Cue'][TrSets['co']] y_test_cue = predVec['Cue'][TrSets['inco']] y_test_desc = predVec['Desc'][TrSets['inco']] rskf = RepeatedStratifiedKFold(n_splits=nFolds,n_repeats=nRepeats, random_state=0) t0=time.time() for unitNum in np.arange(nUnits): for p,nF in nFeatures.items(): feats = unitIDs[unitNum][nF] mod = lm.LogisticRegression(class_weight='balanced',C=1/np.sqrt(len(feats))) X_train = allZoneFR.loc[TrSets['co'], feats ].values X_test = allZoneFR.loc[TrSets['inco'], feats ].values cnt=0 r = parallel(delayed(correctTrials_Decoder)(train,test) for train,test in rskf.split(X_train,y_train)) t1=time.time() res = pd.DataFrame() for jj in r: res = pd.concat((jj,res)) res['Loc'] = p res['-log(P)'] = -np.log(res['P']) res['unit'] = unitNum coModsDec = pd.concat((coModsDec,res)) print(end='.') coModsDec['Decoder'] = 'Correct' # -population for p,nF in nFeatures.items(): feats=np.array([]) for f in nF: feats=np.concatenate((feats,np.arange(f,nUnits*7,7))) feats=feats.astype(int) mod = lm.LogisticRegression(class_weight='balanced',C=1/np.sqrt(len(feats))) X_train = allZoneFR.loc[TrSets['co'], feats ].values X_test = allZoneFR.loc[TrSets['inco'], feats ].values cnt=0 r = parallel(delayed(correctTrials_Decoder)(train,test) for train,test in rskf.split(X_train,y_train)) res = pd.DataFrame() for jj in r: res = pd.concat((jj,res)) res['Loc'] = p res['-log(P)'] = -np.log(res['P']) popCoModsDec = pd.concat((popCoModsDec,res)) print(end='.') print('\nDecoding Correct Model Completed. Time = {0:.2f}s \n'.format(time.time()-t0)) popCoModsDec['Decoder'] = 'Correct' except: print('CorrectTrials Model Failed.') print ("Error", sys.exc_info()[0],sys.exc_info()[1],sys.exc_info()[2].tb_lineno) # balanced correct/inco model: baModsDec = pd.DataFrame() popBaModsDec = pd.DataFrame() try: t0=time.time() for unitNum in np.arange(nUnits): for p,nF in nFeatures.items(): feats = unitIDs[unitNum][nF] mod = lm.LogisticRegression(class_weight='balanced',C=1/np.sqrt(len(feats))) r = parallel(delayed(balancedCoIncoTrial_Decoder)(pe, feats) for pe in np.arange(nPe)) res = pd.DataFrame() for jj in r: res = pd.concat((jj,res)) res['Loc'] = p res['-log(P)'] = -np.log(res['P']) res['unit'] = unitNum baModsDec =
pd.concat((baModsDec,res))
pandas.concat
""" provide data encoding methods, supports label encoding, one-hot encoding, data discretization author: Xiaoqi date: 2019.06.24 """ import pandas as pd class DataEncoder(object): def __init__(self, df_data): self.df_data = df_data def label_encoding(self): try: data = self.df_data.copy() cat_cols = data.select_dtypes(['category']).columns if len(cat_cols) == 0: cat_cols = data.select_dtypes(exclude=['number']).columns data[cat_cols] = data[cat_cols].astype('category') data[cat_cols] = data[cat_cols].apply(lambda x: x.cat.codes) return data except: raise Exception('Label encoding error') def get_labels(self): label_dic = {} data = self.df_data.copy() cat_cols = data.select_dtypes(exclude=['number']).columns for col in cat_cols: label_dic[col] = dict(enumerate(data[col].astype('category').cat.categories)) return label_dic def onehot_encoding(self): data = self.df_data.copy() return
pd.get_dummies(data, drop_first=True)
pandas.get_dummies
""" NOMIS ===== Collect official data from the NOMIS API, using configuration files. """ import requests from collections import Counter from io import StringIO import pandas as pd from collections import defaultdict import re import logging import datetime import configparser NOMIS = "http://www.nomisweb.co.uk/api/v01/dataset/{}" NOMIS_DEF = NOMIS.format("{}def.sdmx.json") REGEX = re.compile(r"(\w+)_code$") def get_config(conf_path): config = configparser.ConfigParser() config.read(conf_path) return dict(config['nomis']) def get_base(x): """Get the NOMIS column name base entity, for columns named '{something}_code'. Args: x (str): The NOMIS column name, of the form {something}_code Returns: base (str): The NOMIS column name base entity """ return REGEX.findall(x)[0] def get_code_pairs(columns): """Pair NOMIS key-value column names. Args: columns (list): A list of NOMIS column names. Returns: cols (dict): Mapping of key-value column names. """ cols = {c: f"{get_base(c)}_name" for c in columns if c.endswith("_code") if f"{get_base(c)}_name" in columns} return cols def reformat_nomis_columns(data): """Reformat columns from default NOMIS data. Args: df (:obj:`pd.DataFrame`): Dataframe containing NOMIS data. Returns: tables (:obj:`list` of :obj:`dict`): Reformatted rows of data. """ tables = defaultdict(list) # Generate the NOMIS key-value column pairs, and recursively # replace them for name, df in data.items(): _df = df.copy() # Don't mess with the original data pairs = get_code_pairs(_df.columns) for _code, _name in pairs.items(): base = f"{get_base(_code)}_lookup" df_codes = _df[[_name,_code]].copy() df_codes.columns = ["name","code"] tables[base] += df_codes.to_dict(orient="records") _df.drop(_name, axis=1, inplace=True) tables[name] = _df.to_dict(orient="records") for row in tables[name]: row['date'] = row['date'].to_pydatetime() # Append this pair of values return tables def batch_request(config, dataset_id, geographies, date_format, record_offset=0, max_api_calls=10): """Fetch a NOMIS dataset from the API, in batches, based on a configuration object. Args: config (dict): Configuration object, from which a get request is formed. dataset_id (str): NOMIS dataset ID geographies (list): Return object from :obj:`discovery_iter`. date_format (str): Formatting string for dates in the dataset record_offset (int): Record to start from max_api_calls (int): Number of requests allowed Returns: dfs (:obj:`list` of :obj:`pd.DataFrame`): Batch return results. """ config["geography"] = ",".join(str(row["nomis_id"]) for row in geographies) config["RecordOffset"] = record_offset date_parser = lambda x: pd.datetime.strptime(x, date_format) # Build a list of dfs in chunks from the NOMIS API dfs = [] offset = 25000 icalls = 0 done = False while (not done) and icalls < max_api_calls: #logging.debug(f"\t\t {offset}") # Build the request payload params = "&".join(f"{k}={v}" for k,v in config.items()) # Hit the API r = requests.get(NOMIS.format(f"{dataset_id}.data.csv"), params=params) # Read the data with StringIO(r.text) as sio: _df = pd.read_csv(sio, parse_dates=["DATE"], date_parser=date_parser) done = len(_df) < offset # Increment the offset config["RecordOffset"] += offset # Ignore empty fields dfs.append(_df.loc[_df.OBS_VALUE > 0]) icalls += 1 # Combine and return df =
pd.concat(dfs)
pandas.concat
import time start=time.time() from tkinter import * from tkinter import ttk from Classes import * win=Tk() win_gui=window(win, 'Syncing') def syncing(): global end import pandas as pd import gspread from oauth2client.service_account import ServiceAccountCredentials import pandas as pd prog_bar['value']=10 win.update_idletasks() scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] credentials = ServiceAccountCredentials.from_json_keyfile_name( 'GSpread-2ecbd68261be.json', scope) gc = gspread.authorize(credentials) prog_bar['value']=15 win.update_idletasks() wks = gc.open('Students_Records').sheet1 data = wks.get_all_values() headers = data.pop(0) reg_sheets_table = pd.DataFrame(data, columns=headers) prog_bar['value']=20 win.update_idletasks() print('\nPrinting registration table (without setting index) from google sheets: \n') print(reg_sheets_table.head()) print('\nPrinting registration table with names column as its index: \n') reg_sheets_table['Name'] = reg_sheets_table['Name'].str.title() reg_sheets_table['School']=reg_sheets_table['School'].str.title() reg_sheets_table['Remarks']=reg_sheets_table['Remarks'].str.capitalize() reg_sheets_table['Deposit Pattern'] = reg_sheets_table['Deposit Pattern'].str.title() reg_sheets_table['Gender']=reg_sheets_table['Gender'].str.title() reg_sheets_table['Joining Date'] = pd.to_datetime(reg_sheets_table['Joining Date']) reg_sheets_table['Joining Date'] = reg_sheets_table['Joining Date'].dt.strftime('%d/%m/%Y') reg_sheets_table['Class'] = reg_sheets_table['Class'].astype('str') reg_sheets_table['Class'] = reg_sheets_table['Class'].str.title() reg_sheets_table.set_index('Name', inplace=True) print(reg_sheets_table.head()) prog_bar['value']=25 win.update_idletasks() reg_excel_table=pd.read_excel('Students_Records.xlsx') print('\nPrinting registration excel data (Without setting index):\n') print(reg_excel_table.head()) reg_excel_table['Name'] = reg_excel_table['Name'].str.title() reg_excel_table['School']=reg_excel_table['School'].str.title() reg_excel_table['Remarks']=reg_excel_table['Remarks'].str.capitalize() reg_excel_table['Deposit Pattern'] = reg_excel_table['Deposit Pattern'].str.title() reg_excel_table['Gender']=reg_excel_table['Gender'].str.title() reg_excel_table['Joining Date'] =
pd.to_datetime(reg_excel_table['Joining Date'])
pandas.to_datetime
from data_science_layer.reporting.abstract_report import AbstractReport from data_science_layer.pipeline.abstract_pipline import AbstractPipeline import pkg_resources import numpy as np import pandas as pd from sklearn import metrics class RegressorReport(AbstractReport): sub_folder = 'reports' def report(self, pipeline: AbstractPipeline): # Set Directory path folder = '' path = pkg_resources.resource_filename('crcdal', 'cache/' + folder + '/' + self.sub_folder + '/') pkg_resources.ensure_directory(path) model_train_metrics = {} model_test_metrics = {} for i, model in enumerate(pipeline.get_models()): name = model.short_name preds_y_train, _ = model.predict(pipeline.train) preds_y_test, _ = model.predict(pipeline.test) preds_y_train = pd.DataFrame(preds_y_train) preds_y_test = pd.DataFrame(preds_y_test) train_y = pd.DataFrame(pipeline.train_y) test_y = pd.DataFrame(pipeline.test_y) # Account for multiple y values. k = 0 for j in range(pipeline.test_y.shape[1]): model_train_metrics[str(name) + str(j)] = self._stats(train_y.iloc[:, j], preds_y_train.iloc[:, j]) model_test_metrics[str(name) + str(j)] = self._stats(test_y.iloc[:, j], preds_y_test.iloc[:, j]) k += 2 # Feature Metrics df_model_train_metrics =
pd.DataFrame(model_train_metrics)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator from itertools import product, starmap from numpy import nan, inf import numpy as np import pandas as pd from pandas import (Index, Series, DataFrame, isnull, bdate_range, NaT, date_range, timedelta_range, _np_version_under1p8) from pandas.tseries.index import Timestamp from pandas.tseries.tdi import Timedelta import pandas.core.nanops as nanops from pandas.compat import range, zip from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from .common import TestData class TestSeriesOperators(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_comparisons(self): left = np.random.randn(10) right = np.random.randn(10) left[:3] = np.nan result = nanops.nangt(left, right) with np.errstate(invalid='ignore'): expected = (left > right).astype('O') expected[:3] = np.nan assert_almost_equal(result, expected) s = Series(['a', 'b', 'c']) s2 = Series([False, True, False]) # it works! exp = Series([False, False, False]) tm.assert_series_equal(s == s2, exp) tm.assert_series_equal(s2 == s, exp) def test_op_method(self): def check(series, other, check_reverse=False): simple_ops = ['add', 'sub', 'mul', 'floordiv', 'truediv', 'pow'] if not compat.PY3: simple_ops.append('div') for opname in simple_ops: op = getattr(Series, opname) if op == 'div': alt = operator.truediv else: alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) check(self.ts, self.ts * 2) check(self.ts, self.ts[::2]) check(self.ts, 5, check_reverse=True) check(tm.makeFloatSeries(), tm.makeFloatSeries(), check_reverse=True) def test_neg(self): assert_series_equal(-self.series, -1 * self.series) def test_invert(self): assert_series_equal(-(self.series < 0), ~(self.series < 0)) def test_div(self): with np.errstate(all='ignore'): # no longer do integer div for any ops, but deal with the 0's p = DataFrame({'first': [3, 4, 5, 8], 'second': [0, 0, 0, 3]}) result = p['first'] / p['second'] expected = Series( p['first'].values.astype(float) / p['second'].values, dtype='float64') expected.iloc[0:3] = np.inf assert_series_equal(result, expected) result = p['first'] / 0 expected = Series(np.inf, index=p.index, name='first') assert_series_equal(result, expected) p = p.astype('float64') result = p['first'] / p['second'] expected = Series(p['first'].values / p['second'].values) assert_series_equal(result, expected) p = DataFrame({'first': [3, 4, 5, 8], 'second': [1, 1, 1, 1]}) result = p['first'] / p['second'] assert_series_equal(result, p['first'].astype('float64'), check_names=False) self.assertTrue(result.name is None) self.assertFalse(np.array_equal(result, p['second'] / p['first'])) # inf signing s = Series([np.nan, 1., -1.]) result = s / 0 expected = Series([np.nan, np.inf, -np.inf]) assert_series_equal(result, expected) # float/integer issue # GH 7785 p = DataFrame({'first': (1, 0), 'second': (-0.01, -0.02)}) expected = Series([-0.01, -np.inf]) result = p['second'].div(p['first']) assert_series_equal(result, expected, check_names=False) result = p['second'] / p['first'] assert_series_equal(result, expected) # GH 9144 s = Series([-1, 0, 1]) result = 0 / s expected = Series([0.0, nan, 0.0]) assert_series_equal(result, expected) result = s / 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) result = s // 0 expected = Series([-inf, nan, inf]) assert_series_equal(result, expected) def test_operators(self): def _check_op(series, other, op, pos_only=False, check_dtype=True): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_series_equal(cython_or_numpy, python, check_dtype=check_dtype) def check(series, other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'mod'] for opname in simple_ops: _check_op(series, other, getattr(operator, opname)) _check_op(series, other, operator.pow, pos_only=True) _check_op(series, other, lambda x, y: operator.add(y, x)) _check_op(series, other, lambda x, y: operator.sub(y, x)) _check_op(series, other, lambda x, y: operator.truediv(y, x)) _check_op(series, other, lambda x, y: operator.floordiv(y, x)) _check_op(series, other, lambda x, y: operator.mul(y, x)) _check_op(series, other, lambda x, y: operator.pow(y, x), pos_only=True) _check_op(series, other, lambda x, y: operator.mod(y, x)) check(self.ts, self.ts * 2) check(self.ts, self.ts * 0) check(self.ts, self.ts[::2]) check(self.ts, 5) def check_comparators(series, other, check_dtype=True): _check_op(series, other, operator.gt, check_dtype=check_dtype) _check_op(series, other, operator.ge, check_dtype=check_dtype) _check_op(series, other, operator.eq, check_dtype=check_dtype) _check_op(series, other, operator.lt, check_dtype=check_dtype) _check_op(series, other, operator.le, check_dtype=check_dtype) check_comparators(self.ts, 5) check_comparators(self.ts, self.ts + 1, check_dtype=False) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x': 0.}) tm.assert_series_equal(s1 * s2, Series([np.nan], index=['x'])) def test_operators_timedelta64(self): # invalid ops self.assertRaises(Exception, self.objSeries.__add__, 1) self.assertRaises(Exception, self.objSeries.__add__, np.array(1, dtype=np.int64)) self.assertRaises(Exception, self.objSeries.__sub__, 1) self.assertRaises(Exception, self.objSeries.__sub__, np.array(1, dtype=np.int64)) # seriese ops v1 = date_range('2012-1-1', periods=3, freq='D') v2 = date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') assert_series_equal(rs, xp) self.assertEqual(rs.dtype, 'timedelta64[ns]') df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) self.assertEqual(td.dtype, 'timedelta64[ns]') # series on the rhs result = df['A'] - df['A'].shift() self.assertEqual(result.dtype, 'timedelta64[ns]') result = df['A'] + td self.assertEqual(result.dtype, 'M8[ns]') # scalar Timestamp on rhs maxa = df['A'].max() tm.assertIsInstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() self.assertEqual(resultb.dtype, 'timedelta64[ns]') # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') assert_series_equal(result, expected) self.assertEqual(result.dtype, 'm8[ns]') d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d self.assertEqual(resulta.dtype, 'm8[ns]') # roundtrip resultb = resulta + d assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td assert_series_equal(resultb, df['A']) self.assertEqual(resultb.dtype, 'M8[ns]') # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td assert_series_equal(df['A'], resultb) self.assertEqual(resultb.dtype, 'M8[ns]') # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) self.assertEqual(rs[2], value) def test_operator_series_comparison_zerorank(self): # GH 13006 result = np.float64(0) > pd.Series([1, 2, 3]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) result = pd.Series([1, 2, 3]) < np.float64(0) expected = pd.Series([1, 2, 3]) < 0.0 self.assert_series_equal(result, expected) result = np.array([0, 1, 2])[0] > pd.Series([0, 1, 2]) expected = 0.0 > pd.Series([1, 2, 3]) self.assert_series_equal(result, expected) def test_timedeltas_with_DateOffset(self): # GH 4532 # operate with pd.offsets s = Series([Timestamp('20130101 9:01'), Timestamp('20130101 9:02')]) result = s + pd.offsets.Second(5) result2 = pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:01:05'), Timestamp( '20130101 9:02:05')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s - pd.offsets.Second(5) result2 = -pd.offsets.Second(5) + s expected = Series([Timestamp('20130101 9:00:55'), Timestamp( '20130101 9:01:55')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series([Timestamp('20130101 9:06:00.005'), Timestamp( '20130101 9:07:00.005')]) assert_series_equal(result, expected) # operate with np.timedelta64 correctly result = s + np.timedelta64(1, 's') result2 = np.timedelta64(1, 's') + s expected = Series([Timestamp('20130101 9:01:01'), Timestamp( '20130101 9:02:01')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) result = s + np.timedelta64(5, 'ms') result2 = np.timedelta64(5, 'ms') + s expected = Series([Timestamp('20130101 9:01:00.005'), Timestamp( '20130101 9:02:00.005')]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) s + op(5) op(5) + s def test_timedelta_series_ops(self): # GH11925 s = Series(timedelta_range('1 day', periods=3)) ts = Timestamp('2012-01-01') expected = Series(date_range('2012-01-02', periods=3)) assert_series_equal(ts + s, expected) assert_series_equal(s + ts, expected) expected2 = Series(date_range('2011-12-31', periods=3, freq='-1D')) assert_series_equal(ts - s, expected2) assert_series_equal(ts + (-s), expected2) def test_timedelta64_operations_with_DateOffset(self): # GH 10699 td = Series([timedelta(minutes=5, seconds=3)] * 3) result = td + pd.offsets.Minute(1) expected = Series([timedelta(minutes=6, seconds=3)] * 3) assert_series_equal(result, expected) result = td - pd.offsets.Minute(1) expected = Series([timedelta(minutes=4, seconds=3)] * 3) assert_series_equal(result, expected) result = td + Series([pd.offsets.Minute(1), pd.offsets.Second(3), pd.offsets.Hour(2)]) expected = Series([timedelta(minutes=6, seconds=3), timedelta( minutes=5, seconds=6), timedelta(hours=2, minutes=5, seconds=3)]) assert_series_equal(result, expected) result = td + pd.offsets.Minute(1) + pd.offsets.Second(12) expected = Series([timedelta(minutes=6, seconds=15)] * 3) assert_series_equal(result, expected) # valid DateOffsets for do in ['Hour', 'Minute', 'Second', 'Day', 'Micro', 'Milli', 'Nano']: op = getattr(pd.offsets, do) td + op(5) op(5) + td td - op(5) op(5) - td def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = Series([timedelta(seconds=0)] * 3) - Series([timedelta( seconds=1)] * 3) self.assertEqual(result.dtype, 'm8[ns]') assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta( seconds=0)] * 3)) assert_series_equal(result2, expected) # roundtrip assert_series_equal(result + td2, td1) def test_timedelta64_operations_with_integers(self): # GH 4521 # divide/multiply by integers startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan s2 = Series([2, 3, 4]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) / s2, dtype='m8[ns]') expected[2] = np.nan result = s1 / s2 assert_series_equal(result, expected) result = s1 / 2 expected = Series(s1.values.astype(np.int64) / 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) s2 = Series([20, 30, 40]) expected = Series(s1.values.astype(np.int64) * s2, dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) for dtype in ['int32', 'int16', 'uint32', 'uint64', 'uint32', 'uint16', 'uint8']: s2 = Series([20, 30, 40], dtype=dtype) expected = Series( s1.values.astype(np.int64) * s2.astype(np.int64), dtype='m8[ns]') expected[2] = np.nan result = s1 * s2 assert_series_equal(result, expected) result = s1 * 2 expected = Series(s1.values.astype(np.int64) * 2, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) result = s1 * -1 expected = Series(s1.values.astype(np.int64) * -1, dtype='m8[ns]') expected[2] = np.nan assert_series_equal(result, expected) # invalid ops assert_series_equal(s1 / s2.astype(float), Series([Timedelta('2 days 22:48:00'), Timedelta( '1 days 23:12:00'), Timedelta('NaT')])) assert_series_equal(s1 / 2.0, Series([Timedelta('29 days 12:00:00'), Timedelta( '29 days 12:00:00'), Timedelta('NaT')])) for op in ['__add__', '__sub__']: sop = getattr(s1, op, None) if sop is not None: self.assertRaises(TypeError, sop, 1) self.assertRaises(TypeError, sop, s2.values) def test_timedelta64_conversions(self): startdate = Series(date_range('2013-01-01', '2013-01-03')) enddate = Series(date_range('2013-03-01', '2013-03-03')) s1 = enddate - startdate s1[2] = np.nan for m in [1, 3, 10]: for unit in ['D', 'h', 'm', 's', 'ms', 'us', 'ns']: # op expected = s1.apply(lambda x: x / np.timedelta64(m, unit)) result = s1 / np.timedelta64(m, unit) assert_series_equal(result, expected) if m == 1 and unit != 'ns': # astype result = s1.astype("timedelta64[{0}]".format(unit)) assert_series_equal(result, expected) # reverse op expected = s1.apply( lambda x: Timedelta(np.timedelta64(m, unit)) / x) result = np.timedelta64(m, unit) / s1 # astype s = Series(date_range('20130101', periods=3)) result = s.astype(object) self.assertIsInstance(result.iloc[0], datetime) self.assertTrue(result.dtype == np.object_) result = s1.astype(object) self.assertIsInstance(result.iloc[0], timedelta) self.assertTrue(result.dtype == np.object_) def test_timedelta64_equal_timedelta_supported_ops(self): ser = Series([Timestamp('20130301'), Timestamp('20130228 23:00:00'), Timestamp('20130228 22:00:00'), Timestamp( '20130228 21:00:00')]) intervals = 'D', 'h', 'm', 's', 'us' # TODO: unused # npy16_mappings = {'D': 24 * 60 * 60 * 1000000, # 'h': 60 * 60 * 1000000, # 'm': 60 * 1000000, # 's': 1000000, # 'us': 1} def timedelta64(*args): return sum(starmap(np.timedelta64, zip(args, intervals))) for op, d, h, m, s, us in product([operator.add, operator.sub], *([range(2)] * 5)): nptd = timedelta64(d, h, m, s, us) pytd = timedelta(days=d, hours=h, minutes=m, seconds=s, microseconds=us) lhs = op(ser, nptd) rhs = op(ser, pytd) try: assert_series_equal(lhs, rhs) except: raise AssertionError( "invalid comparsion [op->{0},d->{1},h->{2},m->{3}," "s->{4},us->{5}]\n{6}\n{7}\n".format(op, d, h, m, s, us, lhs, rhs)) def test_operators_datetimelike(self): def run_ops(ops, get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined for op_str in ops: op = getattr(get_ser, op_str, None) with tm.assertRaisesRegexp(TypeError, 'operate'): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td2 = timedelta(minutes=5, seconds=4) ops = ['__mul__', '__floordiv__', '__pow__', '__rmul__', '__rfloordiv__', '__rpow__'] run_ops(ops, td1, td2) td1 + td2 td2 + td1 td1 - td2 td2 - td1 td1 / td2 td2 / td1 # ## datetime64 ### dt1 = Series([Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')]) dt1.iloc[2] = np.nan dt2 = Series([Timestamp('20111231'), Timestamp('20120102'), Timestamp('20120104')]) ops = ['__add__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__radd__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, dt2) dt1 - dt2 dt2 - dt1 # ## datetime64 with timetimedelta ### ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, dt1, td1) dt1 + td1 td1 + dt1 dt1 - td1 # TODO: Decide if this ought to work. # td1 - dt1 # ## timetimedelta with datetime64 ### ops = ['__sub__', '__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] run_ops(ops, td1, dt1) td1 + dt1 dt1 + td1 # 8260, 10763 # datetime64 with tz ops = ['__mul__', '__floordiv__', '__truediv__', '__div__', '__pow__', '__rmul__', '__rfloordiv__', '__rtruediv__', '__rdiv__', '__rpow__'] tz = 'US/Eastern' dt1 = Series(date_range('2000-01-01 09:00:00', periods=5, tz=tz), name='foo') dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(timedelta_range('1 days 1 min', periods=5, freq='H')) td2 = td1.copy() td2.iloc[1] = np.nan run_ops(ops, dt1, td1) result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas if not _np_version_under1p8: result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1[0] - dt1) result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td2[0] - dt2) result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) assert_series_equal(result, exp) self.assertRaises(TypeError, lambda: td1 - dt1) self.assertRaises(TypeError, lambda: td2 - dt2) def test_sub_single_tz(self): # GH12290 s1 = Series([pd.Timestamp('2016-02-10', tz='America/Sao_Paulo')]) s2 = Series([pd.Timestamp('2016-02-08', tz='America/Sao_Paulo')]) result = s1 - s2 expected = Series([Timedelta('2days')]) assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta('-2days')]) assert_series_equal(result, expected) def test_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) datetime_series = Series([NaT, Timestamp('19900315')]) nat_series_dtype_timedelta = Series( [NaT, NaT], dtype='timedelta64[ns]') nat_series_dtype_timestamp = Series([NaT, NaT], dtype='datetime64[ns]') single_nat_dtype_datetime = Series([NaT], dtype='datetime64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(datetime_series - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) assert_series_equal(datetime_series - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + datetime_series assert_series_equal(datetime_series - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + datetime_series, nat_series_dtype_timestamp) # without a Series wrapping the NaT, it is ambiguous # whether it is a datetime64 or timedelta64 # defaults to interpreting it as timedelta64 assert_series_equal(nat_series_dtype_timestamp - NaT, nat_series_dtype_timestamp) assert_series_equal(-NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_datetime, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): -single_nat_dtype_datetime + nat_series_dtype_timestamp assert_series_equal(nat_series_dtype_timestamp - single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(-single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) with tm.assertRaises(TypeError): timedelta_series - single_nat_dtype_datetime # addition assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp) assert_series_equal(NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timestamp + single_nat_dtype_timedelta, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timestamp, nat_series_dtype_timestamp) assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_datetime, nat_series_dtype_timestamp) assert_series_equal(single_nat_dtype_datetime + nat_series_dtype_timedelta, nat_series_dtype_timestamp) # multiplication assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) assert_series_equal(timedelta_series * 1, timedelta_series) assert_series_equal(1 * timedelta_series, timedelta_series) assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) assert_series_equal(timedelta_series * nan, nat_series_dtype_timedelta) assert_series_equal(nan * timedelta_series, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): datetime_series * 1 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1 with tm.assertRaises(TypeError): datetime_series * 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp * 1.0 # division assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) assert_series_equal(timedelta_series / nan, nat_series_dtype_timedelta) with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1.0 with tm.assertRaises(TypeError): nat_series_dtype_timestamp / 1 def test_ops_datetimelike_align(self): # GH 7500 # datetimelike ops need to align dt = Series(date_range('2012-1-1', periods=3, freq='D')) dt.iloc[2] = np.nan dt2 = dt[::-1] expected = Series([timedelta(0), timedelta(0), pd.NaT]) # name is reset result = dt2 - dt assert_series_equal(result, expected) expected = Series(expected, name=0) result = (dt2.to_frame() - dt.to_frame())[0] assert_series_equal(result, expected) def test_object_comparisons(self): s = Series(['a', 'b', np.nan, 'c', 'a']) result = s == 'a' expected = Series([True, False, False, False, True]) assert_series_equal(result, expected) result = s < 'a' expected = Series([False, False, False, False, False]) assert_series_equal(result, expected) result = s != 'a' expected = -(s == 'a') assert_series_equal(result, expected) def test_comparison_tuples(self): # GH11339 # comparisons vs tuple s = Series([(1, 1), (1, 2)]) result = s == (1, 2) expected = Series([False, True]) assert_series_equal(result, expected) result = s != (1, 2) expected = Series([True, False]) assert_series_equal(result, expected) result = s == (0, 0) expected = Series([False, False]) assert_series_equal(result, expected) result = s != (0, 0) expected = Series([True, True]) assert_series_equal(result, expected) s = Series([(1, 1), (1, 1)]) result = s == (1, 1) expected = Series([True, True]) assert_series_equal(result, expected) result = s != (1, 1) expected = Series([False, False]) assert_series_equal(result, expected) s = Series([frozenset([1]), frozenset([1, 2])]) result = s == frozenset([1]) expected = Series([True, False]) assert_series_equal(result, expected) def test_comparison_operators_with_nas(self): s = Series(bdate_range('1/1/2000', periods=10), dtype=object) s[::2] = np.nan # test that comparisons work ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: val = s[5] f = getattr(operator, op) result = f(s, val) expected = f(s.dropna(), val).reindex(s.index) if op == 'ne': expected = expected.fillna(True).astype(bool) else: expected = expected.fillna(False).astype(bool) assert_series_equal(result, expected) # fffffffuuuuuuuuuuuu # result = f(val, s) # expected = f(val, s.dropna()).reindex(s.index) # assert_series_equal(result, expected) # boolean &, |, ^ should work with object arrays and propagate NAs ops = ['and_', 'or_', 'xor'] mask = s.isnull() for bool_op in ops: f = getattr(operator, bool_op) filled = s.fillna(s[0]) result = f(s < s[9], s > s[3]) expected = f(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_comparison_object_numeric_nas(self): s = Series(np.random.randn(10), dtype=object) shifted = s.shift(2) ops = ['lt', 'le', 'gt', 'ge', 'eq', 'ne'] for op in ops: f = getattr(operator, op) result = f(s, shifted) expected = f(s.astype(float), shifted.astype(float)) assert_series_equal(result, expected) def test_comparison_invalid(self): # GH4968 # invalid date/int comparisons s = Series(range(5)) s2 = Series(date_range('20010101', periods=5)) for (x, y) in [(s, s2), (s2, s)]: self.assertRaises(TypeError, lambda: x == y) self.assertRaises(TypeError, lambda: x != y) self.assertRaises(TypeError, lambda: x >= y) self.assertRaises(TypeError, lambda: x > y) self.assertRaises(TypeError, lambda: x < y) self.assertRaises(TypeError, lambda: x <= y) def test_more_na_comparisons(self): for dtype in [None, object]: left = Series(['a', np.nan, 'c'], dtype=dtype) right = Series(['a', np.nan, 'd'], dtype=dtype) result = left == right expected = Series([True, False, False]) assert_series_equal(result, expected) result = left != right expected = Series([False, True, True]) assert_series_equal(result, expected) result = left == np.nan expected = Series([False, False, False]) assert_series_equal(result, expected) result = left != np.nan expected = Series([True, True, True]) assert_series_equal(result, expected) def test_nat_comparisons(self): data = [([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]), ([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.NaT, pd.NaT, pd.Timedelta('3 days')]), ([pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')], [pd.NaT, pd.NaT, pd.Period('2011-03', freq='M')])] # add lhs / rhs switched data data = data + [(r, l) for l, r in data] for l, r in data: for dtype in [None, object]: left = Series(l, dtype=dtype) # Series, Index for right in [Series(r, dtype=dtype), Index(r, dtype=dtype)]: expected = Series([False, False, True]) assert_series_equal(left == right, expected) expected = Series([True, True, False]) assert_series_equal(left != right, expected) expected = Series([False, False, False]) assert_series_equal(left < right, expected) expected = Series([False, False, False]) assert_series_equal(left > right, expected) expected = Series([False, False, True]) assert_series_equal(left >= right, expected) expected = Series([False, False, True]) assert_series_equal(left <= right, expected) def test_nat_comparisons_scalar(self): data = [[pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')], [pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')], [pd.Period('2011-01', freq='M'), pd.NaT, pd.Period('2011-03', freq='M')]] for l in data: for dtype in [None, object]: left = Series(l, dtype=dtype) expected = Series([False, False, False]) assert_series_equal(left == pd.NaT, expected) assert_series_equal(pd.NaT == left, expected) expected = Series([True, True, True]) assert_series_equal(left != pd.NaT, expected) assert_series_equal(pd.NaT != left, expected) expected = Series([False, False, False]) assert_series_equal(left < pd.NaT, expected) assert_series_equal(pd.NaT > left, expected) assert_series_equal(left <= pd.NaT, expected) assert_series_equal(pd.NaT >= left, expected) assert_series_equal(left > pd.NaT, expected) assert_series_equal(pd.NaT < left, expected) assert_series_equal(left >= pd.NaT, expected) assert_series_equal(pd.NaT <= left, expected) def test_comparison_different_length(self): a = Series(['a', 'b', 'c']) b = Series(['b', 'a']) self.assertRaises(ValueError, a.__lt__, b) a = Series([1, 2]) b = Series([2, 3, 4]) self.assertRaises(ValueError, a.__eq__, b) def test_comparison_label_based(self): # GH 4947 # comparisons should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([False, True, False], list('abc')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False], list('abc')) result = a | b assert_series_equal(result, expected) expected = Series([True, False, False], list('abc')) result = a ^ b assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([False, True, False, False], list('abcd')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False, False], list('abcd')) result = a | b assert_series_equal(result, expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result, expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ['z']) expected = Series([False, False, False, False], list('abcz')) assert_series_equal(result, expected) result = a | Series([1], ['z']) expected = Series([True, True, False, False], list('abcz')) assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]), Series([1], ['z']), Series(np.nan, b.index), Series(np.nan, a.index)]: result = a[a | e] assert_series_equal(result, a[a]) for e in [Series(['z'])]: if compat.PY3: with tm.assert_produces_warning(RuntimeWarning): result = a[a | e] else: result = a[a | e] assert_series_equal(result, a[a]) # vs scalars index = list('bca') t = Series([True, False, True]) for v in [True, 1, 2]: result = Series([True, False, True], index=index) | v expected = Series([True, True, True], index=index) assert_series_equal(result, expected) for v in [np.nan, 'foo']: self.assertRaises(TypeError, lambda: t | v) for v in [False, 0]: result = Series([True, False, True], index=index) | v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [True, 1]: result = Series([True, False, True], index=index) & v expected = Series([True, False, True], index=index) assert_series_equal(result, expected) for v in [False, 0]: result = Series([True, False, True], index=index) & v expected = Series([False, False, False], index=index) assert_series_equal(result, expected) for v in [np.nan]: self.assertRaises(TypeError, lambda: t & v) def test_comparison_flex_basic(self): left = pd.Series(np.random.randn(10)) right = pd.Series(np.random.randn(10)) tm.assert_series_equal(left.eq(right), left == right) tm.assert_series_equal(left.ne(right), left != right) tm.assert_series_equal(left.le(right), left < right) tm.assert_series_equal(left.lt(right), left <= right) tm.assert_series_equal(left.gt(right), left > right) tm.assert_series_equal(left.ge(right), left >= right) # axis for axis in [0, None, 'index']: tm.assert_series_equal(left.eq(right, axis=axis), left == right) tm.assert_series_equal(left.ne(right, axis=axis), left != right) tm.assert_series_equal(left.le(right, axis=axis), left < right) tm.assert_series_equal(left.lt(right, axis=axis), left <= right) tm.assert_series_equal(left.gt(right, axis=axis), left > right) tm.assert_series_equal(left.ge(right, axis=axis), left >= right) # msg = 'No axis named 1 for object type' for op in ['eq', 'ne', 'le', 'le', 'gt', 'ge']: with tm.assertRaisesRegexp(ValueError, msg): getattr(left, op)(right, axis=1) def test_comparison_flex_alignment(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, False], index=list('abcd')) tm.assert_series_equal(left.eq(right), exp) exp = pd.Series([True, True, False, True], index=list('abcd')) tm.assert_series_equal(left.ne(right), exp) exp = pd.Series([False, False, True, False], index=list('abcd')) tm.assert_series_equal(left.le(right), exp) exp = pd.Series([False, False, False, False], index=list('abcd')) tm.assert_series_equal(left.lt(right), exp) exp = pd.Series([False, True, True, False], index=list('abcd')) tm.assert_series_equal(left.ge(right), exp) exp = pd.Series([False, True, False, False], index=list('abcd')) tm.assert_series_equal(left.gt(right), exp) def test_comparison_flex_alignment_fill(self): left = Series([1, 3, 2], index=list('abc')) right = Series([2, 2, 2], index=list('bcd')) exp = pd.Series([False, False, True, True], index=list('abcd')) tm.assert_series_equal(left.eq(right, fill_value=2), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) tm.assert_series_equal(left.ne(right, fill_value=2), exp) exp = pd.Series([False, False, True, True], index=list('abcd')) tm.assert_series_equal(left.le(right, fill_value=0), exp) exp = pd.Series([False, False, False, True], index=list('abcd')) tm.assert_series_equal(left.lt(right, fill_value=0), exp) exp = pd.Series([True, True, True, False], index=list('abcd')) tm.assert_series_equal(left.ge(right, fill_value=0), exp) exp = pd.Series([True, True, False, False], index=list('abcd')) tm.assert_series_equal(left.gt(right, fill_value=0), exp) def test_operators_bitwise(self): # GH 9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list('abc')) assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list('abc')) assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) self.assertRaises(TypeError, lambda: s_1111 & 'a') self.assertRaises(TypeError, lambda: s_1111 & ['a', 'b', 'c', 'd']) self.assertRaises(TypeError, lambda: s_0123 & np.NaN) self.assertRaises(TypeError, lambda: s_0123 & 3.14) self.assertRaises(TypeError, lambda: s_0123 & [0.1, 4, 3.14, 2]) # s_0123 will be all false now because of reindexing like s_tft if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3]) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_tft & s_0123, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_tft & s_0123, exp) # s_tft will be all false now because of reindexing like s_0123 if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a']) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_0123 & s_tft, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_0123 & s_tft, exp) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a', 'b', np.NaN, 'd']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_scalar_na_cmp_corners(self): s =
Series([2, 3, 4, 5, 6, 7, 8, 9, 10])
pandas.Series
import unittest from unittest.mock import patch, Mock from random import randint, choice from copy import deepcopy import numpy as np import pandas as pd import simplejson as json from datetime import datetime import threading import queue import time import logging from pyvvo import equipment, utils from pyvvo.sparql import REG_MEAS_MEAS_MRID_COL, REG_MEAS_REG_MRID_COL,\ CAP_MEAS_MEAS_MRID_COL, CAP_MEAS_CAP_MRID_COL, SWITCH_MEAS_MEAS_MRID_COL,\ SWITCH_MEAS_SWITCH_MRID_COL import tests.data_files as _df class EquipmentManagerRegulatorTestCase(unittest.TestCase): """Test EquipmentManager with regulator data.""" # noinspection PyPep8Naming @classmethod def setUpClass(cls): cls.reg_meas = _df.read_pickle(_df.REG_MEAS_9500) with open(_df.REG_MEAS_MSG_9500, 'r') as f: cls.reg_meas_msg = json.load(f) # Do some bad, fragile stuff: loop over all the measurements # and increment the value by one. This way, we ensure the # regulator actually changes state (I'm pretty sure the original # message has the regulators in their original state). for d in cls.reg_meas_msg: d['value'] += 1 # Just create a bogus datetime. cls.sim_dt = datetime(2019, 9, 2, 17, 8) cls.reg_df = _df.read_pickle(_df.REGULATORS_9500) # noinspection PyPep8Naming def setUp(self): # Gotta be careful with these mutable types... Get fresh # instances each time. It won't be that slow, I promise. self.reg_dict = \ equipment.initialize_regulators(self.reg_df) self.reg_mgr = \ equipment.EquipmentManager( eq_dict=self.reg_dict, eq_meas=self.reg_meas, meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) @staticmethod def random_update(reg_in, list_in): """Helper to randomly update tap steps. Use this with the loop_helper. """ new_step = reg_in.state while new_step == reg_in.state: new_step = randint(reg_in.low_step, reg_in.high_step) reg_in.state = new_step list_in.append(new_step) def test_reg_dict_attribute(self): self.assertIs(self.reg_dict, self.reg_mgr.eq_dict) def test_missing_meas(self): """Ensure we get an exception if missing an input.""" meas = self.reg_meas.copy(deep=True) meas = meas.drop(index=meas.index[-1]) s = 'The eq_meas input is missing equipment' with self.assertRaisesRegex(ValueError, s): _ = \ equipment.EquipmentManager( eq_dict=self.reg_dict, eq_meas=meas, meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) def test_duplicate_meas(self): """Ensure we get an exception if inputs are not consistent. """ meas = self.reg_meas.copy(deep=True) # Create a duplicate entry. meas = meas.append(meas.iloc[0]) s = 'Received 2 measurements for equipment with mrid' with self.assertRaisesRegex(ValueError, s): _ = \ equipment.EquipmentManager( eq_dict=self.reg_dict, eq_meas=meas, meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) def test_all_measurements_mapped(self): """Ensure all measurements are in the map.""" for meas_mrid in self.reg_meas['pos_meas_mrid'].values: with self.subTest(): self.assertIn(meas_mrid, self.reg_mgr.meas_eq_map.keys()) def test_no_meas_for_reg(self): """Remove measurements for given regulator, ensure we get proper exception. """ meas_view = self.reg_meas[ ~(self.reg_meas['tap_changer_mrid'] == self.reg_meas['tap_changer_mrid'][0]) ] with self.assertRaisesRegex(ValueError, 'The eq_meas input is miss'): _ = \ equipment.EquipmentManager( eq_dict=self.reg_dict, eq_meas=meas_view, meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) def test_bad_reg_dict_type(self): with self.assertRaisesRegex(TypeError, 'eq_dict must be a dictionary'): _ = \ equipment.EquipmentManager( eq_dict=10, eq_meas=self.reg_meas, meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) def test_bad_reg_meas_type(self): with self.assertRaisesRegex(TypeError, 'eq_meas must be a Pandas'): _ = equipment.EquipmentManager( eq_dict=self.reg_dict, eq_meas=pd.Series(), meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) def test_no_meas_for_single_phase_reg(self): meas_view = self.reg_meas.drop(0, axis=0) with self.assertRaisesRegex(ValueError, 'The eq_meas input is miss'): _ = \ equipment.EquipmentManager( eq_dict=self.reg_dict, eq_meas=meas_view, meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) def test_two_meas_for_single_phase_reg(self): reg_meas = self.reg_meas.append(self.reg_meas.iloc[0]) with self.assertRaisesRegex(ValueError, 'Received 2 measurements for'): _ = equipment.EquipmentManager( eq_dict=self.reg_dict, eq_meas=reg_meas, meas_mrid_col=REG_MEAS_MEAS_MRID_COL, eq_mrid_col=REG_MEAS_REG_MRID_COL ) def test_update_state_simple(self): """Just ensure it runs without error.""" # At the time of writing, the debug line is the last one in the # function, so ensuring it gets hit is adequate. with self.assertLogs(logger=self.reg_mgr.log, level='DEBUG'): self.reg_mgr.update_state(self.reg_meas_msg, sim_dt=self.sim_dt) def test_update_state_warns_if_not_enough_meas(self): with self.assertLogs(logger=self.reg_mgr.log, level='WARNING'): self.reg_mgr.update_state([], sim_dt=self.sim_dt) def test_update_state_changes_taps(self): """Ensure our taps changed appropriately. We'll hard-code this for simplicity. """ self.reg_mgr.update_state(self.reg_meas_msg, sim_dt=self.sim_dt) # Loop over the message. for msg_dict in self.reg_meas_msg: # Grab the MRID. meas_mrid = msg_dict['measurement_mrid'] meas_value = msg_dict['value'] # Look up the measurement mrid. row = self.reg_meas[ self.reg_meas[REG_MEAS_MEAS_MRID_COL] == meas_mrid] self.assertGreater(row.shape[0], 0) # Grab regulator mrid and phase. reg_mrid = row[REG_MEAS_REG_MRID_COL].values[0] # Ensure this regulator got updated. with self.subTest(meas_mrid=meas_mrid): # noinspection PyUnboundLocalVariable self.assertEqual(self.reg_dict[reg_mrid].state, meas_value) def test_update_state_bad_mrid(self): reg_meas_msg = deepcopy(self.reg_meas_msg) reg_meas_msg.append({'measurement_mrid': '1234', 'value': 12}) with self.assertLogs(level='WARNING'): self.reg_mgr.update_state(reg_meas_msg, sim_dt=self.sim_dt) def test_update_state_bad_entry_1(self): reg_meas_msg = deepcopy(self.reg_meas_msg) reg_meas_msg.append({'measurement_mrId': '1234', 'value': 12}) with self.assertRaisesRegex(KeyError, 'measurement_mrid'): self.reg_mgr.update_state(reg_meas_msg, sim_dt=self.sim_dt) def test_update_state_bad_entry_2(self): reg_meas_msg = deepcopy(self.reg_meas_msg) reg_meas_msg.append({'measurement_mrid': '1234', 'valu3': 12}) with self.assertRaisesRegex(KeyError, 'value'): self.reg_mgr.update_state(reg_meas_msg, sim_dt=self.sim_dt) def test_update_state_bad_type(self): with self.assertRaisesRegex(TypeError, 'msg must be a list'): # noinspection PyTypeChecker self.reg_mgr.update_state(msg='hello there', sim_dt=self.sim_dt) def test_update_state_bad_type_2(self): with self.assertRaisesRegex(TypeError, 'string indices must be'): # noinspection PyTypeChecker self.reg_mgr.update_state(msg=['hello there'], sim_dt=self.sim_dt) def test_build_equipment_commands_no_op(self): """Ensure that if equipment has the same state, no update command comes out. """ # Just use the same dictionary to make a "do nothing" command. out = self.reg_mgr.build_equipment_commands( eq_dict_forward=self.reg_dict) for v in out.values(): self.assertEqual(0, len(v)) def test_build_equipment_commands(self): """One stop big function which probably should be spun off into its own test case. NOTE: This test is fragile as it currently relies on how the looping is performed in build_equipment_commands. """ reg_dict_forward = deepcopy(self.reg_dict) # For some reason the new eq_dict won't pickle? # reg_dict_forward = \ # equipment.initialize_regulators( # _df.read_pickle(_df.REGULATORS_9500)) # Initialize list to hold regulator positions. forward_vals = [] # Randomly update all regulators. equipment.loop_helper(eq_dict=reg_dict_forward, func=self.random_update, list_in=forward_vals) # Get reverse values. reverse_vals = [] def get_state(reg_in): reverse_vals.append(reg_in.state) # Get reverse values. equipment.loop_helper(eq_dict=self.reg_dict, func=get_state) # Command the regulators. out = self.reg_mgr.build_equipment_commands( eq_dict_forward=reg_dict_forward) # Ensure we're getting the fields we need. self.assertIn('object_ids', out) self.assertIn('attributes', out) self.assertIn('forward_values', out) self.assertIn('reverse_values', out) # Ensure our forward values match. WARNING: this is quite # fragile as it depends on looping order. self.assertListEqual(forward_vals, out['forward_values']) # Ensure reverse values match (also fragile). self.assertListEqual(reverse_vals, out['reverse_values']) # Ensure the given MRID's all correspond to tap changers. tap_mrids = self.reg_df['tap_changer_mrid'] self.assertTrue(tap_mrids.isin(out['object_ids']).values.all()) # Ensure the lengths are equal to all our single phases. # I'm just going to hard-code the fact that the 9500 node model # has 6 3-phase regs. for v in out.values(): self.assertIsInstance(v, list) self.assertEqual(len(v), 18) # All our regulators should have had their expected_state # updated. expected_state = [] def get_expected_state(reg_in): expected_state.append(reg_in.expected_state) equipment.loop_helper(eq_dict=self.reg_dict, func=get_expected_state) self.assertListEqual(forward_vals, expected_state) def test_build_equipment_commands_mismatch(self): """Send mismatched reg dicts in.""" reg_dict_forward = deepcopy(self.reg_dict) reg_dict_forward['blah'] = \ reg_dict_forward.pop(list(reg_dict_forward.keys())[0]) with self.assertRaisesRegex(ValueError, 'not matching up with'): self.reg_mgr.build_equipment_commands(reg_dict_forward) def test_build_equipment_commands_json_serializable(self): """If any Numpy data types leak in, we've got a problem in that we can't serialize the data into json. Inject numpy types and attempt to serialize the result. """ # Make a copy of the message msg = deepcopy(self.reg_meas_msg) # Change all the data types. for d in msg: d['value'] = np.int64(d['value']) def assert_64(eq): assert isinstance(eq.state, np.int64) def assert_32(eq): assert isinstance(eq.state, np.int32) # Update the regulators. # noinspection PyTypeChecker self.reg_mgr.update_state(msg=msg, sim_dt='high noon') # Ensure the equipment actually has int64 states. equipment.loop_helper(self.reg_dict, assert_64) # Similarly, update all the equipment in the dictionary. # Helper for casting to int32. def to_int32(eq): eq.state = np.int32(eq.state) # Get a copy of the regulators and randomly change their states. reg_dict_copy = deepcopy(self.reg_dict) equipment.loop_helper(eq_dict=reg_dict_copy, func=self.random_update, list_in=[]) # Now cast the now randomized states to int32. equipment.loop_helper(eq_dict=reg_dict_copy, func=to_int32) equipment.loop_helper(reg_dict_copy, assert_32) # Build the equipment commands. This returns a dictionary. cmd = self.reg_mgr.build_equipment_commands(reg_dict_copy) # Ensure we actually get commands out, otherwise we're giving # ourselves false confidence in this test. for v in cmd.values(): self.assertGreater(len(v), 0) # Attempt to serialize cmd. j_str = json.dumps(cmd) # Put in an assert just for good measure. self.assertIsInstance(j_str, str) def test_lookup_locked(self): """Ensure lookup_eq_by_mrid_and_phase uses the lock.""" with patch.object(self.reg_mgr, '_lock') as p_lock: # Unfortunately we cannot patch the method here, because # that also patches the wrapping. So, call the method. with self.assertRaises(KeyError): self.reg_mgr.lookup_eq_by_mrid_and_phase('abc') # Ensure that acquire and release were called. self.assertEqual('acquire', p_lock.method_calls[0][0]) self.assertEqual('release', p_lock.method_calls[1][0]) def test_update_state_locked(self): """Ensure update_state uses the lock.""" with patch.object(self.reg_mgr, '_lock') as p_lock: # Unfortunately we cannot patch the method here, because # that also patches the wrapping. So, call the method. with self.assertRaisesRegex(TypeError, 'msg must be a list'): # noinspection PyTypeChecker self.reg_mgr.update_state('abc', 'def') # Ensure that acquire and release were called. self.assertEqual('acquire', p_lock.method_calls[0][0]) self.assertEqual('release', p_lock.method_calls[1][0]) def test_build_equipment_commands_locked(self): """Ensure build_equipment_commands uses the lock.""" with patch.object(self.reg_mgr, '_lock') as p_lock: # Unfortunately we cannot patch the method here, because # that also patches the wrapping. So, call the method. with self.assertRaises(AttributeError): self.reg_mgr.build_equipment_commands('abc') # Ensure that acquire and release were called. self.assertEqual('acquire', p_lock.method_calls[0][0]) self.assertEqual('release', p_lock.method_calls[1][0]) def test_expected_not_equal_to_actual(self): """Test helper function _expected_not_equal_to_actual.""" eq = Mock(spec=equipment.RegulatorSinglePhase) eq.expected_state = 7 eq.state = None # Ensure with a state of None we get a False return. self.assertFalse(equipment._expected_not_equal_to_actual(eq)) # Flop 'em, and should still get None. eq.expected_state = None eq.state = 5 self.assertFalse(equipment._expected_not_equal_to_actual(eq)) # With different settings, we should get True. eq.expected_state = 6 self.assertTrue(equipment._expected_not_equal_to_actual(eq)) # With the same settings, we should get False. eq.state = 6 self.assertFalse(equipment._expected_not_equal_to_actual(eq)) def test_wait_and_get_delta(self): """Test _wait_and_get_delta.""" # Create times which are 60 seconds apart. old_t = datetime(2019, 11, 4, 9, 0) self.reg_mgr.last_time = datetime(2019, 11, 4, 9, 1) # We should get a timeout error if the event isn't toggled. with self.assertRaisesRegex(TimeoutError, 'The update_state method '): self.reg_mgr._wait_and_get_delta(old_t=old_t, timeout=0.01) # Now, spin up a thread to get the time delta. def get_delta(mgr, dt, q): delta = mgr._wait_and_get_delta(old_t=dt, timeout=1) q.put(delta) mq = queue.Queue() t = threading.Thread(target=get_delta, args=(self.reg_mgr, old_t, mq)) t.start() self.reg_mgr._toggle_update_state_event() delta_out = mq.get(timeout=1) # Hard code 60 second difference. self.assertEqual(delta_out, 60) def test_verify_command(self): """Test the verify_command method.""" # We should get a ValueError if last_time is not set (which at # this point, it shouldn't be). with self.assertRaisesRegex(ValueError, 'verify_command has been cal'): self.reg_mgr.verify_command(wait_duration=0.1, timeout=0.1) # Grab the first piece of equipment and put into a dictionary. mrid = list(self.reg_mgr.eq_dict.keys())[0] eq_or_dict = self.reg_mgr.eq_dict[mrid] if isinstance(eq_or_dict, dict): phase = list(self.reg_mgr.eq_dict[mrid].keys())[0] eq = self.reg_mgr.eq_dict[mrid][phase] single_eq_dict = {mrid: {phase: eq}} else: eq = eq_or_dict single_eq_dict = {mrid: eq_or_dict} # Set the last_time, and get a time 60 seconds later. dt = datetime(2019, 11, 4, 9, 15) dt2 = datetime(2019, 11, 4, 9, 16) self.reg_mgr.last_time = dt # We should get a timeout error if the update_state_event never # gets toggled. with self.assertRaisesRegex(TimeoutError, 'The update_state method'): self.reg_mgr.verify_command(wait_duration=0.01, timeout=0.01) # If no equipment has a mismatch between their expected_state # and their state (excluding Nones), we should get a None # return. mq = queue.Queue() def put_result_in_queue(mgr, q, wait_duration, timeout): result = mgr.verify_command(wait_duration=wait_duration, timeout=timeout) q.put(result) t = threading.Thread(target=put_result_in_queue, args=(self.reg_mgr, mq, 60, 1)) t.start() # Wait a tiny bit for the thread to kick off properly. time.sleep(0.05) # Update the last_time and toggle the event to simulate a # message coming in. self.reg_mgr.last_time = dt2 self.reg_mgr._toggle_update_state_event() # Grab element out of the queue. output = mq.get(timeout=1) # No equipment has a mismatch between expected_state and state, # so this result should be None. self.assertIsNone(output) # Reset the time. self.reg_mgr.last_time = dt # Tweak the expected_state for our equipment to ensure it's # different from the state. eq.expected_state = eq.state + 1 # Get a time which is thirty seconds after the first. Hard # coding for the win. dt3 = datetime(2019, 11, 4, 9, 15, 30) # Fire up another thread to run verify_command again. mq = queue.Queue() t = threading.Thread(target=put_result_in_queue, args=(self.reg_mgr, mq, 60, 1)) t.start() time.sleep(0.05) # Update time and toggle event. However, note this time is # less than the wait_duration. self.reg_mgr.last_time = dt3 self.reg_mgr._toggle_update_state_event() # We shouldn't have gotten a return value yet. with self.assertRaises(queue.Empty): mq.get(timeout=0.1) # Update time and toggle event, but this time we should get a # return. time.sleep(0.05) self.reg_mgr.last_time = dt2 self.reg_mgr._toggle_update_state_event() # Extract output. actual_dict = mq.get(timeout=1) # Output should match our single_eq_dict. self.assertDictEqual(single_eq_dict, actual_dict) # The equipment should be inoperable. def is_inoperable(eq_in): self.assertFalse(eq_in.operable) equipment.loop_helper(eq_dict=actual_dict, func=is_inoperable) def test_eq_count(self): """Ensure our eq_count matches the number of equipment.""" c = 0 def count(eq): nonlocal c c += 1 equipment.loop_helper(eq_dict=self.reg_mgr.eq_dict, func=count) self.assertEqual(c, self.reg_mgr.eq_count) def test_update_equipment_log_level(self): """Test update_equipment_log_level.""" self.reg_mgr.update_equipment_log_level(level='ERROR') call_count = 0 def _check_level(eq): nonlocal call_count call_count += 1 self.assertEqual(eq.log.getEffectiveLevel(), logging.ERROR) equipment.loop_helper(eq_dict=self.reg_mgr.eq_dict, func=_check_level) self.assertEqual(call_count, self.reg_mgr.eq_count) class EquipmentManagerCapacitorTestCase(unittest.TestCase): """Test EquipmentManager with capacitor data.""" # noinspection PyPep8Naming @classmethod def setUpClass(cls): cls.cap_meas = _df.read_pickle(_df.CAP_MEAS_9500) with open(_df.CAP_MEAS_MSG_9500, 'r') as f: cls.cap_meas_msg = json.load(f) # Just create a bogus datetime. cls.sim_dt = datetime(2019, 9, 2, 17, 8) # noinspection PyPep8Naming def setUp(self): # Gotta be careful with these mutable types... Get fresh # instances each time. It won't be that slow, I promise. self.cap_dict = \ equipment.initialize_capacitors( _df.read_pickle(_df.CAPACITORS_9500)) self.cap_mgr = \ equipment.EquipmentManager( eq_dict=self.cap_dict, eq_meas=self.cap_meas, meas_mrid_col=CAP_MEAS_MEAS_MRID_COL, eq_mrid_col=CAP_MEAS_CAP_MRID_COL ) def test_cap_dict_attribute(self): self.assertIs(self.cap_dict, self.cap_mgr.eq_dict) def test_inconsistent_inputs(self): """Ensure we get an exception if inputs are not consistent. """ meas = self.cap_meas.copy(deep=True) # Create a duplicate entry. meas = meas.append(meas.iloc[0]) s = 'The number of measurements for equipment with mrid' with self.assertRaisesRegex(ValueError, s): _ = \ equipment.EquipmentManager( eq_dict=self.cap_dict, eq_meas=meas, meas_mrid_col=CAP_MEAS_MEAS_MRID_COL, eq_mrid_col=CAP_MEAS_CAP_MRID_COL ) def test_all_measurements_mapped(self): """Ensure all measurements are in the map.""" for meas_mrid in self.cap_meas[CAP_MEAS_MEAS_MRID_COL].values: with self.subTest(): self.assertIn(meas_mrid, self.cap_mgr.meas_eq_map.keys()) def test_no_meas_for_cap(self): """Remove measurements for given capacitor, ensure we get proper exception. """ meas_view = self.cap_meas[ ~(self.cap_meas[CAP_MEAS_CAP_MRID_COL] == self.cap_meas[CAP_MEAS_CAP_MRID_COL].iloc[-1]) ] with self.assertRaisesRegex(ValueError, 'The eq_meas input is miss'): _ = \ equipment.EquipmentManager( eq_dict=self.cap_dict, eq_meas=meas_view, meas_mrid_col=CAP_MEAS_MEAS_MRID_COL, eq_mrid_col=CAP_MEAS_CAP_MRID_COL ) def test_bad_cap_dict_type(self): with self.assertRaisesRegex(TypeError, 'eq_dict must be a dictionary'): _ = \ equipment.EquipmentManager( eq_dict=10, eq_meas=self.cap_meas, meas_mrid_col=CAP_MEAS_MEAS_MRID_COL, eq_mrid_col=CAP_MEAS_CAP_MRID_COL ) def test_bad_cap_meas_type(self): with self.assertRaisesRegex(TypeError, 'eq_meas must be a Pandas'): _ = equipment.EquipmentManager( eq_dict=self.cap_dict, eq_meas=pd.Series(), meas_mrid_col=CAP_MEAS_MEAS_MRID_COL, eq_mrid_col=CAP_MEAS_CAP_MRID_COL ) def test_update_state_simple(self): """Just ensure it runs without error.""" # At the time of writing, the debug line is the last one in the # function, so ensuring it gets hit is adequate. with self.assertLogs(level='DEBUG'): self.cap_mgr.update_state(self.cap_meas_msg, sim_dt=self.sim_dt) def test_update_state_changes_state(self): """Ensure our states changed appropriately. We'll hard-code this for simplicity. """ self.cap_mgr.update_state(self.cap_meas_msg, sim_dt=self.sim_dt) # Loop over the message. for msg_dict in self.cap_meas_msg: # Grab the MRID. meas_mrid = msg_dict['measurement_mrid'] meas_value = msg_dict['value'] # Look up the measurement mrid. row = self.cap_meas[ self.cap_meas[CAP_MEAS_MEAS_MRID_COL] == meas_mrid] self.assertGreater(row.shape[0], 0) # Grab capacitor mrid and phase. cap_mrid = row[CAP_MEAS_CAP_MRID_COL].values[0] cap_phase = row['phase'].values[0] # Ensure this capacitor got updated. with self.subTest(meas_mrid=meas_mrid): # Lookup the object. eq = self.cap_mgr.lookup_eq_by_mrid_and_phase(mrid=cap_mrid, phase=cap_phase) # noinspection PyUnboundLocalVariable self.assertEqual(eq.state, meas_value) def test_update_state_bad_mrid(self): cap_meas_msg = deepcopy(self.cap_meas_msg) cap_meas_msg.append({'measurement_mrid': '1234', 'value': 12}) with self.assertLogs(level='WARNING'): self.cap_mgr.update_state(cap_meas_msg, sim_dt=self.sim_dt) def test_update_state_bad_entry_1(self): cap_meas_msg = deepcopy(self.cap_meas_msg) cap_meas_msg.append({'measurement_mrId': '1234', 'value': 12}) with self.assertRaisesRegex(KeyError, 'measurement_mrid'): self.cap_mgr.update_state(cap_meas_msg, sim_dt=self.sim_dt) def test_update_state_bad_entry_2(self): cap_meas_msg = deepcopy(self.cap_meas_msg) cap_meas_msg.append({'measurement_mrid': '1234', 'valu3': 12}) with self.assertRaisesRegex(KeyError, 'value'): self.cap_mgr.update_state(cap_meas_msg, sim_dt=self.sim_dt) def test_update_state_bad_type(self): with self.assertRaisesRegex(TypeError, 'msg must be a list'): # noinspection PyTypeChecker self.cap_mgr.update_state(msg='hello there', sim_dt=self.sim_dt) def test_update_state_bad_type_2(self): with self.assertRaisesRegex(TypeError, 'string indices must'): # noinspection PyTypeChecker self.cap_mgr.update_state(msg=['hello there'], sim_dt=self.sim_dt) def test_build_equipment_commands(self): """One stop big function which probably should be spun off into its own test case. NOTE: This test is fragile as it currently relies on how the looping is performed in build_equipment_commands. """ cap_dict_forward = deepcopy(self.cap_mgr.eq_dict) forward_vals = [] def update_state(cap): """Nested helper function.""" if cap.controllable: new_state = choice(equipment.CapacitorSinglePhase.STATES) cap.state = new_state forward_vals.append(new_state) # Randomly update steps. equipment.loop_helper(eq_dict=cap_dict_forward, func=update_state) # Grab reverse values. reverse_vals = [] def get_state(cap): if cap.controllable: reverse_vals.append(cap.state) equipment.loop_helper(eq_dict=self.cap_mgr.eq_dict, func=get_state) # Build equipment commands.. out = self.cap_mgr.build_equipment_commands( eq_dict_forward=cap_dict_forward) # Ensure we're getting the fields we need. self.assertIn('object_ids', out) self.assertIn('attributes', out) self.assertIn('forward_values', out) self.assertIn('reverse_values', out) # Ensure our forward values match. WARNING: this is quite # fragile as it depends on looping order. self.assertListEqual(forward_vals, out['forward_values']) # Ensure reverse values match (also fragile). self.assertListEqual(reverse_vals, out['reverse_values']) # Ensure the lengths are equal to all our controllable # capacitors. Hard-code the fact there are 9. for v in out.values(): self.assertIsInstance(v, list) self.assertEqual(len(v), 9) # Ensure our expected_state matches the state of our forward # items. expected_state = [] def get_expected_state(eq): if eq.controllable: expected_state.append(eq.expected_state) equipment.loop_helper(eq_dict=self.cap_mgr.eq_dict, func=get_expected_state) self.assertListEqual(expected_state, forward_vals) def test_build_equipment_commands_mismatch(self): """Send mismatched cap dicts in.""" cap = deepcopy(self.cap_dict) cap['blah'] = \ cap.pop(list(cap.keys())[0]) with self.assertRaisesRegex(ValueError, 'not matching up with'): self.cap_mgr.build_equipment_commands(cap) class EquipmentManagerSwitchTestCase(unittest.TestCase): """Test EquipmentManager with switch data. Since the "Regulator" and "Capacitor" versions of this test go pretty in-depth, we'll keep this one light and simple. """ @classmethod def setUpClass(cls): cls.switch_meas = _df.read_pickle(_df.SWITCH_MEAS_9500) with open(_df.SWITCH_MEAS_MSG_9500, 'r') as f: cls.switch_meas_msg = json.load(f) # Just create a bogus datetime. cls.sim_dt = datetime(2019, 9, 2, 17, 8) # noinspection PyPep8Naming def setUp(self): # Gotta be careful with these mutable types... Get fresh # instances each time. It won't be that slow, I promise. self.switch_dict = \ equipment.initialize_switches( _df.read_pickle(_df.SWITCHES_9500)) self.switch_mgr = \ equipment.EquipmentManager( eq_dict=self.switch_dict, eq_meas=self.switch_meas, meas_mrid_col=SWITCH_MEAS_MEAS_MRID_COL, eq_mrid_col=SWITCH_MEAS_SWITCH_MRID_COL ) def state_none(self, switch): """Helper to ensure a switch state is None.""" self.assertIsNone(switch.state) def state_valid(self, switch): """Helper to ensure a switch state is valid.""" self.assertIn(switch.state, equipment.SwitchSinglePhase.STATES) def test_update(self): """Send in an update message and ensure that state changed and callbacks are called. """ # Add a callback. m = Mock() self.switch_mgr.add_callback(m) # Start by ensuring all switches start with a status of None. equipment.loop_helper(eq_dict=self.switch_mgr.eq_dict, func=self.state_none) # The update_state_event should not be set. self.assertFalse(self.switch_mgr.update_state_event.is_set()) # Before receiving an update message, last_time should be None. self.assertIsNone(self.switch_mgr.last_time) # Start up a thread which will flip a variable when the # update_state_event is set. event_queue = queue.Queue() def toggle_state_event_set(q): result = self.switch_mgr.update_state_event.wait(timeout=0.5) if result: q.put(True) else: q.put(False) t = threading.Thread(target=toggle_state_event_set, args=(event_queue,)) t.start() # Now that we've ensure all switches start with None status, # update them all. self.switch_mgr.update_state(self.switch_meas_msg, sim_dt=self.sim_dt) # Ensure the last_time attribute has been updated. self.assertEqual(self.switch_mgr.last_time, self.sim_dt) # Loop again and ensure the states are now not None and are # valid. equipment.loop_helper(eq_dict=self.switch_mgr.eq_dict, func=self.state_valid) # The callback should have been called. m.assert_called_once() m.assert_called_with(self.sim_dt) # Ensure our state_event_set got toggled. self.assertTrue(event_queue.get(timeout=0.5)) def test_add_and_call_callbacks(self): """Test add_callback and _call_callbacks.""" # Ensure callbacks start empty. self.assertEqual(len(self.switch_mgr._callbacks), 0) # Add a callback. m = Mock() self.switch_mgr.add_callback(m) # Callbacks should have a length of 1. self.assertEqual(len(self.switch_mgr._callbacks), 1) # Call the callbacks. self.switch_mgr._call_callbacks('bananas') # Our mock should have been called once. m.assert_called_once() m.assert_called_with('bananas') # Add another callback. m2 = Mock() self.switch_mgr.add_callback(m2) self.assertEqual(len(self.switch_mgr._callbacks), 2) self.switch_mgr._call_callbacks('oranges') self.assertEqual(m.call_count, 2) m2.assert_called_once() m2.assert_called_with('oranges') def test_callback_not_called(self): """Ensure that for no state changes, callbacks are not called. """ # Update the states. self.switch_mgr.update_state(self.switch_meas_msg, sim_dt=self.sim_dt) # Add a callback. m = Mock() self.switch_mgr.add_callback(m) # Update the states again with the same message. So, no states # should change. self.switch_mgr.update_state(self.switch_meas_msg, sim_dt=self.sim_dt) # The callback should not have been called. self.assertEqual(0, m.call_count) def test_callback_dies(self): """Ensure our callbacks are held as weak references that die when the method reference is deleted. """ m = Mock() self.switch_mgr.add_callback(m) self.assertEqual(len(self.switch_mgr._callbacks), 1) # Delete the object and force garbage collection. del m import gc gc.collect() self.assertEqual(len(self.switch_mgr._callbacks), 0) class EquipmentManagerBuildEquipmentCommandsInvertTestCase(unittest.TestCase): """Ensure build_equipment_commands acts appropriately depending on the equipment's INVERT_STATES_FOR_COMMANDS attribute. """ def helper(self, invert): """Create equipment manager and equipment dictionaries.""" # Create dictionary with a single piece of equipment. eq_dict = { 'mrid1': equipment.SwitchSinglePhase( name='switch1', mrid='mrid1', phase='A', controllable=True, state=1) } # Create DataFrame with measurement information. eq_meas =
pd.DataFrame([['mrid1', 'meas1']], columns=['eq', 'meas'])
pandas.DataFrame
import logging import numpy as np import pandas as pd def feature_position(hdim1_indices,hdim2_indeces,region,track_data,threshold_i,position_threshold, target): ''' function to determine feature position Input: hdim1_indices: list hdim2_indeces: list region: list list of 2-element tuples track_data: numpy.ndarray 2D numpy array containing the data threshold_i: float position_threshold: str target: str Output: hdim1_index: float feature position along 1st horizontal dimension hdim2_index: float feature position along 2nd horizontal dimension ''' if position_threshold=='center': # get position as geometrical centre of identified region: hdim1_index=np.mean(hdim1_indices) hdim2_index=np.mean(hdim2_indeces) elif position_threshold=='extreme': #get position as max/min position inside the identified region: if target == 'maximum': index=np.argmax(track_data[region]) hdim1_index=hdim1_indices[index] hdim2_index=hdim2_indeces[index] if target == 'minimum': index=np.argmin(track_data[region]) hdim1_index=hdim1_indices[index] hdim2_index=hdim2_indeces[index] elif position_threshold=='weighted_diff': # get position as centre of identified region, weighted by difference from the threshold: weights=abs(track_data[region]-threshold_i) if sum(weights)==0: weights=None hdim1_index=np.average(hdim1_indices,weights=weights) hdim2_index=np.average(hdim2_indeces,weights=weights) elif position_threshold=='weighted_abs': # get position as centre of identified region, weighted by absolute values if the field: weights=abs(track_data[region]) if sum(weights)==0: weights=None hdim1_index=np.average(hdim1_indices,weights=weights) hdim2_index=np.average(hdim2_indeces,weights=weights) else: raise ValueError('position_threshold must be center,extreme,weighted_diff or weighted_abs') return hdim1_index,hdim2_index def test_overlap(region_inner,region_outer): ''' function to test for overlap between two regions (probably scope for further speedup here) Input: region_1: list list of 2-element tuples defining the indeces of all cell in the region region_2: list list of 2-element tuples defining the indeces of all cell in the region Output: overlap: bool True if there are any shared points between the two regions ''' overlap=frozenset(region_outer).isdisjoint(region_inner) return not overlap def remove_parents(features_thresholds,regions_i,regions_old): ''' function to remove features whose regions surround newly detected feature regions Input: features_thresholds: pandas.DataFrame Dataframe containing detected features regions_i: dict dictionary containing the regions above/below threshold for the newly detected feature (feature ids as keys) regions_old: dict dictionary containing the regions above/below threshold from previous threshold (feature ids as keys) Output: features_thresholds pandas.DataFrame Dataframe containing detected features excluding those that are superseded by newly detected ones ''' list_remove=[] for idx_i,region_i in regions_i.items(): for idx_old,region_old in regions_old.items(): if test_overlap(regions_old[idx_old],regions_i[idx_i]): list_remove.append(idx_old) list_remove=list(set(list_remove)) # remove parent regions: if features_thresholds is not None: features_thresholds=features_thresholds[~features_thresholds['idx'].isin(list_remove)] return features_thresholds def feature_detection_threshold(data_i,i_time, threshold=None, min_num=0, target='maximum', position_threshold='center', sigma_threshold=0.5, n_erosion_threshold=0, n_min_threshold=0, min_distance=0, idx_start=0): ''' function to find features based on individual threshold value: Input: data_i: iris.cube.Cube 2D field to perform the feature detection (single timestep) i_time: int number of the current timestep threshold: float threshold value used to select target regions to track target: str ('minimum' or 'maximum') flag to determine if tracking is targetting minima or maxima in the data position_threshold: str('extreme', 'weighted_diff', 'weighted_abs' or 'center') flag choosing method used for the position of the tracked feature sigma_threshold: float standard deviation for intial filtering step n_erosion_threshold: int number of pixel by which to erode the identified features n_min_threshold: int minimum number of identified features min_distance: float minimum distance between detected features (m) idx_start: int feature id to start with Output: features_threshold: pandas DataFrame detected features for individual threshold regions: dict dictionary containing the regions above/below threshold used for each feature (feature ids as keys) ''' from skimage.measure import label from skimage.morphology import binary_erosion # if looking for minima, set values above threshold to 0 and scale by data minimum: if target == 'maximum': mask=1*(data_i >= threshold) # if looking for minima, set values above threshold to 0 and scale by data minimum: elif target == 'minimum': mask=1*(data_i <= threshold) # only include values greater than threshold # erode selected regions by n pixels if n_erosion_threshold>0: selem=np.ones((n_erosion_threshold,n_erosion_threshold)) mask=binary_erosion(mask,selem).astype(np.int64) # detect individual regions, label and count the number of pixels included: labels = label(mask, background=0) values, count = np.unique(labels[:,:].ravel(), return_counts=True) values_counts=dict(zip(values, count)) # Filter out regions that have less pixels than n_min_threshold values_counts={k:v for k, v in values_counts.items() if v>n_min_threshold} #check if not entire domain filled as one feature if 0 in values_counts: #Remove background counts: values_counts.pop(0) #create empty list to store individual features for this threshold list_features_threshold=[] #create empty dict to store regions for individual features for this threshold regions=dict() #create emptry list of features to remove from parent threshold value #loop over individual regions: for cur_idx,count in values_counts.items(): region=labels[:,:] == cur_idx [hdim1_indices,hdim2_indeces]= np.nonzero(region) #write region for individual threshold and feature to dict region_i=list(zip(hdim1_indices,hdim2_indeces)) regions[cur_idx+idx_start]=region_i # Determine feature position for region by one of the following methods: hdim1_index,hdim2_index=feature_position(hdim1_indices,hdim2_indeces,region,data_i,threshold,position_threshold,target) #create individual DataFrame row in tracky format for identified feature list_features_threshold.append({'frame': int(i_time), 'idx':cur_idx+idx_start, 'hdim_1': hdim1_index, 'hdim_2':hdim2_index, 'num':count, 'threshold_value':threshold}) features_threshold=pd.DataFrame(list_features_threshold) else: features_threshold=pd.DataFrame() regions=dict() return features_threshold, regions def feature_detection_multithreshold_timestep(data_i,i_time, threshold=None, min_num=0, target='maximum', position_threshold='center', sigma_threshold=0.5, n_erosion_threshold=0, n_min_threshold=0, min_distance=0, feature_number_start=1 ): ''' function to find features in each timestep based on iteratively finding regions above/below a set of thresholds Input: data_i: iris.cube.Cube 2D field to perform the feature detection (single timestep) i_time: int number of the current timestep threshold: list of floats threshold values used to select target regions to track dxy: float grid spacing of the input data (m) target: str ('minimum' or 'maximum') flag to determine if tracking is targetting minima or maxima in the data position_threshold: str('extreme', 'weighted_diff', 'weighted_abs' or 'center') flag choosing method used for the position of the tracked feature sigma_threshold: float standard deviation for intial filtering step n_erosion_threshold: int number of pixel by which to erode the identified features n_min_threshold: int minimum number of identified features min_distance: float minimum distance between detected features (m) feature_number_start: int feature number to start with Output: features_threshold: pandas DataFrame detected features for individual timestep ''' from scipy.ndimage.filters import gaussian_filter track_data = data_i.core_data() track_data=gaussian_filter(track_data, sigma=sigma_threshold) #smooth data slightly to create rounded, continuous field # create empty lists to store regions and features for individual timestep features_thresholds=pd.DataFrame() for i_threshold,threshold_i in enumerate(threshold): if (i_threshold>0 and not features_thresholds.empty): idx_start=features_thresholds['idx'].max()+1 else: idx_start=0 features_threshold_i,regions_i=feature_detection_threshold(track_data,i_time, threshold=threshold_i, sigma_threshold=sigma_threshold, min_num=min_num, target=target, position_threshold=position_threshold, n_erosion_threshold=n_erosion_threshold, n_min_threshold=n_min_threshold, min_distance=min_distance, idx_start=idx_start ) if any([x is not None for x in features_threshold_i]): features_thresholds=features_thresholds.append(features_threshold_i) # For multiple threshold, and features found both in the current and previous step, remove "parent" features from Dataframe if (i_threshold>0 and not features_thresholds.empty and regions_old): # for each threshold value: check if newly found features are surrounded by feature based on less restrictive threshold features_thresholds=remove_parents(features_thresholds,regions_i,regions_old) regions_old=regions_i logging.debug('Finished feature detection for threshold '+str(i_threshold) + ' : ' + str(threshold_i) ) return features_thresholds def feature_detection_multithreshold(field_in, dxy, threshold=None, min_num=0, target='maximum', position_threshold='center', sigma_threshold=0.5, n_erosion_threshold=0, n_min_threshold=0, min_distance=0, feature_number_start=1 ): ''' Function to perform feature detection based on contiguous regions above/below a threshold Input: field_in: iris.cube.Cube 2D field to perform the tracking on (needs to have coordinate 'time' along one of its dimensions) thresholds: list of floats threshold values used to select target regions to track dxy: float grid spacing of the input data (m) target: str ('minimum' or 'maximum') flag to determine if tracking is targetting minima or maxima in the data position_threshold: str('extreme', 'weighted_diff', 'weighted_abs' or 'center') flag choosing method used for the position of the tracked feature sigma_threshold: float standard deviation for intial filtering step n_erosion_threshold: int number of pixel by which to erode the identified features n_min_threshold: int minimum number of identified features min_distance: float minimum distance between detected features (m) Output: features: pandas DataFrame detected features ''' from .utils import add_coordinates logging.debug('start feature detection based on thresholds') # create empty list to store features for all timesteps list_features_timesteps=[] # loop over timesteps for feature identification: data_time=field_in.slices_over('time') # if single threshold is put in as a single value, turn it into a list if type(threshold) in [int,float]: threshold=[threshold] for i_time,data_i in enumerate(data_time): time_i=data_i.coord('time').units.num2date(data_i.coord('time').points[0]) features_thresholds=feature_detection_multithreshold_timestep(data_i,i_time, threshold=threshold, sigma_threshold=sigma_threshold, min_num=min_num, target=target, position_threshold=position_threshold, n_erosion_threshold=n_erosion_threshold, n_min_threshold=n_min_threshold, min_distance=min_distance, feature_number_start=feature_number_start ) #check if list of features is not empty, then merge features from different threshold values #into one DataFrame and append to list for individual timesteps: if not features_thresholds.empty: #Loop over DataFrame to remove features that are closer than distance_min to each other: if (min_distance > 0): features_thresholds=filter_min_distance(features_thresholds,dxy,min_distance) list_features_timesteps.append(features_thresholds) logging.debug('Finished feature detection for ' + time_i.strftime('%Y-%m-%d_%H:%M:%S')) logging.debug('feature detection: merging DataFrames') # Check if features are detected and then concatenate features from different timesteps into one pandas DataFrame # If no features are detected raise error if any([not x.empty for x in list_features_timesteps]): features=
pd.concat(list_features_timesteps, ignore_index=True)
pandas.concat
import pandas as pd import numpy as np from numpy import mean from numpy import std from numpy import NaN import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_regression from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_log_error import math from xgboost import XGBRFRegressor import xgboost as xgb print(xgb.__version__) # https://www.kaggle.com/shreyagopal/suicide-rate-prediction-with-machine-learning #from sklearn.linear_model import LinearRegression dat = "C:/Users/LIUM3478/OneDrive Corp/OneDrive - Atkins Ltd/Work_Atkins/Docker/hjulanalys/wheel_prediction_data.csv" df = pd.read_csv(dat, encoding = 'ISO 8859-1', sep = ";", decimal=",") df.head() df.groupby(['Littera','VehicleOperatorName']).size().reset_index().rename(columns={0:'count'}) y = df[['km_till_OMS']].values X = df[["LeftWheelDiameter", "Littera", "VehicleOperatorName", "TotalPerformanceSnapshot", "maxTotalPerformanceSnapshot"]] # X["Littera_Operator"] = X.Littera + " " + X.VehicleOperatorName # X.drop(["Littera", "VehicleOperatorName"], axis = 1, inplace=True) def feature_generator (data, train = False): features_data = data # Create dummy variables with prefix 'Littera' features_data = pd.concat([features_data, pd.get_dummies(features_data['Littera'], prefix = 'L')], axis=1) # VehicleOperatorName dummy features_data = pd.concat([features_data, pd.get_dummies(features_data['VehicleOperatorName'], prefix = 'V')], axis=1) # delete variables we are not going to use anymore del features_data['VehicleOperatorName'] del features_data['Littera'] return features_data # Generate features from training dataset X = feature_generator(X) # correlation of X plt.figure(figsize=(12,10)) cor = X.corr() sns.heatmap(cor) # Training and Testing Sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 1234) # set model model = XGBRegressor() # set GridSearchCV parameters model = GridSearchCV(xgb_model, optimization_dict, scoring='accuracy', verbose = 1, n_jobs = -1, cv = 5) # use training data model.fit(X_train, y_train) y_pred = model.predict(X_test) y_pred =
pd.DataFrame(y_pred)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 23 11:06:22 2021 @author: madeline """ ''' This script converts VCF files that have been annotated by snpEFF into GVF files, including the functional annotation. Note that the strain is obtained by parsing the file name, expected to contain the substring "/strainnamehere_ids". Required user input is either a single VCF file or a directory containing VCF files. Eg: python vcf2gvf.py --vcfdir ./22_07_2021/ To also output tsvs of the unmatched mutation names: python vcf2gvf.py --vcfdir ./22_07_2021/ --names ''' import argparse import pandas as pd import re import glob import os import numpy as np from cyvcf2 import VCF, Writer def parse_args(): parser = argparse.ArgumentParser( description='Converts snpEFF-annotated VCF files to GVF files with functional annotation') #make --file or --directory options mutually exclusive group = parser.add_mutually_exclusive_group(required=True) group.add_argument('--vcfdir', type=str, default=None, help='Path to folder containing snpEFF-annotated VCF files') group.add_argument('--vcffile', type=str, default=None, help='Path to a snpEFF-annotated VCF file') #filepath can be absolute (~/Desktop/test/22_07_2021/) or relative (./22_07_2021/) parser.add_argument('--pokay', type=str, default='functional_annotation_V.0.2.tsv', help='Anoosha\'s parsed pokay .tsv file') parser.add_argument('--clades', type=str, default='clade_defining_mutations.tsv', help='.tsv of clade-defining mutations') parser.add_argument('--outdir', type=str, default='./gvf_files/', help='Output directory for finished GVF files: folder will be created if it doesn\'t already exist') parser.add_argument("--names", help="Save unmatched mutation names to .tsvs for troubleshooting naming formats", action="store_true") return parser.parse_args() gvf_columns = ['#seqid','#source','#type','#start','#end','#score','#strand','#phase','#attributes'] vcf_colnames = ['#CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'unknown'] def vcftogvf(var_data, strain): df = pd.read_csv(var_data, sep='\t', names=vcf_colnames) df = df[~df['#CHROM'].str.contains("#")] #remove pragmas df = df.reset_index(drop=True) #restart index from 0 new_df = pd.DataFrame(index=range(0,len(df)),columns=gvf_columns) #parse EFF column eff_info = df['INFO'].str.findall('\((.*?)\)') #series: extract everything between parentheses as elements of a list eff_info = eff_info.apply(pd.Series)[0] #take first element of list eff_info = eff_info.str.split(pat='|').apply(pd.Series) #split at pipe, form dataframe #hgvs names hgvs = eff_info[3].str.rsplit(pat='c.').apply(pd.Series) hgvs_protein = hgvs[0].str[:-1] hgvs_protein.replace(r'^\s+$', np.nan, regex=True) hgvs_nucleotide = 'c.' + hgvs[1] new_df['#attributes'] = new_df['#attributes'].astype(str) + 'Name=' + hgvs_protein + ';' new_df['#attributes'] = new_df['#attributes'].astype(str) + 'nt_name=' + hgvs_nucleotide + ';' new_df['#attributes'] = new_df['#attributes'].astype(str) + 'nt_name=' + hgvs_nucleotide + ';' new_df['#attributes'] = new_df['#attributes'].astype(str) + 'gene=' + eff_info[5] + ';' #gene names new_df['#attributes'] = new_df['#attributes'].astype(str) + 'mutation_type=' + eff_info[1] + ';' #mutation type #columns copied straight from Zohaib's file for column in ['REF','ALT']: key = column.lower() if key=='ref': key = 'Reference_seq' elif key=='alt': key = 'Variant_seq' new_df['#attributes'] = new_df['#attributes'].astype(str) + key + '=' + df[column].astype(str) + ';' #add ao, dp, ro info = df['INFO'].str.split(pat=';').apply(pd.Series) #split at ;, form dataframe new_df['#attributes'] = new_df['#attributes'] + info[5].str.lower() + ';' #ao new_df['#attributes'] = new_df['#attributes'] + info[7].str.lower() + ';' #dp new_df['#attributes'] = new_df['#attributes'] + info[28].str.lower() + ';' #ro #add strain name new_df['#attributes'] = new_df['#attributes'] + 'viral_lineage=' + strain + ';' #add WHO strain name alt_strain_names = {'B.1.1.7': 'Alpha', 'B.1.351': 'Beta', 'P.1': 'Gamma', 'B.1.617.2': 'Delta', 'B.1.427': 'Epsilon', 'B.1.429': 'Epsilon', 'P.2': 'Zeta', 'B.1.525': 'Eta', 'P.3': 'Theta', 'B.1.526': 'Iota', 'B.1.617.1': 'Kappa'} new_df['#attributes'] = new_df['#attributes'] + 'who_label=' + alt_strain_names.get(strain) + ';' #add VOC/VOI designation if strain in {'Alpha', 'Beta', 'Gamma', 'Delta'}: new_df['#attributes'] = new_df['#attributes'] + 'status=VOC;' else: new_df['#attributes'] = new_df['#attributes'] + 'status=VOI;' #remove starting NaN; leave trailing ';' new_df['#attributes'] = new_df['#attributes'].str[3:] #fill in other GVF columns new_df['#seqid'] = df['#CHROM'] new_df['#source'] = '.' new_df['#type'] = info[40].str.split(pat='=').apply(pd.Series)[1] new_df['#start'] = df['POS'] new_df['#end'] = (df['POS'].astype(int) + df['ALT'].str.len() - 1).astype(str) #this needs fixing new_df['#score'] = '.' new_df['#strand'] = '+' new_df['#phase'] = '.' new_df = new_df[gvf_columns] #only keep the columns needed for a gvf file return new_df #takes 3 arguments: an output file of vcftogvf.py, Anoosha's annotation file from Pokay, and the clade defining mutations tsv. def add_functions(gvf, annotation_file, clade_file, strain): #load files into Pandas dataframes df = pd.read_csv(annotation_file, sep='\t', header=0) #load functional annotations spreadsheet clades = pd.read_csv(clade_file, sep='\t', header=0, usecols=['strain', 'mutation']) #load clade-defining mutations file clades = clades.loc[clades.strain == strain] #only look at the relevant part of that file attributes = gvf["#attributes"].str.split(pat=';').apply(pd.Series) hgvs_protein = attributes[0].str.split(pat='=').apply(pd.Series)[1] hgvs_nucleotide = attributes[1].str.split(pat='=').apply(pd.Series)[1] gvf["mutation"] = hgvs_protein.str[2:] #drop the prefix #merge annotated vcf and functional annotation files by 'mutation' column in the gvf for column in df.columns: df[column] = df[column].str.lstrip() merged_df = pd.merge(df, gvf, on=['mutation'], how='right') #add functional annotations merged_df = pd.merge(clades, merged_df, on=['mutation'], how='right') #add clade-defining mutations #collect all mutation groups (including reference mutation) in a column, sorted alphabetically #this is more roundabout than it needs to be; streamline with grouby() later merged_df["mutation_group"] = merged_df["comb_mutation"].astype(str) + ", '" + merged_df["mutation"].astype(str) + "'" mutation_groups = merged_df["mutation_group"].str.split(pat=',').apply(pd.Series) mutation_groups = mutation_groups.apply(lambda s:s.str.replace("'", "")) mutation_groups = mutation_groups.apply(lambda s:s.str.replace(" ", "")) mutation_groups = mutation_groups.transpose() sorted_df = mutation_groups for column in mutation_groups.columns: sorted_df[column] = mutation_groups.sort_values(by=column, ignore_index=True)[column] sorted_df = sorted_df.transpose() #since they're sorted, put everything back into a single cell, don't care about dropna df3 = sorted_df.apply(lambda x :','.join(x.astype(str)),axis=1) unique_groups = df3.drop_duplicates() unique_groups_multicol = sorted_df.drop_duplicates() merged_df["mutation_group_labeller"] = df3 #for sanity checking #make a unique id for mutation groups that have all members represented in the vcf #for groups with missing members, delete those functional annotations merged_df["id"] = 'NaN' id_num = 0 for row in range(unique_groups.shape[0]): group_mutation_set = set(unique_groups_multicol.iloc[row]) group_mutation_set = {x for x in group_mutation_set if (x==x and x!='nan')} #remove nan and 'nan' from set gvf_all_mutations = set(gvf['mutation'].unique()) indices = merged_df[merged_df.mutation_group_labeller == unique_groups.iloc[row]].index.tolist() if group_mutation_set.issubset(gvf_all_mutations): #if all mutations in the group are in the vcf file, include those rows and give them an id merged_df.loc[merged_df.mutation_group_labeller == unique_groups.iloc[row], "id"] = "ID_" + str(id_num) id_num += 1 else: merged_df = merged_df.drop(indices) #if not, drop group rows, leaving the remaining indices unchanged #change semicolons in function descriptions to colons merged_df['function_description'] = merged_df['function_description'].str.replace(';',':') #add key-value pairs to attributes column for column in ['function_category', 'source', 'citation', 'comb_mutation', 'function_description']: key = column.lower() merged_df[column] = merged_df[column].fillna('') #replace NaNs with empty string if column in ['function_category', 'citation', 'function_description']: merged_df["#attributes"] = merged_df["#attributes"].astype(str) + key + '=' + '"' + merged_df[column].astype(str) + '"' + ';' else: merged_df["#attributes"] = merged_df["#attributes"].astype(str) + key + '=' + merged_df[column].astype(str) + ';' #change clade-defining attribute to True/False depending on content of 'strain' column merged_df.loc[merged_df.strain == strain, "#attributes"] = merged_df.loc[merged_df.strain == strain, "#attributes"].astype(str) + "clade_defining=True;" merged_df.loc[merged_df.strain != strain, "#attributes"] = merged_df.loc[merged_df.strain != strain, "#attributes"].astype(str) + "clade_defining=False;" #add ID to attributes merged_df["#attributes"] = 'ID=' + merged_df['id'].astype(str) + ';' + merged_df["#attributes"].astype(str) if args.names: #get list of names in tsv but not in functional annotations, and vice versa, saved as a .tsv tsv_names = gvf["mutation"].unique() pokay_names = df["mutation"].unique() print(str(np.setdiff1d(tsv_names, pokay_names).shape[0]) + "/" + str(tsv_names.shape[0]) + " mutation names were not found in pokay") in_pokay_only = pd.DataFrame({'in_pokay_only':np.setdiff1d(pokay_names, tsv_names)}) in_tsv_only = pd.DataFrame({'in_tsv_only':np.setdiff1d(tsv_names, pokay_names)}) leftover_names = in_tsv_only leftover_names["strain"] = strain clade_names = clades["mutation"].unique() leftover_clade_names = pd.DataFrame({'unmatched_clade_names':np.setdiff1d(clade_names, tsv_names)}) leftover_clade_names["strain"] = strain return merged_df[gvf_columns], leftover_names, gvf["mutation"].tolist(), leftover_clade_names else: return merged_df[gvf_columns] if __name__ == '__main__': args = parse_args() annotation_file = args.pokay clade_file = args.clades outdir = args.outdir if not os.path.exists(outdir): os.makedirs(outdir) #make empty list in which to store mutation names from all strains in the folder together all_strains_mutations = [] leftover_df = pd.DataFrame() #empty dataframe to hold unmatched names unmatched_clade_names = pd.DataFrame() #empty dataframe to hold unmatched clade-defining mutation names pragmas =
pd.DataFrame([['##gff-version 3'], ['##gvf-version 1.10'], ['##species NCBI_Taxonomy_URI=http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=2697049']])
pandas.DataFrame
# -------------- # Import packages import numpy as np import pandas as pd from scipy.stats import mode # code starts here bank = pd.DataFrame(pd.read_csv(path)) categorical_var = bank.select_dtypes(include = 'object') print(categorical_var.head(2)) numerical_var = bank.select_dtypes(include = 'number') print(numerical_var.head(2)) # code ends here # -------------- # code starts here bank.drop(['Loan_ID'],inplace=True,axis=1) banks =
pd.DataFrame(bank)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Dec 2 16:38:26 2019 @author: bruce """ import pandas as pd import numpy as np from scipy import fftpack from scipy import signal import matplotlib.pyplot as plt def correlation_matrix(corr_mx, cm_title): from matplotlib import pyplot as plt from matplotlib import cm as cm fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(corr_mx, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) #plt.title('cross correlation of test and retest') ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) # Add colorbar, make sure to specify tick locations to match desired ticklabels #fig.colorbar(cax, ticks=[.75,.8,.85,.90,.95,1]) plt.show() def correlation_matrix_01(corr_mx, cm_title): # find the maximum in each row # input corr_mx is a dataframe # need to convert it into a array first #otherwise it is not working temp = np.asarray(corr_mx) output = (temp == temp.max(axis=1)[:,None]) # along rows fig = plt.figure() ax1 = fig.add_subplot(111) #cmap = cm.get_cmap('jet', 30) cax = ax1.matshow(output, cmap='gray') #cax = ax1.imshow(df.corr(), interpolation="nearest", cmap=cmap) fig.colorbar(cax) ax1.grid(False) plt.title(cm_title) ylabels=['T1','T2','T3','T4','T6','T7','T8','T9', 'T11', 'T12', 'T13', 'T14', 'T15', 'T16', 'T17', 'T18', 'T19', 'T20', 'T21', 'T22', 'T23', 'T25'] xlabels=['R1','R2','R3','R4','R6','R7','R8','R9', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R25'] ax1.set_xticks(np.arange(len(xlabels))) ax1.set_yticks(np.arange(len(ylabels))) ax1.set_xticklabels(xlabels,fontsize=6) ax1.set_yticklabels(ylabels,fontsize=6) plt.show() f_dB = lambda x : 20 * np.log10(np.abs(x)) # import the pkl file #pkl_file=pd.read_pickle('/Users/bruce/Documents/uOttawa/Project/audio_brainstem_response/Data_BruceSunMaster_Studies/study2/study2DataFrame.pkl') df_FFR=pd.read_pickle('/home/bruce/Dropbox/Project/4.Code for Linux/df_FFR.pkl') # remove DC offset df_FFR_detrend = pd.DataFrame() for i in range(1408): # combine next two rows later df_FFR_detrend_data = pd.DataFrame(signal.detrend(df_FFR.iloc[i: i+1, 0:1024], type='constant').reshape(1,1024)) df_FFR_label_temp = pd.DataFrame(df_FFR.iloc[i, 1024:1031].values.reshape(1,7)) df_FFR_detrend = df_FFR_detrend.append(pd.concat([df_FFR_detrend_data, df_FFR_label_temp], axis=1, ignore_index=True)) # set the title of columns df_FFR_detrend.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_FFR_detrend = df_FFR_detrend.reset_index(drop=True) df_FFR = df_FFR_detrend # Time domain # Define window function win_kaiser = signal.kaiser(1024, beta=14) win_hamming = signal.hamming(1024) # average the df_FFR df_FFR_avg = pd.DataFrame() df_FFR_avg_win = pd.DataFrame() # average test1 and test2 for i in range(704): # combine next two rows later df_FFR_avg_t = pd.DataFrame(df_FFR.iloc[2*i: 2*i+2, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows # implement the window function df_FFR_avg_t_win = pd.DataFrame((df_FFR_avg_t.iloc[0,:] * win_hamming).values.reshape(1,1024)) df_FFR_label = pd.DataFrame(df_FFR.iloc[2*i, 1024:1031].values.reshape(1,7)) df_FFR_avg = df_FFR_avg.append(pd.concat([df_FFR_avg_t, df_FFR_label], axis=1, ignore_index=True)) df_FFR_avg_win = df_FFR_avg.append(pd.concat([df_FFR_avg_t_win, df_FFR_label], axis=1, ignore_index=True)) # set the title of columns df_FFR_avg.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_FFR_avg = df_FFR_avg.sort_values(by=["Condition", "Subject"]) df_FFR_avg = df_FFR_avg.reset_index(drop=True) df_FFR_avg_win.columns = np.append(np.arange(1024), ["Subject", "Sex", "Condition", "Vowel", "Sound Level", "Num", "EFR/FFR"]) df_FFR_avg_win = df_FFR_avg_win.sort_values(by=["Condition", "Subject"]) df_FFR_avg_win = df_FFR_avg_win.reset_index(drop=True) # average all the subjects , test and retest and keep one sound levels # filter by 'a vowel and 85Db' df_FFR_avg_sorted = df_FFR_avg.sort_values(by=["Sound Level", "Vowel", "Subject", "Condition"]) df_FFR_avg_sorted = df_FFR_avg_sorted.reset_index(drop=True) df_FFR_avg_win_sorted = df_FFR_avg_win.sort_values(by=["Sound Level", "Vowel", "Subject", "Condition"]) df_FFR_avg_win_sorted = df_FFR_avg_win_sorted.reset_index(drop=True) # filter55 65 75 sound levels and keep 85dB # keep vowel condition and subject df_FFR_avg_85 = pd.DataFrame(df_FFR_avg_sorted.iloc[528:, :]) df_FFR_avg_85 = df_FFR_avg_85.reset_index(drop=True) df_FFR_avg_win_85 = pd.DataFrame(df_FFR_avg_win_sorted.iloc[528:, :]) df_FFR_avg_win_85 = df_FFR_avg_win_85.reset_index(drop=True) # average subjects, conditions df_FFR_avg_85_aenu = pd.DataFrame() df_FFR_avg_win_85_aenu = pd.DataFrame() for i in range(4): # combine next two rows later df_FFR_avg_t = pd.DataFrame(df_FFR_avg_85.iloc[44*i: 44*i+44, 0:1024].mean(axis=0).values.reshape(1,1024)) # average those two rows df_FFR_avg_label = pd.DataFrame(df_FFR_avg_85.iloc[44*i, 1024:1031].values.reshape(1,7)) temp =
pd.concat([df_FFR_avg_t, df_FFR_avg_label], axis=1, ignore_index=True)
pandas.concat
"""Unit tests for the :mod:`pudl.helpers` module.""" import pandas as pd from pandas.testing import assert_frame_equal import pudl def test_convert_to_date(): """Test automated cleanup of EIA date columns.""" data = [ (2019, 3, 14), ("2019", "03", "14"), ] in_df = pd.DataFrame.from_records( data, columns=["report_year", "report_month", "report_day"] ) expected_df = pd.DataFrame({ "report_date": pd.to_datetime([ "2019-03-14", "2019-03-14", ]), }) out_df = pudl.helpers.convert_to_date(in_df) assert_frame_equal(out_df, expected_df) def test_fix_eia_na(): """Test cleanup of bad EIA spreadsheet NA values.""" in_df = pd.DataFrame({ "vals": [ "", " ", "\t", ".", ".0", # Should only replace naked decimals "..", # Only single naked decimals? " ", # 2 spaces -- we only replace single whitespace chars? "\t\t", # 2 tabs -- we only replace single whitespace chars? ] }) expected_df = pd.DataFrame({ "vals": [ pd.NA, pd.NA, pd.NA, pd.NA, ".0", "..", " ", "\t\t", ] }) out_df = pudl.helpers.fix_eia_na(in_df) assert_frame_equal(out_df, expected_df) def test_fix_leading_zero_gen_ids(): """Test removal of leading zeroes from EIA generator IDs.""" in_df = pd.DataFrame({ "generator_id": [ "0001", # Leading zeroes, all numeric string. "26", # An appropriate numeric string w/o leading zeroes. 100, # Integer, should get stringified. 100.0, # What happens if it's a float? "01-A", # Leading zeroes, alphanumeric. Should not change. "HRSG-01", # Alphanumeric, should be no change. ] }) expected_df = pd.DataFrame({ "generator_id": [ "1", "26", "100", "100.0", "01-A", "HRSG-01", ] }) out_df = pudl.helpers.fix_leading_zero_gen_ids(in_df) assert_frame_equal(out_df, expected_df) def test_convert_df_to_excel_file(): """Test converting a dataframe into a pandas ExcelFile.""" in_df = pd.DataFrame([[1, 2], [1, 2]]) expected_df = pd.DataFrame([[1, 2], [1, 2]]) out_excel_file = pudl.helpers.convert_df_to_excel_file(in_df, index=False) out_df = pd.read_excel(out_excel_file)
assert_frame_equal(out_df, expected_df)
pandas.testing.assert_frame_equal
import pandas as pd def generate_demand_csv(input_fn: str, user_data_dir: str): # Demand demand = pd.read_excel(input_fn, sheet_name='2.3 EUD', index_col=0, header=1, usecols=range(5)) demand.columns = [x.strip() for x in demand.columns] demand.index = [x.strip() for x in demand.index] # Add additional information demand_aux = pd.read_csv(f"{user_data_dir}/aux_demand.csv", index_col=0) demand = pd.merge(demand, demand_aux, left_index=True, right_index=True) # Rename and reorder columns demand.index.name = 'parameter name' demand = demand.reset_index() demand = demand[['Category', 'Subcategory', 'parameter name', 'HOUSEHOLDS', 'SERVICES', 'INDUSTRY', 'TRANSPORTATION', 'Units']] demand.to_csv(f"{user_data_dir}/Demand.csv", sep=',', index=False) def generate_resources_csv(input_fn: str, user_data_dir: str): # Resources resources = pd.read_excel(input_fn, sheet_name='2.1 RESOURCES', index_col=0, header=1, usecols=range(5)) resources.index = [x.strip() for x in resources.index] resources.columns = [x.split(" ")[0] for x in resources.columns] # Add additional information resources_aux = pd.read_csv(f"{user_data_dir}/aux_resources.csv", index_col=0) resources = pd.merge(resources, resources_aux, left_index=True, right_index=True) # Rename and reorder columns resources.index.name = 'parameter name' resources = resources.reset_index() resources = resources[['Category', 'Subcategory', 'parameter name', 'avail', 'gwp_op', 'c_op', 'einv_op']] # resources.columns = ['Category', 'Subcategory', 'parameter name', 'Availability', 'Direct and indirect emissions', # 'Price', 'Direct emissions'] # Add a line with units units = pd.Series(['', '', 'units', '[GWh/y]', '[ktCO2-eq./GWh]', '[Meuro/GWh]', '[GWh/y]'], index=resources.columns) resources = pd.concat((units.to_frame().T, resources), axis=0) resources.to_csv(f"{user_data_dir}/Resources.csv", sep=',', index=False) def generate_technologies_csv(input_fn: str, user_data_dir: str): # Technologies technologies = pd.read_excel(input_fn, sheet_name='3.2 TECH', index_col=1) technologies = technologies.drop(technologies.columns[[0]], axis=1) technologies.index = [x.strip() for x in technologies.index] # Add additional information technologies_aux = pd.read_csv(f"{user_data_dir}/aux_technologies.csv", index_col=0) technologies = pd.merge(technologies, technologies_aux, left_index=True, right_index=True) # Rename and reorder columns technologies.index.name = 'parameter name' technologies = technologies.reset_index() technologies = technologies[['Category', 'Subcategory', 'Technologies name', 'parameter name', 'c_inv', 'c_maint', 'gwp_constr', 'einv_constr', 'lifetime', 'c_p', 'fmin_perc', 'fmax_perc', 'f_min', 'f_max']] # Add a line with units units = pd.Series(['', '', 'Name (simplified)', 'Name (in model and documents)', '[Meuro/GW],[Meuro/GWh],[Meuro/(Mkmpass/h)],[Meuro/(Mtonkm/h)]', '[Meuro/GW],[Meuro/GWh],[Meuro/(Mkmpass/h)],[Meuro/(Mtonkm/h)]', '[ktonCO2_eq/GW],[ktonCO2_eq/GWh],[ktonCO2_eq/(Mkmpass/h)],[ktonCO2_eq/(Mtonkm/h)]', '[GWh/y]', '[years]', '[]', '[]', '[]', '[GW]', '[GW]'], index=technologies.columns) technologies = pd.concat((units.to_frame().T, technologies), axis=0) technologies.to_csv(f"{user_data_dir}/Technologies.csv", sep=',', index=False) def generate_layers_csv(input_fn: str, dev_data_dir: str): # Layers in-out layers = pd.read_excel(input_fn, sheet_name='3.1 layers_in_out', index_col=1) layers = layers.drop(layers.columns[0], axis=1) layers.columns = [x.strip() for x in layers.columns] layers.to_csv(f"{dev_data_dir}/Layers_in_out.csv", sep=',') def generate_storage_csv(input_fn: str, dev_data_dir: str): # Storage eff in storage_eff_in = pd.read_excel(input_fn, sheet_name='3.3 STO', header=2, nrows=25, index_col=0) storage_eff_in.index = [x.strip() for x in storage_eff_in.index] storage_eff_in.to_csv(f"{dev_data_dir}/Storage_eff_in.csv", sep=',') # Storage eff out storage_eff_out = pd.read_excel(input_fn, sheet_name='3.3 STO', header=30, nrows=25, index_col=0) storage_eff_out.index = [x.strip() for x in storage_eff_out.index] storage_eff_out.to_csv(f"{dev_data_dir}/Storage_eff_out.csv", sep=',') # Storage characteristics storage_c =
