prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
from collections import OrderedDict import datetime from datetime import timedelta from io import StringIO import json import os import numpy as np import pytest from pandas.compat import is_platform_32bit, is_platform_windows import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Series, Timestamp, read_json import pandas._testing as tm _seriesd = tm.getSeriesData() _tsd = tm.getTimeSeriesData() _frame = DataFrame(_seriesd) _intframe = DataFrame({k: v.astype(np.int64) for k, v in _seriesd.items()}) _tsframe = DataFrame(_tsd) _cat_frame = _frame.copy() cat = ["bah"] * 5 + ["bar"] * 5 + ["baz"] * 5 + ["foo"] * (len(_cat_frame) - 15) _cat_frame.index = pd.CategoricalIndex(cat, name="E") _cat_frame["E"] = list(reversed(cat)) _cat_frame["sort"] = np.arange(len(_cat_frame), dtype="int64") _mixed_frame = _frame.copy() def assert_json_roundtrip_equal(result, expected, orient): if orient == "records" or orient == "values": expected = expected.reset_index(drop=True) if orient == "values": expected.columns = range(len(expected.columns)) tm.assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:the 'numpy' keyword is deprecated:FutureWarning") class TestPandasContainer: @pytest.fixture(autouse=True) def setup(self): self.intframe = _intframe.copy() self.tsframe = _tsframe.copy() self.mixed_frame = _mixed_frame.copy() self.categorical = _cat_frame.copy() yield del self.intframe del self.tsframe del self.mixed_frame def test_frame_double_encoded_labels(self, orient): df = DataFrame( [["a", "b"], ["c", "d"]], index=['index " 1', "index / 2"], columns=["a \\ b", "y / z"], ) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["split", "records", "values"]) def test_frame_non_unique_index(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) result = read_json(df.to_json(orient=orient), orient=orient) expected = df.copy() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("orient", ["index", "columns"]) def test_frame_non_unique_index_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 1], columns=["x", "y"]) msg = f"DataFrame index must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) @pytest.mark.parametrize("orient", ["split", "values"]) @pytest.mark.parametrize( "data", [ [["a", "b"], ["c", "d"]], [[1.5, 2.5], [3.5, 4.5]], [[1, 2.5], [3, 4.5]], [[Timestamp("20130101"), 3.5], [Timestamp("20130102"), 4.5]], ], ) def test_frame_non_unique_columns(self, orient, data): df = DataFrame(data, index=[1, 2], columns=["x", "x"]) result = read_json( df.to_json(orient=orient), orient=orient, convert_dates=["x"] ) if orient == "values": expected = pd.DataFrame(data) if expected.iloc[:, 0].dtype == "datetime64[ns]": # orient == "values" by default will write Timestamp objects out # in milliseconds; these are internally stored in nanosecond, # so divide to get where we need # TODO: a to_epoch method would also solve; see GH 14772 expected.iloc[:, 0] = expected.iloc[:, 0].astype(np.int64) // 1000000 elif orient == "split": expected = df tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("orient", ["index", "columns", "records"]) def test_frame_non_unique_columns_raises(self, orient): df = DataFrame([["a", "b"], ["c", "d"]], index=[1, 2], columns=["x", "x"]) msg = f"DataFrame columns must be unique for orient='{orient}'" with pytest.raises(ValueError, match=msg): df.to_json(orient=orient) def test_frame_default_orient(self, float_frame): assert float_frame.to_json() == float_frame.to_json(orient="columns") @pytest.mark.parametrize("dtype", [False, float]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_simple(self, orient, convert_axes, numpy, dtype, float_frame): data = float_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = float_frame assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [False, np.int64]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_intframe(self, orient, convert_axes, numpy, dtype): data = self.intframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = self.intframe.copy() if ( numpy and (is_platform_32bit() or is_platform_windows()) and not dtype and orient != "split" ): # TODO: see what is causing roundtrip dtype loss expected = expected.astype(np.int32) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("dtype", [None, np.float64, np.int, "U3"]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_str_axes(self, orient, convert_axes, numpy, dtype): df = DataFrame( np.zeros((200, 4)), columns=[str(i) for i in range(4)], index=[str(i) for i in range(200)], dtype=dtype, ) # TODO: do we even need to support U3 dtypes? if numpy and dtype == "U3" and orient != "split": pytest.xfail("Can't decode directly to array") data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy, dtype=dtype ) expected = df.copy() if not dtype: expected = expected.astype(np.int64) # index columns, and records orients cannot fully preserve the string # dtype for axes as the index and column labels are used as keys in # JSON objects. JSON keys are by definition strings, so there's no way # to disambiguate whether those keys actually were strings or numeric # beforehand and numeric wins out. # TODO: Split should be able to support this if convert_axes and (orient in ("split", "index", "columns")): expected.columns = expected.columns.astype(np.int64) expected.index = expected.index.astype(np.int64) elif orient == "records" and convert_axes: expected.columns = expected.columns.astype(np.int64) assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_categorical(self, orient, convert_axes, numpy): # TODO: create a better frame to test with and improve coverage if orient in ("index", "columns"): pytest.xfail(f"Can't have duplicate index values for orient '{orient}')") data = self.categorical.to_json(orient=orient) if numpy and orient in ("records", "values"): pytest.xfail(f"Orient {orient} is broken with numpy=True") result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.categorical.copy() expected.index = expected.index.astype(str) # Categorical not preserved expected.index.name = None # index names aren't preserved in JSON if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_empty(self, orient, convert_axes, numpy, empty_frame): data = empty_frame.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = empty_frame.copy() # TODO: both conditions below are probably bugs if convert_axes: expected.index = expected.index.astype(float) expected.columns = expected.columns.astype(float) if numpy and orient == "values": expected = expected.reindex([0], axis=1).reset_index(drop=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_timestamp(self, orient, convert_axes, numpy): # TODO: improve coverage with date_format parameter data = self.tsframe.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = self.tsframe.copy() if not convert_axes: # one off for ts handling # DTI gets converted to epoch values idx = expected.index.astype(np.int64) // 1000000 if orient != "split": # TODO: handle consistently across orients idx = idx.astype(str) expected.index = idx assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_roundtrip_mixed(self, orient, convert_axes, numpy): if numpy and orient != "split": pytest.xfail("Can't decode directly to array") index = pd.Index(["a", "b", "c", "d", "e"]) values = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": [True, False, True, False, True], } df = DataFrame(data=values, index=index) data = df.to_json(orient=orient) result = pd.read_json( data, orient=orient, convert_axes=convert_axes, numpy=numpy ) expected = df.copy() expected = expected.assign(**expected.select_dtypes("number").astype(np.int64)) if not numpy and orient == "index": expected = expected.sort_index() assert_json_roundtrip_equal(result, expected, orient) @pytest.mark.parametrize( "data,msg,orient", [ ('{"key":b:a:d}', "Expected object or value", "columns"), # too few indices ( '{"columns":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"Shape of passed values is \(3, 2\), indices imply \(2, 2\)", "split", ), # too many columns ( '{"columns":["A","B","C"],' '"index":["1","2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', "3 columns passed, passed data had 2 columns", "split", ), # bad key ( '{"badkey":["A","B"],' '"index":["2","3"],' '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}', r"unexpected key\(s\): badkey", "split", ), ], ) def test_frame_from_json_bad_data_raises(self, data, msg, orient): with pytest.raises(ValueError, match=msg): read_json(StringIO(data), orient=orient) @pytest.mark.parametrize("dtype", [True, False]) @pytest.mark.parametrize("convert_axes", [True, False]) @pytest.mark.parametrize("numpy", [True, False]) def test_frame_from_json_missing_data(self, orient, convert_axes, numpy, dtype): num_df = DataFrame([[1, 2], [4, 5, 6]]) result = read_json( num_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) assert np.isnan(result.iloc[0, 2]) obj_df = DataFrame([["1", "2"], ["4", "5", "6"]]) result = read_json( obj_df.to_json(orient=orient), orient=orient, convert_axes=convert_axes, dtype=dtype, ) if not dtype: # TODO: Special case for object data; maybe a bug? assert result.iloc[0, 2] is None else: assert np.isnan(result.iloc[0, 2]) @pytest.mark.parametrize("inf", [np.inf, np.NINF]) @pytest.mark.parametrize("dtype", [True, False]) def test_frame_infinity(self, orient, inf, dtype): # infinities get mapped to nulls which get mapped to NaNs during # deserialisation df = DataFrame([[1, 2], [4, 5, 6]]) df.loc[0, 2] = inf result = read_json(df.to_json(), dtype=dtype) assert np.isnan(result.iloc[0, 2]) @pytest.mark.skipif( is_platform_32bit(), reason="not compliant on 32-bit, xref #15865" ) @pytest.mark.parametrize( "value,precision,expected_val", [ (0.95, 1, 1.0), (1.95, 1, 2.0), (-1.95, 1, -2.0), (0.995, 2, 1.0), (0.9995, 3, 1.0), (0.99999999999999944, 15, 1.0), ], ) def test_frame_to_json_float_precision(self, value, precision, expected_val): df = pd.DataFrame([dict(a_float=value)]) encoded = df.to_json(double_precision=precision) assert encoded == f'{{"a_float":{{"0":{expected_val}}}}}' def test_frame_to_json_except(self): df = DataFrame([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): df.to_json(orient="garbage") def test_frame_empty(self): df = DataFrame(columns=["jim", "joe"]) assert not df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) # GH 7445 result = pd.DataFrame({"test": []}, index=[]).to_json(orient="columns") expected = '{"test":{}}' assert result == expected def test_frame_empty_mixedtype(self): # mixed type df = DataFrame(columns=["jim", "joe"]) df["joe"] = df["joe"].astype("i8") assert df._is_mixed_type tm.assert_frame_equal( read_json(df.to_json(), dtype=dict(df.dtypes)), df, check_index_type=False ) def test_frame_mixedtype_orient(self): # GH10289 vals = [ [10, 1, "foo", 0.1, 0.01], [20, 2, "bar", 0.2, 0.02], [30, 3, "baz", 0.3, 0.03], [40, 4, "qux", 0.4, 0.04], ] df = DataFrame( vals, index=list("abcd"), columns=["1st", "2nd", "3rd", "4th", "5th"] ) assert df._is_mixed_type right = df.copy() for orient in ["split", "index", "columns"]: inp = df.to_json(orient=orient) left = read_json(inp, orient=orient, convert_axes=False) tm.assert_frame_equal(left, right) right.index = np.arange(len(df)) inp = df.to_json(orient="records") left = read_json(inp, orient="records", convert_axes=False) tm.assert_frame_equal(left, right) right.columns = np.arange(df.shape[1]) inp = df.to_json(orient="values") left = read_json(inp, orient="values", convert_axes=False) tm.assert_frame_equal(left, right) def test_v12_compat(self, datapath): df = DataFrame( [ [1.56808523, 0.65727391, 1.81021139, -0.17251653], [-0.2550111, -0.08072427, -0.03202878, -0.17581665], [1.51493992, 0.11805825, 1.629455, -1.31506612], [-0.02765498, 0.44679743, 0.33192641, -0.27885413], [0.05951614, -2.69652057, 1.28163262, 0.34703478], ], columns=["A", "B", "C", "D"], index=pd.date_range("2000-01-03", "2000-01-07"), ) df["date"] = pd.Timestamp("19920106 18:21:32.12") df.iloc[3, df.columns.get_loc("date")] = pd.Timestamp("20130101") df["modified"] = df["date"] df.iloc[1, df.columns.get_loc("modified")] = pd.NaT dirpath = datapath("io", "json", "data") v12_json = os.path.join(dirpath, "tsframe_v012.json") df_unser = pd.read_json(v12_json) tm.assert_frame_equal(df, df_unser) df_iso = df.drop(["modified"], axis=1) v12_iso_json = os.path.join(dirpath, "tsframe_iso_v012.json") df_unser_iso = pd.read_json(v12_iso_json) tm.assert_frame_equal(df_iso, df_unser_iso) def test_blocks_compat_GH9037(self): index = pd.date_range("20000101", periods=10, freq="H") df_mixed = DataFrame( OrderedDict( float_1=[ -0.92077639, 0.77434435, 1.25234727, 0.61485564, -0.60316077, 0.24653374, 0.28668979, -2.51969012, 0.95748401, -1.02970536, ], int_1=[ 19680418, 75337055, 99973684, 65103179, 79373900, 40314334, 21290235, 4991321, 41903419, 16008365, ], str_1=[ "78c608f1", "64a99743", "13d2ff52", "ca7f4af2", "97236474", "bde7e214", "1a6bde47", "b1190be5", "7a669144", "8d64d068", ], float_2=[ -0.0428278, -1.80872357, 3.36042349, -0.7573685, -0.48217572, 0.86229683, 1.08935819, 0.93898739, -0.03030452, 1.43366348, ], str_2=[ "14f04af9", "d085da90", "4bcfac83", "81504caf", "2ffef4a9", "08e2f5c4", "07e1af03", "addbd4a7", "1f6a09ba", "4bfc4d87", ], int_2=[ 86967717, 98098830, 51927505, 20372254, 12601730, 20884027, 34193846, 10561746, 24867120, 76131025, ], ), index=index, ) # JSON deserialisation always creates unicode strings df_mixed.columns = df_mixed.columns.astype("unicode") df_roundtrip = pd.read_json(df_mixed.to_json(orient="split"), orient="split") tm.assert_frame_equal( df_mixed, df_roundtrip, check_index_type=True, check_column_type=True, by_blocks=True, check_exact=True, ) def test_frame_nonprintable_bytes(self): # GH14256: failing column caused segfaults, if it is not the last one class BinaryThing: def __init__(self, hexed): self.hexed = hexed self.binary = bytes.fromhex(hexed) def __str__(self) -> str: return self.hexed hexed = "574b4454ba8c5eb4f98a8f45" binthing = BinaryThing(hexed) # verify the proper conversion of printable content df_printable = DataFrame({"A": [binthing.hexed]}) assert df_printable.to_json() == f'{{"A":{{"0":"{hexed}"}}}}' # check if non-printable content throws appropriate Exception df_nonprintable = DataFrame({"A": [binthing]}) msg = "Unsupported UTF-8 sequence length when encoding string" with pytest.raises(OverflowError, match=msg): df_nonprintable.to_json() # the same with multiple columns threw segfaults df_mixed = DataFrame({"A": [binthing], "B": [1]}, columns=["A", "B"]) with pytest.raises(OverflowError): df_mixed.to_json() # default_handler should resolve exceptions for non-string types result = df_nonprintable.to_json(default_handler=str) expected = f'{{"A":{{"0":"{hexed}"}}}}' assert result == expected assert ( df_mixed.to_json(default_handler=str) == f'{{"A":{{"0":"{hexed}"}},"B":{{"0":1}}}}' ) def test_label_overflow(self): # GH14256: buffer length not checked when writing label result = pd.DataFrame({"bar" * 100000: [1], "foo": [1337]}).to_json() expected = f'{{"{"bar" * 100000}":{{"0":1}},"foo":{{"0":1337}}}}' assert result == expected def test_series_non_unique_index(self): s = Series(["a", "b"], index=[1, 1]) msg = "Series index must be unique for orient='index'" with pytest.raises(ValueError, match=msg): s.to_json(orient="index") tm.assert_series_equal( s, read_json(s.to_json(orient="split"), orient="split", typ="series") ) unser = read_json(s.to_json(orient="records"), orient="records", typ="series") tm.assert_numpy_array_equal(s.values, unser.values) def test_series_default_orient(self, string_series): assert string_series.to_json() == string_series.to_json(orient="index") @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_simple(self, orient, numpy, string_series): data = string_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = string_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [False, None]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_object(self, orient, numpy, dtype, object_series): data = object_series.to_json(orient=orient) result = pd.read_json( data, typ="series", orient=orient, numpy=numpy, dtype=dtype ) expected = object_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_empty(self, orient, numpy, empty_series): data = empty_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = empty_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) else: expected.index = expected.index.astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_timeseries(self, orient, numpy, datetime_series): data = datetime_series.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = datetime_series if orient in ("values", "records"): expected = expected.reset_index(drop=True) if orient != "split": expected.name = None tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [np.float64, np.int]) @pytest.mark.parametrize("numpy", [True, False]) def test_series_roundtrip_numeric(self, orient, numpy, dtype): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"]) data = s.to_json(orient=orient) result = pd.read_json(data, typ="series", orient=orient, numpy=numpy) expected = s.copy() if orient in ("values", "records"): expected = expected.reset_index(drop=True) tm.assert_series_equal(result, expected) def test_series_to_json_except(self): s = Series([1, 2, 3]) msg = "Invalid value 'garbage' for option 'orient'" with pytest.raises(ValueError, match=msg): s.to_json(orient="garbage") def test_series_from_json_precise_float(self): s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", precise_float=True) tm.assert_series_equal(result, s, check_index_type=False) def test_series_with_dtype(self): # GH 21986 s = Series([4.56, 4.56, 4.56]) result = read_json(s.to_json(), typ="series", dtype=np.int64) expected = Series([4] * 3) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "dtype,expected", [ (True, Series(["2000-01-01"], dtype="datetime64[ns]")), (False, Series([946684800000])), ], ) def test_series_with_dtype_datetime(self, dtype, expected): s = Series(["2000-01-01"], dtype="datetime64[ns]") data = s.to_json() result = pd.read_json(data, typ="series", dtype=dtype) tm.assert_series_equal(result, expected) def test_frame_from_json_precise_float(self): df = DataFrame([[4.56, 4.56, 4.56], [4.56, 4.56, 4.56]]) result = read_json(df.to_json(), precise_float=True) tm.assert_frame_equal( result, df, check_index_type=False, check_column_type=False ) def test_typ(self): s = Series(range(6), index=["a", "b", "c", "d", "e", "f"], dtype="int64") result = read_json(s.to_json(), typ=None) tm.assert_series_equal(result, s) def test_reconstruction_index(self): df = DataFrame([[1, 2, 3], [4, 5, 6]]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) df = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}, index=["A", "B", "C"]) result = read_json(df.to_json()) tm.assert_frame_equal(result, df) def test_path(self, float_frame): with tm.ensure_clean("test.json") as path: for df in [ float_frame, self.intframe, self.tsframe, self.mixed_frame, ]: df.to_json(path) read_json(path) def test_axis_dates(self, datetime_series): # frame json = self.tsframe.to_json() result = read_json(json) tm.assert_frame_equal(result, self.tsframe) # series json = datetime_series.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, datetime_series, check_names=False) assert result.name is None def test_convert_dates(self, datetime_series): # frame df = self.tsframe.copy() df["date"] = Timestamp("20130101") json = df.to_json() result = read_json(json) tm.assert_frame_equal(result, df) df["foo"] = 1.0 json = df.to_json(date_unit="ns") result = read_json(json, convert_dates=False) expected = df.copy() expected["date"] = expected["date"].values.view("i8") expected["foo"] = expected["foo"].astype("int64") tm.assert_frame_equal(result, expected) # series ts = Series(Timestamp("20130101"), index=datetime_series.index) json = ts.to_json() result = read_json(json, typ="series") tm.assert_series_equal(result, ts) @pytest.mark.parametrize("date_format", ["epoch", "iso"]) @pytest.mark.parametrize("as_object", [True, False]) @pytest.mark.parametrize( "date_typ", [datetime.date, datetime.datetime, pd.Timestamp] ) def test_date_index_and_values(self, date_format, as_object, date_typ): data = [date_typ(year=2020, month=1, day=1), pd.NaT] if as_object: data.append("a") ser = pd.Series(data, index=data) result = ser.to_json(date_format=date_format) if date_format == "epoch": expected = '{"1577836800000":1577836800000,"null":null}' else: expected = ( '{"2020-01-01T00:00:00.000Z":"2020-01-01T00:00:00.000Z","null":null}' ) if as_object: expected = expected.replace("}", ',"a":"a"}') assert result == expected @pytest.mark.parametrize( "infer_word", [ "trade_time", "date", "datetime", "sold_at", "modified", "timestamp", "timestamps", ], ) def test_convert_dates_infer(self, infer_word): # GH10747 from pandas.io.json import dumps data = [{"id": 1, infer_word: 1036713600000}, {"id": 2}] expected = DataFrame( [[1, Timestamp("2002-11-08")], [2, pd.NaT]], columns=["id", infer_word] ) result = read_json(dumps(data))[["id", infer_word]] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_frame(self, date, date_unit): df = self.tsframe.copy() df["date"] = Timestamp(date) df.iloc[1, df.columns.get_loc("date")] = pd.NaT df.iloc[5, df.columns.get_loc("date")] = pd.NaT if date_unit: json = df.to_json(date_format="iso", date_unit=date_unit) else: json = df.to_json(date_format="iso") result = read_json(json) expected = df.copy() expected.index = expected.index.tz_localize("UTC") expected["date"] = expected["date"].dt.tz_localize("UTC") tm.assert_frame_equal(result, expected) def test_date_format_frame_raises(self): df = self.tsframe.copy() msg = "Invalid value 'foo' for option 'date_unit'" with pytest.raises(ValueError, match=msg): df.to_json(date_format="iso", date_unit="foo") @pytest.mark.parametrize( "date,date_unit", [ ("20130101 20:43:42.123", None), ("20130101 20:43:42", "s"), ("20130101 20:43:42.123", "ms"), ("20130101 20:43:42.123456", "us"), ("20130101 20:43:42.123456789", "ns"), ], ) def test_date_format_series(self, date, date_unit, datetime_series): ts = Series(Timestamp(date), index=datetime_series.index) ts.iloc[1] = pd.NaT ts.iloc[5] = pd.NaT if date_unit: json = ts.to_json(date_format="iso", date_unit=date_unit) else: json = ts.to_json(date_format="iso") result = read_json(json, typ="series") expected = ts.copy() expected.index = expected.index.tz_localize("UTC") expected = expected.dt.tz_localize("UTC") tm.assert_series_equal(result, expected) def test_date_format_series_raises(self, datetime_series): ts = Series(
Timestamp("20130101 20:43:42.123")
pandas.Timestamp
import pandas as pd from urllib.request import urlopen import io import os from datetime import datetime __author__ = '<NAME>, <NAME>' __copyright__ = '© Pandemic Central, 2021' __license__ = 'MIT' __status__ = 'release' __url__ = 'https://github.com/solveforj/pandemic-central' __version__ = '3.0.0' def preprocess_JHU(): print('• Processing JHU Case Data') # Get all other data from Johns Hopkins jhu_data = pd.read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv").dropna() jhu_data['FIPS'] = jhu_data['FIPS'].astype(int).astype(str) jhu_data = jhu_data[jhu_data['FIPS'].notnull()] def process_FIPS(fips): missing_zeroes = "0" * (5-len(fips)) return missing_zeroes + fips jhu_data['FIPS'] = jhu_data['FIPS'].apply(lambda x : process_FIPS(x)) # Filter for non-errant counties fips_to_use = pd.read_csv("data/geodata/FIPS_used.csv", dtype={'FIPS': 'str'}) jhu_data = jhu_data[jhu_data['FIPS'].isin(fips_to_use['FIPS'].to_list())] jhu_data = jhu_data.drop(["Admin2","Province_State","Country_Region","Lat","Long_","Combined_Key","UID","iso2","iso3","code3"], axis=1) jhu_data = jhu_data.melt(id_vars=['FIPS'], var_name = 'date', value_name = 'confirmed_cases') jhu_data['date'] = pd.to_datetime(jhu_data['date']) jhu_data = jhu_data.sort_values(['FIPS', 'date']) # Case counts are cumulative and will be converted into daily change jhu_data['confirmed_cases'] = jhu_data.groupby('FIPS')['confirmed_cases'].diff().dropna() full_data = jhu_data full_data = full_data.sort_values(['FIPS','date'], axis=0) full_data = full_data.reset_index(drop=True) # Compute 14-day (weekly) rolling average of cases for each county full_data['confirmed_cases'] = pd.Series(full_data.groupby("FIPS")['confirmed_cases'].rolling(7).sum()).reset_index(drop=True) full_data = full_data[full_data['confirmed_cases'].notnull()] # Move dates forward by 1 day so that movement averages represent data from past week full_data['date'] =
pd.to_datetime(full_data['date'])
pandas.to_datetime
""" Prepare training and testing datasets as CSV dictionaries 2.0 Created on 04/26/2019; modified on 11/06/2019 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np import re # get all full paths of images def image_ids_in(root_dir, ignore=['.DS_Store','dict.csv', 'all.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # Get intersection of 2 lists def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 # pair tiles of 20x, 10x, 5x of the same area def paired_tile_ids_in_old(slide, label, root_dir): dira = os.path.isdir(root_dir + 'level0') dirb = os.path.isdir(root_dir + 'level1') dirc = os.path.isdir(root_dir + 'level2') if dira and dirb and dirc: if "TCGA" in root_dir: fac = 1000 else: fac = 500 ids = [] for level in range(3): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '.png' in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0] except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) else: print('Skipping ID:', id) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 0] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 1] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 2] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) return idsa def tile_ids_in(inp): ids = [] try: for id in os.listdir(inp['path']): if '_{}.png'.format(str(inp['sldnum'])) in id: ids.append([inp['slide'], inp['level'], inp['path']+'/'+id, inp['BMI'], inp['age'], inp['label']]) except FileNotFoundError: print('Ignore:', inp['path']) return ids # pair tiles of 10x, 5x, 2.5x of the same area def paired_tile_ids_in(slide, label, root_dir, age=None, BMI=None): dira = os.path.isdir(root_dir + 'level1') dirb = os.path.isdir(root_dir + 'level2') dirc = os.path.isdir(root_dir + 'level3') if dira and dirb and dirc: if "TCGA" in root_dir: fac = 2000 else: fac = 1000 ids = [] for level in range(1, 4): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '.png' in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0] except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) else: print('Skipping ID:', id) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 1] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 2] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 3] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) idsa['age'] = age idsa['BMI'] = BMI else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) return idsa # Balance CPTAC and TCGA tiles in each class def balance(pdls, cls): balanced = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) for i in range(cls): ref = pdls.loc[pdls['label'] == i] CPTAC = ref[~ref['slide'].str.contains("TCGA")] TCGA = ref[ref['slide'].str.contains("TCGA")] if CPTAC.shape[0] != 0 and TCGA.shape[0] != 0: ratio = (CPTAC.shape[0])/(TCGA.shape[0]) if ratio < 0.2: TCGA = TCGA.sample(int(5*CPTAC.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) elif ratio > 5: CPTAC = CPTAC.sample(int(5*TCGA.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) balanced = pd.concat([balanced, ref], sort=False) return balanced # Prepare label at per patient level def big_image_sum(pmd, path='../tiles/', ref_file='../Fusion_dummy_His_MUT_joined.csv'): ref = pd.read_csv(ref_file, header=0) big_images = [] if pmd == 'subtype': ref = ref.loc[ref['subtype_0NA'] == 0] for idx, row in ref.iterrows(): if row['subtype_POLE'] == 1: big_images.append([row['name'], 0, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_MSI'] == 1: big_images.append([row['name'], 1, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_Endometrioid'] == 1: big_images.append([row['name'], 2, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_Serous-like'] == 1: big_images.append([row['name'], 3, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd == 'histology': ref = ref.loc[ref['histology_Mixed'] == 0] for idx, row in ref.iterrows(): if row['histology_Endometrioid'] == 1: big_images.append([row['name'], 0, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) if row['histology_Serous'] == 1: big_images.append([row['name'], 1, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd in ['Endometrioid', 'MSI', 'Serous-like', 'POLE']: # ref = ref.loc[ref['histology_Endometrioid'] == 1] ref = ref.loc[ref['subtype_0NA'] == 0] for idx, row in ref.iterrows(): big_images.append([row['name'], int(row['subtype_{}'.format(pmd)]), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd == 'MSIst': ref = ref.loc[ref['MSIst_0NA'] == 0] for idx, row in ref.iterrows(): big_images.append([row['name'], int(row['MSIst_MSI-H']), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) else: ref = ref.dropna(subset=[pmd]) for idx, row in ref.iterrows(): big_images.append([row['name'], int(row[pmd]), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) datapd = pd.DataFrame(big_images, columns=['slide', 'label', 'path', 'age', 'BMI']) return datapd # TO KEEP SPLIT SAME AS BASELINES. seperate into training and testing; each type is the same separation # ratio on big images test and train csv files contain tiles' path. def set_sep_secondary(alll, path, cls, pmd, batchsize=24): if pmd == 'subtype': split = pd.read_csv('../split/ST.csv', header=0) elif pmd == 'histology': split = pd.read_csv('../split/his.csv', header=0) elif pmd == 'Serous-like': split = pd.read_csv('../split/CNVH.csv', header=0) elif pmd == 'Endometrioid': split = pd.read_csv('../split/CNVL.csv', header=0) else: split = pd.read_csv('../split/{}.csv'.format(pmd), header=0) train = split.loc[split['set'] == 'train']['slide'].tolist() validation = split.loc[split['set'] == 'validation']['slide'].tolist() test = split.loc[split['set'] == 'test']['slide'].tolist() trlist = [] telist = [] valist = [] subset = alll valist.append(subset[subset['slide'].isin(validation)]) telist.append(subset[subset['slide'].isin(test)]) trlist.append(subset[subset['slide'].isin(train)]) test = pd.concat(telist) train =
pd.concat(trlist)
pandas.concat
import numpy as np import pandas as pd from rbergomi.rbergomi_utils import * class rBergomi(object): """ Class for generating paths of the rBergomi model. Integral equations for reference: Y(t) := sqrt(2a + 1) int 0,t (t - u)^a dW(u) V(t) := xi exp(eta Y - 0.5 eta^2 t^(2a + 1)) S(t) := S0 int 0,t sqrt(V) dB(u) - 0.5 V du """ def __init__(self, n=256, N=1024, T=1.0): """ Constructor for class. """ # Basic assignments. self.n = n # Steps per year self.N = N # Paths self.T = T # Maturity self.dt = 1.0/n # Step size self.s = int(n*T) # Steps self.t = np.linspace(0,T,1+self.s)[np.newaxis,:] # Time grid def dW(self, α=0.4, β=-0.4, seed=0): """ . """ self.α = α self.β = β s = self.s # Store required covariance matrices cov1 = cov(α, self.n) cov2 = cov(β, self.n) chol1 = np.linalg.cholesky(cov1)[np.newaxis,np.newaxis,:,:] chol2 = np.linalg.cholesky(cov2)[np.newaxis,np.newaxis,:,:] # fn = 'sobol/'+str(seed)+'-'+str(self.N)+'-'+str(4*s)+'.csv' # random_numbers = np.array(pd.read_csv(fn)) ## SHOULD BE OUTSIDE CALIBRATION ROUTINE np.random.seed(seed) random_numbers = np.random.normal(size=(self.N,4*s)) # Obviously generalise dB11 = random_numbers[:,0*s:1*s] dB12 = random_numbers[:,1*s:2*s] dB21 = random_numbers[:,2*s:3*s] dB22 = random_numbers[:,3*s:4*s] # Prepare for operations dB1 = np.zeros((self.N,s,2,1)) dB2 = np.zeros((self.N,s,2,1)) dB1[:,:,0,0] = dB11 dB1[:,:,1,0] = dB12 dB2[:,:,0,0] = dB21 dB2[:,:,1,0] = dB22 # Finally, correlate in C-layer dW1 = np.squeeze(np.matmul(chol1,dB1)) dW2 = np.squeeze(np.matmul(chol2,dB2)) dW = np.zeros((self.N,s,2,2)) dW[:,:,:,0] = dW1 dW[:,:,:,1] = dW2 return dW # Should promote this for two dimensions given α, β use def Y(self, dW, α): """ Constructs Volterra process from appropriately correlated 2d Brownian increments. """ Y1 = np.zeros((self.N, 1 + self.s)) # Exact integral Y2 = np.zeros((self.N, 1 + self.s)) # Riemann sum # Construct Y1 through exact integral # for i in range(1 + self.s): # Use np.cumsum here? - must time this # for i in np.arange(1, 1 + self.s, 1): # See (3.6) # Y1[:,i] += dW[:,i-1,1] # Assumes kappa = 1 # Construct Y1 through exact integral Y1[:,1:1+self.s] = dW[:,:self.s,1] # Assumes kappa = 1 # Construct arrays for convolution Γ = np.zeros(1 + self.s) # Gamma for k in np.arange(2, 1 + self.s, 1): # Assumes kappa = 1 Γ[k] = g(b(k, α)/self.n, α) Ξ = dW[:,:,0] # Xi # Initialise convolution result, GX ΓΞ = np.zeros((self.N, len(Ξ[0,:]) + len(Γ) - 1)) # Compute convolution, FFT not used for small n # Not able to compute all paths in C-layer for i in range(self.N): ΓΞ[i,:] = np.convolve(Γ, Ξ[i,:]) # Extract appropriate part of convolution Y2 = ΓΞ[:,:1 + self.s] # Finally contruct and return full process Y = np.sqrt(2 * α + 1) * (Y1 + Y2) return Y # Yes should raise dimens def V(self, Yα, Yβ, ξ=1.0, ζ=-0.5, η=1.5): """ rBergomi variance process. SHOULD ALSO WRITE INTEGRATED PROCESS METHOD FOR EFFICIENT LATER USE. """ self.ξ = ξ self.ζ = ζ self.η = η α = self.α β = self.β t = self.t Vα = np.exp(ζ*Yα - 0.5*ζ**2 * t**(2*α+1)) Vβ = np.exp(η*Yβ - 0.5*η**2 * t**(2*β+1)) V = ξ * Vα * Vβ return V def S(self, V, dB): """ rBergomi price process. """ dt = self.dt # Construct non-anticipative Riemann increments increments = np.sqrt(V[:,:-1]) * dB - 0.5 * V[:,:-1] * dt # Cumsum is actually a little slower than Python loop. Not terribly integral = np.cumsum(increments, axis = 1) S = np.zeros_like(V) S[:,0] = 1. S[:,1:] = np.exp(integral) return S def surface(self, S, surf): """ Provides the implied Black volatility surface for every option implicitely in a Surface object. """ vec_bsinv = np.vectorize(bsinv) indices = (surf.maturities * self.n).astype(int) ST = S[:,indices][:,:,np.newaxis] K = np.array(surf.strikes())[np.newaxis,:,:] Δ = np.array(surf.forward_deltas()) T = surf.maturities[:,np.newaxis] call_payoffs = np.maximum(ST - K,0) #- (1-Δ)*(ST - 1) call_prices = np.mean(call_payoffs, axis=0) call_vols = vec_bsinv(call_prices, 1., np.squeeze(K), T, ϕ=1) put_payoffs = np.maximum(K - ST,0) #+ Δ*(ST - 1) put_prices = np.mean(put_payoffs, axis=0) put_vols = vec_bsinv(put_prices, 1., np.squeeze(K), T, ϕ=-1) # don't think helpful when have control vols = (call_vols + put_vols) / 2 return
pd.DataFrame(vols, index=surf.tenors, columns=surf.deltas)
pandas.DataFrame
#Vertical Scrolled Frame class was created by github user @novel-yet-trivial #Input directory was used from Stack Overflow user @scotty3785 #All other code written by <NAME> #------------------------------------------------------------------------------------------------------------------------------------- #Import neccessary packages from tkinter import * from tkinter.ttk import * from tkinter import ttk from tkinter import filedialog from astropy.io import fits from astropy.utils.data import get_pkg_data_filename import tkinter.messagebox import pandas as pd import tkinter as tk import os import csv import astropy.io #------------------------------------------------------------------------------------------------------------------------------------- #Define entire code as a function, neccessary for turning into EXE #CMD prompt to make executable : pyinstaller.exe --onefile --noconsole --icon=logoHeader.ico headereditor2.py def main(): #--------------------------------------------------------------------------------------------------------------------------------- #Portion to initialize and name window window = Tk() window.geometry('690x460') #Set window parameters window.title("FITS Header Editor 2.0") #name window window.iconbitmap(r"C:\Users\willm\Desktop\Python_Codes\Executable headerEditor\logoHeader.ico")#set icon for program #--------------------------------------------------------------------------------------------------------------------------------- #Vertical Scrolled Frame class, created by github user @novel-yet-trivial class VerticalScrolledFrame: def __init__(self, master, **kwargs): width = kwargs.pop('width', None) height = kwargs.pop('height', None) bg = kwargs.pop('bg', kwargs.pop('background', None)) self.outer = tk.Frame(master, **kwargs) self.vsb = tk.Scrollbar(self.outer, orient=tk.VERTICAL) self.vsb.pack(fill=tk.Y, side=tk.RIGHT) self.canvas = tk.Canvas(self.outer, highlightthickness=0, width=width, height=height, bg=bg) self.canvas.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True) self.canvas['yscrollcommand'] = self.vsb.set self.canvas.bind("<Enter>", self._bind_mouse) self.canvas.bind("<Leave>", self._unbind_mouse) self.vsb['command'] = self.canvas.yview self.inner = tk.Frame(self.canvas, bg=bg) self.canvas.create_window(4, 4, window=self.inner, anchor='nw') self.inner.bind("<Configure>", self._on_frame_configure) self.outer_attr = set(dir(tk.Widget)) def __getattr__(self, item): if item in self.outer_attr: return getattr(self.outer, item) else: return getattr(self.inner, item) def _on_frame_configure(self, event=None): x1, y1, x2, y2 = self.canvas.bbox("all") height = self.canvas.winfo_height() self.canvas.config(scrollregion = (0,0, x2, max(y2, height))) def _bind_mouse(self, event=None): self.canvas.bind_all("<4>", self._on_mousewheel) self.canvas.bind_all("<5>", self._on_mousewheel) self.canvas.bind_all("<MouseWheel>", self._on_mousewheel) def _unbind_mouse(self, event=None): self.canvas.unbind_all("<4>") self.canvas.unbind_all("<5>") self.canvas.unbind_all("<MouseWheel>") def _on_mousewheel(self, event): if event.num == 4 or event.delta > 0: self.canvas.yview_scroll(-1, "units" ) elif event.num == 5 or event.delta < 0: self.canvas.yview_scroll(1, "units" ) def __str__(self): return str(self.outer) #--------------------------------------------------------------------------------------------------------------------------------- #Portion to initially place canvas on grid. This canvas will be destroyed and written over whenever the clear button is selected. #Canvas is defined globally so it can be destroyed in the clear function global canv canv = VerticalScrolledFrame(window, width=500, borderwidth=1, relief=tk.SUNKEN, background="light gray")#Initialize canvas with VSF function canv.grid(column=0, row=9) # set canvas on grid #--------------------------------------------------------------------------------------------------------------------------------- #Input directory, created by Stack Overflow user scotty3785 class FolderSelect(Frame): def __init__(self,parent=None,folderDescription="",**kw): Frame.__init__(self,master=parent,**kw) self.folderPath = StringVar() self.lblName = Label(self, text=folderDescription, font=("Arial Bold", 10)) self.lblName.grid(row=1,column=0) self.entPath = Entry(self, textvariable=self.folderPath) self.entPath.grid(row=1,column=1) self.btnFind = ttk.Button(self, text="Browse Folder",command=self.setFolderPath) self.btnFind.grid(row=1,column=2) def setFolderPath(self): folder_selected = filedialog.askdirectory() self.folderPath.set(folder_selected) @property def folder_path(self): return self.folderPath.get() folderPath = StringVar() #--------------------------------------------------------------------------------------------------------------------------------- #Section initializes all labels, entry boxes, check buttons, and directory select buttons lbl = Label(window, text="FITS Header Editor 2.0", font=("Arial Bold", 10))#Set title variable lbl.grid(column=0, row=0)#Place title on grid directory1Select = FolderSelect(window,"Choose folder to display/edit FITS header ") #Set directory select one directory1Select.grid(row=1) #Place on grid lblTwo = Label(window, text="Enter the keyword you would like to look for", font=("Arial Bold", 10)) #Label for txt entry window lblTwo.grid(column=0, row=2) #Place label on grid txt = Entry(window,width=10) #Entry window for keyword txt.grid(column=1, row=2) #Place entry window on grid ask = Label(window, text="Would you like to write to csv, display, and/or edit?", font=("Arial Bold", 10)) #Label for check boxes ask.grid(column=0, row=3) #Place label on grid chk_state = BooleanVar() #Make check state true or false variable chk_state.set(False) #Have check box set to false upon opening window chk_stateOne = BooleanVar() #^ chk_stateOne.set(False)#^ chk_stateTwo = BooleanVar()#^ chk_stateTwo.set(False)#^ chk = Checkbutton(window, text='Display', var=chk_state) #Set first check box and assign to boolean variable chk.grid(column=1, row=3) #Place check box on grid chkOne = Checkbutton(window, text='Edit', var=chk_stateOne) #Set second check box and assign to boolean variable chkOne.grid(column=2, row=3) #Place check box on grid chkTwo = Checkbutton(window, text='Write', var=chk_stateTwo) #Set third check box and assign to boolean variable chkTwo.grid(column=3, row=3) #Place check box on grid lblTwo = Label(window, text="If edit, what would you like to change the keyword to?", font=("Arial Bold", 10)) #Label for edit keyword entry window lblTwo.grid(column=0, row=4) #Place label on grid txtTwo = Entry(window,width=10) #Entry window for lbltwo txtTwo.grid(column=1, row=4) #Place entry window on grid lblTwo = Label(window, text="If write, what would you like to name your csv file? (Format : example.csv)", font=("Arial Bold", 10)) #Label for naming csv file entry window lblTwo.grid(column=0, row=5) #Place label on grid txtThree = Entry(window,width=10) #entry window for naming csv file txtThree.grid(column=1, row=5) #Place entry window on grid directory2Select = FolderSelect(window,"If write, choose location to save csv ") #Call directory select function to save csv to certain location directory2Select.grid(row=6) #Place directory select on grid #--------------------------------------------------------------------------------------------------------------------------------- #Set count variable #Set count as global so it can be used in process and clear with value set to one upon running the program. After initially running the program, #these two lines will not be ran through again. This variable is for placing labels on canvas. Every time a label is placed, count increases. #If the clear button is selected, count is set back to one so, when the process button is pressed again, count will start by placing label on first row in canvas global count count = 1 #Count set to one outside of process function #--------------------------------------------------------------------------------------------------------------------------------- #Process function for all reasonable actions desired by user def process(): global count #Call count global again so function recognizes count when called upon g = 0 #Variable created for exiting function out of a for loop -explained in more detail when called upon #----------------------------------------------------------------------------------------------------------------------------- #Error Handling : All error messages kill the process function with return statement if chk_stateTwo.get() != True and chk_stateOne.get() != True and chk_state.get() != True: #Error if no check box is checked tk.messagebox.showinfo("Error" , "Choose Write, Edit, or Display") return if directory1Select.folder_path == '': #Error if no directory is entered to parse through tk.messagebox.showinfo("Error", "Enter a directory") return if chk_stateOne.get() == True and str(txtTwo.get()) == '': #Error if edit selected but no new value entered tk.messagebox.showinfo("Error", "Enter new value for chosen keyword") return if str(txt.get()) == '': #Error if no object to search for entered tk.messagebox.showinfo("Error", "Enter keyword to search for") return if str(txtThree.get()) == '' and chk_stateTwo.get() == True : #Error if write and no name for csv file tk.messagebox.showinfo("Error", "Enter name to save csv file") return if '.csv' not in str(txtThree.get()) and chk_stateTwo.get() == True : #Error if csv file name entered is not properly formatted tk.messagebox.showinfo("Error", "Please format csv file as follows : example.csv") return if directory2Select.folder_path == '' and chk_stateTwo.get() == True : #Error if write selected and no location to enter csv entered tk.messagebox.showinfo("Error", "Enter directory to save csv file") return #----------------------------------------------------------------------------------------------------------------------------- #The only time that there will be a widget in row 8 is after the code has been cleared or process has been ran #Row 8 is for displaying messages that confirm the action desired has been completed. For example, if row 8 says "All values #cleared successfuly", at this point in the process function that will be cleared, so another label, like "values #successfuly displayed" can be placed in row 8 for displ in window.grid_slaves(): if int(displ.grid_info()["row"]) == 8: displ.grid_forget() #----------------------------------------------------------------------------------------------------------------------------- #Get values from all entries. If the values are not needed, ie. newVal when the user doesn't select to input a new value, #the value will simply not be used directory = directory1Select.folder_path directory2 = directory2Select.folder_path keyWord = str(txt.get()) newVal = str(txtTwo.get()) name = str(txtThree.get()) err = 0 #Variable created to notify user if there are no FTS files in entered directory, explained further when called upon #----------------------------------------------------------------------------------------------------------------------------- #All values that are entered to csv file are put into a data frame, which is INITIALIZED here. Data frame has axis titles #to keep all data in order, but the actual titles displayed in the csv file are placed in the first row of the dataframe. #This was done because dataframes are formatted in a way that both row and column axes have titles. Although it's #possible to just title the column axis as Object and have each row axis be the filename, this causes (1,1) in the csv file to #be an empty cell csvDf = pd.DataFrame({'File Name' : [], 'Object': []}) #initialize dataframe frame = pd.DataFrame({'File Name': ['File Name'], 'Object': ['Object']}) #enter dataframe titles csvDf = [csvDf, frame] #create structure for concatenation csvDf =
pd.concat(csvDf)
pandas.concat
import pandas as pd from faker import Faker import random import os import numpy as np import datetime import arrow class tools(): def __init__(self,path): self.path = str(path) def get_province(self): ip_data = pd.read_feather(self.path+'/ip_data.feather') return list(ip_data['province'].unique()) def get_datetime(self,input_datetime = '2022-01-19 15:00:00',count=300): mid_datetime = arrow.get(input_datetime).naive s = list(np.random.randint(-10*60,10*60,size=count)) datatime_list = [] for item in s: offset = datetime.timedelta(seconds=int(item)) time = mid_datetime + offset datatime_list.append(time) return datatime_list def createRandomString(self,len): result = [] for i in range (len): raw = "" range1 = range(58, 65) # between 0~9 and A~Z range2 = range(91, 97) # between A~Z and a~z i = 0 while i < 12: seed = random.randint(48, 122) if ((seed in range1) or (seed in range2)): continue raw += chr(seed) i += 1 result.append(raw) return result def long2ip(self,long): floor_list=[] yushu=long for i in reversed(range(4)): #3,2,1,0 res=divmod(yushu,256**i) floor_list.append(str(res[0])) yushu=res[1] return '.'.join(floor_list) def get_fakename(self,number=300): result =[] fake = Faker(['zh_CN']) for _ in range(number): result.append(fake.name()) return result def get_nickname(self,number=300): table = pd.read_excel(self.path+'/nickname.xlsx') result = random.sample(list(table['nickname']), number) return result def get_ramdon_ip(self,ip=16777472): offset = random.randint(1,254) ip_address = ip+offset return self.long2ip(ip_address) def generate_dataset(self,province="上海市",count=300,rate=2/10,start='2022-01-19 15:00:00',end='2022-01-19 18:00:00'): ip_data = pd.read_feather(self.path+'/ip_data.feather') selected_ip = ip_data[ip_data['province']==province] out_selected_ip = ip_data[ip_data['province']!=province] if len(selected_ip) >= count: #随机抽样 order = np.random.randint(0,len(selected_ip),size=count) #通过随机抽样抽取DataFrame中的行 newDf = selected_ip.take(order) else: loop = int(count/len(selected_ip)) newDf = selected_ip for i in range(loop): newDf =
pd.concat([newDf,selected_ip],sort=False)
pandas.concat
