prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd from datetime_tricks import datetime_csv_suffix def spliter(df, col, min_block_size): df.sort_values(by=col, inplace=True) df.reset_index().drop(columns=['index'], inplace=True) container = [] r, c = df.shape while r > min_block_size: df.reset_index(inplace=True) df.drop(columns=['index'], inplace=True) for i in range(min_block_size, r-1): if df[col].iloc[i] != df[col].iloc[i+1]: break else: raise Exception('oversize') container.append(df[:i+1]) df = df[i+1:] r, c = df.shape container.append(df) return container def export_splitted(container): len_container = len(container) for i, item in enumerate(container, start=1): item.to_csv( datetime_csv_suffix( f'c:/vba_output/{i}_of_{len_container}.csv' ), index=None ) def export_parent_csv(df): # just incase some x's are lower case letters. df = df.apply(lambda x: x.astype(str).str.upper()) df.set_index('parent', inplace = True) # create csv files. aka bom. Filename = parent. for i in df.index.unique(): df_i = df[df.index == i] if df_i.empty: print(f'{i} is empty DataFrame') break else: df_i.to_csv(f'output\\{i}.csv', index = None) if __name__ == '__main__': d = { 'parent':list('abbaaaacbbccdddeeeff') } df =
pd.DataFrame(d)
pandas.DataFrame
import abc from logging import getLogger from os import path import pandas as pd from clinica.utils.inputs import check_caps_folder from clinicadl.utils.exceptions import ( ClinicaDLArgumentError, ClinicaDLConfigurationError, ClinicaDLTSVError, ) logger = getLogger("clinicadl") class SplitManager: def __init__( self, caps_directory, tsv_path, diagnoses, baseline=False, multi_cohort=False, split_list=None, ): self._check_tsv_path(tsv_path, multi_cohort) self.tsv_path = tsv_path self.caps_dict = self._create_caps_dict(caps_directory, multi_cohort) self.multi_cohort = multi_cohort self.diagnoses = diagnoses self.baseline = baseline self.split_list = split_list @abc.abstractmethod def max_length(self) -> int: """Maximum number of splits""" pass @abc.abstractmethod def __len__(self): pass @property @abc.abstractmethod def allowed_splits_list(self): """ List of possible splits if no restriction was applied Returns: list[int]: list of all possible splits """ pass def __getitem__(self, item): """ Returns a dictionary of DataFrames with train and validation data. Args: item (int): Index of the split wanted. Returns: Dict[str:pd.DataFrame]: dictionary with two keys (train and validation). """ self._check_item(item) if self.multi_cohort: tsv_df =
pd.read_csv(self.tsv_path, sep="\t")
pandas.read_csv
import unittest from setup.settings import * from numpy.testing import * from pandas.util.testing import * import numpy as np import dolphindb_numpy as dnp import pandas as pd import orca class FunctionBitwiseXorTest(unittest.TestCase): @classmethod def setUpClass(cls): # connect to a DolphinDB server orca.connect(HOST, PORT, "admin", "123456") def test_function_math_binary_bitwise_xor_scalar(self): self.assertEqual(dnp.bitwise_xor(1, 4), np.bitwise_xor(1, 4)) self.assertEqual(dnp.bitwise_xor(1, -5), np.bitwise_xor(1, -5)) self.assertEqual(dnp.bitwise_xor(0, 9), np.bitwise_xor(0, 9)) def test_function_math_binary_bitwise_xor_list(self): lst1 = [0, 1, 2] lst2 = [4, 6, 9] assert_array_equal(dnp.bitwise_xor(lst1, lst2), np.bitwise_xor(lst1, lst2)) def test_function_math_binary_bitwise_xor_array_with_scalar(self): npa = np.array([0, 1, 2]) dnpa = dnp.array([0, 1, 2]) assert_array_equal(dnp.bitwise_xor(dnpa, 1), np.bitwise_xor(npa, 1)) assert_array_equal(dnp.bitwise_xor(1, dnpa), np.bitwise_xor(1, npa)) def test_function_math_binary_bitwise_xor_array_with_array(self): npa1 = np.array([0, 1, 2]) npa2 = np.array([4, 6, 9]) dnpa1 = dnp.array([0, 1, 2]) dnpa2 = dnp.array([4, 6, 9]) assert_array_equal(dnp.bitwise_xor(dnpa1, dnpa2), np.bitwise_xor(npa1, npa2)) def test_function_math_binary_bitwise_xor_array_with_array_param_out(self): npa1 = np.array([0, 1, 2]) npa2 = np.array([4, 6, 9]) npa = np.zeros(shape=(1, 3)) dnpa1 = dnp.array([0, 1, 2]) dnpa2 = dnp.array([4, 6, 9]) dnpa = dnp.zeros(shape=(1, 3)) np.bitwise_xor(npa1, npa2, out=npa) dnp.bitwise_xor(dnpa1, dnpa2, out=dnpa) assert_array_equal(dnpa, npa) def test_function_math_binary_bitwise_xor_array_with_series(self): npa = np.array([0, 1, 2]) dnpa = dnp.array([0, 1, 2]) ps = pd.Series([4, 6, 9]) os = orca.Series([4, 6, 9]) assert_series_equal(dnp.bitwise_xor(dnpa, os).to_pandas(), np.bitwise_xor(npa, ps)) assert_series_equal(dnp.bitwise_xor(os, dnpa).to_pandas(), np.bitwise_xor(ps, npa)) pser =
pd.Series([1, 2, 4])
pandas.Series
#compare our program output to original dataset import sys import csv import copy import random import numpy as np import pandas as pd from sklearn.neural_network import MLPClassifier as MLP from sklearn.model_selection import train_test_split as TTS from sklearn import preprocessing from sklearn.neural_network import MLPClassifier from sklearn.metrics import classification_report, confusion_matrix ''' This program is for comparing the chord progressions that we generated with actual chord progressions from our dataset. We build a neural network using Scikit-Learn, train it on labeled instances of generated and real chords, and print the results. We use the results of this program in our evaluation section of our report. ''' def main(): fileName = sys.argv[1] ourChords = pd.read_csv(fileName) #save each dataset theirChords = pd.read_csv("theirChords.csv") dataSet = ourChords.append(theirChords, sort = False) #concat two lists dataSet = dataSet.sample(frac=1).reset_index(drop=True) #shuffle dataset #split dataset into chords and labels X = dataSet.iloc[:, 1:16] Y = dataSet.iloc[:, 0] print(X) print(Y) # encode labels as 0s and 1s le = preprocessing.LabelEncoder() Y = le.fit_transform(Y) #one hot encode everything X =
pd.get_dummies(X)
pandas.get_dummies
import pytest import numpy as np import pandas as pd import numpy.testing as npt import pandas.testing as pdt from scipy.stats import logistic import zepid as ze from zepid import (RiskRatio, RiskDifference, OddsRatio, NNT, IncidenceRateRatio, IncidenceRateDifference, Sensitivity, Specificity, Diagnostics, interaction_contrast, interaction_contrast_ratio, spline, table1_generator) from zepid.calc import sensitivity, specificity @pytest.fixture def data_set(): df =
pd.DataFrame()
pandas.DataFrame
import glob import pandas import os def readJSON2Dict(input_file): """ Read a JSON file. Will return a list or dict. :param input_file: input JSON file path. """ import json with open(input_file) as f: data = json.load(f) return data def writeDict2JSON(data_dict, out_file): """ Write some data to a JSON file. The data would commonly be structured as a dict but could also be a list. :param data_dict: The dict (or list) to be written to the output JSON file. :param out_file: The file path to the output file. """ import json with open(out_file, "w") as fp: json.dump( data_dict, fp, sort_keys=True, indent=4, separators=(",", ": "), ensure_ascii=False, ) def merge_annual_stats(input_pd_files, country_names_lut_file, out_feather=None, out_excel=None, excel_sheet=None, out_csv=None): country_names_luts = readJSON2Dict(country_names_lut_file) years = ['t2007', 't2008', 't2009', 't2010', 't2015', 't2016', 't2017', 't2018', 't2019', 't2020'] year_info = dict() comb_df = None for year in years: year_info[year] = dict() for in_file in input_pd_files: if year in in_file: year_info[year]['year_file'] = in_file if 'year_file' in year_info[year]: cln_year = year.replace('t', '') yr_df = pandas.read_feather(year_info[year]['year_file']) yr_df = yr_df.rename(columns={'count_gain': '{}_count_gain'.format(cln_year), 'area_gain': '{}_area_gain'.format(cln_year)}) yr_df = yr_df.rename(columns={'count_loss': '{}_count_loss'.format(cln_year), 'area_loss': '{}_area_loss'.format(cln_year)}) yr_df = yr_df.drop(['uid'], axis=1) if cln_year == '2007': comb_df = yr_df else: comb_df =
pandas.merge(left=comb_df, right=yr_df, how='outer', left_on='region', right_on='region')
pandas.merge
"""Core managing the datasets. Usage example: # Create a dataset of 100 benign PE and 100 malware samples, with minimum # malice of 0.9 DatasetCore.create_dataset_from_parameters(AnalyzedFileTypes.PE, 0.9, 9 * [True], 200, 0.5, "pe_malice.csv") # Create a dataset of 200 generic and trojan PE samples, with minimum malice # of 0.9 DatasetCore.create_dataset_from_parameters( AnalyzedFileTypes.PE, 0.9, [True, True, False, False, False, False, False, False, False], 200, 0, "pe_generic_vs_trojan.csv") # Delete the created datasets DatasetCore.remove_dataset("pe_malice.csv") DatasetCore.remove_dataset("pe_generic_vs_trojan.csv") """ import json import os import typing import modules.dataset.errors as errors import pandas import yaml from modules.configuration.folder_structure import Files, Folders from modules.configuration.parameters import Packages from modules.dataset.types import AnalyzedFileTypes from modules.utils.configuration_manager import ConfigurationManager from modules.utils.types import ConfigurationSpaces CONFIGURATION_KEYS = Packages.Dataset.ConfigurationKeys class DatasetCore: """Class for working with datasets.""" @staticmethod def _get_metadata(dataset_full_path: str) -> dict: with open(dataset_full_path, "r") as dataset_file: lines = dataset_file.readlines() if len(lines) == 0: return None metadata_line = lines[0] if (not metadata_line.startswith( Packages.Dataset.METADATA_LINE_START)): return None metadata_line = metadata_line[len(Packages.Dataset.METADATA_LINE_START ):] metadata = json.loads(metadata_line) return metadata @staticmethod def _dump_metadata(dataset_full_path: str, metadata: dict) -> None: stringified_metadata = json.dumps(metadata) with open(dataset_full_path, "r+") as output_file: content = output_file.read() new_content = Packages.Dataset.METADATA_LINE_START new_content += stringified_metadata + "\n" + content output_file.seek(0, 0) output_file.write(new_content) @staticmethod def create_dataset_from_parameters(file_type: AnalyzedFileTypes, min_malice: float, desired_families: typing.List[bool], entries_count: int, benign_ratio: float, output_filename: str, description: str = "") -> bool: """Creates a custom dataset based on the given parameters. Args: file_type (AnalyzedFileTypes): Type of files to include min_malice (float): Minimum malice score of malware samples included in the dataset desired_families (typing.List[bool]): Array of booleans, in which each entry indicates if the pointed family (via index) is included into the dataset entries_count (int): Mandatory number of entries in the dataset benign_ratio (float): Ratio between the size of benign samples and of the whole dataset output_filename (str): The base name of the output file description (str): Description of the dataset. Defaults to "". Raises: InsufficientEntriesForDatasetError: The dataset could not be build due to insufficient entries. Returns: bool: Boolean indicating if the dataset was successfully created """ malware_labels_df = pandas.read_csv(Files.MALWARE_LABELS) benign_labels_df = pandas.read_csv(Files.BENIGN_LABELS) # Select only the desired file type malware_labels_df = malware_labels_df[malware_labels_df["type"] == file_type.value.ID] benign_labels_df = benign_labels_df[benign_labels_df["type"] == file_type.value.ID] # Get the entries' count for each type of sample malware_count = int((1 - benign_ratio) * entries_count) benign_count = entries_count - malware_count # Select the entries with malice above the minimum one malware_labels_df = malware_labels_df[ malware_labels_df["malice"] >= min_malice] # Check if a dataset can be built if (len(malware_labels_df) < malware_count or len(benign_labels_df) < benign_count): raise errors.InsufficientEntriesForDatasetError() # Select entries with the maximum membership to the given categories desired_families_int = [1 if elem else 0 for elem in desired_families] malware_labels_df["membership"] = malware_labels_df.iloc[:, 3:].dot( desired_families_int) malware_labels_df.sort_values("membership") del malware_labels_df["membership"] malware_labels_df = malware_labels_df.head(malware_count) # Select the benign entries in a random manner benign_labels_df = benign_labels_df.sample(n=benign_count) # Merge the data frames all_labels_df = pandas.concat([malware_labels_df, benign_labels_df]) all_labels_df = all_labels_df.sample(frac=1).reset_index(drop=True) # Dump the dataframe to file output_full_filename = os.path.join(Folders.CUSTOM_DATASETS, output_filename) all_labels_df.to_csv(output_full_filename, index=False) # Create the metadata and dump them desired_families_names = [ name for include, name in zip( desired_families, malware_labels_df.columns[3:]) if include ] metadata = { "description": description, "extension": file_type.value.STANDARD_EXTENSION, "min_malice": min_malice, "desired_families": desired_families_names, "entries_count": entries_count, "benign_ratio": benign_ratio } DatasetCore._dump_metadata(output_full_filename, metadata) return True @staticmethod def create_dataset_from_config(config_filename: str) -> bool: """Creates a custom dataset based on the configuration from a file. Args: config_filename (str): YAML configuration file Raises: DatasetConfigurationFileNotFoundError: The configuration file of the dataset could not be found or opened. InvalidFileExtensionError: The mentioned file extension from the dataset configuration file is invalid. DatasetConfigurationMandatoryKeysNotPresentError: The dataset configuration file does not contain all mandatory keys. Returns: bool: Boolean indicating if the dataset was successfully created """ # Get the malware families configuration = ConfigurationManager() dataset_config = configuration.get_space(ConfigurationSpaces.DATASET) malware_families = dataset_config["malware_families"].keys() malware_families = [family.lower() for family in malware_families] try: with open(config_filename, "r") as config_file: configuration = yaml.load(config_file, Loader=yaml.SafeLoader) except Exception: raise errors.DatasetConfigurationFileNotFoundError() # Check if the mandatory keys are present valid_keys = [ elem.value for elem in CONFIGURATION_KEYS if not elem.name.endswith("_") ] for key in valid_keys: if key not in configuration.keys(): raise errors.DatasetConfigurationMandatoryKeysNotPresentError() # Map the families names to elements in an array of booleans processed_desired_categories = 9 * [False] for family in configuration[CONFIGURATION_KEYS.DESIRED_FAMILIES.value]: try: index = malware_families.index(family) processed_desired_categories[index] = True except Exception: # nosec pass configuration[CONFIGURATION_KEYS.DESIRED_FAMILIES. value] = processed_desired_categories # Map the desired extension to a file type file_type = AnalyzedFileTypes.map_extension_to_type( configuration.pop(CONFIGURATION_KEYS.FILE_EXTENSION.value)) if not file_type: raise errors.InvalidFileExtensionError() configuration["file_type"] = file_type return DatasetCore.create_dataset_from_parameters(**configuration) @staticmethod def list_datasets() -> typing.List[typing.List]: """Lists all created datasets by collecting their metadata. Returns: typing.List[typing.List]: Datasets metadata """ all_metadata =
pandas.DataFrame()
pandas.DataFrame
''' Created on November 06, 2019 Function to determine which files have been modified after a given date Returns a pandas DataFrame object @author: pauladjata ''' # import site-packages and modules import glob import os.path, time import pandas as pd import os import datetime import time import re def save_as_excel_file(path_, df): from pandas import ExcelWriter from datetime import datetime import time timestr = time.strftime("%Y%m%d-%H%M%S") # save df to Excel options = {} options['strings_to_formulas'] = False options['strings_to urls'] = False file_name_xls = 'df_of_modified_files_' + str(timestr) + '.xlsx' file_to_save = path_ + '/' + file_name_xls writer = pd.ExcelWriter(file_to_save, engine='xlsxwriter', options=options) df.to_excel(writer, sheet_name='Elements', index=False) writer.save() print('DataFrame was saved as ' + file_to_save) def get_sub_folder_of_returned_path(string_of_full_path, path): index_of_last_occur_in_path = path.rfind('\\') last_folder = path[index_of_last_occur_in_path + 1:] index_of_last_occur_in_string = string_of_full_path.rfind(last_folder) sub_folder_string = string_of_full_path[index_of_last_occur_in_path + index_of_last_occur_in_string + 1:] return sub_folder_string def get_filename_from_sub_filepath(string_of_sub_filepath): index_of_last_occur_in_sub_filepath = string_of_sub_filepath.rfind('\\') filename_ = string_of_sub_filepath[index_of_last_occur_in_sub_filepath + 1:] return filename_ def main(date_, path_, save_as_excel_bool): """Returns a pandas dataframe of files modified after a given date and in a given directory""" files = [f for f in glob.glob(path_ + r'\**\*', recursive=True)] file_details_dict = {} for i in range(0, len(files)): key = i file_details_dict.setdefault(key, []) # gets last modified and created time modified_time = time.ctime(os.path.getmtime(files[i])) created_time = time.ctime(os.path.getctime(files[i])) modified_time_date = datetime.datetime.strptime(modified_time, "%a %b %d %H:%M:%S %Y").date() test_date = datetime.datetime.strptime(date_, '%b %d %Y').date() NEW_FILE_BOOL = modified_time_date > test_date #checks if path is a file IS_FILE_BOOL = os.path.isfile(files[i]) file_details_dict[key] = { 'filepath': files[i], 'last_mod_time': modified_time, 'created_time': created_time, 'isFile': IS_FILE_BOOL, 'newFile': NEW_FILE_BOOL} df_file_details = pd.DataFrame.from_dict(file_details_dict, orient='index') # convert 'mod_date' and 'create_date' columns to datetime and then delete df_file_details['mod_date'] =
pd.to_datetime(df_file_details['last_mod_time'])
pandas.to_datetime
import os import random import math import numpy as np import pandas as pd import itertools from functools import lru_cache ########################## ## Compliance functions ## ########################## def delayed_ramp_fun(Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current date tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start-tau_days)/pd.Timedelta('1D') def ramp_fun(Nc_old, Nc_new, t, t_start, l): """ t : timestamp current date l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start)/pd.Timedelta('1D') ############################### ## Mobility update functions ## ############################### def load_all_mobility_data(agg, dtype='fractional', beyond_borders=False): """ Function that fetches all available mobility data and adds it to a DataFrame with dates as indices and numpy matrices as values. Make sure to regularly update the mobility data with the notebook notebooks/preprocessing/Quick-update_mobility-matrices.ipynb to get the data for the most recent days. Also returns the average mobility over all available data, which might NOT always be desirable as a back-up mobility. Input ----- agg : str Denotes the spatial aggregation at hand. Either 'prov', 'arr' or 'mun' dtype : str Choose the type of mobility data to return. Either 'fractional' (default), staytime (all available hours for region g spent in h), or visits (all unique visits from region g to h) beyond_borders : boolean If true, also include mobility abroad and mobility from foreigners Returns ------- all_mobility_data : pd.DataFrame DataFrame with datetime objects as indices ('DATE') and np.arrays ('place') as value column average_mobility_data : np.array average mobility matrix over all available dates """ ### Validate input ### if agg not in ['mun', 'arr', 'prov']: raise ValueError( "spatial stratification '{0}' is not legitimate. Possible spatial " "stratifications are 'mun', 'arr', or 'prov'".format(agg) ) if dtype not in ['fractional', 'staytime', 'visits']: raise ValueError( "data type '{0}' is not legitimate. Possible mobility matrix " "data types are 'fractional', 'staytime', or 'visits'".format(dtype) ) ### Load all available data ### # Define absolute location of this file abs_dir = os.path.dirname(__file__) # Define data location for this particular aggregation level data_location = f'../../../data/interim/mobility/{agg}/{dtype}' # Iterate over all available interim mobility data all_available_dates=[] all_available_places=[] directory=os.path.join(abs_dir, f'{data_location}') for csv in os.listdir(directory): # take YYYYMMDD information from processed CSVs. NOTE: this supposes a particular data name format! datum = csv[-12:-4] # Create list of datetime objects all_available_dates.append(pd.to_datetime(datum, format="%Y%m%d")) # Load the CSV as a np.array if beyond_borders: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').values else: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').drop(index='Foreigner', columns='ABROAD').values if dtype=='fractional': # make sure the rows sum up to 1 nicely again after dropping a row and a column place = place / place.sum(axis=1) # Create list of places all_available_places.append(place) # Create new empty dataframe with available dates. Load mobility later df = pd.DataFrame({'DATE' : all_available_dates, 'place' : all_available_places}).set_index('DATE') all_mobility_data = df.copy() # Take average of all available mobility data average_mobility_data = df['place'].values.mean() return all_mobility_data, average_mobility_data class make_mobility_update_function(): """ Output the time-dependent mobility function with the data loaded in cache Input ----- proximus_mobility_data : DataFrame Pandas DataFrame with dates as indices and matrices as values. Output of mobility.get_proximus_mobility_data. proximus_mobility_data_avg : np.array Average mobility matrix over all matrices """ def __init__(self, proximus_mobility_data, proximus_mobility_data_avg): self.proximus_mobility_data = proximus_mobility_data self.proximus_mobility_data_avg = proximus_mobility_data_avg @lru_cache() # Define mobility_update_func def __call__(self, t, default_mobility=None): """ time-dependent function which has a mobility matrix of type dtype for every date. Note: only works with datetime input (no integer time steps). This Input ----- t : timestamp current date as datetime object states : str formal necessity param : str formal necessity default_mobility : np.array or None If None (default), returns average mobility over all available dates. Else, return user-defined mobility Returns ------- place : np.array square matrix with mobility of type dtype (fractional, staytime or visits), dimension depending on agg """ t = pd.Timestamp(t.date()) try: # if there is data available for this date (if the key exists) place = self.proximus_mobility_data['place'][t] except: if default_mobility: # If there is no data available and a user-defined input is given place = self.default_mobility else: # No data and no user input: fall back on average mobility place = self.proximus_mobility_data_avg return place def mobility_wrapper_func(self, t, states, param, default_mobility=None): t = pd.Timestamp(t.date()) if t <= pd.Timestamp('2020-03-17'): place = self.__call__(t, default_mobility=default_mobility) return np.eye(place.shape[0]) else: return self.__call__(t, default_mobility=default_mobility) ################### ## VOC functions ## ################### class make_VOC_function(): """ Class that returns a time-dependant parameter function for COVID-19 SEIRD model parameter alpha (variant fraction). Current implementation includes the alpha - delta strains. If the class is initialized without arguments, a logistic model fitted to prelevance data of the alpha-gamma variant is used. The class can also be initialized with the alpha-gamma prelavence data provided by Prof. <NAME>. A logistic model fitted to prelevance data of the delta variant is always used. Input ----- *df_abc: pd.dataFrame (optional) Alpha, Beta, Gamma prelevance dataset by <NAME>, obtained using: `from covid19model.data import VOC` `df_abc = VOC.get_abc_data()` `VOC_function = make_VOC_function(df_abc)` Output ------ __class__ : function Default variant function """ def __init__(self, *df_abc): self.df_abc = df_abc self.data_given = False if self.df_abc != (): self.df_abc = df_abc[0] # First entry in list of optional arguments (dataframe) self.data_given = True @lru_cache() def VOC_abc_data(self,t): return self.df_abc.iloc[self.df_abc.index.get_loc(t, method='nearest')]['baselinesurv_f_501Y.V1_501Y.V2_501Y.V3'] @lru_cache() def VOC_abc_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-02-14') k = 0.07 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) @lru_cache() def VOC_delta_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-06-25') k = 0.11 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) # Default VOC function includes British and Indian variants def __call__(self, t, states, param): # Convert time to timestamp t = pd.Timestamp(t.date()) # Introduction Indian variant t1 = pd.Timestamp('2021-05-01') # Construct alpha if t <= t1: if self.data_given: return np.array([1-self.VOC_abc_data(t), self.VOC_abc_data(t), 0]) else: return np.array([1-self.VOC_abc_logistic(t), self.VOC_abc_logistic(t), 0]) else: return np.array([0, 1-self.VOC_delta_logistic(t), self.VOC_delta_logistic(t)]) ########################### ## Vaccination functions ## ########################### from covid19model.data.model_parameters import construct_initN class make_vaccination_function(): """ Class that returns a two-fold time-dependent parameter function for the vaccination strategy by default. First, first dose data by sciensano are used. In the future, a hypothetical scheme is used. If spatial data is given, the output consists of vaccination data per NIS code. Input ----- df : pd.dataFrame *either* Sciensano public dataset, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_sciensano_COVID19_data(update=False)` *or* public spatial vaccination data, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_public_spatial_vaccination_data(update=False,agg='arr')` spatial : Boolean True if df is spatially explicit. None by default. Output ------ __class__ : function Default vaccination function """ def __init__(self, df, age_classes=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): age_stratification_size = len(age_classes) # Assign inputs to object self.df = df self.age_agg = age_stratification_size # Check if spatial data is provided self.spatial = None if 'NIS' in self.df.index.names: self.spatial = True self.space_agg = len(self.df.index.get_level_values('NIS').unique().values) # infer aggregation (prov, arr or mun) if self.space_agg == 11: self.agg = 'prov' elif self.space_agg == 43: self.agg = 'arr' elif self.space_agg == 581: self.agg = 'mun' else: raise Exception(f"Space is {G}-fold stratified. This is not recognized as being stratification at Belgian province, arrondissement, or municipality level.") # Check if dose data is provided self.doses = None if 'dose' in self.df.index.names: self.doses = True self.dose_agg = len(self.df.index.get_level_values('dose').unique().values) # Define start- and enddate self.df_start = pd.Timestamp(self.df.index.get_level_values('date').min()) self.df_end = pd.Timestamp(self.df.index.get_level_values('date').max()) # Perform age conversion # Define dataframe with desired format iterables=[] for index_name in self.df.index.names: if index_name != 'age': iterables += [self.df.index.get_level_values(index_name).unique()] else: iterables += [age_classes] index = pd.MultiIndex.from_product(iterables, names=self.df.index.names) self.new_df = pd.Series(index=index) # Four possibilities exist: can this be sped up? if self.spatial: if self.doses: # Shorten? for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, NIS, slice(None), dose)] self.new_df.loc[(date, NIS, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): data = self.df.loc[(date,NIS)] self.new_df.loc[(date, NIS)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: if self.doses: for date in self.df.index.get_level_values('date').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, slice(None), dose)] self.new_df.loc[(date, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes).values else: for date in self.df.index.get_level_values('date').unique(): data = self.df.loc[(date)] self.new_df.loc[(date)] = self.convert_age_stratified_vaccination_data(data, age_classes).values self.df = self.new_df def convert_age_stratified_vaccination_data(self, data, age_classes, agg=None, NIS=None): """ A function to convert the sciensano vaccination data to the desired model age groups Parameters ---------- data: pd.Series A series of age-stratified vaccination incidences. Index must be of type pd.Intervalindex. age_classes : pd.IntervalIndex Desired age groups of the vaccination dataframe. agg: str Spatial aggregation: prov, arr or mun NIS : str NIS code of consired spatial element Returns ------- out: pd.Series Converted data. """ # Pre-allocate new series out = pd.Series(index = age_classes, dtype=float) # Extract demographics if agg: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).loc[NIS,:].values demographics = construct_initN(None, agg).loc[NIS,:].values else: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).values demographics = construct_initN(None, agg).values # Loop over desired intervals for idx,interval in enumerate(age_classes): result = [] for age in range(interval.left, interval.right): try: result.append(demographics[age]/data_n_individuals[data.index.get_level_values('age').contains(age)]*data.iloc[np.where(data.index.get_level_values('age').contains(age))[0][0]]) except: result.append(0) out.iloc[idx] = sum(result) return out @lru_cache() def get_data(self,t): if self.spatial: if self.doses: try: # Only includes doses A, B and C (so not boosters!) for now data = np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) data[:,:,:-1] = np.array(self.df.loc[t,:,:,:].values).reshape( (self.space_agg, self.age_agg, self.dose_agg) ) return data except: return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.space_agg, self.age_agg) ) except: return np.zeros([self.space_agg, self.age_agg]) else: if self.doses: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.age_agg, self.dose_agg) ) except: return np.zeros([self.age_agg, self.dose_agg]) else: try: return np.array(self.df.loc[t,:].values) except: return np.zeros(self.age_agg) def unidose_2021_vaccination_campaign(self, states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal): # Compute the number of vaccine eligible individuals VE = states['S'] + states['R'] # Initialize N_vacc N_vacc = np.zeros(self.age_agg) # Start vaccination loop idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses = 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx]] = daily_doses daily_doses = 0 else: N_vacc[vacc_order[idx]] = VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc def booster_campaign(self, states, daily_doses, vacc_order, stop_idx, refusal): # Compute the number of booster eligible individuals VE = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] \ + states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Initialize N_vacc N_vacc = np.zeros([self.age_agg,self.dose_agg]) # Booster vaccination strategy without refusal idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses= 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx],3] = daily_doses daily_doses= 0 else: N_vacc[vacc_order[idx],3] = VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc # Default vaccination strategy = Sciensano data + hypothetical scheme after end of data collection for unidose model only (for now) def __call__(self, t, states, param, initN, daily_doses=60000, delay_immunity = 21, vacc_order = [8,7,6,5,4,3,2,1,0], stop_idx=9, refusal = [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]): """ time-dependent function for the Belgian vaccination strategy First, all available first-dose data from Sciensano are used. Then, the user can specify a custom vaccination strategy of "daily_first_dose" first doses per day, administered in the order specified by the vector "vacc_order" with a refusal propensity of "refusal" in every age group. This vaccination strategy does not distinguish between vaccination doses, individuals are transferred to the vaccination circuit after some time delay after the first dose. For use with the model `COVID19_SEIRD` and `COVID19_SEIRD_spatial_vacc` in `~src/models/models.py` Parameters ---------- t : int Simulation time states: dict Dictionary containing values of model states param : dict Model parameter dictionary initN : list or np.array Demographics according to the epidemiological model age bins daily_first_dose : int Number of doses administered per day. Default is 30000 doses/day. delay_immunity : int Time delay between first dose vaccination and start of immunity. Default is 21 days. vacc_order : array Vector containing vaccination prioritization preference. Default is old to young. Must be equal in length to the number of age bins in the model. stop_idx : float Index of age group at which the vaccination campaign is halted. An index of 9 corresponds to vaccinating all age groups, an index of 8 corresponds to not vaccinating the age group corresponding with vacc_order[idx]. refusal: array Vector containing the fraction of individuals refusing a vaccine per age group. Default is 30% in every age group. Must be equal in length to the number of age bins in the model. Return ------ N_vacc : np.array Number of individuals to be vaccinated at simulation time "t" per age, or per [patch,age] """ # Convert time to suitable format t = pd.Timestamp(t.date()) # Convert delay to a timedelta delay = pd.Timedelta(str(int(delay_immunity))+'D') # Compute vaccinated individuals after spring-summer 2021 vaccination campaign check_time = pd.Timestamp('2021-10-01') # Only for non-spatial multi-vaccindation dose model if not self.spatial: if self.doses: if t == check_time: self.fully_vaccinated_0 = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] + \ states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Use data if t <= self.df_end + delay: return self.get_data(t-delay) # Projection into the future else: if self.spatial: if self.doses: # No projection implemented return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: # No projection implemented return np.zeros([self.space_agg,self.age_agg]) else: if self.doses: return self.booster_campaign(states, daily_doses, vacc_order, stop_idx, refusal) else: return self.unidose_2021_vaccination_campaign(states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal) ################################### ## Google social policy function ## ################################### class make_contact_matrix_function(): """ Class that returns contact matrix based on 4 prevention parameters by default, but has other policies defined as well. Input ----- Nc_all : dictionnary contact matrices for home, schools, work, transport, leisure and others df_google : dataframe google mobility data Output ------ __class__ : default function Default output function, based on contact_matrix_4prev """ def __init__(self, df_google, Nc_all): self.df_google = df_google.astype(float) self.Nc_all = Nc_all # Compute start and endtimes of dataframe self.df_google_start = df_google.index.get_level_values('date')[0] self.df_google_end = df_google.index.get_level_values('date')[-1] # Check if provincial data is provided self.provincial = None if 'NIS' in self.df_google.index.names: self.provincial = True self.space_agg = len(self.df_google.index.get_level_values('NIS').unique().values) @lru_cache() # once the function is run for a set of parameters, it doesn't need to compile again def __call__(self, t, prev_home=1, prev_schools=1, prev_work=1, prev_rest = 1, school=None, work=None, transport=None, leisure=None, others=None, home=None): """ t : timestamp current date prev_... : float [0,1] prevention parameter to estimate school, work, transport, leisure, others : float [0,1] level of opening of these sectors if None, it is calculated from google mobility data only school cannot be None! """ if school is None: raise ValueError( "Please indicate to which extend schools are open") places_var = [work, transport, leisure, others] places_names = ['work', 'transport', 'leisure', 'others'] GCMR_names = ['work', 'transport', 'retail_recreation', 'grocery'] if self.provincial: if t < pd.Timestamp('2020-03-17'): return np.ones(self.space_agg)[:,np.newaxis,np.newaxis]*self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[(t, slice(None)),:]/100 else: # Extract last 14 days and take the mean row = -self.df_google.loc[(self.df_google_end - pd.Timedelta(days=14)): self.df_google_end, slice(None)].mean(level='NIS')/100 # Sort NIS codes from low to high row.sort_index(level='NIS', ascending=True,inplace=True) # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]].values else: try: test=len(place) except: place = place*np.ones(self.space_agg) values_dict.update({places_names[idx]: place}) # Schools: try: test=len(school) except: school = school*np.ones(self.space_agg) # Construct contact matrix CM = (prev_home*np.ones(self.space_agg)[:, np.newaxis,np.newaxis]*self.Nc_all['home'] + (prev_schools*school)[:, np.newaxis,np.newaxis]*self.Nc_all['schools'] + (prev_work*values_dict['work'])[:,np.newaxis,np.newaxis]*self.Nc_all['work'] + (prev_rest*values_dict['transport'])[:,np.newaxis,np.newaxis]*self.Nc_all['transport'] + (prev_rest*values_dict['leisure'])[:,np.newaxis,np.newaxis]*self.Nc_all['leisure'] + (prev_rest*values_dict['others'])[:,np.newaxis,np.newaxis]*self.Nc_all['others']) else: if t < pd.Timestamp('2020-03-17'): return self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[t]/100 else: # Extract last 14 days and take the mean row = -self.df_google[-14:-1].mean()/100 # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]] values_dict.update({places_names[idx]: place}) # Construct contact matrix CM = (prev_home*self.Nc_all['home'] + prev_schools*school*self.Nc_all['schools'] + prev_work*values_dict['work']*self.Nc_all['work'] + prev_rest*values_dict['transport']*self.Nc_all['transport'] + prev_rest*values_dict['leisure']*self.Nc_all['leisure'] + prev_rest*values_dict['others']*self.Nc_all['others']) return CM def all_contact(self): return self.Nc_all['total'] def all_contact_no_schools(self): return self.Nc_all['total'] - self.Nc_all['schools'] def ramp_fun(self, Nc_old, Nc_new, t, t_start, l): """ t : timestamp current simulation time t_start : timestamp start of policy change l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start)/pd.Timedelta('1D') ) def delayed_ramp_fun(self, Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current simulation time t_start : timestamp start of policy change tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start-tau_days)/pd.Timedelta('1D') ) #################### ## National model ## #################### def policies_all(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array (9x9) Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-03') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 = pd.Timestamp('2020-09-01') # end of summer holidays t7 = pd.Timestamp('2020-09-21') # Opening universities # Define key dates of second wave t8 = pd.Timestamp('2020-10-19') # lockdown (1) t9 = pd.Timestamp('2020-11-02') # lockdown (2) t10 = pd.Timestamp('2020-11-16') # schools re-open t11 = pd.Timestamp('2020-12-18') # Christmas holiday starts t12 = pd.Timestamp('2021-01-04') # Christmas holiday ends t13 = pd.Timestamp('2021-02-15') # Spring break starts t14 = pd.Timestamp('2021-02-21') # Spring break ends t15 = pd.Timestamp('2021-02-28') # Contact increase in children t16 = pd.Timestamp('2021-03-26') # Start of Easter holiday t17 = pd.Timestamp('2021-04-18') # End of Easter holiday t18 = pd.Timestamp('2021-06-01') # Start of lockdown relaxation t19 = pd.Timestamp('2021-07-01') # Start of Summer holiday t20 = pd.Timestamp('2021-09-01') # End of Summer holiday t21 = pd.Timestamp('2021-09-21') # Opening of universities t22 = pd.Timestamp('2021-10-01') # Flanders releases all measures t23 = pd.Timestamp('2021-11-01') # Start of autumn break t24 = pd.Timestamp('2021-11-07') # End of autumn break t25 = pd.Timestamp('2021-12-26') # Start of Christmass break t26 = pd.Timestamp('2022-01-06') # End of Christmass break t27 = pd.Timestamp('2022-02-28') # Start of Spring Break t28 = pd.Timestamp('2022-03-06') # End of Spring Break t29 = pd.Timestamp('2022-04-04') # Start of Easter Break t30 = pd.Timestamp('2022-04-17') # End of Easter Break t31 = pd.Timestamp('2022-07-01') # Start of summer holidays t32 = pd.Timestamp('2022-09-01') # End of summer holidays t33 = pd.Timestamp('2022-09-21') # Opening of universities t34 = pd.Timestamp('2022-10-31') # Start of autumn break t35 = pd.Timestamp('2022-11-06') # End of autumn break if t <= t1: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t1 < t <= t1 + l1_days: t = pd.Timestamp(t.date()) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) policy_new = self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) return self.ramp_fun(policy_old, policy_new, t, t1, l1) elif t1 + l1_days < t <= t2: return self.__call__(t, prev_home=prev_home, prev_schools=prev_schools, prev_work=prev_work, prev_rest=prev_rest_lockdown, school=0) elif t2 < t <= t3: l = (t3 - t2)/pd.Timedelta(days=1) r = (t3 - t2)/(t4 - t2) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t2, l) elif t3 < t <= t4: l = (t4 - t3)/pd.Timedelta(days=1) r = (t3 - t2)/(t4 - t2) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t3, l) elif t4 < t <= t5: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t5 < t <= t6: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) # Second wave elif t6 < t <= t7: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0.7) elif t7 < t <= t8: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t8 < t <= t8 + l2_days: policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) policy_new = self.__call__(t, prev_schools, prev_work, prev_rest_lockdown, school=1) return self.ramp_fun(policy_old, policy_new, t, t8, l2) elif t8 + l2_days < t <= t9: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t9 < t <= t10: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t10 < t <= t11: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t11 < t <= t12: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t12 < t <= t13: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t13 < t <= t14: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t14 < t <= t15: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t15 < t <= t16: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t16 < t <= t17: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=0) elif t17 < t <= t18: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) elif t18 < t <= t19: l = (t19 - t18)/pd.Timedelta(days=1) r = (t19 - t18)/(t20 - t18) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_lockdown, school=1) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=1) return self.ramp_fun(policy_old, policy_new, t, t18, l) elif t19 < t <= t20: l = (t20 - t19)/pd.Timedelta(days=1) r = (t19 - t18)/(t20 - t18) policy_old = self.__call__(t, prev_home, prev_schools, prev_work, r*prev_rest_relaxation, school=0) policy_new = self.__call__(t, prev_home, prev_schools, prev_work, 0.75*prev_rest_relaxation, school=0) return self.ramp_fun(policy_old, policy_new, t, t19, l) elif t20 < t <= t21: return self.__call__(t, prev_home, prev_schools, prev_work, 0.75*prev_rest_relaxation, school=0.7) elif t21 < t <= t22: return self.__call__(t, prev_home, prev_schools, prev_work, 0.70*prev_rest_relaxation, school=1) elif t22 < t <= t23: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=1) elif t23 < t <= t24: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, school=0) elif t24 < t <= t25: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t25 < t <= t26: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t26 < t <= t27: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t27 < t <= t28: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, leisure=1.1, work=0.9, transport=1, others=1, school=0) elif t28 < t <= t29: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t29 < t <= t30: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t30 < t <= t31: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t31 < t <= t32: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.7, leisure=1.3, transport=1, others=1, school=0) elif t32 < t <= t33: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=0.8) elif t33 < t <= t34: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) elif t34 < t <= t35: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=0.9, leisure=1.1, transport=1, others=1, school=0) else: return self.__call__(t, prev_home, prev_schools, prev_work, prev_rest_relaxation, work=1, leisure=1, transport=1, others=1, school=1) def policies_all_WAVE4(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home, date_measures, scenario): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-03') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 = pd.Timestamp('2020-09-01') # end of summer holidays t7 = pd.Timestamp('2020-09-21') # Opening universities # Define key dates of second wave t8 = pd.Timestamp('2020-10-19') # lockdown (1) t9 = pd.Timestamp('2020-11-02') # lockdown (2) t10 = pd.Timestamp('2020-11-16') # schools re-open t11 = pd.Timestamp('2020-12-18') # Christmas holiday starts t12 = pd.Timestamp('2021-01-04') # Christmas holiday ends t13 = pd.Timestamp('2021-02-15') # Spring break starts t14 = pd.Timestamp('2021-02-21') # Spring break ends t15 = pd.Timestamp('2021-02-28') # Contact increase in children t16 = pd.Timestamp('2021-03-26') # Start of Easter holiday t17 = pd.Timestamp('2021-04-18') # End of Easter holiday t18 = pd.Timestamp('2021-06-01') # Start of lockdown relaxation t19 = pd.Timestamp('2021-07-01') # Start of Summer holiday t20 = pd.Timestamp('2021-09-01') # End of Summer holiday t21 = pd.Timestamp('2021-09-21') # Opening of universities t22 = pd.Timestamp('2021-10-01') # Flanders releases all measures t23 = pd.Timestamp('2021-11-01') # Start of autumn break t24 = pd.Timestamp('2021-11-07') # End of autumn break # Fourth WAVE t25 = pd.Timestamp('2021-11-22') # Start of mandatory telework + start easing in leisure restrictions t26 = pd.Timestamp('2021-12-18') # Start of Christmass break for schools t27 =
pd.Timestamp('2021-12-26')
pandas.Timestamp
import numpy as np import pandas as pd import numba import seaborn as sns import matplotlib.animation as animation import matplotlib.pyplot as plt from hfhd import hd @numba.njit def garch_11(n, sigma_sq_0, mu, alpha, beta, omega): r""" Generate GARCH(1, 1) log-returns of size n. This function is accelerated via JIT with Numba. Parameters ---------- n : int The length of the wished time series. sigma_sq_0 : float > 0 The variance starting value. mu : float: The drift of log-returns. alpha : float >= 0 The volatility shock parameter. A higher value will lead to larger spikes in volatility. A.k.a short-term persistence. beta : float >= 0 The volatility persistence parameter. A larger value will result in stronger persistence. A.k.a long-term persistence. omega : float > 0 The variance constant. A higher value results in a higher mean variance. Returns ------- r : numpy.ndarray The GARCH log-returns time series. sigma_sq : numpy.ndarray The resulting variance time series with which each log-return was generated. Notes ----- In general, the conditional variance of a GARCH(p,q) model is given by .. math:: \sigma_{t}^{2}=\omega+\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}+\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2}. The unconditional variance is given by .. math:: \sigma^{2}=\frac{\omega}{1-\sum_{i=1}^{q} \alpha_{i}-\sum_{j=1}^{p} \beta_{j}}. Here, :math:`p=q=1`, and :math:`\epsilon_{t} \sim \mathcal{N}\left(0, 1\right)` """ nu = np.random.normal(0, 1, n) r = np.zeros(n) epsilon = np.zeros(n) sigma_sq = np.zeros(n) sigma_sq[0] = sigma_sq_0 if min(alpha, beta) < 0: raise ValueError('alpha, beta need to be non-negative') if omega <= 0: raise ValueError('omega needs to be positive') if alpha+beta >= 1: print('''alpha+beta>=1, variance not defined --> time series will not be weakly stationary''') for i in range(n): if i > 0: sigma_sq[i] = omega + alpha * epsilon[i-1]**2 + beta * sigma_sq[i-1] epsilon[i] = (sigma_sq[i]**0.5) * nu[i] r[i] = mu + epsilon[i] return r, sigma_sq class Universe: r""" The universe is a specification from which simulated realizations can be sampled. Stocks follow a factor model, they belong to industries and have an idiosyncratic component. Stocks are predictable by a single feature. Attributes ---------- feature_beta : float The true coefficient. factor_garch_spec : list The garch specification for factor returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` industry_garch_spec : list The garch specification for industry returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` resid_garch_spec : list The garch specification for residual returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` factor_loadings : numpy.ndarray An array with factor loadings for each stock and factor. dim = n_stocks x n_factors industry_loadings : numpy.ndarray An array with industry loadings for each stock and industry. dim = n_stocks x n_industry This is usually a sparse matrix. One stock loads typically on one or two industries. A good number of industries is 10 to 20. liquidity : float A value between 0 and 1 that describes liquidity. A value of 1 means that the probability of observation is 100% each minute. 0.5 means that there is a 50% probability of observing a price each minute. gamma : float >=0 The microstructure noise will be zero-mean Gaussian with variance $\gamma^2 var(r)$, where $var(r)$ is the variance of the underlying true return process. This noise is be added to the price. freq : str, ``'s'`` or ``'m'``. The granularity of the discretized continous price process. """ def __init__(self, feature_beta, factor_garch_spec, industry_garch_spec, resid_garch_spec, factor_loadings, industry_loadings, liquidity=0.5, gamma=2, freq='m'): self.feature_beta = feature_beta self.factor_garch_spec = factor_garch_spec self.industry_garch_spec = industry_garch_spec self.resid_garch_spec = resid_garch_spec self.factor_loadings = factor_loadings self.industry_loadings = industry_loadings self.liquidity = liquidity self.gamma = gamma self.freq = freq self.n_stocks = self.factor_loadings.shape[0] self.n_ind = self.industry_loadings.shape[1] self.n_factors = self.factor_loadings.shape[1] @staticmethod def uncond_var(spec): ''' Compute the uncoditional variance from a GARCH(1,1) specification. Parameters ---------- spec : list The garch specification. ``[sigma_sq_0, mu, alpha, beta, omega]`` Returns ------- float The unconditional variance. ''' return spec[4]/(1-spec[2]-spec[3]) def uncond_cov(self): ''' Compute the uncoditional covariance of stock returns in the universe from a universe specification. Returns ------- numpy.ndarray The unconditional covariance matrix. ''' sf = np.diag([self.uncond_var(self.factor_garch_spec)]*self.n_factors) sr = np.diag([self.uncond_var(self.resid_garch_spec)]*self.n_stocks) si = np.diag([self.uncond_var(self.industry_garch_spec)]*self.n_ind) return (self.factor_loadings @ sf @ self.factor_loadings.T + sr + self.industry_loadings @ si @ self.industry_loadings.T) def cond_cov(self): ''' Compute the daily coditional integrated covariance matrix of stock returns within regular market hours in the universe from a realized universe simulation. Returns ------- list A list containing the conditional integrated covariance matrices of each day. ''' sr = pd.DataFrame(self.sigma_sq_resid) sr.index = pd.to_datetime(sr.index, unit=self.freq) sr = sr.between_time('9:30', '16:00', include_start=True, include_end=True) sr = sr.resample('1d').sum() si = pd.DataFrame(self.sigma_sq_industry) si.index = pd.to_datetime(si.index, unit=self.freq) si = si.between_time('9:30', '16:00', include_start=True, include_end=True) si = si.resample('1d').sum() sf = pd.DataFrame(self.sigma_sq_factor) sf.index =
pd.to_datetime(sf.index, unit=self.freq)
pandas.to_datetime
import numpy as np import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.decomposition import NMF from sklearn.preprocessing import MinMaxScaler def add_team_postfix(input_df): output_df = input_df.copy() top = output_df['inning'].str.contains('表') output_df.loc[top, 'batter'] = output_df.loc[top, 'batter'] + '@' + output_df.loc[top, 'topTeam'].astype(str) output_df.loc[~top, 'batter'] = output_df.loc[~top, 'batter'] + '@' + output_df.loc[~top, 'bottomTeam'].astype(str) output_df.loc[ top, 'pitcher'] = output_df.loc[ top, 'pitcher'] + '@' + output_df.loc[ top, 'bottomTeam'].astype(str) output_df.loc[~top, 'pitcher'] = output_df.loc[~top, 'pitcher'] + '@' + output_df.loc[~top, 'topTeam'].astype(str) return output_df def add_batter_order(input_df, is_train=True): pass def fill_na(input_df): output_df = input_df.copy() output_df['pitcherHand'] = output_df['pitcherHand'].fillna('R') output_df['batterHand'] = output_df['batterHand'].fillna('R') output_df['pitchType'] = output_df['pitchType'].fillna('-') output_df['speed'] = output_df['speed'].str.extract(r'(\d+)').fillna(method='ffill') output_df['ballPositionLabel'] = output_df['ballPositionLabel'].fillna('中心') output_df['ballX'] = output_df['ballX'].fillna(0).astype(int) output_df['ballY'] = output_df['ballY'].map({chr(ord('A')+i):i+1 for i in range(11)}) output_df['ballY'] = output_df['ballY'].fillna(0).astype(int) output_df['dir'] = output_df['ballY'].map({chr(ord('A')+i):i+1 for i in range(26)}) output_df['dir'] = output_df['dir'].fillna(0).astype(int) output_df['dist'] = output_df['dist'].fillna(0) output_df['battingType'] = output_df['battingType'].fillna('G') output_df['isOuts'] = output_df['isOuts'].fillna('-1').astype(int) return output_df def get_base_features(input_df, train_pitcher, test_pitcher, train_batter, test_batter): output_df = input_df.copy() output_df['inning'] = 2 * (output_df['inning'].str[0].astype(int) - 1) + output_df['inning'].str.contains('裏') output_df['pitcherCommon'] = output_df['pitcher'] output_df['batterCommon'] = output_df['batter'] output_df.loc[~(output_df['pitcherCommon'].isin(train_pitcher & test_pitcher)), 'pitcherCommon'] = np.nan output_df.loc[~(output_df['batterCommon'].isin(train_batter & test_batter)), 'batterCommon'] = np.nan # label encoding cat_cols = output_df.select_dtypes(include=['object']).columns for col in cat_cols: f = output_df[col].notnull() output_df.loc[f, col] = LabelEncoder().fit_transform(output_df.loc[f, col].values) output_df.loc[~f, col] = -1 output_df[col] = output_df[col].astype(int) output_df['inningHalf'] = output_df['inning'] % 2 output_df['inningNumber'] = output_df['inning'] // 2 output_df['outCount'] = output_df['inning'] * 3 + output_df['O'] output_df['B_S_O'] = output_df['B'] + 4 * (output_df['S'] + 3 * output_df['O']) output_df['b1_b2_b3'] = output_df['b1'] * 1 + output_df['b2'] * 2 + output_df['b3'] * 4 next_b = output_df.sort_values(['gameID', 'inning', 'O']).groupby(['gameID', 'inning'], group_keys=False)['b1', 'b2', 'b3'].shift(-1).rename(columns={'b1': 'n_b1', 'b2': 'n_b2', 'b3': 'n_b3'}) output_df = pd.merge(output_df, next_b, left_index=True, right_index=True) def replace_b1(x): if pd.isnull(x['n_b1']): return x['b1'] else: return x['n_b1'] def replace_b2(x): if pd.isnull(x['n_b2']): return x['b2'] else: return x['n_b2'] def replace_b3(x): if pd.isnull(x['n_b3']): return x['b3'] else: return x['n_b3'] output_df['n_b1'] = output_df.apply(replace_b2, axis=1) output_df['n_b2'] = output_df.apply(replace_b2, axis=1) output_df['n_b3'] = output_df.apply(replace_b3, axis=1) output_df['plus_b1'] = output_df.apply(lambda x: x['b1'] < x['n_b1'], axis=1) output_df['plus_b2'] = output_df.apply(lambda x: x['b2'] < x['n_b2'], axis=1) output_df['plus_b3'] = output_df.apply(lambda x: x['b3'] < x['n_b3'], axis=1) output_df['minus_b1'] = output_df.apply(lambda x: x['b1'] > x['n_b1'], axis=1) output_df['minus_b2'] = output_df.apply(lambda x: x['b2'] > x['n_b2'], axis=1) output_df['minus_b3'] = output_df.apply(lambda x: x['b3'] > x['n_b3'], axis=1) return output_df def aggregation(input_df, group_keys, group_values, agg_methods): new_df = [] for agg_method in agg_methods: for col in group_values: if callable(agg_method): agg_method_name = agg_method.__name__ else: agg_method_name = agg_method new_col = f'agg_{agg_method_name}_{col}_grpby_' + '_'.join(group_keys) agg_df = input_df[[col]+group_keys].groupby(group_keys)[[col]].agg(agg_method) agg_df.columns = [new_col] new_df.append(agg_df) new_df = pd.concat(new_df, axis=1).reset_index() output_df = pd.merge(input_df, new_df, on=group_keys, how='left') return output_df, list(new_df.columns) def get_agg_gameID_inningHalf_features(input_df): group_keys = ['subGameID', 'inningHalf'] group_values = ['S', 'B', 'b1', 'b2', 'b3'] agg_methods = ['mean', 'std'] output_df, cols = aggregation( input_df, group_keys=group_keys, group_values=group_values, agg_methods=agg_methods) return reduce_mem_usage(output_df) ''' pivot table features ''' def get_pivot_NMF9_features(input_df, n, value_col): pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median) sc0 = MinMaxScaler().fit_transform(np.median(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,0::2,:], axis=-1)) sc1 = MinMaxScaler().fit_transform(np.median(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,1::2,:], axis=-1)) nmf = NMF(n_components=n, random_state=2021) nmf_df0 = pd.DataFrame(nmf.fit_transform(sc0), index=pivot_df.index).rename( columns=lambda x: f'pivot_{value_col}_NMF9T={x:02}') nmf_df1 = pd.DataFrame(nmf.fit_transform(sc1), index=pivot_df.index).rename( columns=lambda x: f'pivot_{value_col}_NMF9B={x:02}') nmf_df = pd.concat([nmf_df0, nmf_df1], axis=1) nmf_df = pd.merge( input_df, nmf_df, left_on='subGameID', right_index=True, how='left') return reduce_mem_usage(nmf_df) # pivot tabel を用いた特徴量 def get_pivot_NMF27_features(input_df, n, value_col): pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median) sc0 = MinMaxScaler().fit_transform(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,0::2].reshape(-1,27)) sc1 = MinMaxScaler().fit_transform(pivot_df.fillna(0).values.reshape(-1,54//3,3)[:,1::2].reshape(-1,27)) nmf = NMF(n_components=n, random_state=2021) nmf_df0 = pd.DataFrame(nmf.fit_transform(sc0), index=pivot_df.index).rename( columns=lambda x: f'pivot_{value_col}_NMF27T={x:02}') nmf_df1 = pd.DataFrame(nmf.fit_transform(sc1), index=pivot_df.index).rename( columns=lambda x: f'pivot_{value_col}_NMF27B={x:02}') nmf_df = pd.concat([nmf_df0, nmf_df1], axis=1) nmf_df = pd.merge( input_df, nmf_df, left_on='subGameID', right_index=True, how='left') return reduce_mem_usage(nmf_df) # pivot tabel を用いた特徴量 def get_pivot_NMF54_features(input_df, n, value_col): pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=np.median) sc = MinMaxScaler().fit_transform(pivot_df.fillna(0).values) nmf = NMF(n_components=n, random_state=2021) nmf_df = pd.DataFrame(nmf.fit_transform(sc), index=pivot_df.index).rename( columns=lambda x: f'pivot_{value_col}_NMF54={x:02}') nmf_df = pd.merge( input_df, nmf_df, left_on='subGameID', right_index=True, how='left') return reduce_mem_usage(nmf_df) ''' shift features ''' def get_diff_feature(input_df, value_col, periods, in_inning=True, aggfunc=np.median): pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=aggfunc) if in_inning: dfs = [] for inning in range(9): df0 = pivot_df.loc[:, [out+inning*6 for out in range(0,3)]].diff(periods, axis=1) df1 = pivot_df.loc[:, [out+inning*6 for out in range(3,6)]].diff(periods, axis=1) dfs += [df0, df1] pivot_df = pd.concat(dfs, axis=1).stack() else: df0 = pivot_df.loc[:, [out+inning*6 for inning in range(9) for out in range(0,3)]].diff(periods, axis=1) df1 = pivot_df.loc[:, [out+inning*6 for inning in range(9) for out in range(3,6)]].diff(periods, axis=1) pivot_df = pd.concat([df0, df1], axis=1).stack() return pivot_df def get_shift_feature(input_df, value_col, periods, in_inning=True, aggfunc=np.median): pivot_df = pd.pivot_table(input_df, index='subGameID', columns='outCount', values=value_col, aggfunc=aggfunc) if in_inning: dfs = [] for inning in range(9): df0 = pivot_df.loc[:, [out+inning*6 for out in range(0,3)]].shift(periods, axis=1) df1 = pivot_df.loc[:, [out+inning*6 for out in range(3,6)]].shift(periods, axis=1) dfs += [df0, df1] pivot_df =
pd.concat(dfs, axis=1)
pandas.concat
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.metrics import r2_score import scipy.stats df_mort_siteid = pd.read_csv("mortality siteid obs vs expected.csv") df_mort_surgid = pd.read_csv("mortality surgid obs vs expected.csv") df_complics_siteid = pd.read_csv("Complics siteid obs vs expected.csv") df_complics_surgid = pd.read_csv("Complics surgid obs vs expected.csv") df = pd.read_csv("total_avg_surgid.csv") df1 = pd.read_csv("total_avg_site_id.csv") def siteid_obs_vs_expected_mort(): mask = df_mort_siteid['count_Reop'] == 0 df_reop = df_mort_siteid[~mask] mask = df_mort_siteid['count_First'] == 0 df_op = df_mort_siteid[~mask] ax = plt.gca() ax.scatter(df_op['Year_avg_Firstop'], df_op['log_First'], color="plum",edgecolor='orchid', s=30) # ax.scatter(df_reop['Year_avg_reop'], df_reop['log_Reoperation'], color="lightskyblue", edgecolor='tab:blue', s=30) plt.title('Siteid observe vs expected Mortality First operation') plt.xlabel("Yearly AVG of first operation") plt.ylabel("mortality observe vs expected of first operation") x = df_op['Year_avg_Firstop'] y = df_op['log_First'] z = np.polyfit(x, y, 1) p = np.poly1d(z) plt.plot(x, p(x), "purple") # a = df_reop['Year_avg_reop'] # b = df_reop['log_Reoperation'] # c = np.polyfit(a, b, 1) # t = np.poly1d(c) # plt.plot(a, t(a), "mediumblue") text = f" First : $Y={z[0]:0.6f}X{z[1]:+0.6f}$" # \n$R^2 = {r2_score(y, p):0.3f}$" # text2 = f" Reoperation : $Y={c[0]:0.6f}X{c[1]:+0.6f}$" # r, p = scipy.stats.spearmanr(a, b) r1, p1 = scipy.stats.spearmanr(x, y) text3 = f" Spearman Corr : {r1:0.4f} P-value : {p1:0.4f}" # text4 = f" Spearman Corr : {r:0.4f} P-value : {p:0.4f}" print(text) # print(text2) f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] ax.legend(handles=[f("orchid"), f("white")], labels=[text, text3]) # fig = plt.figure() # fig.subplots_adjust() # plt.text(30, 50, text) # plt.text(90, 45, text2) # plt.title("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # print("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # plt.savefig('Surgid yearly average for Reoperation.png') # plt.gca().text(0.05, 0.95, text, transform=plt.gca().transAxes, # fontsize=14, verticalalignment='top') plt.show() def siteid_obs_vs_expected_mort_reop(): mask = df_mort_siteid['count_Reop'] == 0 df_reop = df_mort_siteid[~mask] ax = plt.gca() ax.scatter(df_reop['Year_avg_reop'], df_reop['log_Reoperation'], color="lightskyblue", edgecolor='tab:blue', s=30) plt.title('Siteid observe vs expected Mortality Reoperation') plt.xlabel("Yearly AVG of Reoperation") plt.ylabel("mortality observe vs expected Reoperation") a = df_reop['Year_avg_reop'] b = df_reop['log_Reoperation'] c = np.polyfit(a, b, 1) t = np.poly1d(c) plt.plot(a, t(a), "mediumblue") r, p = scipy.stats.spearmanr(a, b) text2 = f" Reoperation : $Y={c[0]:0.6f}X{c[1]:+0.6f}$" text3 = f" Spearman Corr : {r:0.4f} P-value : {p:0.4f}" print(text2) f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] ax.legend(handles=[ f("lightskyblue"),f("white")], labels=[ text2,text3]) plt.show() def surgid_obs_vs_expected_mort(): mask = df_mort_surgid['count_Reop'] == 0 df_reop = df_mort_surgid[~mask] mask = df_mort_surgid['count_First'] == 0 df_op = df_mort_surgid[~mask] ax = plt.gca() ax.scatter(df_op['Year_avg_Firstop'], df_op['log_First'], color="plum",edgecolor='orchid', s=30) ax.scatter(df_reop['Year_avg_reop'], df_reop['log_Reoperation'], color="lightskyblue", edgecolor='tab:blue', s=30) plt.title('Surgid observe vs expected Mortality') plt.xlabel("Yearly AVG of operation") plt.ylabel("mortality observe vs expected") x = df_op['Year_avg_Firstop'] y = df_op['log_First'] z = np.polyfit(x, y, 1) p = np.poly1d(z) plt.plot(x, p(x), "purple") a = df_reop['Year_avg_reop'] b = df_reop['log_Reoperation'] c = np.polyfit(a, b, 1) t = np.poly1d(c) plt.plot(a, t(a), "mediumblue") text = f" First : $Y={z[0]:0.6f}X{z[1]:+0.6f}$" #\n$R^2 = {r2_score(y, p):0.3f}$" text2 = f" Reoperation : $Y={c[0]:0.6f}X{c[1]:+0.6f}$" r, p = scipy.stats.spearmanr(a, b) r1, p1 = scipy.stats.spearmanr(x, y) text3 = f" Spearman Corr : {r1:0.4f} P-value : {p1:0.4f}" text4 = f" Spearman Corr : {r:0.4f} P-value : {p:0.4f}" print (text) print(text2) f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] ax.legend(handles=[f("orchid"),f("white"), f("steelblue"),f("white")], labels=[text,text3, text2,text4]) # ax.text(right, top, 'right top', # horizontalalignment='right', # verticalalignment='top', # transform=ax.transAxes) # plt.text(100, 50, text) # plt.text(100, 45, text2) # plt.title("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # print("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # plt.savefig('Surgid yearly average for Reoperation.png') # plt.gca().text(0.05, 0.95, text, transform=plt.gca().transAxes, # fontsize=14, verticalalignment='top') plt.show() def siteid_obs_vs_expected_complics(): mask = df_complics_siteid['count_Reop'] == 0 df_reop = df_complics_siteid[~mask] mask = df_complics_siteid['count_First'] == 0 df_op = df_complics_siteid[~mask] ax = plt.gca() ax.scatter(df_op['Year_avg_Firstop'], df_op['log_First'], color="palevioletred",edgecolor='indianred', s=30) ax.scatter(df_reop['Year_avg_reop'], df_reop['log_Reoperation'], color="darkturquoise",edgecolor='lightseagreen',s=30) plt.title('Siteid observe vs expected Complications') plt.xlabel("Yearly AVG of operation") plt.ylabel("complication observe vs expected") x = df_op['Year_avg_Firstop'] y = df_op['log_First'] z = np.polyfit(x, y, 1) p = np.poly1d(z) plt.plot(x, p(x), "maroon") a = df_reop['Year_avg_reop'] b = df_reop['log_Reoperation'] c = np.polyfit(a, b, 1) t = np.poly1d(c) plt.plot(a, t(a), "darkgreen") text = f" First : $Y={z[0]:0.6f}X{z[1]:+0.6f}$" # \n$R^2 = {r2_score(y, p):0.3f}$" text2 = f" Reoperation : $Y={c[0]:0.6f}X{c[1]:+0.6f}$" r, p = scipy.stats.spearmanr(a, b) r1, p1 = scipy.stats.spearmanr(x, y) text3 = f" Spearman Corr : {r1:0.4f} P-value : {p1:0.4f}" text4 = f" Spearman Corr : {r:0.4f} P-value : {p:0.4f}" f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] ax.legend(handles=[f("palevioletred"),f("white"), f("darkturquoise"),f("white")], labels=[text,text3, text2,text4]) # fig = plt.figure() # fig.subplots_adjust() # plt.text(30, 50, text) # plt.text(90, 45, text2) # plt.title("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # print("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # plt.savefig('Surgid yearly average for Reoperation.png') # plt.gca().text(0.05, 0.95, text, transform=plt.gca().transAxes, # fontsize=14, verticalalignment='top') plt.show() def surgid_obs_vs_expected_complics(): mask = df_complics_surgid['count_Reop'] == 0 df_reop = df_complics_surgid[~mask] mask = df_complics_surgid['count_First'] == 0 df_op = df_complics_surgid[~mask] ax = plt.gca() ax.scatter(df_op['Year_avg_Firstop'], df_op['log_First'], color="palevioletred",edgecolor='indianred',s=30) ax.scatter(df_reop['Year_avg_reop'], df_reop['log_Reoperation'], color="darkturquoise",edgecolor='lightseagreen',s=30) plt.title('Surgid observe vs expected Complications') plt.xlabel("Yearly AVG of operation") plt.ylabel("complication observe vs expected") x = df_op['Year_avg_Firstop'] y = df_op['log_First'] z = np.polyfit(x, y, 1) p = np.poly1d(z) plt.plot(x, p(x), "maroon") a = df_reop['Year_avg_reop'] b = df_reop['log_Reoperation'] c = np.polyfit(a, b, 1) t = np.poly1d(c) plt.plot(a, t(a), "darkgreen") text = f" First : $Y={z[0]:0.6f}X{z[1]:+0.6f}$" # \n$R^2 = {r2_score(y, p):0.3f}$" text2 = f" Reoperation : $Y={c[0]:0.6f}X{c[1]:+0.6f}$" print(text) print(text2) r, p = scipy.stats.spearmanr(a, b) r1, p1 = scipy.stats.spearmanr(x, y) text3 = f" Spearman Corr : {r1:0.4f} P-value : {p1:0.4f}" text4 = f" Spearman Corr : {r:0.4f} P-value : {p:0.4f}" f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] ax.legend(handles=[f("palevioletred"), f("white"), f("darkturquoise"), f("white")], labels=[text, text3, text2, text4]) # fig = plt.figure() # fig.subplots_adjust() # plt.text(30, 50, text) # plt.text(90, 45, text2) # plt.title("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # print("y=%.6fx^2+%.6fx+(%.6f)" % (z[0], z[1], z[2])) # plt.savefig('Surgid yearly average for Reoperation.png') # plt.gca().text(0.05, 0.95, text, transform=plt.gca().transAxes, # fontsize=14, verticalalignment='top') plt.show() def mortality_reop_surgid_boxplot(): mask = df['Year_sum_reop'] == 0 df_reop = df[~mask] # total_year_sum new_df=pd.DataFrame(data=df_reop,columns=['mortalty_reop_rate','total_year_avg']) new_df['bins'] = pd.qcut(new_df['total_year_avg'], 3, labels=['low', 'mid', 'high']) print(new_df) new_df.to_csv("box_surgid_mort.csv") mask = new_df['bins'] == 'low' df_low = new_df[mask] mask = new_df['bins'] == 'mid' df_mid = new_df[mask] mask = new_df['bins'] == 'high' df_high = new_df[mask] data = [df_low['mortalty_reop_rate'],df_mid['mortalty_reop_rate'],df_high['mortalty_reop_rate']] print (df_low.describe()) print(df_mid.describe()) print(df_high.describe()) text = f" low\n ${df_low['total_year_avg'].min(): 0.2f} - ${df_low['total_year_avg'].max(): 0.2f}\n Mean = ${df_low['mortalty_reop_rate'].mean():0.6f} $" text2 = f"mid\n ${df_mid['total_year_avg'].min(): 0.2f} - ${df_mid['total_year_avg'].max(): 0.2f}\n Mean = ${df_mid['mortalty_reop_rate'].mean():0.6f} $" text3 =f"high\n${df_high['total_year_avg'].min(): 0.2f} - ${df_high['total_year_avg'].max(): 0.2f}\n Mean = ${df_high['mortalty_reop_rate'].mean():0.6f} $" # ax = plt.gca() # ax = sns.boxplot(x="day", y="total_bill", data=df_mid['mortalty_reop_rate']) # show plot labels = [text,text2,text3] fig1, ax1 = plt.subplots() ax1.set_title('Mortality surgid reop boxplot') bp = ax1.boxplot(data, patch_artist=True, labels=labels) colors = ['pink', 'lightblue', 'palegreen'] for patch, color in zip(bp['boxes'], colors): patch.set_facecolor(color) f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] plt.legend(handles=[f("pink"), f("lightblue"), f("palegreen")], labels=['low', 'mid', 'high']) plt.ylabel("Mortality Reop rate") plt.show() # ax = plt.gca() # # f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] # new_df.boxplot(column='mortalty_reop_rate', by='bins') # plt.legend(handles=[f("palevioletred"), f("mediumturquoise"), f("yellow")], # labels=['low', 'mid','high']) # # plt.show() def mortality_reop_siteid_boxplot(): mask = df1['Year_sum_reop'] == 0 df_reop = df1[~mask] # total_year_sum new_df=pd.DataFrame(data=df_reop,columns=['mortalty_reop_rate','total_year_avg']) new_df['bins'] = pd.qcut(new_df['total_year_avg'], 3, labels=['low', 'mid', 'high']) print(new_df) new_df.to_csv("box_siteid_mort.csv") mask = new_df['bins'] == 'low' df_low = new_df[mask] mask = new_df['bins'] == 'mid' df_mid = new_df[mask] mask = new_df['bins'] == 'high' df_high = new_df[mask] data = [df_low['mortalty_reop_rate'],df_mid['mortalty_reop_rate'],df_high['mortalty_reop_rate']] print (df_low.describe()) print(df_mid.describe()) print(df_high.describe()) text = f" low\n ${df_low['total_year_avg'].min(): 0.2f} - ${df_low['total_year_avg'].max(): 0.2f}\n Mean = ${df_low['mortalty_reop_rate'].mean():0.6f} $" text2 = f"mid\n ${df_mid['total_year_avg'].min(): 0.2f} - ${df_mid['total_year_avg'].max(): 0.2f}\n Mean = ${df_mid['mortalty_reop_rate'].mean():0.6f} $" text3 = f"high\n${df_high['total_year_avg'].min(): 0.2f} - ${df_high['total_year_avg'].max(): 0.2f}\n Mean = ${df_high['mortalty_reop_rate'].mean():0.6f} $" labels = [text, text2, text3] fig1, ax1 = plt.subplots() ax1.set_title('Mortality siteid reop boxplot') bp = ax1.boxplot(data, patch_artist=True, labels=labels) colors = ['pink', 'lightblue', 'palegreen'] for patch, color in zip(bp['boxes'], colors): patch.set_facecolor(color) f = lambda c: plt.plot([], color=c, ls="", marker="o")[0] plt.legend(handles=[f("pink"), f("lightblue"), f("palegreen")], labels=['low', 'mid', 'high']) plt.ylabel("Mortality Reop rate") plt.show() def complics_reop_surgid_boxplot(): mask = df['Year_sum_reop'] == 0 df_reop = df[~mask] # total_year_sum new_df=pd.DataFrame(data=df_reop,columns=['Complics_reop_rate','total_year_avg']) new_df['bins'] =
pd.qcut(new_df['total_year_avg'], 3, labels=['low', 'mid', 'high'])
pandas.qcut
# -*- coding: utf-8 -*- """ Functions for importing nyc tlc data. """ import numpy as np import pandas as pd import re from twitterinfrastructure.tools import check_expected_list, create_table, \ connect_db, df_to_table, get_regex_files, haversine, output from urllib.request import urlretrieve def add_trip_columns(df, verbose=0): """Adds calculated trip columns to the dataframe. Assumes the dataframe has already been cleaned. Also removes any trips with unreasonable values. Can only calculate distance-related trip data for records with pickup/dropoff lat/lon data. Parameters ---------- df : dataframe Dataframe to add trip calculation columns to. verbose : int Defines verbosity for output statements. Returns ------- df : dataframe Dataframe with added columns. Notes ----- """ col_names = list(
pd.Series(df.columns.values)
pandas.Series
""" We also test Series.notna in this file. """ import numpy as np from pandas import ( Period, Series, ) import pandas._testing as tm class TestIsna: def test_isna_period_dtype(self): # GH#13737 ser = Series([
Period("2011-01", freq="M")
pandas.Period
from transformers import ( BertTokenizerFast, ) import os,re,copy,sys import pandas as pd import tensorflow as tf import numpy as np import news_retrieval_common_funcs import multiprocessing_functions from sklearn.model_selection import train_test_split from sklearn.utils import resample as sklearnResample from sklearn.utils import class_weight import condor_tensorflow as condor import multiprocessing import dask, dask.bag from IPython.display import display, HTML class getdata: def __init__(self, **settings): settings.setdefault('workingdir', os.getcwd()) settings.setdefault('ckipModelName', 'ckiplab/albert-tiny-chinese') settings.setdefault('num_workers', multiprocessing.cpu_count()) settings.setdefault('tokenizerSettingsDoc', { 'padding':'max_length', 'truncation':True, 'return_tensors':"np" }) settings.setdefault('tokenizerSettingsQuery', { 'padding':'max_length', 'truncation':True, 'return_tensors':"np" }) settings.setdefault('batch_size', 32) settings.setdefault('random_state', 1) settings.setdefault('test_size', 0.15) settings.setdefault('querySynonyms',{ #支持同意贊成應該是應該的是合理的 被接受 被支持 是正確的 #不支持反對不贊成不同意不應該不應該的不合理的 是不對的 支持取消 禁止 允許 拒絕 '反對二代健保規定':['支持維持二代健保現有規定是不應該的','同意維持二代健保現有規定是不應該的','贊成維持二代健保現有規定是不應該的', '同意維持二代健保規定是不合理的','維持二代健保規定是不對的','允許二代健保規定是不合理的','允許二代健保規定是不正確的','允許二代健保規定是錯誤的', '不應該允許二代健保規定','不支持二代健保規定','不贊成二代健保規定','不同意二代健保規定','拒絕二代健保規定是正確的','不應該維持二代健保現有規定','拒絕二代健保規定是合理的', '應該拒絕二代健保規定'], '臺灣應開放含瘦肉精(萊克多巴胺)之美國牛肉進口':['支持臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口','同意臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口', '贊成臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口','臺灣應該開放含瘦肉精(萊克多巴胺)之美國牛肉進口','臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口是應該的', '臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口應該被接受','臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口應該被支持','臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口是正確的', '不支持禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口','反對禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口','不贊成禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口', '不同意禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口','不應該禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口','禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口是不應該的', '禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口是不合理的','禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口是不對的','禁止臺灣開放含瘦肉精(萊克多巴胺)之美國牛肉進口是錯誤的'], '國際賽事會場內應該可以持中華民國國旗':['支持國際賽事會場內可以持中華民國國旗','同意國際賽事會場內可以持中華民國國旗','贊成國際賽事會場內可以持中華民國國旗', '國際賽事會場內可以持中華民國國旗是應該的','國際賽事會場內可以持中華民國國旗是合理的','國際賽事會場內可以持中華民國國旗應該被接受', '國際賽事會場內可以持中華民國國旗應該被支持','國際賽事會場內可以持中華民國國旗是正確的','不支持禁止國際賽事會場內持中華民國國旗', '反對禁止國際賽事會場內持中華民國國旗','不贊成禁止國際賽事會場內持中華民國國旗','不同意禁止國際賽事會場內持中華民國國旗', '禁止國際賽事會場內持中華民國國旗是不應該的','不應該禁止國際賽事會場內持中華民國國旗','禁止國際賽事會場內持中華民國國旗是不合理的'], '反對無圍牆校園':[ '支持有圍牆限制校園進出','同意有圍牆限制校園進出','贊成有圍牆限制校園進出','應該有圍牆限制校園進出','有圍牆限制校園進出是應該的', '有圍牆限制校園進出是合理的','有圍牆限制校園進出是被接受的','有圍牆限制校園進出是應該被支持的','有圍牆限制校園進出是正確的', '支持校園設圍牆','同意校園設圍牆','贊成校園設圍牆','校園應該設圍牆','校園設圍牆是應該的','校園設圍牆是合理的','校園設圍牆是可被接受的','校園設圍牆是可被支持的','校園設圍牆是正確的', '不支持無圍牆校園','不贊成無圍牆校園','不同意無圍牆校園','校園不應該無圍牆','校園無圍牆是不應該的','校園無圍牆是不合理的', '校園不應該取消圍牆','校園取消圍牆是不應該的','校園取消圍牆是不合理的','校園取消圍牆是不對的', '不應該拒絕校園設圍牆','拒絕校園設圍牆是不應該的','拒絕校園設圍牆是不合理的','拒絕校園設圍牆是不對的',], '另立專法保障同婚是正確的':['支持另立專法保障同婚','同意另立專法保障同婚','贊成另立專法保障同婚','應該另立專法保障同婚', '另立專法保障同婚是應該的','另立專法保障同婚是合理的','另立專法保障同婚應該被接受','另立專法保障同婚應該被支持', '不支持取消另立專法保障同婚','反對取消另立專法保障同婚','不贊成取消另立專法保障同婚','不同意取消另立專法保障同婚' '不應該取消另立專法保障同婚','取消另立專法保障同婚是不應該的','取消另立專法保障同婚是不合理的'], '堅決反對政府舉債發展前瞻建設計畫':['支持禁止政府舉債發展前瞻建設計畫','同意禁止政府舉債發展前瞻建設計畫','贊成禁止政府舉債發展前瞻建設計畫' '應該禁止政府舉債發展前瞻建設計畫','禁止政府舉債發展前瞻建設計畫是應該的','禁止政府舉債發展前瞻建設計畫是合理的','禁止政府舉債發展前瞻建設計畫應該被接受' '禁止政府舉債發展前瞻建設計畫應該被支持','不支持政府舉債發展前瞻建設計畫','反對政府舉債發展前瞻建設計畫','不贊成政府舉債發展前瞻建設計畫', '不同意政府舉債發展前瞻建設計畫','政府不應該舉債發展前瞻建設計畫','政府舉債發展前瞻建設計畫是不應該的','政府舉債發展前瞻建設計畫是不合理的'], '支持陳前總統保外就醫':['同意陳前總統保外就醫','贊成陳前總統保外就醫','陳前總統應該可以保外就醫','應該允許陳前總統保外就醫','允許陳前總統保外就醫是應該的', '陳前總統保外就醫是合理的','不支持禁止陳前總統保外就醫','反對禁止陳前總統保外就醫','不贊成禁止陳前總統保外就醫','不同意禁止陳前總統保外就醫', '不應該禁止陳前總統保外就醫','禁止陳前總統保外就醫是不應該的','拒絕陳前總統保外就醫是不合理的'], '年金改革應取消或應調降軍公教月退之優存利率十八趴':['支持年金改革取消或調降軍公教月退之優存利率十八趴','同意年金改革取消或調降軍公教月退之優存利率十八趴', '贊成年金改革取消或調降軍公教月退之優存利率十八趴','年金改革取消或調降軍公教月退之優存利率十八趴是應該的','年金改革取消或調降軍公教月退之優存利率十八趴是合理的', '不支持年金改革或調升軍公教月退之優存利率十八趴','反對年金改革或調升軍公教月退之優存利率十八趴','不贊成年金改革或調升軍公教月退之優存利率十八趴', '不同意年金改革或調升軍公教月退之優存利率十八趴','不應該年金改革或調升軍公教月退之優存利率十八趴','年金改革或調升軍公教月退之優存利率十八趴是不應該的', '年金改革或調升軍公教月退之優存利率十八趴是不合理的'], '同意動物實驗':['支持動物實驗','贊成動物實驗','應該接受動物實驗','接受動物實驗是應該的','接受動物實驗是合理的', '不支持禁止動物實驗','反對禁止動物實驗','不贊成禁止動物實驗','不同意禁止動物實驗','不應該禁止動物實驗', '禁止動物實驗是不應該的','禁止動物實驗是不合理的','動物實驗不應該被取消','動物實驗不應該被禁止', '動物實驗應該可以被接受','動物實驗應該被支持'], '油價應該凍漲或緩漲':['支持油價凍漲或緩漲','同意油價凍漲或緩漲','贊成油價凍漲或緩漲','油價凍漲或緩漲是應該的','油價凍漲或緩漲是合理的', '油價凍漲或緩漲應該被接受','油價凍漲或緩漲應該被支持','不支持油價漲價或調漲','反對油價漲價或調漲','不贊成油價漲價或調漲', '不同意油價漲價或調漲','油價不應該漲價或調漲','油價漲價或調漲是不應該的','油價漲價或調漲是不合理的','支持禁止油價漲價或調漲', '同意禁止油價漲價或調漲','贊成禁止油價漲價或調漲','應該禁止油價漲價或調漲','禁止油價漲價或調漲是應該的','禁止油價漲價或調漲是合理的', '禁止油價漲價或調漲應該被接受','禁止油價漲價或調漲應該被支持'], '反對旺旺中時併購中嘉':['支持禁止旺旺中時併購中嘉','同意禁止旺旺中時併購中嘉','贊成禁止旺旺中時併購中嘉','應該禁止旺旺中時併購中嘉', '禁止旺旺中時併購中嘉是應該的','禁止旺旺中時併購中嘉是合理的','禁止旺旺中時併購中嘉應該被接受','禁止旺旺中時併購中嘉應該被支持', '不支持允許旺旺中時併購中嘉','反對允許旺旺中時併購中嘉','不贊成允許旺旺中時併購中嘉','不同意允許旺旺中時併購中嘉','不應該允許旺旺中時併購中嘉', '允許旺旺中時併購中嘉是不應該的','允許旺旺中時併購中嘉是不合理的','反對媒體壟斷'], '贊同課綱微調':['支持課綱微調','同意課綱微調','贊成課綱微調','課綱應該微調','課綱微調是應該的','課綱微調是合理的','課綱微調應該被接受', '課綱微調應該被支持','課綱微調是正確的','應允許課綱微調','不支持取消課綱微調','反對取消課綱微調','不贊成取消課綱微調','不同意取消課綱微調','不應該取消課綱微調', '取消課綱微調是不應該的','取消課綱微調是不合理的'], '贊成流浪動物零撲殺':['支持流浪動物零撲殺','同意流浪動物零撲殺','流浪動物應該零撲殺','流浪動物零撲殺是應該的','流浪動物零撲殺是合理的', '流浪動物零撲殺是正確的','不支持撲殺流浪動物','反對撲殺流浪動物','不贊成撲殺流浪動物','不同意撲殺流浪動物','不應該撲殺流浪動物','撲殺流浪動物是不應該的', '撲殺流浪動物是不合理的','支持禁止撲殺流浪動物','同意禁止撲殺流浪動物','贊成禁止撲殺流浪動物','應該禁止撲殺流浪動物','禁止撲殺流浪動物是應該的', '禁止撲殺流浪動物是合理的','禁止撲殺流浪動物應該被接受','禁止撲殺流浪動物應該被支持','禁止撲殺流浪動物是正確的'], '核四應該啟用':['支持啟用核四','同意啟用核四','贊成啟用核四','啟用核四是應該的','啟用核四是合理的','啟用核四應該被接受','啟用核四應該被支持','啟用核四是正確的', '不支持停用或封存核四','反對停用或封存核四','不贊成停用或封存核四','不同意停用或封存核四','不應該停用或封存核四','停用或封存核四是不應該的', '停用或封存核四是不合理的','支持允許啟用核四','同意允許啟用核四','贊成允許啟用核四','應該允許啟用核四','允許啟用核四是應該的','允許啟用核四是正確的' '支持核四應該啟用','不拒絕核四應該啟用','同意核四應該啟用','贊成核四應該啟用', '核四啟用是應該的','核四啟用是合理的','核四啟用是可被接受的','核四啟用是可被支持的','核四啟用是正確的','核四啟用是對的', '支持允許核四啟用','不拒絕允許核四啟用','同意允許核四啟用','贊成允許核四啟用', '允許核四啟用是應該的','允許核四啟用是合理的','允許核四啟用是可被接受的','允許核四啟用是可被支持的','允許核四啟用是正確的','允許核四啟用是對的', ], '贊成文林苑都更案可依法拆除王家':['支持文林苑都更案可依法拆除王家','同意文林苑都更案可依法拆除王家','文林苑都更案應該依法拆除王家','文林苑都更案依法拆除王家是應該的', '文林苑都更案依法拆除王家是合理的','文林苑都更案依法拆除王家應該被接受','文林苑都更案依法拆除王家應該被支持','文林苑都更案依法拆除王家是正確的', '不支持文林苑都更案不依法拆除王家','反對文林苑都更案不依法拆除王家','不贊成文林苑都更案不依法拆除王家','不同意文林苑都更案不依法拆除王家', '不應該文林苑都更案不依法拆除王家','文林苑都更案不依法拆除王家是不應該的','文林苑都更案不依法拆除王家是不合理的'], '十二年國教高中職「免學費補助」適用對象增加是不對的':['支持限制十二年國教高中職免學費補助適用對象增加','同意限制十二年國教高中職免學費補助適用對象增加', '贊成限制十二年國教高中職免學費補助適用對象增加','應該限制十二年國教高中職免學費補助適用對象增加','限制十二年國教高中職免學費補助適用對象增加是應該的', '限制十二年國教高中職免學費補助適用對象增加是合理的','限制十二年國教高中職免學費補助適用對象增加應該被接受','限制十二年國教高中職免學費補助適用對象增加應該被支持', '限制十二年國教高中職免學費補助適用對象增加是正確的','不支持十二年國教高中職免學費補助適用對象增加','反對十二年國教高中職免學費補助適用對象增加', '不贊成十二年國教高中職免學費補助適用對象增加','不同意十二年國教高中職免學費補助適用對象增加','十二年國教高中職免學費補助適用對象不應該增加', '十二年國教高中職免學費補助適用對象增加是不應該的','十二年國教高中職免學費補助適用對象增加是不合理的','不應該允許十二年國教高中職免學費補助適用對象增加', '允許十二年國教高中職免學費補助適用對象增加是不合理的','允許十二年國教高中職免學費補助適用對象增加是不對的'], '遠雄大巨蛋工程應停工或拆除':['支持遠雄大巨蛋工程停工或拆除','同意遠雄大巨蛋工程停工或拆除','贊成遠雄大巨蛋工程停工或拆除','遠雄大巨蛋工程應該停工或拆除', '遠雄大巨蛋工程停工或拆除是應該的','遠雄大巨蛋工程停工或拆除是合理的','遠雄大巨蛋工程停工或拆除應該被接受','遠雄大巨蛋工程停工或拆除應該被支持', '遠雄大巨蛋工程停工或拆除是正確的','不支持遠雄大巨蛋工程繼續興建','反對遠雄大巨蛋工程繼續興建','不贊成遠雄大巨蛋工程繼續興建','不同意遠雄大巨蛋工程繼續興建', '遠雄大巨蛋工程不應該繼續興建','遠雄大巨蛋工程繼續興建是不應該的','遠雄大巨蛋工程繼續興建是不合理的','遠雄大巨蛋工程繼續興建是不對的', '支持禁止遠雄大巨蛋工程繼續興建','同意禁止遠雄大巨蛋工程繼續興建','贊成禁止遠雄大巨蛋工程繼續興建','應該禁止遠雄大巨蛋工程繼續興建','禁止遠雄大巨蛋工程繼續興建是應該的', '禁止遠雄大巨蛋工程繼續興建是合理的','禁止遠雄大巨蛋工程繼續興建應該被接受','禁止遠雄大巨蛋工程繼續興建應該被支持','禁止遠雄大巨蛋工程繼續興建是正確的'], '支持正名「臺灣」參與國際運動賽事':['同意正名臺灣參與國際運動賽事','贊成正名臺灣參與國際運動賽事','應該正名臺灣參與國際運動賽事', '正名臺灣參與國際運動賽事是應該的','正名臺灣參與國際運動賽事是合理的','正名臺灣參與國際運動賽事應該被接受','正名臺灣參與國際運動賽事應該被支持', '正名臺灣參與國際運動賽事是正確的','不支持不正名臺灣參與國際運動賽事','反對不正名臺灣參與國際運動賽事','不贊成不正名臺灣參與國際運動賽事', '不同意不正名臺灣參與國際運動賽事','不應該不正名臺灣參與國際運動賽事','不正名臺灣參與國際運動賽事是不應該的','不正名臺灣參與國際運動賽事是不合理的'], '拒絕公投通過門檻下修':['支持公投通過門檻不下修','同意公投通過門檻不下修','贊成公投通過門檻不下修','公投通過門檻應該不下修','公投通過門檻不下修是應該的', '公投通過門檻不下修是合理的','公投通過門檻不下修應該被接受','公投通過門檻不下修應該被支持','公投通過門檻不下修是正確的','不支持公投通過門檻下修', '反段公投通過門檻下修','不贊成公投通過門檻下修','不同意公投通過門檻下修','公投通過門檻不應該下修','公投通過門檻下修是不應該的','公投通過門檻下修是不合理的', '支持禁止公投通過門檻下修','同意禁止公投通過門檻下修','贊成禁止公投通過門檻下修','應該禁止公投通過門檻下修','禁止公投通過門檻下修是應該的','禁止公投通過門檻下修是合理的', '禁止公投通過門檻下修應該被接受','禁止公投通過門檻下修應該被支持','禁止公投通過門檻下修是正確的'], '應該提高酒駕罰責以有效遏制酒駕':['支持提高酒駕罰責以有效遏制酒駕','同意提高酒駕罰責以有效遏制酒駕','贊成提高酒駕罰責以有效遏制酒駕', '提高酒駕罰責以有效遏制酒駕是應該的','提高酒駕罰責以有效遏制酒駕是合理的','提高酒駕罰責以有效遏制酒駕應該被接受','提高酒駕罰責以有效遏制酒駕應該被支持', '提高酒駕罰責以有效遏制酒駕是正確的','不支持降低或維持酒駕罰責','反對降低或維持酒駕罰責','不贊成降低或維持酒駕罰責','不同意降低或維持酒駕罰責', '不應該降低或維持酒駕罰責','降低或維持酒駕罰責是不應該的','降低或維持酒駕罰責是不合理的','降低或維持酒駕罰責是不對的'], """ NOT in training data """ 'ECFA早收清單可(有)達到其預期成效':['ECFA早收清單有效','ECFA早收清單成效良好','ECFA早收清單成效達標','ECFA早收清單沒有失效'], '不支持使用加密貨幣':['支持限制使用加密貨幣','同意限制使用加密貨幣','贊成限制使用加密貨幣','應該限制使用加密貨幣', '限制使用加密貨幣是應該的','限制使用加密貨幣是合理的','反對使用加密貨幣','不贊成使用加密貨幣','不同意使用加密貨幣', '不應該使用加密貨幣','使用加密貨幣是不應該的','使用加密貨幣是不合理的','支持限制使用加密貨幣','同意限制使用加密貨幣', '贊成限制使用加密貨幣','應該限制使用加密貨幣','限制使用加密貨幣是應該的'], '不支持學雜費調漲':['支持限制學雜費調漲','同意限制學雜費調漲','贊成限制學雜費調漲','限制學雜費調漲是應該的','應該限制學雜費調漲', '限制學雜費調漲是合理的','反對學雜費調漲','不贊成學雜費調漲','不同意學雜費調漲','學雜費不應該調漲','學雜費調漲是不應該的', '學雜費調漲是不合理的','支持禁止學雜費調漲','同意禁止學雜費調漲','贊成禁止學雜費調漲','禁止學雜費調漲是應該的','應該禁止學雜費調漲', '禁止學雜費調漲是合理的'], '中華航空空服員罷工是合理的':['支持中華航空空服員罷工','同意中華航空空服員罷工','贊成中華航空空服員罷工','中華航空空服員應該可以罷工', '中華航空空服員罷工是應該的','不支持禁止中華航空空服員罷工','反對禁止中華航空空服員罷工','不贊成禁止中華航空空服員罷工', '不同意禁止中華航空空服員罷工','不應該禁止中華航空空服員罷工','禁止中華航空空服員罷工是不合理的','中華航空空服員罷工不應該譴責','不應該否定華航空服員罷工'], '反對台鐵東移徵收案':['支持取消台鐵東移徵收案','同意取消台鐵東移徵收案','贊成取消台鐵東移徵收案','應該取消台鐵東移徵收案','取消台鐵東移徵收案是應該的', '取消台鐵東移徵收案是合理的','不支持台鐵東移徵收案','不贊成台鐵東移徵收案','不同意台鐵東移徵收案','不應該台鐵東移徵收','台鐵東移徵收是不應該的', '台鐵東移徵收是不合理的'], '同意政府舉債發展前瞻建設計畫':['支持政府舉債發展前瞻建設計畫','贊成政府舉債發展前瞻建設計畫','政府應該舉債發展前瞻建設計畫','政府舉債發展前瞻建設計畫是應該的', '政府舉債發展前瞻建設計畫是合理的','不支持禁止政府舉債發展前瞻建設計畫','反對禁止政府舉債發展前瞻建設計畫','不贊成禁止政府舉債發展前瞻建設計畫', '不同意禁止政府舉債發展前瞻建設計畫','不應該禁止政府舉債發展前瞻建設計畫','禁止政府舉債發展前瞻建設計畫是不應該的','政府舉債發展前瞻建設計畫是不合理的'], '性交易應該合法化':['支持性交易免罰','同意性交易免罰','贊成性交易免罰','性交易應該免罰','性交易免罰是應該的', '性交易免罰是合理的','支持取消性交易限制','同意取消性交易限制','贊成取消性交易限制','應該取消性交易限制', '取消性交易限制是應該的','取消性交易限制是合理的','性交易應該被接受','不支持禁止性交易','反對禁止性交易', '不贊成禁止性交易','不同意禁止性交易','不應該禁止性交易','禁止性交易是不應該的','禁止性交易是不合理的', '性交易不應該處罰','性交易不應該被禁止'], '應該取消機車強制二段式左轉(待轉)':['支持機車可以直接轉彎','支持取消強制機車二段式左轉','同意取消強制機車二段式左轉', '贊成取消強制機車二段式左轉','機車應該可以直接轉彎而不需要二段式左轉','不支持機車強制二段式左轉(待轉)', '反段機車強制二段式左轉(待轉)','不贊成機車強制二段式左轉(待轉)','不同意機車強制二段式左轉(待轉)', '不應該強制機車二段式左轉(待轉)','機車強制二段式左轉(待轉)是不合理的','機車不應該被強制二段式左轉(待轉)', ], '應該減免證所稅':['支持減免證所稅','同意減免證所稅','贊成減免證所稅','減免證所稅是應該的','減免證所稅是合理的','應該減少課徵證所稅', '應該減少課徵證券交易所得稅','應該減少證券交易所得稅的課徵','應該減少或免除證所稅','應該減少或免除證券交易所得稅', '支持減少或免除證券交易所得稅','不支持增加證所稅','反對增加證所稅','不贊成增加證所稅','不同意增加證所稅','或應該增加證所稅', '增加證所稅是不應該的','增加證所稅是不合理的'], '支持中國學生納入健保':['同意中國學生納入健保','贊成中國學生納入健保','支持中國學生可以有健保','同意中國學生可以有健保', '贊成中國學生可以有健保','支持健保納入中國學生','同意健保納入中國學生','贊成健保納入中國學生','中國學生應該納入健保', '中國學生納入健保是應該的','中國學生納入健保是合理的','不支持禁止中國學生納入健保','反對禁止中國學生納入健保','不贊成禁止中國學生納入健保', '不同意禁止中國學生納入健保','禁止中國學生納入健保是不應該的','不應該禁止中國學生納入健保','禁止中國學生納入健保是不合理的', '支持取消中國學生納入健保的限制','同意取消中國學生納入健保的限制','贊成取消中國學生納入健保的限制','取消中國學生納入健保的甚至是合理的', '應該取消中國學生納入健保的限制','取消中國學生納入勞健保的限制是合理的'], '支持博弈特區在台灣合法化':['同意博弈特區在台灣合法化','贊成博弈特區在台灣合法化','博弈特區應該在台灣合法化', '支持在台灣設立博弈特區','台灣應該設立博弈特區','同意台灣設立博弈特區', '博弈特區在台灣合法化是合理的','不支持在台灣禁止博弈特區合法化','反對在台灣禁止博弈特區','不贊成在台灣禁止博弈特區', '不同意在台灣禁止博弈特區','在台灣禁止博弈特區是不應該的','在台灣禁止博弈特區是不合理的','在台灣不應該處罰博弈特區內的博弈', '在台灣的博弈特區內不應該處罰博弈行為'], '支持臺灣中小學(含高職、專科)服儀規定(含髮、襪、鞋)給予學生自主':['支持廢除中小學生服儀規定','中小學生服儀規定應該廢除', '同意中小學生服儀規定尊重自主或放寬','贊成廢除或放寬中小學生服儀規定','支持廢除中小學生髮禁','同意廢除中小學生髮禁', '贊成廢除中小學生髮禁','贊成中小學生服儀規定尊重自主或放寬','中小學生服儀規定應該尊重自主或放寬','中小學生服儀規定尊重自主或放寬是應該的', '中小學生服儀規定尊重自主或放寬是合理的','不支持中小學生服儀限制','反對中小學生服儀限制','不贊成中小學生服儀限制','不同意中小學生服儀限制', '不應該限制中小學生服儀','中小學生服儀限制是不應該的','中小學生服儀限制是不合理的'], '支持電競列入體育競技':['同意電競列入體育競技','贊成電競列入體育競技','應該將電競列入體育競技','電競列入體育競技是應該的','電競列入體育競技是合理的', '不支持禁止電競列入體育競技','反對禁止電競列入體育競技','不贊成禁止電競列入體育競技','不同意禁止電競列入體育競技','不應該禁止電競列入體育競技', '禁止電競列入體育競技是不應該的','禁止電競列入體育競技是不合理的'], '贊成中油在觀塘興建第三天然氣接收站':['支持中油在觀塘興建第三天然氣接收站','同意中油在觀塘興建第三天然氣接收站','中油在觀塘興建第三天然氣接收站是應該的', '中油應該在觀塘興建第三天然氣接收站','中油在觀塘興建第三天然氣接收站是合理的','不支持中油在觀塘取消興建第三天然氣接收站','反對中油取消在觀塘興建第三天然氣接收站', '不贊成中油在觀塘取消興建第三天然氣接收站','不同意中油在觀塘取消興建第三天然氣接收站','中油不應該在觀塘取消興建第三天然氣接收站', '中油取消在觀塘興建第三天然氣接收站是不應該的','中油取消在觀塘興建第三天然氣接收站是不合理的'], '通姦在刑法上應該除罪化':['支持通姦除罪化','同意通姦除罪化','贊成通姦除罪化','通姦應該除罪化','通姦除罪化是合理的', '通姦應該刑事免責','通姦應該無罪','通姦應該免刑','通姦應該刑事免刑','通姦應該免罰刑','通姦應該免刑', '不應該以刑罰處罰通姦','不應該以刑法處罰通姦','通姦不應該被判刑','通姦不應該有罪','拒絕通姦在刑法上除罪化是不合理的'], }) settings.setdefault('queryAntonyms',{ #支持不拒絕同意贊成應該是應該的是合理的 被接受 被支持 是正確的 是對的 允許 #不支持反對不贊成不同意不應該不應該的不合理的 是不對的 是不正確的 是錯誤的 支持取消 禁止 停止 允許 拒絕 '應該提高酒駕罰責以有效遏制酒駕':['不支持提高酒駕罰責以有效遏制酒駕','反對提高酒駕罰責以有效遏制酒駕','不贊成提高酒駕罰責以有效遏制酒駕','不同意提高酒駕罰責以有效遏制酒駕','不應該提高酒駕罰責以有效遏制酒駕', '提高酒駕罰責以有效遏制酒駕是不應該的','提高酒駕罰責以有效遏制酒駕是不合理的','提高酒駕罰責以有效遏制酒駕是不對的','提高酒駕罰責以有效遏制酒駕是不正確的','提高酒駕罰責以有效遏制酒駕是錯誤的', '支持取消提高酒駕罰責以有效遏制酒駕','不拒絕取消提高酒駕罰責以有效遏制酒駕','贊成取消提高酒駕罰責以有效遏制酒駕','同意取消提高酒駕罰責以有效遏制酒駕','應該取消提高酒駕罰責以有效遏制酒駕', '取消提高酒駕罰責以有效遏制酒駕是應該的','取消提高酒駕罰責以有效遏制酒駕是合理的','取消提高酒駕罰責以有效遏制酒駕是對的','取消提高酒駕罰責以有效遏制酒駕是正確的', '支持禁止提高酒駕罰責以有效遏制酒駕','不拒絕禁止提高酒駕罰責以有效遏制酒駕','贊成禁止提高酒駕罰責以有效遏制酒駕','同意禁止提高酒駕罰責以有效遏制酒駕','應該禁止提高酒駕罰責以有效遏制酒駕', '禁止提高酒駕罰責以有效遏制酒駕是應該的','禁止提高酒駕罰責以有效遏制酒駕是合理的','禁止提高酒駕罰責以有效遏制酒駕是對的','禁止提高酒駕罰責以有效遏制酒駕是正確的', '支持停止提高酒駕罰責以有效遏制酒駕','不拒絕停止提高酒駕罰責以有效遏制酒駕','贊成停止提高酒駕罰責以有效遏制酒駕','同意停止提高酒駕罰責以有效遏制酒駕','應該停止提高酒駕罰責以有效遏制酒駕', '停止提高酒駕罰責以有效遏制酒駕是應該的','停止提高酒駕罰責以有效遏制酒駕是合理的','停止提高酒駕罰責以有效遏制酒駕是對的','停止提高酒駕罰責以有效遏制酒駕是正確的', '支持拒絕提高酒駕罰責以有效遏制酒駕','不拒絕拒絕提高酒駕罰責以有效遏制酒駕','贊成拒絕提高酒駕罰責以有效遏制酒駕','同意拒絕提高酒駕罰責以有效遏制酒駕','應該拒絕提高酒駕罰責以有效遏制酒駕', '拒絕提高酒駕罰責以有效遏制酒駕是應該的','拒絕提高酒駕罰責以有效遏制酒駕是合理的','拒絕提高酒駕罰責以有效遏制酒駕是對的','拒絕提高酒駕罰責以有效遏制酒駕是正確的' ], '拒絕公投通過門檻下修':['支持公投通過門檻下修','不拒絕公投通過門檻下修','同意公投通過門檻下修','贊成公投通過門檻下修','公投通過門檻應該下修', '公投通過門檻下修是應該的','公投通過門檻下修是合理的','公投通過門檻下修是可被接受的','公投通過門檻下修是可被支持的','公投通過門檻下修是正確的','公投通過門檻下修是對的', '支持允許公投通過門檻下修','不拒絕允許公投通過門檻下修','同意允許公投通過門檻下修','贊成允許公投通過門檻下修','公投通過門檻應該允許下修', '允許公投通過門檻下修是應該的','允許公投通過門檻下修是合理的','允許公投通過門檻下修是可被接受的','允許公投通過門檻下修是可被支持的','允許公投通過門檻下修是正確的','允許公投通過門檻下修是對的', '不支持取消公投通過門檻下修','反對取消公投通過門檻下修','不贊成取消公投通過門檻下修','不同意取消公投通過門檻下修','取消公投通過門檻不應該下修', '取消公投通過門檻下修是不應該的','取消公投通過門檻下修是不合理的','取消公投通過門檻下修是不對的','取消公投通過門檻下修是不正確的','取消公投通過門檻下修是錯誤的', '不支持禁止公投通過門檻下修','反對禁止公投通過門檻下修','不贊成禁止公投通過門檻下修','不同意禁止公投通過門檻下修','禁止公投通過門檻不應該下修', '禁止公投通過門檻下修是不應該的','禁止公投通過門檻下修是不合理的','禁止公投通過門檻下修是不對的','禁止公投通過門檻下修是不正確的','禁止公投通過門檻下修是錯誤的', '不支持停止公投通過門檻下修','反對停止公投通過門檻下修','不贊成停止公投通過門檻下修','不同意停止公投通過門檻下修','停止公投通過門檻不應該下修', '停止公投通過門檻下修是不應該的','停止公投通過門檻下修是不合理的','停止公投通過門檻下修是不對的','停止公投通過門檻下修是不正確的','停止公投通過門檻下修是錯誤的', '不支持拒絕公投通過門檻下修','反對拒絕公投通過門檻下修','不贊成拒絕公投通過門檻下修','不同意拒絕公投通過門檻下修','拒絕公投通過門檻不應該下修', '拒絕公投通過門檻下修是不應該的','拒絕公投通過門檻下修是不合理的','拒絕公投通過門檻下修是不對的','拒絕公投通過門檻下修是不正確的','拒絕公投通過門檻下修是錯誤的'], '支持正名「臺灣」參與國際運動賽事':['不支持正名臺灣參與國際運動賽事','反對正名臺灣參與國際運動賽事','不贊成正名臺灣參與國際運動賽事','不同意正名臺灣參與國際運動賽事','不應該正名臺灣參與國際運動賽事', '正名臺灣參與國際運動賽事是不應該的','正名臺灣參與國際運動賽事是不合理的','正名臺灣參與國際運動賽事是不對的','正名臺灣參與國際運動賽事是不正確的','正名臺灣參與國際運動賽事是錯誤的', '支持拒絕正名臺灣參與國際運動賽事','同意拒絕正名臺灣參與國際運動賽事','贊成拒絕正名臺灣參與國際運動賽事','應該拒絕正名臺灣參與國際運動賽事', '拒絕正名臺灣參與國際運動賽事是應該的','拒絕正名臺灣參與國際運動賽事是合理的','拒絕正名臺灣參與國際運動賽事是對的','拒絕正名臺灣參與國際運動賽事是正確的', '支持取消正名臺灣參與國際運動賽事','同意取消正名臺灣參與國際運動賽事','贊成取消正名臺灣參與國際運動賽事','應該取消正名臺灣參與國際運動賽事', '取消正名臺灣參與國際運動賽事是應該的','取消正名臺灣參與國際運動賽事是合理的','取消正名臺灣參與國際運動賽事是對的','取消正名臺灣參與國際運動賽事是正確的', '支持禁止正名臺灣參與國際運動賽事','同意禁止正名臺灣參與國際運動賽事','贊成禁止正名臺灣參與國際運動賽事','應該禁止正名臺灣參與國際運動賽事', '禁止正名臺灣參與國際運動賽事是應該的','禁止正名臺灣參與國際運動賽事是合理的','禁止正名臺灣參與國際運動賽事是對的','禁止正名臺灣參與國際運動賽事是正確的', '支持停止正名臺灣參與國際運動賽事','同意停止正名臺灣參與國際運動賽事','贊成停止正名臺灣參與國際運動賽事','應該停止正名臺灣參與國際運動賽事', '停止正名臺灣參與國際運動賽事是應該的','停止正名臺灣參與國際運動賽事是合理的','停止正名臺灣參與國際運動賽事是對的','停止正名臺灣參與國際運動賽事是正確的' ], '遠雄大巨蛋工程應停工或拆除':['不支持遠雄大巨蛋工程停工或拆除','反對遠雄大巨蛋工程停工或拆除','不贊成遠雄大巨蛋工程停工或拆除','不同意遠雄大巨蛋工程停工或拆除','遠雄大巨蛋工程不應該停工或拆除', '遠雄大巨蛋工程停工或拆除是不應該的','遠雄大巨蛋工程停工或拆除是不合理的','遠雄大巨蛋工程停工或拆除是不正確的','遠雄大巨蛋工程停工或拆除是錯誤的','遠雄大巨蛋工程停工或拆除是不對的', '支持禁止遠雄大巨蛋工程停工或拆除','不拒絕禁止遠雄大巨蛋工程停工或拆除','同意禁止遠雄大巨蛋工程停工或拆除','贊成禁止遠雄大巨蛋工程停工或拆除','應該禁止遠雄大巨蛋工程停工或拆除', '禁止遠雄大巨蛋工程停工或拆除是應該的','禁止遠雄大巨蛋工程停工或拆除是合理的','禁止遠雄大巨蛋工程停工或拆除是正確的','遠雄大巨蛋工程停工或拆除是對的', '支持拒絕遠雄大巨蛋工程停工或拆除','不拒絕拒絕遠雄大巨蛋工程停工或拆除','同意拒絕遠雄大巨蛋工程停工或拆除','贊成拒絕遠雄大巨蛋工程停工或拆除','應該拒絕遠雄大巨蛋工程停工或拆除', '拒絕遠雄大巨蛋工程停工或拆除是應該的','拒絕遠雄大巨蛋工程停工或拆除是合理的','拒絕遠雄大巨蛋工程停工或拆除是正確的','遠雄大巨蛋工程停工或拆除是對的', '支持遠雄大巨蛋工程繼續施工','不拒絕遠雄大巨蛋工程繼續施工','同意遠雄大巨蛋工程繼續施工','贊成遠雄大巨蛋工程繼續施工','遠雄大巨蛋工程應該繼續施工', '遠雄大巨蛋工程繼續施工是應該的','遠雄大巨蛋工程繼續施工是合理的','遠雄大巨蛋工程繼續施工是可被接受的','遠雄大巨蛋工程繼續施工是可被支持的','遠雄大巨蛋工程繼續施工是正確的','遠雄大巨蛋工程繼續施工是對的', '支持允許遠雄大巨蛋工程繼續施工','不拒絕允許遠雄大巨蛋工程繼續施工','同意允許遠雄大巨蛋工程繼續施工','贊成允許遠雄大巨蛋工程繼續施工','應該允許遠雄大巨蛋工程繼續施工', '允許遠雄大巨蛋工程繼續施工是應該的','允許遠雄大巨蛋工程繼續施工是合理的','允許遠雄大巨蛋工程繼續施工是可被接受的','允許遠雄大巨蛋工程繼續施工是可被支持的','允許遠雄大巨蛋工程繼續施工是正確的','允許遠雄大巨蛋工程繼續施工是對的' ], '十二年國教高中職「免學費補助」適用對象增加是不對的':['支持十二年國教高中職免學費補助適用對象增加','不拒絕十二年國教高中職免學費補助適用對象增加','同意十二年國教高中職免學費補助適用對象增加','贊成十二年國教高中職免學費補助適用對象增加','十二年國教高中職免學費補助適用對象應該增加', '十二年國教高中職免學費補助適用對象增加是應該的','十二年國教高中職免學費補助適用對象增加是合理的','十二年國教高中職免學費補助適用對象增加是可被接受的','十二年國教高中職免學費補助適用對象增加是可被支持的','十二年國教高中職免學費補助適用對象增加是正確的','十二年國教高中職免學費補助適用對象增加是對的', '支持允許十二年國教高中職免學費補助適用對象增加','不拒絕允許十二年國教高中職免學費補助適用對象增加','同意允許十二年國教高中職免學費補助適用對象增加','贊成允許十二年國教高中職免學費補助適用對象增加','允許十二年國教高中職免學費補助適用對象應該增加', '允許十二年國教高中職免學費補助適用對象增加是應該的','允許十二年國教高中職免學費補助適用對象增加是合理的','允許十二年國教高中職免學費補助適用對象增加是可被接受的','允許十二年國教高中職免學費補助適用對象增加是可被支持的','允許十二年國教高中職免學費補助適用對象增加是正確的','允許十二年國教高中職免學費補助適用對象增加是對的', '不支持停止十二年國教高中職免學費補助適用對象增加','不拒絕停止十二年國教高中職免學費補助適用對象增加','不同意停止十二年國教高中職免學費補助適用對象增加','不贊成停止十二年國教高中職免學費補助適用對象增加','不應該停止十二年國教高中職免學費補助適用對象增加', '停止十二年國教高中職免學費補助適用對象增加是不應該的','停止十二年國教高中職免學費補助適用對象增加是不合理的','停止十二年國教高中職免學費補助適用對象增加是不對的','停止十二年國教高中職免學費補助適用對象增加是不正確的','停止十二年國教高中職免學費補助適用對象增加是錯誤的', '不支持取消十二年國教高中職免學費補助適用對象增加','不拒絕取消十二年國教高中職免學費補助適用對象增加','不同意取消十二年國教高中職免學費補助適用對象增加','不贊成取消十二年國教高中職免學費補助適用對象增加','不應該取消十二年國教高中職免學費補助適用對象增加', '取消十二年國教高中職免學費補助適用對象增加是不應該的','取消十二年國教高中職免學費補助適用對象增加是不合理的','取消十二年國教高中職免學費補助適用對象增加是不對的','取消十二年國教高中職免學費補助適用對象增加是不正確的','取消十二年國教高中職免學費補助適用對象增加是錯誤的', '不支持禁止十二年國教高中職免學費補助適用對象增加','不拒絕禁止十二年國教高中職免學費補助適用對象增加','不同意禁止十二年國教高中職免學費補助適用對象增加','不贊成禁止十二年國教高中職免學費補助適用對象增加','不應該禁止十二年國教高中職免學費補助適用對象增加', '禁止十二年國教高中職免學費補助適用對象增加是不應該的','禁止十二年國教高中職免學費補助適用對象增加是不合理的','禁止十二年國教高中職免學費補助適用對象增加是不對的','禁止十二年國教高中職免學費補助適用對象增加是不正確的','禁止十二年國教高中職免學費補助適用對象增加是錯誤的', '不支持拒絕十二年國教高中職免學費補助適用對象增加','不拒絕拒絕十二年國教高中職免學費補助適用對象增加','不同意拒絕十二年國教高中職免學費補助適用對象增加','不贊成拒絕十二年國教高中職免學費補助適用對象增加','不應該拒絕十二年國教高中職免學費補助適用對象增加', '拒絕十二年國教高中職免學費補助適用對象增加是不應該的','拒絕十二年國教高中職免學費補助適用對象增加是不合理的','拒絕十二年國教高中職免學費補助適用對象增加是不對的','拒絕十二年國教高中職免學費補助適用對象增加是不正確的','拒絕十二年國教高中職免學費補助適用對象增加是錯誤的', ], '贊成文林苑都更案可依法拆除王家':['不支持文林苑都更案可依法拆除王家','反對文林苑都更案可依法拆除王家','不贊成文林苑都更案可依法拆除王家','不同意文林苑都更案可依法拆除王家','文林苑都更案不應該依法拆除王家', '文林苑都更案依法拆除王家是不應該的','文林苑都更案依法拆除王家是不合理的','文林苑都更案依法拆除王家是不對的','文林苑都更案依法拆除王家是不正確的','文林苑都更案依法拆除王家是錯誤的', '支持拒絕文林苑都更案依法拆除王家','不反對拒絕文林苑都更案依法拆除王家','贊成拒絕文林苑都更案依法拆除王家','同意拒絕文林苑都更案依法拆除王家','應該拒絕文林苑都更案依法拆除王家', '拒絕文林苑都更案依法拆除王家是應該的','拒絕文林苑都更案依法拆除王家是合理的','拒絕文林苑都更案依法拆除王家是對的','拒絕文林苑都更案依法拆除王家是正確的', '支持停止文林苑都更案依法拆除王家','不反對停止文林苑都更案依法拆除王家','贊成停止文林苑都更案依法拆除王家','同意停止文林苑都更案依法拆除王家','應該停止文林苑都更案依法拆除王家', '停止文林苑都更案依法拆除王家是應該的','停止文林苑都更案依法拆除王家是合理的','停止文林苑都更案依法拆除王家是對的','停止文林苑都更案依法拆除王家是正確的', '支持取消文林苑都更案依法拆除王家','不反對取消文林苑都更案依法拆除王家','贊成取消文林苑都更案依法拆除王家','同意取消文林苑都更案依法拆除王家','應該取消文林苑都更案依法拆除王家', '取消文林苑都更案依法拆除王家是應該的','取消文林苑都更案依法拆除王家是合理的','取消文林苑都更案依法拆除王家是對的','取消文林苑都更案依法拆除王家是正確的', '支持禁止文林苑都更案依法拆除王家','不反對禁止文林苑都更案依法拆除王家','贊成禁止文林苑都更案依法拆除王家','同意禁止文林苑都更案依法拆除王家','應該禁止文林苑都更案依法拆除王家', '禁止文林苑都更案依法拆除王家是應該的','禁止文林苑都更案依法拆除王家是合理的','禁止文林苑都更案依法拆除王家是對的','禁止文林苑都更案依法拆除王家是正確的', ], '反對二代健保規定':['支持二代健保規定','同意二代健保規定','贊成二代健保規定','允許二代健保規定', '應該支持二代健保規定','應該同意二代健保規定','應該贊成二代健保規定', '支持二代健保規定是應該的','同意二代健保規定是應該的','贊成二代健保規定是應該的', '二代健保規定是合理的','支持二代健保規定是合理的','同意二代健保規定是合理的','贊成二代健保規定是合理的','','','', '二代健保規定應該被接受','支持二代健保規定應該被接受','同意二代健保規定應該被接受','贊成二代健保規定應該被接受','','','','','', '二代健保規定應該被支持','同意二代健保規定應該被支持','贊成二代健保規定應該被支持','','', '二代健保規定是正確的','支持二代健保規定是正確的','同意二代健保規定是正確的','贊成二代健保規定是正確的','','','', '不應該不支持二代健保規定','應該反對二代健保規定','不應該不贊成二代健保規定','不應該不同意二代健保規定','','','', '不支持二代健保規定是不應該的','反對二代健保規定是不應該的','不贊成二代健保規定是不應該的','不同意二代健保規定是不應該的','','','', '不支持二代健保規定是不合理的','反對二代健保規定是不合理的','不贊成二代健保規定是不合理的','不同意二代健保規定是不合理的','','','','','','', '不支持二代健保規定是不對的','反對二代健保規定是不對的','不贊成二代健保規定是不對的','不同意二代健保規定是不對的', ''], '臺灣應開放含瘦肉精(萊克多巴胺)之美國牛肉進口':['不支持臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口','反對臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口','不贊成臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口','不同意臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口','臺灣不應該開放含瘦肉精萊克多巴胺的美國牛肉進口', '不支持臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是應該的','反對臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是應該的','不贊成臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是應該的','不同意臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是應該的', '不支持臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是合理的','反對臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是合理的','不贊成臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是合理的','不同意臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是合理的', '支持臺灣禁止開放含瘦肉精萊克多巴胺的美國牛肉進口','同意臺灣禁止開放含瘦肉精萊克多巴胺的美國牛肉進口','贊成臺灣禁止開放含瘦肉精萊克多巴胺的美國牛肉進口','應該禁止臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口', '支持臺灣拒絕開放含瘦肉精萊克多巴胺的美國牛肉進口','同意臺灣拒絕開放含瘦肉精萊克多巴胺的美國牛肉進口','贊成臺灣拒絕開放含瘦肉精萊克多巴胺的美國牛肉進口','應該拒絕臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口', '不支持臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被接受的','反對臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被接受的','不贊成臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被接受的','不同意臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被接受的', '不支持臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被支持的','反對臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被支持的','不贊成臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被支持的','不同意臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是可被支持的', '不支持臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是正確的','反對臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是正確的','不贊成臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是正確的','不同意臺灣開放含瘦肉精萊克多巴胺的美國牛肉進口是正確的','','','','','','','','','','', ], '國際賽事會場內應該可以持中華民國國旗':['不支持國際賽事會場內可以持中華民國國旗','反對國際賽事會場內可以持中華民國國旗','不贊成國際賽事會場內可以持中華民國國旗','不同意國際賽事會場內可以持中華民國國旗','國際賽事會場內不應該持中華民國國旗','國際賽事會場內持中華民國國旗是不應該的', '國際賽事會場內持中華民國國旗是不合理的','國際賽事會場內持中華民國國旗是不對的', '支持禁止國際賽事會場內持中華民國國旗','同意禁止國際賽事會場內持中華民國國旗','贊成禁止國際賽事會場內持中華民國國旗','應該禁止國際賽事會場內持中華民國國旗', '禁止國際賽事會場內持中華民國國旗是應該的','禁止國際賽事會場內持中華民國國旗是可被支持的','禁止國際賽事會場內持中華民國國旗是合理的','禁止國際賽事會場內持中華民國國旗是是可被接受的','禁止國際賽事會場內持中華民國國旗是正確的', '支持拒絕國際賽事會場內持中華民國國旗','同意拒絕國際賽事內持中華民國國旗','贊成拒絕國際賽事內持中華民國國旗','應該拒絕國際賽事內持中華民國國旗', '拒絕國際賽事內持中華民國國旗是應該的','拒絕國際賽事內持中華民國國旗是合理的','拒絕國際賽事內持中華民國國旗是可被接受的','拒絕國際賽事內持中華民國國旗是可被支持的','拒絕國際賽事內持中華民國國旗是正確的', ], '反對無圍牆校園':[ '不應該禁止校園設圍牆','禁止校園設圍牆是不應該的','禁止校園設圍牆是不合理的','禁止校園設圍牆是不對的', '支持校園取消圍牆','同意校園取消圍牆','贊成校園取消圍牆','校園應該取消圍牆','校園取消圍牆是應該的','校園取消圍牆是可被接受的','校園取消圍牆是可被支持的','校園取消圍牆是合理的','校園取消圍牆是正確的','' '支持校園拒絕設圍牆','同意校園拒絕設圍牆','贊成校園拒絕設圍牆','校園應該拒絕設圍牆','校園拒絕設圍牆是應該的','校園拒絕設圍牆是合理的','校園拒絕設圍牆是可被接受的','校園拒絕設圍牆是可被支持的','校園拒絕設圍牆是正確的','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','','', '不支持校園設圍牆是不應該的','反對校園設圍牆是不應該的','不贊成校園設圍牆是不應該的','不同意校園設圍牆是不應該的', '不支持校園設圍牆是不合理的','反對校園設圍牆是不合理的','不贊成校園設圍牆是不合理的','不同意校園設圍牆是不合理的', '不支持校園設圍牆是不對的','反對校園設圍牆是不對的','不贊成校園設圍牆是不對的','不同意校園設圍牆是不對的'], '另立專法保障同婚是正確的':['不支持另立專法保障同婚','不同意另立專法保障同婚','反對另立專法保障同婚','不贊成另立專法保障同婚','不應該另立專法保障同婚', '另立專法保障同婚是不應該的','另立專法保障同婚是不合理的','另立專法保障同婚是不對的','拒絕另立專法保障同婚', '不支持允許另立專法保障同婚','不同意允許另立專法保障同婚','不贊成允許另立專法保障同婚','不應該允許另立專法保障同婚', '允許另立專法保障同婚是不應該的','允許另立專法保障同婚是不對的','允許另立專法保障同婚是不合理的','允許另立專法保障同婚是不正確的','允許另立專法保障同婚是錯誤的', '支持取消專法保障同婚','同意取消專法保障同婚','贊成取消專法保障同婚','應該取消專法保障同婚', '取消專法保障同婚是應該的','取消專法保障同婚是合理的','取消專法保障同婚是可被接受的','取消專法保障同婚是可被支持的','取消專法保障同婚是正確的', '支持拒絕專法保障同婚','同意拒絕專法保障同婚','贊成拒絕專法保障同婚','拒絕專法保障同婚是應該的','拒絕專法保障同婚是合理的','拒絕專法保障同婚是可被接受的','拒絕專法保障同婚是可被支持的','拒絕專法保障同婚是正確的', ], '堅決反對政府舉債發展前瞻建設計畫':['支持政府舉債發展前瞻建設計畫','同意政府舉債發展前瞻建設計畫','贊成政府舉債發展前瞻建設計畫','政府應該舉債發展前瞻建設計畫', '政府舉債發展前瞻建設計畫是合理的','政府舉債發展前瞻建設計畫是可被接受的','政府舉債發展前瞻建設計畫是可被支持的','政府舉債發展前瞻建設計畫是正確的', '不支持政府舉債發展前瞻建設計畫是不應該的','不同意政府舉債發展前瞻建設計畫是不應該的','不贊成政府舉債發展前瞻建設計畫是不應該的','不允許政府舉債發展前瞻建設計畫是不應該的', '不支持禁止政府舉債發展前瞻建設計畫','不同意禁止政府舉債發展前瞻建設計畫','不贊成禁止政府舉債發展前瞻建設計畫','不應該禁止政府舉債發展前瞻建設計畫', '禁止政府舉債發展前瞻建設計畫是不應該的','禁止政府舉債發展前瞻建設計畫是不合理的','禁止政府舉債發展前瞻建設計畫是不對的', '不支持拒絕政府舉債發展前瞻建設計畫','不同意拒絕政府舉債發展前瞻建設計畫','不贊成拒絕政府舉債發展前瞻建設計畫','不應該拒絕政府舉債發展前瞻建設計畫', '拒絕政府舉債發展前瞻建設計畫是不應該的','拒絕政府舉債發展前瞻建設計畫是不合理的','拒絕政府舉債發展前瞻建設計畫是不對的' ], '支持陳前總統保外就醫':['不支持陳前總統保外就醫','反對陳前總統保外就醫','不贊成陳前總統保外就醫','不同意陳前總統保外就醫', '不應該讓陳前總統保外就醫','讓陳前總統保外就醫是不應該的','讓陳前總統保外就醫是不合理的','讓陳前總統保外就醫是不對的','讓陳前總統保外就醫是不正確的','讓陳前總統保外就醫是錯誤的', '支持禁止陳前總統保外就醫','同意禁止陳前總統保外就醫','贊成禁止陳前總統保外就醫','應該禁止陳前總統保外就醫', '禁止陳前總統保外就醫是應該的','禁止陳前總統保外就醫是合理的','禁止陳前總統保外就醫是可被接受的','禁止陳前總統保外就醫是可被支持的','禁止陳前總統保外就醫是正確的','禁止陳前總統保外交易是對的', '支持拒絕陳前總統保外就醫','同意拒絕陳前總統保外就醫','贊成拒絕陳前總統保外就醫','應該拒絕陳前總統保外就醫', '拒絕陳前總統把未就醫是應該的','拒絕參選總統保外就醫是合理的','拒絕陳前總統保外覺得是可被接受的','拒絕陳前總統保外就醫是可被支持的','拒絕陳前總統保外就醫是正確的','拒絕陳前總統保外就醫是對的', '反對允許陳前總統保外就醫','不支持允許陳前總統保外就醫','不贊成允許陳前總統保外就醫','不同意允許陳前總統保外就醫', '允許陳前總統保外就醫是不應該的','允許陳前總統保外就醫是不合理的','允許陳前總統保外就醫是不對的','允許陳前總統保外就醫是不正確的','允許陳前總統保外就醫是錯誤的', ], '年金改革應取消或應調降軍公教月退之優存利率十八趴':['不支持年金改革取消或調降軍公教月退優存利率18%十八趴','反對年金改革取消或調降軍公教月退優存利率18%十八趴','不贊成年金改革取消或調降軍公教月退優存利率18%十八趴','不同意年金改革取消或調降軍公教月退優存利率18%十八趴','年金改革不應該取消或調降軍公教月退優存利率18%十八趴', '年金改革取消或調降軍公教月退優存利率18%十八趴是不應該的','年金改革取消或調降軍公教月退優存利率18%十八趴是不合理的','年金改革取消或調降軍公教月退優存利率18%十八趴是不可被接受的','年金改革取消或調降軍公教月退優存利率18%十八趴是不被支持的','年金改革取消或調降軍公教月退優存利率18%十八趴是不正確的','年金改革取消或調降軍公教月退優存利率18%十八趴是錯誤的','年金改革取消或調降軍公教月退優存利率18%十八趴是不對的', '支持拒絕年金改革取消或調降軍公教月退優存利率18%十八趴','同意拒絕年金改革取消或調降軍公教月退優存利率18%十八趴','贊成拒絕年金改革取消或調降軍公教月退優存利率18%十八趴','應拒絕年金改革取消或調降軍公教月退優存利率18%十八趴', '拒絕年金改革取消或調降軍公教月退優存利率18%十八趴是應該的','拒絕年金改革取消或調降軍公教月退優存利率18%十八趴是合理的','拒絕年金改革取消或調降軍公教月退優存利率18%十八趴是可被接受的','拒絕年金改革取消或調降軍公教月退優存利率18%十八趴是可被支持的','拒絕年金改革取消或調降軍公教月退優存利率18%十八趴是正確的','拒絕年金改革取消或調降軍公教月退優存利率18%十八趴是對的', '不支持允許年金改革取消或調降軍公教月退優存利率18%十八趴','不同意年金改革取消或調降軍公教月退優存利率18%十八趴','不贊成年金改革取消或調降軍公教月退優存利率18%十八趴','年金改革不應該取消或調降軍公教月退優存利率18%十八趴', '年金改革取消或調降軍公教月退優存利率18%十八趴是合理的','年金改革取消或調降軍公教月退優存利率18%十八趴是可被接受的','年金改革取消或調降軍公教月退優存利率18%十八趴是可被支持的','年金改革取消或調降軍公教月退優存利率18%十八趴是正確的','年金改革取消或調降軍公教月退優存利率18%十八趴是對的' ], '同意動物實驗':['不支持動物實驗','反對動物實驗','不贊成動物實驗','不同意動物實驗','不應該動物實驗','動物實驗是不應該的','動物實驗是不合理的','動物實驗是不對的','動物實驗是不正確的','動物實驗是錯誤的', '贊成禁止動物實驗','支持禁止動物實驗','同意禁止動物實驗','應該禁止動物實驗','禁止動物實驗是應該的','禁止動物實驗是合理的','禁止動物實驗是正確的','禁止動物實驗是對的', '支持拒絕動物實驗','同意拒絕動物實驗','贊成拒絕動物實驗','拒絕動物實驗是應該的','應該拒絕動物實驗','拒絕動物實驗是合理的','拒絕動物實驗是正確的','拒絕動物實驗是對的', '不支持允許動物實驗','反對允許動物實驗','不贊成允許動物實驗','不同意允許動物實驗','允許動物實驗是不應該的','不應該允許動物實驗','允許動物實驗是不合理的','允許動物實驗是不對的','允許動物實驗是不正確的','允許動物實驗是錯誤的', ], '油價應該凍漲或緩漲':['支持油價漲價','同意油價漲價','贊成油價漲價','油價應該漲價','油價漲價是應該的','油價漲價是合理的','是可被接受的','油價漲價是被支持的','油價漲價是正確的', '不支持油價應該凍漲或緩漲','反對油價應該凍漲或緩漲','不贊成油價應該凍漲或緩漲','不同意油價應該凍漲或緩漲','油價不應該凍漲或緩漲', '油價凍漲或緩漲是不應該的','油價凍漲或緩漲是不合理的','油價凍漲或緩漲是不對的','油價凍漲或緩漲是不正確的','油價凍漲或緩漲是錯誤的', '支持取消油價凍漲或緩漲','同意取消油價凍漲或緩漲','贊成取消油價凍漲或緩漲','反對取消油價漲價','不贊成取消油價漲價','不同意取消油價漲價','不應該取消油價漲價', '取消油價漲價是不合理的','取消油價漲價是不應該的','取消油價漲價是不正確的','取消油價漲價是錯誤的','取消油價漲價是不對的', '支持拒絕油價凍漲或緩漲','同意拒絕油價凍漲或緩漲','贊成拒絕油價凍漲或緩漲','反對拒絕油價漲價','不贊成拒絕油價漲價','不同意拒絕油價漲價','不應該拒絕油價漲價', '拒絕油價漲價是不合理的','拒絕油價漲價是不應該的','拒絕油價漲價是不正確的','拒絕油價漲價是錯誤的','拒絕油價漲價是不對的', '支持禁止油價凍漲或緩漲','同意禁止油價凍漲或緩漲','贊成禁止油價凍漲或緩漲','反對禁止油價漲價','不贊成禁止油價漲價','不同意禁止油價漲價','不應該禁止油價漲價', '禁止油價漲價是不合理的','禁止油價漲價是不應該的','禁止油價漲價是不正確的','禁止油價漲價是錯誤的','禁止油價漲價是不對的' ], '反對旺旺中時併購中嘉':['支持旺旺中時併購中嘉','同意旺旺中時併購中嘉','贊成旺旺中時併購中嘉','旺旺中時應可以併購中嘉', '旺旺中時併購中嘉是應該的','旺旺中時併購中嘉是合理的','旺旺中時併購中嘉是可被接受的','旺旺中時併購中嘉是可被支持的','旺旺中時併購中嘉是正確的','旺旺中時併購中嘉是對的', '支持允許旺旺中時併購中嘉','同意允許旺旺中時併購中嘉','贊成允許旺旺中時併購中嘉','應該允許旺旺中時併購中嘉','應允許旺旺中時併購中嘉', '允許旺旺中時併購中嘉是應該的','允許旺旺中時併購中嘉是可被接受的','允許旺旺中時併購中嘉是可被支持的','允許旺旺中時併購中嘉是正確的','允許旺旺中時併購中嘉是對的', '不支持禁止旺旺中時併購中嘉','反對禁止旺旺中時併購中嘉','不贊成禁止旺旺中時併購中嘉','不同意禁止旺旺中時併購中嘉','不應該禁止旺旺中時併購中嘉', '禁止旺旺中時併購中嘉是不應該的','禁止旺旺中時併購中嘉是不合理的','禁止旺旺中時併購中嘉是不對的','禁止旺旺中時併購中嘉是不正確的','禁止旺旺中時併購中嘉是錯誤的', '不支持拒絕旺旺中時併購中嘉','反對拒絕旺旺中時併購中嘉','不贊成拒絕旺旺中時併購中嘉','不同意拒絕旺旺中時併購中嘉','不應該拒絕旺旺中時併購中嘉', '拒絕旺旺中時併購中嘉是不應該的','拒絕旺旺中時併購中嘉是不合理的','拒絕旺旺中時併購中嘉是不對的','拒絕旺旺中時併購中嘉是不正確的','拒絕旺旺中時併購中嘉是錯誤的', ], '贊同課綱微調':['不支持課綱微調','反對課綱微調','不贊成課綱微調','不同意課綱微調','課綱不應該微調', '課綱微調是不應該的','課綱微調是不合理的','課綱微調是不對的','課綱微調是不正確的','課綱微調是錯誤的', '不支持允許課綱微調','反對允許課綱微調','不贊成允許課綱微調','不同意允許課綱微調','課綱不應該微調', '允許課綱微調是不應該的','允許課綱微調是不合理的','允許課綱微調是不對的','允許課綱微調是不正確的','允許課綱微調是錯誤的', '支持取消課綱微調','同意取消課綱微調','贊成取消課綱微調','應該取消課綱微調', '取消課綱微調是應該的','取消課綱微調是合理的','取消課綱微調可被接受的','取消課綱微調可被支持的','取消課綱微調是正確的','取消課綱微調是對的', '支持拒絕課綱微調','同意拒絕課綱微調','贊成拒絕課綱微調','應該拒絕課綱微調', '拒絕課綱微調是應該的','拒絕課綱微調是合理的','拒絕課綱微調可被接受的','拒絕課綱微調可被支持的','拒絕課綱微調是正確的','拒絕課綱微調是對的', '支持禁止課綱微調','同意禁止課綱微調','贊成禁止課綱微調','應該禁止課綱微調', '禁止課綱微調是應該的','禁止課綱微調是合理的','禁止課綱微調可被接受的','禁止課綱微調可被支持的','禁止課綱微調是正確的','禁止課綱微調是對的' ], '贊成流浪動物零撲殺':['不支持流浪動物零撲殺','反對流浪動物零撲殺','不贊成流浪動物零撲殺','不同意流浪動物零撲殺','不應該流浪動物零撲殺', '流浪動物零撲殺是不應該的','流浪動物零撲殺是不合理的','流浪動物零撲殺是不對的', '支持撲殺流浪動物','同意撲殺流浪動物','贊成撲殺流浪動物','應該撲殺流浪動物', '撲殺流浪動物是應該的','撲殺流浪動物是合理的','撲殺流浪動物是可被接受的','撲殺流浪動物是可被支持的','撲殺流浪動物是正確的','撲殺流浪動物是對的', '支持允許撲殺流浪動物','同意允許撲殺流浪動物','贊成允許撲殺流浪動物','應該允許撲殺流浪動物', '允許撲殺流浪動物是應該的','允許撲殺流浪動物是合理的','允許撲殺流浪動物是可被接受的','允許撲殺流浪動物是可被支持的','允許撲殺流浪動物是正確的','允許撲殺流浪動物是對的', '不支持拒絕撲殺流浪動物','反對拒絕撲殺流浪動物','不贊成拒絕撲殺流浪動物','不同意拒絕撲殺流浪動物','不應該拒絕撲殺流浪動物', '拒絕撲殺流浪動物是不應該的','拒絕撲殺流浪動物是不合理的','拒絕撲殺流浪動物是不對的','拒絕撲殺流浪動物是不正確的','拒絕撲殺流浪動物是錯誤的', '不支持取消撲殺流浪動物','反對取消撲殺流浪動物','不贊成取消撲殺流浪動物','不同意取消撲殺流浪動物','不應該取消撲殺流浪動物', '取消撲殺流浪動物是不應該的','取消撲殺流浪動物是不合理的','取消撲殺流浪動物是不對的','取消撲殺流浪動物是不正確的','取消撲殺流浪動物是錯誤的', '不支持禁止撲殺流浪動物','反對禁止撲殺流浪動物','不贊成禁止撲殺流浪動物','不同意禁止撲殺流浪動物','不應該禁止撲殺流浪動物', '禁止撲殺流浪動物是不應該的','禁止撲殺流浪動物是不合理的','禁止撲殺流浪動物是不對的','禁止撲殺流浪動物是不正確的','禁止撲殺流浪動物是錯誤的', '支持拒絕流浪動物零撲殺','同意拒絕流浪動物零撲殺','贊成拒絕流浪動物零撲殺','應該拒絕流浪動物零撲殺', '拒絕流浪動物零撲殺是應該的','拒絕流浪動物零撲殺是合理的','拒絕流浪動物零撲殺是對的','拒絕流浪動物零撲殺是正確的', '支持禁止流浪動物零撲殺','同意禁止流浪動物零撲殺','贊成禁止流浪動物零撲殺','不拒絕禁止流浪動物零撲殺','應該禁止流浪動物零撲殺', '禁止流浪動物零撲殺是應該的','禁止流浪動物零撲殺是合理的','禁止流浪動物零撲殺是對的','禁止流浪動物零撲殺是正確的', '支持取消流浪動物零撲殺','同意取消流浪動物零撲殺','贊成取消流浪動物零撲殺','不拒絕取消流浪動物零撲殺','應該取消流浪動物零撲殺', '取消流浪動物零撲殺是應該的','取消流浪動物零撲殺是合理的','取消流浪動物零撲殺是對的','取消流浪動物零撲殺是正確的' ], '核四應該啟用':['不支持核四啟用','反對核四啟用','不贊成核四啟用','不同意核四啟用','不支持核四應該啟用','反對核四應該啟用','不贊成核四應該啟用','不同意核四應該啟用', '核四啟用是不應該的','核四啟用是不合理的','核四啟用是不對的','核四啟用是不正確的','核四啟用是錯誤的', '支持停止核四啟用','不拒絕停止核四啟用','同意停止核四啟用','贊成停止核四啟用','應該停止核四啟用', '停止核四啟用是應該的','停止核四啟用是合理的','停止核四啟用是可被接受的','停止核四啟用是可被支持的','停止核四啟用是正確的','停止核四啟用是對的', '支持取消核四啟用','不取消取消核四啟用','同意取消核四啟用','贊成取消核四啟用','應該取消核四啟用', '取消核四啟用是應該的','取消核四啟用是合理的','取消核四啟用是可被接受的','取消核四啟用是可被支持的','取消核四啟用是正確的','取消核四啟用是對的', '支持禁止核四啟用','不拒絕禁止核四啟用','同意禁止核四啟用','贊成禁止核四啟用','應該禁止核四啟用', '禁止核四啟用是應該的','禁止核四啟用是合理的','禁止核四啟用是可被接受的','禁止核四啟用是可被支持的','禁止核四啟用是正確的','禁止核四啟用是對的', '支持拒絕核四啟用','不拒絕拒絕核四啟用','同意拒絕核四啟用','贊成拒絕核四啟用','應該拒絕核四啟用', '拒絕核四啟用是應該的','拒絕核四啟用是合理的','拒絕核四啟用是可被接受的','拒絕核四啟用是可被支持的','拒絕核四啟用是正確的','拒絕核四啟用是對的', '支持停用核四','不拒絕停用核四','同意停用核四','贊成停用核四','應該停用核四','停用核四是應該的','停用核四是合理的', '停用核四是可被接受的','停用核四是可被支持的','停用核四是正確的','停用核四是對的' ], }) self.settings = settings self.ckiptokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') #maxLenLimitAllowedInaSentence = 200 def getCKIPTokens(self, inputStr, srctype='Query'): argInTokenize = self.settings['tokenizerSettingsDoc'] if srctype=='Doc' else self.settings['tokenizerSettingsQuery'] tokens = self.ckiptokenizer(inputStr, **argInTokenize) return tokens def readsrc(self, **kwargs): kwargs.setdefault('candidate_negative_sampling_rate', 1.0) #數字越大利用擴增而來的負例越多 """ td: Index(['Query', 'News_Index', 'Relevance'], dtype='object') qs: Index(['Query_Index', 'Query'], dtype='object') nc: Index(['News_Index', 'News_URL'], dtype='object') newdf: Index(['News_URL', 'News_Fulltitle', 'News_Fullcontent'], dtype='object') """ td = pd.read_csv(os.path.join(self.settings['workingdir'],'TD.csv')) qs = pd.read_csv(os.path.join(self.settings['workingdir'], 'QS_1.csv')).append(pd.read_csv(os.path.join(self.settings['workingdir'], 'QS_2.csv'))).reset_index(drop=True) qs = pd.merge(left=td.loc[:,["Query"]].drop_duplicates(), right=qs, how='outer', on='Query').drop_duplicates(subset=['Query']).reset_index(drop=True) nc = pd.read_csv(os.path.join(self.settings['workingdir'],'NC_1.csv')).append(pd.read_csv(os.path.join(self.settings['workingdir'],'NC_2.csv'))).drop_duplicates(subset=['News_Index']).reset_index(drop=True) newsdf = pd.merge( left=pd.read_json(os.path.join(self.settings['workingdir'],'url_to_title.json'), orient="index").reset_index().rename(columns={"index": "News_URL", 0: "News_Fulltitle"}), right=pd.read_json(os.path.join(self.settings['workingdir'],'url2content.json'), orient="index").reset_index().rename(columns={"index": "News_URL", 0: "News_Fullcontent"}), how='left', on='News_URL').reset_index(drop=True).append( pd.read_csv( os.path.join(self.settings['workingdir'],'newsdf3.csv') ).loc[:,["News_URL","News_Fulltitle","News_Fullcontent"]] ).reset_index(drop=True) newsdf = newsdf[~pd.isnull(newsdf.News_Fullcontent)] #newsdf['News_Fullcontent'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf['News_Fullcontent'], lambda x: re.sub(r' +',' ',x).replace('&#39;','\'').replace('audiojs.events.ready(function(){var as = audiojs.createAll();});',''), threading=True, computeoutput=True, workers=self.settings['num_workers']*10) #newsdf['News_FullTitleContent'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf, lambda x: x['News_Fulltitle']+'。'+x['News_Fullcontent'], threading=True, computeoutput=True, workers=self.settings['num_workers']*10) newsdf['News_Fullcontent'] = newsdf['News_Fullcontent'].apply( func=lambda x: re.sub(r' +',' ',x).replace('&#39;','\'')) newsdf['News_FullTitleContent'] = newsdf.apply( func=lambda x: x['News_Fulltitle']+'。'+x['News_Fullcontent'], axis=1) newsdf = newsdf[~news_retrieval_common_funcs.is_nan(newsdf.News_FullTitleContent)] for col in newsdf.columns: newsdf = newsdf.drop_duplicates(subset=[col]) #newsdf['sentencebreakNews_FullTitleContent'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf['News_FullTitleContent'], news_retrieval_common_funcs.sentencebreaker, meta=('sentencebreakNews_FullTitleContent', object), threading=True, computeoutput=True, workers=self.settings['num_workers']*10) #newsdf['sentencebreakNews_FullTitleContent'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf['sentencebreakNews_FullTitleContent'], lambda x: [s for s in x if s not in ['()','()','《》']], threading=True, computeoutput=True, workers=self.settings['num_workers']*10) #刪除超長的句子 為了節省記憶體空間將新聞文章去除超長句子 #newsdf['sentencebreak_FullTitleContent_maxlen'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf['sentencebreakNews_FullTitleContent'], lambda x: [s for s in x if len(s)<=maxLenLimitOf_aSentence], threading=True, computeoutput=True, workers=self.settings['num_workers']) #newsdf['sentencebreakNews_FullTitleContent'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf['sentencebreakNews_FullTitleContent'], lambda x: [s for s in x if (re.match('^\d+$', s)==None) and (s not in ['()','()','《》']) and (len(s)<=maxLenLimitAllowedInaSentence)], threading=True, computeoutput=True, workers=self.settings['num_workers']*10) newsdf['News_FullTitleContent_fullStrlen'] = newsdf['News_FullTitleContent'].apply(len) #newsdf['sentencebreak_FullTitleContent_N_of_sentences'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf['sentencebreakNews_FullTitleContent'], lambda x: len(x), threading=True, computeoutput=True, workers=self.settings['num_workers']*10) #newsdf['sentencebreak_FullTitleContent_maxlen'] = multiprocessing_functions.df_apply_by_daskmultiprocessing(newsdf['sentencebreakNews_FullTitleContent'], lambda x: max([len(s) for s in x]), threading=True, computeoutput=True, workers=self.settings['num_workers']*10) #newsdf = newsdf[~pd.isnull(newsdf.sentencebreakNews_FullTitleContent)] nc = nc[~pd.isnull(nc.News_Index)] #maxlengthNews = newsdf.sort_values(by=['full_strlen'], ascending=False).iloc[0,:]['News_FullTitleContent'] compset = pd.merge(left=td, right=qs, how='outer', on='Query') compset =
pd.merge(left=compset, right=nc, how='outer', on='News_Index')
pandas.merge
from numpy.fft import fft import pickle_compat pickle_compat.patch() import pandas as pd from sklearn import metrics import pickle import numpy as np from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from datetime import timedelta as td Raw_CGMData1=pd.read_csv('CGMData.csv', low_memory=False) RawInsulinData1=
pd.read_csv('InsulinData.csv', low_memory=False)
pandas.read_csv
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.core import ops from pandas.errors import NullFrequencyError from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = pd.timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like @pytest.mark.parametrize('box', [pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx =
tm.box_expected(idx, box)
pandas.util.testing.box_expected
from dataclasses import make_dataclass from datetime import datetime, timedelta import logging import os import requests from settings.constants import TEST_DATA_DIR, VITIGEOSS_CONFIG_FILE import pandas as pd import json from settings.instance import settings logger = logging.getLogger() class BearerAuth(requests.auth.AuthBase): def __init__(self, token): self.token = token def __call__(self, r): r.headers["authorization"] = "Bearer " + self.token return r def get_bearerAuth(credentials: dict): auth_url = os.path.join(settings.vitigeoss_api_base_url, settings.vitigeoss_api_auth_endpoint) response = requests.post(auth_url, data=credentials).json() b_id, bearer = response['id'], response['token']['hash'] bearerAuth = BearerAuth(f'{b_id}-{bearer}') return bearerAuth class WeatherStationDriver: """ Driver class in charge of interfacing with the Vitigeoss APIs to retrieve data coming from the sensors of the weather stations """ def __init__(self) -> None: """ Configure the endpoints to be called using settings """ self.api_base_url = settings.vitigeoss_api_base_url self.station_endpoint = settings.get_vitigeoss_api_station_endpoint self.sensor_endpoint = settings.get_vitigeoss_api_sensor_endpoint self.sensor_name_id_dict = None def register_station_sensor_ids(self, station: str, type_keys: list, bearerAuth: BearerAuth=get_bearerAuth(settings.get_api_auth_credentials())): """ Retrieve the list of sensors available at the specified station and filter them by their typeKey. Save the filtered sensors ids in a dictionary, where the key is the corresponding typeKey :param station: string containing the name of the weather station whose sensors are to be listed :param type_keys: List of type keys that identify the type of sensor, e.g. ['temp', 'radiation'] :param bearerAuth: authentication token for the API service :return: None - The class attribute "sensor_name_id_dict" is initialized """ station_url = os.path.join(self.api_base_url, self.station_endpoint(station)) response = requests.get(station_url, auth=bearerAuth) data = response.json() if response.status_code not in [200, 201]: logger.warning(data) return self.sensor_name_id_dict = dict() for sensor in data['sensors']: if sensor['typeKey'] in type_keys: self.sensor_name_id_dict[sensor['typeKey']] = sensor['_id'] def get_sensor_data(self, dateStart: str, dateEnd: str, bearerAuth: BearerAuth=get_bearerAuth(settings.get_api_auth_credentials())): """ For each type of sensor saved in the class attribute "sensor_name_id_dict" by the "register_station_sensor_ids()" method, request to the Vitigeoss APIs the sensor data of the period between the dateStart and dateEnd dates :returns: list of dictionaries, one for each sensor """ if self.sensor_name_id_dict is None: raise Exception(f'Sensor ids not registered!') sensors = [] for _, _id in self.sensor_name_id_dict.items(): sensor_url = f'{os.path.join(self.api_base_url, self.sensor_endpoint(_id))}?dateStart={dateStart}&dateEnd={dateEnd}&includeFields=dateStart,measure' logger.warning(sensor_url) response = requests.get(sensor_url, auth=bearerAuth) sensor_data = response.json() if response.status_code not in [200, 201]: logger.warning(sensor_data) continue sensors.append(sensor_data) return sensors @staticmethod def get_df_from_sensor_data(sensors: list): """ Support method to organize the messy data coming from sensors in a single and good looking dataframe """ Measurement = make_dataclass("Measurement", [("datetime", str), ("typeKey", str), ("measure", float)]) measurements_list = [] for sensor in sensors: for sensor_measurement in sensor['measurements']: measurement = Measurement(datetime.strptime(sensor_measurement['dateStart'], '%Y-%m-%dT%H:%M:%S.000Z'), sensor['typeKey'], sensor_measurement['measure']) measurements_list.append(measurement) if len(measurements_list) == 0: return None return pd.DataFrame(measurements_list) class MockedWeatherStationDriver(WeatherStationDriver): """ Mocked version of the WeatherStationDriver, used for testing purposes. Instead of calling the external APIs to retrieve weather station data, it reads a mocked sample from a json file and returns its content """ def __init__(self) -> None: super().__init__() def get_sensor_data(self, dateStart: str, dateEnd: str): if self.sensor_name_id_dict is None: raise Exception(f'Sensor ids not registered!') with open(os.path.join(TEST_DATA_DIR, 'mocked_sensor_data.json')) as f: mocked_sensor_data = json.loads(f.read()) return mocked_sensor_data class WeatherStationManager: def __init__(self, driver=WeatherStationDriver()) -> None: with open(VITIGEOSS_CONFIG_FILE) as f: self.config = json.loads(f.read()) self.input_data_features = settings.input_data_features self.driver = driver def get_wsdata_df(self, place, weather_station_missing_rows, chunk_days=366): """ Retrieve weather data from weather station sensors of the specified place. This method only requests the data of the dates whose data are missing (not the data of the entire year). """ if weather_station_missing_rows.empty: raise Exception('The Dataframe to be updated is empty!') self.driver.register_station_sensor_ids(station=self.config['place_to_station'][place], type_keys=self.input_data_features) weather_station_data_df = None for dateStart in pd.date_range(weather_station_missing_rows.index[0].to_pydatetime(), weather_station_missing_rows.index[-1].to_pydatetime(), freq=f'{chunk_days}d'): # Compute dateEnd, chunk_days - 1 days later than dateStart. maximum dateEnd is the 31st of December of that year dateEnd = min(dateStart.to_pydatetime() + timedelta(days=chunk_days - 1), datetime(dateStart.year, 12, 31)) dateEnd = dateEnd + timedelta(hours=23, minutes=59, seconds=59) try: weekly_sensor_data = self.driver.get_sensor_data(dateStart, dateEnd) weekly_data_df = self.driver.get_df_from_sensor_data(weekly_sensor_data) if weather_station_data_df is None: weather_station_data_df = weekly_data_df else: weather_station_data_df = weather_station_data_df.append(weekly_data_df, ignore_index=True) except Exception as e: logger.warning(e) if weather_station_data_df is None: return None pheno_phases_df = None update_df = self.organize_weather_station_data(weather_station_data_df, pheno_phases_df) update_df = self.feature_engineering(update_df) update_df = self.manually_fix_df_errors(update_df, place, dateStart.year) update_df = update_df.interpolate(limit_direction='both') # Interpolate to fill missing data values return update_df def organize_weather_station_data(self, weather_station_data_df: pd.DataFrame, pheno_phases_df: pd.DataFrame): """ Process data and obtain a refined version of the pandas DataFrame to be used as input for the inference models. Still some steps have to be taken to obtain the final version of the df. """ dataframes = [] for ft in self.input_data_features: dataframes.append(self.transform_df(weather_station_data_df[weather_station_data_df['typeKey'] == ft])) transformed_station_data_df =
pd.concat(dataframes, axis=1)
pandas.concat
import pandas as pd from collections import defaultdict import datetime from xlrd import xldate_as_datetime import os import sys import json from openpyxl import load_workbook from .os_functions import last_day_of_month,enter_exit, generate_md5 from .regex_functions import replace_re_special, strQ2B, strB2Q,symbol_to_spaces, normalize_punctuations from .nlp_functions import get_keyword_dict, get_word_freq_dict, convert_key2list, process_text_eng from .excel_functions import write_format_columns from .func_classes import DfDict import gc import re import warnings import traceback import logging from pandas.errors import OutOfBoundsDatetime import swifter from flashtext import KeywordProcessor warnings.filterwarnings('ignore') def read_config_table(file_path, dtype=str): df = pd.DataFrame([]) #读取数据文件,只读取第一个肉眼可见的sheet if '.xlsx' == file_path[-5:]: df_workbook = pd.ExcelFile(file_path) sheets_property_list = df_workbook.book.sheets() for sheet_property in sheets_property_list: if sheet_property.visibility == 0: df = df_workbook.parse(sheet_property.name, dtype=str) break else: try: df = pd.read_excel(file_path) except: df = pd.read_html(file_path,header=0) if df.empty: enter_exit(f'Cannot read any visible table in "{file_path}"') return df def read_data_file(file_path): df = pd.DataFrame([]) #读取数据文件,只读取第一个sheet if '.csv' == file_path[-4:]: df = pd.read_csv(file_path) elif '.xlsx' == file_path[-5:]: df = pd.read_excel(file_path) else: try: df = pd.read_excel(file_path) except: df =
pd.read_html(file_path,header=0)
pandas.read_html
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, time from numpy import nan from numpy.random import randn import numpy as np from pandas import (DataFrame, Series, Index, Timestamp, DatetimeIndex, to_datetime, date_range) import pandas as pd import pandas.tseries.offsets as offsets from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.compat import product from pandas.tests.frame.common import TestData class TestDataFrameTimeSeriesMethods(tm.TestCase, TestData): def test_diff(self): the_diff = self.tsframe.diff(1) assert_series_equal(the_diff['A'], self.tsframe['A'] - self.tsframe['A'].shift(1)) # int dtype a = 10000000000000000 b = a + 1 s = Series([a, b]) rs = DataFrame({'s': s}).diff() self.assertEqual(rs.s[1], 1) # mixed numeric tf = self.tsframe.astype('float32') the_diff = tf.diff(1) assert_series_equal(the_diff['A'], tf['A'] - tf['A'].shift(1)) # issue 10907 df = pd.DataFrame({'y': pd.Series([2]), 'z': pd.Series([3])}) df.insert(0, 'x', 1) result = df.diff(axis=1) expected = pd.DataFrame({'x': np.nan, 'y': pd.Series( 1), 'z': pd.Series(1)}).astype('float64') assert_frame_equal(result, expected) def test_diff_timedelta(self): # GH 4533 df = DataFrame(dict(time=[Timestamp('20130101 9:01'), Timestamp('20130101 9:02')], value=[1.0, 2.0])) res = df.diff() exp = DataFrame([[pd.NaT, np.nan], [pd.Timedelta('00:01:00'), 1]], columns=['time', 'value']) assert_frame_equal(res, exp) def test_diff_mixed_dtype(self): df = DataFrame(np.random.randn(5, 3)) df['A'] = np.array([1, 2, 3, 4, 5], dtype=object) result = df.diff() self.assertEqual(result[0].dtype, np.float64) def test_diff_neg_n(self): rs = self.tsframe.diff(-1) xp = self.tsframe - self.tsframe.shift(-1) assert_frame_equal(rs, xp) def test_diff_float_n(self): rs = self.tsframe.diff(1.) xp = self.tsframe.diff(1) assert_frame_equal(rs, xp) def test_diff_axis(self): # GH 9727 df = DataFrame([[1., 2.], [3., 4.]]) assert_frame_equal(df.diff(axis=1), DataFrame( [[np.nan, 1.], [np.nan, 1.]])) assert_frame_equal(df.diff(axis=0), DataFrame( [[np.nan, np.nan], [2., 2.]])) def test_pct_change(self): rs = self.tsframe.pct_change(fill_method=None) assert_frame_equal(rs, self.tsframe / self.tsframe.shift(1) - 1) rs = self.tsframe.pct_change(2) filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(2) - 1) rs = self.tsframe.pct_change(fill_method='bfill', limit=1) filled = self.tsframe.fillna(method='bfill', limit=1) assert_frame_equal(rs, filled / filled.shift(1) - 1) rs = self.tsframe.pct_change(freq='5D') filled = self.tsframe.fillna(method='pad') assert_frame_equal(rs, filled / filled.shift(freq='5D') - 1) def test_pct_change_shift_over_nas(self): s = Series([1., 1.5, np.nan, 2.5, 3.]) df = DataFrame({'a': s, 'b': s}) chg = df.pct_change() expected = Series([np.nan, 0.5, np.nan, 2.5 / 1.5 - 1, .2]) edf = DataFrame({'a': expected, 'b': expected}) assert_frame_equal(chg, edf) def test_frame_ctor_datetime64_column(self): rng =
date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s')
pandas.date_range
import io import urllib import pandas as pd import requests from bs4 import BeautifulSoup from django.core.files.images import ImageFile from selenium import webdriver from .models import Plot def find_jobs_from(request, website, job_title, location, desired_characs, filename="results.xls"): while(True): if website == 'Indeed': job_soup = load_indeed_jobs_div(job_title, location) jobs_list, num_listings, nums = extract_job_information_indeed( job_soup, desired_characs) if nums != 0: break save_jobs_to_excel(request, num_listings, filename) return jobs_list def save_jobs_to_excel(request, jobs_list, filename): df =
pd.DataFrame(jobs_list)
pandas.DataFrame
import os import numpy as np import pandas as pd import scipy.special import uproot import oyaml as yaml from . import geometry __all__ = [ "create_hdf_from_root", "convert", "convert_table_to_fixed", "basic_query", "basic_eval", "rename_column", "object_cross_cleaning", "shift_2dvector", "object_cross_dphi", "mindphi", "weight_sigmoid", "object_groupby", "histogram", ] def create_hdf_from_root(path, *cfgs): for cfg in cfgs: outpath = os.path.join( cfg["output"]["direc"], os.path.splitext(os.path.basename(path))[0]+".h5", ) if os.path.exists(outpath): os.remove(outpath) for cfg in cfgs: with open(cfg["dataset"]["cfg"], 'r') as f: dataset_cfg = yaml.safe_load(f)["datasets"] # find cfg for current path path_cfg = None for dataset in dataset_cfg: if path in dataset["files"]: path_cfg = dataset break outpath = os.path.join( cfg["output"]["direc"], os.path.splitext(os.path.basename(path))[0]+".h5", ) for df in uproot.pandas.iterate(path, cfg["tree"], **cfg["iterate_kwargs"]): df = df.astype(cfg.get("dtypes", {})) for key in cfg["dataset"]["keys"]: df[key] = path_cfg[key] df.to_hdf( outpath, cfg["output"]["tree"], format='table', append=True, complib='zlib', complevel=9, ) def convert(path, trees, outdir, kwargs): for tree in trees: new_path = os.path.join( outdir, os.path.basename(path), )
pd.read_hdf(path, tree)
pandas.read_hdf
########## # Built-in ########## import glob import logging from pathlib import Path ######## # Libs # ######## import pandas as pd from pandas.api.types import is_numeric_dtype logger = logging.getLogger(__name__) class CustomIngestor(): def __init__(self, cfg): """Custom ingestor for VAERS dataset. Takes in 3 raw csv files, converts them to 1 merged DataFrame for initial EDA and subsequent preprocessing. Gets the following variables from a configuration file, and sets them as class attrbutes: Args: cfg (module/object): configuration file. Sets the following configuration variables as class attributes: - FILEPATH (dict): details on relative input and output filepaths. - folder_path (str): relative file path to folder containing the 3 raw csv files - merged_filepath (str): relative file path to save merged DataFrame as csv file - SYMP_COLS_DICT (dict): a dictionary with the following key-value pairs: - key: name of newly aggregated column - values: list of column names to use for aggregation - SYMP_CSV_COLS (list): list of column names to subset Symptoms DataFrame - VAX_CSV_COLS (list): list of column names to subset Vaccine DataFrame - MAX_DATE (str): upper limit of the date range for RECVDATE. Used to filter the dataset. Only rows with RECVDATE less than max_date will remain """ # attributes from config self.filepath = getattr(cfg, "FILEPATH", None) self.folder_path = self.filepath.get("folder_path") self.merged_filepath = self.filepath.get("merged_filepath") self.symp_cols_dict = getattr(cfg, "SYMP_COLS_DICT", None) self.symp_csv_cols = getattr(cfg, "SYMP_CSV_COLS", None) self.vax_csv_cols = getattr(cfg, "VAX_CSV_COLS", None) self.max_date = getattr(cfg, "MAX_DATE", None) ########## # Helpers ########## def get_df_list(self, folder_path: str) -> list: """Get a list of csv filepaths to load as DataFrames Args: folder_path (str): relative file path to raw data folder containing csv files Returns: df_list (list): a list of absolute filepaths to load as DataFrames """ full_folder_path = Path(__file__).parents[2] / folder_path df_list = [ file for file in glob.glob( f'{full_folder_path}/*.csv' ) ] return df_list def read_csvs(self, df_list: list) -> pd.DataFrame: """Read a list of csv filepaths as pandas DataFrames Args: df_list (list): a list of absolute filepaths to load as DataFrames Returns: main_df (pd.DataFrame): main raw DataFrame for VAERS dataset, from 2021VAERSDATA.csv symp_df (pd.DataFrame): raw DataFrame for SYMPTOMS csv file, from 2021VAERSSYMPTOMS.csv vax_df (pd.DataFrame): raw DataFrame for vaccine csv file, from 2021VAERSVAX.csv """ for file_path in df_list: if 'DATA' in Path(file_path).name: main_df = pd.read_csv( file_path, na_values = [ "n/a", "na", "-", "<NA>", "Na", "None", "none" ], low_memory = False ) elif 'SYMPTOMS' in Path(file_path).name: symp_df = pd.read_csv(file_path) elif 'VAX' in Path(file_path).name: vax_df =
pd.read_csv(file_path)
pandas.read_csv
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import corner import numpy as np import pandas as pd import emcee import sys import mm_likelihood from astropy.time import Time import commentjson as json import mm_param import mm_make_geo_pos from tqdm import tqdm import matplotlib.colors as colors import functools class ReadJson(object): def __init__(self, filename): print('Read the runprops.txt file') self.data = json.load(open(filename)) def outProps(self): return self.data #chain = (nwalkers, nlink, ndim) def sample_deltas(i, draws, names, fixed_df, total_df_names, fit_scale, names_dict, runprops, nobj, obsdf, geo_obj_pos): paramdf = mm_param.from_fit_array_to_param_df(draws[i,:].flatten(), names, fixed_df, total_df_names, fit_scale, names_dict, runprops)[0] length = len(paramdf) dlong = np.zeros((runprops.get('numobjects')-1, length)) dlat = np.zeros((runprops.get('numobjects')-1, length)) resid_long = np.zeros((runprops.get('numobjects')-1, length)) resid_lat = np.zeros((runprops.get('numobjects')-1, length)) drawparams = paramdf.iloc[:,:-nobj].values DeltaLong_Model, DeltaLat_Model, obsdf = mm_likelihood.mm_chisquare(paramdf, obsdf, runprops, geo_obj_pos, gensynth = True) chisq_total, residuals = mm_likelihood.mm_chisquare(paramdf, obsdf, runprops, geo_obj_pos) for j in range(0,runprops.get('numobjects')-1): dlong[j,:] = DeltaLong_Model[j] dlat[j,:] = DeltaLat_Model[j] resid_long[j,:] = residuals[2*j] resid_lat[j,:] = residuals[2*j+1] return dlong, dlat, drawparams, resid_long, resid_lat def posterior(sampler, fit_scale, float_names, obsdf, runprops, geo_obj_pos, fixed_df, total_df_names, pool): numdraws = 1000 # Getting log likelihood posterior values and flatchain for use throughout burnin = int(runprops.get('nburnin')) clusterburn = int(runprops.get('clustering_burnin')) thin_plots = int(runprops.get('nthinning')) flatchain = sampler.get_chain(discard=int(burnin/thin_plots+clusterburn/thin_plots),flat = True, thin=thin_plots) print(flatchain.shape, 'shape') all_llhoods = sampler.get_log_prob(discard=int(burnin/thin_plots+clusterburn/thin_plots),flat = True, thin=thin_plots) # Getting parameter names names = [] for i in float_names: names.append(i) names_dict = runprops.get("names_dict") # Choose random draws from the flatchain drawsindex = np.random.randint(flatchain.shape[0], size = numdraws) draws = flatchain[drawsindex,:] llhoods = all_llhoods[drawsindex] # Get time arrays converttimes = ["2021-10-01","2022-09-30"] t = Time(converttimes) timesdic = {'start': t.isot[0], 'stop': t.isot[1], 'step': '1d'} # Make a geocentric position file #geo_obj_pos = mm_make_geo_pos.mm_make_geo_pos(objname, timesdic, runprops, True) # Creating a fake observtions data frame times = geo_obj_pos.values[:,0].flatten() fakeobsdf = obsdf.loc[[0,1],:] for i in range(len(times)): if i == 0 or i == 1: fakeobsdf.iloc[i,0] = times[i] fakeobsdf = fakeobsdf.append(fakeobsdf.iloc[-1,:]) fakeobsdf['time'].iloc[-1] = times[i] fakeobsdf = fakeobsdf.iloc[2:] # Creating arrays to hold outputs dlong = np.zeros((draws.shape[0], runprops.get('numobjects')-1, times.size)) dlat = np.zeros((draws.shape[0], runprops.get('numobjects')-1, times.size)) resid_long = np.zeros((draws.shape[0], runprops.get('numobjects')-1, times.size)) resid_lat = np.zeros((draws.shape[0], runprops.get('numobjects')-1, times.size)) # Holding paramvalues nobj = runprops.get('numobjects') print(mm_param.from_fit_array_to_param_df(draws[0,:].flatten(), names, fixed_df, total_df_names, fit_scale, names_dict, runprops)[0]) ndims = mm_param.from_fit_array_to_param_df(draws[0,:].flatten(), names, fixed_df, total_df_names, fit_scale, names_dict, runprops)[0].iloc[:,:-nobj].size print(ndims) paramnames = mm_param.from_fit_array_to_param_df(draws[0,:].flatten(), names, fixed_df, total_df_names, fit_scale, names_dict, runprops)[0].columns.tolist()[0:-nobj] print(paramnames) drawparams = np.zeros((ndims, numdraws)) # Looping to get model values deltas = functools.partial(sample_deltas, draws=draws, names=names, fixed_df=fixed_df, total_df_names=total_df_names, fit_scale=fit_scale, names_dict=names_dict, runprops=runprops, nobj=nobj, obsdf=obsdf, geo_obj_pos=geo_obj_pos) x = tqdm(range(draws.shape[0])) data = pool.map(deltas, x) dlong = np.zeros((draws.shape[0],2,length)) dlat = np.zeros((draws.shape[0],2,length)) resid_long = np.zeros((draws.shape[0],2,length)) resid_lat = np.zeros((draws.shape[0],2,length)) for i in range(len(data)): dlong[i] = data[i][0] dlat[i] = data[i][1] drawparams[:,i] = data[i][2] resid_long[i] = data[i][3] resid_lat[i] = data[i][4] # Now collapse the arrays with a std call dlongstd = np.std(dlong,axis = 0) dlatstd = np.std(dlat,axis = 0) dlongmean = np.mean(dlong,axis = 0) dlatmean = np.mean(dlat,axis = 0) print(dlongstd.shape) print(dlatstd.shape) totaldf = pd.DataFrame(drawparams.T, columns = paramnames) # Calculate average (mean for now) error in the real data name_dict = runprops.get("names_dict") objectnames = [] for i in name_dict.values(): objectnames.append(i) typicalerror = np.zeros((2,runprops.get('numobjects')-1)) for i in range(1,runprops.get('numobjects')): typicalerror[0,i-1] = np.median(obsdf["DeltaLong_" + objectnames[i] + "_err"].values.flatten()) typicalerror[1,i-1] = np.median(obsdf["DeltaLat_" + objectnames[i] + "_err"].values.flatten()) # Plot dlong vs dlat with color for j2 from matplotlib.backends.backend_pdf import PdfPages #===================================Here we create the residuals heat map======================================== residpdf = PdfPages("resid_map.pdf") for i in range(1, runprops.get('numobjects')-1): colorcycle = ['#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628', '#984ea3','#999999', '#e41a1c', '#dede00'] xvals1 = np.linspace(-1.0,1.0,num=1000) xvals2 = np.linspace(-2.0,2.0,num=1000) xvals3 = np.linspace(-3.0,3.0,num=1000) circle1 = np.sqrt(1 - xvals1**2) circle2 = np.sqrt(4 - xvals2**2) circle3 = np.sqrt(9 - xvals3**2) plt.figure() plt.plot(xvals1, circle1, color = "black") plt.plot(xvals1,-circle1, color = "black") plt.plot(xvals2, circle2, color = "black", alpha = 0.5) plt.plot(xvals2,-circle2, color = "black", alpha = 0.5) plt.plot(xvals3, circle3, color = "black", alpha = 0.25) plt.plot(xvals3,-circle3, color = "black", alpha = 0.25) #print(nobjects, np.array(residuals).shape, objectnames) print('plotting ', i, ' ',objectnames[i]) plt.hist2d(resid_long[:,1,i], resid_lat[:,1,i], bins=40, range=[[-4.0, 4.0], [-3.0, 3.0]],label = objectnames[i], edgecolors = None) plt.xlabel("Delta Longitude") plt.ylabel("Delta Latitude") plt.axis("equal") plt.legend() residpdf.close() #==============================================We create the posterior.pdf==================================================== predictionspdf = PdfPages("posterior.pdf") markers = ["o","D","^"] for i in range(len(dlong[0,0,:])): plt.figure() plt.axis("equal") plt.scatter(0,0, color = "black") for j in range(runprops.get('numobjects')-1): plt.scatter(dlong[:,j,i], dlat[:,j,i], c=llhoods, cmap = "coolwarm",marker=markers[j]) plt.errorbar(np.median(dlong[:,j,i]), np.median(dlat[:,j,i]), xerr = typicalerror[0,j], yerr = typicalerror[1,j], ecolor = "red") plt.xlabel("dLon") plt.ylabel("dLat") plt.title("JD "+str(obsdf['time'][i])) color_bar = plt.colorbar() color_bar.set_alpha(1) color_bar.draw_all() color_bar.set_label('Log-Likelihood') predictionspdf.savefig() predictionspdf.close() #==============================================We create the brightness.pdf==================================================== if runprops.get("photo_offset"): mass_rat = totaldf['mass_2']/totaldf['mass_1'] bright_rat = abs(totaldf['f_val_1'])*mass_rat**(2/3) hubble_sep_arc = 2.1*10**5*5.5*10**(-7)/2.4 brightnesspdf = PdfPages("brightness.pdf") for i in range(len(dlong[0,0,:])): plt.figure() plt.axis('equal') plt.scatter(0,0, color = "black") plt.scatter(dlong[:,0,i], dlat[:,0,i], c=bright_rat, cmap = "coolwarm", norm=colors.LogNorm()) plt.xlabel("dLon") plt.ylabel("dLat") plt.title("JD "+str(obsdf['time'][i])) color_bar = plt.colorbar() color_bar.set_alpha(1) color_bar.draw_all() color_bar.set_label('Brightness ratio') brightnesspdf.savefig() brightnesspdf.close() #==========================================We create the brightness_seperation.pdf================================================= brightnessratpdf = PdfPages("brightness_seperation.pdf") for i in range(len(dlong[0,0,:])): plt.figure() plt.axis('equal') sep = np.sqrt(dlong[:,0,i]**2+dlat[:,0,i]**2) plt.scatter(sep, bright_rat, c=llhoods, cmap = "coolwarm") plt.axvline(x=hubble_sep_arc, color='r') plt.axvline(x=0.2, color='b') plt.xlabel("total separation") plt.ylabel("brightness ratio") plt.title("JD "+str(obsdf['time'][i])) color_bar = plt.colorbar() color_bar.set_label('Log-Likelihood') color_bar.set_alpha(1) color_bar.draw_all() brightnessratpdf.savefig() brightnessratpdf.close() #Actually build the plots here #==================================================================================================== import glob, os if __name__ == '__main__': from schwimmbad import MPIPool with MPIPool() as pool: if not pool.is_master(): pool.wait() sys.exit(0) if 'results' in os.getcwd(): getData = ReadJson('runprops.txt') else: getData = ReadJson('most_recent_runprops.txt') runprops = getData.outProps() objname = runprops.get("objectname") if not 'results' in os.getcwd(): os.chdir('../../../results/'+objname+'/') results = max(glob.glob(os.path.join(os.getcwd(), '*/')), key=os.path.getmtime) os.chdir(results) backend = emcee.backends.HDFBackend('chain.h5') fit_scale = pd.read_csv('fit_scale.csv',index_col=0) float_names = runprops.get('float_names') obsdf =
pd.read_csv(objname+'_obs_df.csv',index_col=0)
pandas.read_csv
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Implement DataFrame public API as Pandas does. Almost all docstrings for public and magic methods should be inherited from Pandas for better maintability. So some codes are ignored in pydocstyle check: - D101: missing docstring in class - D102: missing docstring in public method - D105: missing docstring in magic method Manually add documentation for methods which are not presented in pandas. """ import pandas from pandas.core.common import apply_if_callable from pandas.core.dtypes.common import ( infer_dtype_from_object, is_dict_like, is_list_like, is_numeric_dtype, ) from pandas.core.indexes.api import ensure_index_from_sequences from pandas.util._validators import validate_bool_kwarg from pandas.io.formats.printing import pprint_thing from pandas._libs.lib import no_default from pandas._typing import Label import itertools import functools import numpy as np import sys from typing import Optional, Sequence, Tuple, Union, Mapping import warnings from modin.error_message import ErrorMessage from modin.utils import _inherit_docstrings, to_pandas, hashable from modin.config import IsExperimental from .utils import ( from_pandas, from_non_pandas, ) from .iterator import PartitionIterator from .series import Series from .base import BasePandasDataset, _ATTRS_NO_LOOKUP from .groupby import DataFrameGroupBy from .accessor import CachedAccessor, SparseFrameAccessor @_inherit_docstrings(pandas.DataFrame, excluded=[pandas.DataFrame.__init__]) class DataFrame(BasePandasDataset): def __init__( self, data=None, index=None, columns=None, dtype=None, copy=False, query_compiler=None, ): """ Distributed DataFrame object backed by Pandas dataframes. Parameters ---------- data: NumPy ndarray (structured or homogeneous) or dict: Dict can contain Series, arrays, constants, or list-like objects. index: pandas.Index, list, ObjectID The row index for this DataFrame. columns: pandas.Index The column names for this DataFrame, in pandas Index object. dtype: Data type to force. Only a single dtype is allowed. If None, infer copy: bool Copy data from inputs. Only affects DataFrame / 2d ndarray input. query_compiler: query_compiler A query compiler object to manage distributed computation. """ if isinstance(data, (DataFrame, Series)): self._query_compiler = data._query_compiler.copy() if index is not None and any(i not in data.index for i in index): raise NotImplementedError( "Passing non-existant columns or index values to constructor not" " yet implemented." ) if isinstance(data, Series): # We set the column name if it is not in the provided Series if data.name is None: self.columns = [0] if columns is None else columns # If the columns provided are not in the named Series, pandas clears # the DataFrame and sets columns to the columns provided. elif columns is not None and data.name not in columns: self._query_compiler = from_pandas( DataFrame(columns=columns) )._query_compiler if index is not None: self._query_compiler = data.loc[index]._query_compiler elif columns is None and index is None: data._add_sibling(self) else: if columns is not None and any(i not in data.columns for i in columns): raise NotImplementedError( "Passing non-existant columns or index values to constructor not" " yet implemented." ) if index is None: index = slice(None) if columns is None: columns = slice(None) self._query_compiler = data.loc[index, columns]._query_compiler # Check type of data and use appropriate constructor elif query_compiler is None: distributed_frame = from_non_pandas(data, index, columns, dtype) if distributed_frame is not None: self._query_compiler = distributed_frame._query_compiler return warnings.warn( "Distributing {} object. This may take some time.".format(type(data)) ) if is_list_like(data) and not is_dict_like(data): old_dtype = getattr(data, "dtype", None) values = [ obj._to_pandas() if isinstance(obj, Series) else obj for obj in data ] if isinstance(data, np.ndarray): data = np.array(values, dtype=old_dtype) else: try: data = type(data)(values, dtype=old_dtype) except TypeError: data = values elif is_dict_like(data) and not isinstance( data, (pandas.Series, Series, pandas.DataFrame, DataFrame) ): data = { k: v._to_pandas() if isinstance(v, Series) else v for k, v in data.items() } pandas_df = pandas.DataFrame( data=data, index=index, columns=columns, dtype=dtype, copy=copy ) self._query_compiler = from_pandas(pandas_df)._query_compiler else: self._query_compiler = query_compiler def __repr__(self): from pandas.io.formats import console num_rows = pandas.get_option("display.max_rows") or 10 num_cols = pandas.get_option("display.max_columns") or 20 if pandas.get_option("display.max_columns") is None and pandas.get_option( "display.expand_frame_repr" ): width, _ = console.get_console_size() width = min(width, len(self.columns)) col_counter = 0 i = 0 while col_counter < width: col_counter += len(str(self.columns[i])) + 1 i += 1 num_cols = i i = len(self.columns) - 1 col_counter = 0 while col_counter < width: col_counter += len(str(self.columns[i])) + 1 i -= 1 num_cols += len(self.columns) - i result = repr(self._build_repr_df(num_rows, num_cols)) if len(self.index) > num_rows or len(self.columns) > num_cols: # The split here is so that we don't repr pandas row lengths. return result.rsplit("\n\n", 1)[0] + "\n\n[{0} rows x {1} columns]".format( len(self.index), len(self.columns) ) else: return result def _repr_html_(self): # pragma: no cover num_rows = pandas.get_option("max_rows") or 60 num_cols = pandas.get_option("max_columns") or 20 # We use pandas _repr_html_ to get a string of the HTML representation # of the dataframe. result = self._build_repr_df(num_rows, num_cols)._repr_html_() if len(self.index) > num_rows or len(self.columns) > num_cols: # We split so that we insert our correct dataframe dimensions. return result.split("<p>")[ 0 ] + "<p>{0} rows x {1} columns</p>\n</div>".format( len(self.index), len(self.columns) ) else: return result def _get_columns(self): """ Get the columns for this DataFrame. Returns ------- The union of all indexes across the partitions. """ return self._query_compiler.columns def _set_columns(self, new_columns): """ Set the columns for this DataFrame. Parameters ---------- new_columns: The new index to set this """ self._query_compiler.columns = new_columns columns = property(_get_columns, _set_columns) @property def ndim(self): # DataFrames have an invariant that requires they be 2 dimensions. return 2 def drop_duplicates( self, subset=None, keep="first", inplace=False, ignore_index=False ): return super(DataFrame, self).drop_duplicates( subset=subset, keep=keep, inplace=inplace ) @property def dtypes(self): return self._query_compiler.dtypes def duplicated(self, subset=None, keep="first"): import hashlib df = self[subset] if subset is not None else self # if the number of columns we are checking for duplicates is larger than 1, we must # hash them to generate a single value that can be compared across rows. if len(df.columns) > 1: hashed = df.apply( lambda s: hashlib.new("md5", str(tuple(s)).encode()).hexdigest(), axis=1 ).to_frame() else: hashed = df duplicates = hashed.apply(lambda s: s.duplicated(keep=keep)).squeeze(axis=1) # remove Series name which was assigned automatically by .apply duplicates.name = None return duplicates @property def empty(self): return len(self.columns) == 0 or len(self.index) == 0 @property def axes(self): return [self.index, self.columns] @property def shape(self): return len(self.index), len(self.columns) def add_prefix(self, prefix): return DataFrame(query_compiler=self._query_compiler.add_prefix(prefix)) def add_suffix(self, suffix): return DataFrame(query_compiler=self._query_compiler.add_suffix(suffix)) def applymap(self, func): if not callable(func): raise ValueError("'{0}' object is not callable".format(type(func))) ErrorMessage.non_verified_udf() return DataFrame(query_compiler=self._query_compiler.applymap(func)) def apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds): axis = self._get_axis_number(axis) query_compiler = super(DataFrame, self).apply( func, axis=axis, raw=raw, result_type=result_type, args=args, **kwds ) if not isinstance(query_compiler, type(self._query_compiler)): return query_compiler # This is the simplest way to determine the return type, but there are checks # in pandas that verify that some results are created. This is a challenge for # empty DataFrames, but fortunately they only happen when the `func` type is # a list or a dictionary, which means that the return type won't change from # type(self), so we catch that error and use `type(self).__name__` for the return # type. try: if axis == 0: init_kwargs = {"index": self.index} else: init_kwargs = {"columns": self.columns} return_type = type( getattr(pandas, type(self).__name__)(**init_kwargs).apply( func, axis=axis, raw=raw, result_type=result_type, args=args, **kwds ) ).__name__ except Exception: return_type = type(self).__name__ if return_type not in ["DataFrame", "Series"]: return query_compiler.to_pandas().squeeze() else: result = getattr(sys.modules[self.__module__], return_type)( query_compiler=query_compiler ) if isinstance(result, Series): if axis == 0 and result.name == self.index[0] or result.name == 0: result.name = None elif axis == 1 and result.name == self.columns[0] or result.name == 0: result.name = None return result def groupby( self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze: bool = no_default, observed=False, dropna: bool = True, ): if squeeze is not no_default: warnings.warn( ( "The `squeeze` parameter is deprecated and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) else: squeeze = False axis = self._get_axis_number(axis) idx_name = None # Drop here indicates whether or not to drop the data column before doing the # groupby. The typical pandas behavior is to drop when the data came from this # dataframe. When a string, Series directly from this dataframe, or list of # strings is passed in, the data used for the groupby is dropped before the # groupby takes place. drop = False if ( not isinstance(by, (pandas.Series, Series)) and is_list_like(by) and len(by) == 1 ): by = by[0] if callable(by): by = self.index.map(by) elif isinstance(by, str): drop = by in self.columns idx_name = by if ( self._query_compiler.has_multiindex(axis=axis) and by in self.axes[axis].names or hasattr(self.axes[axis], "name") and self.axes[axis].name == by ): # In this case we pass the string value of the name through to the # partitions. This is more efficient than broadcasting the values. pass else: by = self.__getitem__(by)._query_compiler elif isinstance(by, Series): drop = by._parent is self idx_name = by.name by = by._query_compiler elif is_list_like(by): # fastpath for multi column groupby if ( not isinstance(by, Series) and axis == 0 and all( ( (isinstance(o, str) and (o in self)) or (isinstance(o, Series) and (o._parent is self)) ) for o in by ) ): # We can just revert Series back to names because the parent is # this dataframe: by = [o.name if isinstance(o, Series) else o for o in by] by = self.__getitem__(by)._query_compiler drop = True else: mismatch = len(by) != len(self.axes[axis]) if mismatch and all( isinstance(obj, str) and ( obj in self or (hasattr(self.index, "names") and obj in self.index.names) ) for obj in by ): # In the future, we will need to add logic to handle this, but for now # we default to pandas in this case. pass elif mismatch and any( isinstance(obj, str) and obj not in self.columns for obj in by ): names = [o.name if isinstance(o, Series) else o for o in by] raise KeyError(next(x for x in names if x not in self)) return DataFrameGroupBy( self, by, axis, level, as_index, sort, group_keys, squeeze, idx_name, observed=observed, drop=drop, dropna=dropna, ) def keys(self): return self.columns def transpose(self, copy=False, *args): return DataFrame(query_compiler=self._query_compiler.transpose(*args)) T = property(transpose) def add(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "add", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) def append(self, other, ignore_index=False, verify_integrity=False, sort=False): if sort is False: warnings.warn( "Due to https://github.com/pandas-dev/pandas/issues/35092, " "Pandas ignores sort=False; Modin correctly does not sort." ) if isinstance(other, (Series, dict)): if isinstance(other, dict): other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True" " or if the Series has a name" ) if other.name is not None: # other must have the same index name as self, otherwise # index name will be reset name = other.name # We must transpose here because a Series becomes a new row, and the # structure of the query compiler is currently columnar other = other._query_compiler.transpose() other.index = pandas.Index([name], name=self.index.name) else: # See note above about transpose other = other._query_compiler.transpose() elif isinstance(other, list): if not all(isinstance(o, BasePandasDataset) for o in other): other = DataFrame(pandas.DataFrame(other))._query_compiler else: other = [obj._query_compiler for obj in other] else: other = other._query_compiler # If ignore_index is False, by definition the Index will be correct. # We also do this first to ensure that we don't waste compute/memory. if verify_integrity and not ignore_index: appended_index = ( self.index.append(other.index) if not isinstance(other, list) else self.index.append([o.index for o in other]) ) is_valid = next((False for idx in appended_index.duplicated() if idx), True) if not is_valid: raise ValueError( "Indexes have overlapping values: {}".format( appended_index[appended_index.duplicated()] ) ) query_compiler = self._query_compiler.concat( 0, other, ignore_index=ignore_index, sort=sort ) return DataFrame(query_compiler=query_compiler) def assign(self, **kwargs): df = self.copy() for k, v in kwargs.items(): if callable(v): df[k] = v(df) else: df[k] = v return df def boxplot( self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, backend=None, **kwargs, ): return to_pandas(self).boxplot( column=column, by=by, ax=ax, fontsize=fontsize, rot=rot, grid=grid, figsize=figsize, layout=layout, return_type=return_type, backend=backend, **kwargs, ) def combine(self, other, func, fill_value=None, overwrite=True): return super(DataFrame, self).combine( other, func, fill_value=fill_value, overwrite=overwrite ) def compare( self, other: "DataFrame", align_axis: Union[str, int] = 1, keep_shape: bool = False, keep_equal: bool = False, ) -> "DataFrame": return self._default_to_pandas( pandas.DataFrame.compare, other=other, align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, ) def corr(self, method="pearson", min_periods=1): return self.__constructor__( query_compiler=self._query_compiler.corr( method=method, min_periods=min_periods, ) ) def corrwith(self, other, axis=0, drop=False, method="pearson"): if isinstance(other, DataFrame): other = other._query_compiler.to_pandas() return self._default_to_pandas( pandas.DataFrame.corrwith, other, axis=axis, drop=drop, method=method ) def cov(self, min_periods=None, ddof: Optional[int] = 1): numeric_df = self.drop( columns=[ i for i in self.dtypes.index if not is_numeric_dtype(self.dtypes[i]) ] ) is_notna = True if all(numeric_df.notna().all()): if min_periods is not None and min_periods > len(numeric_df): result = np.empty((numeric_df.shape[1], numeric_df.shape[1])) result.fill(np.nan) return numeric_df.__constructor__(result) else: cols = numeric_df.columns idx = cols.copy() numeric_df = numeric_df.astype(dtype="float64") denom = 1.0 / (len(numeric_df) - ddof) means = numeric_df.mean(axis=0) result = numeric_df - means result = result.T._query_compiler.conj().dot(result._query_compiler) else: result = numeric_df._query_compiler.cov(min_periods=min_periods) is_notna = False if is_notna: result = numeric_df.__constructor__( query_compiler=result, index=idx, columns=cols ) result *= denom else: result = numeric_df.__constructor__(query_compiler=result) return result def dot(self, other): if isinstance(other, BasePandasDataset): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("Matrices are not aligned") qc = other.reindex(index=common)._query_compiler if isinstance(other, DataFrame): return self.__constructor__( query_compiler=self._query_compiler.dot( qc, squeeze_self=False, squeeze_other=False ) ) else: return self._reduce_dimension( query_compiler=self._query_compiler.dot( qc, squeeze_self=False, squeeze_other=True ) ) other = np.asarray(other) if self.shape[1] != other.shape[0]: raise ValueError( "Dot product shape mismatch, {} vs {}".format(self.shape, other.shape) ) if len(other.shape) > 1: return self.__constructor__( query_compiler=self._query_compiler.dot(other, squeeze_self=False) ) return self._reduce_dimension( query_compiler=self._query_compiler.dot(other, squeeze_self=False) ) def eq(self, other, axis="columns", level=None): return self._binary_op( "eq", other, axis=axis, level=level, broadcast=isinstance(other, Series) ) def equals(self, other): if isinstance(other, pandas.DataFrame): # Copy into a Modin DataFrame to simplify logic below other = DataFrame(other) return ( self.index.equals(other.index) and self.columns.equals(other.columns) and self.eq(other).all().all() ) def explode(self, column: Union[str, Tuple], ignore_index: bool = False): return self._default_to_pandas( pandas.DataFrame.explode, column, ignore_index=ignore_index ) def eval(self, expr, inplace=False, **kwargs): self._validate_eval_query(expr, **kwargs) inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.eval(expr, **kwargs) return_type = type( pandas.DataFrame(columns=self.columns) .astype(self.dtypes) .eval(expr, **kwargs) ).__name__ if return_type == type(self).__name__: return self._create_or_update_from_compiler(new_query_compiler, inplace) else: if inplace: raise ValueError("Cannot operate inplace if there is no assignment") return getattr(sys.modules[self.__module__], return_type)( query_compiler=new_query_compiler ) def floordiv(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "floordiv", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) @classmethod def from_dict( cls, data, orient="columns", dtype=None, columns=None ): # pragma: no cover ErrorMessage.default_to_pandas("`from_dict`") return from_pandas( pandas.DataFrame.from_dict( data, orient=orient, dtype=dtype, columns=columns ) ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ): # pragma: no cover ErrorMessage.default_to_pandas("`from_records`") return from_pandas( pandas.DataFrame.from_records( data, index=index, exclude=exclude, columns=columns, coerce_float=coerce_float, nrows=nrows, ) ) def ge(self, other, axis="columns", level=None): return self._binary_op( "ge", other, axis=axis, level=level, broadcast=isinstance(other, Series) ) def gt(self, other, axis="columns", level=None): return self._binary_op( "gt", other, axis=axis, level=level, broadcast=isinstance(other, Series) ) def hist( self, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds, ): # pragma: no cover return self._default_to_pandas( pandas.DataFrame.hist, column=column, by=by, grid=grid, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, ax=ax, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout, bins=bins, **kwds, ) def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ): def put_str(src, output_len=None, spaces=2): src = str(src) return src.ljust(output_len if output_len else len(src)) + " " * spaces def format_size(num): for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return f"{num:3.1f} {x}" num /= 1024.0 return f"{num:3.1f} PB" output = [] type_line = str(type(self)) index_line = self.index._summary() columns = self.columns columns_len = len(columns) dtypes = self.dtypes dtypes_line = f"dtypes: {', '.join(['{}({})'.format(dtype, count) for dtype, count in dtypes.value_counts().items()])}" if max_cols is None: max_cols = 100 exceeds_info_cols = columns_len > max_cols if buf is None: buf = sys.stdout if null_counts is None: null_counts = not exceeds_info_cols if verbose is None: verbose = not exceeds_info_cols if null_counts and verbose: # We're gonna take items from `non_null_count` in a loop, which # works kinda slow with `Modin.Series`, that's why we call `_to_pandas()` here # that will be faster. non_null_count = self.count()._to_pandas() if memory_usage is None: memory_usage = True def get_header(spaces=2): output = [] head_label = " # " column_label = "Column" null_label = "Non-Null Count" dtype_label = "Dtype" non_null_label = " non-null" delimiter = "-" lengths = {} lengths["head"] = max(len(head_label), len(pprint_thing(len(columns)))) lengths["column"] = max( len(column_label), max(len(pprint_thing(col)) for col in columns) ) lengths["dtype"] = len(dtype_label) dtype_spaces = ( max(lengths["dtype"], max(len(pprint_thing(dtype)) for dtype in dtypes)) - lengths["dtype"] ) header = put_str(head_label, lengths["head"]) + put_str( column_label, lengths["column"] ) if null_counts: lengths["null"] = max( len(null_label), max(len(pprint_thing(x)) for x in non_null_count) + len(non_null_label), ) header += put_str(null_label, lengths["null"]) header += put_str(dtype_label, lengths["dtype"], spaces=dtype_spaces) output.append(header) delimiters = put_str(delimiter * lengths["head"]) + put_str( delimiter * lengths["column"] ) if null_counts: delimiters += put_str(delimiter * lengths["null"]) delimiters += put_str(delimiter * lengths["dtype"], spaces=dtype_spaces) output.append(delimiters) return output, lengths output.extend([type_line, index_line]) def verbose_repr(output): columns_line = f"Data columns (total {len(columns)} columns):" header, lengths = get_header() output.extend([columns_line, *header]) for i, col in enumerate(columns): i, col, dtype = map(pprint_thing, [i, col, dtypes[col]]) to_append = put_str(" {}".format(i), lengths["head"]) + put_str( col, lengths["column"] ) if null_counts: non_null = pprint_thing(non_null_count[col]) to_append += put_str( "{} non-null".format(non_null), lengths["null"] ) to_append += put_str(dtype, lengths["dtype"], spaces=0) output.append(to_append) def non_verbose_repr(output): output.append(columns._summary(name="Columns")) if verbose: verbose_repr(output) else: non_verbose_repr(output) output.append(dtypes_line) if memory_usage: deep = memory_usage == "deep" mem_usage_bytes = self.memory_usage(index=True, deep=deep).sum() mem_line = f"memory usage: {format_size(mem_usage_bytes)}" output.append(mem_line) output.append("") buf.write("\n".join(output)) def insert(self, loc, column, value, allow_duplicates=False): if isinstance(value, (DataFrame, pandas.DataFrame)): if len(value.columns) != 1: raise ValueError("Wrong number of items passed 2, placement implies 1") value = value.iloc[:, 0] if isinstance(value, Series): # TODO: Remove broadcast of Series value = value._to_pandas() if not self._query_compiler.lazy_execution and len(self.index) == 0: try: value = pandas.Series(value) except (TypeError, ValueError, IndexError): raise ValueError( "Cannot insert into a DataFrame with no defined index " "and a value that cannot be converted to a " "Series" ) new_index = value.index.copy() new_columns = self.columns.insert(loc, column) new_query_compiler = DataFrame( value, index=new_index, columns=new_columns )._query_compiler elif len(self.columns) == 0 and loc == 0: new_query_compiler = DataFrame( data=value, columns=[column], index=self.index )._query_compiler else: if ( is_list_like(value) and not isinstance(value, pandas.Series) and len(value) != len(self.index) ): raise ValueError("Length of values does not match length of index") if not allow_duplicates and column in self.columns: raise ValueError("cannot insert {0}, already exists".format(column)) if loc > len(self.columns): raise IndexError( "index {0} is out of bounds for axis 0 with size {1}".format( loc, len(self.columns) ) ) if loc < 0: raise ValueError("unbounded slice") new_query_compiler = self._query_compiler.insert(loc, column, value) self._update_inplace(new_query_compiler=new_query_compiler) def interpolate( self, method="linear", axis=0, limit=None, inplace=False, limit_direction: Optional[str] = None, limit_area=None, downcast=None, **kwargs, ): return self._default_to_pandas( pandas.DataFrame.interpolate, method=method, axis=axis, limit=limit, inplace=inplace, limit_direction=limit_direction, limit_area=limit_area, downcast=downcast, **kwargs, ) def iterrows(self): def iterrow_builder(s): return s.name, s partition_iterator = PartitionIterator(self, 0, iterrow_builder) for v in partition_iterator: yield v def items(self): def items_builder(s): return s.name, s partition_iterator = PartitionIterator(self, 1, items_builder) for v in partition_iterator: yield v def iteritems(self): return self.items() def itertuples(self, index=True, name="Pandas"): def itertuples_builder(s): return next(s._to_pandas().to_frame().T.itertuples(index=index, name=name)) partition_iterator = PartitionIterator(self, 0, itertuples_builder) for v in partition_iterator: yield v def join(self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False): if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if on is not None: return self.__constructor__( query_compiler=self._query_compiler.join( other._query_compiler, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort, ) ) if isinstance(other, DataFrame): # Joining the empty DataFrames with either index or columns is # fast. It gives us proper error checking for the edge cases that # would otherwise require a lot more logic. new_columns = ( pandas.DataFrame(columns=self.columns) .join( pandas.DataFrame(columns=other.columns), lsuffix=lsuffix, rsuffix=rsuffix, ) .columns ) other = [other] else: # This constraint carried over from Pandas. if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) new_columns = ( pandas.DataFrame(columns=self.columns) .join( [pandas.DataFrame(columns=obj.columns) for obj in other], lsuffix=lsuffix, rsuffix=rsuffix, ) .columns ) new_frame = DataFrame( query_compiler=self._query_compiler.concat( 1, [obj._query_compiler for obj in other], join=how, sort=sort ) ) new_frame.columns = new_columns return new_frame def le(self, other, axis="columns", level=None): return self._binary_op( "le", other, axis=axis, level=level, broadcast=isinstance(other, Series) ) def lookup(self, row_labels, col_labels): return self._default_to_pandas(pandas.DataFrame.lookup, row_labels, col_labels) def lt(self, other, axis="columns", level=None): return self._binary_op( "lt", other, axis=axis, level=level, broadcast=isinstance(other, Series) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ignore_index=True, ): return self.__constructor__( query_compiler=self._query_compiler.melt( id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ignore_index=ignore_index, ) ) def memory_usage(self, index=True, deep=False): if index: result = self._reduce_dimension( self._query_compiler.memory_usage(index=False, deep=deep) ) index_value = self.index.memory_usage(deep=deep) return Series(index_value, index=["Index"]).append(result) return super(DataFrame, self).memory_usage(index=index, deep=deep) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ): if isinstance(right, Series): if right.name is None: raise ValueError("Cannot merge a Series without a name") else: right = right.to_frame() if not isinstance(right, DataFrame): raise TypeError( f"Can only merge Series or DataFrame objects, a {type(right)} was passed" ) if left_index and right_index: return self.join( right, how=how, lsuffix=suffixes[0], rsuffix=suffixes[1], sort=sort ) return self.__constructor__( query_compiler=self._query_compiler.merge( right._query_compiler, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) ) def mod(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "mod", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) def mul(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "mul", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) rmul = multiply = mul def ne(self, other, axis="columns", level=None): return self._binary_op( "ne", other, axis=axis, level=level, broadcast=isinstance(other, Series) ) def nlargest(self, n, columns, keep="first"): return DataFrame(query_compiler=self._query_compiler.nlargest(n, columns, keep)) def nsmallest(self, n, columns, keep="first"): return DataFrame( query_compiler=self._query_compiler.nsmallest( n=n, columns=columns, keep=keep ) ) def slice_shift(self, periods=1, axis=0): if periods == 0: return self.copy() if axis == "index" or axis == 0: if abs(periods) >= len(self.index): return DataFrame(columns=self.columns) else: if periods > 0: new_index = self.index.drop(labels=self.index[:periods]) new_df = self.drop(self.index[-periods:]) else: new_index = self.index.drop(labels=self.index[periods:]) new_df = self.drop(self.index[:-periods]) new_df.index = new_index return new_df else: if abs(periods) >= len(self.columns): return DataFrame(index=self.index) else: if periods > 0: new_columns = self.columns.drop(labels=self.columns[:periods]) new_df = self.drop(self.columns[-periods:], axis="columns") else: new_columns = self.columns.drop(labels=self.columns[periods:]) new_df = self.drop(self.columns[:-periods], axis="columns") new_df.columns = new_columns return new_df def unstack(self, level=-1, fill_value=None): if not isinstance(self.index, pandas.MultiIndex) or ( isinstance(self.index, pandas.MultiIndex) and is_list_like(level) and len(level) == self.index.nlevels ): return self._reduce_dimension( query_compiler=self._query_compiler.unstack(level, fill_value) ) else: return DataFrame( query_compiler=self._query_compiler.unstack(level, fill_value) ) def pivot(self, index=None, columns=None, values=None): return self.__constructor__( query_compiler=self._query_compiler.pivot( index=index, columns=columns, values=values ) ) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ): result = DataFrame( query_compiler=self._query_compiler.pivot_table( index=index, values=values, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) ) return result @property def plot( self, x=None, y=None, kind="line", ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwargs, ): return self._to_pandas().plot def pow(self, other, axis="columns", level=None, fill_value=None): if isinstance(other, Series): return self._default_to_pandas( "pow", other, axis=axis, level=level, fill_value=fill_value ) return self._binary_op( "pow", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) def prod( self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs, ): axis = self._get_axis_number(axis) axis_to_apply = self.columns if axis else self.index if ( skipna is not False and numeric_only is None and min_count > len(axis_to_apply) ): new_index = self.columns if not axis else self.index return Series( [np.nan] * len(new_index), index=new_index, dtype=np.dtype("object") ) data = self._validate_dtypes_sum_prod_mean(axis, numeric_only, ignore_axis=True) if level is not None: return data.__constructor__( query_compiler=data._query_compiler.prod_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, min_count=min_count, **kwargs, ) ) if min_count > 1: return data._reduce_dimension( data._query_compiler.prod_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, min_count=min_count, **kwargs, ) ) return data._reduce_dimension( data._query_compiler.prod( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, min_count=min_count, **kwargs, ) ) product = prod radd = add def query(self, expr, inplace=False, **kwargs): ErrorMessage.non_verified_udf() self._validate_eval_query(expr, **kwargs) inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.query(expr, **kwargs) return self._create_or_update_from_compiler(new_query_compiler, inplace) def rename( self, mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None, errors="ignore", ): inplace = validate_bool_kwarg(inplace, "inplace") if mapper is None and index is None and columns is None: raise TypeError("must pass an index to rename") # We have to do this with the args because of how rename handles kwargs. It # doesn't ignore None values passed in, so we have to filter them ourselves. args = locals() kwargs = {k: v for k, v in args.items() if v is not None and k != "self"} # inplace should always be true because this is just a copy, and we will use the # results after. kwargs["inplace"] = False if axis is not None: axis = self._get_axis_number(axis) if index is not None or (mapper is not None and axis == 0): new_index = pandas.DataFrame(index=self.index).rename(**kwargs).index else: new_index = None if columns is not None or (mapper is not None and axis == 1): new_columns = ( pandas.DataFrame(columns=self.columns).rename(**kwargs).columns ) else: new_columns = None if inplace: obj = self else: obj = self.copy() if new_index is not None: obj.index = new_index if new_columns is not None: obj.columns = new_columns if not inplace: return obj def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.replace( to_replace=to_replace, value=value, inplace=False, limit=limit, regex=regex, method=method, ) return self._create_or_update_from_compiler(new_query_compiler, inplace) def rfloordiv(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rfloordiv", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) def rmod(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rmod", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) def rpow(self, other, axis="columns", level=None, fill_value=None): if isinstance(other, Series): return self._default_to_pandas( "rpow", other, axis=axis, level=level, fill_value=fill_value ) return self._binary_op( "rpow", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) def rsub(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rsub", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) def rtruediv(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rtruediv", other, axis=axis, level=level, fill_value=fill_value, broadcast=isinstance(other, Series), ) rdiv = rtruediv def select_dtypes(self, include=None, exclude=None): # Validates arguments for whether both include and exclude are None or # if they are disjoint. Also invalidates string dtypes. pandas.DataFrame().select_dtypes(include, exclude) if include and not is_list_like(include): include = [include] elif include is None: include = [] if exclude and not
is_list_like(exclude)
pandas.core.dtypes.common.is_list_like
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=pd.Float64Index([10.0, 11.0, 12.0], dtype='float64'), name='a' ) ) pd.testing.assert_series_equal( mapped_array['a'].value_counts(mapping=mapping), pd.Series( np.array([1, 1, 1]), index=pd.Index(['test_10.0', 'test_11.0', 'test_12.0'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.value_counts(), pd.DataFrame( np.array([ [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [0, 2, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.value_counts(), pd.DataFrame( np.array([ [1, 1], [1, 1], [1, 1], [2, 0], [1, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) mapped_array2 = mapped_array.replace(mapped_arr=[4, 4, 3, 2, np.nan, 4, 3, 2, 1]) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=False), pd.DataFrame( np.array([ [2, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 3.0, 2.0, 1.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([1.0, 2.0, 3.0, 4.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True), pd.DataFrame( np.array([ [2, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, ascending=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0] ]), index=pd.Float64Index([1.0, np.nan, 2.0, 3.0, 4.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True), pd.DataFrame( np.array([ [0.2222222222222222, 0.1111111111111111, 0.0, 0.0], [0.0, 0.1111111111111111, 0.1111111111111111, 0.0], [0.1111111111111111, 0.0, 0.1111111111111111, 0.0], [0.0, 0.0, 0.1111111111111111, 0.0], [0.0, 0.1111111111111111, 0.0, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True, dropna=True), pd.DataFrame( np.array([ [0.25, 0.125, 0.0, 0.0], [0.0, 0.125, 0.125, 0.0], [0.125, 0.0, 0.125, 0.0], [0.0, 0.0, 0.125, 0.0] ]), index=
pd.Float64Index([4.0, 2.0, 3.0, 1.0], dtype='float64')
pandas.Float64Index
# Question: Please concatenate this file with this one to a single text file. # The content of the output file should look like below. # http://www.pythonhow.com/data/sampledata.txt # http://pythonhow.com/data/sampledata_x_2.txt # Expected output: # x,y # 3,5 # 4,9 # 6,10 # 7,11 # 8,12 # 6,10 # 8,18 # 12,20 # 14,22 # 16,24 # Answer: import pandas as pd df1 = pd.read_csv('http://www.pythonhow.com/data/sampledata.txt') df2 =
pd.read_csv('http://pythonhow.com/data/sampledata_x_2.txt')
pandas.read_csv
from facenet_pytorch import MTCNN, InceptionResnetV1 import torch from torch.utils.data import DataLoader from torchvision import datasets import numpy as np import pandas as pd import os import cv2 def create_embeddings(): workers = 0 if os.name == 'nt' else 4 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') print('Running on device: {}'.format(device)) mtcnn = MTCNN( image_size=160, margin=0, min_face_size=20, thresholds=[0.6, 0.7, 0.7], factor=0.709, post_process=True, device=device ) resnet = InceptionResnetV1(pretrained='vggface2').eval().to(device) pictures=[] directory=os.listdir('images_cropped') for i in range(len(directory)): count = 0 flag = False while(flag==False): path='images_cropped'+'/'+str(directory[i])+'/'+str(count)+'.jpg' pic=cv2.imread(path) print(count) if pic is not None: tens=mtcnn(pic) if tens is not None: pictures.append(tens) flag=True break count=0 print(directory[i]) print('here') else: count=count+1 else: print(directory[i]) count=count+1 print(pictures) embeddings=[] for x in pictures: embeddings.append(resnet(x.unsqueeze(0)).detach().cpu()) dists = [[(e1 - e2).norm().item() for e2 in embeddings] for e1 in embeddings] print(
pd.DataFrame(dists, columns=directory, index=directory)
pandas.DataFrame
############################################################## # # # <NAME> and <NAME> (2017) # # Machine Learning for the Quantified Self # # Springer # # Chapter 3 # # # ############################################################## import scipy import math from sklearn.mixture import GaussianMixture import numpy as np import pandas as pd import util.util as util import copy from tqdm import tqdm # Class for outlier detection algorithms based on some distribution of the data. They # all consider only single points per row (i.e. one column). class DistributionBasedOutlierDetection: # Finds outliers in the specified column of datatable and adds a binary column with # the same name extended with '_outlier' that expresses the result per data point. def chauvenet(self, data_table, col, C=2): # Taken partly from: https://www.astro.rug.nl/software/kapteyn/ # Computer the mean and standard deviation. mean = data_table[col].mean() std = data_table[col].std() N = len(data_table.index) criterion = 1.0/(C*N) # Consider the deviation for the data points. deviation = abs(data_table[col] - mean)/std # Express the upper and lower bounds. low = -deviation/math.sqrt(2) high = deviation/math.sqrt(2) prob = [] mask = [] # Pass all rows in the dataset. for i in range(0, len(data_table.index)): # Determine the probability of observing the point prob.append(1.0 - 0.5 * (scipy.special.erf(high[i]) - scipy.special.erf(low[i]))) # And mark as an outlier when the probability is below our criterion. mask.append(prob[i] < criterion) data_table[col + '_outlier'] = mask return data_table # Fits a mixture model towards the data expressed in col and adds a column with the probability # of observing the value given the mixture model. def mixture_model(self, data_table, col, n=3): print('Applying mixture models') # Fit a mixture model to our data. data = data_table[data_table[col].notnull()][col] data_table = data_table[data_table[col].notnull()] g = GaussianMixture(n_components=n, max_iter=100, n_init=1) reshaped_data = np.array(data.values.reshape(-1,1)) g.fit(reshaped_data) # Predict the probabilities probs = g.score_samples(reshaped_data) # Create the right data frame and concatenate the two. data_probs = pd.DataFrame(np.power(10, probs), index=data.index, columns=[col+'_mixture']) data_table = pd.concat([data_table, data_probs], axis=1) return data_table # Class for distance based outlier detection. class DistanceBasedOutlierDetection: # Create distance table between rows in the data table. Here, only cols are considered and the specified # distance function is used to compute the distance. def distance_table(self, data_table, cols, d_function): data_table[cols] = data_table.loc[:, cols].astype('float32') return pd.DataFrame(scipy.spatial.distance.squareform(util.distance(data_table.loc[:, cols], d_function)), columns=data_table.index, index=data_table.index).astype('float32') # The most simple distance based algorithm. We assume a distance function, e.g. 'euclidean' # and a minimum distance of neighboring points and frequency of occurrence. def simple_distance_based(self, data_table, cols, d_function, dmin, fmin): print('Calculating simple distance-based criterion.') # Normalize the dataset first. new_data_table = util.normalize_dataset(data_table.dropna(axis=0, subset=cols), cols) # Create the distance table first between all instances: self.distances = self.distance_table(new_data_table, cols, d_function) mask = [] # Pass the rows in our table. for i in tqdm(range(0, len(new_data_table.index))): # Check what faction of neighbors are beyond dmin. frac = (float(sum([1 for col_val in self.distances.iloc[i,:].tolist() if col_val > dmin]))/len(new_data_table.index)) # Mark as an outlier if beyond the minimum frequency. mask.append(frac > fmin) data_mask =