pd.read_excel(input_fn, sheet_name='3.3 STO', header=58, nrows=25, index_col=0)
pandas.read_excel
""" Libraries """ import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import sqlite3 sns.set() """ Read in the Northwoods League Data from the sqlite3 Database """ northwoods_db = sqlite3.connect("Northwoods.db") cur = northwoods_db.cursor() """ import data without outliers """ bat = pd.read_sql_query("SELECT * FROM ALL_NORTHWOODS_DATA WHERE PA_X >= 50 AND PA_Y >= 50 AND OPS_y >= .4", northwoods_db) # Clean it up bat = bat.apply(pd.to_numeric, errors='coerce').combine_first(bat) bat = bat.dropna(how = "all", axis = "columns") bat = bat.fillna(0) bat = bat.drop_duplicates(subset = ["AgeDif_x", "Age_x", "TB_y", "SLG_y"], keep = "first") # Exploratory Data Analysis def scatter(x, y, xlabel, ylabel): plt.scatter(x, y, marker= "o", alpha = .5) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.show() def normality(x): plt.hist(x, bins = 50) plt.show() normality(bat["TB_y"]) scatter(bat["TB_x"], bat["TB_y"], "Spring TB", "Summer TB") # Bootstrapping data & creating dummy variables def btstrap(df): np.random.seed(3) btstr_data = pd.DataFrame(columns=df.columns) for data in range(df.shape[0]): selected_num = np.random.choice(range(df.shape[0])) btstr_data = btstr_data.append(df[selected_num : selected_num + 1]) return btstr_data def draw_bs_data(dataframe, num_times_strapped): data = [btstrap(dataframe) for i in range(num_times_strapped)] return pd.concat(data) bs_data = draw_bs_data(bat, 2) dummies =
pd.get_dummies(bs_data)
pandas.get_dummies
# -*- coding: utf-8 -*- import random import numpy as np import time import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.autograd import Variable import datetime from dateutil import parser import os import csv import matplotlib.pyplot as plt import pandas as pd def data_preprocess(dir_path): dir_list = os.listdir(dir_path) total_data = [] for dir_csv in dir_list: total_path = dir_path+'/'+dir_csv+'/prices.csv' # print(total_path) file = open(total_path,'r') rdr = csv.reader(file) # for d in rdr: # if 'FAX' in d[0]: # total_data.append(d) # break [total_data.append(d) for d in rdr if 'FAX' in d[0]] # total_data = list(set(total_data)) # print(total_data) return total_data def data_pre_pro_walk(dir_path, key): total_data = [] for (paths, dirs, files) in os.walk(dir_path): for fs in files: if fs == 'prices.csv': # print(paths,fs) with open(paths+'/'+fs,'r') as file: rdr = csv.reader(file) # [total_data.append(d) for d in rdr if key in d[0]] for da in [d for d in rdr if key in d[0]]: da.extend([parser.parse(da[1]).weekday()]) total_data.append(da) # print(da) np_sdata = np.array(total_data) #np_sdata[:,1] is means the date # following command applies unique to the date! # unique is always sorted uni_np, indic = np.unique(np_sdata[:,1],return_index=True) # print(np_sdata[indic]) # print(uni_np) #sdata_sorted = sorted(sdata,key=lambda x: time.mktime(time.strptime(x[1],"%Y-%m-%d"))) return np_sdata[indic] #data = data_preprocess('2017data') #sdata = sorted(data, key=lambda x: time.mktime(time.strptime(x[1],"%Y-%m-%d"))) def data_pre_pro_walk_pandas(dir_path, key): total_data = [] for (paths, dirs, files) in os.walk(dir_path): for fs in files: if fs == 'prices.csv': # print(paths,fs) with open(paths+'/'+fs,'r') as file: rdr = csv.reader(file) # [total_data.append(d) for d in rdr if key in d[0]] for da in [d for d in rdr if key in d[0]]: da.extend([parser.parse(da[1]).weekday()]) total_data.append(da) # print(da) np_sdata = np.array(total_data) #np_sdata[:,1] is means the date # following command applies unique to the date! # unique is always sorted uni_np, indic = np.unique(np_sdata[:,1],return_index=True) udata = np_sdata[indic] dates =
pd.DatetimeIndex(udata[:,1])
pandas.DatetimeIndex
import pandas as pd import os import matplotlib.pyplot as plt import sys #This script will process two input sequencing files for mRNA #and DNA into a data set for all genes # The four inline arguments passed to this script are # 1: file name of mRNA sequencing .fastq file. # 2: file name of DNA sequencing .fastq file. # 3: output name prefix. The output name for each gene file will be given # as gene_name + this_input + 'dataset' # 4 group number. Genes are separated into 18 groups, labeled 101 to 118. # Only those genes in the given group number will have their datasets generated # by this script. The associated group number to gene association is given # by the genetogroupnum file. name = sys.argv[1] nameplas = sys.argv[2] barcode_length = 20 trailing_sequence_length = 21 #define needed functions def comb_tag(s): '''function to combine mutated sequence with barcode''' return s['seq'] + s['tag'] #set no maximum length on output column size. pd.set_option('max_colwidth',int(1e8)) #load in dataframe version of mRNA sequences. df = pd.io.parsers.read_csv(name,header=None) #extract the sequences from the fastq format. df = df.loc[1::4] #we will select out the barcodes from each sequence. They will be located #from -41 to -21 bases from the end of the sequence. tags = df[0].str.slice(-trailing_sequence_length - barcode_length,-trailing_sequence_length) #we will get the numbers of each barcode. tagcounts = tags.value_counts() #We will now preform an identical procedure for the DNA sequences. dfplas = pd.io.parsers.read_csv(nameplas,header=None) dfplas = dfplas.loc[1::4] tagsplas = dfplas[0].str.slice(-trailing_sequence_length - barcode_length,-trailing_sequence_length) tagcountsplas = tagsplas.value_counts() #we will get the genes for the associated group number. This is generally 6 #genes. #load in key for group number for each gene genecodes = pd.io.parsers.read_csv('../data/test_data/genetogroupnum') #use group code to find the genes we need to make datasets for. gene = list(sys.argv[5]) #load in the file that relates barcode to mutated sequence. tagkeyname = sys.argv[3] tagkey = pd.io.parsers.read_csv(tagkeyname,delim_whitespace=True) #reset the barcode to be the pandas index. tagkey = tagkey.set_index('tag') #make a dataframe that has the number of counts for the assocated barcode #for the mRNA sequencing. After this we will do the same for the DNA plasmid #sequencing then combine them. #make dataframe with mutated sequence and barcode tempdf = tagkey.reindex(tagcounts.copy().index) #assign sequencing counts based on mRNA sequencing file. tempdf['ct_1'] = tagcounts.copy() tempdf = tempdf.dropna() #we now do the same thing for the DNA plasmid sequencing. c = tagkey.reindex(tagcountsplas.copy().index) c['ct_0'] = tagcountsplas.copy() c = c.dropna() #combine the dataframes to get sequencing counts for mRNA and DNA outdf =
pd.concat([tempdf,c],axis=0,sort=True)
pandas.concat
import kfp.dsl as dsl import kfp.components as comp from collections import OrderedDict from kubernetes import client as k8s_client def loaddata(vol_shared_volume_kale_volumes: str): import os import shutil from kale.utils import pod_utils from kale.marshal import resource_save as _kale_resource_save from kale.marshal import resource_load as _kale_resource_load _kale_data_directory = "/shared_volume/datasets_for_notebooks/titanic/" if not os.path.isdir(_kale_data_directory): os.makedirs(_kale_data_directory, exist_ok=True) import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from matplotlib import style from sklearn import linear_model from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import SGDClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB path = "/shared_volume/datasets_for_notebooks/titanic/" PREDICTION_LABEL = 'Survived' test_df = pd.read_csv(path + "test.csv") train_df =
pd.read_csv(path + "train.csv")
pandas.read_csv
# This program loads the HILT data and parses it into a nice format import argparse import pathlib import zipfile import re from datetime import datetime, date import pandas as pd import numpy as np from sampex_microburst_widths import config class Load_SAMPEX_HILT: def __init__(self, load_date, extract=False, time_index=True, verbose=False): """ Load the HILT data given a date. If this class will look for a file with the "hhrrYYYYDOY*" filename pattern and open the found csv file. If the file is zipped, it will first be unzipped. If you want to extract the file as well, set extract=True. time_index=True sets the time index of self.hilt to datetime objects otherwise the index is just an enumerated list. """ self.load_date = load_date self.verbose = verbose # If date is in string format, convert to a pd.Timestamp object if isinstance(self.load_date, str): self.load_date =
pd.to_datetime(self.load_date)
pandas.to_datetime
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import random from logging import getLogger, basicConfig import pandas as pd import streamlit as st from wordleaisql import __version__ as wordleaisql_version from wordleaisql.approx import WordleAIApprox from wordleaisql.utils import default_wordle_vocab, wordle_judge, decode_judgement, read_vocabfile # Log message will be printed on the console logger = getLogger(__file__) # constants APP_VERSION = "0.0.9" WORD_PAIR_LIMIT = 500000 CANDIDATE_SAMPLE_SIZE = 500 CSS = """ td.letter { width: 60px; height: 30px; text-align: center; border: 5px white solid; border-bottom: 8px white solid; border-top: 8px white solid; font-weight: 700; font-size: 30px; color: #eaeaea; } td.exact { background-color: green; } td.partial { background-color: orange; } td.nomatch { background-color: #666666; } """ def wordle_judge_html(judges: list): rows = [] _match_to_class = {"2": "exact", "1": "partial", "0": "nomatch"} for word, judge in judges: judge = str(judge).zfill(len(word)) cells = ["""<td class="letter {}">{}</td>""".format(_match_to_class[match], "&nbsp;" if letter==" " else letter) for letter, match in zip(word, judge)] rows.append("<tr>{}</tr>".format(" ".join(cells))) html = "<table>{}</table>".format(" ".join(rows)) #print(html) return html def _thousand_sep(x: int, sep: str=",")-> str: return "{:,}".format(x).replace(",", sep) def _init_state_if_not_exist(key: str, value): if key not in st.session_state: st.session_state[key] = value # Want to cache this somehow, but gets error due to 'sqlite3.Connection object is unhashable' # both with st.cache and st.experimental_singleton # Since making an AI object is trivial for typical vocabs with 10k words, # I let the AI is generated again at every rerun. # @st.cache(allow_output_mutation=True) # <-- this works but shows 'Running make_ai(...)' for a sec def make_ai(words: list or dict, word_pair_limit: int=500000, candidate_samplesize: int=500, strength: float=6): logger.info("Generating AI") ai = WordleAIApprox(vocabname="wordle", words=words, inmemory=True, strength=strength, word_pair_limit=word_pair_limit, candidate_samplesize=candidate_samplesize) return ai def wordle_vocabfile(level: int): return os.path.join(os.path.dirname(__file__), "wordle-level{}.txt".format(level)) def main(): st.set_page_config( page_title="Wordle AI SQL" ) st.markdown("""<style> {} </style>""".format(CSS), unsafe_allow_html=True) with st.sidebar: select_mode = st.selectbox("", ("Solver", "Challenge"), index=0) #select_word_pair_limit = st.selectbox("Word pair limit", (50000, 100000, 500000, 1000000), index=2) #select_candidate_sample = st.selectbox("Candidate sample size", (250, 500, 1000, 2000), index=1) if select_mode == "Challenge": ai_strength = st.selectbox("AI level", tuple(range(11)), index=6) visible = st.checkbox("Opponent words are visible", value=False) alternate = st.checkbox("Choose a word in turns", value=False) same_answer = st.checkbox("Same answer word", value=False) ai_first = st.checkbox("AI plays first", value=True) answer_difficulty = st.selectbox( "Answer word difficulty", (1, 2, 3, 4, 5), index=1, format_func=lambda a: "1 (basic)" if a==1 else "5 (unlimited)" if a==5 else str(a), help=("Change the possible answer set from 1 (basic) to 5 (unlimited). " "Adjust this option to reduce the chance that you do not know the answer word. " "This does not change the words that you can input.")) st.markdown("App ver {appver} / [wordleaisql ver {libver}](https://github.com/kota7/wordleai-sql)".format(libver=wordleaisql_version, appver=APP_VERSION)) if select_mode == "Solver": ai = make_ai(default_wordle_vocab(), word_pair_limit=WORD_PAIR_LIMIT, candidate_samplesize=CANDIDATE_SAMPLE_SIZE) words_set = set(ai.words) for w in words_set: wordlen = len(w) break _init_state_if_not_exist("solverHistory", []) def _solver_history(): return st.session_state["solverHistory"] def _show_info(column=None): (st if column is None else column).markdown(wordle_judge_html(_solver_history()), unsafe_allow_html=True) st.markdown(""" <font size="+6"><b>Wordle Solver</b></font> &nbsp; <i>with SQL backend</i> """, unsafe_allow_html=True) word_sample = [] for i, w in enumerate(words_set): word_sample.append(w) if i >= 6: break word_sample = ", ".join(word_sample) if len(words_set) > len(word_sample): word_sample += ", ..." st.write("%s words: [ %s ]" % (_thousand_sep(len(words_set)), word_sample)) _show_info() if len(_solver_history()) > 0: cols = st.columns(5) # make larger column to limit the space between buttons if cols[0].button("Clear info"): _solver_history().clear() st.experimental_rerun() if cols[1].button("Delete one line"): _solver_history().pop() st.experimental_rerun() cols = st.columns(3) input_word_solver = cols[0].text_input("Word", max_chars=wordlen, placeholder="weary") input_judge = cols[1].text_input("Judge", max_chars=wordlen, placeholder="02110", help=("Express the judge on the word by a sequence of {0,1,2}, where " "'2' is the match with correct place, " "'1' is the math with incorrect place, " "and '0' is no match.")) # workaround to locate the ENTER button to the bottom for _ in range(3): cols[2].write(" ") enter_button = cols[2].button("Enter") if enter_button: def _validate_input(): if input_word_solver == "": return False if not input_word_solver in words_set: st.info("'%s' is not in the vocab" % input_word_solver) return False if not all(l in "012" for l in input_judge): st.error("Judge must be a sequence of {0,1,2}, but '%s'" % input_judge) return False if len(input_judge) != len(input_word_solver): st.error("Judge must have the same length as the word, but '%s'" % input_judge) return False return True if _validate_input(): _solver_history().append((input_word_solver, input_judge.zfill(wordlen))) st.experimental_rerun() eval_button = st.button("Ask AI") def _eval(): ai.clear_info() for w, r in _solver_history(): ai.update(w, r) # report remaining candidates candidates = ai.candidates n_candidates = len(candidates) if n_candidates == 0: st.write("No answer word consistent with this information") return if n_candidates == 1: st.markdown("'**{}**' should be the answer!".format(candidates[0])) return candidate_sample = ", ".join(candidates[:6]) if n_candidates > 6: candidate_sample += ", ..." st.write("%s answer candidates remaining: [ %s ]" % (_thousand_sep(n_candidates), candidate_sample)) with st.spinner("AI is thinking..."): res = ai.evaluate(top_k=15) if len(res) > 0: df =
pd.DataFrame.from_records(res, columns=res[0]._fields)
pandas.DataFrame.from_records
from requests import Session from bs4 import BeautifulSoup import pandas as pd import numpy as np from datetime import datetime HEADERS = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) '\ 'AppleWebKit/537.36 (KHTML, like Gecko) '\ 'Chrome/75.0.3770.80 Safari/537.36'} def search_symbol(symbol): """ Search for symbol's link in Simply Wall Street """ # Create Session s = Session() # Add headers s.headers.update(HEADERS) # JSON Key Field url = f'https://api.simplywall.st/api/search/{symbol}' # Request and transform response in json screener = s.get(url) json = screener.json() if len(json) != 0: # Stock URL stock_url = json[0]['url'] else: stock_url = 'not found' return stock_url def extract_all_urls(stocks_path='../docs/my_stocks.feather'): """ Create file with urls to call api """ # Read csv with stocks my_stocks_df = pd.read_feather(stocks_path) # Create List with stocks my_stocks_list = list(my_stocks_df['symbol'].unique()) # Find all urls and store in a dataframe results = [] for stock in my_stocks_list: print(stock) url = search_symbol(stock) results.append([stock, url]) # Convert into a dataframe results_df = pd.DataFrame(results, columns=['symbol', 'url']) # Export to csv results_df.to_csv('../docs/simplywallurls.csv', index=0) return results_df def symbol_data(stock_url): """ Extract data from Simply Wall Steet """ # Create Session s = Session() # Add headers s.headers.update(HEADERS) # JSON Key Field metrics_url = f'https://api.simplywall.st/api/company{stock_url}?include=info%2Cscore%2Cscore.snowflake%2Canalysis.extended.raw_data%2Canalysis.extended.raw_data.insider_transactions&version=2.0' # Request and transform response in json screener = s.get(metrics_url) # check status if screener.status_code == 200: json = screener.json() else: json = 'not found' return json def extract_values(json_response, symbol): """ Extract important values from json_response for each symbol """ # Define important fields fields_dictionary = {'total_assets': 'total_assets', 'total_current_assets': 'total_ca', 'cash_st_investments': 'cash_st_invest', 'total_receivables': 'total_receiv', 'inventory': 'inventory', 'net_property_plant_equip': 'nppe', 'short_term_debt': 'current_port_capital_leases', 'total_current_liabilities': 'total_cl', 'long_term_debt': 'lt_debt', 'total_liabilities': 'total_liabilities', 'total_equity': 'total_equity', 'accounts_payable': 'ap', 'total_revenue_ttm': 'total_rev', 'ebt_ttm':'ebt', 'ebitda_ttm': 'ebitda', 'ebit_ttm': 'ebit', 'pre_tax_income': 'earning_co', 'gross_profit_ttm': 'gross_profit', 'net_income_ttm': 'ni', 'g_a_expense_ttm': 'g_a_expense', 'income_tax_ttm': 'income_tax', 'interest_exp_ttm': 'interest_exp', 'basic_eps_ttm': 'basic_eps', 'net_oper_cf_ttm': 'cash_oper', 'net_investing_cf_ttm': 'cash_f_investing', 'net_financing_cf_ttm': 'cash_f_financing', 'levered_fcf_ttm': 'levered_fcf', 'capex_ttm': 'capex', 'beta_5yr': 'beta_5yr'} # Check response code if json_response != 'not found': # Get to fields that really matter assets = json_response['data']['analysis']['data']['extended']['data']['raw_data']['data']['past'] # check if there's data if len(assets) > 0: # Extract Available dates dates = assets.keys() # Create empty list to store results results = [] # Create first row with headers headers = [] headers.append('date') headers.append('symbol') [headers.append(row) for row in list(fields_dictionary.keys())] results.append(headers) # For each date in dates for date in dates: # Create Temporary list to append results for each date temp_results = [] temp_results.append(date) temp_results.append(symbol) # See available keys - not all fields are available all the time available_keys = assets[date].keys() # For field in list of fields to pull for field in fields_dictionary.values(): # if field is available if field in available_keys: # create value and append that value = assets[date][field]['value'] temp_results.append(value) # if field doesn't exist then append NaN else: temp_results.append(np.nan) # Append to results results.append(temp_results) return results else: return 'not found' def extract_fundamentals(update_urls=False, urls_path='../docs/simplywallurls.csv'): """ Function to extract all fundamentals for all stocks """ # Check if we need to update list of urls if update_urls == False: # Read csv with stocks urls_df = pd.read_csv(urls_path, header=0) else: urls_df = extract_all_urls() # Create variable with total number of stocks so we can track progress length = len(urls_df) # create list to store results results = [] # Loop through symbols for index, row in urls_df.iterrows(): # Extract values stock_url = row['url'] symbol = row['symbol'] # Print progress print( str( round((((index + 1) / length) * 100), 2)) + '% Complete', symbol) # If url is different than 'not found' if row['url'] != 'not found': # Extract json with values stock_json_response = symbol_data(stock_url) # Check if there's data if stock_json_response != 'not found': # Keep onlu relevant values stock_numbers = extract_values(stock_json_response, symbol) # Add that to results list results.append(stock_numbers) # Transform results into a dataframe, first create a list where every row is one record for each stock to_df_list = [i for stock in results for i in stock] # Convert it to a dataframe - dropping duplicates for headers (not the best solution) df = pd.DataFrame(to_df_list, columns=to_df_list[0]).drop_duplicates() # Remove first row with headers df = df[1:] # Export that df.to_csv('../docs/my_stocks_fundamentals.csv', index=0) return df def update_fundamental_dates(): """ Function to update fundamental data from Simply Wall Street """ # Import Fundamental Data and Earnings df_fund = pd.read_csv('../docs/my_stocks_fundamentals.csv') df_earnings = pd.read_csv('../docs/earnings.csv') # Remove duplicates from df_earnings df_earnings['earnings_date'] = pd.to_datetime(df_earnings['earnings_date']).dt.date df_earnings = df_earnings.drop_duplicates(keep='first', subset=['symbol', 'earnings_date']) # Create columns with previous Qs numbers # First we need to define the relevant columns relevant_columns = list(set(list(df_fund.columns)) - set(['date', 'symbol'])) relevant_columns = ['basic_eps_ttm', 'net_income_ttm', 'net_oper_cf_ttm', 'total_revenue_ttm'] # Loop through columns and create a new column with previous numbers for column in relevant_columns: for i in range(1,17): number = i * -1 df_fund[f'{column}_{i}Q'] = df_fund.groupby('symbol')[column].shift(number) # Now we need to pull data from earnings, because we need to tell exactly when all the data was available # Transform dataframes df_fund['date_str'] = df_fund['date'].astype(str).str[:-3] df_fund['earnings_quarter'] = pd.to_datetime(df_fund['date_str'], unit='s') # Figure out the correct dates in which earnings was released df_earnings['key'] = 0 df_fund['key'] = 0 # Merge all together, looking at all possibilities clean_df = pd.merge(df_earnings, df_fund, on=['symbol', 'key']) clean_df['earnings_quarter'] =
pd.to_datetime(clean_df['earnings_quarter'])
pandas.to_datetime
import pandas as pd import requests import os import time from requests.exceptions import HTTPError class ForecastException(Exception): pass class Forecaster(object): """Class for interacting with the DarkSky forecast API. For details on the API see """ def __init__( self, API_key, latitude = 57.6568, longitude = -3.5818, tz='Europe/London' ): """Instantiate class with API key and lat/long (if used somewhere other than Findhorn) Arguments: API_key {string} -- active API key for communicating with DarkSky latitude {float or string} -- latitude longitude {float or string} -- longitude """ self._API_key = API_key self.tz = tz if latitude: self.latitude = latitude if latitude: self.longitude = longitude def get_forecast(self, sim_start_time: pd.Timestamp = None) -> pd.DataFrame: """Get 48 hour forecast Combine API calls to DarkSky to make one DataFrame with meteorological data starting at the start of today and ending 48 hours time. If a start_time is supplied works from the start of that day to 48 hours after start_time Arguments: sim_start_time {pd.Timestamp} -- simulation start time; if not supplied start time is the current hour. """ # First up - check we haven't already pulled one this hour start_time = sim_start_time or pd.Timestamp.now(tz=self.tz) # We can't get a forecast for a date in the future if (start_time>pd.Timestamp.now(tz=self.tz)): raise ForecastException('Cannot get forecast for future date') start_time = start_time.replace(minute=0, second=0) filename = ('forecasts/forecast-' + start_time.strftime('%Y-%m-%d-%H%M') + '.csv') if os.path.exists(filename): forecast = pd.read_csv( filename, index_col='datetime', parse_dates=['datetime'], dayfirst = True ) # First call - start of today until end of tomorrow unixtime = int(time.mktime(start_time.timetuple())) try: json_response = self._call_darksky(str(unixtime)) except Exception as err: raise ForecastException(f'Communication error occurred: {err}') past_data = pd.DataFrame.from_dict(json_response['hourly']['data']) past_data['datetime'] = pd.to_datetime( past_data['time'], unit = 's' ) past_data.set_index( 'datetime', inplace = True ) past_data.index = past_data.index.tz_localize('UTC').tz_convert(self.tz) # Second call - might be another historical one... if not sim_start_time: # No, this is the standard forecast try: json_response = self._call_darksky() except Exception as err: raise ForecastException(f'Communication error occurred: {err}') # We have to do this differently for historic data as the DarkSky # API doesn't appear to be returning 2 day forecasts for historical # data as the docs indicate it should. future_data = pd.DataFrame.from_dict(json_response['hourly']['data']) future_data['datetime'] = pd.to_datetime( future_data['time'], unit = 's' ) future_data.set_index( 'datetime', inplace = True ) else: # We need to do two more calls then. # We'll trim it later. second_day = (sim_start_time+
pd.Timedelta(days=1)
pandas.Timedelta
import sys import numpy as np import pandas as pd from sys import argv, __stdout__ from datetime import datetime, timedelta import os ### This program makes a timing dataframe from output logfiles generated by graphB. ### It can take multiple files as command line arguments manually, in which it will generate ### one dataframe with the results of each log as its own row. ### This file is run automatically in the postprocessing step of graphB. See README in ### graphB for description of the different timing metrics generated. def convert_timedelta(convert_dict): new_dict = {} for key in convert_dict: if key != "FILENAME": try: for val in convert_dict[key]: if val != "None": time = val.split(":") if len(list(time[0])) > 1: d = int(time[0].split("day,")[0]) h = (24 * d) + int(time[0].split("day,")[1]) else: h = int(time[0]) m = int(time[1]) if len(time[2].split(".")) > 1: s = int(time[2].split(".")[0]) ms = int(time[2].split(".")[1]) else: s = int(time[2]) ms = 0 val = timedelta(hours=h, minutes=m, seconds=s, microseconds=ms) new_dict.setdefault(key, []).append(val) else: val = timedelta(hours=0, minutes=0, seconds=0, microseconds=0) new_dict.setdefault(key, []).append(val) except Exception as error: print( "ERROR IN CONVERT TIMEDELTA FUNCTION, key is: ", key, " File is: ", convert_dict["FILENAME"], " Exception: ", error, ) return new_dict def create_avg_or_sum_labels(avg_series, sum_series, new_series): if not avg_series.empty: for index_to_change in avg_series.index: if index_to_change != "FILENAME": new_series["AVG_" + index_to_change] = avg_series[index_to_change] new_series["SUM_" + index_to_change] = sum_series[index_to_change] else: keywords = [ "TOTAL_BALANCE_TIME", "BALANCE_TIME", "COMPONENT_LIST_GEN_TIME", "COMPONENT_STATS_TIME", "TREE_TIME", ] for word in keywords: new_series["AVG_" + word] = timedelta( hours=0, minutes=0, seconds=0, microseconds=0 ) new_series["SUM_" + word] = timedelta( hours=0, minutes=0, seconds=0, microseconds=0 ) return new_series def change_to_seconds(timedelta_series): timedelta_series = timedelta_series.total_seconds() return timedelta_series def create_write_filename(outfiles): outfile = os.path.normpath(outfiles[0]) split_dir = os.path.dirname(outfile).split(os.sep) write_dir = ( os.sep.join(split_dir[:-2]) + "/Timing/" + split_dir[-1] + "/" ) os.makedirs(write_dir, exist_ok=True) write_file = ( write_dir + "_".join(os.path.basename(outfile).split("_")[0:3]) + "_timing_results" ) return write_file def create_timing_results(output_files, write_filename): FINAL_COLUMNS = [ "AVG_COMPONENT_LIST_GEN_TIME", "AVG_COMPONENT_STATS_TIME", "SUM_COMPONENT_STATS_TIME", "SUM_COMPONENT_LIST_GEN_TIME", "SUM_TREE_TIME", "AVG_TREE_TIME", "AVG_TOTAL_BALANCE_TIME", "AVG_BALANCE_TIME", "SUM_TOTAL_BALANCE_TIME", "SUM_BALANCE_TIME", "TOTAL_TIME", "VERTEX_DF_TIME", "MATRIX_CREATE_TIME", "SYM_MATRIX_CREATE_TIME", "CALC_STATUS_TIME", "TOTAL_PREPROCESS_TIME", "TOTAL_PROCESS_TIME", "TOTAL_POSTPROCESS_TIME", "COMPUTE_TIME_NO_IO", ] total_df_datetime = pd.DataFrame(columns=FINAL_COLUMNS) total_df_seconds = pd.DataFrame(columns=FINAL_COLUMNS) for outfile in output_files: outfile_source = os.path.basename(outfile).split("_")[2] tree_keywords = { "COMPONENT_LIST_GEN_TIME": [], "COMPONENT_STATS_TIME": [], "TREE_TIME": [], "BALANCE_TIME": [], "TOTAL_BALANCE_TIME": [], "FILENAME": "", } global_keywords = { "TOTAL_PREPROCESS_TIME": [], "TOTAL_PROCESS_TIME": [], "TOTAL_POSTPROCESS_TIME": [], "TOTAL_TIME": [], "VERTEX_DF_TIME": [], "CALC_STATUS_TIME": [], "MATRIX_CREATE_TIME": [], "SYM_MATRIX_CREATE_TIME": [], "FILENAME": "", } with open(outfile, "r") as outfile: global_keywords["FILENAME"] = outfile tree_keywords["FILENAME"] = outfile for line in outfile: if outfile_source == "LEAP": keyword = line.split(":")[0] elif outfile_source == "current": keyword = line.split(":")[2] if keyword in tree_keywords: tree_keywords.setdefault(keyword, []).append( line.split(")")[1].replace("\n", "").replace(" ", "") ) if keyword in global_keywords: if not global_keywords[ keyword ]: # only want one entry in case there were multiple input h5s created. global_keywords[keyword].append( line.split(")")[1].replace("\n", "").replace(" ", "") ) tree_keywords = convert_timedelta(tree_keywords) global_keywords = convert_timedelta(global_keywords) global_keywords["TOTAL_TIME"] = ( global_keywords["TOTAL_PREPROCESS_TIME"][0] + global_keywords["TOTAL_PROCESS_TIME"][0] + global_keywords["TOTAL_POSTPROCESS_TIME"][0] ) ### These two for loops put in because spark doesn't consistently write all the print output. ### This resulted in the tree time having one less entry than the other times and the mean on ### line 55 would not compute. Solution was to compute the mean of all the other entries and ### add in another entry equal to the mean for that column so the length of all columns would ### match while still not affecting the overall average. max_length = 0 for key in tree_keywords: if len(tree_keywords[key]) > max_length: max_length = len(tree_keywords[key]) for key in tree_keywords: mean = sum(tree_keywords[key], timedelta()) / len(tree_keywords[key]) if len(tree_keywords[key]) < max_length: tree_keywords.setdefault(key, []).append(mean) tree_sums = pd.DataFrame(tree_keywords).sum() tree_series =
pd.DataFrame(tree_keywords)
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pytz from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( DataFrame, DatetimeIndex, Index, IntervalIndex, Series, Timestamp, cut, date_range, ) import pandas._testing as tm class TestDataFrameAlterAxes: @pytest.fixture def idx_expected(self): idx = DatetimeIndex(["2013-1-1 13:00", "2013-1-2 14:00"], name="B").tz_localize( "US/Pacific" ) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) assert expected.dtype == idx.dtype return idx, expected def test_to_series_keep_tz_deprecated_true(self, idx_expected): # convert to series while keeping the timezone idx, expected = idx_expected msg = "stop passing 'keep_tz'" with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=True, index=[0, 1]) assert msg in str(m[0].message) tm.assert_series_equal(result, expected) def test_to_series_keep_tz_deprecated_false(self, idx_expected): idx, expected = idx_expected with tm.assert_produces_warning(FutureWarning) as m: result = idx.to_series(keep_tz=False, index=[0, 1]) tm.assert_series_equal(result, expected.dt.tz_convert(None)) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) def test_setitem_dt64series(self, idx_expected): # convert to utc idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) df["B"] = idx with tm.assert_produces_warning(FutureWarning) as m: df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) msg = "do 'idx.tz_convert(None)' before calling" assert msg in str(m[0].message) result = df["B"] comp = Series(idx.tz_convert("UTC").tz_localize(None), name="B") tm.assert_series_equal(result, comp) def test_setitem_datetimeindex(self, idx_expected): # setting a DataFrame column with a tzaware DTI retains the dtype idx, expected = idx_expected df = DataFrame(np.random.randn(2, 1), columns=["A"]) # assign to frame df["B"] = idx result = df["B"]
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
from abc import ABC, abstractmethod import re import pandas as pd from pprint import pprint from collections import abc from negation.structure2 import batch, constants, factory, modObject, patientObject # Master Class class varObject(abc.Collection): def __init__(self): self.objects = [] # self.objects_tag = [] # self.objects_mod = [] def _addTargetTag(self, tagObject): """Adds tagobject, and dictionary of mods, as dictionary to self.objects list: self.objects = [ { "instance" : tagObject, "mods" : { "negation" : negMod, "date" : dateMod, etc } }, { "instance" : tagObject, "mods" : { "negation" : negMod, "date" : dateMod, etc } } ] """ # """Adds tagObject to end of self.objects list. # Also adds modObjects of each type to self.objects_mod # """ # self.objects_tag.append(tagObject) # self.objects_mod.append(fact.createModObject()) # Put everything in self.objects.append({ "instance" : tagObject, "mods" : fact.createModObject()}) def _addModifiers(self, mods): for mod in mods: cat = mod["category"] # Translate cat into modifier type: found = False # Lookup in which modObject subclass this cat belongs for key, list in constants.mod_type_dict.items(): if cat in list: type = key # select last dict from mod object list: self.objects[-1]["mods"][type]._addModifierTag(mod) found = True # Can skip remainder of loop break # If type for this mod not found: if not found: raise Exception("categoryString of mod was not recognized") def __str__(self): result = [] for i in self.objects: result.append(i["instance"]) return(str(result)) def isEmpty(self): if self.objects: return False else: return True def __contains__(self, x): for i in self.objects: if x in i["instance"].values(): return(True) # if x[1] == i["instance"][x[0]]: # return(True) return(False) def __iter__(self): """Iterates over self.objects list and returns: (var, varObject) """ for i in self.objects: yield (i["instance"], i["mods"]) # def __next__(self): # if self._n <= len(self.objects): # result = self.objects[1] # self.n += 1 # return result # else: # raise StopIteration def __len__(self): """Returns the number of instances """ return(len(self.objects)) def _getType(self): return(str(type(self).__name__)) def getDataframe(self): """Returns dataframe of varObject""" # If no findings, return empty dataframe if len(self) == 0: return(pd.DataFrame()) ls = [] for index, i in enumerate(self.objects): # Per instance, gather var information data = i["instance"] # var_index = str(self._getType()+str(index)) var_index = str(i["instance"]["var"]+str(index)) data.update({"index" : var_index}) serie = pd.Series(data) df_var = pd.DataFrame([serie]) df_var = df_var.add_prefix("var_") # Determine number of mod combinations, so number of rows n_mod_comb = sum([len(mod) for mod in i["mods"].values()]) # If there are no mods, return current df if n_mod_comb == 0: ls.append(df_var) # Paste mod info to dataframe as new columns else: # Gather all modifier information df_mods = [] for mod in i["mods"].values(): if not mod.isEmpty(): df_mods.append(mod.getDataframe()) df_mods = pd.concat(df_mods, axis=0, ignore_index=True) # Combine dataframes: # Only if mods are present if len(df_mods) == 0: raise Exception( "df_mod contains no rows") # Multiply rows of vars to match number of mods df_var =
pd.concat([df_var]*n_mod_comb, ignore_index=True)
pandas.concat
import click, re, os from baseq.snv import cli import pandas as pd import numpy as np @cli.command(short_help="Stats The VCF File") @click.option('--vcf', '-i', default = '', help = 'VCF path') @click.option('--vcf_lists', '-l', default = '', help = 'VCF path List, sample name and path') @click.option('--depth', '-d', default = 100, help = 'Filter Depth') @click.option('--name', '-n', default = 'sample', help = 'Name of process') def vcf_stats(vcf, vcf_lists, depth, name): from baseq.snv.vcf.GATK import vcf_stats #build VCF lists if vcf and os.path.exists(vcf): vcfs = [name, vcf] elif vcf_lists and os.path.exists(vcf_lists): with open(vcf_lists, 'r') as infile: lines = infile.readlines() infos = [re.split("\s+", x) for x in lines] vcfs = [x for x in infos if x[0] and os.path.exists(x[1])] else: pass results = [] import multiprocessing as mp pool = mp.Pool(processes=20) for vcf in vcfs: results.append(pool.apply_async(vcf_stats, (vcf[0], vcf[1], int(depth),))) pool.close() pool.join() results = [x.get() for x in results] MAF = [[x['sample']] + x["MAF"].tolist() for x in results] writer = pd.ExcelWriter('VCF_stats.xlsx', engine='xlsxwriter', options={'font_name':'arial'}) # pd.DataFrame(results, columns=["sample", "counts", "mean_depth", "GT_01", "GT_02"]).to_excel("VCF.xls") # pd.DataFrame(MAF, columns=["sample"]+[str(round(x/50, 2)) for x in range(50)]).to_excel("MAF.xls")
pd.DataFrame(results, columns=["sample", "counts", "mean_depth", "GT_01", "GT_11"])
pandas.DataFrame
""" Utility functions for training and validating models. """ import time import torch import pandas as pd import numpy as np import torch.nn as nn from tqdm import tqdm from vaa.utils import correct_predictions def train(model, dataloader, optimizer, criterion, epoch_number, max_gradient_norm): """ Train a model for one epoch on some input data with a given optimizer and criterion. Args: model: A torch module that must be trained on some input data. dataloader: A DataLoader object to iterate over the training data. optimizer: A torch optimizer to use for training on the input model. criterion: A loss criterion to use for training. epoch_number: The number of the epoch for which training is performed. max_gradient_norm: Max. norm for gradient norm clipping. Returns: epoch_time: The total time necessary to train the epoch. epoch_loss: The training loss computed for the epoch. epoch_accuracy: The accuracy computed for the epoch. """ # Switch the model to train mode. model.train() device = model.device epoch_start = time.time() batch_time_avg = 0.0 running_loss = 0.0 correct_preds = 0 tqdm_batch_iterator = tqdm(dataloader) for batch_index, batch in enumerate(tqdm_batch_iterator): batch_start = time.time() # Move input and output data to the GPU if it is used. premises = batch["premise"].to(device) premises_lengths = batch["premise_length"].to(device) hypotheses = batch["hypothesis"].to(device) hypotheses_lengths = batch["hypothesis_length"].to(device) labels = batch["label"].to(device) optimizer.zero_grad() logits, probs, _, _ = model(premises, premises_lengths, hypotheses, hypotheses_lengths) loss = criterion(logits, labels) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_gradient_norm) optimizer.step() batch_time_avg += time.time() - batch_start running_loss += loss.item() correct_preds += correct_predictions(probs, labels) description = "Avg. batch proc. time: {:.4f}s, loss: {:.4f}"\ .format(batch_time_avg/(batch_index+1), running_loss/(batch_index+1)) tqdm_batch_iterator.set_description(description) epoch_time = time.time() - epoch_start epoch_loss = running_loss / len(dataloader) epoch_accuracy = correct_preds / len(dataloader.dataset) return epoch_time, epoch_loss, epoch_accuracy def validate(model, dataloader, criterion): """ Compute the loss and accuracy of a model on some validation dataset. Args: model: A torch module for which the loss and accuracy must be computed. dataloader: A DataLoader object to iterate over the validation data. criterion: A loss criterion to use for computing the loss. epoch: The number of the epoch for which validation is performed. device: The device on which the model is located. Returns: epoch_time: The total time to compute the loss and accuracy on the entire validation set. epoch_loss: The loss computed on the entire validation set. epoch_accuracy: The accuracy computed on the entire validation set. """ # Switch to evaluate mode. model.eval() device = model.device epoch_start = time.time() running_loss = 0.0 running_accuracy = 0.0 # Deactivate autograd for evaluation. with torch.no_grad(): for batch in dataloader: # Move input and output data to the GPU if one is used. premises = batch["premise"].to(device) premises_lengths = batch["premise_length"].to(device) hypotheses = batch["hypothesis"].to(device) hypotheses_lengths = batch["hypothesis_length"].to(device) labels = batch["label"].to(device) logits, probs, _, _ = model(premises, premises_lengths, hypotheses, hypotheses_lengths) loss = criterion(logits, labels) running_loss += loss.item() running_accuracy += correct_predictions(probs, labels) epoch_time = time.time() - epoch_start epoch_loss = running_loss / len(dataloader) epoch_accuracy = running_accuracy / (len(dataloader.dataset)) return epoch_time, epoch_loss, epoch_accuracy def test(model, dataloader): """ Compute the loss and accuracy of a model on some validation dataset. Args: model: A torch module for which the loss and accuracy must be computed. dataloader: A DataLoader object to iterate over the validation data. criterion: A loss criterion to use for computing the loss. epoch: The number of the epoch for which validation is performed. device: The device on which the model is located. Returns: epoch_time: The total time to compute the loss and accuracy on the entire validation set. epoch_loss: The loss computed on the entire validation set. epoch_accuracy: The accuracy computed on the entire validation set. """ # Switch to evaluate mode. model.eval() device = model.device data = None # Deactivate autograd for evaluation. with torch.no_grad(): for batch in dataloader: # Move input and output data to the GPU if one is used. premises = batch["premise"].to(device) premises_lengths = batch["premise_length"].to(device) hypotheses = batch["hypothesis"].to(device) hypotheses_lengths = batch["hypothesis_length"].to(device) logits, probs, _, _ = model(premises, premises_lengths, hypotheses, hypotheses_lengths) pred = torch.argmax(probs, dim=1).cpu().numpy() gold_labels = [] # label_names = ['entailment', 'neutral', 'contradiction'] for x in pred: if x == 0: gold_labels.append('entailment') elif x == 1: gold_labels.append('neutral') else: gold_labels.append('contradiction') temp = pd.DataFrame() temp['pairID'] = batch["id"] temp['gold_label'] = gold_labels if data is None: data = temp else: data =
pd.concat((data, temp))
pandas.concat
import pandas as pd import allel import numpy as np import logging logger = logging.getLogger(__name__) # FUNCTIONS def load_hdf5_data(hdf5_fn, chrom, s1, s2, gdistkey=None): import hdf5 samples1 = get_sample_ids(s1) samples2 = get_sample_ids(s2) samples_x = h5py.File(hdf5_fn)[chrom]["samples"][:] sample_name = [sid.decode() for sid in samples_x.tolist()] idx1 = np.array([sample_name.index(sid) for sid in samples1]) idx2 = np.array([sample_name.index(sid) for sid in samples2]) h5fh = h5py.File(hdf5_fn, mode="r")[chrom] g = allel.GenotypeChunkedArray.from_hdf5(h5fh["calldata"]["genotype"]) pos = allel.SortedIndex(h5fh["variants"]["POS"][:]) if gdistkey is not None: gdist = h5fh["variants"][gdistkey][:] else: gdist = None return g.take(idx1, axis=1), g.take(idx2, axis=1), pos, gdist def load_zarr_data(zarr_fn, chrom, s1, s2, gdistkey=None): import zarr samples1 = get_sample_ids(s1) samples2 = get_sample_ids(s2) zfh = zarr.open_group(zarr_fn, mode="r")[chrom] samples_x = zfh["samples"][:] sample_name = [sid.decode() for sid in samples_x.tolist()] idx1 = np.array([sample_name.index(sid) for sid in samples1]) idx2 = np.array([sample_name.index(sid) for sid in samples2]) g = allel.GenotypeChunkedArray(zfh["calldata"]["genotype"]) pos = allel.SortedIndex(zfh["variants"]["POS"][:]) if gdistkey is not None: gdist = h5fh["variants"][gdistkey][:] else: gdist = None return g.take(idx1, axis=1), g.take(idx2, axis=1), pos, gdist def load_text_format_data(mapfn, pop_a_fn, pop_b_fn): tbl = pd.read_csv(mapfn, sep="\t", header=None, engine="c") try: tbl.columns = ["ID", "CHROM", "GDist", "POS", "REF", "ALT"] except ValueError: logger.info("File not tab delimited as expected- trying with spaces") tbl = pd.read_csv( mapfn, sep=" ", header=None, engine="c", names=["ID", "CHROM", "GDist", "POS", "REF", "ALT"]) try: vartbl = allel.VariantChunkedTable(tbl.to_records(), index="POS") except ValueError: tbl = tbl.sort_values(["CHROM", "POS"]) logger.warning("Possible SNPs file is not sorted. Attempting to sort. This is likely to be inefficient") vartbl = allel.VariantChunkedTable(tbl.to_records(), index="POS") d1 = np.loadtxt(pop_a_fn, dtype="int8") geno1 = allel.GenotypeChunkedArray(d1.reshape((d1.shape[0], -1, 2))) d2 = np.loadtxt(pop_b_fn, dtype="int8") geno2 = allel.GenotypeChunkedArray(d2.reshape((d2.shape[0], -1, 2))) pos = allel.SortedIndex(vartbl.POS[:]) assert np.isnan(pos).sum() == 0, "nans values are not supported" return geno1, geno2, allel.SortedIndex(vartbl.POS[:]), vartbl.GDist[:] # function that either splits a string or reads a file def get_sample_ids(sample_input): if "," in sample_input: # assume split and return logger.debug("Assuming sample IDs given as comma-separated strings.") samples = sample_input.split(",") else: logger.debug("Assuming sample IDs provided in a file.") with open(sample_input, "r") as reader: samples = [x.strip() for x in reader.readlines()] return samples def load_vcf_wrapper(path, seqid, samples, samples_path): callset = allel.read_vcf( path, region=seqid, fields=['variants/POS', 'calldata/GT', 'samples'], tabix="tabix", samples=samples) assert "samples" in callset.keys(), "None of the samples provided in {0!r} are found in {1!r}".format( samples_path, path) p = allel.SortedIndex(callset["variants/POS"]) g = allel.GenotypeArray(callset['calldata/GT']) return p, g def load_vcf_format_data(vcf_fn, chrom, s1, s2, gdistkey=None): # geno1, geno2, pos = q, q, q samples1 = get_sample_ids(s1) samples2 = get_sample_ids(s2) pos1, geno1 = load_vcf_wrapper(vcf_fn, chrom, samples1, s1) pos2, geno2 = load_vcf_wrapper(vcf_fn, chrom, samples2, s2) assert np.array_equal(pos1, pos2), "POS fields not the same" assert geno1.shape[0] == pos1.shape[0], "For samples 1, genotypes do not match positions" assert geno2.shape[0] == pos2.shape[0], "For samples 2, genotypes do not match positions" assert geno1.shape[1] == len(samples1) assert geno2.shape[1] == len(samples2) return geno1, geno2, pos1, None def tabulate_results(chrom, model_li, null_li, selectionc, counts, count_avail, windows, edges): lidf = pd.DataFrame(np.vstack((model_li, null_li, selectionc, counts, count_avail)).T, columns=["modelL", "nullL", "sel_coef", "nSNPs", "nSNPs_avail"]) # these are the nominal windows winf = pd.DataFrame(windows, columns=["start", "stop"]) # these are the "real" windows. Gives a guide to how close we are. realf =
pd.DataFrame(edges, columns=["pos_start", "pos_stop"])
pandas.DataFrame
from sklearn.metrics.pairwise import cosine_similarity from sklearn.manifold import TSNE from sklearn.cluster import AgglomerativeClustering, KMeans from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.preprocessing import MaxAbsScaler from scipy.special import softmax import matplotlib.pyplot as plt import matplotlib import seaborn as sns import pandas import matplotlib.cm as cm import umap import tqdm import scanpy as sc import matplotlib.gridspec as gridspec import networkx as nx import matplotlib as mpl import numpy import operator import random import pickle import collections import sys import os class GeneEmbedding(object): def __init__(self, embedding_file, compass_dataset, vector="1"): if vector not in ("1","2","average"): raise ValueError("Select the weight vector from: ('1','2','average')") if vector == "average": print("Loading average of 1st and 2nd weights.") avg_embedding = embedding_file.replace(".vec","_avg.vec") secondary_weights = embedding_file.replace(".vec","2.vec") GeneEmbedding.average_vector_results(embedding_file,secondary_weights,avg_embedding) self.embeddings = self.read_embedding(avg_embedding) elif vector == "1": print("Loading first weights.") self.embeddings = self.read_embedding(embedding_file) elif vector == "2": print("Loading second weights.") secondary_weights = embedding_file.replace(".vec","2.vec") self.embeddings = self.read_embedding(secondary_weights) self.vector = [] self.context = compass_dataset.data self.embedding_file = embedding_file self.vector = [] self.genes = [] for gene in tqdm.tqdm(self.embeddings.keys()): # if gene in self.embeddings: self.vector.append(self.embeddings[gene]) self.genes.append(gene) def read_embedding(self, filename): embedding = dict() lines = open(filename,"r").read().splitlines()[1:] for line in lines: vector = line.split() gene = vector.pop(0) embedding[gene] = [float(x) for x in vector] return embedding def compute_similarities(self, gene, subset=None, feature_type=None): if gene not in self.embeddings: return None if feature_type: subset = [] for gene in list(self.embeddings.keys()): if feature_type == self.context.feature_types[gene]: subset.append(gene) embedding = self.embeddings[gene] distances = dict() if subset: targets = set(list(self.embeddings.keys())).intersection(set(subset)) else: targets = list(self.embeddings.keys()) for target in targets: if target not in self.embeddings: continue v = self.embeddings[target] distance = float(cosine_similarity(numpy.array(embedding).reshape(1, -1),numpy.array(v).reshape(1, -1))[0]) distances[target] = distance sorted_distances = list(reversed(sorted(distances.items(), key=operator.itemgetter(1)))) genes = [x[0] for x in sorted_distances] distance = [x[1] for x in sorted_distances] df = pandas.DataFrame.from_dict({"Gene":genes, "Similarity":distance}) return df def get_similar_genes(self, vector): distances = dict() targets = list(self.embeddings.keys()) for target in targets: if target not in self.embeddings: continue v = self.embeddings[target] distance = float(cosine_similarity(numpy.array(vector).reshape(1, -1),numpy.array(v).reshape(1, -1))[0]) distances[target] = distance sorted_distances = list(reversed(sorted(distances.items(), key=operator.itemgetter(1)))) genes = [x[0] for x in sorted_distances] distance = [x[1] for x in sorted_distances] df = pandas.DataFrame.from_dict({"Gene":genes, "Similarity":distance}) return df def cluster(self, threshold=0.75, lower_bound=1): cluster_definitions = collections.defaultdict(list) G = embed.generate_network(threshold=threshold) G.remove_edges_from(networkx.selfloop_edges(G)) for i, connected_component in enumerate(networkx.connected_components(G)): subg = G.subgraph(connected_component) if len(subg.nodes()) > lower_bound: # if len(subg.nodes()) == 2: # cluster_definitions[str(i+j+100)] += list(subg.nodes()) # continue clique_tree = networkx.tree.junction_tree(subg) clique_tree.remove_nodes_from(list(networkx.isolates(clique_tree))) for j, cc in enumerate(nx.connected_components(clique_tree)): for clique_cc in cc: cluster_definitions[str(i+j)] += list(set(clique_cc)) self.cluster_definitions = cluster_definitions return self.cluster_definitions def clusters(self, clusters): average_vector = dict() gene_to_cluster = collections.defaultdict(list) matrix = collections.defaultdict(list) total_average_vector = [] for gene, cluster in zip(self.context.expressed_genes, clusters): if gene in self.embeddings: matrix[cluster].append(self.embeddings[gene]) gene_to_cluster[cluster].append(gene) total_average_vector.append(self.embeddings[gene]) self.total_average_vector = list(numpy.average(total_average_vector, axis=0)) for cluster, vectors in matrix.items(): xvec = list(numpy.average(vectors, axis=0)) average_vector[cluster] = numpy.subtract(xvec,self.total_average_vector) return average_vector, gene_to_cluster def generate_vector(self, genes): vector = [] for gene, vec in zip(self.genes, self.vector): if gene in genes: vector.append(vec) assert len(vector) != 0, genes return list(numpy.median(vector, axis=0)) def cluster_definitions_as_df(self, top_n=20): similarities = self.cluster_definitions clusters = [] symbols = [] for key, genes in similarities.items(): clusters.append(key) symbols.append(", ".join(genes[:top_n])) df = pandas.DataFrame.from_dict({"Cluster Name":clusters, "Top Genes":symbols}) return df def plot(self, png=None, method="TSNE", labels=[], pcs=None, remove=[]): plt.figure(figsize = (8, 8)) ax = plt.subplot(1,1,1) pcs = self.plot_reduction(self.cluster_labels, ax, labels=labels, method=method, pcs=pcs, remove=remove) # if png: # plt.savefig(png) # plt.close() # else: plt.show() return pcs def marker_labels(self,top_n=5): markers = [] cluster_definitions = self.cluster_definitions marker_labels = dict() for gclust, genes in cluster_definitions.items(): print(gclust, ",".join(genes[:5])) markers += genes[:top_n] for gene in genes[:top_n]: marker_labels[gene] = gclust return markers, marker_labels def plot_reduction(self, clusters, ax, method="TSNE", labels=[], pcs=None, remove=[]): if type(pcs) != numpy.ndarray: if method == "TSNE": print("Running t-SNE") pca = TSNE(n_components=2, n_jobs=-1, metric="cosine") pcs = pca.fit_transform(self.vector) pcs = numpy.transpose(pcs) print("Finished.") else: print("Running UMAP") trans = umap.UMAP(random_state=42,metric='cosine').fit(self.vector) x = trans.embedding_[:, 0] y = trans.embedding_[:, 1] pcs = [x,y] print("Finished.") if len(remove) != 0: _pcsx = [] _pcsy = [] _clusters = [] for x, y, c in zip(pcs[0],pcs[1],clusters): if c not in remove: _pcsx.append(x) _pcsy.append(y) _clusters.append(c) pcs = [] pcs.append(_pcsx) pcs.append(_pcsy) clusters = _clusters data = {"x":pcs[0],"y":pcs[1], "Cluster":clusters} df = pandas.DataFrame.from_dict(data) sns.scatterplot(data=df,x="x", y="y",hue="Cluster", ax=ax) plt.xlabel("{}-1".format(method)) plt.ylabel("{}-2".format(method)) ax.set_xticks([]) ax.set_yticks([]) if len(labels): for x, y, gene in zip(pcs[0], pcs[1], self.context.expressed_genes): if gene in labels: ax.text(x+.02, y, str(gene), fontsize=8) return pcs def subtract_vector(self, vector): for gene, vec in self.embeddings.items(): vec = numpy.subtract(vec-vector) self.embeddings[gene] = vec def relabel_clusters(self, clusters, annotations): _clusters = [] for cluster in clusters: if cluster in annotations: _clusters.append(annotations[cluster]) else: _clusters.append(cluster) self.cluster_labels = _clusters return _clusters def plot_similarity_matrix(self, top_n=5, png=None): markers, marker_labels = self.marker_labels(top_n=top_n) cmap = matplotlib.cm.tab20 node_color = {} type_color = {} ctypes = [] for marker in markers: if marker_labels: ctypes = [] for value in marker_labels.values(): ctypes.append(value) ctypes = list(set(ctypes)) node_color[marker] = cmap(ctypes.index(marker_labels[marker])) type_color[marker_labels[marker]] = cmap(ctypes.index(marker_labels[marker])) mm = pandas.DataFrame(markers, index=markers) mm["Gene Cluster"] = mm[0] row_colors = mm["Gene Cluster"].map(node_color) similarity_matrix = [] markers = set(list(self.embeddings.keys())).intersection(set(markers)) markers = list(markers) for marker in markers: row = [] res = self.compute_similarities(marker, subset=markers) resdict = dict(zip(res["Gene"],res["Similarity"])) for gene in markers: row.append(resdict[gene]) similarity_matrix.append(row) from matplotlib.patches import Patch plt.figure() matrix = numpy.array(similarity_matrix) df =