from __future__ import division # brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) from ..ted_exe import Ted test = {} class TestTed(unittest.TestCase): """ Unit tests for TED model. """ print("ted unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for ted unit tests. :return: """ pass def tearDown(self): """ Teardown routine for ted unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_ted_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty ted object ted_empty = Ted(df_empty, df_empty) return ted_empty def test_daily_app_flag(self): """ :description generates a daily flag to denote whether a pesticide is applied that day or not (1 - applied, 0 - anot applied) :param num_apps; number of applications :param app_interval; number of days between applications :NOTE in TED model there are two application scenarios per simulation (one for a min/max exposure scenario) (this is why the parameters are passed in) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='bool') result = pd.Series([[]], dtype='bool') expected_results = [[True, False, False, True, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False], [True, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]] try: # internal model constants ted_empty.num_simulation_days = 366 # input varialbles that change per simulation ted_empty.num_apps_min = pd.Series([3, 5, 1]) ted_empty.app_interval_min = pd.Series([3, 7, 1]) for i in range (3): result[i] = ted_empty.daily_app_flag(ted_empty.num_apps_min[i], ted_empty.app_interval_min[i]) np.array_equal(result[i],expected_results[i]) finally: for i in range(3): tab = [result[i], expected_results[i]] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_drift_parameters(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_method; application method (aerial/ground/airblast) :param boom_hgt; height of boom (low/high) - 'NA' if not ground application :param drop_size; droplet spectrum for application (see list below for aerial/ground - 'NA' if airblast) :param param_a (result[i][0]; parameter a for spray drift distance calculation :param param_b (result[i][1]; parameter b for spray drift distance calculation :param param_c (result[i][2]; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series(9*[[0.,0.,0.]], dtype='float') expected_results = [[0.0292,0.822,0.6539],[0.043,1.03,0.5],[0.0721,1.0977,0.4999],[0.1014,1.1344,0.4999], [1.0063,0.9998,1.0193],[5.5513,0.8523,1.0079],[0.1913,1.2366,1.0552], [2.4154,0.9077,1.0128],[0.0351,2.4586,0.4763]] try: # input variable that change per simulation ted_empty.app_method_min = pd.Series(['aerial','aerial','aerial','aerial','ground','ground','ground','ground','airblast']) ted_empty.boom_hgt_min = pd.Series(['','','','','low','low','high','high','']) ted_empty.droplet_spec_min = pd.Series(['very_fine_to_fine','fine_to_medium','medium_to_coarse','coarse_to_very_coarse', 'very_fine_to_fine','fine_to_medium-coarse','very_fine_to_fine','fine_to_medium-coarse','']) for i in range (9): # test that the nine combinations are accessed result[i][0], result[i][1], result[i][2] = ted_empty.set_drift_parameters(ted_empty.app_method_min[i], ted_empty.boom_hgt_min[i], ted_empty.droplet_spec_min[i]) npt.assert_allclose(result[i],expected_results[i],rtol=1e-4, atol=0, err_msg='', verbose=True) finally: for i in range (9): tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_drift_distance_calc(self): """ :description provides parmaeter values to use when calculating distances from edge of application source area to concentration of interest :param app_rate_frac; fraction of active ingredient application rate equivalent to the health threshold of concern :param param_a; parameter a for spray drift distance calculation :param param_b; parameter b for spray drift distance calculation :param param_c; parameter c for spray drift distance calculation :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [302.050738, 11.484378, 0.0] try: # internal model constants ted_empty.max_distance_from_source = 1000. # input variable that is internally specified from among options param_a = pd.Series([0.0292, 0.1913, 0.0351], dtype='float') param_b = pd.Series([0.822, 1.2366, 2.4586], dtype='float') param_c = pd.Series([0.6539, 1.0522, 0.4763], dtype='float') # internally calculated variables app_rate_frac = pd.Series([0.1,0.25,0.88], dtype='float') for i in range(3): result[i] = ted_empty.drift_distance_calc(app_rate_frac[i], param_a[i], param_b[i], param_c[i], ted_empty.max_distance_from_source) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ :description unittest for function conc_timestep: :param conc_ini; initial concentration for day (actually previous day concentration) :param half_life; halflife of pesiticde representing either foliar dissipation halflife or aerobic soil metabolism halflife (days) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [9.803896e-4, 0.106066, 1.220703e-3] try: # input variable that is internally specified from among options half_life = pd.Series([35., 2., .1]) # internally calculated variables conc_ini = pd.Series([1.e-3, 0.15, 1.25]) result = ted_empty.conc_timestep(conc_ini, half_life) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_canopy_air(self): """ :description calculates initial (1st application day) air concentration of pesticide within plant canopy (ug/mL) :param application rate; active ingredient application rate (lbs a.i./acre) :param mass_pest; mass of pesticide on treated field (mg) :param volume_air; volume of air in 1 hectare to a height equal to the height of the crop canopy :param biotransfer_factor; the volume_based biotransfer factor; function of Henry's las constant and Log Kow NOTE: this represents Eq 24 (and supporting eqs 25,26,27) of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [1.152526e-7, 1.281910e-5, 7.925148e-8] try: # internal model constants ted_empty.hectare_to_acre = 2.47105 ted_empty.gms_to_mg = 1000. ted_empty.lbs_to_gms = 453.592 ted_empty.crop_hgt = 1. #m ted_empty.hectare_area = 10000. #m2 ted_empty.m3_to_liters = 1000. ted_empty.mass_plant = 25000. # kg/hectare ted_empty.density_plant = 0.77 #kg/L # input variables that change per simulation ted_empty.log_kow = pd.Series([2., 4., 6.], dtype='float') ted_empty.log_unitless_hlc = pd.Series([-5., -3., -4.], dtype='float') ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_canopy_air(i, ted_empty.app_rate_min[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_soil_h2o(self): """ :description calculates initial (1st application day) concentration in soil pore water or surface puddles(ug/L) :param application rate; active ingredient application rate (lbs a.i./acre) :param soil_depth :param soil_bulk_density; kg/L :param porosity; soil porosity :param frac_org_cont_soil; fraction organic carbon in soil :param app_rate_conv; conversion factor used to convert units of application rate (lbs a.i./acre) to (ug a.i./mL) :NOTE this represents Eq 3 of Attachment 1-7 of 'Biological Evaluation Chapters for Diazinon ESA Assessment' (the depth of water in this equation is assumed to be 0.0 and therefore not included here) :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result = pd.Series([], dtype='float') expected_results = [5.067739e-3, 1.828522, 6.13194634] try: # internal model constants ted_empty.app_rate_conv1 = 11.2 ted_empty.soil_depth = 2.6 # cm ted_empty.soil_porosity = 0.35 ted_empty.soil_bulk_density = 1.5 # kg/L ted_empty.soil_foc = 0.015 ted_empty.h2o_depth_soil = 0.0 ted_empty.h2o_depth_puddles = 1.3 # internally specified variable ted_empty.water_type = pd.Series(["puddles", "pore_water", "puddles"]) # input variables that change per simulation ted_empty.koc = pd.Series([1.e-3, 0.15, 1.25]) ted_empty.app_rate_min = pd.Series([1.e-3, 0.15, 1.25]) # lbs a.i./acre for i in range(3): #let's do 3 iterations result[i] = ted_empty.conc_initial_soil_h2o(i, ted_empty.app_rate_min[i], ted_empty.water_type[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial_plant(self): """ :description calculates initial (1st application day) dietary based EEC (residue concentration) from pesticide application (mg/kg-diet for food items including short/tall grass, broadleaf plants, seeds/fruit/pods, and above ground arthropods) :param application rate; active ingredient application rate (lbs a.i./acre) :param food_multiplier; factor by which application rate of active ingredient is multiplied to estimate dietary based EECs :return: """ # create empty pandas dataframes to create empty object for this unittest ted_empty = self.create_ted_object() expected_results = pd.Series([], dtype='float') result =
pd.Series([], dtype='float')
pandas.Series
## Copyright 2015-2021 PyPSA Developers ## You can find the list of PyPSA Developers at ## https://pypsa.readthedocs.io/en/latest/developers.html ## PyPSA is released under the open source MIT License, see ## https://github.com/PyPSA/PyPSA/blob/master/LICENSE.txt """ Build optimisation problems from PyPSA networks without Pyomo. Originally retrieved from nomopyomo ( -> 'no more Pyomo'). """ __author__ = "PyPSA Developers, see https://pypsa.readthedocs.io/en/latest/developers.html" __copyright__ = ("Copyright 2015-2021 PyPSA Developers, see https://pypsa.readthedocs.io/en/latest/developers.html, " "MIT License") from .pf import (_as_snapshots, get_switchable_as_dense as get_as_dense) from .descriptors import (get_bounds_pu, get_extendable_i, get_non_extendable_i, expand_series, nominal_attrs, additional_linkports, Dict, get_active_assets, get_activity_mask) from .linopt import (linexpr, write_bound, write_constraint, write_objective, set_conref, set_varref, get_con, get_var, join_exprs, run_and_read_highs, run_and_read_cbc, run_and_read_gurobi, run_and_read_glpk, run_and_read_cplex, run_and_read_xpress, define_constraints, define_variables, define_binaries, align_with_static_component) import pandas as pd import numpy as np from numpy import inf from distutils.version import LooseVersion pd_version = LooseVersion(pd.__version__) agg_group_kwargs = dict(numeric_only=False) if pd_version >= "1.3" else {} import gc, time, os, re, shutil from tempfile import mkstemp import logging logger = logging.getLogger(__name__) lookup = pd.read_csv(os.path.join(os.path.dirname(__file__), 'variables.csv'), index_col=['component', 'variable']) def define_nominal_for_extendable_variables(n, c, attr): """ Initializes variables for nominal capacities for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str network component of which the nominal capacity should be defined attr : str name of the variable, e.g. 'p_nom' """ ext_i = get_extendable_i(n, c) if ext_i.empty: return lower = n.df(c)[attr+'_min'][ext_i] upper = n.df(c)[attr+'_max'][ext_i] define_variables(n, lower, upper, c, attr) def define_dispatch_for_extendable_and_committable_variables(n, sns, c, attr): """ Initializes variables for power dispatch for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' """ ext_i = get_extendable_i(n, c) if c == 'Generator': ext_i = ext_i.union(n.generators.query('committable').index) if ext_i.empty: return active = get_activity_mask(n, c, sns)[ext_i] if n._multi_invest else None define_variables(n, -inf, inf, c, attr, axes=[sns, ext_i], spec='ext', mask=active) def define_dispatch_for_non_extendable_variables(n, sns, c, attr): """ Initializes variables for power dispatch for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' """ fix_i = get_non_extendable_i(n, c) if c == 'Generator': fix_i = fix_i.difference(n.generators.query('committable').index) if fix_i.empty: return nominal_fix = n.df(c)[nominal_attrs[c]][fix_i] min_pu, max_pu = get_bounds_pu(n, c, sns, fix_i, attr) lower = min_pu.mul(nominal_fix) upper = max_pu.mul(nominal_fix) axes = [sns, fix_i] active = get_activity_mask(n, c, sns)[fix_i] if n._multi_invest else None kwargs = dict(spec='non_ext', mask=active) dispatch = define_variables(n, -inf, inf, c, attr, axes=axes, **kwargs) dispatch = linexpr((1, dispatch)) define_constraints(n, dispatch, '>=', lower, c, 'mu_lower', **kwargs) define_constraints(n, dispatch, '<=', upper, c, 'mu_upper', **kwargs) def define_dispatch_for_extendable_constraints(n, sns, c, attr): """ Sets power dispatch constraints for extendable devices for a given component and a given attribute. Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' """ ext_i = get_extendable_i(n, c) if ext_i.empty: return min_pu, max_pu = get_bounds_pu(n, c, sns, ext_i, attr) operational_ext_v = get_var(n, c, attr)[ext_i] nominal_v = get_var(n, c, nominal_attrs[c])[ext_i] rhs = 0 active = get_activity_mask(n, c, sns)[ext_i] if n._multi_invest else None kwargs = dict(spec=attr, mask=active) lhs, *axes = linexpr((max_pu, nominal_v), (-1, operational_ext_v), return_axes=True) define_constraints(n, lhs, '>=', rhs, c, 'mu_upper', axes=axes, **kwargs) lhs, *axes = linexpr((min_pu, nominal_v), (-1, operational_ext_v), return_axes=True) define_constraints(n, lhs, '<=', rhs, c, 'mu_lower', axes=axes, **kwargs) def define_fixed_variable_constraints(n, sns, c, attr, pnl=True): """ Sets constraints for fixing variables of a given component and attribute to the corresponding values in n.df(c)[attr + '_set'] if pnl is True, or n.pnl(c)[attr + '_set'] Parameters ---------- n : pypsa.Network c : str name of the network component attr : str name of the attribute, e.g. 'p' pnl : bool, default True Whether variable which should be fixed is time-dependent """ if pnl: if attr + '_set' not in n.pnl(c): return fix = n.pnl(c)[attr + '_set'].loc[sns] if fix.empty: return if n._multi_invest: active = get_activity_mask(n, c, sns) fix = fix.where(active) fix = fix.stack() lhs = linexpr((1, get_var(n, c, attr).stack()[fix.index]), as_pandas=False) constraints = write_constraint(n, lhs, '=', fix).unstack().T else: if attr + '_set' not in n.df(c): return fix = n.df(c)[attr + '_set'].dropna() if fix.empty: return lhs = linexpr((1, get_var(n, c, attr)[fix.index]), as_pandas=False) constraints = write_constraint(n, lhs, '=', fix) set_conref(n, constraints, c, f'mu_{attr}_set') def define_generator_status_variables(n, sns): c = 'Generator' com_i = n.generators.query('committable').index ext_i = get_extendable_i(n, c) if not (ext_i.intersection(com_i)).empty: logger.warning("The following generators have both investment optimisation" f" and unit commitment:\n\n\t{', '.join((ext_i.intersection(com_i)))}\n\nCurrently PyPSA cannot " "do both these functions, so PyPSA is choosing investment optimisation " "for these generators.") com_i = com_i.difference(ext_i) if com_i.empty: return active = get_activity_mask(n, c, sns)[com_i] if n._multi_invest else None define_binaries(n, (sns, com_i), 'Generator', 'status', mask=active) def define_committable_generator_constraints(n, sns): c, attr = 'Generator', 'status' com_i = n.df(c).query('committable and not p_nom_extendable').index if com_i.empty: return nominal = n.df(c)[nominal_attrs[c]][com_i] min_pu, max_pu = get_bounds_pu(n, c, sns, com_i, 'p') lower = min_pu.mul(nominal) upper = max_pu.mul(nominal) status = get_var(n, c, attr) p = get_var(n, c, 'p')[com_i] lhs = linexpr((lower, status), (-1, p)) active = get_activity_mask(n, c, sns)[com_i] if n._multi_invest else None define_constraints(n, lhs, '<=', 0, 'Generators', 'committable_lb', mask=active) lhs = linexpr((upper, status), (-1, p)) define_constraints(n, lhs, '>=', 0, 'Generators', 'committable_ub', mask=active) def define_ramp_limit_constraints(n, sns, c): """ Defines ramp limits for a given component with valid ramplimit. """ rup_i = n.df(c).query('ramp_limit_up == ramp_limit_up').index rdown_i = n.df(c).query('ramp_limit_down == ramp_limit_down').index if rup_i.empty & rdown_i.empty: return fix_i = get_non_extendable_i(n, c) ext_i = get_extendable_i(n, c) if "committable" in n.df(c): com_i = n.df(c).query('committable').index.difference(ext_i) else: com_i = [] # Check if ramping is not at start of n.snapshots start_i = n.snapshots.get_loc(sns[0]) - 1 pnl = n.pnl(c) # get dispatch for either one or two ports attr = ({'p', 'p0'} & set(pnl)).pop() p_prev_fix = pnl[attr].iloc[start_i] is_rolling_horizon = (sns[0] != n.snapshots[0]) and not p_prev_fix.empty if is_rolling_horizon: active = get_activity_mask(n, c, sns) p = get_var(n, c, 'p') p_prev = get_var(n, c, 'p').shift(1, fill_value=-1) rhs_prev = pd.DataFrame(0, *p.axes) rhs_prev.loc[sns[0]] = p_prev_fix else: active = get_activity_mask(n, c, sns[1:]) p = get_var(n, c, 'p').loc[sns[1:]] p_prev = get_var(n, c, 'p').shift(1, fill_value=-1).loc[sns[1:]] rhs_prev = pd.DataFrame(0, *p.axes) # fix up gens_i = rup_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = rhs_prev[gens_i] + n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') kwargs = dict(spec='nonext.', mask=active[gens_i]) define_constraints(n, lhs, '<=', rhs, c, 'mu_ramp_limit_up', **kwargs) # ext up gens_i = rup_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_up'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (-limit_pu, p_nom)) rhs = rhs_prev[gens_i] kwargs = dict(spec='ext.', mask=active[gens_i]) define_constraints(n, lhs, '<=', rhs, c, 'mu_ramp_limit_up', **kwargs) # com up gens_i = rup_i.intersection(com_i) if not gens_i.empty: limit_start = n.df(c).loc[gens_i].eval('ramp_limit_start_up * p_nom') limit_up = n.df(c).loc[gens_i].eval('ramp_limit_up * p_nom') status = get_var(n, c, 'status').loc[p.index, gens_i] status_prev = get_var(n, c, 'status').shift(1, fill_value=-1).loc[p.index, gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_start - limit_up, status_prev), (- limit_start, status)) rhs = rhs_prev[gens_i] if is_rolling_horizon: status_prev_fix = n.pnl(c)['status'][com_i].iloc[start_i] rhs.loc[sns[0]] += (limit_up - limit_start) * status_prev_fix kwargs = dict(spec='com.', mask=active[gens_i]) define_constraints(n, lhs, '<=', rhs, c, 'mu_ramp_limit_up', **kwargs) # fix down gens_i = rdown_i.intersection(fix_i) if not gens_i.empty: lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i])) rhs = rhs_prev[gens_i] + n.df(c).loc[gens_i].eval('-1 * ramp_limit_down * p_nom') kwargs = dict(spec='nonext.', mask=active[gens_i]) define_constraints(n, lhs, '>=', rhs, c, 'mu_ramp_limit_down', **kwargs) # ext down gens_i = rdown_i.intersection(ext_i) if not gens_i.empty: limit_pu = n.df(c)['ramp_limit_down'][gens_i] p_nom = get_var(n, c, 'p_nom')[gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_pu, p_nom)) rhs = rhs_prev[gens_i] kwargs = dict(spec='ext.', mask=active[gens_i]) define_constraints(n, lhs, '>=', rhs, c, 'mu_ramp_limit_down', **kwargs) # com down gens_i = rdown_i.intersection(com_i) if not gens_i.empty: limit_shut = n.df(c).loc[gens_i].eval('ramp_limit_shut_down * p_nom') limit_down = n.df(c).loc[gens_i].eval('ramp_limit_down * p_nom') status = get_var(n, c, 'status').loc[p.index, gens_i] status_prev = get_var(n, c, 'status').shift(1, fill_value=-1).loc[p.index, gens_i] lhs = linexpr((1, p[gens_i]), (-1, p_prev[gens_i]), (limit_down - limit_shut, status), (limit_shut, status_prev)) rhs = rhs_prev[gens_i] if is_rolling_horizon: status_prev_fix = n.pnl(c)['status'][com_i].iloc[start_i] rhs.loc[sns[0]] += -limit_shut * status_prev_fix kwargs = dict(spec='com.', mask=active[gens_i]) define_constraints(n, lhs, '>=', rhs, c, 'mu_ramp_limit_down', **kwargs) def define_nominal_constraints_per_bus_carrier(n, sns): for carrier in n.carriers.index: for bound, sense in [("max", "<="), ("min", ">=")]: col = f'nom_{bound}_{carrier}' if col not in n.buses.columns: continue rhs = n.buses[col].dropna() lhs = pd.Series('', rhs.index) for c, attr in nominal_attrs.items(): if c not in n.one_port_components: continue attr = nominal_attrs[c] if (c, attr) not in n.variables.index: continue nominals = get_var(n, c, attr)[n.df(c).carrier == carrier] if nominals.empty: continue per_bus = linexpr((1, nominals)).groupby(n.df(c).bus).sum(**agg_group_kwargs) lhs += per_bus.reindex(lhs.index, fill_value='') if bound == 'max': lhs = lhs[lhs != ''] rhs = rhs.reindex(lhs.index) else: assert (lhs != '').all(), ( f'No extendable components of carrier {carrier} on bus ' f'{list(lhs[lhs == ""].index)}') define_constraints(n, lhs, sense, rhs, 'Bus', 'mu_' + col) def define_nodal_balance_constraints(n, sns): """ Defines nodal balance constraint. """ def bus_injection(c, attr, groupcol='bus', sign=1): # additional sign only necessary for branches in reverse direction if 'sign' in n.df(c): sign = sign * n.df(c).sign expr = linexpr((sign, get_var(n, c, attr))).rename(columns=n.df(c)[groupcol]) # drop empty bus2, bus3 if multiline link if c == 'Link': expr.drop(columns='', errors='ignore', inplace=True) return expr # one might reduce this a bit by using n.branches and lookup args = [['Generator', 'p'], ['Store', 'p'], ['StorageUnit', 'p_dispatch'], ['StorageUnit', 'p_store', 'bus', -1], ['Line', 's', 'bus0', -1], ['Line', 's', 'bus1', 1], ['Transformer', 's', 'bus0', -1], ['Transformer', 's', 'bus1', 1], ['Link', 'p', 'bus0', -1], ['Link', 'p', 'bus1', get_as_dense(n, 'Link', 'efficiency', sns)]] args = [arg for arg in args if not n.df(arg[0]).empty] if not n.links.empty: for i in additional_linkports(n): eff = get_as_dense(n, 'Link', f'efficiency{i}', sns) args.append(['Link', 'p', f'bus{i}', eff]) lhs = (pd.concat([bus_injection(*arg) for arg in args], axis=1) .groupby(axis=1, level=0) .sum(**agg_group_kwargs) .reindex(columns=n.buses.index, fill_value='')) if (lhs == '').any().any(): raise ValueError("Empty LHS in nodal balance constraint.") sense = '=' rhs = ((- get_as_dense(n, 'Load', 'p_set', sns) * n.loads.sign) .groupby(n.loads.bus, axis=1).sum() .reindex(columns=n.buses.index, fill_value=0)) define_constraints(n, lhs, sense, rhs, 'Bus', 'marginal_price') def define_kirchhoff_constraints(n, sns): """ Defines Kirchhoff voltage constraints """ comps = n.passive_branch_components & set(n.variables.index.levels[0]) if len(comps) == 0: return branch_vars = pd.concat({c:get_var(n, c, 's') for c in comps}, axis=1) def cycle_flow(ds, sns): if sns is None: sns = slice(None) ds = ds[lambda ds: ds!=0.].dropna() vals = linexpr((ds, branch_vars.loc[sns, ds.index]), as_pandas=False) return vals.sum(1) constraints = [] periods = sns.unique('period') if n._multi_invest else [None] for period in periods: n.determine_network_topology(investment_period=period) subconstraints = [] for sub in n.sub_networks.obj: branches = sub.branches() C = pd.DataFrame(sub.C.todense(), index=branches.index) if C.empty: continue carrier = n.sub_networks.carrier[sub.name] weightings = branches.x_pu_eff if carrier == 'AC' else branches.r_pu_eff C_weighted = 1e5 * C.mul(weightings, axis=0) cycle_sum = C_weighted.apply(cycle_flow, sns=period) snapshots = sns if period == None else sns[sns.get_loc(period)] cycle_sum.set_index(snapshots, inplace=True) con = write_constraint(n, cycle_sum, '=', 0) subconstraints.append(con) if len(subconstraints) == 0: continue constraints.append(pd.concat(subconstraints, axis=1, ignore_index=True)) if constraints: constraints = pd.concat(constraints).rename_axis(columns='cycle') set_conref(n, constraints, 'SubNetwork', 'mu_kirchhoff_voltage_law') def define_storage_unit_constraints(n, sns): """ Defines state of charge (soc) constraints for storage units. In principal the constraints states: previous_soc + p_store - p_dispatch + inflow - spill == soc """ sus_i = n.storage_units.index if sus_i.empty: return c = 'StorageUnit' # spillage has_periods = isinstance(sns, pd.MultiIndex) active = get_activity_mask(n, c, sns) upper = get_as_dense(n, c, 'inflow', sns).loc[:, lambda df: df.max() > 0] spill = define_variables(n, 0, upper, 'StorageUnit', 'spill', mask=active[upper.columns]) # elapsed hours eh = expand_series(n.snapshot_weightings.stores[sns], sus_i) # efficiencies eff_stand = expand_series(1-n.df(c).standing_loss, sns).T.pow(eh) eff_dispatch = expand_series(n.df(c).efficiency_dispatch, sns).T eff_store = expand_series(n.df(c).efficiency_store, sns).T soc = get_var(n, c, 'state_of_charge') if has_periods: cyclic_i = n.df(c).query('cyclic_state_of_charge & ' '~cyclic_state_of_charge_per_period').index cyclic_pp_i = n.df(c).query('cyclic_state_of_charge & ' 'cyclic_state_of_charge_per_period').index noncyclic_i = n.df(c).query('~cyclic_state_of_charge & ' '~state_of_charge_initial_per_period').index noncyclic_pp_i = n.df(c).query("~cyclic_state_of_charge & " "state_of_charge_initial_per_period").index else: cyclic_i = n.df(c).query('cyclic_state_of_charge').index noncyclic_i = n.df(c).query('~cyclic_state_of_charge ').index # cyclic constraint for whole optimization horizon previous_soc_cyclic = soc.where(active).ffill().apply(lambda ds: np.roll(ds, 1)).ffill() # non cyclic constraint: determine the first active snapshot first_active_snapshot = active.cumsum()[noncyclic_i] == 1 coeff_var = [(-1, soc), (-1/eff_dispatch * eh, get_var(n, c, 'p_dispatch')), (eff_store * eh, get_var(n, c, 'p_store'))] lhs, *axes = linexpr(*coeff_var, return_axes=True) def masked_term(coeff, var, cols): return linexpr((coeff[cols], var[cols]))\ .reindex(index=axes[0], columns=axes[1], fill_value='').values if (c, 'spill') in n.variables.index: lhs += masked_term(-eh, get_var(n, c, 'spill'), spill.columns) lhs += masked_term(eff_stand, previous_soc_cyclic, cyclic_i) lhs += masked_term(eff_stand[~first_active_snapshot], soc.shift()[~first_active_snapshot], noncyclic_i) # rhs set e at beginning of optimization horizon for noncyclic rhs = -get_as_dense(n, c, 'inflow', sns).mul(eh).astype(float) rhs[noncyclic_i] = rhs[noncyclic_i].where(~first_active_snapshot, rhs-n.df(c).state_of_charge_initial, axis=1) if has_periods: # cyclic constraint for soc per period - cyclic soc within each period previous_soc_cyclic_pp = soc.groupby(level=0).transform(lambda ds: np.roll(ds, 1)) lhs += masked_term(eff_stand, previous_soc_cyclic_pp, cyclic_pp_i) # set the initial enery at the beginning of each period first_active_snapshot_pp = ( active[noncyclic_pp_i].groupby(level=0).cumsum() == 1) lhs += masked_term(eff_stand[~first_active_snapshot_pp], soc.shift()[~first_active_snapshot_pp], noncyclic_pp_i) rhs[noncyclic_pp_i] = ( rhs[noncyclic_pp_i].where(~first_active_snapshot_pp, rhs - n.df(c).state_of_charge_initial, axis=1)) define_constraints(n, lhs, '==', rhs, c, 'mu_state_of_charge', mask=active) def define_store_constraints(n, sns): """ Defines energy balance constraints for stores. In principal this states: previous_e - p == e """ stores_i = n.stores.index if stores_i.empty: return c = 'Store' has_periods = isinstance(sns, pd.MultiIndex) active = get_activity_mask(n, c, sns) define_variables(n, -inf, inf, axes=[sns, stores_i], name=c, attr='p', mask=active) # elapsed hours eh = expand_series(n.snapshot_weightings.stores[sns], stores_i) #elapsed hours eff_stand = expand_series(1-n.df(c).standing_loss, sns).T.pow(eh) e = get_var(n, c, 'e') if has_periods: cyclic_i = n.df(c).query('e_cyclic & ~e_cyclic_per_period').index cyclic_pp_i = n.df(c).query('e_cyclic & e_cyclic_per_period').index noncyclic_i = n.df(c).query('~e_cyclic & ~e_initial_per_period').index noncyclic_pp_i = n.df(c).query("~e_cyclic & e_initial_per_period").index else: cyclic_i = n.df(c).query('e_cyclic').index noncyclic_i = n.df(c).query('~e_cyclic').index # cyclic constraint for whole optimization horizon previous_e_cyclic = e.where(active).ffill().apply(lambda ds: np.roll(ds, 1)).ffill() # non cyclic constraint: determine the first active snapshot first_active_snapshot = active.cumsum()[noncyclic_i] == 1 coeff_var = [(-eh, get_var(n, c, 'p')), (-1, e)] lhs, *axes = linexpr(*coeff_var, return_axes=True) def masked_term(coeff, var, cols): return linexpr((coeff[cols], var[cols]))\ .reindex(index=sns, columns=stores_i, fill_value='').values lhs += masked_term(eff_stand, previous_e_cyclic, cyclic_i) lhs += masked_term(eff_stand[~first_active_snapshot], e.shift()[~first_active_snapshot], noncyclic_i) # rhs set e at beginning of optimization horizon for noncyclic rhs = pd.DataFrame(0., sns, stores_i) rhs[noncyclic_i] = rhs[noncyclic_i].where(~first_active_snapshot, -n.df(c).e_initial, axis=1) if has_periods: # cyclic constraint for soc per period - cyclic soc within each period previous_e_cyclic_pp = e.groupby(level=0).transform(lambda ds: np.roll(ds, 1)) lhs += masked_term(eff_stand, previous_e_cyclic_pp, cyclic_pp_i) # set the initial enery at the beginning of each period first_active_snapshot_pp = ( active[noncyclic_pp_i].groupby(level=0).cumsum() == 1) lhs += masked_term(eff_stand[~first_active_snapshot_pp], e.shift()[~first_active_snapshot_pp], noncyclic_pp_i) rhs[noncyclic_pp_i] = ( rhs[noncyclic_pp_i].where(~first_active_snapshot_pp, -n.df(c).e_initial, axis=1)) define_constraints(n, lhs, '==', rhs, c, 'mu_state_of_charge', mask=active) def define_growth_limit(n, sns, c, attr): """Constraint new installed capacity per investment period. Parameters ---------- n : pypsa.Network c : str network component of which the nominal capacity should be defined attr : str name of the variable, e.g. 'p_nom' """ if not n._multi_invest: return ext_i = get_extendable_i(n, c) if "carrier" not in n.df(c) or n.df(c).empty: return with_limit = n.carriers.query("max_growth != inf").index limit_i = n.df(c).query("carrier in @with_limit").index.intersection(ext_i) if limit_i.empty: return periods = sns.unique('period') v = get_var(n, c, attr) carriers = n.df(c).loc[limit_i, "carrier"] caps = pd.concat({period: linexpr((1, v)).where(n.get_active_assets(c, period), '') for period in periods}, axis=1).T[limit_i] lhs = caps.groupby(carriers, axis=1).sum(**agg_group_kwargs) rhs = n.carriers.max_growth[with_limit] define_constraints(n, lhs, '<=', rhs, 'Carrier', 'growth_limit_{}'.format(c)) def define_global_constraints(n, sns): """ Defines global constraints for the optimization. Possible types are 1. primary_energy Use this to constraint the byproducts of primary energy sources as CO2 2. transmission_volume_expansion_limit Use this to set a limit for line volume expansion. Possible carriers are 'AC' and 'DC' 3. transmission_expansion_cost_limit Use this to set a limit for line expansion costs. Possible carriers are 'AC' and 'DC' 4. tech_capacity_expansion_limit Use this to se a limit for the summed capacitiy of a carrier (e.g. 'onwind') for each investment period at choosen nodes. This limit could e.g. represent land resource/ building restrictions for a technology in a certain region. Currently, only the capacities of extendable generators have to be below the set limit. """ if n._multi_invest: period_weighting = n.investment_period_weightings["years"] weightings = n.snapshot_weightings.mul(period_weighting, level=0, axis=0).loc[sns] else: weightings = n.snapshot_weightings.loc[sns] def get_period(n, glc, sns): period = slice(None) if n._multi_invest and not np.isnan(glc["investment_period"]): period = int(glc["investment_period"]) if period not in sns.unique('period'): logger.warning("Optimized snapshots do not contain the investment " f"period required for global constraint `{glc.name}`.") return period # (1) primary_energy glcs = n.global_constraints.query('type == "primary_energy"') for name, glc in glcs.iterrows(): rhs = glc.constant lhs = '' carattr = glc.carrier_attribute emissions = n.carriers.query(f'{carattr} != 0')[carattr] period = get_period(n, glc, sns) if emissions.empty: continue # generators gens = n.generators.query('carrier in @emissions.index') if not gens.empty: em_pu = gens.carrier.map(emissions)/gens.efficiency em_pu = (weightings["generators"].to_frame('weightings') @\ em_pu.to_frame('weightings').T).loc[period] p = get_var(n, 'Generator', 'p').loc[sns, gens.index].loc[period] vals = linexpr((em_pu, p), as_pandas=False) lhs += join_exprs(vals) # storage units sus = n.storage_units.query('carrier in @emissions.index and ' 'not cyclic_state_of_charge') sus_i = sus.index if not sus.empty: em_pu = sus.carrier.map(emissions) soc = get_var(n, 'StorageUnit', 'state_of_charge').loc[sns, sus_i].loc[period] soc = soc.where(soc!=-1).ffill().iloc[-1] vals = linexpr((-em_pu, soc), as_pandas=False) lhs = lhs + '\n' + join_exprs(vals) rhs -= em_pu @ sus.state_of_charge_initial # stores n.stores['carrier'] = n.stores.bus.map(n.buses.carrier) stores = n.stores.query('carrier in @emissions.index and not e_cyclic') if not stores.empty: em_pu = stores.carrier.map(emissions) e = get_var(n, 'Store', 'e').loc[sns, stores.index].loc[period] e = e.where(e!=-1).ffill().iloc[-1] vals = linexpr((-em_pu, e), as_pandas=False) lhs = lhs + '\n' + join_exprs(vals) rhs -= stores.carrier.map(emissions) @ stores.e_initial define_constraints(n, lhs, glc.sense, rhs, 'GlobalConstraint', 'mu', axes=pd.Index([name]), spec=name) # (2) transmission_volume_expansion_limit glcs = n.global_constraints.query('type == ' '"transmission_volume_expansion_limit"') substr = lambda s: re.sub(r'[\[\]\(\)]', '', s) for name, glc in glcs.iterrows(): car = [substr(c.strip()) for c in glc.carrier_attribute.split(',')] lhs = '' period = get_period(n, glc, sns) for c, attr in (('Line', 's_nom'), ('Link', 'p_nom')): if n.df(c).empty: continue ext_i = n.df(c).query(f'carrier in @car and {attr}_extendable').index ext_i = ext_i[get_activity_mask(n, c, sns)[ext_i].loc[period].any()] if ext_i.empty: continue v = linexpr((n.df(c).length[ext_i], get_var(n, c, attr)[ext_i]), as_pandas=False) lhs += '\n' + join_exprs(v) if lhs == '': continue sense = glc.sense rhs = glc.constant define_constraints(n, lhs, sense, rhs, 'GlobalConstraint', 'mu', axes=
pd.Index([name])
pandas.Index
import pandas as pd import numpy as np from numpy import mean from numpy import std from numpy import NaN from sklearn.datasets import make_regression from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error #from xgboost import XGBRFRegressor import lightgbm as lgb from lightgbm import LGBMRegressor # https://www.kaggle.com/shreyagopal/suicide-rate-prediction-with-machine-learning #from sklearn.linear_model import LinearRegression dat = "C:/Users/LIUM3478/OneDrive Corp/OneDrive - Atkins Ltd/Work_Atkins/Docker/hjulanalys/wheel_prediction_data.csv" df = pd.read_csv(dat, encoding = 'ISO 8859-1', sep = ";", decimal=",") df.head() df.groupby(['Littera','VehicleOperatorName']).size().reset_index().rename(columns={0:'count'}) y = df[['km_till_OMS']].values X = df[["LeftWheelDiameter", "Littera", "VehicleOperatorName", "TotalPerformanceSnapshot", "maxTotalPerformanceSnapshot"]] # X["Littera_Operator"] = X.Littera + " " + X.VehicleOperatorName # X.drop(["Littera", "VehicleOperatorName"], axis = 1, inplace=True) # converting object type to category for gradient boosting algorithms def obj_to_cat(data): obj_feat = list(data.loc[:, data.dtypes == 'object'].columns.values) for feature in obj_feat: data[feature] = pd.Series(data[feature], dtype="category") return data X = obj_to_cat(X) # Training and Testing Sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 1234) # calling lightgbm method directly # converting the specific Dataset data format lgb_train = lgb.Dataset(X_train, y_train) lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train) hyper_params = { 'task': 'train', 'boosting_type': 'gbdt', # set promotion type 'objective': 'regression', 'metric': {'l2', 'auc'}, # evaluation function: rmse, l2 loss function 'learning_rate': 0.5, 'feature_fraction': 1, # The proportion of feature selection for tree building "num_leaves": 20, # number of leaf nodes } gbm = lgb.train(params=hyper_params, train_set=lgb_train, valid_sets=lgb_eval, num_boost_round=20, verbose_eval=False, early_stopping_rounds=5) y_pred = gbm.predict(X_test) y_pred =
pd.DataFrame(y_pred)
pandas.DataFrame
import glob as glob import matplotlib as mpl import matplotlib.patheffects as PathEffects import matplotlib.pyplot as plt import matplotlib.ticker as mtick import matplotlib.transforms as transforms import numpy as np import pandas as pd import seaborn as sns import bz2 import corner import json import pathlib import pickle import warnings from astropy import constants as const from astropy import units as uni from astropy.io import ascii, fits from astropy.time import Time from mpl_toolkits.axes_grid1 import ImageGrid warnings.filterwarnings("ignore", r"All-NaN (slice|axis) encountered") warnings.filterwarnings("ignore", r"Degrees of freedom <= 0 for slice") def _bad_idxs(s): if s == "[]": return [] else: # Merges indices/idxs specified in `s` into a single numpy array of # indices to omit s = s.strip("[]").split(",") bad_idxs = list(map(_to_arr, s)) bad_idxs = np.concatenate(bad_idxs, axis=0) return bad_idxs def _to_arr(idx_or_slc): # Converts str to 1d numpy array # or slice to numpy array of ints. # This format makes it easier for flattening multiple arrays in `_bad_idxs` if ":" in idx_or_slc: lower, upper = map(int, idx_or_slc.split(":")) return np.arange(lower, upper + 1) else: return np.array([int(idx_or_slc)]) def compress_pickle(fname_out, fpath_pickle): data = load_pickle(fpath_pickle) with bz2.BZ2File(f"{fname_out}.pbz2", "wb") as f: pickle.dump(data, f) def decompress_pickle(fname): data = bz2.BZ2File(fname, "rb") return pickle.load(data) def get_evidences(base_dir, relative_to_spot_only=False): fit_R0 = "fitR0" if "fit_R0" in base_dir else "NofitR0" species = ["Na", "K", "TiO", "Na_K", "Na_TiO", "K_TiO", "Na_K_TiO"] model_names_dict = { "clear": f"NoHet_FitP0_NoClouds_NoHaze_{fit_R0}", "clear+cloud": f"NoHet_FitP0_Clouds_NoHaze_{fit_R0}", "clear+haze": f"NoHet_FitP0_NoClouds_Haze_{fit_R0}", "clear+cloud+haze": f"NoHet_FitP0_Clouds_Haze_{fit_R0}", "clear+spot": f"Het_FitP0_NoClouds_NoHaze_{fit_R0}", "clear+spot+cloud": f"Het_FitP0_Clouds_NoHaze_{fit_R0}", "clear+spot+haze": f"Het_FitP0_NoClouds_Haze_{fit_R0}", "clear+spot+cloud+haze": f"Het_FitP0_Clouds_Haze_{fit_R0}", } data_dict = { sp: { model_name: load_pickle(f"{base_dir}/HATP23_E1_{model_id}_{sp}/retrieval.pkl") for (model_name, model_id) in model_names_dict.items() } for sp in species } lnZ = {} lnZ_err = {} for species_name, species_data in data_dict.items(): lnZ[species_name] = {} lnZ_err[species_name] = {} for model_name, model_data in species_data.items(): lnZ[species_name][model_name] = model_data["lnZ"] lnZ_err[species_name][model_name] = model_data["lnZerr"] df_lnZ = pd.DataFrame(lnZ) df_lnZ_err =
pd.DataFrame(lnZ_err)
pandas.DataFrame
from __future__ import print_function, division import os, mimetypes import sys import torch import pandas as pd from collections import defaultdict import PIL import random from tqdm.autonotebook import tqdm from tqdm import tnrange import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils, models from pathlib import Path from random import shuffle from scipy import ndimage #from torchsummary import summary import torch.nn as nn import time import copy import torch.optim as optim from torch.optim import lr_scheduler imagenet_stats = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) if sys.platform == 'linux': path = Path('/home/ec2-user/SageMaker/data') else: path = Path('C:/Users/francesco.pochetti/Downloads/imagenette') ################################################# # UNIT TESTS ################################################# def test_data(dl, ds, bs, size, p=0): assert dl['train'].dataset == ds['train'] assert dl['valid'].dataset == ds['valid'] assert abs(len(ds['train'])/bs - len(dl['train'])) < 2 assert abs(len(ds['valid'])/bs - len(dl['valid'])) < 2 i,c,s = next(iter(dl['train'])) assert i.shape[0] == bs assert i.shape[1] == 3 assert i.shape[2] == i.shape[3] == (size+p*2) i,c,s = next(iter(dl['valid'])) assert i.shape[0] == bs assert i.shape[1] == 3 assert i.shape[2] == i.shape[3] == (size+p*2) def test_deprocess(ds_item, size, p): denorm = DeProcess(imagenet_stats, size, p) d = denorm(ds_item) print('shape of re-center-cropped image:', d[0].shape) return PIL.Image.fromarray(d[random.choice([0,1,2])]) def test_hooks(model, dl, bs): fst = FastStyleTransfer(dl, *get_model_opt(model)) assert fst.hooks_initialized == True d = random.choice(['train', 'valid']) i, c, s = next(iter(fst.dl[d])) i = i.to(fst.device) c = c.to(fst.device) s = s.to(fst.device) assert torch.allclose(i, c) == True assert torch.allclose(i, s) == False fst.vgg(i) input_act = [o.features.clone().detach_().to(fst.device) for o in fst.act] fst.vgg(c) content_act = [o.features.clone().detach_().to(fst.device) for o in fst.act] fst.vgg(s) style_act = [o.features.clone().detach_().to(fst.device) for o in fst.act] assert len(input_act) == len(content_act) == len(style_act) == 5 assert torch.allclose(input_act[1], content_act[1]) assert torch.allclose(input_act[3], content_act[3]) assert style_act[0].shape[0] == style_act[2].shape[0] == style_act[4].shape[0] == bs fst.close_hooks() assert fst.hooks_initialized == False def test_losses(model, dl): fst = FastStyleTransfer(dl, *get_model_opt(model)) assert fst.hooks_initialized == True d = random.choice(['train', 'valid']) i, c, s = next(iter(fst.dl[d])) i = i.to(fst.device) c = c.to(fst.device) s = s.to(fst.device) #assert torch.allclose(i, c) assert torch.allclose(i, s) == False fst.vgg(i) input_act = [o.features.clone().detach_().to(fst.device) for o in fst.act] print('shape of input_act: ', [o.shape for o in input_act]) fst.vgg(c) content_act = [o.features.clone().detach_().to(fst.device) for o in fst.act] print('shape of content_act: ', [o.shape for o in content_act]) fst.vgg(s) style_act = [o.features.clone().detach_().to(fst.device) for o in fst.act] print('shape of style_act: ', [o.shape for o in style_act]) co_loss = fst.content_mse(input_act[0], content_act[0]) assert isinstance(co_loss, torch.Tensor) st_loss = fst.gram_mse_loss(input_act[4], style_act[4]) assert isinstance(st_loss, torch.Tensor) fst.input_act = input_act fst.content_act = content_act fst.style_act = style_act fst.outputs = fst.model(i) loss, content, style, tv = fst.combined_loss() assert isinstance(st_loss, torch.Tensor) fst.close_hooks() assert fst.hooks_initialized == False ################################################# # UTILS ################################################# def _get_files(p, fs, extensions=None): p = Path(p) res = [p/f for f in fs if not f.startswith('.') and ((not extensions) or f'.{f.split(".")[-1].lower()}' in extensions)] return res def get_files(path, extensions=None, recurse=False, include=None): path = Path(path) extensions = {e.lower() for e in extensions} if recurse: res = [] for i,(p,d,f) in enumerate(os.walk(path)): # returns (dirpath, dirnames, filenames) if include is not None and i==0: d[:] = [o for o in d if o in include] else: d[:] = [o for o in d if not o.startswith('.')] res += _get_files(p, f, extensions) return res else: f = [o.name for o in os.scandir(path) if o.is_file()] return _get_files(path, f, extensions) class SaveFeatures(): features=None def __init__(self, m): self.hook = m.register_forward_hook(self.hook_fn) def hook_fn(self, module, input, output): self.features = output def close(self): self.hook.remove() def gram(input): b,c,h,w = input.size() x = input.view(b*c, -1) return torch.mm(x, x.t())/input.numel() #*1e6 def build_style_dataframe(path, style): content_path = path/'coco-images'/'test2015' image_extensions = set(k for k,v in mimetypes.types_map.items() if v.startswith('image/')) files = get_files(content_path, image_extensions, recurse=True) assert len(files) == 81434 style_path = path/'styles'/style contents = files styles = [style_path] * len(contents) assert len(styles) == 81434 te_ = int(len(styles) * 0.001) tr_ = len(styles) - te_ assert(len(styles) == (te_+tr_)) print(f'Files in validation set: {te_}; Files in training set {tr_}') splits = ['valid'] * te_ + ['train'] * tr_ shuffle(splits) df = pd.DataFrame({'content_': contents, 'style_': styles, 'split_': splits}) assert len(df) == 81434 df.to_csv(path/f'{style[:-4]}.csv', index=False) def calc_loss_ratios(model, path, tmfs, size, bs, vgg, tv_weight=None): c2s = [] c2t = [] for _ in range(3): train_ds = StyleTransferDataset(path, train_test='train', transform=tmfs, sample=0.01) valid_ds = StyleTransferDataset(path, train_test='valid', transform=tmfs, sample=0.5) dataloaders = {'train': DataLoader(train_ds, batch_size=bs, shuffle=True), 'valid': DataLoader(valid_ds, batch_size=bs)} fst = FastStyleTransfer(dataloaders, *get_model_opt(model), size=size, c2s=1, c2t=1, tv_weight=tv_weight, content_weight=1, style_weight=1, vgg=vgg) fst.train(verbose=False) d = fst.get_metrics('train') c2s.append(d['content'].mean()/d['style'].mean()) if tv_weight is not None: c2t.append(d['content'].mean()/d['tv'].mean()) if tv_weight is not None: return np.array(c2s).mean(), np.array(c2t).mean() return np.array(c2s).mean(), 1.0 def get_model_opt(model, sched=None): unet = model optimizer = optim.Adam(filter(lambda p: p.requires_grad, unet.parameters()), lr=1e-3) if sched: sched = lr_scheduler.CosineAnnealingLR(optimizer, 50) return [unet, optimizer, sched] ################################################# # DATASETS & DATALOADERS ################################################# class StyleTransferDataset(Dataset): """Style Transfer dataset.""" def __init__(self, csv_file, train_test, transform=None, sample=None): data = pd.read_csv(csv_file) if sample: data = data.sample(int(len(data)*sample)) self.train_test = train_test data.loc[:,['content_', 'style_']] = data.loc[:,['content_', 'style_']].applymap(lambda x: Path(x)) self.data = data.loc[data.split_==train_test,:].reset_index(drop=True) self.transform = transform def __len__(self): return len(self.data) def __repr__(self): item = self.__getitem__(0) _1 = f'{self.train_test.capitalize()} dataset: {len(self.data)} items\n' _2 = f'Item: {type(item)} of {len(item)} {type(item[0])}\n' _3 = f"Item example: 'input':{ item[0].shape},'content':{item[1].shape},'style':{item[2].shape}" return _1+_2+_3 def __getitem__(self, idx): if type(idx) == torch.Tensor: idx = idx.item() content_img = self.data.content_.iloc[idx] content_img = PIL.Image.open(content_img) style_img = self.data.style_.iloc[idx] style_img = PIL.Image.open(style_img) #opt_img = np.random.uniform(0, 1, size=(content_img.size + (3,))).astype(np.float32) #opt_img = ndimage.filters.median_filter(opt_img, [8,8,1]) #item = {'input': PIL.Image.fromarray(np.uint8(opt_img*255)), # 'content': content_img, # 'style': style_img} item = {'content': content_img, 'style': style_img} if self.transform: item = compose(item, self.transform) return item['content'], item['content'], item['style'] def compose(x, funcs, *args, order_key='_order', **kwargs): key = lambda o: getattr(o, order_key, 0) for f in sorted(list(funcs), key=key): x = f(x, **kwargs) return x class Transform(): _order=0 class MakeRGB(Transform): def __call__(self, item): return {k: v.convert('RGB') for k, v in item.items()} class ResizeFixed(Transform): _order=10 def __init__(self, size): if isinstance(size,int): size=(size,size) self.size = size def __call__(self, item): return {k: v.resize(self.size, PIL.Image.BILINEAR) for k, v in item.items()} class ToByteTensor(Transform): _order=20 def to_byte_tensor(self, item): res = torch.ByteTensor(torch.ByteStorage.from_buffer(item.tobytes())) w,h = item.size return res.view(h,w,-1).permute(2,0,1) def __call__(self, item): return {k: self.to_byte_tensor(v) for k, v in item.items()} class ToFloatTensor(Transform): _order=30 def to_float_tensor(self, item): return item.float().div_(255.) def __call__(self, item): return {k: self.to_float_tensor(v) for k, v in item.items()} class Normalize(Transform): _order=40 def __init__(self, stats, p=None): self.mean = torch.as_tensor(stats[0] , dtype=torch.float32) self.std = torch.as_tensor(stats[1] , dtype=torch.float32) self.p = p def normalize(self, item): return item.sub_(self.mean[:, None, None]).div_(self.std[:, None, None]) def pad(self, item): return nn.functional.pad(item[None], pad=(self.p,self.p,self.p,self.p), mode='replicate').squeeze(0) def __call__(self, item): if self.p is not None: return {k: self.pad(self.normalize(v)) for k, v in item.items()} else: return {k: self.normalize(v) for k, v in item.items()} class PilRandomDihedral(Transform): _order=15 def __init__(self, p=0.75): self.p=p*7/8 #Little hack to get the 1/8 identity dihedral transform taken into account. def __call__(self, item): if random.random()>self.p: return item return {k: v.transpose(random.randint(0,6)) for k, v in item.items()} class DeProcess(Transform): _order=50 def __init__(self, stats, size=None, p=None): self.mean = torch.as_tensor(stats[0] , dtype=torch.float32) self.std = torch.as_tensor(stats[1] , dtype=torch.float32) self.size = size self.p = p def de_normalize(self, item): return ((item*self.std[:, None, None]+self.mean[:, None, None])*255.).clamp(0, 255) def rearrange_axis(self, item): return np.moveaxis(item, 0, -1) def to_np(self, item): return np.uint8(np.array(item)) def crop(self, item): return item[self.p:self.p+self.size,self.p:self.p+self.size,:] def de_process(self, item): if self.size is not None and self.p is not None: return self.crop(self.rearrange_axis(self.to_np(self.de_normalize(item)))) else: return self.rearrange_axis(self.to_np(self.de_normalize(item))) def __call__(self, item): if isinstance(item, torch.Tensor): return self.de_process(item) if isinstance(item, tuple): return tuple([self.de_process(v) for v in item]) if isinstance(item, dict): return {k: self.de_process(v) for k, v in item.items()} ################################################# # RESNET UNET ################################################# def convrelu(in_channels, out_channels, kernel, padding): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel, padding=padding), nn.ReLU(inplace=True), ) class ResNetUNet(nn.Module): def __init__(self, n_class=3): super().__init__() self.base_model = models.resnet18(pretrained=True) self.base_layers = list(self.base_model.children()) self.layer0 = nn.Sequential(*self.base_layers[:3]) # size=(N, 64, x.H/2, x.W/2) self.layer0_1x1 = convrelu(64, 64, 1, 0) self.layer1 = nn.Sequential(*self.base_layers[3:5]) # size=(N, 64, x.H/4, x.W/4) self.layer1_1x1 = convrelu(64, 64, 1, 0) self.layer2 = self.base_layers[5] # size=(N, 128, x.H/8, x.W/8) self.layer2_1x1 = convrelu(128, 128, 1, 0) self.layer3 = self.base_layers[6] # size=(N, 256, x.H/16, x.W/16) self.layer3_1x1 = convrelu(256, 256, 1, 0) self.layer4 = self.base_layers[7] # size=(N, 512, x.H/32, x.W/32) self.layer4_1x1 = convrelu(512, 512, 1, 0) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.conv_up3 = convrelu(256 + 512, 512, 3, 1) self.conv_up2 = convrelu(128 + 512, 256, 3, 1) self.conv_up1 = convrelu(64 + 256, 256, 3, 1) self.conv_up0 = convrelu(64 + 256, 128, 3, 1) self.conv_original_size0 = convrelu(3, 64, 3, 1) self.conv_original_size1 = convrelu(64, 64, 3, 1) self.conv_original_size2 = convrelu(64 + 128, 64, 3, 1) self.conv_last = nn.Conv2d(64, n_class, 1) def forward(self, input): x_original = self.conv_original_size0(input) x_original = self.conv_original_size1(x_original) layer0 = self.layer0(input) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) layer4 = self.layer4_1x1(layer4) x = self.upsample(layer4) layer3 = self.layer3_1x1(layer3) x = torch.cat([x, layer3], dim=1) x = self.conv_up3(x) x = self.upsample(x) layer2 = self.layer2_1x1(layer2) x = torch.cat([x, layer2], dim=1) x = self.conv_up2(x) x = self.upsample(x) layer1 = self.layer1_1x1(layer1) x = torch.cat([x, layer1], dim=1) x = self.conv_up1(x) x = self.upsample(x) layer0 = self.layer0_1x1(layer0) x = torch.cat([x, layer0], dim=1) x = self.conv_up0(x) x = self.upsample(x) x = torch.cat([x, x_original], dim=1) x = self.conv_original_size2(x) out = self.conv_last(x) return out ################################################# # TRANSFORMER NET ################################################# class TransformerNet(torch.nn.Module): def __init__(self): super().__init__() # Initial convolution layers self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1) self.in1 = torch.nn.InstanceNorm2d(32, affine=True) self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2) self.in2 = torch.nn.InstanceNorm2d(64, affine=True) self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2) self.in3 = torch.nn.InstanceNorm2d(128, affine=True) # Residual layers self.res1 = ResidualBlock(128) self.res2 = ResidualBlock(128) self.res3 = ResidualBlock(128) self.res4 = ResidualBlock(128) self.res5 = ResidualBlock(128) # Upsampling Layers self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2) self.in4 = torch.nn.InstanceNorm2d(64, affine=True) self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2) self.in5 = torch.nn.InstanceNorm2d(32, affine=True) self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1) # Non-linearities self.relu = torch.nn.ReLU() def forward(self, X): y = self.relu(self.in1(self.conv1(X))) y = self.relu(self.in2(self.conv2(y))) y = self.relu(self.in3(self.conv3(y))) y = self.res1(y) y = self.res2(y) y = self.res3(y) y = self.res4(y) y = self.res5(y) y = self.relu(self.in4(self.deconv1(y))) y = self.relu(self.in5(self.deconv2(y))) y = self.deconv3(y) return y class ConvLayer(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride): super(ConvLayer, self).__init__() reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): out = self.reflection_pad(x) out = self.conv2d(out) return out class ResidualBlock(torch.nn.Module): """ResidualBlock introduced in: https://arxiv.org/abs/1512.03385 recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html """ def __init__(self, channels): super(ResidualBlock, self).__init__() self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in1 = torch.nn.InstanceNorm2d(channels, affine=True) self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1) self.in2 = torch.nn.InstanceNorm2d(channels, affine=True) self.relu = torch.nn.ReLU() def forward(self, x): residual = x out = self.relu(self.in1(self.conv1(x))) out = self.in2(self.conv2(out)) out = out + residual return out class UpsampleConvLayer(torch.nn.Module): """UpsampleConvLayer Upsamples the input and then does a convolution. This method gives better results compared to ConvTranspose2d. ref: http://distill.pub/2016/deconv-checkerboard/ """ def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None): super(UpsampleConvLayer, self).__init__() self.upsample = upsample reflection_padding = kernel_size // 2 self.reflection_pad = torch.nn.ReflectionPad2d(reflection_padding) self.conv2d = torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride) def forward(self, x): x_in = x if self.upsample: x_in = torch.nn.functional.interpolate(x_in, mode='nearest', scale_factor=self.upsample) out = self.reflection_pad(x_in) out = self.conv2d(out) return out ################################################# # FAST STYLE TRANSFER CLASS ################################################# class FastStyleTransfer(): def __init__(self, dl, model, opt, sched=None, c2s=1.0, c2t=1.0, style_weight=1.0, content_weight=1.0, tv_weight=1.0, size=256, p=30, vgg=16): self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.mseloss = nn.MSELoss() self.init_vgg(vgg) self.convs = [i-2 for i,o in enumerate(list(self.vgg.features)) if isinstance(o,nn.MaxPool2d)] self.model = model.to(self.device) self.original_model = model.to(self.device) self.opt = opt self.sched = sched self.content_weight = content_weight self.style_weight = style_weight self.tv_weight = tv_weight self.dl = dl self.initialize_hooks() self.style_act = None self.training_done = False self.size = size self.p = p self.c2s = c2s self.c2t = c2t def init_vgg(self, vgg): if vgg==16: self.vgg = models.vgg16(pretrained=True).to(self.device) if vgg==19: self.vgg = models.vgg19(pretrained=True).to(self.device) self.vgg.eval() def reinitialize_unet(self): self.model = copy.deepcopy(self.original_model) def initialize_hooks(self): self.act = [SaveFeatures(list(self.vgg.features)[idx]) for idx in self.convs] self.hooks_initialized = True def close_hooks(self): for hook in self.act: hook.close() self.hooks_initialized = False def vgg_conv_layers(self): return np.array(list(self.vgg.features))[self.convs] def content_mse(self, input, target): return self.mseloss(input, target) #*1e3 def gram_mse_loss(self, input, target): return self.mseloss(gram(input), gram(target)) def tv_loss(self): l = (torch.sum(torch.abs(self.outputs[:, :, :, :-1] - self.outputs[:, :, :, 1:])) + torch.sum(torch.abs(self.outputs[:, :, :-1, :] - self.outputs[:, :, 1:, :]))) return l def combined_loss(self): style_losses = [self.gram_mse_loss(o, s) for o,s in zip(self.input_act, self.style_act)] #content_losses = [content_mse(o, s) for o,s in zip(opt_cat, target_cont)] content_losses = [self.content_mse(self.input_act[2], self.content_act[2])] style = sum(style_losses) * self.style_weight * self.c2s content = sum(content_losses) * self.content_weight loss = content + style if self.tv_weight is None: tv = None else: tv = self.tv_loss() * self.tv_weight * self.c2t loss += tv return loss, content, style, tv def store_metrics(self, phase, epoch, i): self.metrics[phase]['epoch'] += [epoch] self.metrics[phase]['batch'] += [i] self.metrics[phase]['batch_size'] += [self.inputs.size(0)] self.metrics[phase]['total_loss'] += [self.loss.cpu().detach().numpy()] self.metrics[phase]['content_loss'] += [self.content_loss.cpu().detach().numpy()] self.metrics[phase]['style_loss'] += [self.style_loss.cpu().detach().numpy()] self.metrics[phase]['tv_loss'] += [0 if self.tv_weight is None else self.tv.cpu().detach().numpy()] def get_epoch_loss(self, phase): d = pd.DataFrame(self.metrics[phase]) d = d.groupby('epoch')['total_loss','batch_size'].apply(lambda x : x.sum()). \ reset_index().sort_values(by='epoch').tail(1) d = d.total_loss/d.batch_size return np.array(d)[0] def get_metrics(self, phase): df =