pd.DataFrame(mask, index=new_data_table.index, columns=['simple_dist_outlier'])
pandas.DataFrame
#!/usr/bin/python from pathlib import Path import numpy as np import pandas as pd from bgcArgo import sprof sprof.set_dirs( argo_path='/Users/gordonc/Documents/data/Argo', woa_path='/Users/gordonc/Documents/data/WOA18', ncep_path='/Users/gordonc/Documents/data/NCEP' ) sagepath = Path('/Users/gordonc/Documents/data/Argo/sage/') gui_files = sagepath.glob('*guidata*.h5') flt_files = sagepath.glob('*floatdata*.h5') df = pd.DataFrame(columns=['SDN', 'CYCLE', 'LAT', 'LON', 'SURF_SAT', 'REF_SAT', 'GAINS', 'pyGAIN', 'WMO']) for gfn, ffn in zip(gui_files, flt_files): gdf = pd.read_hdf(gfn) fdf = pd.read_hdf(ffn) wmo = int(str(ffn).split('\\')[-1].split('_')[-1].split('.')[0]) syn = sprof(wmo) woa_gains = syn.calc_gains(ref='WOA') try: print(wmo) ncep_gains = syn.calc_gains() ncep_flag = True except: print('shoot {}'.format(wmo)) ncep_flag = False pyWOAGAIN = np.nan*np.ones((gdf.shape[0])) pyAIRGAIN = np.nan*np.ones((gdf.shape[0])) for i,c in enumerate(gdf.CYCLE): if c in syn.CYCLE: ix = syn.CYCLE == c g = woa_gains[ix] if ncep_flag: a = ncep_gains[ix] if g.shape[0] > 1: g = np.nanmean(g) if ncep_flag: a = np.nanmean(a) else: g = g[0] if ncep_flag: a = a[0] pyWOAGAIN[i] = g if ncep_flag: pyAIRGAIN[i] = a gdf['pyWOAGAIN'] = pyWOAGAIN gdf['pyAIRGAIN'] = pyAIRGAIN gdf['WMO'] = np.array(gdf.shape[0]*[wmo]) df =
pd.concat([df, gdf])
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([np.nan, np.nan, 4, 5, 4], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([4], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) def test_sort(self): # unordered cats are sortable cat = Categorical(["a", "b", "b", "a"], ordered=False) cat.sort_values() cat.sort() cat = Categorical(["a", "c", "b", "d"], ordered=True) # sort_values res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) cat = Categorical(["a", "c", "b", "d"], categories=["a", "b", "c", "d"], ordered=True) res = cat.sort_values() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) res = cat.sort_values(ascending=False) exp = np.array(["d", "c", "b", "a"], dtype=object) self.assert_numpy_array_equal(res.__array__(), exp) # sort (inplace order) cat1 = cat.copy() cat1.sort() exp = np.array(["a", "b", "c", "d"], dtype=object) self.assert_numpy_array_equal(cat1.__array__(), exp) def test_slicing_directly(self): cat = Categorical(["a", "b", "c", "d", "a", "b", "c"]) sliced = cat[3] tm.assert_equal(sliced, "d") sliced = cat[3:5] expected = Categorical(["d", "a"], categories=['a', 'b', 'c', 'd']) self.assert_numpy_array_equal(sliced._codes, expected._codes) tm.assert_index_equal(sliced.categories, expected.categories) def test_set_item_nan(self): cat = pd.Categorical([1, 2, 3]) exp = pd.Categorical([1, np.nan, 3], categories=[1, 2, 3]) cat[1] = np.nan self.assertTrue(cat.equals(exp)) # if nan in categories, the proper code should be set! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1] = np.nan exp = np.array([0, 3, 2, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = np.nan exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, 1] exp = np.array([0, 3, 0, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[1:3] = [np.nan, np.nan] exp = np.array([0, 3, 3, -1]) self.assert_numpy_array_equal(cat.codes, exp) cat = pd.Categorical([1, 2, np.nan, 3], categories=[1, 2, 3]) with tm.assert_produces_warning(FutureWarning): cat.set_categories([1, 2, 3, np.nan], rename=True, inplace=True) cat[pd.isnull(cat)] = np.nan exp = np.array([0, 1, 3, 2]) self.assert_numpy_array_equal(cat.codes, exp) def test_shift(self): # GH 9416 cat = pd.Categorical(['a', 'b', 'c', 'd', 'a']) # shift forward sp1 = cat.shift(1) xp1 = pd.Categorical([np.nan, 'a', 'b', 'c', 'd']) self.assert_categorical_equal(sp1, xp1) self.assert_categorical_equal(cat[:-1], sp1[1:]) # shift back sn2 = cat.shift(-2) xp2 = pd.Categorical(['c', 'd', 'a', np.nan, np.nan], categories=['a', 'b', 'c', 'd']) self.assert_categorical_equal(sn2, xp2) self.assert_categorical_equal(cat[2:], sn2[:-2]) # shift by zero self.assert_categorical_equal(cat, cat.shift(0)) def test_nbytes(self): cat = pd.Categorical([1, 2, 3]) exp = cat._codes.nbytes + cat._categories.values.nbytes self.assertEqual(cat.nbytes, exp) def test_memory_usage(self): cat = pd.Categorical([1, 2, 3]) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertEqual(cat.nbytes, cat.memory_usage(deep=True)) cat = pd.Categorical(['foo', 'foo', 'bar']) self.assertEqual(cat.nbytes, cat.memory_usage()) self.assertTrue(cat.memory_usage(deep=True) > cat.nbytes) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = cat.memory_usage(deep=True) - sys.getsizeof(cat) self.assertTrue(abs(diff) < 100) def test_searchsorted(self): # https://github.com/pydata/pandas/issues/8420 s1 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk']) s2 = pd.Series(['apple', 'bread', 'bread', 'cheese', 'milk', 'donuts']) c1 = pd.Categorical(s1, ordered=True) c2 = pd.Categorical(s2, ordered=True) # Single item array res = c1.searchsorted(['bread']) chk = s1.searchsorted(['bread']) exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Scalar version of single item array # Categorical return np.array like pd.Series, but different from # np.array.searchsorted() res = c1.searchsorted('bread') chk = s1.searchsorted('bread') exp = np.array([1]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present in the Categorical res = c1.searchsorted(['bread', 'eggs']) chk = s1.searchsorted(['bread', 'eggs']) exp = np.array([1, 4]) self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # Searching for a value that is not present, to the right res = c1.searchsorted(['bread', 'eggs'], side='right') chk = s1.searchsorted(['bread', 'eggs'], side='right') exp = np.array([3, 4]) # eggs before milk self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) # As above, but with a sorter array to reorder an unsorted array res = c2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) chk = s2.searchsorted(['bread', 'eggs'], side='right', sorter=[0, 1, 2, 3, 5, 4]) exp = np.array([3, 5] ) # eggs after donuts, after switching milk and donuts self.assert_numpy_array_equal(res, exp) self.assert_numpy_array_equal(res, chk) def test_deprecated_labels(self): # TODO: labels is deprecated and should be removed in 0.18 or 2017, # whatever is earlier cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) exp = cat.codes with
tm.assert_produces_warning(FutureWarning)
pandas.util.testing.assert_produces_warning
import json, time from decimal import Decimal import pandas as pd import numpy as np import requests class API(): def __init__(self, base_url): self.base_url = base_url @staticmethod def _http_error_message(e, r): response_text = json.loads(r.text)['message'] return f'\n\nRequests HTTP error: {e}\n\n\tUrl: {r.url}\n\tStatus Code: {r.status_code}\n\tResponse Text: {response_text}\n\tNote: Check the url and endpoint\n' @staticmethod def _random_float_between_zero_one(): rand_int_below_ten = Decimal(str(np.random.randint(11))) return float(rand_int_below_ten / Decimal('10')) def get(self, endpoint, params={}, auth=None): url = f'{self.base_url}{endpoint}' try: r = requests.get(url=url, auth=auth, params=params) r.raise_for_status() except requests.ConnectionError as e: raise e except requests.HTTPError as e: raise requests.HTTPError(self._http_error_message(e, r)) else: return r def post(self, endpoint, params={}, data={}, auth=None): url = f'{self.base_url}{endpoint}' data = json.dumps(data) try: r = requests.post(url=url, auth=auth, params=params, data=data) r.raise_for_status() except requests.HTTPError as e: raise requests.HTTPError(self._http_error_message(e, r)) except requests.ConnectTimeout as e: raise e except requests.ConnectionError as e: raise e else: return r def handle_page_nation(self, endpoint, start_date, date_field='created_at', params={}, auth=None): all_results = [] def make_request(after=None): response = self.get(endpoint, params={**params, 'after':after}, auth=auth) end_cursor = response.headers.get('cb-after', None) # end of page index; used for older results data = response.json() number_of_results = len(data) if number_of_results == 0: # no data available in this page (request) return # flatten data; df = pd.json_normalize(data, sep='.') df[date_field] =
pd.to_datetime(df[date_field])
pandas.to_datetime
''' Created on 22-Feb-2019 @author: <NAME>, Junior Research Fellow (PhD Student), National Centre fo Microbial Resource, National Centre for Cell Science, Pune, Maharshtra, India. ''' import pandas as pd import numpy as np import subprocess import os import re import sys def baseDir(): """Return baseDir of installation """ return os.path.dirname(os.path.abspath(__file__)) def blast(query,db,in_numCores,cwd): """ Do BLAST with provided query and database Args: query: Query file db: db path/name for doing blast in_numCores: Number of cores to use for BLAST in_percIdentCutOff: Percent identity cutoff cwd: Current working directory Returns: None """ if(sys.platform in ['darwin','linux','cygwin']): cmd = "blastn -out " + os.path.join(cwd,"out.blast") + " -outfmt 6 -query " + query + " -db " + db + " -num_threads " + in_numCores + " -max_target_seqs 1" elif(sys.platform == 'win32'): cmd = "blastn.exe -out " + os.path.join(cwd,"out.blast") + " -outfmt 6 -query " + query + " -db " + db + " -num_threads " + in_numCores + " -max_target_seqs 1" subBlast = subprocess.Popen(cmd,stdin=subprocess.PIPE,stderr=subprocess.PIPE,shell=True) output,error = subBlast.communicate() if(subBlast.returncode != 0): exit(error) return None def selectBlastHits_assignGenus_subsetOtuTable(blastOut,otuTable,blastcutoff): """ Select best hits from BLAST output and assign taxonmy with respect to given identity cutoff Args: blastOut: Filtered blast output file (outfmt 6) otuTable: OTU table blastcutoff: percent identity cutoff to assign genus to the sequences Returns: DataFrame: OTU/ASV table containg OTUs/ASVs which have assigned taxonomy through BLAST """ df = pd.read_csv(blastOut,sep='\t',index_col=0,header=None) df = df.groupby(level=0).max() df = df.loc[df[2]>=blastcutoff] if(df.empty): exit('None of OTU/ASV sequences passed the given percent identity cut-off') otuId_tax_dict = dict(zip(df.index,df[1].str.split("_",expand=True)[1])) df = pd.read_csv(otuTable,sep="\t",index_col=0) df.columns = df.columns.astype(str) df = df.reindex(list(otuId_tax_dict.keys())) df["taxonomy"] = list(otuId_tax_dict.values()) df = df.groupby(["taxonomy"]).sum() return otuId_tax_dict,df def makeTable16S(df,func,taxonomyList): """ Consolidate the 16S rRNA copy number table with respect to taxonomy Args: df: Dataframe of 16S rRNA copy numner func: mean/mode/median to be taken taxonomyList: list of taxonomy Returns: DataFrame: consolidated dataframe for organisms provided in taxonomy list """ #make table temp_dict = dict() for tax in taxonomyList: num = round(float(df[df.index.str.contains(tax,na=False)].mean()),2) if(num == 0): temp_dict[tax] = 1 else: temp_dict[tax] = num df_consolidated = pd.DataFrame.from_dict(temp_dict,orient="index") del(temp_dict) return df_consolidated def makeKOTable(df,abundData,coreNum): """ Consolidate the KO copy number table with respect to OTU table Args: df: Gene copy number table (dataframe) abundData: OTU abundance table (output of selectBlastHits_assignGenus_subsetOtuTable) coreNum: value in range 0 to 1. If a gene present in coreNum*genus, then it will be considered as core gene. Returns: DataFrame: Consolidated gene copy number table (dataframe) """ # old taxonomyList = list(abundData.index) dfToReturn = pd.DataFrame() for tax in taxonomyList: temp_df = df[df.index.str.contains(tax,na=False)] n = round(temp_df.shape[0]*coreNum) temp_df = temp_df[temp_df.columns[temp_df.astype(bool).sum()>=n]] median_series = temp_df.mean() median_series[median_series.between(0,1,False)] = 1 #median_df = pd.Series.to_frame(median_series).transpose().round() median_df = pd.Series.to_frame(median_series).transpose() dfToReturn = dfToReturn.append(median_df, ignore_index = True,sort=False) dfToReturn.index = taxonomyList #replace NA with 0 dfToReturn = dfToReturn.fillna(0) return dfToReturn def addAnnotations(metagenomeDf,keggFile): """ Add Kegg Annotations to predicted metagenome profile Args: metagenomeDf: predicted metagenome profile DataFrame Returns: Predicted metagenome with KEGG annotations """ # read kegg annotations kodf = pd.read_csv(keggFile, sep="\t", index_col=0,engine='python') metagenomeDf = metagenomeDf.join(kodf) return metagenomeDf def summarizeByFun(metagenomeDf,group): """ Consolidate on the basis of group Args: metagenomeDf: Annotated Metagenme matrix group: string by which dataFrame is to be categorized Returns: Consolidated DataFrame """ return metagenomeDf.groupby(group).mean() def runMinPath(metagenomeDf,funpredPath,outPath,typeOfPrediction): """ Run MinPath Args: metagenomeDf: Predicted Meatagenome matrix funpredPath: Path of funPred outPath: path to store files typeOfPrediction: kegg or metacyc depending on type of input KO or EC Returns: DataFrame: Pruned metagenome content dataframe """ #make input for minPath and run MinPath if(typeOfPrediction == "kegg"): minpathOutFiles = [] for sampleName in metagenomeDf.columns.difference(['Pathway_Module','A','B','C','EC']): minPtahInFile = os.path.join(outPath,sampleName + '_minpath_in.txt') minpathOutFiles.append(os.path.join(outPath,sampleName + '_minpath.out.details')) #create input file and run MinPath minPtahInFile_fh = open(minPtahInFile,"w") minPtahInFile_fh.writelines([str(i) + "\t" + str(j) + "\n" for i,j in enumerate(list(metagenomeDf[metagenomeDf[sampleName]>0].index))]) if(sys.platform == 'linux'): cmd = "python3 " + os.path.join(funpredPath,'MinPath1.4_micfunpred.py') + " " + funpredPath + " " + outPath + " -ko " + minPtahInFile + " -report " + os.path.join(outPath,sampleName + '_minpath.out') + " -details " + os.path.join(outPath,sampleName + '_minpath.out.details') elif(sys.platform == 'win32'): cmd = "python.exe " + os.path.join(funpredPath,'MinPath1.4_micfunpred.py') + " " + funpredPath + " " + outPath + " -ko " + minPtahInFile + " -report " + os.path.join(outPath,sampleName + '_minpath.out') + " -details " + os.path.join(outPath,sampleName + '_minpath.out.details') a = os.popen(cmd).read() #create pathway abundance dataframe from all files metagenomeDf_reindexed = metagenomeDf.copy() metagenome_daraframes = [] sampleName_list = [] annotation_dataframe = pd.DataFrame(columns=['KO','Pathway']) for minpath_out in minpathOutFiles: kos_present = [] sampleName = os.path.basename(minpath_out).split('_minpath')[0] sampleName_list.append(sampleName) # read KOs present as per minpath iFH = open(minpath_out,"r") for line in iFH.readlines(): # pathways matchObj = re.match("^path.*\#\s(.*)",line) if(matchObj): pathway = matchObj.group(1) # KOs matchObj = re.search("(K\d+)",line) if(matchObj): ko = matchObj.group(1) # create a lsit of KOs present and annotation dataframe kos_present.append(ko) annotation_dataframe = annotation_dataframe.append({'KO':ko,'Pathway':pathway},ignore_index=True) kos_present = set(kos_present) # append dataframe to dataframe list df_temp = metagenomeDf_reindexed.loc[kos_present][sampleName] metagenome_daraframes.append(df_temp) # merge all dataframes df_kos = pd.concat(metagenome_daraframes,axis=1).fillna(0) # add annotation annotation_dataframe = annotation_dataframe.drop_duplicates() df_kos_annotated =
pd.merge(df_kos,annotation_dataframe,left_index=True,right_on='KO')
pandas.merge
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2021/12/30 11:31 Desc: 股票数据-总貌-市场总貌 股票数据-总貌-成交概括 http://www.szse.cn/market/overview/index.html http://www.sse.com.cn/market/stockdata/statistic/ """ import warnings from io import BytesIO from akshare.utils import demjson import pandas as pd import requests warnings.filterwarnings('ignore') def stock_szse_summary(date: str = "20200619") -> pd.DataFrame: """ 深证证券交易所-总貌 http://www.szse.cn/market/overview/index.html :param date: 最近结束交易日 :type date: str :return: 深证证券交易所-总貌 :rtype: pandas.DataFrame """ url = "http://www.szse.cn/api/report/ShowReport" params = { "SHOWTYPE": "xlsx", "CATALOGID": "1803_sczm", "TABKEY": "tab1", "txtQueryDate": "-".join([date[:4], date[4:6], date[6:]]), "random": "0.39339437497296137", } r = requests.get(url, params=params) temp_df = pd.read_excel(BytesIO(r.content)) temp_df["证券类别"] = temp_df["证券类别"].str.strip() temp_df.iloc[:, 2:] = temp_df.iloc[:, 2:].applymap(lambda x: x.replace(",", "")) temp_df.columns = [ '证券类别', '数量', '成交金额', '成交量', '总股本', '总市值', '流通股本', '流通市值'] temp_df['数量'] = pd.to_numeric(temp_df['数量']) temp_df['成交金额'] = pd.to_numeric(temp_df['成交金额']) temp_df['成交量'] = pd.to_numeric(temp_df['成交量']) temp_df['总股本'] = pd.to_numeric(temp_df['总股本'], errors="coerce") temp_df['总市值'] = pd.to_numeric(temp_df['总市值'], errors="coerce") temp_df['流通股本'] = pd.to_numeric(temp_df['流通股本'], errors="coerce") temp_df['流通市值'] = pd.to_numeric(temp_df['流通市值'], errors="coerce") return temp_df def stock_sse_summary() -> pd.DataFrame: """ 上海证券交易所-总貌 http://www.sse.com.cn/market/stockdata/statistic/ :return: 上海证券交易所-总貌 :rtype: pandas.DataFrame """ url = "http://query.sse.com.cn/commonQuery.do" params = { 'sqlId': 'COMMON_SSE_SJ_GPSJ_GPSJZM_TJSJ_L', 'PRODUCT_NAME': '股票,主板,科创板', 'type': 'inParams', '_': '1640855495128', } headers = { "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() data_json.keys() temp_df = pd.DataFrame(data_json['result']).T temp_df.reset_index(inplace=True) temp_df['index'] = [ "流通股本", "总市值", "平均市盈率", "上市公司", "上市股票", "流通市值", "报告时间", "-", "总股本", "项目", ] temp_df = temp_df[temp_df['index'] != '-'].iloc[:-1, :] temp_df.columns = [ '项目', '股票', '科创板', '主板', ] return temp_df def stock_sse_deal_daily(date: str = "20220225") -> pd.DataFrame: """ 上海证券交易所-数据-股票数据-成交概况-股票成交概况-每日股票情况 http://www.sse.com.cn/market/stockdata/overview/day/ :return: 每日股票情况 :rtype: pandas.DataFrame """ if int(date) <= 20211224: url = "http://query.sse.com.cn/commonQuery.do" params = { "searchDate": "-".join([date[:4], date[4:6], date[6:]]), "sqlId": "COMMON_SSE_SJ_GPSJ_CJGK_DAYCJGK_C", "stockType": "90", "_": "1616744620492", } headers = { "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) temp_df = temp_df.T temp_df.reset_index(inplace=True) temp_df.columns = [ "单日情况", "主板A", "股票", "主板B", "_", "股票回购", "科创板", ] temp_df = temp_df[ [ "单日情况", "股票", "主板A", "主板B", "科创板", "股票回购", ] ] temp_df["单日情况"] = [ "流通市值", "流通换手率", "平均市盈率", "_", "市价总值", "_", "换手率", "_", "挂牌数", "_", "_", "_", "_", "_", "成交笔数", "成交金额", "成交量", "次新股换手率", "_", "_", ] temp_df = temp_df[temp_df["单日情况"] != "_"] temp_df["单日情况"] = temp_df["单日情况"].astype("category") list_custom_new = [ "挂牌数", "市价总值", "流通市值", "成交金额", "成交量", "成交笔数", "平均市盈率", "换手率", "次新股换手率", "流通换手率", ] temp_df["单日情况"].cat.set_categories(list_custom_new) temp_df.sort_values("单日情况", ascending=True, inplace=True) temp_df.reset_index(drop=True, inplace=True) temp_df['股票'] = pd.to_numeric(temp_df['股票'], errors="coerce") temp_df['主板A'] = pd.to_numeric(temp_df['主板A'], errors="coerce") temp_df['主板B'] = pd.to_numeric(temp_df['主板B'], errors="coerce") temp_df['科创板'] = pd.to_numeric(temp_df['科创板'], errors="coerce") temp_df['股票回购'] = pd.to_numeric(temp_df['股票回购'], errors="coerce") return temp_df elif int(date) <= 20220224: url = "http://query.sse.com.cn/commonQuery.do" params = { 'sqlId': 'COMMON_SSE_SJ_GPSJ_CJGK_MRGK_C', 'SEARCH_DATE': "-".join([date[:4], date[4:6], date[6:]]), '_': '1640836561673', } headers = { "Referer": "http://www.sse.com.cn/", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", } r = requests.get(url, params=params, headers=headers) data_json = r.json() temp_df = pd.DataFrame(data_json["result"]) temp_df = temp_df.T temp_df.reset_index(inplace=True) temp_df.columns = [ "单日情况", "主板A", "主板B", "科创板", "-", "-", "-", "-", "-", "-", ] temp_df = temp_df[[ "单日情况", "主板A", "主板B", "科创板", ]] temp_df["单日情况"] = [ "市价总值", "成交量", "平均市盈率", "换手率", "成交金额", "-", "流通市值", "流通换手率", "报告日期", "挂牌数", "-", ] temp_df = temp_df[temp_df["单日情况"] != "-"] temp_df["单日情况"] = temp_df["单日情况"].astype("category") list_custom_new = [ "挂牌数", "市价总值", "流通市值", "成交金额", "成交量", "平均市盈率", "换手率", "流通换手率", ] temp_df["单日情况"].cat.set_categories(list_custom_new) temp_df.sort_values("单日情况", ascending=True, inplace=True) temp_df.reset_index(inplace=True, drop=True) temp_df['主板A'] = pd.to_numeric(temp_df['主板A'], errors="coerce") temp_df['主板B'] = pd.t
o_numeric(temp_df['主板B'], errors="coerce")
pandas.to_numeric
from os import path import matplotlib.pyplot as plt import numpy as np import os import pandas as pd from pathlib import Path import ptitprince as pt # ---------- # Loss Plots # ---------- def save_loss_plot(path, loss_function, v_path=None, show=True): df = pd.read_csv(path) if v_path is not None: vdf = pd.read_csv(v_path) else: vdf = None p = Path(path) n = p.stem d = p.parents[0] out_path = os.path.join(d, n + '_loss.png') fig, ax = plot_loss(df, vdf=vdf, x_lab='Iteration', y_lab=loss_function, save=out_path, show=show) def plot_loss(df, vdf=None, x_lab='Iteration', y_lab='BCE Loss', save=None, show=True): x = df['Unnamed: 0'].values y = df['loss'].values epochs = len(df['epoch'].unique()) no_batches = int(len(x) / epochs) epoch_ends = np.array([((i + 1) * no_batches) - 1 for i in range(epochs)]) epoch_end_x = x[epoch_ends] epoch_end_y = y[epoch_ends] fig, ax = plt.subplots() leg = ['loss',] ax.plot(x, y, linewidth=2) ax.scatter(epoch_end_x, epoch_end_y) title = 'Training loss' if vdf is not None: if len(vdf) > epochs: vy = vdf.groupby('batch_id').mean()['validation_loss'].values vx = vdf['batch_id'].unique() else: vy = vdf['validation_loss'].values vx = epoch_end_x title = title + ' with validation loss' leg.append('validation loss') if len(vdf) > epochs: #vy_err = v_df.groupby('batch_id').sem()['validation_loss'].values #ax.errorbar(vx, vy, vy_err, marker='.') ax.plot(vx, vy, linewidth=2, marker='o') else: ax.plot(vx, vy, linewidth=2, marker='o') ax.set(xlabel=x_lab, ylabel=y_lab) ax.set_title(title) ax.legend(leg) fig.set_size_inches(13, 9) if save is not None: plt.savefig(save, dpi=300) if show: plt.show() return fig, ax def save_channel_loss_plot(path, show=True): df = pd.read_csv(path) p = Path(path) n = p.stem d = p.parents[0] out_path = os.path.join(d, n + '_channel-loss.png') fig, ax = plot_channel_losses(df, save=out_path, show=show) def plot_channel_losses(df, x_lab='Iteration', y_lab='BCE Loss', save=None, show=True): cols = list(df.columns) x = df['Unnamed: 0'].values non_channel_cols = ['Unnamed: 0', 'epoch', 'batch_num', 'loss', 'data_id'] channel_losses = [col for col in cols if col not in non_channel_cols] #print(channel_losses) if len(channel_losses) > 5: #print('four plots') fig, axs = plt.subplots(2, 2) zs, ys, xs, cs = [], [], [], [] for col in channel_losses: y = df[col].values if col.startswith('z'): ls = _get_linestyle(zs) axs[0, 0].plot(x, y, linewidth=1, linestyle=ls) zs.append(col) if col.startswith('y'): ls = _get_linestyle(ys) axs[0, 1].plot(x, y, linewidth=1, linestyle=ls) ys.append(col) if col.startswith('x'): ls = _get_linestyle(xs) axs[1, 0].plot(x, y, linewidth=1, linestyle=ls) xs.append(col) if col.startswith('cent') or col == 'mask': ls = _get_linestyle(cs) axs[1, 1].plot(x, y, linewidth=1, linestyle=ls) cs.append(col) axs[0, 0].set_title('Z affinities losses') axs[0, 0].legend(zs) axs[0, 1].set_title('Y affinities losses') axs[0, 1].legend(ys) axs[1, 0].set_title('X affinities losses') axs[1, 0].legend(xs) axs[1, 1].set_title('Object interior losses') axs[1, 1].legend(cs) fig.set_size_inches(13, 9) elif len(channel_losses) <= 5: #print('two plots') fig, axs = plt.subplots(2, 1) affs, cs = [], [] for col in channel_losses: y = df[col].values if col.startswith('z') or col.startswith('y') or col.startswith('x'): ls = _get_linestyle(affs) axs[0].plot(x, y, linewidth=2, linestyle=ls) affs.append(col) if col.startswith('cent') or col == 'mask': axs[1].plot(x, y, linewidth=2) cs.append(col) axs[0].set_title('Affinities losses') axs[0].legend(affs) axs[1].set_title('Object interior losses') axs[1].legend(cs) fig.set_size_inches(14, 14) for ax in axs.flat: ax.set(xlabel=x_lab, ylabel=y_lab) if save is not None: plt.savefig(save, dpi=300) if show: plt.show() return fig, axs def _get_linestyle(lis): if len(lis) == 0: ls = '-' elif len(lis) == 1: ls = '--' else: ls = ':' return ls # -------- # VI Plots # -------- def VI_plot( path, cond_ent_over="GT | Output", cond_ent_under="Output | GT", lab="", save=False, show=True): df = pd.read_csv(path) overseg = df[cond_ent_over].values o_groups = [cond_ent_over] * len(overseg) underseg = df[cond_ent_under].values u_groups = [cond_ent_under] * len(underseg) groups = o_groups + u_groups x = 'Variation of information' y = 'Conditional entropy' data = { x : groups, y : np.concatenate([overseg, underseg]) } data = pd.DataFrame(data) o = 'h' pal = 'Set2' sigma = .2 f, ax = plt.subplots(figsize=(12, 10)) pt.RainCloud(x = x, y = y, data = data, palette = pal, bw = sigma, width_viol = .6, ax = ax, orient = o) p = Path(path) plt.title(p.stem) if save: save_path = os.path.join(p.parents[0], p.stem + lab + '_VI_rainclout_plot.png') plt.savefig(save_path, bbox_inches='tight') if show: plt.show() def experiment_VI_plots( paths, names, title, out_name, out_dir, cond_ent_over="GT | Output", cond_ent_under="Output | GT", show=True ): plt.rcParams.update({'font.size': 16}) groups = [] ce0 = [] ce1 = [] for i, p in enumerate(paths): df = pd.read_csv(p) ce0.append(df[cond_ent_over].values) ce1.append(df[cond_ent_under].values) groups += [names[i]] * len(df) x = 'Experiment' data = { x : groups, cond_ent_over : np.concatenate(ce0), cond_ent_under : np.concatenate(ce1) } data = pd.DataFrame(data) o = 'h' pal = 'Set2' sigma = .2 f, axs = plt.subplots(1, 2, figsize=(14, 10)) #, sharex=True) #, sharey=True) ax0 = axs[0] ax1 = axs[1] pt.RainCloud(x = x, y = cond_ent_over, data = data, palette = pal, bw = sigma, width_viol = .6, ax = ax0, orient = o) ax0.set_title('Over-segmentation conditional entropy') pt.RainCloud(x = x, y = cond_ent_under, data = data, palette = pal, bw = sigma, width_viol = .6, ax = ax1, orient = o) ax1.set_title('Under-segmentation conditional entropy') f.suptitle(title) os.makedirs(out_dir, exist_ok=True) save_path = os.path.join(out_dir, out_name + '_VI_rainclould_plots.png') plt.savefig(save_path, bbox_inches='tight') if show: plt.show() # ----------------------- # Average Precision Plots # ----------------------- def plot_experiment_APs(paths, names, title, out_dir, out_name, show=True): dfs = [pd.read_csv(path) for path in paths] os.makedirs(out_dir, exist_ok=True) out_path = os.path.join(out_dir, out_name) plot_AP(dfs, names, out_path, title, show=show) def plot_AP(dfs, names, out_path, title, thresh_name='threshold', ap_name='average_precision', show=True): plt.rcParams.update({'font.size': 16}) plt.rcParams["figure.figsize"] = (10,10) fig = plt.figure() for df in dfs: plt.plot(df[thresh_name].values, df[ap_name].values) plt.xlabel('IoU threshold') plt.ylabel('Average precision') plt.title(title) plt.legend(names) fig.savefig(out_path) if show: plt.show() # ------------------------------ # Object Number Difference Plots # ------------------------------ def plot_experiment_no_diff(paths, names, title, out_dir, out_name, col_name='n_diff', show=True): dfs = [
pd.read_csv(path)
pandas.read_csv
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_union(self): # union rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=10) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=8) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = pd.PeriodIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-02 09:00', '2000-01-02 10:00', '2000-01-02 11:00', '2000-01-02 12:00', '2000-01-02 13:00'], freq='H') rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:05' '2000-01-01 09:08'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05', '2000-01-01 09:08'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=10) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('1998-01-01', freq='A', periods=10) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_difference(self): # diff rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=5) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=3) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = rng4 rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex( ['2000-01-01 09:01', '2000-01-01 09:05'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:03'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=3) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('2006-01-01', freq='A', periods=2) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7), ]: result_union = rng.difference(other) tm.assert_index_equal(result_union, expected) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with
tm.assertRaisesRegexp(period.IncompatibleFrequency, msg)
pandas.util.testing.assertRaisesRegexp
import os import numpy as np import argparse import json import pandas as pd import time import shutil import zipfile from azureml.core import Run import requests import threading import psutil def refine_image_path(image_name): global image_dir for prefix in ['xray-testing-data', 'Phoi_Labelling_Data', 'vinmec/anonymized-images']: path = os.path.join(image_dir, prefix, image_name) if os.path.exists(path): return path return image_name class MyThread(threading.Thread): def run(self): os.system('/bin/bash -c "source /opt/intel/openvino_2021/bin/setupvars.sh && cd /code/build/chest-detection && ./chest-detection"') def convert_json_predict(ret_obs, threshold = 0.75, type_disease = 'TUB'): ret_obs = ret_obs['observations'] tub_obs = list(filter(lambda x:x["code"] == type_disease, ret_obs))[0] confidence_score = tub_obs["confidentScore"] threshold = tub_obs["threshold"] print("Value threshold", threshold) if confidence_score >= threshold: predict = 1 else: predict = 0 return predict def predict(image_path): headers = { 'Content-Type': 'application/json', 'x-auth-token': '123<PASSWORD>' } url = "http://127.0.0.1:8080/images" data = {"imageUrl": image_path} try: response = requests.post(url, json=data, headers=headers) except Exception as e: print(e) return response def call_api(image_path): header = {'x-auth-token': '1<PASSWORD>', 'Content-Type': 'application/json'} try: raw = requests.post("http://127.0.0.1:8080/images", data=json.dumps({'imageUrl': image_path}), headers=header) if raw.status_code == 200: # print('ok') if json.loads(raw.text) is None: return raw.json() return json.loads(raw.text) except: raise ValueError(image_path) def call_api(image_path): # image_path = "https://api-int.draid.ai/dicom/studies/2.25.160091743131929387903451525446410949934/series/2.25.148244682741390089451659848730132728740/instances/2.25.97039210792747508295850276140512446062/frames/1/rendered?tenantCode=VB&accept=image/png" headers = { 'Content-Type': 'application/json', # 'x-auth-token': '<PASSWORD>' } url = "http://127.0.0.1:8080/images" data = { "imageUrl": image_path, "mode": "detection", "additional": { "histogram_adjustment": False } } try: raw = requests.post("http://127.0.0.1:8080/images", json=data, headers=headers) print(raw) if raw.status_code == 200: # print('ok') if json.loads(raw.text) is None: return raw.json() return json.loads(raw.text) except Exception as e: # raise ValueError(image_path) print('image_path', image_path) print('Exception', e) total_image = pd.read_csv("/home/haiduong/Documents/VIN_BRAIN/Measurement/Tuberculosis/Convert_data/testing_tuberculosis.csv") l_total_image = [] for index, row in total_image.iterrows(): name_image = row["Images"].split("/")[-1] l_total_image.append(name_image) done_image =
pd.read_csv("/home/haiduong/Documents/VIN_BRAIN/Measurement/Tuberculosis/Convert_data/Done/Done_09_07.csv")
pandas.read_csv
import sys import pandas FILENAME = sys.argv[1] #"20220121 Overview CG plates and compounds _consolidated RTG.xlsx" dfs_per_sheetname = pandas.read_excel(FILENAME, sheet_name=None) assert "experiments" in dfs_per_sheetname df = dfs_per_sheetname["experiments"] assert "experiment ID" in df.columns assert "compound map see corresponding excel table" in df.columns assert df["experiment ID"].is_unique ## non-limited list assert "imaging campaigns" in dfs_per_sheetname df = dfs_per_sheetname["imaging campaigns"] assert "imaging campaign ID" in df.columns assert "experiment ID" in df.columns assert "timepoint in hours" in df.columns assert "raw data available in zip file" in df.columns assert "processed images available in folder" in df.columns assert "cq1 analysis available in folder" in df.columns assert "incucyte analyzed data available in csv file" in df.columns ## assert df["imaging campaign ID"].is_unique #assert "incucyte timestamp" in df.columns assert "compounds" in dfs_per_sheetname df = dfs_per_sheetname["compounds"] assert "compound ID" in df.columns assert "SMILES" in df.columns df2 = df[df.duplicated(subset=["SMILES"], keep=False)] if len(df2) > 0: print("Sheet 'compounds': The following groups of entries have the same SMILES but different compound IDs:") for g, s in df2.groupby("SMILES"): print(f"{g} : ") print(s) print("---") df2 = df[df.duplicated(subset=["compound ID"], keep=False)] if len(df2) > 0: print("Sheet 'compounds': The following groups of entries have the same compound ID but different SMILES:") for g, s in df2.groupby("compound ID"): print(f"{g} : ") print(s) print("---") assert df["compound ID"].is_unique assert df["SMILES"].is_unique assert not df["SMILES"].str.contains("\n").any() assert "compound batches" in dfs_per_sheetname df = dfs_per_sheetname["compound batches"] assert "compound batch ID" in df.columns assert "compound ID" in df.columns df2 = df[df.duplicated(subset=["compound batch ID"], keep=False)] if len(df2) > 0: print("Sheet 'compound batches': The following groups of entries have the same compound batch ID:") for g, s in df2.groupby("compound batch ID"): print(f"{g} : ") print(s) print("---") assert df["compound batch ID"].is_unique mapping_tables_to_check = list( [s for s in dfs_per_sheetname if "compound map" in s] ) for mapping_table_name in mapping_tables_to_check: assert mapping_table_name in dfs_per_sheetname df = dfs_per_sheetname[mapping_table_name] assert "well ID" in df.columns assert "well name" in df.columns assert "compound batch ID" in df.columns assert "concentration uM" in df.columns assert "experimental type" in df.columns ## complex tests follow... acceptable_experimental_types = ["chemogenomic candidate", "unrelated to this experiment", "blank", "control", "cells only"] for mapping_table_name in mapping_tables_to_check: df = dfs_per_sheetname[mapping_table_name] ## check that all rows contain one of the allowed values above assert df["experimental type"].isin(acceptable_experimental_types).all() # concentration should be only nan if experimental type is one of the below cond1 = df["experimental type"] == "blank" cond2 = df["concentration uM"].isna() cond3 = df["experimental type"] == "cells only" cond3b = df["experimental type"] == "unrelated to this experiment" assert df[cond1].equals(df[(cond1) & (cond2)]) assert df[cond3].equals(df[(cond3) & (cond2)]) assert df[cond3b].equals(df[(cond3b) & (cond2)]) assert df[cond2].equals(df[(cond1) | (cond3) | (cond3b)]) # concentration should be >0 if experimental type is different than the ones above df_out = df[~((cond1)|(cond3)|(cond3b))].query("not `concentration uM` > 0") if len( df_out ) > 0: print(f"Concentrations in table '{mapping_table_name}' are not in the expected range:") print(df_out) print("---") # compound batch should be only nan if experimental type is one of the above cond4 = df["compound batch ID"].isna() assert df[cond1].equals(df[(cond4) & (cond1)]) assert df[cond3].equals(df[(cond4) & (cond3)]) assert df[cond3b].equals(df[(cond4) & (cond3b)]) assert df[cond4].equals(df[(cond1) | (cond3) | (cond3b)]) ## ID reference tests foo = dfs_per_sheetname["experiments"]["experiment ID"] bar = dfs_per_sheetname["imaging campaigns"]["experiment ID"] assert foo.isin(bar.values).all() assert bar.isin(foo.values).all() foo = dfs_per_sheetname["compound batches"]["compound ID"] bar = dfs_per_sheetname["compounds"]["compound ID"] bar_foo = set(bar) - set(foo) if len(bar_foo) > 0: print("INFO: There are compound IDs in table 'compounds', which are not referenced in table 'compound batches':") print(bar_foo) print("---") foo_bar = set(foo) - set(bar) if len(foo_bar) > 0: print("There are compound IDs in table 'compound batches', which cannot be resolved from table 'compounds':") print(foo_bar) print("---") assert foo.isin(bar.values).all() assert bar.isin(foo.values).all() for mapping_table_name in mapping_tables_to_check: foo = dfs_per_sheetname["compound batches"]["compound batch ID"].unique() bar = dfs_per_sheetname[mapping_table_name] bar = bar[ bar["experimental type"] != "cells only" ] bar = bar[ bar["experimental type"] != "blank"] bar = bar[ bar["experimental type"] != "unrelated to this experiment"] bar = bar["compound batch ID"].unique() bar_foo = set(bar) - set(foo) if len(bar_foo) > 0: print(f"There are compound batches in table '{mapping_table_name}', which cannot be resolved from table 'compound batches':") print(bar_foo) print("---") print("Done.") ## BLOCK to replace dummy values in the whole excel file if True: did_i_change_anything = False mapping = { # "old" : "new", "dummy1" : "dummy1", "dummy2" : "EUB0001080a", "dummy3" : "DP000007a", "dummy4" : "EUB0001108a", "EUB0000500a" : "EUB0000871a", "EUB0000528a" : "EUB0000841a", "EUB0000543aCl" : "EUB0000213bCl", "EUB0000550aCl" : "EUB0000196bCl", "EUB0000657aPO4" : "EUB0000140bPO4", "EUB0000667aCit" : "EUB0000286bCit", "EUB0000675aCl" : "EUB0000130bCl", "EUB0000092a" : "EUB0000092b" } import openpyxl wb = openpyxl.load_workbook(FILENAME) for sheetname in wb.sheetnames: ws = wb[sheetname] dimension = ws.calculate_dimension() for row in ws[dimension]: for cell in row: if cell.value in mapping: print(f"Changing cell {cell} from value {cell.value} to {mapping[cell.value]}") cell.value = mapping[cell.value] did_i_change_anything = True if did_i_change_anything: wb.save(FILENAME + ".changed.xlsx") ## ... end of BLOCK. ## BLOCK to check the whole excel file for trailing spaces in the fields if True: import openpyxl wb = openpyxl.load_workbook(FILENAME) for sheetname in wb.sheetnames: ws = wb[sheetname] dimension = ws.calculate_dimension() for row in ws[dimension]: for cell in row: if type(cell.value) == str and cell.value.strip() != cell.value: print(f"Sheet '{sheetname}', cell {cell.coordinate} contains undesired whitespace: '{cell.value}'") ## ... end of BLOCK. ## BLOCK to condense a list of superfluous entries in table 'compounds' vs correct table 'compound batches' if False: foo = dfs_per_sheetname["compound batches"]["compound ID"] bar = dfs_per_sheetname["compounds"]["compound ID"] bar_foo = set(bar) - set(foo) dfs_per_sheetname["compounds"][~bar.isin(bar_foo)].to_excel("2022-02-03-new-compounds-sheet.xlsx") ## ... end of BLOCK. ## BLOCK to check for expected pattern in compound concentrations in one plate... if False: for mapping_table_name in mapping_tables_to_check: foo = dfs_per_sheetname[mapping_table_name] foo = foo[foo["experimental type"]=="chemogenomic candidate"] print(mapping_table_name) print("total len:",len(foo)) counter=0 for groupname, series in foo.groupby("eubopen ID"): if len(series)!=2: if len(series)==1: if series["concentration uM"].item() == 10.0: counter+=1 continue print("potential ERROR:") print(series) else: if sorted(series["concentration uM"].values) == [1.0, 10.0]: counter+=2 else: print("potential ERROR:") print(series) print("rather unsuspicious:", counter) ## ... end of BLOCK. ### BLOCK to check for consistency in data and produce condensed output, if EUbOPEN, SGC IDs, and compound names are given in the compound maps ... if False: collect_mappings_between_sgc_and_eubopen_id = {} collect_mappings_between_compound_names_and_eubopen_id = {} for mapping_table_name in mapping_tables_to_check: spam = dfs_per_sheetname[mapping_table_name][["SGC ID", "eubopen ID"]].dropna().drop_duplicates() spam = dfs_per_sheetname[mapping_table_name][["SGC ID", "eubopen ID"]].drop_duplicates() same_sgc_different_eubopen = spam[spam.duplicated(subset="SGC ID", keep=False)] same_eubopen_different_sgc = spam[spam.duplicated(subset="eubopen ID", keep=False)] if len(same_eubopen_different_sgc)>0: print(f"There are compound batches in table '{mapping_table_name}', which have different SGC IDs, but the same EUbOPEN ID:") print(same_eubopen_different_sgc) print("---") if len(same_sgc_different_eubopen)>0: print(f"There are compound batches in table '{mapping_table_name}', which have the same SGC ID, but different EUbOPEN IDs:") print(same_sgc_different_eubopen) print("---") #assert len(same_sgc_different_eubopen) == 0 #assert len(same_eubopen_different_sgc) == 0 for sgc_id, s in spam.groupby("SGC ID"): if sgc_id in collect_mappings_between_sgc_and_eubopen_id: value = s["eubopen ID"].item() if value != collect_mappings_between_sgc_and_eubopen_id[sgc_id] and not (pandas.isna(value) and pandas.isna(collect_mappings_between_sgc_and_eubopen_id[sgc_id])): print(f"ERROR for {sgc_id}: {repr(value)} != {repr(collect_mappings_between_sgc_and_eubopen_id[sgc_id])}") else: collect_mappings_between_sgc_and_eubopen_id.update( {sgc_id: s["eubopen ID"].item()} ) spam2 = dfs_per_sheetname[mapping_table_name][["compound ID", "eubopen ID"]].drop_duplicates() for compound_name, s in spam2.groupby("compound ID"): if pandas.isna(compound_name) or len(s)>1: print(f"compound name is nan: {s}") if compound_name in collect_mappings_between_compound_names_and_eubopen_id: value = s["eubopen ID"].item() if value != collect_mappings_between_compound_names_and_eubopen_id[compound_name] and not (pandas.isna(value) and pandas.isna(collect_mappings_between_compound_names_and_eubopen_id[compound_name])): print(f"ERROR for {compound_name}: {repr(value)} != {repr(collect_mappings_between_compound_names_and_eubopen_id[compound_name])}") else: collect_mappings_between_compound_names_and_eubopen_id.update( {compound_name: s["eubopen ID"].item()} ) print(collect_mappings_between_sgc_and_eubopen_id) print(collect_mappings_between_compound_names_and_eubopen_id) df1 = pandas.DataFrame.from_dict(collect_mappings_between_compound_names_and_eubopen_id, orient="index", columns=["eubopen ID"]) df1["compound ID"] = df1.index #print(df1[df1.duplicated("eubopen ID", keep=False)]) df2 =
pandas.DataFrame.from_dict(collect_mappings_between_sgc_and_eubopen_id, orient="index", columns=["eubopen ID"])
pandas.DataFrame.from_dict
#!/usr/bin/env python # coding: utf-8 # # 剽窃检测,特征工程 # # 在此项目中,你需要构建一个剽窃检测器,它会检测答案文本文件并进行二元分类:根据文本文件与提供的原文之间的相似度,将文件标为剽窃文件或非剽窃文件。 # # 你的第一个任务是创建一些可以用于训练分类模型的特征。这个任务将分为以下几个步骤: # # * 清理和预处理数据。 # * 定义用于比较答案和原文之间相似性的特征,并提取相似性特征。 # * 通过分析不同特征之间的相关性,选择“合适的”特征。 # * 创建训练/测试 `.csv` 文件,其中包含训练/测试数据点的相关特征和类别标签。 # # 在下个 notebook (Notebook 3) 中,你将使用在此 notebook 中创建的这些特征和 `.csv` 文件在 SageMaker notebook 实例中训练一个二元分类模型。 # # 你将根据[这篇论文](https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c412841_developing-a-corpus-of-plagiarised-short-answers/developing-a-corpus-of-plagiarised-short-answers.pdf)中的说明定义几个不同的相似性特征,这些特征将帮助你构建强大的剽窃检测器。 # # 在完成此 notebook 时,你需要完成此 notebook 中的所有练习并回答所有问题。 # > 所有任务都标有**练习**,所有问题都标有**问题**。 # # 你需要决定在最终训练和测试数据中包含哪些特征。 # # --- # ## 读取数据 # # 以下单元格将下载必要的项目数据并将文件解压缩到文件夹 `data/` 中。 # # 此数据是谢菲尔德大学 <NAME>(信息研究)和 <NAME>(计算机科学)创建的数据集的稍加修改版本。要了解数据收集和语料库信息,请访问[谢菲尔德大学网站](https://ir.shef.ac.uk/cloughie/resources/plagiarism_corpus.html). # # > **数据引用**:<NAME>. and <NAME>. Developing A Corpus of Plagiarised Short Answers, Language Resources and Evaluation: Special Issue on Plagiarism and Authorship Analysis, In Press. [下载] # In[1]: # NOTE: # you only need to run this cell if you have not yet downloaded the data # otherwise you may skip this cell or comment it out get_ipython().system('wget https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c4147f9_data/data.zip') get_ipython().system('unzip data') # In[4]: # import libraries import pandas as pd import numpy as np import os # 这个剽窃数据集由多个文本文件组成;每个文件的特性都在名为 `file_information.csv` 的 `.csv` 文件中进行了总结,我们可以使用 `pandas` 读取该文件。 # In[3]: csv_file = 'data/file_information.csv' plagiarism_df = pd.read_csv(csv_file) # print out the first few rows of data info plagiarism_df.head() # ## 剽窃类型 # # 每个文本文件都有一个相关**任务**(任务 A-E)和一个剽窃**类别**,从上述 DataFrame 中可以看出。 # # ### A-E 五种任务 # # 每个文本文件都包含一个简短问题的答案;这些问题标为任务 A-E。例如任务 A 的问题是:“面向对象编程中的继承是什么意思?” # # ### 剽窃类别 # # 每个文本文件都有相关的剽窃标签/类别: # # **1. 剽窃类别:`cut`、`light` 和 `heavy`。** # * 这些类别表示不同级别的剽窃答案文本。`cut` 类答案直接复制了原文,`light` 类答案在原文的基础上稍微改写了一下,而 `heavy` 类答案以原文为基础,但是改写程度很大(可能是最有挑战性的剽窃检测类型)。 # # **2. 非剽窃类别:`non`。** # * `non` 表示答案没有剽窃,没有参考维基百科原文。 # # **3. 特殊的原文类别:`orig`。** # * 这是原始维基百科文本对应的一种类别。这些文件仅作为比较基准。 # --- # ## 预处理数据 # # 在下面的几个单元格中,你将创建一个新的 DataFrame,其中包含关于 `data/` 目录下所有文件的相关信息。该 DataFrame 可以为特征提取和训练二元剽窃分类器准备好数据。 # ### 练习:将类别转换为数值数据 # # 你将发现数据集中的 `Category` 列包含字符串或类别值,要为特征提取准备这些特征,我们需要将类别转换为数值。此外,我们的目标是创建一个二元分类器,所以我们需要一个二元类别标签,可以表示答案文本是剽窃文件 (1) 还是非剽窃文件 (0)。请完成以下函数 `numerical_dataframe`,它会根据名称读取 `file_information.csv`,并返回新的 DataFrame,其中包含一个数值 `Category` 列,以及新的 `Class` 列,该列会将每个答案标为剽窃文件或非剽窃文件。 # # 你的函数应该返回一个具有以下属性的新 DataFrame: # # * 4 列:`File`、`Task`、`Category`、`Class`。`File` 和 `Task` 列可以与原始 `.csv` 文件一样。 # * 根据以下规则将所有 `Category` 标签转换为数值标签(更高的值表示更高级别的剽窃行为): # * 0 = `non` # * 1 = `heavy` # * 2 = `light` # * 3 = `cut` # * -1 = `orig`,这是表示原始文件的特殊值。 # * 对于新的 `Class` 列 # * 任何非剽窃 (`non`) 答案文本的类别标签都应为 `0`。 # * 任何剽窃类答案文本的类别标签都应为 `1`。 # * 任何 `orig` 文本都对应特殊标签 `-1`。 # # ### 预期输出 # # 运行函数后,应该获得行如下所示的 DataFrame: # ``` # # File Task Category Class # 0 g0pA_taska.txt a 0 0 # 1 g0pA_taskb.txt b 3 1 # 2 g0pA_taskc.txt c 2 1 # 3 g0pA_taskd.txt d 1 1 # 4 g0pA_taske.txt e 0 0 # ... # ... # 99 orig_taske.txt e -1 -1 # # ``` # In[5]: # Read in a csv file and return a transformed dataframe def numerical_dataframe(csv_file='data/file_information.csv'): '''Reads in a csv file which is assumed to have `File`, `Category` and `Task` columns. This function does two things: 1) converts `Category` column values to numerical values 2) Adds a new, numerical `Class` label column. The `Class` column will label plagiarized answers as 1 and non-plagiarized as 0. Source texts have a special label, -1. :param csv_file: The directory for the file_information.csv file :return: A dataframe with numerical categories and a new `Class` label column''' # your code here df = pd.read_csv(csv_file) df.loc[:,'Class'] = df.loc[:,'Category'].map({'non': 0, 'heavy': 1, 'light': 1, 'cut': 1, 'orig': -1}) df.loc[:,'Category'] = df.loc[:,'Category'].map({'non': 0, 'heavy': 1, 'light': 2, 'cut': 3, 'orig': -1}) return df # ### 测试单元格 # # 下面是几个测试单元格。第一个是非正式测试,你可以通过调用你的函数并输出返回的结果,检查代码是否符合预期。 # # 下面的**第二个**单元格是更严格的测试单元格。这样的单元格旨在确保你的代码能按预期运行,并形成可能会在后面的测试/代码中使用的任何变量,在这里是指 dataframe `transformed_df`。 # # > 你应该按前后顺序(出现在 notebook 中的顺序)运行此 notebook 中的单元格。对于测试单元格来说,这一点很重要。 # # 通常,后面的单元格依赖于在之前的单元格中定义的函数、导入项或变量。例如,某些测试需要依赖于前面的测试才能运行。 # # 这些测试并不能测试所有情况,但是可以很好地检查你的代码是否正确。 # In[6]: # informal testing, print out the results of a called function # create new `transformed_df` transformed_df = numerical_dataframe(csv_file ='data/file_information.csv') # check work # check that all categories of plagiarism have a class label = 1 transformed_df.head(10) # In[7]: # test cell that creates `transformed_df`, if tests are passed """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # importing tests import problem_unittests as tests # test numerical_dataframe function tests.test_numerical_df(numerical_dataframe) # if above test is passed, create NEW `transformed_df` transformed_df = numerical_dataframe(csv_file ='data/file_information.csv') # check work print('\nExample data: ') transformed_df.head() # ## 文本处理和拆分数据 # # 这个项目的目标是构建一个剽窃分类器。本质上这个任务是比较文本;查看给定答案和原文,比较二者并判断答案是否剽窃了原文。要有效地进行比较并训练分类器,我们需要完成几项操作:预处理所有文本数据并准备文本文件(在此项目中有 95 个答案文件和 5 个原始文件),使文件更容易比较,并将数据划分为 `train` 和 `test` 集合,从而分别可以用于训练分类器和评估分类器。 # # 为此,我们向你提供了可以向上面的 `transformed_df` 添加额外信息的代码。下面的两个单元格不需要更改;它们会向 `transformed_df` 添加两列: # # 1. 一个 `Text` 列;此列包含 `File` 的所有小写文本,并删除了多余的标点。 # 2. 一个 `Datatype` 列;它是一个字符串值 `train`、`test` 或 `orig`,将数据点标记为训练集或测试集。 # # 你可以在项目目录的 `helpers.py` 文件中找到如何创建这些额外列的详细信息。建议通读该文件,了解文本是如何处理的,以及数据是如何拆分的。 # # 请运行以下单元格以获得 `complete_df`,其中包含剽窃检测和特征工程所需的所有信息。 # In[8]: """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import helpers # create a text column text_df = helpers.create_text_column(transformed_df) text_df.head() # In[9]: # after running the cell above # check out the processed text for a single file, by row index row_idx = 0 # feel free to change this index sample_text = text_df.iloc[0]['Text'] print('Sample processed text:\n\n', sample_text) # ## 将数据拆分成训练集和测试集 # # 下个单元格将向给定的 DataFrame 添加一个 `Datatype` 列,表示记录是否是: # * `train` - 训练数据,用于训练模型。 # * `test` - 测试数据,用于评估模型。 # * `orig` - 任务的原始维基百科文件。 # # ### 分层抽样 # # 给定的代码使用了辅助函数,你可以在主项目目录的 `helpers.py` 文件中查看该函数。该函数实现了[分层随机抽样](https://en.wikipedia.org/wiki/Stratified_sampling),可以按照任务和剽窃量随机拆分数据。分层抽样可以确保获得在任务和剽窃组合之间均匀分布的训练和测试数据。约 26% 的数据作为测试集,约 74% 的数据作为训练集。 # # 函数 **train_test_dataframe** 接受一个 DataFrame,并假设该 DataFrame 具有 `Task` 和 `Category` 列,然后返回一个修改过的 DataFrame,表示文件属于哪种 `Datatype`(训练、测试或原始文件)。抽样方式将根据传入的 *random_seed* 稍微不同。犹豫样本量比较小,所以这种分层随机抽样可以为二元剽窃分类器提供更稳定的结果。稳定性是指在给定随机 seed 后,分类器的准确率方差更小。 # In[10]: random_seed = 1 # can change; set for reproducibility """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ import helpers # create new df with Datatype (train, test, orig) column # pass in `text_df` from above to create a complete dataframe, with all the information you need complete_df = helpers.train_test_dataframe(text_df, random_seed=random_seed) # check results complete_df.head(10) # # 判断剽窃行为 # # 准备好数据并创建了包含信息的 `complete_df`(包括与每个文件相关的文本和类别)后,可以继续完成下个任务了,即提取可以用于剽窃分类的相似性特征。 # # > 注意:以下代码练习不会修改假设现在存在的 `complete_df` 的现有列。 # # `complete_df` 应该始终包含以下列:`['File', 'Task', 'Category', 'Class', 'Text', 'Datatype']`。你可以添加其他列,并且可以通过复制 `complete_df` 的部分内容创建任何新的 DataFrames,只要不直接修改现有值即可。 # # --- # # # 相似性特征 # # 剽窃检测的一种方式是计算**相似性特征**,这些特征可以衡量给定文本与原始维基百科原文之间的相似性(对于特定的任务 A-E 来说)。你可以根据[这篇剽窃检测论文](https://s3.amazonaws.com/video.udacity-data.com/topher/2019/January/5c412841_developing-a-corpus-of-plagiarised-short-answers/developing-a-corpus-of-plagiarised-short-answers.pdf)创建相似性特征。 # > 在这篇论文中,研究人员创建了叫做**包含系数**和**最长公共子序列**的特征。 # # 你将使用这些特征作为输入,训练模型区分剽窃文本和非剽窃文本。 # # ## 特征工程 # # 下面深入讨论下我们要包含在剽窃检测模型中的特征,以及如何计算这些特征。在下面的解释部分,我将提交的文本文件称为**学员答案文本 (A)**,并将原始维基百科文件(我们要将答案与之比较的文件)称为**维基百科原文 (S)**。 # # ### 包含系数 # # 你的第一个任务是创建**包含系数特征**。为了理解包含系数,我们先回顾下 [n-gram](https://en.wikipedia.org/wiki/N-gram) 的定义。*n-gram* 是一个序列字词组合。例如,在句子“bayes rule gives us a way to combine prior knowledge with new information”中,1-gram 是一个字词,例如“bayes”。2-gram 可以是“bayes rule”,3-gram 可以是“combine prior knowledge”。 # # > 包含系数等于维基百科原文 (S) 的 n-gram 字词计数与学员答案文本 (S) 的 n-gram 字词计数之间的**交集**除以学员答案文本的 n-gram 字词计数。 # # $$ \frac{\sum{count(\text{ngram}_{A}) \cap count(\text{ngram}_{S})}}{\sum{count(\text{ngram}_{A})}} $$ # # 如果两段文本没有公共的 n-gram,那么包含系数为 0,如果所有 n-gram 都有交集,那么包含系数为 1。如果有更长的 n-gram 是一样的,那么可能存在复制粘贴剽窃行为。在此项目中,你需要决定在最终项目中使用什么样的 `n` 或多个 `n`。 # # ### 练习:创建包含系数特征 # # 根据你创建的 `complete_df`,你应该获得了比较学员答案文本 (A) 与对应的维基百科原文 (S) 所需的所有信息。任务 A 的答案应该与任务 A 的原文进行比较,并且任务 B、C、D 和 E 的答案应该与对应的原文进行比较。 # # 在这道练习中,你需要完成函数 `calculate_containment`,它会根据以下参数计算包含系数: # * 给定 DataFrame `df`(假设为上面的 `complete_df`) # * `answer_filename`,例如 'g0pB_taskd.txt' # * n-gram 长度 `n` # # ### 计算包含系数 # # 完成此函数的一般步骤如下所示: # 1. 根据给定 `df` 中的所有文本文件创建一个 n-gram 计数数组;建议使用 [CountVectorizer](https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html)。 # 2. 获得给定 `answer_filename` 的已处理答案和原文。 # 3. 根据以下公式计算答案和原文之间的包含系数。 # # >$$ \frac{\sum{count(\text{ngram}_{A}) \cap count(\text{ngram}_{S})}}{\sum{count(\text{ngram}_{A})}} $$ # # 4. 返回包含系数值。 # # 在完成以下函数时,可以编写任何辅助函数。 # In[13]: from sklearn.feature_extraction.text import CountVectorizer # Calculate the ngram containment for one answer file/source file pair in a df def calculate_containment(df, n, answer_filename): '''Calculates the containment between a given answer text and its associated source text. This function creates a count of ngrams (of a size, n) for each text file in our data. Then calculates the containment by finding the ngram count for a given answer text, and its associated source text, and calculating the normalized intersection of those counts. :param df: A dataframe with columns, 'File', 'Task', 'Category', 'Class', 'Text', and 'Datatype' :param n: An integer that defines the ngram size :param answer_filename: A filename for an answer text in the df, ex. 'g0pB_taskd.txt' :return: A single containment value that represents the similarity between an answer text and its source text. ''' answer_text, answer_task = df[df.File == answer_filename][['Text', 'Task']].iloc[0] source_text = df[(df.Task == answer_task) & (df.Class == -1)]['Text'].iloc[0] counts = CountVectorizer(analyzer='word', ngram_range=(n,n)) ngrams_array = counts.fit_transform([answer_text, source_text]).toarray() containment = (np.minimum(ngrams_array[0],ngrams_array[1]).sum())/(ngrams_array[0].sum()) return containment # ### 测试单元格 # # 实现了包含系数函数后,你可以测试函数行为。 # # 以下单元格将遍历前几个文件,并根据指定的 n 和文件计算原始类别和包含系数值。 # # >如果你正确实现了该函数,你应该看到非剽窃类别的包含系数值很低或接近 0,剽窃示例的包含系数更高,或接近 1。 # # 注意当 n 的值改变时会发生什么。建议将代码应用到多个文件上,并比较生成的包含系数。你应该看到,最高的包含系数对应于最高剽窃级别 (`cut`) 的文件。 # In[14]: # select a value for n n = 3 # indices for first few files test_indices = range(5) # iterate through files and calculate containment category_vals = [] containment_vals = [] for i in test_indices: # get level of plagiarism for a given file index category_vals.append(complete_df.loc[i, 'Category']) # calculate containment for given file and n filename = complete_df.loc[i, 'File'] c = calculate_containment(complete_df, n, filename) containment_vals.append(c) # print out result, does it make sense? print('Original category values: \n', category_vals) print() print(str(n)+'-gram containment values: \n', containment_vals) # In[15]: # run this test cell """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # test containment calculation # params: complete_df from before, and containment function tests.test_containment(complete_df, calculate_containment) # ### 问题 1:为何我们可以在为创建模型而拆分 DataFrame 之前,计算所有数据(训练和测试数据)的包含系数特征?也就是说,为何在计算包含系数时,测试数据和训练数据不会相互影响? # **回答:** # # 数据预处理阶段还没有建立模型,并且包含系数是文本的一种独立特征,因此测试数据和训练数据不会相互影响。 # --- # ## 最长公共子序列 # # 包含系数是检测两个文档用词重叠现象的很好方式;还有助于发现剪切-粘贴和改写级别的剽窃行为。因为剽窃是一项很复杂的任务,有多种不同的级别,所以通常有必要包含其他相似性特征。这篇论文还讨论了**最长公共子序列**特征。 # # > 最长公共子序列是指维基百科原文 (S) 和学员答案文本 (A) 之间一样的最长字词(或字母)字符串。该值也会标准化,即除以学员答案文本中的总字词(字母)数量。 # # 在这道练习中,你的任务是计算两段文本之间的最长公共字词子序列。 # # ### 练习:计算最长公共子序列 # # 请完成函数 `lcs_norm_word`;它应该会计算学员答案文本与维基百科原文之间的最长公共子序列。 # # 举个具体的例子比较好理解。最长公共子序列 (LCS) 问题可能如下所示: # * 假设有两段文本:长度为 n 的文本 A(答案)和长度为 m 的字符串 S(原文)。我们的目标是生成最长公共子序列:在两段文本中都出现过的从左到右最长公共子序列(字词不需要连续出现)。 # * 有两句话: # * A = "i think pagerank is a link analysis algorithm used by google that uses a system of weights attached to each element of a hyperlinked set of documents" # * S = "pagerank is a link analysis algorithm used by the google internet search engine that assigns a numerical weighting to each element of a hyperlinked set of documents" # # * 在此示例中,我们发现每句话的开头比较相似,有重叠的一串字词“pagerank is a link analysis algorithm used by”,然后稍微有所变化。我们**继续从左到右地在两段文本中移动**,直到看到下个公共序列;在此例中只有一个字词“google”。接着是“that”和“a”,最后是相同的结尾“to each element of a hyperlinked set of documents”。 # * 下图演示了这些序列是如何在每段文本中按顺序发现的。 # # <img src='notebook_ims/common_subseq_words.png' width=40% /> # # * 这些字词按顺序在每个文档中从左到右地出现,虽然中间夹杂着一些字词,我们也将其看做两段文本的最长公共子序列。 # * 统计出公共字词的数量为 20。**所以,LCS 的长度为 20**。 # * 接下来标准化该值,即除以学员答案的总长度;在此例中,长度仅为 27。**所以,函数 `lcs_norm_word` 应该返回值 `20/27` 或约 `0.7408`**。 # # 所以,LCS 可以很好地检测剪切-粘贴剽窃行为,或检测某人是否在答案中多次参考了相同的原文。 # ### LCS,动态规划 # # 从上面的示例可以看出,这个算法需要查看两段文本并逐词比较。你可以通过多种方式解决这个问题。首先,可以使用 `.split()` 将每段文本拆分成用逗号分隔的字词列表,以进行比较。然后,遍历文本中的每个字词,并在比较过程中使 LCS 递增。 # # 在实现有效的 LCS 算法时,建议采用矩阵和动态规划法。**动态规划**是指将更大的问题拆分成一组更小的子问题,并创建一个完整的解决方案,不需要重复解决子问题。 # # 这种方法假设你可以将大的 LCS 任务拆分成更小的任务并组合起来。举个简单的字母比较例子: # # * A = "ABCD" # * S = "BD" # # 一眼就能看出最长的字母子序列是 2(B 和 D 在两个字符串中都按顺序出现了)。我们可以通过查看两个字符串 A 和 S 中每个字母之间的关系算出这个结果。 # # 下图是一个矩阵,A 的字母位于顶部,S 的字母位于左侧: # # <img src='notebook_ims/matrix_1.png' width=40% /> # # 这个矩阵的列数和行数为字符串 S 和 A 中的字母数量再加上一行和一列,并在顶部和左侧填充了 0。所以现在不是 2x4 矩阵,而是 3x5 矩阵。 # # 下面将问题拆分成更小的 LCS 问题并填充矩阵。例如,先查看最短的子字符串:A 和 S 的起始字母。“A”和“B”这两个字母之间最长的公共子序列是什么? # # **答案是 0,在相应的单元格里填上 0。** # # <img src='notebook_ims/matrix_2.png' width=30% /> # # 然后看看下个问题,“AB”和“B”之间的 LCS 是多少? # # **现在 B 和 B 匹配了,在相应的单元格中填上值 1**。 # # <img src='notebook_ims/matrix_3_match.png' width=25% /> # # 继续下去,最终矩阵如下所示,在右下角有个 **2**。 # # <img src='notebook_ims/matrix_6_complete.png' width=25% /> # # 最终的 LCS 等于值 **2** 除以 A 中的 n-gram 数量。所以标准化值为 2/4 = **0.5**。 # # ### 矩阵规则 # # 要注意的一点是,你可以一次一个单元格地填充该矩阵。每个网格的值仅取决于紧挨着的顶部和左侧网格中的值,或者对角线/左上角的值。规则如下所示: # * 首先是有一个多余行和列(填充 0)的矩阵。 # * 在遍历字符串时: # * 如果有匹配,则用左上角的值加一后填充该单元格。在此示例中,当我们发现匹配的 B-B 时,将匹配单元格左上角的值 0 加 1 后填充到该单元格。 # * 如果没有匹配,将紧挨着的左侧和上方单元格中的值之最大值填充到非匹配单元格中。 # # <img src='notebook_ims/matrix_rules.png' width=50% /> # # 填完矩阵后,**右下角的单元格将包含非标准化 LCS 值**。 # # 这种矩阵方法可以应用到一组字词上,而非仅仅是字母上。你的函数应该将此矩阵应用到两个文本中的字词上,并返回标准化 LCS 值。 # In[16]: # Compute the normalized LCS given an answer text and a source text def lcs_norm_word(answer_text, source_text): '''Computes the longest common subsequence of words in two texts; returns a normalized value. :param answer_text: The pre-processed text for an answer text :param source_text: The pre-processed text for an answer's associated source text :return: A normalized LCS value''' a_text = answer_text.split() s_text = source_text.split() lcs_matrix = np.zeros((len(s_text) + 1, len(a_text) + 1), dtype=int) for i in range(1, len(s_text)+1): for j in range(1, len(a_text)+1): if s_text[i-1] == a_text[j-1]: lcs_matrix[i][j] = lcs_matrix[i-1][j-1] + 1 else: lcs_matrix[i][j] = max(lcs_matrix[i-1][j], lcs_matrix[i][j-1]) lcs = lcs_matrix[len(s_text)][len(a_text)] return lcs / len(a_text) # ### 测试单元格 # # 首先用在开头的描述中提供的示例测试你的代码。 # # 在以下单元格中,我们指定了字符串 A(答案文本)和 S(原文)。我们知道这两段文本有 20 个公共字词,提交的答案文本长 27,所以标准化的 LCS 应为 20/27。 # # In[17]: # Run the test scenario from above # does your function return the expected value? A = "i think pagerank is a link analysis algorithm used by google that uses a system of weights attached to each element of a hyperlinked set of documents" S = "pagerank is a link analysis algorithm used by the google internet search engine that assigns a numerical weighting to each element of a hyperlinked set of documents" # calculate LCS lcs = lcs_norm_word(A, S) print('LCS = ', lcs) # expected value test assert lcs==20/27., "Incorrect LCS value, expected about 0.7408, got "+str(lcs) print('Test passed!') # 下个单元格会运行更严格的测试。 # In[18]: # run test cell """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # test lcs implementation # params: complete_df from before, and lcs_norm_word function tests.test_lcs(complete_df, lcs_norm_word) # 最后,看看 `lcs_norm_word` 生成的几个值。与之前一样,你应该看到更高的值对应于高更级别的剽窃。 # In[19]: # test on your own test_indices = range(5) # look at first few files category_vals = [] lcs_norm_vals = [] # iterate through first few docs and calculate LCS for i in test_indices: category_vals.append(complete_df.loc[i, 'Category']) # get texts to compare answer_text = complete_df.loc[i, 'Text'] task = complete_df.loc[i, 'Task'] # we know that source texts have Class = -1 orig_rows = complete_df[(complete_df['Class'] == -1)] orig_row = orig_rows[(orig_rows['Task'] == task)] source_text = orig_row['Text'].values[0] # calculate lcs lcs_val = lcs_norm_word(answer_text, source_text) lcs_norm_vals.append(lcs_val) # print out result, does it make sense? print('Original category values: \n', category_vals) print() print('Normalized LCS values: \n', lcs_norm_vals) # --- # # 创建所有特征 # # 完成了特征计算函数后,下面开始创建多个特征,并判断要在最终模型中使用哪些特征。在以下单元格中,我们提供了两个辅助函数,帮助你创建多个特征并将这些特征存储到 DataFrame `features_df` 中。 # # ### 创建多个包含系数特征 # # 你完成的 `calculate_containment` 函数将在下个单元格中被调用,该单元格定义了辅助函数 `create_containment_features`。 # # > 此函数返回了一个包含系数特征列表,并根据给定的 `n` 和 df(假设为 `complete_df`)中的所有文件计算而出。 # # 对于原始文件,包含系数值设为特殊值 -1。 # # 你可以通过该函数轻松地针对每个文本文件创建多个包含系数特征,每个特征的 n-gram 长度都不一样。 # In[20]: """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Function returns a list of containment features, calculated for a given n # Should return a list of length 100 for all files in a complete_df def create_containment_features(df, n, column_name=None): containment_values = [] if(column_name==None): column_name = 'c_'+str(n) # c_1, c_2, .. c_n # iterates through dataframe rows for i in df.index: file = df.loc[i, 'File'] # Computes features using calculate_containment function if df.loc[i,'Category'] > -1: c = calculate_containment(df, n, file) containment_values.append(c) # Sets value to -1 for original tasks else: containment_values.append(-1) print(str(n)+'-gram containment features created!') return containment_values # ### 创建 LCS 特征 # # 在以下单元格中,你完成的 `lcs_norm_word` 函数将用于为给定 DataFrame 中的所有答案文件创建一个 LCS 特征列表(同样假设你传入的是 `complete_df`)。它会为原文分配特殊值 -1。 # # In[21]: """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Function creates lcs feature and add it to the dataframe def create_lcs_features(df, column_name='lcs_word'): lcs_values = [] # iterate through files in dataframe for i in df.index: # Computes LCS_norm words feature using function above for answer tasks if df.loc[i,'Category'] > -1: # get texts to compare answer_text = df.loc[i, 'Text'] task = df.loc[i, 'Task'] # we know that source texts have Class = -1 orig_rows = df[(df['Class'] == -1)] orig_row = orig_rows[(orig_rows['Task'] == task)] source_text = orig_row['Text'].values[0] # calculate lcs lcs = lcs_norm_word(answer_text, source_text) lcs_values.append(lcs) # Sets to -1 for original tasks else: lcs_values.append(-1) print('LCS features created!') return lcs_values # ## 练习:通过选择 `ngram_range` 创建特征 DataFrame # # 论文建议计算以下特征:*1-gram 到 5-gram* 包含系数和*最长公共子序列*。 # > 在这道练习中,你可以选择创建更多的特征,例如 *1-gram 到 7-gram* 包含系数特征和*最长公共子序列*。 # # 你需要创建至少 6 个特征,并从中选择一些特征添加到最终的分类模型中。定义和比较至少 6 个不同的特征使你能够丢弃似乎多余的任何特征,并选择用在最终模型中的最佳特征。 # # 在以下单元格中,请**定义 n-gram 范围**;你将使用这些 n 创建 n-gram 包含系数特征。我们提供了剩余的特征创建代码。 # In[22]: # Define an ngram range ngram_range = range(1,7) # The following code may take a minute to run, depending on your ngram_range """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ features_list = [] # Create features in a features_df all_features = np.zeros((len(ngram_range)+1, len(complete_df))) # Calculate features for containment for ngrams in range i=0 for n in ngram_range: column_name = 'c_'+str(n) features_list.append(column_name) # create containment features all_features[i]=np.squeeze(create_containment_features(complete_df, n)) i+=1 # Calculate features for LCS_Norm Words features_list.append('lcs_word') all_features[i]= np.squeeze(create_lcs_features(complete_df)) # create a features dataframe features_df = pd.DataFrame(np.transpose(all_features), columns=features_list) # Print all features/columns print() print('Features: ', features_list) print() # In[23]: # print some results features_df.head(10) # ## 相关特征 # # 你应该检查整个数据集的特征相关性,判断哪些特征**过于高度相似**,没必要都包含在一个模型中。在分析过程中,你可以使用整个数据集,因为我们的样本量很小。 # # 所有特征都尝试衡量两段文本之间的相似性。因为特征都是为了衡量相似性,所以这些特征可能会高度相关。很多分类模型(例如朴素贝叶斯分类器)都要求特征不高度相关;高度相关的特征可能会过于突出单个特征的重要性。 # # 所以你在选择特征时,需要选择相关性低的几个特征。相关系数值的范围从 0 到 1,表示从低到高,如以下[相关性矩阵](https://www.displayr.com/what-is-a-correlation-matrix/)所示。 # In[24]: """ DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE """ # Create correlation matrix for just Features to determine different models to test corr_matrix = features_df.corr().abs().round(2) # display shows all of a dataframe display(corr_matrix) # ## 练习:创建选择的训练/测试数据 # # 请在下方完成函数 `train_test_data`。此函数的参数应该包括: # * `complete_df`:一个 DataFrame,其中包含所有处理过的文本数据、文件信息、数据类型和类别标签 # * `features_df`:一个 DataFrame,其中包含所有计算的特征,例如 ngram (n= 1-5) 的包含系数,以及 `complete_df`(在之前的单元格中创建的 df)中列出的每个文本文件的 LCS 值。 # * `selected_features`:一个特征列名称列表,例如 `['c_1', 'lcs_word']`,将用于在创建训练/测试数据集时选择最终特征。 # # 它应该返回两个元组: # * `(train_x, train_y)`,所选的训练特征及其对应的类别标签 (0/1) # * `(test_x, test_y)`,所选的测试特征及其对应的类别标签 (0/1) # # ** 注意:x 和 y 应该分别是特征值和数值类别标签数组,不是 DataFrame。** # # 在看了上述相关性矩阵后,你应该设置一个小于 1.0 的相关性**边界**值,判断哪些特征过于高度相关,不适合包含在最终训练和测试数据中。如果你找不到相关性比边界值更低的特征,建议增加特征数量(更长的 n-gram)并从中选择特征,或者在最终模型中仅使用一两个特征,避免引入高度相关的特征。 # # `complete_df` 有一个 `Datatype` 列,表示数据应该为 `train` 或 `test` 数据;它可以帮助你相应地拆分数据。 # In[25]: # Takes in dataframes and a list of selected features (column names) # and returns (train_x, train_y), (test_x, test_y) def train_test_data(complete_df, features_df, selected_features): '''Gets selected training and test features from given dataframes, and returns tuples for training and test features and their corresponding class labels. :param complete_df: A dataframe with all of our processed text data, datatypes, and labels :param features_df: A dataframe of all computed, similarity features :param selected_features: An array of selected features that correspond to certain columns in `features_df` :return: training and test features and labels: (train_x, train_y), (test_x, test_y)''' df =
pd.concat([complete_df, features_df[selected_features]], axis=1)
pandas.concat
"""Base Constraint class.""" import copy import importlib import inspect import logging import pandas as pd LOGGER = logging.getLogger(__name__) def get_qualified_name(_object): """Return the Fully Qualified Name from an instance or class.""" module = _object.__module__ if hasattr(_object, '__name__'): _class = _object.__name__ else: _class = _object.__class__.__name__ return module + '.' + _class def import_object(obj): """Import an object from its qualified name.""" if isinstance(obj, str): package, name = obj.rsplit('.', 1) return getattr(importlib.import_module(package), name) return obj class ConstraintMeta(type): """Metaclass for Constraints. This metaclass replaces the ``__init__`` method with a new function that stores the arguments passed to the __init__ method in a dict as the attribute ``__kwargs__``. This allows us to later on dump the class definition as a dict. """ def __init__(self, name, bases, attr): super().__init__(name, bases, attr) old__init__ = self.__init__ signature = inspect.signature(old__init__) arg_names = list(signature.parameters.keys())[1:] def __init__(self, *args, **kwargs): class_name = self.__class__.__name__ if name == class_name: self.__kwargs__ = copy.deepcopy(kwargs) self.__kwargs__.update(dict(zip(arg_names, args))) old__init__(self, *args, **kwargs) __init__.__doc__ = old__init__.__doc__ __init__.__signature__ = signature self.__init__ = __init__ class Constraint(metaclass=ConstraintMeta): """Constraint base class.""" _handling_strategy = 'all' def _identity(self, table_data): return table_data def __init__(self): if self._handling_strategy == 'transform': self.filter_valid = self._identity elif self._handling_strategy == 'reject_sampling': self.transform = self._identity self.reverse_transform = self._identity def fit(self, table_data): """No-op method.""" pass def transform(self, table_data): """Identity method for completion. To be optionally overwritten by subclasses. Args: table_data (pandas.DataFrame): Table data. Returns: pandas.DataFrame: Input data unmodified. """ return table_data def fit_transform(self, table_data): """Fit this Constraint to the data and then transform it. Args: table_data (pandas.DataFrame): Table data. Returns: pandas.DataFrame: Transformed data. """ self.fit(table_data) return self.transform(table_data) def reverse_transform(self, table_data): """Identity method for completion. To be optionally overwritten by subclasses. Args: table_data (pandas.DataFrame): Table data. Returns: pandas.DataFrame: Input data unmodified. """ return table_data def is_valid(self, table_data): """Say whether the given table rows are valid. Args: table_data (pandas.DataFrame): Table data. Returns: pandas.Series: Series of ``True`` values """ return
pd.Series(True, index=table_data.index)
pandas.Series
#!/usr/bin/env python3 import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score from utils import linear_regression def remove_outliers(time_df, q): """ New: Remove values outside q to (100-q) quantiles. Old: Only keep cases where the time taken is less than n times as long for one language compared to the other. Also drop cases where the difference in days is larger than 8*n. (20 days for n=2.5) """ # old version # # remove outliers based on ratio and minimum difference # time_df = time_df.loc[(time_df["DAYS FRENCH"] / time_df["DAYS SPANISH"]) < n] # time_df = time_df.loc[(time_df["DAYS SPANISH"] / time_df["DAYS FRENCH"]) < n] # time_df = time_df.loc[abs(time_df["DAYS FRENCH"] - time_df["DAYS SPANISH"]) < 8*n] # remove outliers based on quantiles perday_ratio = time_df['DAYS FRENCH'] / time_df['DAYS SPANISH'] uq = perday_ratio.quantile(q=(100-q)/100) lq = perday_ratio.quantile(q=q/100) perday_ratio = perday_ratio.loc[perday_ratio < uq] perday_ratio = perday_ratio.loc[perday_ratio > lq] time_df = time_df.loc[perday_ratio.index] return time_df features = pd.read_csv("data/wto/biber_wto.dat", sep='\t') tr = pd.read_csv("data/wto/wto_timed.csv") df = pd.concat([features, tr], axis=1) df = remove_outliers(df, q=10) y_fr = df["PERDAY FRENCH"] y_sp = df["PERDAY SPANISH"] X = df.iloc[:, :-7] """ French only """ y = y_fr ols, scaler, X_test, y_test = linear_regression(X, y, test_size=0.1, random_state=210, plots=False) X_test_s = scaler.transform(X_test) y_pred = ols.predict(X_test_s) ols_residuals = y_test - y_pred #print("Coefficients: \n{}".format(ols.coef_)) print("French only") print(ols.score(X_test_s, y_test)) plt.figure() plt.scatter(y_test, y_pred) plt.plot(range(100, 5000), range(100, 5000), 'k-') plt.xlabel('True values') plt.ylabel('Predicted values') plt.title('OLS - French') """ Spanish only """ y = y_sp ols, scaler, X_test, y_test = linear_regression(X, y, test_size=0.1, random_state=210, plots=False) X_test_s = scaler.transform(X_test) y_pred = ols.predict(X_test_s) ols_residuals = y_test - y_pred #print("Coefficients: \n{}".format(ols.coef_)) print("\nSpanish only") print(ols.score(X_test_s, y_test)) plt.figure() plt.scatter(y_test, y_pred) plt.plot(range(100, 5000), range(100, 5000), 'k-') plt.xlabel('True values') plt.ylabel('Predicted values') plt.title('OLS - Spanish') # #Residuals # plt.figure() # plt.plot(y_test, ols_residuals, '.') # plt.xlabel("Real value") # plt.ylabel("Residual") # plt.title("OLS Residuals - Spanish") # plt.show() """ Train with French, test with Spanish """ X_train = X X_test = X y_train = y_fr y_test = y_sp scaler = preprocessing.StandardScaler().fit(X_train) X_train_s = scaler.transform(X_train) X_test_s = scaler.transform(X_test) ols = linear_model.LinearRegression() ols.fit(X_train_s, y_train) y_pred = ols.predict(X_test_s) ols_residuals = y_test - y_pred #print("Coefficients: \n{}".format(ols.coef_)) print("\nTrain with French, test with Spanish") print(ols.score(X_test_s, y_test)) plt.figure() plt.scatter(y_test, y_pred) plt.plot(range(100, 5000), range(100, 5000), 'k-') plt.plot(np.unique(y_test), np.poly1d(np.polyfit(y_test, y_pred, 1))(np.unique(y_test)), 'r--') plt.xlabel('True values') plt.ylabel('Predicted values') plt.title('OLS - Train French, test Spanish') #plt.show() """ Train with French, test with Spanish """ X_train = X X_test = X y_train = y_sp y_test = y_fr scaler = preprocessing.StandardScaler().fit(X_train) X_train_s = scaler.transform(X_train) X_test_s = scaler.transform(X_test) ols = linear_model.LinearRegression() ols.fit(X_train_s, y_train) y_pred = ols.predict(X_test_s) ols_residuals = y_test - y_pred #print("Coefficients: \n{}".format(ols.coef_)) print("\nTrain with Spanish, test with French") print(ols.score(X_test_s, y_test)) plt.figure() plt.scatter(y_test, y_pred) plt.plot(range(100, 5000), range(100, 5000), 'k-') plt.plot(np.unique(y_test), np.poly1d(np.polyfit(y_test, y_pred, 1))(np.unique(y_test)), 'r--') plt.xlabel('True values') plt.ylabel('Predicted values') plt.title('OLS - Train Spanish, test French') #plt.show() """ Combine French and Spanish """ X_combined = pd.concat([X, X], axis=0, ignore_index=True) y_combined =
pd.concat([y_fr, y_sp], axis=0, ignore_index=True)
pandas.concat
import os import numpy as np import numpy.random import pandas as pd from data_algebra.data_ops import * import data_algebra.SQLite import data_algebra.test_util import vtreat from vtreat.vtreat_db_adapter import as_data_algebra_pipeline def test_db_adapter_1_cdata(): # Example from: # https://github.com/WinVector/pyvtreat/blob/main/Examples/Database/vtreat_db_adapter.ipynb # Data from: # https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008 # data_all = pd.read_csv("diabetes_head.csv") dir_path = os.path.dirname(os.path.realpath(__file__)) data_all = pd.read_csv(os.path.join(dir_path, "diabetes_head.csv")) n = data_all.shape[0] data_all["orig_index"] = range(n) d_train = data_all.loc[range(n - 5), :].reset_index(inplace=False, drop=True) d_app = data_all.loc[range(n - 5, n)].reset_index(inplace=False, drop=True) #%% outcome_name = "readmitted" cols_to_copy = ["orig_index", "encounter_id", "patient_nbr"] + [outcome_name] vars = ["time_in_hospital", "weight"] columns = vars + cols_to_copy # d_train.loc[:, columns] #%% treatment = vtreat.BinomialOutcomeTreatment( cols_to_copy=cols_to_copy, outcome_name=outcome_name, outcome_target=True, params=vtreat.vtreat_parameters( {"sparse_indicators": False, "filter_to_recommended": False,} ), ) d_train_treated = treatment.fit_transform(d_train.loc[:, columns]) d_app_treated = treatment.transform(d_app.loc[:, columns]) # d_app_treated #%% transform_as_data = treatment.description_matrix() # transform_as_data #%% ops = as_data_algebra_pipeline( source=descr(d_app=d_app.loc[:, columns]), vtreat_descr=transform_as_data, treatment_table_name="transform_as_data", row_keys=['orig_index'], ) # print(ops) #%% transformed = ops.eval( {"d_app": d_app.loc[:, columns], "transform_as_data": transform_as_data} ) # transformed #%% assert data_algebra.test_util.equivalent_frames(transformed, d_app_treated) #%% db_handle = data_algebra.SQLite.example_handle() sql = db_handle.to_sql(ops) assert isinstance(sql, str) # print(sql) #%% db_handle.insert_table(d_app.loc[:, columns], table_name="d_app") db_handle.insert_table(transform_as_data, table_name="transform_as_data") db_handle.execute("CREATE TABLE res AS " + sql) res_db = db_handle.read_query("SELECT * FROM res ORDER BY orig_index LIMIT 10") # res_db #%% assert data_algebra.test_util.equivalent_frames(res_db, d_app_treated) #%% db_handle.close() def test_db_adapter_general(): # set up example data def mk_data( n_rows: int = 100, *, outcome_name: str = "y", n_cat_vars: int = 5, n_num_vars: int = 5, add_unknowns: bool = False, ): step = 1 / np.sqrt(n_cat_vars + n_num_vars) cols = dict() y = np.random.normal(size=n_rows) for i in range(n_cat_vars): vname = f"vc_{i}" levels = ["a", "b", "c", "none"] if add_unknowns: levels = levels + ["d"] level_values = {v: step * np.random.normal(size=1)[0] for v in levels} v = np.random.choice(levels, replace=True, size=n_rows) y = y + np.array([level_values[vi] for vi in v]) v = np.array([vi if vi != "none" else None for vi in v]) cols[vname] = v for i in range(n_num_vars): vname = f"vn_{i}" v = np.random.normal(size=n_rows) y = y + step * v v[np.random.uniform(size=n_rows) < 0.24] = None cols[vname] = v vars = list(cols.keys()) vars.sort() cols[outcome_name] = y d = pd.DataFrame(cols) d["orig_index"] = range(d.shape[0]) return d, outcome_name, vars d, outcome_name, vars = mk_data(100) d_app, _, _ = mk_data(50, add_unknowns=True) cols_to_copy = [outcome_name, "orig_index"] columns = vars + cols_to_copy # get reference result treatment = vtreat.NumericOutcomeTreatment( cols_to_copy=cols_to_copy, outcome_name=outcome_name, params=vtreat.vtreat_parameters( {"sparse_indicators": False, "filter_to_recommended": False,} ), ) d_train_treated = treatment.fit_transform(d) assert isinstance(d_train_treated, pd.DataFrame) d_app_treated = treatment.transform(d_app) # test ops path transform_as_data = treatment.description_matrix() ops = as_data_algebra_pipeline( source=descr(d_app=d), vtreat_descr=transform_as_data, treatment_table_name="transform_as_data", row_keys=["orig_index"], ) ops_source = str(ops) assert isinstance(ops_source, str) d_app_res = ops.eval({"d_app": d_app, "transform_as_data": transform_as_data}) assert data_algebra.test_util.equivalent_frames(d_app_treated, d_app_res) # test ops db path source_descr = TableDescription(table_name="d_app", column_names=columns,) db_handle = data_algebra.SQLite.example_handle() db_handle.insert_table(d_app.loc[:, columns], table_name="d_app") db_handle.insert_table(transform_as_data, table_name="transform_as_data") db_handle.execute("CREATE TABLE res AS " + db_handle.to_sql(ops)) res_db = db_handle.read_query("SELECT * FROM res ORDER BY orig_index") assert data_algebra.test_util.equivalent_frames(res_db, d_app_treated) db_handle.close() def test_db_adapter_monster(): outcome_name = "y" row_id_name = 'row_id' n_vars = 5 def mk_data(n_rows: int = 100): step = 1 / np.sqrt(n_vars) cols = dict() y = np.random.normal(size=n_rows) for i in range(n_vars): vname = f"v_{i}" v = np.random.choice(["a", "b"], replace=True, size=n_rows) y = y + np.where(v == "a", step, -step) cols[vname] = v vars = list(cols.keys()) vars.sort() cols[outcome_name] = y cols[row_id_name] = range(n_rows) d =
pd.DataFrame(cols)
pandas.DataFrame
from os import listdir from os.path import isfile, join from typing import Dict, List, Tuple import pandas as pd episodes = 1000 letters = ['A', 'B', 'C', 'D', 'E'] get_min = { 'A': 4, 'B': 5, 'C': 5, 'D': 6, 'E': 6, } def sort_files_by_depth(files: List) -> Tuple[List, List, List, List, List]: """ Sorts files by depth in separate list """ depth_0 = [] depth_1 = [] depth_2 = [] depth_3 = [] depth_4 = [] for f in files: d0 = f.find('depth=') d = f[d0 + 6: d0 + 7] # extracts depth from file name if d == '0': depth_0.append(f) elif d == '1': depth_1.append(f) elif d == '2': depth_2.append(f) elif d == '3': depth_3.append(f) else: depth_4.append(f) return depth_0, depth_1, depth_2, depth_3, depth_4 def read_files(files: List) -> Dict: """ Reads list of file names into dictionary :param files: list of file names :return: Dict where key is a file name and value is a pandas dataframe """ dfs = {} for f in files: # print('Reading', f) df = pd.read_csv(f) dfs[f] = df return dfs def get_file_dictionaries(d0, d1, d2, d3, d4) -> Tuple[Dict, Dict, Dict, Dict, Dict]: """ Reads files into dictionaries """ dfs_0 = read_files(d0) dfs_1 = read_files(d1) dfs_2 = read_files(d2) dfs_3 = read_files(d3) dfs_4 = read_files(d4) return dfs_0, dfs_1, dfs_2, dfs_3, dfs_4 def combine_results(dfs: Dict) -> pd.DataFrame: """ Combines all DataFrames in dictionary into one pd.DataFrame """ frame =
pd.DataFrame()
pandas.DataFrame
#%% import os try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') print(os.getcwd()) except: pass #%% import sys sys.path.append("/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/") import pandas as pd import numpy as np import connectome_tools.process_matrix as promat import math import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import pymaid from pymaid_creds import url, name, password, token # convert pair-sorted brain/sensories matrix to binary matrix based on synapse threshold matrix_ad = pd.read_csv('data/axon-dendrite.csv', header=0, index_col=0) matrix_dd =
pd.read_csv('data/dendrite-dendrite.csv', header=0, index_col=0)
pandas.read_csv