pandas.DataFrame(matrix,index=markers,columns=markers)
pandas.DataFrame
"""Utilities for working with pandas & JS datetimes.""" import re from typing import Union, Set import pandas as pd from dateutil.tz import tzlocal __all__ = ["compute_timeunit"] Date = Union[pd.Series, pd.DatetimeIndex, pd.Timestamp] def compute_timeunit(date: Date, timeunit: str) -> Date: """Evaluate a timeUnit transform. Parameters ---------- date : pd.DatetimeIndex, pd.Series, or pd.Timestamp The date to be converted timeunit : string The Altair timeUnit identifier. Returns ------- date_tu : pd.DatetimeIndex, pd.Series, or pd.Timestamp The converted date, of the same type as the input. """ # Convert to either UTC or localtime as appropriate. def dt(date): return date.dt if isinstance(date, pd.Series) else date if dt(date).tz is None: date = dt(date).tz_localize(tzlocal()) date = dt(date).tz_convert("UTC" if timeunit.startswith("utc") else tzlocal()) if isinstance(date, pd.Series): return pd.Series(_compute_timeunit(timeunit, date.dt)) elif isinstance(date, pd.Timestamp): return _compute_timeunit(timeunit,
pd.DatetimeIndex([date])
pandas.DatetimeIndex
from sklearn.pipeline import make_pipeline import category_encoders as ce from sklearn.impute import SimpleImputer from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.model_selection import train_test_split import pandas as pd def basic_classifier(df, columns, target): ''' This function is a elementery RandomForest classifier that cleans, splits, and predicts on validation set. Returns metrics accuracy, precision (lab_class = 1), recall, and f1. Takes three arguments : raw dataframe, list of column headers for that dataframe (df.columns), and the binary target column name as a string. Fills NaNs with string value 'missing', applies OrdinalEncoder, and applies SimpleImputer with strategy 'mean'. ''' # This section defines input as 'dataframe' and fills nan values with # string value, 'missing' df = pd.DataFrame(df) df = df.fillna('missing') # This section defines our basic pipeline cleaner = make_pipeline( ce.OrdinalEncoder(), SimpleImputer(strategy='mean') ) # This section applies pipeline to our dataframe df_clean = cleaner.fit_transform(df) df_clean =
pd.DataFrame(df_clean)
pandas.DataFrame
import pandas as pd from unittest import TestCase, mock from unittest.mock import MagicMock, PropertyMock from gtfs_kit.feed import Feed from representation.gtfs_metadata import GtfsMetadata from representation.gtfs_representation import GtfsRepresentation from usecase.process_routes_count_by_type_for_gtfs_metadata import ( process_routes_count_by_type_for_gtfs_metadata, ROUTE_TYPE, TRAM_CODE, SUBWAY_CODE, RAIL_CODE, BUS_CODE, FERRY_CODE, CABLE_TRAM_CODE, AERIAL_LIFT_CODE, FUNICULAR_CODE, TROLLEY_BUS_CODE, MONORAIL_CODE, ) class TestProcessRoutesCountByTypeForGtfsMetadata(TestCase): def test_process_routes_count_with_none_gtfs_representation( self, ): self.assertRaises( TypeError, process_routes_count_by_type_for_gtfs_metadata, None ) def test_process_routes_count_with_invalid_gtfs_representation( self, ): mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = str self.assertRaises( TypeError, process_routes_count_by_type_for_gtfs_metadata, mock_gtfs_representation, ) @mock.patch("usecase.process_routes_count_by_type_for_gtfs_metadata.os.environ") def test_process_routes_count_with_valid_gtfs_representation_should_return_instance( self, mock_env ): test_env = { TRAM_CODE: "test_tram_code", SUBWAY_CODE: "test_subway_code", RAIL_CODE: "test_rail_code", BUS_CODE: "test_bus_code", FERRY_CODE: "test_ferry_code", CABLE_TRAM_CODE: "test_cable_tram_code", AERIAL_LIFT_CODE: "test_aerial_lift_code", FUNICULAR_CODE: "test_funicular_code", TROLLEY_BUS_CODE: "test_trolley_bus_code", MONORAIL_CODE: "test_monorail_code", } mock_env.__getitem__.side_effect = test_env.__getitem__ mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = GtfsRepresentation under_test = process_routes_count_by_type_for_gtfs_metadata( mock_gtfs_representation ) self.assertIsInstance(under_test, GtfsRepresentation) @mock.patch("usecase.process_routes_count_by_type_for_gtfs_metadata.os.environ") def test_process_routes_count_with_missing_files(self, mock_env): mock_dataset = MagicMock() mock_dataset.__class__ = Feed mock_metadata = MagicMock() mock_metadata.__class__ = GtfsMetadata mock_gtfs_representation = MagicMock() mock_gtfs_representation.__class__ = GtfsRepresentation type(mock_gtfs_representation).dataset = mock_dataset type(mock_gtfs_representation).metadata = mock_metadata under_test = process_routes_count_by_type_for_gtfs_metadata( mock_gtfs_representation ) self.assertIsInstance(under_test, GtfsRepresentation) mock_env.assert_not_called() mock_metadata.routes_count_by_type.assert_not_called() @mock.patch("usecase.process_routes_count_by_type_for_gtfs_metadata.os.environ") def test_process_routes_count_with_missing_fields(self, mock_env): mock_routes = PropertyMock(return_value=
pd.DataFrame({})
pandas.DataFrame
from unittest import TestCase import pandas as pd from cellphonedb.utils import dataframe_functions class TestDataframeSameData(TestCase): def test_compare_empty(self): self.assertTrue(dataframe_functions.dataframes_has_same_data(pd.DataFrame(), pd.DataFrame())) def test_equal(self): dataframe1 = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) dataframe2 =
pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
pandas.DataFrame
""" generate_gumbel_return_periods.py Author: <NAME>, <NAME> Copyright May 2020 License: BSD 3 Clause Updated: July 2020 Script to compute Gumbel return periods (2-, 5-, 10-, 25-, 50-, and 100-yr) based on historical streamflow simulation. The historical simulation needs to be in daily increments. To run the script, give 3 additional arguments: 1. path to master directory containing complete historical simulation netCDF's (with subfolders for each region) 2. path to the directory of log files 3. ending year to process (eg: 2020) python generate_gumbel_return_periods.py /path/to/era-5/results/dir /path/to/logs/dir end_year_of_simulation """ import os import sys import netCDF4 import logging import statistics import math import datetime import pandas from datetime import datetime def solve_gumbel_flow(std, xbar, rp): """ Solves the Gumbel Type I pdf = exp(-exp(-b)) where b is the covariate """ return -math.log(-math.log(1 - (1 / rp))) * std * .7797 + xbar - (.45 * std) def daily_to_yearly_max_flow(daily_flow_list, start_yr, end_yr): yearly_max_flows = [] dates = pandas.Series(pandas.date_range(str(start_yr) + '-1-1 00:00:00', periods=len(daily_flow_list), freq='D')) df =
pandas.DataFrame(daily_flow_list, columns=['simulated_flow'], index=dates)
pandas.DataFrame
# Importing Flask modules: from flask import Blueprint, make_response, render_template, flash, redirect from flask import current_app as app # Importing Flask REST API modules: from flask_restful import Resource, reqparse, Api # Importing 3rd party packages: import ast import json import datetime import networkx as nx import plotly import plotly.graph_objects as go import pandas as pd # Importing internal packages: from .models import MicroServiceLog, Microservice, db from .forms import MicroserviceCreationForm # Blueprint Configuration: microservice_bp = Blueprint( "microservice_bp", __name__, template_folder = "templates", static_folder = "static" ) # Creating API: api = Api(microservice_bp) # Creating the request parser object for all python logging field: log_parser = reqparse.RequestParser() log_parser.add_argument("name") log_parser.add_argument("msg") log_parser.add_argument("args") log_parser.add_argument("levelname") log_parser.add_argument("created") log_parser.add_argument("lineno") log_parser.add_argument("funcName") log_parser.add_argument("msecs") log_parser.add_argument("relativeCreated") log_parser.add_argument("thread") log_parser.add_argument("threadName") log_parser.add_argument("processName") log_parser.add_argument("process") class MicroServiceLogs(Resource): """The REST API functions for handeling python logs sent to the server from velokzz microservices. GET - Display the data based on the query params. POST - Ingest Log information. PUT - N/A DELETE - N/A """ def get(self): """Querying all avalible microservice logs that conform to the url query parameters. TODO: Add URL query param support. """ # Querying all logs made from the database: logs = MicroServiceLog.query.all() # Unpacking the SQLAlchemy objects into seralized JSON: logs = [ { "name":log.name, "msg": log.msg, "app_name":log.app_name, "process_type":log.process_type, "status_code": log.status_code, "levelname":log.levelname, "created":log.created.strftime("%m/%d/%Y, %H:%M:%S"), "lineno":log.lineno, "funcName":log.funcName, "msecs":log.msecs, "relativeCreated":log.relativeCreated.strftime("%m/%d/%Y, %H:%M:%S"), "thread":log.thread, "threadName":log.threadName, "processName":log.processName, "process":log.process } for log in logs ] return logs def post(self): """Handeling POST requests made to the server containing logs. The method error checks each post request to ensure that it conforms to a specific structure. If the request body contains the correct params the method performs type conversion and unpacks all params to create log SQLA objects that are written to the database. """ # Extracting all log params: args = log_parser.parse_args() if { 'args', 'created', 'lineno', 'msecs', 'relativeCreated', 'thread', 'name', 'msg', 'levelname', 'funcName', 'threadName', 'processName', 'process' } <= set(args): # Converting the string tuple to actual tuple and unpacking: app_name, process_type, status_code = ast.literal_eval(args["args"]) # Converting the arguments to the correct data types: status_code = int(status_code) created_obj = datetime.datetime.fromtimestamp(float(args["created"])) lineno = int(args["lineno"]) msecs = float(args["msecs"]) relativeCreated = datetime.datetime.fromtimestamp(float(args["relativeCreated"])) thead = int(args["thread"]) # Creating Log w/ ORM object: new_log = MicroServiceLog( name = args["name"], msg = args["msg"], app_name = app_name, process_type = process_type, status_code = status_code, levelname = args["levelname"], created = created_obj, lineno = lineno, funcName = args["funcName"], msecs = msecs, relativeCreated = relativeCreated, thread = thead, threadName = args["threadName"], processName = args["processName"], process = args["process"] ) # Commiting a Log Object to the database: db.session.add(new_log) db.session.commit() return make_response(f"Log {app_name}{process_type}{created_obj} Successfully") else: raise Warning("Log not Written to the database. Placeholder for error catching.") pass # Registering Microservice Log Routes: api.add_resource(MicroServiceLogs, "/api/") # Non REST API Routes: @microservice_bp.route("/", methods=["GET"]) def microservice_log_home(): # Querying the Microservice objects: microservices = Microservice.query.all() # Creating the graph plot from all the microservices: microservice_G = nx.Graph() microservice_G.add_node("Velkozz_REST_API") # Central node for the graph, the velkozz REST API. # Adding Microservice objects as nodes to the graph: microservice_G.add_nodes_from(microservices) for microservice in microservices: microservice_G.add_edge(microservice, "Velkozz_REST_API") # Generating the positions for each node in the graph: pos = nx.spring_layout(microservice_G) # formatting the nodes and edges of the graph: for n, p in pos.items(): microservice_G.nodes[n]["pos"] = p # Creating the scatter plot for the edges: edge_trace = go.Scatter( x = [], y = [], line = dict(width=0.5, color="#888"), hoverinfo="none", mode="lines" ) # Populating the edge trace with x and y values: for edge in microservice_G.edges(): x0, y0 = microservice_G.nodes[edge[0]]['pos'] x1, y1 = microservice_G.nodes[edge[1]]['pos'] edge_trace["x"] += tuple([x0, x1, None]) edge_trace["y"] += tuple([y0, y1, None]) # Creating the scatter plot for graph nodes: node_trace = go.Scatter( x=[], y=[], text=[], mode="markers", hoverinfo="text", marker=dict( showscale=True, colorscale='RdBu', reversescale=True, color=[], size=15, colorbar=dict( thickness=10, title='Node Connections', xanchor='left', titleside='right'), line=dict(width=0))) # Populating the node scatter trace with x and y values: for node in microservice_G.nodes(): x, y = microservice_G.nodes[node]['pos'] node_trace["x"] += tuple([x]) node_trace["y"] += tuple([y]) # Labeling the nodes text and color: for node in microservice_G.nodes(): # Determining if the node is a microservice or the REST API: if type(node) == str: # Labeling the node: node_trace["text"] += tuple([node]) # Setting REST API node color: node_trace["marker"]["color"] += tuple(["#FF00FF"]) # This overwrites the scatterplot params w/ config values. else: # Labeling the node: node_trace["text"] += tuple([f"{node.microservice_name} Microservice"]) # Setting the node color for Microservices: node_trace["marker"]['color'] += tuple(["#0000FF"]) # Creating the total graph figure: fig = go.Figure( data=[edge_trace, node_trace], layout = go.Layout( titlefont=dict(size=16), paper_bgcolor="rgba(0,0,0,0)", plot_bgcolor="rgba(0,0,0,0)", font=dict(color="#b2becd"), showlegend=False, hovermode="closest", margin=dict(b=20,l=5,r=5,t=40), annotations=[dict( text="No. of connections", showarrow=False, xref="paper", yref="paper")], xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))) # Converting the plotly graph to a JSON object to be passed to the frontend: graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder) # TODO: Filter the logs sent by microservices. # Create line graphs of all of the microservices sent per microservice. # Querying all microservice logs: # Creating the previous week timeframe that is used to filter the microservice logs: prev_week = datetime.datetime.today() - datetime.timedelta(days=7) microservice_logs = MicroServiceLog.query.filter(MicroServiceLog.created >= prev_week).all() # Logic that checks the number of microservice_logs. If < 0 render template w/o applying logic: if len(microservice_logs) <= 0: return render_template("microservice_home.html", microservices=microservices, graphJSON=graphJSON) # Converting the microservice query object to a list of dictionary: microservice_log_dicts = [ { "name":microservice_log.name, "msg":microservice_log.msg, "app_name":microservice_log.app_name, "process_type":microservice_log.process_type, "status_code":microservice_log.status_code, "levelname":microservice_log.levelname, "created":microservice_log.created, "lineno":microservice_log.lineno, "funcName":microservice_log.funcName, "msecs":microservice_log.msecs, "relativeCreated":microservice_log.relativeCreated, "thread":microservice_log.thread, "threadName":microservice_log.threadName, "processName":microservice_log.processName, "process":microservice_log.process } for microservice_log in microservice_logs ] microservice_df = pd.DataFrame.from_dict(microservice_log_dicts) microservice_df["_counter"] = 1 # Slicing dataframes based on specific microservices: microservice_slices = {} for microservice in microservices: # Slicing dataframe: df_slice = microservice_df.loc[microservice_df["app_name"] == microservice.microservice_name] # Transforming data to create daily frequency counts: df_slice.set_index("created" ,inplace=True) def add_microservice_log_data(microservice_slice_dict, microservice_name, microservice_df): """Method tries to extract the number of daily occurances of the specific log level from the dataframe. It extracts this data, seralizes it and adds the seralized data to the main 'microservice_slices' dict. """ # List of log level to process: levels = ["INFO", "WARN", "ERR.", "CRITICAL", "WARNING", "ERROR"] # Iterating through the dataframe slicing and resampling data to get counts of logs: level_data_dict = {} for level in levels: try: level_slice = df_slice.loc[df_slice["levelname"] == level, "_counter"].squeeze().resample("D").sum() except: level_slice = None if level_slice is not None: # Building nested dict for the specfici log level data: level_data_dict[level] = { "Date_Index":level_slice.index, "Data": list(level_slice.values) } else: pass # Add the level_data_dict onto the main microservice slice dict: microservice_slice_dict[microservice_name] = level_data_dict add_microservice_log_data(microservice_slices, microservice, df_slice) # TODO: use Microservice Slice Dict to create plotly timesereis and pass them to the front-end. # Iterating through the microservice dict to create a plotly timeseries for each microservice: levels = ["INFO", "WARN", "ERR.", "CRITICAL", "WARNING", "ERROR"] log_scatterplots = {} for microservice in microservice_slices: microservice_desc_lst = microservice.microservice_description.split(" ") # Splitting microservice description to make it formattable: if len(microservice_desc_lst) > 9: # Inserting line breaks: microservice_desc_lst.insert(10, "<br>") # Re-converting the list of strigs to a single string and adding it back to the microservice objects: microservice.microservice_description = " ".join(microservice_desc_lst) microservice_fig = go.Figure( layout=go.Layout( title=dict( text=microservice.microservice_description, y=0.9, x=0.5, xanchor="center", yanchor="top" ), paper_bgcolor="rgba(0,0,0,0)", plot_bgcolor="rgba(0,0,0,0)", font=dict(color="#b2becd"), xaxis=dict( title="Local Time", gridcolor="#b2becd", linecolor="#b2becd", linewidth= 1, mirror= True, showgrid=False), yaxis=dict( title="Log Frequency", gridcolor= "#b2becd", linecolor= "#b2becd", linewidth= 2, mirror= True, showgrid= False) ) ) # Iterating over the logging levels to add traces to the main figure: for level in levels: try: microservice_fig.add_trace(go.Scatter( name=f"{level}", mode="markers+lines", x=microservice_slices[microservice][level]["Date_Index"], y=microservice_slices[microservice][level]["Data"] )) except: pass # Adding the built figure to the scatterplot dict: log_scatterplots[microservice] = json.dumps(microservice_fig, cls=plotly.utils.PlotlyJSONEncoder) # Now that all scatterplots have been built adding the searlized data to the microservice query objects: for microservice in microservices: microservice.timeseries = log_scatterplots[microservice] return render_template("microservice_home.html", microservices=microservices, graphJSON=graphJSON) # Route to delete microservice object: @microservice_bp.route("/remove/<microservice>") def remove_microservice(microservice): # TODO: Write deletion function after writing adding and editing function. # Querying to ensure that the microservice exists: microservice = Microservice.query.filter_by(microservice_name=microservice).first() if microservice is not None: # Deleting Miroservice: msg_text = f"Microservice {microservice.microservice_name} successfully removed" db.session.delete(microservice) db.session.commit() flash(msg_text) return redirect("/") else: return redirect("/") # Route for Microservice creation: @microservice_bp.route("/add/", methods=["GET", "POST"]) def microservice_creation_form(): # Creating Microservice creation form: form = MicroserviceCreationForm() # Processing Form info and adding microservice to database: if form.validate_on_submit(): # TODO: Add logic that allows you to create OR update an existing object via this endpoint. # Querying the microservice object to see if it already exists: existing_microservice = Microservice.query.filter_by(microservice_name=form.microservice_name.data).first() if existing_microservice is not None: # Updating an existing microservice fields: existing_microservice.microservice_description = form.microservice_description.data existing_microservice.date_added=datetime.datetime.now() # Adding updated object to the database: db.session.commit() else: # Creating a Microservice Object: new_microservice = Microservice( microservice_name=form.microservice_name.data, microservice_description=form.microservice_description.data, date_added=datetime.datetime.now() ) # Committing a Microservice object to the database: db.session.add(new_microservice) db.session.commit() return redirect("/microservices/") return render_template("microservice_creation_form.html", form=form) # Route for a specific Microservice: @microservice_bp.route("/dashboard/<microservice>/", methods=["GET"]) def specific_microservice_dashboard(microservice): """ Method extracts the data to construct a specific Microservice dashboard and passes this data into the HTML template. """ levels = ["INFO", "WARN", "ERR.", "CRITICAL", "WARNING", "ERROR"] # Creating the previous week timeframe that is used to filter the microservice logs: prev_week = datetime.datetime.today() - datetime.timedelta(days=7) # Querying the single microservice from the Database: microservice = Microservice.query.filter_by(microservice_name=microservice).first() # TODO: Add logic to redirect the route if the microservice does not exist. if microservice is not None: # Querying the logs from a specific microservice: microservice_logs = MicroServiceLog.query.filter_by( app_name=microservice.microservice_name).filter(MicroServiceLog.created >= prev_week).order_by( MicroServiceLog.created.desc()).all() # Logic rendering template w/o graphs and other dispaly if there are no logs: if len(microservice_logs) <= 0: return render_template("microservice_dashboard.html", microservice=microservice, microservice_logs=microservice_logs) # Converting the Microservice Logs to a dataframe: microservice_log_dicts = [ { "name":microservice_log.name, "msg":microservice_log.msg, "app_name":microservice_log.app_name, "process_type":microservice_log.process_type, "status_code":microservice_log.status_code, "levelname":microservice_log.levelname, "created":microservice_log.created, "lineno":microservice_log.lineno, "funcName":microservice_log.funcName, "msecs":microservice_log.msecs, "relativeCreated":microservice_log.relativeCreated, "thread":microservice_log.thread, "threadName":microservice_log.threadName, "processName":microservice_log.processName, "process":microservice_log.process } for microservice_log in microservice_logs ] # Creating and refactoring the dataframe into a dialy count of log frequency: microservice_df =
pd.DataFrame.from_dict(microservice_log_dicts)
pandas.DataFrame.from_dict
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Dec 20 09:34:57 2020 @author: <NAME> """ import pandas as pd import argparse import sys import os from comprehensive_tcga_survival import StageGradeParser import biomarker_survival as surv class Multivariate(): def __init__(self, tcga_cdr, stage_key, grade_key): self.tcga_cdr = tcga_cdr self.stage = StageGradeParser(stage_key, tcga_cdr) self.grade = StageGradeParser(grade_key, tcga_cdr) def prep_ctype_multivar(self, ctype): gender_age = self.tcga_cdr.cancer_type_data(ctype, extra_cols=['gender', 'age_at_initial_pathologic_diagnosis']) gender_age = gender_age[['gender', 'age_at_initial_pathologic_diagnosis']] gender_age = gender_age.replace({'FEMALE': 0, 'MALE': 1}) stage_cols = self.stage.parse_for_ctype(ctype) grade_cols = self.grade.parse_for_ctype(ctype) multivar_cols = gender_age if not stage_cols.empty: multivar_cols = multivar_cols.join(stage_cols, how='inner') if not grade_cols.empty: multivar_cols = multivar_cols.join(grade_cols, how='inner') return multivar_cols # returns a dictionary of age, gender, and appropriate stage/grade features, # keyed by cancer type def prep_all_multivar(self): multivars = {} for c in self.tcga_cdr.cancer_types(): multivars[c] = self.prep_ctype_multivar(c) return multivars #%%% def get_options(argv): parser = argparse.ArgumentParser(description='Get rppa file, clinical file, optional output dir') parser.add_argument('-c', action='store', dest='tcga_cdr') parser.add_argument('-s', action='store', dest='stage_key') parser.add_argument('-g', action='store', dest='grade_key') parser.add_argument('-o', action='store', dest='output_directory', default='.') ns = parser.parse_args() return ns.tcga_cdr, ns.stage_key, ns.grade_key, ns.output_directory def multivar_main(argv=None): clinical, stage_key, grade_key, outdir = get_options(argv) tcga_cdr = surv.TCGA_CDR_util(clinical) m = Multivariate(tcga_cdr, stage_key, grade_key) cox_dicts = {} for ctype in tcga_cdr.cancer_types(): print(ctype) data_cols = m.prep_multivar(ctype) time_censor = tcga_cdr.cancer_type_data(ctype) ctype_patient_count = time_censor.shape[0] df = time_censor.join(data_cols, how='inner').dropna(how='any') cox_dict = surv.do_multivariate_cox(df['time'], df['censor'], df['gender'], df.drop(['time', 'censor', 'gender'], axis=1)) cox_dict['total patient count'] = ctype_patient_count cox_dicts[ctype] =
pd.Series(cox_dict)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp =
pd.DataFrame(data['temp'])
pandas.DataFrame
#!/usr/bin/env python3 import numpy as np import pandas as pd import pysal import cv2 import scipy import scipy.spatial as spatial class NeighborhoodMatrixComputation(object): def compute_neighborhood_matrix(self, neighborhood_matrix_type, neighborhood_p0, neighborhood_p1, **kwargs): ''' Computes the neighborhood matrix from the label image as a pysal object. Stores it in the dataframe neighborhood_matrix_df. :neighborhood_matrix_type: str should be 'k', 'radius', or 'network' :neighborhood_min_p0: int or float minimum bound for the neighborhood. should be int for 'k' or 'network'. Can be int or float for 'radius' :neighborhood_min_p1: int or float maximum bound for the neighborhood. should be int for 'k' or 'network'. Can be int or float for 'radius' :iterations: int. Optional Only used for 'network' neighborhood computation mode. Number of iterations of dilation to select the object neighbors from the label image. Default value: 1 :kd_tree_approx: boolean. Optional Used for 'radius' and 'k'. If set to True, then use a kd-tree to find kNN. Else compute all pair distances. :save_neighbors: bool if True, will add a column to feature_table with the ids of neighbors if False, do not keep the ids of neighbors ''' if self._debug: print("\ncompute_neighborhood_matrix", neighborhood_matrix_type, neighborhood_p0, neighborhood_p1, kwargs) neighborhood_p0, neighborhood_p1, iterations = self._check_neighborhood_matrix_parameters(neighborhood_matrix_type, neighborhood_p0, neighborhood_p1, **kwargs) try: w = self.get_neighborhood_matrix(neighborhood_matrix_type, neighborhood_p0, neighborhood_p1, **kwargs) ## already computed return except ValueError: suffix = self.get_suffix(neighborhood_matrix_type, neighborhood_p0, neighborhood_p1, **kwargs) if neighborhood_matrix_type == 'k': neighbor_dict = self._compute_matrix_k(suffix, neighborhood_p0, neighborhood_p1, **kwargs) elif neighborhood_matrix_type == 'radius': neighbor_dict = self._compute_matrix_radius(suffix, neighborhood_p0, neighborhood_p1, **kwargs) elif neighborhood_matrix_type == 'network': neighbor_dict = self._compute_matrix_network(suffix, neighborhood_p0, neighborhood_p1, **kwargs) neighborhood_matrix = pysal.weights.weights.W(neighbor_dict) nb_pairs = np.sum(neighborhood_matrix.full()[0])/2 self.neighborhood_matrix_df.loc[self.neighborhood_matrix_df.shape[0],:] = [neighborhood_matrix_type, neighborhood_p0, neighborhood_p1, iterations, \ neighborhood_matrix, \ nb_pairs] def _compute_matrix_k(self, suffix, neighborhood_p0, neighborhood_p1, save_neighbors=True, kd_tree_approx=False, **kwargs): if self.NN is None: self._compute_NN(kd_tree_approx) NN = self.NN[:,neighborhood_p0:neighborhood_p1+1] NN = [[self.feature_table.iloc[l][self._column_objectnumber] for l in line] for line in NN] self.feature_table.loc[:, 'DistanceLastNeighbor_{}'.format(suffix)] = self.NN_distances[:,neighborhood_p1] # if save_neighbors: # self.feature_table['neighbors_{}'.format(suffix)] = np.empty((self.n, 0)).tolist() if neighborhood_p0 == 0: neighbor_dict = {line[0]: line[1:] for line in NN if len(line) > 1} NN_for_df = [line[1:] for line in NN] if save_neighbors: self.feature_table['neighbors_{}'.format(suffix)] = np.empty((self.n, 0)).tolist() self.feature_table.loc[:, 'neighbors_{}'.format(suffix)] = pd.Series(NN_for_df) else: if save_neighbors: self.feature_table.loc[:, 'neighbors_{}'.format(suffix)] = pd.Series(NN) ObjNum = self.feature_table[self._column_objectnumber].values neighbor_dict = {obj_num: neighbors for (obj_num, neighbors) in zip(ObjNum, NN) if len(neighbors)>0} return neighbor_dict def _compute_matrix_radius(self, suffix, neighborhood_p0, neighborhood_p1, save_neighbors=True, kd_tree_approx=False, **kwargs): ## keep neighborhood_p0 <= r <= neighborhood_p1 if self.NN is None: self._compute_NN(kd_tree_approx) mask = (self.NN_distances > neighborhood_p1)+(self.NN_distances < neighborhood_p0) mask[:,0] = True NN = np.array(self.NN) NN[mask] = -1 NN = [[l for l in line if l != -1] for line in NN] NN = [[self.feature_table.iloc[l][self._column_objectnumber] for l in line if l != -1] for line in NN] NN_distances = [[l for l in line if (l < neighborhood_p1) and (l > neighborhood_p0)] for line in self.NN_distances] self.feature_table.loc[:, 'NumberNeighbors_{}'.format(suffix)] = np.sum(~mask, axis=1) if save_neighbors: self.feature_table['neighbors_{}'.format(suffix)] = np.empty((self.n, 0)).tolist() self.feature_table.loc[:, 'neighbors_{}'.format(suffix)] = pd.Series(NN) ObjNum = self.feature_table[self._column_objectnumber].values neighbor_dict = {obj_num: neighbors for (obj_num, neighbors) in zip(ObjNum, NN) if len(neighbors)>0} # print(neighbor_dict) return neighbor_dict def _compute_matrix_network(self, suffix, neighborhood_p0, neighborhood_p1, save_neighbors=True, iterations=1, **kwargs): def custom_pow(firstM, lastM, n): if n > 1: mylist = custom_pow(firstM, lastM, n-1) mylist.append(np.dot(mylist[-1], firstM)) return mylist else: return [np.dot(firstM,lastM)] def matrix_treatment(M): np.fill_diagonal(M,0) M[M>1] = 1 return M ## actual neighbors ## labels start at 1 if iterations not in self.adjacency_matrix: self._get_neighbors_from_label_image(self.get_suffix('network', 0, 1, iterations=iterations), iterations=iterations, save_neighbors=save_neighbors, **kwargs) ## compute the needed power matrices if len(self.adjacency_matrix[iterations]) < neighborhood_p1: last_adj_mat = self.adjacency_matrix[iterations][-1] first_adj_mat = self.adjacency_matrix[iterations][0] new_power_matrices = custom_pow(first_adj_mat, \ last_adj_mat, neighborhood_p1 - len(self.adjacency_matrix[iterations])) new_power_matrices[:] = map(matrix_treatment, new_power_matrices) self.adjacency_matrix[iterations].extend(new_power_matrices) obj_nums = self.feature_table[self._column_objectnumber].values ### real network if neighborhood_p1 == 1: list_where = np.where(self.adjacency_matrix[iterations][0]) ### extended network else: cumsum_mat = self.adjacency_matrix[iterations][:neighborhood_p0] cumsum_mat = np.sum(cumsum_mat, axis=0) cumsum_mat2 = self.adjacency_matrix[iterations][neighborhood_p0:neighborhood_p1] cumsum_mat2 = np.sum(cumsum_mat2, axis=0) w = cumsum_mat2 - cumsum_mat w[w<0] = 0 list_where = np.where(w) neighbor_dict = {} # print(list_where) for key, value in zip(list_where[0], list_where[1]): neighbor_dict.setdefault(obj_nums[key], []).append(obj_nums[value]) if neighborhood_p1 != 1: ## neighborhood_p1 == 1 done by _get_neighbors_from_label_image # index_for_series = self.feature_table.index[self.feature_table[self._column_objectnumber].isin(neighbor_dict.keys())] # correct_keys = self.feature_table[self._column_objectnumber].isin(neighbor_dict.keys()) # print(len(neighbor_dict.keys()), np.sum(correct_keys), w.shape) self.feature_table.loc[:, 'NumberNeighbors_{}'.format(suffix)] = np.sum(w, axis=0) if save_neighbors: self.feature_table.loc[:, 'neighbors_{}'.format(suffix)] = pd.Series([obj_nums[list_where[1][list_where[0] == index]] for index in range(self.n)]) return neighbor_dict def _compute_NN(self, kd_tree_approx=False): coordinates = self.feature_table.loc[:,self._column_x_y].values if kd_tree_approx: tree = spatial.KDTree(coordinates) NN_distances, NN = tree.query(coordinates, self.n) else: ## no approximation, compute all distances distance_bw_points = spatial.distance.cdist(coordinates, coordinates) NN = np.argsort(distance_bw_points, axis=1) xs = np.tile(np.arange(self.n), self.n).reshape((self.n, self.n)).T NN_distances = distance_bw_points[xs,NN] self.NN = NN self.NN_distances = NN_distances def _get_neighbors_from_label_image(self, suffix, iterations=1, save_neighbors=True, **kwargs): ''' From the image_label, find all_neighbors Assumes that the labels on the image are the same as in the feature table. on the label image, 0 is bg objectNumbers start at 1 ''' labels = np.unique(self.feature_table[self._column_objectnumber].values) #np.sort(list(set(np.unique(self.image_label[self.image_label > 0].flatten())).intersection(np.unique(self.feature_table[self._column_objectnumber])))) if self._debug: print("_get_neighbors_from_label_image\n#labels = {}; #objects = {}, starting label id = {}, iterations={}".format(len(labels), self.n, min(labels), iterations)) # self.feature_table['neighbors_{}'.format(suffix)] = np.empty((self.n, 0)).tolist() # self.feature_table['NumberNeighbors_{}'.format(suffix)] = 0 sum_neighbors = [] if save_neighbors: list_neighbors = [] adj_mat = np.zeros((self.n, self.n)) if self._debug: print("_get_neighbors_from_label_image", adj_mat.shape) for index_l, l in enumerate(labels): list_neighbor, sum_neighbor = self._get_label_neighbors(l, iterations) sum_neighbors.append(sum_neighbor) if save_neighbors: list_neighbors.append(list_neighbor) if len(list_neighbor) > 0: adj_mat[index_l, np.isin(labels, list_neighbor)] = 1 self.adjacency_matrix[iterations] = [adj_mat] if self._debug: print("_get_neighbors_from_label_image", suffix) self.feature_table.loc[self.feature_table[self._column_objectnumber].isin(labels), 'NumberNeighbors_{}'.format(suffix)] = sum_neighbors if save_neighbors: index_for_series = self.feature_table.index[self.feature_table[self._column_objectnumber].isin(labels)] self.feature_table.loc[self.feature_table[self._column_objectnumber].isin(labels), 'neighbors_{}'.format(suffix)] =
pd.Series(list_neighbors, index=index_for_series)
pandas.Series
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import json import matplotlib.pyplot as plt from datetime import datetime from sys import stdout from sklearn.preprocessing import scale from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel, WhiteKernel from sklearn.utils.validation import indexable from sklearn.model_selection import check_cv from sklearn.metrics.scorer import check_scoring from sklearn.model_selection._validation import _fit_and_score from sklearn.externals.joblib import Parallel, delayed def compute_features(): # Load json data with open('json_file.json') as data_file: patients = json.load(data_file) print("JSON file loaded") # Features computation print("Features computation launched") visits = [] for patient in patients.values(): for i in range(1, len(patient['visits']) + 1): visits.append(patient['visits'][str(i)]) n_visits = len(visits) print("n_visits = %s" % n_visits) # Features DataFrame with encounter_nums index encounter_nums = [int(visit.get('encounter_num')) for visit in visits] X = pd.DataFrame(index=encounter_nums) # Time vector & censoring indicator print("Adding labels...", end="") next_visit = [visit.get('next_visit') for visit in visits] T = np.array([1e10 if str(t) == 'none' else t for t in next_visit]).astype( int) end_dates = pd.to_datetime([visit.get('end_date') for visit in visits]) C = pd.to_datetime('2016-01-15 00:00:00') - end_dates days, seconds = C.days, C.seconds C = days * 24 + seconds // 3600 # in hours (discrete) delta = (T <= C).astype(int) Y = T Y[delta == 0] = C[delta == 0] labels = pd.DataFrame({'Y': Y, 'delta': delta}, index=encounter_nums) X = pd.concat([X, labels], axis=1) print(" done") # Basic features print("Adding basic features...", end="") # Add also patient_num & encounter_num for future random choice patient_num, encounter_num = [], [] sex, baseline_HB, genotype_SS, age, transfu_count = [], [], [], [], [] LS_ALONE, LS_INACTIVE, MH_ACS, MH_AVN, MH_DIALISIS = [], [], [], [], [] MH_HEART_FAILURE, MH_ISCHEMIC_STROKE, MH_LEG_ULCER = [], [], [] MH_NEPHROPATHY, MH_PHTN, MH_PRIAPISM, MH_RETINOPATHY = [], [], [], [] OPIOID_TO_DISCHARGE, ORAL_OPIOID, USED_MORPHINE = [], [], [] USED_OXYCODONE, duration, previous_visit, rea = [], [], [], [] for patient in patients.values(): for _ in range(1, len(patient['visits']) + 1): patient_num.append(patient['patient_num']) sex.append(1 if int(patient['sex']) == 1 else 0) baseline_HB.append(patient['baseline_HB']) genotype_SS.append(patient['genotype_SS']) for visit in visits: encounter_num.append(visit.get('encounter_num')) age.append(visit.get('age')) rea.append(visit.get('rea')) LS_ALONE.append(visit.get('LS_ALONE')) LS_INACTIVE.append(visit.get('LS_INACTIVE')) MH_ACS.append(visit.get('MH_ACS')) MH_AVN.append(visit.get('MH_AVN')) MH_DIALISIS.append(visit.get('MH_DIALISIS')) MH_HEART_FAILURE.append(visit.get('MH_HEART_FAILURE')) MH_ISCHEMIC_STROKE.append(visit.get('MH_ISCHEMIC_STROKE')) MH_LEG_ULCER.append(visit.get('MH_LEG_ULCER')) MH_NEPHROPATHY.append(visit.get('MH_NEPHROPATHY')) MH_PHTN.append(visit.get('MH_PHTN')) MH_PRIAPISM.append(visit.get('MH_PRIAPISM')) MH_RETINOPATHY.append(visit.get('MH_RETINOPATHY')) ORAL_OPIOID.append(visit.get('ORAL_OPIOID')) USED_MORPHINE.append(visit.get('USED_MORPHINE')) USED_OXYCODONE.append(visit.get('USED_OXYCODONE')) duration.append(visit.get('duration')) previous_visit.append(visit.get('previous_visit')) transfu_count.append(visit.get('transfu_count')) threshold = 24 * 30 * 18 # 18 months previous_visit = [0 if (t == 'none' or t > threshold) else 1 for t in previous_visit] MH_ACS = [1 if int(x) == 2 else x for x in MH_ACS] MH_AVN = [1 if int(x) == 2 else x for x in MH_AVN] MH_DIALISIS = [1 if int(x) == 2 else x for x in MH_DIALISIS] MH_HEART_FAILURE = [1 if int(x) == 2 else x for x in MH_HEART_FAILURE] MH_ISCHEMIC_STROKE = [1 if int(x) == 2 else x for x in MH_ISCHEMIC_STROKE] MH_LEG_ULCER = [1 if int(x) == 2 else x for x in MH_LEG_ULCER] MH_NEPHROPATHY = [1 if int(x) == 2 else x for x in MH_NEPHROPATHY] MH_PHTN = [1 if int(x) == 2 else x for x in MH_PHTN] MH_PRIAPISM = [1 if int(x) == 2 else x for x in MH_PRIAPISM] MH_RETINOPATHY = [1 if int(x) == 2 else x for x in MH_RETINOPATHY] X_basic = pd.DataFrame( {'patient_num': patient_num, 'encounter_num': encounter_num, 'sex': sex, 'genotype_SS': genotype_SS, 'age': age, 'rea': rea, 'LS_INACTIVE': LS_INACTIVE, 'MH_ACS': MH_ACS, 'MH_AVN': MH_AVN, 'MH_DIALISIS': MH_DIALISIS, 'MH_HEART_FAILURE': MH_HEART_FAILURE, 'MH_ISCHEMIC_STROKE': MH_ISCHEMIC_STROKE, 'MH_LEG_ULCER': MH_LEG_ULCER, 'LS_ALONE': LS_ALONE, 'MH_NEPHROPATHY': MH_NEPHROPATHY, 'MH_PHTN': MH_PHTN, 'MH_PRIAPISM': MH_PRIAPISM, 'MH_RETINOPATHY': MH_RETINOPATHY, 'ORAL_OPIOID': ORAL_OPIOID, 'baseline_HB': baseline_HB, 'USED_MORPHINE': USED_MORPHINE, 'USED_OXYCODONE': USED_OXYCODONE, 'duration': duration, 'previous_visit': previous_visit, 'transfu_count': transfu_count}, index=encounter_nums) X = pd.concat([X, X_basic], axis=1) print(" done") # Bio data print("Adding bio features...", end="") bio_data, bio_names = pd.DataFrame(), [] for visit in visits: encounter_num = int(visit.get('encounter_num')) tmp = pd.DataFrame(index=[encounter_num]) end_date = pd.to_datetime(visit.get('end_date')) for bio_name, bio_values in visit.get('bio').items(): # keep last value bio_names.append(bio_name) values = [val['nval_num'] for val in bio_values.values()] tmp[bio_name] = values[-1] # only keep last 48h values offset = end_date - pd.DateOffset(hours=48) values, index = [], [] for dic in bio_values.values(): val_time = pd.to_datetime(dic['date_bio']) if val_time > offset: values.append(float(dic['nval_num'])) index.append(float( (val_time - offset) / pd.Timedelta( '1 hour'))) # if at least 2 pts, add slope if len(values) > 1: x, y = index, values # least-squares A = np.vstack([np.array(x), np.ones(len(x))]).T slope, _ = np.linalg.lstsq(A, y)[0] else: slope = np.nan bio_names.append(bio_name + ' slope') tmp[bio_name + ' slope'] = slope bio_data = bio_data.append(tmp) bio_names_count = pd.Series( bio_names).value_counts() * 100 / n_visits bio_percentage = 35 bio_param_kept = bio_names_count[bio_names_count > bio_percentage] bio_data = bio_data[bio_param_kept.index] print(" done") X = pd.concat([X, bio_data], axis=1) # Vital parameters data print("\nAdding vital parameters features...") param_no_gp = ['Poids [kg]', 'Taille [cm]', 'Débit O2 [L/min]'] param_gp = ['Fréquence cardiaque [bpm]', 'Fréquence respiratoire [mvt/min]', 'PA max [mmHg]', 'PA min [mmHg]', 'Température [°C]', 'Saturation en oxygène [%]'] plot_curves_for_visits = np.random.randint(1, n_visits + 1, 3) print("\nPlot Gaussian Processes learned for a few random sampled visits") vital_parameter_data = pd.DataFrame() count = 1 for nb_visit, visit in enumerate(visits): stdout.write( "\rVisit %s / %s" % (count, n_visits)) stdout.flush() end_date = pd.to_datetime(visit.get('end_date')) encounter_num = int(visit.get('encounter_num')) tmp = pd.DataFrame(index=[encounter_num]) for vital_name, vital_values in visit.get( 'vital_parameters').items(): if vital_name in param_gp: # only keep last 48h values offset = end_date - pd.DateOffset(hours=48) values, index = [], [] for dic in vital_values.values(): val_time = pd.to_datetime(dic['start_date']) if val_time > offset: values.append(float(dic['nval_num'])) index.append(float( (val_time - offset) / pd.Timedelta( '1 hour'))) if len(values) > 0: x, y = index, values # least-squares A = np.vstack([np.array(x), np.ones(len(x))]).T slope, intercept = np.linalg.lstsq(A, y)[0] vals = np.array([slope, np.mean(values)]) kernel = ConstantKernel(1.0, (1e-3, 1e3)) * RBF(2, ( 1, 5)) + WhiteKernel() gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10) gp.fit(np.atleast_2d(x).T, np.array(y) - np.mean(y)) vals = np.append(vals, gp.kernel_.theta) if count in plot_curves_for_visits: nb_points = 100 x_new = np.linspace(0, 48, nb_points) y_ = gp.predict(np.atleast_2d(x_new).T) y_ += np.mean(y) plt.figure() plt.plot(x, y, 'r.', markersize=10, label=u'Observations') plt.plot(x_new, y_, 'b-', label=u'Prediction') plt.xlabel('last 48h') plt.ylabel('values') plt.title(vital_name + ", encounter_num = %s" % encounter_num) plt.legend() plt.show() else: vals = np.array([np.nan] * 5) columns = ["%s slope" % vital_name, "%s mean" % vital_name, "%s cst_kernel" % vital_name, "%s length_scale_RBF" % vital_name, "%s noise_level" % vital_name] vals = pd.DataFrame(np.atleast_2d(vals), columns=columns, index=[encounter_num]) tmp = pd.concat([tmp, vals], axis=1) if vital_name in param_no_gp: if vital_name in ['Poids [kg]', 'Taille [cm]']: values = [] for dic in vital_values.values(): values.append(float(dic['nval_num'])) columns = ["%s mean" % vital_name] vals = pd.DataFrame(np.atleast_2d(np.mean(values)), columns=columns, index=[encounter_num]) if vital_name == 'Débit O2 [L/min]': values, index = [], [] for dic in vital_values.values(): val_time = pd.to_datetime(dic['start_date']) values.append(float(dic['nval_num'])) index.append(val_time) if len(values) > 0: idx_pos = [idx if is_positive else -1 for idx, is_positive in enumerate(np.array(values) > 0)] delay = (end_date - index[ np.max(idx_pos)]) / pd.Timedelta('1 hour') else: delay = (end_date - start_date) / pd.Timedelta('1 hour') columns = ["Débit O2 [L/min] delay"] if delay < 0: delay = 0 vals = pd.DataFrame(np.atleast_2d(delay), columns=columns, index=[encounter_num]) tmp = pd.concat([tmp, vals], axis=1) vital_parameter_data = vital_parameter_data.append(tmp) count += 1 # add BMI bmi = vital_parameter_data["Poids [kg] mean"] / vital_parameter_data[ "Taille [cm] mean"] ** 2 bmi *= 1e4 bmi = pd.DataFrame(bmi, columns=['BMI']) vital_parameter_data = pd.concat([vital_parameter_data, bmi], axis=1) X = pd.concat([X, vital_parameter_data], axis=1) # Syringes data print("\nAdding syringes features...") syringes_data =
pd.DataFrame()
pandas.DataFrame
import sys import numpy as np import pandas as pd from pandas.api.types import is_categorical_dtype, is_numeric_dtype, is_string_dtype from formulae.transforms import TRANSFORMS, Proportion, Offset from formulae.terms.call_utils import CallVarsExtractor class Call: """Representation of a call in a model Term. This class and ``Variable`` are the atomic components of a model term. This object supports stateful transformations defined in ``formulae.transforms``. A transformation of this type defines its parameters the first time it is called, and then can be used to recompute the transformation with memorized parameter values. This behavior is useful when implementing a predict method and using transformations such as ``center(x)`` or ``scale(x)``. ``center(x)`` memorizes the value of the mean, and ``scale(x)`` memorizes both the mean and the standard deviation. Parameters ---------- call: formulae.terms.call_resolver.LazyCall The call expression returned by the parser. is_response: bool Indicates whether this call represents a response. Defaults to ``False``. """ def __init__(self, call, is_response=False): self.data = None self.env = None self._intermediate_data = None self._type = None self.is_response = is_response self.call = call self.name = str(self.call) def __hash__(self): return hash(self.call) def __eq__(self, other): if not isinstance(other, type(self)): return False return self.call == other.call def __repr__(self): return self.__str__() def __str__(self): return f"{self.__class__.__name__}({self.name})" def accept(self, visitor): """Accept method called by a visitor. Visitors are those available in call_utils.py, and are used to work with call terms. """ return visitor.visitCallTerm(self) @property def var_names(self): """Returns the names of the variables involved in the call, not including the callee. This is used to determine which variables of the data set being used are actually used in the model. This allows us to subset the original data set and only raise errors regarding missing values when the missingness happens in variables used in the model. Uses a visitor of class ``CallVarsExtractor`` that walks through the components of the call and returns a list with the name of the variables in the call. Returns ---------- result: list A list of strings with the names of the names of the variables in the call, not including the name of the callee. """ return set(CallVarsExtractor(self).get()) def set_type(self, data_mask, env): """Evaluates function and determines the type of the result of the call. Evaluates the function call and sets the ``._type`` property to ``"numeric"`` or ``"categoric"`` depending on the type of the result. It also stores the intermediate result of the evaluation in ``._intermediate_data`` to prevent us from computing the same thing more than once. Parameters ---------- data_mask: pd.DataFrame The data frame where variables are taken from env: Environment The environment where values and functions are taken from. """ self.env = env.with_outer_namespace(TRANSFORMS) x = self.call.eval(data_mask, self.env) if is_numeric_dtype(x): self._type = "numeric" elif is_string_dtype(x) or is_categorical_dtype(x): self._type = "categoric" elif isinstance(x, Proportion): self._type = "proportion" elif isinstance(x, Offset): self._type = "offset" x.set_size(len(data_mask.index)) else: raise ValueError(f"Call result is of an unrecognized type ({type(x)}).") self._intermediate_data = x def set_data(self, encoding=False): """Finishes the evaluation of the call according to its type. Evaluates the call according to its type and stores the result in ``.data``. It does not support multi-level categoric responses yet. If ``self.is_response`` is ``True`` and the variable is of a categoric type, this method returns a 1d array of 0-1 instead of a matrix. In practice, it just completes the evaluation that started with ``self.set_type()``. Parameters ---------- encoding: bool Indicates if it uses full or reduced encoding when the type of the call is categoric. Omitted when the result of the call is numeric. """ try: if self._type is None: raise ValueError("Call result type is not set.") if self._type not in ["numeric", "categoric", "proportion", "offset"]: raise ValueError(f"Call result is of an unrecognized type ({self._type}).") if self._type == "numeric": self.data = self._eval_numeric(self._intermediate_data) elif self._type == "categoric": self.data = self._eval_categoric(self._intermediate_data, encoding) elif self._type == "proportion": self.data = self._eval_proportion(self._intermediate_data) elif self._type == "offset": self.data = self._eval_offset(self._intermediate_data) except: print("Unexpected error while trying to evaluate a Call:", sys.exc_info()[0]) raise def _eval_numeric(self, x): """Finishes evaluation of a numeric call. Converts the intermediate values of the call into a numpy array of shape ``(n, 1)``, where ``n`` is the number of observations. This method is used both in ``self.set_data`` and in ``self.eval_new_data``. Parameters ---------- x: np.ndarray or pd.Series The intermediate values resulting from the call. Returns ---------- result: dict A dictionary with keys ``"value"`` and ``"type"``. The first contains the result of the evaluation, and the latter is equal to ``"numeric"``. """ if isinstance(x, np.ndarray): if x.ndim == 1: value = x[:, np.newaxis] else: value = x elif isinstance(x, pd.Series): value = x.to_numpy()[:, np.newaxis] else: raise ValueError(f"Call result is of an unrecognized type ({type(x)}).") return {"value": value, "type": "numeric"} def _eval_categoric(self, x, encoding): """Finishes evaluation of categoric call. First, it checks whether the intermediate evaluation returned is ordered. If not, it creates a category where the levels are the observed in the variable. They are sorted according to ``sorted()`` rules. Then, it determines the reference level as well as all the other levels. If the variable is a response, the value returned is a dummy with 1s for the reference level and 0s elsewhere. If it is not a response variable, it determines the matrix of dummies according to the levels and the encoding passed. Parameters ---------- x: np.ndarray or pd.Series The intermediate values of the variable. encoding: bool Indicates if it uses full or reduced encoding. Returns ---------- result: dict A dictionary with keys ``"value"``, ``"type"``, ``"levels"``, ``"reference"``, and ``"encoding"``. They represent the result of the evaluation, the type, which is ``"categoric"``, the levels observed in the variable, the level used as reference when using reduced encoding, and whether the encoding is ``"full"`` or ``"reduced"``. """ if not hasattr(x.dtype, "ordered") or not x.dtype.ordered: categories = sorted(x.unique().tolist()) cat_type = pd.api.types.CategoricalDtype(categories=categories, ordered=True) x = x.astype(cat_type) reference = x.min() levels = x.cat.categories.tolist() if self.is_response: value = np.atleast_2d(np.where(x == reference, 1, 0)).T encoding = None else: if isinstance(encoding, list): encoding = encoding[0] if isinstance(encoding, dict): encoding = encoding[self.name] if encoding: value = pd.get_dummies(x).to_numpy() encoding = "full" else: value = pd.get_dummies(x, drop_first=True).to_numpy() encoding = "reduced" return { "value": value, "type": "categoric", "levels": levels, "reference": reference, "encoding": encoding, } def _eval_proportion(self, proportion): if not self.is_response: raise ValueError("'prop()' can only be used in the context of a response term.") return {"value": proportion.eval(), "type": "proportion"} def _eval_offset(self, offset): if self.is_response: raise ValueError("'offset() cannot be used in the context of a response term.") return {"value": offset.eval(), "type": "offset"} def eval_new_data(self, data_mask): # pylint: disable = inconsistent-return-statements """Evaluates the function call with new data. This method evaluates the function call within a new data mask. If the transformation applied is a stateful transformation, it uses the proper object that remembers all parameters or settings that may have been set in a first pass. Parameters ---------- data_mask: pd.DataFrame The data frame where variables are taken from Returns ---------- result: np.array The rules for the shape of this array are the rules for ``self._eval_numeric()`` and ``self._eval_categoric()``. The first applies for numeric calls, the second for categoric ones. """ if self._type in ["numeric", "categoric"]: x = self.call.eval(data_mask, self.env) if self._type == "numeric": return self._eval_numeric(x)["value"] else: return self._eval_new_data_categoric(x) elif self._type == "proportion": if self._intermediate_data.trials_type == "constant": # Return value passed in the second component return np.ones((len(data_mask.index), 1)) * self.call.args[1].value else: # Extract name of the second component name = self.call.args[1].name values = data_mask[name] if isinstance(values, pd.Series): values = values.values[:, np.newaxis] return values elif self._type == "offset": if self._intermediate_data.type == "constant": # Return value passed as the argument return np.ones((len(data_mask.index), 1)) * self.call.args[0].value else: # Extract name of the argument name = self.call.args[0].name values = data_mask[name] if isinstance(values, pd.Series): values = values.values[:, np.newaxis] return values def _eval_new_data_categoric(self, x): """Evaluates the call with new data when the result of the call is categoric. This method also checks the levels observed in the new data frame are included within the set of the levels of the result of the original call If not, an error is raised. x: np.ndarray or pd.Series The intermediate values of the variable. Returns ---------- result: np.array Numeric numpy array ``(n, p)``, where ``n`` is the number of observations and ``p`` the number of dummy variables used in the numeric representation of the categorical variable. """ # Raise error if passing a level that was not observed. new_data_levels = pd.Categorical(x).dtype.categories.tolist() if set(new_data_levels).issubset(set(self.data["levels"])): series =