pd.DataFrame(self.metrics[phase])
pandas.DataFrame
import pandas as pd import openpyxl from automate_insurance_pricing.standard_functions import * def export_glm_coefs_to_excel(features_coefs, features, glm_file_path): """ Exports to excel the glm rating factors of the features (either a list or a string) Arguments --> The features coefficients, the features, and the file path used for the export """ new_features = [features] if isinstance(features, str) == True else features for feature in new_features: feature_name = remove_words(feature, feature=('feature', ''), label=('label_enc', ''), bins=('bins', ''), scaled=('scaled', ''), underscore=('_', ' '), double_points=(':', 'x'), special_character1=(']', ''))[:31] data = {feature_name + ' ' + 'value': [i[0] for i in features_coefs[feature]], 'coef_value': [i[1] for i in features_coefs[feature]]} df_rating_factor = pd.DataFrame(data) try: with pd.ExcelWriter(glm_file_path, engine="openpyxl", mode='a') as writer: df_rating_factor.to_excel(writer, sheet_name=feature_name) except: with
pd.ExcelWriter(glm_file_path, engine="openpyxl", mode='w')
pandas.ExcelWriter
#! /usr/bin/env python3 import re import pandas as pd from datetime import date import category import category_name def is_row_in_category(row, categories): """Determines if row['place'] is in the given category Args: row (pandas.core.series.Series): Single row [date,place,amount] of a dataframe category (list): Category list Returns: bool: True if row in category, False otherwise """ for place in categories: if re.search(place, row['place'], re.IGNORECASE): return True return False def organise_data_by_category(my_dataframe): """Parse all spending and populate smaller dataframes by categories Args: my_dataframe (pandas.core.frame.DataFrame): my_dataframe Unparsed dataframe with all uncategorized expenses Returns: dict: A dictionary of dataframe. [key] = category name; [value] = dataframe with the all categorie's related expenses """ print("Organise spendings into categories") # it is 3 times faster to create a dataframe from a full dictionary rather than appending rows after rows to an already existing dataframe dic_groc, dic_trans, dic_rest, dic_coffee, dic_bar, dic_misc, dic_bills = {}, {}, {}, {}, {}, {}, {} g, t, r, c, b, m, f = [0] * 7 # indexes # Let's go over each rows of the unsorted dataframe and populate the category's dictionary. for _, row in my_dataframe.iterrows(): if is_row_in_category(row, category.Groceries): dic_groc[g] = row g = g + 1 continue if is_row_in_category(row, category.Transport): dic_trans[t] = row t = t + 1 continue if is_row_in_category(row, category.Restaurant): dic_rest[r] = row r = r + 1 continue if is_row_in_category(row, category.Coffee): dic_coffee[c] = row c = c + 1 continue if is_row_in_category(row, category.Bar): dic_bar[b] = row b = b + 1 continue if is_row_in_category(row, category.Bills): dic_bills[f] = row f = f + 1 continue # If none of the above then let's put it in misc spending dic_misc[m] = row m = m + 1 df_groc = pd.DataFrame.from_dict(dic_groc, orient='index', columns=['date', 'place', 'amount']) df_trans = pd.DataFrame.from_dict(dic_trans, orient='index', columns=['date', 'place', 'amount']) df_rest = pd.DataFrame.from_dict(dic_rest, orient='index', columns=['date', 'place', 'amount']) df_coffee = pd.DataFrame.from_dict(dic_coffee, orient='index', columns=['date', 'place', 'amount']) df_bar = pd.DataFrame.from_dict(dic_bar, orient='index', columns=['date', 'place', 'amount']) df_misc = pd.DataFrame.from_dict(dic_misc, orient='index', columns=['date', 'place', 'amount']) df_bills = pd.DataFrame.from_dict(dic_bills, orient='index', columns=['date', 'place', 'amount']) all_df = { category_name.GROCERIES: df_groc, category_name.TRANSPORT: df_trans, category_name.RESTAURANT: df_rest, category_name.COFFEE: df_coffee, category_name.BAR: df_bar, category_name.MISC: df_misc, category_name.BILLS: df_bills } return all_df def organise_transport_by_sub_cat(_dfTransport): """Parse all spending in transport and populate smaller dataframes by categories Args: _dfTransport (pandas.core.frame.DataFrame): Unparsed dataframe with all transport expenses Returns: [dict: A dictionary of dataframe. [key] = category name; [value] = dataframe with the all categorie's related expenses """ # it is 3 times faster to create a dataframe from a full dictionary rather than appending rows after rows to an already existing dataframe dic_carshare, dic_rental, dic_cab, dic_translink, dic_misc, dic_car = {}, {}, {}, {}, {}, {} csh, r, c, t, m, car = [0] * 6 # indexes # Let's go over each rows of the unsorted dataframe and populate the category's dictionary. for _, row in _dfTransport.iterrows(): if is_row_in_category(row, category.TransportCarShare): dic_carshare[csh] = row csh = csh + 1 continue if is_row_in_category(row, category.TransportRental): dic_rental[r] = row r = r + 1 continue if is_row_in_category(row, category.TransportCab): dic_cab[c] = row c = c + 1 continue if is_row_in_category(row, category.TransportTranslink): dic_translink[t] = row t = t + 1 continue if is_row_in_category(row, category.TransportMisc): dic_misc[m] = row m = m + 1 continue if is_row_in_category(row, category.TransportCar): dic_car[car] = row car = car + 1 continue # If none of the above then let's put it in misc spending dic_misc[m] = row m = m + 1 df_carshare = pd.DataFrame.from_dict(dic_carshare, orient='index', columns=['date', 'place', 'amount']) df_rental = pd.DataFrame.from_dict(dic_rental, orient='index', columns=['date', 'place', 'amount']) df_cab = pd.DataFrame.from_dict(dic_cab, orient='index', columns=['date', 'place', 'amount']) df_translink = pd.DataFrame.from_dict(dic_translink, orient='index', columns=['date', 'place', 'amount']) df_misc =
pd.DataFrame.from_dict(dic_misc, orient='index', columns=['date', 'place', 'amount'])
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ :Author: <NAME> <NAME> :Date: 2018. 7. 18 """ import os import platform import sys from copy import deepcopy as dc from datetime import datetime from warnings import warn import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import pandas.core.common as com import statsmodels.api as sm from matplotlib import font_manager, rc from pandas import DataFrame from pandas import Series from pandas.core.index import MultiIndex from pandas.core.indexing import convert_to_index_sliceable from performanceanalytics.charts.performance_summary import create_performance_summary from .columns import * from .outcomes import * from ..io.downloader import download_latest_data from ..util.checker import not_empty import dropbox import io # Hangul font setting # noinspection PyProtectedMember font_manager._rebuild() if platform.system() == 'Windows': font_name = font_manager.FontProperties(fname='c:/Windows/Fonts/malgun.ttf').get_name() elif platform.system() == 'Darwin': # OS X font_name = font_manager.FontProperties(fname='/Library/Fonts/AppleGothic.ttf').get_name() else: # Linux fname = '/usr/share/fonts/truetype/nanum/NanumGothicOTF.ttf' if not os.path.isfile(fname): raise ResourceWarning("Please install NanumGothicOTF.ttf for plotting Hangul.") font_name = font_manager.FontProperties(fname=fname).get_name() rc('font', family=font_name) # for fix broken Minus sign matplotlib.rcParams['axes.unicode_minus'] = False PERCENTAGE = 'percentage' WEIGHT = 'weight' WEIGHT_SUM = 'weight_sum' START_DATE = datetime(year=2001, month=5, day=31) QUANTILE = 'quantile' RANK = 'rank' RANK_CORRELATION = 'Rank correlation' class Portfolio(DataFrame): """ """ _benchmark = KOSPI benchmarks = None factors = None @property def _constructor(self): return Portfolio @not_empty def __init__(self, data=None, index=None, columns=None, dtype=None, copy: bool = False, start_date: datetime = START_DATE, end_date: datetime = None, include_holding: bool = False, include_finance: bool = False, include_managed: bool = False, include_suspended: bool = False): if not end_date: end_date = datetime.today() if data is None: print('Data is being downloaded from KSIF DROPBOX DATA STORAGE') dbx = dropbox.Dropbox( oauth2_access_token='<KEY>', timeout=None) metadata, f = dbx.files_download('/preprocessed/final_msf.csv') # metadata, f = dbx.files_download('/preprocessed/merged.csv') binary_file = f.content data = pd.read_csv(io.BytesIO(binary_file)) # _, self.benchmarks, self.factors = download_latest_data(download_company_data=False) # # if not include_holding: # data = data.loc[~data[HOLDING], :] # # if not include_finance: # data = data.loc[data[FN_GUIDE_SECTOR] != '금융', :] # # if not include_managed: # data = data.loc[~data[IS_MANAGED], :] # # if not include_suspended: # data = data.loc[~data[IS_SUSPENDED], :] # # data = data.loc[(start_date <= data[DATE]) & (data[DATE] <= end_date), :] else: _, self.benchmarks, self.factors = download_latest_data(download_company_data=False) self.benchmarks = self.benchmarks.loc[ (start_date <= self.benchmarks[DATE]) & (self.benchmarks[DATE] <= end_date), :] self.factors = self.factors.loc[(start_date <= self.factors.index) & (self.factors.index <= end_date), :] super(Portfolio, self).__init__(data=data) #, index=index, columns=columns, dtype=dtype, copy=copy) # self.data = data def __getitem__(self, key): from pandas.core.dtypes.common import is_list_like, is_integer, is_iterator key = com.apply_if_callable(key, self) # shortcut if the key is in columns try: if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) except (TypeError, ValueError): # The TypeError correctly catches non hashable "key" (e.g. list) # The ValueError can be removed once GH #21729 is fixed pass # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self._getitem_frame(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not
is_list_like(key)
pandas.core.dtypes.common.is_list_like
import pandas as pd import numpy as np import math import seaborn as sns import matplotlib.pyplot as plt sns.set_style("whitegrid") def plot_distributions( data: pd.DataFrame = None, cols: list = [], caps: dict = None ) -> None: """ Function to plot the distributions and their potential caps :param df: pandas dataframe with col to plotted :param cols: list of column names to plot :param caps: Dictionary containing the caps :return: """ if len(cols) == 0: cols = data.columns # filter out object cols cols = [col for col in cols if data[col].dtype != "O"] for col in cols: _ = plt.figure(figsize=(6, 6)) ax = sns.kdeplot(data[col], shade=True, legend=False) if caps: ind = caps["feature"].index(col) _ = plt.axvline( caps["mean"][ind], linestyle="--", color="black", label="mean" ) if "plus_2_SD" in caps.keys(): _ = plt.axvline(caps["plus_2_SD"][ind], color="red", label="plus 2 SD") if "plus_3_SD" in caps.keys(): _ = plt.axvline(caps["plus_3_SD"][ind], color="red", label="plus 3 SD") if "minus_2_SD" in caps.keys(): _ = plt.axvline( caps["minus_2_SD"][ind], color="red", label="minus 2 SD" ) if "minus_3_SD" in caps.keys(): _ = plt.axvline( caps["minus_3_SD"][ind], color="red", label="minus 3 SD" ) if "75th_Percentile" in caps.keys(): _ = plt.axvline( caps["75th_Percentile"][ind], color="red", label="75th percentile" ) if "90th_Percentile" in caps.keys(): _ = plt.axvline( caps["90th_Percentile"][ind], color="red", label="90th percentile" ) _ = plt.title(col + " Distribution") plt.show() return None def plot_missing_values(df: pd.DataFrame = None, cols: list = []) -> None: if len(cols) == 0: cols = df.columns _ = plt.figure(figsize=(12, 12)) cmap = sns.cubehelix_palette(8, start=0, rot=0, dark=0, light=0.95, as_cmap=True) ax = sns.heatmap(data=pd.isnull(df[cols]), cmap=cmap, cbar=False) _ = ax.set_title("Missing Data") return None def plot_category_histograms(data: pd.DataFrame = None, cols: list = []) -> None: """ Function to plot the distributions and their potential caps :param data: pandas dataframe with col to plotted :param cols: list of column names to plot :return: """ if len(cols) == 0: cols = data.columns # filter out object cols cols = [col for col in cols if data[col].dtype == "O"] tmp = data.copy(deep=True) tmp["count"] = [i for i in range(len(data))] for col in cols: _ = plt.figure(figsize=(6, 6)) ax = tmp.groupby(col)["count"].count().plot(kind="bar") _ = ax.set_title(col + " Counts") return None def plot_correlations(data=None, cols: list = [], plot_title="Feature Correlations"): if len(cols) == 0: cols = data.columns # filter out object cols cols = [col for col in cols if data[col].dtype != "O"] corr = data[cols].corr() # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 9)) # Generate a custom diverging colormap cmap = sns.diverging_palette(240, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio ax = sns.heatmap( corr, # mask=mask, cmap=cmap, vmin=corr.values.min(), vmax=corr.values.max(), center=0, square=True, linewidths=0.5, cbar_kws={"shrink": 0.5}, ) ax.set_title(plot_title) return def plot_outcome_boxes(data=None, outcome: list = [], fts: list = []) -> None: if len(fts) > 10: fts = np.array_split(fts, math.ceil(len(fts) / 10)) else: fts = [fts] for ft in fts: for out in outcome: tmp_fts = outcome + ft df_long =
pd.melt(data[tmp_fts], id_vars=out, var_name="Feature")
pandas.melt
import logging import argparse import robin_stocks.robinhood as rh import numpy import pandas def historicals(sym: str, interval: str, span: str, bounds: str): """Return historical information about a stock.""" return rh.get_stock_historicals(sym,interval=interval,span=span,bounds=bounds) def watchlist_symbols(): """Return the symbols in your watchlists.""" my_list_names = set() symbols = [] watchlistInfo = rh.get_all_watchlists() for list in watchlistInfo['results']: listName = list['display_name'] my_list_names.add(listName) for listName in my_list_names: list = rh.get_watchlist_by_name(name=listName) for item in list['results']: symbol = item['symbol'] symbols.append(symbol) return symbols def portfolio_symbols(): """ Returns: the symbol for each stock in your portfolio as a list of strings """ symbols = [] holdings_data = rh.get_open_stock_positions() for item in holdings_data: if not item: continue instrument_data = rh.get_instrument_by_url(item.get('instrument')) symbol = instrument_data['symbol'] symbols.append(symbol) return symbols def position_creation_date(symbol, holdings_data): """Returns the time at which we bought a certain stock in our portfolio Args: symbol(str): Symbol of the stock that we are trying to figure out when it was bought holdings_data(dict): dict returned by rh.open_stock_positions() Returns: A string containing the date and time the stock was bought, or "Not found" otherwise """ instrument = rh.get_instruments_by_symbols(symbol) url = instrument[0].get('url') for dict in holdings_data: if(dict.get('instrument') == url): return dict.get('created_at') # wtf? return "Not found" def modified_holdings(): """ Retrieves the same dictionary as rh.build_holdings, but includes data about when the stock was purchased, which is useful for the read_trade_history() method in tradingstats.py Returns: the same dict from rh.build_holdings, but with an extra key-value pair for each position you have, which is 'bought_at': (the time the stock was purchased) """ holdings = rh.build_holdings() holdings_data = rh.get_open_stock_positions() for symbol, _ in holdings.items(): bought_at = position_creation_date(symbol, holdings_data) bought_at = str(
pandas.to_datetime(bought_at)
pandas.to_datetime
import pandas as pd import numpy as np data = [] f = range(1,75,1) for n in f: print(n) in_file = open('/Users/annethessen/NSF_awards/award_data/' + str(n) + '.txt', 'r') next(in_file) for line in in_file: line.strip('\n') row = line.split('\t') #print(row[0:24]) data.append(row[0:24]) arr = np.array(data) #dtype=['U7','U150','U25','U50','M8','M8','U25','U25','U25','U25','U25','M8','f8','U25','U25','U25','U25','U25','U25','U25','U25','U25','U25','f8','U500']) labels = ['AwardNumber','Title','NSFOrganization','Program(s)','StartDate','LastAmendmentDate','PrincipalInvestigator','State','Organization','AwardInstrument','ProgramManager','EndDate','AwardedAmountToDate','Co-PIName(s)','PIEmailAddress','OrganizationStreet','OrganizationCity','OrganizationState','OrganizationZip','OrganizationPhone','NSFDirectorate','ProgramElementCode(s)','ProgramReferenceCode(s)','ARRAAmount','Abstract'] df =
pd.DataFrame(arr, columns=labels, index=['AwardNumber'])
pandas.DataFrame
import warnings import numpy as np import pandas as pd from pandas.api.types import ( is_categorical_dtype, is_datetime64tz_dtype, is_interval_dtype, is_period_dtype, is_scalar, is_sparse, union_categoricals, ) from ..utils import is_arraylike, typename from ._compat import PANDAS_GT_100 from .core import DataFrame, Index, Scalar, Series, _Frame from .dispatch import ( categorical_dtype_dispatch, concat, concat_dispatch, get_parallel_type, group_split_dispatch, hash_object_dispatch, is_categorical_dtype_dispatch, make_meta, make_meta_obj, meta_nonempty, tolist_dispatch, union_categoricals_dispatch, ) from .extensions import make_array_nonempty, make_scalar from .utils import ( _empty_series, _nonempty_scalar, _scalar_from_dtype, is_categorical_dtype, is_float_na_dtype, is_integer_na_dtype, ) ########## # Pandas # ########## @make_scalar.register(np.dtype) def _(dtype): return _scalar_from_dtype(dtype) @make_scalar.register(pd.Timestamp) @make_scalar.register(pd.Timedelta) @make_scalar.register(pd.Period) @make_scalar.register(pd.Interval) def _(x): return x @make_meta.register((pd.Series, pd.DataFrame)) def make_meta_pandas(x, index=None): return x.iloc[:0] @make_meta.register(pd.Index) def make_meta_index(x, index=None): return x[0:0] meta_object_types = (pd.Series, pd.DataFrame, pd.Index, pd.MultiIndex) try: import scipy.sparse as sp meta_object_types += (sp.spmatrix,) except ImportError: pass @make_meta_obj.register(meta_object_types) def make_meta_object(x, index=None): """Create an empty pandas object containing the desired metadata. Parameters ---------- x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or an iterable of `(name, dtype)` tuples. To create a `Series`, provide a tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index should match the desired output. If a dtype or scalar, a scalar of the same dtype is returned. index : pd.Index, optional Any pandas index to use in the metadata. If none provided, a `RangeIndex` will be used. Examples -------- >>> make_meta([('a', 'i8'), ('b', 'O')]) # doctest: +SKIP Empty DataFrame Columns: [a, b] Index: [] >>> make_meta(('a', 'f8')) # doctest: +SKIP Series([], Name: a, dtype: float64) >>> make_meta('i8') # doctest: +SKIP 1 """ if is_arraylike(x) and x.shape: return x[:0] if index is not None: index = make_meta(index) if isinstance(x, dict): return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x.items()}, index=index ) if isinstance(x, tuple) and len(x) == 2: return _empty_series(x[0], x[1], index=index) elif isinstance(x, (list, tuple)): if not all(isinstance(i, tuple) and len(i) == 2 for i in x): raise ValueError( "Expected iterable of tuples of (name, dtype), got {0}".format(x) ) return pd.DataFrame( {c: _empty_series(c, d, index=index) for (c, d) in x}, columns=[c for c, d in x], index=index, ) elif not hasattr(x, "dtype") and x is not None: # could be a string, a dtype object, or a python type. Skip `None`, # because it is implictly converted to `dtype('f8')`, which we don't # want here. try: dtype = np.dtype(x) return _scalar_from_dtype(dtype) except Exception: # Continue on to next check pass if is_scalar(x): return _nonempty_scalar(x) raise TypeError("Don't know how to create metadata from {0}".format(x)) @meta_nonempty.register(object) def meta_nonempty_object(x): """Create a nonempty pandas object from the given metadata. Returns a pandas DataFrame, Series, or Index that contains two rows of fake data. """ if is_scalar(x): return _nonempty_scalar(x) else: raise TypeError( "Expected Pandas-like Index, Series, DataFrame, or scalar, " "got {0}".format(typename(type(x))) ) @meta_nonempty.register(pd.DataFrame) def meta_nonempty_dataframe(x): idx = meta_nonempty(x.index) dt_s_dict = dict() data = dict() for i, c in enumerate(x.columns): series = x.iloc[:, i] dt = series.dtype if dt not in dt_s_dict: dt_s_dict[dt] = _nonempty_series(x.iloc[:, i], idx=idx) data[i] = dt_s_dict[dt] res = pd.DataFrame(data, index=idx, columns=np.arange(len(x.columns))) res.columns = x.columns if PANDAS_GT_100: res.attrs = x.attrs return res _numeric_index_types = (pd.Int64Index, pd.Float64Index, pd.UInt64Index) @meta_nonempty.register(pd.Index) def _nonempty_index(idx): typ = type(idx) if typ is pd.RangeIndex: return pd.RangeIndex(2, name=idx.name) elif typ in _numeric_index_types: return typ([1, 2], name=idx.name) elif typ is pd.Index: return pd.Index(["a", "b"], name=idx.name) elif typ is pd.DatetimeIndex: start = "1970-01-01" # Need a non-monotonic decreasing index to avoid issues with # partial string indexing see https://github.com/dask/dask/issues/2389 # and https://github.com/pandas-dev/pandas/issues/16515 # This doesn't mean `_meta_nonempty` should ever rely on # `self.monotonic_increasing` or `self.monotonic_decreasing` try: return pd.date_range( start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) except ValueError: # older pandas versions data = [start, "1970-01-02"] if idx.freq is None else None return pd.DatetimeIndex( data, start=start, periods=2, freq=idx.freq, tz=idx.tz, name=idx.name ) elif typ is pd.PeriodIndex: return pd.period_range( start="1970-01-01", periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.TimedeltaIndex: start = np.timedelta64(1, "D") try: return pd.timedelta_range( start=start, periods=2, freq=idx.freq, name=idx.name ) except ValueError: # older pandas versions start = np.timedelta64(1, "D") data = [start, start + 1] if idx.freq is None else None return pd.TimedeltaIndex( data, start=start, periods=2, freq=idx.freq, name=idx.name ) elif typ is pd.CategoricalIndex: if len(idx.categories) == 0: data = pd.Categorical(_nonempty_index(idx.categories), ordered=idx.ordered) else: data = pd.Categorical.from_codes( [-1, 0], categories=idx.categories, ordered=idx.ordered ) return pd.CategoricalIndex(data, name=idx.name) elif typ is pd.MultiIndex: levels = [_nonempty_index(l) for l in idx.levels] codes = [[0, 0] for i in idx.levels] try: return pd.MultiIndex(levels=levels, codes=codes, names=idx.names) except TypeError: # older pandas versions return pd.MultiIndex(levels=levels, labels=codes, names=idx.names) raise TypeError( "Don't know how to handle index of type {0}".format(typename(type(idx))) ) @meta_nonempty.register(pd.Series) def _nonempty_series(s, idx=None): # TODO: Use register dtypes with make_array_nonempty if idx is None: idx = _nonempty_index(s.index) dtype = s.dtype if len(s) > 0: # use value from meta if provided data = [s.iloc[0]] * 2 elif is_datetime64tz_dtype(dtype): entry = pd.Timestamp("1970-01-01", tz=dtype.tz) data = [entry, entry] elif is_categorical_dtype(dtype): if len(s.cat.categories): data = [s.cat.categories[0]] * 2 cats = s.cat.categories else: data = _nonempty_index(s.cat.categories) cats = s.cat.categories[:0] data = pd.Categorical(data, categories=cats, ordered=s.cat.ordered) elif is_integer_na_dtype(dtype): data = pd.array([1, None], dtype=dtype) elif is_float_na_dtype(dtype): data = pd.array([1.0, None], dtype=dtype) elif is_period_dtype(dtype): # pandas 0.24.0+ should infer this to be Series[Period[freq]] freq = dtype.freq data = [pd.Period("2000", freq), pd.Period("2001", freq)] elif is_sparse(dtype): entry = _scalar_from_dtype(dtype.subtype) if PANDAS_GT_100: data = pd.array([entry, entry], dtype=dtype) else: data = pd.SparseArray([entry, entry], dtype=dtype) elif is_interval_dtype(dtype): entry = _scalar_from_dtype(dtype.subtype) data = pd.array([entry, entry], dtype=dtype) elif type(dtype) in make_array_nonempty._lookup: data = make_array_nonempty(dtype) else: entry = _scalar_from_dtype(dtype) data = np.array([entry, entry], dtype=dtype) out = pd.Series(data, name=s.name, index=idx) if PANDAS_GT_100: out.attrs = s.attrs return out @union_categoricals_dispatch.register( (pd.DataFrame, pd.Series, pd.Index, pd.Categorical) ) def union_categoricals_pandas(to_union, sort_categories=False, ignore_order=False): return pd.api.types.union_categoricals( to_union, sort_categories=sort_categories, ignore_order=ignore_order ) @get_parallel_type.register(pd.Series) def get_parallel_type_series(_): return Series @get_parallel_type.register(pd.DataFrame) def get_parallel_type_dataframe(_): return DataFrame @get_parallel_type.register(pd.Index) def get_parallel_type_index(_): return Index @get_parallel_type.register(_Frame) def get_parallel_type_frame(o): return get_parallel_type(o._meta) @get_parallel_type.register(object) def get_parallel_type_object(_): return Scalar @hash_object_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def hash_object_pandas( obj, index=True, encoding="utf8", hash_key=None, categorize=True ): return pd.util.hash_pandas_object( obj, index=index, encoding=encoding, hash_key=hash_key, categorize=categorize ) @group_split_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def group_split_pandas(df, c, k, ignore_index=False): indexer, locations = pd._libs.algos.groupsort_indexer( c.astype(np.int64, copy=False), k ) df2 = df.take(indexer) locations = locations.cumsum() parts = [ df2.iloc[a:b].reset_index(drop=True) if ignore_index else df2.iloc[a:b] for a, b in zip(locations[:-1], locations[1:]) ] return dict(zip(range(k), parts)) @concat_dispatch.register((pd.DataFrame, pd.Series, pd.Index)) def concat_pandas( dfs, axis=0, join="outer", uniform=False, filter_warning=True, ignore_index=False, **kwargs ): ignore_order = kwargs.pop("ignore_order", False) if axis == 1: return pd.concat(dfs, axis=axis, join=join, **kwargs) # Support concatenating indices along axis 0 if isinstance(dfs[0], pd.Index): if isinstance(dfs[0], pd.CategoricalIndex): for i in range(1, len(dfs)): if not isinstance(dfs[i], pd.CategoricalIndex): dfs[i] = dfs[i].astype("category") return pd.CategoricalIndex( union_categoricals(dfs, ignore_order=ignore_order), name=dfs[0].name ) elif isinstance(dfs[0], pd.MultiIndex): first, rest = dfs[0], dfs[1:] if all( (isinstance(o, pd.MultiIndex) and o.nlevels >= first.nlevels) for o in rest ): arrays = [ concat([i._get_level_values(n) for i in dfs]) for n in range(first.nlevels) ] return pd.MultiIndex.from_arrays(arrays, names=first.names) to_concat = (first.values,) + tuple(k._values for k in rest) new_tuples = np.concatenate(to_concat) try: return pd.MultiIndex.from_tuples(new_tuples, names=first.names) except Exception: return
pd.Index(new_tuples)
pandas.Index
# -*- coding:utf-8 -*- # @Time : 2020/1/122:48 # @Author : liuqiuxi # @Email : <EMAIL> # @File : fundfeedsjqdata.py # @Project : datafeeds # @Software: PyCharm # @Remark : This is class of option market import pandas as pd import datetime import copy from datafeeds.jqdatafeeds import BaseJqData from datafeeds.utils import BarFeedConfig from datafeeds import logger class AFundQuotationJqData(BaseJqData): LOGGER_NAME = "AFundQuotationJqData" def __init__(self): super(AFundQuotationJqData, self).__init__() self.__adjust_name_dict = {"F": "pre", "B": "post"} self.__need_adjust_columns = ["close"] self.__logger = logger.get_logger(name=self.LOGGER_NAME) def get_quotation(self, securityIds, items, frequency, begin_datetime, end_datetime, adjusted=None): securityIds_OTC = [] securityIds_EXC = [] # 判断场内场外基金 for securityId in securityIds: code_suffix = securityId[securityId.find(".") + 1:] if code_suffix == "OF": securityIds_OTC.append(securityId) elif code_suffix == "SH" or code_suffix == "SZ": securityIds_EXC.append(securityId) else: self.__logger.warning("the securityId: %s did't support in fund quotation, we remove it" % securityId) # 得到场内基金数据 if len(securityIds_EXC) > 0: data0 = self.__get_exchange_quotation(securityIds=securityIds_EXC, items=items, frequency=frequency, begin_datetime=begin_datetime, end_datetime=end_datetime, adjusted=adjusted) else: data0 = pd.DataFrame() # 得到场外基金数据 if len(securityIds_OTC) > 0: data1 = self.__get_otc_quotation(securityIds=securityIds_OTC, items=items, frequency=frequency, begin_datetime=begin_datetime, end_datetime=end_datetime, adjusted=adjusted) else: data1 = pd.DataFrame() # merge OTC and EXC if not data0.empty and not data1.empty: columns = list(set(data0.columns).union(set(data1.columns))) for column in columns: if column not in data0.columns: data0.loc[:, column] = None if column not in data1.columns: data1.loc[:, column] = None data0 = data0.loc[:, columns].copy(deep=True) data1 = data1.loc[:, columns].copy(deep=True) data = pd.concat(objs=[data0, data1], axis=0, join="outer") else: if data0.empty: data = data1.copy(deep=True) elif data1.empty: data = data0.copy(deep=True) else: raise BaseException("[AFundQuotationJqData] something may wrong") data.reset_index(inplace=True, drop=True) data.sort_values(by=["securityId", "dateTime"], axis=0, ascending=True, inplace=True) data.reset_index(inplace=True, drop=True) non_find_securityIds = list(set(securityIds) - set(data.loc[:, "securityId"])) if len(non_find_securityIds) > 0: self.__logger.warning("we can't get securityIds: %s data, please check it" % non_find_securityIds) return data def __get_exchange_quotation(self, securityIds, items, frequency, begin_datetime, end_datetime, adjusted): connect = self.connect() securityIds = self.wind_to_default(securityIds=securityIds) frequency = self.get_frequency_cycle(frequency=frequency) adjusted = self.__adjust_name_dict.get(adjusted, None) rename_dict = BarFeedConfig.get_jq_data_items().get(self.LOGGER_NAME) data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from keras.models import Sequential, Model from keras.layers import Dense, Dropout, Input from keras.layers import Convolution1D, GlobalMaxPooling1D from keras.layers.merge import Concatenate from sklearn.model_selection import GridSearchCV from keras.wrappers.scikit_learn import KerasClassifier # read in high and low expression one_hot files high_exp = pd.concat( [pd.read_csv(f"high_exp_one_hot_{i}.csv", index_col=0) for i in range(1, 5)] ) low_exp = pd.concat( [pd.read_csv(f"low_exp_one_hot_{i}.csv", index_col=0) for i in range(1, 5)] ) # concatenate to form a single dataframe data_df = pd.concat([high_exp, low_exp], axis=0) # function to convert csv files into def string_to_matrix(string): # convert string to list of one_hot lists string = str(string) list_of_strings = string.split('], [') list_of_lists = [channels.strip().replace('[', '').replace(']', '').replace(',', '').split() for channels in list_of_strings if 'nan' not in list_of_strings ] # add padding remaining_pad = 181 - len(list_of_lists) while remaining_pad > 0: list_of_lists.append(list([0 for x in range(0, 64)])) remaining_pad = remaining_pad - 1 # return padded one_hot matrix return np.array(list_of_lists).astype(np.float) data_df['one_hot_matrix'] = data_df['one_hot_matrix'].apply(string_to_matrix) # get X and y data from data_df max_len = 181 width = 64 X = np.zeros((22615, max_len, width)) for idx, one_hot_matrix in enumerate(data_df['one_hot_matrix'].values): X[idx, :, :] = one_hot_matrix y = data_df['class'].values # train/test split x_train, x_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42) # tune hyperparameters for simple model # define simple model per Yoon Kim (2014) def create_model(filter_sizes=3, num_filters=10): # prepare input shape input_shape = (181, 64) model_input = Input(shape=input_shape) z = model_input # Convolutional block conv_blocks = [] for sz in filter_sizes: conv = Convolution1D(filters=num_filters, kernel_size=sz, padding="valid", activation="relu", strides=1)(z) conv = GlobalMaxPooling1D()(conv) conv_blocks.append(conv) z = Concatenate()(conv_blocks) if len(conv_blocks) > 1 else conv_blocks[0] z = Dropout(0.5)(z) model_output = Dense(1, activation="sigmoid")(z) model = Model(model_input, model_output) model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) return model # fix random seed for reproducibility seed = 7 np.random.seed(seed) model = KerasClassifier(build_fn=create_model, batch_size=50, epochs=25, verbose=2) # define the grid search parameters # model hyperparameters filter_sizes = [(3, 3, 3), (3, 4, 5), (5, 5, 5), (3, 5, 7), (7, 7, 7), (5, 7, 10), (10, 10, 10), (3, 4, 5, 6)] num_filters = [10, 20, 50, 100, 200] param_grid = dict(filter_sizes=filter_sizes, num_filters=num_filters) grid = GridSearchCV(estimator=model, param_grid=param_grid, cv=10, n_jobs=4, pre_dispatch='n_jobs') grid_result = grid.fit(x_train, y_train) # summarize results print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_)) grid_df =
pd.DataFrame(grid_result.cv_results_['params'])
pandas.DataFrame
import os, glob, pandas as pd, sys, csv OMEGA = "/usr/local/bin/omega2" ROCS = "/usr/local/bin/rocs" def omega_conf(smi,maxconfs=2000): smi_prefix = os.path.splitext(os.path.basename(smi))[0] os.system ('{0} -in {1} -out {2}_omega.sdf -prefix {2}_omega -warts true -maxconfs {3}'.format(OMEGA, smi, smi_prefix, maxconfs)) def rocs_alignment(conformer, template_database, rocs_maxconfs_output=100): sdf_prefix = os.path.basename(os.path.splitext(conformer)[0]).split('_')[0] for template in template_database: template_id = "_".join(os.path.basename(template).split("_")[0:3]) os.system ('{0} -dbase {1} -query {2} -prefix {3}_{4}_rocs -oformat sdf -maxconfs 30 -outputquery false -qconflabel title'.format(ROCS, conformer, template, sdf_prefix, template_id)) def combine_report_files(report_file, crystal_structure): dataframeList = [] for report in report_file: target_template_file_name = "_".join(os.path.splitext(os.path.basename(report))[0].split("_")[0:5]) lig_id_three_letter = target_template_file_name.split("_")[0] read_rpt = pd.read_csv(report, sep='\t', dtype=str) if 'Unnamed: 16' in read_rpt: del read_rpt['Unnamed: 16'] shapequery_changed_table = read_rpt.replace('untitled-query-1', target_template_file_name) shapequery_changed_table.to_csv(report, sep='\t', index=None) dataframeList.append(shapequery_changed_table) single_rpt_csv_file =
pd.concat(dataframeList, axis=0)
pandas.concat
import logging import pytest from pennprov.connection.mprov import MProvConnection from pennprov.connection.mprov_connection_cache import MProvConnectionCache from pennprov.api.decorators import MProvAgg import pandas as pd logging.basicConfig(level=logging.DEBUG) connection_key = MProvConnectionCache.Key() mprov_conn = MProvConnectionCache.get_connection(connection_key) if mprov_conn: mprov_conn.create_or_reset_graph() else: raise RuntimeError('Could not connect') sub_stream_1 = mprov_conn.create_collection('output_ecg_1', 1) sub_stream_2 = mprov_conn.create_collection('output_ecg_2', 1) @MProvAgg("ecg", 'output_ecg',['x','y'],['x','y'], sub_stream_1) @pytest.mark.skip(reason="Not a test fn") def test(n): return n.groupby('x').count() @MProvAgg("ecg", 'output_ecg',['x'],['x'], sub_stream_2) @pytest.mark.skip(reason="Not a test fn") def testx(n): return n.groupby('x').count() def test_main(): # Test the decorators, which will create entities for the dataframe # elements, and nodes representing the dataframe components ecg =
pd.DataFrame([{'x':1, 'y': 2}, {'x':3, 'y':4}])
pandas.DataFrame
from statsmodels.tsa.stattools import adfuller, acf, kpss import xgboost as xgb import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.feature_selection import f_regression from scipy.stats import spearmanr def size(time_series): """Metafeature function returning the number of samples in the dataset. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ return len(time_series) def maxminvar(time_series): """Metafeature function returning the maximum/minimum ratio of the variance, with a rolling window of 240 samples. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ rolling_var = time_series["endogenous"].rolling(24 * 10).var() return rolling_var.max() / rolling_var.min() def adf(time_series): """Metafeature function returning the p-value of an Augmented Dickey-Fuller test. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ return adfuller(time_series["endogenous"])[1] def stat_test(time_series): """Metafeature function returning the test statistic of a Kwiatkowski-Phillips-Schmidt-Shin test for stationarity. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ return kpss(time_series["endogenous"], lags="auto")[0] def cumac(time_series): """Metafeature function returning the cumulative abolute autocorrelation of lags 1 to 48. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ return sum(abs(acf(time_series["endogenous"], fft=True, nlags=48))) def total_splits(time_series): """Metafeature function returning the number of splits after training an XGBoost model with 1000 trees and a maximum depth of 1000. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ xg_reg = xgb.XGBRegressor( objective="reg:squarederror", n_trees=1000, max_depth=1000 ) xg_reg.fit( time_series.drop(columns=["endogenous"]), pd.DataFrame(data=time_series["endogenous"]), ) return sum(xg_reg.get_booster().get_score(importance_type="weight").values()) def feature_xgb_interactions(time_series): """Metafeature function representing feature importance plus XGBoost model interactions. The mean absolute error of a zero forecast is divided by the mean absolute error of a trained xgboost model with one tree and maximum depth of one. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ # split time_series in train and test train, test = train_test_split(time_series) ex_train = train.drop(columns=["endogenous"]) ex_test = test.drop(columns=["endogenous"]) end_train = pd.DataFrame(data=train["endogenous"]) end_test = pd.DataFrame(data=test["endogenous"]) # XGBoost regression, train and predict xg_reg = xgb.XGBRegressor( objective="reg:squarederror", n_estimators=1, max_depth=1000, learning_rate=1 ) xg_reg.fit(ex_train, end_train) xgb_preds = pd.Series(data=xg_reg.predict(ex_test), index=end_test.index) # mae of xgb and initial mae_xgb = mean_absolute_error(end_test, xgb_preds) mae_initial = mean_absolute_error(end_test, np.zeros(len(end_test))) return mae_xgb / mae_initial def xgb_feature_interactions_minus_linear_relations(time_series): """Metafeature function returning the importance of feature interactions in XGBoost minus linear correlations. Args: time_series (pd.DataFrame): the dataset for which to optimize the superparameters. Returns: float """ # split time_series in train and test length = len(time_series) ex_train = time_series.drop(columns=["endogenous"])[: int(length * 2 / 3)] ex_test = time_series.drop(columns=["endogenous"])[int(length * 2 / 3) :] end_train = pd.DataFrame(data=time_series["endogenous"])[: int(length * 2 / 3)] end_test =
pd.DataFrame(data=time_series["endogenous"])
pandas.DataFrame
import pandas as pd import numpy as np import os def read_data(): # set the path of the raw data raw_data_path = os.path.join(os.path.pardir, 'data', 'raw') train_data_file = os.path.join(raw_data_path, 'train.csv') test_data_file = os.path.join(raw_data_path, 'test.csv') # Read the data with all default parameteres train_df =
pd.read_csv(train_data_file, index_col='PassengerId')
pandas.read_csv
"""Provides functions prepare_data_x and dataclass PrepareDataOutput.""" from dataclasses import dataclass, field from functools import partial from typing import Any, Callable, Dict, List, Union import numpy as np import pandas as pd from sklearn.model_selection import KFold from .util import make_columns_lower_case # type: ignore NUMBER_REGEX = r"\d*\.?\d+" TEMP_REGEX = ( rf"({NUMBER_REGEX}-{NUMBER_REGEX}|{NUMBER_REGEX}) ?(&ordm;|&deg;)[Cc]" ) PH_REGEX = rf"[pP][hH] ({NUMBER_REGEX})" MOL_REGEX = rf".* ({NUMBER_REGEX}) ?[mM]" COFACTORS = [ "ATP", "NADH", "NAD+", "NADPH", "O2", "NADP+", "ADP", ] DIMS = { "a_substrate": ["substrate"], "a_ec4_sub": ["ec4_sub"], "a_enz_sub": ["enz_sub"], "a_org_sub": ["org_sub"], "log_km": ["biology"], "llik": ["ix_test"], "yrep": ["ix_test"], } TEMPERATURE_RANGE = 10.0, 45.0 PH_RANGE = 5.0, 9.0 HARDCODED_NATURAL_SUBSTRATES = { "1.1.1.49": [391, 11111], # 6-phosphonogluconate "3.1.1.31": [4217], # 6-phospho-D-glucono-1,5-lactone } # types StanDict = Dict[str, Union[float, int, List[float], List[int]]] CoordDict = Dict[str, List[str]] @dataclass class PrepareDataOutput: """Return value of a prepare_data function.""" name: str coords: Dict[str, Any] reports: pd.DataFrame lits: pd.DataFrame dims: Dict[str, Any] number_of_cv_folds: int standict_function: Callable biology_maps: Dict[str, List[str]] standict_prior: StanDict = field(init=False) standict_posterior: StanDict = field(init=False) standicts_cv: List[StanDict] = field(init=False) def __post_init__(self): """Add stan input dictionaries.""" ix_all = list(range(len(self.lits))) splits = [] for train, test in KFold(self.number_of_cv_folds, shuffle=True).split( self.lits ): assert isinstance(train, np.ndarray) assert isinstance(test, np.ndarray) splits.append([list(train), list(test)]) get_standict_xv = partial( self.standict_function, lits=self.lits, coords=self.coords, likelihood=True, ) get_standict_main = partial( self.standict_function, lits=self.lits, coords=self.coords, train_ix=ix_all, test_ix=ix_all, ) self.standict_prior, self.standict_posterior = ( get_standict_main(likelihood=likelihood) for likelihood in (False, True) ) self.standicts_cv = [ get_standict_xv(train_ix=train_ix, test_ix=test_ix) for train_ix, test_ix in splits ] def process_temperature_column(t: pd.Series) -> pd.Series: """Convert a series of string temperatures to floats. If the reported temperature is e.g '1-2', take the mean (so e.g. 1.5). :param t: A pandas Series of strings """ return t.str.split("-").explode().astype(float).groupby(level=0).mean() def correct_brenda_dtypes(r: pd.DataFrame): """Make sure the columns have the right dtypes. :param r: dataframe of reports """ df_out = r.copy() float_cols = ["ph", "mols", "temperature", "km", "kcat"] for col in float_cols: if col in r.columns: df_out[col] = r[col].astype(float) return df_out def add_columns_to_brenda_reports( r: pd.DataFrame, nat: pd.DataFrame ) -> pd.DataFrame: """Add new columns to a table of reports. :param r: Dataframe of reports """ ec4_to_natural_substrates = ( nat.groupby("ec4")["ligand_structure_id"].apply(list).to_dict() ) out = r.copy() out["is_natural"] = out.apply( lambda row: row["ligand_structure_id"] in ec4_to_natural_substrates[row["ec4"]] if row["ec4"] in ec4_to_natural_substrates.keys() else False, axis=1, ) out["ph"] = out["commentary"].str.extract(PH_REGEX)[0] out["mols"] = out["commentary"].str.extract(MOL_REGEX)[0] out["temperature"] = process_temperature_column( out["commentary"].str.extract(TEMP_REGEX)[0] ) for ec in [1, 2, 3]: out["ec" + str(ec)] = [".".join(s.split(".")[:ec]) for s in out["ec4"]] return out def preprocess_brenda_reports( raw_reports: pd.DataFrame, natural_substrates: pd.DataFrame ) -> pd.DataFrame: """Correct names, nulls and dtypes of Brenda reports table.""" return ( raw_reports .replace(["more", -999], np.nan) .rename( columns={ "ecNumber": "ec4", "kmValue": "km", "turnoverNumber": "kcat", "ligandStructureId": "ligand_structure_id", } ) .pipe(make_columns_lower_case) .pipe(add_columns_to_brenda_reports, natural_substrates) .pipe(correct_brenda_dtypes) ) def prepare_data_brenda( name: str, raw_reports: pd.DataFrame, natural_substrates: pd.DataFrame, number_of_cv_folds, ) -> PrepareDataOutput: """Get PrepareDataOutput for brenda.""" reports = preprocess_brenda_reports(raw_reports, natural_substrates) biology_cols = ["organism", "ec4", "substrate"] lit_cols = biology_cols + ["literature"] cond = ( reports[biology_cols].notnull().all(axis=1).astype(bool) & reports["km"].notnull() & reports["km"].gt(1e-10) & ~reports["ligand_structure_id"].eq(0) & ( reports["temperature"].isnull() | reports["temperature"].astype(float).between(*TEMPERATURE_RANGE) ) & ( reports["ph"].isnull() | reports["ph"].astype(float).between(*PH_RANGE) ) & reports["is_natural"] ) reports["y"] = np.log(reports["km"].values) # type: ignore reports["biology"] = ( reports[biology_cols].fillna("").apply("|".join, axis=1) ) reports = reports.loc[cond].copy() lits = ( reports.groupby(lit_cols) .agg({"y": "median", "biology": "first"}) .reset_index() .loc[lambda df: df.groupby("organism")["y"].transform("size") > 50] .reset_index() ) coords = {} lits["literature"] = lits["literature"].astype(str) lits["biology"] = lits[biology_cols].apply("|".join, axis=1) lits["ec4_sub"] = lits["ec4"].str.cat(lits["substrate"], sep="|") lits["org_sub"] = lits["organism"].str.cat(lits["substrate"], sep="|") fcts = biology_cols + ["ec4_sub", "org_sub", "literature", "biology"] fcts_with_unknowns = ["substrate", "ec4_sub", "org_sub"] for fct in fcts: if fct in fcts_with_unknowns: lits[fct + "_stan"] = pd.factorize(lits[fct])[0] + 2 coords[fct] = ["unknown"] + pd.factorize(lits[fct])[1].tolist() else: lits[fct + "_stan"] = pd.factorize(lits[fct])[0] + 1 coords[fct] = pd.factorize(lits[fct])[1].tolist() biology_maps = { col: lits.groupby("biology")[col].first().tolist() for col in biology_cols } return PrepareDataOutput( name=name, lits=lits, coords=coords, reports=reports, dims=DIMS, number_of_cv_folds=number_of_cv_folds, standict_function=get_standict_brenda, biology_maps=biology_maps, ) def get_standict_brenda( lits: pd.DataFrame, coords: CoordDict, likelihood: bool, train_ix: List[int], test_ix: List[int], ) -> StanDict: """Get a Stan input for the brenda data. :param lits: Dataframe of lits :param coords: Dictionary of coordinates :param likelihood: Whether or not to run in likelihood mode :param: train_ix: List of indexes of training lits :param: test_ix: List of indexes of test lits """ return listify_dict( { "N_biology": lits["biology"].nunique(), "N_substrate": len(coords["substrate"]), "N_ec4_sub": len(coords["ec4_sub"]), "N_org_sub": len(coords["org_sub"]), "substrate": lits.groupby("biology")["substrate_stan"].first(), "ec4_sub": lits.groupby("biology")["ec4_sub_stan"].first(), "org_sub": lits.groupby("biology")["org_sub_stan"].first(), "N_train": len(train_ix), "N_test": len(test_ix), "N": len(list(set(train_ix + test_ix))), "biology_train": lits.loc[train_ix, "biology_stan"], "biology_test": lits.loc[test_ix, "biology_stan"], "ix_train": [i + 1 for i in train_ix], "ix_test": [i + 1 for i in test_ix], "y": lits["y"], "likelihood": int(likelihood), } ) def get_standict_sabio( lits: pd.DataFrame, coords: CoordDict, likelihood: bool, train_ix: List[int], test_ix: List[int], ) -> StanDict: """Get a Stan input for the sabio data. :param lits: Dataframe of lits :param coords: Dictionary of coordinates :param likelihood: Whether or not to run in likelihood mode :param: train_ix: List of indexes of training lits :param: test_ix: List of indexes of test lits """ return listify_dict( { "N_biology": lits["biology"].nunique(), "N_substrate": len(coords["substrate"]), "N_ec4_sub": len(coords["ec4_sub"]), "N_org_sub": len(coords["org_sub"]), "N_enz_sub": len(coords["enz_sub"]), "substrate": lits.groupby("biology")["substrate_stan"].first(), "ec4_sub": lits.groupby("biology")["ec4_sub_stan"].first(), "org_sub": lits.groupby("biology")["org_sub_stan"].first(), "enz_sub": lits.groupby("biology")["enz_sub_stan"].first(), "N_train": len(train_ix), "N_test": len(test_ix), "N": len(list(set(train_ix + test_ix))), "biology_train": lits.loc[train_ix, "biology_stan"], "biology_test": lits.loc[test_ix, "biology_stan"], "ix_train": [i + 1 for i in train_ix], "ix_test": [i + 1 for i in test_ix], "y": lits["y"], "likelihood": int(likelihood), } ) def listify_dict(d: Dict) -> StanDict: """Make sure a dictionary is a valid Stan input. :param d: input dictionary, possibly with wrong types """ out = {} for k, v in d.items(): if not isinstance(k, str): raise ValueError(f"key {str(k)} is not a string!") elif isinstance(v, pd.Series): out[k] = v.to_list() elif isinstance(v, np.ndarray): out[k] = v.tolist() elif isinstance(v, (list, int, float)): out[k] = v else: raise ValueError(f"value {str(v)} has wrong type!") return out def prepare_hmdb_concs(raw: pd.DataFrame) -> pd.DataFrame: """Process raw hmdb table.""" concentration_regex = rf"^({NUMBER_REGEX})" conc = ( raw["concentration_value"] .str.extract(concentration_regex)[0] .astype(float) ) cond = ( raw["concentration_units"].eq("uM") & raw["subject_age"].str.contains("Adult") & raw["subject_condition"].eq("Normal") & conc.notnull() ) return raw.loc[cond].copy().assign(concentration_uM=conc) def prepare_sabio_concentrations(raw: pd.DataFrame) -> pd.DataFrame: """Process sabio concentrations table.""" cond = ( raw["parameter.type"].eq("concentration") & raw["parameter.startValue"].notnull() & raw["parameter.startValue"].gt(0) & ~raw["parameter.associatedSpecies"].eq("Enzyme") & raw["parameter.unit"].eq("M") ) out = raw.loc[cond].copy() out["concentration_mM"] = np.exp( np.log( out[["parameter.startValue", "parameter.endValue"]].multiply(1000) ).mean(axis=1) ) return out def prepare_data_sabio( name: str, raw_reports: pd.DataFrame, number_of_cv_folds, ) -> PrepareDataOutput: """Get prepared data for the sabio dataset.""" assert isinstance(raw_reports, pd.DataFrame) reports = raw_reports.rename( columns={ "Substrate": "reaction_substrates", "EnzymeType": "enzyme_type", "PubMedID": "literature", "Organism": "organism", "UniprotID": "uniprot_id", "ECNumber": "ec4", "parameter.type": "parameter_type", "parameter.associatedSpecies": "substrate", "parameter.startValue": "start_value", "parameter.endValue": "end_value", "parameter.standardDeviation": "sd", "parameter.unit": "unit", "Temperature": "temperature", "pH": "ph", } ).replace("-", np.nan) biology_cols = ["organism", "ec4", "uniprot_id", "substrate"] lit_cols = biology_cols + ["literature"] cond = ( reports["parameter_type"].eq("Km") & reports["enzyme_type"].str.contains("wildtype") & reports["start_value"].notnull() & reports["start_value"].gt(0) & reports["start_value"].lt(2000) & reports["unit"].eq("M") & ( reports["temperature"].isnull() | reports["temperature"].astype(float).between(*TEMPERATURE_RANGE) ) & ( reports["ph"].isnull() | reports["ph"].astype(float).between(*PH_RANGE) ) & reports["literature"].notnull() ) reports = reports.loc[cond].copy() reports["y"] = np.log( reports[["start_value", "end_value"]] # multiply by 1000 to convert from M to mM .multiply(1000) ).mean(axis=1) reports["uniprot_id"] = np.where( reports["uniprot_id"].str.contains(" "), np.nan, reports["uniprot_id"] ) reports["biology"] = ( reports[biology_cols].fillna("").apply("|".join, axis=1) ) lits = ( reports.loc[cond] .groupby(lit_cols, dropna=False) .agg( {"y": "median", "biology": "first", "reaction_substrates": "first"} ) .reset_index() .loc[lambda df: df.groupby("organism")["y"].transform("size") > 50] .reset_index() ) lits["literature"] = lits["literature"].astype(int).astype(str) lits["ec4_sub"] = lits["ec4"].str.cat(lits["substrate"], sep="|") lits["enz_sub"] = np.where( lits["uniprot_id"].notnull(), lits["uniprot_id"].str.cat(lits["substrate"], sep="|"), np.nan, ) lits["org_sub"] = lits["organism"].str.cat(lits["substrate"], sep="|") fcts = biology_cols + [ "ec4_sub", "org_sub", "enz_sub", "literature", "biology", ] coords = {} fcts_with_unknowns = ["substrate", "ec4_sub", "org_sub", "enz_sub"] for fct in fcts: if fct in fcts_with_unknowns: lits[fct + "_stan"] = pd.factorize(lits[fct])[0] + 2 coords[fct] = ["unknown"] + pd.factorize(lits[fct])[1].tolist() else: lits[fct + "_stan"] = pd.factorize(lits[fct])[0] + 1 coords[fct] =