from __future__ import absolute_import from __future__ import division from __future__ import print_function import pandas as pd from pandas.api.types import is_scalar from pandas.util._validators import validate_bool_kwarg from pandas.core.index import _ensure_index_from_sequences from pandas._libs import lib from pandas.core.dtypes.cast import maybe_upcast_putmask from pandas import compat from pandas.compat import lzip, string_types, cPickle as pkl import pandas.core.common as com from pandas.core.dtypes.common import ( is_bool_dtype, is_list_like, is_numeric_dtype, is_timedelta64_dtype) from pandas.core.indexing import check_bool_indexer import warnings import numpy as np import ray import itertools import io import sys import re from .groupby import DataFrameGroupBy from .utils import ( _deploy_func, _map_partitions, _partition_pandas_dataframe, to_pandas, _blocks_to_col, _blocks_to_row, _create_block_partitions, _inherit_docstrings, _reindex_helper, _co_op_helper) from . import get_npartitions from .index_metadata import _IndexMetadata @_inherit_docstrings(pd.DataFrame) class DataFrame(object): def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False, col_partitions=None, row_partitions=None, block_partitions=None, row_metadata=None, col_metadata=None): """Distributed DataFrame object backed by Pandas dataframes. Args: data (numpy ndarray (structured or homogeneous) or dict): Dict can contain Series, arrays, constants, or list-like objects. index (pandas.Index or list): The row index for this dataframe. columns (pandas.Index): The column names for this dataframe, in pandas Index object. dtype: Data type to force. Only a single dtype is allowed. If None, infer copy (boolean): Copy data from inputs. Only affects DataFrame / 2d ndarray input col_partitions ([ObjectID]): The list of ObjectIDs that contain the column dataframe partitions. row_partitions ([ObjectID]): The list of ObjectIDs that contain the row dataframe partitions. block_partitions: A 2D numpy array of block partitions. row_metadata (_IndexMetadata): Metadata for the new dataframe's rows col_metadata (_IndexMetadata): Metadata for the new dataframe's columns """ self._row_metadata = self._col_metadata = None # Check type of data and use appropriate constructor if data is not None or (col_partitions is None and row_partitions is None and block_partitions is None): pd_df = pd.DataFrame(data=data, index=index, columns=columns, dtype=dtype, copy=copy) # TODO convert _partition_pandas_dataframe to block partitioning. row_partitions = \ _partition_pandas_dataframe(pd_df, num_partitions=get_npartitions()) self._block_partitions = \ _create_block_partitions(row_partitions, axis=0, length=len(pd_df.columns)) # Set in case we were only given a single row/column for below. axis = 0 columns = pd_df.columns index = pd_df.index else: # created this invariant to make sure we never have to go into the # partitions to get the columns assert columns is not None, \ "Columns not defined, must define columns for internal " \ "DataFrame creations" if block_partitions is not None: # put in numpy array here to make accesses easier since it's 2D self._block_partitions = np.array(block_partitions) axis = 0 else: if row_partitions is not None: axis = 0 partitions = row_partitions elif col_partitions is not None: axis = 1 partitions = col_partitions self._block_partitions = \ _create_block_partitions(partitions, axis=axis, length=len(columns)) if row_metadata is not None: self._row_metadata = row_metadata.copy() if col_metadata is not None: self._col_metadata = col_metadata.copy() # Sometimes we only get a single column or row, which is # problematic for building blocks from the partitions, so we # add whatever dimension we're missing from the input. if self._block_partitions.ndim < 2: self._block_partitions = np.expand_dims(self._block_partitions, axis=axis ^ 1) assert self._block_partitions.ndim == 2, "Block Partitions must be 2D." # Create the row and column index objects for using our partitioning. # If the objects haven't been inherited, then generate them if self._row_metadata is None: self._row_metadata = _IndexMetadata(self._block_partitions[:, 0], index=index, axis=0) if self._col_metadata is None: self._col_metadata = _IndexMetadata(self._block_partitions[0, :], index=columns, axis=1) def _get_row_partitions(self): return [_blocks_to_row.remote(*part) for part in self._block_partitions] def _set_row_partitions(self, new_row_partitions): self._block_partitions = \ _create_block_partitions(new_row_partitions, axis=0, length=len(self.columns)) _row_partitions = property(_get_row_partitions, _set_row_partitions) def _get_col_partitions(self): return [_blocks_to_col.remote(*self._block_partitions[:, i]) for i in range(self._block_partitions.shape[1])] def _set_col_partitions(self, new_col_partitions): self._block_partitions = \ _create_block_partitions(new_col_partitions, axis=1, length=len(self.index)) _col_partitions = property(_get_col_partitions, _set_col_partitions) def __str__(self): return repr(self) def _repr_helper_(self): if len(self._row_metadata) <= 60 and \ len(self._col_metadata) <= 20: return to_pandas(self) def head(df, n, get_local_head=False): """Compute the head for this without creating a new DataFrame""" if get_local_head: return df.head(n) new_dfs = _map_partitions(lambda df: df.head(n), df) index = self.index[:n] pd_head = pd.concat(ray.get(new_dfs), axis=1, copy=False) pd_head.index = index pd_head.columns = self.columns return pd_head def tail(df, n, get_local_tail=False): """Compute the tail for this without creating a new DataFrame""" if get_local_tail: return df.tail(n) new_dfs = _map_partitions(lambda df: df.tail(n), df) index = self.index[-n:] pd_tail = pd.concat(ray.get(new_dfs), axis=1, copy=False) pd_tail.index = index pd_tail.columns = self.columns return pd_tail def front(df, n): """Get first n columns without creating a new Dataframe""" cum_col_lengths = self._col_metadata._lengths.cumsum() index = np.argmax(cum_col_lengths >= 10) pd_front = pd.concat(ray.get(x[:index+1]), axis=1, copy=False) pd_front = pd_front.iloc[:, :n] pd_front.index = self.index pd_front.columns = self.columns[:n] return pd_front def back(df, n): """Get last n columns without creating a new Dataframe""" cum_col_lengths = np.flip(self._col_metadata._lengths, axis=0).cumsum() index = np.argmax(cum_col_lengths >= 10) pd_back = pd.concat(ray.get(x[-(index+1):]), axis=1, copy=False) pd_back = pd_back.iloc[:, -n:] pd_back.index = self.index pd_back.columns = self.columns[-n:] return pd_back x = self._col_partitions get_local_head = False # Get first and last 10 columns if there are more than 20 columns if len(self._col_metadata) >= 20: get_local_head = True front = front(x, 10) back = back(x, 10) col_dots = pd.Series(["..." for _ in range(len(self.index))]) col_dots.index = self.index col_dots.name = "..." x = pd.concat([front, col_dots, back], axis=1) # If less than 60 rows, x is already in the correct format. if len(self._row_metadata) < 60: return x head = head(x, 30, get_local_head) tail = tail(x, 30, get_local_head) # Make the dots in between the head and tail row_dots = pd.Series(["..." for _ in range(len(head.columns))]) row_dots.index = head.columns row_dots.name = "..." # We have to do it this way or convert dots to a dataframe and # transpose. This seems better. result = head.append(row_dots).append(tail) return result def __repr__(self): # We use pandas repr so that we match them. if len(self._row_metadata) <= 60 and \ len(self._col_metadata) <= 20: return repr(self._repr_helper_()) # The split here is so that we don't repr pandas row lengths. result = self._repr_helper_() final_result = repr(result).rsplit("\n\n", maxsplit=1)[0] + \ "\n\n[{0} rows x {1} columns]".format(len(self.index), len(self.columns)) return final_result def _repr_html_(self): """repr function for rendering in Jupyter Notebooks like Pandas Dataframes. Returns: The HTML representation of a Dataframe. """ # We use pandas _repr_html_ to get a string of the HTML representation # of the dataframe. if len(self._row_metadata) <= 60 and \ len(self._col_metadata) <= 20: return self._repr_helper_()._repr_html_() # We split so that we insert our correct dataframe dimensions. result = self._repr_helper_()._repr_html_() return result.split("<p>")[0] + \ "<p>{0} rows x {1} columns</p>\n</div>".format(len(self.index), len(self.columns)) def _get_index(self): """Get the index for this DataFrame. Returns: The union of all indexes across the partitions. """ return self._row_metadata.index def _set_index(self, new_index): """Set the index for this DataFrame. Args: new_index: The new index to set this """ self._row_metadata.index = new_index index = property(_get_index, _set_index) def _get_columns(self): """Get the columns for this DataFrame. Returns: The union of all indexes across the partitions. """ return self._col_metadata.index def _set_columns(self, new_index): """Set the columns for this DataFrame. Args: new_index: The new index to set this """ self._col_metadata.index = new_index columns = property(_get_columns, _set_columns) def _arithmetic_helper(self, remote_func, axis, level=None): # TODO: We don't support `level` right now if level is not None: raise NotImplementedError("Level not yet supported.") axis = pd.DataFrame()._get_axis_number(axis) if axis is not None \ else 0 oid_series = ray.get(_map_partitions(remote_func, self._col_partitions if axis == 0 else self._row_partitions)) if axis == 0: # We use the index to get the internal index. oid_series = [(oid_series[i], i) for i in range(len(oid_series))] if len(oid_series) > 1: for df, partition in oid_series: this_partition = \ self._col_metadata.partition_series(partition) df.index = \ this_partition[this_partition.isin(df.index)].index result_series = pd.concat([obj[0] for obj in oid_series], axis=0, copy=False) else: result_series = pd.concat(oid_series, axis=0, copy=False) result_series.index = self.index return result_series def _validate_eval_query(self, expr, **kwargs): """Helper function to check the arguments to eval() and query() Args: expr: The expression to evaluate. This string cannot contain any Python statements, only Python expressions. """ if isinstance(expr, str) and expr is '': raise ValueError("expr cannot be an empty string") if isinstance(expr, str) and '@' in expr: raise NotImplementedError("Local variables not yet supported in " "eval.") if isinstance(expr, str) and 'not' in expr: if 'parser' in kwargs and kwargs['parser'] == 'python': raise NotImplementedError("'Not' nodes are not implemented.") @property def size(self): """Get the number of elements in the DataFrame. Returns: The number of elements in the DataFrame. """ return len(self.index) * len(self.columns) @property def ndim(self): """Get the number of dimensions for this DataFrame. Returns: The number of dimensions for this DataFrame. """ # The number of dimensions is common across all partitions. # The first partition will be enough. return ray.get(_deploy_func.remote(lambda df: df.ndim, self._row_partitions[0])) @property def ftypes(self): """Get the ftypes for this DataFrame. Returns: The ftypes for this DataFrame. """ # The ftypes are common across all partitions. # The first partition will be enough. result = ray.get(_deploy_func.remote(lambda df: df.ftypes, self._row_partitions[0])) result.index = self.columns return result @property def dtypes(self): """Get the dtypes for this DataFrame. Returns: The dtypes for this DataFrame. """ # The dtypes are common across all partitions. # The first partition will be enough. result = ray.get(_deploy_func.remote(lambda df: df.dtypes, self._row_partitions[0])) result.index = self.columns return result @property def empty(self): """Determines if the DataFrame is empty. Returns: True if the DataFrame is empty. False otherwise. """ all_empty = ray.get(_map_partitions( lambda df: df.empty, self._row_partitions)) return False not in all_empty @property def values(self): """Create a numpy array with the values from this DataFrame. Returns: The numpy representation of this DataFrame. """ return np.concatenate(ray.get(_map_partitions( lambda df: df.values, self._row_partitions))) @property def axes(self): """Get the axes for the DataFrame. Returns: The axes for the DataFrame. """ return [self.index, self.columns] @property def shape(self): """Get the size of each of the dimensions in the DataFrame. Returns: A tuple with the size of each dimension as they appear in axes(). """ return len(self.index), len(self.columns) def _update_inplace(self, row_partitions=None, col_partitions=None, block_partitions=None, columns=None, index=None, col_metadata=None, row_metadata=None): """Updates the current DataFrame inplace. Behavior should be similar to the constructor, given the corresponding arguments. Note that len(columns) and len(index) should match the corresponding dimensions in the partition(s) passed in, otherwise this function will complain. Args: row_partitions ([ObjectID]): The new partitions to replace self._row_partitions directly col_partitions ([ObjectID]): The new partitions to replace self._col_partitions directly columns (pd.Index): Index of the column dimension to replace existing columns index (pd.Index): Index of the row dimension to replace existing index Note: If `columns` or `index` are not supplied, they will revert to default columns or index respectively, as this function does not have enough contextual info to rebuild the indexes correctly based on the addition/subtraction of rows/columns. """ assert row_partitions is not None or col_partitions is not None\ or block_partitions is not None, \ "To update inplace, new column or row partitions must be set." if block_partitions is not None: self._block_partitions = block_partitions elif row_partitions is not None: self._row_partitions = row_partitions elif col_partitions is not None: self._col_partitions = col_partitions if col_metadata is not None: self._col_metadata = col_metadata else: assert columns is not None, \ "Columns must be passed without col_metadata" self._col_metadata = _IndexMetadata( self._block_partitions[0, :], index=columns, axis=1) if row_metadata is not None: self._row_metadata = row_metadata else: # Index can be None for default index, so we don't check self._row_metadata = _IndexMetadata( self._block_partitions[:, 0], index=index, axis=0) def add_prefix(self, prefix): """Add a prefix to each of the column names. Returns: A new DataFrame containing the new column names. """ new_cols = self.columns.map(lambda x: str(prefix) + str(x)) return DataFrame(block_partitions=self._block_partitions, columns=new_cols, index=self.index) def add_suffix(self, suffix): """Add a suffix to each of the column names. Returns: A new DataFrame containing the new column names. """ new_cols = self.columns.map(lambda x: str(x) + str(suffix)) return DataFrame(block_partitions=self._block_partitions, columns=new_cols, index=self.index) def applymap(self, func): """Apply a function to a DataFrame elementwise. Args: func (callable): The function to apply. """ if not callable(func): raise ValueError( "\'{0}\' object is not callable".format(type(func))) new_block_partitions = np.array([ _map_partitions(lambda df: df.applymap(func), block) for block in self._block_partitions]) return DataFrame(block_partitions=new_block_partitions, columns=self.columns, index=self.index) def copy(self, deep=True): """Creates a shallow copy of the DataFrame. Returns: A new DataFrame pointing to the same partitions as this one. """ return DataFrame(block_partitions=self._block_partitions, columns=self.columns, index=self.index) def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs): """Apply a groupby to this DataFrame. See _groupby() remote task. Args: by: The value to groupby. axis: The axis to groupby. level: The level of the groupby. as_index: Whether or not to store result as index. sort: Whether or not to sort the result by the index. group_keys: Whether or not to group the keys. squeeze: Whether or not to squeeze. Returns: A new DataFrame resulting from the groupby. """ axis = pd.DataFrame()._get_axis_number(axis) if callable(by): by = by(self.index) elif isinstance(by, compat.string_types): by = self.__getitem__(by).values.tolist() elif is_list_like(by): mismatch = len(by) != len(self) if axis == 0 \ else len(by) != len(self.columns) if all([obj in self for obj in by]) and mismatch: raise NotImplementedError( "Groupby with lists of columns not yet supported.") elif mismatch: raise KeyError(next(x for x in by if x not in self)) return DataFrameGroupBy(self, by, axis, level, as_index, sort, group_keys, squeeze, **kwargs) def sum(self, axis=None, skipna=True, level=None, numeric_only=None): """Perform a sum across the DataFrame. Args: axis (int): The axis to sum on. skipna (bool): True to skip NA values, false otherwise. Returns: The sum of the DataFrame. """ def remote_func(df): return df.sum(axis=axis, skipna=skipna, level=level, numeric_only=numeric_only) return self._arithmetic_helper(remote_func, axis, level) def abs(self): """Apply an absolute value function to all numberic columns. Returns: A new DataFrame with the applied absolute value. """ for t in self.dtypes: if np.dtype('O') == t: # TODO Give a more accurate error to Pandas raise TypeError("bad operand type for abs():", "str") new_block_partitions = np.array([_map_partitions(lambda df: df.abs(), block) for block in self._block_partitions]) return DataFrame(block_partitions=new_block_partitions, columns=self.columns, index=self.index) def isin(self, values): """Fill a DataFrame with booleans for cells contained in values. Args: values (iterable, DataFrame, Series, or dict): The values to find. Returns: A new DataFrame with booleans representing whether or not a cell is in values. True: cell is contained in values. False: otherwise """ new_block_partitions = np.array([_map_partitions( lambda df: df.isin(values), block) for block in self._block_partitions]) return DataFrame(block_partitions=new_block_partitions, columns=self.columns, index=self.index) def isna(self): """Fill a DataFrame with booleans for cells containing NA. Returns: A new DataFrame with booleans representing whether or not a cell is NA. True: cell contains NA. False: otherwise. """ new_block_partitions = np.array([_map_partitions( lambda df: df.isna(), block) for block in self._block_partitions]) return DataFrame(block_partitions=new_block_partitions, columns=self.columns, index=self.index, row_metadata=self._row_metadata, col_metadata=self._col_metadata) def isnull(self): """Fill a DataFrame with booleans for cells containing a null value. Returns: A new DataFrame with booleans representing whether or not a cell is null. True: cell contains null. False: otherwise. """ new_block_partitions = np.array([_map_partitions( lambda df: df.isnull(), block) for block in self._block_partitions]) return DataFrame(block_partitions=new_block_partitions, columns=self.columns, index=self.index) def keys(self): """Get the info axis for the DataFrame. Returns: A pandas Index for this DataFrame. """ # Each partition should have the same index, so we'll use 0's return self.columns def transpose(self, *args, **kwargs): """Transpose columns and rows for the DataFrame. Returns: A new DataFrame transposed from this DataFrame. """ new_block_partitions = np.array([_map_partitions( lambda df: df.T, block) for block in self._block_partitions]) return DataFrame(block_partitions=new_block_partitions.T, columns=self.index, index=self.columns) T = property(transpose) def dropna(self, axis, how, thresh=None, subset=[], inplace=False): """Create a new DataFrame from the removed NA values from this one. Args: axis (int, tuple, or list): The axis to apply the drop. how (str): How to drop the NA values. 'all': drop the label if all values are NA. 'any': drop the label if any values are NA. thresh (int): The minimum number of NAs to require. subset ([label]): Labels to consider from other axis. inplace (bool): Change this DataFrame or return a new DataFrame. True: Modify the data for this DataFrame, return None. False: Create a new DataFrame and return it. Returns: If inplace is set to True, returns None, otherwise returns a new DataFrame with the dropna applied. """ raise NotImplementedError("Not yet") def add(self, other, axis='columns', level=None, fill_value=None): """Add this DataFrame to another or a scalar/list. Args: other: What to add this this DataFrame. axis: The axis to apply addition over. Only applicaable to Series or list 'other'. level: A level in the multilevel axis to add over. fill_value: The value to fill NaN. Returns: A new DataFrame with the applied addition. """ return self._operator_helper(pd.DataFrame.add, other, axis, level, fill_value) def agg(self, func, axis=0, *args, **kwargs): return self.aggregate(func, axis, *args, **kwargs) def aggregate(self, func, axis=0, *args, **kwargs): axis = pd.DataFrame()._get_axis_number(axis) result = None if axis == 0: try: result = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: kwargs.pop('is_transform', None) return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, *args, **kwargs): _axis = kwargs.pop('_axis', None) if _axis is None: _axis = getattr(self, 'axis', 0) kwargs.pop('_level', None) if isinstance(arg, compat.string_types): return self._string_function(arg, *args, **kwargs) # Dictionaries have complex behavior because they can be renamed here. elif isinstance(arg, dict): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") elif is_list_like(arg): from .concat import concat x = [self._aggregate(func, *args, **kwargs) for func in arg] new_dfs = [x[i] if not isinstance(x[i], pd.Series) else pd.DataFrame(x[i], columns=[arg[i]]).T for i in range(len(x))] return concat(new_dfs) elif callable(arg): self._callable_function(arg, _axis, *args, **kwargs) else: # TODO Make pandas error raise ValueError("type {} is not callable".format(type(arg))) def _string_function(self, func, *args, **kwargs): assert isinstance(func, compat.string_types) f = getattr(self, func, None) if f is not None: if callable(f): return f(*args, **kwargs) assert len(args) == 0 assert len([kwarg for kwarg in kwargs if kwarg not in ['axis', '_level']]) == 0 return f f = getattr(np, func, None) if f is not None: raise NotImplementedError("Numpy aggregates not yet supported.") raise ValueError("{} is an unknown string function".format(func)) def _callable_function(self, func, axis, *args, **kwargs): if axis == 0: partitions = self._col_partitions else: partitions = self._row_partitions if axis == 1: kwargs['axis'] = axis kwargs['temp_columns'] = self.columns else: kwargs['temp_index'] = self.index def agg_helper(df, arg, *args, **kwargs): if 'temp_index' in kwargs: df.index = kwargs.pop('temp_index', None) else: df.columns = kwargs.pop('temp_columns', None) is_transform = kwargs.pop('is_transform', False) new_df = df.agg(arg, *args, **kwargs) is_series = False if isinstance(new_df, pd.Series): is_series = True index = None columns = None else: index = new_df.index \ if not isinstance(new_df.index, pd.RangeIndex) \ else None columns = new_df.columns new_df.columns = pd.RangeIndex(0, len(new_df.columns)) new_df.reset_index(drop=True, inplace=True) if is_transform: if is_scalar(new_df) or len(new_df) != len(df): raise ValueError("transforms cannot produce " "aggregated results") return is_series, new_df, index, columns remote_result = \ [_deploy_func._submit(args=(lambda df: agg_helper(df, func, *args, **kwargs), part), num_return_vals=4) for part in partitions] # This magic transposes the list comprehension returned from remote is_series, new_parts, index, columns = \ [list(t) for t in zip(*remote_result)] # This part is because agg can allow returning a Series or a # DataFrame, and we have to determine which here. Shouldn't add # too much to latency in either case because the booleans can # be returned immediately is_series = ray.get(is_series) if all(is_series): new_series = pd.concat(ray.get(new_parts)) new_series.index = self.columns if axis == 0 else self.index return new_series # This error is thrown when some of the partitions return Series and # others return DataFrames. We do not allow mixed returns. elif any(is_series): raise ValueError("no results.") # The remaining logic executes when we have only DataFrames in the # remote objects. We build a Ray DataFrame from the Pandas partitions. elif axis == 0: new_index = ray.get(index[0]) columns = ray.get(columns) columns = columns[0].append(columns[1:]) return DataFrame(col_partitions=new_parts, columns=columns, index=self.index if new_index is None else new_index) else: new_index = ray.get(index[0]) columns = ray.get(columns) columns = columns[0].append(columns[1:]) return DataFrame(row_partitions=new_parts, columns=columns, index=self.index if new_index is None else new_index) def align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def all(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs): """Return whether all elements are True over requested axis Note: If axis=None or axis=0, this call applies df.all(axis=1) to the transpose of df. """ def remote_func(df): return df.all(axis=axis, bool_only=bool_only, skipna=skipna, level=level, **kwargs) return self._arithmetic_helper(remote_func, axis, level) def any(self, axis=None, bool_only=None, skipna=None, level=None, **kwargs): """Return whether any elements are True over requested axis Note: If axis=None or axis=0, this call applies on the column partitions, otherwise operates on row partitions """ def remote_func(df): return df.any(axis=axis, bool_only=bool_only, skipna=skipna, level=level, **kwargs) return self._arithmetic_helper(remote_func, axis, level) def append(self, other, ignore_index=False, verify_integrity=False): """Append another DataFrame/list/Series to this one. Args: other: The object to append to this. ignore_index: Ignore the index on appending. verify_integrity: Verify the integrity of the index on completion. Returns: A new DataFrame containing the concatenated values. """ if isinstance(other, (pd.Series, dict)): if isinstance(other, dict): other = pd.Series(other) if other.name is None and not ignore_index: raise TypeError('Can only append a Series if ignore_index=True' ' or if the Series has a name') if other.name is None: index = None else: # other must have the same index name as self, otherwise # index name will be reset index = pd.Index([other.name], name=self.index.name) combined_columns = self.columns.tolist() + self.columns.union( other.index).difference(self.columns).tolist() other = other.reindex(combined_columns, copy=False) other = pd.DataFrame(other.values.reshape((1, len(other))), index=index, columns=combined_columns) other = other._convert(datetime=True, timedelta=True) elif isinstance(other, list) and not isinstance(other[0], DataFrame): other = pd.DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.loc[:, self.columns] from .concat import concat if isinstance(other, (list, tuple)): to_concat = [self] + other else: to_concat = [self, other] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity) def apply(self, func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds): """Apply a function along input axis of DataFrame. Args: func: The function to apply axis: The axis over which to apply the func. broadcast: Whether or not to broadcast. raw: Whether or not to convert to a Series. reduce: Whether or not to try to apply reduction procedures. Returns: Series or DataFrame, depending on func. """ axis = pd.DataFrame()._get_axis_number(axis) if is_list_like(func) and not all([isinstance(obj, str) for obj in func]): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") if axis == 0 and is_list_like(func): return self.aggregate(func, axis, *args, **kwds) if isinstance(func, compat.string_types): if axis == 1: kwds['axis'] = axis return getattr(self, func)(*args, **kwds) elif callable(func): return self._callable_function(func, axis=axis, *args, **kwds) else: raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def as_blocks(self, copy=True): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def as_matrix(self, columns=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def asfreq(self, freq, method=None, how=None, normalize=False, fill_value=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def asof(self, where, subset=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def assign(self, **kwargs): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def astype(self, dtype, copy=True, errors='raise', **kwargs): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def at_time(self, time, asof=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def between_time(self, start_time, end_time, include_start=True, include_end=True): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def bfill(self, axis=None, inplace=False, limit=None, downcast=None): """Synonym for DataFrame.fillna(method='bfill') """ new_df = self.fillna(method='bfill', axis=axis, limit=limit, downcast=downcast, inplace=inplace) if not inplace: return new_df def bool(self): """Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean """ shape = self.shape if shape != (1,) and shape != (1, 1): raise ValueError("""The PandasObject does not have exactly 1 element. Return the bool of a single element PandasObject. The truth value is ambiguous. Use a.empty, a.item(), a.any() or a.all().""") else: return to_pandas(self).bool() def boxplot(self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def clip(self, lower=None, upper=None, axis=None, inplace=False, *args, **kwargs): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def clip_lower(self, threshold, axis=None, inplace=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def clip_upper(self, threshold, axis=None, inplace=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def combine(self, other, func, fill_value=None, overwrite=True): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def combine_first(self, other): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def compound(self, axis=None, skipna=None, level=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def consolidate(self, inplace=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def convert_objects(self, convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def corr(self, method='pearson', min_periods=1): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def corrwith(self, other, axis=0, drop=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def count(self, axis=0, level=None, numeric_only=False): """Get the count of non-null objects in the DataFrame. Arguments: axis: 0 or 'index' for row-wise, 1 or 'columns' for column-wise. level: If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. numeric_only: Include only float, int, boolean data Returns: The count, in a Series (or DataFrame if level is specified). """ def remote_func(df): return df.count(axis=axis, level=level, numeric_only=numeric_only) return self._arithmetic_helper(remote_func, axis, level) def cov(self, min_periods=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def _cumulative_helper(self, func, axis): axis = pd.DataFrame()._get_axis_number(axis) if axis is not None \ else 0 if axis == 0: new_cols = _map_partitions(func, self._col_partitions) return DataFrame(col_partitions=new_cols, columns=self.columns, index=self.index) else: new_rows = _map_partitions(func, self._row_partitions) return DataFrame(row_partitions=new_rows, columns=self.columns, index=self.index) def cummax(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative maximum across the DataFrame. Args: axis (int): The axis to take maximum on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative maximum of the DataFrame. """ def remote_func(df): return df.cummax(axis=axis, skipna=skipna, *args, **kwargs) return self._cumulative_helper(remote_func, axis) def cummin(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative minimum across the DataFrame. Args: axis (int): The axis to cummin on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative minimum of the DataFrame. """ def remote_func(df): return df.cummin(axis=axis, skipna=skipna, *args, **kwargs) return self._cumulative_helper(remote_func, axis) def cumprod(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative product across the DataFrame. Args: axis (int): The axis to take product on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative product of the DataFrame. """ def remote_func(df): return df.cumprod(axis=axis, skipna=skipna, *args, **kwargs) return self._cumulative_helper(remote_func, axis) def cumsum(self, axis=None, skipna=True, *args, **kwargs): """Perform a cumulative sum across the DataFrame. Args: axis (int): The axis to take sum on. skipna (bool): True to skip NA values, false otherwise. Returns: The cumulative sum of the DataFrame. """ def remote_func(df): return df.cumsum(axis=axis, skipna=skipna, *args, **kwargs) return self._cumulative_helper(remote_func, axis) def describe(self, percentiles=None, include=None, exclude=None): """ Generates descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding NaN values. Args: percentiles (list-like of numbers, optional): The percentiles to include in the output. include: White-list of data types to include in results exclude: Black-list of data types to exclude in results Returns: Series/DataFrame of summary statistics """ def describe_helper(df): """This to ensure nothing goes on with non-numeric columns""" try: return df.select_dtypes(exclude='object').describe( percentiles=percentiles, include=include, exclude=exclude) # This exception is thrown when there are only non-numeric columns # in this partition except ValueError: return pd.DataFrame() # Begin fixing index based on the columns inside. parts = ray.get(_map_partitions(describe_helper, self._col_partitions)) # We use the index to get the internal index. parts = [(parts[i], i) for i in range(len(parts))] for df, partition in parts: this_partition = self._col_metadata.partition_series(partition) df.columns = this_partition[this_partition.isin(df.columns)].index # Remove index from tuple result = pd.concat([obj[0] for obj in parts], axis=1, copy=False) return result def diff(self, periods=1, axis=0): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def div(self, other, axis='columns', level=None, fill_value=None): """Divides this DataFrame against another DataFrame/Series/scalar. Args: other: The object to use to apply the divide against this. axis: The axis to divide over. level: The Multilevel index level to apply divide over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Divide applied. """ return self._operator_helper(pd.DataFrame.add, other, axis, level, fill_value) def divide(self, other, axis='columns', level=None, fill_value=None): """Synonym for div. Args: other: The object to use to apply the divide against this. axis: The axis to divide over. level: The Multilevel index level to apply divide over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Divide applied. """ return self.div(other, axis, level, fill_value) def dot(self, other): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def drop(self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise'): """Return new object with labels in requested axis removed. Args: labels: Index or column labels to drop. axis: Whether to drop labels from the index (0 / 'index') or columns (1 / 'columns'). index, columns: Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels). level: For MultiIndex inplace: If True, do operation inplace and return None. errors: If 'ignore', suppress error and existing labels are dropped. Returns: dropped : type of caller """ # TODO implement level if level is not None: raise NotImplementedError("Level not yet supported for drop") inplace = validate_bool_kwarg(inplace, "inplace") if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and " "'index'/'columns'") axis = pd.DataFrame()._get_axis_name(axis) axes = {axis: labels} elif index is not None or columns is not None: axes, _ = pd.DataFrame()._construct_axes_from_arguments((index, columns), {}) else: raise ValueError("Need to specify at least one of 'labels', " "'index' or 'columns'") obj = self.copy() def drop_helper(obj, axis, label): # TODO(patyang): If you drop from the index first, you can do it # in batch by returning the dropped items. Likewise coords.drop # leaves the coords df in an inconsistent state. if axis == 'index': try: coords = obj._row_metadata[label] if isinstance(coords, pd.DataFrame): partitions = list(coords['partition']) indexes = list(coords['index_within_partition']) else: partitions, indexes = coords partitions = [partitions] indexes = [indexes] for part, index in zip(partitions, indexes): x = _deploy_func.remote( lambda df: df.drop(labels=index, axis=axis, errors='ignore'), obj._row_partitions[part]) obj._row_partitions = \ [obj._row_partitions[i] if i != part else x for i in range(len(obj._row_partitions))] # The decrement here is because we're dropping one at a # time and the index is automatically updated when we # convert back to blocks. obj._row_metadata.squeeze(part, index) obj._row_metadata.drop(labels=label) except KeyError: return obj else: try: coords = obj._col_metadata[label] if isinstance(coords, pd.DataFrame): partitions = list(coords['partition']) indexes = list(coords['index_within_partition']) else: partitions, indexes = coords partitions = [partitions] indexes = [indexes] for part, index in zip(partitions, indexes): x = _deploy_func.remote( lambda df: df.drop(labels=index, axis=axis, errors='ignore'), obj._col_partitions[part]) obj._col_partitions = \ [obj._col_partitions[i] if i != part else x for i in range(len(obj._col_partitions))] # The decrement here is because we're dropping one at a # time and the index is automatically updated when we # convert back to blocks. obj._col_metadata.squeeze(part, index) obj._col_metadata.drop(labels=label) except KeyError: return obj return obj for axis, labels in axes.items(): if labels is None: continue if is_list_like(labels): for label in labels: if errors != 'ignore' and label and \ label not in getattr(self, axis): raise ValueError("The label [{}] is not in the [{}]", label, axis) else: obj = drop_helper(obj, axis, label) else: if errors != 'ignore' and labels and \ labels not in getattr(self, axis): raise ValueError("The label [{}] is not in the [{}]", labels, axis) else: obj = drop_helper(obj, axis, labels) if not inplace: return obj else: self._row_metadata = obj._row_metadata self._col_metadata = obj._col_metadata self._block_partitions = obj._block_partitions def drop_duplicates(self, subset=None, keep='first', inplace=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def duplicated(self, subset=None, keep='first'): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def eq(self, other, axis='columns', level=None): """Checks element-wise that this is equal to other. Args: other: A DataFrame or Series or scalar to compare to. axis: The axis to perform the eq over. level: The Multilevel index level to apply eq over. Returns: A new DataFrame filled with Booleans. """ return self._operator_helper(pd.DataFrame.eq, other, axis, level) def equals(self, other): """ Checks if other DataFrame is elementwise equal to the current one Returns: Boolean: True if equal, otherwise False """ # TODO(kunalgosar): Implement Copartition and use to implement equals def helper(df, index, other_series): return df.iloc[index['index_within_partition']] \ .equals(other_series) results = [] other_partition = None other_df = None # TODO: Make the appropriate coord df accessor methods for this fxn for i, idx in other._row_metadata._coord_df.iterrows(): if idx['partition'] != other_partition: other_df = ray.get(other._row_partitions[idx['partition']]) other_partition = idx['partition'] # TODO: group series here into full df partitions to reduce # the number of remote calls to helper other_series = other_df.iloc[idx['index_within_partition']] curr_index = self._row_metadata._coord_df.iloc[i] curr_df = self._row_partitions[int(curr_index['partition'])] results.append(_deploy_func.remote(helper, curr_df, curr_index, other_series)) for r in results: if not ray.get(r): return False return True def eval(self, expr, inplace=False, **kwargs): """Evaluate a Python expression as a string using various backends. Args: expr: The expression to evaluate. This string cannot contain any Python statements, only Python expressions. parser: The parser to use to construct the syntax tree from the expression. The default of 'pandas' parses code slightly different than standard Python. Alternatively, you can parse an expression using the 'python' parser to retain strict Python semantics. See the enhancing performance documentation for more details. engine: The engine used to evaluate the expression. truediv: Whether to use true division, like in Python >= 3 local_dict: A dictionary of local variables, taken from locals() by default. global_dict: A dictionary of global variables, taken from globals() by default. resolvers: A list of objects implementing the __getitem__ special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the query() method to inject the index and columns variables that refer to their respective DataFrame instance attributes. level: The number of prior stack frames to traverse and add to the current scope. Most users will not need to change this parameter. target: This is the target object for assignment. It is used when there is variable assignment in the expression. If so, then target must support item assignment with string keys, and if a copy is being returned, it must also support .copy(). inplace: If target is provided, and the expression mutates target, whether to modify target inplace. Otherwise, return a copy of target with the mutation. Returns: ndarray, numeric scalar, DataFrame, Series """ self._validate_eval_query(expr, **kwargs) columns = self.columns def eval_helper(df): df.columns = columns result = df.eval(expr, inplace=False, **kwargs) # If result is a series, expr was not an assignment expression. if not isinstance(result, pd.Series): result.columns = pd.RangeIndex(0, len(result.columns)) return result inplace = validate_bool_kwarg(inplace, "inplace") new_rows = _map_partitions(eval_helper, self._row_partitions) result_type = ray.get(_deploy_func.remote(lambda df: type(df), new_rows[0])) if result_type is pd.Series: new_series = pd.concat(ray.get(new_rows), axis=0) new_series.index = self.index return new_series columns_copy = self._col_metadata._coord_df.copy().T columns_copy.eval(expr, inplace=True, **kwargs) columns = columns_copy.columns if inplace: self._update_inplace(row_partitions=new_rows, columns=columns) else: return DataFrame(columns=columns, row_partitions=new_rows) def ewm(self, com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def expanding(self, min_periods=1, freq=None, center=False, axis=0): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def ffill(self, axis=None, inplace=False, limit=None, downcast=None): """Synonym for DataFrame.fillna(method='ffill') """ new_df = self.fillna(method='ffill', axis=axis, limit=limit, downcast=downcast, inplace=inplace) if not inplace: return new_df def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs): """Fill NA/NaN values using the specified method. Args: value: Value to use to fill holes. This value cannot be a list. method: Method to use for filling holes in reindexed Series pad. ffill: propagate last valid observation forward to next valid backfill. bfill: use NEXT valid observation to fill gap. axis: 0 or 'index', 1 or 'columns'. inplace: If True, fill in place. Note: this will modify any other views on this object. limit: If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcast: A dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type. Returns: filled: DataFrame """ # TODO implement value passed as DataFrame if isinstance(value, pd.DataFrame): raise NotImplementedError("Passing a DataFrame as the value for " "fillna is not yet supported.") inplace = validate_bool_kwarg(inplace, 'inplace') axis = pd.DataFrame()._get_axis_number(axis) \ if axis is not None \ else 0 if isinstance(value, (list, tuple)): raise TypeError('"value" parameter must be a scalar or dict, but ' 'you passed a "{0}"'.format(type(value).__name__)) if value is None and method is None: raise ValueError('must specify a fill method or value') if value is not None and method is not None: raise ValueError('cannot specify both a fill method and value') if method is not None and method not in ['backfill', 'bfill', 'pad', 'ffill']: expecting = 'pad (ffill) or backfill (bfill)' msg = 'Invalid fill method. Expecting {expecting}. Got {method}'\ .format(expecting=expecting, method=method) raise ValueError(msg) if inplace: new_obj = self else: new_obj = self.copy() parts, coords_obj = (new_obj._col_partitions, new_obj._col_metadata) if axis == 0 else \ (new_obj._row_partitions, new_obj._row_metadata) if isinstance(value, (pd.Series, dict)): new_vals = {} value = dict(value) for val in value: # Get the local index for the partition try: part, index = coords_obj[val] # Pandas ignores these errors so we will suppress them too. except KeyError: continue new_vals[val] = _deploy_func.remote(lambda df: df.fillna( value={index: value[val]}, method=method, axis=axis, inplace=False, limit=limit, downcast=downcast, **kwargs), parts[part]) # Not every partition was changed, so we put everything back that # was not changed and update those that were. new_parts = [parts[i] if coords_obj.index[i] not in new_vals else new_vals[coords_obj.index[i]] for i in range(len(parts))] else: new_parts = _map_partitions(lambda df: df.fillna( value=value, method=method, axis=axis, inplace=False, limit=limit, downcast=downcast, **kwargs), parts) if axis == 0: new_obj._update_inplace(col_partitions=new_parts, columns=self.columns, index=self.index) else: new_obj._update_inplace(row_partitions=new_parts, columns=self.columns, index=self.index) if not inplace: return new_obj def filter(self, items=None, like=None, regex=None, axis=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def first(self, offset): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def first_valid_index(self): """Return index for first non-NA/null value. Returns: scalar: type of index """ return self._row_metadata.first_valid_index() def floordiv(self, other, axis='columns', level=None, fill_value=None): """Divides this DataFrame against another DataFrame/Series/scalar. Args: other: The object to use to apply the divide against this. axis: The axis to divide over. level: The Multilevel index level to apply divide over. fill_value: The value to fill NaNs with. Returns: A new DataFrame with the Divide applied. """ return self._operator_helper(pd.DataFrame.floordiv, other, axis, level, fill_value) @classmethod def from_csv(self, path, header=0, sep=', ', index_col=0, parse_dates=True, encoding=None, tupleize_cols=None, infer_datetime_format=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") @classmethod def from_dict(self, data, orient='columns', dtype=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") @classmethod def from_items(self, items, columns=None, orient='columns'): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") @classmethod def from_records(self, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def ge(self, other, axis='columns', level=None): """Checks element-wise that this is greater than or equal to other. Args: other: A DataFrame or Series or scalar to compare to. axis: The axis to perform the gt over. level: The Multilevel index level to apply gt over. Returns: A new DataFrame filled with Booleans. """ return self._operator_helper(pd.DataFrame.ge, other, axis, level) def get(self, key, default=None): """Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found. Args: key (DataFrame column, Panel slice) : the key for which value to get Returns: value (type of items contained in object) : A value that is stored at the key """ try: return self[key] except (KeyError, ValueError, IndexError): return default def get_dtype_counts(self): """Get the counts of dtypes in this object. Returns: The counts of dtypes in this object. """ return ray.get(_deploy_func.remote(lambda df: df.get_dtype_counts(), self._row_partitions[0])) def get_ftype_counts(self): """Get the counts of ftypes in this object. Returns: The counts of ftypes in this object. """ return ray.get(_deploy_func.remote(lambda df: df.get_ftype_counts(), self._row_partitions[0])) def get_value(self, index, col, takeable=False): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def get_values(self): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def gt(self, other, axis='columns', level=None): """Checks element-wise that this is greater than other. Args: other: A DataFrame or Series or scalar to compare to. axis: The axis to perform the gt over. level: The Multilevel index level to apply gt over. Returns: A new DataFrame filled with Booleans. """ return self._operator_helper(pd.DataFrame.gt, other, axis, level) def head(self, n=5): """Get the first n rows of the dataframe. Args: n (int): The number of rows to return. Returns: A new dataframe with the first n rows of the dataframe. """ if n >= len(self._row_metadata): return self.copy() new_dfs = _map_partitions(lambda df: df.head(n), self._col_partitions) index = self._row_metadata.index[:n] return DataFrame(col_partitions=new_dfs, columns=self.columns, index=index) def hist(self, data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def idxmax(self, axis=0, skipna=True): """Get the index of the first occurrence of the max value of the axis. Args: axis (int): Identify the max over the rows (1) or columns (0). skipna (bool): Whether or not to skip NA values. Returns: A Series with the index for each maximum value for the axis specified. """ if not all([d != np.dtype('O') for d in self.dtypes]): raise TypeError( "reduction operation 'argmax' not allowed for this dtype") def remote_func(df): return df.idxmax(axis=axis, skipna=skipna) internal_indices = self._arithmetic_helper(remote_func, axis) # do this to convert internal indices to correct index return internal_indices.apply(lambda x: self.index[x]) def idxmin(self, axis=0, skipna=True): """Get the index of the first occurrence of the min value of the axis. Args: axis (int): Identify the min over the rows (1) or columns (0). skipna (bool): Whether or not to skip NA values. Returns: A Series with the index for each minimum value for the axis specified. """ if not all([d != np.dtype('O') for d in self.dtypes]): raise TypeError( "reduction operation 'argmax' not allowed for this dtype") def remote_func(df): return df.idxmin(axis=axis, skipna=skipna) internal_indices = self._arithmetic_helper(remote_func, axis) # do this to convert internal indices to correct index return internal_indices.apply(lambda x: self.index[x]) def infer_objects(self): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None): def info_helper(df): output_buffer = io.StringIO() df.info(verbose=verbose, buf=output_buffer, max_cols=max_cols, memory_usage=memory_usage, null_counts=null_counts) return output_buffer.getvalue() # Combine the per-partition info and split into lines result = ''.join(ray.get(_map_partitions(info_helper, self._col_partitions))) lines = result.split('\n') # Class denoted in info() output class_string = '<class \'ray.dataframe.dataframe.DataFrame\'>\n' # Create the Index info() string by parsing self.index index_string = self.index.summary() + '\n' # A column header is needed in the inf() output col_header = 'Data columns (total {0} columns):\n'.format( len(self.columns)) # Parse the per-partition values to get the per-column details # Find all the lines in the output that start with integers prog = re.compile('^[0-9]+.+') col_lines = [prog.match(line) for line in lines] cols = [c.group(0) for c in col_lines if c is not None] # replace the partition columns names with real column names columns = ["{0}\t{1}\n".format(self.columns[i], cols[i].split(" ", 1)[1]) for i in range(len(cols))] col_string = ''.join(columns) + '\n' # A summary of the dtypes in the dataframe dtypes_string = "dtypes: " for dtype, count in self.dtypes.value_counts().iteritems(): dtypes_string += "{0}({1}),".format(dtype, count) dtypes_string = dtypes_string[:-1] + '\n' # Compute the memory usage by summing per-partitions return values # Parse lines for memory usage number prog = re.compile('^memory+.+') mems = [prog.match(line) for line in lines] mem_vals = [float(re.search(r'\d+', m.group(0)).group()) for m in mems if m is not None] memory_string = "" if len(mem_vals) != 0: # Sum memory usage from each partition if memory_usage != 'deep': memory_string = 'memory usage: {0}+ bytes'.format( sum(mem_vals)) else: memory_string = 'memory usage: {0} bytes'.format(sum(mem_vals)) # Combine all the components of the info() output result = ''.join([class_string, index_string, col_header, col_string, dtypes_string, memory_string]) # Write to specified output buffer if buf: buf.write(result) else: sys.stdout.write(result) def insert(self, loc, column, value, allow_duplicates=False): """Insert column into DataFrame at specified location. Args: loc (int): Insertion index. Must verify 0 <= loc <= len(columns). column (hashable object): Label of the inserted column. value (int, Series, or array-like): The values to insert. allow_duplicates (bool): Whether to allow duplicate column names. """ if not is_list_like(value): value = np.full(len(self.index), value) if len(value) != len(self.index): raise ValueError( "Length of values does not match length of index") if not allow_duplicates and column in self.columns: raise ValueError( "cannot insert {0}, already exists".format(column)) if loc > len(self.columns): raise IndexError( "index {0} is out of bounds for axis 0 with size {1}".format( loc, len(self.columns))) if loc < 0: raise ValueError("unbounded slice") partition, index_within_partition = \ self._col_metadata.insert(column, loc) # Deploy insert function to specific column partition, and replace that # column def insert_col_part(df): df.insert(index_within_partition, column, value, allow_duplicates) return df new_obj = _deploy_func.remote(insert_col_part, self._col_partitions[partition]) new_cols = [self._col_partitions[i] if i != partition else new_obj for i in range(len(self._col_partitions))] new_col_names = self.columns.insert(loc, column) self._update_inplace(col_partitions=new_cols, columns=new_col_names) def interpolate(self, method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs): raise NotImplementedError( "To contribute to Pandas on Ray, please visit " "github.com/ray-project/ray.") def iterrows(self): """Iterate over DataFrame rows as (index, Series) pairs. Note: Generators can't be pickeled so from the remote function we expand the generator into a list before getting it. This is not that ideal. Returns: A generator that iterates over the rows of the frame. """ def update_iterrow(series, i): """Helper function to correct the columns + name of the Series.""" series.index = self.columns series.name = list(self.index)[i] return series iters = ray.get([_deploy_func.remote( lambda df: list(df.iterrows()), part) for part in self._row_partitions]) iters = itertools.chain.from_iterable(iters) series = map(lambda s: update_iterrow(s[1][1], s[0]), enumerate(iters)) return zip(self.index, series) def items(self): """Iterator over (column name, Series) pairs. Note: Generators can't be pickeled so from the remote function we expand the generator into a list before getting it. This is not that ideal. Returns: A generator that iterates over the columns of the frame. """ iters = ray.get([_deploy_func.remote( lambda df: list(df.items()), part) for part in self._row_partitions]) def concat_iters(iterables): for partitions in enumerate(zip(*iterables)): series =
pd.concat([_series for _, _series in partitions[1]])
pandas.concat
import sys import pandas as pd import nltk nltk.download('punkt') nltk.download('wordnet') nltk.download('stopwords') from nltk.stem import WordNetLemmatizer from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import re from sqlalchemy import create_engine def tokenize(text): """ Function to tokenize text using NLP pipeline with lemmatization Args: text (str): original text Returns: list of str: tokens of text """ text = re.sub("[^a-zA-Z0-9]"," ",text) tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] stopwords_list = stopwords.words("english") for token in tokens: clean_token = lemmatizer.lemmatize(token).lower().strip() if (clean_token not in stopwords_list): clean_tokens.append(clean_token) return clean_tokens def load_data(messages_filepath, categories_filepath): """ Function to load datasets from filepaths Returns: dataframe: merged dataframe from two datasets """ messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) df = messages.merge(categories,on="id") return df def clean_data(df): """ Transform categories labels to columns and clean data errors Args: df (dataframe): merged dataframe containing message and categories Returns: df (dataframe): clean dataframe """ categories = df["categories"].str.split(";",expand=True) row = categories.iloc[0] category_colnames = row.apply(lambda x: x[:-2]) categories.columns = category_colnames for column in categories: categories[column] = categories[column].apply(lambda x: x[-1]) categories[column] =
pd.to_numeric(categories[column])
pandas.to_numeric
import pandas as pd from pathlib import Path import argparse def select_target_from_sf(csv_path): sf_id = csv_path.stem df =
pd.read_csv(csv_path, index_col=0)
pandas.read_csv
# -*- cding: utf-8 -*- import os import numpy as np import pandas as pd import pymysql import datetime import glob ''' 程序说明: 1.实现能从Mysql数据库读取AIS数据到本地,保存到pandas的dataframe中; 2.实现从本地读取CSV文件,以便于数据处理; 3.利用datetime函数将数据库保存的时间戳转换成具体的时间函数,以便于读取; 4.将轨迹数据进行清洗,并对轨迹数据进行重构,输出符合要求的轨迹数据; 5.形成最终的MMSI唯一性代表的轨迹运动特性的数据,以便于后期深度学习的时候使用。 ''' # 链接数据库的句子 # dbconn = pymysql.connect(host = '127.0.0.1',user = 'root', passwd='<PASSWORD>',db= 'ais_dynamic',charset = 'utf8') # sql查询语句 # sqlcmd = "select * from ais_dynamic.ais_dynamic limit 100" # 从CSV文件中读取数据进行处理 # ais_file= pd.read_csv(r'C:\Users\cege-user\Desktop\dataset-ais\1-1000000-ais.csv',header = 0,sep = ' ',names = list('Record_Datetime','MMSI','Longitude','Latitude','Direction', # 'Heading','Speed','Status','ROT','Position_Accuracy','UTC_Hour', # 'UTC_Minute','UTC_Second','Message_ID','Rec_Datetime','Source_ID')) ais_file1 =
pd.read_csv(r'D:\Data store file\dataset-ais\1-1000000-ais.csv')
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt import re import time import os from sklearn.svm import SVR import joblib import rdkit from rdkit import Chem from rdkit.Chem import AllChem from rdkit_utils import smiles_dataset from utils import save_dataset model_load = joblib.load('./models/model.pkl') database =
pd.read_csv('./screening_base/in-vitro_zinc/in-vitro.csv')
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Making identical historical data requests within 15 seconds. Making six or more historical data requests for the same Contract, Exchange and Tick Type within two seconds. Making more than 60 requests within any ten minute period. """ import os import argparse import time from datetime import datetime, timedelta import pandas as pd import numpy as np from signal import signal, SIGINT, SIG_DFL import pickle from quanttrader.event.event import EventType from quanttrader.event.live_event_engine import LiveEventEngine from quanttrader.brokerage.ib_brokerage import InteractiveBrokers signal(SIGINT, SIG_DFL) df = pd.DataFrame(columns=['Open', 'High', 'Low', 'Close', 'Volume']) def log_event_handler(log_event): print(f'{log_event.timestamp}: {log_event.content}') def historical_event_handler(bar_event): """ local timezone based on tws setting """ global df row_dict = {} row_dict['Open'] = bar_event.open_price row_dict['High'] = bar_event.high_price row_dict['Low'] = bar_event.low_price row_dict['Close'] = bar_event.close_price row_dict['Volume'] = bar_event.volume df1 =
pd.DataFrame(row_dict, index=[bar_event.bar_start_time])
pandas.DataFrame
# -*- coding: utf-8 -*- """ @author: hkaneko """ import math import sys import numpy as np import pandas as pd import sample_functions from sklearn import metrics, model_selection, svm from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.neighbors import KNeighborsClassifier # 下の y_name を 'pIC50_class', 'pIGC50_class' のいずれかにしてください。 # descriptors_with_[y_name].csv というファイルを dataset として読み込み計算します。 # さらに、y_name を別の名前に変えて、ご自身で別途 sample_program_6_8_0_csv.py もしくは # sample_program_6_8_0_sdf.py で descriptors_with_[y_name].csv というファイルを、 # 他のファイルと同様の形式で準備すれば、同じように計算することができます。 y_name = 'pIC50_class' # 'pIC50_class' : クラス分類用の薬理活性のデータセットの場合 # 'pIGC50_class' : クラス分類用の環境毒性のデータセットの場合 rate_of_test_samples = 0.25 # テストデータのサンプル数の割合。0 より大きく 1 未満 method_name = 'rf' # 'knn' or 'svm' or 'rf' number_of_submodels = 50 # サブモデルの数 rate_of_selected_x_variables = 0.7 # 各サブデータセットで選択される説明変数の数の割合。0 より大きく 1 未満 add_nonlinear_terms_flag = False # True (二乗項・交差項を追加) or False (追加しない) fold_number = 5 # N-fold CV の N max_number_of_k = 20 # 使用する k の最大値 svm_cs = 2 ** np.arange(-5, 11, dtype=float) svm_gammas = 2 ** np.arange(-20, 11, dtype=float) rf_number_of_trees = 300 # RF における決定木の数 rf_x_variables_rates = np.arange(1, 11, dtype=float) / 10 # 1 つの決定木における説明変数の数の割合の候補 if method_name != 'knn' and method_name != 'svm' and method_name != 'rf': sys.exit('\'{0}\' というクラス分類手法はありません。method_name を見直してください。'.format(method_name)) dataset = pd.read_csv('descriptors_with_{0}.csv'.format(y_name), index_col=0) # 物性・活性と記述子のデータセットの読み込み y = dataset.iloc[:, 0].copy() x = dataset.iloc[:, 1:] x = x.replace(np.inf, np.nan).fillna(np.nan) # inf を NaN に置き換え nan_variable_flags = x.isnull().any() # NaN を含む変数 x = x.drop(x.columns[nan_variable_flags], axis=1) # NaN を含む変数を削除 number_of_test_samples = round(dataset.shape[0] * rate_of_test_samples) # ランダムにトレーニングデータとテストデータとに分割 # random_state に数字を与えることで、別のときに同じ数字を使えば、ランダムとはいえ同じ結果にすることができます x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=number_of_test_samples, shuffle=True, random_state=0) class_types = list(set(y_train)) # クラスの種類 class_types.sort(reverse=True) # 並び替え # 標準偏差が 0 の説明変数を削除 std_0_variable_flags = x_train.std() == 0 x_train = x_train.drop(x_train.columns[std_0_variable_flags], axis=1) x_test = x_test.drop(x_test.columns[std_0_variable_flags], axis=1) if add_nonlinear_terms_flag: x_train = pd.read_csv('x_train_{0}.csv'.format(y_name), index_col=0) # 物性・活性と記述子のデータセットの読み込み x_test = pd.read_csv('x_test_{0}.csv'.format(y_name), index_col=0) # 物性・活性と記述子のデータセットの読み込み # x_train = sample_functions.add_nonlinear_terms(x_train) # 説明変数の二乗項や交差項を追加 # x_test = sample_functions.add_nonlinear_terms(x_test) # 説明変数の二乗項や交差項を追加 # 標準偏差が 0 の説明変数を削除 std_0_nonlinear_variable_flags = x_train.std() == 0 x_train = x_train.drop(x_train.columns[std_0_nonlinear_variable_flags], axis=1) x_test = x_test.drop(x_test.columns[std_0_nonlinear_variable_flags], axis=1) # オートスケーリング autoscaled_x_train = (x_train - x_train.mean()) / x_train.std() autoscaled_x_test = (x_test - x_train.mean()) / x_train.std() if method_name == 'svm': # 時間短縮のため、最初だけグラム行列の分散を最大化することによる γ の最適化 optimal_svm_gamma = sample_functions.gamma_optimization_with_variance(autoscaled_x_train, svm_gammas) number_of_x_variables = int(np.ceil(x_train.shape[1] * rate_of_selected_x_variables)) print('各サブデータセットの説明変数の数 :', number_of_x_variables) estimated_y_train_all = pd.DataFrame() # 空の DataFrame 型を作成し、ここにサブモデルごとのトレーニングデータの y の推定結果を追加 selected_x_variable_numbers = [] # 空の list 型の変数を作成し、ここに各サブデータセットの説明変数の番号を追加 submodels = [] # 空の list 型の変数を作成し、ここに構築済みの各サブモデルを追加 for submodel_number in range(number_of_submodels): print(submodel_number + 1, '/', number_of_submodels) # 進捗状況の表示 # 説明変数の選択 # 0 から 1 までの間に一様に分布する乱数を説明変数の数だけ生成して、その乱数値が小さい順に説明変数を選択 random_x_variables = np.random.rand(x_train.shape[1]) selected_x_variable_numbers_tmp = random_x_variables.argsort()[:number_of_x_variables] selected_autoscaled_x_train = autoscaled_x_train.iloc[:, selected_x_variable_numbers_tmp] selected_x_variable_numbers.append(selected_x_variable_numbers_tmp) if method_name == 'knn': # CV による k の最適化 accuracy_in_cv_all = [] # 空の list の変数を作成して、成分数ごとのクロスバリデーション後の 正解率 をこの変数に追加していきます ks = [] # 同じく k の値をこの変数に追加していきます for k in range(1, max_number_of_k + 1): model = KNeighborsClassifier(n_neighbors=k, metric='euclidean') # k-NN モデルの宣言 # クロスバリデーション推定値の計算し、DataFrame型に変換 estimated_y_in_cv = pd.DataFrame( model_selection.cross_val_predict(model, selected_autoscaled_x_train, y_train, cv=fold_number)) accuracy_in_cv = metrics.accuracy_score(y_train, estimated_y_in_cv) # 正解率を計算 accuracy_in_cv_all.append(accuracy_in_cv) # r2 を追加 ks.append(k) # k の値を追加 optimal_k = ks[accuracy_in_cv_all.index(max(accuracy_in_cv_all))] submodel = KNeighborsClassifier(n_neighbors=optimal_k, metric='euclidean') # k-NN モデルの宣言 elif method_name == 'svm': # CV による C の最適化 model_in_cv = GridSearchCV(svm.SVC(kernel='rbf', gamma=optimal_svm_gamma), {'C': svm_cs}, cv=fold_number) model_in_cv.fit(selected_autoscaled_x_train, y_train) optimal_svm_c = model_in_cv.best_params_['C'] # CV による γ の最適化 model_in_cv = GridSearchCV(svm.SVC(kernel='rbf', C=optimal_svm_c), {'gamma': svm_gammas}, cv=fold_number) model_in_cv.fit(selected_autoscaled_x_train, y_train) optimal_svm_gamma = model_in_cv.best_params_['gamma'] submodel = svm.SVC(kernel='rbf', C=optimal_svm_c, gamma=optimal_svm_gamma) # SVM モデルの宣言 elif method_name == 'rf': # OOB (Out-Of-Bugs) による説明変数の数の割合の最適化 accuracy_oob = [] for index, x_variables_rate in enumerate(rf_x_variables_rates): model_in_validation = RandomForestClassifier(n_estimators=rf_number_of_trees, max_features=int( max(math.ceil(selected_autoscaled_x_train.shape[1] * x_variables_rate), 1)), oob_score=True) model_in_validation.fit(selected_autoscaled_x_train, y_train) accuracy_oob.append(model_in_validation.oob_score_) optimal_x_variables_rate = rf_x_variables_rates[accuracy_oob.index(max(accuracy_oob))] submodel = RandomForestClassifier(n_estimators=rf_number_of_trees, max_features=int(max(math.ceil( selected_autoscaled_x_train.shape[1] * optimal_x_variables_rate), 1)), oob_score=True) # RF モデルの宣言 submodel.fit(selected_autoscaled_x_train, y_train) # モデルの構築 submodels.append(submodel) # サブデータセットの説明変数の種類やサブモデルを保存。同じ名前のファイルがあるときは上書きされるため注意 pd.to_pickle(selected_x_variable_numbers, 'selected_x_variable_numbers.bin') pd.to_pickle(submodels, 'submodels.bin') # サブデータセットの説明変数の種類やサブモデルを読み込み # 今回は、保存した後にすぐ読み込んでいるため、あまり意味はありませんが、サブデータセットの説明変数の種類やサブモデルを # 保存しておくことで、後で新しいサンプルを予測したいときにモデル構築の過程を省略できます selected_x_variable_numbers = pd.read_pickle('selected_x_variable_numbers.bin') submodels =
pd.read_pickle('submodels.bin')
pandas.read_pickle
#based on the following kernel: https://www.kaggle.com/hyeonho/pca-nusvc-0-95985 import numpy as np, pandas as pd from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score from sklearn import svm, neighbors, linear_model, neural_network from sklearn.svm import NuSVC from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from tqdm import tqdm train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') oof = np.zeros(len(train)) preds = np.zeros(len(test)) oof_2 = np.zeros(len(train)) preds_2 = np.zeros(len(test)) cols = [c for c in train.columns if c not in ['id', 'target', 'wheezy-copper-turtle-magic']] for i in range(512): train2 = train[train['wheezy-copper-turtle-magic']==i] test2 = test[test['wheezy-copper-turtle-magic']==i] idx1 = train2.index; idx2 = test2.index train2.reset_index(drop=True,inplace=True) data = pd.concat([pd.DataFrame(train2[cols]),
pd.DataFrame(test2[cols])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 """Script to calculate the Amp-hours that were supplied in each bike battery charging session. """ days_to_include = float(input('Enter # of Days to Incude: ')) default_delta = 300.0 # default reading spacing in seconds max_delta = 1000.0 # if spacing greater than this between charging readings, must be a new cycle ending_amps = 0.1 # if amps are below this level charging is complete import pandas as pd import numpy as np from bmondata import Server from datetime import datetime, timedelta server = Server('https://bmon.analysisnorth.com/') start_ts = str(datetime.now()-timedelta(days=days_to_include)) df = server.sensor_readings('260034000c47343432313031_amps', start_ts=start_ts) df.columns = ['amps'] df['ts'] =
pd.to_datetime(df.index)
pandas.to_datetime
import numpy as np import pandas as pd import numba import seaborn as sns import matplotlib.animation as animation import matplotlib.pyplot as plt from hfhd import hd @numba.njit def garch_11(n, sigma_sq_0, mu, alpha, beta, omega): r""" Generate GARCH(1, 1) log-returns of size n. This function is accelerated via JIT with Numba. Parameters ---------- n : int The length of the wished time series. sigma_sq_0 : float > 0 The variance starting value. mu : float: The drift of log-returns. alpha : float >= 0 The volatility shock parameter. A higher value will lead to larger spikes in volatility. A.k.a short-term persistence. beta : float >= 0 The volatility persistence parameter. A larger value will result in stronger persistence. A.k.a long-term persistence. omega : float > 0 The variance constant. A higher value results in a higher mean variance. Returns ------- r : numpy.ndarray The GARCH log-returns time series. sigma_sq : numpy.ndarray The resulting variance time series with which each log-return was generated. Notes ----- In general, the conditional variance of a GARCH(p,q) model is given by .. math:: \sigma_{t}^{2}=\omega+\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}+\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2}. The unconditional variance is given by .. math:: \sigma^{2}=\frac{\omega}{1-\sum_{i=1}^{q} \alpha_{i}-\sum_{j=1}^{p} \beta_{j}}. Here, :math:`p=q=1`, and :math:`\epsilon_{t} \sim \mathcal{N}\left(0, 1\right)` """ nu = np.random.normal(0, 1, n) r = np.zeros(n) epsilon = np.zeros(n) sigma_sq = np.zeros(n) sigma_sq[0] = sigma_sq_0 if min(alpha, beta) < 0: raise ValueError('alpha, beta need to be non-negative') if omega <= 0: raise ValueError('omega needs to be positive') if alpha+beta >= 1: print('''alpha+beta>=1, variance not defined --> time series will not be weakly stationary''') for i in range(n): if i > 0: sigma_sq[i] = omega + alpha * epsilon[i-1]**2 + beta * sigma_sq[i-1] epsilon[i] = (sigma_sq[i]**0.5) * nu[i] r[i] = mu + epsilon[i] return r, sigma_sq class Universe: r""" The universe is a specification from which simulated realizations can be sampled. Stocks follow a factor model, they belong to industries and have an idiosyncratic component. Stocks are predictable by a single feature. Attributes ---------- feature_beta : float The true coefficient. factor_garch_spec : list The garch specification for factor returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` industry_garch_spec : list The garch specification for industry returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` resid_garch_spec : list The garch specification for residual returns. ``[sigma_sq_0, mu, alpha, beta, omega]`` factor_loadings : numpy.ndarray An array with factor loadings for each stock and factor. dim = n_stocks x n_factors industry_loadings : numpy.ndarray An array with industry loadings for each stock and industry. dim = n_stocks x n_industry This is usually a sparse matrix. One stock loads typically on one or two industries. A good number of industries is 10 to 20. liquidity : float A value between 0 and 1 that describes liquidity. A value of 1 means that the probability of observation is 100% each minute. 0.5 means that there is a 50% probability of observing a price each minute. gamma : float >=0 The microstructure noise will be zero-mean Gaussian with variance $\gamma^2 var(r)$, where $var(r)$ is the variance of the underlying true return process. This noise is be added to the price. freq : str, ``'s'`` or ``'m'``. The granularity of the discretized continous price process. """ def __init__(self, feature_beta, factor_garch_spec, industry_garch_spec, resid_garch_spec, factor_loadings, industry_loadings, liquidity=0.5, gamma=2, freq='m'): self.feature_beta = feature_beta self.factor_garch_spec = factor_garch_spec self.industry_garch_spec = industry_garch_spec self.resid_garch_spec = resid_garch_spec self.factor_loadings = factor_loadings self.industry_loadings = industry_loadings self.liquidity = liquidity self.gamma = gamma self.freq = freq self.n_stocks = self.factor_loadings.shape[0] self.n_ind = self.industry_loadings.shape[1] self.n_factors = self.factor_loadings.shape[1] @staticmethod def uncond_var(spec): ''' Compute the uncoditional variance from a GARCH(1,1) specification. Parameters ---------- spec : list The garch specification. ``[sigma_sq_0, mu, alpha, beta, omega]`` Returns ------- float The unconditional variance. ''' return spec[4]/(1-spec[2]-spec[3]) def uncond_cov(self): ''' Compute the uncoditional covariance of stock returns in the universe from a universe specification. Returns ------- numpy.ndarray The unconditional covariance matrix. ''' sf = np.diag([self.uncond_var(self.factor_garch_spec)]*self.n_factors) sr = np.diag([self.uncond_var(self.resid_garch_spec)]*self.n_stocks) si = np.diag([self.uncond_var(self.industry_garch_spec)]*self.n_ind) return (self.factor_loadings @ sf @ self.factor_loadings.T + sr + self.industry_loadings @ si @ self.industry_loadings.T) def cond_cov(self): ''' Compute the daily coditional integrated covariance matrix of stock returns within regular market hours in the universe from a realized universe simulation. Returns ------- list A list containing the conditional integrated covariance matrices of each day. ''' sr = pd.DataFrame(self.sigma_sq_resid) sr.index = pd.to_datetime(sr.index, unit=self.freq) sr = sr.between_time('9:30', '16:00', include_start=True, include_end=True) sr = sr.resample('1d').sum() si = pd.DataFrame(self.sigma_sq_industry) si.index = pd.to_datetime(si.index, unit=self.freq) si = si.between_time('9:30', '16:00', include_start=True, include_end=True) si = si.resample('1d').sum() sf =
pd.DataFrame(self.sigma_sq_factor)
pandas.DataFrame
#!/usr/bin/env python3 # coding: utf-8 """ @author:qiuping1 @file:data_parse.py @time:2020/12/30 change log: 2021/01/12 增加数据qc相关代码,并调式 python ./data_parse.py --input_path ../data/01.LiverCancer/DP8400012941BR_E4/DP8400012941BR_E4.txt --out_dir ../data/E4/ --read_raw --bin_size 200 python ./data_parse.py --input_path ../data/E4/raw_andata.bin200.h5ad --out_dir ../data/E4/ --run_filter --normalize --bin_size 200 --max_gene_cnt 7000 --min_genes 200 --min_cells 3 --max_mt 15 """ import pandas as pd import scanpy as sc import numpy as np import argparse from scipy import sparse import sys def read_raw_file_bak(inpath, step): """ 读取原始bin1的数据,返回andata对象 :param inpath: 输入文件路径 :param step: 合并的bin大小 :param output: andata存储路径 :return: andata """ df = pd.read_csv(inpath, sep='\t') df.dropna(inplace=True) df.columns = list(df.columns[0:-1]) + ['UMICount'] df['x1'] = (df['x'] / step).astype(np.int32) df['y1'] = (df['y'] / step).astype(np.int32) df['pos'] = df['x1'].astype(str) + "-" + df['y1'].astype(str) g = df.groupby(['geneID', 'pos'])['UMICount'].sum() g = g.to_frame().reset_index() # 每个gene至少在3个bin里面捕获到 # g = g[g.groupby('geneID')['geneID'].transform('size') > 2] g = g.pivot(index='pos', columns='geneID', values='UMICount').fillna(0) # 每个bin至少捕获到50个gene # g = g.loc[:, g.sum() >= 50] adata = sc.AnnData(g) pos = np.array(list(adata.obs.index.str.split('-', expand=True)), dtype=np.int) pos[:, 1] = pos[:, 1] * -1 adata.obsm['spatial'] = pos return adata def read_raw_file(inpath, step): df = pd.read_csv(inpath, sep='\t') df.dropna(inplace=True) df.columns = list(df.columns[0:-1]) + ['UMICount'] df['x1'] = (df['x'] / step).astype(np.int32) df['y1'] = (df['y'] / step).astype(np.int32) df['pos'] = df['x1'].astype(str) + "-" + df['y1'].astype(str) bindf = df.groupby(['pos', 'geneID'])['UMICount'].sum() cells = set(x[0] for x in bindf.index) genes = set(x[1] for x in bindf.index) cellsdic = dict(zip(cells, range(0, len(cells)))) genesdic = dict(zip(genes, range(0, len(genes)))) rows = [cellsdic[x[0]] for x in bindf.index] cols = [genesdic[x[1]] for x in bindf.index] print(f'the martrix has {len(cells)} bins, and {len(genes)} genes.') expMtx = sparse.csr_matrix((bindf.values, (rows, cols))).toarray() print(f'the size of matrix is {sys.getsizeof(expMtx) / 1073741824} G.') obs =
pd.DataFrame(index=cells)
pandas.DataFrame
import pandas as pd import numpy as np from os.path import join as oj def load_daily_data(usafacts_data_cases='usafacts/confirmed_cases.csv', usafacts_data_deaths='usafacts/deaths.csv', dir_mod = ""): usafacts_data_cases = oj(dir_mod, usafacts_data_cases) usafacts_data_deaths = oj(dir_mod, usafacts_data_deaths) cases =
pd.read_csv(usafacts_data_cases, encoding="iso-8859-1", index_col=0)
pandas.read_csv
import os import random import string import sqlalchemy import pandas as pd from faker import Faker def get_account_list(): # This prevents getting the same name twice as a set is distinct names = ['<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '8Cp9RdNXaqJarLKLEhNyy1Zrg5VAyEN2iSFkxWan4eZyGtb7W1k', '<KEY>vTH6XcFmhochP<KEY>sGP', '<KEY>tKdYLUk59aZ5k29wRj6gHCYwYYVM', '<KEY>zDeCtW4uLhrDnBzhMWBQh2o', '8CCCuKBtVXaijVWbNrHnPSmespPd4okcizxaqfiipm1MRidmCUa', '<KEY>XGs18pBi29t', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '8BJdKw7nDhX3pcZQsXBL7R8FCHjwbyi8tDiaetS15ioQ93VpUHW', '8BqAjDB2V7ewAYv5RMJXdRtsrYyFmYXNTf41a9gVNExs8aBeafG', '8CmFWSkrcCpNcXWXb7YsWeRAfhRew9zgYiqnoGQADvmNjV6UYF6', '8CgXtDXoGEjK78RCJrYa1LV8sJZpC9bStGazzAqjtL64aGZXsFX', '8C7rTGDKtugNdVyHi5fuYaA7uV26p7Uyn2v3ErB6XrJ59HDxTkk', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '8BZF397yZeAxd2VBuQax6VLH6QvcT1CMhX1k3qGoexW2GaQUGKq', '8BBaWXo5k6cnwWwEvoWuy3m1nEDyTrZ2JbfFMSNJzA4rwC5onKC', '<KEY>', '8BjbGEzoYsVPBRRnr9bdsLN9ifsyiHKBLGeAiAYXqFvzfoBMLns', '8CsFXhyPwzguAQABxf6GXaEgmTvqyX1X5s2vo5UM6Byt3mmw869', '8CTsQwJmbjPunUruEbuk9AdbvWu8imKcUHcPZYAKfigsr3qWCgX', '<KEY>tKHPN2t7CrF7RhbBMgkgofPED7bUuvNCE', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>mKWVACuhpR3RuxJ6d47M77saRvHso3nei9X5cRT4RN7', '8Ciea9g8GLFWWCL5DMomeiyAngaw45yGeYcnYACVBTJtZCTWKan', '<KEY>', '<KEY>', '8Ct8BWUY2g7XUhjhxQe6trLffjdoAXJNbuCsQaBxPv62iqyjh2x', '8CsExqqMPcPGrRwftQzqd7rX5ct153sxYf6FVzCpFdsU7MMEB1K', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>QKs8q5GwGfyQSXh1cov9qQ6e9', '8CRVqp1wSPR2P9RCFEfoUaozGpZALfcdU2xUaUCYNJcdydtp8JA', '8BBxtCi8WNkN7sZgQcEHr3XTbWGpxE5zhKsPqut6yozvrUoeuth', '8CTfKi3u2vHtBdue5dteu85UaYhdTgXwyhY1XFDv3LhmcszerZH', '8BZekjR4AVGhfZHPWKX9ndhDWLiX3Ct9qbtMDuTBXscwE7e7Tos', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '8Cnhxitj3eGXEFpkYboHEqUs5AE1GQUjPNg38pNvim6ZzkUez5E', '8CP1XUYQ9ykRf6WZ2EVSDKgAAaLi1dNXag1ucpFtvVQmyTKSFHV', '<KEY>', '<KEY>fRsXxdBHb', '8Cs7GG1RkVfSdoHE7rxswsZbLaYRQ6vvD2iGHsD6jzwZergNm4E', '8C2F5c49ui8ynbFhgV5djTR17wBkFiD1SgG5RSSUKyGf218cFt3', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '8CptBktPwLY38Ktuv6p81bmvxwPGMDWbfHqnJwFMRPJ8awioask', '<KEY>AQtHLggr5JfbuGVJ5oG7', '8CYDCUNh6XcNnFnYa1VTT5xPUBboXfH8psp3TGYXQPFZ87Bx4Kf', '8CuBrDBj5ARApUjoxNzPAbQt88EvPtVG97qLSWQce1kq4vhFqTF', '8Cqn4pknZ8XkAjYuesVu4WH1Ev6bbMofLiRqviwomoAJ445ED36', '8BDEy6RrnaVZ1cKYV6N2ANZYvYP4vEXtVHjDhC2o4w7aMRXg1Jo', '8CZtQm4zgvj6i2YhrRcpAQpdWkMpmdyY3aphPpscPUkokFgcYrM', '8BhpkJmja3r5ECrwZEWhu8FuazwT7XXvtkh8eGUtxo3uvrmaLyY', ] return names def connect_to_db(_file): if not os.path.exists(_file): raise AssertionError("DB File not found") engine = sqlalchemy.create_engine(f'sqlite:///{_file}') sqlalchemy_connection = engine.connect() print("DB Connection established") return sqlalchemy_connection def clean_db(connection): tables = ['round', 'block', 'account', 'banned_connections_api', 'banned_users_connections'] for table in tables: connection.execute(f'DELETE FROM {table}') def create_round_test_data(connection): # Todo get Config rounds = 10 # Create an Empty Dataframe to hold the Data dataframe_round = pd.DataFrame(columns=['round_number', 'total_shares', 'total_reward', 'blocks', 'start_date_time', 'end_date_time', 'is_active', 'is_paid' ] ) for x in range(rounds): total_share = round(random.uniform(1, 10), 2) total_reward = round(random.uniform(1, 10), 2) blocks = random.randint(1, 10) start_date_time = fake.past_datetime() end_date_time = fake.past_datetime() is_active = random.randint(0, 1) is_paid = random.randint(0, 1) data_dict = { 'total_shares': total_share, 'total_reward': total_reward, 'blocks': blocks, 'start_date_time': start_date_time, 'end_date_time': end_date_time, 'is_active': is_active, 'is_paid': is_paid, } dataframe_round = dataframe_round.append(data_dict, ignore_index=True) dataframe_round.to_sql('round', con=connection, index=False, if_exists='append') print("Inserted Test Data for 'Round'") def create_account_test_data(connection): # Todo get Config accounts = 100 # Create an Empty Dataframe to hold the Data dataframe_account = pd.DataFrame(columns=[ 'name', 'created_at', 'last_active', 'connection_count', 'shares', 'hashrate', 'display_name' ] ) names = get_account_list() for x in range(accounts): name = names[x] created_at = fake.past_datetime() last_active = fake.past_datetime() connection_count = random.randint(1, 100) shares = round(random.uniform(1, 100), 2) hashrate = round(random.uniform(1, 10), 2) letters = string.ascii_lowercase display_name = ''.join(random.choice(letters) for i in range(10)) data_dict = { 'name': name, 'created_at': created_at, 'last_active': last_active, 'connection_count': connection_count, 'shares': shares, 'hashrate': hashrate, 'display_name' : display_name, } dataframe_account = dataframe_account.append(data_dict, ignore_index=True) dataframe_account.to_sql('account', con=connection, index=False, if_exists='append') print("Inserted Test Data for 'Account'") def create_payment_test_data(connection): accounts = 100 # Create an Empty Dataframe to hold the Data dataframe_payment = pd.DataFrame(columns=[ 'name', 'amount', 'shares', 'payment_date_time', 'round', 'tx_id', ] ) names = get_account_list() df_tmp = pd.read_sql(sql='SELECT round_number from round', con=connection) round_list = list(df_tmp['round_number']) for x in range(accounts): name = names[x] amount = round(random.uniform(1, 10), 2) shares = round(random.uniform(1, 100), 2) payment_date_time = fake.past_datetime() round_value = random.choice(round_list) tx_id_value = fake.md5(raw_output=False) data_dict = { 'name': name, 'amount': amount, 'shares': shares, 'payment_date_time': payment_date_time, 'round': round_value, 'tx_id': tx_id_value, } dataframe_payment = dataframe_payment.append(data_dict, ignore_index=True) dataframe_payment.to_sql('payment', con=connection, index=False, if_exists='append') print("Inserted Test Data for 'Payment'") def create_block_test_data(connection): # Todo get Config blocks = 1000 # Create an Empty Dataframe to hold the Data dataframe_block = pd.DataFrame(columns=[ 'hash', 'height', 'type', 'difficulty', 'orphan', 'block_finder', 'round', 'block_found_time', 'mainnet_reward', ] ) df_tmp = pd.read_sql(sql='SELECT round_number from round', con=connection) round_list = list(df_tmp['round_number']) df_tmp = pd.read_sql(sql='SELECT name from account', con=connection) account_list = list(df_tmp['name']) for x in range(blocks): hash = fake.md5(raw_output=False) height = random.randint(1, 100) type = 'Test' difficulty = round(random.uniform(1, 100), 2) orphan = random.randint(1, 100) block_finder = str(random.choice(account_list)) round_value = random.choice(round_list) block_found_time = fake.past_datetime() mainnet_reward = round(random.uniform(0, 1), 2) data_dict = { 'hash': hash, 'height': height, 'type': type, 'difficulty': difficulty, 'orphan': orphan, 'block_finder': block_finder, 'round': round_value, 'block_found_time': block_found_time, 'mainnet_reward': mainnet_reward, } dataframe_block = dataframe_block.append(data_dict, ignore_index=True) dataframe_block.to_sql('block', con=connection, index=False, if_exists='append') print("Inserted Test Data for 'Block'") def create_banned_connections_api_test_data(connection): # Todo get Config banned_connections_api = 100 # Create an Empty Dataframe to hold the Data dataframe_banned = pd.DataFrame(columns=[ 'ip', ] ) for x in range(banned_connections_api): ip = fake.ipv4() data_dict = { 'ip': ip, } dataframe_banned = dataframe_banned.append(data_dict, ignore_index=True) dataframe_banned.to_sql('banned_connections_api', con=connection, index=False, if_exists='append') print("Inserted Test Data for 'banned_connections_api'") def create_banned_users_connections_test_data(connection): # Todo get Config banned_users_connections = 10 # Create an Empty Dataframe to hold the Data dataframe_banned_users = pd.DataFrame(columns=[ 'user', 'ip', ] ) df_tmp =
pd.read_sql(sql='SELECT name from account', con=connection)
pandas.read_sql