pd.Categorical(x, categories=self.data["levels"])
pandas.Categorical
import pandas as pd import numpy as np from pandas import DataFrame, get_dummies import keras from keras.layers import Dense, Dropout from keras.models import Sequential from keras.utils import to_categorical from keras.callbacks import EarlyStopping from keras.constraints import max_norm from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt f = pd.read_csv('presidents-data-words-january-3-2018.csv') df = DataFrame(f) df = df.dropna(subset=['dagalb','nseg','nsyll','nstress','mean']) early_stop = EarlyStopping(patience=5) X_cols = ['widx','lexstress','nseg','nsyll','nstress','pos','dep','doc.freq','d.inform.3','corpus.freq','c.inform.3','category'] X = df[X_cols] y = np.array(to_categorical(df.dagalb)) cat_cols = ['lexstress','pos','dep','category'] scale_cols = ['widx','nseg','nsyll','nstress','doc.freq','d.inform.3','corpus.freq','c.inform.3'] for c in cat_cols: dum =
pd.get_dummies(X[c], columns=[c], prefix=c)
pandas.get_dummies
from typing import Any, Dict, List, Optional from copy import copy import os from lunchbox.enforce import Enforce, EnforceError from pandas import DataFrame, DatetimeIndex from schematics.exceptions import DataError import dash import dash_core_components as dcc import dash_html_components as html import dash_table import flask import lunchbox.tools as lbt import rolling_pin.blob_etl as rpb import shekels.core.config as cfg import shekels.core.data_tools as sdt # ------------------------------------------------------------------------------ # TODO: refactor components tests to use selnium and be less brittle # TODO: add JSON editor component for config # APP--------------------------------------------------------------------------- def get_dash_app(server, storage_type='memory'): # type: (flask.Flask, str) -> dash.Dash ''' Generate Dash Flask app instance. Args: server (Flask): Flask instance. storage_type (str): Storage type (used for testing). Default: memory. Returns: Dash: Dash app instance. ''' store = dcc.Store(id='store', storage_type=storage_type) icon = html.Img(id='icon', src='/assets/icon.svg') tabs = dcc.Tabs( id='tabs', className='tabs', value='plots', children=[ dcc.Tab(className='tab', label='plots', value='plots'), dcc.Tab(className='tab', label='data', value='data'), dcc.Tab(className='tab', label='config', value='config'), dcc.Tab(className='tab', label='api', value='api'), dcc.Tab(className='tab', label='docs', value='docs'), dcc.Tab(className='tab', label='monitor', value='monitor'), ], ) tabs = html.Div(id='tabs-container', children=[icon, tabs]) content = dcc.Loading( id="content", className='content', type="dot", fullscreen=True, ) # path to resources inside pip package assets = lbt.relative_path(__file__, "../resources") # path to resources inside repo if 'REPO_ENV' in os.environ.keys(): assets = lbt.relative_path(__file__, "../../../resources") app = dash.Dash( name='Shekels', title='Shekels', server=server, external_stylesheets=['/static/style.css'], assets_folder=assets, ) app.layout = html.Div(id='layout', children=[store, tabs, content]) app.config['suppress_callback_exceptions'] = True return app # TABS-------------------------------------------------------------------------- def get_data_tab(query=None): # type: (Optional[str]) -> List ''' Get tab element for Shekels data. Args: query (str, optional): Query string. Default: None. Return: list: List of elements for data tab. ''' # dummies must go first for element props behavior to work content = html.Div(id='lower-content', children=[ html.Div(id='data-content', className='col', children=[]) ]) return [*get_dummy_elements(), get_searchbar(query), content] def get_plots_tab(query=None): # type: (Optional[str]) -> List ''' Get tab element for Shekels plots. Args: query (str, optional): Query string. Default: None. Return: list: List of elements for plots tab. ''' # dummies must go first for element props behavior to work content = html.Div(id='lower-content', children=[ html.Div(id='plots-content', className='col', children=[ dcc.Loading(id="progress-bar", type="circle") ]) ]) return [*get_dummy_elements(), get_searchbar(query), content] def get_config_tab(config): # type: (Dict) -> List ''' Get tab element for Shekels config. Args: config (dict): Configuration to be displayed. Return: list: List of elements for config tab. ''' # dummies must go first for element props behavior to work content = html.Div(id='lower-content', children=[ html.Div(id='config-content', className='col', children=[ get_key_value_table( config, id_='config', header='config', editable=True ) ]) ]) return [*get_dummy_elements(), get_configbar(config), content] # MENUBARS---------------------------------------------------------------------- def get_searchbar(query=None): # type: (Optional[str]) -> html.Div ''' Get a row of elements used for querying Shekels data. Args: query (str, optional): Query string. Default: None. Returns: Div: Div with query field and buttons. ''' if query is None: query = 'select * from data' spacer = html.Div(className='col spacer') query = dcc.Input( id='query', className='col query', value=query, placeholder='SQL query that uses "FROM data"', type='text', autoFocus=True, debounce=True ) search = get_button('search') init = get_button('init') update = get_button('update') row = html.Div( className='row', children=[query, spacer, search, spacer, init, spacer, update], ) searchbar = html.Div(id='searchbar', className='menubar', children=[row]) return searchbar def get_dummy_elements(): # type: () -> List ''' Returns a list of all elements with callbacks so that the client will not throw errors in each tab. Returns: list: List of html elements. ''' return [ dcc.Input(className='dummy', id='config-query', value=None), html.Div(className='dummy', children=[dash_table.DataTable(id='config-table')]), dcc.Input(className='dummy', id='query', value=None), html.Div(className='dummy', id='config-search-button', n_clicks=None), html.Div(className='dummy', id='search-button', n_clicks=None), html.Div(className='dummy', id='init-button', n_clicks=None), html.Div(className='dummy', id='update-button', n_clicks=None), dcc.Upload(className='dummy', id='upload', contents=None), html.Div(className='dummy', id='save-button', n_clicks=None), ] def get_configbar(config, query='select * from config'): # type: (Dict, Optional[str]) -> html.Div ''' Get a row of elements used for configuring Shekels. Args: config (dict): Configuration to be displayed. query (str, optional): Query string. Default: None. Returns: Div: Div with buttons and JSON editor. ''' spacer = html.Div(className='col spacer') query = dcc.Input( id='config-query', className='col query', value=query, placeholder='SQL query that uses "FROM config"', type='text', autoFocus=True, debounce=True ) search = get_button('search') search.id = 'config-search-button' init = get_button('init') upload = dcc.Upload( id='upload', children=[get_button('upload')] ) save = get_button('save') row = html.Div( className='row', children=[ query, spacer, search, spacer, init, spacer, upload, spacer, save ], ) configbar = html.Div(id='configbar', className='menubar', children=[row]) return configbar # ELEMENTS---------------------------------------------------------------------- def get_button(title): # type: (str) -> html.Button ''' Get a html button with a given title. Args: title (str): Title of button. Raises: TypeError: If title is not a string. Returns: Button: Button element. ''' if not isinstance(title, str): msg = f'{title} is not a string.' raise TypeError(msg) return html.Button(id=f'{title}-button', children=[title], n_clicks=0) def get_key_value_table( data, id_='key-value', header='', editable=False, key_order=None ): # type (dict, Optional(str), str, bool, Optional(List[str])) -> DataTable ''' Gets a Dash DataTable element representing given dictionary. Args: data (dict): Dictionary. id_ (str, optional): CSS id. Default: 'key-value'. header (str, optional): Table header title. Default: ''. editable (bool, optional): Whether table is editable. Default: False. key_order (list[str], optional): Order in which keys will be displayed. Default: None. Returns: DataTable: Tablular representation of given dictionary. ''' data = rpb.BlobETL(data).to_flat_dict() # determine keys keys = sorted(list(data.keys())) if key_order is not None: diff = set(key_order).difference(keys) if len(diff) > 0: diff = list(sorted(diff)) msg = f'Invalid key order. Keys not found in data: {diff}.' raise KeyError(msg) keys = set(keys).difference(key_order) keys = sorted(list(keys)) keys = key_order + keys # transform data data = [dict(key=k, value=data[k]) for k in keys] cols = [] # type: Any if len(data) > 0: cols = data[0].keys() cols = [{'name': x, 'id': x} for x in cols] table = dash_table.DataTable( data=data, data_previous=data, columns=cols, id=f'{id_}-table', sort_action='native', sort_mode='multi', page_action='none', cell_selectable=True, editable=editable, ) head = html.Div(className='key-value-table-header', children=header) return html.Div( id=id_, className='key-value-table-container', children=[head, table] ) def get_datatable(data, color_scheme=cfg.COLOR_SCHEME, editable=False): # type: (List[Dict], Dict[str, str], bool) -> dash_table.DataTable ''' Gets a Dash DataTable element using given data. Assumes dict element has all columns of table as keys. Args: data (list[dict]): List of dicts. color_scheme (dict, optional): Color scheme dictionary. Default: COLOR_SCHEME. editable (bool, optional): Whether table is editable. Default: False. Returns: DataTable: Table of data. ''' cs = copy(cfg.COLOR_SCHEME) cs.update(color_scheme) cols = [] # type: Any if len(data) > 0: cols = data[0].keys() cols = [{'name': x, 'id': x} for x in cols] return dash_table.DataTable( data=data, columns=cols, id='datatable', fixed_rows=dict(headers=True), sort_action='native', sort_mode='multi', cell_selectable=editable, editable=editable, ) def get_plots(data, plots): # type: (List[dict], List[dict]) -> List[dcc.Graph] ''' Gets a Dash plots using given dicts. Assumes dict element has all columns of table as keys. Args: data (list[dict]): List of dicts defining data. plots (list[dict]): List of dicts defining plots. Raises: EnforceError: If data is not a list of dicts. EnforceError: If plots is not a list of dicts. Returns: list[dcc.Graph]: Plots. ''' msg = 'Data must be a list of dictionaries. Given value: {a}.' Enforce(data, 'instance of', list, message=msg) for item in data: Enforce(item, 'instance of', dict, message=msg) msg = 'Plots must be a list of dictionaries. Given value: {a}.' Enforce(plots, 'instance of', list, message=msg) for item in plots: Enforce(item, 'instance of', dict, message=msg) # -------------------------------------------------------------------------- data_ =
DataFrame(data)
pandas.DataFrame
import os import os.path import random from operator import add from datetime import datetime, date, timedelta import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import shutil import ema_workbench import time ## Step 2: Function for initiating the main dictionary of climate stations def create_dic(a): '''Function: creating a dictionary for each climate station''' a = {} keys = ['fM', 'iPot', 'rSnow', 'dSnow', 'cPrec', 'dP', 'elev', 'lat', 'long', 'fileName'] a = {key: None for key in keys} return a def initialize_input_dict (mainFolderSki): ''' This function returns a dictionary , and addresses of 4 folders''' '''Step 1''' rootFolder = mainFolderSki inputFolder = os.path.join(rootFolder,'input') ablationFolder = os.path.join(inputFolder, 'Ablation') accumulationFolder = os.path.join(inputFolder, 'Accumulation') climate_ref_Folder = os.path.join(inputFolder, 'Climate_ref') climate_Ref_Folder_org = os.path.join(inputFolder, 'Climate_ref_no_randomness_0') climate_ref_Folder_rand_1 = os.path.join(inputFolder, 'Climate_ref_randomness_1') climate_ref_Folder_rand_2 = os.path.join(inputFolder, 'Climate_ref_randomness_2') '''Step 2: Reading all files names inside the Ablation, Accumulation, and Climate folders''' ablationFiles = [] for filename in os.walk(ablationFolder): ablationFiles = filename[2] accumulationFiles = list() for filename in os.walk(accumulationFolder): accumulationFiles = filename[2] climate_ref_Files = list() for filename in os.walk(climate_ref_Folder): climate_ref_Files = filename[2] '''Step 3: Reading files inside ablation folder ''' os.chdir(ablationFolder) with open(ablationFiles[0], 'r') as file: FM1 = file.read() with open(ablationFiles[1], 'r') as file: Ipot1 = file.read() with open(ablationFiles[2], 'r') as file: Rsnow1 = file.read() '''Step 4: Reading the lines of files inside ablation folder''' FM1 = FM1.replace('\n', '\t') FM1 = FM1.split('\t') Ipot1 = Ipot1.replace('\n', '\t').split('\t') Rsnow1 = Rsnow1.replace('\n', '\t').split('\t') '''Step 5: Reading the lines of files inside accumulation folder''' os.chdir(accumulationFolder) with open(accumulationFiles[0], 'r') as file: cPrec = file.read() with open(accumulationFiles[1], 'r') as file: dSnow1 = file.read() cPrec = cPrec.replace('\n', '\t') cPrec = cPrec.split('\t') dSnow1 = dSnow1.replace('\n', '\t').split('\t') '''Step 6: Reading the lines of files inside climate folder''' os.chdir(climate_ref_Folder) with open('pcp.txt', 'r') as file: pcpData = file.read() with open('tmp.txt', 'r') as file: tmpData = file.read() pcpData = pcpData.split('\n') for i in range(len(pcpData)): pcpData[i] = pcpData[i].split(',') '''Step 7: Initialazing the input dictionary of climate stations which holds the information of accumulation and ablation, and etc of the stations''' nameStn = [] for file in climate_ref_Files: if 'p.csv' in file: #nameStn.append('n_' + file[-25: -5]) nameStn.append(file[-25: -5]) stnDicts = [] for i in range(len(nameStn)): stnDicts.append(create_dic(nameStn[i])) '''Step 8: Assigning the file names to the dictionary''' for i in range (len(nameStn)): stnDicts[i]['fileName'] = nameStn[i] '''Step 9: Assigning the accumulation and ablation values''' for stnDict in stnDicts: for i, element in enumerate(FM1): if element == stnDict['fileName'][:]: #if element == stnDict['fileName'][2:]: stnDict['fM'] = FM1[i+1] for i, element in enumerate(Ipot1): if element == stnDict['fileName'][:]: #if element == stnDict['fileName'][2:]: stnDict['iPot'] = Ipot1[i+1] for i, element in enumerate(Rsnow1): if element == stnDict['fileName'][:]: #if element == stnDict['fileName'][2:]: stnDict['rSnow'] = Rsnow1[i+1] for i, element in enumerate(dSnow1): if element == stnDict['fileName'][:]: #if element == stnDict['fileName'][2:]: stnDict['dSnow'] = dSnow1[i+1] for i, element in enumerate(cPrec): stnDict['cPrec'] = cPrec[1] stnDict['dP'] = cPrec[3] '''Step 10: Assigning the elevation, Lat and long to the dictionaries''' for i in range(len(stnDicts)): for j in range(1, len(pcpData)): #if pcpData[j][1][2:-1] == stnDicts[i]['fileName'][2:]: if pcpData[j][1][:-1] == stnDicts[i]['fileName'][:]: stnDicts[i]['lat']= pcpData[j][2] stnDicts[i]['long']= pcpData[j][3] stnDicts[i]['elev']= pcpData[j][4] return stnDicts, inputFolder, ablationFolder, accumulationFolder, climate_ref_Folder, climate_Ref_Folder_org, \ climate_ref_Folder_rand_1, climate_ref_Folder_rand_2 # Step 3 Snow Model ## S3.1 Initializiing the main dictionary for a case study caseStudyStns = {} inputFolder = '' ablationFolder = '' accumulationFolder = '' climateFolder = '' climateFolder_org = '' climateFolder1 = '' climateFolder2 = '' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case1_sattel-hochstuckli' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case2_Atzmaening' root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case3_hoch-ybrig\setup1' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case4_villars-diablerets_elevations_b1339' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case4_villars-diablerets_elevations_b1822' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case4_villars-diablerets_elevations_b2000' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case4_villars-diablerets_elevations_b2500' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case5_champex' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case6_davos_elevations_b1564' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case6_davos_elevations_b2141' #root = r'C:\Saeid\Prj100\SA_2\snowModelUZH\case6_davos_elevations_b2584' ## calling the function with multiple return values caseStudyStns, inputFolder, ablationFolder, accumulationFolder, climateFolder, climateFolder_org, \ climateFolder1, climateFolder2 = initialize_input_dict(root) def copytree(src, dst, symlinks=False, ignore=None): for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) ## 1st column as index: makaing date from 01 01 1981 to 2099 12 31 from datetime import timedelta, date def daterange(start_date, end_date): for n in range(int ((end_date - start_date ).days + 1)): yield start_date + timedelta(n) ### OR Let's make this function in a more OOP way: class Policy_Ski: def __init__(self, x1SnowThershold): self.x1SnowThershold = x1SnowThershold def policy_release2(self): return(self.x1SnowThershold) def policy_release3(self): ''' this function should make a matrix of evaluation fot the condition of 100 day ay minimum condition''' pass class Economic_Model_Ski: def __init__(self, xCostDay, xRevenueDay): self.costDayFixed = xCostDay self.revenueDayFixed = xRevenueDay def economic_costDay(self): return(self.costDayFixed) def economic_revenueDay(self): return(self.revenueDayFixed) class RCP_Model: def __init__(self, xRCP, xClimateModel): self.input1 = round(xRCP) #self.input1 = xRCP self.input2 = xClimateModel def rcpGenerator(self): if self.input1 == 1: RCP = str(2.6) rcpInt = 1 if self.input1 == 2: RCP = str(4.5) rcpInt = 2 if self.input1 == 3: RCP = str(8.5) rcpInt = 3 return(RCP, rcpInt) def climateModel(self): a, b = RCP_Model.rcpGenerator(self) if b == 1: climateModel = round(self.input2*11) elif b == 2: climateModel = 11 + max(1,round(self.input2*25)) else: climateModel = 36 + max(1, round(self.input2*31)) return (int(climateModel)) def tipping_points_freq(df, xGoodDays): """ This function, calculates the frequency of tipping points for each individual resort """ dfColumns= df.columns scenarios_length= len(dfColumns) simulations_Length = len(df[dfColumns[1]]) tipping_freq = np.zeros(scenarios_length) for i in range (1, scenarios_length, 1): m = 0 for j in range (1 , simulations_Length, 1): if float(df[dfColumns[i]].iloc[j]) < xGoodDays: m += 1 if m == 3: tipping_freq[i] += 1 m = 0 else: m = 0 continue #break return tipping_freq # XLR Framework def snow_Model (xRCP=None, xClimateModel=None, Xfactor1 = None, X2fM = None, X3iPot = None, X4rSnow = None, X5temp = None, X6tempArt = None, xCostDay = None, xRevenueDay = None, x1SnowThershold = None, xGoodDays = None): '''' This function controls the Ski resort model in an XLR framework''' ''' VERY IMPORTANT --- Controling the randomness --- VERY IMPORTANT''' xClimateRandomness = round(Xfactor1) if (xClimateRandomness == 1): os.chdir(climateFolder_org) src = os.getcwd() os.chdir(climateFolder) dst = os.getcwd() #copytree(src, dst) print('Original CH2018 is being used') elif (xClimateRandomness == 2) : os.chdir(climateFolder1) src = os.getcwd() os.chdir(climateFolder) dst = os.getcwd() #copytree(src, dst) print('Random Climate realization version 1 is being used') else: os.chdir(climateFolder2) src = os.getcwd() os.chdir(climateFolder) dst = os.getcwd() #copytree(src, dst) print('Random Climate realization version 2 is being used') os.chdir(climateFolder) fnames = os.listdir() #randomness_pcp_tmp(fnames, Xfactor1) print('Snow_Model: Matching the station names values with CSV files!') '''Matching the station names values in the dictionary of stations with CSV files in Climate folder of the case Study''' pcpCaseStudy = [] tmpCaseStudy = [] if (xClimateRandomness == 1): for i in range(len(caseStudyStns)): pcpCaseStudy.append(os.path.join(climateFolder, caseStudyStns[i]['fileName'] + 'p.csv')) tmpCaseStudy.append(os.path.join(climateFolder, caseStudyStns[i]['fileName'] + 't.csv')) elif (xClimateRandomness == 2) : for i in range(len(caseStudyStns)): pcpCaseStudy.append(os.path.join(climateFolder1, caseStudyStns[i]['fileName'] + 'p.csv')) tmpCaseStudy.append(os.path.join(climateFolder1, caseStudyStns[i]['fileName'] + 't.csv')) else: for i in range(len(caseStudyStns)): pcpCaseStudy.append(os.path.join(climateFolder2, caseStudyStns[i]['fileName'] + 'p.csv')) tmpCaseStudy.append(os.path.join(climateFolder2, caseStudyStns[i]['fileName'] + 't.csv')) print('Snow_Model: Building a database for each csv file (tmp and pcp)!') '''Step 6: building a database for each precipitation and temperature file in Climate folder and saving them in a list''' '''6.1 reading the csv files as databases''' dfpcp = [None for _ in range(len(pcpCaseStudy))] dftmp = [None for _ in range(len(tmpCaseStudy))] for i in range(len(pcpCaseStudy)): dfpcp[i] = pd.read_csv(pcpCaseStudy[i]) dftmp[i] =
pd.read_csv(tmpCaseStudy[i])
pandas.read_csv
import logging import os import ast import pandas as pd from pandas.io.json import json_normalize import sys as sys import json import numpy as np def main(argv=None): """ Utilize Pandas library to read in both UNSD M49 country and area .csv file (tab delimited) as well as the UNESCO heritage site .csv file (tab delimited). Extract regions, sub-regions, intermediate regions, country and areas, and other column data. Filter out duplicate values and NaN values and sort the series in alphabetical order. Write out each series to a .csv file for inspection. """ if argv is None: argv = sys.argv msg = [ 'Source file read {0}', 'UNSD M49 regions written to file {0}', 'UNSD M49 sub-regions written to file {0}', 'UNSD M49 intermediate regions written to file {0}', 'UNSD M49 countries and areas written to file {0}', 'UNSD M49 development status written to file {0}', 'UNESCO heritage site countries/areas written to file {0}', 'UNESCO heritage site categories written to file {0}', 'UNESCO heritage site regions written to file {0}', 'UNESCO heritage site transboundary values written to file {0}' ] # Creating small sample of data: business_json = './input/json/yelp_academic_dataset_business.json' business_df = pd.read_json(business_json, lines=True, encoding='utf8') ## Creating full clean business csv attributes_df = business_df[['business_id','attributes']] attire = [] noise = [] for val in attributes_df['attributes']: try: attire.append(val['RestaurantsAttire']) except: attire.append("") try: noise.append(val['NoiseLevel']) except: noise.append("") attributes_df['Attire'] = pd.Series(attire) attributes_df['Noise'] = pd.Series(noise) attributes_df = attributes_df.drop('attributes', axis=1) businesses = pd.read_csv('./input/csv/yelp_business.csv') full_data = pd.merge(businesses, attributes_df, how='inner', on='business_id') for col in full_data.columns: full_data[col] = full_data[col].fillna('Null').astype(str) full_data[col] = full_data[col].apply(lambda x: x.strip('""""')) full_data_small = full_data.sample(2000) full_data_small.to_csv('SMALL_yelp_full_businesses.csv', quotechar='"', index=False) user_df = pd.read_csv('input/csv/yelp_user.csv') user_df_small = user_df.sample(2000) user_df_small.to_csv('SMALL_yelp_user.csv', quotechar='"', index=False) review_df = pd.read_csv('input/csv/yelp_review.csv', converters={'text':lambda x:x.replace('/n/n','')}) review_df = review_df.replace('\n','', regex=True) review_with_user_and_business = review_df[(review_df['user_id'].isin(user_df_small['user_id']) == True) & (review_df['business_id'].isin(full_data_small['business_id']) == True)] review_with_user_and_business.to_csv('SMALL_yelp_review.csv', quotechar='"', index=False) # Setting logging format and default level logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.DEBUG) # Read in United Nations Statistical Division (UNSD) M49 Standard data set (tabbed separator) # # logging.info(msg[0].format(os.path.abspath(business_df))) # # # Write categories to a .csv file. # categories = [] # for x in business_df['categories']: # if x != None: # cat = x.split(',') # for each in cat: # if each.strip() not in categories: # categories.append(each.strip()) # # business_cat = extract_filtered_series(df, 'categories') # business_cat_csv = './output/business_categories.csv' # write_series_to_csv(pd.Series(categories), business_cat_csv, '\t', False) # # # Write cities to a .csv file. # cities = [] # for x in business_df['city']: # if x != None: # if x.strip() not in cities: # cities.append(x.strip()) # cities_csv = './output/cities.csv' # write_series_to_csv(pd.Series(cities), cities_csv, '\t', False) # # logging.info(msg[2].format(os.path.abspath(unsd_sub_region_csv))) # # # Write states to a .csv file. # states = [] # for x in business_df['state']: # if x != None: # if x.strip() not in states: # states.append(x.strip()) # states_csv = './output/states.csv' # write_series_to_csv(pd.Series(states), states_csv, '\t', False) # # # Write attire to a .csv file. # attires = [] # for x in df['RestaurantsAttire']: # if x != None: # if x not in attires: # attires.append(x) # attires_csv = './output/attires.csv' # write_series_to_csv(pd.Series(attires), attires_csv, '\t', False) # # # Write noise status to a .csv file. # noise = [] # for x in df['NoiseLevel']: # if x != None: # if x not in noise: # noise.append(x) # noise_csv = './output/noise.csv' # write_series_to_csv(pd.Series(noise), noise_csv, '\t', False) def extract_filtered_series(data_frame, column_name): """ Returns a filtered Panda Series one-dimensional ndarray from a targeted column. Duplicate values and NaN or blank values are dropped from the result set which is returned sorted (ascending). :param data_frame: Pandas DataFrame :param column_name: column name string :return: Panda Series one-dimensional ndarray """ return data_frame[column_name].drop_duplicates().dropna().sort_values() def pandas_(s, lookup): df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from snsynth.preprocessors import GeneralTransformer from snsynth.pytorch import PytorchDPSynthesizer from snsynth.pytorch.nn import DPCTGAN, PATECTGAN size = 100 batch_size = 10 eps = 1.0 np_data_xy = np.array([ np.arange(0, size) % 3, (np.arange(0, size) % 3) * 10, ]).astype(np.int16).T class TestDPGANInputChecks: def test_train_dpctgan_continuous(self): dpgan = DPCTGAN(epsilon=eps, batch_size=batch_size) try: dpgan.train(np_data_xy, categorical_columns=[0]) except ValueError: return raise AssertionError('DPCTGAN should have raised a ValueError') def test_train_patectgan_continuous(self): dpgan = PATECTGAN(epsilon=eps, batch_size=batch_size) try: dpgan.train(np_data_xy, categorical_columns=[0]) except ValueError: return raise AssertionError('PATECTGAN should have raised a ValueError') def test_fit_pytorchgan_continuous(self): dpgan = PytorchDPSynthesizer(eps, PATECTGAN(epsilon=eps, batch_size=batch_size), GeneralTransformer()) pd_data_xy = pd.DataFrame(np_data_xy, columns=["x", "y"]) try: dpgan.fit(pd_data_xy, categorical_columns=[0]) except ValueError: return raise AssertionError('PATECTGAN should have raised a ValueError') def test_fit_pytorchgan_continuous_no_transfromer(self): dpgan = PytorchDPSynthesizer(eps, PATECTGAN(epsilon=eps, batch_size=batch_size), None) pd_data_xy =
pd.DataFrame(np_data_xy, columns=["x", "y"])
pandas.DataFrame
import pandas as pd from sqlalchemy.sql import text def get_user_id(engine, email, password): """ Get user ID associated with the given user's email and password :param engine: SQLAlchemy engine :param email: email address of user :param password: <PASSWORD> :return: info about user """ sql_query = """select user_id from users where email = :email and password = :password limit 1""" # execute the query sql_query_2 = text(sql_query).bindparams(email=email, password=password) df = pd.read_sql_query(sql_query_2, engine) if len(df) > 0: return df.values[0][0] else: return None def get_all_input_data_items(engine, label_task_id): """ Get list of all input data items (labeled + unlabeled) for a given label task :param engine: SQLAlchemy engine :param label_task_id: :return: """ sql_query = """select distinct on (input_data_id) * from ( select input_data_id, dataset_group_id, dataset_id from input_data_per_label_task where label_task_id = %(label_task_id)s ) as all_input_data_items""" df = pd.read_sql_query(sql_query, engine, params={'label_task_id': label_task_id}) return df def get_all_datasets(engine): """ Get list of all datasets :param engine: SQLAlchemy engine :return: """ sql_query = """select * from datasets""" df = pd.read_sql_query(sql_query, engine) return df def count_input_data_items_per_user_per_label_task(engine, label_task_id=None, user_id=None): """ Count the number of labeled, unlabeled and in progress input data items per label task for the user :param engine: SQLAlchemy engine :param label_task_id: :param user_id: :return: """ if label_task_id is not None and user_id is not None: where_clause = 'where label_task_id = %(label_task_id)s and user_id = %(user_id)s' elif label_task_id is not None: where_clause = 'where label_task_id = %(label_task_id)s' elif user_id is not None: where_clause = 'where user_id = %(user_id)s' else: where_clause = '' sql_query = """select * from item_counts {} order by user_id, label_task_id""".format(where_clause) df = pd.read_sql_query(sql_query, engine, params={'label_task_id': label_task_id, 'user_id': user_id}) return df def get_next_unlabeled_input_data_item(engine, label_task_id, shuffle=True, n=1): """ Get the highest priority input data item for the specified label task that has not yet been labeled and is not currently being labeled by another user :param engine: :param label_task_id: :param shuffle: if True, shuffle the data before sorting by priority :param n: number of items to return. If None, return all :return: """ if shuffle: order_by = 'order by random(), priority desc' else: order_by = 'order by priority desc, input_data_id' if n is None: max_limit = '' else: max_limit = 'limit {}'.format(int(n)) sql_query = """ with unlabeled_items as ( select * from labels_per_input_data_item where label_task_id = %(label_task_id)s and label_id isnull and not input_data_id isnull ) select * from unlabeled_items {order_by} {max_limit}""".format(order_by=order_by, max_limit=max_limit) df = pd.read_sql_query(sql_query, engine, params={'label_task_id': label_task_id}) if len(df) > 0: return df else: return None def get_all_user_input_data(engine, user_id, label_task_id, n): """ Get all input data that the user has viewed (whether they have actually labeled any of it or not) :param engine: :param user_id: :param label_task_id: :param n: number of items to return (set to None if no limit) :return: """ # choose whether to return some or all of the items if n is None: n = 'ALL' else: n = int(n) fields = 'label_id, input_data_id, label_task_id, label_history_id, user_id, user_complete, needs_improvement, ' \ 'admin_complete, paid, include_in_test_set, user_comment, admin_comment, timestamp_edit' sql_query = """ SELECT {fields} FROM latest_label_history WHERE user_id=%(user_id)s AND label_task_id=%(label_task_id)s ORDER BY label_id DESC LIMIT {n}""".format(fields=fields, n=n) df = pd.read_sql_query(sql_query, engine, params={'user_id': user_id, 'label_task_id': label_task_id}) return df def get_all_user_input_data_filtered(engine, user_id, label_task_id, label_filter): """ Get the first input_data item that matches the filter. :param engine: :param user_id: :param label_task_id: :param label_filter: filter indicating user_complete or user_incomplete :return: """ # Apply the filter if label_filter == "filter_complete": complete = True else: complete = False fields = 'label_id, input_data_id, label_task_id, label_history_id, user_id, user_complete, needs_improvement, ' \ 'admin_complete, paid, include_in_test_set, user_comment, admin_comment, timestamp_edit' sql_query = """ SELECT {fields} FROM latest_label_history a WHERE user_id=%(user_id)s AND label_task_id=%(label_task_id)s AND user_complete={complete} AND label_history_id > 0 ORDER BY label_id ASC""".format(fields=fields, complete=complete) df = pd.read_sql_query(sql_query, engine, params={'user_id': user_id, 'label_task_id': label_task_id}) return df def get_first_user_input_data(engine, user_id, label_task_id, label_filter): """ Get the first input_data item that matches the filter. :param engine: :param user_id: :param label_task_id: :param label_filter: filter indicating user_complete or user_incomplete :return: """ df = get_all_user_input_data_filtered(engine, user_id, label_task_id, label_filter) entry = df.iloc[0:1, :] return entry def get_last_user_input_data(engine, user_id, label_task_id, label_filter): """ Get the first input_data item that matches the filter. :param engine: :param user_id: :param label_task_id: :param label_filter: filter indicating user_complete or user_incomplete :return: """ df = get_all_user_input_data_filtered(engine, user_id, label_task_id, label_filter) count = len(df.index) entry = df.iloc[count-1:count, :] return entry def get_preceding_user_data_item(engine, user_id, label_task_id, current_input_data_id): """ Get preceding input data that the user has viewed (whether they have actually labeled any of it or not) :param engine: :param user_id: :param label_task_id: :param current_input_data_id: current input data ID (we want to find the item before this in the list) :return: """ # retrieve all data from database for that user and label task df = get_all_user_input_data(engine, user_id, label_task_id, n=None) # get the next input data item in the list (the list is in descending order of label ID, so we get the next item) matching_indices = df.index[df['input_data_id'] == current_input_data_id].tolist() if len(matching_indices) >= 1: idx = matching_indices[0] return df.iloc[idx + 1:idx + 2, :] else: return pd.DataFrame(columns=df.columns) def get_next_user_data_item(engine, user_id, label_task_id, current_input_data_id): """ Get next input data that the user has viewed (whether they have actually labeled any of it or not) :param engine: :param user_id: :param label_task_id: :param current_input_data_id: current input data ID (we want to find the item before this in the list) :return: """ # retrieve all data from database for that user and label task df = get_all_user_input_data(engine, user_id, label_task_id, n=None) # get the next input data item in the list (the list is in descending order of label ID, so we get the next item) matching_indices = df.index[df['input_data_id'] == current_input_data_id].tolist() if len(matching_indices) >= 1: idx = matching_indices[0] return df.iloc[idx - 1:idx, :] else: return pd.DataFrame(columns=df.columns) def get_preceding_user_data_item_filtered(engine, user_id, label_task_id, current_label_id, label_filter): """ Get preceding input data that the user has viewed (whether they have actually labeled any of it or not) :param engine: :param user_id: :param label_task_id: :param current_label_id: current label (we want to find the item before this in the list) :label_filter: the filter according :return: """ # retrieve all data from database for that user and label task df = get_all_user_input_data_filtered(engine, user_id, label_task_id, label_filter) # here the list is in ascending order. matching_indices = df.index[df['label_id'] < current_label_id].tolist() if len(matching_indices) >= 1: idx = matching_indices[len(matching_indices)-1] return df.iloc[idx:idx+1,:] else: return
pd.DataFrame(columns=df.columns)
pandas.DataFrame
""" Parse through files with Divvy raw data. Group trips by day in order to average trip time. """ import csv import pandas as pd from statistics import mean # create place to store ride durations for each day sun_times = [] mon_times = [] tues_times = [] wed_times = [] thurs_times = [] fri_times = [] sat_times = [] # dictionary of dates and lists so that # loop below can classify ride duration by day date_dict = { '8/12/2017': sat_times, '8/11/2017': fri_times, '8/10/2017': thurs_times, '8/9/2017': wed_times, '8/8/2017': tues_times, '8/7/2017': mon_times, '8/6/2017': sun_times } # open CSV containing all trip data from February 4-10, 2018 with open('Divvy_Trips_2017_Aug0612.csv') as csvfile: divvy_week = csv.DictReader(csvfile) for row in divvy_week: # grab date of ride from start time ride_date = dict(row)['start_time'].split()[0] # grab length of ride and turn into integer ride_length = int(dict(row)['tripduration']) # use ride date to fetch appropriate list from dict, append ride length date_dict[ride_date].append(ride_length) day_lists = [sun_times, mon_times, tues_times, wed_times, thurs_times, fri_times, sat_times] days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'] avg_ride_times = [] for day in day_lists: daily_average = round(mean(day) / 60, 1) avg_ride_times.append(daily_average) d = {'day': days, 'ride_length': avg_ride_times} df =
pd.DataFrame(data=d)
pandas.DataFrame
# coding: utf-8 # In[1]: import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer import seaborn as snb import nltk from gensim.models import Word2Vec, Phrases from sklearn.utils import shuffle import matplotlib.pyplot as plt import re import string import gensim from sklearn.externals import joblib from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression # In[2]: dir_name = 'input_not_lowercase/' train_bio = pd.read_csv('%s/biology.csv'%dir_name,encoding='utf-8') train_cooking = pd.read_csv("%s/cooking.csv"%dir_name,encoding='utf-8') train_crypto =
pd.read_csv("%s/crypto.csv"%dir_name,encoding='utf-8')
pandas.read_csv
""" Run the procedure for COMPASS """ from __future__ import print_function, division, absolute_import import pandas as pd from tqdm import tqdm from random import shuffle import logging import os import sys import time import timeit import numpy as np from .. import utils from .. import models from . import cache from ..globals import BETA, EXCHANGE_LIMIT import cplex logger = logging.getLogger("compass") __all__ = ['singleSampleCompass'] def singleSampleCompass(data, model, media, directory, sample_index, args): """ Run Compass on a single column of data Parameters ========== data : list Full path to data file(s) model : str Name of metabolic model to use media : str or None Name of media to use directory : str Where to store results and log info. Is created if it doesn't exist. sample_index : int Which sample to run on args : dict More keyword arguments - lambda, num_neighbors, symmetric_kernel, species, and_function, test_mode, detailed_perf """ if not os.path.isdir(directory) and directory != '/dev/null': os.makedirs(directory) if os.path.exists(os.path.join(directory, 'success_token')): logger.info('success_token detected, results already calculated.') logger.info('COMPASS Completed Successfully') return if args['save_argmaxes']: args['save_argmaxes_dir'] = directory else: args['save_argmaxes_dir'] = None model = models.init_model(model=args['model'], species=args['species'], exchange_limit=EXCHANGE_LIMIT, media=args['media'], isoform_summing=args['isoform_summing']) logger.info("Running COMPASS on model: %s", model.name) perf_log = None if args['detailed_perf']: cols = ['order','max rxn time', 'max rxn method', 'cached', 'min penalty time', 'min penalty method', 'min penalty sensitvivity', 'kappa'] perf_log = {c:{} for c in cols} if args['generate_cache']: cache.clear(model) #TBD add media specifier here too # Build model into cplex problem problem = initialize_cplex_problem(model, args['num_threads'], args['lpmethod'], args['advance']) # Only read this to get the number of samples and the sample name # Use nrows=1 so this is fast samples = utils.read_sample_names(data) if samples is None: sample_name = 'sample_'+str(sample_index) logger.info("Processing Sample %i: %s", sample_index, sample_name) else: sample_name = str(samples[sample_index]) logger.info("Processing Sample %i/%i: %s", sample_index, len(samples), sample_name) # Run core compass algorithm # Evaluate reaction penalties penalty_start = timeit.default_timer() # logger.info("Evaluating Reaction Penalties...") reaction_penalties = pd.read_csv( args['penalties_file'], sep="\t", header=0, usecols=[0, sample_index + 1]) #0 is the Reaction column, reaction_penalties = reaction_penalties.set_index("Reaction").iloc[:, 0] penalty_elapsed = timeit.default_timer() - penalty_start react_start = timeit.default_timer() if not args['no_reactions']: logger.info("Evaluating Reaction Scores...") reaction_scores = compass_reactions( model, problem, reaction_penalties, perf_log=perf_log, args=args) react_elapsed = timeit.default_timer() - react_start #if user wants to calc reaction scores, but doesn't want to calc metabolite scores, calc only the exchange reactions logger.info("Evaluating Exchange/Secretion/Uptake Scores...") exchange_start = timeit.default_timer() uptake_scores, secretion_scores, exchange_rxns = compass_exchange( model, problem, reaction_penalties, only_exchange=(not args['no_reactions']) and not args['calc_metabolites'], perf_log=perf_log, args=args) exchange_elapsed = timeit.default_timer() - exchange_start # Copy valid uptake/secretion reaction fluxes from uptake/secretion # results into reaction results if (not args['no_reactions']) or args['calc_metabolites']: for r_id in exchange_rxns: assert r_id in model.reactions assert r_id not in reaction_scores reaction_scores[r_id] = exchange_rxns[r_id] # Output results to file logger.info("Writing output files...") if not args['no_reactions']: reaction_scores = pd.Series(reaction_scores, name=sample_name).sort_index() reaction_scores.to_csv(os.path.join(directory, 'reactions.txt'), sep="\t", header=True) if args['calc_metabolites']: uptake_scores =
pd.Series(uptake_scores, name=sample_name)
pandas.Series
#!/usr/bin/env python """Joining two or more dataframes together.""" import pandas as pd # Use concat/append when to stack dfs vertically or horizontally # Use merge when joining data between columns in two DataFrames d1 = {'Column_A': ['a', 'a', 'a', 'c', 'c', 'd'], 'Column_B': [1, 2, 3, 4, 5, 6]} df1 =
pd.DataFrame(d1)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import pandas as pd import sys, os, platform from tqdm import tqdm import warnings import argparse #sklearn from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, LeaveOneOut, KFold from sklearn.linear_model import LogisticRegression from sklearn.metrics import auc, roc_curve, f1_score, recall_score, precision_score from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.utils import shuffle from imblearn.over_sampling import RandomOverSampler #matplotlib import matplotlib from matplotlib import rcParams rcParams['font.family'] = 'Arial' matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.patches as mpatches import matplotlib.cm as mplcm import matplotlib.colors as colors import matplotlib.ticker as ticker workdir = ''# change to working directory def perf_measure(y_actual, y_hat): tp = fp = tn = fn = 0 for i in range(len(y_hat)): if y_actual[i]==y_hat[i]==1: tp += 1 if y_hat[i]==1 and y_actual[i]!=y_hat[i]: fp += 1 if y_actual[i]==y_hat[i]==0: tn += 1 if y_hat[i]==0 and y_actual[i]!=y_hat[i]: fn += 1 if (tp+fn) == 0: sensitivity = np.nan else: sensitivity = tp/(tp+fn) # recall if (tn+fp) == 0: specificity = np.nan else: specificity = tn/(tn+fp) if (tp+fp) == 0: ppv = np.nan else: ppv = tp/(tp+fp) # precision or positive predictive value (PPV) if (tn+fn) == 0: npv = np.nan else: npv = tn/(tn+fn) # negative predictive value (NPV) if (tp+tn+fp+fn) == 0: hitrate = np.nan else: hitrate = (tp+tn)/(tp+tn+fp+fn) # accuracy (ACC) return sensitivity, specificity, ppv, npv, hitrate # (tp, fp, tn, fn) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--model', default='DT', help='LR_L1, LR_L2, Adaboost, DT') parser.add_argument('--label', default='Suspected cases', help='Suspected cases, Infection cases') parser.add_argument('--upsampling', default=True, action='store_true') parser.add_argument('--test_ratio', default=0.2, help='Held-out testing set') return parser.parse_args() if __name__ == '__main__': args = parse_args() # ============================================================================= # Read data # ============================================================================= df = pd.read_excel(workdir + 'Developement_datasets_final.xls', sheet_name = '疑似') y = df[args.label] y_sus = df['Suspected cases'] X = df[[c for c in df.columns if c not in ['Suspected cases', 'Infection cases']]] colnames = X.columns.astype(str) X = X.values # ============================================================================= # Cross validation # ============================================================================= np.random.seed(0) test_ratio = args.test_ratio rand_test_idx = np.arange(len(X)) np.random.shuffle(rand_test_idx) rand_test_idx = rand_test_idx[0:int(test_ratio * len(X))] rand_train_val_idx = [i for i in np.arange(len(X)) if i not in rand_test_idx] X_test, y_test = X[rand_test_idx], y.values[rand_test_idx] y_sus_test = y_sus.values[rand_test_idx] X_trainval, y_trainval = X[rand_train_val_idx], y.values[rand_train_val_idx] print('standardize input.') stdscaler = StandardScaler().fit(X_trainval) X_trainval = stdscaler.transform(X_trainval) X_test = stdscaler.transform(X_test) stdscaler_df = pd.DataFrame(np.stack((stdscaler.mean_, stdscaler.scale_)).T, index = colnames, columns = ['mean_','scale_']) stdscaler_df.to_csv(workdir + 'stdscaler.csv') # ============================================================================= # Handling the imbalanced dataset # ============================================================================= if args.upsampling: print('Handling the imbalanced dataset by RandomOverSampler ...') ros = RandomOverSampler(random_state=0) X_trainval, y_trainval = ros.fit_resample(X_trainval, y_trainval) X_trainval, y_trainval = shuffle(X_trainval, y_trainval, random_state=0) # class_weight = None # class_weight = 'balanced' class_weight = {0: 1/np.sum(y_trainval == 0), 1: 1/np.sum(y_trainval == 1)} # class_weightdict or ‘balanced’, default=None nfolds = 10 if args.model == 'LR_L1': C_range = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30])*0.25 if args.model == 'LR_L2': C_range = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30])*0.25 if args.model == 'DT': C_range = np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]) elif args.model == 'Adaboost': C_range = [2**4, 2**5, 2**6, 2**7, 2**8] metrics = pd.DataFrame(index = C_range, columns = ['AUC', 'F1', 'Precision', 'Recall', 'sensitivity', 'specificity', 'ppv', 'npv', 'hitrate'], dtype=float) for C in C_range: AUC = f1 = precision = recall = 0 sensitivity = specificity = ppv = npv = hitrate = 0 for train_index, val_index in KFold(n_splits=nfolds, shuffle=True, random_state=10).split(X_trainval): X_train, y_train = X_trainval[train_index], y_trainval[train_index] X_val, y_val = X_trainval[val_index], y_trainval[val_index] if args.model == 'LR_L1': model = LogisticRegression(penalty='l1', C = C, solver = 'saga', random_state=0, class_weight = class_weight) if args.model == 'LR_L2': model = LogisticRegression(penalty='l2', C = C, solver = 'saga', random_state=0, class_weight = class_weight) if args.model == 'DT': model = DecisionTreeClassifier(max_depth = C, class_weight = class_weight) elif args.model == 'Adaboost': model = AdaBoostClassifier(base_estimator = DecisionTreeClassifier(max_depth=1, class_weight = class_weight), n_estimators = C) with warnings.catch_warnings(): warnings.simplefilter("ignore") model.fit(X_train, y_train) y_val_pred, y_val_pred_proba = model.predict(X_val), model.predict_proba(X_val)[:,1] fpr, tpr, thresholds = roc_curve(y_val, y_val_pred_proba) AUC += auc(fpr, tpr)/nfolds f1 += f1_score(y_val_pred, y_val, average = 'binary')/nfolds precision += precision_score(y_val, y_val_pred, average = 'binary')/nfolds recall += recall_score(y_val, y_val_pred, average = 'binary')/nfolds sensitivity_tmp, specificity_tmp, ppv_tmp, npv_tmp, hitrate_tmp = perf_measure(y_val, y_val_pred) sensitivity += sensitivity_tmp/nfolds specificity += specificity_tmp/nfolds ppv += ppv_tmp/nfolds npv += npv_tmp/nfolds hitrate += hitrate_tmp/nfolds print('C: %f, AUC: %.4f, F1: %.4f, P: %.4f, R: %4f, Sen: %.4f, Spe: %.4f' % (C, AUC, f1, precision, recall, sensitivity, specificity)) metrics.loc[C, :] = AUC, f1, precision, recall, sensitivity, specificity, ppv, npv, hitrate best_C = metrics.idxmax().F1 print('Best penalty C: %.4f' % best_C) if args.model == 'LR_L1': model_fin = LogisticRegression(penalty='l1', C = best_C, solver = 'saga', random_state=0, class_weight = class_weight) if args.model == 'LR_L2': model_fin = LogisticRegression(penalty='l2', C = best_C, solver = 'saga', random_state=0, class_weight = class_weight) if args.model == 'DT': model_fin = DecisionTreeClassifier(max_depth = best_C, class_weight = class_weight) elif args.model == 'Adaboost': model_fin = AdaBoostClassifier(base_estimator = DecisionTreeClassifier(max_depth=1, class_weight = class_weight), n_estimators = best_C) model_fin.fit(X_trainval, y_trainval) y_test_pred, y_test_pred_proba = model_fin.predict(X_test), model_fin.predict_proba(X_test)[:,1] fpr, tpr, thresholds = roc_curve(y_test, y_test_pred_proba) AUC = auc(fpr, tpr) f1 = f1_score(y_test_pred, y_test, average = 'binary') precision = precision_score(y_test, y_test_pred, average = 'binary') recall = recall_score(y_test, y_test_pred, average = 'binary') sensitivity, specificity, ppv, npv, hitrate = perf_measure(y_test, y_test_pred) print('[Final report] Best C: %f, AUC: %.4f, F1: %.4f, P: %.4f, R: %4f, Sen: %.4f, Spe: %.4f' % (best_C, AUC, f1, precision, recall, sensitivity, specificity)) # ============================================================================= # Feature importance # ============================================================================= feature_name = [c for c in df.columns.values.astype(str) if c not in ['Suspected cases', 'Infection cases']] if args.model in ['LR_L1', 'LR_L2']: importance = model_fin.coef_.reshape(-1) elif args.model == 'DT': importance = model_fin.feature_importances_ elif args.model == 'Adaboost': importance = model_fin.feature_importances_ coefficients = pd.DataFrame(importance, index = feature_name, columns = ['Weight']) coefficients.sort_values(by='Weight', ascending=False, inplace=True) if args.model in ['LR_L1', 'LR_L2']: coefficients.loc['intercept_','Weight'] = model_fin.intercept_ coefficients.to_csv(workdir + 'feature_importance_%s.csv' % args.model) # ============================================================================= # External validation # ============================================================================= df_ev =