pd.factorize(lits[fct])
pandas.factorize
import matplotlib.pyplot as plt import seaborn as sns import pickle import os import time import numpy as np import random import math import ntpath from typing import List import scipy.spatial as spatial from torch import device from sys_simulator.devices.devices import d2d_user, mobile_user, base_station import pandas as pd def bits_gen(n): return [random.randint(0, 1) for b in range(1, n+1)] def db_to_power(x): return 10**(x/10) def power_to_db(x): return 10*np.log10(x) def scaling(x, a_min, a_max): x = np.clip(x, a_min, a_max) return (x - a_min)/(a_max - a_min) def upsample(input, factor): z_mat = np.zeros([factor-1, len(input[0])]) aux = np.concatenate((input, z_mat), axis=0) aux2 = np.transpose(aux) output = np.reshape(aux2, (1, len(input[0])*factor)) return output def downsample(input, factor): output = [] for i in range(0, len(input)): if i % factor == 0: output.append(input[i]) return output def ber(tx_signal, rx_signal): return np.sum(np.abs(tx_signal - rx_signal))/len(tx_signal) def bpsk_theoric(snr): # snr in dB snr_mag = [10**(x/10) for x in snr] return [0.5*math.erfc(np.sqrt(i)) for i in snr_mag] def distribute_users( mobile_users: List[mobile_user], d2d_users: List[d2d_user], base_station: base_station ): center = base_station.position radius = base_station.radius for m in mobile_users: x = (np.random.rand()-0.5)*2*radius+center[0] y = (np.random.rand()-0.5)*2*(1-np.sqrt(radius**2-x**2))+center[1] m.set_position((x, y)) for d in d2d_users: x = (np.random.rand()-0.5)*2*radius+center[0] y = (np.random.rand()-0.5)*2*(1-np.sqrt(radius**2-x**2))+center[1] d.set_position((x, y)) def distribute_nodes(nodes, base_station, nodes_height=1.5): center = base_station.position radius = base_station.radius for n in nodes: x = (np.random.rand()-0.5)*2*radius+center[0] y = (np.random.rand()-0.5)*2*(1-np.sqrt(radius**2-x**2))+center[1] n.set_position((x, y, nodes_height)) n.set_distance_to_bs( spatial.distance.euclidean(n.position, base_station.position) ) def distribute_mue_validation(nodes: List[mobile_user], base_station): if len(nodes) != 1: raise 'number of mues must be 1' if base_station.position != (0, 0): raise 'BS position must be (0,0)' center = base_station.position nodes[0].set_position((center[0], center[1]+100)) nodes[0].set_distance_to_bs(spatial.distance.euclidean( nodes[0].position, base_station.position)) def distribute_pair_fixed_distance_multiple( nodes_tx: List[d2d_user], nodes_rx: List[d2d_user], base_station ): """ Distribute d2d pairs. Nodes_tx and nodes_rx should be lists with the length """ for i in range(len(nodes_tx)): center = base_station.position radius = base_station.radius is_node2_in_circle = False x1 = (np.random.rand()-0.5)*2*radius+center[0] y1 = (np.random.rand()-0.5)*2*(1-np.sqrt(radius**2-x1**2))+center[1] nodes_tx[i].set_position((x1, y1)) nodes_tx[i].set_distance_to_bs( spatial.distance.euclidean(center, nodes_tx[i].position)) while(not is_node2_in_circle): angle = np.random.rand()*2*np.pi x2 = (np.random.rand()-0.5)*2*nodes_tx[i].distance_d2d+x1 y2 = nodes_tx[i].distance_d2d*np.sin(angle)+y1 nodes_bs_distance = spatial.distance.euclidean( (x2, y2), base_station.position) if nodes_bs_distance < radius: nodes_rx[i].set_position((x2, y2)) nodes_rx[i].set_distance_to_bs(nodes_bs_distance) is_node2_in_circle = True def distribute_pair_fixed_distance( nodes, base_station, pair_distance, device_height=1.5 ): center = base_station.position radius = base_station.radius is_node2_in_circle = False x1 = (np.random.rand()-0.5)*2*radius+center[0] y1 = (np.random.rand()-0.5)*2*(1-np.sqrt(radius**2-x1**2))+center[1] nodes[0].set_position((x1, y1, device_height)) nodes[0].set_distance_to_bs( spatial.distance.euclidean(center, nodes[0].position)) while not is_node2_in_circle: angle = np.random.rand()*2*np.pi x2 = pair_distance*np.cos(angle) + x1 y2 = pair_distance*np.sin(angle) + y1 nodes_bs_distance = spatial.distance.euclidean( (x2, y2), base_station.position[0:2] ) if nodes_bs_distance < radius: nodes[1].set_position((x2, y2, device_height)) nodes[1].set_distance_to_bs( spatial.distance.euclidean( (x2, y2, device_height), base_station.position ) ) is_node2_in_circle = True def distribute_pair_random_distance( nodes, base_station, min_distance, max_distance, device_height=1.5, distribution='uniform', ): center = base_station.position radius = base_station.radius is_node2_in_circle = False if distribution == 'uniform': x1 = (np.random.rand()-0.5)*2*radius+center[0] y1 = (np.random.rand()-0.5)*2*(1-np.sqrt(radius**2-x1**2))+center[1] elif distribution == 'normal': r = random.gauss(mu=center[0], sigma=450) r = np.clip(r, -radius, radius) ang = random.uniform(0, 2*math.pi) x1 = r * math.cos(ang) y1 = r * math.sin(ang) else: raise Exception('Invalid pairs distribution option.') nodes[0].set_position((x1, y1, device_height)) nodes[0].set_distance_to_bs( spatial.distance.euclidean(center, nodes[0].position)) pair_distance = random.uniform(min_distance, max_distance) while not is_node2_in_circle: angle = np.random.rand()*2*np.pi x2 = pair_distance*np.cos(angle) + x1 y2 = pair_distance*np.sin(angle) + y1 nodes_bs_distance = spatial.distance.euclidean( (x2, y2), base_station.position[0:2] ) if nodes_bs_distance < radius: nodes[1].set_position((x2, y2, device_height)) nodes[1].set_distance_to_bs( spatial.distance.euclidean( (x2, y2, device_height), base_station.position ) ) is_node2_in_circle = True def distribute_rx_fixed_distance(nodes: device, base_station: base_station, pair_distance: float): radius = base_station.radius is_node2_in_circle = False x1 = nodes[0].position[0] y1 = nodes[0].position[1] while not is_node2_in_circle: angle = np.random.rand()*2*np.pi x2 = pair_distance*np.cos(angle) + x1 y2 = pair_distance*np.sin(angle) + y1 nodes_bs_distance = spatial.distance.euclidean((x2, y2), base_station.position) if nodes_bs_distance < radius: nodes[1].set_position((x2, y2)) nodes[1].set_distance_to_bs(nodes_bs_distance) is_node2_in_circle = True def distribute_d2d_validation( pairs: List[List[d2d_user]], base_station: base_station ): if len(pairs) != 4: raise 'number of mues must be 4' if base_station.position != (0, 0): raise 'BS position must be (0,0)' pairs[0][0].set_position((-250, 250)) pairs[0][1].set_position((-250, 300)) pairs[1][0].set_position((-250, -250)) pairs[1][1].set_position((-250, -300)) pairs[2][0].set_position((250, -250)) pairs[2][1].set_position((250, -300)) pairs[3][0].set_position((250, 250)) pairs[3][1].set_position((250, 300)) for p in pairs: for n in p: n.set_distance_to_bs(spatial.distance.euclidean( n.position, base_station.position)) n.set_distance_d2d(50) def get_distances_table(nodes): distances_table = [[spatial.distance.euclidean( node.position, i.position) for i in nodes] for node in nodes] return np.array(distances_table) def ceil(x: float, limit: float): foo = x if x <= limit else limit return foo def get_d2d_links(d2d_nodes_distances_table, d2d_nodes, channel): it_index = [i for i in range(d2d_nodes_distances_table.shape[0])] smallest_distance = {'table_position': (99, 99), 'distance': 1e6} d2d_pairs_table = dict() d2d_pairs_pathloss_table = dict() d2d_pairs_index = 0 while(len(it_index) > 0): for i in it_index: for j in it_index: if smallest_distance['distance'] >= \ d2d_nodes_distances_table[i][j] and i != j: smallest_distance['table_position'] = (i, j) smallest_distance['distance'] = \ d2d_nodes_distances_table[i][j] x = smallest_distance['table_position'][0] y = smallest_distance['table_position'][1] d2d_pairs_table[f'D2D_LINK:{d2d_pairs_index}'] = \ ([f'{d2d_nodes[x].id}', f'{d2d_nodes[y].id}'], smallest_distance['distance']) d2d_nodes[x].set_link_id(f'D2D_LINK:{d2d_pairs_index}') d2d_nodes[y].set_link_id(f'D2D_LINK:{d2d_pairs_index}') it_index.pop(it_index.index(x)) it_index.pop(it_index.index(y)) d2d_pairs_index = d2d_pairs_index+1 smallest_distance = {'table_position': (99, 99), 'distance': 1e6} for i in d2d_pairs_table.keys(): d2d_pairs_pathloss_table[i] = \ channel.calculate_pathloss(d2d_pairs_table[i][1]) return d2d_pairs_table, d2d_pairs_pathloss_table def path_leaf(path): head, tail = ntpath.split(path) return tail or ntpath.basename(head) def jain_index(vec: List[float]): return np.sum(vec) ** 2 / (len(vec)*np.sum([v ** 2 for v in vec])) def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs)) def make_dir(dir_name: str): if not os.path.exists(dir_name): os.makedirs(dir_name) def make_dir_timestamp(dir_name: str): timestr = time.strftime(r"%Y%m%d-%H%M%S") path = f'{dir_name}/{timestr}' make_dir(path) return path, timestr def load_with_pickle(path: str, mode='rb'): p_file = open(path, mode) return pickle.load(p_file) def save_with_pickle(obj, path: str): with open(path, 'wb') as p_file: pickle.dump(obj, p_file) def sns_confidence_interval_plot( y_ticks: np.ndarray, y_label: str, legend: str, x_label='Number of D2D pairs' ): """x_ticks is the number of d2d pairs. """ aux = np.ones((y_ticks.shape[0], np.prod(y_ticks.shape[1:]))) for i in range(len(aux)): aux[i] *= i + 1 n_d2d = aux.reshape(-1) aux2 = y_ticks.reshape(-1) # dataframe df =
pd.DataFrame({'y_tick': aux2, 'n_d2d': n_d2d})
pandas.DataFrame
from __future__ import absolute_import, division, print_function import pytest from datetime import datetime, timedelta import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series from string import ascii_lowercase from blaze.compute.core import compute from blaze import dshape, discover, transform from blaze.expr import symbol, join, by, summary, distinct, shape from blaze.expr import (merge, exp, mean, count, nunique, sum, min, max, any, var, std, concat) from blaze.compatibility import builtins, xfail, assert_series_equal t = symbol('t', 'var * {name: string, amount: int, id: int}') nt = symbol('t', 'var * {name: ?string, amount: float64, id: int}') df = DataFrame([['Alice', 100, 1], ['Bob', 200, 2], ['Alice', 50, 3]], columns=['name', 'amount', 'id']) ndf = DataFrame([['Alice', 100.0, 1], ['Bob', np.nan, 2], [np.nan, 50.0, 3]], columns=['name', 'amount', 'id']) tbig = symbol('tbig', 'var * {name: string, sex: string[1], amount: int, id: int}') dfbig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) def test_series_columnwise(): s = Series([1, 2, 3], name='a') t = symbol('t', 'var * {a: int64}') result = compute(t.a + 1, s) assert_series_equal(s + 1, result) def test_symbol(): tm.assert_frame_equal(compute(t, df), df) def test_projection(): tm.assert_frame_equal(compute(t[['name', 'id']], df), df[['name', 'id']]) def test_eq(): assert_series_equal(compute(t['amount'] == 100, df), df['amount'] == 100) def test_selection(): tm.assert_frame_equal(compute(t[t['amount'] == 0], df), df[df['amount'] == 0]) tm.assert_frame_equal(compute(t[t['amount'] > 150], df), df[df['amount'] > 150]) def test_arithmetic(): assert_series_equal(compute(t['amount'] + t['id'], df), df.amount + df.id) assert_series_equal(compute(t['amount'] * t['id'], df), df.amount * df.id) assert_series_equal(compute(t['amount'] % t['id'], df), df.amount % df.id) def test_join(): left = DataFrame( [['Alice', 100], ['Bob', 200]], columns=['name', 'amount']) right = DataFrame([['Alice', 1], ['Bob', 2]], columns=['name', 'id']) lsym = symbol('L', 'var * {name: string, amount: int}') rsym = symbol('R', 'var * {name: string, id: int}') joined = join(lsym, rsym, 'name') assert (dshape(joined.schema) == dshape('{name: string, amount: int, id: int}')) result = compute(joined, {lsym: left, rsym: right}) expected = DataFrame([['Alice', 100, 1], ['Bob', 200, 2]], columns=['name', 'amount', 'id']) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(joined.fields) def test_multi_column_join(): left = [(1, 2, 3), (2, 3, 4), (1, 3, 5)] left = DataFrame(left, columns=['x', 'y', 'z']) right = [(1, 2, 30), (1, 3, 50), (1, 3, 150)] right = DataFrame(right, columns=['x', 'y', 'w']) lsym = symbol('lsym', 'var * {x: int, y: int, z: int}') rsym = symbol('rsym', 'var * {x: int, y: int, w: int}') j = join(lsym, rsym, ['x', 'y']) expected = [(1, 2, 3, 30), (1, 3, 5, 50), (1, 3, 5, 150)] expected = DataFrame(expected, columns=['x', 'y', 'z', 'w']) result = compute(j, {lsym: left, rsym: right}) print(result) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(j.fields) def test_unary_op(): assert (compute(exp(t['amount']), df) == np.exp(df['amount'])).all() def test_abs(): assert (compute(abs(t['amount']), df) == abs(df['amount'])).all() def test_neg(): assert_series_equal(compute(-t['amount'], df), -df['amount']) @xfail(reason='Projection does not support arithmetic') def test_neg_projection(): assert_series_equal(compute(-t[['amount', 'id']], df), -df[['amount', 'id']]) def test_columns_series(): assert isinstance(compute(t['amount'], df), Series) assert isinstance(compute(t['amount'] > 150, df), Series) def test_reductions(): assert compute(mean(t['amount']), df) == 350 / 3 assert compute(count(t['amount']), df) == 3 assert compute(sum(t['amount']), df) == 100 + 200 + 50 assert compute(min(t['amount']), df) == 50 assert compute(max(t['amount']), df) == 200 assert compute(nunique(t['amount']), df) == 3 assert compute(nunique(t['name']), df) == 2 assert compute(any(t['amount'] > 150), df) is True assert compute(any(t['amount'] > 250), df) is False assert compute(var(t['amount']), df) == df.amount.var(ddof=0) assert compute(var(t['amount'], unbiased=True), df) == df.amount.var() assert compute(std(t['amount']), df) == df.amount.std(ddof=0) assert compute(std(t['amount'], unbiased=True), df) == df.amount.std() assert compute(t.amount[0], df) == df.amount.iloc[0] assert compute(t.amount[-1], df) == df.amount.iloc[-1] def test_reductions_on_dataframes(): assert compute(count(t), df) == 3 assert shape(compute(count(t, keepdims=True), df)) == (1,) def test_1d_reductions_keepdims(): series = df['amount'] for r in [sum, min, max, nunique, count, std, var]: result = compute(r(t.amount, keepdims=True), {t.amount: series}) assert type(result) == type(series) def test_distinct(): dftoobig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) d_t = distinct(tbig) d_df = compute(d_t, dftoobig) tm.assert_frame_equal(d_df, dfbig) # Test idempotence tm.assert_frame_equal(compute(d_t, d_df), d_df) def test_distinct_on(): cols = ['name', 'sex', 'amount', 'id'] df = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=cols) s = symbol('s', discover(df)) computed = compute(s.distinct('sex'), df) tm.assert_frame_equal( computed, pd.DataFrame([['Alice', 'F', 100, 1], ['Drew', 'M', 100, 5]], columns=cols), ) def test_by_one(): result = compute(by(t['name'], total=t['amount'].sum()), df) expected = df.groupby('name')['amount'].sum().reset_index() expected.columns = ['name', 'total'] tm.assert_frame_equal(result, expected) def test_by_two(): result = compute(by(tbig[['name', 'sex']], total=sum(tbig['amount'])), dfbig) expected = DataFrame([['Alice', 'F', 200], ['Drew', 'F', 100], ['Drew', 'M', 300]], columns=['name', 'sex', 'total']) tm.assert_frame_equal(result, expected) def test_by_three(): expr = by(tbig[['name', 'sex']], total=(tbig['id'] + tbig['amount']).sum()) result = compute(expr, dfbig) expected = DataFrame([['Alice', 'F', 204], ['Drew', 'F', 104], ['Drew', 'M', 310]], columns=['name', 'sex', 'total']) expected.columns = expr.fields tm.assert_frame_equal(result, expected) def test_by_four(): t = tbig[['sex', 'amount']] expr = by(t['sex'], max=t['amount'].max()) result = compute(expr, dfbig) expected = DataFrame([['F', 100], ['M', 200]], columns=['sex', 'max']) tm.assert_frame_equal(result, expected) def test_join_by_arcs(): df_idx = DataFrame([['A', 1], ['B', 2], ['C', 3]], columns=['name', 'node_id']) df_arc = DataFrame([[1, 3], [2, 3], [3, 1]], columns=['node_out', 'node_id']) t_idx = symbol('t_idx', 'var * {name: string, node_id: int32}') t_arc = symbol('t_arc', 'var * {node_out: int32, node_id: int32}') joined = join(t_arc, t_idx, "node_id") want = by(joined['name'], count=joined['node_id'].count()) result = compute(want, {t_arc: df_arc, t_idx: df_idx}) result_pandas = pd.merge(df_arc, df_idx, on='node_id') gb = result_pandas.groupby('name') expected = gb.node_id.count().reset_index().rename(columns={ 'node_id': 'count' }) tm.assert_frame_equal(result, expected) assert list(result.columns) == ['name', 'count'] def test_join_suffixes(): df = pd.DataFrame( list(dict((k, n) for k in ascii_lowercase[:5]) for n in range(5)), ) a = symbol('a', discover(df)) b = symbol('b', discover(df)) suffixes = '_x', '_y' joined = join(a, b, 'a', suffixes=suffixes) expected = pd.merge(df, df, on='a', suffixes=suffixes) result = compute(joined, {a: df, b: df}) tm.assert_frame_equal(result, expected) def test_join_promotion(): a_data = pd.DataFrame([[0.0, 1.5], [1.0, 2.5]], columns=list('ab')) b_data = pd.DataFrame([[0, 1], [1, 2]], columns=list('ac')) a = symbol('a', discover(a_data)) b = symbol('b', discover(b_data)) joined = join(a, b, 'a') assert joined.dshape == dshape('var * {a: float64, b: ?float64, c: int64}') expected = pd.merge(a_data, b_data, on='a') result = compute(joined, {a: a_data, b: b_data}) tm.assert_frame_equal(result, expected) def test_sort(): tm.assert_frame_equal(compute(t.sort('amount'), df), df.sort('amount')) tm.assert_frame_equal(compute(t.sort('amount', ascending=True), df), df.sort('amount', ascending=True)) tm.assert_frame_equal(compute(t.sort(['amount', 'id']), df), df.sort(['amount', 'id'])) def test_sort_on_series_no_warning(recwarn): expected = df.amount.order() recwarn.clear() assert_series_equal(compute(t['amount'].sort('amount'), df), expected) # raises as assertion error if no warning occurs, same thing for below with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) assert_series_equal(compute(t['amount'].sort(), df), expected) with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) def test_field_on_series(): expr = symbol('s', 'var * int') data = Series([1, 2, 3, 4], name='s') assert_series_equal(compute(expr.s, data), data) def test_head(): tm.assert_frame_equal(compute(t.head(1), df), df.head(1)) def test_tail(): tm.assert_frame_equal(compute(t.tail(1), df), df.tail(1)) def test_label(): expected = df['amount'] * 10 expected.name = 'foo' assert_series_equal(compute((t['amount'] * 10).label('foo'), df), expected) def test_relabel(): result = compute(t.relabel({'name': 'NAME', 'id': 'ID'}), df) expected = df.rename(columns={'name': 'NAME', 'id': 'ID'}) tm.assert_frame_equal(result, expected) def test_relabel_series(): result = compute(t.relabel({'name': 'NAME'}), df.name) assert result.name == 'NAME' ts = pd.date_range('now', periods=10).to_series().reset_index(drop=True) tframe = DataFrame({'timestamp': ts}) def test_map_column(): inc = lambda x: x + 1 result = compute(t['amount'].map(inc, 'int'), df) expected = df['amount'] + 1 assert_series_equal(result, expected) def test_map(): f = lambda _, amt, id: amt + id result = compute(t.map(f, 'real'), df) expected = df['amount'] + df['id'] assert_series_equal(result, expected) def test_apply_column(): result = compute(t.amount.apply(np.sum, 'real'), df) expected = np.sum(df['amount']) assert result == expected result = compute(t.amount.apply(builtins.sum, 'real'), df) expected = builtins.sum(df['amount']) assert result == expected def test_apply(): result = compute(t.apply(str, 'string'), df) expected = str(df) assert result == expected def test_merge(): col = (t['amount'] * 2).label('new') expr = merge(t['name'], col) expected = DataFrame([['Alice', 200], ['Bob', 400], ['Alice', 100]], columns=['name', 'new']) result = compute(expr, df) tm.assert_frame_equal(result, expected) def test_by_nunique(): result = compute(by(t['name'], count=t['id'].nunique()), df) expected = DataFrame([['Alice', 2], ['Bob', 1]], columns=['name', 'count']) tm.assert_frame_equal(result, expected) def test_selection_out_of_order(): expr = t['name'][t['amount'] < 100] expected = df.loc[df.amount < 100, 'name'] result = compute(expr, df) assert_series_equal(result, expected) def test_outer_join(): left = [(1, 'Alice', 100), (2, 'Bob', 200), (4, 'Dennis', 400)] left = DataFrame(left, columns=['id', 'name', 'amount']) right = [('NYC', 1), ('Boston', 1), ('LA', 3), ('Moscow', 4)] right = DataFrame(right, columns=['city', 'id']) lsym = symbol('lsym', 'var * {id: int, name: string, amount: real}') rsym = symbol('rsym', 'var * {city: string, id: int}') convert = lambda df: set(df.to_records(index=False).tolist()) assert (convert(compute(join(lsym, rsym), {lsym: left, rsym: right})) == set([(1, 'Alice', 100, 'NYC'), (1, 'Alice', 100, 'Boston'), (4, 'Dennis', 400, 'Moscow')])) assert (convert(compute(join(lsym, rsym, how='left'), {lsym: left, rsym: right})) == set([(1, 'Alice', 100, 'NYC'), (1, 'Alice', 100, 'Boston'), (2, 'Bob', 200, np.nan), (4, 'Dennis', 400, 'Moscow')])) df = compute(join(lsym, rsym, how='right'), {lsym: left, rsym: right}) expected = DataFrame([(1., 'Alice', 100., 'NYC'), (1., 'Alice', 100., 'Boston'), (3., np.nan, np.nan, 'lsymA'), (4., 'Dennis', 400., 'Moscow')], columns=['id', 'name', 'amount', 'city']) result = df.sort('id').to_records(index=False) expected = expected.sort('id').to_records(index=False) np.array_equal(result, expected) df = compute(join(lsym, rsym, how='outer'), {lsym: left, rsym: right}) expected = DataFrame([(1., 'Alice', 100., 'NYC'), (1., 'Alice', 100., 'Boston'), (2., 'Bob', 200., np.nan), (3., np.nan, np.nan, 'LA'), (4., 'Dennis', 400., 'Moscow')], columns=['id', 'name', 'amount', 'city']) result = df.sort('id').to_records(index=False) expected = expected.sort('id').to_records(index=False) np.array_equal(result, expected) def test_by_on_same_column(): df = pd.DataFrame([[1, 2], [1, 4], [2, 9]], columns=['id', 'value']) t = symbol('data', 'var * {id: int, value: int}') gby = by(t['id'], count=t['id'].count()) expected = DataFrame([[1, 2], [2, 1]], columns=['id', 'count']) result = compute(gby, {t: df}) tm.assert_frame_equal(result, expected) def test_summary_by(): expr = by(t.name, summary(count=t.id.count(), sum=t.amount.sum())) result = compute(expr, df) expected = DataFrame([['Alice', 2, 150], ['Bob', 1, 200]], columns=['name', 'count', 'sum']) expr = by(t.name, summary(count=t.id.count(), sum=(t.amount + 1).sum())) result = compute(expr, df) expected = DataFrame([['Alice', 2, 152], ['Bob', 1, 201]], columns=['name', 'count', 'sum']) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(raises=TypeError, reason=('pandas backend cannot support non Reduction ' 'subclasses')) def test_summary_by_first(): expr = by(t.name, fst=t.amount[0]) result = compute(expr, df) assert result == df.amount.iloc[0] def test_summary_by_reduction_arithmetic(): expr = by(t.name, summary(count=t.id.count(), sum=t.amount.sum() + 1)) result = compute(expr, df) expected = DataFrame([['Alice', 2, 151], ['Bob', 1, 201]], columns=['name', 'count', 'sum']) tm.assert_frame_equal(result, expected) def test_summary(): expr = summary(count=t.id.count(), sum=t.amount.sum()) assert_series_equal(compute(expr, df), Series({'count': 3, 'sum': 350})) def test_summary_on_series(): ser = Series([1, 2, 3]) s = symbol('s', '3 * int') expr = summary(max=s.max(), min=s.min()) assert compute(expr, ser) == (3, 1) expr = summary(max=s.max(), min=s.min(), keepdims=True) assert compute(expr, ser) == [(3, 1)] def test_summary_keepdims(): expr = summary(count=t.id.count(), sum=t.amount.sum(), keepdims=True) expected = DataFrame([[3, 350]], columns=['count', 'sum']) tm.assert_frame_equal(compute(expr, df), expected) def test_dplyr_transform(): df = DataFrame({'timestamp': pd.date_range('now', periods=5)}) t = symbol('t', discover(df)) expr = transform(t, date=t.timestamp.map(lambda x: x.date(), schema='datetime')) lhs = compute(expr, df) rhs = pd.concat([df, Series(df.timestamp.map(lambda x: x.date()), name='date').to_frame()], axis=1) tm.assert_frame_equal(lhs, rhs) def test_nested_transform(): d = {'timestamp': [1379613528, 1379620047], 'platform': ["Linux", "Windows"]} df = DataFrame(d) t = symbol('t', discover(df)) t = transform(t, timestamp=t.timestamp.map(datetime.fromtimestamp, schema='datetime')) expr = transform(t, date=t.timestamp.map(lambda x: x.date(), schema='datetime')) result = compute(expr, df) df['timestamp'] = df.timestamp.map(datetime.fromtimestamp) df['date'] = df.timestamp.map(lambda x: x.date()) tm.assert_frame_equal(result, df) def test_like(): expr = t.like(name='Alice*') expected = DataFrame([['Alice', 100, 1], ['Alice', 50, 3]], columns=['name', 'amount', 'id']) result = compute(expr, df).reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_strlen(): expr = t.name.strlen() expected = pd.Series([5, 3, 5], name='name') result = compute(expr, df).reset_index(drop=True) assert_series_equal(expected, result) def test_rowwise_by(): f = lambda _, id, name: id + len(name) expr = by(t.map(f, 'int'), total=t.amount.sum()) df = pd.DataFrame({'id': [1, 1, 2], 'name': ['alice', 'wendy', 'bob'], 'amount': [100, 200, 300.03]}) expected = pd.DataFrame([(5, 300.03), (6, 300)], columns=expr.fields) result = compute(expr, df) tm.assert_frame_equal(result, expected) def test_datetime_access(): df = DataFrame({'name': ['Alice', 'Bob', 'Joe'], 'when': [datetime(2010, 1, 1, 1, 1, 1)] * 3, 'amount': [100, 200, 300], 'id': [1, 2, 3]}) t = symbol('t', discover(df)) for attr in ['day', 'month', 'minute', 'second']: expr = getattr(t.when, attr) assert_series_equal(compute(expr, df), Series([1, 1, 1], name=expr._name)) def test_frame_slice(): assert_series_equal(compute(t[0], df), df.iloc[0]) assert_series_equal(compute(t[2], df), df.iloc[2]) tm.assert_frame_equal(compute(t[:2], df), df.iloc[:2]) tm.assert_frame_equal(compute(t[1:3], df), df.iloc[1:3]) tm.assert_frame_equal(compute(t[1::2], df), df.iloc[1::2]) tm.assert_frame_equal(compute(t[[2, 0]], df), df.iloc[[2, 0]]) def test_series_slice(): assert compute(t.amount[0], df) == df.amount.iloc[0] assert compute(t.amount[2], df) == df.amount.iloc[2] assert_series_equal(compute(t.amount[:2], df), df.amount.iloc[:2]) assert_series_equal(compute(t.amount[1:3], df), df.amount.iloc[1:3]) assert_series_equal(compute(t.amount[1::2], df), df.amount.iloc[1::2]) def test_nelements(): assert compute(t.nelements(), df) == len(df) assert compute(t.nrows, df) == len(df) def test_datetime_truncation_minutes(): data = Series(['2000-01-01T12:10:00Z', '2000-06-25T12:35:12Z'], dtype='M8[ns]') s = symbol('s', 'var * datetime') result = compute(s.truncate(20, 'minutes'), data) expected = Series(['2000-01-01T12:00:00Z', '2000-06-25T12:20:00Z'], dtype='M8[ns]', name='s') assert_series_equal(result, expected) def test_datetime_truncation_nanoseconds(): data = Series(['2000-01-01T12:10:00.000000005', '2000-01-01T12:10:00.000000025'], dtype='M8[ns]') s = symbol('s', 'var * datetime') expected = Series(['2000-01-01T12:10:00.000000000', '2000-01-01T12:10:00.000000020'], dtype='M8[ns]', name='s') result = compute(s.truncate(nanoseconds=20), data) assert_series_equal(result, expected) def test_datetime_truncation_weeks(): data = Series(['2000-01-01T12:10:00Z', '2000-06-25T12:35:12Z'], dtype='M8[ns]') s = symbol('s', 'var * datetime') result = compute(s.truncate(2, 'weeks'), data) expected = Series(['1999-12-19', '2000-06-18'], dtype='M8[ns]', name='s') assert_series_equal(result, expected) def test_datetime_truncation_days(): data = Series(['2000-01-01T12:10:00Z', '2000-06-25T12:35:12Z'], dtype='M8[ns]') s = symbol('s', 'var * datetime') result = compute(s.truncate(days=3), data) expected = Series(['1999-12-31', '2000-06-25'], dtype='M8[ns]', name='s') assert_series_equal(result, expected) def test_datetime_truncation_same_as_python(): data = Series(['2000-01-01T12:10:00Z', '2000-06-25T12:35:12Z'], dtype='M8[ns]') s = symbol('s', 'var * datetime') assert (compute(s.truncate(weeks=2), data[0].to_pydatetime()) == datetime(1999, 12, 26).date()) def test_complex_group_by(): expr = by(merge(tbig.amount // 10, tbig.id % 2), count=tbig.name.count()) result = compute(expr, dfbig) # can we do this? yes we can! expected = dfbig.groupby([dfbig.amount // 10, dfbig.id % 2])['name'].count().reset_index() expected = expected.rename(columns={'name': 'count'}) tm.assert_frame_equal(result, expected) def test_by_with_complex_summary(): expr = by(t.name, total=t.amount.sum() + t.id.sum() - 1, a=t.id.min()) result = compute(expr, df) assert list(result.columns) == expr.fields assert list(result.total) == [150 + 4 - 1, 200 + 2 - 1] def test_notnull(): assert (compute(nt.name.notnull(), ndf) == ndf.name.notnull()).all() def test_isnan(): assert (compute(nt.amount.isnan(), ndf) == ndf.amount.isnull()).all() @pytest.mark.parametrize('keys', [[1], [2, 3]]) def test_isin(keys): expr = t[t.id.isin(keys)] result = compute(expr, df) expected = df.loc[df.id.isin(keys)] tm.assert_frame_equal(result, expected) def test_nunique_table(): expr = t.nunique() result = compute(expr, df) assert result == len(df.drop_duplicates()) def test_str_concat(): a = Series(('a', 'b', 'c')) s = symbol('s', "3 * string[1, 'U32']") expr = s + 'a' assert (compute(expr, a) == (a + 'a')).all() def test_str_repeat(): a = Series(('a', 'b', 'c')) s = symbol('s', "3 * string[1, 'U32']") expr = s.repeat(3) assert (compute(expr, a) == (a * 3)).all() def test_str_interp(): a = Series(('%s', '%s', '%s')) s = symbol('s', "3 * string[1, 'U32']") expr = s.interp(1) assert (compute(expr, a) == (a % 1)).all() def test_timedelta_arith(): series = Series(pd.date_range('2014-01-01', '2014-02-01')) sym = symbol('s', discover(series)) delta = timedelta(days=1) assert (compute(sym + delta, series) == series + delta).all() assert (compute(sym - delta, series) == series - delta).all() def test_coerce_series(): s = pd.Series(list('123'), name='a') t = symbol('t', discover(s)) result = compute(t.coerce(to='int64'), s) expected =
pd.Series([1, 2, 3], name=s.name)
pandas.Series
""" This example shows how to join multiple pandas Series to a DataFrame For further information take a look at the pandas documentation: https://pandas.pydata.org/pandas-docs/stable/merging.html """ import wapi import pandas as pd import matplotlib.pyplot as plt ############################################ # Insert the path to your config file here! my_config_file = 'path/to/your/config.ini' ############################################ # Create a session to Connect to Wattsight Database session = wapi.Session(config_file=my_config_file) ## Combine Series with same time index ###################################### # To combine pandas Series that all have the same time index, the simplest # option is to add a new column for every series # We first create an empty dataframe df1 =
pd.DataFrame()
pandas.DataFrame
import shutil from glob import glob from multiprocessing import Pool from time import time import numpy as np import pandas as pd import xarray as xr from netCDF4 import Dataset from cirrus.netCDFtoTIFF import nc2tiff from cirrus.util.config import is_goias, lats, logger, lons, ormdtype, settings from cirrus.util.db import engine, save_df_bd from cirrus.util.hash import data_frame2hash, generate_file_md5 from cirrus.util.functions import ( # isort:skip exists_in_the_bank, get_list_nc, get_time, save_hash, ) def netcsf2sql(file_name: str, rootgrp: Dataset, xr_file, force_save_db): """_summary_ Args: file_name (str): _description_ rootgrp (Dataset): _description_ Returns: bool: _description_ """ error = False for name in settings.vars: try: tempc = rootgrp.variables[name][:] logger.info( f"Processando varivael {name} de {file_name.split('/')[-1]}" ) vtime, *_ = [ x.flatten() for x in np.meshgrid( get_time(file_name), lats, lons, indexing='ij' ) ] camadas = {} if len(np.squeeze(tempc)) == 19: for c, var in enumerate(np.squeeze(tempc), 1): camadas[f'{name}_{c:02}'] = var.flatten() nc2tiff(xr_file, name, f'{name}_{c:02}', file_name, c - 1) else: camadas = {f'{name}': np.squeeze(tempc).flatten()} nc2tiff(xr_file, name, name, file_name) temp_df = pd.DataFrame( { 'datetime': vtime, 'goias': is_goias['goias'].array, **camadas, 'point_gid': is_goias.index, } ) temp_df = temp_df.dropna(subset=['goias']) temp_df['datetime'] =
pd.to_datetime(temp_df['datetime'])
pandas.to_datetime
import ntpath import os import pickle import sys import time import warnings import numpy as np import pandas as pd from scipy.stats import kurtosis from scipy.stats import skew from statsmodels import robust import sys import pandas as pd import numpy as np import pickle import time import warnings import ntpath import os from scipy.stats import kurtosis from scipy.stats import skew from statsmodels import robust from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler dir_online_features = 'online_features' columns_intermediate = ['frame_no', 'ts', 'ts_delta', 'protocols', 'frame_len', 'eth_src', 'eth_dst', 'ip_src', 'ip_dst', 'tcp_srcport', 'tcp_dstport', 'http_host', 'sni', 'udp_srcport', 'udp_dstport'] columns_state_features = ["meanBytes", "minBytes", "maxBytes", "medAbsDev", "skewLength", "kurtosisLength", "q10", "q20", "q30", "q40", "q50", "q60", "q70", "q80", "q90", "spanOfGroup", "meanTBP", "varTBP", "medianTBP", "kurtosisTBP", "skewTBP", "network_to", "network_from", "network_both", "network_to_external", "network_local", "anonymous_source_destination", "device", "state"] columns_detect_sequence = ['ts', 'ts_end', 'ts_delta', 'num_pkt', 'state'] save_extracted_features = False RED = "\033[31;1m" END = "\033[0m" path = sys.argv[0] dir_models = "" usage_stm = """ Usage: python3 {prog_name} pcap_path model_dir device_name model_name result_path Uses a model to predict the device activity given network traffic of that device. Example: python3 {prog_name} yi_camera_sample.pcap tagged-models/us/ yi-camera rf results.csv Arguments: pcap_path: path to the pcap file with unknown device activity model_dir: path to the directory containing the directories of the models device_name: name of the device that generated the data in pcap_path model_name: name of the model to be used to predict the device activity in pcap_path; choose from kmeans, knn, or rf result_path: path to a CSV file to write results; will be generated if it does not already exist Note: The dbscan and spectral algorithms cannot be used for prediction. For more information, see the README or model_details.md.""".format(prog_name=path) #isError is either 0 or 1 def print_usage(is_error): print(usage_stm, file=sys.stderr) if is_error else print(usage_stm) exit(isError) def main(): global dir_models for arg in sys.argv: if arg in ("-h", "--help"): print_usage(0) print("Running %s..." % path) if len(sys.argv) != 6: print("%s%s: Error: 5 arguments required. %d arguments found.%s" % (RED, path, (len(sys.argv) - 1), END), file=sys.stderr) print_usage(1) pcap_path = sys.argv[1] dir_models = sys.argv[2] + "/" + sys.argv[4] device = sys.argv[3] model_name = sys.argv[4] file_result = sys.argv[5] user_intermediates = "user-intermediates/" errors = False if not pcap_path.endswith('.pcap'): print("%s%s: Error: \"%s\" is not a pcap (.pcap) file.%s" % (RED, path, pcap_path, END), file=sys.stderr) errors = True elif not os.path.isfile(pcap_path): print("%s%s: Error: The pcap file \"%s\" does not exist.%s" % (RED, path, pcap_path, END), file=sys.stderr) errors = True if not file_result.endswith('.csv'): print("%s%s: Error: Output file \"%s\" is not a CSV (.csv) file.%s" % (RED, path, file_result, END), file=sys.stderr) errors = True if not model_name in ("kmeans", "knn", "rf"): print("%s%s: Error: \"%s\" is not a valid model name. Choose from: kmeans, knn, or rf.%s" % (RED, path, model_name, END), file=sys.stderr) errors = True elif not os.path.isdir(dir_models): print("%s%s: Error: The model directory \"%s\" is not a directory.%s" % (RED, path, dir_models, END), file=sys.stderr) errors = True else: file_model = '%s/%s%s.model' % (dir_models, device, model_name) file_labels = '%s/%s.label.txt' % (dir_models, device) if not os.path.isfile(file_model): print("%s%s: Error: The model file %s cannot be found.\n" " Please regenerate file, check directory name, or check device name.%s" % (RED, path, file_model, END), file=sys.stderr) errors = True if not os.path.isfile(file_labels): print("%s%s: Error: The label file %s cannot be found.\n" " Please regenerate file, check directory name, or check device name.%s" % (RED, path, file_labels, END), file=sys.stderr) errors = True if errors: print_usage(1) print("Input pcap: %s" % pcap_path) print("Input model directory: %s" % dir_models) print("Device name: %s" % device) print("Model name: %s" % model_name) print("Output CSV: %s" % file_result) if not os.path.exists(user_intermediates): os.system('mkdir -pv %s' % user_intermediates) file_intermediate = user_intermediates + "/" + ntpath.basename(pcap_path)[:-4] + "txt" if os.path.isfile(file_intermediate): print("%s exists. Delete it to reparse the pcap file." % file_intermediate) else: os.system("tshark -r %s -Y ip -Tfields -e frame.number -e frame.time_epoch" " -e frame.time_delta -e frame.protocols -e frame.len -e eth.src" " -e eth.dst -e ip.src -e ip.dst -e tcp.srcport -e tcp.dstport" " -e http.host -e udp.srcport -e udp.dstport -E separator=/t > %s" " 2>/dev/null" % (pcap_path, file_intermediate)) os.system('mkdir -pv `dirname %s`' % file_result) res = predict(device, file_intermediate) if res is None or len(res) == 0: with open(file_result, 'w') as ff: ff.write('No behavior found for %s from %s' % (device, file_intermediate)) else: res['device'] = device res.to_csv(file_result, index=False) print('Results saved to %s' % file_result) def predict(device, file_intermediate): model, labels = load_model(device) if model is None: return res_detect = detect_states(file_intermediate, model, labels, device) print('Results:') print(res_detect) return res_detect def detect_states(intermediate_file, trained_model, labels, dname=None): group_size = 100 warnings.simplefilter("ignore", category=DeprecationWarning) if not os.path.exists(intermediate_file): print('reading from %s' % intermediate_file) return feature_file = None ss = trained_model['standard_scaler'] pca = trained_model['pca'] trained_model = trained_model['trained_model'] col_names = columns_intermediate c = columns_state_features.copy() col_data_points = ['ts', 'ts_end','ts_delta', 'num_pkt'] c.extend(col_data_points) pd_obj_all = pd.read_csv(intermediate_file, names=col_names, sep='\t') pd_obj = pd_obj_all.loc[:, ['ts', 'ts_delta', 'frame_len', 'ip_src', 'ip_dst']] if pd_obj is None or len(pd_obj) < 1: #Nothing in decoded input pcap file return num_total = len(pd_obj_all) print('Total packets: %s' % num_total) feature_data =
pd.DataFrame()
pandas.DataFrame
from numpy.testing import assert_, assert_equal, run_module_suite from cqed_tools.mf.hamiltonian import * import pandas as pd def test_collapse_operators_mf(): params = pd.Series([4, 1.0, 2.0, 3.0], index=['t_levels', 'gamma', 'gamma_phi', 'n_t'], dtype=object) c_ops = collapse_operators_mf(params) assert_equal(c_ops[0], destroy(params.t_levels) * np.sqrt(params.gamma * (params.n_t + 1))) assert_equal(c_ops[1], create(params.t_levels) * np.sqrt(params.gamma * params.n_t)) assert_equal(len(c_ops), 3) params = pd.Series([14, 0.0, 2.5, 3.7], index=['t_levels', 'gamma', 'gamma_phi', 'n_t'], dtype=object) c_ops = collapse_operators_mf(params) assert_equal(len(c_ops), 1) params =
pd.Series([8, 0.1, 0.0, 5.6], index=['t_levels', 'gamma', 'gamma_phi', 'n_t'], dtype=object)
pandas.Series
import docx import numpy as np import pandas as pd import scipy.stats # TODO: Add kruskal-wallis for median[IQR] class Table1(): ''' Creates table 1 from pandas Dataframe and allows for export in docx, xls format Attributes ---------- table : pandas Dataframe output table ''' plus_minus = u'\u00B1' def __init__(self, df, stratification_var, names, keep_one_vars=None, rownames=None, colnames=None, col_ordering=None, row_ordering=None, rounding_digits=1, include_overall=True, overall_colname='Overall', total_row=True, deviation_measure_for_numeric='sd', p_val=True): ''' Parameters ---------- df : pd.DataFrame Input dataframe stratification_var : str Column stratification variable names : Dict[str, str] Specifies variables that are to be in the table based on keys. Values contain name mapping for baseline variables to new names. Also All following parameters and methods use the new names as reference. keep_one_vars : Dict[str, list], optional In the case of multilevel variables, allows one to pass name:level items such that within variable name, only the given level is retained as a single row (default:None) rownames : Dict[str, str], optional Specify rownames with format old name: new name (default:None) colnames : Dict[str, str], optional Specify colnames with format old name: new name (default:None) col_ordering : list, optional Order of the stratification variable (default:None) row_ordering : Dict[str, list], optional Pass name:order items such that variable name is ordered according to order (default:None) rouding_digits : int, optional Number of digits to round data to (default:2) include_overall : bool, optional Inserts a row-wise total column (default:True) overall_colname: str, optional Name of total column (default:'Overall') total_row: bool, optional Inserts a row with column-wise totals at top of table (default:True) deviation_measure_for_numeric: 'str' For numeric variables, select deviation measure - either 'sd' for standard deviation or 'se' for standard error of the mean (default:'sd') p_val: bool Calculate Pearson’s chi-squared test for independence for categorical data or one-way analysis of variance for continuous data and add p_value in a column ''' assert deviation_measure_for_numeric in ['se', 'sd'] if colnames: assert isinstance(colnames, dict) if row_ordering: assert isinstance(row_ordering, dict) self.df = df self.stratification_var = stratification_var self.names = names self.keep_one_vars = keep_one_vars self.rownames = rownames self.colnames = colnames self.col_ordering = col_ordering self.row_ordering = row_ordering self.rounding_digits = rounding_digits self.include_overall = include_overall self.overall_colname = overall_colname self.total_row = total_row self.deviation_measure_for_numeric = deviation_measure_for_numeric self.p_val = p_val self.reverse_names = {v: k for k, v in self.names.items()} self.make_table() @staticmethod def create(*args, **kwargs): return Table1(*args, **kwargs).table def _is_categorical(self, var): return self.df[var].dtype.name in ['bool', 'object', 'category'] def _p_categorical(self, group): if self.include_overall: stat, p, dof, expected = scipy.stats.chi2_contingency( group.drop(columns=self.overall_colname)) else: stat, p, dof, expected = scipy.stats.chi2_contingency(group) return '<0.001' if p < 0.001 else round(p, 3) def _p_anova(self, var): unique_levels = [ x for x in self.df[self.stratification_var].unique() if pd.notna(x)] measures = [self.df.loc[self.df[self.stratification_var] == level, var] for level in unique_levels] for i, m in enumerate(measures): measures[i] = [x for x in m if pd.notna(x)] stat, p = scipy.stats.f_oneway(*measures) return '<0.001' if p < 0.001 else round(p, 3) def _make_categorical_minitable(self, var): def reformat_categorical(col): percs = col / group_col_totals[col.name] * 100 percs = percs.round(self.rounding_digits) return pd.Series([f'{val} ({perc})' for val, perc in zip(col, percs)], index=col.index, name=col.name) group = self.df.groupby(self.stratification_var)[ var].value_counts(dropna=False).rename().reset_index() group = group.pivot(var, self.stratification_var) group.columns = group.columns.droplevel(0) group.columns.name = '' group.rename({np.nan: f'Missing {self.names[var]}'}, inplace=True) group.index.name = self.names[var] if self.include_overall: group[self.overall_colname] = group.sum(axis=1) group_col_totals = group.sum(axis=0) group = group.fillna(0).astype(int) if self.p_val: p = self._p_categorical(group) group = group.apply(reformat_categorical, axis=0) if self.p_val: p_series = pd.Series( [p] + ['' for _ in range(1, len(group))], index=group.index, name='p-value') if self.keep_one_vars and self.names[var] in self.keep_one_vars.keys(): to_drop = [] for i in group.index: if self.rownames and i in self.rownames.keys(): if self.rownames[i] != self.keep_one_vars[self.names[var]]: to_drop.append(i) else: if i != self.keep_one_vars[self.names[var]]: to_drop.append(i) group = group.drop(index=to_drop) group.rename( {self.keep_one_vars[self.names[var]]: group.index.name}, inplace=True) if self.p_val: group['p-value'] = p else: header = pd.DataFrame(pd.Series(['' for _ in range( len(group.columns))], index=group.columns, name=self.names[var])).transpose() group = pd.concat([header, group]) if self.p_val: p_series = pd.Series( [p] + ['' for _ in range(1, len(group))], index=group.index, name='p-value') group = pd.concat([group, p_series], axis=1) return group def _make_numeric_row(self, var): overall_mn = self.df[var].mean() mns = self.df.groupby(self.stratification_var)[var].mean() if self.deviation_measure_for_numeric == 'se': overall_dev = self.df[var].std() / np.sqrt(len(self.df[var])) devs = self.df.groupby(self.stratification_var)[var].apply( lambda x: x.std() / np.sqrt(len(x))) elif self.deviation_measure_for_numeric == 'sd': overall_dev = self.df[var].std() devs = self.df.groupby(self.stratification_var)[var].apply(np.std) if self.include_overall: mns = mns.append( pd.Series(overall_mn, index=[self.overall_colname])) devs = devs.append( pd.Series(overall_dev, index=[self.overall_colname])) overall_mn = round(overall_mn, self.rounding_digits) mns = mns.round(self.rounding_digits) devs = devs.round(self.rounding_digits) ser = pd.DataFrame(pd.Series([f'{mn} {self.plus_minus} {sd}' for mn, sd in zip( mns, devs)], index=mns.index, name=self.names[var])).transpose() if self.p_val: p = self._p_anova(var) ser['p-value'] = p return ser def make_table(self): self.table = pd.concat([self._make_categorical_minitable(var) if self._is_categorical( var) else self._make_numeric_row(var) for var in self.names.keys()]) if self.total_row: self.insert_total_row(return_table=False) if self.colnames: self.table = self.table.rename(columns=self.colnames) if self.row_ordering: for var, order in self.row_ordering.items(): self.row_reorder(var, order, return_table=False) if self.rownames: self.table.rename(self.rownames, inplace=True) if self.col_ordering: assert len(self.col_ordering) == len( self.table.columns), f'Got {len(self.col_ordering)} in col_ordering, expected {len(self.table.columns)}: {self.table.columns}' self.column_reorder(self.col_ordering) def column_reorder(self, order, return_table=True): try: assert all([o in self.table.columns for o in order]) except AssertionError: print([o for o in order if o not in self.table.columns]) table = self.table[order] self.table = table if return_table: return self.table def row_reorder(self, var, order, return_table=True): og_varname = self.reverse_names[var] assert self._is_categorical(og_varname) assert var in self.table.index try: assert len(order) == len(self.df[og_varname].unique()) except AssertionError: unique_levels = self.df[og_varname].unique() np.place(unique_levels, pd.isna(unique_levels), f'Missing {var}') discrepancies = set(unique_levels).difference(set(order)) raise ValueError( f'{discrepancies} found in levels, not provided in order') i_order = [self.table.index.get_loc(o) for o in order] new_order = list(np.arange(min(i_order))) + i_order + \ list(np.arange(max(i_order) + 1, len(self.table))) self.table = self.table.iloc[new_order] if return_table: return self.table def insert_header(self, name, after): header = pd.DataFrame(pd.Series(['' for _ in range( len(self.table.columns))], index=self.table.columns, name=name)).transpose() idx = self.table.index.get_loc(after) self.table = pd.concat( [self.table.iloc[:idx + 1], header, self.table.iloc[idx + 1:]]) return self.table def insert_total_row(self, adornment='n = ', return_table=True): counts = self.df[self.stratification_var].value_counts(dropna=False) counts[self.overall_colname] = len(self.df) counts = pd.Series( [f'{adornment}{c}' for c in counts], index=counts.index, name='') sum_row =