#!/usr/bin/env python """ This script enables training and comparison of models on multiple GPUs. Usage: ``` python scripts/automate_training.py -c path/to/config.json -p path/to/config_hyper.json \ -n number_of_iterations --all-combin ``` """ import argparse import copy import itertools from functools import partial import json import random import collections.abc import shutil import sys import joblib import pandas as pd import numpy as np import torch.multiprocessing as mp from ivadomed.loader.bids_dataframe import BidsDataframe import ivadomed.scripts.visualize_and_compare_testing_models as violin_plots from pathlib import Path from loguru import logger from ivadomed import main as ivado from ivadomed import config_manager as imed_config_manager from ivadomed.loader import utils as imed_loader_utils from ivadomed.scripts.compare_models import compute_statistics from ivadomed import utils as imed_utils from ivadomed.keywords import ConfigKW,SplitDatasetKW, LoaderParamsKW LOG_FILENAME = 'log.txt' logger.add(LOG_FILENAME) def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", required=True, help="Base config file path.", metavar=imed_utils.Metavar.file) parser.add_argument("-ch", "--config-hyper", dest="config_hyper", required=True, help="JSON file where hyperparameters to experiment are listed.", metavar=imed_utils.Metavar.file) parser.add_argument("-pd", "--path-data", required=False, help="Path to BIDS data.", metavar=imed_utils.Metavar.int) parser.add_argument("-n", "--n-iterations", dest="n_iterations", default=1, type=int, help="Number of times to run each config.", metavar=imed_utils.Metavar.int) parser.add_argument("--all-combin", dest='all_combin', action='store_true', help="To run all combinations of config"), parser.add_argument("-m", "--multi-params", dest="multi_params", action='store_true', help="To change multiple parameters at once.") parser.add_argument("--run-test", dest='run_test', action='store_true', help="Evaluate the trained model on the testing sub-set.") parser.add_argument("--fixed-split", dest='fixed_split', action='store_true', help="Keep a constant dataset split for all configs and iterations") parser.add_argument("-l", "--all-logs", dest="all_logs", action='store_true', help="Keep all log directories for each iteration.") parser.add_argument('-t', '--thr-increment', dest="thr_increment", required=False, type=float, help="""A threshold analysis is performed at the end of the training using the trained model and the validation sub-dataset to find the optimal binarization threshold. The specified value indicates the increment between 0 and 1 used during the analysis (e.g. 0.1).""", metavar=imed_utils.Metavar.float) parser.add_argument("-o", "--output_dir", required=False, help="Output Folder.") return parser def train_worker(config, thr_incr): """ Args: config (dict): dictionary containing configuration details. thr_incr (float): A threshold analysis is performed at the end of the training using the trained model and the validation sub-dataset to find the optimal binarization threshold. The specified value indicates the increment between 0 and 1 used during the ROC analysis (e.g. 0.1). Flag: ``-t``, ``--thr-increment`` """ current = mp.current_process() # ID of process used to assign a GPU ID = int(current.name[-1]) - 1 # Use GPU i from the array specified in the config file config[ConfigKW.GPU_IDS] = [config[ConfigKW.GPU_IDS][ID]] # Call ivado cmd_train try: # Save best validation score config[ConfigKW.COMMAND] = "train" best_training_dice, best_training_loss, best_validation_dice, best_validation_loss = \ ivado.run_command(config, thr_increment=thr_incr) except Exception: logger.exception('Got exception on main handler') logger.info("Unexpected error:", sys.exc_info()[0]) raise # Save config file in output path config_copy = open(config[ConfigKW.PATH_OUTPUT] + "/config_file.json", "w") json.dump(config, config_copy, indent=4) return config[ConfigKW.PATH_OUTPUT], best_training_dice, best_training_loss, best_validation_dice, \ best_validation_loss def test_worker(config): # Call ivado cmd_eval current = mp.current_process() # ID of process used to assign a GPU ID = int(current.name[-1]) - 1 # Use GPU i from the array specified in the config file config[ConfigKW.GPU_IDS] = [config[ConfigKW.GPU_IDS][ID]] try: # Save best test score config[ConfigKW.COMMAND] = "test" df_results, test_dice = ivado.run_command(config) except Exception: logger.exception('Got exception on main handler') logger.info("Unexpected error:", sys.exc_info()[0]) raise return config[ConfigKW.PATH_OUTPUT], test_dice, df_results def split_dataset(initial_config): """ Args: initial_config (dict): The original config file, which we use as a basis from which to modify our hyperparameters. .. code-block:: JSON { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/" } """ loader_parameters = initial_config[ConfigKW.LOADER_PARAMETERS] path_output = Path(initial_config[ConfigKW.PATH_OUTPUT]) if not path_output.is_dir(): logger.info(f'Creating output path: {path_output}') path_output.mkdir(parents=True) else: logger.info(f'Output path already exists: {path_output}') bids_df = BidsDataframe(loader_parameters, str(path_output), derivatives=True) train_lst, valid_lst, test_lst = imed_loader_utils.get_new_subject_file_split( df=bids_df.df, data_testing=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.DATA_TESTING], split_method=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.SPLIT_METHOD], random_seed=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.RANDOM_SEED], train_frac=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.TRAIN_FRACTION], test_frac=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.TEST_FRACTION], path_output="./", balance=initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.BALANCE] \ if SplitDatasetKW.BALANCE in initial_config[ConfigKW.SPLIT_DATASET] else None ) # save the subject distribution split_dct = {'train': train_lst, 'valid': valid_lst, 'test': test_lst} split_path = "./" + "common_split_datasets.joblib" joblib.dump(split_dct, split_path) initial_config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.FNAME_SPLIT] = split_path return initial_config def make_config_list(param_list, initial_config, all_combin, multi_params): """Create a list of config dictionaries corresponding to different hyperparameters. Args: param_list (list)(HyperparameterOption): A list of the different hyperparameter options. initial_config (dict): The original config file, which we use as a basis from which to modify our hyperparameters. .. code-block:: JSON { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/" } all_combin (bool): If true, combine the hyperparameters combinatorically. multi_params (bool): If true, combine the hyperparameters by index in the list, i.e. all the first elements, then all the second elements, etc. Returns: list, dict: A list of configuration dictionaries, modified by the hyperparameters. .. code-block:: python config_list = [ { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/-loss={'name': 'DiceLoss'}" }, { "training_parameters": { "batch_size": 18, "loss": {"name": "FocalLoss", "gamma": 0.2, "alpha": 0.5} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/-loss={'name': 'FocalLoss', 'gamma': 0.2, 'alpha': 0.5}" }, # etc... ] """ config_list = [] if all_combin: keys = set([hyper_option.base_key for hyper_option in param_list]) for combination in list(itertools.combinations(param_list, len(keys))): if keys_are_unique(combination): new_config = copy.deepcopy(initial_config) path_output = new_config[ConfigKW.PATH_OUTPUT] for hyper_option in combination: new_config = update_dict(new_config, hyper_option.option, hyper_option.base_key) folder_name_suffix = hyper_option.name folder_name_suffix = folder_name_suffix.translate({ord(i): None for i in '[]}{ \''}) folder_name_suffix = folder_name_suffix.translate({ord(i): '-' for i in ':=,'}) path_output = path_output + folder_name_suffix new_config[ConfigKW.PATH_OUTPUT] = path_output config_list.append(new_config) elif multi_params: base_keys = get_base_keys(param_list) base_key_dict = {key: [] for key in base_keys} for hyper_option in param_list: base_key_dict[hyper_option.base_key].append(hyper_option) max_length = np.min([len(base_key_dict[base_key]) for base_key in base_key_dict.keys()]) for i in range(0, max_length): new_config = copy.deepcopy(initial_config) path_output = new_config[ConfigKW.PATH_OUTPUT] for key in base_key_dict.keys(): hyper_option = base_key_dict[key][i] new_config = update_dict(new_config, hyper_option.option, hyper_option.base_key) folder_name_suffix = hyper_option.name folder_name_suffix = folder_name_suffix.translate({ord(i): None for i in '[]}{ \''}) folder_name_suffix = folder_name_suffix.translate({ord(i): '-' for i in ':=,'}) path_output = path_output + folder_name_suffix new_config[ConfigKW.PATH_OUTPUT] = path_output config_list.append(new_config) else: for hyper_option in param_list: new_config = copy.deepcopy(initial_config) update_dict(new_config, hyper_option.option, hyper_option.base_key) folder_name_suffix = hyper_option.name folder_name_suffix = folder_name_suffix.translate({ord(i): None for i in '[]}{ \''}) folder_name_suffix = folder_name_suffix.translate({ord(i): '-' for i in ':=,'}) new_config[ConfigKW.PATH_OUTPUT] = initial_config[ConfigKW.PATH_OUTPUT] + folder_name_suffix config_list.append(new_config) return config_list class HyperparameterOption: """Hyperparameter option to edit config dictionary. This class is used to edit a standard config file. For example, say we want to edit the following config file: .. code-block:: JSON { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/" } Say we want to change the ``loss``. We could have: .. code-block:: base_key = "loss" base_option = {"name": "FocalLoss", "gamma": 0.5} option = {"training_parameters": {"loss": {"name": "FocalLoss", "gamma": 0.5}}} Attributes: base_key (str): the key whose value you want to edit. option (dict): the full tree path to the value you want to insert. base_option (dict): the value you want to insert. name (str): the name to be used for the output folder. """ def __init__(self, base_key=None, option=None, base_option=None): self.base_key = base_key self.option = option self.base_option = base_option self.name = None self.create_name_str() def __eq__(self, other): return self.base_key == other.base_key and self.option == other.option def create_name_str(self): self.name = "-" + str(self.base_key) + "=" + str(self.base_option).replace("/", "_") def get_param_list(my_dict, param_list, superkeys): """Recursively create the list of hyperparameter options. Args: my_dict (dict): A dictionary of parameters. param_list (list)(HyperparameterOption): A list of HyperparameterOption objects. superkeys (list)(str): TODO Returns: list, HyperparameterOption: A list of HyperparameterOption objects. """ for key, value in my_dict.items(): if type(value) is list: for element in value: dict_prev = {key: element} for superkey in reversed(superkeys): dict_new = {} dict_new[superkey] = dict_prev if len(superkeys) == 0: dict_new = dict_prev hyper_option = HyperparameterOption(base_key=key, option=dict_new, base_option=element) param_list.append(hyper_option) else: param_list = get_param_list(value, param_list, superkeys + [key]) return param_list def update_dict(d, u, base_key): """Update a given dictionary recursively with a new sub-dictionary. Example 1: .. code-block:: python d = { 'foo': { 'bar': 'some example text', 'baz': {'zag': 5} } } u = {'foo': {'baz': {'zag': 7}}} base_key = 'zag' >>> print(update_dict(d, u, base_key)) { 'foo': { 'bar': 'some example text', 'baz': {'zag': 7} } } Example 2: .. code-block:: python d = { 'foo': { 'bar': 'some example text', 'baz': {'zag': 5} } } u = {'foo': {'baz': {'zag': 7}}} base_key = 'foo' >>> print(update_dict(d, u, base_key)) { 'foo': { 'baz': {'zag': 7} } } Args: d (dict): A dictionary to update. u (dict): A subdictionary to update the original one with. base_key (str): the string indicating which level to update. Returns: dict: An updated dictionary. """ for k, v in u.items(): if k == base_key: d[k] = v elif isinstance(v, collections.abc.Mapping): d[k] = update_dict(d.get(k, {}), v, base_key) else: d[k] = v return d def keys_are_unique(hyperparam_list): """Check if the ``base_keys`` in a list of ``HyperparameterOption`` objects are unique. Args: hyperparam_list (list)(HyperparameterOption): a list of hyperparameter options. Returns: bool: True if all the ``base_keys`` are unique, otherwise False. """ keys = [item.base_key for item in hyperparam_list] keys = set(keys) return len(keys) == len(hyperparam_list) def get_base_keys(hyperparam_list): """Get a list of base_keys from a param_list. Args: hyperparam_list (list)(HyperparameterOption): a list of hyperparameter options. Returns: base_keys (list)(str): a list of base_keys. """ base_keys_all = [hyper_option.base_key for hyper_option in hyperparam_list] base_keys = [] for base_key in base_keys_all: if base_key not in base_keys: base_keys.append(base_key) return base_keys def format_results(results_df, config_list, param_list): """Merge config and results in a df.""" config_df = pd.DataFrame.from_dict(config_list) keep = list(set([list(hyper_option.option.keys())[0] for hyper_option in param_list])) keep.append(ConfigKW.PATH_OUTPUT) config_df = config_df[keep] results_df = config_df.set_index(ConfigKW.PATH_OUTPUT).join(results_df.set_index(ConfigKW.PATH_OUTPUT)) results_df = results_df.reset_index() results_df = results_df.sort_values(by=['best_validation_loss']) return results_df def automate_training(file_config, file_config_hyper, fixed_split, all_combin, path_data=None, n_iterations=1, run_test=False, all_logs=False, thr_increment=None, multi_params=False, output_dir=None, plot_comparison=False): """Automate multiple training processes on multiple GPUs. Hyperparameter optimization of models is tedious and time-consuming. This function automatizes this optimization across multiple GPUs. It runs trainings, on the same training and validation datasets, by combining a given set of parameters and set of values for each of these parameters. Results are collected for each combination and reported into a dataframe to allow their comparison. The script efficiently allocates each training to one of the available GPUs. Usage Example:: ivadomed_automate_training -c config.json -p config_hyper.json -n n_iterations .. csv-table:: Example of dataframe :file: ../../images/detailed_results.csv Config File: The config file is the standard config file used in ``ivadomed`` functions. We use this as the basis. We call a key of this config file a ``category``. In the example below, we would say that ``training_parameters``, ``default_model``, and ``path_output`` are ``categories``. .. code-block:: JSON { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/" } Hyperparameter Config File: The hyperparameter config file should have the same layout as the config file. To select a hyperparameter you would like to vary, just list the different options under the appropriate key, which we call the ``base_key``. In the example below, we want to vary the ``loss``, ``depth``, and ``model_name``; these are our 3 ``base_keys``. As you can see, we have listed our different options for these keys. For ``depth``, we have listed ``2``, ``3``, and ``4`` as our different options. How we implement this depends on 3 settings: ``all_combin``, ``multi_param``, or the default. .. code-block:: JSON { "training_parameters": { "loss": [ {"name": "DiceLoss"}, {"name": "FocalLoss", "gamma": 0.2, "alpha" : 0.5} ], }, "default_model": {"depth": [2, 3, 4]}, "model_name": ["seg_sc_t2star", "find_disc_t1"] } Default: The default option is to change only one parameter at a time relative to the base config file. We then create a list of config options, called ``config_list``. Using the examples above, we would have ``2 + 2 + 3 = 7`` different config options: .. code-block:: python config_list = [ { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/-loss={'name': 'DiceLoss'}" }, { "training_parameters": { "batch_size": 18, "loss": {"name": "FocalLoss", "gamma": 0.2, "alpha": 0.5} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 3 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/-loss={'name': 'FocalLoss', 'gamma': 0.2, 'alpha': 0.5}" }, { "training_parameters": { "batch_size": 18, "loss": {"name": "DiceLoss"} }, "default_model": { "name": "Unet", "dropout_rate": 0.3, "depth": 2 }, "model_name": "seg_tumor_t2", "path_output": "./tmp/-depth=2" }, # etc ... ] All Combinations: If we select the ``all_combin`` option, we will create a list of configuration options combinatorically. Using the config examples above, we would have ``2 * 3 * 2 = 12`` different config options. I'm not going to write out the whole ``config_list`` because it's quite long, but here are the combinations: .. code-block:: loss = DiceLoss, depth = 2, model_name = "seg_sc_t2star" loss = FocalLoss, depth = 2, model_name = "seg_sc_t2star" loss = DiceLoss, depth = 3, model_name = "seg_sc_t2star" loss = FocalLoss, depth = 3, model_name = "seg_sc_t2star" loss = DiceLoss, depth = 4, model_name = "seg_sc_t2star" loss = FocalLoss, depth = 4, model_name = "seg_sc_t2star" loss = DiceLoss, depth = 2, model_name = "find_disc_t1" loss = FocalLoss, depth = 2, model_name = "find_disc_t1" loss = DiceLoss, depth = 3, model_name = "find_disc_t1" loss = FocalLoss, depth = 3, model_name = "find_disc_t1" loss = DiceLoss, depth = 4, model_name = "find_disc_t1" loss = FocalLoss, depth = 4, model_name = "find_disc_t1" Multiple Parameters: The ``multi_params`` option entails changing all the first elements from the list, then all the second parameters from the list, etc. If the lists are different lengths, we will just use the first ``n`` elements. In our example above, the lists are of length 2 or 3, so we will only use the first 2 elements: .. code-block:: loss = DiceLoss, depth = 2, model_name = "seg_sc_t2star" loss = FocalLoss, depth = 3, model_name = "find_disc_t1" Args: file_config (string): Configuration filename, which is used as skeleton to configure the training. This is the standard config file used in ``ivadomed`` functions. In the code, we call the keys from this config file ``categories``. Flag: ``--config``, ``-c`` file_config_hyper (string): json file containing parameters configurations to compare. Parameter "keys" of this file need to match the parameter "keys" of `config` file. Parameter "values" are in a list. Flag: ``--config-hyper``, ``-ch`` Example:: {"default_model": {"depth": [2, 3, 4]}} fixed_split (bool): If True, all the experiments are run on the same training/validation/testing subdatasets. Flag: ``--fixed-split`` all_combin (bool): If True, all parameters combinations are run. Flag: ``--all-combin`` n_iterations (int): Controls the number of time that each experiment (ie set of parameter) are run. Flag: ``--n-iteration``, ``-n`` run_test (bool): If True, the trained model is also run on the testing subdataset and violiplots are displayed with the dicescores for each new output folder created. Flag: ``--run-test`` all_logs (bool): If True, all the log directories are kept for every iteration. Flag: ``--all-logs``, ``-l`` thr_increment (float): A threshold analysis is performed at the end of the training using the trained model and the validation sub-dataset to find the optimal binarization threshold. The specified value indicates the increment between 0 and 1 used during the ROC analysis (e.g. 0.1). Flag: ``-t``, ``--thr-increment`` multi_params (bool): If True, more than one parameter will be change at the time from the hyperparameters. All the first elements from the hyperparameters list will be applied, then all the second, etc. output_dir (str): Path to where the results will be saved. """ if output_dir and not Path(output_dir).exists(): Path(output_dir).mkdir(parents=True) if not output_dir: output_dir = "" # Load initial config initial_config = imed_config_manager.ConfigurationManager(file_config).get_config() if path_data is not None: initial_config[ConfigKW.LOADER_PARAMETERS][LoaderParamsKW.PATH_DATA] = path_data # Split dataset if not already done if fixed_split and (initial_config.get(ConfigKW.SPLIT_PATH) is None): initial_config = split_dataset(initial_config) # Hyperparameters values to experiment with Path(file_config_hyper).open(mode="r") as fhandle: config_hyper = json.load(fhandle) param_list = get_param_list(config_hyper, [], []) config_list = make_config_list(param_list, initial_config, all_combin, multi_params) # CUDA problem when forking process # https://github.com/pytorch/pytorch/issues/2517 ctx = mp.get_context("spawn") # Run all configs on a separate process, with a maximum of n_gpus processes at a given time logger.info(initial_config[ConfigKW.GPU_IDS]) results_df = pd.DataFrame() eval_df = pd.DataFrame() all_mean = pd.DataFrame() with ctx.Pool(processes=len(initial_config[ConfigKW.GPU_IDS])) as pool: for i in range(n_iterations): if not fixed_split: # Set seed for iteration seed = random.randint(1, 10001) for config in config_list: config[ConfigKW.SPLIT_DATASET][SplitDatasetKW.RANDOM_SEED] = seed if all_logs: if i: config[ConfigKW.PATH_OUTPUT] = config[ConfigKW.PATH_OUTPUT].replace("_n=" + str(i - 1).zfill(2), "_n=" + str(i).zfill(2)) else: config[ConfigKW.PATH_OUTPUT] += "_n=" + str(i).zfill(2) validation_scores = pool.map(partial(train_worker, thr_incr=thr_increment), config_list) val_df = pd.DataFrame(validation_scores, columns=[ 'path_output', 'best_training_dice', 'best_training_loss', 'best_validation_dice', 'best_validation_loss']) if run_test: new_config_list = [] for config in config_list: # Delete path_pred path_pred = Path(config['path_output'], 'pred_masks') if path_pred.is_dir() and n_iterations > 1: try: shutil.rmtree(str(path_pred)) except OSError as e: logger.info(f"Error: {e.filename} - {e.strerror}.") # Take the config file within the path_output because binarize_prediction may have been updated json_path = Path(config[ConfigKW.PATH_OUTPUT], 'config_file.json') new_config = imed_config_manager.ConfigurationManager(str(json_path)).get_config() new_config[ConfigKW.GPU_IDS] = config[ConfigKW.GPU_IDS] new_config_list.append(new_config) test_results = pool.map(test_worker, new_config_list) df_lst = [] # Merge all eval df together to have a single excel file for j, result in enumerate(test_results): df = result[-1] if i == 0: all_mean = df.mean(axis=0) std_metrics = df.std(axis=0) metrics = pd.concat([all_mean, std_metrics], sort=False, axis=1) else: all_mean = pd.concat([all_mean, df.mean(axis=0)], sort=False, axis=1) mean_metrics = all_mean.mean(axis=1) std_metrics = all_mean.std(axis=1) metrics =
pd.concat([mean_metrics, std_metrics], sort=False, axis=1)
pandas.concat
#........................................................................................................ # Title: Wikidata claims (statements) to natural language (a part of Triple2Text/Ontology2Text task) # Author: <NAME> # Email: <EMAIL> # Lab: https://www.cic.ipn.mx # Date: 12/2019 #........................................................................................................ from base import * #from cluster_methods import * from wiki_core import * from read_write_file import * from word2vec import * from wiki2vec import * from itertools import cycle from collections import Counter from sklearn.cluster import DBSCAN, OPTICS, MeanShift, AffinityPropagation, AgglomerativeClustering, SpectralClustering, Birch from sklearn.mixture import GaussianMixture from sklearn.decomposition import TruncatedSVD, PCA, NMF, SparsePCA, FastICA from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import LocalOutlierFactor from sklearn.linear_model import LinearRegression from sklearn import metrics from sklearn.manifold import TSNE from sklearn.neighbors import NearestNeighbors import numpy as np import math import re import time import matplotlib.pyplot as plt from collections import Counter import pandas as pd from nltk import ngrams import string import spacy from spacy.lang.en.stop_words import STOP_WORDS nlp = spacy.load("en_core_web_md") definition_properties = { 'P26': ['spouse', 'wife', 'married', 'marry', 'marriage', 'partner', 'wedded', 'wed', 'wives', 'husbands', 'spouses', 'husband'], 'P39': ['position', 'political', 'object', 'seat', 'public', 'office', 'subject', 'formerly', 'holds', 'currently', 'held', 'occupied'], 'P54': ['sports', 'teams', 'clubs', 'member', 'team', 'played', 'plays', 'club', 'player'], 'P69': ['educated', 'educational', 'institution', 'attended', 'subject', 'alma', 'mater', 'education', 'alumni', 'alumnus', 'alumna', 'college', 'university', 'school', 'studied', 'graduate', 'graduated', 'faculty'], 'P108': ['employer', 'person', 'organization', 'subject', 'works', 'worked', 'workplace', 'employed', 'working', 'place'], 'P166': ['work', 'awarded', 'won', 'medals', 'creative', 'person', 'awards', 'win', 'winner', 'honors', 'received', 'award', 'prize', 'title', 'recognition', 'honorary', 'honours', 'organisation'], 'P6': ['first', 'chancellor', 'prime', 'minister', 'government', 'mayor', 'state', 'executive', 'town', 'national', 'other', 'power', 'head', 'municipality', 'country', 'premier', 'body', 'governor', 'heading', 'city', 'headed', 'governmental', 'president'], 'P17': ['human', 'host', 'used', 'beings', 'item', 'sovereign', 'country', 'nation', 'land', 'state'], 'P22': ['daughter', 'daddy', 'subject', 'dad', 'male', 'stepfather', 'stepparent', 'son', 'father', 'child', 'parent'], 'P27': ['national', 'subject', 'nationality', 'country', 'citizenship', 'object', 'citizen', 'recognizes'], 'P31': ['example', 'main', 'member', 'class', 'individual', 'unsubclassable', 'subject', 'instance', 'occurrence', 'unsubtypable', 'distinct', 'uninstantiable', 'non', 'specific', 'unique', 'rdf', 'unsubclassifiable', 'element', 'unitary', 'type', 'particular'], 'P35': ['highest', 'king', 'authority', 'governor', 'queen', 'chief', 'monarch', 'head', 'official', 'country', 'headed', 'emperor', 'leader', 'formal', 'state', 'president'], 'P101': ['specialism', 'specialization', 'speciality', 'studies', 'FOW', 'organization', 'field', 'researcher', 'area', 'work', 'fields', 'person', 'academic', 'research', 'occupation', 'activity', 'subject', 'domain', 'scientific', 'discipline', 'responsible', 'conduct', 'see', 'study'], 'P103': ['languages', 'mother', 'person', 'language', 'native', 'learned', 'first', 'L1', 'speaker', 'tongue', 'birth'], 'P106': ['work', 'position', 'held', 'person', 'employment', 'craft', 'occupation', 'profession', 'career', 'field', 'job'], 'P108': ['person', 'employed', 'workplace', 'employer', 'working', 'works', 'subject', 'worked', 'place', 'organization'], 'P131': ['district', 'administrative', 'arrondissement', 'rural', 'territorial', 'entity', 'happens', 'village', 'region', 'following', 'territory', 'item', 'Indian', 'local', 'shire', 'government', 'area', 'based', 'borough', 'department', 'state', 'reservation', 'town', 'commune', 'unit', 'places', 'province', 'reserve', 'municipality', 'settlement', 'ward', 'county', 'prefecture', 'non', 'locations', 'parish', 'items', 'principal', 'location', 'voivodeship', 'locality', 'specifying', 'city', 'events', 'located'], 'P155': ['comes', 'offices', 'prequel', 'preceding', 'prior', 'replaces', 'split', 'sequel', 'item', 'successor', 'immediately', 'follows', 'before', 'series', 'subject', 'replaced', 'political', 'use', 'preceded', 'part', 'succeeds', 'previous', 'predecessor'], 'P156': ['comes', 'offices', 'prequel', 'part', 'sequel', 'following', 'item', 'successor', 'succeeded', 'immediately', 'followed', 'before', 'preceeds', 'series', 'subject', 'precedes', 'replaced', 'political', 'next', 'use', 'succeded'], 'P184': ['PhD', 'supervisor', 'doctorate', 'thesis', 'promotor', 'advisor', 'subject', 'doctoral', 'supervised'], 'P276': ['administrative', 'case', 'entity', 'region', 'physical', 'venue', 'event', 'item', 'place', 'area', 'based', 'object', 'held', 'feature', 'neighborhood', 'distinct', 'origin', 'terrain', 'location', 'use', 'located', 'moveable'], 'P407': ['broadcasting', 'audio', 'signed', 'URL', 'written', 'languages', 'associated', 'used', 'such', 'name', 'language', 'native', 'available', 'text', 'website', 'work', 'creative', 'named', 'reference', 'spoken', 'websites', 'songs', 'persons', 'use', 'shows', 'books'], 'P413': ['specialism', 'position', 'played', 'player', 'speciality', 'team', 'fielding'], 'P453': ['filled', 'specific', 'played', 'cast', 'subject', 'role', 'use', 'plays', 'acting', 'qualifier', 'character', 'member', 'actor', 'only', 'voice'], 'P512': ['person', 'academic', 'degree', 'holds', 'diploma'], 'P570': ['date', 'died', 'dead', 'subject', 'deathdate', 'year', 'death', 'end', 'DOD'], 'P571': ['introduced', 'commenced', 'defined', 'commencement', 'existence', 'point', 'came', 'time', 'creation', 'formation', 'first', 'inception', 'founded', 'written', 'founding', 'built', 'created', 'constructed', 'foundation', 'when', 'inititated', 'date', 'dedication', 'subject', 'establishment', 'issue', 'start', 'inaugurated', 'launch', 'introduction', 'launched', 'formed', 'construction', 'year', 'incorporated', 'incorporation', 'completed', 'established'], 'P577': ['work', 'date', 'airdate', 'dop', 'released', 'point', 'air', 'initial', 'pubdate', 'time', 'publication', 'first', 'year', 'published', 'release', 'when'], 'P580': ['start', 'starting', 'began', 'statement', 'date', 'introduced', 'introduction', 'begins', 'item', 'started', 'beginning', 'exist', 'time', 'valid', 'starttime', 'starts', 'building'], 'P582': ['ending', 'ceases', 'indicates', 'divorced', 'cease', 'left', 'time', 'closed', 'end', 'endtime', 'operation', 'item', 'date', 'stop', 'statement', 'office', 'dissolved', 'ends', 'stops', 'valid', 'being', 'exist', 'fall', 'completed'], 'P585': ['date', 'statement', 'event', 'existed', 'point', 'something', 'place', 'true', 'time', 'year', 'took', 'when'], 'P642': ['stating', 'statement', 'item', 'scope', 'qualifier', 'applies', 'particular'], 'P669': ['road', 'add', 'street', 'square', 'item', 'number', 'where', 'use', 'address', 'qualifier', 'there', 'property', 'located'], 'P708': ['church', 'types', 'archdiocese', 'division', 'administrative', 'other', 'diocese', 'ecclesiastical', 'use', 'entities', 'bishopric', 'belongs', 'element', 'territorial', 'archbishopric'], 'P735': ['forename', 'family', 'Christian', 'person', 'used', 'names', 'middle', 'values', 'name', 'should', 'link', 'first', 'disambiguations', 'property', 'given', 'personal'], 'P748': ['person', 'appointed', 'used', 'can', 'office', 'qualifier'], 'P768': ['district', 'seat', 'electoral', 'area', 'candidacy', 'representing', 'held', 'Use', 'election', 'riding', 'person', 'office', 'ward', 'position', 'being', 'contested', 'qualifier', 'constituency', 'electorate'], 'P805': ['dedicated', 'identified', 'statement', 'qualifying', 'item', 'describes', 'subject', 'artfor', 'article', 'relation', 'claim'], 'P811': ['college', 'someone', 'studied', 'academic', 'minor', 'university'], 'P812': ['college', 'someone', 'studied', 'academic', 'major', 'subject', 'university', 'field', 'study'], 'P828': ['due', 'causes', 'has', 'result', 'ultimate', 'had', 'why', 'ultimately', 'implied', 'thing', 'reason', 'effect', 'underlying', 'outcome', 'resulted', 'originated', 'caused', 'cause', 'initial'], 'P937': ['work', 'workplace', 'persons', 'working', 'activity', 'where', 'location', 'place', 'active'], 'P1001': ['value', 'institution', 'has', 'territorial', 'jurisdiction', 'item', 'linked', 'law', 'applied', 'state', 'statement', 'office', 'power', 'country', 'municipality', 'valid', 'belongs', 'applies', 'public'], 'P1013': ['respect', 'basis', 'used', 'according', 'made', 'criterion', 'reference', 'criteria', 'respectively', 'property', 'distinction', 'based', 'classification', 'by'], 'P1066': ['pupil', 'master', 'person', 'academic', 'disciple', 'supervisor', 'teacher', 'professor', 'studied', 'has', 'mentor', 'advisor', 'taught', 'student', 'tutor'], 'P1264': ['applicability', 'statement', 'validity', 'period', 'time', 'valid', 'applies', 'when'], 'P1268': ['represents', 'entity', 'organization', 'organisation', 'individual'], 'P1350': ['pitched', 'number', 'played', 'races', 'games', 'matches', 'team', 'appearances', 'caps', 'starts', 'gp', 'sports', 'mp'], 'P1351': ['scored', 'used', 'event', 'number', 'league', 'participant', 'points', 'goals', 'qualifier', 'GF', 'score', 'set', 'match', 'use'], 'P1365': ['replaces', 'structures', 'identical', 'item', 'successor', 'continues', 'forefather', 'follows', 'holder', 'person', 'job', 'replaced', 'structure', 'preceded', 'supersedes', 'succeeds', 'previous', 'predecessor'], 'P1366': ['adds', 'role', 'identical', 'item', 'heir', 'successor', 'succeeded', 'continues', 'superseded', 'followed', 'dropping', 'holder', 'person', 'other', 'series', 'job', 'replaced', 'next', 'replacing', 'continued', 'mediatised', 'books'], 'P1534': ['date', 'ending', 'specify', 'together', 'use', 'qualifier', 'cause', 'ended', 'end', 'reason'], 'P1642': ['status', 'transaction', 'player', 'acquisition', 'acquired', 'team', 'how', 'qualifier', 'member', 'loan', 'contract', 'sports'], 'P1686': ['work', 'awarded', 'nominated', 'received', 'award', 'qualifier', 'citation', 'creator', 'given'], 'P1706': ['item', 'together', 'award', 'tied', 'feat', 'qualifier', 'featuring', 'property', 'shared', 'accompanied', 'specify'], 'P2389': ['leads', 'person', 'directed', 'office', 'head', 'heads', 'directs', 'leader', 'organization', 'runs', 'organisation', 'led'], 'P2578': ['learning', 'research', 'academic', 'item', 'working', 'study', 'subject', 'studies', 'researches', 'property', 'object', 'field', 'studying', 'scholarly'], 'P2715': ['election', 'position', 'reelection', 'confirmed', 'person', 'statements', 'gained', 'qualifier', 'link', 'elected', 'held'], 'P2842': ['wedding', 'location', 'where', 'place', 'spouse', 'celebrated', 'marriage', 'property', 'married'], 'P2868': ['value', 'duty', 'function', 'context', 'has', 'role', 'title', 'purpose', 'generic', 'item', 'acting', 'identity', 'character', 'object', 'statement', 'subject', 'roles', 'job', 'use'], 'P3831': ['value', 'generic', 'statement', 'context', 'specifically', 'circumstances', 'item', 'employment', 'subject', 'role', 'identity', 'use', 'qualifier', 'object'], 'P4100': ['parliament', 'group', 'faction', 'belongs', 'parliamentary', 'member', 'party'], 'P1319': ['date', 'earliest'] } # load corpus from property name def load_corpus(file_name, word2vec_file_name, property_name, delimiter='#', dtype=dtypes, trained=False, idf_dict_status=False): df = pd.read_csv(file_name, delimiter='#', dtype=dtype, usecols=list(dtype)) best_sentences, best_rows = get_best_sentences(df, show=False) labeled_sen_list = df['labeled_sentence_2'] counter = create_ngram(labeled_sen_list, 1) # unigram idf_dict = {} if (idf_dict_status == True): idf_dict = create_idf_dict(labeled_sen_list) word_corpus = create_true_distribution_corpus2(labeled_sen_list, 0) if (trained == True): word2vec_train(word2vec_file_name, property_name, word_corpus) # load models local_model = load_word2vec(word2vec_file_name) global_model = load_wiki2vec('D:\wiki-news-300d-1M.vec', 200000) result_dict = {} result_dict['file_name'] = file_name result_dict['sen_list'] = df result_dict['best_sentences'] = best_sentences result_dict['labeled_sen_list'] = labeled_sen_list result_dict['counter'] = counter result_dict['idf_dict'] = idf_dict result_dict['word_corpus'] = word_corpus result_dict['local_model'] = local_model result_dict['global_model'] = global_model print('Loading corpus was done!!!') return result_dict # some basic statistics def basic_statistics(file_name, delimiter='#', dtype=dtypes, best_sentence = False): print('file_name: ', file_name) #sen_list = read_from_csv_file(file_name, '#', 'all')[1:] # remove headers df = pd.read_csv(file_name, delimiter=delimiter, dtype=dtype, usecols=list(dtype)) average_sentence_length(df) average_word(df) average_token(df) average_token_labeled_sentence(df) ratio_token_per_quad(df) ratio_token_per_quad_item(df) if (best_sentence == True): print('++ Best sentences statistics') labeled_list, df2 = get_best_sentences(df) #print(len(labeled_list)) average_sentence_length(df2) average_word(df2) average_token(df2) average_token_labeled_sentence(df2) ratio_token_per_quad(df2) ratio_token_per_quad_item(df2) print('.............................') print('.............................') # cumulative rate by property def cumulative_rate_by_property(property_name, df): length_list = [] for index, row in df.iterrows(): #print(property_name, row['length']) if (row['predicate'].lower() == property_name.lower()): length_list.append(int(row['length'])) elif (property_name == 'common'): # count all properties length_list.append(int(row['length'])) #file_name, sen_list, best_sentences, labeled_sen_list, counter, idf_dict, word_corpus, local_model, global_model = load_corpus(property_name) #sentences, number_redundant_word_list, redundant_word_list = get_corpus_redundant_words(sen_list) #print('length_list: ', length_list) rank_list = rank_sentence_by_redundant_words(length_list) cumulative_list = cumulative_rate(rank_list) #print('rank_list: ', rank_list) return cumulative_list def treat_labeled_items2(): prefixes = list(nlp.Defaults.prefixes) prefixes.remove('\\[') prefix_regex = spacy.util.compile_prefix_regex(prefixes) nlp.tokenizer.prefix_search = prefix_regex.search suffixes = list(nlp.Defaults.suffixes) suffixes.remove('\\]') suffix_regex = spacy.util.compile_suffix_regex(suffixes) nlp.tokenizer.suffix_search = suffix_regex.search infixes = list(nlp.Defaults.prefixes) infixes.remove('\\[') infixes.remove('\\]') try: infixes.remove('\\-') except Exception as e: pass try: infixes.remove(':') except Exception as e: pass try: infixes.remove('_') except Exception as e: pass infix_regex = spacy.util.compile_infix_regex(infixes) nlp.tokenizer = Tokenizer(nlp.vocab, infix_finditer=infix_regex.finditer) # create n-gram from text def ngram(text, n): # make n-gram and also count the frequency of each item by Counter treat_labeled_items2() doc = nlp(text) temp = [token.text for token in doc if token.text != ''] return list(ngrams(temp, n)) # create n-gram from list def create_ngram(sentence_list, n): temp = [] for sentence in sentence_list: sentence = "[start] " + sentence + " [end]" temp += (ngram(sentence, n)) return Counter(temp) # filter by property name def filter_by_property(property_name, sen_list): #property_list = ['P26','P39','P54','P69','P108','P166'] result_list = [] for p in sen_list[1:]: # start with data in line 1 (not headers) if (p[2] == property_name): result_list.append(p) result_list = sorted(result_list, key = lambda x: (int(x[2][1:]), x[4])) # sort by qualifier return result_list # write file from list def write_file_from_list(file_name, sen_list): with open(file_name,'w', newline='', encoding='utf-8') as f: wr = csv.writer(f, delimiter='#', quoting=csv.QUOTE_MINIMAL) for p in sen_list: print(p) wr.writerow(p) # average length per raw sentence def average_sentence_length(df): al = 0 for index, row in df.iterrows(): #print('row: ', row) al += len(row['raw_sentence']) print('average_sentence_length: ', al/len(df)) return al/len(df) # average word per raw sentence def average_word(df): al = 0 for index, row in df.iterrows(): doc = nlp(row['raw_sentence']) # words = [token.text for token in doc if token.is_punct != True] al += len(row['raw_sentence'].split()) print('average_word: ', al/len(df)) return al/len(df) # average token per raw sentence def average_token(df): al = 0 for index, row in df.iterrows(): doc = nlp(row['raw_sentence']) al += doc.__len__() print('average_token: ', al/len(df)) return al/len(df) # average token per labeled sentence def average_token_labeled_sentence(df): al = 0 treat_labeled_items() # treat a labeled item as a token for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) al += doc.__len__() print('average_token_labeled_sentence: ', al/len(df)) return al/len(df) # ratio of token per quad (labeled sentence) def ratio_token_per_quad(df): treat_labeled_items() # treat a labeled item as a token tokens = 0 quads = len(df) # 1 quad in 1 sentence for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) tokens += doc.__len__() print('ratio_token_per_quad: ', tokens/quads) return tokens/quads # ratio of token per quad item (labeled sentence) def ratio_token_per_quad_item(df): treat_labeled_items() # treat a labeled item as a token tokens = 0 quad_items = 0 for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) temp_quads = len(row['order_2'].split(',')) tokens += doc.__len__() - temp_quads quad_items += temp_quads print('ratio_token_per_quad_item: ', tokens/quad_items) return tokens/quad_items # get the best sentences: no redundant words (except stop words & a verb as ROOT) def get_best_sentences(df, show=False): treat_labeled_items2() # treat a labeled item as a token best_sentence_list = [] best_row_list = [] columns = [] if (len(df) != 0): columns = [index for index, val in df.iloc[0].iteritems()] for index, row in df.iterrows(): doc = nlp(row['labeled_sentence_2']) redudant_list = [] temp_quads = [x.strip() for x in row['order_2'].split(',')] for token in doc: if (token.pos_ == "X"): continue if (token.pos_ == "PUNCT"): continue if (token.pos_ == "CCONJ"): continue if (token.pos_ == "ADP"): continue if (token.pos_ == "PRON"): continue if (token.pos_ == "PART"): continue if (token.pos_ == "DET"): continue if (token.dep_ == "punct"): continue if (token.text not in temp_quads): redudant_list.append([token.text, token.pos_, token.dep_]) #print(token.text, token.pos_, token.dep_) if (len(redudant_list) == 1): if (redudant_list[0][2] == "ROOT"): # token.pos_ if (row['labeled_sentence_2'] not in best_sentence_list): best_sentence_list.append(row['labeled_sentence_2']) # add the labeled sentence only best_row_list.append([val for index, val in row.iteritems()]) # add a whole row if (show != False): print('..............................') print('..............................') print('Best sentences:') for s in best_sentence_list: print(s) print('-----------') print('..............................') print('..............................') # convert to dataframe df = pd.DataFrame(best_row_list, columns=columns) #print('df: ', df) return best_sentence_list, df # get redundant words in labeled sentences def get_redundant_words(sen_row): redudant_list = [] treat_labeled_items2() doc = nlp(sen_row['labeled_sentence_2']) quad_items = get_quad_items(sen_row) for token in doc: if (token.pos_ == "X"): continue if (token.pos_ == "PUNCT"): continue if (token.pos_ == "CCONJ"): continue if (token.pos_ == "ADP"): continue if (token.pos_ == "PRON"): continue if (token.pos_ == "PART"): continue if (token.pos_ == "DET"): continue if (token.dep_ == "punct"): continue if (token.text not in quad_items and token.text.strip() != ''): #redudant_list.append([token.text, token.pos_, token.dep_]) redudant_list.append(token.text) return redudant_list # train corpus using CBOW def word2vec_train(word2vec_file, property_name, corpus): # save_word2vec(corpus, min_count, size, window, sorted_vocab, sg, workers, iters, file_name) if (property_name == 'p26'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 10, word2vec_file) if (property_name == 'p108'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 30, word2vec_file) if (property_name == 'p69'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 20, word2vec_file) if (property_name == 'p166'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 20, word2vec_file) if (property_name == 'p54'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 5, word2vec_file) if (property_name == 'p39'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 25, word2vec_file) if (property_name == 'common'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 3, word2vec_file) if (property_name == 'common2'): save_word2vec(corpus, 0, 150, 2, 1, 0, 8, 3, word2vec_file) # get quad items in a sentence def get_quad_items(sen_row): quad_items = [] quad_items = [x.strip() for x in sen_row['order_2'].split(',')] return quad_items # get important quad items in a sentence def get_important_quad_items(sen_row): quad_items = [] quad_items = [x.strip() for x in sen_row['order_2'].split(',')] quad_items = list(set(quad_items) - set(['[det:the]','[det:a-an]','[s:poss]'])) # remove unimportant terms return quad_items # get qualifier quad items in a sentence def get_qualifier_items(sen_row): quad_items = [] quad_items = [x.strip() for x in sen_row['order_2'].split(',')] qualifier_list = [] for q in quad_items: if ('qualifier' in q and 'o0' in q): # get qualifiers of o0 (main object or first object) qualifier_list.append(q) #print('qualifier_list: ', qualifier_list) return qualifier_list # convert sentence to measures (tf, idf, local_distance, global_distance, vector, etc) & write to a result file def convert_sentence_to_measures(output_file_name, sen_row, best_sentences, local_model, global_model, counter, idf_dict): #print('sen_row: ', sen_row) # redundant words redundant_words = get_redundant_words(sen_row) length = len(redundant_words) sentence = redundant_words # check redundant words only # best sentence label = '' if (sen_row['labeled_sentence_2'] in best_sentences): label = 'x' # sum & product tf1, tf2 = convert_sentence_to_tf(sentence, local_model, counter) idf1, idf2 = convert_sentence_to_idf(sentence, idf_dict) local1, local2 = convert_sentence_to_local_distance(sen_row, sentence, local_model, counter) global1, global2 = convert_sentence_to_global_distance(sen_row, sentence, global_model) # combination tf_idf1, tf_idf2 = convert_sentence_to_tf_idf(sentence, local_model, counter, idf_dict) local_tf1, local_tf2 = convert_sentence_to_local_tf_distance(sen_row, sentence, local_model, counter) local_idf1, local_idf2 = convert_sentence_to_local_idf_distance(sen_row, sentence, local_model, counter, idf_dict) local_tf_idf1, local_tf_idf2 = convert_sentence_to_local_tf_idf_distance(sen_row, sentence, local_model, counter, idf_dict) global_tf1, global_tf2 = convert_sentence_to_global_tf_distance(sen_row, sentence, global_model, counter, qualifier=False) global_idf1, global_idf2 = convert_sentence_to_global_idf_distance(sen_row, sentence, global_model, idf_dict, qualifier=False) global_tf_idf1, global_tf_idf2 = convert_sentence_to_global_tf_idf_distance(sen_row, sentence, global_model, counter, idf_dict, qualifier=False) # global with qualifier global_qualifier1, global_qualifier2 = convert_sentence_to_global_distance(sen_row, sentence, global_model, qualifier=True) global_qualifier_tf1, global_qualifier_tf2 = convert_sentence_to_global_tf_distance(sen_row, sentence, global_model, counter, qualifier=True) global_qualifier_idf1, global_qualifier_idf2 = convert_sentence_to_global_idf_distance(sen_row, sentence, global_model, idf_dict, qualifier=True) global_qualifier_tf_idf1, global_qualifier_tf_idf2 = convert_sentence_to_global_tf_idf_distance(sen_row, sentence, global_model, counter, idf_dict, qualifier=True) # vector vector_sum, vector_product = convert_sentence_to_vector(sentence, local_model) # base on local_model # add results to sen_row temp_list = [label, redundant_words, length, tf1, tf2, idf1, idf2, local1, local2, global1, global2, tf_idf1, tf_idf2, local_tf1, local_tf2, local_idf1, local_idf2, local_tf_idf1, local_tf_idf2, global_tf1, global_tf2, global_idf1, global_idf2, global_tf_idf1, global_tf_idf2, global_qualifier1, global_qualifier2, global_qualifier_tf1, global_qualifier_tf2, global_qualifier_idf1, global_qualifier_idf2, global_qualifier_tf_idf1, global_qualifier_tf_idf2] sen_row = sen_row.values.tolist() sen_row.extend(temp_list) write_to_csv_file(output_file_name, '#', sen_row) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_distance(sen_row, sentence, global_model, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' sum_dist += temp_sum/def_length product_dist *= -math.log(temp_sum/def_length) # return sum_dist, math.log(product_dist + 1) return sum_dist, -math.log(product_dist) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_tf_idf_distance(sen_row, sentence, global_model, counter, idf_dict, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' idf = get_idf(idf_dict, w) # inverse topic frequency tf = get_tf(counter, w) # term frequency sum_dist += (temp_sum*idf*tf)/def_length product_dist *= math.log(1 + (temp_sum*idf*tf)/def_length) # return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_idf_distance(sen_row, sentence, global_model, idf_dict, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' idf = get_idf(idf_dict, w) # inverse topic frequency sum_dist += (temp_sum*idf)/def_length product_dist *= math.log(1 + (temp_sum*idf)/def_length) # return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # count average distance of a word to other words in a sentence (use important terms) def convert_sentence_to_global_tf_distance(sen_row, sentence, global_model, counter, qualifier=False): predicate = sen_row[2] #print('predicate: ', predicate) definition_word_list = [] if (predicate in definition_properties): definition_word_list = definition_properties[predicate] if (qualifier == True): qualifiers = sen_row[4].split('-') for q in qualifiers: if (q in definition_properties): definition_word_list += definition_properties[q] length = len(sentence) sum_dist = 0 product_dist = 1 def_length = len(definition_word_list) if (def_length == 0): return 0, 0 for w in sentence: temp_sum = 0 for item in definition_word_list: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = (global_model.similarity(w, item) + 1)/2 temp_sum += sim #print('w, item: ', w, item) #print('sim: ', sim) except: pass if (temp_sum == 0): continue '''print('temp_sum: ', temp_sum) print('def_length: ', def_length) print('...............') print('...............')''' tf = get_tf(counter, w) # term frequency sum_dist += (temp_sum*tf)/def_length product_dist *= math.log(1 + (temp_sum*tf)/def_length) #print('---', (temp_sum*tf)/def_length, math.log((temp_sum*tf)/def_length)) #print('product_dist: ', product_dist) # return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # convert sentence to a vector distance (similarity) def convert_sentence_to_local_distance(sen_row, sentence, local_model, counter): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue sum_dist += temp_sum/quad_length product_dist *= -math.log(temp_sum/quad_length) #return sum_dist, math.log(product_dist + 1) return sum_dist, -math.log(product_dist) # convert sentence to local-tf def convert_sentence_to_local_tf_distance(sen_row, sentence, local_model, counter): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue tf = get_tf(counter, w) # term frequency sum_dist += (temp_sum*tf)/quad_length product_dist *= math.log(1 + (temp_sum*tf)/quad_length) #print('---', (temp_sum*tf)/quad_length, math.log((temp_sum*tf)/quad_length)) #return sum_dist, math.log(product_dist + 1) #print('product_dist: ', product_dist) return sum_dist, math.log(product_dist + 1) # convert sentence to local-idf def convert_sentence_to_local_idf_distance(sen_row, sentence, local_model, counter, idf_dict): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue idf = get_idf(idf_dict, w) # inverse topic frequency sum_dist += (temp_sum*idf)/quad_length product_dist *= math.log(1 + (temp_sum*idf)/quad_length) #return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # convert sentence to local-tf-idf def convert_sentence_to_local_tf_idf_distance(sen_row, sentence, local_model, counter, idf_dict): length = len(sentence) sum_dist = 0 product_dist = 1 quad_items = get_important_quad_items(sen_row) quad_length = len(quad_items) for w in sentence: temp_sum = 0 for item in quad_items: sim = 0 try: # raw normalized similarity, change range [-1,1] to [0,1] sim = ((local_model.similarity(w, item) + 1)/2) temp_sum += sim except: pass if (temp_sum == 0): continue tf = get_tf(counter, w) # term frequency idf = get_idf(idf_dict, w) # inverse topic frequency sum_dist += (temp_sum*tf*idf)/quad_length product_dist *= math.log(1 + (temp_sum*tf*idf)/quad_length) #return sum_dist, math.log(product_dist + 1) return sum_dist, math.log(product_dist + 1) # convert sentence to tf-idf def convert_sentence_to_tf_idf(sentence, model, counter, idf_dict): length = len(sentence) sum_score = 0 product_score = 1 for w in sentence: try: tf = get_tf(counter, w) idf = get_idf(idf_dict, w) sum_score += tf*idf product_score *= tf*idf except: pass return sum_score, math.log(product_score + 1) # convert sentence to term frequency def convert_sentence_to_tf(sentence, model, counter): #length = len(sentence) sum_score = 0 product_score = 1 for w in sentence: try: score = get_tf(counter, w) #print('---', score) sum_score += score product_score *= score except: pass #print('product_score: ', product_score) return sum_score, math.log(product_score) # convert sentence to term frequency def convert_sentence_to_idf(sentence, idf_dict): length = len(sentence) sum_score = 0 product_score = 1 for w in sentence: try: score = get_idf(idf_dict, w) sum_score += score product_score *= score except: pass return sum_score, math.log(product_score + 1) # convert sentence to vector def convert_sentence_to_vector(sentence, model): length = len(sentence) sum_vec = 1 product_vec = 1 for w in sentence: try: w_vec = model.get_vector(w) sum_vec += w_vec product_vec *= w_vec except: pass return sum_vec, product_vec # convert corpus to vector def convert_corpus_to_vector(corpus, best_sentences, model, counter): label_list = [] vector_list = [] i = 0 # note that a sentence is a list of words for sentence in corpus: # convert back to a string sentence temp = ' '.join(e for e in sentence[1:-1]) # remove [start], [end] if (temp in best_sentences): label_list.append('x') else: label_list.append('') sum_vector, product_vector = convert_sentence_to_vector(sentence, model, counter) vector_list.append([sum_vector, product_vector]) i = i + 1 return label_list, vector_list # get redundant words and their length for all sentences def get_corpus_redundant_words(sen_list): sentence_list, number_redundant_word_list, redundant_word_list = [], [], [] for p in sen_list: redundant_words = get_redundant_words(p) length = len(redundant_words) number_redundant_word_list.append(length) redundant_word_list.append(redundant_words) sentence_list.append(p['labeled_sentence_2']) return sentence_list, number_redundant_word_list, redundant_word_list # convert corpus to measures and write to file def convert_corpus_to_measures(output_file_name, sen_list, best_sentences, local_model, global_model, counter, idf_dict): #label_list, metric_list, number_redundant_word_list, redundant_word_list, sentence_list = [], [], [], [], [] #i = 0 # note that sentence is a list of words for index, sen_row in sen_list.iterrows(): convert_sentence_to_measures(output_file_name, sen_row, best_sentences, local_model, global_model, counter, idf_dict) #metric_list.append(temp_dict) #i = i + 1 #return label_list, metric_list, number_redundant_word_list, redundant_word_list, sentence_list #........................... #........................... # rank a predicate frequency by property (P26, P39, P54, etc) def rank_predicate_by_property(count_list, property_name): # group and calculate average values temp_list = [] for i in count_list: if (i['term'].split('-')[0] == property_name): temp_list.append([i['term'], i['local_average'], i['local_max_dist'], i['global_average'], i['global_max_dist'], i['subject_dist'], i['object_dist'], i['redundant_words']]) df = pd.DataFrame(temp_list) df = df.groupby([0]).agg('mean') df = {x[0]: x[1:] for x in df.itertuples(index=True)} # calculate term frequency and add it & average values to freq_dict freq_list = [t[0] for t in temp_list] #print('freq_list: ', freq_list) length = len(freq_list) # size of corpus freq_dict = Counter(freq_list) #print('freq_dict: ', freq_dict) for k, v in freq_dict.items(): freq_dict[k] = {'tf':v/length, 'local_average':df[k][0], 'local_max_dist':df[k][1], 'global_average': df[k][2], 'global_max_dist':df[k][3], 'subject_dist': df[k][4], 'object_dist':df[k][5], 'redundant_words':df[k][6]} #print('freq_dict: ', freq_dict) return freq_dict # count the average distance of a word to other words (important words/terms only) in the same sentence def word_distance_to_sentence(quad_items, word, local_model, global_model): local_length = len(quad_items) # the numbers of quad items global_length = 0 local_sum = 0 global_sum = 0 local_max_dist = 0 global_max_dist = 0 subject_dist = object_dist = 0 try: subject_dist = local_model.similarity(word, '[s]') # subject distance object_dist = local_model.similarity(word, '[o0]') # object distance except: pass # local model for term in quad_items: # can be qualifiers or all items in quad (subject, object, qualifiers) try: dist = local_model.similarity(word, term) #print('dist, word, term: ', dist, word, term) if (dist > local_max_dist): local_max_dist = dist local_sum += dist #print('local_sum: ', local_sum) except: local_length = local_length - 1 # word is not in model pass # global model #print('quad_items: +++', quad_items) for term in quad_items: value = term[term.index(':')+1:term.index('-')] temp_list = [] try: temp_list = definition_properties[value] except: pass temp_length = len(temp_list) #print('term, value, temp_list, temp_length: ', term, value, temp_list, temp_length) for t in temp_list: try: dist = global_model.similarity(word, t) #print('dist: ', dist, word, t) if (dist > global_max_dist): global_max_dist = dist global_sum += dist except: temp_length = temp_length - 1 # word is not in model pass global_length += temp_length local_average = global_average = 0 if (local_length == 0): local_average = 0 else: local_average = local_sum/local_length if (global_length == 0): global_average = 0 else: global_average = global_sum/global_length result_dict = {'local_average':local_average, 'local_max_dist': local_max_dist, 'global_average': global_average, 'global_max_dist': global_max_dist, 'subject_dist': subject_dist, 'object_dist': object_dist} #print('result_dict: ', result_dict) return result_dict # count average distance of a word to other words in a sentence (use important terms) def word_distance_to_property_definition(prop_items, word, global_model): length = len(prop_items) temp_sum = 0 max_dist = 0 for term in prop_items: try: dist = global_model.similarity(word, term) if (dist > max_dist): max_dist = dist temp_sum += dist except: length = length - 1 # word is not in model pass if (length == 0): return temp_sum, max_dist return temp_sum/length, max_dist # rank predicate (Wikidata properties) by term frequency def rank_predicate(sen_df, best_sentences, counter, local_model, global_model, by_qualifier=False): result_dict = Counter() predicate_criteria_list = [] # list of criteria of each predicate property_name_list = [] redundant_list = [] for index, sen_row in sen_df.iterrows(): predicate = sen_row['predicate'].strip() # Wikidata property qualifiers = sen_row['qualifiers'].strip().split('-') #prepositional_verb = sen_row['prepositional_verb'].split(',')[0].strip("'") root = sen_row['root'].split(',') root_value = root[0].strip("'") # value of root (verb) root_pos = root[1] # position of root quad_items = get_qualifier_items(sen_row) distance_dict = word_distance_to_sentence(quad_items, root_value, local_model, global_model) if (by_qualifier == True): term = predicate + '-' + root_value + '-' + '-'.join(qualifiers) else: term = predicate + '-' + root_value property_name_list.append(predicate) distance_dict['term'] = term redundant_words = get_redundant_words(sen_row) distance_dict['redundant_words'] = len(redundant_words) predicate_criteria_list.append(distance_dict) property_names = list(set(property_name_list)) # join dictionaries by property for pn in property_names: result_dict = {**result_dict, **rank_predicate_by_property(predicate_criteria_list, pn)} # join two dictionaries normalized_values = [] normalized_labels = [] for k, v in result_dict.items(): temp = k.split('-') property_name = temp[0] predicate = temp[1] tf = get_tf(counter, predicate) '''average_def_dist, max_def_dist = word_distance_to_property_definition(definition_properties[property_name], predicate, global_model)''' #print('---', average_def_dist, v['local_average'], v['global_average'], v['tf']) temp_list = [v['local_average'], v['global_average'], v['tf']] temp_score = (np.prod(temp_list)*len(temp_list))/sum(temp_list) try: temp_score = 1/-math.log(temp_score) except: temp_score = 0 result_dict[k] = (temp_score, temp_score, v['tf']) normalized_values.append((temp_score, temp_score, v['tf'])) normalized_labels.append(k) #{'local_average':local_average, 'local_max_dist': local_max_dist, 'global_average': global_average, # 'global_max_dist': global_max_dist, 'subject_dist': subject_dist, 'object_dist': object_dist} # normalize values normalized_values = MinMaxScaler().fit(normalized_values).transform(normalized_values) for k, v in zip(normalized_labels, normalized_values): result_dict[k] = v.tolist() #print('result_dict: ', result_dict) result_dict = dict(sorted(result_dict.items(), key = lambda v: v[1], reverse = True)) return result_dict def group_predicate(predicate_dict, top=10, show=False): group_dict = {} for k, v in predicate_dict.items(): temp_list = k.split('-') key = temp_list[0] + '-' + '-'.join(temp_list[2:]) key = key.strip('-') predicate = temp_list[1] temp_list = [*v] temp_list.insert(0, predicate) if (key not in group_dict): group_dict[key] = [temp_list] else: group_dict[key].append(temp_list) #group_dict = sorted(group_dict.items(), key = lambda v: (v[0]), reverse = True)) if (show==False): return group_dict i = 1 for k, v in group_dict.items(): print('+', k) for x in v: if (i > top): break print('---', x) i = i + 1 i = 1 return group_dict #........................... #........................... # get idf of a word def create_idf_word(sentences, word): n = len(sentences) freq = 0 # raw frequency for s in sentences: freq += sum(1 for _ in re.finditer(r'\b%s\b' % re.escape(word), s)) return freq # create idf dictionary def create_idf_dict(sentences): n = len(sentences) result_dict = {} result_dict['%%SIZE%%'] = n # number of documents (sentences) for s in sentences: doc = nlp(s) for token in doc: if (str(token.text) not in result_dict): result_dict[str(token.text)] = create_idf_word(sentences, str(token.text)) return result_dict # get inverse document frequency, a sentence as a document def get_idf(idf_dict, word): n = idf_dict['%%SIZE%%'] freq = 0 if (word in idf_dict): freq = idf_dict[word] # return -math.log((freq + 1)/n) return -math.log((freq+1)/n) + 1 # get frequency of a term in corpus, corpus as a document def get_tf(counter, word): temp = (word,) # create key freq = 0 freq = counter[temp] # raw frequency #n = len(counter) return math.log(freq+1) + 1 # count and rank the number of sentence by its redudant words def rank_sentence_by_redundant_words(redundants): count_dict = {} for r in redundants: if (r not in count_dict): count_dict[r] = 1 else: count_dict[r] += 1 count_dict = sorted(count_dict.items(), key=lambda x: x[0]) return count_dict # show sentences by distance def show_sentence_distance(labels, scores, redundants, sentences, redundant_word_list): i = 0 for value in scores: print('#' + str(i) + ': ', value, labels[i], redundants[i], redundant_word_list[i], '---', sentences[i]) i = i + 1 # show plot of sentences def show_sentence_plot(labels, scores, redundants, sentences, redundant_word_list): #labels = [] #scores = [] #redundants = [] #sentences = [] #redundant_word_list = [] #labels, scores, redundants, sentences, redundant_word_list = convert_corpus_to_distance(sen_list, best_sentences, model, counter) #labels, tokens = convert_corpus_to_vector1(word_corpus, best_sentences, model, counter) #tsne_model = TSNE(perplexity=40, n_components=2, init='pca', n_iter=2500, random_state=23) #new_values = tsne_model.fit_transform(tokens) plt.figure(figsize=(20, 20)) for i in range(len(scores)): # s: size, color: color if (labels[i] == 'x'): plt.scatter(scores[i], redundants[i], s=20, color='blue') # marker = 's' plt.annotate('', xy=(scores[i], redundants[i]), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') else: plt.scatter(scores[i], redundants[i], s=2) plt.annotate('', xy=(scores[i], redundants[i]), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') plt.xlabel("Number of redundant words") plt.ylabel("Score") plt.title('Sentences in corpus') plt.savefig('show_sentence_plot.pdf') plt.show() # show plot of predicates (Wikidata properties) def show_predicate_plot(predicate_list, axis_labels): plt.figure(figsize=(12, 4)) for index, predicate_dict in enumerate(predicate_list): labels = [] values = [] for k, v in predicate_dict.items(): labels.append(k) values.append(v) #tsne_model = TSNE(perplexity=100, n_components=1, init='pca', n_iter=5000) #values = tsne_model.fit_transform(values) #values = decomposition(values, 'pca', dimension = 2) #values = MinMaxScaler().fit(values).transform(values) x = [] y = [] sizes = [] i = 0 for v in values: a = v[0] b = v[1] #print('+++', labels[i], a, b, int(v[2]*300)+1) x.append(a) y.append(b) sizes.append(int(v[2]*300)+1) i = i + 1 plt.rcParams.update({'font.size':10}) for i in range(len(x)): # s: size, color: color plt.scatter(1, 1, s=1, alpha=0.0) plt.scatter(index + 2, y[i], s=sizes[i], alpha=0.6) # marker = 's' if (i < 5): temp_label = labels[i][labels[i].index('-')+1:] #print('temp_label: ', temp_label) plt.annotate(temp_label, xy=(index + 2, y[i]), xytext=(2, 2), textcoords='offset points', ha='right', va='bottom', alpha=0.9, fontsize=8) #fontsize=int(sizes[i]/10)+1 plt.grid(color = 'grey', linestyle = 'dotted', linewidth = 1) #plt.gca().axes.get_xaxis().set_visible(False) # axis labels plt.xticks(range(2, len(axis_labels)+2), axis_labels) plt.show() # get all qualifiers by Wikidata properties def get_all_qualifiers(sen_df): result_list = [] result_dict = {} for index, sen_row in sen_df.iterrow(): temp_list = get_qualifier_items(sen_row) for t in temp_list: value = t[t.index(':') + 1:t.index('-')] result_list.append(value) result_list = list(set(result_list)) result_list = sorted(result_list, key = lambda x: int(x[1:])) for r in result_list: root = get_wikidata_root(r) label = get_label(root) description = get_description(root) aliases = ' '.join(e for e in get_alias(root)) def_string = label + ' ' + description + ' ' + aliases def_list = [] doc = nlp(def_string) for token in doc: if (token.pos_ == "X"): continue if (token.pos_ == "PUNCT"): continue if (token.pos_ == "CCONJ"): continue if (token.pos_ == "ADP"): continue if (token.pos_ == "PRON"): continue if (token.pos_ == "PART"): continue if (token.pos_ == "DET"): continue if (token.dep_ == "punct"): continue def_list.append(token.text) def_list = list(set(def_list)) #print('def_list:', r, def_list) result_dict[r] = def_list print('result_dict qualifiers: ', result_dict) return result_dict # sentence plot by redundant words def sentence_plot_by_redundant_words(total_cumulative_list, labels, plot_title, x_axis_label, y_axis_label): #cmap = plt.get_cmap('plasma') #colors = cmap(np.linspace(0, 1, len(labels))) colors = ['green', 'blue', 'red', 'coral', 'orchid', 'gray', 'gold'] colorcyler = cycle(colors) lines = ['+', '*', '>', 'x', 'o', ':', '--'] linecycler = cycle(lines) plt.rcParams.update({'font.size':10}) plt.ylabel(y_axis_label) plt.xlabel(x_axis_label) #plt.title(plot_title) #plt.figure(figsize=(1,30)) #plt.figure(figsize=(1, 1), dpi=1000) scale_factor = 30 xmin, xmax = plt.xlim() plt.xlim(xmin * scale_factor, xmax * scale_factor) for cumulative_list, name, color in zip(total_cumulative_list, labels, colors): x, y = [], [] i = 0 for r in cumulative_list: x.append(r[0]) y.append(r[1]) i = i + 1 plt.plot(x, y, next(linecycler), label=name, c=next(colorcyler)) plt.legend() '''for i in range(len(y)): plt.scatter(x[i], y[i], s=2, color=color)''' #ymin, ymax = plt.ylim() #plt.ylim(ymin * scale_factor, ymax * scale_factor) plt.grid(color = 'grey', linestyle = 'dotted', linewidth = 0.5) plt.savefig('sentence_plot_by_redundant_words.pdf') plt.savefig('sentence_plot_by_redundant_words.svg') plt.show() plt.style.use('default') # reset style to default # accumulative rate [0-1] def cumulative_rate(rank_list): result_list = [] total = sum([r[1] for r in rank_list]) temp = 0 for r in rank_list: temp += r[1]/total #print(temp) result_list.append([r[0], temp]) #print(result_list) return result_list # minimums by redundant words def minimums_by_redundant_words(scores, redundants): result_dict = {} for s, r in zip(scores, redundants): if (r not in result_dict): result_dict[r] = s else: # get min if s < result_dict[r]: result_dict[r] = s result_dict = sorted(result_dict.items(), key=lambda x: x[0]) #print(result_dict) return result_dict # linear regression def linear_regression(x, y): print('x: ', x) print('y: ', y) x = np.array(x).reshape((-1, 1)) y = np.array(y) model = '' try: model = LinearRegression().fit(x, y) except: model = LinearRegression().fit(x, y) r_sq = model.score(x, y) print('coefficient of determination:', r_sq) print('intercept:', model.intercept_) print('slope:', model.coef_) y_pred = model.predict(x) print('predicted response:', y_pred, sep='\n') mae = metrics.mean_absolute_error(y, y_pred) print('Mean Absolute Error:', mae) mse = metrics.mean_squared_error(y, y_pred) print('Mean Squared Error:', mse) rmse = np.sqrt(metrics.mean_squared_error(y, y_pred)) print('Root Mean Squared Error:', rmse) result_dict = {} result_dict['y_pred'] = y_pred result_dict['intercept'] = model.intercept_ result_dict['coef'] = model.coef_ result_dict['r_sq'] = r_sq result_dict['mae'] = mae result_dict['mse'] = mse result_dict['rmse'] = rmse return result_dict # linear regression plot def linear_regression_plot(x, y, dict1, dict2, plot_title, x_axis_label, y_axis_label): plt.figure(figsize=(20, 20)) for i, j in zip(x, y): plt.scatter(i, j, s=10, alpha=0.5) plt.annotate('', xy=(i, j), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom') axes1 = plt.gca() x_vals1 = np.array(axes1.get_xlim()) y_vals1 = dict1['intercept'] + dict1['coef']*x_vals1 print('x_vals1, y_vals1: ', x_vals1, y_vals1) plt.plot(x_vals1, y_vals1, '--') axes2 = plt.gca() x_vals2 = np.array(axes2.get_xlim()) y_vals2 = dict2['intercept'] + dict2['coef']*x_vals2 print('x_vals2, y_vals2: ', x_vals2, y_vals2) plt.plot(x_vals2, y_vals2) plt.grid(color = 'grey', linestyle = 'dotted', linewidth = 0.5) plt.savefig('linear_regression_plot.pdf') plt.show() #plt.style.use('default') # reset style to default # filter noise by cumulative rate def filter_noise_by_cumulative_rate(sentences, redundant_word_list, number_redundant_word_list, cumulative_list, rate = 0, top_words = 0): sentences_, redundant_word_list_, number_redundant_word_list_ = [], [], [] if (rate == 0 and top_words == 0): return sentences, redundant_word_list, number_redundant_word_list bound = 0 # number of words used to filter # filter by rate only if (rate != 0 and top_words == 0): for c in cumulative_list: bound = c[0] if (c[1] > rate): break elif(rate == 0 and top_words != 0): bound = top_words if (bound == 0): return sentences, redundant_word_list, number_redundant_word_list for a, b, c in zip(sentences, redundant_word_list, number_redundant_word_list): if (c <= bound): sentences_.append(a) redundant_word_list_.append(b) number_redundant_word_list_.append(c) return sentences_, redundant_word_list_, number_redundant_word_list_ # filter noise by metrics def filter_noise_by_metrics(df, field, frac=1, ascending=True): # convert to numeric df['local_tf_idf2'] =
pd.to_numeric(df['local_tf_idf2'], errors='coerce')
pandas.to_numeric
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4])
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import pandas as pd import datetime as dt import os from plotly.subplots import make_subplots import plotly.graph_objects as go import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output debug = False external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css','./assets/custom.css' ] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server label_dict = {"p":"real power", "q":"imaginary power", "i":"current", "v":"voltage"} # dash components dropdown_options = [{"label":v, "value":k} for k,v in label_dict.items()] dropdown = dcc.Dropdown(id="type_selector", options=dropdown_options, multi=True, value=list(label_dict.keys()), style={} ) outlier_radio_label = html.P('filter outliers:',style={'margin-bottom': 1, 'margin-top': 10}) outlier_radio=dcc.RadioItems( id="outlier_radio", options=[ {'label': 'include', 'value': 'include'}, {'label': 'remove', 'value': 'remove'}, ], value='include', labelStyle={'display': 'inline-block'}) selectors = html.Div([dropdown, outlier_radio_label, outlier_radio], className="three columns") graph = dcc.Graph(id='value_plots', figure={}) selectors_graph = html.Div(className="row plot-layout", children=[selectors, html.Div(className="eight columns", children=[ graph ]), ]) # dash layout app.layout = html.Div( children=[html.A(href="https://clemap.com", children=[ html.Div(className="row", style={ "background-color": "#005499" }, children=[ html.Div(className="one columns", children=[ html.Img(src="https://images.squarespace-cdn.com/content/5c2bc35bcef3729843c7e70c/1570518147439-332SOX2GQ5N1EQYPVV8I/clemap_logo_stnd_clr%2Bwhite.png?format=1500w&content-type=image%2Fpng", style={'max-height':'50px'} ), ]), ]) ]), html.H3("Three Phase Sensor", style={'text-align': 'center'} ), selectors_graph, ]) def prep_datetime(df): """ convert day and time columns to a single date time column drop the original day and time columns """ df['time'] = df['time'].apply(pd.Timedelta) df['datetime'] =
pd.to_datetime(df['day'])
pandas.to_datetime
import os import json import folium import numpy as np import pandas as pd from folium.plugins import TimeSliderChoropleth from pprint import pprint from branca.colormap import linear def graph(data_frame,n_periods,freq,name,start_day): """ input : data_frame :: pandas data_frame of data, n_periods :: int, freq :: string, name :: string, start_day :: string data_frame must be in followign format aggreagted values for borough(0:4) for every row, each row is seperated by freq. n_periods : number of rows freq : Time gap between each period in format {'%nH','%nM','%nD'} where %n can be integer value specifying scalar multiple of hour/day/month name : format of %name.html that will save result map start_time : format of "YYYY-MM-DD" to mark start date of period saves the map out : None """ m = folium.Map(location=[40.718, -73.98], zoom_start=10) folium.TileLayer('cartodbpositron').add_to(m) datetime_index = pd.date_range(start_day, periods= n_periods , freq=freq) dt_index = datetime_index.astype(int).astype('U10') styledata = {} """ borough title : 0 is Staten Island 1 is Queens 2 is Brooklyn 3 is manhatan 4 is Bronx """ for borough in range(0,4): df = pd.DataFrame({'color': data_frame.iloc[:,borough].values,'opacity': data_frame.iloc[:,borough].values},index=dt_index) df.sort_index() styledata[borough] = df max_color, min_color, max_opacity, min_opacity = 0, 0, 0, 0 for borough, data in styledata.items(): max_color = max(max_color, data['color'].max()) min_color = min(max_color, data['color'].min()) max_opacity = max(max_color, data['opacity'].max()) max_opacity = min(max_color, data['opacity'].max()) cmap = linear.PuRd_09.scale(min_color, max_color) #convert color value to hexcolor #and normalize the opacity for country, data in styledata.items(): data['color'] = data['color'].apply(cmap) data['opacity'] = data['opacity'] styledict = { str(borough): data.to_dict(orient='index') for borough, data in styledata.items() } #load the geojson file that we have nyc_zone = os.path.join('./','newyorkborough.json') nyc_json = json.load(open(nyc_zone)) #create timesliderchoropleth with geojson file & style as arguments and add it to the map g = TimeSliderChoropleth( nyc_json, styledict=styledict).add_to(m) #save the map title_statement = "<h1>"+ name+"</h1>" m.get_root().html.add_child(folium.Element(title_statement)) colormap = linear.OrRd_08.scale(min_color, max_color) colormap.caption = 'Ride count in New York boroughs' colormap.add_to(m) m.save(name+".html") #function for normalizing the opacity def norm(x): return (x - x.min()) / (x.max() - x.min()) def main(): data = np.array([[0.01,0.1,0.09,0.75,0.05] ,[0.1,0.09,0.75,0.05,0.01]]) #dataframe that will be used for plotting data_df =
pd.DataFrame(data)
pandas.DataFrame
from datetime import datetime from datetime import timedelta import json import pandas as pd import logging logging.info('Started') # Do I have the right or not, if I have right for how long # Given a date, for how long I stay in Schengen countries? def transform_data(ref_date, entries, exits): logging.info( 'Control if Reference Date is Null and default to today if so') today = datetime.now() if ref_date == '': # or is None reference_date = today else: reference_date = datetime.strptime(ref_date, '%Y-%m-%d') logging.info('Control if Reference Date is past date, not interesting') if reference_date < today: exit() # need a function generating json response logging.info('Create reference date/entries/exists dataframe') df_entries = pd.DataFrame.from_dict(entries) df_entries['Coef'] = 1 df_exits = pd.DataFrame.from_dict(exits) df_exits['Coef'] = 0 df_raw_input = df_entries.append(df_exits, ignore_index=True, sort=True) df_raw_input.columns = ['Date', 'Coef'] df_raw_input['Date'] = pd.to_datetime(df_raw_input['Date']) data_ref = {'Date': [reference_date], 'Coef': [0]} df_reference_date = pd.DataFrame(data=data_ref) df_reference_date['Date'] =
pd.to_datetime(df_reference_date['Date'])
pandas.to_datetime
"""Classes and utility functions for processing game data. EbbFlowGameData: Container for data from a single game. EbbFlowDataset: Subclass of PyTorch Dataset, container for data from multiple games. EbbFlowStats: Subclass of EbbFlowDataset, provides extra functionality for analysis. """ import os import random import copy import pickle from itertools import product from collections import defaultdict import pdb import torch from torch.utils.data import Dataset import numpy as np import pandas as pd import dill import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import gaussian_kde, bernoulli from . import transforms as T from .utils import z_pca class EbbFlowDataset(Dataset): """Container for an Ebb and Flow dataset; also provides functionality for processing the data and interfacing with PyTorch. Data are stored in two separate formats with a one-to-one correspondence: self.xu contains the model inputs: this is the "continuous" format. self.discrete contains the same data in an alternative format that facilitates analysis. Args ---- experiment_dir (str): Root directory containing info for current model training run. params (dict): Processing parameters; see e.g. train_transform_kwargs in default config (config/model_config.yaml). preprocessed (dict): Preprocessed game data. split (str): Can be either 'train', 'val', or 'test'; split is incorporated into the file name of the processed data upon saving. processed_dir (str): Directory in which to save the processed data. pre_transform (list of callables, optional): Transformations which are applied before the processed data is saved. transform (list of callables, optional): Transformations which are applied 'online' on each iteration of the training loop. pre_transform_params (list of dicts, optional): List of parameters to pass to the pre_transforms. This should be a list of dictionaries with the same length as pre_transform. transform_params (list of dicts, optional): List of parameters to pass to the transforms. This should be a list of dictionaries with the same length as transform. """ needs_data_augmentation = ('kde', 'kde_no_switch_cost', 'adaptive_gaussian') def __init__(self, experiment_dir, params, preprocessed, split, processed_dir, pre_transform=None, transform=None, pre_transform_params=None, transform_params=None): self.experiment_dir = experiment_dir self.processed_dir = processed_dir self.params = params # rename a couple keys preprocessed['urt_ms'] = preprocessed.pop('resp_time') preprocessed['urespdir'] = preprocessed.pop('resp_dir') self.preprocessed = preprocessed self.split = split self.resampling_type = self.params.get('data_augmentation_type', None) self._build_transforms(transform, transform_params, pre_transform, pre_transform_params) self.process() # also saves processed data self.xu = torch.load(self.processed_paths[0]) # xu = model inputs with open(self.processed_paths[1], 'rb') as path: other_data = pickle.load(path) self.discrete = other_data['discrete'] self.game_ids = other_data['game_ids'] self.resampling_info = other_data['resampling'] def _build_transforms(self, transform, transform_params, pre_transform, pre_transform_params): # build pre transform - usually just outlier filtering if pre_transform is not None: pre = [t(p) for t, p in zip(pre_transform, pre_transform_params)] self.pre_transform = T.Compose(pre) # build transform default_transform = [T.SmoothResponses(self.params)] if transform is not None: supplied_t = [t(p) for t, p in zip(transform, transform_params)] tr = default_transform + supplied_t else: tr = default_transform self.transform_list = tr def update_smoothing(self, epoch): # Update the kernel used to smoothing the response template self.transform_list[0]._update_sm_kernel(epoch) self.transform = T.Compose(self.transform_list) def get_processed_sample(self, idx): """Return an EbbFlowGameData instance with data from a single game. Args ---- idx (int): Index of the game to return. Returns ------- An EbbFlowGameData instance containing the data for this game. """ discrete = {key: vals[idx] for key, vals in self.discrete.items()} self.update_smoothing(9999999) cnp = self[idx].numpy() continuous = {'urespdir': cnp[:, :4], 'point_dir': cnp[:, 4:8], 'mv_dir': cnp[:, 8:12], 'task_cue': cnp[:, 12:]} game_id = self.game_ids[idx] return EbbFlowGameData.processed_format(discrete, continuous, self.params, game_id) def __getitem__(self, idx): # Return a single sample (game) to train the model (continuous format). # Called by PyTorch during model training. xu_idx = self.xu[:, idx, :] xu_idx = xu_idx if self.transform is None else self.transform(xu_idx) return xu_idx def __len__(self): # Return the number of samples (games) in the dataset. return self.xu.shape[1] @property def processed_paths(self): """Return the full paths to the processed data.""" return [os.path.join(self.processed_dir, f) for f in self.processed_file_names] @property def processed_file_names(self): """Return the names of the processed data files.""" return [f'{self.split}_model_inputs.pt', f'{self.split}_other_data.pkl'] def process(self): """Prepare an Ebb and Flow dataset for model training. Apply pretransforms and filtering criteria; determine the continuous and discrete formats of the dataset. """ if _files_exist(self.processed_paths): return os.makedirs(self.processed_dir, exist_ok=True) # Do an initial processing run to get info for resampling # and/or response smoothing. if ((self.resampling_type in self.needs_data_augmentation) or (self.params['smoothing_type'] in self.needs_data_augmentation)): throwaway_data = self._get_preprocessed_games(for_resampling=True) [td.standard_prep() for td in throwaway_data] # Remove outliers if specified in pre-transform # before resampler estimation out_method = self.params['outlier_params'].get('method', None) if out_method is not None: out_filter = T.FilterOutliers(self.params) rs_pre_transform = T.Compose([T._Trim(), out_filter]) else: rs_pre_transform = T.Compose([T._Trim()]) throwaway_data = [rs_pre_transform(td) for td in throwaway_data] throwaway_data = [td for td in throwaway_data if td.is_valid] resampling_info, sm_params = self._get_resampling_sm_info( throwaway_data) self.resampling_info = resampling_info else: sm_params = copy.deepcopy(self.params) # Process each game data_list = self._get_preprocessed_games() [d.standard_prep() for d in data_list] data_list = [self.pre_transform(d) for d in data_list] self.excluded_list = [d for d in data_list if not d.is_valid] data_list = [d for d in data_list if d.is_valid] self._collate(data_list) self._save_processed_data() def _get_preprocessed_games(self, for_resampling=False): data_list = [] resampling_info = getattr(self, 'resampling_info', None) start_times = self.params['start_times'] if for_resampling: upscale_mult = 1 else: upscale_mult = self.params['upscale_mult'] for start_time, game_ind, _ in product( start_times, range(len(self.preprocessed['urt_ms'])), range(upscale_mult)): preprocessed_game = {key: self.preprocessed[key][game_ind] for key in self.preprocessed.keys()} data_list.append( EbbFlowGameData.preprocessed_format( preprocessed_game, self.params, start_time, resampling_info=resampling_info)) return data_list def _remove_switch_cost(self, rts_typed): # Translate RTs to eliminate switch cost con_rt_diff = np.mean(rts_typed[2]) - np.mean(rts_typed[0]) incon_rt_diff = np.mean(rts_typed[3]) - np.mean(rts_typed[1]) orig_mean_typed_rt = np.mean([np.mean(rts_typed[i]) for i in range(4)]) rts_typed[2] = np.array(rts_typed[2]) - con_rt_diff rts_typed[3] = np.array(rts_typed[3]) - incon_rt_diff # Translate RTs again so that mean RT is the same new_mean_typed_rt = np.mean([np.mean(rts_typed[i]) for i in range(4)]) mean_rt_diff = orig_mean_typed_rt - new_mean_typed_rt for ttype in range(4): rts_typed[ttype] += mean_rt_diff return rts_typed def _get_resampling_sm_info(self, data): # Trial types: # 0 = congruent + stay # 1 = incongruent + stay # 2 = congruent + switch # 3 = incongruent + switch resampling_dists = {} acc = {} rts_typed = {} sm_params = {'step_size': self.params['step_size'], 'smoothing_type': self.params.get('smoothing_type', 'gaussian'), 'kernel_sd': self.params.get('kernel_sd', 50), 'params': {}} for ttype in range(4): this_rts = [] this_correct = [] for d in data: d.get_extra_stats() this_rts.extend(d._get_field_by_trial_type(ttype, 'urt_ms')) this_correct.extend(d._get_field_by_trial_type( ttype, 'ucorrect')) rts_typed[ttype] = this_rts # Resampling info bw = self.params.get('data_aug_kernel_bandwidth', 0.25) if self.resampling_type == 'kde_no_switch_cost': rts_typed = self._remove_switch_cost(rts_typed) for ttype in range(4): this_rts = rts_typed[ttype] if self.resampling_type in ['kde', 'kde_no_switch_cost']: this_resampling = gaussian_kde(this_rts, bw_method=bw) else: this_resampling = None # Smoothing info if self.params['smoothing_type'] == 'adaptive_gaussian': this_sm = np.std(this_rts) elif self.params['smoothing_type'] == 'kde': bw = self.params.get('data_aug_kernel_bandwidth', 0.25) this_sm = gaussian_kde(this_rts, bw_method=bw) else: this_sm = None resampling_dists[ttype] = this_resampling sm_params['params'][ttype] = this_sm acc[ttype] = np.mean(this_correct) if resampling_dists[0] is not None: resampling_info = {'rts': resampling_dists, 'acc': acc} else: resampling_info = None return resampling_info, sm_params def _save_processed_data(self): other_data = {'discrete': self.discrete, 'excluded': self.excluded_list, 'resampling': getattr(self, 'resampling_info', None), 'game_ids': self.game_ids} torch.save(self.xu, self.processed_paths[0]) with open(self.processed_paths[1], 'xb') as path: dill.dump(other_data, path, protocol=4) def _collate(self, data_list): # Continuous format (model inputs) con_keys = ['urespdir', 'point_dir', 'mv_dir', 'task_cue'] xu_split = [torch.cat([torch.tensor(d.continuous[key]).unsqueeze(1) for d in data_list], 1) for key in con_keys] self.xu = torch.cat([d for d in xu_split], 2).to(dtype=torch.float32) # Discrete format disc_keys = data_list[0].discrete_fields self.discrete = {key: [d.discrete[key] for d in data_list] for key in disc_keys} self.game_ids = [d.game_id for d in data_list] class EbbFlowStats(EbbFlowDataset): """Extends EbbFlowDataset with extra functionality for analyzing user and model behavior. Args ---- output_rates (PyTorch tensor): The models outputs (responses for each of the four directions). Has dimensions n_timesteps x n_samples x 4. dataset (EbbFlowDataset instance): The dataset to be analyzed. latents (PyTorch tensor, optional): The model latent state variables. Has dimensions n_timesteps x n_samples x latent_dim. n_pcs (int, optional): The number of principal components to keep in the PCA transformed latent state variables (self.pca_latents). **kwargs (optional): Extra options to be supplied for calls to EbbFlowGameData.get_extra_stats(). """ def __init__(self, output_rates, dataset, latents=None, n_pcs=3, **kwargs): self.rates = output_rates.cpu().detach().numpy() self.xu = dataset.xu self.discrete = dataset.discrete self.transform = dataset.transform self.params = dataset.params self.step = self.params['step_size'] self.game_ids = dataset.game_ids td_kwargs = {'t_pre': 100, 't_post': 1600} td_kwargs.update(kwargs) self.trial_data_kwargs = td_kwargs self.n_pre = np.round(td_kwargs['t_pre'] / self.step).astype('int') self.n_post = np.round(td_kwargs['t_post'] / self.step).astype('int') self.t_axis = self.step * np.arange(-self.n_pre, self.n_post, 1) if latents is not None: self.latents = latents.cpu().detach().numpy() pca_latents, explained_var, pca_obj = z_pca(self.latents, n_pcs) self.pca_latents = pca_latents self.pca_explained_var = explained_var self.pca_obj = pca_obj else: self.latents = None self.pca_latents = None self.pca_explained_var = None self.pca_obj = None if kwargs['alphas'] is not None: self.alphas = kwargs['alphas'].cpu().detach().numpy() self.As = kwargs['As'].cpu().detach().numpy() self.Bs = kwargs['Bs'].cpu().detach().numpy() self.Cs = kwargs['Cs'].cpu().detach().numpy() self.windowed = None self._get_trial_data() def _get_trial_data(self): # Transform the discrete dataset to a pandas data frame; # get extra stats in the process. Also window and concatenate # the output rates and optionally the model latents from each trial. dfs = [] for d in range(self.rates.shape[1]): this_game = self.get_processed_sample(d) this_rates = np.squeeze(self.rates[:, d, :]) if self.latents is not None: this_latents = np.squeeze(self.latents[:, d, :]) this_pca_latents = np.squeeze(self.pca_latents[:, d, :]) win_vars = this_game.get_extra_stats( output_rates=this_rates, latents=this_latents, pca_latents=this_pca_latents, **self.trial_data_kwargs) else: win_vars = this_game.get_extra_stats( output_rates=this_rates, **self.trial_data_kwargs) self._concat_windowed(win_vars) dfs.append(this_game._to_pandas()) self.df =
pd.concat(dfs, ignore_index=True)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Apr 17 10:26:08 2020 @author: weiweijin """ # %% Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd import statsmodels.api as sm import sys from sklearn.linear_model import Lasso from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.model_selection import train_test_split from itertools import compress from sklearn import metrics from bland_altman_plot import bland_altman_plot # %% Import data Twin_data = pd.read_pickle("Twin_data_no_outliner.pkl") # %% Preparing data for main analysis # feature name target_name = ['PWV'] feature_name = list(Twin_data.columns) feature_name.remove('PWV') # %% Lasso # Separating out the features x = Twin_data.loc[:, feature_name].values # Separating out the target y = Twin_data.loc[:,target_name].values y = y.reshape(-1) # Standardizing the features XL = StandardScaler().fit_transform(x) #perform Lasso regreession lasso_tuned = Lasso(alpha=0.01, max_iter=10e5) lasso_tuned.fit(XL,y) # %% prepare data for SVM # evaluate the seperated features LassoKInd = abs(lasso_tuned.coef_) > 0.001 feature_name_SVR = list(compress(feature_name,LassoKInd)) SVR_data = Twin_data[feature_name_SVR] # Separating out the features SVR_features = SVR_data.loc[:, feature_name_SVR].values # Separateing out the targets target = Twin_data.loc[:, target_name].values target = target.reshape(-1) # Standardizing the features S_feature = StandardScaler().fit_transform(SVR_features) # %% Predict using the tuned parameters #split traning and testing datasets Feature_train,Feature_test,Target_train,Target_test = train_test_split(S_feature,target, test_size=0.3, random_state=31) # SVM model SVM_tuned = SVR(kernel='rbf', gamma = 'auto', C=10.113535298901722) # Fit the tuned model SVM_tuned.fit(Feature_train, Target_train) # Predict the target Target_pred = SVM_tuned.predict(Feature_test) # Plot fig # blandAltman plot fig1 = plt.figure(figsize = (8,8)) ax1 = fig1.add_subplot(1,1,1) ax1 = bland_altman_plot(Target_test, Target_pred) plt.ylim(-5,6) ax1.tick_params(axis='x',labelsize = 20) ax1.tick_params(axis='y',labelsize = 20) plt.xticks(np.arange(6, 19, 6)) plt.yticks(np.arange(-4, 5, 4)) filename1 = 'SVR_Bland_Altman.png' fig1.savefig(filename1) # Estimated vs measured m, b = np.polyfit(Target_pred, Target_test,1) X = sm.add_constant(Target_pred) est = sm.OLS(Target_test, X) est2 = est.fit() p_value = est2.pvalues[1] r_squared = est2.rsquared fig2 = plt.figure(figsize = (8,8)) ax2 = fig2.add_subplot(1,1,1) plt.plot(Target_pred, Target_test, 'k.', markersize = 10) ax2.plot(Target_pred, m*Target_pred +b, 'r', label = 'y = {:.2f}x+{:.2f}'.format(m, b)) plt.xlim(3,18) plt.ylim(3,25) plt.rc('xtick',labelsize=20) plt.rc('ytick',labelsize=20) plt.xticks(np.arange(3, 16, 6)) plt.yticks(np.arange(3, 22, 6)) plt.legend(fontsize=18,loc=2) ax2.text(4, 21, 'r$^2$ = {:.2f}'.format(r_squared), fontsize=18) ax2.text(4, 19, 'p < 0.0001', fontsize=18) filename2 = 'SVR_est_vs_med.png' fig2.savefig(filename2) # save target_test and target_pred savedata = [Target_test, Target_pred] df_savedata =
pd.DataFrame(savedata)
pandas.DataFrame
from pickle import load from typing import Dict, List import altair as alt import streamlit as st from matplotlib.pyplot import subplots from pandas import DataFrame, read_csv from seaborn import heatmap from sklearn.metrics import confusion_matrix from streamlit.delta_generator import DeltaGenerator from .classes import Page from .config import STREAMLIT_STATIC_PATH class ModelsEvaluation(Page): labels = ["bulerias", "alegrias", "sevillanas"] def write(self): title = "Models evaluation" st.title(title) st.header("Neural networks learning") model_full_history: Dict = load( open(STREAMLIT_STATIC_PATH / "data/history_conv_model_70_epochs.p", "rb") ) cols: List[DeltaGenerator] = st.columns(2) cols[0].subheader("Model with full data") full_loss = ( alt.Chart(DataFrame(model_full_history).reset_index()) .transform_fold(["loss", "val_loss"]) .mark_line() .encode(x="index:Q", y="value:Q", color="key:N") ).properties(width=600) cols[0].altair_chart(full_loss) model_partial_history: Dict = load( open( STREAMLIT_STATIC_PATH / "data/history_conv_model_only_mel_100_epochs.p", "rb", ) ) cols[1].subheader("Model with spectrogram data only") full_loss = ( alt.Chart(DataFrame(model_partial_history).reset_index()) .transform_fold(["loss", "val_loss"]) .mark_line() .encode(x="index:Q", y="value:Q", color="key:N") ).properties(width=600) cols[1].altair_chart(full_loss) st.header("Prediction execution time") execution_times = read_csv(STREAMLIT_STATIC_PATH / "data/time_results.csv") execution_times: DataFrame boxplot = ( ( alt.Chart(execution_times) .mark_boxplot(size=50, extent=0.5) .encode( x=alt.X("model:N", scale=alt.Scale(type="log")), y=alt.Y("time:Q", scale=alt.Scale(zero=False)), color=alt.Color("model", legend=None), ) ) .properties(width=900, height=600) .configure_axis(labelFontSize=16, titleFontSize=16) ) st.altair_chart(boxplot) st.header("Prediction metrics") prediction_metrics =
read_csv(STREAMLIT_STATIC_PATH / "data/metrics.csv")
pandas.read_csv