pd.read_excel(workdir + 'validation_datasets_final.xls', sheet_name = '疑似', dtype = float)
pandas.read_excel
from datetime import timezone import pandas as pd import numpy as np import datetime import netCDF4 import time def _validate_date(date_text): ''' Checks date format to ensure YYYY-MM-DD format and return date in datetime format. Parameters ---------- date_text: string Date string format to check Returns ------- dt: datetime ''' assert isinstance(date_text, str), (f'date_text must be' / 'of type string') try: dt = datetime.datetime.strptime(date_text, '%Y-%m-%d') except ValueError: raise ValueError("Incorrect data format, should be YYYY-MM-DD") else: dt = dt.replace(tzinfo=timezone.utc) return dt def _start_and_end_of_year(year): ''' Returns a datetime start and end for a given year Parameters ---------- year: int Year to get start and end dates Returns ------- start_year: datetime object start of the year end_year: datetime object end of the year ''' assert isinstance(year, (type(None),int,list)), 'year must be of type int' try: year = str(year) start_year = datetime.datetime.strptime(year, '%Y') except ValueError: raise ValueError("Incorrect years format, should be YYYY") else: next_year = datetime.datetime.strptime(f'{int(year)+1}', '%Y') end_year = next_year - datetime.timedelta(days=1) return start_year, end_year def _dates_to_timestamp(nc, start_date=None, end_date=None): ''' Returns timestamps from dates. Parameters ---------- nc: netCDF Object netCDF data for the given station number and data type start_date: string Start date in YYYY-MM-DD, e.g. '2012-04-01' end_date: string End date in YYYY-MM-DD, e.g. '2012-04-30' Returns ------- start_stamp: float seconds since the Epoch to start_date end_stamp: float seconds since the Epoch to end_date ''' assert isinstance(start_date, (str, type(None))), ('start_date' / 'must be of type str') assert isinstance(end_date, (str, type(None))), ('end_date must be' / 'of type str') time_all = nc.variables['waveTime'][:].compressed() time_range_all = [datetime.datetime.fromtimestamp(time_all[0]).replace(tzinfo=timezone.utc), datetime.datetime.fromtimestamp(time_all[-1]).replace(tzinfo=timezone.utc)] if start_date: start_datetime = _validate_date(start_date) if end_date: end_datetime = _validate_date(end_date) if start_datetime > end_datetime: raise Exception(f'start_date ({start_datetime}) must be'+ f'before end_date ({end_datetime})') elif start_datetime == end_datetime: raise Exception(f'start_date ({start_datetime}) cannot be'+ f'the same as end_date ({end_datetime})') if start_date: if start_datetime > time_range_all[0] and start_datetime < time_range_all[1]: start_stamp = start_datetime.replace(tzinfo=timezone.utc).timestamp() else: print(f'WARNING: Provided start_date ({start_datetime}) is ' f'not in the returned data range {time_range_all} \n' f'Setting start_date to the earliest date in range ' f'{time_range_all[0]}') start_stamp = pd.to_datetime(time_range_all[0]).replace(tzinfo=timezone.utc).timestamp() if end_date: if end_datetime > time_range_all[0] and end_datetime < time_range_all[1]: end_stamp = end_datetime.replace(tzinfo=timezone.utc).timestamp() else: print(f'WARNING: Provided end_date ({end_datetime}) is ' f'not in the returned data range {time_range_all} \n' f'Setting end_date to the latest date in range ' f'{time_range_all[1]}') end_stamp = pd.to_datetime(time_range_all[1]).replace(tzinfo=timezone.utc).timestamp() if start_date and not end_date: end_stamp = pd.to_datetime(time_range_all[1]).replace(tzinfo=timezone.utc).timestamp() elif end_date and not start_date: start_stamp = pd.to_datetime(time_range_all[0]).replace(tzinfo=timezone.utc).timestamp() if not start_date: start_stamp = pd.to_datetime(time_range_all[0]).replace(tzinfo=timezone.utc).timestamp() if not end_date: end_stamp = pd.to_datetime(time_range_all[1]).replace(tzinfo=timezone.utc).timestamp() return start_stamp, end_stamp def request_netCDF(station_number, data_type): ''' Returns historic or realtime data from CDIP THREDDS server Parameters ---------- station_number: string CDIP station number of interest data_type: string 'historic' or 'realtime' Returns ------- nc: netCDF Object netCDF data for the given station number and data type ''' assert isinstance(station_number, str), (f'station_number must be ' + f'of type string. Got: {station_number}') assert isinstance(data_type, str), (f'data_type must be' / 'of type string') assert data_type in ['historic', 'realtime'], ('data_type must be'\ f' "historic" or "realtime". Got: {data_type}') if data_type == 'historic': cdip_archive= 'http://thredds.cdip.ucsd.edu/thredds/dodsC/cdip/archive' data_url = f'{cdip_archive}/{station_number}p1/{station_number}p1_historic.nc' elif data_type == 'realtime': cdip_realtime = 'http://thredds.cdip.ucsd.edu/thredds/dodsC/cdip/realtime' data_url = f'{cdip_realtime}/{station_number}p1_rt.nc' nc = netCDF4.Dataset(data_url) return nc def request_parse_workflow(nc=None, station_number=None, parameters=None, years=None, start_date=None, end_date=None, data_type='historic', all_2D_variables=False): ''' Parses a passed CDIP netCDF file or requests a station number from http://cdip.ucsd.edu/) and parses. This function can return specific parameters is passed. Years may be non-consecutive e.g. [2001, 2010]. Time may be sliced by dates (start_date or end date in YYYY-MM-DD). data_type defaults to historic but may also be set to 'realtime'. By default 2D variables are not parsed if all 2D varaibles are needed. See the MHKiT CDiP example Jupyter notbook for information on available parameters. Parameters ---------- nc: netCDF Object netCDF data for the given station number and data type. Can be the output of request_netCDF station_number: string Station number of CDIP wave buoy parameters: string or list of stings Parameters to return. If None will return all varaibles except 2D-variables. years: int or list of int Year date, e.g. 2001 or [2001, 2010] start_date: string Start date in YYYY-MM-DD, e.g. '2012-04-01' end_date: string End date in YYYY-MM-DD, e.g. '2012-04-30' data_type: string Either 'historic' or 'realtime' all_2D_variables: boolean Will return all 2D data. Enabling this will add significant processing time. If all 2D variables are not needed it is recomended to pass 2D parameters of interest using the 'parameters' keyword and leave this set to False. Default False. Returns ------- data: dictionary 'vars1D': DataFrame 1D variables indexed by time 'metadata': dictionary Anything not of length time 'vars2D': dictionary of DataFrames, optional If 2D-vars are passed in the 'parameters key' or if run with all_2D_variables=True, then this key will appear with a dictonary of DataFrames of 2D variables. ''' assert isinstance(station_number, (str, type(None))), (f'station_number must be '+ 'of type string') assert isinstance(parameters, (str, type(None), list)), ('parameters' / 'must be of type str or list of strings') assert isinstance(start_date, (str, type(None))), ('start_date' / 'must be of type str') assert isinstance(end_date, (str, type(None))), ('end_date must be' / 'of type str') assert isinstance(years, (type(None),int,list)), ('years must be of'/ 'type int or list of ints') assert isinstance(data_type, str), (f'data_type must be' / 'of type string') assert data_type in ['historic', 'realtime'], 'data_type must be'\ f' "historic" or "realtime". Got: {data_type}' if not any([nc, station_number]): raise Exception('Must provide either a CDIP netCDF file or a station '+ 'number') if not nc: nc = request_netCDF(station_number, data_type) buoy_name = nc.variables['metaStationName'][:].compressed().tobytes().decode("utf-8") multiyear=False if years: if isinstance(years,int): start_date = f'{years}-01-01' end_date = f'{years}-12-31' elif isinstance(years,list): if len(years)==1: start_date = f'{years[0]}-01-01' end_date = f'{years[0]}-12-31' else: multiyear=True if not multiyear: data = get_netcdf_variables(nc, start_date=start_date, end_date=end_date, parameters=parameters, all_2D_variables=all_2D_variables) elif multiyear: data={'data':{},'metadata':{}} multiyear_data={} multiyear_data_2D={} for year in years: start_date = f'{year}-01-01' end_date = f'{year}-12-31' year_data = get_netcdf_variables(nc, start_date=start_date, end_date=end_date, parameters=parameters, all_2D_variables=all_2D_variables) multiyear_data[year] = year_data['data'] for data_key in year_data['data'].keys(): if data_key.endswith('2D'): data['data'][data_key]={} for data_key2D in year_data['data'][data_key].keys(): data_list=[] for year in years: data2D = multiyear_data[year][data_key][data_key2D] data_list.append(data2D) data['data'][data_key][data_key2D]=pd.concat(data_list) else: data_list = [multiyear_data[year][data_key] for year in years] data['data'][data_key] = pd.concat(data_list) data['metadata'] = year_data['metadata'] data['metadata']['name'] = buoy_name return data def get_netcdf_variables(nc, start_date=None, end_date=None, parameters=None, all_2D_variables=False): ''' Iterates over and extracts variables from CDIP bouy data. See the MHKiT CDiP example Jupyter notbook for information on available parameters. Parameters ---------- nc: netCDF Object netCDF data for the given station number and data type start_stamp: float Data of interest start in seconds since epoch end_stamp: float Data of interest end in seconds since epoch parameters: string or list of stings Parameters to return. If None will return all varaibles except 2D-variables. Default None. all_2D_variables: boolean Will return all 2D data. Enabling this will add significant processing time. If all 2D variables are not needed it is recomended to pass 2D parameters of interest using the 'parameters' keyword and leave this set to False. Default False. Returns ------- results: dictionary 'vars1D': DataFrame 1D variables indexed by time 'metadata': dictionary Anything not of length time 'vars2D': dictionary of DataFrames, optional If 2D-vars are passed in the 'parameters key' or if run with all_2D_variables=True, then this key will appear with a dictonary of DataFrames of 2D variables. ''' assert isinstance(nc, netCDF4.Dataset), 'nc must be netCDF4 dataset' assert isinstance(start_date, (str, type(None))), ('start_date' / 'must be of type str') assert isinstance(end_date, (str, type(None))), ('end_date must be' / 'of type str') assert isinstance(parameters, (str, type(None), list)), ('parameters' / 'must be of type str or list of strings') assert isinstance(all_2D_variables, bool), ('all_2D_variables'/ 'must be a boolean') if parameters: if isinstance(parameters,str): parameters = [parameters] assert all([isinstance(param , str) for param in parameters]), ('All'/ 'elements of parameters must be strings') buoy_name = nc.variables['metaStationName'][:].compressed().tobytes().decode("utf-8") allVariables = [var for var in nc.variables] include_2D_variables=False twoDimensionalVars = [ 'waveEnergyDensity', 'waveMeanDirection', 'waveA1Value', 'waveB1Value', 'waveA2Value', 'waveB2Value', 'waveCheckFactor', 'waveSpread', 'waveM2Value', 'waveN2Value'] if parameters: params = set(parameters) include_params = params.intersection(set(allVariables)) if params != include_params: not_found = params.difference(include_params) print(f'WARNING: {not_found} was not found in data.\n' \ f'Possible parameters are:\n {allVariables}') include_params_2D = include_params.intersection( set(twoDimensionalVars)) include_params = include_params.difference(include_params_2D) if include_params_2D: include_2D_variables=True include_params.add('waveFrequency') include_2D_vars = sorted(include_params_2D) include_vars = sorted(include_params) else: include_vars = allVariables for var in twoDimensionalVars: include_vars.remove(var) if all_2D_variables: include_2D_variables=True include_2D_vars = twoDimensionalVars start_stamp, end_stamp =_dates_to_timestamp(nc, start_date=start_date, end_date=end_date) variables_by_type={} prefixs = ['wave', 'sst', 'gps', 'dwr', 'meta'] remainingVariables = set(include_vars) for prefix in prefixs: variables_by_type[prefix] = [var for var in include_vars if var.startswith(prefix)] remainingVariables -= set(variables_by_type[prefix]) if not variables_by_type[prefix]: del variables_by_type[prefix] results={'data':{}, 'metadata':{}} for prefix in variables_by_type: var_results={} time_variables={} metadata={} if prefix != 'meta': prefixTime = nc.variables[f'{prefix}Time'][:] masked_time = np.ma.masked_outside(prefixTime, start_stamp, end_stamp) mask = masked_time.mask var_time = masked_time.compressed() N_time = masked_time.size else: N_time= np.nan for var in variables_by_type[prefix]: variable = np.ma.filled(nc.variables[var]) if variable.size == N_time: variable = np.ma.masked_array(variable, mask).astype(float) time_variables[var] = variable.compressed() else: metadata[var] = nc.variables[var][:].compressed() time_slice = pd.to_datetime(var_time, unit='s') data =
pd.DataFrame(time_variables, index=time_slice)
pandas.DataFrame
import os import uuid import lasio from dlisio import dlis from flask import render_template, Flask, session, request from werkzeug.utils import redirect, secure_filename import pandas as pd import datetime from classes import CSVprocessing, IndexType, APISupplementary, DLISprocessing, Visualization, XmlGeneration, \ Configuration, CheckFunctions, InputXMLprocessing, LASprocessing from forms import UploadForm, VisualizeCsvForm, DLISForm, Credentials, Credentials1, TestForm # application set up app = Flask('__name__') # configure upload folder app.config['UPLOAD_PATH'] = 'uploads' SECRET_KEY = os.urandom(32) app.config['SECRET_KEY'] = SECRET_KEY # clear folders for root, dirs, files in os.walk(app.config['UPLOAD_PATH']): for file in files: os.remove(os.path.join(root, file)) for root, dirs, files in os.walk('errorlog'): for file in files: os.remove(os.path.join(root, file)) for root, dirs, files in os.walk('generatedXML'): for file in files: os.remove(os.path.join(root, file)) @app.route('/', methods=['GET', 'POST']) # upload page def upload(): form1 = UploadForm() if form1.validate_on_submit(): # filename = secure_filename(form1.file.data.filename) # form1.file.data.save(os.path.join(app.config['UPLOAD_PATH'], filename)) # return render_template('uploaded.html') filename = secure_filename(form1.filename.data) type1 = form1.filetype.data # servicecompany = form1.servicecompany.data # BU = form1.BU.data # asset = form1.asset.data # wellname = form1.wellname.data # wellborename = form1.wellborename.data # how to represent values at constant depth # repr = form1.represent.data # filename = form1.file.raw_data[0].filename form1.file.data.save(os.path.join(app.config['UPLOAD_PATH'], filename)) session['filename'] = filename session['type1'] = type1 # session['servicecompany'] = servicecompany # session['BU'] = BU # session['asset'] = asset # session['wellname'] = wellname # session['wellborename'] = wellborename # session['type1'] = type1 # session['repr'] = repr if type1 == 'csv': # format csv return redirect('/csv') else: return redirect('/uploaded') return render_template('upload.html', form=form1) @app.route('/csv', methods=['GET', 'POST']) # formatting CSV because header position is not fixed def csvhandling(): filename = session.get('filename', None) data = pd.read_csv(os.path.join(app.config['UPLOAD_PATH'], filename)) df0 = pd.DataFrame(data) df1 = CSVprocessing().csvpreprocess(df0) # create a row number column df1.insert(loc=0, column='Row number', value=df1.index) form = VisualizeCsvForm() if form.validate_on_submit(): # row with column headings columnHeadingsRow = form.columns.data # row with measurement units unitsRow = form.measure.data # row where data starts dataStartRow = form.start.data session['columnHeadingsRow'] = columnHeadingsRow session['unitsRow'] = unitsRow session['dataStartRow'] = dataStartRow return redirect('/uploaded') return render_template('csvhandle.html', column_names=df1.columns, row_data=list(df1.iloc[:20].values), zip=zip, form=form) @app.route('/uploaded', methods=['GET', 'POST']) def uploaded(): # print(1) form3 = TestForm() filename = session.get('filename') type1 = session.get('type1') wellname = '' wellborename = '' servicecompany = '' runNumber = '' creationDate = '' indexType = '' startDateTimeIndex = '' endDateTimeIndex = '' indexCurve = '' nullValue = '' startIndex = '' endIndex = '' direction = '' dataSize = '' asset = '' BU = '' if type1 == 'las': # Read las file lf = lasio.read(os.path.join(app.config['UPLOAD_PATH'], filename), null_policy='all') # find index type for visualization templates indextype, index1, index2 = IndexType().findindex(lf, type1) dataSize = lf.data.shape[0] for well in lf.well: if well.descr.lower().find('null') != -1: nullValue = well.value elif well.descr.lower().find('company') != -1: BU = well.value elif well.descr.lower().find('well') != -1: wellname = well.value elif well.descr.lower().find('field') != -1: asset = well.value elif well.descr.lower().find('wellbore') != -1: wellborename = well.value elif well.descr.lower().find('service company') != -1: servicecompany = well.value elif well.descr.lower().find('run number') != -1: runNumber = well.value elif well.descr.lower().find('date') != -1 or well.descr.lower().find('date1') != -1: creationDate = well.value if lf.curves[0].descr.lower().find('dept') != -1: indexCurve = lf.curves[0].mnemonic indexType = 'measured depth' startIndex = lf.curves[0].data[0] endIndex = lf.curves[0].data[len(lf.curves[0]) - 1] if (float(startIndex) - float(endIndex)) > 0: direction = 'decreasing' elif (float(startIndex) - float(endIndex)) < 0: direction = 'increasing' else: direction = 'not included' elif lf.curves[0].descr.lower().find('time') != -1: indexCurve = lf.curves[0].mnemonic indexType = 'date time' startDateTimeIndex = lf.curves[0].data[0] endDateTimeIndex = lf.curves[0].data[len(lf.curves[0]) - 1] timedelta = (datetime.datetime.strptime(startDateTimeIndex, "%Y-%m-%dT%H:%M:%S.%f-05:00") -\ datetime.datetime.strptime(endDateTimeIndex, "%Y-%m-%dT%H:%M:%S.%f-05:00")) if timedelta.days < 0 or timedelta.seconds < 0: direction = 'increasing' elif timedelta.days > 0 and timedelta.seconds > 0: direction = 'decreasing' else: direction = 'not included' if str(lf.curves[0].mnemonic).lower().find(r'tim') != -1: indexmain = 'Time' elif str(lf.curves[0].mnemonic).lower().find(r'dep') != -1: indexmain = 'Depth' if index1 is None or index2 is None: operation = 'Impossible to detect' else: RIH, POOH = LASprocessing().splitlogs(lf, repr) if len(RIH) != 0 and len(POOH) == 0: operation = 'RIH' elif len(RIH) == 0 and len(POOH) != 0: operation = 'POOH' else: operation = 'RIH and POOH' session['operation'] = operation # General Information data = [['File Name', filename], ['File Type', type1], ['Index Type', indexmain], ['Number of Curves', len(lf.curves)], ['Operation', operation], ['Data nodes', dataSize]] df = pd.DataFrame(data=data, columns=['Parameter', 'Populated']) # File Information data1 = [['Well name', wellname], ['Wellbore name', wellborename], ['Business Unit', BU], ['Field', asset], ['Service Company', servicecompany], ['Run Number', runNumber], ['Creation Date', creationDate], ['Null Value', nullValue], ['Direction', direction]] df1 = pd.DataFrame(data=data1, columns=['Parameter', 'Populated']) # which template to show template = APISupplementary().uploadedpage(index1, index2) if request.method == 'POST': df2 = pd.DataFrame(form3.data['images']) if df2.values[0][0] == '': session['wellname'] = df1.values[0][1] else: session['wellname'] = df2.values[0][0] if df2.values[1][0] == '': session['wellborename'] = df1.values[1][1] else: session['wellborename'] = df2.values[1][0] if df2.values[2][0] == '': session['Business Unit'] = df1.values[2][1] else: session['Business Unit'] = df2.values[2][0] if df2.values[3][0] == '': session['Field'] = df1.values[3][1] else: session['Field'] = df2.values[3][0] if df2.values[4][0] == '': session['Service Company'] = df1.values[4][1] else: session['Service Company'] = df2.values[4][0] if df2.values[5][0] == '': session['Run Number'] = df1.values[5][1] else: session['Run Number'] = df2.values[5][0] if df2.values[6][0] == '': session['Creation Date'] = df1.values[6][1] else: session['Creation Date'] = df2.values[6][0] if df2.values[7][0] == '': session['Null Value'] = df1.values[7][1] else: session['Null Value'] = df2.values[7][0] if df2.values[8][0] == '': session['Direction'] = df1.values[8][1] else: session['Direction'] = df2.values[8][0] session['indexType'] = indexType session['startDateTimeIndex'] = startDateTimeIndex session['endDateTimeIndex'] = endDateTimeIndex session['indexCurve'] = indexCurve session['nullValue'] = nullValue session['startIndex'] = startIndex session['endIndex'] = endIndex session['dataSize'] = dataSize return redirect('/export') return render_template(template, column_names=df.columns, row_data=list(df.values), zip=zip, column_names1=df1.columns, row_data1=list(df1.values), zip1=zip, form=form3) elif type1 == 'csv': data = pd.read_csv(os.path.join(app.config['UPLOAD_PATH'], filename)) df0 = pd.DataFrame(data) columnHeadingsRow = session.get('columnHeadingsRow', None) unitsRow = '' dataStartRow = int(session.get('dataStartRow')) df2 = CSVprocessing().csvcolumns(df0, columnHeadingsRow, unitsRow, dataStartRow) dataSize = df2.shape[0] # index type indextype, index1, index2 = IndexType().findindex(df2, type1) for col in df2.columns: if col.lower().find('dept') != -1: indexCurve = col indexType = 'measured depth' startIndex = str(df2[col].iloc[0]) endIndex = str(df2[col].iloc[len(df2) - 1]) break elif col.lower().find('time') != -1: indexCurve = col indexType = 'date time' startDateTimeIndex = str(df2[col].iloc[0]) endDateTimeIndex = str(df2[col].iloc[len(df2) - 1]) break if df2.columns[0].lower().find('dept') != -1: indexCurve = df2.columns[0] indexType = 'measured depth' startIndex = df2[df2.columns[0]].iloc[0] endIndex = df2[df2.columns[0]].iloc[-1] if (float(startIndex) - float(endIndex)) > 0: direction = 'decreasing' elif (float(startIndex) - float(endIndex)) < 0: direction = 'increasing' else: direction = 'not included' elif df2.columns[0].lower().find('time') != -1: indexCurve = df2.columns[0] indexType = 'date time' startDateTimeIndex = df2[df2.columns[0]].iloc[0] endDateTimeIndex = df2[df2.columns[0]].iloc[-1] timedelta = (datetime.datetime.strptime(startDateTimeIndex, "%Y-%m-%dT%H:%M:%S.%f-05:00") -\ datetime.datetime.strptime(endDateTimeIndex, "%Y-%m-%dT%H:%M:%S.%f-05:00")) if timedelta.days < 0 or timedelta.seconds < 0: direction = 'increasing' elif timedelta.days > 0 and timedelta.seconds > 0: direction = 'decreasing' else: direction = 'not included' # determine operation type - RIH/POOH operation = CSVprocessing().operationDefine(index1, index2, df2) session['operation'] = operation # dataframe for file information data = [['File Name', filename], ['File Type', type1], ['Index Type', indextype], ['Number of Curves', len(df2.columns)], ['Operation', operation], ['Data nodes', dataSize]] df = pd.DataFrame(data=data, columns=['Parameter', 'Value']) data1 = [['Well name', wellname], ['Wellbore name', wellborename], ['Business Unit', BU], ['Field', asset], ['Service Company', servicecompany], ['Run Number', runNumber], ['Creation Date', creationDate], ['Null Value', nullValue], ['Direction', direction]] df1 = pd.DataFrame(data=data1, columns=['Parameter', 'Populated']) template = APISupplementary().uploadedpage(index1, index2) if request.method == 'POST': df3 =
pd.DataFrame(form3.data['images'])
pandas.DataFrame
from unittest.case import TestCase from pandas import Series from probability.utils import series_is_binary class TestUtils(TestCase): def setUp(self) -> None: self.int_binary = Series(data=[0] * 4 + [1] * 6) self.float_binary = self.int_binary.astype(float) self.bool_binary = self.int_binary.astype(bool) self.int_binary_zeros =
Series(data=[0] * 10)
pandas.Series
""" .. module:: trend :synopsis: Trend Indicators. .. moduleauthor:: <NAME> (Bukosabino) """ import numpy as np import pandas as pd from ta.utils import IndicatorMixin, ema, get_min_max class AroonIndicator(IndicatorMixin): """Aroon Indicator Identify when trends are likely to change direction. Aroon Up = ((N - Days Since N-day High) / N) x 100 Aroon Down = ((N - Days Since N-day Low) / N) x 100 Aroon Indicator = Aroon Up - Aroon Down https://www.investopedia.com/terms/a/aroon.asp Args: close(pandas.Series): dataset 'Close' column. n(int): n period. fillna(bool): if True, fill nan values. """ def __init__(self, close: pd.Series, n: int = 25, fillna: bool = False): self._close = close self._n = n self._fillna = fillna self._run() def _run(self): rolling_close = self._close.rolling(self._n, min_periods=0) self._aroon_up = rolling_close.apply( lambda x: float(np.argmax(x) + 1) / self._n * 100, raw=True) self._aroon_down = rolling_close.apply( lambda x: float(np.argmin(x) + 1) / self._n * 100, raw=True) def aroon_up(self) -> pd.Series: """Aroon Up Channel Returns: pandas.Series: New feature generated. """ aroon_up = self._check_fillna(self._aroon_up, value=0) return pd.Series(aroon_up, name=f'aroon_up_{self._n}') def aroon_down(self) -> pd.Series: """Aroon Down Channel Returns: pandas.Series: New feature generated. """ aroon_down = self._check_fillna(self._aroon_down, value=0) return pd.Series(aroon_down, name=f'aroon_down_{self._n}') def aroon_indicator(self) -> pd.Series: """Aroon Indicator Returns: pandas.Series: New feature generated. """ aroon_diff = self._aroon_up - self._aroon_down aroon_diff = self._check_fillna(aroon_diff, value=0) return pd.Series(aroon_diff, name=f'aroon_ind_{self._n}') class MACD(IndicatorMixin): """Moving Average Convergence Divergence (MACD) Is a trend-following momentum indicator that shows the relationship between two moving averages of prices. https://school.stockcharts.com/doku.php?id=technical_indicators:moving_average_convergence_divergence_macd Args: close(pandas.Series): dataset 'Close' column. n_fast(int): n period short-term. n_slow(int): n period long-term. n_sign(int): n period to signal. fillna(bool): if True, fill nan values. """ def __init__(self, close: pd.Series, n_slow: int = 26, n_fast: int = 12, n_sign: int = 9, fillna: bool = False): self._close = close self._n_slow = n_slow self._n_fast = n_fast self._n_sign = n_sign self._fillna = fillna self._run() def _run(self): self._emafast = ema(self._close, self._n_fast, self._fillna) self._emaslow = ema(self._close, self._n_slow, self._fillna) self._macd = self._emafast - self._emaslow self._macd_signal = ema(self._macd, self._n_sign, self._fillna) self._macd_diff = self._macd - self._macd_signal def macd(self) -> pd.Series: """MACD Line Returns: pandas.Series: New feature generated. """ macd = self._check_fillna(self._macd, value=0) return pd.Series(macd, name=f'MACD_{self._n_fast}_{self._n_slow}') def macd_signal(self) -> pd.Series: """Signal Line Returns: pandas.Series: New feature generated. """ macd_signal = self._check_fillna(self._macd_signal, value=0) return pd.Series(macd_signal, name=f'MACD_sign_{self._n_fast}_{self._n_slow}') def macd_diff(self) -> pd.Series: """MACD Histogram Returns: pandas.Series: New feature generated. """ macd_diff = self._check_fillna(self._macd_diff, value=0) return pd.Series(macd_diff, name=f'MACD_diff_{self._n_fast}_{self._n_slow}') class EMAIndicator(IndicatorMixin): """EMA - Exponential Moving Average Args: close(pandas.Series): dataset 'Close' column. n(int): n period. fillna(bool): if True, fill nan values. """ def __init__(self, close: pd.Series, n: int = 14, fillna: bool = False): self._close = close self._n = n self._fillna = fillna def ema_indicator(self) -> pd.Series: """Exponential Moving Average (EMA) Returns: pandas.Series: New feature generated. """ ema_ = ema(self._close, self._n, self._fillna) return pd.Series(ema_, name=f'ema_{self._n}') class TRIXIndicator(IndicatorMixin): """Trix (TRIX) Shows the percent rate of change of a triple exponentially smoothed moving average. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:trix Args: close(pandas.Series): dataset 'Close' column. n(int): n period. fillna(bool): if True, fill nan values. """ def __init__(self, close: pd.Series, n: int = 15, fillna: bool = False): self._close = close self._n = n self._fillna = fillna self._run() def _run(self): ema1 = ema(self._close, self._n, self._fillna) ema2 = ema(ema1, self._n, self._fillna) ema3 = ema(ema2, self._n, self._fillna) self._trix = (ema3 - ema3.shift(1, fill_value=ema3.mean())) / ema3.shift(1, fill_value=ema3.mean()) self._trix *= 100 def trix(self) -> pd.Series: """Trix (TRIX) Returns: pandas.Series: New feature generated. """ trix = self._check_fillna(self._trix, value=0) return pd.Series(trix, name=f'trix_{self._n}') class MassIndex(IndicatorMixin): """Mass Index (MI) It uses the high-low range to identify trend reversals based on range expansions. It identifies range bulges that can foreshadow a reversal of the current trend. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:mass_index Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. n(int): n low period. n2(int): n high period. fillna(bool): if True, fill nan values. """ def __init__(self, high: pd.Series, low: pd.Series, n: int = 9, n2: int = 25, fillna: bool = False): self._high = high self._low = low self._n = n self._n2 = n2 self._fillna = fillna self._run() def _run(self): amplitude = self._high - self._low ema1 = ema(amplitude, self._n, self._fillna) ema2 = ema(ema1, self._n, self._fillna) mass = ema1 / ema2 self._mass = mass.rolling(self._n2, min_periods=0).sum() def mass_index(self) -> pd.Series: """Mass Index (MI) Returns: pandas.Series: New feature generated. """ mass = self._check_fillna(self._mass, value=0) return pd.Series(mass, name=f'mass_index_{self._n}_{self._n2}') class IchimokuIndicator(IndicatorMixin): """Ichimoku Kinkō Hyō (Ichimoku) http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ichimoku_cloud Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. n1(int): n1 low period. n2(int): n2 medium period. n3(int): n3 high period. visual(bool): if True, shift n2 values. fillna(bool): if True, fill nan values. """ def __init__(self, high: pd.Series, low: pd.Series, n1: int = 9, n2: int = 26, n3: int = 52, visual: bool = False, fillna: bool = False): self._high = high self._low = low self._n1 = n1 self._n2 = n2 self._n3 = n3 self._visual = visual self._fillna = fillna def ichimoku_a(self) -> pd.Series: """Senkou Span A (Leading Span A) Returns: pandas.Series: New feature generated. """ conv = 0.5 * (self._high.rolling(self._n1, min_periods=0).max() + self._low.rolling(self._n1, min_periods=0).min()) base = 0.5 * (self._high.rolling(self._n2, min_periods=0).max() + self._low.rolling(self._n2, min_periods=0).min()) spana = 0.5 * (conv + base) spana = spana.shift(self._n2, fill_value=spana.mean()) if self._visual else spana spana = self._check_fillna(spana, value=-1) return pd.Series(spana, name=f'ichimoku_a_{self._n1}_{self._n2}') def ichimoku_b(self) -> pd.Series: """Senkou Span B (Leading Span B) Returns: pandas.Series: New feature generated. """ spanb = 0.5 * (self._high.rolling(self._n3, min_periods=0).max() + self._low.rolling(self._n3, min_periods=0).min()) spanb = spanb.shift(self._n2, fill_value=spanb.mean()) if self._visual else spanb spanb = self._check_fillna(spanb, value=-1) return pd.Series(spanb, name=f'ichimoku_b_{self._n1}_{self._n2}') class KSTIndicator(IndicatorMixin): """KST Oscillator (KST Signal) It is useful to identify major stock market cycle junctures because its formula is weighed to be more greatly influenced by the longer and more dominant time spans, in order to better reflect the primary swings of stock market cycle. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:know_sure_thing_kst Args: close(pandas.Series): dataset 'Close' column. r1(int): r1 period. r2(int): r2 period. r3(int): r3 period. r4(int): r4 period. n1(int): n1 smoothed period. n2(int): n2 smoothed period. n3(int): n3 smoothed period. n4(int): n4 smoothed period. nsig(int): n period to signal. fillna(bool): if True, fill nan values. """ def __init__(self, close: pd.Series, r1: int = 10, r2: int = 15, r3: int = 20, r4: int = 30, n1: int = 10, n2: int = 10, n3: int = 10, n4: int = 15, nsig: int = 9, fillna: bool = False): self._close = close self._r1 = r1 self._r2 = r2 self._r3 = r3 self._r4 = r4 self._n1 = n1 self._n2 = n2 self._n3 = n3 self._n4 = n4 self._nsig = nsig self._fillna = fillna self._run() def _run(self): rocma1 = ((self._close - self._close.shift(self._r1, fill_value=self._close.mean())) / self._close.shift(self._r1, fill_value=self._close.mean())).rolling(self._n1, min_periods=0).mean() rocma2 = ((self._close - self._close.shift(self._r2, fill_value=self._close.mean())) / self._close.shift(self._r2, fill_value=self._close.mean())).rolling(self._n2, min_periods=0).mean() rocma3 = ((self._close - self._close.shift(self._r3, fill_value=self._close.mean())) / self._close.shift(self._r3, fill_value=self._close.mean())).rolling(self._n3, min_periods=0).mean() rocma4 = ((self._close - self._close.shift(self._r4, fill_value=self._close.mean())) / self._close.shift(self._r4, fill_value=self._close.mean())).rolling(self._n4, min_periods=0).mean() self._kst = 100 * (rocma1 + 2 * rocma2 + 3 * rocma3 + 4 * rocma4) self._kst_sig = self._kst.rolling(self._nsig, min_periods=0).mean() def kst(self) -> pd.Series: """Know Sure Thing (KST) Returns: pandas.Series: New feature generated. """ kst = self._check_fillna(self._kst, value=0) return pd.Series(kst, name='kst') def kst_sig(self) -> pd.Series: """Signal Line Know Sure Thing (KST) nsig-period SMA of KST Returns: pandas.Series: New feature generated. """ kst_sig = self._check_fillna(self._kst_sig, value=0) return pd.Series(kst_sig, name='kst_sig') def kst_diff(self) -> pd.Series: """Diff Know Sure Thing (KST) KST - Signal_KST Returns: pandas.Series: New feature generated. """ kst_diff = self._kst - self._kst_sig kst_diff = self._check_fillna(kst_diff, value=0) return pd.Series(kst_diff, name='kst_diff') class DPOIndicator(IndicatorMixin): """Detrended Price Oscillator (DPO) Is an indicator designed to remove trend from price and make it easier to identify cycles. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:detrended_price_osci Args: close(pandas.Series): dataset 'Close' column. n(int): n period. fillna(bool): if True, fill nan values. """ def __init__(self, close: pd.Series, n: int = 20, fillna: bool = False): self._close = close self._n = n self._fillna = fillna self._run() def _run(self): self._dpo = (self._close.shift(int((0.5 * self._n) + 1), fill_value=self._close.mean()) - self._close.rolling(self._n, min_periods=0).mean()) def dpo(self) -> pd.Series: """Detrended Price Oscillator (DPO) Returns: pandas.Series: New feature generated. """ dpo = self._check_fillna(self._dpo, value=0) return pd.Series(dpo, name='dpo_'+str(self._n)) class CCIIndicator(IndicatorMixin): """Commodity Channel Index (CCI) CCI measures the difference between a security's price change and its average price change. High positive readings indicate that prices are well above their average, which is a show of strength. Low negative readings indicate that prices are well below their average, which is a show of weakness. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:commodity_channel_index_cci Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. n(int): n period. c(int): constant. fillna(bool): if True, fill nan values. """ def __init__(self, high: pd.Series, low: pd.Series, close: pd.Series, n: int = 20, c: float = 0.015, fillna: bool = False): self._high = high self._low = low self._close = close self._n = n self._c = c self._fillna = fillna self._run() def _run(self): def _mad(x): return np.mean(np.abs(x-np.mean(x))) pp = (self._high + self._low + self._close) / 3.0 self._cci = ((pp - pp.rolling(self._n, min_periods=0).mean()) / (self._c * pp.rolling(self._n, min_periods=0).apply(_mad, True))) def cci(self) -> pd.Series: """Commodity Channel Index (CCI) Returns: pandas.Series: New feature generated. """ cci = self._check_fillna(self._cci, value=0) return pd.Series(cci, name='cci') class ADXIndicator(IndicatorMixin): """Average Directional Movement Index (ADX) The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed averages of these differences, and measure trend direction over time. These two indicators are often referred to collectively as the Directional Movement Indicator (DMI). The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between +DI and -DI, and measures the strength of the trend (regardless of direction) over time. Using these three indicators together, chartists can determine both the direction and strength of the trend. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:average_directional_index_adx Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. n(int): n period. fillna(bool): if True, fill nan values. """ def __init__(self, high: pd.Series, low: pd.Series, close: pd.Series, n: int = 14, fillna: bool = False): self._high = high self._low = low self._close = close self._n = n self._fillna = fillna self._run() def _run(self): assert self._n != 0, "N may not be 0 and is %r" % n cs = self._close.shift(1) pdm = get_min_max(self._high, cs, 'max') pdn = get_min_max(self._low, cs, 'min') tr = pdm - pdn self._trs_initial = np.zeros(self._n-1) self._trs = np.zeros(len(self._close) - (self._n - 1)) self._trs[0] = tr.dropna()[0:self._n].sum() tr = tr.reset_index(drop=True) for i in range(1, len(self._trs)-1): self._trs[i] = self._trs[i-1] - (self._trs[i-1]/float(self._n)) + tr[self._n+i] up = self._high - self._high.shift(1) dn = self._low.shift(1) - self._low pos = abs(((up > dn) & (up > 0)) * up) neg = abs(((dn > up) & (dn > 0)) * dn) self._dip = np.zeros(len(self._close) - (self._n - 1)) self._dip[0] = pos.dropna()[0:self._n].sum() pos = pos.reset_index(drop=True) for i in range(1, len(self._dip)-1): self._dip[i] = self._dip[i-1] - (self._dip[i-1]/float(self._n)) + pos[self._n+i] self._din = np.zeros(len(self._close) - (self._n - 1)) self._din[0] = neg.dropna()[0:self._n].sum() neg = neg.reset_index(drop=True) for i in range(1, len(self._din)-1): self._din[i] = self._din[i-1] - (self._din[i-1]/float(self._n)) + neg[self._n+i] def adx(self) -> pd.Series: """Average Directional Index (ADX) Returns: pandas.Series: New feature generated. """ dip = np.zeros(len(self._trs)) for i in range(len(self._trs)): dip[i] = 100 * (self._dip[i]/self._trs[i]) din = np.zeros(len(self._trs)) for i in range(len(self._trs)): din[i] = 100 * (self._din[i]/self._trs[i]) dx = 100 * np.abs((dip - din) / (dip + din)) adx = np.zeros(len(self._trs)) adx[self._n] = dx[0:self._n].mean() for i in range(self._n+1, len(adx)): adx[i] = ((adx[i-1] * (self._n - 1)) + dx[i-1]) / float(self._n) adx = np.concatenate((self._trs_initial, adx), axis=0) self._adx = pd.Series(data=adx, index=self._close.index) adx = self._check_fillna(self._adx, value=20) return pd.Series(adx, name='adx') def adx_pos(self) -> pd.Series: """Plus Directional Indicator (+DI) Returns: pandas.Series: New feature generated. """ dip = np.zeros(len(self._close)) for i in range(1, len(self._trs)-1): dip[i+self._n] = 100 * (self._dip[i]/self._trs[i]) adx_pos = self._check_fillna(pd.Series(dip, index=self._close.index), value=20) return pd.Series(adx_pos, name='adx_pos') def adx_neg(self) -> pd.Series: """Minus Directional Indicator (-DI) Returns: pandas.Series: New feature generated. """ din = np.zeros(len(self._close)) for i in range(1, len(self._trs)-1): din[i+self._n] = 100 * (self._din[i]/self._trs[i]) adx_neg = self._check_fillna(
pd.Series(din, index=self._close.index)
pandas.Series
from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import collections import numpy as np import re from numpy import array from statistics import mode import pandas as pd import warnings import copy from joblib import Memory from itertools import chain import ast import timeit from sklearn.neighbors import KNeighborsClassifier # 1 neighbors from sklearn.svm import SVC # 1 svm from sklearn.naive_bayes import GaussianNB # 1 naive bayes from sklearn.neural_network import MLPClassifier # 1 neural network from sklearn.linear_model import LogisticRegression # 1 linear model from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis # 2 discriminant analysis from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier # 4 ensemble models from joblib import Parallel, delayed import multiprocessing from sklearn.pipeline import make_pipeline from sklearn import model_selection from sklearn.manifold import MDS from sklearn.manifold import TSNE from sklearn.metrics import matthews_corrcoef from sklearn.metrics import log_loss from sklearn.metrics import fbeta_score from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from imblearn.metrics import geometric_mean_score import umap from sklearn.metrics import classification_report from sklearn.preprocessing import scale import eli5 from eli5.sklearn import PermutationImportance from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import RFE from sklearn.decomposition import PCA from mlxtend.classifier import StackingCVClassifier from mlxtend.feature_selection import ColumnSelector from sklearn.model_selection import GridSearchCV from sklearn.model_selection import ShuffleSplit from scipy.spatial import procrustes # This block of code == for the connection between the server, the database, and the client (plus routing). # Access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def Reset(): global DataRawLength global DataResultsRaw global previousState previousState = [] global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global dataSpacePointsIDs dataSpacePointsIDs = [] global previousStateActive previousStateActive = [] global StanceTest StanceTest = False global status status = True global factors factors = [1,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1] global KNNModelsCount global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount global keyData keyData = 0 KNNModelsCount = 0 SVCModelsCount = 576 GausNBModelsCount = 736 MLPModelsCount = 1236 LRModelsCount = 1356 LDAModelsCount = 1996 QDAModelsCount = 2196 RFModelsCount = 2446 ExtraTModelsCount = 2606 AdaBModelsCount = 2766 GradBModelsCount = 2926 global XData XData = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' # Initializing models global resultsList resultsList = [] global RetrieveModelsList RetrieveModelsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 5 # models global KNNModels KNNModels = [] global RFModels RFModels = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global target_namesLoc target_namesLoc = [] return 'The reset was done!' # Retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def RetrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest fileName = request.get_data().decode('utf8').replace("'", '"') global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global XData XData = [] global previousState previousState = [] global previousStateActive previousStateActive = [] global status status = True global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global filterDataFinal filterDataFinal = 'mean' global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerformancePerModel allParametersPerformancePerModel = [] global all_classifiers all_classifiers = [] global scoring scoring = {'accuracy': 'accuracy', 'precision_micro': 'precision_micro', 'precision_macro': 'precision_macro', 'precision_weighted': 'precision_weighted', 'recall_micro': 'recall_micro', 'recall_macro': 'recall_macro', 'recall_weighted': 'recall_weighted', 'roc_auc_ovo_weighted': 'roc_auc_ovo_weighted'} global loopFeatures loopFeatures = 2 # models global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels KNNModels = [] SVCModels = [] GausNBModels = [] MLPModels = [] LRModels = [] LDAModels = [] QDAModels = [] RFModels = [] ExtraTModels = [] AdaBModels = [] GradBModels = [] global results results = [] global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global target_namesLoc target_namesLoc = [] DataRawLength = -1 DataRawLengthTest = -1 data = json.loads(fileName) if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() elif data['fileName'] == 'StanceC': StanceTest = True CollectionDB = mongo.db.StanceC.find() CollectionDBTest = mongo.db.StanceCTest.