pd.DataFrame(counts)
pandas.DataFrame
import pandas as pd def convert_nested_to_dataframe(agg, dates_as_key=True): '''A function that takes nested elasticsearch response with aggregation and returns a nested dataframe Warning: This is a recursive function, and rather non-intuitive to understand This function takes nested and crossed aggregations and converts them to an easy to manipulates pandas dataframe e.g. Here we have a gender aggregation nested in year which is nested in state the output we want: state year gender doc_count CA 2000 male 2 CA 2000 female 5 CA 2001 male 5 CA 2001 female 5 CA 2002 male 5 CA 2002 female 5 MN 2000 male 2 MN 2000 female 5 MN 2001 male 5 MN 2001 female 5 MN 2002 male 5 MN 2002 female 5 NY 2000 male 2 NY 2000 female 5 NY 2001 male 5 NY 2001 female 5 NY 2002 male 5 NY 2002 female 5 What we do is step down through all the layers of nested data (recursively) until we reach the end, and from the end, start creating pandas dataframes that get merged back into one giant dataframe this function is in an experimental state, and currently only tested on 3 nested levels, TODO crossed data does not work :param agg: an aggregation from elasticsearch results with nesting :type agg: elasticsearch response.aggregation object :returns: pandas data frame like example above, with nested data ''' crossed_cats_expanded = [] high_level_returning = False agg_as_dict = agg.to_dict() cat_names = [item for item in agg_as_dict.keys() if type(agg_as_dict[item]) is dict] for cat_name in cat_names: # TODO deal with multiple aggregations at the same level (Crossing) expanded_buckets = [] merge_vert = False if not len(getattr(agg, cat_name).buckets): raise ValueError('There is no count data in the lowest level of nesting. Is your search setup correctly?') for bucket in getattr(agg, cat_name).buckets: bucket_as_dict = bucket.to_dict() if dict not in [type(item) for item in bucket_as_dict.values()]: # we are at lowest level, begin return if ('key_as_string' in bucket_as_dict.keys()) and dates_as_key: # change dates to readble format bucket_as_dict['key'] = bucket['key_as_string'] bucket_as_dict.pop('key_as_string') bucket_as_dict[cat_name] = bucket_as_dict.pop( 'key') # change the name of the key to something meaningful expanded_buckets.append(bucket_as_dict) # combine each dict at the lowest level else: # We are at some level other than the lowest level_name = str(bucket.key) # save the name of this level lower_level_return = convert_nested_to_dataframe(bucket) # and drop down into the next level expanded_buckets.append(add_category_labels(level_name, cat_name, lower_level_return)) merge_vert = True if not merge_vert: dataframe_out = pd.DataFrame(expanded_buckets) dataframe_out.rename(columns=lambda x: x.replace('key', cat_name)) crossed_cats_expanded.append(dataframe_out.reset_index(drop=True)) high_level_returning = True if high_level_returning: return
pd.concat(crossed_cats_expanded, axis=1)
pandas.concat
from datetime import date, timedelta, datetime import html from itertools import cycle, chain import logging from typing import Dict, Optional, Sequence, Union, Any import warnings from bokeh.layouts import gridplot, column from bokeh.models import ColumnDataSource as CDS, Text, Title, Label import numpy as np import pandas as pd from pandas.api.types import is_numeric_dtype # TODO FIXME also handle errors? # global error list + plotly like number of errors per plot? def scatter_matrix( df, *, xs: Sequence[str]=None, ys: Sequence[str]=None, width=None, height=None, regression=True, **kwargs, ): assert len(df) > 0, 'TODO handle this' # FIXME handle empty df source = CDS(df) # TODO what about non-numeric stuff? xs = df.columns if xs is None else xs ys = df.columns if ys is None else ys ys = list(reversed(ys)) # reorder to move meaningful stuff to the top left corner isnum = lambda c:
is_numeric_dtype(df.dtypes[c])
pandas.api.types.is_numeric_dtype
# Standard libraries import numpy as np import pandas as pd # Various from sklearn.utils import shuffle from sklearn.model_selection import train_test_split def remove_corrupted_images(df): bad_image_ids = set(1,2,3) if df.ID in bad_image_ids: filter = 0 else: filter = 1 return filter return 1 def clean_data_csv(data_path = "../data/", csv_name = 'stage_1_train.csv',shuffle_data = True): data_raw = pd.read_csv(data_path + csv_name) data_raw['filename'] = data_raw['ID'].apply(lambda x: "ID_" + x.split('_')[1] + ".dcm") data_raw['type'] = data_raw['ID'].apply(lambda x: x.split('_')[2]) data_pivot = data_raw[['Label', 'filename', 'type']].drop_duplicates().pivot( index='filename', columns='type', values='Label').reset_index() if shuffle_data: data = shuffle(data_pivot) else: data = data_pivot data.reset_index(drop=True,inplace=True) data = pd.DataFrame(data,columns = list(data.columns)) return data def balanced_images_all_classes(image_list,n=2500,replace=False,random_state = 12345): image_subset = [ image_list[image_list[category] ==1 ].sample( n=n, replace = replace, random_state = random_state) for category in ['epidural', 'intraparenchymal', 'intraventricular', 'subarachnoid', 'subdural'] ] image_subset.append( image_list[image_list['any'] == 0 ].sample( n=n*5, replace = replace, random_state = random_state) ) image_subset_combined = pd.concat(image_subset).drop_duplicates() image_subset_combined = shuffle(image_subset_combined,random_state = random_state) image_subset_combined.reset_index(drop=True, inplace = True) return image_subset_combined def balanced_images_binary(image_list,n=2500,replace=False,random_state = 12345): image_subset = [image_list[image_list['any'] ==1 ]] image_subset.append( image_list[image_list['any'] == 0 ].sample( n=len(image_subset[0]), replace = replace, random_state = random_state) ) image_subset_combined =
pd.concat(image_subset)
pandas.concat
import pickle #from .retrieve_marks import norm2 import os import _pickle as cPickle #import cache from scipy.interpolate import interp1d import pandas as pd import numpy as np import glob import pprint from scipy.signal import find_peaks chromlength_human =[249250621,243199373,198022430,191154276,180915260,171115067,159138663,146364022, 141213431,135534747,135006516,133851895,115169878,107349540,102531392,90354753,81195210,78077248, 59128983,63025520,48129895,51304566] chromlength_yeast =[230218,813184,316620,1531933,576874,270161,1090940,562643,439888, 745751,666816,1078177,924431,784333,1091291,948066] try: import pyBigWig import gffutils except: print("You may need to install pyBigWig") pp = pprint.PrettyPrinter(indent=2) def smooth(ser, sc): return np.array(pd.Series(ser).rolling(sc, min_periods=1, center=True).mean()) # string,string -> bool,[],res # select a strain and an experimental value and return if available, the files and the resolution # def is_available(strain, experiment): # return True,[],1 ROOT = "../DNaseI/data/" def nan_polate_c(A, kind="linear"): ok = ~np.isnan(A) x = np.arange(len(A)) f2 = interp1d(x[ok], A[ok], kind=kind, bounds_error=False) # print(ok) return f2(x) def is_available_alias(strain, experiment): alias = {"Hela": ["Hela", "HeLaS3", "Helas3"], "Helas3": ["Helas3", "HeLaS3", "Hela"], "GM12878": ["GM12878", "Gm12878"], "Gm12878": ["GM12878", "Gm12878"] } # alias={"Helas3":["HeLaS3","Hela","Helas3"]} if strain not in alias.keys(): avail, files, res = is_available(strain, experiment) else: for strain1 in alias[strain]: avail, files, res = is_available(strain1, experiment) if files != []: if strain1 != strain: print("Using alias %s" % strain1) return avail, files, res return avail, files, res def is_available(strain, experiment): avail_exp = ["MRT", "OKSeq", "OKSeqo", "DNaseI", "ORC2", "ExpGenes", "Faire", "Meth", "Meth450", "Constant", "OKSeqF", "OKSeqR", "OKSeqS", "CNV", "NFR", "MCM", "HMM", "GC", "Bubble","G4","G4p","G4m","Ini","ORC1","AT_20","AT_5","AT_30","RHMM","MRTstd", "RNA_seq","MCMo","MCMp","MCM-beda","Mcm3","Mcm7","Orc2","Orc3"] marks = ['H2az', 'H3k27ac', 'H3k27me3', 'H3k36me3', 'H3k4me1', 'H3k4me2', 'H3k4me3', 'H3k79me2', 'H3k9ac', 'H3k9me1', 'H3k9me3', 'H4k20me1', "SNS"] marks_bw = [m + "wig" for m in marks] Prot = ["Rad21","ORC2"] #print("La") if strain in ["Yeast-MCM"]: lroot = ROOT+"/external/"+strain + "/" resolutions = glob.glob(lroot + "/*") #print(lroot + "/*") resolutions = [r.split("/")[-1] for r in resolutions if "kb" in r] #print(resolutions) if len(resolutions) != 0: exps = glob.glob(lroot + resolutions[0]+"/*") files = []+exps exps = [exp.split("/")[-1][:] for exp in exps if "csv" in exp] print(exps) for iexp,exp in enumerate(exps): if exp == experiment: return True,[files[iexp]],int(resolutions[0].replace("kb","")) if strain in ["Cerevisae"] and experiment =="MCM-beda": lroot = ROOT+"/external/Yeast-MCM-bedalov/" return True,glob.glob(lroot+"/*"),0.001 if experiment not in avail_exp + marks + Prot + marks_bw: print("Exp %s not available" % experiment) print("Available experiments", avail_exp + marks + Prot) return False, [], None if experiment == "Constant": return True, [], 1 if experiment == "MRT": if strain == "Cerevisae": return True, ["/home/jarbona/ifromprof/notebooks/exploratory/Yeast_wt_alvino.csv"], 1 elif strain == "Raji": files = glob.glob(ROOT + "/external/timing_final//*_Nina_Raji_logE2Lratio_w100kbp_dw10kbp.dat" ) return True, files, 10 else: root = ROOT + "/Data/UCSC/hsap_hg19/downloads/ENCODE/wgEncodeUwRepliSeq_V2/compute_profiles/timing_final/" root = ROOT + "/external/timing_final/" extract = glob.glob(root + "/*Rep1_chr10.dat") cells = [e.split("_")[-3] for e in extract] if strain in cells: files = glob.glob(root + "/timing_final_W100kb_dx10kb_%s*" % strain) return True, files, 10 if experiment == "MRTstd": root = ROOT + "/external/Sfrac/" extract = glob.glob(root + "/*Rep1_chr10.dat") cells = [e.split("_")[-3] for e in extract] if strain in cells: files = glob.glob(root + "/Sfrac_HansenNormDenoised_W100kb_dx10kb_%s*" % strain) return True, files, 10 if experiment == "ExpGenes": root = ROOT + "/external/ExpressedGenes/" extract = glob.glob(root + "/*ExpressedGenes_zero.txt") # print(extract) cells = [e.split("/")[-1].replace("ExpressedGenes_zero.txt", "") for e in extract] print(cells) if strain in cells: files = glob.glob(root + "/%sExpressedGenes_zero.txt" % strain) return True, files, 10 if experiment == "RNA_seq": root = ROOT + "external//RNA_seq//" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*Tot") # print(extract) cells = [e.split("/")[-1].split("_")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + "_Tot/*") files.sort() return True, files, 1 if experiment == "NFR": root = ROOT + "/external/NFR/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") return True, extract, 1 if experiment == "Bubble": root = ROOT + "/external/Bubble/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bedgraph") # print(extract) cells = [e.split("/")[-1].split(".bedgraph")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".bedgraph") files.sort() return True, files, 1 #print("IRCRRRRRRRRRRRRRRRRRRRR") if experiment == "ORC1": #print("LA") root = ROOT + "/external/ORC1/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") #print(extract) cells = [e.split("/")[-1].split(".bed")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".bed") files.sort() return True, files, if (experiment in ["Mcm3","Mcm7","Orc2","Orc3"]) and strain =="Raji": return True,glob.glob(ROOT+"/external/nina_kirstein/*_"+experiment+"_G1_1kbMEAN.txt") ,1 if experiment in ["MCM","MCMp"]: #print("LA") if strain != "Hela": return False,[],1 root = ROOT + "/external/MCM2-bed/R1/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.txt") #print(extract) return True, extract, 1 if experiment == "Ini": root = ROOT + "/external/ini/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.csv") # print(extract) cells = [e.split("/")[-1].split(".csv")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".csv") files.sort() return True, files, 1 if experiment == "GC": root = ROOT + "/external//1ColProfiles/*1kbp*" # chr1_gc_native_w1kbp.dat extract = glob.glob(root) return True, extract, 1 if "AT" in experiment: root = ROOT + "/external//AT_hooks/c__%s.csv"%experiment.split("_")[1] # chr1_gc_native_w1kbp.dat extract = glob.glob(root) return True, extract, 5 if experiment == "SNS": root = ROOT + "/external/SNS/" # root = ROOT + "/external/1kb_profiles//" extract = [] if strain in ["K562"]: extract = glob.glob(root + "*.bed") elif strain in ["HeLaS3","Hela","HeLa"]: extract=glob.glob(root + "*.csv") #print("Strain",strain) #print(extract, root) if strain not in ["K562","HeLaS3"]: print("Wrong strain") print("Only K562") return False, [], 1 return True, extract, 1 if experiment == "MCMo": if strain not in ["HeLa", "HeLaS3","Hela"]: print("Wrong strain") print("Only", "HeLa", "HeLaS3") raise root = ROOT + "/external/MCM/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") print(extract, root) return True, extract, 1 if experiment == "MCMbw": if strain not in ["HeLa", "HeLaS3"]: print("Wrong strain") print("Only", "HeLa", "HeLaS3") raise """ root = ROOT + "/external/SNS/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") print(extract, root) return True, extract, 1""" if "G4" in experiment: root = ROOT + "/external/G4/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") print(extract, root) return True, extract, 1 if experiment == "CNV": root = ROOT + "/external/CNV/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.txt") # print(extract) cells = [e.split("/")[-1].split(".txt")[0] for e in extract] cells.sort() if strain in cells: files = glob.glob(root + strain + ".txt") files.sort() #print(files) return True, files, 10 if experiment == "HMM": root = ROOT + "/external/HMM/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") # print(extract) cells = [e.split("/")[-1].replace("wgEncodeBroadHmm", "").replace("HMM.bed", "") for e in extract] cells.sort() if strain in cells: files = glob.glob(root + "wgEncodeBroadHmm%sHMM.bed" % strain) files.sort() # print(files) return True, files, 10 if experiment == "RHMM": root = ROOT + "/external/RHMM/" # root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*.bed") #print(extract) cells = [e.split("/")[-1].replace("RHMM.bed", "") for e in extract] cells.sort() if strain in cells: files = glob.glob(root + "%sRHMM.bed" % strain) files.sort() # print(files) return True, files, 1 if experiment.startswith("OKSeq"): root = ROOT + "/Data/UCSC/hsap_hg19//local/Okazaki_Hyrien/1kb_profiles/" root = ROOT + "/external/1kb_profiles//" extract = glob.glob(root + "*") cells = [e.split("/")[-1] for e in extract] cells.sort() # print(cells) if strain in cells: if experiment == "OKSeqo": files = glob.glob(root + strain + "/*pol*") if experiment == "OKSeqF": files = glob.glob(root + strain + "/*F*") if experiment == "OKSeqR": files = glob.glob(root + strain + "/*R*") if experiment in ["OKSeqS", "OKSeq"]: # print("La") files = glob.glob(root + strain + "/*R*") files += glob.glob(root + strain + "/*F*") files.sort() return True, files, 1 if experiment == "DNaseI": root = ROOT + "/external/DNaseI//" print(root) if strain == "Cerevisae": return True, [root + "/yeast.dnaseI.tagCounts.bed"], 0.001 else: extract = glob.glob(root + "/*.narrowPeak") cells = [e.split("/")[-1].replace("wgEncodeAwgDnaseUwduke", "").replace("UniPk.narrowPeak", "") for e in extract] extract2 = glob.glob(root + "../DNaseIK562/*.narrowPeak") cells2 = [e.split("/")[-1].replace("wgEncodeOpenChromDnase", "").replace("Pk.narrowPeak", "") for e in extract2] extract3 = glob.glob(root + "../DNaseIK562/*.bigWig") cells3 = [e.split("/")[-1].replace("wgEncodeUwDnase", "").replace("Rep1.bigWig", "") for e in extract3] # print(extract2, cells2) extract += extract2 cells += cells2 extract += extract3 cells += cells3 if strain in cells: files = [extract[cells.index(strain)]] return True, files, 0.001 if experiment == "Meth": root = ROOT + "/external/methylation//" extract = glob.glob(root + "*.bed") cells = [e.split("/")[-1].replace(".bed", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 if experiment == "Meth450": root = ROOT + "/external/methylation450//" extract = glob.glob(root + "*.bed") cells = [e.split("/")[-1].replace(".bed", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 if experiment == "Faire": root = ROOT + "/external/Faire//" extract = glob.glob(root + "*.pk") cells = [e.split("/")[-1].replace("UncFAIREseq.pk", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 if experiment in Prot: root = ROOT + "/external/DNaseI//" extract = glob.glob(root + "/*.narrowPeak") cells = [e.split("/")[-1].replace(experiment + "narrowPeak", "") for e in extract] if strain in cells: files = [extract[cells.index(strain)]] return True, files, 1 root = ROOT + "/external/proteins//" extract = glob.glob(root + "/*.csv") cells = [e.split("/")[-1].replace("_ORC2_miotto.csv", "") for e in extract] if strain in cells: files = glob.glob(root + "/%s_ORC2_miotto.csv" % strain) return True, files, 1 if experiment in marks: root = ROOT + "/external/histones//" if experiment == "H2az" and strain == "IMR90": experiment = "H2A.Z" extract = glob.glob(root + "/*%s*.broadPeak" % experiment) #print(extract) if strain not in ["IMR90"]: cells = [e.split("/")[-1].replace("wgEncodeBroadHistone", "").replace("Std", "").replace("%sPk.broadPeak" % experiment, "") for e in extract] # print(extract,cells) if strain in cells: files = glob.glob(root + "/wgEncodeBroadHistone%s%sStdPk.broadPeak" % (strain, experiment)) files += glob.glob(root + "/wgEncodeBroadHistone%s%sPk.broadPeak" % (strain, experiment)) return True, files, 1 else: cells = [e.split("/")[-1].split("-")[0] for e in extract] # print(extract,cells) print("Larr") if strain in cells: files = glob.glob(root + "/%s-%s.broadPeak" % (strain, experiment)) return True, files, 1 if experiment[:-3] in marks: root = ROOT + "/external/histones//" if strain not in ["IMR90"]: extract = glob.glob(root + "/*%s*.bigWig" % experiment[:-3]) # print(extract) cells = [] for c in extract: if "StdSig" in c: cells.append(c.split("/")[-1].replace("wgEncodeBroadHistone", "").replace("%sStdSig.bigWig" % experiment[:-3], "")) else: cells.append(c.split("/")[-1].replace("wgEncodeBroadHistone", "").replace("%sSig.bigWig" % experiment[:-3], "")) # print(extract, cells) if strain in cells: files = glob.glob(root + "/wgEncodeBroadHistone%s%sStdSig.bigWig" % (strain, experiment[:-3])) if files == []: #print("Warning using Sig") files = glob.glob(root + "/wgEncodeBroadHistone%s%sSig.bigWig" % (strain, experiment[:-3])) # print(files) return True, files, 1 else: exp = experiment[:-3] exp = exp.replace("k","K") # from roadmap epi extract = glob.glob(root + "/IMR90_%s*wh.csv" % exp) print(extract) cells = [] return True, extract, 1 print("Available cells") pp.pprint(cells) return False, [], None def re_sample(x, y, start, end, resolution=1000): resampled = np.zeros(int(end / resolution - start / resolution)) + np.nan # print(data) # print(resampled.shape) for p, v in zip(x, y): #print(v) if not np.isnan(v): posi = int((p - start) / resolution) if np.isnan(resampled[min(posi, len(resampled) - 1)]): resampled[min(posi, len(resampled) - 1)] = 0 resampled[min(posi, len(resampled) - 1)] += v if int(posi) > len(resampled) + 1: print("resample", posi, len(resampled)) # raise "Problem" return np.arange(len(resampled)) * resolution + start, resampled def cut_path(start, end, res=1): initpos = 0 + start delta = end - start path = [0 + initpos] def cond(x): return x <= end while (initpos + delta) != int(initpos) and cond(initpos): ddelta = int(initpos) + res - initpos initpos += ddelta ddelta -= initpos path.append(initpos) path[-1] = end if len(path) >= 2 and path[-1] == path[-2]: path.pop(-1) return path def overlap(start, end, res): r = cut_path(start / res, end / res) return [ri * res for ri in r] def overlap_fraction(start, end, res): assert(start <= end) v = np.array(overlap(start, end, res)) deltas = (v[1:] - v[:-1]) / res indexes = np.array(v[:-1] / res, dtype=np.int) return deltas, indexes def create_index_human(strain,exp,resolution=10,root="./"): #chromlength = [248956422] data = {iexp:[] for iexp in exp} for chrom, length in enumerate(chromlength_human, 1): for iexp in exp: data[iexp].append(replication_data(strain, iexp, chromosome=chrom, start=0, end=length // 1000, resolution=resolution)[1]) if iexp == "OKSeq": data[iexp][-1] /= resolution ran = [np.arange(len(dat)) * 1000 * resolution for dat in data[exp[0]]] index = {"chrom": np.concatenate([["chr%i"%i]*len(xran) for i,xran in enumerate(ran,1)]), "chromStart":np.concatenate(ran), "chromEnd":np.concatenate(ran)} print(root) os.makedirs(root,exist_ok=True) pd.DataFrame(index).to_csv(root+"/index.csv",index=False) for iexp in exp: index.update({"signalValue":np.concatenate(data[iexp])}) Df = pd.DataFrame(index) Df.to_csv(root + "/%s.csv" % iexp, index=False) def whole_genome(**kwargs): data = [] def fl(name): def sanit(z): z = z.replace("/", "") return z if type(name) == dict: items = list(name.items()) items.sort() return "".join(["%s-%s" % (p, sanit(str(fl(value)))) for p, value in items]) else: return name redo = kwargs.pop("redo") root = kwargs.get("root", "./") # print("ic") if "root" in kwargs.keys(): # print("la") kwargs.pop("root") name = root + "data/saved/"+fl(kwargs) if os.path.exists(name) and not redo: with open(name, "rb") as f: return cPickle.load(f) strain = kwargs.pop("strain") experiment = kwargs.pop("experiment") resolution = kwargs.pop("resolution") for chrom, length in enumerate(chromlength_human, 1): data.append(replication_data(strain, experiment, chromosome=chrom, start=0, end=length//1000, resolution=resolution, **kwargs)[1]) if len(data[-1]) != int(length / 1000 / resolution - 0 / resolution): print(strain, experiment, len(data[-1]), int(length / 1000 / resolution - 0 / resolution)) raise with open(name, "wb") as f: cPickle.dump(data, f) return data def replication_data(strain, experiment, chromosome, start, end, resolution, raw=False, oData=False, bp=True, bpc=False, filename=None, pad=False, smoothf=None, signame="signalValue"): marks = ['H2az', 'H3k27ac', 'H3k27me3', 'H3k36me3', 'H3k4me1', 'H3k4me2', 'H3k4me3', 'H3k79me2', 'H3k9ac', 'H3k9me1', 'H3k9me3', 'H4k20me1'] if experiment != "" and os.path.exists(experiment): filename = experiment if os.path.exists(strain) and strain.endswith("csv"): #print(strain) data=pd.read_csv(strain) #print(len(data)) sub = data[data.chrom==chromosome][experiment] y = np.array(sub[int(start/resolution):int(end/resolution)]) print("Sizes",chromosome,len(sub),int(end/resolution)) return (np.arange(len(y))*resolution + start)*1000,y #chn = list(set(data.chr)) if experiment.endswith("weight"): from repli1d.retrieve_marks import norm2 with open(experiment, "rb") as f: w = pickle.load(f) if len(w) == 4: [M, S, bestw, Exp] = w normed = False else: [M, S, bestw, Exp, normed] = w if normed: smark = replication_data(chromosome=chromosome, start=start, end=end, strain=strain, experiment="CNV", resolution=resolution, raw=False, oData=False, bp=True, bpc=False, filename=None)[1] smark[smark == 0] = 4 smark[np.isnan(smark)] = 4 CNV = smark Signals = {} for mark in Exp: if "_" in mark: markn, smoothf = mark.split("_") smoothf = int(smoothf) else: markn = mark smark = replication_data(chromosome=chromosome, start=start, end=end, strain=strain, experiment=markn, resolution=resolution, raw=False, oData=False, bp=True, bpc=False, filename=None)[1] if normed: smark /= CNV if mark != "Constant": Signals[mark] = norm2(smark, mean=M[mark], std=S[mark], cut=15)[0] else: Signals[mark] = smark if smoothf is not None: Signals[mark] = smooth(Signals[mark], smoothf) # print(bestw) if type(bestw[0]) in [list, np.ndarray]: comp = [bestw[0][i]*(-1+2/(1+np.exp(-bestw[1][i]*(Signals[iexp]-bestw[2][i])))) for i, iexp in enumerate(Exp)] else: comp = np.array([bestw[i] * Signals[iexp] for i, iexp in enumerate(Exp)]) y = np.sum(comp, axis=0) y[y < 0] = 0 x = np.arange(len(y))*resolution + start return x, y # print(smark) if filename is None: avail, files, resolution_experiment = is_available_alias(strain, experiment) if not avail: return [], [] else: print("Filename", filename) avail = True files = [filename] resolution_experiment = 0.001 if filename.endswith("bigWig") or filename.endswith("bw"): cell = pyBigWig.open(files[0]) if "chrI" in cell.chroms().keys(): print("Yeast") #print(cell.chroms()) from repli1d.tools import int_to_roman #print(int(chromosome)) chromosome = int_to_roman(int(chromosome)) if end is None: end = int(cell.chroms()['chr%s' % str(chromosome)] / 1000) #print(start * 1000, end * 1000, int((end - start) / (resolution))) #Check the end: endp = end smaller =False if end > cell.chroms()["chr%s" % str(chromosome)]/1000: print("Warning index > end ch") endp = int(cell.chroms()["chr%s" % str(chromosome)] /1000) smaller = True v = [np.nan if s is None else s for s in cell.stats( "chr%s" % str(chromosome), start * 1000, endp * 1000, nBins=int((endp - start) / resolution))] if not smaller: return np.arange(start, end + 100, resolution)[: len(v)], np.array(v) else: x = np.arange(start, end + 0.1, resolution) y = np.zeros_like(x) + np.nan y[:len(v)] = np.array(v) return x[:end], y[:end] if filename.endswith("narrowPeak"): index = ["chrom", "chromStart", "chromEnd", "name", "score", "strand", "signalValue", "pValue", "qValue", "peak"] chro = str(chromosome) strain = pd.read_csv(files[0], sep="\t", names=index) data = strain[(strain.chrom == "chr%s" % chro) & ( strain.chromStart > 1000 * start) & (strain.chromStart < 1000 * end)] if oData: return data x = np.array(data.chromStart / 2 + data.chromEnd / 2) / 1000 # kb y = np.array(data.signalValue) return re_sample(x, y, start, end, resolution) if filename.endswith("bed"): index = ["chrom", "chromStart", "chromEnd", "name", "score", "strand", "signalValue", "pValue", "qValue", "peak"] chro = str(chromosome) strain = pd.read_csv(files[0], sep="\t", names=index) if "chrI" in set(strain["chrom"]): print("Yeast") # print(cell.chroms()) from repli1d.tools import int_to_roman # print(int(chromosome)) chro = int_to_roman(int(chromosome)) #print(strain) data = strain[(strain.chrom == "chr%s" % chro) & ( strain.chromStart > 1000 * start) & (strain.chromStart < 1000 * end)] #print("La") #print(data) if oData: return data x = np.array(data.chromStart / 2 + data.chromEnd / 2) / 1000 # kb y = np.array(data.signalValue) y = np.ones_like(x) #print(y) return re_sample(x, y, start, end, resolution) if filename.endswith("tagAlign"): index = ["chrom", "chromStart", "chromEnd", "N", "signalValue","pm"] chro = str(chromosome) strain = pd.read_csv(files[0], sep="\t", names=index) data = strain[(strain.chrom == "chr%s" % chro) & ( strain.chromStart > 1000 * start) & (strain.chromStart < 1000 * end)] if oData: return data x = np.array(data.chromStart / 2 + data.chromEnd / 2) / 1000 # kb y = np.array(data.signalValue) / 1000 # because the value is 1000 ? return re_sample(x, y, start, end, resolution) if filename.endswith("csv"): #index = ["chrom", "chromStart", "chromEnd", "signalValue"] chro = str(chromosome) # print(files[0]) strain = pd.read_csv(files[0], sep="\t") #print(strain.mean()) #print(strain) #tmpl = "chr%s" f = 1000 #Needed because start is in kb if "chrom" not in strain.columns: strain = pd.read_csv(files[0], sep=",") # print(strain) #tmpl = "chrom%s" f = 1000 # strain.chrom # sanitize chrom: def sanitize(ch): if type(ch) == int: return "chr%s"%ch if type(ch) == str: if "chrom" in ch: return ch.replace("chrom","chr") if (not "chr" in ch) and (not "chrom" in ch): return "chr%s"%ch return ch strain["chrom"] = [sanitize(ch) for ch in strain["chrom"]] #print(strain) #print(strain.describe()) #print(strain.head()) #print( tmpl % chro) #print("F",f) data = strain[(strain.chrom == chro) & ( strain.chromStart >= f * start) & (strain.chromStart < f * end)] #print("Warning coold shift one") #print("Data",len(data)) #print(f) #print(data) if oData: return data x = np.array(data.chromStart / 2 + data.chromEnd / 2) #/ f # kb if signame == "signalValue" and signame not in data.columns: if "signal" in data.columns: signame = "signal" print("Warning changing signalValue to signal") y = np.array(data[signame]) #print(y) #print(x[:10]) #print(y[:10]) #print(start,end) #print(chro,np.mean(y),len(y)) return re_sample(x, y, start * f, end * f, resolution*f) # print(files) assert(type(files) == list) if strain in ["Yeast-MCM"]: #print(files[0]) index = "/".join(files[0].split("/")[:-1]) + "/index.csv" index = pd.read_csv(index,sep="\t") strain = index exp = pd.read_csv(files[0]) if len(index) != len(exp): raise ValueError("Wrong size of indexing %i %i"%(len(index) , len(exp))) strain["signal"] = exp if "Yeast" in strain: from repli1d.tools import int_to_roman chro = int_to_roman(int(chromosome)) else: chro = chromosome data = strain[(strain.chrom == "chr%s" % chro) & ( strain.chromStart > 1000*start) & (strain.chromStart < 1000*end)] #print(data) x = np.array(data.chromStart / 2 + data.chromEnd / 2) / 1000 # kb y = np.array(data.signal) if raw: return x, y else: return re_sample(x, y, start, end, resolution) if experiment in ["MCM","MCMp"]: #print(chromosome) files = [f for f in files if "chr%i."%chromosome in f] #print(files) files += [f.replace("R1","R2") for f in files] #print(files) data = np.sum([np.array(pd.read_csv(f))[:,0] for f in files],axis=0) x = np.arange(len(data)) # kb sub = (x> start) & (x < end) x=x[sub] y = np.array(data[sub],dtype=np.float) x,y = re_sample(x, y, start, end, resolution) if experiment == "MCMp": print(np.nanpercentile(y,50)) peaks, _ = find_peaks(y / np.nanpercentile(y,50),width=1,prominence=1.) peaksa = np.zeros_like(y,dtype=np.bool) for p in peaks: peaksa[p]=True print(len(y),len(peaks),"Peaks") y[~peaksa]=0 #raise "NT" return x,y if experiment == "DNaseI": if strain == "Cerevisae": index = ["chrom", "chromStart", "chromEnd", "name", "signalValue"] print(files[0]) strain = pd.read_csv(files[0], sep="\t", names=index) chro = str(chromosome) if oData: return strain data = strain[(strain.chrom == "chr%s" % chro) & ( strain.chromStart > 1000 * start) & (strain.chromStart < 1000 * end)] x = np.array(data.chromStart / 2 + data.chromEnd / 2) / 1000 # kb y = np.array(data.signalValue) else: index = ["chrom", "chromStart", "chromEnd", "name", "score", "strand", "signalValue", "pValue", "qValue", "peak"] chro = str(chromosome) if files[0].endswith("narrowPeak"): strain = pd.read_csv(files[0], sep="\t", names=index) data = strain[(strain.chrom == "chr%s" % chro) & ( strain.chromStart > 1000 * start) & (strain.chromStart < 1000 * end)] if oData: return data x = np.array(data.chromStart / 2 + data.chromEnd / 2) / 1000 # kb y = np.array(data.signalValue) else: cell = pyBigWig.open(files[0]) if end is None: end = cell.chroms()['chr%s' % str(chro)] v = [np.nan if s is None else s for s in cell.stats( "chr%s" % str(chro), start * 1000, end * 1000, nBins=int(end - start) // (resolution))] return np.arange(start, end + 100, resolution)[: len(v)], np.array(v) if experiment == "Faire": index = ["chrom", "chromStart", "chromEnd", "name", "score", "strand", "signalValue", "pValue", "qValue", "peak"] chro = str(chromosome) strain = pd.read_csv(files[0], sep="\t", names=index) data = strain[(strain.chrom == "chr%s" % chro) & ( strain.chromStart > 1000 * start) & (strain.chromStart < 1000 * end)] if oData: return data x = np.array(data.chromStart / 2 + data.chromEnd / 2) / 1000 # kb y = np.array(data.signalValue) if "MCM-beda" in experiment: #print(files[0]) strain = pd.read_csv(files[0],sep="\t") #strain.MCM = smooth(strain.MCM2_ChEC) chromosome = {1: "I", 2: "II", 3: "III", 4: "IV", 5: "V", 6: "VI", 7: "VII", 8: "VIII", 9: "IX", 10: "X", 11: "XI", 12: "XII", 13: "XIII", 14: "XIV", 15: "XV", 16: "XVI"}[chromosome] #print(chromosome) #print(strain) data = strain[(strain.chr == "chr%s" % chromosome) & ( strain.coord > 1000 * start) & (strain.coord < 1000 * end)] #print(data) if oData: return data x = np.array(data.coord) / 1000 # kb #y = np.array(data.cerevisiae_MCM2ChEC_rep1_library_fragment_size_range_51bpto100bp) y = np.array(data.cerevisiae_MCM2ChEC_rep1_library_fragment_size_range_all) if "G4" in experiment: index = ["chrom", "chromStart", "chromEnd"] chro = str(chromosome) if "p" in experiment: ip = np.argmax(["plus" in f for f in files]) print(files[ip],) strain =
pd.read_csv(files[ip], sep="\t", names=index)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Mar 3 11:22:03 2021 @author: Simon """ # import necessary packages import pandas as pd import time import networkx as nx import pickle import os import numpy from selenium import webdriver from selenium.webdriver.chrome.options import Options from difflib import SequenceMatcher options = Options() options.add_argument("--window-size=1920,1200") driver_p = r'C:\Users\Simon\Downloads\chromedriver' driver = webdriver.Chrome(executable_path = driver_p) driver2 = webdriver.Chrome(executable_path = driver_p) # the leagues and tournaments that were scraped # all the MAIN tournaments and their challenger/academy leagues # LCS + NA Academy League URL_LCS = 'https://lol.gamepedia.com/League_Championship_Series' # LEC + European Masters URL_LEC = 'https://lol.gamepedia.com/LoL_European_Championship' # LCK URL_LCK = 'https://lol.gamepedia.com/League_of_Legends_Champions_Korea' # LPL URL_LPL = 'https://lol.gamepedia.com/LoL_Pro_League' # CBLOL URL_CBLOL = 'https://lol.gamepedia.com/Circuit_Brazilian_League_of_Legends' # OPL (Oceanic Pro League) URL_OPL = 'https://lol.gamepedia.com/Oceanic_Pro_League' # PCL (Pacific Championship Series) URL_PCS = 'https://lol.gamepedia.com/Pacific_Championship_Series' # TCL (Turkish Champion League) URL_TCL = 'https://lol.gamepedia.com/Turkish_Championship_League' # VCS (Vietnam League) URL_VCS = 'https://lol.gamepedia.com/VCS_A/2017_Season' # LMS (League of Legends Master Series) Disbanded (Taiwan, Hong Kong, and Macao) URL_LMS = 'https://lol.fandom.com/wiki/League_of_Legends_Master_Series' #national_leagues = {} #national_leagues['LCS/North America'] = URL_LCS # done #national_leagues['LEC/Europe'] = URL_LEC # done #national_leagues['LCK/South Korea'] = URL_LCK #national_leagues['LPL/China'] = URL_LPL #national_leagues['CBLOL/Brazil'] = URL_CBLOL #national_leagues['OPL/Oceania'] = URL_OPL #national_leagues['PCS/PCS'] = URL_PCS #national_leagues['TCL/Turkey'] = URL_TCL #national_leagues['VCS/Vietnam'] = URL_VCS #national_leagues['LMS/Taiwan + Hong Kong + Macao'] = URL_LMS # LCL (LoL Continental League) # special case URL_LCL = 'https://lol.gamepedia.com/League_of_Legends_Continental_League' # LJL (LoL Japan League) # special case URL_LJL = 'https://lol.gamepedia.com/League_of_Legends_Japan_League' # LL (Liga Latinoamerica) # special case URL_LL = 'https://lol.gamepedia.com/Liga_Latinoam%C3%A9rica' # LST (League of Legends SEA Tour) URL_LST = 'https://lol.fandom.com/wiki/League_of_Legends_SEA_Tour' #minor_leagues = {} #minor_leagues['LCL/Russia'] = URL_LCL #minor_leagues['LJL/Japan'] = URL_LJL #minor_leagues['LL/Latin America'] = URL_LL #minor_leagues['LST/Southeast Asia'] = URL_LST # MSI (Mid Season Invitationals) URL_MSI = 'https://lol.fandom.com/wiki/Mid-Season_Invitational' # Worlds (World Championships) URL_WORLDS = 'https://lol.fandom.com/wiki/World_Championship' # IEM (Intel Extreme Masters) + ISL URL_IEM = 'https://lol.gamepedia.com/Intel_Extreme_Masters' #national_tourn = {} #national_tourn['MSI'] = URL_MSI #national_tourn['WORLDS'] = URL_WORLDS #national_tourn['IEM'] = URL_IEM def getSeasonData(URL, name_region, special_case = False, MSI_WORLDS = False, IEM = False): if name_region == 'LCL/Russia' or name_region == 'LJL/Japan' or name_region == 'LL/Latin America' or name_region == 'LST/Southeast Asia': special_case = True if name_region == 'MSI' or name_region == 'WORLDS': MSI_WORLDS = True if name_region == 'IEM': IEM = True # get the webpage from the link driver.get(URL) # some pages could only be scraped by looking at the wikitable if special_case: competitions = driver.find_elements_by_class_name('wikitable') # other pages looking at the hlist would do else: competitions = driver.find_elements_by_class_name('hlist') # get all the hyperlinks to all competitions # MSI and the Worlds tournaments had a different page setup and required more execution if MSI_WORLDS: pre_links = [] # the first two loops acquired all the years of that tournament (2012-2021) for i in [competitions[2]]: a_list = i.find_elements_by_tag_name('a') for j in a_list: pre_links.append(j.get_attribute('href')) # these two loops acquired the (sub)-tournaments within that tournament # e.g. play-ins and the main event links = [] for link in pre_links: driver.get(link) rosters_present = driver.find_elements_by_class_name('tabheader-top') if rosters_present: rosters_present = rosters_present[0] if 'Team Rosters' in rosters_present.text: links.append(link) else: a_list = rosters_present.find_elements_by_tag_name('a') for m in a_list: links.append(m.get_attribute('href')) else: # IEM was another special case if IEM: links = [] for i in competitions: a_list = i.find_elements_by_tag_name('a') for j in a_list: links.append(j.get_attribute('href')) # any other tournament could be scraped using this bottom code else: links = [] for i in competitions[0:2]: a_list = i.find_elements_by_tag_name('a') for j in a_list: links.append(j.get_attribute('href')) # initialize an empty dataframe, empty edge list, empty collection of gamer tags and player names teams_df = pd.DataFrame() edge_list = pd.DataFrame(columns = ['From', 'To', 'n_played']) gamer_tags = [] player_names = [] # initialize an empty meta dataframe meta_data = pd.DataFrame(columns = ['gamer_tag', 'full_name', 'role', 'residency', 'country', 'team']) # start the timer start_time = time.time() # go over every hyperlink (every tournament) for link in links: # go over every possible team, number from 1 to 30, (max is 17 I believe but just incase) for team_no in range(1, 30): team_links = link + "/" + "Team_Rosters?action=edit&section=" + str(team_no) # try except block incase something goes wrong, sometimes data entry is faulty try: # get the page of the team in that specific tournament driver.get(team_links) # get the box of text with the desired content textboxs = driver.find_elements_by_class_name('mw-editfont-default') # turn it into clean text if textboxs: clean_text = textboxs[-1].text skip_crawl_list = ['== League 1 ==', '== League 2 ==', '== League 3 ==', '== League 4 ==', '==Group A==', '==Group B==', '==Group C==', '==Group D==', '==Group E==', '==Group F==', '==Group Stage=='] skip_this_one = False for i in skip_crawl_list: if i in clean_text: skip_this_one = True if skip_this_one: continue if '<!--' and '-->' in clean_text: text_to_repl = str(clean_text.partition('<!--')[2].partition('-->')[0]) clean_text = clean_text.replace('<!--' + text_to_repl + '-->', '') # check if the page exists, if it doesn't then it asks you to login to create the page # or says that you don't have permission # if this is the case then ignore this 'tournament' as it is not a tournament login_req_page = driver.find_elements_by_class_name('firstHeading') break_main = False for header in login_req_page: if header.text == 'Login required' or header.text == 'Permission error': break_main = True break if break_main: break if textboxs: team_name = None # extract the team name team_name = str(clean_text.partition("{{team|")[2].partition("}}")[0]) # get the lines that contain player info players = [] # add a counter incase data entry is irregular and the code doesn't know it should be done cnt = 0 while 'name=' in clean_text or '{|class="sortable wikitable"' in clean_text: if 'ExtendedRosterLine' in clean_text: players.append(clean_text.partition("{{ExtendedRosterLine")[2].partition("}}")[0]) clean_text = clean_text.replace("{{ExtendedRosterLine" + players[-1] + "}}", "") if 'RosterLineOld' in clean_text: players.append(clean_text.partition("{{RosterLineOld")[2].partition("}}")[0]) clean_text = clean_text.replace("{{RosterLineOld" + players[-1] + "}}", "") cnt += 1 if cnt > 100: break players = list(set(players)) # get their gamer tag and actual name player_tags = [] for i in range(len(players)): gamer_tag = players[i].partition("|player=")[2].partition("|")[0] name = players[i].partition("|name=")[2].partition("|")[0] # remove unnecessary spaces gamer_tag = " ".join(gamer_tag.split()) name = " ".join(name.split()) # go over all the extracted player names for n in range(len(player_names)): # if we have a full match then use the name we have if name == player_names[n]: name = player_names[n] gamer_tag = gamer_tags[n] break # only add gamer tag and player name to the big list if the name isn't already in there if name not in player_names: gamer_tags.append(gamer_tag) player_names.append(name) player_tags.append(gamer_tag + " (" + name + ")") # meta data df order: list(['gamer_tag', 'full_name', 'role', 'residency', 'country']) if players: role = " ".join(players[i].partition("|role=")[2].partition("|")[0].split()) residency = " ".join(players[i].partition("|res=")[2].partition("|")[0].split()) country = " ".join(players[i].partition("|flag=")[2].partition("|")[0].split()) if 'role1' in players[i]: role1 = " ".join(players[i].partition("|role1=")[2].partition("|")[0].split()) role2 = " ".join(players[i].partition("|role2=")[2].partition("|")[0].split()) role = role1 + '/' + role2 temp_df = {'gamer_tag' : gamer_tag, 'full_name' : name, 'role' : role, 'residency' : residency, 'country' : country, 'team' : team_name} meta_data = meta_data.append(temp_df, ignore_index = True) # add new data to an existing team name column if the column already exists if team_name and player_tags: if team_name in teams_df.columns: temp_df = pd.DataFrame() temp_df[team_name] = pd.Series(player_tags) temp_df[team_name] = temp_df[team_name].astype(str) teams_df = teams_df.merge(temp_df, left_on = team_name, right_on = team_name, how = 'outer') # add the team to the dataframe if it isn't in there else: teams_df[team_name] = pd.Series(player_tags) # extract the info about players having played a match together matching_play_matrix = pd.DataFrame(columns = list(player_tags)) for i in range(len(players)): if 'r1=' in players[i]: # sometimes there are two designated roles for a single player role1_list = list(" ".join(players[i].partition("|r1=")[2].partition("|")[0].replace(',', '')).split()) role2_list = list(" ".join(players[i].partition("|r2=")[2].partition("|")[0].replace(',', '')).split()) role_full_list = [] # if there are 2 roles then the role lists must be merged if role2_list: if len(role1_list) != len(role2_list): if len(role1_list) > len(role2_list): role1_list = role1_list[0:len(role2_list)] else: role2_list = role2_list[0:len(role1_list)] for y_n in range(len(role1_list)): if role1_list[y_n] == 'y' or role2_list[y_n] == 'y': role_full_list.append('y') # if only r1 exists then we use that else: role_full_list = role1_list matching_play_matrix[player_tags[i]] = pd.Series(role_full_list) players[i] = players[i].replace("|r1=" + player_tags[i] + "}}", "") players[i] = players[i].replace("|r2=" + player_tags[i] + "}}", "") else: matching_play_matrix[player_tags[i]] = pd.Series(list(" ".join(players[i].partition("|r=")[2].partition("|")[0].replace(',', '')).split())) # remove duplicates matching_play_matrix = matching_play_matrix.T.groupby(level=0).first().T # go over every person twice (for each person match that person with an other person on the same team) columns_mat = list(matching_play_matrix.columns) for i in range(len(columns_mat)): for j in range(i, len(columns_mat)): # skip if the person is matching with him/herself if i != j: # go over every match in the match list for k in range(len(matching_play_matrix[columns_mat[j]])): try: # if they both have a 'y' then it means they played together if matching_play_matrix[columns_mat[i]][k] == 'y' and matching_play_matrix[columns_mat[j]][k] == 'y': # create a tuple tup = [columns_mat[i], columns_mat[j]] if (((edge_list['From'] == tup[0]) & (edge_list['To'] == tup[1])).any() == False) and (((edge_list['From'] == tup[1]) & (edge_list['To'] == tup[0])).any() == False): edge_list.loc[len(edge_list) + 1] = [tup[0], tup[1], 1] # if it does exist then we increase the count else: # check if the edge exists temp = edge_list.loc[(edge_list['From'] == tup[0]) & (edge_list['To'] == tup[1])] if len(temp) == 1: edge_list.loc[temp.index[0]]['n_played'] += 1 # if the edge doesnt exist then maybe the reverse edge exists elif len(temp) == 0: temp = edge_list.loc[(edge_list['From'] == tup[1]) & (edge_list['To'] == tup[0])] edge_list.loc[temp.index[0]]['n_played'] += 1 except IndexError: print(team_links) continue except Exception as e: print(e) print(team_links) # remove unnecessary nan values that make the df longer teams_df = teams_df.apply(lambda x: pd.Series(x.dropna().values)) # remove duplicate rows in meta data meta_data = meta_data.drop_duplicates() # add the name of the region as a column edge_list['Region'] = name_region filehandler = open('C:/Users/Simon/OneDrive/Documents/GitHub/LeagueTeamsNetwork/' + name_region.split('/')[0] + '.pckl', 'wb') pickle.dump([edge_list, teams_df, meta_data], filehandler) filehandler.close end_time = time.time() print("Extracting tournament info took: ", round(end_time - start_time, 4), " seconds.") print("") return edge_list, teams_df, meta_data # testing line to see if everything works edge_list, teams_df, meta_data = getSeasonData(national_leagues['LCK/South Korea'], 'LCK/South Korea') # 3 loops for the different leagues and tournaments for nat_league in national_leagues: edge_list, teams_df, meta_data = getSeasonData(national_leagues[nat_league], nat_league) for min_league in minor_leagues: edge_list, teams_df, meta_data = getSeasonData(minor_leagues[min_league], min_league) for nat_tourn in national_tourn: edge_list, teams_df, meta_data = getSeasonData(national_tourn[nat_tourn], nat_tourn) # concatenating all edge lists, meta data and teams data path = 'C:/Users/Simon/OneDrive/Documents/GitHub/LeagueTeamsNetwork/' all_pickles = os.listdir(path) long_edge_list = pd.DataFrame(columns = ['From', 'To', 'n_played', 'Region']) long_teams_df = pd.DataFrame() long_meta_data = pd.DataFrame(columns = ['gamer_tag', 'full_name', 'role', 'residency', 'country', 'team']) # go over all the pickles for i in all_pickles: if i[-5:] == '.pckl': # drop IEM, too much missing data and incorrect data collection if (i != 'seen_names.pckl') and (i != 'IEM.pckl'): file = open(path + i, 'rb') file_content = pickle.load(file) file.close long_edge_list = long_edge_list.append(file_content[0], ignore_index = True) # add new data to an existing team name column if the column already exists for j in file_content[1].columns: if j in long_teams_df.columns: temp_df = pd.DataFrame() temp_df[j] = pd.Series(file_content[1][j]) temp_df = temp_df.append(pd.DataFrame(long_teams_df[j])).dropna().drop_duplicates() long_teams_df[j] = pd.Series(list(temp_df[j])) else: long_teams_df[j] = pd.Series(file_content[1][j]) long_meta_data = long_meta_data.append(file_content[2], ignore_index = True) # make sure there are no nan values long_meta_data.fillna('', inplace = True) # clean up the meta data information, can check for redundancies in the role residency and country def removeRedundancies(df, column, collection, lower = False): # print out the unique column entries print(set(df[column])) # loop over all the entries in the column for i in range(len(df[column])): # and all the keys in the collection for j in collection: # and all the values belonging to that key for k in collection[j]: # ensure that it is a string, sometimes nan still pops up if isinstance(df[column][i], str): if isinstance(k, str): if df[column][i].lower() == k.lower(): df[column][i] = j else: if df[column][i] == k: df[column][i] = j # there may be a dual role, this will occur if there is a '/' present # only will happen in the role column which will have 'Top' in the collection if '/' in df[column][i] and 'Top' in collection: first_role = df[column][i].split('/')[0] second_role = df[column][i].split('/')[1] # only acquire a role if it is not empty if first_role != '': for j in collection: for k in collection[j]: if first_role.lower() == k.lower(): first_role = j if second_role != '': for j in collection: for k in collection[j]: if second_role.lower() == k.lower(): second_role = j full_dual_role = first_role + '/' + second_role df[column][i] = full_dual_role else: df[column][i] = first_role if lower: df[column][i] = df[column][i].lower() # we have to go over the column again in case there are duplicate entries as stated below if 'Top' in collection: # if the reverse role already exists e.g. full_dual_role = 'Support/Coach' # and 'Coach/Support' already exists then we also make this entry 'Coach/Support' for i in range(len(df[column])): if '/' in df[column][i]: # reverse the role reverse_role = (df[column][i].split('/')[1] + '/' + df[column][i].split('/')[0]) if reverse_role in set(df[column][0:i]): df[column][i] = reverse_role print() print(set(df[column])) # collection of role entries that have to be standardized role_coll = {} role_coll['Top'] = ['Top <!--Played as "Yoyo" for the first three rounds-->', 'Top', 't', 'toplane', 'Top <!--李东秀-->', 'Top <!--Played as "noko" in Round 2-->', 'Sub/Top', 'Top Laner', 'top lane'] role_coll['Jungle'] = ['Sub/Jungle', 'Jungle', 'j', 'Jungle <!--申岷升-->', 'J', 'Jungler'] role_coll['Mid'] = ['Mid', 'm', 'Sub/Mid', 'Mid Laner', 'Midlane', 'AP'] role_coll['Ad Carry'] = ['Sub/AD', 'Bot Laner', 'b', 'A', 'Bot', 'AD', 'AD Carry', 'adc'] role_coll['Support'] = ['Support', 'Sub/Support', 'sup', 'S', 'Support <!--Played as "ADC" for the first two rounds-->'] role_coll['Coach'] = ['c', 'C', 'c--> {{ExtendedRosterEnd', 'Coach', 'Assistant Coach', 'Head Coach', 'Strategic Coach', 'coach'] role_coll['Substitute'] = ['Sub', 'sub', 'Substitute'] role_coll['Unknown'] = [''] role_coll['Top/Ad Carry'] = ['Top, AD'] role_coll['Top/Mid'] = ['Top, AP'] removeRedundancies(long_meta_data, 'role', role_coll) # collection of region entries that have to be standardized resid_coll = {} resid_coll['Unknown/None'] = ['', 'Unrecognized Region', '??', 'None', 'Unknown', 'nan', numpy.nan] resid_coll['North America'] = ['North America', 'Oceania', 'OCE', 'NA'] resid_coll['Europe'] = ['Europe', 'EU'] resid_coll['South Korea'] = ['South Korea','KR', 'Korea'] resid_coll['China'] = ['CN', 'China'] resid_coll['PCS (Pacific Championship Series)'] = ['PCS', 'Taiwan', 'Taiwan, Hong Kong, and Macao', 'LMS', 'tw', 'SEA', 'TW', 'Southeast Asia'] resid_coll['Brazil'] = ['BR', 'Brazil'] resid_coll['CIS (Commonwealth of Independent States)'] = ['CIS', 'ru', 'Commonwealth of Independent States'] resid_coll['Japan'] = ['Japan', 'JP'] resid_coll['Latin America'] = ['LAT', 'Latin America', 'LAS', 'LAN'] resid_coll['Turkey'] = ['TR', 'Turkey'] resid_coll['Vietnam'] = ['vyn', 'Vietnam', 'VN'] removeRedundancies(long_meta_data, 'residency', resid_coll) # collection of country entries that have to be standardized # not all countries were standardized country_coll = {} country_coll['China'] = ['China', 'CN', 'cn<!