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np import pytest from pandas import DataFrame, Timestamp, to_datetime from superset.exceptions import InvalidPostProcessingError from superset.utils.pandas_postprocessing import _flatten_column_after_pivot, pivot from tests.unit_tests.fixtures.dataframes import categories_df, single_metric_df from tests.unit_tests.pandas_postprocessing.utils import ( AGGREGATES_MULTIPLE, AGGREGATES_SINGLE, ) def test_flatten_column_after_pivot(): """ Test pivot column flattening function """ # single aggregate cases assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_SINGLE, column="idx_nulls", ) == "idx_nulls" ) assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_SINGLE, column=1234, ) == "1234" ) assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_SINGLE, column=Timestamp("2020-09-29T00:00:00"), ) == "2020-09-29 00:00:00" ) assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_SINGLE, column="idx_nulls", ) == "idx_nulls" ) assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_SINGLE, column=("idx_nulls", "col1"), ) == "col1" ) assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_SINGLE, column=("idx_nulls", "col1", 1234), ) == "col1, 1234" ) # Multiple aggregate cases assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_MULTIPLE, column=("idx_nulls", "asc_idx", "col1"), ) == "idx_nulls, asc_idx, col1" ) assert ( _flatten_column_after_pivot( aggregates=AGGREGATES_MULTIPLE, column=("idx_nulls", "asc_idx", "col1", 1234), ) == "idx_nulls, asc_idx, col1, 1234" ) def test_pivot_without_columns(): """ Make sure pivot without columns returns correct DataFrame """ df = pivot( df=categories_df, index=["name"], aggregates=AGGREGATES_SINGLE, ) assert df.columns.tolist() == ["name", "idx_nulls"] assert len(df) == 101 assert df.sum()[1] == 1050 def test_pivot_with_single_column(): """ Make sure pivot with single column returns correct DataFrame """ df = pivot( df=categories_df, index=["name"], columns=["category"], aggregates=AGGREGATES_SINGLE, ) assert df.columns.tolist() == ["name", "cat0", "cat1", "cat2"] assert len(df) == 101 assert df.sum()[1] == 315 df = pivot( df=categories_df, index=["dept"], columns=["category"], aggregates=AGGREGATES_SINGLE, ) assert df.columns.tolist() == ["dept", "cat0", "cat1", "cat2"] assert len(df) == 5 def test_pivot_with_multiple_columns(): """ Make sure pivot with multiple columns returns correct DataFrame """ df = pivot( df=categories_df, index=["name"], columns=["category", "dept"], aggregates=AGGREGATES_SINGLE, ) assert len(df.columns) == 1 + 3 * 5 # index + possible permutations def test_pivot_fill_values(): """ Make sure pivot with fill values returns correct DataFrame """ df = pivot( df=categories_df, index=["name"], columns=["category"], metric_fill_value=1, aggregates={"idx_nulls": {"operator": "sum"}}, ) assert df.sum()[1] == 382 def test_pivot_fill_column_values(): """ Make sure pivot witn null column names returns correct DataFrame """ df_copy = categories_df.copy() df_copy["category"] = None df = pivot( df=df_copy, index=["name"], columns=["category"], aggregates={"idx_nulls": {"operator": "sum"}}, ) assert len(df) == 101 assert df.columns.tolist() == ["name", "<NULL>"] def test_pivot_exceptions(): """ Make sure pivot raises correct Exceptions """ # Missing index with pytest.raises(TypeError): pivot(df=categories_df, columns=["dept"], aggregates=AGGREGATES_SINGLE) # invalid index reference with pytest.raises(InvalidPostProcessingError): pivot( df=categories_df, index=["abc"], columns=["dept"], aggregates=AGGREGATES_SINGLE, ) # invalid column reference with pytest.raises(InvalidPostProcessingError): pivot( df=categories_df, index=["dept"], columns=["abc"], aggregates=AGGREGATES_SINGLE, ) # invalid aggregate options with pytest.raises(InvalidPostProcessingError): pivot( df=categories_df, index=["name"], columns=["category"], aggregates={"idx_nulls": {}}, ) def test_pivot_eliminate_cartesian_product_columns(): # single metric mock_df = DataFrame( { "dttm":
to_datetime(["2019-01-01", "2019-01-01"])
pandas.to_datetime
import subprocess from pandas.io.json import json_normalize import pandas as pd import os import PIL import glob import argparse import numpy as np import pandas as pd from PIL import Image import torch import torch.nn.functional as F import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from torch.utils.data import Dataset, DataLoader from models.vgg import vgg16_bn from models.inception import inception_v3 from models.resnet import resnet50,resnet152 from models.googleNet import googlenet from densenet import densenet121, densenet161 from models.incept_resnet_v2 import InceptionResNetV2 from models.inception_v4 import InceptionV4 from models.unet import UNet from data_util import * from scipy.misc import imread from scipy.misc import imresize import random import imp from collections import defaultdict, OrderedDict import time import io def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--gpu_id', default=1, help='gpu ids to use, e.g. 0 1 2 3', type=int) parser.add_argument('--batch_size', default=4, help='batch size, e.g. 16, 32, 64...', type=int) parser.add_argument('--input_dir', default = '/home/shh/Passport/jyz/data/IJCAI/dev_data', help="data input dir", type=str) parser.add_argument('--output_dir', default="Out", help='output dir', type=str) parser.add_argument('--log_dir',default="./logs/test_search", type=str) parser.add_argument('--results_file', default='results.csv',type=str) parser.add_argument('--mode', default="nontarget", type=str) parser.add_argument('--attack_file', default='attack_tijiao.py', type=str) parser.add_argument('--if_attack',default=1,type=int) parser.add_argument('--jpeg_quality',default=70,type=float) return parser.parse_args() args = parse_args() print(args) def check_mkdir(path): if not os.path.exists(path): os.makedirs(path) check_mkdir(args.log_dir) log_file = "%s/eval.log"%args.log_dir err_file = "%s/eval.err"%args.log_dir log_all_file = "%s/all.log"%args.log_dir err_all_file = "%s/all.err"%args.log_dir def load_model(model,pth_file,device): model = model.to(device) model.load_state_dict(torch.load(pth_file)) return model def get_model_dics(device, model_list= None): if model_list is None: model_list = ['densenet121', 'densenet161', 'resnet50', 'resnet152', 'incept_v1', 'incept_v3', 'inception_v4', 'incept_resnet_v2', 'incept_v4_adv2', 'incept_resnet_v2_adv2', 'black_densenet161','black_resnet50','black_incept_v3', 'old_vgg','old_res','old_incept'] models = {} for model in model_list: if model=='densenet121': models['densenet121'] = densenet121(num_classes=110) load_model(models['densenet121'],"../pre_weights/ep_38_densenet121_val_acc_0.6527.pth",device) if model=='densenet161': models['densenet161'] = densenet161(num_classes=110) load_model(models['densenet161'],"../pre_weights/ep_30_densenet161_val_acc_0.6990.pth",device) if model=='resnet50': models['resnet50'] = resnet50(num_classes=110) load_model(models['resnet50'],"../pre_weights/ep_41_resnet50_val_acc_0.6900.pth",device) if model=='incept_v3': models['incept_v3'] = inception_v3(num_classes=110) load_model(models['incept_v3'],"../pre_weights/ep_36_inception_v3_val_acc_0.6668.pth",device) if model=='incept_v1': models['incept_v1'] = googlenet(num_classes=110) load_model(models['incept_v1'],"../pre_weights/ep_33_googlenet_val_acc_0.7091.pth",device) #vgg16 = vgg16_bn(num_classes=110) #load_model(vgg16, "./pre_weights/ep_30_vgg16_bn_val_acc_0.7282.pth",device) if model=='incept_resnet_v2': models['incept_resnet_v2'] = InceptionResNetV2(num_classes=110) load_model(models['incept_resnet_v2'], "../pre_weights/ep_17_InceptionResNetV2_ori_0.8320.pth",device) if model=='incept_v4': models['incept_v4'] = InceptionV4(num_classes=110) load_model(models['incept_v4'],"../pre_weights/ep_17_InceptionV4_ori_0.8171.pth",device) if model=='incept_resnet_v2_adv': models['incept_resnet_v2_adv'] = InceptionResNetV2(num_classes=110) load_model(models['incept_resnet_v2_adv'], "../pre_weights/ep_22_InceptionResNetV2_val_acc_0.8214.pth",device) if model=='incept_v4_adv': models['incept_v4_adv'] = InceptionV4(num_classes=110) load_model(models['incept_v4_adv'],"../pre_weights/ep_24_InceptionV4_val_acc_0.6765.pth",device) if model=='incept_resnet_v2_adv2': models['incept_resnet_v2_adv2'] = InceptionResNetV2(num_classes=110) #load_model(models['incept_resnet_v2_adv2'], "../test_weights/ep_29_InceptionResNetV2_adv2_0.8115.pth",device) load_model(models['incept_resnet_v2_adv2'], "../test_weights/ep_13_InceptionResNetV2_val_acc_0.8889.pth",device) if model=='incept_v4_adv2': models['incept_v4_adv2'] = InceptionV4(num_classes=110) # load_model(models['incept_v4_adv2'],"../test_weights/ep_32_InceptionV4_adv2_0.7579.pth",device) load_model(models['incept_v4_adv2'],"../test_weights/ep_50_InceptionV4_val_acc_0.8295.pth",device) if model=='resnet152': models['resnet152'] = resnet152(num_classes=110) load_model(models['resnet152'],"../pre_weights/ep_14_resnet152_ori_0.6956.pth",device) if model=='resnet152_adv': models['resnet152_adv'] = resnet152(num_classes=110) load_model(models['resnet152_adv'],"../pre_weights/ep_29_resnet152_adv_0.6939.pth",device) if model=='resnet152_adv2': models['resnet152_adv2'] = resnet152(num_classes=110) load_model(models['resnet152_adv2'],"../pre_weights/ep_31_resnet152_adv2_0.6931.pth",device) if model=='black_resnet50': models['black_resnet50'] = resnet50(num_classes=110) load_model(models['black_resnet50'],"../test_weights/ep_0_resnet50_val_acc_0.7063.pth",device) if model=='black_densenet161': models['black_densenet161'] = densenet161(num_classes=110) load_model(models['black_densenet161'],"../test_weights/ep_4_densenet161_val_acc_0.6892.pth",device) if model=='black_incept_v3': models['black_incept_v3']=inception_v3(num_classes=110) load_model(models['black_incept_v3'],"../test_weights/ep_28_inception_v3_val_acc_0.6680.pth",device) if model=='old_res': MainModel = imp.load_source('MainModel', "./models_old/tf_to_pytorch_resnet_v1_50.py") models['old_res'] = torch.load('./models_old/tf_to_pytorch_resnet_v1_50.pth').to(device) if model=='old_vgg': MainModel = imp.load_source('MainModel', "./models_old/tf_to_pytorch_vgg16.py") models[model] = torch.load('./models_old/tf_to_pytorch_vgg16.pth').to(device) if model=='old_incept': MainModel = imp.load_source('MainModel', "./models_old/tf_to_pytorch_inception_v1.py") models[model] = torch.load('./models_old/tf_to_pytorch_inception_v1.pth').to(device) return models def load_data_for_defense(input_dir, batch_size=16): #Only forward all_img_paths = glob.glob(os.path.join(input_dir, '*.png')) all_labels = [-1 for i in range(len(all_img_paths))] dev_data = pd.DataFrame({'image_path':all_img_paths, 'label_idx':all_labels}) transformer = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) datasets = { 'dev_data': ImageSet(dev_data, transformer) } dataloaders = { ds: DataLoader(datasets[ds], batch_size=batch_size, num_workers=0, shuffle=False) for ds in datasets.keys() } return dataloaders def input_diversity(image, prob, low, high): if random.random()<prob: return image rnd = random.randint(low, high) rescaled = F.upsample(image, size=[rnd, rnd], mode='bilinear') h_rem = high - rnd w_rem = high - rnd pad_top = random.randint( 0, h_rem) pad_bottom = h_rem - pad_top pad_left = random.randint(0, w_rem) pad_right = w_rem - pad_left padded = F.pad(rescaled, [pad_top, pad_bottom, pad_left, pad_right], 'constant', 0) return padded def preprocess(image,model_name="vgg16",prob=1.0): if "incept_v3" in model_name or model_name[:16]=='incept_resnet_v2' or model_name[:9]=='incept_v4' or model_name=='resnet_152' or model_name=="black_incept_v3": return input_diversity(image,prob,270,299) else: image = F.upsample(image, size=(224, 224), mode='bilinear') if model_name=="old_res" or model_name=="old_vgg": image = ((image/2.0)+0.5)*255.0 _R_MEAN = 123.68 _G_MEAN = 116.78 _B_MEAN = 103.94 image[:, 0,:, :] = image[:, 0,:, :] - _R_MEAN image[:, 1,:, :] = image[:, 1,:, :] - _G_MEAN image[:, 2,:, :] = image[:, 2,:, :] - _B_MEAN return input_diversity(image,prob,220,224) else: return input_diversity(image,prob,220,224) def check_mkdir(path): if not os.path.exists(path): os.makedirs(path) def MSE(old_dir, new_dir,filename): img1 = imread(os.path.join(old_dir,filename)).astype(np.float) img2 = imread(os.path.join(new_dir,filename)).astype(np.float) #print(np.sum((img1-img2)**2,axis=2).shape) mse = np.sqrt(np.sum((img1-img2)**2,axis=2)).mean() return mse def images_tojpeg(images,images_new): buffer = io.BytesIO() #print('1',images.mean()) for i in range(images.shape[0]): pil_img = transforms.ToPILImage()(images[i].detach().cpu()) pil_img.save(buffer, format='jpeg', quality=args.jpeg_quality) images_new[i] = transforms.ToTensor()(Image.open(buffer).convert('RGB')) def test_target_attack(device, models_dic, old_dir, new_dir, labels_dic, mode): loader2 = load_data_for_defense(new_dir, args.batch_size) scores , accuracys= {}, {} per_score =0 err = 0 old_score,adv_score,black_score = [],[],[] with torch.no_grad(): for key in models_dic.keys(): model = models_dic[key] j=0 score = 0 correct = 0 for data in loader2['dev_data']: image = data["image"].to(device) filenames = data["filename"] #images_tojpeg(image,image) img = preprocess(image,key) out = model(img) if 'incept_v3' in key or "incept_v1" in key: pred = out[0].max(1)[1] else: try: pred = out.max(1)[1] except: print("Error!!!!, key",key,img.shape,out.max(1)) for i in range(len(pred)): mse = MSE(old_dir, new_dir,filenames[i]) err+=mse if mode=="target" and pred[i].item()!=labels_dic[filenames[i]]: score+=64 elif mode=="nontarget" and pred[i].item()==labels_dic[filenames[i]]: score+=64 correct+=1 else: score+=mse if mode!='nontarget': correct+=1 j+=image.shape[0] print(key) if 'old' in key: old_score.append(score/j) if 'adv' in key: adv_score.append(score/j) else: black_score.append(score/j) scores[key] = score/j accuracys[key] = correct/float(j) per_score+=score/j err = err/j print("Test Model %s, acc is %.3f, score is %.3f."%(key, correct/float(j), score/j)) per_score/=len(models_dic) old_score = np.mean(np.array(old_score)) adv_score = np.mean(np.array(adv_score)) black_score = np.mean(np.array(black_score)) print("Per_score:", per_score) print("Per score for white model: %.3f"%old_score) print("score for adv:%.2f"%adv_score) print('score for black:%.2f'%black_score) print('err %.3f'%err) modified_score = old_score*0.4+adv_score*0.4+black_score*0.2 print('Modified score is %.3f'%modified_score) return scores, accuracys, err, [old_score, adv_score, black_score, modified_score] def try_str_to_num(str_): try: return int(str_) except: try: return float(str_) except: return str_ def get_labels(input_dir): table =
pd.read_csv(input_dir+'/dev.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 16 15:50:03 2017 @author: konodera そのユーザーがそのアイテムを買う時間帯の割合 """ import pandas as pd import numpy as np from tqdm import tqdm from collections import defaultdict import utils utils.start(__file__) #============================================================================== # load #============================================================================== col = ['order_id', 'user_id', 'product_id', 'order_dow', 'order_hour_of_day', 'order_number_rev'] log = utils.read_pickles('../input/mk/log', col).sort_values('user_id') log = pd.merge(log,
pd.read_pickle('../input/mk/timezone.p')
pandas.read_pickle
# -*- coding: utf-8 -*- # Operational Libs import collections import functools import logging import os # Dash Libs import dash import dash_core_components as dcc import dash_html_components as html import plotly.graph_objects as go from dash.dependencies import Input, Output, ALL # Analytic Libs import pandas as pd import numpy as np import math LOG = logging.getLogger(__name__) logging.basicConfig(level="INFO") # In production, the CSV files are at this project on Civis Platform: # https://platform.civisanalytics.com/spa/#/projects/135876 CIVIS_PROJECT_ID = 135876 LOCAL_DATA_DIR = "data" DEV_CSV_FILENAMES = [ "dash_trajectoriesDat_baseline.csv", # file ID: 103222548 "dash_trajectoriesDat_june1partial10.csv", # file ID: 103222598 "dash_trajectoriesDat_june1partial30.csv", # file ID: 103222650 ] EMS_MAPPING = {"North-Central": (1, 2), "Central": (3, 6), "Southern": (4, 5), "Northeast": (7, 8, 9, 10, 11)} N_SLIDER_MARKS = 5 N_CHART_COLUMNS = 2 app = dash.Dash(__name__, prevent_initial_callbacks=True) # Mark the correct server for Heroku or Civis deployment server = app.server if os.getenv("CIVIS_SERVICE_VERSION"): # This environment variable will be set when deployed in Civis import civis client = civis.APIClient() CSV_FILES = civis.find( client.projects.get(CIVIS_PROJECT_ID).files, file_name=lambda filename: filename.endswith(".csv"), ) logging.info("%d CSV files found", len(CSV_FILES)) else: CSVFile = collections.namedtuple("CSVFile", ("id", "file_name")) CSV_FILES = [ CSVFile(id=None, file_name=file_name) for file_name in DEV_CSV_FILENAMES ] # Setup ############################################################################# # Color Options COLORS = { 'sf': '#1798c1', 'green': '#416165', # Color for plots & text 'beige': '#F7F7FF', #Color for gridlinesgit } # RangeSlider values need to be ints - convert to unix timestamp def dtToUnix (dt): ''' Convert datetime to Unix Milliseconds https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#from-timestamps-to-epoch ''' unixTime = (dt - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s') return unixTime # Convert unix Time back to datetime def unixToDt (unixTime): ''' Convert Unix milliseconds to datetime ''' return pd.to_datetime(unixTime, unit='s') @functools.lru_cache(maxsize=4) def get_df(csv_file_path): """Get pandas DataFrame from CSV and apply pre-processing. Parameters ---------- csv_file_path : str Returns ------- pd.DataFrame """ df =
pd.read_csv(csv_file_path)
pandas.read_csv
import os import traceback import sys import pkg_resources import pandas as pd import openpyxl import matplotlib import socket import setuptools import base64 import numpy as np import pickle as pkl import xml.etree.ElementTree as et import matplotlib.pyplot as plt import seaborn as sns from aniachi.systemUtils import Welcome as W from wsgiref.simple_server import make_server from pyramid.config import Configurator from pyramid.response import Response from pyramid.httpexceptions import HTTPFound from pyramid.view import view_config from pyramid.httpexceptions import HTTPNotFound from io import StringIO from io import BytesIO from multiprocessing import Manager from sklearn.preprocessing import scale mgr = Manager() ns = mgr.Namespace() port =8080 """ """ def __doc__(): return 'Web application server' """ """ def __str__(): return 'Web application server. \n To to EMBI analysis and mead and variance reduction' # # @view_config(route_name='hello', renderer='home.jinja2') def hello_world(request): return {'name': 'Running Server','port':port,'pyramid':pkg_resources.get_distribution('pyramid').version ,'numpy':np.__version__,'pandas':pd.__version__ ,'favicon':'aniachi_logo.png','matplotlib':matplotlib.__version__, 'fbprophet':pkg_resources.get_distribution('fbprophet').version,'openpyxl ':openpyxl.__version__,'setuptools':setuptools.__version__, 'py_common_fetch':pkg_resources.get_distribution('py-common-fetch').version,'host':socket.gethostbyname(socket.gethostname()), 'pyqrcode':pkg_resources.get_distribution('pyqrcode').version,'argparse':'','pypng':pkg_resources.get_distribution('pypng').version } """ """ @view_config(route_name='entry') def entry_point(request): return HTTPFound(location='app/welcome') """ A friendly error request """ @view_config(context=Exception, renderer='error.jinja2') def error(context, request): fp = StringIO() traceback.print_exc(file=fp) return {'error':fp.getvalue(),'favicon':'logo.png'} """ """ def getParamterOrdefault(d,k,v,valid): aux = v try: if (d[k] in valid): aux = d[k] except Exception as e: pass return aux # # """ Auxiliar method if you want to test something """ def testSomething(): pass """ A friendly 404 request """ @view_config(context=HTTPNotFound, renderer='404.jinja2') def not_found(context, request): request.response.status = 404 return {} """ """ def readAndFilterDataframe(file): try: print('Rerading...',os.path.join(os.getcwd(),file)) df = pd.read_csv(os.path.join(os.getcwd(),file)) #remove unamed columns. columnsToDelete = [] for i in range(15, 29): columnsToDelete.append('Unnamed: ' + str(i)) df = df.drop(columns=columnsToDelete) print('Fixing columns') #convert to data time objects df.Fecha = pd.to_datetime(df['Fecha']) print('Fixing dateTime Objects') print('Dataframe rows:',df.shape[0]) ns.df = df #multitreading shared object except: print(os.path.join(os.getcwd(),file),'Not found') sys.exit(-1) @view_config(route_name='dataset') def datasetServer(request): format = getParamterOrdefault(request.params,'format','default',['html','json','xml','serialized','csv','excel']) if (format=='csv'): s = StringIO() ns.df.to_csv(s) r = Response(s.getvalue(), content_type='application/CSV', charset='UTF-8') elif (format=='json'): df = ns.df s = StringIO() df.to_json(s) r = Response(s.getvalue(), content_type='application/json', charset='UTF-8') elif (format=='xml'): df =ns.df root = et.Element('root') for i, row in df.iterrows(): data = et.SubElement(root, 'row') data.set('iter', str(i)) for head in df.columns: aux = et.SubElement(data, head) if head =='Fecha': aux.text = str(row[head].strftime('%Y-%d-%m')) else: aux.text = str(row[head]) r = Response(et.tostring(root), content_type='application/xml', charset='UTF-8') elif (format=='html'): df = ns.df s = StringIO() df.to_html(s,index=True) r = Response(s.getvalue(), content_type='text/html', charset='UTF-8') elif (format=='serialized'): r = Response(base64.encodebytes(pkl.dumps(ns.df)).decode('utf-8'), content_type='text/html', charset='UTF-8') elif (format == 'excel'): b= BytesIO() pd.ExcelWriter(b) ns.df.to_excel(b) r = Response(b.getvalue(), content_type='application/force-download', content_disposition='attachment; filename=data.xls') else: r = Response('Bad paramters ' + str(request.params), content_type='text/html', charset='UTF-8') return r """ return an empty dataframe to avoid errors """ def getNormalizedDataAsDF(country): try: mx_scale = scale(ns.df[country]) d = {'Fecha': ns.df.Fecha, country: ns.df[country], 'NORMALIZED': mx_scale} return pd.DataFrame(d) except: return pd.DataFrame(dict()) """ """ def getIntParameter(d,k,v,r): aux=int(v) try: if isinstance(int(d[k]), int): if int(d[k]) in r: aux= int(d[k]) except Exception as e: pass return aux """ """ @view_config(route_name='normalized') def normalizedServer(request): format = getParamterOrdefault(request.params, 'format', 'default', ['html', 'json', 'xml', 'serialized', 'csv', 'excel']) country = getParamterOrdefault(request.params, 'country', 'default', ['LATINO','REP_DOM','BRAZIL','COLOMBIA','ECUADOR','ARGENTINA','MEXICO','PERU','PANAMA','VENEZUELA','URUGUAY','CHILE','EL_SALVADOR']) if country == 'default' or format == 'default': r = Response('Bad paramters ' + str(request.params), content_type='text/html', charset='UTF-8') return r else: df= getNormalizedDataAsDF(country) if (format == 'csv'): s = StringIO() df.to_csv(s) r = Response(s.getvalue(), content_type='application/CSV', charset='UTF-8') elif (format == 'json'): s = StringIO() df.to_json(s) r = Response(s.getvalue(), content_type='application/json', charset='UTF-8') elif (format == 'xml'): root = et.Element('root') for i, row in df.iterrows(): data = et.SubElement(root, 'row') data.set('iter', str(i)) for head in df.columns: aux = et.SubElement(data, head) if head == 'Fecha': aux.text = str(row[head].strftime('%Y-%d-%m')) else: aux.text = str(row[head]) r = Response(et.tostring(root), content_type='application/xml', charset='UTF-8') elif (format == 'html'): s = StringIO() df.to_html(s, index=True) r = Response(s.getvalue(), content_type='text/html', charset='UTF-8') elif (format == 'serialized'): r = Response(base64.encodebytes(pkl.dumps(df)).decode('utf-8'), content_type='text/html',charset='UTF-8') elif (format == 'excel'): b = BytesIO()
pd.ExcelWriter(b)
pandas.ExcelWriter
""" plotting functions for Dataset objects To Do: Edit hyp_stats plots to take transitions.HypStats object instead of ioeeg.Dataset object Remove redundant plotting fns added into EKG classs Add subsetEEG function to break up concatenated NREM segments for plotting. Will require adjustments to specified detections added to plot. """ import itertools import igraph as ig import math import matplotlib import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import shapely.geometry as SG from matplotlib.widgets import Slider from pandas.plotting import register_matplotlib_converters from scipy.signal import find_peaks, butter, sosfiltfilt from scipy import interpolate register_matplotlib_converters() def plotEEG(d, raw=True, filtered=False, spindles=False, spindle_rejects=False): """ plot multichannel EEG w/ option for double panel raw & filtered. For short, pub-ready figures. Use vizeeg for data inspection red = spindle rejects by time domain criteria; dark red = spindle rejects by frequency domain criteria Parameters ---------- d: instance of ioeeg Dataset class raw: bool, optional, default: True Option to plot raw EEG filtered: bool, optional, default: False Option to plot filtered EEG spindles: bool, optional, default: False Option to plot spindle detections spindle_rejects: bool, optional, default: False Option to plot rejected spindle detections Returns ------- matplotlib.pyplot figure instance """ data = [] title = [] # import data if raw == True: raw = d.data data.append(raw) title.append('Raw') if filtered == True: filtd = d.spindle_calcs.loc(axis=1)[:, 'Filtered'] data.append(filtd) title.append('Filtered') # flatten events list by channel for plotting if spindles == True: sp_eventsflat = [list(itertools.chain.from_iterable(d.spindle_events[i])) for i in d.spindle_events.keys()] if spindle_rejects == True: sp_rej_t_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_t[i])) for i in d.spindle_rejects_t.keys()] sp_rej_f_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_f[i])) for i in d.spindle_rejects_f.keys()] # set channels for plotting channels = [x[0] for x in d.data.columns] # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=(10,10), squeeze=False) fig.subplots_adjust(hspace=.1, top=.9, bottom=.1, left=.05, right=.95) for dat, ax, t in zip(data, axs.flatten(), title): for i, c in enumerate(channels): # normalize each channel to [0, 1] dat_ser = pd.Series(dat[(c, t)], index=dat.index) norm_dat = (dat_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i # subtract i for plotting offset ax.plot(norm_dat, linewidth=.5, color='C0') # plot spindles if spindles == True: sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat[i]] spins = pd.Series(index=norm_dat.index) spins[sp_events_TS] = norm_dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5) if spindle_rejects == True: # plot time-domain rejects sp_rejs_t_TS = [pd.Timestamp(x) for x in sp_rej_t_eventsflat[i]] spin_rejects_t = pd.Series(index=norm_dat.index) spin_rejects_t[sp_rejs_t_TS] = norm_dat[sp_rejs_t_TS] ax.plot(spin_rejects_t, color='red', alpha=0.5) # plot frequency-domain rejects sp_rejs_f_TS = [pd.Timestamp(x) for x in sp_rej_f_eventsflat[i]] spin_rejects_f = pd.Series(index=norm_dat.index) spin_rejects_f[sp_rejs_f_TS] = norm_dat[sp_rejs_f_TS] ax.plot(spin_rejects_f, color='darkred', alpha=0.5) ax.set_title(t) ax.set_yticks(list(np.arange(0.5, -(len(channels)-1), -1))) ax.set_yticklabels(channels) ax.margins(x=0) # remove white space margins between data and y axis ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # set overall parameters fig.suptitle(d.metadata['file_info']['in_num']) plt.xlabel('Time') return fig, axs def plotEEG_singlechan(d, chan, raw=True, filtered=False, rms=False, thresholds=False, spindles=False, spindle_rejects=False): """ plot single channel EEG. Options for multipaneled calculations. Not for concatenated datasets Parameters ---------- d: instance of ioeeg Dataset class chan: str channel to plot raw: bool, optional, default: True Option to plot raw EEG panel filtered: bool, optional, default: False Option to plot filtered EEG panel rms: bool, optional, default: False Option to plot filtered EEG panel with RMS and RMS moving average thresholds: bool, optional, default: False Option to plot spindle threshold lines on rms panel spindles: bool, optional, default: False Option to plot filtered EEG with spindle detection panel spindle_rejects: bool, optional, default: False Option to plot filtered EEG with spindle rejection panel. Note: Spindles and spindle_rejects plot on same panel if both True Returns ------- matplotlib.pyplot figure instance """ data = [] dtype = [] labels = [] c = chan # import data if raw == True: raw_data = d.data[c, 'Raw'] if filtered == True or rms == True or spindles == True or spindle_rejects == True: filtd_data = d.spindle_calcs.loc(axis=1)[c, 'Filtered'] # set data to plot if raw == True: #raw = d.data[c, 'Raw'] data.append(raw_data) dtype.append('raw') labels.append('Raw Signal') if filtered == True: #filtd = d.spindle_calcs.loc(axis=1)[c, 'Filtered'] data.append(filtd_data) dtype.append('filtd') labels.append('Filtered Signal') if rms == True: data.append(filtd_data) dtype.append('filtd+rms') labels.append('Filtered Signal') if spindles == True or spindle_rejects == True: data.append(filtd_data) labels.append('Filtered Signal') if spindles == True and spindle_rejects == False: dtype.append('filtd+spin') elif spindles == False and spindle_rejects == True: dtype.append('filtd+rej') elif spindles == True and spindle_rejects == True: dtype.append('filtd+spin+rej') # pull out thresholds for labels loSD = d.metadata['spindle_analysis']['sp_loSD'] hiSD = d.metadata['spindle_analysis']['sp_hiSD'] # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=(18,6), squeeze=False) fig.subplots_adjust(hspace=.1, top=.9, bottom=.1, left=.05, right=.95) for dat, ax, dt, label in zip(data, axs.flatten(), dtype, labels): # plot EEG ax.plot(dat, linewidth=.5, color='C0', label=label) # plot filtered EEG w/ rms & thresholds if dt == 'filtd+rms': ax.plot(d.spRMS[c], label='RMS', color='green') ax.plot(d.spRMSmavg[c], label='RMS moving average', color='orange') if dt == 'filtd+rms' and thresholds == True: ax.axhline(d.spThresholds[c].loc['Low Threshold'], linestyle='solid', color='grey', label = f'Mean RMS + {loSD} SD') ax.axhline(d.spThresholds[c].loc['High Threshold'], linestyle='dashed', color='grey', label = f'Mean RMS + {hiSD} SD') # plot spindles if dt =='filtd+spin' or dt =='filtd+spin+rej': sp_valuesflat = [] sp_eventsflat = [] for n in range(len(d.spindle_events[c])): for m in range(len(d.spindle_events[c][n])): sp_valuesflat.append(dat[d.spindle_events[c][n][m]]) sp_eventsflat.append(d.spindle_events[c][n][m]) sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat] spins = pd.Series(index=dat.index) spins[sp_events_TS] = dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5, label='Spindle Detection') # plot spindle rejections if dt == 'filtd+rej' or dt == 'filtd+spin+rej': # plot time-domain rejects sp_rej_t_valuesflat = [] sp_rej_t_eventsflat = [] for n in range(len(d.spindle_rejects_t[c])): for m in range(len(d.spindle_rejects_t[c][n])): sp_rej_t_valuesflat.append(dat[d.spindle_rejects_t[c][n][m]]) sp_rej_t_eventsflat.append(d.spindle_rejects_t[c][n][m]) sp_rej_t_events_TS = [pd.Timestamp(x) for x in sp_rej_t_eventsflat] spin_rejects_t = pd.Series(index=dat.index) spin_rejects_t[sp_rej_t_events_TS] = dat[sp_rej_t_events_TS] ax.plot(spin_rejects_t, color='red', alpha=0.5, label='Rejected Detection (T)') # plot frequency-domain rejects sp_rej_f_valuesflat = [] sp_rej_f_eventsflat = [] for n in range(len(d.spindle_rejects_f[c])): for m in range(len(d.spindle_rejects_f[c][n])): sp_rej_f_valuesflat.append(dat[d.spindle_rejects_f[c][n][m]]) sp_rej_f_eventsflat.append(d.spindle_rejects_f[c][n][m]) sp_rej_f_events_TS = [pd.Timestamp(x) for x in sp_rej_f_eventsflat] spin_rejects_f = pd.Series(index=dat.index) spin_rejects_f[sp_rej_f_events_TS] = dat[sp_rej_f_events_TS] ax.plot(spin_rejects_f, color='darkred', alpha=0.5, label='Rejected Detection (F)') ax.legend(loc='lower left') #ax.set_title(t) #ax.set_yticks(list(np.arange(0.5, -(len(chan)-1), -1))) #ax.set_yticklabels(chan) ax.margins(x=0) # remove white space margins between data and y axis ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # plot minor axes seconds = mdates.SecondLocator() ax.xaxis.set_minor_locator(seconds) ax.grid(axis='x', which='minor', linestyle=':') ax.grid(axis='x', which='major') # set overall parameters fig.suptitle(d.metadata['file_info']['in_num']) plt.xlabel('Time') return fig def vizeeg(d, raw=True, filtered=False, spindles=False, spindle_rejects=False, slider=True, win_width=15, raw_lowpass=True, lowpass_freq=25, lowpass_order=4): """ vizualize multichannel EEG w/ option for double panel raw and/or filtered. Optimized for inspecting spindle detections (title/axis labels removed for space) Spindles rejected based on time-domain criteria are plotted in red; rejections based on frequency-domain criteria are plotted in darkred. Parameters ---------- d: instance of ioeeg Dataset class raw: bool, optional, default: True Option to plot raw EEG filtered: bool, optional, default: False Option to plot spindle filtered EEG spindles: bool, optional, default: False Option to plot spindle detections spindle_rejects: bool, optional, default: False Option to plot rejected spindle detections slider: bool (default: False) Option to implement an X-axis slider instead of built-in matplotlib zoom. Useful for inspecting long segments of EEG with a set window win_width: int (default: 15) If using slider option, number of seconds to set window width raw_lowpass: bool (default: True) Whether to plot the lowpass filtered raw data [in place of the unchanged raw data] lowpass_freq: int (default: 25) Frequency to lowpass the raw data for visualization (if not already applied) lowpass_order: int (default: 4) Butterworth lowpass filter order to be used if lowpass_raw is not None (doubles for filtfilt) Returns ------- matplotlib.pyplot figure instance """ # Set figure size (double height if plotting both raw & filtered) if raw == True & filtered == True: figsize = (14, 14) else: figsize = (14, 7) data = [] title = [] # import data if raw == True: if not raw_lowpass: # use the unchanged raw data raw_data = d.data elif raw_lowpass: # use the lowpass filtered raw data try: # check if filtered data exists raw_lowpass_data = d.data_lowpass except AttributeError: # apply lowpass filter d.lowpass_raw(lowpass_freq, lowpass_order) raw_lowpass_data = d.data_lowpass if filtered == True: filtd = d.spindle_calcs.loc(axis=1)[:, 'Filtered'] # set data to plot (title corresponds to multiindex level 2 in data df) if raw == True: if not raw_lowpass: # plot the unchanged data data.append(raw_data) title.append('Raw') elif raw_lowpass: # plot the lowpass data data.append(raw_lowpass_data) title.append('raw_lowpass') if filtered == True: data.append(filtd) title.append('Filtered') # flatten events list by channel for plotting if spindles == True: sp_eventsflat = [list(itertools.chain.from_iterable(d.spindle_events[i])) for i in d.spindle_events.keys()] if spindle_rejects == True: # time-domain rejects sp_rej_t_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_t[i])) for i in d.spindle_rejects_t.keys()] # frequency domain rejects sp_rej_f_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_f[i])) for i in d.spindle_rejects_f.keys()] # set channels for plotting channels = [x[0] for x in d.data.columns if x[0] not in ['EKG', 'EOG_L', 'EOG_R']] # set offset multiplier (distance between channels in plot) mx = 0.1 # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=figsize, squeeze=False) fig.subplots_adjust(hspace=.1, top=.9, bottom=.1, left=.05, right=.95) yticks = [] for dat, ax, t in zip(data, axs.flatten(), title): for i, c in enumerate(channels): # normalize each channel to [0, 1] -> can also simply subtract the mean (cleaner looking), but # normalization preserves relative differences between channels while putting them on a common scale dat_ser = pd.Series(dat[(c, t)], index=dat.index) norm_dat = (dat_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i*mx # subtract i for plotting offset yticks.append(np.nanmedian(norm_dat)) ax.plot(norm_dat, linewidth=.5, color='C0') # plot spindles if spindles == True: sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat[i]] spins = pd.Series(index=norm_dat.index) spins[sp_events_TS] = norm_dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5) if spindle_rejects == True: # plot time-domain rejects sp_rejs_t_TS = [pd.Timestamp(x) for x in sp_rej_t_eventsflat[i]] spin_t_rejects = pd.Series(index=norm_dat.index) spin_t_rejects[sp_rejs_t_TS] = norm_dat[sp_rejs_t_TS] ax.plot(spin_t_rejects, color='red', alpha=0.5) # plot frequency-domain rejects sp_rejs_f_TS = [pd.Timestamp(x) for x in sp_rej_f_eventsflat[i]] spin_f_rejects = pd.Series(index=norm_dat.index) spin_f_rejects[sp_rejs_f_TS] = norm_dat[sp_rejs_f_TS] ax.plot(spin_f_rejects, color='darkred', alpha=0.5) # remove title to maximize on-screen plot area #ax.set_title(t) # set y axis params ax.set_yticks(yticks) ax.set_yticklabels(channels) ax.set_ylim(bottom = yticks[-1]-3*mx, top=yticks[0]+3*mx) ax.margins(x=0) # remove white space margins between data and y axis ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # if data roughly 5 mins or less, set minor x-axes if (d.data.index[-1] - d.data.index[0]).total_seconds() < 400: seconds = mdates.SecondLocator() ax.xaxis.set_minor_locator(seconds) ax.grid(axis='x', which='minor', linestyle=':') ax.grid(axis='x', which='major') # set overall parameters #fig.tight_layout(pad=0) # remove figure padding --> this pushes slider onto fig # remove labels to maximize on-screen plot area #plt.xlabel('Time') #fig.suptitle(d.metadata['file_info']['in_num']) # option to use x-axis slider insted of matplotlib zoom if slider: # plot minor axes --> requires slider for segments longer than 5mins seconds = mdates.SecondLocator() ax.xaxis.set_minor_locator(seconds) ax.grid(axis='x', which='minor', linestyle=':') ax.grid(axis='x', which='major') # set initial window x_min_index = 0 x_max_index = win_width*int(d.s_freq) x_min = d.data.index[x_min_index] x_max = d.data.index[x_max_index] x_dt = x_max - x_min y_min, y_max = plt.axis()[2], plt.axis()[3] plt.axis([x_min, x_max, y_min, y_max]) axcolor = 'lightgoldenrodyellow' axpos = plt.axes([0.2, 0.1, 0.65, 0.03], facecolor=axcolor) slider_max = len(d.data) - x_max_index - 1 # set slider position object spos = Slider(axpos, 'Pos', matplotlib.dates.date2num(x_min), matplotlib.dates.date2num(d.data.index[slider_max])) # format date names #plt.gcf().autofmt_xdate() # create slider update function def update(val): pos = spos.val xmin_time = matplotlib.dates.num2date(pos) xmax_time = matplotlib.dates.num2date(pos) + x_dt ax.axis([xmin_time, xmax_time, y_min, y_max]) fig.canvas.draw_idle() # update slider position on click spos.on_changed(update) #return fig, axs return fig def plotLFP(d, raw=True, filtered=True, thresholds=True, spindles=True, spindle_rejects=True, raw_lowpass=True, lowpass_freq=25, lowpass_order=4, win_frac=None, xlim=None): """ plot dual-channel LFP w/ option for double panel raw & filtered. red = spindle rejects by time domain criteria; dark red = spindle rejects by frequency domain criteria Parameters ---------- d: instance of ioeeg Dataset class raw: bool, optional, default: True Option to plot raw EEG filtered: bool, optional, default: True Option to plot filtered EEG thresholds: bool, optional, default: True Option to plot spindle detection thresholds spindles: bool, optional, default: True Option to plot spindle detections spindle_rejects: bool, optional, default: True Option to plot rejected spindle detections raw_lowpass: bool (default: True) Whether to plot the lowpass filtered raw data [in place of the unchanged raw data] lowpass_freq: int (default: 25) Frequency to lowpass the raw data for visualization (if not already applied) lowpass_order: int (default: 4) Butterworth lowpass filter order to be used if lowpass_raw is not None (doubles for filtfilt) win_frac: str or None (default: None) window count, if plotting x-axis in windows (ex. '3/4' for window 3 of 4) xlim: tuple of DateTimeIndex x-axis values to be used for x-limits Returns ------- matplotlib.pyplot figure instance """ data = [] title = [] # import data if raw == True: if not raw_lowpass: # use the unchanged raw data raw_data = d.data elif raw_lowpass: # use the lowpass filtered raw data try: # check if filtered data exists raw_lowpass_data = d.data_lowpass except AttributeError: # apply lowpass filter d.lowpass_raw(lowpass_freq, lowpass_order) raw_lowpass_data = d.data_lowpass if filtered == True or thresholds == True: filtd = d.spindle_calcs.loc(axis=1)[:, 'Filtered'] # set data to plot (title corresponds to multiindex level 2 in data df) if raw == True: if not raw_lowpass: # plot the unchanged data data.append(raw_data) title.append('Raw') elif raw_lowpass: # plot the lowpass data data.append(raw_lowpass_data) title.append('raw_lowpass') if filtered == True: data.append(filtd) title.append('Filtered') if thresholds == True: data.append(filtd) title.append('Filtered') # flatten events list by channel for plotting if spindles == True: sp_eventsflat = [list(itertools.chain.from_iterable(d.spindle_events[i])) for i in d.spindle_events.keys()] if spindle_rejects == True: sp_rej_t_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_t[i])) for i in d.spindle_rejects_t.keys()] sp_rej_f_eventsflat = [list(itertools.chain.from_iterable(d.spindle_rejects_f[i])) for i in d.spindle_rejects_f.keys()] # set channels for plotting channels = [x[0] for x in d.data.columns] # plot data fig, axs = plt.subplots(len(data), 1, sharex=True, figsize=(18,6), squeeze=False) fig.subplots_adjust(hspace=.2, top=.9, bottom=.1, left=.05, right=.95) for (e, dat), ax, t in zip(enumerate(data), axs.flatten(), title): for i, c in enumerate(channels): # set labels for only the first filtered channel (prevent duplicate legends) if i == 0: loSD = d.metadata['spindle_analysis']['sp_loSD'] hiSD = d.metadata['spindle_analysis']['sp_hiSD'] labels = {'RMS': 'RMS', 'RMS mavg': 'RMS mavg', 'lo_thres':f'RMS + {loSD} SD','hi_thres':f'RMS + {hiSD} SD', 'spindles':'Spindle Detection', 'spindle_rejects_t': 'Rejected Detection (time-domain)', 'spindle_rejects_f':'Rejected Detection (frequency-domain)'} else: label_keys = ['RMS', 'RMS mavg', 'lo_thres', 'hi_thres', 'spindles', 'spindle_rejects_t', 'spindle_rejects_f'] labels = {k:'_nolegend_' for k in label_keys} # normalize each channel to [0, 1]; plot signal on 1st & 2nd panels dat_ser = pd.Series(dat[(c, t)], index=dat.index) norm_dat = (dat_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i # subtract i for plotting offset ax.plot(norm_dat, linewidth=.5, color='C0') # plot thresholds on the second panel if (thresholds == True) & (e == 1): # RMS rms_ser = d.spRMS[c].RMS norm_rms = (rms_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i ax.plot(norm_rms, linewidth=.8, color='green', label = labels['RMS']) # RMS moving average rmsmavg_ser = d.spRMSmavg[c].RMSmavg norm_rmsmavg = (rmsmavg_ser - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i ax.plot(norm_rmsmavg, linewidth=.8, color='orange', label = labels['RMS mavg']) # threshold values norm_lo = (d.spThresholds[c].loc['Low Threshold'] - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i norm_hi = (d.spThresholds[c].loc['High Threshold'] - min(dat_ser))/(max(dat_ser)-min(dat_ser)) - i ax.axhline(norm_lo, linestyle='solid', color='grey', label = labels['lo_thres']) ax.axhline(norm_hi, linestyle='dashed', color='grey', label = labels['hi_thres']) # plot spindles on the 3rd panel if (spindles == True) & (e == 2): sp_events_TS = [pd.Timestamp(x) for x in sp_eventsflat[i]] spins = pd.Series(index=norm_dat.index) spins[sp_events_TS] = norm_dat[sp_events_TS] ax.plot(spins, color='orange', alpha=0.5, label=labels['spindles']) if (spindle_rejects == True) & (e == 2): # plot time-domain rejects sp_rejs_t_TS = [pd.Timestamp(x) for x in sp_rej_t_eventsflat[i]] spin_rejects_t = pd.Series(index=norm_dat.index) spin_rejects_t[sp_rejs_t_TS] = norm_dat[sp_rejs_t_TS] ax.plot(spin_rejects_t, color='red', alpha=0.5, label=labels['spindle_rejects_t']) # plot frequency-domain rejects sp_rejs_f_TS = [pd.Timestamp(x) for x in sp_rej_f_eventsflat[i]] spin_rejects_f = pd.Series(index=norm_dat.index) spin_rejects_f[sp_rejs_f_TS] = norm_dat[sp_rejs_f_TS] ax.plot(spin_rejects_f, color='darkred', alpha=0.5, label=labels['spindle_rejects_f']) # set subplot title if t == 'Raw': subtitle = 'Original Signal' elif t == 'raw_lowpass': lp_filtfreq = d.metadata['visualizations']['lowpass_freq'] subtitle = f'{lp_filtfreq} Hz Lowpass Filtered Signal' elif t == 'Filtered': sp_filtfreqs = d.metadata['spindle_analysis']['sp_filtwindow'] subtitle = f'{sp_filtfreqs[0]}-{sp_filtfreqs[1]} Hz Bandpass Filtered Signal' # set xlimit for windowing if xlim is not None: ax.set_xlim(xlim) # set subplot params ax.set_title(subtitle, pad=5, fontsize='medium') ax.set_yticks(list(np.arange(0.5, -(len(channels)-1), -1))) ax.set_yticklabels(channels) ax.margins(x=0) # remove white space margins between data and y axis ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) # plot minor axes seconds = mdates.SecondLocator() ax.xaxis.set_minor_locator(seconds) ax.grid(axis='x', which='minor', linestyle=':') ax.grid(axis='x', which='major') # set overall parameters fig_title = d.metadata['file_info']['in_num'] + ' ' + d.metadata['file_info']['path'].split('\\')[1] + ' ' + d.metadata['file_info']['path'].split('.')[0].split('_')[-1] if win_frac is not None: frac = win_frac.split('/') fig_title = fig_title + f' (Figure {frac[0]} of {frac[1]})' fig.suptitle(fig_title) fig.legend(ncol=2, loc='upper right', fancybox=True, framealpha=0.5) plt.xlabel('Time') return fig ### Spindle Methods ### def plot_spindlepower_chan_i(n, chan, show_peaks='spins', dB=False, spin_type='true_spins'): """ Plot individual spindle spectra for a given channel Parameters ---------- n: nrem.NREM object chan: str channel to plot show_peaks: bool or str (default: 'spins') which peaks to plot. 'spins' plots only peaks in the spindle range (options: None, 'spins', 'all') spin_type: str (default: 'true_spins') type of spindle to plot (options: 'true_spins', 'rejects') note: 'rejects' option plots spindles rejected in the frequency domain, not in the time domain """ # set data to plot if spin_type == 'true_spins': psd_dict = n.spindle_psd_i elif spin_type == 'rejects': psd_dict = n.spindle_psd_i_rejects # end if no spindles found matching the criteria if len(psd_dict[chan]) < 1: print(f'No {spin_type} found for channel {chan}') return # set figure & subplot params ncols = int(np.sqrt(len(psd_dict[chan]))) nrows = len(psd_dict[chan])//ncols + (len(psd_dict[chan]) % ncols > 0) fig, axs = plt.subplots(nrows = nrows, ncols = ncols, figsize=(ncols*3, ncols*2)) fig.subplots_adjust(hspace=0.8, wspace=0.5) # move axes into a list for plotting if only one subplot try: axs_flat = axs.flatten() except AttributeError: axs_flat = [axs] # plot spindles for spin, ax in zip(psd_dict[chan], axs_flat): # transform units if dB == True: pwr = 10 * np.log10(psd_dict[chan][spin].values) ylabel = 'Power (dB)' else: pwr = psd_dict[chan][spin].values ylabel = 'Power (mV^2/Hz)' # set y-axis to scientific notation ax.ticklabel_format(axis='y', style='sci', scilimits=(0,0)) # highlight spindle range. aquamarine or lavender works here too spin_range = n.metadata['spindle_analysis']['spin_range'] ax.axvspan(spin_range[0], spin_range[1], color='lavender', alpha=0.8, zorder=1) # plot spectrum ax.plot(psd_dict[chan][spin].index, pwr, color='black', alpha=0.9, linewidth=0.8, zorder=2) # grab the peaks on the power spectrum p_idx, props = find_peaks(psd_dict[chan][spin]) peaks = psd_dict[chan][spin].iloc[p_idx] # plot all peaks if show_peaks == 'all': ax.scatter(x=peaks.index, y=peaks.values, alpha=0.5, zorder=3) # plot only peaks in the spindle range elif show_peaks == 'spins': peaks_spins = peaks[(peaks.index > spin_range[0]) & (peaks.index < spin_range[1])] ax.scatter(x=peaks_spins.index, y=peaks_spins.values, alpha=0.5, zorder=3) # set subplot params ax.set_xlim(0, 25) ax.margins(y=0) ax.set_xticks([5, 10, 15, 20]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_title(spin, size='x-small') ax.tick_params(axis='both', labelsize='x-small', labelleft=True) # turn labelleft=False to remove y-tick labels # delete empty subplots --> this can probably be combined with previous loop for i, ax in enumerate(axs_flat): if i >= len(psd_dict[chan]): fig.delaxes(ax) # set figure params fig.tight_layout(pad=1, rect=[0, 0, 1, 0.93]) fig.text(0.5, 0, 'Frequency (Hz)', ha='center') fig.text(0, 0.5, ylabel, va='center', rotation='vertical') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0] + f'\nSpindle Power {chan}: {spin_type}') return fig def spec_spins(n, chan, x, labels=True, raw_lowpass = True): """ Vizualize individual peak detections, looking at % of > 4Hz power w/in the spindle range Parameters ---------- n: nrem.NREM object compatible with psd_type = 'i' under analyze_spindles method chan: str Channel to plot x: int Spindle # to plot labels: bool (default: True) Whether to print axis labels raw_lowpass: bool (default: True) Whether to plot the lowpass filtered raw data [in place of the unchanged raw data] Returns ------- matplotlib.Figure """ spin_range = n.metadata['spindle_analysis']['spin_range'] prune_range = n.metadata['spindle_analysis']['prune_range'] lowpass_freq = n.metadata['visualizations']['lowpass_freq'] # set data to plot try: psd = n.spindle_psd_i[chan][x] if raw_lowpass: # set spindle to lowpass data zpad_spin = n.spindles_zpad_lowpass[chan][x] else: # use original data zpad_spin = n.spindles_zpad[chan][x] spin_perc = n.spindle_multitaper_calcs[chan][f'perc_{prune_range[0]}-{prune_range[1]}Hzpwr_in_spin_range'].loc[x] status = 'accepted' except KeyError: psd = n.spindle_psd_i_rejects[chan][x] if raw_lowpass: # set spindle to lowpass data zpad_spin = n.spindles_zpad_rejects_lowpass[chan][x] else: # use original data zpad_spin = n.spindles_zpad_rejects[chan][x] spin_perc = n.spindle_multitaper_calcs_rejects[chan][f'perc_{prune_range[0]}-{prune_range[1]}Hzpwr_in_spin_range'].loc[x] status = 'rejected' # subset of power w/in prune range psd_subset = psd[(psd.index >= prune_range[0]) & (psd.index <= prune_range[1])] # power in spindle range psd_spins = psd[(psd.index >= spin_range[0]) & (psd.index <= spin_range[1])] # plot the peak detections fig, axs = plt.subplots(3, 1, figsize=(5,5)) plt.subplots_adjust(top=0.88, bottom=0.125, hspace=0.5) # plot the raw spindle + zpad ## set zpad label if raw_lowpass: zpad_label = f'{lowpass_freq}Hz Lowpass Filtered Signal' else: zpad_label = 'Original Signal' axs[0].plot(zpad_spin, alpha=1, lw=0.8, label=zpad_label) # convert x-tick labels from samples to ms xticks = axs[0].get_xticks().tolist() ms_xticks = [int(sample/n.s_freq*1000) for sample in xticks] axs[0].set_xticklabels(ms_xticks) if labels: axs[0].set_ylabel('Amplitude (mV)', size = 'small') axs[0].set_xlabel('Time (ms)', size = 'small') # plot the whole spectrum axs[1].plot(psd, c='black', lw=0.8, label='Power Spectrum') axs[1].axvspan(spin_range[0], spin_range[1], color='grey', alpha=0.2, zorder=0) if labels: axs[1].set_ylabel('Power (mv$^2$/Hz)', size = 'small') axs[1].set_xlabel('Frequency (Hz)', size = 'small') # plot just the subset of the spectrum used for pruning axs[2].plot(psd_subset, c='black', lw=0.8, zorder=3) axs[2].axvspan(spin_range[0], spin_range[1], color='grey', alpha=0.2, label = 'Spindle Range', zorder=0) axs[2].fill_between(psd_subset.index, psd_subset.values, zorder=0, alpha=0.3, color='pink') axs[2].fill_between(psd_subset.index, psd_subset.values, where=[sub in psd_spins.index for sub in psd_subset.index], zorder=1, alpha=1, color='white') axs[2].fill_between(psd_subset.index, psd_subset.values, where=[sub in psd_spins.index for sub in psd_subset.index], zorder=2, alpha=0.8, color='pink') if labels: axs[2].set_ylabel('Power (mv$^2$/Hz)', size = 'small') axs[2].set_xlabel('Frequency (Hz)', size = 'small') for ax in axs.flatten(): ax.tick_params(labelsize=9) # set y-axis to scientific notation ax.ticklabel_format(axis='y', style='sci', scilimits=(0,0)) fig.legend(loc='lower center', ncol=3, bbox_to_anchor=(0.5, 0), fontsize='x-small') fig.suptitle(f'Channel {chan} Spindle #{x}\nSpindle range comprises {spin_perc}% of {prune_range[0]}-{prune_range[1]}Hz power ({status})', size = 'medium') plt.xticks(fontsize=8) return fig def spec_peaks_SD(n, chan, x, labels=True): """ Vizualize spectral peaks from individual spindles This looks at mean power >4Hz + 1 SD as a potential frequency domain threshold Plots three panels: Upper = spindle tracing (w/ zero-pad) , Center = spectrum w/ peaks, Lower = > 4Hz spectrum w/ peaks *NOTE this is not used in final detection criteria Parameters ---------- n: nrem.NREM object compatible with psd_type = 'i' under analyze_spindles method chan: str Channel to plot x: int Spindle # to plot labels: bool (default: True) Whether to print axis labels Returns ------- matplotlib.Figure """ spin_range = n.metadata['spindle_analysis']['spin_range'] prune_frange = [4, 25] # change this to pull the value from metadata s = 1 # pull from metadata --> number of standard deviations above mean psd = n.spindle_psd_i[chan][x] zpad_spin = n.spindles_zpad[chan][x] psd_subset = psd[(psd.index >= prune_frange[0]) & (psd.index <= prune_frange[1])] # grab the peaks on the power spectrum p_idx, props = find_peaks(psd) peaks = psd.iloc[p_idx] peaks_spins = peaks[(peaks.index > spin_range[0]) & (peaks.index < spin_range[1])] # plot the peak detections fig, axs = plt.subplots(3, 1, figsize=(5,5)) plt.subplots_adjust(top=0.9, bottom=0.1, hspace=0.5) #fig.set_tight_layout(True) # plot the raw spindle + zpad axs[0].plot(zpad_spin, alpha=1, lw=0.8, label='raw signal') # convert x-tick labels from samples to ms xticks = axs[0].get_xticks().tolist() ms_xticks = [int(sample/n.s_freq*1000) for sample in xticks] axs[0].set_xticklabels(ms_xticks) if labels: axs[0].set_ylabel('Amplitude (mV)', size = 'small') axs[0].set_xlabel('Time (ms)', size = 'small') # plot the whole spectrum + peaks axs[1].plot(psd, c='black', lw=0.8, label='power spectrum') axs[1].axvspan(spin_range[0], spin_range[1], color='grey', alpha=0.2, label = 'Spindle Range', zorder=0) axs[1].scatter(x=peaks.index, y=peaks.values, c='grey', alpha=0.8, label='spectral peaks') if labels: axs[1].set_ylabel('Power (mv$^2$/Hz)', size = 'small') axs[1].set_xlabel('Frequency (Hz)', size = 'small') # plot just the subset of the spectrum used for pruning + mean & SD axs[2].plot(psd_subset, c='black', lw=0.8) axs[2].axvspan(spin_range[0], spin_range[1], color='grey', alpha=0.2, label = 'Spindle Range', zorder=0) axs[2].axhline(psd_subset.mean(), c='orange', linestyle = '-', label = 'mean power') axs[2].axhline(psd_subset.mean() + s*psd_subset.std(), c='orange', linestyle=':', label = f'mean+{s}SD') axs[2].scatter(x=peaks_spins.index, y=peaks_spins.values, c='grey', alpha=0.8, label='spectral peaks') if labels: axs[2].set_ylabel('Power (mv$^2$/Hz)', size = 'small') axs[2].set_xlabel('Frequency (Hz)', size = 'small') for ax in axs.flatten(): ax.tick_params(labelsize=9) ax.ticklabel_format(axis='y', style='sci', scilimits=(0,0)) #fig.legend() fig.suptitle(f'Channel {chan} Spindle #{x}', size = 'medium') plt.xticks(fontsize=8) return fig def plot_spins(n, datatype='Raw'): """ plot all spindle detections by channel Params ------ datatype: str (default: 'Raw') Data to plot [Options: 'Raw', 'spfilt'] """ exclude = ['EKG', 'EOG_L', 'EOG_R'] eeg_chans = [x for x in n.spindles.keys() if x not in exclude] ncols = 6 nrows = len(eeg_chans)//ncols + (len(eeg_chans) % ncols > 0) fig, axs = plt.subplots(nrows = nrows, ncols = ncols, sharex=True, figsize=(15, 7)) fig.subplots_adjust(hspace=0.5) for chan, ax in zip(n.spindles.keys(), axs.flatten()): if chan not in exclude: # set color iterator -- for other colors look at ocean, gnuplot, prism color=iter(plt.cm.nipy_spectral(np.linspace(0, 1, len(n.spindles[chan])))) for i in n.spindles[chan]: c = next(color) ax.plot(n.spindles[chan][i][datatype], c=c, alpha=1, lw=0.8) # set subplot params ax.set_xlim([-1800, 1800]) ax.set_title(chan, fontsize='medium') ax.tick_params(axis='both', which='both', labelsize=8) # delete empty subplots --> this can probably be combined with previous loop for i, ax in enumerate(axs.flatten()): if i >= len(eeg_chans): fig.delaxes(ax) # set figure params fig.tight_layout(pad=1, rect=[0, 0, 1, 0.95]) fig.text(0.5, 0, 'Time (ms)', ha='center') fig.text(0, 0.5, 'Amplitude (mV)', va='center', rotation='vertical') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0]) return fig def plot_spin_means(n, datatype='Raw', spins=True, count=True, buffer=False, err='sem', spin_color='black', count_color='dodgerblue', buff_color='lightblue'): """ plot all spindle detections by channel Note: Removed buffer option bc buffer calculations not maintained in nrem module (11-26-19) Parameters ---------- datatype: str (default: 'Raw') data to plot [options: 'Raw', 'spfilt'] spins: bool (default: True) plot spindle averages count: bool (default: True) plot overlay of spindle count at each timedelta # buffer: bool (default:False) # plot average data +/- 3s from zero-neg spindle peaks. # Note: this has an effect of washing out spindles features due to asymmetry in spindle distribution # around the negative peak and corresponding averaging of spindle with non-spindle data err: str (default:'sem') type of error bars to use [options: 'std', 'sem'] spin_color: str (default: 'black') color for plotting spindles buff_color: str (default:'lightblue') color for plotting buffer data """ exclude = ['EKG', 'EOG_L', 'EOG_R'] eeg_chans = [x for x in n.spindles.keys() if x not in exclude] # set channel locations locs = {'FPz': [4, 0],'Fp1': [3, 0],'Fp2': [5, 0],'AF7': [1, 1],'AF8': [7, 1],'F7': [0, 2],'F8': [8, 2],'F3': [2, 2],'F4': [6, 2],'F1': [3, 2], 'F2': [5, 2],'Fz': [4, 2],'FC5': [1, 3],'FC6': [7, 3],'FC1': [3, 3],'FC2': [5, 3],'T3': [0, 4],'T4': [8, 4],'C3': [2, 4],'C4': [6, 4], 'Cz': [4, 4],'CP5': [1, 5],'CP6': [7, 5],'CP1': [3, 5],'CP2': [5, 5],'CPz': [4, 5],'P3': [2, 6],'P4': [6, 6],'Pz': [4, 6],'T5': [0, 6], 'T6': [8, 6],'POz': [4, 7],'PO7': [1, 7],'PO8': [7, 7],'O1': [2, 8],'O2': [6, 8],'Oz': [4, 8]} fig, ax = plt.subplots(9,9, figsize=(15, 13)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for chan in n.spindles.keys(): if chan not in exclude: # if buffer: # data = n.spindle_buffer_means # ax.plot(data[(chan, 'mean')], alpha=1, color=buff_color, label='Overall Average', lw=1) # ax.fill_between(data.index, data[(chan, 'mean')] - data[(chan, err)], data[(chan, 'mean')] + data[(chan, err)], # color=buff_color, alpha=0.2) if spins: data = n.spindle_means[datatype] ax[locs[chan][1], locs[chan][0]].plot(data[(chan, 'mean')], alpha=1, color=spin_color, label='Spindle Average', lw=1) ax[locs[chan][1], locs[chan][0]].fill_between(data.index, data[(chan, 'mean')] - data[(chan, err)], data[(chan, 'mean')] + data[(chan, err)], color=spin_color, alpha=0.2) if count: ax1 = ax[locs[chan][1], locs[chan][0]].twinx() ax1.plot(data[chan, 'count'], color=count_color, alpha=0.3) ax1.fill_between(data.index, 0, data[(chan, 'count')], color=count_color, alpha=0.3) max_count = len(n.spindles[chan]) ticks = np.linspace(0, max_count, num=5, dtype=int) ax1.set_yticks(ticks=ticks) ax1.set_yticklabels(labels=ticks, color=count_color) ax1.tick_params(axis='y', labelsize=8) #color=count_color) # set subplot params ax[locs[chan][1], locs[chan][0]].set_xlim([-1800, 1800]) ax[locs[chan][1], locs[chan][0]].set_title(chan, fontsize='medium') ax[locs[chan][1], locs[chan][0]].tick_params(axis='both', which='both', labelsize=8) # remove unused plots coords = [[x, y] for x in range(0, 9) for y in range(0,9)] unused = [c for c in coords if c not in locs.values()] for u in unused: fig.delaxes(ax[u[1], u[0]]) # set figure params #fig.legend() fig.tight_layout(pad=1, rect=[0, 0, 1, 0.95]) fig.text(0.5, 0, 'Time (ms)', ha='center', size='large') fig.text(0, 0.5, 'Amplitude (mV)', va='center', rotation='vertical', color=spin_color, size='large') fig.text(1, 0.5, 'Spindle Count', va='center', rotation=270, color=count_color, size='large') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0] + f'\nSpindle Averages ({datatype})') return fig def plot_spin_clust_means(n, datatype='Raw', spins=True, count=True, err='sem', spin_color='black', count_color='dodgerblue'): """ plot mean spindles by cluster Parameters ---------- cluster: int which cluster to plot [options: 0, 1] datatype: str (default: 'Raw') data to plot [options: 'Raw', 'spfilt'] spins: bool (default: True) plot spindle averages count: bool (default: True) plot overlay of spindle count at each timedelta err: str (default:'sem') type of error bars to use [options: 'std', 'sem'] spin_color: str (default: 'black') color for plotting spindles """ fig, axs = plt.subplots(1, 2, figsize=(7,3), sharey=True) for ax, clust in zip(axs.flatten(), n.spindle_aggregates_clust): if spins: data = n.spindle_clust_means[datatype] ax.plot(data[(clust, 'mean')], alpha=1, color=spin_color, label='Spindle Average', lw=1) ax.fill_between(data.index, data[(clust, 'mean')] - data[(clust, err)], data[(clust, 'mean')] + data[(clust, err)], color=spin_color, alpha=0.2) if count: ax1 = ax.twinx() ax1.plot(data[clust, 'count'], color=count_color, alpha=0.3) ax1.fill_between(data.index, 0, data[(clust, 'count')], color=count_color, alpha=0.3) max_count = len(n.spindle_aggregates_clust[clust]['Raw'].columns) ticks = np.linspace(0, max_count, num=5, dtype=int) ax1.set_yticks(ticks=ticks) ax1.set_yticklabels(labels=ticks, color=count_color) ax1.tick_params(axis='y', labelsize=8) #color=count_color) # set subplot params ax.set_xlim([-1000, 1000]) ax.set_title('Cluster ' + str(clust), fontsize='medium') ax.set_xlabel('Time (ms)', size='large') ax.set_ylabel('Amplitude (mV)', size='large') ax.tick_params(axis='both', which='both', labelsize=8) # set figure params #fig.legend() fig.tight_layout(pad=1, rect=[0, 0, 1, 0.92]) if count: fig.text(1, 0.5, 'Spindle Count', va='center', rotation=270, color=count_color, size='large') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0] + f'\nSpindle Averages ({datatype})') return fig def plot_avg_spindle(n, datatype='Raw', spins=True, count=True, err='sem', spin_color='black', count_color='dodgerblue'): """ plot the average spindle tracing across the head For use in comparison with cluster averages """ fig, ax = plt.subplots() if spins: data = n.spindle_means_all[datatype] ax.plot(data['mean'], alpha=1, color=spin_color, label='Spindle Average', lw=1) ax.fill_between(data.index, data['mean'] - data[err], data['mean'] + data[err], color=spin_color, alpha=0.2) if count: ax1 = ax.twinx() ax1.plot(data['count'], color=count_color, alpha=0.3) ax1.fill_between(data.index, 0, data['count'], color=count_color, alpha=0.3) max_count = len(n.spindle_aggregates_all['Raw'].columns) ticks = np.linspace(0, max_count, num=5, dtype=int) ax1.set_yticks(ticks=ticks) ax1.set_yticklabels(labels=ticks, color=count_color) ax1.tick_params(axis='y', labelsize=8) #color=count_color) # set subplot params ax.set_xlim([-1000, 1000]) #ax.set_title('Cluster ' + str(clust), fontsize='medium') ax.set_xlabel('Time (ms)', size='large') ax.set_ylabel('Amplitude (mV)', size='large') ax.tick_params(axis='both', which='both', labelsize=8) # set figure params #fig.legend() fig.tight_layout(pad=1, rect=[0, 0, 1, 0.92]) if count: fig.text(1, 0.5, 'Spindle Count', va='center', rotation=270, color=count_color, size='large') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0] + f'\nSpindle Averages ({datatype})') return fig def plot_spindlepower_chan(n, chan, dB=True): """ Plot spindle power spectrum for a single channel """ # transform units if dB == True: pwr = 10 * np.log10(n.spindle_psd_concat[chan].values) ylabel = 'Power (dB)' else: pwr = n.spindle_psd_concat[chan].values ylabel = 'Power (mV^2/Hz)' fig, ax = plt.subplots() # plot just spectrum ax.plot(n.spindle_psd_concat[chan].index, pwr, color='black', alpha=0.9, linewidth=0.8) ax.axvspan(9, 16, color='lavender', alpha=0.8) ax.set_xlim(0, 25) ax.margins(y=0) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) plt.xlabel('Frequency (Hz)') plt.ylabel(ylabel) plt.title((n.metadata['file_info']['fname'].split('.')[0] + '\n\n' + chan + ' Concatenated Spindle Power'), size='medium', weight='semibold') return fig def plot_spindlepower(n, dB=True): """ Plot spindle power spectrum (from concatenated spindles) for all channels """ exclude = ['EKG', 'EOG_L', 'EOG_R'] eeg_chans = [x for x in n.spindle_psd_concat.keys() if x not in exclude] # set subplot parameters if len(eeg_chans) < 1: print('No concatened spindles detected to plot.') return elif len(eeg_chans) < 6: ncols = len(eeg_chans) else: ncols = int(len(eeg_chans)/6) nrows = len(eeg_chans)//ncols + (len(eeg_chans) % ncols > 0) fig, axs = plt.subplots(nrows = nrows, ncols = ncols, figsize=(ncols*3, ncols*2)) fig.subplots_adjust(hspace=0.8, wspace=0.5) # move axes into a list for plotting if only one subplot try: axs_flat = axs.flatten() except AttributeError: axs_flat = [axs] for chan, ax in zip(eeg_chans, axs_flat): # transform units if dB == True: pwr = 10 * np.log10(n.spindle_psd_concat[chan].values) ylabel = 'Power (dB)' else: pwr = n.spindle_psd_concat[chan].values ylabel = 'Power (mV^2/Hz)' # set y-axis to scientific notation ax.ticklabel_format(axis='y', style='sci', scilimits=(0,0)) # plot spectrum ax.plot(n.spindle_psd_concat[chan].index, pwr, color='black', alpha=0.9, linewidth=0.8) # highlight spindle range. aquamarine or lavender works here too spin_range = n.metadata['spindle_analysis']['spin_range'] ax.axvspan(spin_range[0], spin_range[1], color='grey', alpha=0.2) # set subplot params ax.set_xlim(0, 25) ax.margins(y=0) ax.set_xticks([5, 10, 15, 20]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_title(chan, size='medium', weight='bold') # delete empty subplots --> this can probably be combined with previous loop for i, ax in enumerate(axs_flat): if i >= len(eeg_chans): fig.delaxes(ax) # set figure params fig.tight_layout(pad=1, rect=[0, 0, 1, 0.93]) fig.text(0.5, 0, 'Frequency (Hz)', ha='center') fig.text(0, 0.5, ylabel, va='center', rotation='vertical') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0] + '\nSpindle Power') return fig def plot_spindlepower_headplot(n, dB=True): """ Headplot of spindle power spectrum for all channels NOTE: only for FS128 (12-11-19) """ # set channel locations locs = {'FPz': [4, 0],'Fp1': [3, 0],'Fp2': [5, 0],'AF7': [1, 1],'AF8': [7, 1],'F7': [0, 2],'F8': [8, 2],'F3': [2, 2],'F4': [6, 2],'F1': [3, 2], 'F2': [5, 2],'Fz': [4, 2],'FC5': [1, 3],'FC6': [7, 3],'FC1': [3, 3],'FC2': [5, 3],'T3': [0, 4],'T4': [8, 4],'C3': [2, 4],'C4': [6, 4], 'Cz': [4, 4],'CP5': [1, 5],'CP6': [7, 5],'CP1': [3, 5],'CP2': [5, 5],'CPz': [4, 5],'P3': [2, 6],'P4': [6, 6],'Pz': [4, 6],'T5': [0, 6], 'T6': [8, 6],'POz': [4, 7],'PO7': [1, 7],'PO8': [7, 7],'O1': [2, 8],'O2': [6, 8],'Oz': [4, 8]} fig, ax = plt.subplots(9,9, figsize=(12, 12)) plt.subplots_adjust(hspace=0.3, wspace=0.3) # use this or tight_layout for chan in locs.keys(): # transform units if dB == True: pwr = 10 * np.log10(n.spindle_psd_concat[chan].values) ylabel = 'Power (dB)' else: pwr = n.spindle_psd_concat[chan].values ylabel = 'Power (mV^2/Hz)' # plot spectrum #ax = plt.subplot() ax[locs[chan][1], locs[chan][0]].plot(n.spindle_psd_concat[chan].index, pwr, color='black', alpha=0.9, linewidth=0.8) # highlight spindle range. aquamarine or lavender works here too ax[locs[chan][1], locs[chan][0]].axvspan(9, 16, color='grey', alpha=0.2) # set subplot params ax[locs[chan][1], locs[chan][0]].set_xlim(0, 25) ax[locs[chan][1], locs[chan][0]].margins(y=0) ax[locs[chan][1], locs[chan][0]].set_xticks([5, 10, 15, 20]) ax[locs[chan][1], locs[chan][0]].tick_params(axis='both', labelsize=7) ax[locs[chan][1], locs[chan][0]].spines['top'].set_visible(False) ax[locs[chan][1], locs[chan][0]].spines['right'].set_visible(False) ax[locs[chan][1], locs[chan][0]].set_title(chan, size='small', weight='semibold') ax[locs[chan][1], locs[chan][0]].title.set_position([.5, 0.75]) #ax[locs[chan][1], locs[chan][0]].text(0.0, 0.0, chan) # remove unused plots coords = [[x, y] for x in range(0, 9) for y in range(0,9)] unused = [c for c in coords if c not in locs.values()] for u in unused: fig.delaxes(ax[u[1], u[0]]) # set labels fig.text(0.5, 0.08, 'Frequency (Hz)', ha='center', size='large', weight='semibold') fig.text(0.08, 0.5, ylabel, va='center', rotation='vertical', size='large', weight='semibold') return fig def plot_gottselig(n, datatype='calcs', plot_peaks=True, smoothed=True): """ plot gottselig normalization for all channels Parameters ---------- datatype: str (default: 'calcs') which data to plot [options: 'calcs', 'normed_pwr'] plot_peaks: bool (default: True) whether to plot peak detections [only if datatype='normed_pwr'] smoothed: bool (default: False) whether to plot rms smoothed signal used for peak calculations [only if datatype='normed_pwr'] """ exclude = ['EKG', 'EOG_L', 'EOG_R'] eeg_chans = [x for x in n.spindle_psd_concat.keys() if x not in exclude] # set subplot parameters if len(eeg_chans)/6 < 1: ncols = 1 else: ncols = int(len(eeg_chans)/6) nrows = len(eeg_chans)//ncols + (len(eeg_chans) % ncols > 0) fig, axs = plt.subplots(nrows = nrows, ncols = ncols, figsize=(ncols*3, ncols*2)) fig.subplots_adjust(hspace=0.8, wspace=0.5) for chan, ax in zip(eeg_chans, axs.flatten()): data = n.spindle_psd_concat[chan] data_normed = n.spindle_psd_concat_norm[chan] if datatype == 'calcs': # first plot ax.scatter(data_normed['values_to_fit'].index, data_normed['values_to_fit'].values, alpha=0.8, color='mediumslateblue', linewidths=0, marker='s', label='Normalization Range') ax.plot(data.index, 10*np.log10(data.values), color='black', label = 'Power Spectrum') ax.plot(data_normed['exp_fit_line'], color='mediumblue', label = 'Exponential fit') ax.set_title(chan) elif datatype == 'normed_pwr': # second plot ax.plot(data_normed['normed_pwr'], color='black', lw=0.8, label='Normalized power', zorder=2) ax.axvspan(9, 16, color='lightgrey', alpha=0.8, label = 'Spindle Range', zorder=1) ax.set_title(chan) if smoothed: # plot smoothed psd ax.plot(n.psd_concat_norm_peaks[chan]['smoothed_data'], lw=1.2, alpha=0.8, color='lime', zorder=3) if plot_peaks: # plot peak detections peaks = n.psd_concat_norm_peaks[chan]['peaks'] ax.scatter(x=peaks.index, y=peaks.values, color='magenta', alpha=0.8, marker=7, zorder=4) # set subplot params ax.margins(y=0) #ax.set_xticks([5, 10, 15, 20]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.set_title(chan, size='medium') # delete empty subplots for i, ax in enumerate(axs.flatten()): if i >= len(eeg_chans): fig.delaxes(ax) # set figure params fig.tight_layout(pad=1, rect=[0, 0, 1, 0.93]) fig.text(0.5, 0, 'Frequency (Hz)', ha='center', size='large') fig.text(0, 0.5, 'Power (dB)', va='center', rotation='vertical', size='large') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0] + '\n\nGottselig Normalization', size='large') return fig def plot_gottselig_headplot(n, datatype='calcs', plot_peaks=True, smoothed=True): """ plot gottselig normalization headplot for all channels NOTE: only for FS128 (12-11-19) To Do: Change plots for consistent y-axis Parameters ---------- datatype: str (default: 'calcs') which data to plot [options: 'calcs', 'normed_pwr'] plot_peaks: bool (default: True) whether to plot peak detections [only if datatype='normed_pwr'] smoothed: bool (default: False) whether to plot rms smoothed signal used for peak calculations [only if datatype='normed_pwr'] """ # set channel locations locs = {'FPz': [4, 0],'Fp1': [3, 0],'Fp2': [5, 0],'AF7': [1, 1],'AF8': [7, 1],'F7': [0, 2],'F8': [8, 2],'F3': [2, 2],'F4': [6, 2],'F1': [3, 2], 'F2': [5, 2],'Fz': [4, 2],'FC5': [1, 3],'FC6': [7, 3],'FC1': [3, 3],'FC2': [5, 3],'T3': [0, 4],'T4': [8, 4],'C3': [2, 4],'C4': [6, 4], 'Cz': [4, 4],'CP5': [1, 5],'CP6': [7, 5],'CP1': [3, 5],'CP2': [5, 5],'CPz': [4, 5],'P3': [2, 6],'P4': [6, 6],'Pz': [4, 6],'T5': [0, 6], 'T6': [8, 6],'POz': [4, 7],'PO7': [1, 7],'PO8': [7, 7],'O1': [2, 8],'O2': [6, 8],'Oz': [4, 8]} fig, ax = plt.subplots(9,9, figsize=(12, 12)) plt.subplots_adjust(hspace=0.3, wspace=0.3) # use this or tight_layout for chan in locs.keys(): data = n.spindle_psd_concat[chan] data_normed = n.spindle_psd_concat_norm[chan] if datatype == 'calcs': # first plot ax[locs[chan][1], locs[chan][0]].scatter(data_normed['values_to_fit'].index, data_normed['values_to_fit'].values, alpha=0.8, color='mediumslateblue', linewidths=0, marker='s', label='Normalization Range') ax[locs[chan][1], locs[chan][0]].plot(data.index, 10*np.log10(data.values), color='black', label = 'Power Spectrum') ax[locs[chan][1], locs[chan][0]].plot(data_normed['exp_fit_line'], color='mediumblue', label = 'Exponential fit') ax[locs[chan][1], locs[chan][0]].set_title(chan) elif datatype == 'normed_pwr': # second plot ax[locs[chan][1], locs[chan][0]].plot(data_normed['normed_pwr'], color='black', lw=0.8, label='Normalized power', zorder=2) ax[locs[chan][1], locs[chan][0]].axvspan(9, 16, color='lavender', alpha=0.8, label = 'Spindle Range', zorder=1) ax[locs[chan][1], locs[chan][0]].set_title(chan) if smoothed: # plot smoothed psd ax[locs[chan][1], locs[chan][0]].plot(n.psd_concat_norm_peaks[chan]['smoothed_data'], lw=1.2, color='lime', alpha=0.8, label='Smoothed Spectrum', zorder=3) if plot_peaks: # plot peak detections peaks = n.psd_concat_norm_peaks[chan]['peaks'] ax[locs[chan][1], locs[chan][0]].scatter(x=peaks.index, y=peaks.values, color='magenta', marker=7, alpha=0.8, label ='Spindle Peak', zorder=4) # set subplot params ax[locs[chan][1], locs[chan][0]].margins(y=0) ax[locs[chan][1], locs[chan][0]].set_xlim(0, 25) ax[locs[chan][1], locs[chan][0]].margins(y=0) ax[locs[chan][1], locs[chan][0]].set_xticks([5, 10, 15, 20]) ax[locs[chan][1], locs[chan][0]].tick_params(axis='both', labelsize=7) ax[locs[chan][1], locs[chan][0]].spines['top'].set_visible(False) ax[locs[chan][1], locs[chan][0]].spines['right'].set_visible(False) ax[locs[chan][1], locs[chan][0]].set_title(chan, size='small', weight='semibold') ax[locs[chan][1], locs[chan][0]].title.set_position([.5, 0.75]) # remove unused plots coords = [[x, y] for x in range(0, 9) for y in range(0,9)] unused = [c for c in coords if c not in locs.values()] for u in unused: fig.delaxes(ax[u[1], u[0]]) # set labels fig.text(0.5, 0.08, 'Frequency (Hz)', ha='center', size='large', weight='semibold') fig.text(0.08, 0.5, 'Power (dB)', va='center', rotation='vertical', size='large', weight='semibold') return fig ### Slow Oscillation Methods ### def plot_so(n, datatype='Raw'): """ plot all slow oscillation detections by channel Params ------ datatype: str (default: 'Raw') Data to plot [Options: 'Raw', 'sofilt'] """ # set channel locations locs = {'FPz': [4, 0],'Fp1': [3, 0],'Fp2': [5, 0],'AF7': [1, 1],'AF8': [7, 1],'F7': [0, 2],'F8': [8, 2],'F3': [2, 2],'F4': [6, 2],'F1': [3, 2], 'F2': [5, 2],'Fz': [4, 2],'FC5': [1, 3],'FC6': [7, 3],'FC1': [3, 3],'FC2': [5, 3],'T3': [0, 4],'T4': [8, 4],'C3': [2, 4],'C4': [6, 4], 'Cz': [4, 4],'CP5': [1, 5],'CP6': [7, 5],'CP1': [3, 5],'CP2': [5, 5],'CPz': [4, 5],'P3': [2, 6],'P4': [6, 6],'Pz': [4, 6],'T5': [0, 6], 'T6': [8, 6],'POz': [4, 7],'PO7': [1, 7],'PO8': [7, 7],'O1': [2, 8],'O2': [6, 8],'Oz': [4, 8]} exclude = ['EKG', 'EOG_L', 'EOG_R'] eeg_chans = [x for x in n.spindles.keys() if x not in exclude] fig, ax = plt.subplots(9,9, figsize=(15, 13)) plt.subplots_adjust(hspace=0.3, wspace=0.3) for chan in n.so.keys(): if chan not in exclude: # set color iterator -- for other colors look at ocean, gnuplot, prism color=iter(plt.cm.nipy_spectral(np.linspace(0, 1, len(n.so[chan])))) for i in n.so[chan]: c = next(color) ax[locs[chan][1], locs[chan][0]].plot(n.so[chan][i][datatype], c=c, alpha=1, lw=0.8) # set subplot params ax[locs[chan][1], locs[chan][0]].set_xlim([-2500, 2500]) ax[locs[chan][1], locs[chan][0]].set_title(chan, fontsize='medium') ax[locs[chan][1], locs[chan][0]].tick_params(axis='both', which='both', labelsize=8) # remove unused plots coords = [[x, y] for x in range(0, 9) for y in range(0,9)] unused = [c for c in coords if c not in locs.values()] for u in unused: fig.delaxes(ax[u[1], u[0]]) # set figure params fig.tight_layout(pad=1, rect=[0, 0, 1, 0.95]) fig.text(0.5, 0, 'Time (ms)', ha='center') fig.text(0, 0.5, 'Amplitude (mV)', va='center', rotation='vertical') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0]) fig.tight_layout() return fig ### SpSO Methods ### def plot_spsomap(n): """ Plot histogram mapping of spso """ fig, ax = plt.subplots(figsize=(14, 3)) ax.fill_between(x = n.so_bool.index, y1=0, y2=n.so_bool.T.sum(), alpha=0.5, color='blue', label='Slow Oscillations') ax.fill_between(x = n.spin_bool.index, y1=0, y2=n.spin_bool.T.sum(), alpha=0.5, color='green', label='Spindles') ax.set_xlabel('Time') ax.set_ylabel('Channel Count') ax.margins(x=0) ax.legend() def plot_spso_chan_subplots(n, chan, so_dtype='sofilt', sp_dtype='spfilt'): """ Subplot individual slow oscillations with overriding spindle detections (one subplot per SO) """ if sp_dtype == 'spfilt': spin_data = n.spfiltEEG elif sp_dtype == 'spsofilt': spin_data = n.spsofiltEEG elif sp_dtype == 'sofilt': spin_data = n.sofiltEEG height = 2/3 * int(len(n.so_spin_map[chan])) fig, axs = plt.subplots(nrows=int(len(n.so_spin_map[chan])/3)+1, ncols=3, figsize=(10, height)) fig.subplots_adjust(hspace=0.4) for ax, (so, spins) in zip(axs.flatten(), n.so_spin_map[chan].items()): ax.plot(n.so[chan][so].time, n.so[chan][so][so_dtype]) for spin in spins: ax.plot(spin_data[(chan, 'Filtered')].loc[n.spindle_events[chan][spin]], lw=1) ax.tick_params(axis='x', labelsize='small', rotation=15., pad=.1) # delete empty subplots --> this can probably be combined with previous loop for i, ax in enumerate(axs.flatten()): if i >= len(n.so_spin_map[chan]): fig.delaxes(ax) fig.text(0.5, 0, 'Time (ms)', ha='center') fig.text(0, 0.5, 'Amplitude (mV)', va='center', rotation='vertical') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0]) def plot_spso_chan(n, chan, so_dtype='sofilt', sp_dtype='spsofilt', spin_tracings=False, plot_dist=True, so_tracings=True): """ Plot individual slow oscillations with overriding spindle detections Parameters ---------- chan: str channel to plot so_dtype: str (default: 'sofilt') slow oscillation data to plot [Options: 'sofilt', 'spsofilt'] sp_dtype: str (default: 'spsofilt') spindle data to plot [Options: 'spfilt', 'spsofilt'] *Note: spfilt is broken ATM spin_tracings: bool (default: False) whether to plot spindle tracings plot_dist: bool (default: True) whether to plot spindle distribution so_tracings: bool (default: True) whether to plot so tracings (if False, will plot SO mean) """ fig, ax = plt.subplots(figsize=(10, 10)) so_dict = {} for so_id, df in n.spso_aggregates[chan].items(): if so_tracings: # plot slow oscillation ax.plot(df[so_dtype], color='black', alpha=0.2) else: # grab the slow oscillations to calculate mean so_dict[chan+'_'+str(so_id)] = df[df.index.notna()][so_dtype] # grab spindle columns spin_cols = [x for x in df.columns if x.split('_')[0] == 'spin'] for spin in spin_cols: # get index & cluster of spindle spin_idx = int(spin_cols[0].split('_')[1]) clust = int(n.spindle_stats_i[(n.spindle_stats_i.chan == chan) & (n.spindle_stats_i.spin == spin_idx)].cluster.values) if spin_tracings: # plot spindle c = plt.get_cmap('RdYlBu', 2)(clust) hx = matplotlib.colors.rgb2hex(c[:-1]) ax.plot(df[sp_dtype][df[spin].notna()], lw=3, color=hx, alpha=0.5) # plot SO mean if so_tracings == False: so_df = pd.DataFrame(so_dict) mean = so_df.mean(axis=1) sd = so_df.std(axis=1) if len(mean) > 0: ax.plot(mean, color='black') ax.fill_between(mean.index, mean-sd, mean+sd, color='black', alpha=0.3) if plot_dist: # plot normalized distribution of each cluster for each timepoint ax1 = ax.twinx() for clust, dct in n.spin_dist['by_chan'][chan].items(): # set color c = plt.get_cmap('RdYlBu', 2)(int(clust)) hx = matplotlib.colors.rgb2hex(c[:-1]) # plot normed distribution ax1.plot(dct['dist_norm'], color=c, label='Cluster ' + clust) ax1.fill_between(dct['dist_norm'].index, 0, dct['dist_norm'].values, color=c, alpha=0.3) ax1.set_ylabel('Proportion of spindles present') ax1.legend() ax.tick_params(axis='x', rotation=15., pad=.1) ax.tick_params(axis='y', rotation=0, pad=.1) ax.set_ylabel('Ampltiude (mV)') ax.set_xlabel('Time (ms)') fig.suptitle(n.metadata['file_info']['fname'].split('.')[0]) fig.tight_layout() return fig def plot_spso(n, so_dtype='sofilt', sp_dtype='spsofilt', spin_tracings=False, plot_dist=True, so_tracings=True, cmap='winter', ylims=None, legend=False): """ Plot individual slow oscillations with overriding spindle detections Parameters ---------- so_dtype: str (default: 'sofilt') slow oscillation data to plot [Options: 'sofilt', 'spsofilt'] sp_dtype: str (default: 'spsofilt') spindle data to plot [Options: 'spfilt', 'spsofilt'] *Note: spfilt is broken ATM spin_tracings: bool (default: False) whether to plot spindle tracings plot_dist: bool (default: True) whether to plot spindle distribution so_tracings: bool (default: True) whether to plot SO tracings (if set to False, mean SO will be plotted) cmap: str (default:'winter') matplotlib colormap. usually 'winter' or 'RdYlBu' ylims: tuple or None (default: None) y limits for SO tracings axis. for use if an outlier is skewing the axis legend: bool (default: False) whether to plot the legend """ fig, ax = plt.subplots(figsize=(8, 8)) plt.rcParams["font.family"] = "Arial" so_dict = {} for chan in n.spso_aggregates.keys(): for so_id, df in n.spso_aggregates[chan].items(): if so_tracings: # plot slow oscillation ax.plot(df[so_dtype], color='black', alpha=0.2) if ylims is not None: ax.set_ylim(ylims) else: # grab the slow oscillations to calculate mean so_dict[chan+'_'+str(so_id)] = df[df.index.notna()][so_dtype] # grab spindle columns spin_cols = [x for x in df.columns if x.split('_')[0] == 'spin'] for spin in spin_cols: # get index & cluster of spindle spin_idx = int(spin_cols[0].split('_')[1]) clust = int(n.spindle_stats_i[(n.spindle_stats_i.chan == chan) & (n.spindle_stats_i.spin == spin_idx)].cluster.values) if spin_tracings: # plot spindle c = plt.get_cmap(cmap, 2)(clust) hx = matplotlib.colors.rgb2hex(c[:-1]) ax.plot(df[sp_dtype][df[spin].notna()], lw=3, color=hx, alpha=0.8) # plot SO mean if so_tracings == False: so_df =
pd.DataFrame(so_dict)
pandas.DataFrame
import os, glob import numpy as np import pandas as pd import torch import torch.utils.data as data from torchvision import datasets, models, transforms import cv2 import json from PIL import Image import random from sklearn.utils import shuffle from weighted_sampler import get_weighted_sample import settings from albumentations import ( HorizontalFlip, IAAPerspective, ShiftScaleRotate, CLAHE, RandomRotate90, RandomBrightnessContrast, Transpose, ShiftScaleRotate, Blur, OpticalDistortion, GridDistortion, HueSaturationValue, IAAAdditiveGaussianNoise, GaussNoise, MotionBlur, MedianBlur, IAAPiecewiseAffine, VerticalFlip, IAASharpen, IAAEmboss, RandomContrast, RandomBrightness, Flip, OneOf, Compose, RandomGamma, ElasticTransform, ChannelShuffle,RGBShift, Rotate ) class Rotate90(RandomRotate90): def apply(self, img, factor=3, **params): return np.ascontiguousarray(np.rot90(img, 1)) #def apply_to_bbox(self, bbox, factor=3, **params): # return F.bbox_rot90(bbox, 3, **params) def strong_aug(p=1): return Compose([ RandomRotate90(), Flip(), #Transpose(), OneOf([ IAAAdditiveGaussianNoise(), GaussNoise(), ], p=0.2), OneOf([ MotionBlur(p=.2), MedianBlur(blur_limit=3, p=.1), Blur(blur_limit=3, p=.1), ], p=0.2), ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=.4), OneOf([ OpticalDistortion(p=0.3), GridDistortion(p=.1), IAAPiecewiseAffine(p=0.3), ], p=0.2), OneOf([ CLAHE(clip_limit=2), IAASharpen(), IAAEmboss(), RandomContrast(), RandomBrightness(), ], p=0.3), HueSaturationValue(p=0.3), ], p=p) def augment_inclusive(p=.9): return Compose([ RandomRotate90(), Flip(), #Transpose(), OneOf([ CLAHE(clip_limit=2), IAASharpen(), IAAEmboss(), RandomContrast(), RandomBrightness(), ], p=0.3), # #HorizontalFlip(.5), ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.1, rotate_limit=20, p=.75 ), Blur(blur_limit=3, p=.33), OpticalDistortion(p=.33), GridDistortion(p=.33), #HueSaturationValue(p=.33) ], p=p) def weak_aug(p=1.): return Compose([ RandomRotate90(), Flip(), ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.1, rotate_limit=10, p=.75 ), RandomBrightnessContrast(p=0.33), #Blur(blur_limit=3, p=.33), #OpticalDistortion(p=.33), #GridDistortion(p=1.33), #HueSaturationValue(p=.33) ], p=p) def weak_aug_tta(p=1.): return Compose([ RandomRotate90(p=1.), Flip(p=1.), ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.1, rotate_limit=10, p=1. ), RandomBrightnessContrast(p=1.), #Blur(blur_limit=3, p=.33), #OpticalDistortion(p=.33), #GridDistortion(p=1.33), #HueSaturationValue(p=.33) ], p=p) #def augment(aug, image): # return aug(image=image)['image'] def augment_4chan(aug, image): #print(image.shape) #image[:,:,0:3]=aug(image=image[:,:,0:3])['image'] #image[:,:,3]=aug(image=image[:,:,1:4])['image'][:,:,2] augmented = aug(image=image[:,:,0:3], mask=image[:,:,3]) image[:,:,0:3] = augmented['image'] image[:,:,3] = augmented['mask'] #image[0:3,:,:]=aug(image=image[0:3,:,:])['image'] #print('>>>', image.shape) #print(aug(image=image[1:4,:,:])['image'][2,:,:].shape) #image[3,:,:]=aug(image=image[1:4,:,:])['image'][2,:,:] return image def get_tta_aug(tta_index=0): tta_augs = { 1: HorizontalFlip(always_apply=True), 2: VerticalFlip(always_apply=True), 3: Compose([HorizontalFlip(always_apply=True),VerticalFlip(always_apply=True)]), 4: Rotate90(), 5: Compose([Rotate90(), HorizontalFlip(always_apply=True)]), 6: Compose([VerticalFlip(always_apply=True), Rotate90()]), 7: Compose([HorizontalFlip(always_apply=True),VerticalFlip(always_apply=True), Rotate90()]), } return tta_augs[tta_index] def open_rgby(img_dir, id, suffix): #a function that reads RGBY image colors = ['red','green','blue','yellow'] #flags = cv2.IMREAD_GRAYSCALE #img = [cv2.imread(os.path.join(img_dir, id+'_'+color+'.png'), flags).astype(np.float32)/255 # for color in colors] if suffix == 'png': #img = [np.array(Image.open(os.path.join(img_dir, id+'_'+color+'.'+suffix)).convert('L')) for color in colors] img = [cv2.imread(os.path.join(img_dir, id+'_'+color+'.png'))[:,:,0] for color in colors] img = np.stack(img, axis=-1) else: #img = [np.array(Image.open(os.path.join(img_dir, id+'_'+color+'.'+suffix)).convert('L').resize((512,512))) for color in colors] img = open_hpa_img(img_dir,id) #img = np.stack(img, axis=-1) #img = img.transpose((2,0,1)) return img.astype(np.uint8) def open_hpa_img(img_dir, id): colors = ['red','green','blue'] hpa_img = np.zeros((512, 512, 4)) for i, c in enumerate(colors): img = cv2.imread(os.path.join(img_dir, id+'_'+c+'.jpg')) img = cv2.resize(img, (512,512)) hpa_img[:,:,i] = img[:,:,i] yellow_img = cv2.imread(os.path.join(img_dir, id+'_yellow.jpg')) yellow_img = cv2.resize(yellow_img, (512,512)) hpa_img[:,:,3] = yellow_img[:,:,0] return hpa_img class ImageDataset(data.Dataset): def __init__(self, train_mode, img_dir, img_ids, labels=None, suffix=None, tta_index=0, hpa_img_dir=settings.HPA_IMG_DIR): self.train_mode = train_mode self.img_dir = img_dir self.img_ids = img_ids self.labels = labels self.suffix = suffix self.tta_index = tta_index self.hpa_img_dir = hpa_img_dir def __getitem__(self, index): if self.suffix[index] == 'png': img = open_rgby(self.img_dir, self.img_ids[index], self.suffix[index]) else: img = open_rgby(self.hpa_img_dir, self.img_ids[index], self.suffix[index]) #Image.fromarray(img[:,:,0:3], mode='RGB').show() #Image.fromarray(img[:,:,3], mode='L').show() #cv2.imshow('img', img[:,:,0:3]) #cv2.imshow('img', img[:,:,3]) #cv2.waitKey(0) if self.train_mode: aug = augment_inclusive() #aug = weak_aug() img = augment_4chan(aug, img) elif self.tta_index != 0: #print(self.tta_index) if self.tta_index <= 7: aug = get_tta_aug(self.tta_index) else: aug = weak_aug_tta() #print(aug) img = augment_4chan(aug, img) else: pass #print(img.shape) #Image.fromarray(img[:,:,0:3], mode='RGB').show() #Image.fromarray(img[:,:,3], mode='L').show() img = img.transpose((2,0,1)) img = (img /255).astype(np.float32) #normalize mean = [0.0804, 0.0526, 0.0548, 0.0827] std = [0.1496, 0.1122, 0.1560, 0.1497] img[0, :,:,] = (img[0, :,:,] - mean[0]) / std[0] img[1, :,:,] = (img[1, :,:,] - mean[1]) / std[1] img[2, :,:,] = (img[2, :,:,] - mean[2]) / std[2] img[3, :,:,] = (img[3, :,:,] - mean[3]) / std[3] if self.labels is None: return img else: return img, self.get_label_tensor(self.labels[index]) def get_label_tensor(self, label): classes = set([int(x) for x in label.strip().split()]) labels = torch.FloatTensor([ 1 if i in classes else 0 for i in range(28)]) return labels def __len__(self): return len(self.img_ids) def get_train_val_loader(batch_size=4, val_batch_size=4, dev_mode=False, val_num=3500, balanced=False, hpa=0): df = pd.read_csv(settings.TRAIN_LABEL) df = shuffle(df, random_state=6) df['suffix'] = 'png' split_index = int(df.shape[0] * 0.9) df_train = df.iloc[:split_index] df_val = df.iloc[split_index:] df_val = df_val.iloc[:val_num] print(df_val.shape) if hpa > 0: df_hpa = get_hpa_train_df(hpa) df_train = pd.concat([df_train, df_hpa]) df_train = shuffle(df_train) #print(df_train.head()) img_dir = settings.TRAIN_IMG_DIR img_ids_train = df_train['Id'].values.tolist() labels_train = df_train['Target'].values.tolist() suffix = df_train['suffix'].values.tolist() if balanced: img_ids_train = get_weighted_sample(df_train, 20000) labels_train = df_train.set_index('Id').loc[img_ids_train].Target.values.tolist() if dev_mode: img_ids_train = img_ids_train[4:5] labels_train = labels_train[4:5] suffix = suffix[4:5] dset_train = ImageDataset(True, img_dir, img_ids_train, labels_train, suffix, hpa_img_dir=settings.HPA_IMG_DIR) dloader_train = data.DataLoader(dset_train, batch_size=batch_size, shuffle=True, num_workers=4, drop_last=True) dloader_train.num = len(dset_train) img_ids_val = df_val['Id'].values.tolist() labels_val = df_val['Target'].values.tolist() suffix_val = df_val['suffix'].values.tolist() if dev_mode: img_ids_val = img_ids_val[3:4] labels_val = labels_val[3:4] suffix_val = suffix_val[3:4] dset_val = ImageDataset(False, img_dir, img_ids_val, labels_val, suffix_val) dloader_val = data.DataLoader(dset_val, batch_size=val_batch_size, shuffle=False, num_workers=4, drop_last=False) dloader_val.num = len(dset_val) return dloader_train, dloader_val def get_hpa_train_df(train_num): df = pd.read_csv('HPAv18RGBY_WithoutUncertain_wodpl.csv') df = shuffle(df, random_state=1234) df['suffix'] = 'jpg' split_index = int(df.shape[0] * 0.9) df_train = df.iloc[:split_index] df_train = shuffle(df_train) return df_train.iloc[:train_num] def get_hpa_loader(batch_size=4, dev_mode=False): df_train =