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.diabetesC.find() elif data['fileName'] == 'BreastC': CollectionDB = mongo.db.breastC.find() elif data['fileName'] == 'WineC': CollectionDB = mongo.db.WineC.find() elif data['fileName'] == 'ContraceptiveC': CollectionDB = mongo.db.ContraceptiveC.find() elif data['fileName'] == 'VehicleC': CollectionDB = mongo.db.VehicleC.find() elif data['fileName'] == 'BiodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) DataSetSelection() return 'Everything is okay' def Convert(lst): it = iter(lst) res_dct = dict(zip(it, it)) return res_dct # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def SendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() return 'Processed uploaded data set' # Sent data to client @app.route('/data/ClientRequest', methods=["GET", "POST"]) def CollectionData(): json.dumps(DataResultsRaw) response = { 'Collection': DataResultsRaw } return jsonify(response) def DataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value target_names.append(value) if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 target_names.append(value) AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() warnings.simplefilter('ignore') return 'Everything is okay' def callPreResults(): global XData global yData global target_names global impDataInst DataSpaceResMDS = FunMDS(XData) DataSpaceResTSNE = FunTsne(XData) DataSpaceResTSNE = DataSpaceResTSNE.tolist() DataSpaceUMAP = FunUMAP(XData) XDataJSONEntireSetRes = XData.to_json(orient='records') global preResults preResults = [] preResults.append(json.dumps(target_names)) # Position: 0 preResults.append(json.dumps(DataSpaceResMDS)) # Position: 1 preResults.append(json.dumps(XDataJSONEntireSetRes)) # Position: 2 preResults.append(json.dumps(yData)) # Position: 3 preResults.append(json.dumps(AllTargets)) # Position: 4 preResults.append(json.dumps(DataSpaceResTSNE)) # Position: 5 preResults.append(json.dumps(DataSpaceUMAP)) # Position: 6 preResults.append(json.dumps(impDataInst)) # Position: 7 # Sending each model's results to frontend @app.route('/data/requestDataSpaceResults', methods=["GET", "POST"]) def SendDataSpaceResults(): global preResults callPreResults() response = { 'preDataResults': preResults, } return jsonify(response) # Main function if __name__ == '__main__': app.run() # Debugging and mirroring client @app.route('/', defaults={'path': ''}) @app.route('/<path:path>') def catch_all(path): if app.debug: return requests.get('http://localhost:8080/{}'.format(path)).text return render_template("index.html") # This block of code is for server computations def column_index(df, query_cols): cols = df.columns.values sidx = np.argsort(cols) return sidx[np.searchsorted(cols,query_cols,sorter=sidx)].tolist() def class_feature_importance(X, Y, feature_importances): N, M = X.shape X = scale(X) out = {} for c in set(Y): out[c] = dict( zip(range(N), np.mean(X[Y==c, :], axis=0)*feature_importances) ) return out @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/EnsembleMode', methods=["GET", "POST"]) def EnsembleMethod(): global crossValidation global RANDOM_SEED global XData RANDOM_SEED = 42 RetrievedStatus = request.get_data().decode('utf8').replace("'", '"') RetrievedStatus = json.loads(RetrievedStatus) modeMethod = RetrievedStatus['defaultModeMain'] if (modeMethod == 'blend'): crossValidation = ShuffleSplit(n_splits=1, test_size=.20, random_state=RANDOM_SEED) else: crossValidation = 5 return 'Okay' # Initialize every model for each algorithm @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelParameters', methods=["GET", "POST"]) def RetrieveModel(): # get the models from the frontend RetrievedModel = request.get_data().decode('utf8').replace("'", '"') RetrievedModel = json.loads(RetrievedModel) global algorithms algorithms = RetrievedModel['Algorithms'] toggle = RetrievedModel['Toggle'] global crossValidation global XData global yData global SVCModelsCount global GausNBModelsCount global MLPModelsCount global LRModelsCount global LDAModelsCount global QDAModelsCount global RFModelsCount global ExtraTModelsCount global AdaBModelsCount global GradBModelsCount # loop through the algorithms global allParametersPerformancePerModel start = timeit.default_timer() print('CVorTT', crossValidation) for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = {'n_neighbors': list(range(1, 25)), 'metric': ['chebyshev', 'manhattan', 'euclidean', 'minkowski'], 'algorithm': ['brute', 'kd_tree', 'ball_tree'], 'weights': ['uniform', 'distance']} AlgorithmsIDsEnd = 0 elif (eachAlgor) == 'SVC': clf = SVC(probability=True,random_state=RANDOM_SEED) params = {'C': list(np.arange(0.1,4.43,0.11)), 'kernel': ['rbf','linear', 'poly', 'sigmoid']} AlgorithmsIDsEnd = SVCModelsCount elif (eachAlgor) == 'GauNB': clf = GaussianNB() params = {'var_smoothing': list(np.arange(0.00000000001,0.0000001,0.0000000002))} AlgorithmsIDsEnd = GausNBModelsCount elif (eachAlgor) == 'MLP': clf = MLPClassifier(random_state=RANDOM_SEED) params = {'alpha': list(np.arange(0.00001,0.001,0.0002)), 'tol': list(np.arange(0.00001,0.001,0.0004)), 'max_iter': list(np.arange(100,200,100)), 'activation': ['relu', 'identity', 'logistic', 'tanh'], 'solver' : ['adam', 'sgd']} AlgorithmsIDsEnd = MLPModelsCount elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = {'C': list(np.arange(0.5,2,0.075)), 'max_iter': list(np.arange(50,250,50)), 'solver': ['lbfgs', 'newton-cg', 'sag', 'saga'], 'penalty': ['l2', 'none']} AlgorithmsIDsEnd = LRModelsCount elif (eachAlgor) == 'LDA': clf = LinearDiscriminantAnalysis() params = {'shrinkage': list(np.arange(0,1,0.01)), 'solver': ['lsqr', 'eigen']} AlgorithmsIDsEnd = LDAModelsCount elif (eachAlgor) == 'QDA': clf = QuadraticDiscriminantAnalysis() params = {'reg_param': list(np.arange(0,1,0.02)), 'tol': list(np.arange(0.00001,0.001,0.0002))} AlgorithmsIDsEnd = QDAModelsCount elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = RFModelsCount elif (eachAlgor) == 'ExtraT': clf = ExtraTreesClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(60, 140)), 'criterion': ['gini', 'entropy']} AlgorithmsIDsEnd = ExtraTModelsCount elif (eachAlgor) == 'AdaB': clf = AdaBoostClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(40, 80)), 'learning_rate': list(np.arange(0.1,2.3,1.1)), 'algorithm': ['SAMME.R', 'SAMME']} AlgorithmsIDsEnd = AdaBModelsCount else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = {'n_estimators': list(range(85, 115)), 'learning_rate': list(np.arange(0.01,0.23,0.11)), 'criterion': ['friedman_mse', 'mse', 'mae']} AlgorithmsIDsEnd = GradBModelsCount allParametersPerformancePerModel = GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossValidation) # New visualization - model space # header = "model_id,algorithm_id,mean_test_accuracy,mean_test_precision_micro,mean_test_precision_macro,mean_test_precision_weighted,mean_test_recall_micro,mean_test_recall_macro,mean_test_recall_weighted,mean_test_roc_auc_ovo_weighted,geometric_mean_score_micro,geometric_mean_score_macro,geometric_mean_score_weighted,matthews_corrcoef,f5_micro,f5_macro,f5_weighted,f1_micro,f1_macro,f1_weighted,f2_micro,f2_macro,f2_weighted,log_loss\n" # dataReceived = [] # counter = 0 # for indx, el in enumerate(allParametersPerformancePerModel): # dictFR = json.loads(el) # frame = pd.DataFrame.from_dict(dictFR) # for ind, elInside in frame.iterrows(): # counter = counter + 1 # dataReceived.append(str(counter)) # dataReceived.append(',') # dataReceived.append(str(indx+1)) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_accuracy'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_precision_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_recall_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['mean_test_roc_auc_ovo_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['geometric_mean_score_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['matthews_corrcoef'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f5_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f1_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_micro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_macro'])) # dataReceived.append(',') # dataReceived.append(str(elInside['f2_weighted'])) # dataReceived.append(',') # dataReceived.append(str(elInside['log_loss'])) # dataReceived.append("\n") # dataReceivedItems = ''.join(dataReceived) # csvString = header + dataReceivedItems # fw = open ("modelSpace.csv","w+",encoding="utf-8") # fw.write(csvString) # fw.close() # call the function that sends the results to the frontend stop = timeit.default_timer() print('Time GridSearch: ', stop - start) SendEachClassifiersPerformanceToVisualize() return 'Everything Okay' location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def GridSearchForModels(XData, yData, clf, params, eachAlgor, AlgorithmsIDsEnd, toggle, crossVal): print('loop') # this is the grid we use to train the models grid = GridSearchCV( estimator=clf, param_grid=params, cv=crossVal, refit='accuracy', scoring=scoring, verbose=0, n_jobs=-1) # fit and extract the probabilities grid.fit(XData, yData) # process the results cv_results = [] cv_results.append(grid.cv_results_) df_cv_results = pd.DataFrame.from_dict(cv_results) # number of models stored number_of_models = len(df_cv_results.iloc[0][0]) # initialize results per row df_cv_results_per_row = [] # loop through number of models modelsIDs = [] for i in range(number_of_models): modelsIDs.append(AlgorithmsIDsEnd+i) # initialize results per item df_cv_results_per_item = [] for column in df_cv_results.iloc[0]: df_cv_results_per_item.append(column[i]) df_cv_results_per_row.append(df_cv_results_per_item) # store the results into a pandas dataframe df_cv_results_classifiers = pd.DataFrame(data = df_cv_results_per_row, columns= df_cv_results.columns) # copy and filter in order to get only the metrics metrics = df_cv_results_classifiers.copy() metrics = metrics.filter(['mean_test_accuracy','mean_test_precision_micro','mean_test_precision_macro','mean_test_precision_weighted','mean_test_recall_micro','mean_test_recall_macro','mean_test_recall_weighted','mean_test_roc_auc_ovo_weighted']) # concat parameters and performance parametersPerformancePerModel = pd.DataFrame(df_cv_results_classifiers['params']) parametersPerformancePerModel = parametersPerformancePerModel.to_json() parametersLocal = json.loads(parametersPerformancePerModel)['params'].copy() Models = [] for index, items in enumerate(parametersLocal): Models.append(str(index)) parametersLocalNew = [ parametersLocal[your_key] for your_key in Models ] permList = [] PerFeatureAccuracy = [] PerFeatureAccuracyAll = [] PerClassMetric = [] perModelProb = [] perModelPrediction = [] resultsMicro = [] resultsMacro = [] resultsWeighted = [] resultsCorrCoef = [] resultsMicroBeta5 = [] resultsMacroBeta5 = [] resultsWeightedBeta5 = [] resultsMicroBeta1 = [] resultsMacroBeta1 = [] resultsWeightedBeta1 = [] resultsMicroBeta2 = [] resultsMacroBeta2 = [] resultsWeightedBeta2 = [] resultsLogLoss = [] resultsLogLossFinal = [] loop = 8 # influence calculation for all the instances inputs = range(len(XData)) num_cores = multiprocessing.cpu_count() #impDataInst = Parallel(n_jobs=num_cores)(delayed(processInput)(i,XData,yData,crossValidation,clf) for i in inputs) for eachModelParameters in parametersLocalNew: clf.set_params(**eachModelParameters) if (toggle == 1): perm = PermutationImportance(clf, cv = None, refit = True, n_iter = 25).fit(XData, yData) permList.append(perm.feature_importances_) n_feats = XData.shape[1] PerFeatureAccuracy = [] for i in range(n_feats): scores = model_selection.cross_val_score(clf, XData.values[:, i].reshape(-1, 1), yData, cv=5) PerFeatureAccuracy.append(scores.mean()) PerFeatureAccuracyAll.append(PerFeatureAccuracy) else: permList.append(0) PerFeatureAccuracyAll.append(0) clf.fit(XData, yData) yPredict = clf.predict(XData) yPredict = np.nan_to_num(yPredict) perModelPrediction.append(yPredict) # retrieve target names (class names) PerClassMetric.append(classification_report(yData, yPredict, target_names=target_names, digits=2, output_dict=True)) yPredictProb = clf.predict_proba(XData) yPredictProb = np.nan_to_num(yPredictProb) perModelProb.append(yPredictProb.tolist()) resultsMicro.append(geometric_mean_score(yData, yPredict, average='micro')) resultsMacro.append(geometric_mean_score(yData, yPredict, average='macro')) resultsWeighted.append(geometric_mean_score(yData, yPredict, average='weighted')) resultsCorrCoef.append(matthews_corrcoef(yData, yPredict)) resultsMicroBeta5.append(fbeta_score(yData, yPredict, average='micro', beta=0.5)) resultsMacroBeta5.append(fbeta_score(yData, yPredict, average='macro', beta=0.5)) resultsWeightedBeta5.append(fbeta_score(yData, yPredict, average='weighted', beta=0.5)) resultsMicroBeta1.append(fbeta_score(yData, yPredict, average='micro', beta=1)) resultsMacroBeta1.append(fbeta_score(yData, yPredict, average='macro', beta=1)) resultsWeightedBeta1.append(fbeta_score(yData, yPredict, average='weighted', beta=1)) resultsMicroBeta2.append(fbeta_score(yData, yPredict, average='micro', beta=2)) resultsMacroBeta2.append(fbeta_score(yData, yPredict, average='macro', beta=2)) resultsWeightedBeta2.append(fbeta_score(yData, yPredict, average='weighted', beta=2)) resultsLogLoss.append(log_loss(yData, yPredictProb, normalize=True)) maxLog = max(resultsLogLoss) minLog = min(resultsLogLoss) for each in resultsLogLoss: resultsLogLossFinal.append((each-minLog)/(maxLog-minLog)) metrics.insert(loop,'geometric_mean_score_micro',resultsMicro) metrics.insert(loop+1,'geometric_mean_score_macro',resultsMacro) metrics.insert(loop+2,'geometric_mean_score_weighted',resultsWeighted) metrics.insert(loop+3,'matthews_corrcoef',resultsCorrCoef) metrics.insert(loop+4,'f5_micro',resultsMicroBeta5) metrics.insert(loop+5,'f5_macro',resultsMacroBeta5) metrics.insert(loop+6,'f5_weighted',resultsWeightedBeta5) metrics.insert(loop+7,'f1_micro',resultsMicroBeta1) metrics.insert(loop+8,'f1_macro',resultsMacroBeta1) metrics.insert(loop+9,'f1_weighted',resultsWeightedBeta1) metrics.insert(loop+10,'f2_micro',resultsMicroBeta2) metrics.insert(loop+11,'f2_macro',resultsMacroBeta2) metrics.insert(loop+12,'f2_weighted',resultsWeightedBeta2) metrics.insert(loop+13,'log_loss',resultsLogLossFinal) perModelPredPandas = pd.DataFrame(perModelPrediction) perModelPredPandas = perModelPredPandas.to_json() perModelProbPandas = pd.DataFrame(perModelProb) perModelProbPandas = perModelProbPandas.to_json() PerClassMetricPandas = pd.DataFrame(PerClassMetric) del PerClassMetricPandas['accuracy'] del PerClassMetricPandas['macro avg'] del PerClassMetricPandas['weighted avg'] PerClassMetricPandas = PerClassMetricPandas.to_json() perm_imp_eli5PD = pd.DataFrame(permList) perm_imp_eli5PD = perm_imp_eli5PD.to_json() PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll) PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json() bestfeatures = SelectKBest(score_func=chi2, k='all') fit = bestfeatures.fit(XData,yData) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(XData.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Specs','Score'] #naming the dataframe columns featureScores = featureScores.to_json() # gather the results and send them back results.append(modelsIDs) # Position: 0 and so on results.append(parametersPerformancePerModel) # Position: 1 and so on results.append(PerClassMetricPandas) # Position: 2 and so on results.append(PerFeatureAccuracyPandas) # Position: 3 and so on results.append(perm_imp_eli5PD) # Position: 4 and so on results.append(featureScores) # Position: 5 and so on metrics = metrics.to_json() results.append(metrics) # Position: 6 and so on results.append(perModelProbPandas) # Position: 7 and so on results.append(json.dumps(perModelPredPandas)) # Position: 8 and so on return results # Sending each model's results to frontend @app.route('/data/PerformanceForEachModel', methods=["GET", "POST"]) def SendEachClassifiersPerformanceToVisualize(): response = { 'PerformancePerModel': allParametersPerformancePerModel, } return jsonify(response) def Remove(duplicate): final_list = [] for num in duplicate: if num not in final_list: if (isinstance(num, float)): if np.isnan(num): pass else: final_list.append(float(num)) else: final_list.append(num) return final_list # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendBrushedParam', methods=["GET", "POST"]) def RetrieveModelsParam(): RetrieveModelsPar = request.get_data().decode('utf8').replace("'", '"') RetrieveModelsPar = json.loads(RetrieveModelsPar) counterKNN = 0 counterSVC = 0 counterGausNB = 0 counterMLP = 0 counterLR = 0 counterLDA = 0 counterQDA = 0 counterRF = 0 counterExtraT = 0 counterAdaB = 0 counterGradB = 0 global KNNModels global SVCModels global GausNBModels global MLPModels global LRModels global LDAModels global QDAModels global RFModels global ExtraTModels global AdaBModels global GradBModels global algorithmsList algorithmsList = RetrieveModelsPar['algorithms'] for index, items in enumerate(algorithmsList): if (items == 'KNN'): counterKNN += 1 KNNModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'SVC'): counterSVC += 1 SVCModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'GauNB'): counterGausNB += 1 GausNBModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'MLP'): counterMLP += 1 MLPModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LR'): counterLR += 1 LRModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'LDA'): counterLDA += 1 LDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'QDA'): counterQDA += 1 QDAModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'RF'): counterRF += 1 RFModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'ExtraT'): counterExtraT += 1 ExtraTModels.append(int(RetrieveModelsPar['models'][index])) elif (items == 'AdaB'): counterAdaB += 1 AdaBModels.append(int(RetrieveModelsPar['models'][index])) else: counterGradB += 1 GradBModels.append(int(RetrieveModelsPar['models'][index])) return 'Everything Okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/factors', methods=["GET", "POST"]) def RetrieveFactors(): global factors global allParametersPerformancePerModel Factors = request.get_data().decode('utf8').replace("'", '"') FactorsInt = json.loads(Factors) factors = FactorsInt['Factors'] # this is if we want to change the factors before running the search #if (len(allParametersPerformancePerModel) == 0): # pass #else: global sumPerClassifierSel global ModelSpaceMDSNew global ModelSpaceTSNENew global metricsPerModel sumPerClassifierSel = [] sumPerClassifierSel = preProcsumPerMetric(factors) ModelSpaceMDSNew = [] ModelSpaceTSNENew = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) metricsPerModel = preProcMetricsAllAndSel() flagLocal = 0 countRemovals = 0 for l,el in enumerate(factors): if el == 0: loopThroughMetrics.drop(loopThroughMetrics.columns[[l-countRemovals]], axis=1, inplace=True) countRemovals = countRemovals + 1 flagLocal = 1 if flagLocal == 1: ModelSpaceMDSNew = FunMDS(loopThroughMetrics) ModelSpaceTSNENew = FunTsne(loopThroughMetrics) ModelSpaceTSNENew = ModelSpaceTSNENew.tolist() return 'Everything Okay' @app.route('/data/UpdateOverv', methods=["GET", "POST"]) def UpdateOverview(): ResultsUpdateOverview = [] ResultsUpdateOverview.append(sumPerClassifierSel) ResultsUpdateOverview.append(ModelSpaceMDSNew) ResultsUpdateOverview.append(ModelSpaceTSNENew) ResultsUpdateOverview.append(metricsPerModel) response = { 'Results': ResultsUpdateOverview } return jsonify(response) def PreprocessingMetrics(): dicKNN = json.loads(allParametersPerformancePerModel[6]) dicSVC = json.loads(allParametersPerformancePerModel[15]) dicGausNB = json.loads(allParametersPerformancePerModel[24]) dicMLP = json.loads(allParametersPerformancePerModel[33]) dicLR = json.loads(allParametersPerformancePerModel[42]) dicLDA = json.loads(allParametersPerformancePerModel[51]) dicQDA = json.loads(allParametersPerformancePerModel[60]) dicRF = json.loads(allParametersPerformancePerModel[69]) dicExtraT = json.loads(allParametersPerformancePerModel[78]) dicAdaB = json.loads(allParametersPerformancePerModel[87]) dicGradB = json.loads(allParametersPerformancePerModel[96]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatMetrics = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatMetrics def PreprocessingPred(): dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) predictions = [] for column, content in df_concatProbs.items(): el = [sum(x)/len(x) for x in zip(*content)] predictions.append(el) return predictions def PreprocessingPredUpdate(Models): Models = json.loads(Models) ModelsList= [] for loop in Models['ClassifiersList']: ModelsList.append(loop) dicKNN = json.loads(allParametersPerformancePerModel[7]) dicSVC = json.loads(allParametersPerformancePerModel[16]) dicGausNB = json.loads(allParametersPerformancePerModel[25]) dicMLP = json.loads(allParametersPerformancePerModel[34]) dicLR = json.loads(allParametersPerformancePerModel[43]) dicLDA = json.loads(allParametersPerformancePerModel[52]) dicQDA = json.loads(allParametersPerformancePerModel[61]) dicRF = json.loads(allParametersPerformancePerModel[70]) dicExtraT = json.loads(allParametersPerformancePerModel[79]) dicAdaB = json.loads(allParametersPerformancePerModel[88]) dicGradB = json.loads(allParametersPerformancePerModel[97]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatProbs = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) listProbs = df_concatProbs.index.values.tolist() deletedElements = 0 for index, element in enumerate(listProbs): if element in ModelsList: index = index - deletedElements df_concatProbs = df_concatProbs.drop(df_concatProbs.index[index]) deletedElements = deletedElements + 1 df_concatProbsCleared = df_concatProbs listIDsRemoved = df_concatProbsCleared.index.values.tolist() predictionsAll = PreprocessingPred() PredictionSpaceAll = FunMDS(predictionsAll) PredictionSpaceAllComb = [list(a) for a in zip(PredictionSpaceAll[0], PredictionSpaceAll[1])] predictionsSel = [] for column, content in df_concatProbsCleared.items(): el = [sum(x)/len(x) for x in zip(*content)] predictionsSel.append(el) PredictionSpaceSel = FunMDS(predictionsSel) PredictionSpaceSelComb = [list(a) for a in zip(PredictionSpaceSel[0], PredictionSpaceSel[1])] mtx2PredFinal = [] mtx2Pred, mtx2Pred, disparityPred = procrustes(PredictionSpaceAllComb, PredictionSpaceSelComb) a1, b1 = zip(*mtx2Pred) mtx2PredFinal.append(a1) mtx2PredFinal.append(b1) return [mtx2PredFinal,listIDsRemoved] def PreprocessingParam(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_params = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_params def PreprocessingParamSep(): dicKNN = json.loads(allParametersPerformancePerModel[1]) dicSVC = json.loads(allParametersPerformancePerModel[10]) dicGausNB = json.loads(allParametersPerformancePerModel[19]) dicMLP = json.loads(allParametersPerformancePerModel[28]) dicLR = json.loads(allParametersPerformancePerModel[37]) dicLDA = json.loads(allParametersPerformancePerModel[46]) dicQDA = json.loads(allParametersPerformancePerModel[55]) dicRF = json.loads(allParametersPerformancePerModel[64]) dicExtraT = json.loads(allParametersPerformancePerModel[73]) dicAdaB = json.loads(allParametersPerformancePerModel[82]) dicGradB = json.loads(allParametersPerformancePerModel[91]) dicKNN = dicKNN['params'] dicSVC = dicSVC['params'] dicGausNB = dicGausNB['params'] dicMLP = dicMLP['params'] dicLR = dicLR['params'] dicLDA = dicLDA['params'] dicQDA = dicQDA['params'] dicRF = dicRF['params'] dicExtraT = dicExtraT['params'] dicAdaB = dicAdaB['params'] dicGradB = dicGradB['params'] dicKNN = {int(k):v for k,v in dicKNN.items()} dicSVC = {int(k):v for k,v in dicSVC.items()} dicGausNB = {int(k):v for k,v in dicGausNB.items()} dicMLP = {int(k):v for k,v in dicMLP.items()} dicLR = {int(k):v for k,v in dicLR.items()} dicLDA = {int(k):v for k,v in dicLDA.items()} dicQDA = {int(k):v for k,v in dicQDA.items()} dicRF = {int(k):v for k,v in dicRF.items()} dicExtraT = {int(k):v for k,v in dicExtraT.items()} dicAdaB = {int(k):v for k,v in dicAdaB.items()} dicGradB = {int(k):v for k,v in dicGradB.items()} dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN = dfKNN.T dfSVC = dfSVC.T dfGausNB = dfGausNB.T dfMLP = dfMLP.T dfLR = dfLR.T dfLDA = dfLDA.T dfQDA = dfQDA.T dfRF = dfRF.T dfExtraT = dfExtraT.T dfAdaB = dfAdaB.T dfGradB = dfGradB.T dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] return [dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered] def preProcessPerClassM(): dicKNN = json.loads(allParametersPerformancePerModel[2]) dicSVC = json.loads(allParametersPerformancePerModel[11]) dicGausNB = json.loads(allParametersPerformancePerModel[20]) dicMLP = json.loads(allParametersPerformancePerModel[29]) dicLR = json.loads(allParametersPerformancePerModel[38]) dicLDA = json.loads(allParametersPerformancePerModel[47]) dicQDA = json.loads(allParametersPerformancePerModel[56]) dicRF = json.loads(allParametersPerformancePerModel[65]) dicExtraT = json.loads(allParametersPerformancePerModel[74]) dicAdaB = json.loads(allParametersPerformancePerModel[83]) dicGradB = json.loads(allParametersPerformancePerModel[92]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_concatParams = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_concatParams def preProcessFeatAcc(): dicKNN = json.loads(allParametersPerformancePerModel[3]) dicSVC = json.loads(allParametersPerformancePerModel[12]) dicGausNB = json.loads(allParametersPerformancePerModel[21]) dicMLP = json.loads(allParametersPerformancePerModel[30]) dicLR = json.loads(allParametersPerformancePerModel[39]) dicLDA = json.loads(allParametersPerformancePerModel[48]) dicQDA = json.loads(allParametersPerformancePerModel[57]) dicRF = json.loads(allParametersPerformancePerModel[66]) dicExtraT = json.loads(allParametersPerformancePerModel[75]) dicAdaB = json.loads(allParametersPerformancePerModel[84]) dicGradB = json.loads(allParametersPerformancePerModel[93]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_featAcc = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_featAcc def preProcessPerm(): dicKNN = json.loads(allParametersPerformancePerModel[4]) dicSVC = json.loads(allParametersPerformancePerModel[13]) dicGausNB = json.loads(allParametersPerformancePerModel[22]) dicMLP = json.loads(allParametersPerformancePerModel[31]) dicLR = json.loads(allParametersPerformancePerModel[40]) dicLDA = json.loads(allParametersPerformancePerModel[49]) dicQDA = json.loads(allParametersPerformancePerModel[58]) dicRF = json.loads(allParametersPerformancePerModel[67]) dicExtraT = json.loads(allParametersPerformancePerModel[76]) dicAdaB = json.loads(allParametersPerformancePerModel[85]) dicGradB = json.loads(allParametersPerformancePerModel[94]) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_perm = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) return df_perm def preProcessFeatSc(): dicKNN = json.loads(allParametersPerformancePerModel[5]) dfKNN = pd.DataFrame.from_dict(dicKNN) return dfKNN # remove that maybe! def preProcsumPerMetric(factors): sumPerClassifier = [] loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) loopThroughMetrics.loc[:, 'log_loss'] = 1 - loopThroughMetrics.loc[:, 'log_loss'] for row in loopThroughMetrics.iterrows(): rowSum = 0 name, values = row for loop, elements in enumerate(values): rowSum = elements*factors[loop] + rowSum if sum(factors) == 0: sumPerClassifier = 0 else: sumPerClassifier.append(rowSum/sum(factors) * 100) return sumPerClassifier def preProcMetricsAllAndSel(): loopThroughMetrics = PreprocessingMetrics() loopThroughMetrics = loopThroughMetrics.fillna(0) global factors metricsPerModelColl = [] metricsPerModelColl.append(loopThroughMetrics['mean_test_accuracy']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_micro']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_macro']) metricsPerModelColl.append(loopThroughMetrics['geometric_mean_score_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_micro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_precision_weighted']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_micro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_macro']) metricsPerModelColl.append(loopThroughMetrics['mean_test_recall_weighted']) metricsPerModelColl.append(loopThroughMetrics['f5_micro']) metricsPerModelColl.append(loopThroughMetrics['f5_macro']) metricsPerModelColl.append(loopThroughMetrics['f5_weighted']) metricsPerModelColl.append(loopThroughMetrics['f1_micro']) metricsPerModelColl.append(loopThroughMetrics['f1_macro']) metricsPerModelColl.append(loopThroughMetrics['f1_weighted']) metricsPerModelColl.append(loopThroughMetrics['f2_micro']) metricsPerModelColl.append(loopThroughMetrics['f2_macro']) metricsPerModelColl.append(loopThroughMetrics['f2_weighted']) metricsPerModelColl.append(loopThroughMetrics['matthews_corrcoef']) metricsPerModelColl.append(loopThroughMetrics['mean_test_roc_auc_ovo_weighted']) metricsPerModelColl.append(loopThroughMetrics['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelColl): if (index == 19): metricsPerModelColl[index] = ((f(metric))*factors[index]) * 100 elif (index == 21): metricsPerModelColl[index] = ((1 - metric)*factors[index] ) * 100 else: metricsPerModelColl[index] = (metric*factors[index]) * 100 metricsPerModelColl[index] = metricsPerModelColl[index].to_json() return metricsPerModelColl def preProceModels(): models = KNNModels + SVCModels + GausNBModels + MLPModels + LRModels + LDAModels + QDAModels + RFModels + ExtraTModels + AdaBModels + GradBModels return models def FunMDS (data): mds = MDS(n_components=2, random_state=RANDOM_SEED) XTransformed = mds.fit_transform(data).T XTransformed = XTransformed.tolist() return XTransformed def FunTsne (data): tsne = TSNE(n_components=2, random_state=RANDOM_SEED).fit_transform(data) tsne.shape return tsne def FunUMAP (data): trans = umap.UMAP(n_neighbors=15, random_state=RANDOM_SEED).fit(data) Xpos = trans.embedding_[:, 0].tolist() Ypos = trans.embedding_[:, 1].tolist() return [Xpos,Ypos] def InitializeEnsemble(): XModels = PreprocessingMetrics() global ModelSpaceMDS global ModelSpaceTSNE global allParametersPerformancePerModel global impDataInst XModels = XModels.fillna(0) ModelSpaceMDS = FunMDS(XModels) ModelSpaceTSNE = FunTsne(XModels) ModelSpaceTSNE = ModelSpaceTSNE.tolist() ModelSpaceUMAP = FunUMAP(XModels) PredictionProbSel = PreprocessingPred() PredictionSpaceMDS = FunMDS(PredictionProbSel) PredictionSpaceTSNE = FunTsne(PredictionProbSel) PredictionSpaceTSNE = PredictionSpaceTSNE.tolist() PredictionSpaceUMAP = FunUMAP(PredictionProbSel) ModelsIDs = preProceModels() impDataInst = processDataInstance(ModelsIDs,allParametersPerformancePerModel) callPreResults() key = 0 EnsembleModel(ModelsIDs, key) ReturnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionSpaceMDS,PredictionSpaceTSNE,PredictionSpaceUMAP) def processDataInstance(ModelsIDs, allParametersPerformancePerModel): dicKNN = json.loads(allParametersPerformancePerModel[8]) dicKNN = json.loads(dicKNN) dicSVC = json.loads(allParametersPerformancePerModel[17]) dicSVC = json.loads(dicSVC) dicGausNB = json.loads(allParametersPerformancePerModel[26]) dicGausNB = json.loads(dicGausNB) dicMLP = json.loads(allParametersPerformancePerModel[35]) dicMLP = json.loads(dicMLP) dicLR = json.loads(allParametersPerformancePerModel[44]) dicLR = json.loads(dicLR) dicLDA = json.loads(allParametersPerformancePerModel[53]) dicLDA = json.loads(dicLDA) dicQDA = json.loads(allParametersPerformancePerModel[62]) dicQDA = json.loads(dicQDA) dicRF = json.loads(allParametersPerformancePerModel[71]) dicRF = json.loads(dicRF) dicExtraT = json.loads(allParametersPerformancePerModel[80]) dicExtraT = json.loads(dicExtraT) dicAdaB = json.loads(allParametersPerformancePerModel[89]) dicAdaB = json.loads(dicAdaB) dicGradB = json.loads(allParametersPerformancePerModel[98]) dicGradB = json.loads(dicGradB) dfKNN = pd.DataFrame.from_dict(dicKNN) dfSVC = pd.DataFrame.from_dict(dicSVC) dfGausNB = pd.DataFrame.from_dict(dicGausNB) dfMLP = pd.DataFrame.from_dict(dicMLP) dfLR = pd.DataFrame.from_dict(dicLR) dfLDA = pd.DataFrame.from_dict(dicLDA) dfQDA = pd.DataFrame.from_dict(dicQDA) dfRF = pd.DataFrame.from_dict(dicRF) dfExtraT = pd.DataFrame.from_dict(dicExtraT) dfAdaB = pd.DataFrame.from_dict(dicAdaB) dfGradB = pd.DataFrame.from_dict(dicGradB) dfKNN.index = dfKNN.index.astype(int) dfSVC.index = dfSVC.index.astype(int) + SVCModelsCount dfGausNB.index = dfGausNB.index.astype(int) + GausNBModelsCount dfMLP.index = dfMLP.index.astype(int) + MLPModelsCount dfLR.index = dfLR.index.astype(int) + LRModelsCount dfLDA.index = dfLDA.index.astype(int) + LDAModelsCount dfQDA.index = dfQDA.index.astype(int) + QDAModelsCount dfRF.index = dfRF.index.astype(int) + RFModelsCount dfExtraT.index = dfExtraT.index.astype(int) + ExtraTModelsCount dfAdaB.index = dfAdaB.index.astype(int) + AdaBModelsCount dfGradB.index = dfGradB.index.astype(int) + GradBModelsCount dfKNNFiltered = dfKNN.loc[KNNModels, :] dfSVCFiltered = dfSVC.loc[SVCModels, :] dfGausNBFiltered = dfGausNB.loc[GausNBModels, :] dfMLPFiltered = dfMLP.loc[MLPModels, :] dfLRFiltered = dfLR.loc[LRModels, :] dfLDAFiltered = dfLDA.loc[LDAModels, :] dfQDAFiltered = dfQDA.loc[QDAModels, :] dfRFFiltered = dfRF.loc[RFModels, :] dfExtraTFiltered = dfExtraT.loc[ExtraTModels, :] dfAdaBFiltered = dfAdaB.loc[AdaBModels, :] dfGradBFiltered = dfGradB.loc[GradBModels, :] df_connect = pd.concat([dfKNNFiltered, dfSVCFiltered, dfGausNBFiltered, dfMLPFiltered, dfLRFiltered, dfLDAFiltered, dfQDAFiltered, dfRFFiltered, dfExtraTFiltered, dfAdaBFiltered, dfGradBFiltered]) global yData global filterActionFinal global dataSpacePointsIDs lengthDF = len(df_connect.columns) if (filterActionFinal == 'compose'): getList = [] for index, row in df_connect.iterrows(): yDataSelected = [] for column in row[dataSpacePointsIDs]: yDataSelected.append(column) storeMode = mode(yDataSelected) getList.append(storeMode) df_connect[str(lengthDF)] = getList countCorrect = [] length = len(df_connect.index) for index, element in enumerate(yData): countTemp = 0 dfPart = df_connect[[str(index)]] for indexdf, row in dfPart.iterrows(): if (int(row.values[0]) == int(element)): countTemp += 1 countCorrect.append(1 - (countTemp/length)) return countCorrect def ReturnResults(ModelSpaceMDS,ModelSpaceTSNE,ModelSpaceUMAP,PredictionSpaceMDS,PredictionSpaceTSNE,PredictionSpaceUMAP): global Results global AllTargets Results = [] parametersGen = PreprocessingParam() PerClassMetrics = preProcessPerClassM() FeatureAccuracy = preProcessFeatAcc() perm_imp_eli5PDCon = preProcessPerm() featureScoresCon = preProcessFeatSc() metricsPerModel = preProcMetricsAllAndSel() sumPerClassifier = preProcsumPerMetric(factors) ModelsIDs = preProceModels() parametersGenPD = parametersGen.to_json(orient='records') PerClassMetrics = PerClassMetrics.to_json(orient='records') FeatureAccuracy = FeatureAccuracy.to_json(orient='records') perm_imp_eli5PDCon = perm_imp_eli5PDCon.to_json(orient='records') featureScoresCon = featureScoresCon.to_json(orient='records') XDataJSONEntireSet = XData.to_json(orient='records') XDataJSON = XData.columns.tolist() Results.append(json.dumps(sumPerClassifier)) # Position: 0 Results.append(json.dumps(ModelSpaceMDS)) # Position: 1 Results.append(json.dumps(parametersGenPD)) # Position: 2 Results.append(PerClassMetrics) # Position: 3 Results.append(json.dumps(target_names)) # Position: 4 Results.append(FeatureAccuracy) # Position: 5 Results.append(json.dumps(XDataJSON)) # Position: 6 Results.append(0) # Position: 7 Results.append(json.dumps(PredictionSpaceMDS)) # Position: 8 Results.append(json.dumps(metricsPerModel)) # Position: 9 Results.append(perm_imp_eli5PDCon) # Position: 10 Results.append(featureScoresCon) # Position: 11 Results.append(json.dumps(ModelSpaceTSNE)) # Position: 12 Results.append(json.dumps(ModelsIDs)) # Position: 13 Results.append(json.dumps(XDataJSONEntireSet)) # Position: 14 Results.append(json.dumps(yData)) # Position: 15 Results.append(json.dumps(AllTargets)) # Position: 16 Results.append(json.dumps(ModelSpaceUMAP)) # Position: 17 Results.append(json.dumps(PredictionSpaceTSNE)) # Position: 18 Results.append(json.dumps(PredictionSpaceUMAP)) # Position: 19 return Results # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/PlotClassifiers', methods=["GET", "POST"]) def SendToPlot(): while (len(DataResultsRaw) != DataRawLength): pass InitializeEnsemble() response = { 'OverviewResults': Results } return jsonify(response) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRemoveFromStack', methods=["GET", "POST"]) def RetrieveSelClassifiersIDandRemoveFromStack(): ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') PredictionProbSelUpdate = PreprocessingPredUpdate(ClassifierIDsList) global resultsUpdatePredictionSpace resultsUpdatePredictionSpace = [] resultsUpdatePredictionSpace.append(json.dumps(PredictionProbSelUpdate[0])) # Position: 0 resultsUpdatePredictionSpace.append(json.dumps(PredictionProbSelUpdate[1])) key = 3 EnsembleModel(ClassifierIDsList, key) return 'Everything Okay' # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/UpdatePredictionsSpace', methods=["GET", "POST"]) def SendPredBacktobeUpdated(): response = { 'UpdatePredictions': resultsUpdatePredictionSpace } return jsonify(response) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelPoin', methods=["GET", "POST"]) def RetrieveSelClassifiersID(): ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') #ComputeMetricsForSel(ClassifierIDsList) ClassifierIDCleaned = json.loads(ClassifierIDsList) global keySpecInternal keySpecInternal = 1 keySpecInternal = ClassifierIDCleaned['keyNow'] EnsembleModel(ClassifierIDsList, 1) return 'Everything Okay' # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestSelPoinLocally', methods=["GET", "POST"]) def RetrieveSelClassifiersIDLocally(): ClassifierIDsList = request.get_data().decode('utf8').replace("'", '"') ComputeMetricsForSel(ClassifierIDsList) return 'Everything Okay' def ComputeMetricsForSel(Models): Models = json.loads(Models) MetricsAlltoSel = PreprocessingMetrics() listofModels = [] for loop in Models['ClassifiersList']: listofModels.append(loop) MetricsAlltoSel = MetricsAlltoSel.loc[listofModels,:] global metricsPerModelCollSel global factors metricsPerModelCollSel = [] metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_accuracy']) metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_micro']) metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_macro']) metricsPerModelCollSel.append(MetricsAlltoSel['geometric_mean_score_weighted']) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_micro']) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_macro']) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_precision_weighted']) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_micro']) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_macro']) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_recall_weighted']) metricsPerModelCollSel.append(MetricsAlltoSel['f5_micro']) metricsPerModelCollSel.append(MetricsAlltoSel['f5_macro']) metricsPerModelCollSel.append(MetricsAlltoSel['f5_weighted']) metricsPerModelCollSel.append(MetricsAlltoSel['f1_micro']) metricsPerModelCollSel.append(MetricsAlltoSel['f1_macro']) metricsPerModelCollSel.append(MetricsAlltoSel['f1_weighted']) metricsPerModelCollSel.append(MetricsAlltoSel['f2_micro']) metricsPerModelCollSel.append(MetricsAlltoSel['f2_macro']) metricsPerModelCollSel.append(MetricsAlltoSel['f2_weighted']) metricsPerModelCollSel.append(MetricsAlltoSel['matthews_corrcoef']) metricsPerModelCollSel.append(MetricsAlltoSel['mean_test_roc_auc_ovo_weighted']) metricsPerModelCollSel.append(MetricsAlltoSel['log_loss']) f=lambda a: (abs(a)+a)/2 for index, metric in enumerate(metricsPerModelCollSel): if (index == 19): metricsPerModelCollSel[index] = ((f(metric))*factors[index]) * 100 elif (index == 21): metricsPerModelCollSel[index] = (1 - metric)*factors[index] * 100 else: metricsPerModelCollSel[index] = metric*factors[index] * 100 metricsPerModelCollSel[index] = metricsPerModelCollSel[index].to_json() return 'okay' # function to get unique values def unique(list1): # intilize a null list unique_list = [] # traverse for all elements for x in list1: # check if exists in unique_list or not if x not in unique_list: unique_list.append(x) return unique_list # Sending the overview classifiers' results to be visualized as a scatterplot @app.route('/data/BarChartSelectedModels', methods=["GET", "POST"]) def SendToUpdateBarChart(): response = { 'SelectedMetricsForModels': metricsPerModelCollSel } return jsonify(response) # Retrieve data from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequestDataPoint', methods=["GET", "POST"]) def RetrieveSelDataPoints(): DataPointsSel = request.get_data().decode('utf8').replace("'", '"') DataPointsSelClear = json.loads(DataPointsSel) listofDataPoints = [] for loop in DataPointsSelClear['DataPointsSel']: temp = [int(s) for s in re.findall(r'\b\d+\b', loop)] listofDataPoints.append(temp[0]) global algorithmsList global resultsMetrics resultsMetrics = [] df_concatMetrics = [] metricsSelList = [] paramsListSepPD = [] paramsListSepPD = PreprocessingParamSep() paramsListSeptoDicKNN = paramsListSepPD[0].to_dict(orient='list') paramsListSeptoDicSVC = paramsListSepPD[1].to_dict(orient='list') paramsListSeptoDicGausNB = paramsListSepPD[2].to_dict(orient='list') paramsListSeptoDicMLP = paramsListSepPD[3].to_dict(orient='list') paramsListSeptoDicLR = paramsListSepPD[4].to_dict(orient='list') paramsListSeptoDicLDA = paramsListSepPD[5].to_dict(orient='list') paramsListSeptoDicQDA = paramsListSepPD[6].to_dict(orient='list') paramsListSeptoDicRF = paramsListSepPD[7].to_dict(orient='list') paramsListSeptoDicExtraT = paramsListSepPD[8].to_dict(orient='list') paramsListSeptoDicAdaB = paramsListSepPD[9].to_dict(orient='list') paramsListSeptoDicGradB = paramsListSepPD[10].to_dict(orient='list') RetrieveParamsCleared = {} RetrieveParamsClearedListKNN = [] for key, value in paramsListSeptoDicKNN.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListKNN.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListSVC = [] for key, value in paramsListSeptoDicSVC.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListSVC.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListGausNB = [] for key, value in paramsListSeptoDicGausNB.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListGausNB.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListMLP = [] for key, value in paramsListSeptoDicMLP.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListMLP.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListLR = [] for key, value in paramsListSeptoDicLR.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListLR.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListLDA = [] for key, value in paramsListSeptoDicLDA.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListLDA.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListQDA = [] for key, value in paramsListSeptoDicQDA.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListQDA.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListRF = [] for key, value in paramsListSeptoDicRF.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListRF.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListExtraT = [] for key, value in paramsListSeptoDicExtraT.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListExtraT.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListAdaB = [] for key, value in paramsListSeptoDicAdaB.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListAdaB.append(RetrieveParamsCleared) RetrieveParamsCleared = {} RetrieveParamsClearedListGradB = [] for key, value in paramsListSeptoDicGradB.items(): withoutDuplicates = Remove(value) RetrieveParamsCleared[key] = withoutDuplicates RetrieveParamsClearedListGradB.append(RetrieveParamsCleared) if (len(paramsListSeptoDicKNN['n_neighbors']) == 0): RetrieveParamsClearedListKNN = [] if (len(paramsListSeptoDicSVC['C']) == 0): RetrieveParamsClearedListSVC = [] if (len(paramsListSeptoDicGausNB['var_smoothing']) == 0): RetrieveParamsClearedListGausNB = [] if (len(paramsListSeptoDicMLP['alpha']) == 0): RetrieveParamsClearedListMLP = [] if (len(paramsListSeptoDicLR['C']) == 0): RetrieveParamsClearedListLR = [] if (len(paramsListSeptoDicLDA['shrinkage']) == 0): RetrieveParamsClearedListLDA = [] if (len(paramsListSeptoDicQDA['reg_param']) == 0): RetrieveParamsClearedListQDA = [] if (len(paramsListSeptoDicRF['n_estimators']) == 0): RetrieveParamsClearedListRF = [] if (len(paramsListSeptoDicExtraT['n_estimators']) == 0): RetrieveParamsClearedListExtraT = [] if (len(paramsListSeptoDicAdaB['n_estimators']) == 0): RetrieveParamsClearedListAdaB = [] if (len(paramsListSeptoDicGradB['n_estimators']) == 0): RetrieveParamsClearedListGradB = [] for eachAlgor in algorithms: if (eachAlgor) == 'KNN': clf = KNeighborsClassifier() params = RetrieveParamsClearedListKNN AlgorithmsIDsEnd = 0 elif (eachAlgor) == 'SVC': clf = SVC(probability=True,random_state=RANDOM_SEED) params = RetrieveParamsClearedListSVC AlgorithmsIDsEnd = SVCModelsCount elif (eachAlgor) == 'GauNB': clf = GaussianNB() params = RetrieveParamsClearedListGausNB AlgorithmsIDsEnd = GausNBModelsCount elif (eachAlgor) == 'MLP': clf = MLPClassifier(random_state=RANDOM_SEED) params = RetrieveParamsClearedListMLP AlgorithmsIDsEnd = MLPModelsCount elif (eachAlgor) == 'LR': clf = LogisticRegression(random_state=RANDOM_SEED) params = RetrieveParamsClearedListLR AlgorithmsIDsEnd = LRModelsCount elif (eachAlgor) == 'LDA': clf = LinearDiscriminantAnalysis() params = RetrieveParamsClearedListLDA AlgorithmsIDsEnd = LDAModelsCount elif (eachAlgor) == 'QDA': clf = QuadraticDiscriminantAnalysis() params = RetrieveParamsClearedListQDA AlgorithmsIDsEnd = QDAModelsCount elif (eachAlgor) == 'RF': clf = RandomForestClassifier(random_state=RANDOM_SEED) params = RetrieveParamsClearedListRF AlgorithmsIDsEnd = RFModelsCount elif (eachAlgor) == 'ExtraT': clf = ExtraTreesClassifier(random_state=RANDOM_SEED) params = RetrieveParamsClearedListExtraT AlgorithmsIDsEnd = ExtraTModelsCount elif (eachAlgor) == 'AdaB': clf = AdaBoostClassifier(random_state=RANDOM_SEED) params = RetrieveParamsClearedListAdaB AlgorithmsIDsEnd = AdaBModelsCount else: clf = GradientBoostingClassifier(random_state=RANDOM_SEED) params = RetrieveParamsClearedListGradB AlgorithmsIDsEnd = GradBModelsCount metricsSelList = GridSearchSel(clf, params, factors, AlgorithmsIDsEnd, listofDataPoints, crossValidation) if (len(metricsSelList[0]) != 0 and len(metricsSelList[1]) != 0 and len(metricsSelList[2]) != 0 and len(metricsSelList[3]) != 0 and len(metricsSelList[4]) != 0 and len(metricsSelList[5]) != 0 and len(metricsSelList[6]) != 0 and len(metricsSelList[7]) != 0 and len(metricsSelList[8]) != 0 and len(metricsSelList[9]) != 0 and len(metricsSelList[10]) != 0): dicKNN = json.loads(metricsSelList[0]) dfKNN = pd.DataFrame.from_dict(dicKNN) parametersSelDataPD = parametersSelData[0].apply(pd.Series) set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[0], paramsListSepPD[0]]).drop_duplicates(keep=False) set_diff_df = set_diff_df.index.tolist() if (len(set_diff_df) == 0): dfKNNCleared = dfKNN else: dfKNNCleared = dfKNN.drop(dfKNN.index[set_diff_df]) dicSVC = json.loads(metricsSelList[1]) dfSVC = pd.DataFrame.from_dict(dicSVC) parametersSelDataPD = parametersSelData[1].apply(pd.Series) set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[1], paramsListSepPD[1]]).drop_duplicates(keep=False) set_diff_df = set_diff_df.index.tolist() if (len(set_diff_df) == 0): dfSVCCleared = dfSVC else: dfSVCCleared = dfSVC.drop(dfSVC.index[set_diff_df]) dicGausNB = json.loads(metricsSelList[2]) dfGausNB = pd.DataFrame.from_dict(dicGausNB) parametersSelDataPD = parametersSelData[2].apply(pd.Series) set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[2], paramsListSepPD[2]]).drop_duplicates(keep=False) set_diff_df = set_diff_df.index.tolist() if (len(set_diff_df) == 0): dfGausNBCleared = dfGausNB else: dfGausNBCleared = dfGausNB.drop(dfGausNB.index[set_diff_df]) dicMLP = json.loads(metricsSelList[3]) dfMLP = pd.DataFrame.from_dict(dicMLP) parametersSelDataPD = parametersSelData[3].apply(pd.Series) set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[3], paramsListSepPD[3]]).drop_duplicates(keep=False) set_diff_df = set_diff_df.index.tolist() if (len(set_diff_df) == 0): dfMLPCleared = dfMLP else: dfMLPCleared = dfMLP.drop(dfMLP.index[set_diff_df]) dicLR = json.loads(metricsSelList[4]) dfLR = pd.DataFrame.from_dict(dicLR) parametersSelDataPD = parametersSelData[4].apply(pd.Series) set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[4], paramsListSepPD[4]]).drop_duplicates(keep=False) set_diff_df = set_diff_df.index.tolist() if (len(set_diff_df) == 0): dfLRCleared = dfLR else: dfLRCleared = dfLR.drop(dfLR.index[set_diff_df]) dicLDA = json.loads(metricsSelList[5]) dfLDA = pd.DataFrame.from_dict(dicLDA) parametersSelDataPD = parametersSelData[5].apply(pd.Series) set_diff_df = pd.concat([parametersSelDataPD, paramsListSepPD[5], paramsListSepPD[5]]).drop_duplicates(keep=False) set_diff_df = set_diff_df.index.tolist() if (len(set_diff_df) == 0): dfLDACleared = dfLDA else: dfLDACleared = dfLDA.drop(dfLDA.index[set_diff_df]) dicQDA = json.loads(metricsSelList[6]) dfQDA = pd.DataFrame.from_dict(dicQDA) parametersSelDataPD = parametersSelData[6].apply(pd.Series) set_diff_df =
pd.concat([parametersSelDataPD, paramsListSepPD[6], paramsListSepPD[6]])
pandas.concat
import time import re import pyautogui import requests import sys import random import pandas as pd import imagehash from selenium import webdriver from bs4 import BeautifulSoup from datetime import datetime from PIL import Image class MyLikes: def __init__(self, url, driver_path, records_path) -> None: self.url = url # URL for selenium self.incrementer = 0 # Variable to replace a count within a for loop for `main` self.card_identifier = dict() # Unique identifier for a profile card self.picture_count = 0 # This helps to identify the profile card we're on and is also used in the filenames self.records = list() # Storing the data to be written to an Excel workbook self.records_path = records_path # Path to save the Excel workbook self.now = datetime.utcnow() # Store the start time, in GMT, of the script in a variable self.url_regEx = re.compile(pattern=r'url\(\"(https://.+\.jpg)\"') self.card_identifier_regEx = re.compile(pattern=r'https://images-ssl.gotinder.com/(.+)/\d{3}x') self.options = webdriver.ChromeOptions() # Standard for using Chrome with selenium self.options.add_experimental_option('debuggerAddress', 'localhost:9222') # Running Chrome on localhost self.driver = webdriver.Chrome(executable_path=driver_path, options=self.options) # Standard for using Chrome with selenium self.headers = { # Headers for our requests. These are very important. Without them, we can get timed out or banned. 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.45 Safari/537.36', 'accept-language': 'en-US,en;q=0.9', 'referer': 'https://tinder.com/', 'dnt': '1' } def __repr__(self) -> str: return 'This script is intended to download all of the pictures and videos from the profiles on the "Likes Sent" section of Tinder.' def log_in(self) -> None: # Open the URL in Chrome self.driver.get(url=self.url) time.sleep(4) # Click the Likes Sent button self.driver.find_element_by_xpath(xpath='//a[@href="/app/my-likes"]').click() # Selecting by the href of an anchor (i.e., 'a') tag time.sleep(3) def main(self) -> None: # while 1: for _ in range(1): time.sleep(3) # Get the current page's HTML final_html = self.driver.page_source # Create a soup object self.soup = BeautifulSoup(final_html, 'html.parser') # Find all profile cards within the current HTML cards = self.soup.find_all('div', {'aria-label': re.compile(pattern=r'.*'), 'class': 'Bdrs(8px) Bgz(cv) Bgp(c) StretchedBox'}) # Find the div's id for the div that holds the profile cards. This is important because Tinder frequently changes this id div_id = self.soup.find('div', {'class': 'likesYou__scroller Sb(s) D(f) Jc(c) Fxd(c) Animtf(l) Animfm(f) Animdur(.75s) Ovy(s) Ovsb(n) Ovs(touch)'})['id'] # Iterate over the profile cards for card in cards: card_identifier = re.search(pattern=self.card_identifier_regEx, string=str(card)).group(1) if self.card_identifier.get(card_identifier) is not None: continue # Since the profile card ID is in the dictionary, skip this card and go to the next card else: # Since we haven't gathered the profile data, gather now # Click in the background pyautogui.moveTo(x=1850, y=350, duration=0.1) pyautogui.click() # Add the card ID to the dictionary self.card_identifier.setdefault(card_identifier, 0) # Increment the picture count self.picture_count += 1 # Click the relevant profile card if self.driver.find_element_by_xpath(xpath=f'//*[@id="{div_id}"]/div[2]/div[{self.picture_count}]/div/div/span/div') is not None: # Tinder may change the div the xpath relates to. I can probably write a regular expression to account for this, but I manually updated this one. try: self.driver.find_element_by_xpath(xpath=f'//*[@id="{div_id}"]/div[2]/div[{self.picture_count}]/div/div/span/div').click() except Exception as e: self.driver.find_element_by_xpath(xpath=f'//*[@id="{div_id}"]/div[2]/div[{self.picture_count}]/div/div/span/div[2]/video').click() elif self.driver.find_element_by_xpath(xpath=f'//*[@id="{div_id}"]/div[2]/div[{self.picture_count}]/div/div') is not None: self.driver.find_element_by_xpath(xpath=f'//*[@id="{div_id}"]/div[2]/div[{self.picture_count}]/div/div').click() else: # Finish the script by writing the data to a dataframe then an Excel workbook. Finally, call `sys.exit()` sys.exit('The script is complete. There are no more profile cards to go through.') time.sleep(1) # Get HTML of the profile card profile_html = self.driver.page_source second_soup = BeautifulSoup(profile_html, 'html.parser') name = second_soup.find('h1', {'class': 'Fz($xl) Fw($bold) Fxs(1) Fxw(w) Pend(8px) M(0) D(i)'}).text.title() # Get the total number of pages in the profile card try: number_of_pages = int(second_soup.find('button', {'class': 'bullet D(ib) Va(m) Cnt($blank)::a D(b)::a Cur(p) bullet--active H(4px)::a W(100%)::a Py(4px) Px(2px) W(100%) Bdrs(100px)::a Bgc(#fff)::a focus-background-style'}).text.split('/')[1]) except Exception: number_of_pages = 1 # If there's only one page, there won't be a button. # Iterate over the number of pages for i in range(0, number_of_pages, 1): time.sleep(1) page_html = self.driver.page_source page_soup = BeautifulSoup(page_html, 'html.parser') current_card = page_soup.find('span', {'class': 'keen-slider__slide Wc($transform) Fxg(1)', 'aria-hidden': 'false', 'style': re.compile(pattern=r'.+')}) vid = current_card.find('video', {'class': 'W(100%)'}) # Find appropriate URL if vid: vid = vid['src'] download_url = vid else: download_url = re.search(pattern=self.url_regEx, string=str(current_card)).group(1) # Send GET request r = requests.get(url=download_url, headers=self.headers) # Content Type (i.e., image or video) and Last-Modified content_type, res_last_mod = r.headers['Content-Type'], r.headers['Last-Modified'] res_last_mod = self.to_datetime_obj(date_str=res_last_mod) time_diff = ':'.join(str(self.now - res_last_mod).split(':')[:2]) # Write picture/video to disk with open(file=f'./tinder_pics/{self.picture_count}_{name}_{i+1}.{download_url[-3:]}', mode='wb') as file: file.write(r.content) # If the content is an image, create a hash if download_url[-3:] == 'jpg': hash = imagehash.average_hash(image=Image.open(fp=f'./tinder_pics/{self.picture_count}_{name}_{i+1}.{download_url[-3:]}')) # Append data to list self.records.append((name, card_identifier, content_type, res_last_mod, self.now, time_diff, hash)) # Resetting hash. This can be handled in a better way. hash = '' # Check if we need to click to go to the next page if i != (number_of_pages - 1): pyautogui.moveTo(x=1250, y=400, duration=0.1) pyautogui.click() time.sleep(1) else: continue # Click off the profile card pyautogui.moveTo(x=1850, y=350, duration=0.1) pyautogui.click() time.sleep(1) # Move down the webpage if self.incrementer == 0: pyautogui.moveTo(x=1850, y=350, duration=0.5) time.sleep(1) print(f'Run number: {self.incrementer} | {pyautogui.position()}') pyautogui.scroll(clicks=-2000) time.sleep(2.5) pyautogui.scroll(clicks=-280) time.sleep(1) self.incrementer += 1 else: print(f'Run number: {self.incrementer} | {pyautogui.position()}') time.sleep(random.randint(2, 3)) pyautogui.scroll(clicks=-755) time.sleep(random.randint(2, 3)) self.incrementer += 1 def to_datetime_obj(self, date_str) -> datetime.strptime: return datetime.strptime(date_str, '%a, %d %b %Y %H:%M:%S %Z') def pandas_to_excel(self) -> None: self.df =
pd.DataFrame(data=self.records, columns=['Name', 'Card_ID', 'Type', 'Res_Last_Mod', 'Current_Date', 'Time_Diff', 'Hash'])
pandas.DataFrame
# Copyright 2020 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import logging import argparse import itertools import numpy as np import pandas as pd import xgboost as xgb import matplotlib.pyplot as plt import sklearn.metrics as metrics from sklearn.model_selection import GridSearchCV, train_test_split logging.basicConfig(level=os.environ.get("LOGLEVEL", "INFO")) logger = logging.getLogger(__name__) def eval_models(models, data): """Calculates the root mean squared error (RMSE) and the coefficient of determination (R^2) for each of the models. :param models: Dictionary of the error model for each state vector component :type models: {str: xgboost.XGBRegressor} :param data: Dictionary containing the training and test datasets :type data: {str: numpy.array} :return: Returns a DataFrame containing the evaluation metric results :rtype: pandas.DataFrame """ evals = [] for target_col, reg in models.items(): y_hat = reg.predict(data['X_test']) y = data['y_test'][target_col] rmse = metrics.mean_squared_error(y, y_hat, squared=False) r2 = metrics.r2_score(y, y_hat) eval_dict = {'Error': target_col, 'RMSE': rmse, 'R^2': r2} evals.append(eval_dict) return
pd.DataFrame(evals)
pandas.DataFrame