--assumed-->'] country_coll['South Korea'] = ['South Korea', 'Korea', 'KR'] country_coll['Germany'] = ['Germany', 'DE'] country_coll['United Kingdom'] = ['UK', 'United Kingdom'] country_coll['Belgium'] = ['BE', 'Belgium'] country_coll['Netherlands'] = ['Netherlands', 'NL'] country_coll['Vietnam'] = ['Vietnam', 'VN'] country_coll['United States'] = ['United States', 'us', 'usa'] country_coll['Denmark'] = ['Denmark', 'dk'] country_coll['Brazil'] = ['Brazil', 'BR'] country_coll['France'] = ['France', 'FR'] country_coll['Italy'] = ['Italy', 'IT'] country_coll['New Zealand'] = ['NZ', 'New Zealand'] country_coll['Canada'] = ['CA', 'Canada'] country_coll['Sweden'] = ['Sweden'] country_coll['Unknown'] = ['Unknown', 'none', numpy.nan, ''] removeRedundancies(long_meta_data, 'country', country_coll, lower = True) # drop the duplicates long_meta_data = long_meta_data.drop_duplicates() long_meta_data = long_meta_data.reset_index(drop=True) long_meta_data.fillna('', inplace = True) # save as csv #path = 'C:/Users/Simon/OneDrive/Documents/GitHub/LeagueTeamsNetwork/' #long_meta_data.to_csv(path_or_buf = path + 'meta_data.csv', index = False) #long_teams_df.to_csv(path_or_buf = path + 'teams_data.csv', index = False) #long_edge_list.to_csv(path_or_buf = path + 'final_edge_list.csv', index = False) ############################################################################################ # start the cleaning process of the edge list path = 'C:/Users/Simon/OneDrive/Documents/GitHub/LeagueTeamsNetwork/' # originals #edge_list = pd.read_csv(path + 'final_edge_list.csv') #edge_list = edge_list.reset_index(drop = True) #teams_df = pd.read_csv(path + 'teams_data.csv') #teams_df = teams_df.reset_index(drop = True) #meta_data = pd.read_csv(path + 'meta_data.csv') #meta_data.fillna('', inplace = True) #meta_data = meta_data.reset_index(drop = True) # new ones that are semi-cleaned edge_list = pd.read_csv(path + 'final_refined_edge_list.csv') edge_list = edge_list.reset_index(drop = True) teams_df = pd.read_csv(path + 'final_teams_data.csv') teams_df = teams_df.reset_index(drop = True) meta_data = pd.read_csv(path + 'final_meta_data.csv') meta_data.fillna('', inplace = True) meta_data = meta_data.reset_index(drop = True) # a similarity metric for strings, used for names here def similarity(s1, s2): return SequenceMatcher(None, s1, s2).ratio() def evaluateDuplicates(edge_list, meta_deta, teams_df, save = True, check_full_name = False, check_gamer_tag = False): # load a pickle that contains information about which names we have already compared file = open(r'C:\Users\Simon\OneDrive\Documents\GitHub\LeagueTeamsNetwork\seen_names.pckl', 'rb') seen_list = pickle.load(file) file.close # get a regular list from the edge list dataframe edge_list_nondf = edge_list.values.tolist() # turn the edge list into a graph so we can get a list of nodes G = nx.Graph() for i in edge_list_nondf: nx.add_path(G, (i[0], i[1])) node_list = list(G.nodes()) # start the timer start_time = time.time() # go over all the nodes and find new instances of dual players empty_dict = {} for i in range(len(node_list)): if i % 1000 == 0: print('I am at' + str(i)) print('This took me this long', round(time.time() - start_time, 4)) for j in range(i, len(node_list)): if i != j: # extract the full name of each person full_name1 = node_list[i].partition('(')[2] full_name2 = node_list[j].partition('(')[2] # extract the gamer tag of each person gamer_tag1 = node_list[i].split('(')[0] gamer_tag2 = node_list[j].split('(')[0] if check_full_name: empty_dict[(node_list[i], node_list[j])] = similarity(full_name1, full_name2) elif check_gamer_tag: empty_dict[(node_list[i], node_list[j])] = similarity(gamer_tag1, gamer_tag2) else: empty_dict[(node_list[i], node_list[j])] = similarity(node_list[i], node_list[j]) # copy the original edge list and start two counters edge_list_copy = edge_list.copy(deep = True) meta_data_copy = meta_data.copy(deep = True) teams_df_copy = teams_df.copy(deep = True) # cnt is used for indexing cnt = 0 # new_cnt is used as to stop the main loop new_cnt = 0 # sort the list based on the names their similarity sorted_list = list(sorted(empty_dict.items(), key = lambda item: item[1], reverse = True)) new_players = [] new_full_names = [] new_gamer_tags = [] old_players = [] old_full_names = [] old_gamer_tags = [] while True: i = sorted_list[cnt] try: # if we haven't evaluated the combination of names before then we will evaluate if [i[0][0], i[0][1]] not in seen_list: # this extracts the full name without the ( ) full_name1 = i[0][0].partition('(')[2][:-1] # this removes leading and trailing white spaces full_name1 = " ".join(full_name1.split()) full_name2 = i[0][1].partition('(')[2][:-1] full_name2 = " ".join(full_name2.split()) gamer_tag1 = i[0][0].split('(')[0] gamer_tag1 = " ".join(gamer_tag1.split()) gamer_tag2 = i[0][1].split('(')[0] gamer_tag2 = " ".join(gamer_tag2.split()) # first if statement ignores any entries that have too much missing data if ((full_name1 != '') or (full_name2 != '')) and ((gamer_tag1 != '') or (gamer_tag2 != '')): # if the gamer tags are the same (uncapitalized) and the names are the same # then we automatically pick the left name if (gamer_tag1.lower() == gamer_tag2.lower()) and (full_name1 == full_name2): new_players.append(i[0][0]) new_full_names.append(full_name1) new_gamer_tags.append(gamer_tag1) old_players.append(i[0][1]) old_full_names.append(full_name2) old_gamer_tags.append(gamer_tag2) else: # open 2 webpages so we can more easily look at the information available driver.get('https://lol.fandom.com/wiki/Special:Search?fulltext=1&query=' + gamer_tag1) driver2.get('https://lol.fandom.com/wiki/Special:Search?fulltext=1&query=' + gamer_tag2) # left if the left name should be adhered, # right if the right name should be adhered print(i) print("Same person?, left/right or no") answer = input() # if it is the same person then we change every occurrence of the left/right name to the right/left name # e.g. (('mcscrag (<NAME>)', 'mcscrag (<NAME>)'), 0.9130434782608695) # clearly the same person, high similarity metric # change every instance of 'mcscrag (<NAME>)' to (('mcscrag (<NAME>)' if left was typed # if the answer is left, then change all the 2nd names of the comparison to the first names if answer.lower() == 'left': new_players.append(i[0][0]) new_full_names.append(full_name1) new_gamer_tags.append(gamer_tag1) old_players.append(i[0][1]) old_full_names.append(full_name2) old_gamer_tags.append(gamer_tag2) if answer.lower() == 'right': new_players.append(i[0][1]) new_full_names.append(full_name2) new_gamer_tags.append(gamer_tag2) old_players.append(i[0][0]) old_full_names.append(full_name1) old_gamer_tags.append(gamer_tag1) if answer.lower() == 'no': seen_list.append([i[0][0], i[0][1]]) new_cnt += 1 cnt += 1 if new_cnt >= 10: break except: continue # now we can do all the changes that we've saved for ans in range(len(new_players)): newest_player = new_players[ans] newest_full_name = new_full_names[ans] newest_gamer_tag = new_gamer_tags[ans] oldest_player = old_players[ans] oldest_full_name = old_full_names[ans] oldest_gamer_tag = old_gamer_tags[ans] # go over the edge list and make changes for j in range(len(edge_list_copy['From'])): if edge_list_copy['From'][j] == oldest_player: edge_list_copy.loc[j, 'From'] = newest_player if edge_list_copy['To'][j] == oldest_player: edge_list_copy.loc[j, 'To'] = newest_player # go over the meta data and make changes for j in range(len(meta_data_copy['gamer_tag'])): if (" ".join(meta_data_copy['gamer_tag'][j].split()) == oldest_gamer_tag) and (" ".join(meta_data_copy['full_name'][j].split()) == oldest_full_name): meta_data_copy.loc[j, 'gamer_tag'] = newest_gamer_tag meta_data_copy.loc[j, 'full_name'] = newest_full_name # change all instances in the teams df too for j in range(len(teams_df_copy.columns)): for k in range(len(teams_df_copy.iloc[:, j])): if teams_df_copy.iloc[:, j][k] == oldest_player: teams_df_copy.iloc[:, j][k] = newest_player # save the seen names list if save: filehandler = open(r'C:\Users\Simon\OneDrive\Documents\GitHub\LeagueTeamsNetwork\seen_names.pckl', 'wb') pickle.dump(seen_list, filehandler) filehandler.close # if there are duplicates in the dataframe as a result of the renaming process # then we have to group by first to tally up the number of played matches # then we can remove the duplicates edge_list_copy['n_played'] = edge_list_copy.groupby(['From', 'To', 'Region'])['n_played'].transform('sum') edge_list_copy = edge_list_copy.drop_duplicates(subset = ['From', 'To', 'Region']) edge_list_copy = edge_list_copy.reset_index(drop = True) # drop duplicates in the meta data meta_data_copy = meta_data_copy.drop_duplicates() meta_data_copy = meta_data_copy.reset_index(drop = True) new_teams_df = pd.DataFrame(columns = list(teams_df_copy.columns)) # drop duplicates in the teams dataframe for j in teams_df_copy.columns: new_column = pd.DataFrame(teams_df_copy.drop_duplicates(subset = [j])[j]) new_teams_df[list(new_column.columns)[0]] = pd.Series(new_column[list(new_column.columns)[0]]) new_teams_df = new_teams_df.reset_index(drop = True) return edge_list_copy, meta_data_copy, new_teams_df edge_list_cleaner, meta_data_cleaner, teams_df_cleaner = evaluateDuplicates(edge_list, meta_data, teams_df) edge_list = edge_list_cleaner meta_data = meta_data_cleaner teams_df = teams_df_cleaner # save as csv #path = 'C:/Users/Simon/OneDrive/Documents/GitHub/LeagueTeamsNetwork/' #meta_data.to_csv(path_or_buf = path + 'final_meta_data.csv', index = False) #teams_df.to_csv(path_or_buf = path + 'final_teams_data.csv', index = False) #edge_list.to_csv(path_or_buf = path + 'final_refined_edge_list.csv', index = False) # # now that we've evaluated duplicate names we should evaluate the edge list # e.g. A - B and B* - A where B* is now changed to B - A # this means that A - B is the same edge as B - A, we need to remove one of those def edgeListDuplicates(edge_list): # make a copy of the original edge list edge_list_copy = edge_list.copy(deep = True) edge_list_copy = edge_list_copy.reset_index(drop = True) duplicate_entries_index = [] # start the timer start = time.time() # go over the edge list, comparing every entry to every other entry for i in range(len(edge_list_copy)): if (i % 1000 == 0): print(i) print('Time taken: ', round(time.time() - start, 4)) current_row = edge_list_copy.iloc[i] for j in range(i, len(edge_list_copy)): if i != j: # find out if we have the same edge but reversed if (current_row['From'] == edge_list_copy['To'][j]) and (current_row['To'] == edge_list_copy['From'][j]): # find out if that edge is in the same league if current_row['Region'] == edge_list_copy['Region'][j]: # then we sum up the total matches played edge_list_copy.loc[i, 'n_played'] += edge_list_copy['n_played'][j] # and we remove the duplicate edge duplicate_entries_index.append(j) edge_list_copy = edge_list_copy.drop(duplicate_entries_index) return edge_list_copy test = edgeListDuplicates(edge_list) path = 'C:/Users/Simon/OneDrive/Documents/GitHub/LeagueTeamsNetwork/' #test = test.reset_index(drop = True) #test.to_csv(path_or_buf = path + 'league_2012_2021_edge_list.csv', index = False) # testing in between to check degrees path = 'C:/Users/Simon/OneDrive/Documents/GitHub/LeagueTeamsNetwork/' edge_list =
pd.read_csv(path + 'league_2012_2021_edge_list.csv')
pandas.read_csv
import os import warnings import unittest import numpy as np import pandas as pd from pyseer.lmm import initialise_lmm from pyseer.lmm import fit_lmm from pyseer.lmm import fit_lmm_block from pyseer.classes import LMM DATA_DIR = 'tests' P_BINARY = os.path.join(DATA_DIR, 'subset.pheno') S = os.path.join(DATA_DIR, 'similarity_subset.tsv.gz') COV = os.path.join(DATA_DIR, 'covariates.txt') C = os.path.join(DATA_DIR, 'lmm_cache.npz') K = os.path.join(DATA_DIR, 'unit_tests_data', 'k.txt') M = os.path.join(DATA_DIR, 'unit_tests_data', 'm.txt') def eq_lmm(s1, s2): """Test whether two LMM objects are the same""" diff = set() for p in ['kmer', 'pattern', 'kstrains', 'nkstrains', 'notes', 'prefilter', 'filter']: x = getattr(s1, p) y = getattr(s2, p) if x != y: diff.add(p) for p in ['af', 'prep', 'pvalue', 'kbeta', 'bse', 'frac_h2']: x = getattr(s1, p) y = getattr(s2, p) if not np.isfinite(x) and not np.isfinite(y): continue if np.isfinite(x) and not np.isfinite(y): diff.add(p) if np.isfinite(y) and not np.isfinite(x): diff.add(p) if abs(x - y) > 1E-7: diff.add(p) if s1.max_lineage is not None and s2.max_lineage is not None: p = 'max_lineage' x = getattr(s1, p) y = getattr(s2, p) if not np.isfinite(x) and not np.isfinite(y): pass else: if np.isfinite(x) and not np.isfinite(y): diff.add(p) if np.isfinite(y) and not np.isfinite(x): diff.add(p) if x != y: diff.add(p) elif s1.max_lineage is None and s2.max_lineage is None: pass else: diff.add('max_lineage') return diff class TestInitialiseLmm(unittest.TestCase): def test_initialise_lmm(self): p = pd.read_table(P_BINARY, index_col=0)['binary'] cov = pd.DataFrame([]) x, y, z = initialise_lmm(p, cov, S, lmm_cache_in=None, lmm_cache_out=None) self.assertEqual(x.shape[0], 50) self.assertAlmostEqual(y.findH2()['nLL'][0], 35.7033778) self.assertAlmostEqual(z, 0.0) # covariates cov = pd.read_table(COV, index_col=0, header=None) x, y, z = initialise_lmm(p, cov, S, lmm_cache_in=None, lmm_cache_out=None) self.assertEqual(x.shape[0], 50) self.assertAlmostEqual(y.findH2()['nLL'][0], 34.55403861) self.assertAlmostEqual(z, 0.0) # sample names not matching b = pd.Series(np.random.random(100), index=['test_%d' % x for x in range(100)]) with warnings.catch_warnings(): warnings.simplefilter('ignore') x, y, z = initialise_lmm(b, cov, S, lmm_cache_in=None, lmm_cache_out=None) self.assertEqual(x.shape[0], 0) self.assertTrue(not np.isfinite(y.findH2()['nLL'][0])) self.assertAlmostEqual(z, 0.0) # save cache x, y, z = initialise_lmm(p, cov, S, lmm_cache_in=None, lmm_cache_out=C) # load cache x, y, z = initialise_lmm(p, cov, S, lmm_cache_in=C, lmm_cache_out=None) self.assertEqual(x.shape[0], 50) self.assertAlmostEqual(y.findH2()['nLL'][0], 34.55403861) self.assertAlmostEqual(z, 0.0) # different sizes b = pd.Series(np.random.random(10), index=['test_%d' % x for x in range(10)]) with self.assertRaises(SystemExit) as cm: initialise_lmm(b, cov, S, lmm_cache_in=C, lmm_cache_out=None) self.assertEqual(cm.exception.code, 1) # matching lineage samples cov = pd.DataFrame([]) s = pd.read_table(S, index_col=0) x, y, z = initialise_lmm(p, cov, S, lmm_cache_in=None, lmm_cache_out=None, lineage_samples=s.index) # non-matching lineage samples with self.assertRaises(SystemExit) as cm: x, y, z = initialise_lmm(p, cov, S, lmm_cache_in=None, lmm_cache_out=None, lineage_samples=s.index[:-1]) class TestFitLmm(unittest.TestCase): def test_fit_lmm(self): p = pd.read_table(P_BINARY, index_col=0)['binary'] cov = pd.DataFrame([]) x, y, z = initialise_lmm(p, cov, S, lmm_cache_in=None, lmm_cache_out=None) var = LMM('variant', 'pattern', 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), True, True) k = np.loadtxt(K)[:p.shape[0]] variants = [(var, p.values, k),] variant_mat = k.reshape(-1, 1) results = fit_lmm(y, z, variants, variant_mat, False, [], cov, False, 1, 1) test_results = [LMM('variant', 'pattern', 0.2, 0.28252075514059294, 0.2920532220978148, 0.1513687600644123, 0.1420853593711293, 0.1519818397711344, None, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), False, False),] for var, test_var in zip(results, test_results): self.assertEqual(eq_lmm(var, test_var), set()) # af filtering var = LMM('variant', None, 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), True, True) variants = [(var, p.values, k),] variant_mat = k.reshape(-1, 1) results = fit_lmm(y, z, variants, variant_mat, False, [], cov, False, 1, 1) test_results = [LMM('variant', None, 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(['af-filter']), True, False),] for var, test_var in zip(results, test_results): self.assertEqual(eq_lmm(var, test_var), set()) # bad-chisq var = LMM('variant', 'pattern', 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), True, True) bad_k = np.array([1]*5 + [0]*(p.shape[0]-5)) variants = [(var, p.values, bad_k),] variant_mat = bad_k.reshape(-1, 1) results = fit_lmm(y, z, variants, variant_mat, False, [], cov, False, 1, 1) test_results = [LMM('variant', 'pattern', 0.2, 0.2544505826463333, 0.263519965703956, 0.2666666666666663, 0.2357022603955158, 0.16116459280507586, None, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(['bad-chisq']), False, False),] for var, test_var in zip(results, test_results): self.assertEqual(eq_lmm(var, test_var), set()) # pre-filtering var = LMM('variant', 'pattern', 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), True, True) k = np.loadtxt(K)[:p.shape[0]] variants = [(var, p.values, k),] variant_mat = k.reshape(-1, 1) results = fit_lmm(y, z, variants, variant_mat, False, [], cov, False, 0.05, 1) test_results = [LMM('variant', 'pattern', 0.2, 0.28252075514059294, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(['pre-filtering-failed']), True, False),] for var, test_var in zip(results, test_results): self.assertEqual(eq_lmm(var, test_var), set()) # lrt-filtering var = LMM('variant', 'pattern', 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), True, True) k = np.loadtxt(K)[:p.shape[0]] variants = [(var, p.values, k),] variant_mat = k.reshape(-1, 1) results = fit_lmm(y, z, variants, variant_mat, False, [], cov, False, 1, 0.05) test_results = [LMM('variant', 'pattern', 0.2, 0.28252075514059294, 0.2920532220978148, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(['lrt-filtering-failed']), False, True),] for var, test_var in zip(results, test_results): self.assertEqual(eq_lmm(var, test_var), set()) # lineage fit var = LMM('variant', 'pattern', 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), True, True) k = np.loadtxt(K)[:p.shape[0]] variants = [(var, p.values, k),] variant_mat = k.reshape(-1, 1) m = np.loadtxt(M)[:p.shape[0]] results = fit_lmm(y, z, variants, variant_mat, True, m, cov, False, 1, 1) test_results = [LMM('variant', 'pattern', 0.2, 0.28252075514059294, 0.2920532220978148, 0.1513687600644123, 0.1420853593711293, 0.1519818397711344, 0, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), False, False),] for var, test_var in zip(results, test_results): self.assertEqual(eq_lmm(var, test_var), set()) # lineage fit + covariates var = LMM('variant', 'pattern', 0.2, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, ['k%d' % x for x in range(p[p == 1].shape[0])], ['nk%d' % x for x in range(p[p == 0].shape[0])], set(), True, True) k = np.loadtxt(K)[:p.shape[0]] variants = [(var, p.values, k),] variant_mat = k.reshape(-1, 1) m = np.loadtxt(M)[:p.shape[0]] cov =
pd.read_table(COV, index_col=0, header=None)
pandas.read_table
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import pandas from pandas.compat import string_types from pandas.core.dtypes.cast import find_common_type from pandas.core.dtypes.common import ( is_list_like, is_numeric_dtype, is_datetime_or_timedelta_dtype, ) from pandas.core.index import ensure_index from pandas.core.base import DataError from modin.engines.base.frame.partition_manager import BaseFrameManager from modin.error_message import ErrorMessage from modin.backends.base.query_compiler import BaseQueryCompiler class PandasQueryCompiler(BaseQueryCompiler): """This class implements the logic necessary for operating on partitions with a Pandas backend. This logic is specific to Pandas.""" def __init__( self, block_partitions_object, index, columns, dtypes=None, is_transposed=False ): assert isinstance(block_partitions_object, BaseFrameManager) self.data = block_partitions_object self.index = index self.columns = columns if dtypes is not None: self._dtype_cache = dtypes self._is_transposed = int(is_transposed) # Index, columns and dtypes objects _dtype_cache = None def _get_dtype(self): if self._dtype_cache is None: def dtype_builder(df): return df.apply(lambda row: find_common_type(row.values), axis=0) map_func = self._prepare_method( self._build_mapreduce_func(lambda df: df.dtypes) ) reduce_func = self._build_mapreduce_func(dtype_builder) # For now we will use a pandas Series for the dtypes. if len(self.columns) > 0: self._dtype_cache = ( self._full_reduce(0, map_func, reduce_func).to_pandas().iloc[0] ) else: self._dtype_cache = pandas.Series([]) # reset name to None because we use "__reduced__" internally self._dtype_cache.name = None return self._dtype_cache dtypes = property(_get_dtype) def compute_index(self, axis, data_object, compute_diff=True): """Computes the index after a number of rows have been removed. Note: In order for this to be used properly, the indexes must not be changed before you compute this. Args: axis: The axis to extract the index from. data_object: The new data object to extract the index from. compute_diff: True to use `self` to compute the index from self rather than data_object. This is used when the dimension of the index may have changed, but the deleted rows/columns are unknown. Returns: A new pandas.Index object. """ def pandas_index_extraction(df, axis): if not axis: return df.index else: try: return df.columns except AttributeError: return pandas.Index([]) index_obj = self.index if not axis else self.columns old_blocks = self.data if compute_diff else None new_indices = data_object.get_indices( axis=axis, index_func=lambda df: pandas_index_extraction(df, axis), old_blocks=old_blocks, ) return index_obj[new_indices] if compute_diff else new_indices def _validate_set_axis(self, new_labels, old_labels): new_labels = ensure_index(new_labels) old_len = len(old_labels) new_len = len(new_labels) if old_len != new_len: raise ValueError( "Length mismatch: Expected axis has %d elements, " "new values have %d elements" % (old_len, new_len) ) return new_labels _index_cache = None _columns_cache = None def _get_index(self): return self._index_cache def _get_columns(self): return self._columns_cache def _set_index(self, new_index): if self._index_cache is None: self._index_cache = ensure_index(new_index) else: new_index = self._validate_set_axis(new_index, self._index_cache) self._index_cache = new_index def _set_columns(self, new_columns): if self._columns_cache is None: self._columns_cache = ensure_index(new_columns) else: new_columns = self._validate_set_axis(new_columns, self._columns_cache) self._columns_cache = new_columns columns = property(_get_columns, _set_columns) index = property(_get_index, _set_index) # END Index, columns, and dtypes objects # Internal methods # These methods are for building the correct answer in a modular way. # Please be careful when changing these! def _prepare_method(self, pandas_func, **kwargs): """Prepares methods given various metadata. Args: pandas_func: The function to prepare. Returns Helper function which handles potential transpose. """ if self._is_transposed: def helper(df, internal_indices=[]): if len(internal_indices) > 0: return pandas_func( df.T, internal_indices=internal_indices, **kwargs ) return pandas_func(df.T, **kwargs) else: def helper(df, internal_indices=[]): if len(internal_indices) > 0: return pandas_func(df, internal_indices=internal_indices, **kwargs) return pandas_func(df, **kwargs) return helper def numeric_columns(self, include_bool=True): """Returns the numeric columns of the Manager. Returns: List of index names. """ columns = [] for col, dtype in zip(self.columns, self.dtypes): if is_numeric_dtype(dtype) and ( include_bool or (not include_bool and dtype != np.bool_) ): columns.append(col) return columns def numeric_function_clean_dataframe(self, axis): """Preprocesses numeric functions to clean dataframe and pick numeric indices. Args: axis: '0' if columns and '1' if rows. Returns: Tuple with return value(if any), indices to apply func to & cleaned Manager. """ result = None query_compiler = self # If no numeric columns and over columns, then return empty Series if not axis and len(self.index) == 0: result = pandas.Series(dtype=np.int64) nonnumeric = [ col for col, dtype in zip(self.columns, self.dtypes) if not is_numeric_dtype(dtype) ] if len(nonnumeric) == len(self.columns): # If over rows and no numeric columns, return this if axis: result = pandas.Series([np.nan for _ in self.index]) else: result = pandas.Series([0 for _ in self.index]) else: query_compiler = self.drop(columns=nonnumeric) return result, query_compiler # END Internal methods # Metadata modification methods def add_prefix(self, prefix, axis=1): if axis == 1: new_columns = self.columns.map(lambda x: str(prefix) + str(x)) if self._dtype_cache is not None: new_dtype_cache = self._dtype_cache.copy() new_dtype_cache.index = new_columns else: new_dtype_cache = None new_index = self.index else: new_index = self.index.map(lambda x: str(prefix) + str(x)) new_columns = self.columns new_dtype_cache = self._dtype_cache return self.__constructor__( self.data, new_index, new_columns, new_dtype_cache, self._is_transposed ) def add_suffix(self, suffix, axis=1): if axis == 1: new_columns = self.columns.map(lambda x: str(x) + str(suffix)) if self._dtype_cache is not None: new_dtype_cache = self._dtype_cache.copy() new_dtype_cache.index = new_columns else: new_dtype_cache = None new_index = self.index else: new_index = self.index.map(lambda x: str(x) + str(suffix)) new_columns = self.columns new_dtype_cache = self._dtype_cache return self.__constructor__( self.data, new_index, new_columns, new_dtype_cache, self._is_transposed ) # END Metadata modification methods # Copy # For copy, we don't want a situation where we modify the metadata of the # copies if we end up modifying something here. We copy all of the metadata # to prevent that. def copy(self): return self.__constructor__( self.data.copy(), self.index.copy(), self.columns.copy(), self._dtype_cache, self._is_transposed, ) # END Copy # Append/Concat/Join (Not Merge) # The append/concat/join operations should ideally never trigger remote # compute. These operations should only ever be manipulations of the # metadata of the resulting object. It should just be a simple matter of # appending the other object's blocks and adding np.nan columns for the new # columns, if needed. If new columns are added, some compute may be # required, though it can be delayed. # # Currently this computation is not delayed, and it may make a copy of the # DataFrame in memory. This can be problematic and should be fixed in the # future. TODO (devin-petersohn): Delay reindexing def _join_index_objects(self, axis, other_index, how, sort=True): """Joins a pair of index objects (columns or rows) by a given strategy. Args: axis: The axis index object to join (0 for columns, 1 for index). other_index: The other_index to join on. how: The type of join to join to make (e.g. right, left). Returns: Joined indices. """ if isinstance(other_index, list): joined_obj = self.columns if not axis else self.index # TODO: revisit for performance for obj in other_index: joined_obj = joined_obj.join(obj, how=how) return joined_obj if not axis: return self.columns.join(other_index, how=how, sort=sort) else: return self.index.join(other_index, how=how, sort=sort) def join(self, other, **kwargs): """Joins a list or two objects together. Args: other: The other object(s) to join on. Returns: Joined objects. """ if not isinstance(other, list): other = [other] return self._join_list_of_managers(other, **kwargs) def concat(self, axis, other, **kwargs): """Concatenates two objects together. Args: axis: The axis index object to join (0 for columns, 1 for index). other: The other_index to concat with. Returns: Concatenated objects. """ return self._append_list_of_managers(other, axis, **kwargs) def _append_list_of_managers(self, others, axis, **kwargs): if not isinstance(others, list): others = [others] if self._is_transposed: # If others are transposed, we handle that behavior correctly in # `copartition`, but it is not handled correctly in the case that `self` is # transposed. return ( self.transpose() ._append_list_of_managers( [o.transpose() for o in others], axis ^ 1, **kwargs ) .transpose() ) assert all( isinstance(other, type(self)) for other in others ), "Different Manager objects are being used. This is not allowed" sort = kwargs.get("sort", None) join = kwargs.get("join", "outer") ignore_index = kwargs.get("ignore_index", False) new_self, to_append, joined_axis = self.copartition( axis ^ 1, others, join, sort, force_repartition=any(obj._is_transposed for obj in [self] + others), ) new_data = new_self.concat(axis, to_append) if axis == 0: # The indices will be appended to form the final index. # If `ignore_index` is true, we create a RangeIndex that is the # length of all of the index objects combined. This is the same # behavior as pandas. new_index = ( self.index.append([other.index for other in others]) if not ignore_index else pandas.RangeIndex( len(self.index) + sum(len(other.index) for other in others) ) ) return self.__constructor__(new_data, new_index, joined_axis) else: # The columns will be appended to form the final columns. new_columns = self.columns.append([other.columns for other in others]) return self.__constructor__(new_data, joined_axis, new_columns) def _join_list_of_managers(self, others, **kwargs): assert isinstance( others, list ), "This method is for lists of QueryCompiler objects only" assert all( isinstance(other, type(self)) for other in others ), "Different Manager objects are being used. This is not allowed" # Uses join's default value (though should not revert to default) how = kwargs.get("how", "left") sort = kwargs.get("sort", False) lsuffix = kwargs.get("lsuffix", "") rsuffix = kwargs.get("rsuffix", "") new_self, to_join, joined_index = self.copartition( 0, others, how, sort, force_repartition=any(obj._is_transposed for obj in [self] + others), ) new_data = new_self.concat(1, to_join) # This stage is to efficiently get the resulting columns, including the # suffixes. if len(others) == 1: others_proxy = pandas.DataFrame(columns=others[0].columns) else: others_proxy = [pandas.DataFrame(columns=other.columns) for other in others] self_proxy = pandas.DataFrame(columns=self.columns) new_columns = self_proxy.join( others_proxy, lsuffix=lsuffix, rsuffix=rsuffix ).columns return self.__constructor__(new_data, joined_index, new_columns) # END Append/Concat/Join # Copartition def copartition(self, axis, other, how_to_join, sort, force_repartition=False): """Copartition two QueryCompiler objects. Args: axis: The axis to copartition along. other: The other Query Compiler(s) to copartition against. how_to_join: How to manage joining the index object ("left", "right", etc.) sort: Whether or not to sort the joined index. force_repartition: Whether or not to force the repartitioning. By default, this method will skip repartitioning if it is possible. This is because reindexing is extremely inefficient. Because this method is used to `join` or `append`, it is vital that the internal indices match. Returns: A tuple (left query compiler, right query compiler list, joined index). """ if isinstance(other, type(self)): other = [other] index_obj = ( [o.index for o in other] if axis == 0 else [o.columns for o in other] ) joined_index = self._join_index_objects( axis ^ 1, index_obj, how_to_join, sort=sort ) # We have to set these because otherwise when we perform the functions it may # end up serializing this entire object. left_old_idx = self.index if axis == 0 else self.columns right_old_idxes = index_obj # Start with this and we'll repartition the first time, and then not again. reindexed_self = self.data reindexed_other_list = [] def compute_reindex(old_idx): """Create a function based on the old index and axis. Args: old_idx: The old index/columns Returns: A function that will be run in each partition. """ def reindex_partition(df): if axis == 0: df.index = old_idx new_df = df.reindex(index=joined_index) new_df.index = pandas.RangeIndex(len(new_df.index)) else: df.columns = old_idx new_df = df.reindex(columns=joined_index) new_df.columns = pandas.RangeIndex(len(new_df.columns)) return new_df return reindex_partition for i in range(len(other)): # If the indices are equal we can skip partitioning so long as we are not # forced to repartition. See note above about `force_repartition`. if i != 0 or (left_old_idx.equals(joined_index) and not force_repartition): reindex_left = None else: reindex_left = self._prepare_method(compute_reindex(left_old_idx)) if right_old_idxes[i].equals(joined_index) and not force_repartition: reindex_right = None else: reindex_right = compute_reindex(right_old_idxes[i]) reindexed_self, reindexed_other = reindexed_self.copartition_datasets( axis, other[i].data, reindex_left, reindex_right, other[i]._is_transposed, ) reindexed_other_list.append(reindexed_other) return reindexed_self, reindexed_other_list, joined_index # Data Management Methods def free(self): """In the future, this will hopefully trigger a cleanup of this object. """ # TODO create a way to clean up this object. return # END Data Management Methods # To/From Pandas def to_pandas(self): """Converts Modin DataFrame to Pandas DataFrame. Returns: Pandas DataFrame of the QueryCompiler. """ df = self.data.to_pandas(is_transposed=self._is_transposed) if df.empty: if len(self.columns) != 0: df = pandas.DataFrame(columns=self.columns).astype(self.dtypes) else: df = pandas.DataFrame(columns=self.columns, index=self.index) else: ErrorMessage.catch_bugs_and_request_email( len(df.index) != len(self.index) or len(df.columns) != len(self.columns) ) df.index = self.index df.columns = self.columns return df @classmethod def from_pandas(cls, df, block_partitions_cls): """Improve simple Pandas DataFrame to an advanced and superior Modin DataFrame. Args: cls: DataManger object to convert the DataFrame to. df: Pandas DataFrame object. block_partitions_cls: BlockParitions object to store partitions Returns: Returns QueryCompiler containing data from the Pandas DataFrame. """ new_index = df.index new_columns = df.columns new_dtypes = df.dtypes new_data = block_partitions_cls.from_pandas(df) return cls(new_data, new_index, new_columns, dtypes=new_dtypes) # END To/From Pandas # To NumPy def to_numpy(self): """Converts Modin DataFrame to NumPy Array. Returns: NumPy Array of the QueryCompiler. """ arr = self.data.to_numpy(is_transposed=self._is_transposed) ErrorMessage.catch_bugs_and_request_email( len(arr) != len(self.index) or len(arr[0]) != len(self.columns) ) return arr # END To NumPy # Inter-Data operations (e.g. add, sub) # These operations require two DataFrames and will change the shape of the # data if the index objects don't match. An outer join + op is performed, # such that columns/rows that don't have an index on the other DataFrame # result in NaN values. def _inter_manager_operations(self, other, how_to_join, func): """Inter-data operations (e.g. add, sub). Args: other: The other Manager for the operation. how_to_join: The type of join to join to make (e.g. right, outer). Returns: New QueryCompiler with new data and index. """ reindexed_self, reindexed_other_list, joined_index = self.copartition( 0, other, how_to_join, sort=False ) # unwrap list returned by `copartition`. reindexed_other = reindexed_other_list[0] new_columns = self._join_index_objects( 0, other.columns, how_to_join, sort=False ) # THere is an interesting serialization anomaly that happens if we do # not use the columns in `inter_data_op_builder` from here (e.g. if we # pass them in). Passing them in can cause problems, so we will just # use them from here. self_cols = self.columns other_cols = other.columns def inter_data_op_builder(left, right, func): left.columns = self_cols right.columns = other_cols # We reset here to make sure that the internal indexes match. We aligned # them in the previous step, so this step is to prevent mismatches. left.index = pandas.RangeIndex(len(left.index)) right.index = pandas.RangeIndex(len(right.index)) result = func(left, right) result.columns = pandas.RangeIndex(len(result.columns)) return result new_data = reindexed_self.inter_data_operation( 1, lambda l, r: inter_data_op_builder(l, r, func), reindexed_other ) return self.__constructor__(new_data, joined_index, new_columns) def _inter_df_op_handler(self, func, other, **kwargs): """Helper method for inter-manager and scalar operations. Args: func: The function to use on the Manager/scalar. other: The other Manager/scalar. Returns: New QueryCompiler with new data and index. """ axis = kwargs.get("axis", 0) axis = pandas.DataFrame()._get_axis_number(axis) if axis is not None else 0 if isinstance(other, type(self)): # If this QueryCompiler is transposed, copartition can sometimes fail to # properly co-locate the data. It does not fail if other is transposed, so # if this object is transposed, we will transpose both and do the operation, # then transpose at the end. if self._is_transposed: return ( self.transpose() ._inter_manager_operations( other.transpose(), "outer", lambda x, y: func(x, y, **kwargs) ) .transpose() ) return self._inter_manager_operations( other, "outer", lambda x, y: func(x, y, **kwargs) ) else: return self._scalar_operations( axis, other, lambda df: func(df, other, **kwargs) ) def binary_op(self, op, other, **kwargs): """Perform an operation between two objects. Note: The list of operations is as follows: - add - eq - floordiv - ge - gt - le - lt - mod - mul - ne - pow - rfloordiv - rmod - rpow - rsub - rtruediv - sub - truediv - __and__ - __or__ - __xor__ Args: op: The operation. See list of operations above other: The object to operate against. Returns: A new QueryCompiler object. """ func = getattr(pandas.DataFrame, op) return self._inter_df_op_handler(func, other, **kwargs) def clip(self, lower, upper, **kwargs): kwargs["upper"] = upper kwargs["lower"] = lower axis = kwargs.get("axis", 0) func = self._prepare_method(pandas.DataFrame.clip, **kwargs) if is_list_like(lower) or is_list_like(upper): df = self._map_across_full_axis(axis, func) return self.__constructor__(df, self.index, self.columns) return self._scalar_operations(axis, lower or upper, func) def update(self, other, **kwargs): """Uses other manager to update corresponding values in this manager. Args: other: The other manager. Returns: New QueryCompiler with updated data and index. """ assert isinstance( other, type(self) ), "Must have the same QueryCompiler subclass to perform this operation" def update_builder(df, other, **kwargs): # This is because of a requirement in Arrow df = df.copy() df.update(other, **kwargs) return df return self._inter_df_op_handler(update_builder, other, **kwargs) def where(self, cond, other, **kwargs): """Gets values from this manager where cond is true else from other. Args: cond: Condition on which to evaluate values. Returns: New QueryCompiler with updated data and index. """ assert isinstance( cond, type(self) ), "Must have the same QueryCompiler subclass to perform this operation" if isinstance(other, type(self)): # Note: Currently we are doing this with two maps across the entire # data. This can be done with a single map, but it will take a # modification in the `BlockPartition` class. # If this were in one pass it would be ~2x faster. # TODO (devin-petersohn) rewrite this to take one pass. def where_builder_first_pass(cond, other, **kwargs): return cond.where(cond, other, **kwargs) def where_builder_second_pass(df, new_other, **kwargs): return df.where(new_other.eq(True), new_other, **kwargs) first_pass = cond._inter_manager_operations( other, "left", where_builder_first_pass ) final_pass = self._inter_manager_operations( first_pass, "left", where_builder_second_pass ) return self.__constructor__(final_pass.data, self.index, self.columns) else: axis = kwargs.get("axis", 0) # Rather than serializing and passing in the index/columns, we will # just change this index to match the internal index. if isinstance(other, pandas.Series): other.index = pandas.RangeIndex(len(other.index)) def where_builder_series(df, cond): if axis == 0: df.index = pandas.RangeIndex(len(df.index)) cond.index = pandas.RangeIndex(len(cond.index)) else: df.columns = pandas.RangeIndex(len(df.columns)) cond.columns = pandas.RangeIndex(len(cond.columns)) return df.where(cond, other, **kwargs) reindexed_self, reindexed_cond, a = self.copartition( axis, cond, "left", False ) # Unwrap from list given by `copartition` reindexed_cond = reindexed_cond[0] new_data = reindexed_self.inter_data_operation( axis, lambda l, r: where_builder_series(l, r), reindexed_cond ) return self.__constructor__(new_data, self.index, self.columns) # END Inter-Data operations # Single Manager scalar operations (e.g. add to scalar, list of scalars) def _scalar_operations(self, axis, scalar, func): """Handler for mapping scalar operations across a Manager. Args: axis: The axis index object to execute the function on. scalar: The scalar value to map. func: The function to use on the Manager with the scalar. Returns: A new QueryCompiler with updated data and new index. """ if isinstance(scalar, (list, np.ndarray, pandas.Series)): new_index = self.index if axis == 0 else self.columns def list_like_op(df): if axis == 0: df.index = new_index else: df.columns = new_index return func(df) new_data = self._map_across_full_axis( axis, self._prepare_method(list_like_op) ) if axis == 1 and isinstance(scalar, pandas.Series): new_columns = self.columns.union( [label for label in scalar.index if label not in self.columns] ) else: new_columns = self.columns return self.__constructor__(new_data, self.index, new_columns) else: return self._map_partitions(self._prepare_method(func)) # END Single Manager scalar operations # Reindex/reset_index (may shuffle data) def reindex(self, axis, labels, **kwargs): """Fits a new index for this Manger. Args: axis: The axis index object to target the reindex on. labels: New labels to conform 'axis' on to. Returns: A new QueryCompiler with updated data and new index. """ if self._is_transposed: return ( self.transpose() .reindex(axis=axis ^ 1, labels=labels, **kwargs) .transpose() ) # To reindex, we need a function that will be shipped to each of the # partitions. def reindex_builer(df, axis, old_labels, new_labels, **kwargs): if axis: while len(df.columns) < len(old_labels): df[len(df.columns)] = np.nan df.columns = old_labels new_df = df.reindex(columns=new_labels, **kwargs) # reset the internal columns back to a RangeIndex new_df.columns = pandas.RangeIndex(len(new_df.columns)) return new_df else: while len(df.index) < len(old_labels): df.loc[len(df.index)] = np.nan df.index = old_labels new_df = df.reindex(index=new_labels, **kwargs) # reset the internal index back to a RangeIndex new_df.reset_index(inplace=True, drop=True) return new_df old_labels = self.columns if axis else self.index new_index = self.index if axis else labels new_columns = labels if axis else self.columns func = self._prepare_method( lambda df: reindex_builer(df, axis, old_labels, labels, **kwargs) ) # The reindex can just be mapped over the axis we are modifying. This # is for simplicity in implementation. We specify num_splits here # because if we are repartitioning we should (in the future). # Additionally this operation is often followed by an operation that # assumes identical partitioning. Internally, we *may* change the # partitioning during a map across a full axis. new_data = self._map_across_full_axis(axis, func) return self.__constructor__(new_data, new_index, new_columns) def reset_index(self, **kwargs): """Removes all levels from index and sets a default level_0 index. Returns: A new QueryCompiler with updated data and reset index. """ drop = kwargs.get("drop", False) new_index = pandas.RangeIndex(len(self.index)) if not drop: if isinstance(self.index, pandas.MultiIndex): # TODO (devin-petersohn) ensure partitioning is properly aligned new_column_names = pandas.Index(self.index.names) new_columns = new_column_names.append(self.columns) index_data = pandas.DataFrame(list(zip(*self.index))).T result = self.data.from_pandas(index_data).concat(1, self.data) return self.__constructor__(result, new_index, new_columns) else: new_column_name = ( self.index.name if self.index.name is not None else "index" if "index" not in self.columns else "level_0" ) new_columns = self.columns.insert(0, new_column_name) result = self.insert(0, new_column_name, self.index) return self.__constructor__(result.data, new_index, new_columns) else: # The copies here are to ensure that we do not give references to # this object for the purposes of updates. return self.__constructor__( self.data.copy(), new_index, self.columns.copy(), self._dtype_cache ) # END Reindex/reset_index # Transpose # For transpose, we aren't going to immediately copy everything. Since the # actual transpose operation is very fast, we will just do it before any # operation that gets called on the transposed data. See _prepare_method # for how the transpose is applied. # # Our invariants assume that the blocks are transposed, but not the # data inside. Sometimes we have to reverse this transposition of blocks # for simplicity of implementation. def transpose(self, *args, **kwargs): """Transposes this QueryCompiler. Returns: Transposed new QueryCompiler. """ new_data = self.data.transpose(*args, **kwargs) # Switch the index and columns and transpose the data within the blocks. new_manager = self.__constructor__( new_data, self.columns, self.index, is_transposed=self._is_transposed ^ 1 ) return new_manager # END Transpose # Full Reduce operations # # These operations result in a reduced dimensionality of data. # This will return a new QueryCompiler, which will be handled in the front end. def _full_reduce(self, axis, map_func, reduce_func=None): """Apply function that will reduce the data to a Pandas Series. Args: axis: 0 for columns and 1 for rows. Default is 0. map_func: Callable function to map the dataframe. reduce_func: Callable function to reduce the dataframe. If none, then apply map_func twice. Return: A new QueryCompiler object containing the results from map_func and reduce_func. """ if reduce_func is None: reduce_func = map_func mapped_parts = self.data.map_across_blocks(map_func) full_frame = mapped_parts.map_across_full_axis(axis, reduce_func) if axis == 0: columns = self.columns return self.__constructor__( full_frame, index=["__reduced__"], columns=columns ) else: index = self.index return self.__constructor__( full_frame, index=index, columns=["__reduced__"] ) def _build_mapreduce_func(self, func, **kwargs): def _map_reduce_func(df): series_result = func(df, **kwargs) if kwargs.get("axis", 0) == 0 and isinstance(series_result, pandas.Series): # In the case of axis=0, we need to keep the shape of the data # consistent with what we have done. In the case of a reduction, the # data for axis=0 should be a single value for each column. By # transposing the data after we convert to a DataFrame, we ensure that # the columns of the result line up with the columns from the data. # axis=1 does not have this requirement because the index already will # line up with the index of the data based on how pandas creates a # DataFrame from a Series. return pandas.DataFrame(series_result).T return pandas.DataFrame(series_result) return _map_reduce_func def count(self, **kwargs): """Counts the number of non-NaN objects for each column or row. Return: A new QueryCompiler object containing counts of non-NaN objects from each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().count(**kwargs) axis = kwargs.get("axis", 0) map_func = self._build_mapreduce_func(pandas.DataFrame.count, **kwargs) reduce_func = self._build_mapreduce_func(pandas.DataFrame.sum, **kwargs) return self._full_reduce(axis, map_func, reduce_func) def dot(self, other): """Computes the matrix multiplication of self and other. Args: other: The other query compiler or other array-like to matrix multiply with self. Returns: Returns the result of the matrix multiply. """ if self._is_transposed: return self.transpose().dot(other).transpose() def map_func(df, other=other): if isinstance(other, pandas.DataFrame): other = other.squeeze() result = df.squeeze().dot(other) if is_list_like(result): return pandas.DataFrame(result) else: return pandas.DataFrame([result]) if isinstance(other, BaseQueryCompiler): if len(self.columns) > 1 and len(other.columns) == 1: # If self is DataFrame and other is a series, we take the transpose # to copartition along the columns. new_self = self other = other.transpose() axis = 1 new_index = self.index elif len(self.columns) == 1 and len(other.columns) > 1: # If self is series and other is a Dataframe, we take the transpose # to copartition along the columns. new_self = self.transpose() axis = 1 new_index = self.index elif len(self.columns) == 1 and len(other.columns) == 1: # If both are series, then we copartition along the rows. new_self = self axis = 0 new_index = ["__reduce__"] new_self, list_of_others, _ = new_self.copartition( axis, other, "left", False ) other = list_of_others[0] reduce_func = self._build_mapreduce_func( pandas.DataFrame.sum, axis=axis, skipna=False ) new_data = new_self.groupby_reduce(axis, other, map_func, reduce_func) else: if len(self.columns) == 1: axis = 0 new_index = ["__reduce__"] else: axis = 1 new_index = self.index new_data = self.data.map_across_full_axis(axis, map_func) return self.