pd.read_csv('HPAv18RGBY_WithoutUncertain_wodpl.csv')
pandas.read_csv
import unittest import os import pandas as pd import logging from sklearn.exceptions import NotFittedError from automatminer.utils.package_tools import compare_columns, check_fitted, set_fitted from automatminer.utils.ml_tools import is_greater_better, regression_or_classification from automatminer.utils.log_tools import initialize_logger, initialize_null_logger from automatminer.base import DataframeTransformer, logger_base_name run_dir = os.getcwd() class MyTransformer(DataframeTransformer): def __init__(self): self.is_fit = False @set_fitted def fit(self, df, target): return df @check_fitted def transform(self, df, target): return df class TestUtils(unittest.TestCase): def test_logger_initialization(self): log = initialize_logger(logger_base_name, level=logging.DEBUG) log.info("Test logging.") log.debug("Test debug.") log.warning("Test warning.") # test the log is written to run dir (e.g. where the script was called # from and not the location of this test file log_file = os.path.join(run_dir, logger_base_name + ".log") self.assertTrue(os.path.isfile(log_file)) with open(log_file, 'r') as f: lines = f.readlines() self.assertTrue("logging" in lines[0]) self.assertTrue("debug" in lines[1]) self.assertTrue("warning" in lines[2]) null = initialize_null_logger("matbench_null") null.info("Test null log 1.") null.debug("Test null log 2.") null.warning("Test null log 3.") null_log_file = os.path.join(run_dir, logger_base_name + "_null.log") self.assertFalse(os.path.isfile(null_log_file)) def test_is_greater_better(self): self.assertTrue(is_greater_better('accuracy')) self.assertTrue(is_greater_better('r2_score')) self.assertTrue(is_greater_better('neg_mean_squared_error')) self.assertFalse(is_greater_better('mean_squared_error')) def test_compare_columns(self): df1 = pd.DataFrame({"a": [1, 2], "b": [2, 3]}) df2 =
pd.DataFrame({"b": [3, 4], "c": [4, 5]})
pandas.DataFrame
import unittest import pandas as pd from tagr.tagging.artifacts import Artifact DATA = [{"a": 1, "b": 2, "c": 3}, {"a": 10, "b": 20, "c": 30}] DF =
pd.DataFrame(DATA)
pandas.DataFrame
# -*- coding: utf-8 -*- import warnings from datetime import datetime, timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.errors import PerformanceWarning from pandas import (Timestamp, Timedelta, Series, DatetimeIndex, TimedeltaIndex, date_range) @pytest.fixture(params=[None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific']) def tz(request): return request.param @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=str) def delta(request): # Several ways of representing two hours return request.param @pytest.fixture( params=[ datetime(2011, 1, 1), DatetimeIndex(['2011-01-01', '2011-01-02']), DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern'), np.datetime64('2011-01-01'), Timestamp('2011-01-01')], ids=lambda x: type(x).__name__) def addend(request): return request.param class TestDatetimeIndexArithmetic(object): def test_dti_add_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): idx + Timestamp('2011-01-01') def test_dti_radd_timestamp_raises(self): idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add DatetimeIndex and Timestamp" with tm.assert_raises_regex(TypeError, msg): Timestamp('2011-01-01') + idx # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_add_int(self, tz, one): # Variants of `one` for #19012 rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + one expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) rng += one tm.assert_index_equal(rng, expected) def test_dti_sub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - one expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) def test_dti_isub_int(self, tz, one): rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) rng -= one tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and timedelta-like def test_dti_add_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) def test_dti_iadd_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) rng += delta tm.assert_index_equal(rng, expected) def test_dti_sub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) def test_dti_isub_timedeltalike(self, tz, delta): rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) rng -= delta tm.assert_index_equal(rng, expected) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range('0 days', periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = 'cannot perform __neg__ with this index type:' with tm.assert_raises_regex(TypeError, msg): tdi.values - dti def test_dti_isub_tdi(self, tz): # GH 17558 dti = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) tdi = pd.timedelta_range('0 days', periods=10) expected = pd.date_range('2017-01-01', periods=10, tz=tz, freq='-1D') # isub with TimedeltaIndex result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) msg = 'cannot subtract TimedeltaIndex and DatetimeIndex' with tm.assert_raises_regex(TypeError, msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp('2017-01-01', tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = '|'.join(['cannot perform __neg__ with this index type:', 'ufunc subtract cannot use operands with types']) with tm.assert_raises_regex(TypeError, msg): tdi.values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. def test_add_datetimelike_and_dti(self, addend): # GH#9631 dti = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti + addend with tm.assert_raises_regex(TypeError, msg): addend + dti def test_add_datetimelike_and_dti_tz(self, addend): # GH#9631 dti_tz = DatetimeIndex(['2011-01-01', '2011-01-02']).tz_localize('US/Eastern') msg = 'cannot add DatetimeIndex and {0}'.format( type(addend).__name__) with tm.assert_raises_regex(TypeError, msg): dti_tz + addend with tm.assert_raises_regex(TypeError, msg): addend + dti_tz # ------------------------------------------------------------- def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with pytest.raises(TypeError): dti_tz - dti with pytest.raises(TypeError): dti - dti_tz with pytest.raises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with pytest.raises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx def test_ufunc_coercions(self): idx = date_range('2011-01-01', periods=3, freq='2D', name='x') delta = np.timedelta64(1, 'D') for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2011-01-02', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = date_range('2010-12-31', periods=3, freq='2D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '2D' delta = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D'), np.timedelta64(3, 'D')]) for result in [idx + delta, np.add(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2011-01-02', '2011-01-05', '2011-01-08'], freq='3D', name='x') tm.assert_index_equal(result, exp) assert result.freq == '3D' for result in [idx - delta, np.subtract(idx, delta)]: assert isinstance(result, DatetimeIndex) exp = DatetimeIndex(['2010-12-31', '2011-01-01', '2011-01-02'], freq='D', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'D' def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(['now', pd.Timestamp.max]) dtimin = pd.to_datetime(['now', pd.Timestamp.min]) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants: with pytest.raises(OverflowError): dtimax - variant expected = pd.Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = pd.Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError): dtimin - variant @pytest.mark.parametrize('box', [np.array, pd.Index]) def test_dti_add_offset_array(self, tz, box): # GH#18849 dti = pd.date_range('2017-01-01', periods=2, tz=tz) other = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) with tm.assert_produces_warning(PerformanceWarning): res = dti + other expected = DatetimeIndex([dti[n] + other[n] for n in range(len(dti))], name=dti.name, freq='infer') tm.assert_index_equal(res, expected) with
tm.assert_produces_warning(PerformanceWarning)
pandas.util.testing.assert_produces_warning
# -*- coding: utf-8 -*- import json import pandas import re import sys import tests.sample_pydre.core import tests.sample_pydre.rois import tests.sample_pydre.metrics import tests.sample_pydre.filters import pathlib from tqdm import tqdm import logging logger = logging.getLogger('PydreLogger') class Project(): def __init__(self, projectfilename): self.project_filename = projectfilename # This will suppress the unnecessary SettingWithCopy Warning. pandas.options.mode.chained_assignment = None self.definition = None with open(self.project_filename) as project_file: try: self.definition = json.load(project_file) except json.decoder.JSONDecodeError as e: # The exact location of the error according to the exception, is a little wonky. Amongst all the text # editors used, the line number was consistently 1 more than the actual location of the syntax error. # Hence, the "e.lineno -1" in the logger error below. logger.error("In " + projectfilename + ": " + str(e.msg) + ". Invalid JSON syntax found at Line: " + str(e.lineno - 1) + ".") # exited as a general error because it is seemingly best suited for the problem encountered sys.exit(1) self.data = [] def __loadSingleFile(self, filename): """Load a single .dat file (whitespace delmited csv) into a DriveData object""" # Could cache this re, probably affect performance d = pandas.read_csv(filename, sep='\s+', na_values='.') datafile_re = re.compile("([^_]+)_Sub_(\d+)_Drive_(\d+)(?:.*).dat") match = datafile_re.search(filename) if match: experiment_name, subject_id, drive_id = match.groups() else: logger.warning( "Drivedata filename does not match expected format: ExperimentName_Subject_0_Drive_0.dat") experiment_name = pathlib.Path(filename).stem subject_id = 1 drive_id = 1 return tests.sample_pydre.core.DriveData(PartID=int(subject_id), DriveID=int(drive_id), roi=None, data=d, sourcefilename=filename) def processROI(self, roi, dataset): """ Handles running region of interest definitions for a dataset Args: roi: A dict containing the type of a roi and the filename of the data used to process it dataset: a list of pandas dataframes containing the source data to partition Returns: A list of pandas DataFrames containing the data for each region of interest """ roi_type = roi['type'] if roi_type == "time": logger.info("Processing ROI file " + roi['filename']) roi_obj = tests.sample_pydre.rois.TimeROI(roi['filename']) return roi_obj.split(dataset) elif roi_type == "rect": logger.info("Processing ROI file " + roi['filename']) roi_obj = tests.sample_pydre.rois.SpaceROI(roi['filename']) return roi_obj.split(dataset) elif roi_type == "column": logger.info("Processing ROI column " + roi['columnname']) roi_obj = tests.sample_pydre.rois.ColumnROI(roi['columnname']) return roi_obj.split(dataset) else: return [] def processFilter(self, filter, dataset): """ Handles running any filter definition Args: filter: A dict containing the type of a filter and the parameters to process it Returns: A list of values with the results """ try: func_name = filter.pop('function') filter_func = tests.sample_pydre.filters.filtersList[func_name] report_name = filter.pop('name') col_names = tests.sample_pydre.filters.filtersColNames[func_name] except KeyError as e: logger.warning( "Filter definitions require both \"name\" and \"function\". Malformed filters definition: missing " + str( e)) sys.exit(1) if len(col_names) > 1: x = [filter_func(d, **filter) for d in tqdm(dataset, desc=func_name)] report = pandas.DataFrame(x, columns=col_names) else: report = pandas.DataFrame([filter_func( d, **filter) for d in tqdm(dataset, desc=func_name)], columns=[report_name, ]) return report def processMetric(self, metric, dataset): """ Handles running any metric definition Args: metric: A dict containing the type of a metric and the parameters to process it Returns: A list of values with the results """ try: func_name = metric.pop('function') metric_func = tests.sample_pydre.metrics.metricsList[func_name] report_name = metric.pop('name') col_names = tests.sample_pydre.metrics.metricsColNames[func_name] except KeyError as e: logger.warning( "Metric definitions require both \"name\" and \"function\". Malformed metrics definition: missing " + str( e)) sys.exit(1) if len(col_names) > 1: x = [metric_func(d, **metric) for d in dataset] report =
pandas.DataFrame(x, columns=col_names)
pandas.DataFrame
import unittest import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline import numpy as np from ITMO_FS.embedded import * np.random.seed(42) class TestCases(unittest.TestCase): data, target = np.random.randint(10, size=(100, 20)), np.random.randint(10, size=(100,)) feature_names = [''.join(['f', str(i)]) for i in range(data.shape[1])] feature_names_override = [''.join(['g', str(i)]) for i in range(data.shape[1])] def test_MOSS(self): # MOSS res = MOS().fit_transform(self.data, self.target, sampling=True) assert self.data.shape[0] == res.shape[0] print("MOSS:", self.data.shape, '--->', res.shape) def test_MOSNS(self): # MOSNS res = MOS().fit_transform(self.data, self.target, sampling=False) assert self.data.shape[0] == res.shape[0] print("MOSNS:", self.data.shape, '--->', res.shape) def test_losses(self): for loss in ['log', 'hinge']: res = MOS(loss=loss).fit_transform(self.data, self.target) assert self.data.shape[0] == res.shape[0] def test_df(self): f = MOS() df = f.fit_transform(pd.DataFrame(self.data), pd.DataFrame(self.target), sampling=True) arr = f.fit_transform(self.data, self.target, sampling=True) np.testing.assert_array_equal(df, arr) df = f.fit_transform(pd.DataFrame(self.data), pd.DataFrame(self.target), sampling=False) arr = f.fit_transform(self.data, self.target, sampling=False) np.testing.assert_array_equal(df, arr) def test_pipeline(self): # FS p = Pipeline([('FS1', MOS())]) p.fit(self.data, self.target) res = p.transform(self.data) assert self.data.shape[0] == res.shape[0] # FS - estim p = Pipeline([('FS1', MOS()), ('E1', LogisticRegression())]) p.fit(self.data, self.target) assert 0 <= p.score(self.data, self.target) <= 1 # FS - FS p = Pipeline([('FS1', MOS(loss='log')), ('FS2', MOS(loss='hinge'))]) p.fit(self.data, self.target) res = p.transform(self.data) assert self.data.shape[0] == res.shape[0] # FS - FS - estim p = Pipeline([('FS1', MOS(loss='log')), ('FS2', MOS(loss='hinge')), ('E1', LogisticRegression())]) p.fit(self.data, self.target) assert 0 <= p.score(self.data, self.target) <= 1 def test_feature_names_np(self): f = MOS() arr = f.fit_transform(self.data, self.target, feature_names=self.feature_names, sampling=True) assert np.all([feature in self.feature_names for feature in f.get_feature_names()]) arr = f.fit_transform(self.data, self.target, feature_names=self.feature_names, sampling=False) assert np.all([feature in self.feature_names for feature in f.get_feature_names()]) def test_feature_names_df(self): f = MOS() arr = f.fit_transform(pd.DataFrame(self.data), pd.DataFrame(self.target), feature_names=self.feature_names, sampling=True) assert np.all([feature in self.feature_names for feature in f.get_feature_names()]) arr = f.fit_transform(pd.DataFrame(self.data), pd.DataFrame(self.target), feature_names=self.feature_names, sampling=False) assert np.all([feature in self.feature_names for feature in f.get_feature_names()]) def test_feature_names_df_defined(self): dfX =
pd.DataFrame(self.data)
pandas.DataFrame
import pandas as pd from firebase import firebase as frb import json import os from dotenv import load_dotenv from datetime import datetime, date from time import gmtime, time, strftime, sleep from pytz import timezone import schedule from tzlocal import get_localzone load_dotenv() columns = ['Time', 'Price', 'Net Change', 'Sell', 'Buy', 'Trading Volume'] kospi_columns = ['Time', 'Price', 'Net Change', 'Trading Volume', 'Dollar Volume'] exg_columns = ['Inquiry', 'Standard Rate', 'Net Change', 'Cash Buy', 'Cash Sell'] def crawl_intraday_data(code, time): intra_df = pd.DataFrame() for i in range(1, 41): page_df = pd.read_html(os.getenv("INTRADAY_DATA_SOURCE_ADDRESS").format(code=code, time=time, page=i))[0] intra_df = intra_df.append(page_df) intra_df.dropna(inplace=True) intra_df.drop(intra_df.columns[6], axis=1, inplace=True) intra_df.reset_index(inplace=True, drop=True) intra_df.columns = columns yesterday_df = pd.read_html(os.getenv("DAILY_DATA_SOURCE_ADDRESS").format(code=code))[0] yesterday_df.dropna(inplace=True) price_yesterday = yesterday_df[yesterday_df.columns[1]].iloc[1] intra_df['Net Change'] = intra_df['Price'] - price_yesterday return intra_df def save_intraday_data(code, date, df): firebase = frb.FirebaseApplication(os.getenv("FIREBASE_ADDRESS"), None) df.apply(lambda r: firebase.post('/stock/{code}/{date}'.format(code=code, date=date), json.loads(r.to_json())), axis=1) def retrieve_intraday_data(code, date): firebase = frb.FirebaseApplication(os.getenv("FIREBASE_ADDRESS"), None) data = firebase.get('/stock/{code}/{date}'.format(code=code, date=date), None) result = pd.DataFrame.from_dict(data, orient='index') result = result[columns] result.reset_index(inplace=True, drop=True) return result def crawl_intraday_kospi_data(time): kospi_df =
pd.DataFrame()
pandas.DataFrame
from clean2 import* import pandas as pd import matplotlib.pyplot as plt import math import datetime import time def main(): loop_set=[3,5] set3=[] #labels scaled at different window sizes set4=[] #labels without scaling for i in range(0,len(loop_set)): set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'0']) set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'1']) set3.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])+'2']) set4.extend(['totalmovavg_predictclose'+str(loop_set[i])+'_'+str(15*loop_set[i])]) data_window=pd.DataFrame() data_window_labels=pd.DataFrame() final_data=pd.DataFrame() predictors_1=pd.DataFrame() predictors=pd.DataFrame() predictors_final=pd.DataFrame() data_copy_labels=pd.DataFrame() data_predict=pd.DataFrame() close_win=pd.DataFrame() data=pd.DataFrame() data_copy=pd.DataFrame() labe_train=pd.DataFrame() labe_test=pd.DataFrame() data_la=pd.DataFrame() data_confr=pd.DataFrame() final_data.loc[0,'predicted_close']=0 final_data.loc[0,'predicted_close_high']=0 final_data.loc[0,'predicted_close_low']=0 now=datetime.datetime.now() day=now.strftime('%d') hour=now.strftime('%H') now=now.strftime('%M') size0=1999 #a too small size0 can lead to insufficient data to be elaborated now1=int(day)*1440+int(hour)*60+int(now)+size0 now=int(day)*1440+int(hour)*60+int(now) set_windows=[7,8,8.5] starters=[] size_=size0-15*loop_set[len(loop_set)-1] for i in set_windows: starters.extend([size_-int(i*size_/9)]) delay_max_window=20 count=0 count1=0 lab_tra=0 x=[] y=[] yy=[] ya=[] yb=[] yc=[] x.extend([count1]) plt.ion() fig=plt.figure() ax1=fig.add_subplot(1,1,1) from sklearn.externals import joblib gbrt_fin=joblib.load('gbrt_final_close') from sklearn.preprocessing import StandardScaler scaler=StandardScaler() while now1-now>0: size=now1-int(now) now=datetime.datetime.now() d=now.strftime('%d') h=now.strftime('%H') now=now.strftime('%M') now=int(d)*1440+int(h)*60+int(now) data_cycle=data_creator('BTC','EUR',size,1) data=data.shift(-(size)) data.drop(data.tail(size+1).index,inplace=True) frame_cycle=[data,data_cycle] data=pd.concat(frame_cycle) data=data.reset_index() data=data.drop(['index'],axis=1) data_feat=pd.DataFrame() data_feat=data.copy() data_feat=data_feat.iloc[len(data_feat)-size0-1:,:] data_feat=data_feat.reset_index() data_feat=data_feat.drop(['index'],axis=1) last_data=size+1 seconds=datetime.datetime.now() seconds=seconds.strftime('%S') for i in range(0,len(loop_set)): short_window=loop_set[i] window1=2*loop_set[i] window2=4*loop_set[i] window3=6*loop_set[i] window4=10*loop_set[i] window5=15*loop_set[i] local_variance_window=int(round(1+short_window/2)) slope_window=int(round(1+(short_window/2))) #Labels if last_data == len(data_feat): movavfun=total_movavg_predict(data_feat,'close',short_window,window1,window2,window3,window4,window5) avg_close1=total_movavg(data_feat,'close',short_window,window1,window2,window3,window4,window5) #Features short_window=int(round(1+short_window/2)) window1=int(round(1+window1/2)) window2=int(round(1+window2/2)) window3=int(round(1+window3/2)) window4=int(round(1+window4/2)) window5=int(round(1+window5/2)) local_variance_window=int(round(1+local_variance_window/2)) slope_window=int(round(1+slope_window/2)) avg_close=total_movavg(data_feat,'close',short_window,window1,window2,window3,window4,window5) avg_close_root=movavg(data_feat,'close',short_window) local_variance_close=local_msq(data_feat,'close',avg_close,local_variance_window) msroot_close=msroot(data_feat,'close',avg_close_root,short_window) entropy_close=entropy(data_feat,'close',msroot_close,short_window,size) local_entropy_close=entropy(data_feat,'close',local_variance_close,short_window,size) avg_entropy_close=movavg(data_feat,entropy_close[1],short_window) slope_close=slope(data_feat,'close',slope_window) avg_slope=total_movavg(data_feat,slope_close,short_window,window1,window2,window3,window4,window5) avg_slope_root=movavg(data_feat,slope_close,short_window) local_variance_slope=local_msq(data_feat,slope_close,avg_slope,local_variance_window) msroot_slope=msroot(data_feat,slope_close,avg_slope_root,short_window) entropy_slope=entropy(data_feat,slope_close,msroot_slope,short_window,size) local_entropy_slope=entropy(data_feat,slope_close,local_variance_slope,short_window,size) avg_entropy_slope=movavg(data_feat,entropy_slope[1],short_window) data_feat['high_close'+str(loop_set[i])]=data_feat[avg_close]+data_feat[local_variance_close] avg_high=total_movavg(data_feat,'high_close'+str(loop_set[i]),short_window,window1,window2,window3,window4,window5) avg_high_root=movavg(data_feat,'high_close'+str(loop_set[i]),short_window) local_variance_high=local_msq(data_feat,'high_close'+str(loop_set[i]),avg_high,local_variance_window) msroot_high=msroot(data_feat,'high_close'+str(loop_set[i]),avg_high_root,short_window) entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),msroot_high,short_window,size) local_entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),local_variance_high,short_window,size) avg_entropy_high=movavg(data_feat,entropy_high[1],short_window) data_feat['low_close'+str(loop_set[i])]=data_feat[avg_close]-data_feat[local_variance_close] avg_low=total_movavg(data_feat,'low_close'+str(loop_set[i]),short_window,window1,window2,window3,window4,window5) avg_low_root=movavg(data_feat,'low_close'+str(loop_set[i]),short_window) local_variance_low=local_msq(data_feat,'low_close'+str(loop_set[i]),avg_high,local_variance_window) msroot_low=msroot(data_feat,'low_close'+str(loop_set[i]),avg_low_root,short_window) entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),msroot_low,short_window,size) local_entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),local_variance_low,short_window,size) avg_entropy_low=movavg(data_feat,entropy_low[1],short_window) else: #Labels movavfun=total_movavg_predict_cycle(data_feat,'close',last_data,short_window,window1,window2,window3,window4,window5) avg_close1=total_movavg_cycle(data_feat,'close',last_data,short_window,window1,window2,window3,window4,window5) #Features short_window=int(round(1+short_window/2)) window1=int(round(1+window1/2)) window2=int(round(1+window2/2)) window3=int(round(1+window3/2)) window4=int(round(1+window4/2)) window5=int(round(1+window5/2)) local_variance_window=int(round(1+local_variance_window/2)) slope_window=int(round(1+slope_window/2)) avg_close=total_movavg_cycle(data_feat,'close',last_data,short_window,window1,window2,window3,window4,window5) avg_close_root=movavg_cycle(data_feat,'close',short_window,last_data) local_variance_close=local_msq_cycle(data_feat,'close',avg_close,local_variance_window,last_data) msroot_close=msroot(data_feat,'close',avg_close_root,short_window) entropy_close=entropy(data_feat,'close',msroot_close,short_window,size) local_entropy_close=entropy(data_feat,'close',local_variance_close,short_window,size) avg_entropy_close=movavg_cycle(data_feat,entropy_close[1],short_window,last_data) slope_close=slope_cycle(data_feat,'close',slope_window,last_data) avg_slope=total_movavg_cycle(data_feat,slope_close,last_data,short_window,window1,window2,window3,window4,window5) avg_slope_root=movavg_cycle(data_feat,slope_close,short_window,last_data) local_variance_slope=local_msq_cycle(data_feat,slope_close,avg_slope,local_variance_window,last_data) msroot_slope=msroot(data_feat,slope_close,avg_slope_root,short_window) entropy_slope=entropy(data_feat,slope_close,msroot_slope,short_window,size) local_entropy_slope=entropy(data_feat,slope_close,local_variance_slope,short_window,size) avg_entropy_slope=movavg_cycle(data_feat,entropy_slope[1],short_window,last_data) data_feat['high_close'+str(loop_set[i])]=data_feat[avg_close]+data_feat[local_variance_close] avg_high=total_movavg_cycle(data_feat,'high_close'+str(loop_set[i]),last_data,short_window,window1,window2,window3,window4,window5) avg_high_root=movavg_cycle(data_feat,'high_close'+str(loop_set[i]),short_window,last_data) local_variance_high=local_msq_cycle(data_feat,'high_close'+str(loop_set[i]),avg_high,local_variance_window,last_data) msroot_high=msroot(data_feat,'high_close'+str(loop_set[i]),avg_high_root,short_window) entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),msroot_high,short_window,size) local_entropy_high=entropy(data_feat,'high_close'+str(loop_set[i]),local_variance_high,short_window,size) avg_entropy_high=movavg_cycle(data_feat,entropy_high[1],short_window,last_data) data_feat['low_close'+str(loop_set[i])]=data_feat[avg_close]-data_feat[local_variance_close] avg_low=total_movavg_cycle(data_feat,'low_close'+str(loop_set[i]),last_data,short_window,window1,window2,window3,window4,window5) avg_low_root=movavg_cycle(data_feat,'low_close'+str(loop_set[i]),short_window,last_data) local_variance_low=local_msq_cycle(data_feat,'low_close'+str(loop_set[i]),avg_high,local_variance_window,last_data) msroot_low=msroot(data_feat,'low_close'+str(loop_set[i]),avg_low_root,short_window) entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),msroot_low,short_window,size) local_entropy_low=entropy(data_feat,'low_close'+str(loop_set[i]),local_variance_low,short_window,size) avg_entropy_low=movavg_cycle(data_feat,entropy_low[1],short_window,last_data) if last_data == len(data_feat): data_labels=pd.DataFrame() labels(data_labels,data_feat,'close',loop_set) lista=list(data_labels.columns.values) quantity=int(round((loop_set[len(loop_set)-1]/2)+1)) if last_data != len(data_feat): data_final=data_feat.iloc[len(data_feat)-(size+quantity+1):,:] data.drop(data.tail(quantity+size+1).index,inplace=True) else: data_final=data_feat.iloc[len(data_feat)-(size+1):,:] data.drop(data.tail(size+1).index,inplace=True) frame0=[data,data_final] data=pd.concat(frame0) now1=datetime.datetime.now() d1=now1.strftime('%d') h1=now1.strftime('%H') m1=now1.strftime('%M') seconds1=now1.strftime('%S') now1=int(d1)*1440+int(h1)*60+int(m1) size1=now1-int(now) difsec=int(seconds1)+60*size1-int(seconds) if size1==1 and 60-int(seconds1)<int(difsec/size): time.sleep(60-int(seconds1)+1) now1=datetime.datetime.now() d1=now1.strftime('%d') h1=now1.strftime('%H') m1=now1.strftime('%M') now1=int(d1)*1440+int(h1)*60+int(m1) print(now1) print('i waited a little') print(int(difsec/size)) data_work=data.copy() data_copy_labels=pd.DataFrame() labels(data_copy_labels,data_work,'close',loop_set) clean_labels(data_work,'close',loop_set) lista=list(data_labels.columns.values) data_work=data_work.dropna() data_work=data_work.reset_index() data_work=data_work.drop(['index'],axis=1) len1=starters[0]+21+150 data_work=data_work.iloc[len(data_work)-starters[0]-21-150:,:] data_copy_labels=data_copy_labels.iloc[len(data_copy_labels)-starters[0]-21-150:,:] data_work=data_work.reset_index() data_work=data_work.drop(['index'],axis=1) data_copy_labels=data_copy_labels.reset_index() data_copy_labels=data_copy_labels.drop(['index'],axis=1) len2=len(data_work) if len1 != len2: print('Warning, data_work length is varying!') data_confr['totalmovavgclose'+str(loop_set[0])+'_'+str(15*loop_set[0])]=data_work['totalmovavgclose'+str(loop_set[0])+'_'+str(15*loop_set[0])] data_work=data_work.drop(['totalmovavgclose'+str(loop_set[0])+'_'+str(15*loop_set[0])],axis=1) data_work=data_work.drop(['totalmovavgclose'+str(loop_set[1])+'_'+str(15*loop_set[1])],axis=1) data_work=data_work.drop(['date'],axis=1) data_work=data_work.drop(['time'],axis=1) data_iterator=pd.DataFrame() for q in starters: for h in range(0,len(lista)): name=lista[h] data_iterator.loc[0,'variance_pred'+str(starters.index(q))+name]=0 data_iterator.loc[0,'variance_gbrt'+str(starters.index(q))+name]=0 data_iterator.loc[0,'variance_ada'+str(starters.index(q))+name]=0 data_iterator.loc[0,'counter'+str(starters.index(q))+name]=0 if close_win.empty: true_features = pd.read_csv('folder address'+'true_features.txt') true_features=true_features.drop(['Unnamed: 0'],axis=1) true_f=[] for l in true_features.columns.values: true_f.extend([l]) set1=[] for k in data_work.columns.values: set1.extend([k]) set2=set(set1) - set(true_f) set2=list(set2) for j in starters: start=j start0=starters[0] for i in range(start0,len(data_work)+1): data_copy=data_work['close'].iloc[i-start:i] data_copy=data_copy.values.reshape(-1,1) data_copy=pd.DataFrame(scaler.fit_transform(data_copy)) close_win.loc[i-start0,'close_'+str(start)]=data_copy[0][len(data_copy)-1] del data_copy data_copy=pd.DataFrame() else: close_win.drop(close_win.tail(1).index,inplace=True) close_win=close_win.shift(-(size)) close_win=close_win.dropna() for j in starters: start=j start0=starters[0] for i in range(len(data_work)-(size),len(data_work)+1): data_copy=data_work['close'].iloc[i-start:i] data_copy=data_copy.values.reshape(-1,1) data_copy=pd.DataFrame(scaler.fit_transform(data_copy)) close_win.loc[i-start0,'close_'+str(start)]=data_copy[0][len(data_copy)-1] del data_copy data_copy=pd.DataFrame() if size1>=0 and count >0: data_work1=data_work for o in set2: data_work1=data_work1.drop([str(o)],axis=1) predictors_final=predictors_final.shift(-size) predictors_final=predictors_final.dropna() predictors_final=predictors_final.reset_index() predictors_final=predictors_final.drop(['index'],axis=1) for i in range(len(data_work1)-(size+quantity-1),len(data_work1)+1): del predictors_1 predictors_1=pd.DataFrame() for j in starters: start=j start0=starters[0] data_copy=data_work1.copy() data_copy1=data_copy_labels.copy() data_copy=data_work1.iloc[i-start:i,:] data_copy1=data_copy_labels.iloc[i-start:i,:] data_copy1=data_copy1.reset_index() data_copy1=data_copy1.drop(['index'],axis=1) for b in data_copy1.columns.values: if data_copy1[b].isnull().values.any(): data_la.loc[0,b]=data_copy1[b][len(data_copy1)-1] else: data_copy_=data_copy1[b] data_copy_=data_copy_.values.reshape(-1,1) data_copy_=pd.DataFrame(scaler.fit_transform(data_copy_)) data_copy_=data_copy_.iloc[len(data_copy_)-1:len(data_copy_)] data_copy_=data_copy_.rename(index=str,columns={data_copy_.columns.values[0]:b}) data_copy_=data_copy_.reset_index() data_la.loc[0,b]=data_copy_[b][0] data_copy=pd.DataFrame(scaler.fit_transform(data_copy),columns=data_copy.columns) data_copy=data_copy.iloc[start-1:start,:] predictors=blender1(data_copy,data_la,lista,str(starters.index(start))) predictors_1=
pd.concat([predictors_1,predictors],axis=1)
pandas.concat
# Written by: <NAME>, @dataoutsider # Viz: "Takeoff", enjoy! import pandas as pd import os df_pietree = pd.read_csv(os.path.dirname(__file__) + '/pie_tree.csv') df_lines = pd.read_csv(os.path.dirname(__file__) + '/lines.csv') print(df_pietree) print(df_lines) df_curves = [] df_pietree['chart'] = 'pie_tree' df_curves.append(df_pietree) df_lines['chart'] = 'lines' df_curves.append(df_lines) df_combined =
pd.concat(df_curves, axis=0)
pandas.concat
""" Model for output of general/metadata data, useful for a batch """ from typing import List import pandas as pd from pydantic import BaseModel, Field from nowcasting_dataset.consts import SPATIAL_AND_TEMPORAL_LOCATIONS_OF_EACH_EXAMPLE_FILENAME from nowcasting_dataset.filesystem.utils import check_path_exists from nowcasting_dataset.utils import get_start_and_end_example_index class Metadata(BaseModel): """Class to store metadata data""" batch_size: int = Field( ..., g=0, description="The size of this batch. If the batch size is 0, " "then this item stores one data item", ) t0_datetime_utc: List[pd.Timestamp] = Field( ..., description="The t0s of each example ", ) x_center_osgb: List[int] = Field( ..., description="The x centers of each example in OSGB coordinates", ) y_center_osgb: List[int] = Field( ..., description="The y centers of each example in OSGB coordinates", ) def save_to_csv(self, path): """ Save metadata to a csv file Args: path: the path where the file shold be save """ filename = f"{path}/{SPATIAL_AND_TEMPORAL_LOCATIONS_OF_EACH_EXAMPLE_FILENAME}" metadata_dict = self.dict() metadata_dict.pop("batch_size") # if file exists, add to it try: check_path_exists(filename) except FileNotFoundError: metadata_df =
pd.DataFrame(metadata_dict)
pandas.DataFrame
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import decimal import json import multiprocessing as mp from collections import OrderedDict from datetime import date, datetime, time, timedelta import numpy as np import numpy.testing as npt import pandas as pd import pandas.util.testing as tm import pytest import pyarrow as pa import pyarrow.types as patypes from pyarrow.compat import PY2 from .pandas_examples import dataframe_with_arrays, dataframe_with_lists def _alltypes_example(size=100): return pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, # TODO(wesm): Pandas only support ns resolution, Arrow supports s, ms, # us, ns 'datetime': np.arange("2016-01-01T00:00:00.001", size, dtype='datetime64[ms]'), 'str': [str(x) for x in range(size)], 'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None], 'empty_str': [''] * size }) def _check_pandas_roundtrip(df, expected=None, use_threads=True, expected_schema=None, check_dtype=True, schema=None, preserve_index=False, as_batch=False): klass = pa.RecordBatch if as_batch else pa.Table table = klass.from_pandas(df, schema=schema, preserve_index=preserve_index, nthreads=2 if use_threads else 1) result = table.to_pandas(use_threads=use_threads) if expected_schema: # all occurences of _check_pandas_roundtrip passes expected_schema # without the pandas generated key-value metadata, so we need to # add it before checking schema equality expected_schema = expected_schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) if expected is None: expected = df tm.assert_frame_equal(result, expected, check_dtype=check_dtype, check_index_type=('equiv' if preserve_index else False)) def _check_series_roundtrip(s, type_=None, expected_pa_type=None): arr = pa.array(s, from_pandas=True, type=type_) if type_ is not None and expected_pa_type is None: expected_pa_type = type_ if expected_pa_type is not None: assert arr.type == expected_pa_type result = pd.Series(arr.to_pandas(), name=s.name) if patypes.is_timestamp(arr.type) and arr.type.tz is not None: result = (result.dt.tz_localize('utc') .dt.tz_convert(arr.type.tz)) tm.assert_series_equal(s, result) def _check_array_roundtrip(values, expected=None, mask=None, type=None): arr = pa.array(values, from_pandas=True, mask=mask, type=type) result = arr.to_pandas() values_nulls = pd.isnull(values) if mask is None: assert arr.null_count == values_nulls.sum() else: assert arr.null_count == (mask | values_nulls).sum() if mask is None: tm.assert_series_equal(pd.Series(result), pd.Series(values), check_names=False) else: expected = pd.Series(np.ma.masked_array(values, mask=mask)) tm.assert_series_equal(pd.Series(result), expected, check_names=False) def _check_array_from_pandas_roundtrip(np_array, type=None): arr = pa.array(np_array, from_pandas=True, type=type) result = arr.to_pandas() npt.assert_array_equal(result, np_array) class TestConvertMetadata(object): """ Conversion tests for Pandas metadata & indices. """ def test_non_string_columns(self): df = pd.DataFrame({0: [1, 2, 3]}) table = pa.Table.from_pandas(df) assert table.column(0).name == '0' def test_from_pandas_with_columns(self): df = pd.DataFrame({0: [1, 2, 3], 1: [1, 3, 3], 2: [2, 4, 5]}) table = pa.Table.from_pandas(df, columns=[0, 1]) expected = pa.Table.from_pandas(df[[0, 1]]) assert expected.equals(table) record_batch_table = pa.RecordBatch.from_pandas(df, columns=[0, 1]) record_batch_expected = pa.RecordBatch.from_pandas(df[[0, 1]]) assert record_batch_expected.equals(record_batch_table) def test_column_index_names_are_preserved(self): df = pd.DataFrame({'data': [1, 2, 3]}) df.columns.names = ['a'] _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns(self): columns = pd.MultiIndex.from_arrays([ ['one', 'two'], ['X', 'Y'] ]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_with_dtypes(self): columns = pd.MultiIndex.from_arrays( [ ['one', 'two'], pd.DatetimeIndex(['2017-08-01', '2017-08-02']), ], names=['level_1', 'level_2'], ) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_multiindex_columns_unicode(self): columns = pd.MultiIndex.from_arrays([[u'あ', u'い'], ['X', 'Y']]) df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')], columns=columns) _check_pandas_roundtrip(df, preserve_index=True) def test_integer_index_column(self): df = pd.DataFrame([(1, 'a'), (2, 'b'), (3, 'c')]) _check_pandas_roundtrip(df, preserve_index=True) def test_index_metadata_field_name(self): # test None case, and strangely named non-index columns df = pd.DataFrame( [(1, 'a', 3.1), (2, 'b', 2.2), (3, 'c', 1.3)], index=pd.MultiIndex.from_arrays( [['c', 'b', 'a'], [3, 2, 1]], names=[None, 'foo'] ), columns=['a', None, '__index_level_0__'], ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) col1, col2, col3, idx0, foo = js['columns'] assert col1['name'] == 'a' assert col1['name'] == col1['field_name'] assert col2['name'] is None assert col2['field_name'] == 'None' assert col3['name'] == '__index_level_0__' assert col3['name'] == col3['field_name'] idx0_name, foo_name = js['index_columns'] assert idx0_name == '__index_level_0__' assert idx0['field_name'] == idx0_name assert idx0['name'] is None assert foo_name == 'foo' assert foo['field_name'] == foo_name assert foo['name'] == foo_name def test_categorical_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), dtype='category') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'categorical' assert column_indexes['numpy_type'] == 'int8' md = column_indexes['metadata'] assert md['num_categories'] == 3 assert md['ordered'] is False def test_string_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.Index(list('def'), name='stringz') ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] == 'stringz' assert column_indexes['name'] == column_indexes['field_name'] assert column_indexes['pandas_type'] == ('bytes' if PY2 else 'unicode') assert column_indexes['numpy_type'] == 'object' md = column_indexes['metadata'] if not PY2: assert len(md) == 1 assert md['encoding'] == 'UTF-8' else: assert md is None or 'encoding' not in md def test_datetimetz_column_index(self): df = pd.DataFrame( [(1, 'a', 2.0), (2, 'b', 3.0), (3, 'c', 4.0)], columns=pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) ) t = pa.Table.from_pandas(df, preserve_index=True) raw_metadata = t.schema.metadata js = json.loads(raw_metadata[b'pandas'].decode('utf8')) column_indexes, = js['column_indexes'] assert column_indexes['name'] is None assert column_indexes['pandas_type'] == 'datetimetz' assert column_indexes['numpy_type'] == 'datetime64[ns]' md = column_indexes['metadata'] assert md['timezone'] == 'America/New_York' def test_datetimetz_row_index(self): df = pd.DataFrame({ 'a': pd.date_range( start='2017-01-01', periods=3, tz='America/New_York' ) }) df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_categorical_row_index(self): df = pd.DataFrame({'a': [1, 2, 3], 'b': [1, 2, 3]}) df['a'] = df.a.astype('category') df = df.set_index('a') _check_pandas_roundtrip(df, preserve_index=True) def test_duplicate_column_names_does_not_crash(self): df = pd.DataFrame([(1, 'a'), (2, 'b')], columns=list('aa')) with pytest.raises(ValueError): pa.Table.from_pandas(df) def test_dictionary_indices_boundscheck(self): # ARROW-1658. No validation of indices leads to segfaults in pandas indices = [[0, 1], [0, -1]] for inds in indices: arr = pa.DictionaryArray.from_arrays(inds, ['a'], safe=False) batch = pa.RecordBatch.from_arrays([arr], ['foo']) table = pa.Table.from_batches([batch, batch, batch]) with pytest.raises(pa.ArrowInvalid): arr.to_pandas() with pytest.raises(pa.ArrowInvalid): table.to_pandas() def test_unicode_with_unicode_column_and_index(self): df = pd.DataFrame({u'あ': [u'い']}, index=[u'う']) _check_pandas_roundtrip(df, preserve_index=True) def test_mixed_unicode_column_names(self): df = pd.DataFrame({u'あ': [u'い'], b'a': 1}, index=[u'う']) # TODO(phillipc): Should this raise? with pytest.raises(AssertionError): _check_pandas_roundtrip(df, preserve_index=True) def test_binary_column_name(self): column_data = [u'い'] key = u'あ'.encode('utf8') data = {key: column_data} df = pd.DataFrame(data) # we can't use _check_pandas_roundtrip here because our metdata # is always decoded as utf8: even if binary goes in, utf8 comes out t = pa.Table.from_pandas(df, preserve_index=True) df2 = t.to_pandas() assert df.values[0] == df2.values[0] assert df.index.values[0] == df2.index.values[0] assert df.columns[0] == key def test_multiindex_duplicate_values(self): num_rows = 3 numbers = list(range(num_rows)) index = pd.MultiIndex.from_arrays( [['foo', 'foo', 'bar'], numbers], names=['foobar', 'some_numbers'], ) df = pd.DataFrame({'numbers': numbers}, index=index) table = pa.Table.from_pandas(df) result_df = table.to_pandas() tm.assert_frame_equal(result_df, df) def test_metadata_with_mixed_types(self): df = pd.DataFrame({'data': [b'some_bytes', u'some_unicode']}) table = pa.Table.from_pandas(df) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'bytes' assert data_column['numpy_type'] == 'object' def test_list_metadata(self): df = pd.DataFrame({'data': [[1], [2, 3, 4], [5] * 7]}) schema = pa.schema([pa.field('data', type=pa.list_(pa.int64()))]) table = pa.Table.from_pandas(df, schema=schema) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'list[int64]' assert data_column['numpy_type'] == 'object' def test_decimal_metadata(self): expected = pd.DataFrame({ 'decimals': [ decimal.Decimal('394092382910493.12341234678'), -decimal.Decimal('314292388910493.12343437128'), ] }) table = pa.Table.from_pandas(expected) metadata = table.schema.metadata assert b'mixed' not in metadata[b'pandas'] js = json.loads(metadata[b'pandas'].decode('utf8')) data_column = js['columns'][0] assert data_column['pandas_type'] == 'decimal' assert data_column['numpy_type'] == 'object' assert data_column['metadata'] == {'precision': 26, 'scale': 11} def test_table_column_subset_metadata(self): # ARROW-1883 df = pd.DataFrame({ 'a': [1, 2, 3], 'b': pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')}) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']]) # non-default index for index in [ pd.Index(['a', 'b', 'c'], name='index'), pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')]: df = pd.DataFrame({'a': [1, 2, 3], 'b': [.1, .2, .3]}, index=index) table = pa.Table.from_pandas(df) table_subset = table.remove_column(1) result = table_subset.to_pandas() tm.assert_frame_equal(result, df[['a']]) table_subset2 = table_subset.remove_column(1) result = table_subset2.to_pandas() tm.assert_frame_equal(result, df[['a']].reset_index(drop=True)) def test_empty_list_metadata(self): # Create table with array of empty lists, forced to have type # list(string) in pyarrow c1 = [["test"], ["a", "b"], None] c2 = [[], [], []] arrays = OrderedDict([ ('c1', pa.array(c1, type=pa.list_(pa.string()))), ('c2', pa.array(c2, type=pa.list_(pa.string()))), ]) rb = pa.RecordBatch.from_arrays( list(arrays.values()), list(arrays.keys()) ) tbl = pa.Table.from_batches([rb]) # First roundtrip changes schema, because pandas cannot preserve the # type of empty lists df = tbl.to_pandas() tbl2 = pa.Table.from_pandas(df, preserve_index=True) md2 = json.loads(tbl2.schema.metadata[b'pandas'].decode('utf8')) # Second roundtrip df2 = tbl2.to_pandas() expected = pd.DataFrame(OrderedDict([('c1', c1), ('c2', c2)])) tm.assert_frame_equal(df2, expected) assert md2['columns'] == [ { 'name': 'c1', 'field_name': 'c1', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[unicode]', }, { 'name': 'c2', 'field_name': 'c2', 'metadata': None, 'numpy_type': 'object', 'pandas_type': 'list[empty]', }, { 'name': None, 'field_name': '__index_level_0__', 'metadata': None, 'numpy_type': 'int64', 'pandas_type': 'int64', } ] class TestConvertPrimitiveTypes(object): """ Conversion tests for primitive (e.g. numeric) types. """ def test_float_no_nulls(self): data = {} fields = [] dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] num_values = 100 for numpy_dtype, arrow_dtype in dtypes: values = np.random.randn(num_values) data[numpy_dtype] = values.astype(numpy_dtype) fields.append(pa.field(numpy_dtype, arrow_dtype)) df = pd.DataFrame(data) schema = pa.schema(fields) _check_pandas_roundtrip(df, expected_schema=schema) def test_float_nulls(self): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 dtypes = [('f2', pa.float16()), ('f4', pa.float32()), ('f8', pa.float64())] names = ['f2', 'f4', 'f8'] expected_cols = [] arrays = [] fields = [] for name, arrow_dtype in dtypes: values = np.random.randn(num_values).astype(name) arr = pa.array(values, from_pandas=True, mask=null_mask) arrays.append(arr) fields.append(pa.field(name, arrow_dtype)) values[null_mask] = np.nan expected_cols.append(values) ex_frame = pd.DataFrame(dict(zip(names, expected_cols)), columns=names) table = pa.Table.from_arrays(arrays, names) assert table.schema.equals(pa.schema(fields)) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_float_nulls_to_ints(self): # ARROW-2135 df = pd.DataFrame({"a": [1.0, 2.0, pd.np.NaN]}) schema = pa.schema([pa.field("a", pa.int16(), nullable=True)]) table = pa.Table.from_pandas(df, schema=schema, safe=False) assert table[0].to_pylist() == [1, 2, None] tm.assert_frame_equal(df, table.to_pandas()) def test_integer_no_nulls(self): data = OrderedDict() fields = [] numpy_dtypes = [ ('i1', pa.int8()), ('i2', pa.int16()), ('i4', pa.int32()), ('i8', pa.int64()), ('u1', pa.uint8()), ('u2', pa.uint16()), ('u4', pa.uint32()), ('u8', pa.uint64()), ('longlong', pa.int64()), ('ulonglong', pa.uint64()) ] num_values = 100 for dtype, arrow_dtype in numpy_dtypes: info = np.iinfo(dtype) values = np.random.randint(max(info.min, np.iinfo(np.int_).min), min(info.max, np.iinfo(np.int_).max), size=num_values) data[dtype] = values.astype(dtype) fields.append(pa.field(dtype, arrow_dtype)) df = pd.DataFrame(data) schema = pa.schema(fields) _check_pandas_roundtrip(df, expected_schema=schema) def test_all_integer_types(self): # Test all Numpy integer aliases data = OrderedDict() numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'byte', 'ubyte', 'short', 'ushort', 'intc', 'uintc', 'int_', 'uint', 'longlong', 'ulonglong'] for dtype in numpy_dtypes: data[dtype] = np.arange(12, dtype=dtype) df = pd.DataFrame(data) _check_pandas_roundtrip(df) # Do the same with pa.array() # (for some reason, it doesn't use the same code paths at all) for np_arr in data.values(): arr = pa.array(np_arr) assert arr.to_pylist() == np_arr.tolist() def test_integer_with_nulls(self): # pandas requires upcast to float dtype int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 expected_cols = [] arrays = [] for name in int_dtypes: values = np.random.randint(0, 100, size=num_values) arr = pa.array(values, mask=null_mask) arrays.append(arr) expected = values.astype('f8') expected[null_mask] = np.nan expected_cols.append(expected) ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)), columns=int_dtypes) table = pa.Table.from_arrays(arrays, int_dtypes) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_array_from_pandas_type_cast(self): arr = np.arange(10, dtype='int64') target_type = pa.int8() result = pa.array(arr, type=target_type) expected = pa.array(arr.astype('int8')) assert result.equals(expected) def test_boolean_no_nulls(self): num_values = 100 np.random.seed(0) df = pd.DataFrame({'bools': np.random.randn(num_values) > 0}) field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_boolean_nulls(self): # pandas requires upcast to object dtype num_values = 100 np.random.seed(0) mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 10, size=num_values) < 5 arr = pa.array(values, mask=mask) expected = values.astype(object) expected[mask] = None field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) ex_frame = pd.DataFrame({'bools': expected}) table = pa.Table.from_arrays([arr], ['bools']) assert table.schema.equals(schema) result = table.to_pandas() tm.assert_frame_equal(result, ex_frame) def test_float_object_nulls(self): arr = np.array([None, 1.5, np.float64(3.5)] * 5, dtype=object) df = pd.DataFrame({'floats': arr}) expected = pd.DataFrame({'floats': pd.to_numeric(arr)}) field = pa.field('floats', pa.float64()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected=expected, expected_schema=schema) def test_int_object_nulls(self): arr = np.array([None, 1, np.int64(3)] * 5, dtype=object) df = pd.DataFrame({'ints': arr}) expected = pd.DataFrame({'ints': pd.to_numeric(arr)}) field = pa.field('ints', pa.int64()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected=expected, expected_schema=schema) def test_boolean_object_nulls(self): arr = np.array([False, None, True] * 100, dtype=object) df = pd.DataFrame({'bools': arr}) field = pa.field('bools', pa.bool_()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_all_nulls_cast_numeric(self): arr = np.array([None], dtype=object) def _check_type(t): a2 = pa.array(arr, type=t) assert a2.type == t assert a2[0].as_py() is None _check_type(pa.int32()) _check_type(pa.float64()) def test_half_floats_from_numpy(self): arr = np.array([1.5, np.nan], dtype=np.float16) a = pa.array(arr, type=pa.float16()) x, y = a.to_pylist() assert isinstance(x, np.float16) assert x == 1.5 assert isinstance(y, np.float16) assert np.isnan(y) a = pa.array(arr, type=pa.float16(), from_pandas=True) x, y = a.to_pylist() assert isinstance(x, np.float16) assert x == 1.5 assert y is None @pytest.mark.parametrize('dtype', ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']) def test_array_integer_object_nulls_option(dtype): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 100, size=num_values, dtype=dtype) array = pa.array(values, mask=null_mask) if null_mask.any(): expected = values.astype('O') expected[null_mask] = None else: expected = values result = array.to_pandas(integer_object_nulls=True) np.testing.assert_equal(result, expected) @pytest.mark.parametrize('dtype', ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']) def test_table_integer_object_nulls_option(dtype): num_values = 100 null_mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 100, size=num_values, dtype=dtype) array = pa.array(values, mask=null_mask) if null_mask.any(): expected = values.astype('O') expected[null_mask] = None else: expected = values expected = pd.DataFrame({dtype: expected}) table = pa.Table.from_arrays([array], [dtype]) result = table.to_pandas(integer_object_nulls=True) tm.assert_frame_equal(result, expected) class TestConvertDateTimeLikeTypes(object): """ Conversion tests for datetime- and timestamp-like types (date64, etc.). """ def test_timestamps_notimezone_no_nulls(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) field = pa.field('datetime64', pa.timestamp('ns')) schema = pa.schema([field]) _check_pandas_roundtrip( df, expected_schema=schema, ) def test_timestamps_notimezone_nulls(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', None, '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) field = pa.field('datetime64', pa.timestamp('ns')) schema = pa.schema([field]) _check_pandas_roundtrip( df, expected_schema=schema, ) def test_timestamps_with_timezone(self): df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123', '2006-01-13T12:34:56.432', '2010-08-13T05:46:57.437'], dtype='datetime64[ms]') }) df['datetime64'] = (df['datetime64'].dt.tz_localize('US/Eastern') .to_frame()) _check_pandas_roundtrip(df) _check_series_roundtrip(df['datetime64']) # drop-in a null and ns instead of ms df = pd.DataFrame({ 'datetime64': np.array([ '2007-07-13T01:23:34.123456789', None, '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') }) df['datetime64'] = (df['datetime64'].dt.tz_localize('US/Eastern') .to_frame()) _check_pandas_roundtrip(df) def test_python_datetime(self): # ARROW-2106 date_array = [datetime.today() + timedelta(days=x) for x in range(10)] df = pd.DataFrame({ 'datetime': pd.Series(date_array, dtype=object) }) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.TimestampArray) result = table.to_pandas() expected_df = pd.DataFrame({ 'datetime': date_array }) tm.assert_frame_equal(expected_df, result) def test_python_datetime_subclass(self): class MyDatetime(datetime): # see https://github.com/pandas-dev/pandas/issues/21142 nanosecond = 0.0 date_array = [MyDatetime(2000, 1, 1, 1, 1, 1)] df = pd.DataFrame({"datetime": pd.Series(date_array, dtype=object)}) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.TimestampArray) result = table.to_pandas() expected_df = pd.DataFrame({"datetime": date_array}) # https://github.com/pandas-dev/pandas/issues/21142 expected_df["datetime"] = pd.to_datetime(expected_df["datetime"]) tm.assert_frame_equal(expected_df, result) def test_python_date_subclass(self): class MyDate(date): pass date_array = [MyDate(2000, 1, 1)] df = pd.DataFrame({"date": pd.Series(date_array, dtype=object)}) table = pa.Table.from_pandas(df) assert isinstance(table[0].data.chunk(0), pa.Date32Array) result = table.to_pandas() expected_df = pd.DataFrame( {"date": np.array(["2000-01-01"], dtype="datetime64[ns]")} ) tm.assert_frame_equal(expected_df, result) def test_datetime64_to_date32(self): # ARROW-1718 arr = pa.array([date(2017, 10, 23), None]) c = pa.Column.from_array("d", arr) s = c.to_pandas() arr2 = pa.Array.from_pandas(s, type=pa.date32()) assert arr2.equals(arr.cast('date32')) @pytest.mark.parametrize('mask', [ None, np.array([True, False, False]), ]) def test_pandas_datetime_to_date64(self, mask): s = pd.to_datetime([ '2018-05-10T00:00:00', '2018-05-11T00:00:00', '2018-05-12T00:00:00', ]) arr = pa.Array.from_pandas(s, type=pa.date64(), mask=mask) data = np.array([ date(2018, 5, 10), date(2018, 5, 11), date(2018, 5, 12) ]) expected = pa.array(data, mask=mask, type=pa.date64()) assert arr.equals(expected) @pytest.mark.parametrize('mask', [ None, np.array([True, False, False]) ]) def test_pandas_datetime_to_date64_failures(self, mask): s = pd.to_datetime([ '2018-05-10T10:24:01', '2018-05-11T10:24:01', '2018-05-12T10:24:01', ]) expected_msg = 'Timestamp value had non-zero intraday milliseconds' with pytest.raises(pa.ArrowInvalid, match=expected_msg): pa.Array.from_pandas(s, type=pa.date64(), mask=mask) def test_array_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') arr = pa.array(data) assert arr.equals(pa.array(expected)) result = arr.to_pandas() assert result.dtype == expected.dtype npt.assert_array_equal(arr.to_pandas(), expected) result = arr.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_chunked_array_convert_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') carr = pa.chunked_array([data]) result = carr.to_pandas() assert result.dtype == expected.dtype npt.assert_array_equal(carr.to_pandas(), expected) result = carr.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_column_convert_date_as_object(self): data = [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)] expected = np.array(['2000-01-01', None, '1970-01-01', '2040-02-26'], dtype='datetime64') arr = pa.array(data) column = pa.column('date', arr) result = column.to_pandas() npt.assert_array_equal(column.to_pandas(), expected) result = column.to_pandas(date_as_object=True) expected = expected.astype(object) assert result.dtype == expected.dtype npt.assert_array_equal(result, expected) def test_table_convert_date_as_object(self): df = pd.DataFrame({ 'date': [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)]}) table = pa.Table.from_pandas(df, preserve_index=False) df_datetime = table.to_pandas() df_object = table.to_pandas(date_as_object=True) tm.assert_frame_equal(df.astype('datetime64[ns]'), df_datetime, check_dtype=True) tm.assert_frame_equal(df, df_object, check_dtype=True) def test_date_infer(self): df = pd.DataFrame({ 'date': [date(2000, 1, 1), None, date(1970, 1, 1), date(2040, 2, 26)]}) table = pa.Table.from_pandas(df, preserve_index=False) field = pa.field('date', pa.date32()) # schema's metadata is generated by from_pandas conversion expected_schema = pa.schema([field], metadata=table.schema.metadata) assert table.schema.equals(expected_schema) result = table.to_pandas() expected = df.copy() expected['date'] = pd.to_datetime(df['date']) tm.assert_frame_equal(result, expected) def test_date_mask(self): arr = np.array([date(2017, 4, 3), date(2017, 4, 4)], dtype='datetime64[D]') mask = [True, False] result = pa.array(arr, mask=np.array(mask)) expected = np.array([None, date(2017, 4, 4)], dtype='datetime64[D]') expected = pa.array(expected, from_pandas=True) assert expected.equals(result) def test_date_objects_typed(self): arr = np.array([ date(2017, 4, 3), None, date(2017, 4, 4), date(2017, 4, 5)], dtype=object) arr_i4 = np.array([17259, -1, 17260, 17261], dtype='int32') arr_i8 = arr_i4.astype('int64') * 86400000 mask = np.array([False, True, False, False]) t32 = pa.date32() t64 = pa.date64() a32 = pa.array(arr, type=t32) a64 = pa.array(arr, type=t64) a32_expected = pa.array(arr_i4, mask=mask, type=t32) a64_expected = pa.array(arr_i8, mask=mask, type=t64) assert a32.equals(a32_expected) assert a64.equals(a64_expected) # Test converting back to pandas colnames = ['date32', 'date64'] table = pa.Table.from_arrays([a32, a64], colnames) table_pandas = table.to_pandas() ex_values = (np.array(['2017-04-03', '2017-04-04', '2017-04-04', '2017-04-05'], dtype='datetime64[D]') .astype('datetime64[ns]')) ex_values[1] = pd.NaT.value expected_pandas = pd.DataFrame({'date32': ex_values, 'date64': ex_values}, columns=colnames) tm.assert_frame_equal(table_pandas, expected_pandas) def test_dates_from_integers(self): t1 = pa.date32() t2 = pa.date64() arr = np.array([17259, 17260, 17261], dtype='int32') arr2 = arr.astype('int64') * 86400000 a1 = pa.array(arr, type=t1) a2 = pa.array(arr2, type=t2) expected = date(2017, 4, 3) assert a1[0].as_py() == expected assert a2[0].as_py() == expected @pytest.mark.xfail(reason="not supported ATM", raises=NotImplementedError) def test_timedelta(self): # TODO(jreback): Pandas only support ns resolution # Arrow supports ??? for resolution df = pd.DataFrame({ 'timedelta': np.arange(start=0, stop=3 * 86400000, step=86400000, dtype='timedelta64[ms]') }) pa.Table.from_pandas(df) def test_pytime_from_pandas(self): pytimes = [time(1, 2, 3, 1356), time(4, 5, 6, 1356)] # microseconds t1 = pa.time64('us') aobjs = np.array(pytimes + [None], dtype=object) parr = pa.array(aobjs) assert parr.type == t1 assert parr[0].as_py() == pytimes[0] assert parr[1].as_py() == pytimes[1] assert parr[2] is pa.NA # DataFrame df = pd.DataFrame({'times': aobjs}) batch = pa.RecordBatch.from_pandas(df) assert batch[0].equals(parr) # Test ndarray of int64 values arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') a1 = pa.array(arr, type=pa.time64('us')) assert a1[0].as_py() == pytimes[0] a2 = pa.array(arr * 1000, type=pa.time64('ns')) assert a2[0].as_py() == pytimes[0] a3 = pa.array((arr / 1000).astype('i4'), type=pa.time32('ms')) assert a3[0].as_py() == pytimes[0].replace(microsecond=1000) a4 = pa.array((arr / 1000000).astype('i4'), type=pa.time32('s')) assert a4[0].as_py() == pytimes[0].replace(microsecond=0) def test_arrow_time_to_pandas(self): pytimes = [time(1, 2, 3, 1356), time(4, 5, 6, 1356), time(0, 0, 0)] expected = np.array(pytimes[:2] + [None]) expected_ms = np.array([x.replace(microsecond=1000) for x in pytimes[:2]] + [None]) expected_s = np.array([x.replace(microsecond=0) for x in pytimes[:2]] + [None]) arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') arr = np.array([_pytime_to_micros(v) for v in pytimes], dtype='int64') null_mask = np.array([False, False, True], dtype=bool) a1 = pa.array(arr, mask=null_mask, type=pa.time64('us')) a2 = pa.array(arr * 1000, mask=null_mask, type=pa.time64('ns')) a3 = pa.array((arr / 1000).astype('i4'), mask=null_mask, type=pa.time32('ms')) a4 = pa.array((arr / 1000000).astype('i4'), mask=null_mask, type=pa.time32('s')) names = ['time64[us]', 'time64[ns]', 'time32[ms]', 'time32[s]'] batch = pa.RecordBatch.from_arrays([a1, a2, a3, a4], names) arr = a1.to_pandas() assert (arr == expected).all() arr = a2.to_pandas() assert (arr == expected).all() arr = a3.to_pandas() assert (arr == expected_ms).all() arr = a4.to_pandas() assert (arr == expected_s).all() df = batch.to_pandas() expected_df = pd.DataFrame({'time64[us]': expected, 'time64[ns]': expected, 'time32[ms]': expected_ms, 'time32[s]': expected_s}, columns=names) tm.assert_frame_equal(df, expected_df) def test_numpy_datetime64_columns(self): datetime64_ns = np.array([ '2007-07-13T01:23:34.123456789', None, '2006-01-13T12:34:56.432539784', '2010-08-13T05:46:57.437699912'], dtype='datetime64[ns]') _check_array_from_pandas_roundtrip(datetime64_ns) datetime64_us = np.array([ '2007-07-13T01:23:34.123456', None, '2006-01-13T12:34:56.432539', '2010-08-13T05:46:57.437699'], dtype='datetime64[us]') _check_array_from_pandas_roundtrip(datetime64_us) datetime64_ms = np.array([ '2007-07-13T01:23:34.123', None, '2006-01-13T12:34:56.432', '2010-08-13T05:46:57.437'], dtype='datetime64[ms]') _check_array_from_pandas_roundtrip(datetime64_ms) datetime64_s = np.array([ '2007-07-13T01:23:34', None, '2006-01-13T12:34:56', '2010-08-13T05:46:57'], dtype='datetime64[s]') _check_array_from_pandas_roundtrip(datetime64_s) @pytest.mark.parametrize('dtype', [pa.date32(), pa.date64()]) def test_numpy_datetime64_day_unit(self, dtype): datetime64_d = np.array([ '2007-07-13', None, '2006-01-15', '2010-08-19'], dtype='datetime64[D]') _check_array_from_pandas_roundtrip(datetime64_d, type=dtype) def test_array_from_pandas_date_with_mask(self): m = np.array([True, False, True]) data = pd.Series([ date(1990, 1, 1), date(1991, 1, 1), date(1992, 1, 1) ]) result = pa.Array.from_pandas(data, mask=m) expected = pd.Series([None, date(1991, 1, 1), None]) assert pa.Array.from_pandas(expected).equals(result) def test_fixed_offset_timezone(self): df = pd.DataFrame({ 'a': [ pd.Timestamp('2012-11-11 00:00:00+01:00'), pd.NaT ] }) _check_pandas_roundtrip(df) _check_serialize_components_roundtrip(df) # ---------------------------------------------------------------------- # Conversion tests for string and binary types. class TestConvertStringLikeTypes(object): def test_pandas_unicode(self): repeats = 1000 values = [u'foo', None, u'bar', u'mañana', np.nan] df = pd.DataFrame({'strings': values * repeats}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) _check_pandas_roundtrip(df, expected_schema=schema) def test_bytes_to_binary(self): values = [u'qux', b'foo', None, bytearray(b'barz'), 'qux', np.nan] df = pd.DataFrame({'strings': values}) table = pa.Table.from_pandas(df) assert table[0].type == pa.binary() values2 = [b'qux', b'foo', None, b'barz', b'qux', np.nan] expected = pd.DataFrame({'strings': values2}) _check_pandas_roundtrip(df, expected) @pytest.mark.large_memory def test_bytes_exceed_2gb(self): v1 = b'x' * 100000000 v2 = b'x' * 147483646 # ARROW-2227, hit exactly 2GB on the nose df = pd.DataFrame({ 'strings': [v1] * 20 + [v2] + ['x'] * 20 }) arr = pa.array(df['strings']) assert isinstance(arr, pa.ChunkedArray) assert arr.num_chunks == 2 arr = None table = pa.Table.from_pandas(df) assert table[0].data.num_chunks == 2 def test_fixed_size_bytes(self): values = [b'foo', None, bytearray(b'bar'), None, None, b'hey'] df = pd.DataFrame({'strings': values}) schema = pa.schema([pa.field('strings', pa.binary(3))]) table = pa.Table.from_pandas(df, schema=schema) assert table.schema[0].type == schema[0].type assert table.schema[0].name == schema[0].name result = table.to_pandas() tm.assert_frame_equal(result, df) def test_fixed_size_bytes_does_not_accept_varying_lengths(self): values = [b'foo', None, b'ba', None, None, b'hey'] df = pd.DataFrame({'strings': values}) schema = pa.schema([pa.field('strings', pa.binary(3))]) with pytest.raises(pa.ArrowInvalid): pa.Table.from_pandas(df, schema=schema) def test_variable_size_bytes(self): s = pd.Series([b'123', b'', b'a', None]) _check_series_roundtrip(s, type_=pa.binary()) def test_binary_from_bytearray(self): s = pd.Series([bytearray(b'123'), bytearray(b''), bytearray(b'a'), None]) # Explicitly set type _check_series_roundtrip(s, type_=pa.binary()) # Infer type from bytearrays _check_series_roundtrip(s, expected_pa_type=pa.binary()) def test_table_empty_str(self): values = ['', '', '', '', ''] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result1 = table.to_pandas(strings_to_categorical=False) expected1 = pd.DataFrame({'strings': values}) tm.assert_frame_equal(result1, expected1, check_dtype=True) result2 = table.to_pandas(strings_to_categorical=True) expected2 = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result2, expected2, check_dtype=True) def test_selective_categoricals(self): values = ['', '', '', '', ''] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) expected_str = pd.DataFrame({'strings': values}) expected_cat = pd.DataFrame({'strings': pd.Categorical(values)}) result1 = table.to_pandas(categories=['strings']) tm.assert_frame_equal(result1, expected_cat, check_dtype=True) result2 = table.to_pandas(categories=[]) tm.assert_frame_equal(result2, expected_str, check_dtype=True) result3 = table.to_pandas(categories=('strings',)) tm.assert_frame_equal(result3, expected_cat, check_dtype=True) result4 = table.to_pandas(categories=tuple()) tm.assert_frame_equal(result4, expected_str, check_dtype=True) def test_table_str_to_categorical_without_na(self): values = ['a', 'a', 'b', 'b', 'c'] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result = table.to_pandas(strings_to_categorical=True) expected = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result, expected, check_dtype=True) with pytest.raises(pa.ArrowInvalid): table.to_pandas(strings_to_categorical=True, zero_copy_only=True) def test_table_str_to_categorical_with_na(self): values = [None, 'a', 'b', np.nan] df = pd.DataFrame({'strings': values}) field = pa.field('strings', pa.string()) schema = pa.schema([field]) table = pa.Table.from_pandas(df, schema=schema) result = table.to_pandas(strings_to_categorical=True) expected = pd.DataFrame({'strings': pd.Categorical(values)}) tm.assert_frame_equal(result, expected, check_dtype=True) with pytest.raises(pa.ArrowInvalid): table.to_pandas(strings_to_categorical=True, zero_copy_only=True) # Regression test for ARROW-2101 def test_array_of_bytes_to_strings(self): converted = pa.array(np.array([b'x'], dtype=object), pa.string()) assert converted.type == pa.string() # Make sure that if an ndarray of bytes is passed to the array # constructor and the type is string, it will fail if those bytes # cannot be converted to utf-8 def test_array_of_bytes_to_strings_bad_data(self): with pytest.raises( pa.lib.ArrowInvalid, match="was not a utf8 string"): pa.array(np.array([b'\x80\x81'], dtype=object), pa.string()) def test_numpy_string_array_to_fixed_size_binary(self): arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') converted = pa.array(arr, type=pa.binary(3)) expected = pa.array(list(arr), type=pa.binary(3)) assert converted.equals(expected) mask = np.array([True, False, True]) converted = pa.array(arr, type=pa.binary(3), mask=mask) expected = pa.array([b'foo', None, b'baz'], type=pa.binary(3)) assert converted.equals(expected) with pytest.raises(pa.lib.ArrowInvalid, match=r'Got bytestring of length 3 \(expected 4\)'): arr = np.array([b'foo', b'bar', b'baz'], dtype='|S3') pa.array(arr, type=pa.binary(4)) with pytest.raises( pa.lib.ArrowInvalid, match=r'Got bytestring of length 12 \(expected 3\)'): arr = np.array([b'foo', b'bar', b'baz'], dtype='|U3') pa.array(arr, type=pa.binary(3)) class TestConvertDecimalTypes(object): """ Conversion test for decimal types. """ decimal32 = [ decimal.Decimal('-1234.123'), decimal.Decimal('1234.439') ] decimal64 = [ decimal.Decimal('-129934.123331'), decimal.Decimal('129534.123731') ] decimal128 = [ decimal.Decimal('394092382910493.12341234678'), decimal.Decimal('-314292388910493.12343437128') ] @pytest.mark.parametrize(('values', 'expected_type'), [ pytest.param(decimal32, pa.decimal128(7, 3), id='decimal32'), pytest.param(decimal64, pa.decimal128(12, 6), id='decimal64'), pytest.param(decimal128, pa.decimal128(26, 11), id='decimal128') ]) def test_decimal_from_pandas(self, values, expected_type): expected = pd.DataFrame({'decimals': values}) table = pa.Table.from_pandas(expected, preserve_index=False) field = pa.field('decimals', expected_type) # schema's metadata is generated by from_pandas conversion expected_schema = pa.schema([field], metadata=table.schema.metadata) assert table.schema.equals(expected_schema) @pytest.mark.parametrize('values', [ pytest.param(decimal32, id='decimal32'), pytest.param(decimal64, id='decimal64'), pytest.param(decimal128, id='decimal128') ]) def test_decimal_to_pandas(self, values): expected = pd.DataFrame({'decimals': values}) converted = pa.Table.from_pandas(expected) df = converted.to_pandas() tm.assert_frame_equal(df, expected) def test_decimal_fails_with_truncation(self): data1 = [decimal.Decimal('1.234')] type1 = pa.decimal128(10, 2) with pytest.raises(pa.ArrowInvalid): pa.array(data1, type=type1) data2 = [decimal.Decimal('1.2345')] type2 = pa.decimal128(10, 3) with pytest.raises(pa.ArrowInvalid): pa.array(data2, type=type2) def test_decimal_with_different_precisions(self): data = [ decimal.Decimal('0.01'), decimal.Decimal('0.001'), ] series = pd.Series(data) array = pa.array(series) assert array.to_pylist() == data assert array.type == pa.decimal128(3, 3) array = pa.array(data, type=pa.decimal128(12, 5)) expected = [decimal.Decimal('0.01000'), decimal.Decimal('0.00100')] assert array.to_pylist() == expected def test_decimal_with_None_explicit_type(self): series = pd.Series([decimal.Decimal('3.14'), None]) _check_series_roundtrip(series, type_=pa.decimal128(12, 5)) # Test that having all None values still produces decimal array series = pd.Series([None] * 2) _check_series_roundtrip(series, type_=pa.decimal128(12, 5)) def test_decimal_with_None_infer_type(self): series = pd.Series([decimal.Decimal('3.14'), None]) _check_series_roundtrip(series, expected_pa_type=pa.decimal128(3, 2)) def test_strided_objects(self, tmpdir): # see ARROW-3053 data = { 'a': {0: 'a'}, 'b': {0: decimal.Decimal('0.0')} } # This yields strided objects df = pd.DataFrame.from_dict(data) _check_pandas_roundtrip(df) class TestListTypes(object): """ Conversion tests for list<> types. """ def test_column_of_arrays(self): df, schema = dataframe_with_arrays() _check_pandas_roundtrip(df, schema=schema, expected_schema=schema) table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) # schema's metadata is generated by from_pandas conversion expected_schema = schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) for column in df.columns: field = schema.field_by_name(column) _check_array_roundtrip(df[column], type=field.type) def test_column_of_arrays_to_py(self): # Test regression in ARROW-1199 not caught in above test dtype = 'i1' arr = np.array([ np.arange(10, dtype=dtype), np.arange(5, dtype=dtype), None, np.arange(1, dtype=dtype) ]) type_ = pa.list_(pa.int8()) parr = pa.array(arr, type=type_) assert parr[0].as_py() == list(range(10)) assert parr[1].as_py() == list(range(5)) assert parr[2].as_py() is None assert parr[3].as_py() == [0] def test_column_of_lists(self): df, schema = dataframe_with_lists() _check_pandas_roundtrip(df, schema=schema, expected_schema=schema) table = pa.Table.from_pandas(df, schema=schema, preserve_index=False) # schema's metadata is generated by from_pandas conversion expected_schema = schema.add_metadata(table.schema.metadata) assert table.schema.equals(expected_schema) for column in df.columns: field = schema.field_by_name(column) _check_array_roundtrip(df[column], type=field.type) def test_column_of_lists_first_empty(self): # ARROW-2124 num_lists = [[], [2, 3, 4], [3, 6, 7, 8], [], [2]] series = pd.Series([np.array(s, dtype=float) for s in num_lists]) arr = pa.array(series) result = pd.Series(arr.to_pandas()) tm.assert_series_equal(result, series) def test_column_of_lists_chunked(self): # ARROW-1357 df = pd.DataFrame({ 'lists': np.array([ [1, 2], None, [2, 3], [4, 5], [6, 7], [8, 9] ], dtype=object) }) schema = pa.schema([ pa.field('lists', pa.list_(pa.int64())) ]) t1 = pa.Table.from_pandas(df[:2], schema=schema) t2 = pa.Table.from_pandas(df[2:], schema=schema) table = pa.concat_tables([t1, t2]) result = table.to_pandas() tm.assert_frame_equal(result, df) def test_column_of_lists_chunked2(self): data1 = [[0, 1], [2, 3], [4, 5], [6, 7], [10, 11], [12, 13], [14, 15], [16, 17]] data2 = [[8, 9], [18, 19]] a1 = pa.array(data1) a2 = pa.array(data2) t1 = pa.Table.from_arrays([a1], names=['a']) t2 = pa.Table.from_arrays([a2], names=['a']) concatenated = pa.concat_tables([t1, t2]) result = concatenated.to_pandas() expected = pd.DataFrame({'a': data1 + data2}) tm.assert_frame_equal(result, expected) def test_column_of_lists_strided(self): df, schema = dataframe_with_lists() df = pd.concat([df] * 6, ignore_index=True) arr = df['int64'].values[::3] assert arr.strides[0] != 8 _check_array_roundtrip(arr) def test_nested_lists_all_none(self): data = np.array([[None, None], None], dtype=object) arr = pa.array(data) expected = pa.array(list(data)) assert arr.equals(expected) assert arr.type == pa.list_(pa.null()) data2 = np.array([None, None, [None, None], np.array([None, None], dtype=object)], dtype=object) arr = pa.array(data2) expected = pa.array([None, None, [None, None], [None, None]]) assert arr.equals(expected) def test_nested_lists_all_empty(self): # ARROW-2128 data = pd.Series([[], [], []]) arr = pa.array(data) expected = pa.array(list(data)) assert arr.equals(expected) assert arr.type == pa.list_(pa.null()) def test_nested_list_first_empty(self): # ARROW-2711 data = pd.Series([[], [u"a"]]) arr = pa.array(data) expected = pa.array(list(data)) assert arr.equals(expected) assert arr.type == pa.list_(pa.string()) def test_nested_smaller_ints(self): # ARROW-1345, ARROW-2008, there were some type inference bugs happening # before data = pd.Series([np.array([1, 2, 3], dtype='i1'), None]) result = pa.array(data) result2 = pa.array(data.values) expected = pa.array([[1, 2, 3], None], type=pa.list_(pa.int8())) assert result.equals(expected) assert result2.equals(expected) data3 = pd.Series([np.array([1, 2, 3], dtype='f4'), None]) result3 = pa.array(data3) expected3 = pa.array([[1, 2, 3], None], type=pa.list_(pa.float32())) assert result3.equals(expected3) def test_infer_lists(self): data = OrderedDict([ ('nan_ints', [[None, 1], [2, 3]]), ('ints', [[0, 1], [2, 3]]), ('strs', [[None, u'b'], [u'c', u'd']]), ('nested_strs', [[[None, u'b'], [u'c', u'd']], None]) ]) df = pd.DataFrame(data) expected_schema = pa.schema([ pa.field('nan_ints', pa.list_(pa.int64())), pa.field('ints', pa.list_(pa.int64())), pa.field('strs', pa.list_(pa.string())), pa.field('nested_strs', pa.list_(pa.list_(pa.string()))) ]) _check_pandas_roundtrip(df, expected_schema=expected_schema) def test_infer_numpy_array(self): data = OrderedDict([ ('ints', [ np.array([0, 1], dtype=np.int64), np.array([2, 3], dtype=np.int64) ]) ]) df = pd.DataFrame(data) expected_schema = pa.schema([ pa.field('ints', pa.list_(pa.int64())) ]) _check_pandas_roundtrip(df, expected_schema=expected_schema) @pytest.mark.parametrize('t,data,expected', [ ( pa.int64, [[1, 2], [3], None], [None, [3], None] ), ( pa.string, [[u'aaa', u'bb'], [u'c'], None], [None, [u'c'], None] ), ( pa.null, [[None, None], [None], None], [None, [None], None] ) ]) def test_array_from_pandas_typed_array_with_mask(self, t, data, expected): m = np.array([True, False, True]) s = pd.Series(data) result = pa.Array.from_pandas(s, mask=m, type=pa.list_(t())) assert pa.Array.from_pandas(expected, type=pa.list_(t())).equals(result) def test_empty_list_roundtrip(self): empty_list_array = np.empty((3,), dtype=object) empty_list_array.fill([]) df = pd.DataFrame({'a': np.array(['1', '2', '3']), 'b': empty_list_array}) tbl = pa.Table.from_pandas(df) result = tbl.to_pandas() tm.assert_frame_equal(result, df) def test_array_from_nested_arrays(self): df, schema = dataframe_with_arrays() for field in schema: arr = df[field.name].values expected = pa.array(list(arr), type=field.type) result = pa.array(arr) assert result.type == field.type # == list<scalar> assert result.equals(expected) class TestConvertStructTypes(object): """ Conversion tests for struct types. """ def test_to_pandas(self): ints = pa.array([None, 2, 3], type=pa.int64()) strs = pa.array([u'a', None, u'c'], type=pa.string()) bools = pa.array([True, False, None], type=pa.bool_()) arr = pa.StructArray.from_arrays( [ints, strs, bools], ['ints', 'strs', 'bools']) expected = pd.Series([ {'ints': None, 'strs': u'a', 'bools': True}, {'ints': 2, 'strs': None, 'bools': False}, {'ints': 3, 'strs': u'c', 'bools': None}, ]) series = pd.Series(arr.to_pandas()) tm.assert_series_equal(series, expected) def test_from_numpy(self): dt = np.dtype([('x', np.int32), (('y_title', 'y'), np.bool_)]) ty = pa.struct([pa.field('x', pa.int32()), pa.field('y', pa.bool_())]) data = np.array([], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [] data = np.array([(42, True), (43, False)], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [{'x': 42, 'y': True}, {'x': 43, 'y': False}] # With mask arr = pa.array(data, mask=np.bool_([False, True]), type=ty) assert arr.to_pylist() == [{'x': 42, 'y': True}, None] # Trivial struct type dt = np.dtype([]) ty = pa.struct([]) data = np.array([], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [] data = np.array([(), ()], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [{}, {}] def test_from_numpy_nested(self): dt = np.dtype([('x', np.dtype([('xx', np.int8), ('yy', np.bool_)])), ('y', np.int16)]) ty = pa.struct([pa.field('x', pa.struct([pa.field('xx', pa.int8()), pa.field('yy', pa.bool_())])), pa.field('y', pa.int16())]) data = np.array([], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [] data = np.array([((1, True), 2), ((3, False), 4)], dtype=dt) arr = pa.array(data, type=ty) assert arr.to_pylist() == [{'x': {'xx': 1, 'yy': True}, 'y': 2}, {'x': {'xx': 3, 'yy': False}, 'y': 4}] @pytest.mark.large_memory def test_from_numpy_large(self): # Exercise rechunking + nulls target_size = 3 * 1024**3 # 4GB dt = np.dtype([('x', np.float64), ('y', 'object')]) bs = 65536 - dt.itemsize block = b'.' * bs n = target_size // (bs + dt.itemsize) data = np.zeros(n, dtype=dt) data['x'] = np.random.random_sample(n) data['y'] = block # Add implicit nulls data['x'][data['x'] < 0.2] = np.nan ty = pa.struct([pa.field('x', pa.float64()), pa.field('y', pa.binary(bs))]) arr = pa.array(data, type=ty, from_pandas=True) assert arr.num_chunks == 2 def iter_chunked_array(arr): for chunk in arr.iterchunks(): for item in chunk: yield item def check(arr, data, mask=None): assert len(arr) == len(data) xs = data['x'] ys = data['y'] for i, obj in enumerate(iter_chunked_array(arr)): try: d = obj.as_py() if mask is not None and mask[i]: assert d is None else: x = xs[i] if np.isnan(x): assert d['x'] is None else: assert d['x'] == x assert d['y'] == ys[i] except Exception: print("Failed at index", i) raise check(arr, data) del arr # Now with explicit mask mask = np.random.random_sample(n) < 0.2 arr = pa.array(data, type=ty, mask=mask, from_pandas=True) assert arr.num_chunks == 2 check(arr, data, mask) del arr def test_from_numpy_bad_input(self): ty = pa.struct([pa.field('x', pa.int32()), pa.field('y', pa.bool_())]) dt = np.dtype([('x', np.int32), ('z', np.bool_)]) data = np.array([], dtype=dt) with pytest.raises(TypeError, match="Missing field 'y'"): pa.array(data, type=ty) data = np.int32([]) with pytest.raises(TypeError, match="Expected struct array"): pa.array(data, type=ty) class TestZeroCopyConversion(object): """ Tests that zero-copy conversion works with some types. """ def test_zero_copy_success(self): result = pa.array([0, 1, 2]).to_pandas(zero_copy_only=True) npt.assert_array_equal(result, [0, 1, 2]) def test_zero_copy_dictionaries(self): arr = pa.DictionaryArray.from_arrays( np.array([0, 0]), np.array([5])) result = arr.to_pandas(zero_copy_only=True) values = pd.Categorical([5, 5]) tm.assert_series_equal(pd.Series(result), pd.Series(values), check_names=False) def check_zero_copy_failure(self, arr): with pytest.raises(pa.ArrowInvalid): arr.to_pandas(zero_copy_only=True) def test_zero_copy_failure_on_object_types(self): self.check_zero_copy_failure(pa.array(['A', 'B', 'C'])) def test_zero_copy_failure_with_int_when_nulls(self): self.check_zero_copy_failure(pa.array([0, 1, None])) def test_zero_copy_failure_with_float_when_nulls(self): self.check_zero_copy_failure(pa.array([0.0, 1.0, None])) def test_zero_copy_failure_on_bool_types(self): self.check_zero_copy_failure(pa.array([True, False])) def test_zero_copy_failure_on_list_types(self): arr = pa.array([[1, 2], [8, 9]], type=pa.list_(pa.int64())) self.check_zero_copy_failure(arr) def test_zero_copy_failure_on_timestamp_types(self): arr = np.array(['2007-07-13'], dtype='datetime64[ns]') self.check_zero_copy_failure(pa.array(arr)) # This function must be at the top-level for Python 2.7's multiprocessing def _non_threaded_conversion(): df = _alltypes_example() _check_pandas_roundtrip(df, use_threads=False) _check_pandas_roundtrip(df, use_threads=False, as_batch=True) def _threaded_conversion(): df = _alltypes_example() _check_pandas_roundtrip(df, use_threads=True) _check_pandas_roundtrip(df, use_threads=True, as_batch=True) class TestConvertMisc(object): """ Miscellaneous conversion tests. """ type_pairs = [ (np.int8, pa.int8()), (np.int16, pa.int16()), (np.int32, pa.int32()), (np.int64, pa.int64()), (np.uint8, pa.uint8()), (np.uint16, pa.uint16()), (np.uint32, pa.uint32()), (np.uint64, pa.uint64()), (np.float16, pa.float16()), (np.float32, pa.float32()), (np.float64, pa.float64()), # XXX unsupported # (np.dtype([('a', 'i2')]), pa.struct([pa.field('a', pa.int16())])), (np.object, pa.string()), (np.object, pa.binary()), (np.object, pa.binary(10)), (np.object, pa.list_(pa.int64())), ] def test_all_none_objects(self): df = pd.DataFrame({'a': [None, None, None]}) _check_pandas_roundtrip(df) def test_all_none_category(self): df = pd.DataFrame({'a': [None, None, None]}) df['a'] = df['a'].astype('category') _check_pandas_roundtrip(df) def test_empty_arrays(self): for dtype, pa_type in self.type_pairs: arr = np.array([], dtype=dtype) _check_array_roundtrip(arr, type=pa_type) def test_non_threaded_conversion(self): _non_threaded_conversion() def test_threaded_conversion_multiprocess(self): # Parallel conversion should work from child processes too (ARROW-2963) pool = mp.Pool(2) try: pool.apply(_threaded_conversion) finally: pool.close() pool.join() def test_category(self): repeats = 5 v1 = ['foo', None, 'bar', 'qux', np.nan] v2 = [4, 5, 6, 7, 8] v3 = [b'foo', None, b'bar', b'qux', np.nan] arrays = { 'cat_strings': pd.Categorical(v1 * repeats), 'cat_strings_with_na': pd.Categorical(v1 * repeats, categories=['foo', 'bar']), 'cat_ints': pd.Categorical(v2 * repeats), 'cat_binary': pd.Categorical(v3 * repeats), 'cat_strings_ordered': pd.Categorical( v1 * repeats, categories=['bar', 'qux', 'foo'], ordered=True), 'ints': v2 * repeats, 'ints2': v2 * repeats, 'strings': v1 * repeats, 'strings2': v1 * repeats, 'strings3': v3 * repeats} df = pd.DataFrame(arrays) _check_pandas_roundtrip(df) for k in arrays: _check_array_roundtrip(arrays[k]) def test_category_implicit_from_pandas(self): # ARROW-3374 def _check(v): arr = pa.array(v) result = arr.to_pandas() tm.assert_series_equal(pd.Series(result), pd.Series(v)) arrays = [ pd.Categorical(['a', 'b', 'c'], categories=['a', 'b']), pd.Categorical(['a', 'b', 'c'], categories=['a', 'b'], ordered=True) ] for arr in arrays: _check(arr) def test_empty_category(self): # ARROW-2443 df = pd.DataFrame({'cat': pd.Categorical([])}) _check_pandas_roundtrip(df) def test_mixed_types_fails(self): data = pd.DataFrame({'a': ['a', 1, 2.0]}) with pytest.raises(pa.ArrowTypeError): pa.Table.from_pandas(data) data = pd.DataFrame({'a': [1, True]}) with pytest.raises(pa.ArrowTypeError): pa.Table.from_pandas(data) data = pd.DataFrame({'a': ['a', 1, 2.0]}) expected_msg = 'Conversion failed for column a' with pytest.raises(pa.ArrowTypeError, match=expected_msg): pa.Table.from_pandas(data) def test_strided_data_import(self): cases = [] columns = ['a', 'b', 'c'] N, K = 100, 3 random_numbers = np.random.randn(N, K).copy() * 100 numeric_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'f4', 'f8'] for type_name in numeric_dtypes: cases.append(random_numbers.astype(type_name)) # strings cases.append(np.array([tm.rands(10) for i in range(N * K)], dtype=object) .reshape(N, K).copy()) # booleans boolean_objects = (np.array([True, False, True] * N, dtype=object) .reshape(N, K).copy()) # add some nulls, so dtype comes back as objects boolean_objects[5] = None cases.append(boolean_objects) cases.append(np.arange("2016-01-01T00:00:00.001", N * K, dtype='datetime64[ms]') .reshape(N, K).copy()) strided_mask = (random_numbers > 0).astype(bool)[:, 0] for case in cases: df = pd.DataFrame(case, columns=columns) col = df['a'] _check_pandas_roundtrip(df) _check_array_roundtrip(col) _check_array_roundtrip(col, mask=strided_mask) def test_all_nones(self): def _check_series(s): converted = pa.array(s) assert isinstance(converted, pa.NullArray) assert len(converted) == 3 assert converted.null_count == 3 for item in converted: assert item is pa.NA _check_series(pd.Series([None] * 3, dtype=object)) _check_series(pd.Series([np.nan] * 3, dtype=object)) _check_series(