from util.utils import load_classes, prep_image, display from net import DarkNet import argparse import os import time import random import pandas as pd import torch import cv2 as cv import pickle as pkl def parse(): p = argparse.ArgumentParser(description = "YOLOv3 Detection") p.add_argument("--images", dest = "images", help = "Directory containing images for detection", default = "images", type = str) p.add_argument("--output", dest = "output", help = "Output directory", default = "output", type = str) p.add_argument("--bs", dest = "bs", help = "Batch size", default = 1) p.add_argument("--conf", dest = "conf", help = "Confidence, to help filter prediction", default = 0.5) p.add_argument("--nms", dest = "nms", help = "NMS Threshold", default = 0.4) p.add_argument("--cfg", dest = "cfg", help = "Config file path for model", default = "cfgs/yolov3.cfg", type = str) p.add_argument("--w", dest = "w", help = "Weights file path for model", default = "weights/yolov3.weights", type = str) return p.parse_args() args = parse() print("in") images = args.images bs = int(args.bs) confidence = float(args.conf) nms_threshold = float(args.nms) start = 0 num_classes = 80 classes = load_classes("data/coco.names") print("Loading network") model = DarkNet(args.cfg) print("Model initiated\n") model.load_weights(args.w) print("Weights loaded\n") model.eval() try: im = [os.path.join(os.path.realpath('.'), images, img) for img in os.listdir(images)] except NotADirectoryError: im = [] im.append(os.path.join(os.path.realpath('.'), images)) except FileNotFoundError: print("No such directory with the name {images}") exit() if not os.path.exists(args.output): os.mkdir(args.output) load_images = [cv.imread(img) for img in im] im_batches = list(map(prep_image, load_images, [608 for x in range(len(im))])) im_dim_list = [(x.shape[1], x.shape[0]) for x in load_images] im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2) leftover = 0 if (len(im_dim_list) % bs): leftover = 1 if bs != 1: num_batches = len(im) // bs + leftover im_batches = [torch.cat((im_batches[i* bs : min((i + 1)* bs, \ len(im_batches))])) for i in range(num_batches)] write = 0 for idx, batch in enumerate(im_batches): start = time.time() with torch.no_grad(): pred = model(torch.Tensor(batch)) pred = display(pred, confidence, num_classes, nms_threshold) end = time.time() if type(pred) == int: for im_num, image in enumerate(im[i* bs: min((idx + 1)* bs, len(im))]): im_id = idx * bs + im_num print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/ bs)) print("{0:20s} {1:s}".format("Objects Detected:", "")) print("----------------------------------------------------------") continue pred[:,0] += idx * bs if not write: output = pred write = 1 else: output = torch.cat((output, pred)) for im_num, image in enumerate(im[idx * bs: min((idx + 1)* bs, len(im))]): im_id = idx * bs + im_num objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id] # print("{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start)/bs)) # print("{0:20s} {1:s}".format("Objects Detected:", " ".join(objs))) print("----------------------------------------------------------") # try: # output # except NameError: # print ("No detections were made") # exit() im_dim_list = torch.index_select(im_dim_list, 0, output[:,0].long()) scaling_factor = torch.min(608/im_dim_list,1)[0].view(-1,1) output[:,[1,3]] -= (608 - scaling_factor*im_dim_list[:,0].view(-1,1))/2 output[:,[2,4]] -= (608 - scaling_factor*im_dim_list[:,1].view(-1,1))/2 output[:,1:5] /= scaling_factor for i in range(output.shape[0]): output[i, [1,3]] = torch.clamp(output[i, [1,3]], 0.0, im_dim_list[i,0]) output[i, [2,4]] = torch.clamp(output[i, [2,4]], 0.0, im_dim_list[i,1]) colors = pkl.load(open("pallete", "rb")) def out(x, results): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) img = results[int(x[0])] cls = int(x[-1]) color = random.choice(colors) label = "{0}".format(classes[cls]) cv.rectangle(img, c1, c2,color, 1) t_size = cv.getTextSize(label, cv.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv.rectangle(img, c1, c2,color, -1) cv.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1) return img list(map(lambda x: out(x, load_images), output)) det_names =
pd.Series(im)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Thu Feb 1 11:34:39 2018 @author: MaggieYC_Pang """ import sys sys.path.append("../") from mongodb_api import mongodb_api import numpy as np import pandas as pd import matplotlib.pyplot as plt def moving_func(ip_list, step, func=np.mean, arg=None): op_list=[] i=0 for data in ip_list[step:]: op_list.append(func(ip_list[i:i+step], arg)) i=i+1 return op_list class wifi_diag_api: def __init__(self): label_list = [] label_index_dict = {} topicdata_dict = {} # ============================== ML OUTPUT =============================== label_list.append({"Name":"Delay", "Topic":"Ping", "MLType":"Out", "Process":[np.mean, np.std, len]}) label_list.append({"Name":"Tput", "Topic":"Iperf", "MLType":"Out", "Process":[np.mean]}) label_list.append({"Name":"Jitter", "Topic":"Iperf", "MLType":"Out", "Process":[np.mean]}) label_list.append({"Name":"Loss", "Topic":"Iperf", "MLType":"Out", "Process":[np.mean]}) label_list.append({"Name":"Tx_bitrate", "Topic":"Stationinfo", "MLType":"Out"}) label_list.append({"Name":"Rx_bitrate", "Topic":"Stationinfo", "MLType":"Out"}) label_list.append({"Name":"Signal", "Topic":"Stationinfo", "MLType":"Out"}) label_list.append({"Name":"FER", "Topic":"Stationinfo", "MLType":"Out"}) # ============================== ML INPUT =============================== label_list.append({"Name":"SS_Sigval", "Topic":"Spectralscan", "MLType":"In", "Process":[np.array]}) label_list.append({"Name":"SS_Sigval_Std", "Topic":"Spectralscan", "MLType":"In", "Process":[np.array]}) label_list.append({"Name":"SS_Portion", "Topic":"Spectralscan", "MLType":"In", "Process":[np.array]}) label_list.append({"Name":"SS_Count", "Topic":"Spectralscan", "MLType":"In", "Process":[np.sum]}) label_list.append({"Name":"SS_Rssi", "Topic":"Spectralscan", "MLType":"In", "Process":[np.mean]}) label_list.append({"Name":"SS_Noise", "Topic":"Spectralscan", "MLType":"In", "Process":[np.mean]}) label_list.append({"Name":"Busy", "Topic":"Survey", "MLType":"In"}) label_list.append({"Name":"Noise", "Topic":"Survey", "MLType":"In"}) label_list.append({"Name":"Rcv", "Topic":"Survey", "MLType":"In"}) label_list.append({"Name":"Tx", "Topic":"Survey", "MLType":"In"}) label_list.append({"Name":"FCSError", "Topic":"Statistics", "MLType":"In"}) ERR_list = ["CRC-ERR", "LENGTH-ERR", "PHY-ERR", "SPECTRAL"] # USEFUL # ERR_list = ["CRC-ERR", "DECRYPT-BUSY-ERR", "DECRYPT-CRC-ERR", "LENGTH-ERR", "MIC-ERR", "OOM-ERR", "PHY-ERR", "POST-DELIM-CRC-ERR", "PRE-DELIM-CRC-ERR", "RATE-ERR", "SPECTRAL"] for data in ERR_list: label_list.append({"Name":data, "Topic":"ath9kERR", "MLType":"In"}) # ERR_list = ["chan_idle_dur", "chan_idle_dur_valid", "dcu_arb_state", "dcu_complete_state", "dcu_fp_state", # "qcu_complete_state", "qcu_fetch_state", "qcu_stitch_state", # "txfifo_dcu_num_0", "txfifo_dcu_num_1", "txfifo_valid_0", "txfifo_valid_1"] ERR_list = ["chan_idle_dur", "chan_idle_dur_valid"] #USEFUL for data in ERR_list: label_list.append({"Name":data, "Topic":"ath9kDMA", "MLType":"In"}) # ERR_list = ["ANI_RESET", "CCK_ERRORS", "CCK_LEVEL", "FIR-STEP_DOWN", "FIR-STEP_UP", "INV_LISTENTIME", "MRC-CCK_OFF", "MRC-CCK_ON", # "OFDM_ERRORS", "OFDM_LEVEL", "OFDM_WS-DET_OFF", "OFDM_WS-DET_ON", "SPUR_DOWN", "SPUR_UP"] ERR_list = ["CCK_ERRORS", "OFDM_ERRORS", "SPUR_DOWN", "SPUR_UP"] #USEFUL for data in ERR_list: label_list.append({"Name":data, "Topic":"ath9kANI", "MLType":"In"}) # ============================== END =============================== for labeldata in label_list: label_index_dict[labeldata["Name"]] = label_list.index(labeldata) label_index_dict[label_list.index(labeldata)] = labeldata["Name"] if(labeldata["Topic"] not in topicdata_dict): topicdata_dict[labeldata["Topic"]]=[] if("Process" not in labeldata): topicdata_dict[labeldata["Topic"]].append([labeldata["Name"], "single"]) else: topicdata_dict[labeldata["Topic"]].append([labeldata["Name"], "list"]) # ========================================================================================================= process_name_dict={} process_name_dict[np.mean] = "mean" process_name_dict[np.std] = "std" process_name_dict[np.sum] = "sum" process_name_dict[np.array] = "array" process_name_dict[len] = "len" self.label_list = label_list self.process_name_dict = process_name_dict self.label_index_dict = label_index_dict self.topicdata_dict = topicdata_dict def GetDataList(self, dev, found_data, name, proc): retlist = [] for data in found_data: target = data[dev] if(name not in target): retlist.append(-1) else: if(proc==None): retlist.append(target[name]) else: retlist.append(proc(target[name])) return retlist def plot_all(self, mdb): print("collection = " + mdb.get_full_name()) found_data = mdb.find(key_value = {}, ftype='many') print("len(found_data) = " + str(len(found_data))) ML_data_AP = {} ML_data_STA = {} for labeldata in self.label_list: if(labeldata["Name"] not in found_data[0]["AP"]): continue if("Process" not in labeldata): ML_data_AP[labeldata["Name"]] = self.GetDataList("AP", found_data, labeldata["Name"], None) else: for proc in labeldata["Process"]: ML_data_AP[labeldata["Name"] + '_' + self.process_name_dict[proc]] = self.GetDataList("AP", found_data, labeldata["Name"], proc) if("Process" not in labeldata): ML_data_STA[labeldata["Name"]] = self.GetDataList("STA", found_data, labeldata["Name"], None) else: for proc in labeldata["Process"]: ML_data_STA[labeldata["Name"] + '_' + self.process_name_dict[proc]] = self.GetDataList("STA", found_data, labeldata["Name"], proc) for pkey in ML_data_AP: if("array" in pkey): continue plt.plot(moving_func(ML_data_AP[pkey],10), 'b.') plt.plot(moving_func(ML_data_STA[pkey],10), 'g.') plt.show() print("pkey: " + pkey) APdf =
pd.DataFrame(ML_data_AP)
pandas.DataFrame
import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from code.models.dataset import Dataset def apply_specific_dataset_processing(dataset: Dataset): dataset.create_raw_transformed_dataset() def train_test_split_and_save(dataset: Dataset): raw_dataset = dataset.get_raw_transformed_dataset() X = raw_dataset.loc[:, raw_dataset.columns != dataset.target_class.name] y = raw_dataset[dataset.target_class.name] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=dataset.test_size, random_state=dataset.seed) raw_train_dataset = pd.concat((X_train, pd.Series(y_train).rename(dataset.target_class.name)), axis=1) raw_test_dataset = pd.concat((X_test, pd.Series(y_test).rename(dataset.target_class.name)), axis=1) save_dataset(raw_train_dataset, dataset.get_raw_train_dataset_filename()) save_dataset(raw_test_dataset, dataset.get_raw_test_dataset_filename()) return X_train, X_test, y_train, y_test def create_preprocessed_train_and_test_datasets(dataset: Dataset, raw_train_dataset_X, raw_test_dataset_X, raw_train_dataset_y, raw_test_dataset_y): features = dataset.features train_dataset = pd.DataFrame.copy(raw_train_dataset_X, deep=True) train_dataset = pd.concat((train_dataset, pd.Series(raw_train_dataset_y).rename(dataset.target_class.name)), axis=1) test_dataset = pd.DataFrame.copy(raw_test_dataset_X, deep=True) test_dataset = pd.concat((test_dataset, pd.Series(raw_test_dataset_y).rename(dataset.target_class.name)), axis=1) # Reset Encoding Mapping dataset.reset_encoding_mapping() for feature in features: feature_name = feature.name feature_values_raw_train = train_dataset[feature_name] feature_values_raw_test = test_dataset[feature_name] # Encode and Save Encoding Mapping feature_values_train, feature_values_test = \ feature.feature_type.encode(dataset, feature_name, feature_values_raw_train, feature_values_raw_test) train_dataset[feature_name] = feature_values_train test_dataset[feature_name] = feature_values_test # Standardize features_to_standardize = [f.name for f in features if f.should_standardize] train_dataset[features_to_standardize], test_dataset[features_to_standardize] \ = standardize(train_dataset[features_to_standardize], test_dataset[features_to_standardize]) save_dataset(train_dataset, dataset.get_train_dataset_filename()) save_dataset(test_dataset, dataset.get_test_dataset_filename()) def standardize(train_dataset: pd.DataFrame, test_dataset: pd.DataFrame) -> [pd.DataFrame, pd.DataFrame]: scaler = StandardScaler().fit(train_dataset) train_dataset_scaled = scaler.transform(train_dataset) test_dataset_scaled = scaler.transform(test_dataset) train_dataset_temp =
pd.DataFrame(train_dataset_scaled, columns=train_dataset.columns, index=train_dataset.index)
pandas.DataFrame
# Originally created: 02nd October, 2021 # <NAME> # Last amended: 09th Oct, 2021 # Myfolder: 1/home/ashok/Documents/churnapp # VM: lubuntu_healthcare # Ref: https://builtin.com/machine-learning/streamlit-tutorial # # Objective: # Deploy an ML model on web # ######################## # Notes: # 1, Run this app in its folder, as: # cd /home/ashok/Documents/churnapp # streamlit run churn-app.py # 2. Accomanying file to experiment is # expt.py ######################## # 1.0 Call libraries # Install as: pip install streamlit # Better create a separate conda environment for it import streamlit as st import pandas as pd import numpy as np import pickle import base64 #import seaborn as sns #import matplotlib.pyplot as plt # 1.1 Set pandas options. None means no truncation pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) # Write some body-text on the Web-Page: st.write(""" # Churn Prediction App Customer churn is defined as the loss of customers after a certain period of time. Companies are interested in targeting customers who are likely to churn. They can target these customers with special deals and promotions to influence them to stay with the company. This app predicts the probability of a customer churning using Telco Customer data. Here customer churn means the customer does not make another purchase after a period of time. """) # 2.0 Read data from current folder # Default folder is where streamlit # is being run. So this file # should be in /home/ashok/Documents/churnapp # Else, home folder is the default. df_selected = pd.read_csv("telco_churn.csv") # 2.1 We will select only a few columns # for our model: cols = ['gender', 'Partner', 'Dependents', 'PhoneService', 'tenure', 'MonthlyCharges', 'Churn'] df_selected_all = df_selected[cols].copy() # 3.0 We will create a file download link # in our webapp # What is base64? # See: https://levelup.gitconnected.com/what-is-base64-encoding-4b5ed1eb58a4 def filedownload(df): csv = df.to_csv(index=False) # csv is now a string csv = csv.encode() # csv is b' string or bytes b64 = base64.b64encode(csv) # b64 is base64 encoded binary b64 = b64.decode() # b64 is decoded to one of 64 characters # 3.1 Create an html link to download datafile # See here: https://stackoverflow.com/a/14011075 href = f'<a href="data:file/csv;base64,{b64}" download="churn_data.csv">Download CSV File</a>' # 3.2 Return href object return href #st.set_option('deprecation.showPyplotGlobalUse', False) # 3.3 Finally display the href link href = filedownload(df_selected_all) st.markdown(href, unsafe_allow_html=True) # 4.0 Create a component to upload data file in the sidebar. # 'uploaded_file' is a pandas dataframe uploaded_file = st.sidebar.file_uploader( "Upload your input CSV file", type=["csv"] ) # 4.1 Read data from file. Else, read from widgets if uploaded_file is not None: # 4.2 Read the uploaded file input_df = pd.read_csv(uploaded_file) else: # 4.3 Define a function to create data from widgets def user_input_features(): # 4.4 Create four widgets gender = st.sidebar.selectbox('gender',('Male','Female')) PaymentMethod = st.sidebar.selectbox('PaymentMethod',('Bank transfer (automatic)', 'Credit card (automatic)', 'Mailed check', 'Electronic check')) MonthlyCharges = st.sidebar.slider('Monthly Charges', 18.0,118.0, 18.0) tenure = st.sidebar.slider('tenure', 0.0,72.0, 0.0) # 4.5 Collect widget output in a dictionary data = { 'gender': [gender], # Should be a list data structure 'PaymentMethod': [PaymentMethod], 'MonthlyCharges':[MonthlyCharges], 'tenure': [tenure] } # 4,6 Transform data to DataFrame features = pd.DataFrame(data) # 4.7 Return dataframe of features return features # 4.8 Call the function and get a 1-row DataFrame input_df = user_input_features() # 5.0 To fill NA values, we may import # our original DataFrame churn_raw =
pd.read_csv('telco_churn.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Fri Mar 5 09:08:54 2021 根据research_field_0304v2.csv 对一个公司-->所在行业的所有公司研究领域求交集 """ import csv import pandas as pd #先把一家公司所有年份研究领域合并 def get_field_list(orgpath,outpath): orgdf =
pd.read_csv(orgpath,dtype=str)
pandas.read_csv
# USDA_CoA_Cropland.py (flowsa) # !/usr/bin/env python3 # coding=utf-8 import json import numpy as np import pandas as pd from flowsa.common import * def CoA_Cropland_URL_helper(build_url, config, args): """This helper function uses the "build_url" input from flowbyactivity.py, which is a base url for coa cropland data that requires parts of the url text string to be replaced with info specific to the usda nass quickstats API. This function does not parse the data, only modifies the urls from which data is obtained. """ # initiate url list for coa cropland data urls = [] # call on state acronyms from common.py (and remove entry for DC) state_abbrevs = abbrev_us_state state_abbrevs = {k: v for (k, v) in state_abbrevs.items() if k != "DC"} # replace "__aggLevel__" in build_url to create three urls for x in config['agg_levels']: for y in config['sector_levels']: # at national level, remove the text string calling for state acronyms if x == 'NATIONAL': url = build_url url = url.replace("__aggLevel__", x) url = url.replace("__secLevel__", y) url = url.replace("&state_alpha=__stateAlpha__", "") if y == "ECONOMICS": url = url.replace( "AREA HARVESTED&statisticcat_desc=AREA IN PRODUCTION&statisticcat_desc=TOTAL&statisticcat_desc=AREA BEARING %26 NON-BEARING", "AREA") else: url = url.replace("&commmodity_desc=AG LAND", "") url = url.replace(" ", "%20") urls.append(url) else: # substitute in state acronyms for state and county url calls for z in state_abbrevs: url = build_url url = url.replace("__aggLevel__", x) url = url.replace("__secLevel__", y) url = url.replace("__stateAlpha__", z) if y == "ECONOMICS": url = url.replace( "AREA HARVESTED&statisticcat_desc=AREA IN PRODUCTION&statisticcat_desc=TOTAL&statisticcat_desc=AREA BEARING %26 NON-BEARING", "AREA") else: url = url.replace("&commmodity_desc=AG LAND", "") url = url.replace(" ", "%20") urls.append(url) return urls def coa_cropland_call(url, coa_response, args): cropland_json = json.loads(coa_response.text) df_cropland =
pd.DataFrame(data=cropland_json["data"])
pandas.DataFrame
#!/usr/bin/python3 # import the module import os import glob import pandas as pd import csv from sqlalchemy import create_engine import psycopg2 import config #you need to create this config.py file and update the variables with your database, username and password import subprocess import sys #Note: you need to indicate which directory (e.g. path/to/pur1997) in argv[1] # Get a database connection conn_string = "host="+config.HOST+" dbname="+config.DB+" user="+config.username+" password="+config.password # Get a database connection conn = psycopg2.connect(conn_string) # Create a cursor object. Allows us to execute the SQL query cursor = conn.cursor() def load_data(schema, table): sql_command = "SELECT * FROM {}.{};".format(str(schema), str(table)) # Load the data data = pd.read_sql(sql_command, conn) return (data) # Download data that is already uploaded (find where you left off) chem_df = load_data(config.dpr_schema, config.use_data) # make lists for filtering the data already_in = list(chem_df['use_no']) chem_list = list(pd.read_csv("/home/bmain/pesticide/chem_com.csv")["chem_code"]) prod = list(pd.read_csv("/home/bmain/pesticide/product_prodno.csv")["prodno"]) # set up new DB connection for alchemy engine = create_engine('postgresql://{user}:{pw}@{site}:5432/{db}'.format(user=config.username, pw=config.password, site=config.HOST, db=config.DB)) # make error file error = open("error_rows_prodo.csv", 'w') # these typically occur when there is misformated data weird_comtrs = open("comtrs_error_rows.csv", "w") def upload_by_row(pur_directory): files = glob.glob("%s/udc*" % (pur_directory)) for udc in files: df =
pd.read_csv(udc,low_memory=False, dtype={'range': str, 'section':str, 'township':str, 'comtrs':str})
pandas.read_csv
import os from io import StringIO import pandas as pd import requests import tqdm from cellphonedb.src.app.app_logger import app_logger from cellphonedb.src.app.cellphonedb_app import data_dir from cellphonedb.tools.tools_helper import add_to_meta def call(genes: pd.DataFrame, downloads_path: str, fetch: bool, save_backup: bool = True) -> pd.DataFrame: proteins = genes['uniprot'].tolist() sources = [ { 'name': 'InnateDB', 'base_url': 'https://psicquic.curated.innatedb.com/webservices/current/search/query/species:human', 'query_parameters': False, }, { 'name': 'InnateDB-All', 'base_url': 'https://psicquic.all.innatedb.com/webservices/current/search/query/species:human', 'query_parameters': False, }, { 'name': 'IMEx', 'base_url': 'http://www.ebi.ac.uk/Tools/webservices/psicquic/imex/webservices/current/search/query/{}', 'query_parameters': True, }, { 'name': 'IntAct', 'base_url': 'http://www.ebi.ac.uk/Tools/webservices/psicquic/intact/webservices/current/search/query/{}', 'query_parameters': True, }, { 'name': 'bhf-ucl', 'base_url': 'http://www.ebi.ac.uk/Tools/webservices/psicquic/bhf-ucl/webservices/current/search/query/{}', 'query_parameters': True, }, { 'name': 'MatrixDB', 'base_url': 'http://matrixdb.univ-lyon1.fr:8080/psicquic/webservices/current/search/query/{}', 'query_parameters': True, }, { 'name': 'MINT', 'base_url': 'http://www.ebi.ac.uk/Tools/webservices/psicquic/mint/webservices/current/search/query/{}', 'query_parameters': True, }, { 'name': 'I2D', 'base_url': 'http://ophid.utoronto.ca/psicquic-ws/webservices/current/search/query/{}', 'query_parameters': True, }, { 'name': 'UniProt', 'base_url': 'http://www.ebi.ac.uk/Tools/webservices/psicquic/uniprot/webservices/current/search/query/{}', 'query_parameters': True, }, { 'name': 'MBInfo', 'base_url': 'http://www.ebi.ac.uk/Tools/webservices/psicquic/mbinfo/webservices/current/search/query/{}', 'query_parameters': True, }, # 'DIP': 'http://imex.mbi.ucla.edu/xpsq-dip-all/service/rest/current/search/query/{}', ] significant_columns = ['A', 'B', 'altA', 'altB', 'provider'] carry =
pd.DataFrame(columns=significant_columns)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 1 18:53:50 2018 @author: kazuki.onodera """ import gc, os from tqdm import tqdm import pandas as pd import numpy as np import sys sys.path.append(f'/home/{os.environ.get("USER")}/PythonLibrary') import lgbextension as ex import lightgbm as lgb from multiprocessing import cpu_count, Pool from glob import glob #import count import utils, utils_best #utils.start(__file__) #============================================================================== SEED = 71 #new_feature = 'f110' param = { 'objective': 'binary', 'metric': 'auc', 'learning_rate': 0.01, 'max_depth': 6, 'num_leaves': 63, 'max_bin': 255, 'min_child_weight': 10, 'min_data_in_leaf': 150, 'reg_lambda': 0.5, # L2 regularization term on weights. 'reg_alpha': 0.5, # L1 regularization term on weights. 'colsample_bytree': 0.9, 'subsample': 0.9, # 'nthread': 32, 'nthread': cpu_count(), 'bagging_freq': 1, 'verbose':-1, 'seed': SEED } loader805 = utils_best.Loader('CV805_LB803') loader804 = utils_best.Loader('LB804') # ============================================================================= # load # ============================================================================= X_805 = loader805.train() X_804 = loader804.train() col = X_804.columns.difference(X_805.columns) X =
pd.concat([X_805, X_804[col]], axis=1)
pandas.concat
#!/usr/bin/env python import numpy as np import shutil import urllib import urlparse import os from core import * import util from pprint import pprint import pandas as pd class PaperDownload(XmlClass): def __init__(self, xe=None): XmlClass.__init__(self,xe=xe) self.dest = xe.attrib['dest'] self.s_file_obo = os.path.join(SyncDB.DOWNLOAD_DIR(),'hp.obo') self.s_file_gene2hpo = os.path.join(SyncDB.DOWNLOAD_DIR(),'genes_to_phenotype.txt') self.fn_hpo_ann = os.path.join(SyncDB.DOWNLOAD_DIR(),'hpo_ann.csv') self.fn_trrust_rawdata_human = os.path.join(SyncDB.DOWNLOAD_DIR(),'trrust_rawdata.human.tsv') self.fn_trrust_rawdata_mouse = os.path.join(SyncDB.DOWNLOAD_DIR(),'trrust_rawdata.mouse.tsv') self.fn_DisGeNET_source = os.path.join(SyncDB.DOWNLOAD_DIR(), 'curated_gene_disease_associations.tsv') self.fn_DisGeNET_ann = os.path.join(SyncDB.DOWNLOAD_DIR(), 'disgenet_ann.csv') self.fn_trrust_human_term = os.path.join(SyncDB.DOWNLOAD_DIR(),'trrust_human.csv') self.fn_trrust_mouse_term = os.path.join(SyncDB.DOWNLOAD_DIR(),'trrust_mouse.csv') self.fn_symbol = os.path.join(SyncDB.UPLOAD_DIR(),'gid2source_id','symbol.csv') self.fn_synonym = os.path.join(SyncDB.UPLOAD_DIR(),'gid2source_id','gene_synonym.csv') self.fn_description = os.path.join(SyncDB.UPLOAD_DIR(),'annotation','gene_description.csv') self.inputs=['ds:paper',self.fn_symbol,self.fn_synonym, self.fn_description] self.fn_trrust_term = os.path.join(SyncDB.DOWNLOAD_DIR(), 'trrust_term.csv') self.fn_trrust_term_pair = os.path.join(SyncDB.DOWNLOAD_DIR(), 'trrust_term_pair.csv') self.fn_disgenet_term = os.path.join(SyncDB.DOWNLOAD_DIR(), 'disgenet_term.csv') self.fn_disgenet_term_pair = os.path.join(SyncDB.DOWNLOAD_DIR(), 'disgenet_term_pair.csv') self.fn_PaGenBase_term = os.path.join(SyncDB.DOWNLOAD_DIR(), 'PaGenBase_term.csv') self.fn_PaGenBase_term_pair = os.path.join(SyncDB.DOWNLOAD_DIR(), 'PaGenBase_term_pair.csv') def get_fn_dest(self): return os.path.join(SyncDB.DOWNLOAD_DIR(),self.dest) def populate_more(self,root): XmlClass.populate_more(self,root) self.outputs.extend([self.fn_hpo_ann, self.fn_trrust_term, self.fn_trrust_term_pair, self.fn_disgenet_term, self.fn_disgenet_term_pair, self.fn_DisGeNET_ann, self.fn_PaGenBase_term, self.fn_PaGenBase_term_pair, ]) def do_update(self): self.get_parse_PaGenBase() self.parse_disgenet() t_term_human, t_term_pair_human = self.parse_trrust(self.fn_trrust_rawdata_human, 9606, start_id=1) t_term_mouse, t_term_pair_mouse = self.parse_trrust(self.fn_trrust_rawdata_mouse, 10090,start_id=len(t_term_human)+1) t_term = pd.concat([t_term_human,t_term_mouse]) t_term_pair = pd.concat([t_term_pair_human,t_term_pair_mouse]) t_term.to_csv(self.fn_trrust_term, index=False) t_term_pair.to_csv(self.fn_trrust_term_pair, index=False) parent_child = self.parse_hp(self.s_file_obo) # print(parent_child['HP:0000001']) pheno_level = self.get_level(parent_child) # print(pheno_level['HP:0012823'], pheno_level['HP:0000001']) self.parse_gp(self.s_file_gene2hpo, pheno_level) def get_parse_PaGenBase(self): count_start = 0 S_term = [] S_pair = [] S_file = [ ('hotisp.txt', 'Tissue-specific', 9606), ('hocesp.txt', 'Cell-specific', 9606), ('mutisp.txt', 'Tissue-specific', 10090), ('mucesp.txt', 'Cell-specific', 10090), ('ratisp.txt', 'Tissue-specific', 10116), ('drtisp.txt', 'Tissue-specific', 7227) ] for fn in S_file: fn = fn[0] urllib.urlretrieve('http://bioinf.xmu.edu.cn/PaGenBase/browse/{0}'.format(fn), os.path.join(SyncDB.DOWNLOAD_DIR(), fn)) for (s_file, s_ann, tax_id) in S_file: s_file = os.path.join(SyncDB.DOWNLOAD_DIR(), s_file) t_term, t_pair, count_start = self.parse_PaGenBase(s_file, s_ann, tax_id, count_start) S_term.append(t_term) S_pair.append(t_pair) t_term = pd.concat(S_term, ignore_index=True) t_pair = pd.concat(S_pair, ignore_index=True) t_term.to_csv(self.fn_PaGenBase_term, index=False) t_pair.to_csv(self.fn_PaGenBase_term_pair, index=False) pass def parse_PaGenBase(self, s_file, s_ann, tax_id, count_start=0): t = pd.read_table(s_file, skiprows=7) t.rename2({'Gene Symbol': 'Symbol'}) t = t[['Symbol', 'Sample']].copy() S_term = util.unique(t.Sample) data = [] c_id = {} for x in S_term: count_start += 1 term_id = 'PGB:%05d' % count_start term_name = s_ann + ': ' + x data.append({'term_id': term_id, 'term_name': term_name, 'description': term_name}) c_id[x] = term_id t_term = pd.DataFrame(data) t_pair = t[['Symbol', 'Sample']].copy() t_pair.rename2({'Sample': 'term_name'}) t_pair['term_id'] = t_pair.term_name.apply(lambda x: c_id[x]) t_pair['term_name'] = t_pair.term_name.apply(lambda x: s_ann + ': ' + x) t_pair['tax_id'] = tax_id t_pair['type_name'] = 'PaGenBase' t_pair.drop_duplicates(['term_id', 'Symbol'], inplace=True) #convert symbol to gid dt = pd.read_csv(self.fn_symbol) dt = dt[dt['tax_id']==tax_id] symbol2gene_id = dict(zip(dt.source_id, dt.gid.astype(str))) dt = pd.read_csv(self.fn_synonym) dt = dt[dt['tax_id']==tax_id] symbol2gene_id.update(dict(zip(dt.source_id, dt.gid.astype(str)))) t_pair['gid'] = t['Symbol'].apply(lambda x: symbol2gene_id.get(x, '')) t_pair = t_pair[t_pair.gid != ''].copy() return (t_term, t_pair, count_start) def parse_trrust(self, s_file, tax_id, start_id): dt = pd.read_csv(self.fn_symbol) dt = dt[dt['tax_id']==tax_id] symbol2gene_id = dict(zip(dt.source_id, dt.gid.astype(str))) dt = pd.read_csv(self.fn_synonym) dt = dt[dt['tax_id']==tax_id] symbol2gene_id.update(dict(zip(dt.source_id, dt.gid.astype(str)))) dt = pd.read_csv(self.fn_description) dt = dt[dt['tax_id']==tax_id] gene_id2description = dict(zip(dt.gid.astype(str), dt.content)) t = pd.read_table(s_file, header=None, names=['TF', 'Target', 'Drection', 'PMID']) t['gid_TF'] = t['TF'].apply(lambda x: symbol2gene_id.get(x, '')) t['gid_Target'] = t['Target'].apply(lambda x: symbol2gene_id.get(x, '')) t = t[(t.gid_TF != '') & (t.gid_Target != '')].copy() t['term_name'] = t['TF'].apply(lambda x: 'Regulated by: ' + x) util.rename2(t,{'gid_Target':'gid'}) all_tf = {} term_ids = [] for i, row in t.iterrows(): tf = row['TF'] if tf not in all_tf: all_tf[tf] = 'TRR{0:05d}'.format(start_id+len(all_tf)) term_ids.append(all_tf[tf]) t['term_id'] = term_ids t['tax_id'] = str(tax_id) t['type_name'] = 'TRRUST' t_term_pair = t[['gid','tax_id','term_id','term_name','type_name']] t = t[['gid_TF','term_id','term_name']] t = t.drop_duplicates() t['description'] = [x['term_name'] + '; ' + gene_id2description.get(x['gid_TF'],'')[:60] for i, x in t[['gid_TF','term_name']].iterrows()] t_term = t[['term_id','term_name','description']] return (t_term,t_term_pair) def parse_disgenet(self): t =
pd.read_table(self.fn_DisGeNET_source)
pandas.read_table
#------------------------------------------------------------------------------ NROWS_TRAIN=184903891 #dimmension of the train set NCHUNK_TRAIN=75000000 #length of chunk of data used for training, from total train set MAX_TRAIN=75000000 #max length of train data (substract from NROWS_TRAIN to get the start position for training set) NROWS_VALIDATION=2500000 #size of the validation set ENV_RUN='local' #environment where the kernel is run PRESET_D = 2 ** 26 PRESET_DM = 3000000000 if ENV_RUN=='local': inpath = '../input/' suffix = '' outpath = '' savepath = '' elif ENV_RUN=='aws': inpath = '../input/' suffix = '.zip' outpath = '../sub/' savepath = '../data/' #------------------------------------------------------------------------------ import pandas as pd import time import numpy as np from sklearn.model_selection import train_test_split import lightgbm as lgb import gc import matplotlib.pyplot as plt import os #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ def show_max_clean(df,gp,agg_name,agg_type,show_max): #------------------------------------------------------------------------------ del gp if show_max: print( agg_name + " max value = ", df[agg_name].max() ) df[agg_name] = df[agg_name].astype(agg_type) gc.collect() return( df ) #------------------------------------------------------------------------------ def perform_count( df, group_cols, agg_name, agg_type='uint32', show_max=False, show_agg=True ): #------------------------------------------------------------------------------ if show_agg: print( "Aggregating by ", group_cols , '...' ) gp = df[group_cols][group_cols].groupby(group_cols).size().rename(agg_name).to_frame().reset_index() df = df.merge(gp, on=group_cols, how='left') return (show_max_clean(df,gp,agg_name,agg_type,show_max)) #------------------------------------------------------------------------------ def perform_countuniq( df, group_cols, counted, agg_name, agg_type='uint32', show_max=False, show_agg=True ): #------------------------------------------------------------------------------ if show_agg: print( "Counting unique ", counted, " by ", group_cols , '...' ) gp = df[group_cols+[counted]].groupby(group_cols)[counted].nunique().reset_index().rename(columns={counted:agg_name}) df = df.merge(gp, on=group_cols, how='left') return (show_max_clean(df,gp,agg_name,agg_type,show_max)) #------------------------------------------------------------------------------ def perform_cumcount( df, group_cols, counted, agg_name, agg_type='uint32', show_max=False, show_agg=True ): #------------------------------------------------------------------------------ if show_agg: print( "Cumulative count by ", group_cols , '...' ) gp = df[group_cols+[counted]].groupby(group_cols)[counted].cumcount() df[agg_name]=gp.values return (show_max_clean(df,gp,agg_name,agg_type,show_max)) #------------------------------------------------------------------------------ def perform_mean( df, group_cols, counted, agg_name, agg_type='float32', show_max=False, show_agg=True ): #------------------------------------------------------------------------------ if show_agg: print( "Calculating mean of ", counted, " by ", group_cols , '...' ) gp = df[group_cols+[counted]].groupby(group_cols)[counted].mean().reset_index().rename(columns={counted:agg_name}) df = df.merge(gp, on=group_cols, how='left') return (show_max_clean(df,gp,agg_name,agg_type,show_max)) #------------------------------------------------------------------------------ def perform_var( df, group_cols, counted, agg_name, agg_type='float32', show_max=False, show_agg=True ): #------------------------------------------------------------------------------ if show_agg: print( "Calculating variance of ", counted, " by ", group_cols , '...' ) gp = df[group_cols+[counted]].groupby(group_cols)[counted].var().reset_index().rename(columns={counted:agg_name}) df = df.merge(gp, on=group_cols, how='left') return (show_max_clean(df,gp,agg_name,agg_type,show_max)) debug=0 if debug: print('*** debug parameter set: this is a test run for debugging purposes ***') #------------------------------------------------------------------------------ def lgb_modelfit_nocv(params, dtrain, dvalid, predictors, target='target', objective='binary', metrics='auc', feval=None, early_stopping_rounds=20, num_boost_round=3000, verbose_eval=10, categorical_features=None): #------------------------------------------------------------------------------ lgb_params = { 'boosting_type': 'gbdt', 'objective': objective, 'metric':metrics, 'learning_rate': 0.2, #'is_unbalance': 'true', #because training data is unbalance (replaced with scale_pos_weight) 'num_leaves': 31, # we should let it be smaller than 2^(max_depth) 'max_depth': -1, # -1 means no limit 'min_child_samples': 20, # Minimum number of data need in a child(min_data_in_leaf) 'max_bin': 255, # Number of bucketed bin for feature values 'subsample': 0.6, # Subsample ratio of the training instance. 'subsample_freq': 0, # frequence of subsample, <=0 means no enable 'colsample_bytree': 0.3, # Subsample ratio of columns when constructing each tree. 'min_child_weight': 5, # Minimum sum of instance weight(hessian) needed in a child(leaf) 'subsample_for_bin': 200000, # Number of samples for constructing bin 'min_split_gain': 0, # lambda_l1, lambda_l2 and min_gain_to_split to regularization 'reg_alpha': 0, # L1 regularization term on weights 'reg_lambda': 0, # L2 regularization term on weights 'nthread': 4, 'verbose': 0, 'metric':metrics } lgb_params.update(params) print("preparing validation datasets") xgtrain = lgb.Dataset(dtrain[predictors].values, label=dtrain[target].values, feature_name=predictors, categorical_feature=categorical_features ) xgvalid = lgb.Dataset(dvalid[predictors].values, label=dvalid[target].values, feature_name=predictors, categorical_feature=categorical_features ) evals_results = {} bst1 = lgb.train(lgb_params, xgtrain, valid_sets=[xgtrain, xgvalid], valid_names=['train','valid'], evals_result=evals_results, num_boost_round=num_boost_round, early_stopping_rounds=early_stopping_rounds, verbose_eval=10, feval=feval) print("\nModel Report") print("bst1.best_iteration: ", bst1.best_iteration) print(metrics+":", evals_results['valid'][metrics][bst1.best_iteration-1]) return (bst1,bst1.best_iteration) #------------------------------------------------------------------------------ def perform_analysis(idx_from,idx_to,fileno): #------------------------------------------------------------------------------ dtypes = { 'ip' : 'uint32', 'app' : 'uint16', 'device' : 'uint16', 'os' : 'uint16', 'channel' : 'uint16', 'is_attributed' : 'uint8', 'click_id' : 'uint32', } print('loading train data...',idx_from,idx_to) train_df = pd.read_csv(inpath+"train.csv", parse_dates=['click_time'], skiprows=range(1,idx_from), nrows=idx_to-idx_from, dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'is_attributed']) print('loading test data...') if debug: test_df = pd.read_csv(inpath+"test.csv", nrows=100000, parse_dates=['click_time'], dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'click_id']) else: test_df = pd.read_csv(inpath+"test.csv", parse_dates=['click_time'], dtype=dtypes, usecols=['ip','app','device','os', 'channel', 'click_time', 'click_id']) len_train = len(train_df) train_df=train_df.append(test_df) del test_df gc.collect() print('Extracting new features...') train_df['hour'] = pd.to_datetime(train_df.click_time).dt.hour.astype('uint8') train_df['day'] = pd.to_datetime(train_df.click_time).dt.day.astype('uint8') gc.collect() train_df = perform_countuniq( train_df, ['ip'], 'channel', 'X0', 'uint8', show_max=True ); gc.collect() train_df = perform_cumcount( train_df, ['ip', 'device', 'os'], 'app', 'X1', show_max=True ); gc.collect() train_df = perform_countuniq( train_df, ['ip', 'day'], 'hour', 'X2', 'uint8', show_max=True ); gc.collect() train_df = perform_countuniq( train_df, ['ip'], 'app', 'X3', 'uint8', show_max=True ); gc.collect() train_df = perform_countuniq( train_df, ['ip', 'app'], 'os', 'X4', 'uint8', show_max=True ); gc.collect() train_df = perform_countuniq( train_df, ['ip'], 'device', 'X5', 'uint16', show_max=True ); gc.collect() train_df = perform_countuniq( train_df, ['app'], 'channel', 'X6', show_max=True ); gc.collect() train_df = perform_cumcount( train_df, ['ip'], 'os', 'X7', show_max=True ); gc.collect() train_df = perform_countuniq( train_df, ['ip', 'device', 'os'], 'app', 'X8', show_max=True ); gc.collect() train_df = perform_count( train_df, ['ip', 'day', 'hour'], 'ip_tcount', show_max=True ); gc.collect() train_df = perform_count( train_df, ['ip', 'app'], 'ip_app_count', show_max=True ); gc.collect() train_df = perform_count( train_df, ['ip', 'app', 'os'], 'ip_app_os_count', 'uint16', show_max=True ); gc.collect() train_df = perform_var( train_df, ['ip', 'day', 'channel'], 'hour', 'ip_tchan_count', show_max=True ); gc.collect() train_df = perform_var( train_df, ['ip', 'app', 'os'], 'hour', 'ip_app_os_var', show_max=True ); gc.collect() train_df = perform_var( train_df, ['ip', 'app', 'channel'], 'day', 'ip_app_channel_var_day', show_max=True ); gc.collect() train_df = perform_mean( train_df, ['ip', 'app', 'channel'], 'hour', 'ip_app_channel_mean_hour', show_max=True ); gc.collect() print('doing nextClick') predictors=[] new_feature = 'nextClick' filename='nextClick_%d_%d.csv'%(idx_from,idx_to) #if os.path.exists(filename): if (0): print('loading from save file') QQ=pd.read_csv(filename).values else: D=PRESET_D train_df['category'] = (train_df['ip'].astype(str) + "_" + train_df['app'].astype(str) + "_" + train_df['device'].astype(str) \ + "_" + train_df['os'].astype(str)).apply(hash) % D click_buffer= np.full(D, PRESET_DM, dtype=np.uint32) train_df['epochtime']= train_df['click_time'].astype(np.int64) // 10 ** 9 next_clicks= [] for category, t in zip(reversed(train_df['category'].values), reversed(train_df['epochtime'].values)): next_clicks.append(click_buffer[category]-t) click_buffer[category]= t del(click_buffer) QQ= list(reversed(next_clicks)) if not debug: print('saving') pd.DataFrame(QQ).to_csv(filename,index=False) train_df.drop(['epochtime','category','click_time'], axis=1, inplace=True) #additional drop columns(lee importance) train_df.drop(['day','ip_tchan_count','X7'],axis=1, inplace=True) train_df[new_feature] = pd.Series(QQ).astype('float32') predictors.append(new_feature) train_df[new_feature+'_shift'] = train_df[new_feature].shift(+1).values predictors.append(new_feature+'_shift') del QQ gc.collect() print("vars and data type: ") train_df.info() train_df['ip_tcount'] = train_df['ip_tcount'].astype('uint16') train_df['ip_app_count'] = train_df['ip_app_count'].astype('uint16') train_df['ip_app_os_count'] = train_df['ip_app_os_count'].astype('uint16') target = 'is_attributed' # ============================================================================= # predictors.extend(['app','device','os', 'channel', 'hour', 'day', # 'ip_tcount', 'ip_tchan_count', 'ip_app_count', # 'ip_app_os_count', 'ip_app_os_var', # 'ip_app_channel_var_day','ip_app_channel_mean_hour', # 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X7', 'X8']) # categorical = ['app', 'device', 'os', 'channel', 'hour', 'day'] # # ============================================================================= predictors.extend(['app','device','os', 'channel', 'hour', 'ip_tcount', 'ip_app_count', 'ip_app_os_count', 'ip_app_os_var', 'ip_app_channel_var_day','ip_app_channel_mean_hour', 'X0', 'X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X8']) categorical = ['app', 'device', 'os', 'channel', 'hour'] print('predictors',predictors) test_df = train_df[len_train:] val_df = train_df[(len_train-val_size):len_train] train_df = train_df[:(len_train-val_size)] print("train size: ", len(train_df)) print("valid size: ", len(val_df)) print("test size : ", len(test_df)) sub =
pd.DataFrame()
pandas.DataFrame
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import numpy as np import pandas as pd from ... import opcodes as OperandDef from ...core import Base, Entity from ...serialize import KeyField, AnyField, StringField, DataTypeField, \ BoolField, Int32Field from ...tensor.core import TENSOR_TYPE from ...tensor.datasource import empty, tensor as astensor, \ from_series as tensor_from_series, from_dataframe as tensor_from_dataframe from ...tensor.statistics.quantile import quantile as tensor_quantile from ...tensor.utils import recursive_tile from ..operands import DataFrameOperand, DataFrameOperandMixin, ObjectType from ..core import DATAFRAME_TYPE from ..datasource.from_tensor import series_from_tensor, dataframe_from_tensor from ..initializer import DataFrame as create_df from ..utils import parse_index, build_empty_df, find_common_type, validate_axis class DataFrameQuantile(DataFrameOperand, DataFrameOperandMixin): _op_type_ = OperandDef.QUANTILE _input = KeyField('input') _q = AnyField('q') _axis = Int32Field('axis') _numeric_only = BoolField('numeric_only') _interpolation = StringField('interpolation') _dtype = DataTypeField('dtype') def __init__(self, q=None, interpolation=None, axis=None, numeric_only=None, dtype=None, gpu=None, object_type=None, **kw): super().__init__(_q=q, _interpolation=interpolation, _axis=axis, _numeric_only=numeric_only, _dtype=dtype, _gpu=gpu, _object_type=object_type, **kw) @property def input(self): return self._input @property def q(self): return self._q @property def interpolation(self): return self._interpolation @property def axis(self): return self._axis @property def numeric_only(self): return self._numeric_only def _set_inputs(self, inputs): super()._set_inputs(inputs) self._input = self._inputs[0] if isinstance(self._q, TENSOR_TYPE): self._q = self._inputs[-1] def _calc_dtype_on_axis_1(self, a, dtypes): quantile_dtypes = [] for name in dtypes.index: dt = tensor_quantile(tensor_from_series(a[name]), self._q, interpolation=self._interpolation, handle_non_numeric=not self._numeric_only).dtype quantile_dtypes.append(dt) return find_common_type(quantile_dtypes) def _call_dataframe(self, a, inputs): if self._numeric_only: empty_df = build_empty_df(a.dtypes) dtypes = empty_df._get_numeric_data().dtypes else: dtypes = a.dtypes if isinstance(self._q, TENSOR_TYPE): q_val = self._q pd_index = pd.Index([], dtype=q_val.dtype) name = None store_index_value = False else: q_val = np.asanyarray(self._q) pd_index = pd.Index(q_val) name = self._q if q_val.size == 1 else None store_index_value = True tokenize_objects = (a, q_val, self._interpolation, type(self).__name__) if q_val.ndim == 0 and self._axis == 0: self._object_type = ObjectType.series index_value = parse_index(dtypes.index, store_data=store_index_value) shape = (len(dtypes),) # calc dtype dtype = self._calc_dtype_on_axis_1(a, dtypes) return self.new_series(inputs, shape=shape, dtype=dtype, index_value=index_value, name=name or dtypes.index.name) elif q_val.ndim == 0 and self._axis == 1: self._object_type = ObjectType.series index_value = a.index_value shape = (len(a),) # calc dtype dt = tensor_quantile(empty(a.shape[1], dtype=find_common_type(dtypes)), self._q, interpolation=self._interpolation, handle_non_numeric=not self._numeric_only).dtype return self.new_series(inputs, shape=shape, dtype=dt, index_value=index_value, name=name or index_value.name) elif q_val.ndim == 1 and self._axis == 0: self._object_type = ObjectType.dataframe shape = (len(q_val), len(dtypes)) index_value = parse_index(pd_index, *tokenize_objects, store_data=store_index_value) dtype_list = [] for name in dtypes.index: dtype_list.append( tensor_quantile(tensor_from_series(a[name]), self._q, interpolation=self._interpolation, handle_non_numeric=not self._numeric_only).dtype) dtypes = pd.Series(dtype_list, index=dtypes.index) return self.new_dataframe(inputs, shape=shape, dtypes=dtypes, index_value=index_value, columns_value=parse_index(dtypes.index, store_data=True)) else: assert q_val.ndim == 1 and self._axis == 1 self._object_type = ObjectType.dataframe shape = (len(q_val), a.shape[0]) index_value = parse_index(pd_index, *tokenize_objects, store_data=store_index_value) pd_columns = a.index_value.to_pandas() dtype_list = np.full(len(pd_columns), self._calc_dtype_on_axis_1(a, dtypes)) dtypes = pd.Series(dtype_list, index=pd_columns) return self.new_dataframe(inputs, shape=shape, dtypes=dtypes, index_value=index_value, columns_value=parse_index(dtypes.index, store_data=True, key=a.index_value.key)) def _call_series(self, a, inputs): if isinstance(self._q, TENSOR_TYPE): q_val = self._q index_val =
pd.Index([], dtype=q_val.dtype)
pandas.Index
import pandas as pd pd.options.mode.chained_assignment = None # default='warn' import os from os.path import expanduser home = expanduser("~") from sklearn.externals import joblib import numpy as np import sys from bs4 import BeautifulSoup import sys import argparse import re import os.path from os import makedirs from pprint import pprint from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import HashingVectorizer from numpy import log from scipy.special import rel_entr from nltk.corpus import stopwords from nltk.stem.wordnet import WordNetLemmatizer import pandas as pd pd.options.mode.chained_assignment = None # default='warn' import os from os.path import expanduser home = expanduser("~") from sklearn.externals import joblib import numpy as np import sys sys.path.append(os.path.join(home, "code/research_code/Spring_2018/TextModules/")) from TextProcessor import TextProcessor # SemEval Pre-processing scripts def preprocess_semeval(dataset='english_restaurants', subtask='sentence_level'): import semeval_help_functions print("\n\n\n\t\t\tDOMAIN={}".format(dataset)) print('Collecting training data...') savefolder = datafolder + "/semeval/preprocessed/" method = 'train' language = dataset.split('_')[0] embeddings_dimension = 300 pretrained_word_embedding_matrix = os.path.join(datafolder, 'semeval/embeddings/word2emb_{}.pkl'.format(dataset)) tp = TextProcessor(word_embeddings='custom', embedding_dim=embeddings_dimension, limit=500000, stemming=False, tokenization_method='ruder', tokenizer_language=language, pretrained_word_embedding_matrix_path=pretrained_word_embedding_matrix) vocab_size = len(tp.vocab_emb) word2id = tp.word2ind_emb id2word = {word2id[w]: w for w in word2id} joblib.dump(word2id, savefolder + "{}_word2id.pkl".format(dataset)) # Save word embedding matrix print('Collecting word embeddings...') word2emb = tp.word2emb word_emb_matrix = np.array([word2emb[id2word[i]] for i in range(len(word2id))]) joblib.dump(word_emb_matrix, savefolder + '{}_word2emb.pkl'.format(dataset)) review_df, sentence_df, opinion_df = semeval_help_functions.get_reviews_df(dataset, subtask, method) aspects = sorted(set(opinion_df['category'])) aspect2id = {a: i for i, a in enumerate(aspects)} joblib.dump(aspects, savefolder + "{}_aspect_names.pkl".format(dataset)) sentence_df['categories'] = sentence_df['id'].map( lambda x: opinion_df[opinion_df['sentence_id'] == x]['category'].tolist()) sentence_df['label'] = sentence_df['categories'].map(lambda x: [aspect2id[a] for a in x]) sentence_df['word_ids'] = sentence_df['text'].map(lambda x: tp.get_word_indices(x)) sentence_df = sentence_df[sentence_df['numofopinions'] > 0] joblib.dump(sentence_df, savefolder + "{}_TRAIN.pkl".format(dataset)) print("Collecting DEV data...") test_review_df, test_sentence_df, test_opinion_df = semeval_help_functions.get_reviews_df(dataset, subtask, 'dev') test_sentence_df['categories'] = test_sentence_df['id'].map( lambda x: test_opinion_df[test_opinion_df['sentence_id'] == x]['category'].tolist()) test_sentence_df['label'] = test_sentence_df['categories'].map( lambda x: [aspect2id[a] if a in aspect2id else -1 for a in x]) test_sentence_df['word_ids'] = test_sentence_df['text'].map(lambda x: tp.get_word_indices(x)) test_sentence_df = test_sentence_df[test_sentence_df['numofopinions'] > 0] joblib.dump(test_sentence_df, savefolder + "{}_DEV.pkl".format(dataset)) print("Collecting TEST data...") test_review_df, test_sentence_df, test_opinion_df = semeval_help_functions.get_reviews_df(dataset, subtask, 'test') test_sentence_df['categories'] = test_sentence_df['id'].map( lambda x: test_opinion_df[test_opinion_df['sentence_id'] == x]['category'].tolist()) test_sentence_df['label'] = test_sentence_df['categories'].map( lambda x: [aspect2id[a] if a in aspect2id else -1 for a in x]) test_sentence_df['word_ids'] = test_sentence_df['text'].map(lambda x: tp.get_word_indices(x)) test_sentence_df = test_sentence_df[test_sentence_df['numofopinions'] > 0] joblib.dump(test_sentence_df, savefolder + "{}_TEST.pkl".format(dataset)) return def find_seed_words(dataset='english_restaurants', subtask='sentence_level', method='train', remove_stopwords=True): import semeval_help_functions datafolder += '/semeval/' semeval_help_functions.find_seed_words(dataset=dataset, method=method, subtask=subtask, savefolder=datafolder + 'seed_words/', remove_stopwords=remove_stopwords) def preprocess_script(): all_datasets = ['english_restaurants', 'spanish_restaurants', 'french_restaurants', 'russian_restaurants', 'dutch_restaurants', 'turkish_restaurants', 'arabic_hotels', 'english_laptops'] for dataset in all_datasets: preprocess_semeval(dataset) find_seed_words(dataset) def read_semeval_file(fpath): # Used for reading SemEval 2016 Task 5 Dataset (ABSA) xml_data = open(fpath).read() # Loading the raw XML data soup = BeautifulSoup(xml_data, "lxml") reviews = soup.find_all('review') return reviews def xml2dict_sentence_level(xml_reviews): # Used for reading SemEval 2016 Task 5 Dataset (ABSA) restaurant_reviews = [] for r in xml_reviews: review_dict = {} review_dict['rid'] = r['rid'] # print(r['rid']) review_dict['text'] = r.getText().strip().replace('\n\n\n\n\n\n', ' ') sentences = r.find_all('sentences') if len(sentences) > 1: print('[WARNING] More than 1 sentences') sentences = sentences[0] review_dict['sentences'] = [] for sentence in sentences.find_all('sentence'): sentence_dict = {} sentence_dict['id'] = sentence['id'] sentence_dict['text'] = sentence.getText().strip() opinions = sentence.find('opinions') sentence_dict['opinions'] = [] if opinions is not None: for opinion in opinions.find_all('opinion'): opinion_dict = {} opinion_dict['category'] = opinion['category'] opinion_dict['polarity'] = opinion['polarity'] try: opinion_dict['from'] = int(opinion['from']) opinion_dict['to'] = int(opinion['to']) opinion_dict['target'] = opinion['target'] except: pass sentence_dict['opinions'].append(opinion_dict) review_dict['sentences'].append(sentence_dict) restaurant_reviews.append(review_dict) return restaurant_reviews def dict2df_sentence_level(review_list): # Used for the analysis of SemEval 2016 Task 5 Dataset (ABSA) review_df = pd.DataFrame() opinions_df = pd.DataFrame() sentence_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Dec 6 21:53:13 2021 @author: Alex """ import os #sistema operativo import pandas as pd #gestionar datframes import numpy as np #numeric python (vectores, matrices,...) import matplotlib.pyplot as plt #graficos import scipy.stats as stats #Tests estadisticos from pandas.api.types import CategoricalDtype #Cambiar el directorio donde esta el dataset os.chdir('C:/Programacion Estadistica PEP/ejercicio comparacion medias') os.getcwd() wbr =
pd.read_csv('USA_cars_datasets.csv', sep=',', decimal='.')
pandas.read_csv
#!/usr/bin/env python ''' This script compares the breakdown voltage measurements of the LSU MPPC-PCB from LSU, UTotyo and Hamamatsu. ''' import argparse from pandas.io import parsers import data_interface import os import pandas as pd import seaborn as sns if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-d', '--data_path', type=str, default='data/20210422_first_meeting') args = parser.parse_args() # load data files utokyo_meas = data_interface.utokyo_data(f'{args.data_path}/Utokyo_PCB_Measurement_For crschk_ .xlsx') lsu_meas = data_interface.lsu_data(f'{args.data_path}/mppc_summary_utokyo_pcb_lsu_measurements.csv') # join into a single table df_join =
pd.merge(left=utokyo_meas.df_data, right=lsu_meas.df_data, left_on='channel', right_on='channel')
pandas.merge