__constructor__(new_data, index=new_index, columns=["__reduced__"]) def max(self, **kwargs): """Returns the maximum value for each column or row. Return: A new QueryCompiler object with the maximum values from each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().max(**kwargs) mapreduce_func = self._build_mapreduce_func(pandas.DataFrame.max, **kwargs) return self._full_reduce(kwargs.get("axis", 0), mapreduce_func) def mean(self, **kwargs): """Returns the mean for each numerical column or row. Return: A new QueryCompiler object containing the mean from each numerical column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().mean(**kwargs) # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) sums = self.sum(**kwargs) counts = self.count(axis=axis, numeric_only=kwargs.get("numeric_only", None)) if sums._is_transposed and counts._is_transposed: sums = sums.transpose() counts = counts.transpose() result = sums.binary_op("truediv", counts, axis=axis) return result.transpose() if axis == 0 else result def min(self, **kwargs): """Returns the minimum from each column or row. Return: A new QueryCompiler object with the minimum value from each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().min(**kwargs) mapreduce_func = self._build_mapreduce_func(pandas.DataFrame.min, **kwargs) return self._full_reduce(kwargs.get("axis", 0), mapreduce_func) def _process_sum_prod(self, func, **kwargs): """Calculates the sum or product of the DataFrame. Args: func: Pandas func to apply to DataFrame. ignore_axis: Whether to ignore axis when raising TypeError Return: A new QueryCompiler object with sum or prod of the object. """ axis = kwargs.get("axis", 0) min_count = kwargs.get("min_count", 0) def sum_prod_builder(df, **kwargs): return func(df, **kwargs) builder_func = self._build_mapreduce_func(sum_prod_builder, **kwargs) if min_count <= 1: return self._full_reduce(axis, builder_func) else: return self._full_axis_reduce(axis, builder_func) def prod(self, **kwargs): """Returns the product of each numerical column or row. Return: A new QueryCompiler object with the product of each numerical column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().prod(**kwargs) return self._process_sum_prod(pandas.DataFrame.prod, **kwargs) def sum(self, **kwargs): """Returns the sum of each numerical column or row. Return: A new QueryCompiler object with the sum of each numerical column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().sum(**kwargs) return self._process_sum_prod(pandas.DataFrame.sum, **kwargs) def _process_all_any(self, func, **kwargs): """Calculates if any or all the values are true. Return: A new QueryCompiler object containing boolean values or boolean. """ axis = kwargs.get("axis", 0) axis = 0 if axis is None else axis kwargs["axis"] = axis builder_func = self._build_mapreduce_func(func, **kwargs) return self._full_reduce(axis, builder_func) def all(self, **kwargs): """Returns whether all the elements are true, potentially over an axis. Return: A new QueryCompiler object containing boolean values or boolean. """ if self._is_transposed: # Pandas ignores on axis=1 kwargs["bool_only"] = False kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().all(**kwargs) return self._process_all_any(lambda df, **kwargs: df.all(**kwargs), **kwargs) def any(self, **kwargs): """Returns whether any the elements are true, potentially over an axis. Return: A new QueryCompiler object containing boolean values or boolean. """ if self._is_transposed: if kwargs.get("axis", 0) == 1: # Pandas ignores on axis=1 kwargs["bool_only"] = False kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().any(**kwargs) return self._process_all_any(lambda df, **kwargs: df.any(**kwargs), **kwargs) # END Full Reduce operations # Map partitions operations # These operations are operations that apply a function to every partition. def _map_partitions(self, func, new_dtypes=None): return self.__constructor__( self.data.map_across_blocks(func), self.index, self.columns, new_dtypes ) def abs(self): func = self._prepare_method(pandas.DataFrame.abs) return self._map_partitions(func, new_dtypes=self.dtypes.copy()) def applymap(self, func): remote_func = self._prepare_method(pandas.DataFrame.applymap, func=func) return self._map_partitions(remote_func) def invert(self): remote_func = self._prepare_method(pandas.DataFrame.__invert__) return self._map_partitions(remote_func) def isin(self, **kwargs): func = self._prepare_method(pandas.DataFrame.isin, **kwargs) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self._map_partitions(func, new_dtypes=new_dtypes) def isna(self): func = self._prepare_method(pandas.DataFrame.isna) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self._map_partitions(func, new_dtypes=new_dtypes) def memory_usage(self, axis=0, **kwargs): """Returns the memory usage of each column. Returns: A new QueryCompiler object containing the memory usage of each column. """ if self._is_transposed: return self.transpose().memory_usage(axis=1, **kwargs) def memory_usage_builder(df, **kwargs): axis = kwargs.pop("axis") # We have to manually change the orientation of the data within the # partitions because memory_usage does not take in an axis argument # and always does it along columns. if axis: df = df.T result = df.memory_usage(**kwargs) return result def sum_memory_usage(df, **kwargs): axis = kwargs.pop("axis") return df.sum(axis=axis) # Even though memory_usage does not take in an axis argument, we have to # pass in an axis kwargs for _build_mapreduce_func to properly arrange # the results. map_func = self._build_mapreduce_func(memory_usage_builder, axis=axis, **kwargs) reduce_func = self._build_mapreduce_func(sum_memory_usage, axis=axis, **kwargs) return self._full_reduce(axis, map_func, reduce_func) def negative(self, **kwargs): func = self._prepare_method(pandas.DataFrame.__neg__, **kwargs) return self._map_partitions(func) def notna(self): func = self._prepare_method(pandas.DataFrame.notna) new_dtypes = pandas.Series( [np.dtype("bool") for _ in self.columns], index=self.columns ) return self._map_partitions(func, new_dtypes=new_dtypes) def round(self, **kwargs): func = self._prepare_method(pandas.DataFrame.round, **kwargs) return self._map_partitions(func, new_dtypes=self._dtype_cache) # END Map partitions operations # String map partition operations def _str_map_partitions(self, func, new_dtypes=None, **kwargs): def str_op_builder(df, **kwargs): str_series = df.squeeze().str return func(str_series, **kwargs).to_frame() builder_func = self._prepare_method(str_op_builder, **kwargs) return self._map_partitions(builder_func, new_dtypes=new_dtypes) def str_split(self, **kwargs): return self._str_map_partitions( pandas.Series.str.split, new_dtypes=self.dtypes, **kwargs ) def str_rsplit(self, **kwargs): return self._str_map_partitions( pandas.Series.str.rsplit, new_dtypes=self.dtypes, **kwargs ) def str_get(self, i): return self._str_map_partitions( pandas.Series.str.get, new_dtypes=self.dtypes, i=i ) def str_join(self, sep): return self._str_map_partitions( pandas.Series.str.join, new_dtypes=self.dtypes, sep=sep ) def str_contains(self, pat, **kwargs): kwargs["pat"] = pat new_dtypes = pandas.Series([bool]) return self._str_map_partitions( pandas.Series.str.contains, new_dtypes=new_dtypes, **kwargs ) def str_replace(self, pat, repl, **kwargs): kwargs["pat"] = pat kwargs["repl"] = repl return self._str_map_partitions( pandas.Series.str.replace, new_dtypes=self.dtypes, **kwargs ) def str_repeats(self, repeats): return self._str_map_partitions( pandas.Series.str.repeats, new_dtypes=self.dtypes, repeats=repeats ) def str_pad(self, width, **kwargs): kwargs["width"] = width return self._str_map_partitions( pandas.Series.str.pad, new_dtypes=self.dtypes, **kwargs ) def str_center(self, width, **kwargs): kwargs["width"] = width return self._str_map_partitions( pandas.Series.str.center, new_dtypes=self.dtypes, **kwargs ) def str_ljust(self, width, **kwargs): kwargs["width"] = width return self._str_map_partitions( pandas.Series.str.ljust, new_dtypes=self.dtypes, **kwargs ) def str_rjust(self, width, **kwargs): kwargs["width"] = width return self._str_map_partitions( pandas.Series.str.rjust, new_dtypes=self.dtypes, **kwargs ) def str_zfill(self, width): return self._str_map_partitions( pandas.Series.str.zfill, new_dtypes=self.dtypes, width=width ) def str_wrap(self, width, **kwargs): kwargs["width"] = width return self._str_map_partitions( pandas.Series.str.wrap, new_dtypes=self.dtypes, **kwargs ) def str_slice(self, **kwargs): return self._str_map_partitions( pandas.Series.str.slice, new_dtypes=self.dtypes, **kwargs ) def str_slice_replace(self, **kwargs): return self._str_map_partitions( pandas.Series.str.slice_replace, new_dtypes=self.dtypes, **kwargs ) def str_count(self, pat, **kwargs): kwargs["pat"] = pat new_dtypes = pandas.Series([int]) # We have to pass in a lambda because pandas.Series.str.count does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.count(**kwargs), new_dtypes=new_dtypes ) def str_startswith(self, pat, **kwargs): kwargs["pat"] = pat new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.startswith does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.startswith(**kwargs), new_dtypes=new_dtypes ) def str_endswith(self, pat, **kwargs): kwargs["pat"] = pat new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.endswith does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.endswith(**kwargs), new_dtypes=new_dtypes ) def str_findall(self, pat, **kwargs): kwargs["pat"] = pat # We have to pass in a lambda because pandas.Series.str.findall does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.findall(**kwargs), new_dtypes=self.dtypes ) def str_match(self, pat, **kwargs): kwargs["pat"] = pat return self._str_map_partitions( pandas.Series.str.match, new_dtypes=self.dtypes, **kwargs ) def str_len(self): new_dtypes = pandas.Series([int]) return self._str_map_partitions(pandas.Series.str.len, new_dtypes=new_dtypes) def str_strip(self, **kwargs): return self._str_map_partitions( pandas.Series.str.strip, new_dtypes=self.dtypes, **kwargs ) def str_rstrip(self, **kwargs): return self._str_map_partitions( pandas.Series.str.rstrip, new_dtypes=self.dtypes, **kwargs ) def str_lstrip(self, **kwargs): return self._str_map_partitions( pandas.Series.str.lstrip, new_dtypes=self.dtypes, **kwargs ) def str_partition(self, **kwargs): return self._str_map_partitions( pandas.Series.str.partition, new_dtypes=self.dtypes, **kwargs ) def str_rpartition(self, **kwargs): return self._str_map_partitions( pandas.Series.str.rpartition, new_dtypes=self.dtypes, **kwargs ) def str_lower(self): # We have to pass in a lambda because pandas.Series.str.lower does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.lower(), new_dtypes=self.dtypes ) def str_upper(self): # We have to pass in a lambda because pandas.Series.str.upper does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.upper(), new_dtypes=self.dtypes ) def str_find(self, sub, **kwargs): kwargs["sub"] = sub return self._str_map_partitions( pandas.Series.str.find, new_dtypes=self.dtypes, **kwargs ) def str_rfind(self, sub, **kwargs): kwargs["sub"] = sub return self._str_map_partitions( pandas.Series.str.rfind, new_dtypes=self.dtypes, **kwargs ) def str_index(self, sub, **kwargs): kwargs["sub"] = sub return self._str_map_partitions( pandas.Series.str.index, new_dtypes=self.dtypes, **kwargs ) def str_rindex(self, sub, **kwargs): kwargs["sub"] = sub return self._str_map_partitions( pandas.Series.str.rindex, new_dtypes=self.dtypes, **kwargs ) def str_capitalize(self): # We have to pass in a lambda because pandas.Series.str.capitalize does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.capitalize(), new_dtypes=self.dtypes ) def str_swapcase(self): # We have to pass in a lambda because pandas.Series.str.swapcase does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.swapcase(), new_dtypes=self.dtypes ) def str_normalize(self, form): return self._str_map_partitions( pandas.Series.str.normalize, new_dtypes=self.dtypes, form=form ) def str_translate(self, table, **kwargs): kwargs["table"] = table return self._str_map_partitions( pandas.Series.str.translate, new_dtypes=self.dtypes, **kwargs ) def str_isalnum(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.isalnum does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.isalnum(), new_dtypes=new_dtypes ) def str_isalpha(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.isalpha does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.isalpha(), new_dtypes=new_dtypes ) def str_isdigit(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.isdigit does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.isdigit(), new_dtypes=new_dtypes ) def str_isspace(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.isspace does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.isspace(), new_dtypes=new_dtypes ) def str_islower(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.islower does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.islower(), new_dtypes=new_dtypes ) def str_isupper(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.isupper does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.isupper(), new_dtypes=new_dtypes ) def str_istitle(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.istitle does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.istitle(), new_dtypes=new_dtypes ) def str_isnumeric(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.isnumeric does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.isnumeric(), new_dtypes=new_dtypes ) def str_isdecimal(self): new_dtypes = pandas.Series([bool]) # We have to pass in a lambda because pandas.Series.str.isdecimal does not exist for python2 return self._str_map_partitions( lambda str_series: str_series.isdecimal(), new_dtypes=new_dtypes ) # END String map partitions operations # Map partitions across select indices def astype(self, col_dtypes, **kwargs): """Converts columns dtypes to given dtypes. Args: col_dtypes: Dictionary of {col: dtype,...} where col is the column name and dtype is a numpy dtype. Returns: DataFrame with updated dtypes. """ # Group indices to update by dtype for less map operations dtype_indices = {} columns = col_dtypes.keys() numeric_indices = list(self.columns.get_indexer_for(columns)) # Create Series for the updated dtypes new_dtypes = self.dtypes.copy() for i, column in enumerate(columns): dtype = col_dtypes[column] if ( not isinstance(dtype, type(self.dtypes[column])) or dtype != self.dtypes[column] ): # Only add dtype only if different if dtype in dtype_indices.keys(): dtype_indices[dtype].append(numeric_indices[i]) else: dtype_indices[dtype] = [numeric_indices[i]] # Update the new dtype series to the proper pandas dtype try: new_dtype = np.dtype(dtype) except TypeError: new_dtype = dtype if dtype != np.int32 and new_dtype == np.int32: new_dtype = np.dtype("int64") elif dtype != np.float32 and new_dtype == np.float32: new_dtype = np.dtype("float64") new_dtypes[column] = new_dtype # Update partitions for each dtype that is updated new_data = self.data for dtype in dtype_indices.keys(): def astype(df, internal_indices=[]): block_dtypes = {} for ind in internal_indices: block_dtypes[df.columns[ind]] = dtype return df.astype(block_dtypes) new_data = new_data.apply_func_to_select_indices( 0, astype, dtype_indices[dtype], keep_remaining=True ) return self.__constructor__(new_data, self.index, self.columns, new_dtypes) # END Map partitions across select indices # Column/Row partitions reduce operations # # These operations result in a reduced dimensionality of data. # This will return a new QueryCompiler object which the font end will handle. def _full_axis_reduce(self, axis, func, alternate_index=None): """Applies map that reduce Manager to series but require knowledge of full axis. Args: func: Function to reduce the Manager by. This function takes in a Manager. axis: axis to apply the function to. alternate_index: If the resulting series should have an index different from the current query_compiler's index or columns. Return: Pandas series containing the reduced data. """ result = self.data.map_across_full_axis(axis, func) if axis == 0: columns = alternate_index if alternate_index is not None else self.columns return self.__constructor__(result, index=["__reduced__"], columns=columns) else: index = alternate_index if alternate_index is not None else self.index return self.__constructor__(result, index=index, columns=["__reduced__"]) def first_valid_index(self): """Returns index of first non-NaN/NULL value. Return: Scalar of index name. """ # It may be possible to incrementally check each partition, but this # computation is fairly cheap. def first_valid_index_builder(df): df.index = pandas.RangeIndex(len(df.index)) return df.apply(lambda df: df.first_valid_index()) func = self._build_mapreduce_func(first_valid_index_builder) # We get the minimum from each column, then take the min of that to get # first_valid_index. The `to_pandas()` here is just for a single value and # `squeeze` will convert it to a scalar. first_result = self._full_axis_reduce(0, func).min(axis=1).to_pandas().squeeze() return self.index[first_result] def idxmax(self, **kwargs): """Returns the first occurrence of the maximum over requested axis. Returns: A new QueryCompiler object containing the maximum of each column or axis. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().idxmax(**kwargs) axis = kwargs.get("axis", 0) index = self.index if axis == 0 else self.columns def idxmax_builder(df, **kwargs): if axis == 0: df.index = index else: df.columns = index return df.idxmax(**kwargs) func = self._build_mapreduce_func(idxmax_builder, **kwargs) return self._full_axis_reduce(axis, func) def idxmin(self, **kwargs): """Returns the first occurrence of the minimum over requested axis. Returns: A new QueryCompiler object containing the minimum of each column or axis. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().idxmin(**kwargs) axis = kwargs.get("axis", 0) index = self.index if axis == 0 else self.columns def idxmin_builder(df, **kwargs): if axis == 0: df.index = index else: df.columns = index return df.idxmin(**kwargs) func = self._build_mapreduce_func(idxmin_builder, **kwargs) return self._full_axis_reduce(axis, func) def last_valid_index(self): """Returns index of last non-NaN/NULL value. Return: Scalar of index name. """ def last_valid_index_builder(df): df.index = pandas.RangeIndex(len(df.index)) return df.apply(lambda df: df.last_valid_index()) func = self._build_mapreduce_func(last_valid_index_builder) # We get the maximum from each column, then take the max of that to get # last_valid_index. The `to_pandas()` here is just for a single value and # `squeeze` will convert it to a scalar. first_result = self._full_axis_reduce(0, func).max(axis=1).to_pandas().squeeze() return self.index[first_result] def median(self, **kwargs): """Returns median of each column or row. Returns: A new QueryCompiler object containing the median of each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().median(**kwargs) # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) func = self._build_mapreduce_func(pandas.DataFrame.median, **kwargs) return self._full_axis_reduce(axis, func) def nunique(self, **kwargs): """Returns the number of unique items over each column or row. Returns: A new QueryCompiler object of ints indexed by column or index names. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().nunique(**kwargs) axis = kwargs.get("axis", 0) func = self._build_mapreduce_func(pandas.DataFrame.nunique, **kwargs) return self._full_axis_reduce(axis, func) def quantile_for_single_value(self, **kwargs): """Returns quantile of each column or row. Returns: A new QueryCompiler object containing the quantile of each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().quantile_for_single_value(**kwargs) axis = kwargs.get("axis", 0) q = kwargs.get("q", 0.5) assert type(q) is float def quantile_builder(df, **kwargs): try: return pandas.DataFrame.quantile(df, **kwargs) except ValueError: return pandas.Series() func = self._build_mapreduce_func(quantile_builder, **kwargs) result = self._full_axis_reduce(axis, func) if axis == 0: result.index = [q] else: result.columns = [q] return result def skew(self, **kwargs): """Returns skew of each column or row. Returns: A new QueryCompiler object containing the skew of each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().skew(**kwargs) # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) func = self._build_mapreduce_func(pandas.DataFrame.skew, **kwargs) return self._full_axis_reduce(axis, func) def std(self, **kwargs): """Returns standard deviation of each column or row. Returns: A new QueryCompiler object containing the standard deviation of each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().std(**kwargs) # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) func = self._build_mapreduce_func(pandas.DataFrame.std, **kwargs) return self._full_axis_reduce(axis, func) def var(self, **kwargs): """Returns variance of each column or row. Returns: A new QueryCompiler object containing the variance of each column or row. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().var(**kwargs) # Pandas default is 0 (though not mentioned in docs) axis = kwargs.get("axis", 0) func = self._build_mapreduce_func(pandas.DataFrame.var, **kwargs) return self._full_axis_reduce(axis, func) # END Column/Row partitions reduce operations # Column/Row partitions reduce operations over select indices # # These operations result in a reduced dimensionality of data. # This will return a new QueryCompiler object which the front end will handle. def _full_axis_reduce_along_select_indices(self, func, axis, index): """Reduce Manger along select indices using function that needs full axis. Args: func: Callable that reduces the dimension of the object and requires full knowledge of the entire axis. axis: 0 for columns and 1 for rows. Defaults to 0. index: Index of the resulting QueryCompiler. Returns: A new QueryCompiler object with index or BaseFrameManager object. """ # Convert indices to numeric indices old_index = self.index if axis else self.columns numeric_indices = [i for i, name in enumerate(old_index) if name in index] result = self.data.apply_func_to_select_indices_along_full_axis( axis, func, numeric_indices ) return result def describe(self, **kwargs): """Generates descriptive statistics. Returns: DataFrame object containing the descriptive statistics of the DataFrame. """ # Use pandas to calculate the correct columns new_columns = ( pandas.DataFrame(columns=self.columns) .astype(self.dtypes) .describe(**kwargs) .columns ) def describe_builder(df, internal_indices=[], **kwargs): return df.iloc[:, internal_indices].describe(**kwargs) # Apply describe and update indices, columns, and dtypes func = self._prepare_method(describe_builder, **kwargs) new_data = self._full_axis_reduce_along_select_indices(func, 0, new_columns) new_index = self.compute_index(0, new_data, False) return self.__constructor__(new_data, new_index, new_columns) # END Column/Row partitions reduce operations over select indices # Map across rows/columns # These operations require some global knowledge of the full column/row # that is being operated on. This means that we have to put all of that # data in the same place. def _map_across_full_axis(self, axis, func): return self.data.map_across_full_axis(axis, func) def _cumulative_builder(self, func, **kwargs): axis = kwargs.get("axis", 0) func = self._prepare_method(func, **kwargs) new_data = self._map_across_full_axis(axis, func) return self.__constructor__( new_data, self.index, self.columns, self._dtype_cache ) def cummax(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cummax(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cummax, **kwargs) def cummin(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cummin(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cummin, **kwargs) def cumsum(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cumsum(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cumsum, **kwargs) def cumprod(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().cumprod(**kwargs).transpose() return self._cumulative_builder(pandas.DataFrame.cumprod, **kwargs) def diff(self, **kwargs): if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().diff(**kwargs).transpose() axis = kwargs.get("axis", 0) func = self._prepare_method(pandas.DataFrame.diff, **kwargs) new_data = self._map_across_full_axis(axis, func) return self.__constructor__(new_data, self.index, self.columns) def eval(self, expr, **kwargs): """Returns a new QueryCompiler with expr evaluated on columns. Args: expr: The string expression to evaluate. Returns: A new QueryCompiler with new columns after applying expr. """ columns = self.index if self._is_transposed else self.columns index = self.columns if self._is_transposed else self.index # Make a copy of columns and eval on the copy to determine if result type is # series or not columns_copy = pandas.DataFrame(columns=self.columns) columns_copy = columns_copy.eval(expr, inplace=False, **kwargs) expect_series = isinstance(columns_copy, pandas.Series) def eval_builder(df, **kwargs): # pop the `axis` parameter because it was needed to build the mapreduce # function but it is not a parameter used by `eval`. kwargs.pop("axis", None) df.columns = columns result = df.eval(expr, inplace=False, **kwargs) return result func = self._build_mapreduce_func(eval_builder, axis=1, **kwargs) new_data = self._map_across_full_axis(1, func) if expect_series: new_columns = [columns_copy.name] new_index = index else: new_columns = columns_copy.columns new_index = self.index return self.__constructor__(new_data, new_index, new_columns) def mode(self, **kwargs): """Returns a new QueryCompiler with modes calculated for each label along given axis. Returns: A new QueryCompiler with modes calculated. """ axis = kwargs.get("axis", 0) def mode_builder(df, **kwargs): result = df.mode(**kwargs) # We return a dataframe with the same shape as the input to ensure # that all the partitions will be the same shape if not axis and len(df) != len(result): # Pad columns append_values = pandas.DataFrame( columns=result.columns, index=range(len(result), len(df)) ) result = pandas.concat([result, append_values], ignore_index=True) elif axis and len(df.columns) != len(result.columns): # Pad rows append_vals = pandas.DataFrame( columns=range(len(result.columns), len(df.columns)), index=result.index, ) result = pandas.concat([result, append_vals], axis=1) return pandas.DataFrame(result) func = self._prepare_method(mode_builder, **kwargs) new_data = self._map_across_full_axis(axis, func) new_index = pandas.RangeIndex(len(self.index)) if not axis else self.index new_columns = self.columns if not axis else pandas.RangeIndex(len(self.columns)) new_dtypes = self._dtype_cache if new_dtypes is not None: new_dtypes.index = new_columns return self.__constructor__( new_data, new_index, new_columns, new_dtypes ).dropna(axis=axis, how="all") def fillna(self, **kwargs): """Replaces NaN values with the method provided. Returns: A new QueryCompiler with null values filled. """ axis = kwargs.get("axis", 0) value = kwargs.get("value") method = kwargs.get("method", None) limit = kwargs.get("limit", None) full_axis = method is not None or limit is not None if isinstance(value, dict): value = kwargs.pop("value") if axis == 0: index = self.columns else: index = self.index value = { idx: value[key] for key in value for idx in index.get_indexer_for([key]) } def fillna_dict_builder(df, func_dict={}): # We do this to ensure that no matter the state of the columns we get # the correct ones. func_dict = {df.columns[idx]: func_dict[idx] for idx in func_dict} return df.fillna(value=func_dict, **kwargs) if full_axis: new_data = self.data.apply_func_to_select_indices_along_full_axis( axis, fillna_dict_builder, value, keep_remaining=True ) else: new_data = self.data.apply_func_to_select_indices( axis, fillna_dict_builder, value, keep_remaining=True ) return self.__constructor__(new_data, self.index, self.columns) else: func = self._prepare_method(pandas.DataFrame.fillna, **kwargs) if full_axis: new_data = self._map_across_full_axis(axis, func) return self.__constructor__(new_data, self.index, self.columns) else: return self._map_partitions(func) def quantile_for_list_of_values(self, **kwargs): """Returns Manager containing quantiles along an axis for numeric columns. Returns: QueryCompiler containing quantiles of original QueryCompiler along an axis. """ if self._is_transposed: kwargs["axis"] = kwargs.get("axis", 0) ^ 1 return self.transpose().quantile_for_list_of_values(**kwargs) axis = kwargs.get("axis", 0) q = kwargs.get("q") numeric_only = kwargs.get("numeric_only", True) assert isinstance(q, (pandas.Series, np.ndarray, pandas.Index, list)) if numeric_only: new_columns = self.numeric_columns() else: new_columns = [ col for col, dtype in zip(self.columns, self.dtypes) if (is_numeric_dtype(dtype) or
is_datetime_or_timedelta_dtype(dtype)
pandas.core.dtypes.common.is_datetime_or_timedelta_dtype
import re import pandas as pd import numpy as np import nltk import random from nltk.corpus import stopwords from bs4 import BeautifulSoup from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.manifold import TSNE import matplotlib.pyplot as plt # Loading dataset def get_reviews(path): return pd.read_csv(path, header=0) # Preprocessing stops = set(stopwords.words("english")) tokenizer = nltk.data.load('tokenizers/punkt/english.pickle') def remove_html(s): return BeautifulSoup(s, 'lxml').get_text() def remove_punct(s): return re.sub(r'[^a-zA-Z]', ' ', s) def get_words(s): return s.lower().split() def remove_stop_words(words): return [w for w in words if not w in stops] def review_to_words(review, keep_stop_words=True): words = get_words(remove_punct(remove_html(review))) if not keep_stop_words: words = remove_stop_words(words) return words def get_clean_reviews(reviews, keep_stop_words=True, join_words=False): print('Cleaning and parsing the set of movie reviews...') clean_train_reviews = [] for i, review in enumerate(reviews): if (i+1) % 1000 == 0: print('Review {}'.format(i+1)) words = review_to_words(review, keep_stop_words) clean_train_reviews.append(' '.join(words) if join_words else words) return clean_train_reviews # For word2vec def review_to_sentences(review, keep_stop_words=True): raw_sentences = tokenizer.tokenize(review.strip()) sentences = [] for raw_sentence in raw_sentences: if raw_sentence: sentences.append(review_to_words(raw_sentence, keep_stop_words)) return sentences def get_sentences(reviews): print('Cleaning and get sentences from the set of movie reviews...') sentences = [] for i, review in enumerate(reviews): if (i+1) % 1000 == 0: print('Review {}'.format(i+1)) sentences += review_to_sentences(review) return sentences # Learning def train_classifier(algorithm, features, train): print('Train classifier ({})...'.format(algorithm)) estimators = [] if 'rf' in algorithm: estimators.append(('rf', RandomForestClassifier(n_estimators=100))) if 'lr' in algorithm: estimators.append(('lr', LogisticRegression())) if 'mb' in algorithm: estimators.append(('mb', MultinomialNB())) # Training classifier = VotingClassifier(estimators=estimators, voting='soft') classifier.fit(features, train['sentiment']) return classifier # Outputs def predict(features, test, classifier, path): print('Predict...') results = classifier.predict(features) output =
pd.DataFrame(data={'id': test['id'], 'sentiment': results})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on July 2017 @author: JulienWuthrich """ import pandas as pd def isDateTime(row): try: row.hour return True except Exception: return False def colDateType(df): date = [] date_time = [] for col in df.columns: row = df[col].iloc[0] try: row.day if isDateTime(row): date_time.append(col) else: date.append(col) except Exception: pass return date, date_time def frameFromDatetimeCol(serie, col): moment = serie.apply(lambda x: 0 if x.hour < 10 else 1 if 10 <= x.hour < 18 else 2) day = serie.apply(lambda x: x.day) month = serie.apply(lambda x: x.month) year = serie.apply(lambda x: x.year) weekday = serie.apply(lambda x: 0 if x.weekday() > 4 else 1) data = dict() for arg in ["moment", "day", "month", "year", "weekday"]: data[col + "_" + arg] = vars()[arg] return pd.DataFrame(data) def frameFromDateCol(serie, col): day = serie.apply(lambda x: x.day) month = serie.apply(lambda x: x.month) year = serie.apply(lambda x: x.year) weekday = serie.apply(lambda x: 0 if x.weekday() > 4 else 1) data = dict() for arg in ["day", "month", "year", "weekday"]: data[col + "_" + arg] = vars()[arg] return pd.DataFrame(data) def buildColsFromDateCols(df): date, date_time = colDateType(df) for col in date_time: new_df = frameFromDatetimeCol(df[col], col) df = pd.concat([df, new_df], axis=1) for col in date: new_df = frameFromDateCol(df[col], col) df =
pd.concat([df, new_df], axis=1)
pandas.concat
import copy from datetime import datetime import warnings import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Index, Series, isna, notna import pandas._testing as tm from pandas.core.window.common import _flex_binary_moment from pandas.tests.window.common import ( Base, check_pairwise_moment, moments_consistency_cov_data, moments_consistency_is_constant, moments_consistency_mock_mean, moments_consistency_series_data, moments_consistency_std_data, moments_consistency_var_data, moments_consistency_var_debiasing_factors, ) import pandas.tseries.offsets as offsets @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestMoments(Base): def setup_method(self, method): self._create_data() def test_centered_axis_validation(self): # ok Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean() # bad axis with pytest.raises(ValueError): Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean() # ok ok DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=0).mean() DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=1).mean() # bad axis with pytest.raises(ValueError): (DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=2).mean()) def test_rolling_sum(self, raw): self._check_moment_func( np.nansum, name="sum", zero_min_periods_equal=False, raw=raw ) def test_rolling_count(self, raw): counter = lambda x: np.isfinite(x).astype(float).sum() self._check_moment_func( counter, name="count", has_min_periods=False, fill_value=0, raw=raw ) def test_rolling_mean(self, raw): self._check_moment_func(np.mean, name="mean", raw=raw) @td.skip_if_no_scipy def test_cmov_mean(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, win_type="boxcar", center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window_corner(self): # GH 8238 # all nan vals = pd.Series([np.nan] * 10) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert np.isnan(result).all() # empty vals = pd.Series([], dtype=object) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert len(result) == 0 # shorter than window vals = pd.Series(np.random.randn(5)) result = vals.rolling(10, win_type="boxcar").mean() assert np.isnan(result).all() assert len(result) == 5 @td.skip_if_no_scipy @pytest.mark.parametrize( "f,xp", [ ( "mean", [ [np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392], [8.644, 9.906], [8.87, 10.208], [6.81, 8.588], [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "std", [ [np.nan, np.nan], [np.nan, np.nan], [3.789706, 4.068313], [3.429232, 3.237411], [3.589269, 3.220810], [3.405195, 2.380655], [3.281839, 2.369869], [3.676846, 1.801799], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "var", [ [np.nan, np.nan], [np.nan, np.nan], [14.36187, 16.55117], [11.75963, 10.48083], [12.88285, 10.37362], [11.59535, 5.66752], [10.77047, 5.61628], [13.51920, 3.24648], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "sum", [ [np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96], [43.22, 49.53], [44.35, 51.04], [34.05, 42.94], [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan], [np.nan, np.nan], ], ), ], ) def test_cmov_window_frame(self, f, xp): # Gh 8238 df = DataFrame( np.array( [ [12.18, 3.64], [10.18, 9.16], [13.24, 14.61], [4.51, 8.11], [6.15, 11.44], [9.14, 6.21], [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44, 7.34], ] ) ) xp = DataFrame(np.array(xp)) roll = df.rolling(5, win_type="boxcar", center=True) rs = getattr(roll, f)()
tm.assert_frame_equal(xp, rs)
pandas._testing.assert_frame_equal
import matplotlib.pyplot as plt import os import pandas import numpy as np from spinedb import SpineDB import pandas as pd def get_participating_technologies_in_capacity_market(db_emlab_powerplantdispatchplans, years_to_generate, years_emlab, db_emlab_powerplants): """ This function returns all participating technologies that get revenue from the Capacity Market. It returns a set so all values are distinct. :param db_emlab_powerplantdispatchplans: PPDPs as queried from SpineDB EMLab :return: Set of technology names """ capacity_market_aggregated_per_tech = pd.DataFrame() for year in years_emlab: capacity_market_ppdps = [row['object_name'] for row in db_emlab_powerplantdispatchplans if row['parameter_name'] == 'Market' and row['parameter_value'] == 'DutchCapacityMarket' and row['alternative'] == str(year)] capacity_market_accepted_ppdps = [row['object_name'] for row in db_emlab_powerplantdispatchplans if row['object_name'] in capacity_market_ppdps and row['parameter_name'] == 'AcceptedAmount' and row['parameter_value'] > 0] list_of_tech_fuel_cominations = [] capacity_market_participating_capacities = [] for ppdp in capacity_market_accepted_ppdps: plant_name = next(row['parameter_value'] for row in db_emlab_powerplantdispatchplans if row['object_name'] == ppdp and row['parameter_name'] == 'Plant') plant_accepted_amount = next(row['parameter_value'] for row in db_emlab_powerplantdispatchplans if row['object_name'] == ppdp and row['parameter_name'] == 'AcceptedAmount') plant_technology = next(row['parameter_value'] for row in db_emlab_powerplants if row['object_name'] == plant_name and row['parameter_name'] == 'TECHTYPENL') plant_fuel = next(row['parameter_value'] for row in db_emlab_powerplants if row['object_name'] == plant_name and row['parameter_name'] == 'FUELNL') list_of_tech_fuel_cominations.append(plant_technology + ', ' + plant_fuel) capacity_market_participating_capacities.append(plant_accepted_amount) df_year = pd.DataFrame({'technology_fuel': list_of_tech_fuel_cominations, 'capacity': capacity_market_participating_capacities}) capacity_market_aggregated_per_tech[year] = df_year.groupby('technology_fuel').sum() years_dictionary = dict(zip(years_emlab, years_to_generate)) capacity_market_aggregated_per_tech.rename(columns=years_dictionary, inplace=True) return capacity_market_aggregated_per_tech.fillna(0) def plot_mcps_with_filter(db_mcps, market, years_to_generate, path_to_plots, title, file_name, yl, ylim): # MCP Plots filtered_mcps = [i['object_name'] for i in db_mcps if i['parameter_name'] == 'Market' and i['parameter_value'] == market] mcp_x = [] mcp_y = [] print('Creating ' + str(market) + ' MCP plot') for row in [i for i in db_mcps if i['object_name'] in filtered_mcps]: if row['parameter_name'] == 'Price': mcp_x.append(int(row['alternative']) + years_to_generate[0]) mcp_y.append(row['parameter_value']) fig7 = plt.figure() axs7 = plt.axes() plt.grid(b=True) axs7.plot(mcp_x, mcp_y, 'o') axs7.set_axisbelow(True) plt.xlabel('Years') plt.ylabel(yl) plt.ylim(ylim) axs7.set_title(title) fig7.savefig(path_to_plots + '/' + file_name, bbox_inches='tight', dpi=300) def plot_annual_balances(annual_balance, years_to_generate, path_to_plots): # Annual Balance print('Create Annual Balance plot') plt.figure() annual_balance_df = pd.DataFrame(annual_balance, index=years_to_generate) axs125 = annual_balance_df.plot.bar(stacked=True, rot=0, colormap='tab20', grid=True, legend=False) plt.xlabel('Years', fontsize='medium') plt.ylabel('Supply or Demand (MWh)', fontsize='medium') axs125.set_title('NL Annual Balance per Technology') axs125.set_axisbelow(True) plt.ylim([-0.6e8, 1.75e8]) fig125 = axs125.get_figure() fig125.savefig(path_to_plots + '/' + 'NL Annual Balance.png', bbox_inches='tight', dpi=300) def plot_vre_nl_installed_capacity(vre_investment_sums, years_to_generate, path_to_plots): # VRE Investments plot print('Create VRE Investments plot') plt.figure() vre_investments_df = pd.DataFrame(vre_investment_sums, index=years_to_generate) axs5 = vre_investments_df.plot.bar(stacked=True, rot=0, colormap='tab20', legend=False) axs5.set_axisbelow(True) plt.xlabel('Years', fontsize='medium') plt.ylabel('Capacity (MW)', fontsize='medium') axs5.set_title('NL VRE Installed Capacity') fig5 = axs5.get_figure() fig5.savefig(path_to_plots + '/' + 'NL Installed Capacity.png', bbox_inches='tight', dpi=300) def plot_investments(investment_sums, years_to_generate, path_to_plots, look_ahead): # Investments plot print('Create Investments plot') plt.figure() investments_df = pd.DataFrame(investment_sums, index=list(range(years_to_generate[0], years_to_generate[-1] + look_ahead + 1))) axs6 = investments_df.plot.bar(stacked=True, rot=0, colormap='tab20', grid=True, legend=False) axs6.set_axisbelow(True) plt.xlabel('Years', fontsize='medium') plt.ylabel('Capacity (MW)', fontsize='medium') plt.ylim([-4.3e5, 5.5e5]) # leg = plt.legend(fontsize='medium', loc='upper left', bbox_to_anchor=(1, 1.1)) axs6.set_title('EU Capacity Investments per Technology') fig6 = axs6.get_figure() fig6.savefig(path_to_plots + '/' + 'EU Investments.png', bbox_inches='tight', dpi=300) def plot_nl_investments(investment_sums, years_to_generate, path_to_plots, look_ahead): # NL Investments plot print('Create NL Investments plot') plt.figure() investments_df = pd.DataFrame(investment_sums, index=list(range(years_to_generate[0], years_to_generate[-1] + look_ahead + 1))) axs6 = investments_df.plot.bar(stacked=True, rot=0, colormap='tab20', grid=True, legend=False) plt.xlabel('Years', fontsize='medium') plt.ylabel('Capacity (MW)', fontsize='medium') # plt.legend(fontsize='medium', loc='upper left', bbox_to_anchor=(1, 1.1)) axs6.set_title('NL Capacity Investments per Technology') axs6.set_axisbelow(True) plt.ylim([-20e3, 33e3]) fig6 = axs6.get_figure() fig6.savefig(path_to_plots + '/' + 'NL Investments.png', bbox_inches='tight', dpi=300) def plot_co2_emissions(co2_emission_sums, years_to_generate, path_to_plots): # CO2 emissions plot print('Create annual CO2 Emission per tech plot') plt.figure() co2_df = pd.DataFrame(co2_emission_sums, index=years_to_generate) axs4 = co2_df.plot.bar(stacked=True, rot=0, colormap='tab20', grid=True, legend=False) plt.xlabel('Years', fontsize='medium') plt.ylabel('Emissions (ton CO2)', fontsize='medium') axs4.set_title('NL CO2 Emissions per Technology') axs4.set_axisbelow(True) plt.ylim([0, 3.5e7]) # plt.legend(fontsize='medium', loc='upper left', bbox_to_anchor=(1, 1.1)) fig4 = axs4.get_figure() fig4.savefig(path_to_plots + '/' + 'NL CO2 Emissions.png', bbox_inches='tight', dpi=300) def plot_nl_unit_generation(path_and_filename_dispatch, year, path_to_plots): print('Plot NL Unit Generation') # Plot 3 NL Unit Generation curve nl_unit_generation_df = pandas.read_excel(path_and_filename_dispatch, 'NL Unit Generation', skiprows=1, index_col=0, header=0).transpose() plt.figure() axs3 = nl_unit_generation_df.plot() axs3.set_axisbelow(True) plt.xlabel('Hours', fontsize='medium') plt.ylabel('Generation (MWh)', fontsize='medium') plt.legend(fontsize='medium', loc='upper left', bbox_to_anchor=(1, 1.1)) axs3.set_title('NL Unit Generation ' + str(year)) fig3 = axs3.get_figure() fig3.savefig(path_to_plots + '/' + 'NL Unit Generation ' + str(year) + '.png', bbox_inches='tight', dpi=300) def plot_and_prepare_hourly_nodal_price_duration_curve(hourly_nodal_prices_df, year, path_to_plots, price_duration_curves): # Plot 2.5 Hourly Market Price Duration Curve print('Create Hourly Nodal Price duration curve') plt.figure() axs25 = hourly_nodal_prices_df['NED'].sort_values(ascending=False).plot(use_index=False, grid=True, legend=False) plt.xlabel('Hours') plt.ylabel('Price (Euro / MWh)') axs25.set_title('NL Hourly Electricity Spot Market Price Duration Curve ' + str(year)) axs25.set_axisbelow(True) plt.ylim([0, min(hourly_nodal_prices_df['NED'].max() + 50, 250)]) fig25 = axs25.get_figure() fig25.savefig(path_to_plots + '/' + 'NL Nodal Prices Duration Curve ' + str(year) + '.png', bbox_inches='tight', dpi=300) price_duration_curves[year] = hourly_nodal_prices_df['NED'].sort_values(ascending=False).values return price_duration_curves def plot_hourly_nodal_prices(path_and_filename_dispatch, year, path_to_plots): # Plot 2 Hourly Nodal Prices print('Read and create hourly nodal prices plot') hourly_nodal_prices_df = pandas.read_excel(path_and_filename_dispatch, 'Hourly Nodal Prices', skiprows=1, index_col=0) # hourly_nodal_prices_df[hourly_nodal_prices_df > 250] = 250 plt.figure() axs2 = hourly_nodal_prices_df['NED'].plot(grid=True) axs2.set_axisbelow(True) plt.xlabel('Hours') plt.ylabel('Price (Euro / MWh)') plt.xlim([0, 8760]) plt.ylim([0, min(hourly_nodal_prices_df['NED'].max() + 50, 250)]) axs2.set_title('NL Hourly Electricity Spot Market Prices ' + str(year)) fig2 = axs2.get_figure() fig2.savefig(path_to_plots + '/' + 'NL Nodal Prices ' + str(year) + '.png', bbox_inches='tight', dpi=300) return hourly_nodal_prices_df def plot_and_prepare_residual_load_duration_curve(hourly_nl_balance_demand, hourly_nl_balance_df, year, path_to_plots, residual_load_curves): # Plot 1.75: Residual Load Curve print('Create Res Load duration curve') plt.figure() hourly_nl_balance_residual_load = hourly_nl_balance_demand.subtract(hourly_nl_balance_df['Wind Onshore']) \ .subtract(hourly_nl_balance_df['Wind Offshore']) \ .subtract(hourly_nl_balance_df['Sun']) \ .subtract(hourly_nl_balance_df['Hydro Conv.']) axs175 = hourly_nl_balance_residual_load.sort_values(ascending=False).plot(use_index=False, grid=True, legend=False) axs175.set_title('NL Residual Load Duration Curve ' + str(year)) axs175.set_axisbelow(True) plt.xlabel('Hours') plt.ylabel('Residual Load (MWh)') plt.xlim([0, 8760]) fig175 = axs175.get_figure() fig175.savefig(path_to_plots + '/' + 'NL Residual Load Duration Curve ' + str(year) + '.png', bbox_inches='tight', dpi=300) residual_load_curves[year] = hourly_nl_balance_residual_load.sort_values(ascending=False).values return residual_load_curves def plot_and_prepare_load_duration_curve(hourly_nl_balance_demand, year, path_to_plots, load_duration_curves): # Plot 1.5: Load duration curve print('Create Load duration curve plot') plt.figure() axs15 = hourly_nl_balance_demand.sort_values(ascending=False).plot(use_index=False, grid=True, legend=False) axs15.set_title('NL Load Duration Curve ' + str(year)) axs15.set_axisbelow(True) plt.xlabel('Hours') plt.ylabel('Load (MWh)') plt.xlim([0, 8760]) fig15 = axs15.get_figure() fig15.savefig(path_to_plots + '/' + 'NL Load Duration Curve ' + str(year) + '.png', bbox_inches='tight', dpi=300) load_duration_curves[year] = hourly_nl_balance_demand.sort_values(ascending=False).values return load_duration_curves def prepare_annual_nl_balance(hourly_nl_balance_df, annual_balance, years_to_generate, year): print('Prepare Annual NL Balance plot data') hourly_nl_annual = hourly_nl_balance_df.sum() for index, col in hourly_nl_annual.iteritems(): if index in annual_balance.keys(): annual_balance[index].append(col) else: annual_balance[index] = [0] * years_to_generate.index(year) + [col] return annual_balance def plot_hourly_nl_balance(path_and_filename_dispatch, path_to_plots, year): # Plot 1 Hourly NL Balance (per year) print('Read and Create Hourly NL Balance plot') hourly_nl_balance_df = pandas.read_excel(path_and_filename_dispatch, 'Hourly NL Balance', skiprows=1, index_col=0, skipfooter=2, usecols='A:W').replace(np.nan, 0) hourly_nl_balance_demand = hourly_nl_balance_df['Demand'] hourly_nl_balance_df = hourly_nl_balance_df.drop(['Demand'], axis=1) hourly_nl_balance_df['Exports'] = -1 * hourly_nl_balance_df['Exports'] hourly_nl_balance_df['H2'] = -1 * hourly_nl_balance_df['H2'] hourly_nl_balance_df['Heat'] = -1 * hourly_nl_balance_df['Heat'] hourly_nl_balance_df['HP'] = -1 * hourly_nl_balance_df['HP'] hourly_nl_balance_df['EVs'] = -1 * hourly_nl_balance_df['EVs'] hourly_nl_balance_df['Storage cons.'] = -1 * hourly_nl_balance_df['Storage cons.'] hourly_nl_balance_df_resampled = hourly_nl_balance_df.copy() hourly_nl_balance_df_resampled['T'] = hourly_nl_balance_df_resampled.sum(axis=1) hourly_nl_balance_df_resampled.index = pandas.to_timedelta(hourly_nl_balance_df_resampled.index, unit='H') hourly_nl_balance_df_resampled = hourly_nl_balance_df_resampled.resample('50H').mean() hourly_nl_balance_df_resampled = hourly_nl_balance_df_resampled.drop(['T'], axis=1) hourly_nl_balance_df_resampled = hourly_nl_balance_df_resampled.interpolate(method='cubic') hourly_nl_balance_df_resampled.index = [i * 50 for i in range(0, len(hourly_nl_balance_df_resampled))] axs = hourly_nl_balance_df_resampled.plot.area(colormap='tab20', linewidth=0, legend=False) axs.set_title('Hourly NL Balance - All Technologies ' + str(year)) axs.set_axisbelow(True) plt.xlabel('Hours', fontsize='medium') plt.ylabel('Supply or Demand (MWh)', fontsize='medium') plt.xlim([0, 8760]) # plt.legend(fontsize='medium', loc='best', bbox_to_anchor=(1, 1.1)) fig = axs.get_figure() fig.savefig(path_to_plots + '/' + 'NL Hourly Balance ' + str(year) + '.png', bbox_inches='tight', dpi=300) return hourly_nl_balance_df, hourly_nl_balance_demand def prepare_co2_emission_data(path_and_filename_dispatch, co2_emission_sums, years_to_generate, year): # Preparing values for CO2 Emissions plot, plot after years iterations print('Prepare CO2 Emission plot data') co2_emissions = pandas.read_excel(path_and_filename_dispatch, 'CO2 Emissions tech', skiprows=1, index_col=0) co2_emissions.columns = [i[0] + ',' + i[1] for i in zip(co2_emissions.columns.values, co2_emissions.iloc[0].values)] for index, value in co2_emissions.loc['NED'].iteritems(): if index in co2_emission_sums.keys(): co2_emission_sums[index].append(value) else: co2_emission_sums[index] = [0] * years_to_generate.index(year) + [value] # Add 0 to values if not in COMPETES results for key in co2_emission_sums.keys(): if key not in co2_emissions.columns.values: co2_emission_sums[key].append(0) return co2_emission_sums def prepare_vre_investment_data(path_and_filename_investments, vre_investment_sums, years_to_generate, year): # Preparing values for VRE Investments plot, plot after years iterations print('Preparing VRE Investment data') vre_investments = pandas.read_excel(path_and_filename_investments, 'VRE investment', skiprows=2) for index, row in vre_investments[vre_investments['Bus'] == 'NED'].iterrows(): if row['WindOn'] in vre_investment_sums.keys(): vre_investment_sums[row['WindOn']].append(row['Initial']) else: vre_investment_sums[row['WindOn']] = [0] * years_to_generate.index(year) + [row['Initial']] # Add 0 to values if not in COMPETES results for key in vre_investment_sums.keys(): if key not in vre_investments[vre_investments['Bus'] == 'NED']['WindOn'].values: vre_investment_sums[key].append(0) return vre_investment_sums def prepare_investment_and_decom_data(path_and_filename_investments, investment_sums, years_to_generate, year, emlab_spine_powerplants_tech_dict, emlab_spine_powerplants_fuel_dict, emlab_spine_technologies, look_ahead, nl_investment_sums): print('Loading investment and decom data') decommissioning = pandas.read_excel(path_and_filename_investments, 'Decommissioning', skiprows=2, usecols='A:C') decommissioning = decommissioning.dropna() nl_decommissioning = decommissioning[decommissioning['node'] == 'NED'].copy() investments = pandas.read_excel(path_and_filename_investments, 'New Generation Capacity', skiprows=2, usecols="A:D") investments = investments.dropna() nl_investments = investments[investments['Node'] == 'NED'].copy() investment_sums, investments = prepare_investment_data(investments, investment_sums, years_to_generate, year, emlab_spine_technologies, look_ahead) nl_investment_sums, nl_investments = prepare_investment_data(nl_investments, nl_investment_sums, years_to_generate, year, emlab_spine_technologies, look_ahead) investment_sums = prepare_decom_data(decommissioning, emlab_spine_powerplants_tech_dict, investment_sums, years_to_generate, year, investments, emlab_spine_powerplants_fuel_dict, look_ahead) nl_investment_sums = prepare_decom_data(nl_decommissioning, emlab_spine_powerplants_tech_dict, nl_investment_sums, years_to_generate, year, nl_investments, emlab_spine_powerplants_fuel_dict, look_ahead) return investment_sums, nl_investment_sums def prepare_decom_data(decommissioning, emlab_spine_powerplants_tech_dict, investment_sums, years_to_generate, year, investments, emlab_spine_powerplants_fuel_dict, look_ahead): print('Preparing Decom plot data') decommissioning['Technology'] = [ emlab_spine_powerplants_fuel_dict[i] + ', ' + emlab_spine_powerplants_tech_dict[i] + ' (D)' for i in decommissioning['unit'].values] decommissioning_grouped_and_summed = decommissioning.groupby('Technology')['MW'].sum() index_years = list(range(years_to_generate[0], years_to_generate[-1] + look_ahead + 1)) for tech, mw_sum in decommissioning_grouped_and_summed.iteritems(): if tech not in investment_sums.keys(): investment_sums[tech] = [0] * len(index_years) investment_sums[tech][index_years.index(year + look_ahead)] = -1 * mw_sum return investment_sums def get_year_online_by_technology(db_emlab_technologies, fuel, techtype, current_competes_tick): technologies_by_fuel = [i['object_name'] for i in db_emlab_technologies if i['parameter_name'] == 'FUELNEW' and i['parameter_value'] == fuel] technologies_by_techtype = [i['object_name'] for i in db_emlab_technologies if i['parameter_name'] == 'FUELTYPENEW' and i['parameter_value'] == techtype] technology = next(name for name in technologies_by_fuel if name in technologies_by_techtype) expected_permit_time = next(int(i['parameter_value']) for i in db_emlab_technologies if i['object_name'] == technology and i['parameter_name'] == 'expectedPermittime') expected_lead_time = next(int(i['parameter_value']) for i in db_emlab_technologies if i['object_name'] == technology and i['parameter_name'] == 'expectedLeadtime') build_time = expected_permit_time + expected_lead_time return current_competes_tick + build_time def prepare_investment_data(investments, investment_sums, years_to_generate, year, emlab_spine_technologies, look_ahead): # Preparing values for Investments plot, plot after years iterations print('Preparing Investment plot data') investments['CombinedIndex'] = [i[0] + ', ' + i[1] for i in zip(investments['FUEL'].values, investments['FuelType'].values)] index_years = list(range(years_to_generate[0], years_to_generate[-1] + look_ahead + 1)) for index, row in investments.iterrows(): # Extracting buildtime online_in_year = get_year_online_by_technology(emlab_spine_technologies, row['FUEL'], row['FuelType'], year) if row['CombinedIndex'] not in investment_sums.keys(): investment_sums[row['CombinedIndex']] = [0] * len(index_years) investment_sums[row['CombinedIndex']][index_years.index(online_in_year)] += row['MW'] return investment_sums, investments def prepare_annual_installed_capacity(path_and_filename_dispatch, emlab_spine_powerplants_tech_dict, annual_installed_capacity, year, years_to_generate): installed_capacity_df = pandas.read_excel(path_and_filename_dispatch, 'Initial generation capacity', skiprows=2) installed_capacity_df = installed_capacity_df[installed_capacity_df['i'] == 'NED'] installed_capacity_df['Technology'] = [emlab_spine_powerplants_tech_dict[i] for i in installed_capacity_df['h'].values] installed_capacity_df = installed_capacity_df.groupby(['Technology']).sum() for tech, row in installed_capacity_df.iterrows(): if tech in annual_installed_capacity.keys(): annual_installed_capacity[tech].append(row['MW']) else: annual_installed_capacity[tech] = [0] * years_to_generate.index(year) + [row['MW']] return annual_installed_capacity def plot_annual_installed_capacity(annual_installed_capacity, years_to_generate, path_to_plots): print('Annual installed capacity NL') plt.figure() annual_installed_capacity_df =