pd.Series([None, np.nan, None], dtype=object)
pandas.Series
from collections import namedtuple import datetime from tqdm import tqdm import pandas as pd from docplex.mp.model import Model from docplex.util.environment import get_environment from functools import reduce import numpy as np # ---------------------------------------------------------------------------- # Initialize the problem data # ---------------------------------------------------------------------------- TMemberAvailability = namedtuple( "TMemberAvailability", ["ContactID", "TimeFrom", "TimeTo"] ) TMemberWorksiteReference = namedtuple( "TMemberWorksiteReference", ["ContactID", "Worksite"] ) TMemberShiftReference = namedtuple( "TMemberShiftReference", ["ContactID", "Shift", "StartRange", "EndRange"] ) TMemberMeasurement = namedtuple( "TMemberMeasurement", ["ContactID", "Measurement"]) TVacancyDetail = namedtuple( "TVacancyDetail", [ "StartDate", "EndDate", "Quantity", "Worksite", "Position", "WorksiteID", "PositionID", "Measurement", ], ) TVacancyObjectTime = namedtuple( "TVacancyObjectTime", ["Title", "DateFrom", "DateTo", "Position", "Worksite"] ) TShiftConstraints = namedtuple( "TShiftContraints", [ "MinPeopleWorking", "ScheduledBreakHours", "MaxHoursPerDay", "MaxHoursPerWeek", "MaxConsecutiveShift", "MinBreakBetweenShift", "MinHoursPerShift", ], ) TRange = namedtuple("TRange", ["From", "To"]) file_name = "Squirrel_Optimization.xlsx" excel_data_file = pd.ExcelFile(file_name) MAX_BREAK_PER_SHIFT = 4 DEFAULT_BREAK_LENGTH = 0.5 * 60 MIN_SHIFT_LENGTH = 4 * 60 NUM_OBJECTTIME_PER_DAY = 12 def lookup(lst, func): # print("Lookup ") for i in lst: # print(i) # print(func(i)) if func(i): return i def load_data(model, excel, verbose): df_vacancy_detail = excel.parse("Vacancy") df_vacancy_objectTime = excel.parse("Vacancy Object Time") df_teamMember_measurement = excel.parse("Team Member Measurement") df_teamMember_worksiteReference = excel.parse( "Team Member Worksite Preference") df_teamMember_availability = excel.parse("Team Member Availability") df_teamMember_shiftReference = excel.parse("Team Member Shift Preference") df_shift_constraints = excel.parse("Shift Constraints") anchor_date = df_vacancy_detail["StartDate"][0] # print(anchor_date) def date2num(dt): return int((dt - anchor_date).total_seconds() / 60) model.num2date = lambda n: anchor_date + datetime.timedelta( days=int(n / (60 * 24)), hours=int((n % (60 * 24))) / 60 ) # print(list(map(date2num, df_vacancy_objectTime["DateFrom"]))) df_vacancy_objectTime.loc[:, "DateFrom"] = list( map(date2num, df_vacancy_objectTime["DateFrom"]) ) df_vacancy_objectTime.loc[:, "DateTo"] = list( map(date2num, df_vacancy_objectTime["DateTo"]) ) df_teamMember_availability.loc[:, "TimeFrom"] = list( map(date2num, df_teamMember_availability["TimeFrom"]) ) df_teamMember_availability.loc[:, "TimeTo"] = list( map(date2num, df_teamMember_availability["TimeTo"]) ) del df_teamMember_availability["Team Member"] del df_teamMember_worksiteReference["Team Member"] del df_teamMember_shiftReference["Team Member"] del df_teamMember_measurement["Team Member"] MEM_AVAILAVILITY = [ TMemberAvailability(*row) for _, row in df_teamMember_availability.iterrows() ] MEM_WORKSITE_REFERENCE = [ TMemberWorksiteReference(*row) for _, row in df_teamMember_worksiteReference.iterrows() ] MEM_SHIFT_REFERENCE = [ TMemberShiftReference(*row) for _, row in df_teamMember_shiftReference.iterrows() ] MEM_MEASUREMENT = [ TMemberMeasurement(*row) for _, row in df_teamMember_measurement.iterrows() ] VACANCY_DETAIL = [TVacancyDetail(*row) for _, row in df_vacancy_detail.iterrows()][ 0 ] VACANCY_OBJECTTIME = [ TVacancyObjectTime(*row) for _, row in df_vacancy_objectTime.iterrows() ] SHIFT_CONSTRAINTS = TShiftConstraints( *tuple( [ i if i != "04:00 to 06:00" else TRange(4 * 60, 7 * 60) for i in df_shift_constraints["Value"].tolist() ] ) ) # model.number_of_overlaps = 0 model.availabilities = MEM_AVAILAVILITY model.objecttimes = VACANCY_OBJECTTIME model.worksite_refs = MEM_WORKSITE_REFERENCE model.shift_refs = MEM_SHIFT_REFERENCE model.member_measurement = MEM_MEASUREMENT[:11] model.shift_constraints = SHIFT_CONSTRAINTS model.vacancy_detail = VACANCY_DETAIL def setup_data(model: Model): model.members = {m.ContactID: m for m in model.member_measurement} lst = list(set(model.objecttimes)) lst.sort(key=lambda x: x.DateFrom) model.objecttime_ids = {i: o for i, o in enumerate(lst[:1])} def setup_variables(model: Model): # MemberAssignment_contactId print("Num of Members: ", len(model.members)) model.member_assignment_vars = model.binary_var_dict( keys=model.members.keys(), name="MemberAssignment" ) # if a shift is assigned -> 1 model.shift_assignment_vars = model.binary_var_matrix( keys1=model.members.keys(), keys2=model.objecttime_ids.keys(), name="ShiftAssignment" ) # print(model.shift_assignment_vars, "\n") # ShiftStart_contactId_objectId_shift model.shift_start_vars = model.integer_var_matrix( keys1=model.members.keys(), keys2=model.objecttime_ids.keys(), lb=0, ub=60 * 24 * 10, # Limit for 10 days name="ShiftStart", ) # print(model.shift_start_vars,"\n") # ShiftEnd model.shift_end_vars = model.integer_var_matrix( keys1=model.members.keys(), keys2=model.objecttime_ids.keys(), lb=0, ub=60 * 24 * 10, # Limit for 10 days name="ShiftEnd", ) # BreakStart model.break_start_vars = model.integer_var_cube( keys1=model.members.keys(), keys2=model.objecttime_ids.keys(), keys3=[j for j in range(0, MAX_BREAK_PER_SHIFT)], lb=0, ub=60 * 24 * 10, # Limit for 10 days name="BreakStart", ) # BreakDuration # print(model.break_start_vars) model.break_duration_vars = model.integer_var_cube( keys1=model.members.keys(), keys2=model.objecttime_ids.keys(), keys3=[j for j in range(0, MAX_BREAK_PER_SHIFT)], lb=0, ub=DEFAULT_BREAK_LENGTH, # maximum break length (in minute) name="BreakDuration", ) # model.member_over_average_time_vars = model.continuous_var_dict( # model.members.keys(), lb=0, name="MemberOverAverageWorkTime" # ) # model.member_under_average_time_vars = model.continuous_var_dict( # model.members.keys(), lb=0, name="MemberUnderAverageWorkTime" # ) # model.average_member_work_time = model.continuous_var(lb=0, name="AverageWorkTime") return def setup_constraints(model: Model): def getDate(x): return int(x / (24 * 60)) numDayOfVacancy = ( model.vacancy_detail.EndDate - model.vacancy_detail.StartDate ).days + 1 # If any partial shift of a member is assigned => this member is assigned for ctactId, assignmendVar in model.member_assignment_vars.items(): lstShift = [ model.shift_assignment_vars[(ctactId, objecttimeId)] for objecttimeId in model.objecttime_ids.keys() ] # if assigned model.add_constraint( model.equivalence_constraint( assignmendVar, model.sum(lstShift) >= 1, true_value=1 ), "ShiftAssignedToMemberAssigned", ) # else model.add_constraint( model.equivalence_constraint( assignmendVar, model.sum(lstShift) == 0, true_value=0 ), "ShiftAssignedToMemberAssigned", ) # ## CONSTRAINT: LIMIT THE NUMBER OF CONSECUTIVE day-SHIFT # _working_day_vars = model.binary_var_matrix( # model.members.keys(), range(0, numDayOfVacancy), "_WorkedDay" # ) # maxConsecutiveShift = model.shift_constraints.MaxConsecutiveShift # for ctactId in model.members.keys(): # for objtId, objt in model.objecttime_ids.items(): # # Flag a day is a working day if it has atleast 1 shift # model.add_constraint( # model.equivalence_constraint( # _working_day_vars[(ctactId, objtId)], # model.sum( # model.shift_assignment_vars[ctactId, objtId, shift] # for shift in range(0, MAX_SHIFT_PER_OBJECTTIME) # ) # >= 1, # there is atleast 1 assigned shift # ), # "CheckingWorkingDay", # ) # # Flag a day is NOT a working day if it has NO shift # model.add_constraint( # model.equivalence_constraint( # _working_day_vars[(ctactId, objtId)], # model.sum( # model.shift_assignment_vars[ctactId, objtId, shift] # for shift in range(0, MAX_SHIFT_PER_OBJECTTIME) # ) # == 0, # there is no assigned shift # true_value=0, # ), # "CheckingWorkingDay", # ) # # Set a day off for the 7th day if the 6 days before are consecutive # for days in range(maxConsecutiveShift, numDayOfVacancy): # model.add_constraint( # model.if_then( # model.sum( # _working_day_vars[(ctactId, day)] # for day in range(days - maxConsecutiveShift, days) # ) # >= maxConsecutiveShift, # _working_day_vars[(ctactId, days)] == 0, # ), # "LimitConsecutiveWorkedDays", # ) # CONSTRAINT : LIMIT WORKING HOUR PER DAY for ctactId in model.members.keys(): for objtId, objt in model.objecttime_ids.items(): model.add_constraint( model.le_constraint( model.shift_end_vars[(ctactId, objtId)] - model.shift_start_vars[(ctactId, objtId)] - model.sum( model.break_duration_vars[ (ctactId, objtId, brk) ] for brk in range(0, MAX_BREAK_PER_SHIFT) ), model.shift_constraints.MaxHoursPerDay * 60, # Minutes "MaxHoursPerDay", ) ) # CONSTRAINT : LIMIT WORKING HOUR PER WEEEK # currently, considering the whole vacancy is a week # model.work_time_var = {} # for ctactId in model.members.keys(): # model.work_time_var[ctactId] = model.sum( # ( # model.shift_end_vars[(ctactId, objtId, shft)] # - model.shift_start_vars[(ctactId, objtId, shft)] # ) # for objtId in model.objecttime_ids.keys() # for shft in range(0, MAX_SHIFT_PER_OBJECTTIME) # ) # # -model.sum( # # model.break_duration_vars[(ctactId, objtId, "{0}_br{1}".format(shft, brk))] # # for objtId in model.objecttime_ids.keys() # # for shft in range(0, MAX_SHIFT_PER_OBJECTTIME) # # for brk in range(0, MAX_BREAK_PER_SHIFT) # # ) # model.add_constraint( # model.le_constraint( # model.work_time_var[ctactId], # model.shift_constraints.MaxHoursPerWeek * 60, # Minutes # "MaxHoursPerWeek", # ) # ) # Normal shift constraints for ctactId, objtId in model.shift_assignment_vars.keys(): objt = model.objecttime_ids[objtId] varKey = (ctactId, objtId) shiftStart_var = model.shift_start_vars[varKey] shiftEnd_var = model.shift_end_vars[varKey] # Question: All values of objt.DateFrom will be 300? As # model.objecttime_ids = {i: o for i, o in enumerate(lst[:1])} # Set range for shift_start according to objectTime model.add_constraint( shiftStart_var >= objt.DateFrom, "Shift.Start>=Date.From", ) # Question: All values of objt.DateFrom will be 1320? As # model.objecttime_ids = {i: o for i, o in enumerate(lst[:1])} # Set range for shift_end according to objectTime model.add_constraint( shiftEnd_var <= objt.DateTo, "Shift.End<=Date.To", ) # Question: if shift is not assigned, shiftStart_var == shiftEnd_var can still # be non-zero values # if shift is not assigned model.add_equivalence( model.shift_assignment_vars[varKey], shiftStart_var == shiftEnd_var, true_value=0, name="ShiftAssignment", ) # else model.add_equivalence( model.shift_assignment_vars[varKey], shiftEnd_var - shiftStart_var >= MIN_SHIFT_LENGTH, true_value=1, name="ShiftAssignment", ) isScheduleBreak = model.binary_var() model.add_equivalence( isScheduleBreak, shiftEnd_var - shiftStart_var >= model.shift_constraints.ScheduledBreakHours.From + 1, ) for brk in range(0, MAX_BREAK_PER_SHIFT): brk_key = (ctactId, objtId, brk) model.add_constraint( model.break_start_vars[brk_key] >= shiftStart_var, "Break.Start>=Shift.Start", ) model.add_constraint( model.break_duration_vars[brk_key] + model.break_start_vars[brk_key] <= shiftEnd_var, "Break.Start+Duration<=Shift.End", ) model.add_constraint( model.indicator_constraint( isScheduleBreak, model.break_start_vars[brk_key] >= shiftStart_var + model.shift_constraints.ScheduledBreakHours.From, ) ) model.add_constraint( model.indicator_constraint( isScheduleBreak, model.break_start_vars[brk_key] + DEFAULT_BREAK_LENGTH <= shiftStart_var + model.shift_constraints.ScheduledBreakHours.To, ) ) model.add_constraint( model.indicator_constraint( isScheduleBreak, model.break_duration_vars[brk_key] == DEFAULT_BREAK_LENGTH, ) ) model.add_constraint( model.if_then( model.break_duration_vars[brk_key] >= 1, # > 0 model.break_duration_vars[brk_key] == DEFAULT_BREAK_LENGTH, ), "Break.Duration==0_Or_>=MIN", ) if brk < MAX_BREAK_PER_SHIFT - 1: next_brk_key = (ctactId, objtId, brk + 1) model.add_constraint( model.break_duration_vars[brk_key] + model.break_start_vars[brk_key] <= model.break_start_vars[next_brk_key], "Break.Start+Duration<=NextBreak.Start", ) # timeAvailability = lookup( # model.availabilities, # lambda i: (ctactId == i.ContactID) # and getDate((i.TimeFrom + i.TimeTo) / 2) # == getDate((objt.DateFrom + objt.DateTo) / 2), # ) # # print(shiftStart_var,timeAvailability) # if timeAvailability: # "If this member is availabilities for this objecttime" # # Set range for shift_end according to member Availability # model.add_constraint( # shiftStart_var >= timeAvailability.TimeFrom, # "Shift.Start>=Availability.Start", # ) # # Set range for shift_end according to member Availability # model.add_constraint( # shiftEnd_var <= timeAvailability.TimeTo, # "Shift.End<=Availability.End", # ) # else: # "If a shift_var of a member who is not availabe -> Start == End" # model.add_constraint( # shiftStart_var == shiftEnd_var, "ShiftStart==ShiftEnd", # ) # model.add_constraint(model.shift_assignment_vars[varKey] == 0 # CONSTRAINT: MAKE SURE THERE ARE ALWAYS 'Minimum People Working' AT ANY MOMENT minPeopleWorking = model.shift_constraints.MinPeopleWorking vacancyQuantiyRequirement = model.vacancy_detail.Quantity vacancyQuantiyRequirement = 12 minPeopleWorking = 5 for objtId, objt in tqdm(model.objecttime_ids.items()): # check for every moment with offset = 30min getShiftKeys = [ key for key in model.shift_assignment_vars.keys() if key[1] == objtId ] # -------------------------------------- # Check Object-time Start checkedStartTime = objt.DateFrom shiftStartCheckingVarList = [] for thisShiftKey in getShiftKeys: shiftCheckingVar = model.binary_var( "ShiftCheckingVar_{0}_{1}".format(thisShiftKey, "START") ) shiftStartCheckingVarList.append(shiftCheckingVar) timeCheckingVar = model.binary_var() model.add_equivalence( timeCheckingVar, checkedStartTime == model.shift_start_vars[thisShiftKey], ) model.add_constraint( shiftCheckingVar == model.logical_and( timeCheckingVar, model.shift_assignment_vars[thisShiftKey] ) ) model.add_constraint( model.sum( shiftStartCheckingVarList) >= minPeopleWorking, "1.1.MinPeopleWorking" ) model.add_constraint( model.sum( shiftStartCheckingVarList) <= vacancyQuantiyRequirement, "1.1.MaxObjectTimes" ) # Check Object-time End checkedEndTime = objt.DateTo shiftEndCheckingVarList = [] objtimeEndCheckingVarList = [] for thisShiftKey in getShiftKeys: shiftCheckingVar = model.binary_var( "ShiftCheckingVar_{0}_{1}".format(thisShiftKey, "END") ) objecttimeCheckingVar = model.binary_var( "ObjtimeCheckingVar_{0}_{1}".format(thisShiftKey, "END") ) shiftEndCheckingVarList.append(shiftCheckingVar) objtimeEndCheckingVarList.append(objecttimeCheckingVar) timeCheckingVar = model.binary_var() model.add_equivalence( timeCheckingVar, checkedEndTime == model.shift_end_vars[thisShiftKey], ) workingCheckList = [timeCheckingVar] for brk in range(0, MAX_BREAK_PER_SHIFT): _key = ( thisShiftKey[0], thisShiftKey[1], brk ) _brk_start = model.break_start_vars[_key] _duration = model.break_duration_vars[_key] _checkEndBreak_var = model.binary_var() model.add_equivalence( _checkEndBreak_var, checkedEndTime >= ( _brk_start + _duration + 1) ) workingCheckList.append(_checkEndBreak_var) workingCheckList.append(model.shift_assignment_vars[thisShiftKey]) model.add_constraint(shiftCheckingVar == model.logical_and(*workingCheckList)) model.add_constraint(objecttimeCheckingVar == model.logical_and( timeCheckingVar, model.shift_assignment_vars[thisShiftKey])) model.add_constraint( model.sum( shiftEndCheckingVarList) >= minPeopleWorking, "1.2.MinPeopleWorking" ) model.add_constraint( model.sum( objtimeEndCheckingVarList) <= vacancyQuantiyRequirement, "1.2.MaxObjectTimes" ) # Check with shift-start for thisShiftKey in getShiftKeys: thisShiftStart = model.shift_start_vars[thisShiftKey] shiftStartCheckingVarList = [] objecttimeCheckingVarList = [] for otherShiftKey in getShiftKeys: # not check with this shift it-self if (otherShiftKey[:1] == thisShiftKey[:1]): continue checkStart_var = model.binary_var() checkEnd_var = model.binary_var() checkShift_var = model.binary_var() model.add_equivalence( checkStart_var, model.shift_start_vars[otherShiftKey] <= thisShiftStart, ) model.add_equivalence( checkEnd_var, thisShiftStart <= model.shift_end_vars[otherShiftKey] - 1, ) model.add_constraint( checkShift_var == model.logical_and( checkEnd_var, checkStart_var ) # logicAND to check inside shiftRange ) workingCheckList = [checkShift_var] # check with breaks of this shift breakCheck = [] for brk in range(0, MAX_BREAK_PER_SHIFT): _key = ( otherShiftKey[0], otherShiftKey[1], brk, ) _brk_start = model.break_start_vars[_key] _duration = model.break_duration_vars[_key] _check_break = model.binary_var() _checkStartBreak_var = model.binary_var() _checkEndBreak_var = model.binary_var() # moment must be outsite break-range model.add_equivalence( _checkStartBreak_var, thisShiftStart <= _brk_start - 1 ) model.add_equivalence( _checkEndBreak_var, thisShiftStart >= ( _brk_start + _duration) ) model.add_constraint( _check_break == model.logical_or( _checkStartBreak_var, _checkEndBreak_var ) # # logicOR to check OUTide breakRange ) breakCheck.append(_check_break) workingCheckList.append( model.shift_assignment_vars[thisShiftKey]) workingCheckList.append( model.shift_assignment_vars[otherShiftKey]) shiftCheckingVar = model.binary_var( "ShiftCheckingVar_Start_{0}_{1}".format( thisShiftKey, otherShiftKey) ) # objecttimeCheckingVar = model.binary_var( # "ObjectTimeCheckingVar_Start_{0}_{1}".format( # thisShiftKey, otherShiftKey) # ) model.add_equivalence(shiftCheckingVar, model.logical_and( *(workingCheckList+breakCheck)) == 1) # model.add_equivalence( # objecttimeCheckingVar, model.logical_and(*workingCheckList) == 1) shiftStartCheckingVarList.append(shiftCheckingVar) # objecttimeCheckingVarList.append(objecttimeCheckingVar) model.add_indicator( model.shift_assignment_vars[thisShiftKey], model.sum(shiftStartCheckingVarList) >= minPeopleWorking - 1, # cause this checker is already a working moment name="2.1.MinPeopleWorking", ) # model.add_indicator( # model.shift_assignment_vars[thisShiftKey], # model.sum(objecttimeCheckingVarList) # # cause this checker is already a working moment # <= vacancyQuantiyRequirement - 1, # name="2.1.MaxObjectTimes", # ) # Check with shift-end for thisShiftKey in getShiftKeys: thisShiftEnd = model.shift_end_vars[thisShiftKey] checkingVarList = [] for otherShiftKey in getShiftKeys: if (otherShiftKey == thisShiftKey): # not check with this shift it-self continue shiftCheckingVar = model.binary_var( "ShiftCheckingVar_End_{0}_{1}".format( thisShiftKey, otherShiftKey) ) checkStart_var = model.binary_var() checkEnd_var = model.binary_var() checkShift_var = model.binary_var() model.add_equivalence( checkStart_var, model.shift_start_vars[otherShiftKey] <= thisShiftEnd, ) model.add_equivalence( checkEnd_var, thisShiftEnd <= model.shift_end_vars[otherShiftKey] - 1 ) model.add_constraint( checkShift_var == model.logical_and( checkEnd_var, checkStart_var ) # logicAND to check inside shiftRange ) arr = [checkShift_var] # check with breaks of this shift for brk in range(0, MAX_BREAK_PER_SHIFT): _key = ( otherShiftKey[0], otherShiftKey[1], brk ) _brk_start = model.break_start_vars[_key] _duration = model.break_duration_vars[_key] _check_break = model.binary_var() _checkStartBreak_var = model.binary_var() _checkEndBreak_var = model.binary_var() # moment must be outsite break-range model.add_equivalence( _checkStartBreak_var, thisShiftEnd <= _brk_start - 1) model.add_equivalence( _checkEndBreak_var, thisShiftEnd >= ( _brk_start + _duration) ) model.add_constraint( _check_break == model.logical_or( _checkStartBreak_var, _checkEndBreak_var ) # # logicOR to check inside breakRange ) arr.append(_check_break) arr.append(model.shift_assignment_vars[thisShiftKey]) arr.append(model.shift_assignment_vars[otherShiftKey]) model.add_equivalence( shiftCheckingVar, model.logical_and(*arr) == 1) checkingVarList.append(shiftCheckingVar) isNotEndDay = model.binary_var() model.add_equivalence( isNotEndDay, thisShiftEnd <= objt.DateTo-1, ) model.add_constraint( model.if_then( model.logical_and( model.shift_assignment_vars[thisShiftKey], isNotEndDay ) == 1, model.sum(checkingVarList) >= minPeopleWorking ), ctname="2.2.MinPeopleWorking" ) for thisShiftKey in getShiftKeys: ctactId, __ = thisShiftKey for brk in range(0, MAX_BREAK_PER_SHIFT): thisBreakKey = (ctactId, objtId, brk) thisBreakStart = model.break_start_vars[thisBreakKey] breakStartCheckingVarList = [] for otherShiftKey in getShiftKeys: if otherShiftKey == thisShiftKey: # not check 2 shifts of the same day of a member continue shiftCheckingVar = model.binary_var( "ShiftCheckingVar_{0}_{1}".format( thisBreakKey, otherShiftKey) ) checkStart_var = model.binary_var() checkEnd_var = model.binary_var() checkShift_var = model.binary_var() model.add_equivalence( checkStart_var, model.shift_start_vars[otherShiftKey] <= thisBreakStart, ) model.add_equivalence( checkEnd_var, thisBreakStart <= model.shift_end_vars[otherShiftKey] - 1, ) model.add_constraint( checkShift_var == model.logical_and( checkEnd_var, checkStart_var ) # logicAND to check inside shiftRange ) workingCheckList = [checkShift_var] # check with breaks of this shift for brk in range(0, MAX_BREAK_PER_SHIFT): _key = ( otherShiftKey[0], otherShiftKey[1], brk, ) _brk_start = model.break_start_vars[_key] _duration = model.break_duration_vars[_key] _check_break = model.binary_var() _checkStartBreak_var = model.binary_var() _checkEndBreak_var = model.binary_var() # moment must be outsite break-range model.add_equivalence( _checkStartBreak_var, thisBreakStart <= _brk_start - 1 ) model.add_equivalence( _checkEndBreak_var, thisBreakStart >= (_brk_start + _duration), ) model.add_constraint( _check_break == model.logical_or( _checkStartBreak_var, _checkEndBreak_var ) # # logicOR to check OUTside breakRange ) workingCheckList.append(_check_break) workingCheckList.append( model.shift_assignment_vars[thisShiftKey]) workingCheckList.append( model.shift_assignment_vars[otherShiftKey]) model.add_equivalence( shiftCheckingVar, model.logical_and( *workingCheckList) == 1 ) breakStartCheckingVarList.append(shiftCheckingVar) model.add_constraint( model.if_then( model.break_duration_vars[thisBreakKey] >= 1, model.sum( shiftStartCheckingVarList) >= minPeopleWorking, ), "3.MinPeopleWorking", ) # for thisShiftKey in getShiftKeys: # ctactId, __, shft = thisShiftKey # for brk in range(0, MAX_BREAK_PER_SHIFT): # thisBreakKey = (ctactId, objtId, "{0}_br{1}".format(shft, brk)) # thisBreakStart = model.break_start_vars[thisBreakKey] # shiftCheckingVarList = [] # for otherShiftKey in getShiftKeys: # if ( # otherShiftKey[:1] == thisShiftKey[:1] # ): # not check 2 shifts of the same day of a member # continue # shiftCheckingVar = model.binary_var( # "ObjectTimeCheckingVar_{0}_{1}".format(thisBreakKey, otherShiftKey) # ) # checkStart_var = model.binary_var() # checkEnd_var = model.binary_var() # check_shift = model.binary_var() # model.add_equivalence( # checkStart_var, # model.shift_start_vars[otherShiftKey] <= thisBreakStart, # ) # model.add_equivalence( # checkEnd_var, # thisBreakStart <= model.shift_end_vars[otherShiftKey], # ) # model.add_constraint( # check_shift # == model.logical_and( # checkEnd_var, checkStart_var # ) # logicAND to check inside shiftRange # ) # workingCheckList = [check_shift] # workingCheckList.append(model.shift_assignment_vars[thisShiftKey]) # workingCheckList.append(model.shift_assignment_vars[otherShiftKey]) # model.add_equivalence( # shiftCheckingVar, model.logical_and(*workingCheckList) == 1 # ) # shiftCheckingVarList.append(shiftCheckingVar) # model.add_constraint( # model.if_then( # model.break_duration_vars[thisBreakKey] >= 1, # model.sum(shiftCheckingVarList) <= vacancyQuantiyRequirement - 1, # ), # "4.MinPeopleWorking", # ) # model.add_constraint( # len(model.members) * model.average_member_work_time # == model.sum(model.work_time_var[n] for n in model.members), # "AverageWorkTime", # ) # list( # model.add_constraint( # model.work_time_var[ctactId] == model.average_member_work_time # + model.member_over_average_time_vars[ctactId] # - model.member_under_average_time_vars[ctactId], # "AverageWorkTime" # ) # for ctactId in model.members.keys() # ) # model.total_salary_cost = model.sum( # ( # (model.shift_end_vars[key] - model.shift_start_vars[key]) # - model.sum( # model.break_duration_vars[key[0], key[1], "{0}_br{1}".format(key[2], brk)] # for brk in range(0, MAX_BREAK_PER_SHIFT) # ) # ) # for key in model.shift_assignment_vars.keys() # ) return def setup_objective(model: Model): total_members_assigment = model.sum(model.member_assignment_vars) model.add_kpi(total_members_assigment, "Total selected members") # model.add_kpi(model.total_salary_cost, "Total salary cost") total_shift_assignment = model.sum(model.shift_assignment_vars) model.add_kpi(total_shift_assignment, "Total number of assignments") # model.add_kpi(model.average_member_work_time, "average work time") # total_over_average_worktime = model.sum( # model.member_over_average_time_vars[n] for n in model.members # ) # total_under_average_worktime = model.sum( # model.member_under_average_time_vars[n] for n in model.members # ) # model.add_kpi(total_over_average_worktime, "Total over-average worktime") # model.add_kpi(total_under_average_worktime, "Total under-average worktime") # total_fairness = total_over_average_worktime + total_under_average_worktime # model.add_kpi(total_fairness, "Total fairness") model.minimize( total_members_assigment # model.total_salary_cost # + total_fairness # + total_shift_assignment ) return def print_information(model: Model): print("#member=%d" % len(model.availabilities)) model.print_information() model.report_kpis() def print_solution(model: Model): print("*************************** Solution ***************************") def solve(model: Model, **kwargs): # Here, we set the number of threads for CPLEX to 2 and set the time limit to 2mins. model.parameters.threads = 16 model.parameters.timelimit = 36000 # solver should not take more than that ! sol = model.solve(log_output=True, **kwargs) if sol is not None: print("solution for a cost of {}".format(model.objective_value)) print_information(model) print_solution(model) return model.objective_value else: print("* model is infeasible") return None def build(context=None, verbose=False, **kwargs): mdl = Model("Members", context=context, **kwargs) print("Loading data") load_data(mdl, excel_data_file, verbose=verbose) print("Setting up data") setup_data(mdl) print("Setting up variable") setup_variables(mdl) print("Setting up constraint") setup_constraints(mdl) print("Setting up objectives") setup_objective(mdl) return mdl def displayModel(model: Model): df_shift = pd.DataFrame() df_break =
pd.DataFrame()
pandas.DataFrame
import io import time import json from datetime import datetime import pandas as pd from pathlib import Path import requests drop_cols = [ '3-day average of daily number of positive tests (may count people more than once)', 'daily total tests completed (may count people more than once)', '3-day average of new people who tested positive (counts first positive lab per person)', '3-day average of currently hospitalized', 'daily number of vaccine doses administered beyond the primary series ' ] def save_file(df, file_path, current_date): # save/update file if not Path(file_path).exists(): df.to_csv(file_path, index=False) else: # get prior file date prior = pd.read_csv(file_path, parse_dates=['date']) prior_date = pd.to_datetime(prior['date'].max()).date() if current_date > prior_date: df.to_csv(file_path, mode='a', header=False, index=False) return def scrape_sheet(sheet_id): # load previous raw_data and get prior date raw_general = './data/raw/ri-covid-19.csv' df = pd.read_csv(raw_general, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() # wait till 5:05 then check every 15 mins for update target = datetime.now().replace(hour=17).replace(minute=5) while datetime.now() < target: print(f"[status] waiting for 5pm", end='\r') time.sleep(60) # load data from RI - DOH spreadsheet gen_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}264100583' df = pd.read_csv(gen_url).dropna(axis=1, how='all') date = list(df)[1].strip() date = pd.to_datetime(date).tz_localize('EST').date() if df.shape[0] != 27: print('[ERROR: summary page format changed]') while not prior_date < date: print(f"[status] waiting for update...{time.strftime('%H:%M')}", end='\r') time.sleep(5 * 60) df = pd.read_csv(gen_url) date = list(df)[1].strip() date = pd.to_datetime(date).tz_localize('EST').date() else: print('[status] found new update pausing for 2 mins') time.sleep(2 * 60) ## transform general sheet df['date'] = date df.columns = ['metric', 'count', 'date'] save_file(df, raw_general, date) ## scrape geographic sheet geo_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}901548302' geo_df = pd.read_csv(geo_url) # get grographic date & fix cols geo_date = geo_df.iloc[-1][1] geo_date = pd.to_datetime(geo_date) geo_df['date'] = geo_date cols = [x for x in list(geo_df) if 'Rate' not in x] geo_df = geo_df[cols] geo_df = geo_df.dropna(axis=0) geo_df.columns = ['city_town', 'count', 'hostpialized', 'deaths', 'fully_vaccinated', 'date'] # save file raw_geo = './data/raw/geo-ri-covid-19.csv' save_file(geo_df, raw_geo, geo_date) ## scrape demographics sheet dem_url = f'https://docs.google.com/spreadsheets/d/{sheet_id}31350783' dem_df = pd.read_csv(dem_url) # make sure no columns were added/removed if not dem_df.shape == (31, 9): print('[error] demographics format changed') return else: # get demographics updated date dem_date = dem_df.iloc[-1][1] dem_date = pd.to_datetime(dem_date).tz_localize('EST').date() # drop percentage columns & rename dem_df = dem_df.drop(dem_df.columns[[1, 2, 4, 6, 8]], axis=1) dem_df.columns = ['metric', 'case_count', 'hosptialized', 'deaths'] # get data sex = dem_df[1:4] age = dem_df[5:17] race = dem_df[18:24] dem_df = pd.concat([sex, age, race]) dem_df['date'] = dem_date raw_dem = './data/raw/demographics-covid-19.csv' save_file(dem_df, raw_dem, dem_date) def scrape_revised(sheet_id): # load previous revised_data and get prior date raw_revised = './data/raw/revised-data.csv' df = pd.read_csv(raw_revised, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() # load revised sheet & fix column names url = f'https://docs.google.com/spreadsheets/d/{sheet_id}1592746937' df = pd.read_csv(url, parse_dates=['Date']) df.columns = [x.lower() for x in list(df)] # test to try and make sure columns dont change if df.shape[1] != 36 or list(df)[6] != 'daily total tests completed (may count people more than once)': print('[error] revised sheet columns changed') return # check if updated if df['date'].max() > prior_date: df = df.drop(columns=drop_cols) # re order columns move_cols = (list(df)[6:11] + list(df)[22:31]) cols = [x for x in list(df) if x not in move_cols] cols.extend(move_cols) df = df[cols] df['date_scraped'] = datetime.strftime(datetime.now(), '%m/%d/%Y') save_file(df, raw_revised, df['date'].max()) def scrape_nursing_homes(sheet_id): # load prior date raw_facility = './data/raw/nurse-homes-covid-19.csv' df = pd.read_csv(raw_facility, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() url = f'https://docs.google.com/spreadsheets/d/{sheet_id}500394186' df = pd.read_csv(url) # get date of last update date = df.iloc[0,0].split(' ')[-1] date = pd.to_datetime(date).tz_localize('EST').date() if not date > prior_date: print('\n[status] nursing homes:\tno update') return else: # fix headers df.columns = df.iloc[1] # drop past 14 days column df = df.drop(columns='New Resident Cases (in past 14 days)') df['Facility Name'] = df['Facility Name'].str.replace(u'\xa0', ' ') # random unicode appeared # fix dataframe shape assisted = df[df['Facility Name'] == 'Assisted Living Facilities'].index[0] nursing_homes = df[3:assisted].copy() assisted_living = df[assisted+1:-1].copy() # add facility type & recombine nursing_homes['type'] = 'nursing home' assisted_living['type'] = 'assisted living' df = pd.concat([nursing_homes, assisted_living]).reset_index(drop=True) # add date df['date'] = date save_file(df, raw_facility, date) print('[status] nursing homes:\tupdated') def scrape_zip_codes(sheet_id): # load prior date raw_zip = './data/raw/zip-codes-covid-19.csv' df = pd.read_csv(raw_zip, parse_dates=['date']) prior_date = df['date'].max().tz_localize('EST').date() url = f'https://docs.google.com/spreadsheets/d/{sheet_id}365656702' df =
pd.read_csv(url)
pandas.read_csv
# Uses data of Heineken stock value from nov 18 1996 until jul 20 2018 on a daily basis # This is a TensorFlow example import pandas as pd import numpy as np def read_goog_sp500_dataframe(): """Returns a dataframe with the results for Google and S&P 500""" # Point to where you've stored the CSV file on your local machine googFile = 'data/GOOG.csv' spFile = 'data/SP_500.csv' goog = pd.read_csv(googFile, sep=",", usecols=[0, 5], names=['Date', 'Goog'], header=0) sp =
pd.read_csv(spFile, sep=",", usecols=[0, 5], names=['Date', 'SP500'], header=0)
pandas.read_csv
from datetime import timedelta import operator import numpy as np import pytest import pytz from pandas._libs.tslibs import IncompatibleFrequency from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( Categorical, Index, IntervalIndex, Series, Timedelta, bdate_range, date_range, isna, ) import pandas._testing as tm from pandas.core import nanops, ops def _permute(obj): return obj.take(np.random.permutation(len(obj))) class TestSeriesFlexArithmetic: @pytest.mark.parametrize( "ts", [ (lambda x: x, lambda x: x * 2, False), (lambda x: x, lambda x: x[::2], False), (lambda x: x, lambda x: 5, True), (lambda x: tm.makeFloatSeries(), lambda x: tm.makeFloatSeries(), True), ], ) @pytest.mark.parametrize( "opname", ["add", "sub", "mul", "floordiv", "truediv", "pow"] ) def test_flex_method_equivalence(self, opname, ts): # check that Series.{opname} behaves like Series.__{opname}__, tser = tm.makeTimeSeries().rename("ts") series = ts[0](tser) other = ts[1](tser) check_reverse = ts[2] op = getattr(Series, opname) alt = getattr(operator, opname) result = op(series, other) expected = alt(series, other) tm.assert_almost_equal(result, expected) if check_reverse: rop = getattr(Series, "r" + opname) result = rop(series, other) expected = alt(other, series) tm.assert_almost_equal(result, expected) def test_flex_method_subclass_metadata_preservation(self, all_arithmetic_operators): # GH 13208 class MySeries(Series): _metadata = ["x"] @property def _constructor(self): return MySeries opname = all_arithmetic_operators op = getattr(Series, opname) m = MySeries([1, 2, 3], name="test") m.x = 42 result = op(m, 1) assert result.x == 42 def test_flex_add_scalar_fill_value(self): # GH12723 s = Series([0, 1, np.nan, 3, 4, 5]) exp = s.fillna(0).add(2) res = s.add(2, fill_value=0) tm.assert_series_equal(res, exp) pairings = [(Series.div, operator.truediv, 1), (Series.rdiv, ops.rtruediv, 1)] for op in ["add", "sub", "mul", "pow", "truediv", "floordiv"]: fv = 0 lop = getattr(Series, op) lequiv = getattr(operator, op) rop = getattr(Series, "r" + op) # bind op at definition time... requiv = lambda x, y, op=op: getattr(operator, op)(y, x) pairings.append((lop, lequiv, fv)) pairings.append((rop, requiv, fv)) @pytest.mark.parametrize("op, equiv_op, fv", pairings) def test_operators_combine(self, op, equiv_op, fv): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isna(a) bmask = isna(b) exp_values = [] for i in range(len(exp_index)): with np.errstate(all="ignore"): if amask[i]: if bmask[i]: exp_values.append(np.nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(np.nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) tm.assert_series_equal(result, expected) a = Series([np.nan, 1.0, 2.0, 3.0, np.nan], index=np.arange(5)) b = Series([np.nan, 1, np.nan, 3, np.nan, 4.0], index=np.arange(6)) result = op(a, b) exp = equiv_op(a, b) tm.assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) # should accept axis=0 or axis='rows' op(a, b, axis=0) class TestSeriesArithmetic: # Some of these may end up in tests/arithmetic, but are not yet sorted def test_add_series_with_period_index(self): rng = pd.period_range("1/1/2000", "1/1/2010", freq="A") ts = Series(np.random.randn(len(rng)), index=rng) result = ts + ts[::2] expected = ts + ts expected.iloc[1::2] = np.nan tm.assert_series_equal(result, expected) result = ts + _permute(ts[::2]) tm.assert_series_equal(result, expected) msg = "Input has different freq=D from PeriodIndex\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): ts + ts.asfreq("D", how="end") @pytest.mark.parametrize( "target_add,input_value,expected_value", [ ("!", ["hello", "world"], ["hello!", "world!"]), ("m", ["hello", "world"], ["hellom", "worldm"]), ], ) def test_string_addition(self, target_add, input_value, expected_value): # GH28658 - ensure adding 'm' does not raise an error a = Series(input_value) result = a + target_add expected = Series(expected_value) tm.assert_series_equal(result, expected) def test_divmod(self): # GH#25557 a = Series([1, 1, 1, np.nan], index=["a", "b", "c", "d"]) b = Series([2, np.nan, 1, np.nan], index=["a", "b", "d", "e"]) result = a.divmod(b) expected = divmod(a, b) tm.assert_series_equal(result[0], expected[0]) tm.assert_series_equal(result[1], expected[1]) result = a.rdivmod(b) expected = divmod(b, a) tm.assert_series_equal(result[0], expected[0]) tm.assert_series_equal(result[1], expected[1]) @pytest.mark.parametrize("index", [None, range(9)]) def test_series_integer_mod(self, index): # GH#24396 s1 = Series(range(1, 10)) s2 =
Series("foo", index=index)
pandas.Series
"""----------------------------------------------------------------------------- bidsIncremental.py Implements the BIDS Incremental data type used for streaming BIDS data between different applications. -----------------------------------------------------------------------------""" from copy import deepcopy from operator import eq as opeq from typing import Any, Callable import json import os from bids.layout import BIDSImageFile from bids.layout.writing import build_path as bids_build_path import logging import nibabel as nib import numpy as np import pandas as pd from rtCommon.bidsCommon import ( BIDS_DIR_PATH_PATTERN, BIDS_FILE_PATTERN, BidsFileExtension, DATASET_DESC_REQ_FIELDS, DEFAULT_DATASET_DESC, DEFAULT_EVENTS_HEADERS, DEFAULT_README, PYBIDS_PSEUDO_ENTITIES, adjustTimeUnits, correct3DHeaderTo4D, correctEventsFileDatatypes, filterEntities, getNiftiData, loadBidsEntities, metadataFromProtocolName, symmetricDictDifference, writeDataFrameToEvents, ) from rtCommon.errors import MissingMetadataError logger = logging.getLogger(__name__) class BidsIncremental: ENTITIES = loadBidsEntities() REQUIRED_IMAGE_METADATA = ['subject', 'task', 'suffix', 'datatype', 'RepetitionTime'] """ BIDS Incremental data format suitable for streaming BIDS Archives """ def __init__(self, image: nib.Nifti1Image, imageMetadata: dict, datasetDescription: dict = None): """ Initializes a BIDS Incremental object with provided image and metadata. Args: image: NIfTI image as an NiBabel NiftiImage or PyBids BIDSImageFile imageMetadata: Metadata for image, which must include all variables in BidsIncremental.REQUIRED_IMAGE_METADATA. datasetDescription: Top-level dataset metadata for the BIDS dataset to be placed in a dataset_description.json. Defaults to None and a default description is used. Raises: MissingMetadataError: If any required metadata is missing. TypeError: If the image is not an Nibabel Nifti1Image or Nifti2Image. Examples: >>> import nibabel as nib >>> imageMetadata = {'subject': '01', 'task': 'test', 'suffix': 'bold', 'datatype': 'func', 'RepetitionTime': 1.5} >>> image = nib.load('/tmp/testfile.nii') >>> datasetDescription = {'Name': 'Example Dataset', 'BIDSVersion': '1.5.1', 'Authors': 'The RT-Cloud Authors'} >>> incremental = BidsIncremental(image, imageMetadata, datasetDescription) >>> print(incremental) "Image shape: (64, 64, 27, 1); Metadata Key Count: 6; BIDS-I Version: 1" """ # TODO(spolcyn): Enable a BIDS incremental to store an index that # specifies where the image should be inserted into the archive. This # would extend capabilities beyond just appending. """ Do basic input validation """ # IMAGE validTypes = [nib.Nifti1Image, nib.Nifti2Image, BIDSImageFile] if image is None or type(image) not in validTypes: raise TypeError("Image must be one of " + str([typ.__name__ for typ in validTypes]) + f"(got {type(image)})") if type(image) is BIDSImageFile: image = image.get_image() # DATASET DESCRIPTION if datasetDescription is not None: missingFields = [field for field in DATASET_DESC_REQ_FIELDS if datasetDescription.get(field, None) is None] if missingFields: raise MissingMetadataError( f"Dataset description needs: {str(missingFields)}") """ Process, validate, and store image metadata """ imageMetadata = self._preprocessMetadata(imageMetadata) self._exceptIfMissingMetadata(imageMetadata) self._imgMetadata = self._postprocessMetadata(imageMetadata) """ Store dataset description""" if datasetDescription is None: self.datasetDescription = deepcopy(DEFAULT_DATASET_DESC) else: self.datasetDescription = deepcopy(datasetDescription) """ Validate and store image """ # Remove singleton dimensions past the 3rd dimension # Note: this function does not remove trailing 1's if the image is 3-D, # (i.e., 160x160x1 image will retain that shape), so a later check is # needed to ensure that the 3rd dimension is > 1 image = nib.funcs.squeeze_image(image) # BIDS-I is currently used for BOLD data, and according to the BIDS # Standard, BOLD data must be in 4-D NIfTI files. Thus, upgrade 3-D to # 4-D images with singleton final dimension, if necessary. imageShape = image.shape if len(imageShape) < 3: raise ValueError("Image must have at least 3 dimensions") elif len(imageShape) == 3: if imageShape[2] <= 1: raise ValueError("Image's 3rd (and any higher) dimensions are " " <= 1, which means it is a 2D image; images " "must have at least 3 dimensions") newData = np.expand_dims(getNiftiData(image), -1) image = image.__class__(newData, image.affine, image.header) correct3DHeaderTo4D(image, self._imgMetadata['RepetitionTime']) assert len(image.shape) == 4 self.image = image # Configure README self.readme = DEFAULT_README # Configure events file self.events = pd.DataFrame(columns=DEFAULT_EVENTS_HEADERS) self.events = correctEventsFileDatatypes(self.events) # BIDS-I version for serialization self.version = 1 def __str__(self): return ("Image shape: {}; Metadata Key Count: {}; BIDS-I Version: {}" .format(self.getImageDimensions(), len(self._imgMetadata.keys()), self.version)) def __eq__(self, other): def reportDifference(valueName: str, d1: dict, d2: dict, equal: Callable[[Any, Any], bool] = opeq) -> None: logger.debug(valueName + " didn't match") difference = symmetricDictDifference(d1, d2, equal) logger.debug(valueName + " difference: %s", difference) # Compare image headers if self.image.header != other.image.header: reportDifference("Image headers", dict(self.image.header), dict(other.image.header), np.array_equal) return False # Compare image metadata if self._imgMetadata != other._imgMetadata: reportDifference("Image metadata", self._imgMetadata, other._imgMetadata, np.array_equal) return False # Compare full image data if not np.array_equal(self.getImageData(), other.getImageData()): differences = self.getImageData() != other.getImageData() logger.debug("Image data didn't match") logger.debug("Difference count: %d (%f%%)", np.sum(differences), np.sum(differences) / np.size(differences) * 100.0) return False # Compare dataset description if self.datasetDescription != other.datasetDescription: reportDifference("Dataset description", self.datasetDescription, other.datasetDescription) return False if not self.readme == other.readme: logger.debug(f"Readmes didn't match\nself: {self.readme}\n" f"other: {other.readme}") return False if not
pd.DataFrame.equals(self.events, other.events)
pandas.DataFrame.equals
import datetime import os import dash import dash_core_components as dcc import dash_html_components as html import pandas as pd import plotly.graph_objects as go from plotly.subplots import make_subplots from sqlalchemy import create_engine external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) engine = create_engine( "postgresql://{PGUSER}:{PGPASSWORD}@{PGHOST}:5432/postgres".format(**os.environ) ) def _build_activity_heatmap(timeseries_data): d1 = timeseries_data["date"].min().date() d2 = timeseries_data["date"].max().date() delta = d2 - d1 # gives me a list with datetimes for each day a year dates_in_year = [d1 + datetime.timedelta(i) for i in range(delta.days + 1)] joined = ( pd.Series(dates_in_year) .to_frame() .set_index(0) .join(timeseries_data.set_index("date")) ) # the activity values to actually plot in the heatmap # dates when the joined data isn't null are days when # there were activity z = (~joined.isna()).astype(int)["values"].values # gives something like list of strings like '2018-01-25' for each date. # Used in data trace to make good hovertext. text = [str(i) for i in dates_in_year] # 4cc417 green #347c17 dark green colorscale = [[False, "#eeeeee"], [True, "#76cf63"]] trace = go.Heatmap( # horizontally index on the most recent monday # day - day.weekday() gives the most recent monday x=[(day - datetime.timedelta(days=day.weekday())) for day in dates_in_year], # vertically index on the day of week for each date y=[day.weekday() for day in dates_in_year], z=z, text=text, hoverinfo="text", xgap=3, # this ygap=3, # and this is used to make the grid-like apperance showscale=False, colorscale=colorscale, ) layout = go.Layout( height=280, yaxis=dict( showline=False, showgrid=False, zeroline=False, tickmode="array", ticktext=["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"], tickvals=[0, 1, 2, 3, 4, 5, 6], ), xaxis=dict( showline=False, showgrid=False, zeroline=False, ), font={"size": 10, "color": "#9e9e9e"}, plot_bgcolor=("#fff"), margin=dict(t=40), ) return trace, layout def build_activity_indicator(timeseries_data, indicator_value, indicator_name): """Build a activity log + indicator figure.""" fig = make_subplots( rows=1, cols=2, column_widths=[0.7, 0.3], specs=[[{"type": "heatmap"}, {"type": "indicator"}]], ) trace, layout = _build_activity_heatmap(timeseries_data) # add the timeseries scatter plot fig.add_trace( trace, row=1, col=1, ) # add summary statistic "indicator" fig.add_trace( go.Indicator( mode="number", value=indicator_value, name=indicator_name, ), row=1, col=2, ) fig.update_layout(layout) fig.update_layout( template={"data": {"indicator": [{"title": {"text": indicator_name}}]}}, ) return fig def build_timeseries_indicator(timeseries_data, indicator_value, indicator_name): """Build a timeseries + indicator figure.""" fig = make_subplots( rows=1, cols=2, column_widths=[0.7, 0.3], specs=[[{"type": "xy"}, {"type": "indicator"}]], ) # add the timeseries scatter plot fig.add_trace( go.Scatter( mode="markers", x=timeseries_data["date"], y=timeseries_data["values"] ), row=1, col=1, ) # add the rolling average timeseries line plot rolling = ( timeseries_data.set_index("date") .rolling(4, win_type="triang", center=True) .mean() .dropna() .reset_index() ) fig.add_trace( go.Scatter(mode="lines", x=rolling["date"], y=rolling["values"]), row=1, col=1, ) # add summary statistic "indicator" fig.add_trace( go.Indicator( mode="number", value=indicator_value, name=indicator_name, ), row=1, col=2, ) fig.update_layout( template={"data": {"indicator": [{"title": {"text": indicator_name}}]}}, ) return fig def prep_calorie_data(engine, start_date): """Read and process calorie data. Returns ------- pd.DataFrame A dataframe having columns ['date', 'values'] float A scalar value """ # TODO: move the ETL into dbt mfp_data = pd.read_sql("SELECT * FROM myfitnesspal.totals", engine) fitbit_data = pd.read_sql("SELECT * FROM fitbit.activity", engine) fitbit_data = fitbit_data.set_index(pd.to_datetime(fitbit_data["date"]))[ ["calories_out"] ] fitbit_data = fitbit_data.loc[fitbit_data["calories_out"] != 0] mfp_data = mfp_data.groupby("date").sum()[["calories"]] mfp_data = mfp_data.loc[mfp_data["calories"] != 0] joined = mfp_data.join(fitbit_data, how="inner") joined = joined[start_date:] joined["values"] = joined.calories - joined.calories_out # indicator for calories is mean delta over past seven days today = datetime.date.today() week_ago = today - datetime.timedelta(weeks=1) return ( joined["values"].reset_index(), joined.loc[week_ago.isoformat():, "values"].mean(), ) def prep_weight_data(engine, start_date): """Read and process weight data. Returns ------- pd.DataFrame A dataframe having columns ['date', 'values'] float A scalar value """ # TODO: move the ETL into dbt # including casting 'date' to a datetime column in postgres # including back/forward filling (or interpolating) weight_data =
pd.read_sql("SELECT * FROM fitbit.weight", engine)
pandas.read_sql
import datetime from pathlib import Path # from html.parser import HTMLParser from typing import Tuple # 3rd party import datefinder import pandas as pd #%% def get_starttime_from_parser(parser, source=False) -> Tuple[datetime.datetime, str]: """takes the parser and returns a datetime object, start time of experiment read out from metadata""" start_time = None source = "" if "VersaStudioParser" in parser.__class__.__qualname__: # isinstance(parser, VersaStudioParser): # cast metadata from parser into DataFrame time = parser.metadata.get("experiment", {}).get("TimeAcquired", "") date = parser.metadata.get("experiment", {}).get("DateAcquired", "") date_time = time + " " + date dates = list(datefinder.find_dates(date_time, source=True)) if len(dates) == 1: start_time, source = dates[0] return start_time, source def cast_parser_to_dataframe(parser): """takes the parser and returns DataFrames from the metadata, actions and data of the files""" metadata, actions, data = None, None, None pm_dict, pa_dict, data_dict = {}, {}, {} if "VersaStudioParser" in parser.__class__.__qualname__: # isinstance(parser, VersaStudioParser) or # cast metadata from parser into DataFrame pm_dict = parser.metadata.copy() metadata = pd.DataFrame(pm_dict).T # cast actions from parser into DataFrame pa_dict = parser.actions.copy() actions =
pd.DataFrame(pa_dict)
pandas.DataFrame
from flask import Flask, render_template, redirect, url_for, request, send_file import pandas as pd import numpy as np from pandas import DataFrame, read_csv from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas import matplotlib.pyplot as plt import jinja2 plt.style.use('ggplot') from io import BytesIO import seaborn as sns app = Flask(__name__) #df = pd.read_csv("movie_metadataproject.csv") #df["budget"] = df["budget"].fillna(0) #df["gross"] = df["gross"].fillna(0) #df['Profit'] = df['gross'] - df['budget'] @app.route("/", methods=['GET', 'POST']) def home(): return render_template("home.html") @app.route("/input", methods = ['POST','GET']) def input(): if request.method == 'POST': moviename = request.form["moviename"] directorname = request.form["dname"] actor1 = request.form["a1name"] actor2 = request.form["a2name"] actor3 = request.form["a3name"] genres = request.form.getlist("genre") language = request.form.get("lang") genred = concatenate_list(genres) iparray = [language,directorname,actor1,actor2,actor3,moviename,genred,0,0,0] df = pd.read_csv("movie_metadataproject.csv") #print(df.shape) df = pd.read_csv("movie_metadataproject.csv") df["budget"] = df["budget"].fillna(0) df["gross"] = df["gross"].fillna(0) df['Profit'] = df['gross'] - df['budget'] df = df.drop(['aspect_ratio','movie_imdb_link','plot_keywords'],axis =1) df = df.dropna() #print(df.shape) df= df[df['language'] != "Telugu"] df= df[df['language'] != "Arabic"] df= df[df['language'] != "Aramaic"] df= df[df['language'] != "Bosnian"] df= df[df['language'] != "Czech"] df= df[df['language'] != "Dzongkha"] df= df[df['language'] != "Filipino"] df= df[df['language'] != "Hungarian"] df= df[df['language'] != "Icelandic"] df= df[df['language'] != "Kazakh"] df= df[df['language'] != "Maya"] df= df[df['language'] != "Mongolian"] df= df[df['language'] != "None"] df= df[df['language'] != "Romanian"] df= df[df['language'] != "Russian"] df= df[df['language'] != "Swedish"] df= df[df['language'] != "Vietnamese"] df= df[df['language'] != "Zulu"] df_usefuldata = df[['language','director_name','actor_1_name','actor_2_name','actor_3_name','movie_title','genres','gross','budget','Profit']] df_usefuldata = df_usefuldata.dropna() df_appendedlang = df_usefuldata.append(pd.Series([iparray[0],iparray[1],iparray[2],iparray[3],iparray[4],iparray[5],iparray[6],iparray[7],iparray[8],iparray[9]], index=df_usefuldata.columns), ignore_index=True) #print(df_appendedlang.shape) df_appendedlang1 = df_appendedlang[df_appendedlang['language'] != 'None'] df_appendedlang1 = df_appendedlang1.dropna() #print(df_appendedlang1.shape) column_values1 = df_appendedlang1["language"].unique().tolist() #print(column_values1) column_values2 = df_appendedlang1["director_name"].unique().tolist() df_appendedlang2 = df_appendedlang1 #df_appendedlang3 = df_appendedlang1 for value in column_values1: df_appendedlang2 = pd.concat([df_appendedlang2,pd.get_dummies(value)], axis=1) for value in column_values1: df_appendedlang2[value] = 0 for value in column_values1: df_appendedlang2.loc[df_appendedlang2['language'] == value,value] = 1 drop_cols = ['language','genres','movie_title','director_name','actor_1_name','actor_2_name','actor_3_name','gross','budget','Profit'] for dropCol in drop_cols: df_appendedlang2 = df_appendedlang2.drop(dropCol,axis=1) df_appendedlang2 = df_appendedlang2.dropna() #print(df_appendedlang2) from sklearn.cluster import KMeans kmeans = KMeans(n_clusters = 29) kmeans = kmeans.fit(df_appendedlang2) df_appendedlang2['cluster'] = kmeans.labels_ df_appendedlang3 = pd.concat([df_appendedlang1,df_appendedlang2], axis=1, ignore_index=False) df_appendedlang3 = df_appendedlang3.dropna() df_appendedlang3 = df_appendedlang3.loc[df_appendedlang3['language'] == iparray[0]] df_appendedlang3 = df_appendedlang3.drop('cluster',axis=1) for value in column_values1: df_appendedlang3 = df_appendedlang3.drop(value,axis=1) # print(df_appendedlang3.shape) df_appendedlang4 = df_appendedlang3 for value in column_values2: df_appendedlang4 = pd.concat([df_appendedlang4,pd.get_dummies(value)], axis=1) for value in column_values2: df_appendedlang4[value] = 0 for value in column_values2: df_appendedlang4.loc[df_appendedlang4['director_name'] == value,value] = 1 for dropCol in drop_cols: df_appendedlang4 = df_appendedlang4.drop(dropCol,axis=1) # print(df_appendedlang4.shape) from sklearn.cluster import KMeans kmeans = KMeans(n_clusters = 3) kmeans = kmeans.fit(df_appendedlang4) df_appendedlang4['cluster'] = kmeans.labels_ df_appendedlang5 = pd.concat([df_appendedlang3,df_appendedlang4], axis=1, ignore_index=False) df_appendedlang5 = df_appendedlang5.dropna() cnum = df_appendedlang5.loc[df_appendedlang5['director_name'] == iparray[1],'cluster'] print(cnum.size) if cnum.size == 1: cnumb = cnum.item() else: cnumb = cnum[0] df_appendedlang5 = df_appendedlang5.loc[df_appendedlang5['cluster'] == cnumb] df_appendedlang5 = df_appendedlang5.drop('cluster',axis=1) for value in column_values2: df_appendedlang5 = df_appendedlang5.drop(value,axis=1) df_appendedlang6 = df_appendedlang5 column_values6 = df_appendedlang6["actor_1_name"].unique().tolist() #column_values6 column_values7 = df_appendedlang6["actor_2_name"].unique().tolist() column_values8 = df_appendedlang6["actor_3_name"].unique().tolist() column678 = column_values6+column_values7+column_values8 unique_values678 = pd.unique(column678) # for v in unique_values678: # print(v) for value in unique_values678: df_appendedlang6 = pd.concat([df_appendedlang6,pd.get_dummies(value)], axis=1) df_appendedlang6[value] = 0 df_appendedlang6.loc[df_appendedlang6['actor_1_name'] == value,value] = 1 df_appendedlang6.loc[df_appendedlang6['actor_2_name'] == value,value] = 1 df_appendedlang6.loc[df_appendedlang6['actor_3_name'] == value,value] = 1 drop_cols = ['language','director_name','genres','movie_title','gross','budget','Profit','actor_1_name','actor_2_name','actor_3_name'] for value in drop_cols: df_appendedlang6 = df_appendedlang6.drop(value,axis=1) from sklearn.cluster import KMeans kmeans = KMeans(n_clusters = 2) kmeans = kmeans.fit(df_appendedlang6) df_appendedlang6['cluster'] = kmeans.labels_ df_final = pd.concat([df_appendedlang5,df_appendedlang6], axis=1, ignore_index=False) df_final = df_final.dropna() min_budget = df_final['budget'].where(df_final['budget'].gt(0)).min(0) print(df_final['budget'].unique().tolist()) print(min_budget) max_budget = df_final['budget'].max() print(max_budget) print(df_final['Profit'].unique().tolist()) min_profit = df_final['Profit'].min() print(min_profit) max_profit = df_final['Profit'].max() print(max_profit) return redirect(url_for('result', min_budget= min_budget, max_budget= max_budget, min_profit= min_profit,max_profit=max_profit)) return render_template('input.html') def concatenate_list(list): result = '' for elements in list: if result == '': result = elements else: result = result + "|" + elements return result #-----------------------------------------DATA VISUALIZATION-------------------------------------- def split(x): df = pd.read_csv("movie_metadataproject.csv") df["budget"] = df["budget"].fillna(0) df["gross"] = df["gross"].fillna(0) df['Profit'] = df['gross'] - df['budget'] a = df[x].str.cat(sep = '|') splitdata = pd.Series(a.split('|')) info = splitdata.value_counts(ascending=False) return info total_genre_movies = split('genres') @app.route('/genrea/') def visualization1(): fig, ax = plt.subplots() total_genre_movies = split('genres') total_genre_movies.plot(kind= 'barh',figsize = (13,6),fontsize=12,colormap='tab20c') #setup the title and the labels of the plot. plt.title("Number of movies in each Genre",fontsize=15) plt.xlabel('Number Of Movies',fontsize=13) plt.ylabel("Genres",fontsize= 13) canvas = FigureCanvas(fig) img = BytesIO() fig.savefig(img) img.seek(0) return send_file(img, mimetype='image/png') @app.route('/score/') def visualizationf1(): df = pd.read_csv("movie_metadataproject.csv") df["budget"] = df["budget"].fillna(0) df["gross"] = df["gross"].fillna(0) df['Profit'] = df['gross'] - df['budget'] fig,ax = plt.subplots() info = pd.DataFrame(df['imdb_score'].sort_values(ascending = False)) info['movie_title'] = df['movie_title'] data = list(map(str,(info['movie_title']))) x = list(data[:10]) y = list(info['imdb_score'][:10]) ax = sns.pointplot(x=y,y=x) #sns.set(rc={'figure.figsize':(10,20)}) ax.set_title("Top 10 movies",fontsize = 10) ax.set_xlabel("IMDB Score",fontsize = 10) #setup the stylesheet sns.set_style("whitegrid") canvas = FigureCanvas(fig) img = BytesIO() fig.savefig(img) img.seek(0) return send_file(img, mimetype='image/png') @app.route('/money/') def visualizationf2(): df =
pd.read_csv("movie_metadataproject.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Apr 7 09:58:55 2021 @author: emari """ import numpy as np import pandas as pd from network.models import Account, Connection class node(): def __init__(self): self.parent_node = "" self.child_connections = [np.array([],dtype=object),np.array([],dtype=object),np.array([],dtype=object),np.array([],dtype=object),np.array([],dtype=object)] self.username = "" self.connection_type = "" self.bio = "" self.captions = [] self.total_likes = 0 self.total_followers = 0 self.total_following = 0 self.post_date = "" self.root_post_url = "" self.profile_img_url = "" #This is selector for profile image ##react-root > section > main > div > header > div > div > span > img def printNode(self): print("parent node: ",self.parent_node) print("username: ",self.username) print("connection_type: ",self.connection_type) print("total_likes: ",self.total_likes) print("total_followers: ",self.total_followers) print("total_following: ",self.total_following) class nodeClassifier(): def __init__(self,output_location): self.node_list = [] self.output_location = output_location self.node_df =
pd.DataFrame(columns=["parent_node","username","connection_type","bio","captions","total_likes","total_followers","total_following","profile_img_url","root_post_url"])
pandas.DataFrame
import unittest import numpy as np import pandas as pd from numpy import testing as nptest from operational_analysis.types import plant from operational_analysis.methods import plant_analysis from examples.operational_AEP_analysis.project_EIA import Project_EIA class TestPandasPrufPlantAnalysis(unittest.TestCase): def setUp(self): np.random.seed(42) # Set up data to use for testing (EIA example plant) self.project = Project_EIA('./examples/operational_AEP_analysis/data') self.project.prepare() self.analysis = plant_analysis.MonteCarloAEP(self.project) def test_validate_data(self): self.assertTrue(self.project.validate(), "Failed to validate PlantData from schema") def test_plant_analysis(self): df = self.analysis._monthly.df # Check the pre-processing functions self.check_process_revenue_meter_energy(df) self.check_process_loss_estimates(df) self.check_process_reanalysis_data(df) # Check outlier filtering self.check_filter_outliers() # Run Monte Carlo AEP analysis, confirm the results are consistent self.analysis.run(num_sim=2000, reanal_subset=['ncep2', 'merra2', 'erai']) sim_results = self.analysis.results self.check_simulation_results(sim_results) def check_process_revenue_meter_energy(self, df): # Energy Nan flags are all zero nptest.assert_array_equal(df['energy_nan_perc'].as_matrix(), np.repeat(0.0, df.shape[0])) # Expected number of days per month are equal to number of actual days nptest.assert_array_equal(df['num_days_expected'], df['num_days_actual']) # Check a few energy values expected_gwh = pd.Series([6.765, 5.945907, 8.576]) actual_gwh = df.loc[
pd.to_datetime(['2003-12-01', '2010-05-01', '2015-01-01'])
pandas.to_datetime
# %% import lightgbm as lgb from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from sklearn.model_selection import GridSearchCV import numpy as np import os import pandas as pd # %% # base_dir = os.getcwd() base_dir = '/Users/jason/bestpaycup2020' x_df =
pd.read_csv(base_dir + '/dataset/dataset4/trainset/train_base.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ author: zengbin93 email: <EMAIL> create_dt: 2022/2/14 17:25 describe: 基于 Tushare 分钟数据的择时策略快速回测 """ import os import inspect import traceback import pandas as pd from tqdm import tqdm from typing import Callable from .. import envs from ..data.ts_cache import TsDataCache from ..traders.utils import trader_fast_backtest, freq_cn2ts from ..utils import x_round from ..objects import cal_break_even_point def read_raw_results(raw_path, trade_dir="long"): """读入指定路径下的回测原始结果 :param raw_path: 原始结果路径 :param trade_dir: 交易方向 :return: """ assert trade_dir in ['long', 'short'] pairs, p = [], [] for file in tqdm(os.listdir(raw_path)): if len(file) != 14: continue file = os.path.join(raw_path, file) try: pairs.append(pd.read_excel(file, sheet_name=f'{trade_dir}_pairs')) p.append(pd.read_excel(file, sheet_name=f'{trade_dir}_performance')) except: print(f"read_raw_results: fail on {file}") df_pairs = pd.concat(pairs, ignore_index=True) df_p =
pd.concat(p, ignore_index=True)
pandas.concat
from prometheus_client import Gauge import pandas as pd import datetime from extra_metrics.compliance import ClientCompliance from extra_metrics.logs import logger device_checkin_days = Gauge('extra_metrics_devices_by_checkin_days', 'various interesting stats on a per device basis, days since checked, compliance status', ["days", ]) device_client_modelnumber = Gauge('extra_metrics_per_device_modelnum', 'provides a value of the model number per device', ["device_name"]) device_client_compliance = Gauge('extra_metrics_per_device_compliance', 'provides a value of the compliance state per device, used for device health graph', ["compliance"]) device_client_version = Gauge('extra_metrics_per_device_client_version', 'number of devices rolled up by client version', ["fw_client_version"]) device_client_platform = Gauge('extra_metrics_per_device_platform', 'number of devices rolled up by platform', ["platform"]) device_client_tracked = Gauge('extra_metrics_per_device_tracked', 'number of devices being tracked', ["tracked"]) device_client_locked = Gauge('extra_metrics_per_device_locked', 'number of devices locked', ["locked"]) class PerDeviceStatus: def __init__(self, fw_query): self.fw_query = fw_query def _rollup_by_single_column_count_client_filewave_id(self, df, column_name): return df.groupby([column_name], as_index=False)["Client_filewave_id"].count() def _set_metric_pair(self, metric, item): label_value = item[0] total_count = item[1] metric.labels(label_value).set(total_count) return (label_value, total_count) def collect_client_data(self, soft_patches): Client_device_name = 0 Client_free_disk_space = 2 Client_filewave_id = 10 Client_last_check_in = 17 DesktopClient_filewave_model_number = 18 Client_total_disk_space = 24 OperatingSystem_name = 13 j = self.fw_query.get_client_info_j() try: assert j["fields"] assert j["fields"][Client_device_name] == "Client_device_name", f"field {Client_device_name} is expected to be the Client's name" assert j["fields"][Client_last_check_in] == "Client_last_check_in", f"field {Client_last_check_in} is expected to be the Client's last check in date/time" assert j["fields"][Client_filewave_id] == "Client_filewave_id", f"field {Client_filewave_id} is expected to be the Client's filewave_id" assert j["fields"][OperatingSystem_name] == "OperatingSystem_name", f"field {OperatingSystem_name} is supposed to be OperatingSystem_name" buckets = [0, 0, 0, 0] now = datetime.datetime.now() df =
pd.DataFrame(j["values"], columns=j["fields"])
pandas.DataFrame
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=Index(["a", "b"], name="id"))}) # it works result = concat([t1, t2], axis=1, keys=["t1", "t2"], sort=sort) assert list(result.columns) == [("t1", "value"), ("t2", "value")] def test_concat_series_partial_columns_names(self): # GH10698 foo = Series([1, 2], name="foo") bar = Series([1, 2]) baz = Series([4, 5]) result = concat([foo, bar, baz], axis=1) expected = DataFrame( {"foo": [1, 2], 0: [1, 2], 1: [4, 5]}, columns=["foo", 0, 1] ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, keys=["red", "blue", "yellow"]) expected = DataFrame( {"red": [1, 2], "blue": [1, 2], "yellow": [4, 5]}, columns=["red", "blue", "yellow"], ) tm.assert_frame_equal(result, expected) result = concat([foo, bar, baz], axis=1, ignore_index=True) expected = DataFrame({0: [1, 2], 1: [1, 2], 2: [4, 5]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("mapping", ["mapping", "dict"]) def test_concat_mapping(self, mapping, non_dict_mapping_subclass): constructor = dict if mapping == "dict" else non_dict_mapping_subclass frames = constructor( { "foo": DataFrame(np.random.randn(4, 3)), "bar": DataFrame(np.random.randn(4, 3)), "baz": DataFrame(np.random.randn(4, 3)), "qux": DataFrame(np.random.randn(4, 3)), } ) sorted_keys = list(frames.keys()) result = concat(frames) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys) tm.assert_frame_equal(result, expected) result = concat(frames, axis=1) expected = concat([frames[k] for k in sorted_keys], keys=sorted_keys, axis=1) tm.assert_frame_equal(result, expected) keys = ["baz", "foo", "bar"] result = concat(frames, keys=keys) expected = concat([frames[k] for k in keys], keys=keys) tm.assert_frame_equal(result, expected) def test_concat_ignore_index(self, sort): frame1 = DataFrame( {"test1": ["a", "b", "c"], "test2": [1, 2, 3], "test3": [4.5, 3.2, 1.2]} ) frame2 = DataFrame({"test3": [5.2, 2.2, 4.3]}) frame1.index = Index(["x", "y", "z"]) frame2.index = Index(["x", "y", "q"]) v1 = concat([frame1, frame2], axis=1, ignore_index=True, sort=sort) nan = np.nan expected = DataFrame( [ [nan, nan, nan, 4.3], ["a", 1, 4.5, 5.2], ["b", 2, 3.2, 2.2], ["c", 3, 1.2, nan], ], index=Index(["q", "x", "y", "z"]), ) if not sort: expected = expected.loc[["x", "y", "z", "q"]] tm.assert_frame_equal(v1, expected) @pytest.mark.parametrize( "name_in1,name_in2,name_in3,name_out", [ ("idx", "idx", "idx", "idx"), ("idx", "idx", None, None), ("idx", None, None, None), ("idx1", "idx2", None, None), ("idx1", "idx1", "idx2", None), ("idx1", "idx2", "idx3", None), (None, None, None, None), ], ) def test_concat_same_index_names(self, name_in1, name_in2, name_in3, name_out): # GH13475 indices = [ Index(["a", "b", "c"], name=name_in1), Index(["b", "c", "d"], name=name_in2), Index(["c", "d", "e"], name=name_in3), ] frames = [ DataFrame({c: [0, 1, 2]}, index=i) for i, c in zip(indices, ["x", "y", "z"]) ] result = pd.concat(frames, axis=1) exp_ind = Index(["a", "b", "c", "d", "e"], name=name_out) expected = DataFrame( { "x": [0, 1, 2, np.nan, np.nan], "y": [np.nan, 0, 1, 2, np.nan], "z": [np.nan, np.nan, 0, 1, 2], }, index=exp_ind, ) tm.assert_frame_equal(result, expected) def test_concat_multiindex_with_keys(self): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["first", "second"], ) frame = DataFrame( np.random.randn(10, 3), index=index, columns=Index(["A", "B", "C"], name="exp"), ) result = concat([frame, frame], keys=[0, 1], names=["iteration"]) assert result.index.names == ("iteration",) + index.names tm.assert_frame_equal(result.loc[0], frame) tm.assert_frame_equal(result.loc[1], frame) assert result.index.nlevels == 3 def test_concat_multiindex_with_none_in_index_names(self): # GH 15787 index = pd.MultiIndex.from_product([[1], range(5)], names=["level1", None]) df = DataFrame({"col": range(5)}, index=index, dtype=np.int32) result = concat([df, df], keys=[1, 2], names=["level2"]) index = pd.MultiIndex.from_product( [[1, 2], [1], range(5)], names=["level2", "level1", None] ) expected = DataFrame({"col": list(range(5)) * 2}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) result = concat([df, df[:2]], keys=[1, 2], names=["level2"]) level2 = [1] * 5 + [2] * 2 level1 = [1] * 7 no_name = list(range(5)) + list(range(2)) tuples = list(zip(level2, level1, no_name)) index = pd.MultiIndex.from_tuples(tuples, names=["level2", "level1", None]) expected = DataFrame({"col": no_name}, index=index, dtype=np.int32) tm.assert_frame_equal(result, expected) def test_concat_keys_and_levels(self): df = DataFrame(np.random.randn(1, 3)) df2 = DataFrame(np.random.randn(1, 4)) levels = [["foo", "baz"], ["one", "two"]] names = ["first", "second"] result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, names=names, ) expected = concat([df, df2, df, df2]) exp_index = MultiIndex( levels=levels + [[0]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [0, 0, 0, 0]], names=names + [None], ) expected.index = exp_index tm.assert_frame_equal(result, expected) # no names result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], levels=levels, ) assert result.index.names == (None,) * 3 # no levels result = concat( [df, df2, df, df2], keys=[("foo", "one"), ("foo", "two"), ("baz", "one"), ("baz", "two")], names=["first", "second"], ) assert result.index.names == ("first", "second", None) tm.assert_index_equal( result.index.levels[0], Index(["baz", "foo"], name="first") ) def test_concat_keys_levels_no_overlap(self): # GH #1406 df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) msg = "Values not found in passed level" with pytest.raises(ValueError, match=msg): concat([df, df], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) msg = "Key one not in level" with pytest.raises(ValueError, match=msg): concat([df, df2], keys=["one", "two"], levels=[["foo", "bar", "baz"]]) def test_concat_rename_index(self): a = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_a"), ) b = DataFrame( np.random.rand(3, 3), columns=list("ABC"), index=Index(list("abc"), name="index_b"), ) result = concat([a, b], keys=["key0", "key1"], names=["lvl0", "lvl1"]) exp = concat([a, b], keys=["key0", "key1"], names=["lvl0"]) names = list(exp.index.names) names[1] = "lvl1" exp.index.set_names(names, inplace=True) tm.assert_frame_equal(result, exp) assert result.index.names == exp.index.names def test_crossed_dtypes_weird_corner(self): columns = ["A", "B", "C", "D"] df1 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="f8"), "B": np.array([1, 2, 3, 4], dtype="i8"), "C": np.array([1, 2, 3, 4], dtype="f8"), "D": np.array([1, 2, 3, 4], dtype="i8"), }, columns=columns, ) df2 = DataFrame( { "A": np.array([1, 2, 3, 4], dtype="i8"), "B": np.array([1, 2, 3, 4], dtype="f8"), "C": np.array([1, 2, 3, 4], dtype="i8"), "D": np.array([1, 2, 3, 4], dtype="f8"), }, columns=columns, ) appended = df1.append(df2, ignore_index=True) expected = DataFrame( np.concatenate([df1.values, df2.values], axis=0), columns=columns ) tm.assert_frame_equal(appended, expected) df = DataFrame(np.random.randn(1, 3), index=["a"]) df2 = DataFrame(np.random.randn(1, 4), index=["b"]) result = concat([df, df2], keys=["one", "two"], names=["first", "second"]) assert result.index.names == ("first", "second") def test_dups_index(self): # GH 4771 # single dtypes df = DataFrame( np.random.randint(0, 10, size=40).reshape(10, 4), columns=["A", "A", "C", "C"], ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :4], df) tm.assert_frame_equal(result.iloc[:, 4:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # multi dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) result = concat([df, df], axis=1) tm.assert_frame_equal(result.iloc[:, :6], df) tm.assert_frame_equal(result.iloc[:, 6:], df) result = concat([df, df], axis=0) tm.assert_frame_equal(result.iloc[:10], df) tm.assert_frame_equal(result.iloc[10:], df) # append result = df.iloc[0:8, :].append(df.iloc[8:]) tm.assert_frame_equal(result, df) result = df.iloc[0:8, :].append(df.iloc[8:9]).append(df.iloc[9:10]) tm.assert_frame_equal(result, df) expected = concat([df, df], axis=0) result = df.append(df) tm.assert_frame_equal(result, expected) def test_with_mixed_tuples(self, sort): # 10697 # columns have mixed tuples, so handle properly df1 = DataFrame({"A": "foo", ("B", 1): "bar"}, index=range(2)) df2 = DataFrame({"B": "foo", ("B", 1): "bar"}, index=range(2)) # it works concat([df1, df2], sort=sort) def test_handle_empty_objects(self, sort): df = DataFrame(np.random.randn(10, 4), columns=list("abcd")) baz = df[:5].copy() baz["foo"] = "bar" empty = df[5:5] frames = [baz, empty, empty, df[5:]] concatted = concat(frames, axis=0, sort=sort) expected = df.reindex(columns=["a", "b", "c", "d", "foo"]) expected["foo"] = expected["foo"].astype("O") expected.loc[0:4, "foo"] = "bar" tm.assert_frame_equal(concatted, expected) # empty as first element with time series # GH3259 df = DataFrame( dict(A=range(10000)), index=date_range("20130101", periods=10000, freq="s") ) empty = DataFrame() result = concat([df, empty], axis=1) tm.assert_frame_equal(result, df) result = concat([empty, df], axis=1) tm.assert_frame_equal(result, df) result = concat([df, empty]) tm.assert_frame_equal(result, df) result = concat([empty, df]) tm.assert_frame_equal(result, df) def test_concat_mixed_objs(self): # concat mixed series/frames # G2385 # axis 1 index = date_range("01-Jan-2013", periods=10, freq="H") arr = np.arange(10, dtype="int64") s1 = Series(arr, index=index) s2 = Series(arr, index=index) df = DataFrame(arr.reshape(-1, 1), index=index) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 0] ) result = concat([df, df], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 2).reshape(-1, 2), index=index, columns=[0, 1] ) result = concat([s1, s2], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, s2, s1], axis=1) tm.assert_frame_equal(result, expected) expected = DataFrame( np.repeat(arr, 5).reshape(-1, 5), index=index, columns=[0, 0, 1, 2, 3] ) result = concat([s1, df, s2, s2, s1], axis=1) tm.assert_frame_equal(result, expected) # with names s1.name = "foo" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, 0] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) s2.name = "bar" expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=["foo", 0, "bar"] ) result = concat([s1, df, s2], axis=1) tm.assert_frame_equal(result, expected) # ignore index expected = DataFrame( np.repeat(arr, 3).reshape(-1, 3), index=index, columns=[0, 1, 2] ) result = concat([s1, df, s2], axis=1, ignore_index=True) tm.assert_frame_equal(result, expected) # axis 0 expected = DataFrame( np.tile(arr, 3).reshape(-1, 1), index=index.tolist() * 3, columns=[0] ) result = concat([s1, df, s2]) tm.assert_frame_equal(result, expected) expected = DataFrame(np.tile(arr, 3).reshape(-1, 1), columns=[0]) result = concat([s1, df, s2], ignore_index=True) tm.assert_frame_equal(result, expected) def test_empty_dtype_coerce(self): # xref to #12411 # xref to #12045 # xref to #11594 # see below # 10571 df1 = DataFrame(data=[[1, None], [2, None]], columns=["a", "b"]) df2 = DataFrame(data=[[3, None], [4, None]], columns=["a", "b"]) result = concat([df1, df2]) expected = df1.dtypes tm.assert_series_equal(result.dtypes, expected) def test_dtype_coerceion(self): # 12411 df = DataFrame({"date": [pd.Timestamp("20130101").tz_localize("UTC"), pd.NaT]}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 12045 import datetime df = DataFrame( {"date": [datetime.datetime(2012, 1, 1), datetime.datetime(1012, 1, 2)]} ) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) # 11594 df = DataFrame({"text": ["some words"] + [None] * 9}) result = concat([df.iloc[[0]], df.iloc[[1]]]) tm.assert_series_equal(result.dtypes, df.dtypes) def test_concat_series(self): ts = tm.makeTimeSeries() ts.name = "foo" pieces = [ts[:5], ts[5:15], ts[15:]] result = concat(pieces) tm.assert_series_equal(result, ts) assert result.name == ts.name result = concat(pieces, keys=[0, 1, 2]) expected = ts.copy() ts.index = DatetimeIndex(np.array(ts.index.values, dtype="M8[ns]")) exp_codes = [np.repeat([0, 1, 2], [len(x) for x in pieces]), np.arange(len(ts))] exp_index = MultiIndex(levels=[[0, 1, 2], ts.index], codes=exp_codes) expected.index = exp_index tm.assert_series_equal(result, expected) def test_concat_series_axis1(self, sort=sort): ts = tm.makeTimeSeries() pieces = [ts[:-2], ts[2:], ts[2:-2]] result = concat(pieces, axis=1) expected = DataFrame(pieces).T tm.assert_frame_equal(result, expected) result = concat(pieces, keys=["A", "B", "C"], axis=1) expected = DataFrame(pieces, index=["A", "B", "C"]).T tm.assert_frame_equal(result, expected) # preserve series names, #2489 s = Series(randn(5), name="A") s2 = Series(randn(5), name="B") result = concat([s, s2], axis=1) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) s2.name = None result = concat([s, s2], axis=1) tm.assert_index_equal(result.columns, Index(["A", 0], dtype="object")) # must reindex, #2603 s = Series(randn(3), index=["c", "a", "b"], name="A") s2 = Series(randn(4), index=["d", "a", "b", "c"], name="B") result = concat([s, s2], axis=1, sort=sort) expected = DataFrame({"A": s, "B": s2}) tm.assert_frame_equal(result, expected) def test_concat_series_axis1_names_applied(self): # ensure names argument is not ignored on axis=1, #23490 s = Series([1, 2, 3]) s2 = Series([4, 5, 6]) result = concat([s, s2], axis=1, keys=["a", "b"], names=["A"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=Index(["a", "b"], name="A") ) tm.assert_frame_equal(result, expected) result = concat([s, s2], axis=1, keys=[("a", 1), ("b", 2)], names=["A", "B"]) expected = DataFrame( [[1, 4], [2, 5], [3, 6]], columns=MultiIndex.from_tuples([("a", 1), ("b", 2)], names=["A", "B"]), ) tm.assert_frame_equal(result, expected) def test_concat_single_with_key(self): df = DataFrame(np.random.randn(10, 4)) result = concat([df], keys=["foo"]) expected = concat([df, df], keys=["foo", "bar"]) tm.assert_frame_equal(result, expected[:10]) def test_concat_exclude_none(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df[:5], None, None, df[5:]] result = concat(pieces)
tm.assert_frame_equal(result, df)
pandas._testing.assert_frame_equal
import numpy as np import pandas as pd from pandas.testing import assert_series_equal import pytest from rcbm import fab def test_calculate_fabric_heat_loss_coefficient(): """Output is equivalent to DEAP 4.2.0 example A""" floor_area = pd.Series([63]) roof_area = pd.Series([63]) wall_area = pd.Series([85.7]) window_area = pd.Series([29.6]) door_area = pd.Series([1.85]) floor_uvalue = pd.Series([0.14]) roof_uvalue = pd.Series([0.11]) wall_uvalue = pd.Series([0.13]) window_uvalue = pd.Series([0.87]) door_uvalue = pd.Series([1.5]) thermal_bridging_factor = pd.Series([0.05]) expected_output = pd.Series([68], dtype="int64") output = fab.calculate_fabric_heat_loss_coefficient( roof_area=roof_area, roof_uvalue=roof_uvalue, wall_area=wall_area, wall_uvalue=wall_uvalue, floor_area=floor_area, floor_uvalue=floor_uvalue, window_area=window_area, window_uvalue=window_uvalue, door_area=door_area, door_uvalue=door_uvalue, thermal_bridging_factor=thermal_bridging_factor, ) rounded_output = output.round().astype("int64") assert_series_equal(rounded_output, expected_output) def test_calculate_heat_loss_parameter(): """Output is equivalent to DEAP 4.2.0 example A""" fabric_heat_loss_coefficient = pd.Series([0.5]) ventilation_heat_loss_coefficient = pd.Series([0.5]) total_floor_area = pd.Series([1]) expected_output = pd.Series([1], dtype="float64") output = fab.calculate_heat_loss_parameter( fabric_heat_loss_coefficient=fabric_heat_loss_coefficient, ventilation_heat_loss_coefficient=ventilation_heat_loss_coefficient, total_floor_area=total_floor_area, ) assert_series_equal(output.round(2), expected_output) @pytest.mark.parametrize("floor_area", [pd.Series([np.nan]), pd.Series([0])]) def test_calculate_heat_loss_parameter_raises_zerodivisionerror(floor_area): empty_series =
pd.Series([np.nan])
pandas.Series
"""Module to perform QC on the xiRT performance.""" import numpy as np import pandas as pd from pyteomics import fasta, parser from scipy.spatial import distance def compute_composition_df(seq_df): """ Compute the composition matrix for all proteins. Args: seq_df: df, dataframe with sequences Returns: df, with the composition of the proteins """ # get composition table df_seq_comp = pd.DataFrame( list(seq_df["sequence"].apply(parser.amino_acid_composition).values)) * 1.0 # add column with 0s for amino acids that didnt occur in the protein fasta file for i in parser.std_amino_acids: if i not in df_seq_comp.columns: df_seq_comp[i] = 0 df_seq_comp = df_seq_comp.fillna(0.0) df_seq_comp.index = seq_df.index return df_seq_comp def get_nearest_neighbor_proteins(fasta_host, fasta_trap): """ Retrieve the nearest neighbors for all proteins in the host fasta. Args: fasta_host: fasta_trap: Returns: df, dataframe with proteins for host and entrapment database. """ # make nearest neighbor thing # ger protein table df_prot_host = fasta2dataframe(fasta_host) df_comp_host = compute_composition_df(df_prot_host) df_peptides_host = digest_protein_df(df_prot_host) df_prot_trap = fasta2dataframe(fasta_trap) df_comp_trap = compute_composition_df(df_prot_trap) df_peptides_trap = digest_protein_df(df_prot_trap) # perform the filtering df_comp_trap, df_prot_trap = filter_trap_fasta(df_prot_trap, df_comp_trap, df_peptides_trap, df_peptides_host) # get best human protein matching by euclidean distance neighbor = [] distances = np.zeros(df_comp_host.shape[0]) for ii, row in enumerate(df_comp_host.iterrows()): # compute the distance from the query (current row) to all other proteins in the # trap database ary = distance.cdist(df_comp_trap, pd.DataFrame(row[1]).transpose(), metric='euclidean') # retrieve minimal disance entry here and use the index as neighbor and include # it to the fasta df later neighbor.append(df_comp_trap[ary == ary.min()].index.values[0]) distances[ii] = ary.min() # print identifier for id mapping # neighbors = [i.split("|")[1] for i in np.ravel(neighbor)] fasta_df_entrapment = df_prot_trap.loc[neighbor] # store seed-neighbor pairs fasta_df_entrapment["host_seed"] = df_comp_host.index final_fasta_df = pd.concat([df_prot_host, fasta_df_entrapment]) final_fasta_df["db_type"] = ["host"] * len(df_prot_host) + ["trap"] * len(fasta_df_entrapment) return final_fasta_df def filter_trap_fasta(df_prot_trap, df_comp_trap, df_peptides_trap, df_peptides_host): """ Remove proteins with peptides that also occur in the host database. Args: df_comp_trap: df, protein entries from the entrapment database (composition) df_peptides_host: df, peptides from the host fasta df_peptides_trap: df, peptides from the entrapment fasta df_prot_trap: df, proteins from the entrapment database Returns: (df_comp_trap, df_prot_trap), returns a tuple of valid (unique) trapment ids. """ # make sure I/L witht he same mass doesnt mess with overlapping peptides df_peptides_host["sequence"] = df_peptides_host["sequence"].str.replace("I", "L") df_peptides_trap["sequence"] = df_peptides_trap["sequence"].str.replace("I", "L") df_peptides_host = df_peptides_host.set_index("sequence") df_peptides_trap = df_peptides_trap.set_index("sequence") df_joined = df_peptides_trap.join(df_peptides_host, rsuffix="_host", lsuffix="_trap", how="left") blacklist_proteins_trap = df_joined.dropna(subset=["protein_host"])["protein_trap"].unique() # drop proteins from dfs df_prot_trap = df_prot_trap.drop(blacklist_proteins_trap) df_comp_trap = df_comp_trap.drop(blacklist_proteins_trap) return df_comp_trap, df_prot_trap def fasta2dataframe(FASTA): """ Convert the entries in the FASTA file to a dataframe with ID, sequence and Type as column. Parameters FASTA : str Location of the FASTA file.. Returns dataframe """ # store proteins and ids here unique_proteins = [] unique_ids = [] with open(FASTA, mode='rt') as ffile: for description, sequence in fasta.FASTA(ffile): unique_proteins.append(sequence) unique_ids.append(description) # convert to dataframe df =
pd.DataFrame(unique_proteins)
pandas.DataFrame
import sys import pickle import numpy as np import pandas as pd from sqlalchemy import create_engine import nltk from nltk.tokenize import word_tokenize, RegexpTokenizer from nltk.stem.wordnet import WordNetLemmatizer from nltk.corpus import stopwords from nltk import pos_tag nltk.download('punkt') nltk.download('stopwords') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.multioutput import MultiOutputClassifier from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import classification_report, accuracy_score from sklearn.model_selection import GridSearchCV from sklearn.base import BaseEstimator, TransformerMixin from sklearn.preprocessing import StandardScaler class NounCount(BaseEstimator, TransformerMixin): """ Input: Inherits from the sklean.base class Creates: A transformer object that can be used to count the number of nouns in a corpus of documents """ def count_nouns(self, text): list_of_noun_tags = ["NN", "NNP", "NNPS", "NNS"] noun_count = 0 for word, tag in pos_tag(tokenize(text)): if tag in list_of_noun_tags: noun_count += 1 return noun_count def fit(self, X, y=None): return self def transform(self, X): text_transformed = pd.Series(X).apply(self.count_nouns) return pd.DataFrame(text_transformed) def load_data(database_filepath): """ Inputs: The database and table name. Outputs: The data split into train and test data for the model. """ engine = create_engine(f'sqlite:///{database_filepath}') df =
pd.read_sql_table("DisasterResponse", engine)
pandas.read_sql_table