pd.DataFrame(annual_installed_capacity, index=years_to_generate)
pandas.DataFrame
"""Author: <NAME> This contains the main Spomato class to be used to access the Spotify API and create new playlists based on the user's defined criteria. """ import os import pandas as pd import spotipy class Spomato(): """Object used to access spotify API through spotipy and generate playlists. This can take a combination user's saved tracks, playlists, and/or artist's songs to generate a playlist of a specified length. This was conceived to use the Tomato Timer method as Spotify playlists. This does require the user to provide a user API token from the spotify API. The API scopes used by this library are playlist-read-private, playlist-modify-private, and user-library-read. Parameters ---------- access_token : str A valid Spotify Access token. Attributes ---------- data : dictionary Dictionary storing available data structures to create playlists. spotipy_session : spotipy.client.Spotify A spotipy session to access the spotify API. access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read current_user_id : str The string id of the user of the access token used to create the spotipy session. """ def __init__(self, access_token=None): """Initialization function that sets access token and generates initial spotipy session. Parameters ---------- access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read. Returns ------- None """ self.access_token = access_token self.data = {} self.spotipy_session = self._get_spotipy_session() self.current_user_id = self.spotipy_session.current_user()['id'] def update_token(self, access_token): """Updates the token and spotify session with the provided access_token. Generally used if your access token has expired. Parameters ---------- access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read. Returns ------- None """ # update the class access token and the spotipy session self.access_token = access_token self.spotipy_session = self._get_spotipy_session() self.current_user_id = self.spotipy_session.current_user()['id'] def _get_spotipy_session(self): """Internal Function to create a new spotify session. Returns ------- spotipy_session : spotipy.client.Spotify A spotipy session to access the spotify API. """ return spotipy.Spotify(auth=self.access_token) @staticmethod def _parse_album(album_data, market='US'): """Parses the album data returned from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- album_data : dict A dictionary of album data from Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the album data and parse the track data series_list = [] album_tracks = album_data['tracks']['items'] for record in album_tracks: songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df @staticmethod def _parse_user_playlist(data, market='US'): """Parses a user playlist data set from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- data : dictionary Contains songs in a playlist from the Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the playlist data and parse the track data series_list = [] data = data['tracks']['items'] for item in data: record = item['track'] songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df @staticmethod def _parse_public_playlist(data, market='US'): """Parses public playlist data set from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- data : dictionary Contains songs in a playlist from the Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the playlist data and parse the track data series_list = [] data = data['items'] for item in data: record = item['track'] songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df @staticmethod def _parse_saved_tracks(data, market='US'): """Parses a the saved songs data set of the user from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- data : dictionary Contains saved songs of the user from the Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the saved track data and parse the individual track data series_list = [] for item in data: record = item['track'] songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df def _cache_data(self, data_key, file_path): """Export the results of a dataset of song ids to local filesystem as a csv. Parameters ---------- data_key : str Key of the dataset to save file_path : str Full path of filename to save the file. Returns ------- None """ # use pandas dataframe write function to save file self.data[data_key].to_csv(file_path, index=False) def _load_cached_data(self, data_key, file_path): """Load a Saved Dataset into the Spomato data dictionary. Requires a csv with columns of 'song_id' and 'time'. Parameters ---------- data_key : str Key to associate the loaded dataset in the data dictionary. file_path : str Full path of filename to load the file. Returns ------- None """ data = pd.read_csv(file_path) # ensure the required columns are in the dataset else raise error if 'song_id' not in data.columns: raise ValueError('Column song_id not found in loaded data file.') if 'time' not in data.columns: raise ValueError('Column song_id not found in loaded data file.') # data looks correct, add dataset to data self.data[data_key] = data def get_file_data(self, data_key='default', file_path=None, overwrite=False): """Loads a file of song data into Spomato to be used for generating new playlists. Parameters ---------- data_key : str Key to associate the dataset in the data dictionary. file_path : str Full path of filename if loading or saving dataset. overwrite : bool Boolean to determine if the dataset should be overwritten if it already exists. Returns ------- None """ if not isinstance(data_key, str): raise TypeError('Argument data_key must be of type string') if file_path is not None and not isinstance(file_path, str): raise TypeError('Argument file_path must be of type string') # check if the data key already exists to ensure data is not unexpectedly overwritten if data_key in self.data.keys() and overwrite is False: msg = (f'Dataset {data_key} already exists and reset argument is set to False. ' 'Set reset to True to overwrite dataset.') raise ValueError(msg) # read the data from file if the file exists if os.path.isfile(file_path): self._load_cached_data(data_key=data_key, file_path=file_path) else: raise ValueError('File path {f} does not exist.'.format(f=file_path)) def get_api_data(self, data_key='default', file_path=None, source=None, reset=False, market='US'): """Generates a song dataset to load into Spomato to be used for generating new playlists. Parameters ---------- data_key : str Key to associate the dataset in the data dictionary. file_path : str If not None, the dataset generated will also be saved to the specified file path.. source : dict Contains all sources you want to use in generating the dataset. The dictionary is keyed by one of 3 source types: savedtracks, playlist, or artist. For savedtracks the value can be None, as no further data is required. For playlist or artist, the value should contain a list of all spotify ids of the appropriate type. If not specified, it defaults to your saved tracks. reset : bool Boolean to determine if the dataset should be regenerated if it already exists. market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- None """ if not isinstance(data_key, str): raise TypeError('Argument data_key must be of type string') if file_path is not None and not isinstance(file_path, str): raise TypeError('Argument file_path must be of type string') if source is not None and not isinstance(source, dict): raise TypeError('Argument source must be of type dict') if not isinstance(reset, (bool, int)): raise TypeError('Argument reset must be of type bool or int') if not isinstance(market, str): raise TypeError('Argument market must be of type string') # check if the data key already exists to ensure data is not unexpectedly overwritten if data_key in self.data.keys() and reset is False: msg = (f'Dataset {data_key} already exists and reset argument is set to False. ' 'Set reset to True to overwrite dataset.') raise ValueError(msg) # default the data source to the user's saved tracks if not specified if source is None: source = {'savedtracks': None} # generate the dataset and save it into the Spomato object self.data[data_key] = self._get_new_data(source=source, market=market) # Cache the data if the file_path is specified if file_path: self._cache_data(data_key=data_key, file_path=file_path) def _get_playlist_dataframe(self, source_list, market): """Short summary. Parameters ---------- source_list : list A list of playlist ids to source songs from market : str A string representation of the Spotify market to filter on. Returns ------- pandas.DataFrame A dataframe of songs with song id and time. """ # get the list of playlists and filter out datasets included in the source list playlist_df = self.get_playlists() playlist_list = [] for pl_id in source_list: if not playlist_df[playlist_df.playlist_id == pl_id].empty: pl_json = self.spotipy_session.user_playlist(self.current_user_id, pl_id) pl_df = self._parse_user_playlist(pl_json, market) playlist_list.append(pl_df) else: pl_json = self.spotipy_session.playlist_tracks(pl_id) pl_df = self._parse_public_playlist(pl_json, market) playlist_list.append(pl_df) if len(playlist_list) == 0: raise ValueError('No valid playlists.') # concatinate the dataframes of all the playlist and remove any duplicates data = pd.concat(playlist_list) data.drop_duplicates(inplace=True) return data def _get_artist_dataframe(self, source_list, market): """Short summary. Parameters ---------- source_list : list A list of playlist ids to source songs from market : str A string representation of the Spotify market to filter on. Returns ------- pandas.DataFrame A dataframe of songs with song id and time. """ # iterate over each artist, get the data from the Spotify API, and parse the song data artist_list = [] for artist in source_list: artist_songs = self._get_artist_data(artist, market) artist_list.append(artist_songs) # concatinate the dataframes of all the playlist and remove any duplicates data = pd.concat(artist_list) data.drop_duplicates(inplace=True) return data def _get_new_data(self, source=None, market='US'): """Creates a new dataset from the specified source list and returns a pandas DataFrame of song ids and times. Parameters ---------- source : dict Contains all sources you want to use in generating the dataset. The dictionary is keyed by one of 3 source types: savedtracks, playlist, or artist. For savedtracks the value can be None, as no further data is required. For playlist or artist, the value should contain a list of all spotify ids of the appropriate type. market : str A string representation of the Spotify market to filter on. Returns ------- pd.DataFrame A dataframe of song ids generated from the sources. """ # if the source is not specified, default to the saved tracks of the current user. if source is None: source = {'savedtracks': None} elif not isinstance(source, dict): raise ValueError('Argument source must be of type dict or None.') elif len(source.keys()) == 0: raise ValueError('Argument source must contain at least 1 valid key from: savedtracks, artist, playlist') else: for key in source.keys(): if key not in ['savedtracks', 'artist', 'playlist']: raise ValueError(f'{key} is not a valid data source type.') # iterate over the source types in the source dictionary and parse out the data data_list = [] for sourcetype in source.keys(): if sourcetype == 'savedtracks': # print 'SAVEDTRACKS' data = self._get_saved_tracks(market) data_list.append(data) elif sourcetype == 'playlist': playlist_data = self._get_playlist_dataframe(source_list=source['playlist'], market=market) data_list.append(playlist_data) elif sourcetype == 'artist': artist_data = self._get_artist_dataframe(source_list=source['artist'], market=market) data_list.append(artist_data) # concatinate the dataframes of all the source types and remove any duplicates data = pd.concat(data_list) data.drop_duplicates(inplace=True) return data def pick_tracks(self, data_key, time=25, extra=5, time_limit=None): """Using a specified dataset, this generates a subset of the dataframe of songs that fit the time constraints. Parameters ---------- data_key : str Name of the dataset to use stored in the data object in Spomato time : int The length in minutes to make the playlist extra : type The amount of buffer time to add on to the end of the playlist. time_limit : type The maximum song length in minutes to include in the playlist. Returns ------- pd.DataFrame A dataframe of song ids generated from the sources. """ if not isinstance(data_key, str): raise TypeError('Argument data_key must be of type string') if not isinstance(time, (int, float)): raise TypeError('Argument time must be of type int or float') if not isinstance(extra, (int, float)): raise TypeError('Argument extra must be of type int or float') if time_limit is not None and not isinstance(time_limit, (int, float)): raise TypeError('Argument time_limit must be of type int or float') track_df = self.data[data_key] # the time in our dataframe is specified in seconds, we need to convert the times time *= 60 extra *= 60 # if time limit is not specified, default it to one third of the parameter time if time_limit is None: time_limit = time/3.0 else: time_limit *= 60 # filter out any records that are longer than the time limit track_df = track_df[track_df['time'] <= time_limit] # iterate adding songs to the selected track until the time is reached time_used = 0 track_list = [] done = False while not done: # filter down to tracks that fit in the remaining time track_df = track_df[track_df.time <= (time + extra - time_used)] # if the total time is greater than the specified time, mark the iteration done. if time_used > time: done = True # if the filtered song list is empty, there are no songs left, so mark iteration done elif track_df.empty: done = True # otherwise, take a random track from the dataframe, add to the track list, and remove it from being # selected again else: track = track_df.sample().iloc[0] track_df = track_df[track_df.song_id != track.song_id] track_list.append(track) time_used += track.time # concatinate all of the selected tracks into a dataframe. picked_track_df = pd.concat(track_list, axis=1).T return picked_track_df def _get_saved_tracks(self, market): """Access the spotify API to get the saved tracks for a user and returns a dataframe of song ids and times. Parameters ---------- market : str A string representation of the Spotify market to filter on. Returns ------- pd.DataFrame A dataframe of song ids generated from the sources. """ # iterate over a user's saved tracks until all have been accessed and parsed end = False i = 0 track_df_list = [] while not end: data = self.spotipy_session.current_user_saved_tracks(limit=50, offset=i*50)['items'] if len(data) > 0: track_df = self._parse_saved_tracks(data, market) track_df_list.append(track_df) i += 1 else: end = True # concatinate the created dataframes and remove any duplicates track_df = pd.concat(track_df_list).reset_index(drop=True) track_df.drop_duplicates(inplace=True) return track_df def _get_artist_data(self, artist_id, market): """Access the spotify API to get an artist's tracks and returns a dataframe of song ids and times. Parameters ---------- artist_id : type Description of parameter `artist_id`. market : str A string representation of the Spotify market to filter on. Returns ------- pandas.DataFrame A dataframe of song ids and times generated from the sources. """ # get all of the artist's albums ids and parse out the json for each artist_albums = self.spotipy_session.artist_albums(artist_id) album_ids = [x['id'] for x in artist_albums['items']] album_jsons = self.spotipy_session.albums(album_ids)['albums'] # iterate over each album and parse out the songs songdf = [] for album in album_jsons: if market in album['available_markets']: songs = self._parse_album(album, market) songdf.append(songs) # concatinate the results from each album into a single dataframe data = pd.concat(songdf) return data def get_playlists(self): """Access the spotify API to get the playlists for a user and returns a dataframe of names and ids. Returns ------- pandas.DataFrame A dataframe consisting of the current user's playlist names and playlist ids. """ # get the user's playlist and parse the playlist name and id pl_json = self.spotipy_session.current_user_playlists() series_index = ['playlist_name', 'playlist_id'] playlist_list = [
pd.Series([pl['name'], pl['id']], index=series_index)
pandas.Series
import csv import numpy as np import ipaddress import sys from pathlib import Path import pandas as pd from scapy.all import * def sort_by_time(elem): return elem[1] def csv_numpy(packet_path): """ Take the csv files, convert it to "list" structure or "ndarray" structure. Use either of the two structure for the future data analysis. :param packet_path: path of the csv file :return: return the traffic data in a data structure of "list" or "ndarray" """ reader = csv.reader(open(packet_path, "r"), delimiter=",") query_in_list = list(reader) query_in_list.pop(0) query_in_array = np.array(query_in_list).astype(float) query_in_list = query_in_array.tolist() # for p in query_in_list: # p.remove(p[0]) return query_in_list def buflo(query_data, d, f, T): ''' apply BuFlo countermeasure to traffic data. In BuFlo, it will send a packet of length d every ρ milliseconds until communications cease and at least τ milliseconds of time have elapsed :param d, determines the size of fixed-length packets :param f, determines the rates or frequency (in milliseconds) at which we send packets :param T, determines the minimum amount of time (in milliseconds) for which we must send packets. :return: ''' outgoing = [] incoming = [] for p in query_data: if p[2] <= d: overhead = d - p[2] p[2] = d # p = np.append(p, overhead) p.append(overhead) if p[3] == 1: outgoing.append(p) else: incoming.append(p) t_start_out = outgoing[0][1] t_start_in = incoming[0][1] n_out = 0 for p in outgoing: p[1] = t_start_out + n_out * (1 / f) n_out += 1 n_in = 0 for p in incoming: p[1] = t_start_in + n_in * (1 / f) n_in += 1 outgoing.reverse() for p in outgoing: if p[1] <= T: outgoing.pop(p) print("pop") outgoing.reverse() incoming.reverse() for p in incoming: if p[1] <= T: incoming.pop(p) incoming.reverse() buflo_data_list = outgoing + incoming # buflo_data_list.sort() # echo_df1 = pd.DataFrame(buflo_data_list, columns=['index', 'time', 'size', 'direction', 'overhead']) # echo_df1.to_csv('sports_update_5_30s_buflo1' + ".csv") buflo_data_list.sort(key=sort_by_time) echo_df2 = pd.DataFrame(buflo_data_list, columns=['index', 'time', 'size', 'direction', 'overhead']) echo_df2.to_csv('sports_update_5_30s_buflo2' + ".csv") print(' f') def buflo_ordered(csv_path, query_data, d, f, t): ''' apply BuFlo countermeasure to traffic data. In BuFlo, it will send a packet of length d every ρ milliseconds until communications cease and at least τ milliseconds of time have elapsed. The order of packets are not changed in this method :param d, determines the size of fixed-length packets :param f, determines the rates or frequency (in milliseconds) at which we send packets :param t, determines the minimum amount of time (in milliseconds) for which we must send packets. :return: ''' buflo_path = 'buflo/' info_path = 'info/' pf = Path(csv_path) trace_name = pf.name[0:-4] start_t = query_data[0][1] #to record the start time of this query end_time = query_data[-1][1]#to record the end time of this query index = 0 total_packet = t * f # the minimum amount of packets total_overhead = 0 original_size = 0 buflo_data = [] for p in query_data: original_size = original_size + p[2] for p in query_data: if p[2] <= d and len(p) ==4: # size of this packt is small than d. Pad the packet overhead = d - p[2] total_overhead = total_overhead + overhead p[2] = d p.append(overhead) p[1] = round(start_t + index * (1 / f),2) p[0] = index p.append('padded') index += 1 elif len(p) == 4: # size of this packet is larger than d. Chop the packet p_left = p[2] - d p[2] = d p[1] = round(start_t + index * (1 / f) ,2) p[0] = index p.append(0) p.append('chopped') # a dummy packet will be added final_left = p_left % d if final_left == 0: n_new = int(p_left / d) else: n_new = int(p_left / d) + 1 if n_new == 0: # if just one dummy packet are needed index += 1 new_p = [index, round(start_t + index * (1 / f),2), d, p[3], d - p_left, 'new'] total_overhead = total_overhead + (d - p_left) query_data.insert(index, new_p) # add dummy packet while n_new > 0: # if more dummy packets are needed if n_new == 1: index += 1 new_p = [index, round(start_t + index * (1 / f),2), d, p[3], d - final_left, 'new'] total_overhead = total_overhead + (d - final_left) query_data.insert(index, new_p) # add a dummy packet else: index += 1 new_p = [index, round(start_t + index * (1 / f),2), d, p[3], 0, 'new'] query_data.insert(index, new_p) # add a dummy packet n_new = n_new - 1 index += 1 #if index > total_packet != 0: # query_data = query_data[0:index] # break if index < total_packet: for i in range(index, total_packet): seed = -1 + 2 * random.random() direction = float(np.sign(seed)) dummy_packet = [i+1, round(start_t + (i + 1) * (1 / f),2), d, direction, d, 'dummy'] total_overhead = total_overhead + d query_data.insert(i+1, dummy_packet) time_delay = query_data[-1][1] - end_time # query_data.append(last_packet) echo_df2 =
pd.DataFrame(query_data, columns=['index', 'time', 'size', 'direction', 'overhead', 'status'])
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/04_Create_Acs_Indicators.ipynb (unless otherwise specified). __all__ = ['getColName', 'getColByName', 'addKey', 'nullIfEqual', 'sumInts', 'age5', 'age18', 'age24', 'age64', 'age65', 'bahigher', 'carpool', 'drvalone', 'elheat', 'empl', 'fam', 'female', 'femhhs', 'heatgas', 'hisp', 'hh25inc', 'hh40inc', 'hh60inc', 'hh75inc', 'hhchpov', 'hhm75', 'hhs', 'hsdipl', 'lesshs', 'male', 'mhhi', 'drvalone', 'novhcl', 'nohhint', 'othercom', 'paa', 'p2more', 'pasi', 'pubtran', 'pwhite', 'sclemp', 'tpop', 'trav14', 'trav14', 'trav45', 'trav44', 'unempr', 'unempr', 'walked', 'createAcsIndicator'] # Cell #@title Run This Cell: Misc Function Declarations # These functions right here are used in the calculations below. # Finds a column matchings a substring def getColName (df, col): return df.columns[df.columns.str.contains(pat = col)][0] def getColByName (df, col): return df[getColName(df, col)] # Pulls a column from one dataset into a new dataset. # This is not a crosswalk. calls getColByName() def addKey(df, fi, col): key = getColName(df, col) val = getColByName(df, col) fi[key] = val return fi # Return 0 if two specified columns are equal. def nullIfEqual(df, c1, c2): return df.apply(lambda x: x[getColName(df, c1)]+x[getColName(df, c2)] if x[getColName(df, c1)]+x[getColName(df, c2)] != 0 else 0, axis=1) # I'm thinking this doesnt need to be a function.. def sumInts(df): return df.sum(numeric_only=True) # Cell #@title Run This Cell: Create age5 #File: age5.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age5( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_027E_Total_Female_Under_5_years', 'B01001_003E_Total_Male_Under_5_years', 'B01001_001E_Total' , 'tract'] columns.extend(columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df[ 'B01001_003E_Total_Male_Under_5_years' ] + df[ 'B01001_027E_Total_Female_Under_5_years' ] ) / df['B01001_001E_Total'] * 100 return fi # Cell #@title Run This Cell: age18 #File: age18.py #Author: <NAME> #Date: 4/16/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age18( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_001E_Total', 'B01001_004E_Total_Male_5_to_9_years', 'B01001_005E_Total_Male_10_to_14_years' , 'B01001_006E_Total_Male_15_to_17_years', 'B01001_028E_Total_Female_5_to_9_years', 'B01001_029E_Total_Female_10_to_14_years' , 'B01001_030E_Total_Female_15_to_17_years'] columns = df.filter(regex='001E|004E|005E|006E|028E|029E|030E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='004E|005E|006E|028E|029E|030E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: Create age24 #File: age24.py #Author: <NAME> #Date: 9/8/21 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B01001 - SEX BY AGE # Universe: Total population # Table Creates: tpop, female, male, age5 age18 age24 age64 age65 #purpose: #input: #output: import pandas as pd import glob def age24( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B01001_007E_Total_Male_18_and_19_years', 'B01001_008E_Total_Male_20_years', 'B01001_009E_Total_Male_21_years' , 'B01001_010E_Total_Male_22_to_24_years' , 'B01001_031E_Total_Female_18_and_19_years' , 'B01001_032E_Total_Female_20_years' , 'B01001_033E_Total_Female_21_years' , 'B01001_034E_Total_Female_22_to_24_years', 'tract'] columns.extend(columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df[ 'B01001_007E_Total_Male_18_and_19_years' ] + df[ 'B01001_008E_Total_Male_20_years' ] + df[ 'B01001_009E_Total_Male_21_years' ] + df[ 'B01001_010E_Total_Male_22_to_24_years' ] + df[ 'B01001_031E_Total_Female_18_and_19_years' ] + df[ 'B01001_032E_Total_Female_20_years' ] + df[ 'B01001_033E_Total_Female_21_years' ] + df[ 'B01001_034E_Total_Female_22_to_24_years' ] ) / df['B01001_001E_Total'] * 100 return fi # Cell #@title Run This Cell: age64 import pandas as pd import glob def age64( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='012E|013E|014E|015E|016E|017E|018E|019E|036E|037E|038E|039E|040E|041E|042E|043E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='012E|013E|014E|015E|016E|017E|018E|019E|036E|037E|038E|039E|040E|041E|042E|043E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: age65 import pandas as pd import glob def age65( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|020E|021E|022E|023E|024E|025E|044E|045E|046E|047E|048E|049E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='020E|021E|022E|023E|024E|025E|044E|045E|046E|047E|048E|049E').sum(axis=1) ) / df['B01001_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: bahigher import pandas as pd import glob def bahigher( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='005E|006E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='005E|006E').sum(axis=1) ) / df['B06009_001E'] * 100 return fi # Cell #@title Run This Cell: - carpool import pandas as pd import glob def carpool( df, columnsToInclude ): # Final Dataframe fi = pd.DataFrame() columns = df.filter(regex='001E|049E|017E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_017E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: - drvalone import pandas as pd import glob def drvalone( df, columnsToInclude ): # Final Dataframe fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -elheat import pandas as pd import glob def elheat( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='B25040_004E|B25040_001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B25040_004E').sum(axis=1) ) / ( df.filter(regex='B25040_001E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -empl import pandas as pd import glob def empl( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -fam import pandas as pd import glob def fam( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -female import pandas as pd import glob def female( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['female'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -femhhs import pandas as pd import glob def femhhs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['femhhs'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -heatgas import pandas as pd import glob def heatgas( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: hisp import pandas as pd import glob def hisp( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B03002_001E_Total', 'B03002_012E_Total_Hispanic_or_Latino'] columns = df.filter(regex='001E|012E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) print(' ') fi['final'] = ( df.filter(regex='012E').sum(axis=1) ) / df['B03002_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: hh25inc import pandas as pd import glob def hh25inc( df, columnsToInclude ): df.columns = df.columns.str.replace(r"[$]", "") fi = pd.DataFrame() columns = ['B19001_001E_Total', "B19001_002E_Total_Less_than_10,000", "B19001_003E_Total_10,000_to_14,999", "B19001_004E_Total_15,000_to_19,999", "B19001_005E_Total_20,000_to_24,999"] columns = df.filter(regex='002E|003E|004E|005E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey col: ', col, df.columns) fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='002E|003E|004E|005E').sum(axis=1) ) / df['B19001_001E_Total:'] * 100 return fi # Cell #@ title Run This Cell: -hh40inc import pandas as pd import glob def hh40inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hh60inc import pandas as pd import glob def hh60inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hh75inc import pandas as pd import glob def hh75inc( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhchpov import pandas as pd import glob def hhchpov( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhm75 import pandas as pd import glob def hhm75( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hhs import pandas as pd import glob def hhs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -hsdipl import pandas as pd import glob def hsdipl( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -lesshs import pandas as pd import glob def lesshs( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@ title Run This Cell: -male import pandas as pd import glob def male( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell # @title Run This Cell : Create MHHI #File: mhhi.py #Author: <NAME> #Date: 1/24/19 #Section: Bnia #Email: <EMAIL> #Description: # Uses ACS Table B19001 - HOUSEHOLD INCOME IN THE PAST 12 MONTHS (IN 2016 INFLATION-ADJUSTED DOLLARS) # Universe: Households # Table Creates: hh25 hh40 hh60 hh75 hhm75, mhhi #purpose: Produce Sustainability - Percent of Population that Walks to Work Indicator #input: #output: import pandas as pd import glob def mhhi( df, columnsToInclude = [] ): info = pd.DataFrame( [ ['B19001_002E', 0, 10000], ['B19001_003E', 10000, 4999 ], ['B19001_004E', 15000, 4999 ], ['B19001_005E', 20000, 4999 ], ['B19001_006E', 25000, 4999 ], ['B19001_007E', 30000, 4999], ['B19001_008E', 35000, 4999 ], ['B19001_009E', 40000, 4999 ], ['B19001_010E', 45000, 4999 ], ['B19001_011E', 50000, 9999 ], ['B19001_012E', 60000, 14999], ['B19001_013E', 75000, 24999 ], ['B19001_014E', 100000, 24999 ], ['B19001_015E', 125000, 24999 ], ['B19001_016E', 150000, 49000 ], ['B19001_017E', 200000, 1000000000000000000000000 ], ], columns=['variable', 'lower', 'range'] ) # Final Dataframe data_table = pd.DataFrame() for index, row in info.iterrows(): data_table = addKey(df, data_table, row['variable']) # Accumulate totals accross the columns. # Midpoint: Divide column index 16 (the last column) of the cumulative totals temp_table = data_table.cumsum(axis=1) temp_table['midpoint'] = (temp_table.iloc[ : , -1 :] /2) # V3 temp_table['midpoint_index'] = False temp_table['midpoint_index_value'] = False # Z3 temp_table['midpoint_index_lower'] = False # W3 temp_table['midpoint_index_range'] = False # X3 temp_table['midpoint_index_minus_one_cumulative_sum'] = False #Y3 # step 3 - csa_agg3: get the midpoint index by "when midpoint > agg[1] and midpoint <= agg[2] then 2" # Get CSA Midpoint Index using the breakpoints in our info table. for index, row in temp_table.iterrows(): # Get the index of the first column where our midpoint is greater than the columns value. midpoint = row['midpoint'] midpoint_index = 0 # For each column (except the 6 columns we just created) # The tracts midpoint was < than the first tracts value at column 'B19001_002E_Total_Less_than_$10,000' if( midpoint < int(row[0]) or row[-6] == False ): temp_table.loc[ index, 'midpoint_index' ] = 0 else: for column in row.iloc[:-6]: # set midpoint index to the column with the highest value possible that is under midpoint if( midpoint >= int(column) ): if midpoint==False: print (str(column) + ' - ' + str(midpoint)) temp_table.loc[ index, 'midpoint_index' ] = midpoint_index +1 midpoint_index += 1 # temp_table = temp_table.drop('Unassigned--Jail') for index, row in temp_table.iterrows(): temp_table.loc[ index, 'midpoint_index_value' ] = data_table.loc[ index, data_table.columns[row['midpoint_index']] ] temp_table.loc[ index, 'midpoint_index_lower' ] = info.loc[ row['midpoint_index'] ]['lower'] temp_table.loc[ index, 'midpoint_index_range' ] = info.loc[ row['midpoint_index'] ]['range'] temp_table.loc[ index, 'midpoint_index_minus_one_cumulative_sum'] = row[ row['midpoint_index']-1 ] # This is our denominator, which cant be negative. for index, row in temp_table.iterrows(): if row['midpoint_index_value']==False: temp_table.at[index, 'midpoint_index_value']=1; #~~~~~~~~~~~~~~~ # Step 3) # Run the Calculation # Calculation = (midpoint_lower::numeric + (midpoint_range::numeric * ( (midpoint - midpoint_upto_agg) / nullif(midpoint_total,0) # Calculation = W3+X3*((V3-Y3)/Z3) # v3 -> 1 - midpoint of households == sum / 2 # w3 -> 2 - lower limit of the income range containing the midpoint of the housing total == row[lower] # x3 -> width of the interval containing the medium == row[range] # z3 -> number of hhs within the interval containing the median == row[total] # y3 -> 4 - cumulative frequency up to, but no==NOT including the median interval #~~~~~~~~~~~~~~~ def finalCalc(x): return ( x['midpoint_index_lower']+ x['midpoint_index_range']*( ( x['midpoint']-x['midpoint_index_minus_one_cumulative_sum'])/ x['midpoint_index_value'] ) ) temp_table['final'] = temp_table.apply(lambda x: finalCalc(x), axis=1) temp_table[columnsToInclude] = df[columnsToInclude] return temp_table # Cell #@ title Run This Cell: -nilf import pandas as pd import glob def drvalone( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: novhcl import pandas as pd import glob def novhcl( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B08201_002E_Total_No_vehicle_available','B08201_001E_Total'] columns = df.filter(regex='002E|003E|004E|005E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='002E').sum(axis=1) ) / df['B08201_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: nohhint import pandas as pd import glob def nohhint( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B28011_001E_Total', 'B28011_002E_Total_With_an_Internet_subscription', 'B28011_003E_Total_With_an_Internet_subscription_Dial-up_alone', 'B28011_004E_Total_With_an_Internet_subscription_Broadband_such_as_cable,_fiber_optic,_or_DSL', 'B28011_005E_Total_With_an_Internet_subscription_Satellite_Internet_service', 'B28011_006E_Total_With_an_Internet_subscription_Other_service', 'B28011_007E_Total_Internet_access_without_a_subscription', 'B28011_008E_Total_No_Internet_access'] columns = df.filter(regex='008E|001E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'col: ', col) fi = addKey(df, fi, col) print(' ') # Calculate fi['nohhint'] = ( df.filter(regex='008E').sum(axis=1) ) / df['B28011_001E_Total:'] * 100 return fi # Cell #@ title Run This Cell: -othercom import pandas as pd import glob def othercom( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['othercom'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: paa import pandas as pd import glob def paa( df, columnsToInclude ): fi = pd.DataFrame() columns = ['B03002_001E_Total:', 'B03002_004E_Total_Not_Hispanic_or_Latino_Black_or_African_American_alone'] columns = df.filter(regex='001E|004E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: print('addKey df',df.columns,'fi',fi.columns,'col: ', col) fi = addKey(df, fi, col) fi['paa'] = ( df.filter(regex='004E').sum(axis=1) ) / df['B03002_001E_Total:'] * 100 return fi # Cell #@title Run This Cell: -p2more import pandas as pd import glob def p2more( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='B08101_009E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: -pasi *** import pandas as pd import glob def pasi( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='001E|049E|009E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['final'] = ( df.filter(regex='006E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: -pubtran import pandas as pd import glob def pubtran( df, columnsToInclude ): fi = pd.DataFrame() columns = df.filter(regex='025E|001E|049E').columns.values columns = numpy.append(columns, columnsToInclude) for col in columns: fi = addKey(df, fi, col) fi['pubtran'] = ( df.filter(regex='025E').sum(axis=1) ) / ( df.filter(regex='B08101_001E|B08101_049E').sum(axis=1) ) * 100 return fi # Cell #@title Run This Cell: pwhite import pandas as pd import glob def pwhite( df, columnsToInclude ): fi =
pd.DataFrame()
pandas.DataFrame
import importlib from hydroDL.master import basins from hydroDL.app import waterQuality from hydroDL import kPath, utils from hydroDL.model import trainTS from hydroDL.data import gageII, usgs from hydroDL.post import axplot, figplot import torch import os import json import pandas as pd import numpy as np import matplotlib.pyplot as plt import time fileSiteNo = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteNoLst-1979') siteNoLst = pd.read_csv(fileSiteNo, header=None, dtype=str)[0].tolist() df = pd.DataFrame(index=siteNoLst, columns=usgs.newC) df.index.name = 'siteNo' dfCorr = df.copy() dfRmse = df.copy() dirWRTDS = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-D', 'All') dirOut = os.path.join(dirWRTDS, 'output') dirPar = os.path.join(dirWRTDS, 'params') t0 = time.time() for kk, siteNo in enumerate(siteNoLst): print('{}/{} {:.2f}'.format( kk, len(siteNoLst), time.time()-t0)) saveFile = os.path.join(dirOut, siteNo) dfP =
pd.read_csv(saveFile, index_col=None)
pandas.read_csv
import numpy as np import pandas as pd from pytest import approx from evidently.analyzers.stattests import z_stat_test from evidently.analyzers.stattests.chisquare_stattest import chi_stat_test def test_freq_obs_eq_freq_exp() -> None: # observed and expected frequencies is the same reference = pd.Series([1, 2, 3, 4, 5, 6]).repeat([16, 18, 16, 14, 12, 12]) current =
pd.Series([1, 2, 3, 4, 5, 6])
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Generates the data for Fig 2C-D. The sex plot data are saved in the files mort_sexo_ICU.csv and mort_sexo_HOSP.csv, while the vaccination data is saved in the files mort_vacina_ICU.csv and mort_vacina_HOSP.csv. Column descriptions (X=male, female, vac, unvac): age_grp = age group mean_age_X = mean value of the age inside this age group with the condition X mort_X = mortality in this age group with the condition X """ import numpy as np import datetime import pandas as pd import matplotlib.pyplot as plt ref = datetime.date(2019, 12, 31) data_init = pd.read_csv('../Data/SRAG_filtered_morb.csv') ages = [0, 18, 30, 40, 50, 65, 75, 85, np.inf] nsep = len(ages) - 1 data_init['AGE_GRP'] = '' for i in range(nsep): if i == nsep-1: data_init.loc[(data_init.NU_IDADE_N>=ages[i]),'AGE_GRP'] = 'AG85+' else: data_init.loc[(data_init.NU_IDADE_N>=ages[i])&(data_init.NU_IDADE_N<ages[i+1]), 'AGE_GRP'] = 'AG{}t{}'.format(ages[i],ages[i+1]) data_init = data_init[data_init.AGE_GRP != ''] data_init['VACC'] = (data_init.VACINA_COV==1) names = ['all', 'ICU', 'HOSP'] datas = [data_init, data_init[~pd.isna(data_init.DT_ENTUTI)], \ data_init[
pd.isna(data_init.DT_ENTUTI)
pandas.isna
# write some code using unittest to test our assigment function import unittest from my_lambdata.assignment import add_names_column from pandas import DataFrame df=DataFrame({"abbrev":["EA","VA","MA","HA","EAY","HAY"]}) class TestMyAssignment(unittest.TestCase): def test_assignment(self): df=
DataFrame({"abbrev":["EA","VA","MA","HA","EAY","HAY"]})
pandas.DataFrame
### RF TRAINING AND EVALUATION FOR MULTICLASS CLINICAL OUTCOMES ### # The script is divided in 4 parts: # 1. Data formatting # 2. Hyperparameter Tuning (HT_results) # 3. Model training and cross validation (CV_results) # 4. Model training and predictions (TEST_results) ## Intended to be run with arguments: # bsub "python RF_training_mc_outcome.py Day1 D1_raw_data D1_no_pda D1_no_pda_MC_OUTCOME" ############################################### ##### 1. DATA PREPARATION AND ASSESSMENT ##### ############################################### import os import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import sys, getopt # TO PASS THE ARGUMENTS: day = sys.argv[1] data_type = sys.argv[2] demog = sys.argv[3] outcome = sys.argv[4] # Example: # day = 'Day1' # data_type = 'D1_raw_data' # demog = 'D1_pda' # outcome = 'D1_pda_MC_OUTCOME' # RESULTS PATHS: # results_root = results_root_path # assessment_path = results_root+'assessment/' # ht_path = results_root+'HT_results/' # cv_path = results_root+'CV_results/' # test_path = results_root+'TEST_results/' # TEST_features_importance = results_root+'/TEST_features_importance/' # TEST_trained_models = results_root+'/TEST_trained_models/' # TO READ THE INPUT DATA (The datasets have been previously created to include only the relevant variables) # root_path = root_path file_name = 'file_name.txt' TTdata = root_path + file_name df = pd.read_table(TTdata) df = df.set_index('AE') input_variables = list(df.columns) with open(assessment_path+'input_data_column_names.txt', "w") as output: output.write(str(input_variables)) # DATA PROCESSING: Features and Targets and Convert Data to Arrays # Outcome (or labels) are the values we want to predict outcome = pd.DataFrame(df[['id', 'da', 'pdr', 'pdrm', 'pdm']]) descriptors = df.drop(['id', 'da', 'pdr', 'pdrm', 'pdm'], axis = 1) descriptors_list = list(descriptors.columns) with open(assessment_path+'input_data_features.txt', "w") as output: output.write(str(descriptors_list)) # TRAINING/VALIDATION (TV, for hyperparameter tuning) and TEST (Tt, for model evaluation) Sets: # Split the data into training and testing sets: TV_features_df, Tt_features_df, TV_outcome_df, Tt_outcome_df = train_test_split(descriptors, outcome, test_size = 0.30, random_state = 11, stratify=outcome) # Important to keep the % of classes similar in TV and Tt # To transform to numpy arrays without index: TV_features = np.array(TV_features_df) Tt_features = np.array(Tt_features_df) TV_outcome = np.array(TV_outcome_df[['id', 'da', 'pdr', 'pdrm', 'pdm']]) Tt_outcome = np.array(Tt_outcome_df[['id', 'da', 'pdr', 'pdrm', 'pdm']]) # Percentage of indviduals in each class: TV_class_frac = TV_outcome_df.sum(axis = 0, skipna = True)*100/len(TV_outcome) Tt_class_frac = Tt_outcome_df.sum(axis = 0, skipna = True)*100/len(Tt_outcome) # Save it: fractions = pd.DataFrame(columns=['id', 'da', 'pdr', 'pdrm', 'pdm']) fractions = fractions.append(TV_class_frac,ignore_index=True) fractions = fractions.append(Tt_class_frac,ignore_index=True) fractions = fractions.set_index([pd.Index(['TV', 'Test'])]) fractions.to_csv(assessment_path+'perc_class_split.csv', index=True) target_names = ['id', 'da', 'pdr', 'pdrm', 'pdm'] target_names2 = ['ID', 'DA', 'PDR', 'PDRM', 'PDM'] n_classes = len(target_names) # To transform the binary multiclass represenation in a one-column reprepresentation to save predictions results in step 4. def f(row): if row['id'] == [1]: val = 'ID' elif row['da'] == [1]: val = 'DA' elif row['pdr'] == [1]: val = 'PDR' elif row['pdrm'] == [1]: val = 'PDRM' elif row['pdm'] == [1]: val = 'PDM' else: val = '0' return val Tt_outcome_df['real'] = Tt_outcome_df.apply(f, axis=1) Tt_outcome_real = Tt_outcome_df.drop(target_names, axis = 1) print('All done for 1. DATA PREPARATION AND ASSESSMENT') ############################################### ##### 2.HYPERPARAMETER TUNING ########### ############################################### from sklearn.model_selection import RandomizedSearchCV from sklearn.multiclass import OneVsRestClassifier from sklearn.ensemble import RandomForestClassifier from sklearn import metrics from sklearn.metrics import roc_auc_score, make_scorer # 4. Hyperparameter tunning: Stratified CV with Random Grid # Number of trees in random forest n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 10)] # Number of features to consider at every split max_features = ['auto', 'log2'] # auto = sqrt # Maximum number of levels in tree max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] max_depth.append(None) # Minimum number of samples required to split a node min_samples_split = [2, 5, 10] # Minimum number of samples required at each leaf node min_samples_leaf = [1, 2, 4] # Method of selecting samples for training each tree bootstrap = [True, False] # Create the random grid random_grid = { 'estimator__n_estimators': n_estimators, 'estimator__max_features': max_features, 'estimator__max_depth': max_depth, 'estimator__min_samples_split': min_samples_split, 'estimator__min_samples_leaf': min_samples_leaf, 'estimator__bootstrap': bootstrap } # print(random_grid) # Use the random grid to search for best hyperparameters # First create the base model to tune model_to_set = OneVsRestClassifier(RandomForestClassifier(class_weight='balanced')) # Random search of parameters, using 5 fold cross validation, # search across 100 different combinations, and use all available cores # The score chosen to select the best combination of parameters is weghted roc_auc with a one vs rest approach scoring = make_scorer(roc_auc_score, multi_class="ovr",average="weighted") rf_random = RandomizedSearchCV(estimator = model_to_set, param_distributions = random_grid, # scoring = 'roc_auc', # With very unbalanced datasets, using accuracy as scoring metric to choose the best combination of parameters will not be the best strategy. Use ROC Area instead scoring = scoring, return_train_score=True, #n_iter = 100, cv = 5, n_iter = 100, cv = 5, verbose=2, random_state=42, n_jobs = -1) # Note: For integer/None inputs, if the estimator is a classifier and y is either binary or multiclass, StratifiedKFold is used. In all other cases, KFold is used. # Fit the random search model rf_random.fit(TV_features, TV_outcome) ## To see the best parameters and results: # rf_random.best_params_ # rf_random.cv_results_ # rf_random.best_score_ # rf_random.best_index_ # rf_random.scorer_ # To save the csv with the following details: # Hyperparameter tuning results: results = pd.DataFrame.from_dict(rf_random.cv_results_) results.to_csv(os.path.join(ht_path,'HT_results.csv')) # Hyperparameter tuning best parameters and best score (roc auc) best_parameters =
pd.DataFrame(rf_random.best_params_, index=[0])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as md import datetime import seaborn as sns from scipy.stats import pearsonr from matplotlib import cm as cm from statsmodels.tsa.stattools import adfuller import calendar import warnings import itertools import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose import data_plot as dp import arima_model_fit as ar #import prophet #from fbprophet import Prophet ###########Loading the data into dataframes############################################################################################################################ # From Jan to July y = 2015 new_data = pd.DataFrame() sample_times = [] for y in range(2014,2015,1): print (y) for m in range(1,13,1): no_of_days = calendar.monthrange(2014,m)[1] for d in range (1,no_of_days+1,1): # data = pd.read_csv("C:\\Users\\ahilan\\Dropbox\\Research\\Solar Forecast\\Solar Asia 2018\\Data\\Year %d\\D120318_%d%02d%02d_0000.csv"%(y,y,m, d)); # data = pd.read_csv("C:\\Users\\kahil\\Documents\\Dropbox\\Dropbox\\Research\\Solar Forecast\\Solar Asia 2018\\Data\\Year %d\\D120318_%d%02d%02d_0000.csv"%(y,y,m, d)); if (pd.to_datetime(data['Date/time'][2]) -
pd.to_datetime(data['Date/time'][1])
pandas.to_datetime
#%% import numpy as np import pandas as pd import futileprot.viz import futileprot.fitderiv import altair as alt import tqdm import altair_saver import scipy.stats import scipy.signal colors, palette = futileprot.viz.altair_style() # Add metadata DATE = '2021-09-13' RUN_NO = 1 STRAINS = 'DoubleKO' MEDIUM = 'glucose-acetate' med1, med2 = MEDIUM.split('-') # Load the measurement data data =
pd.read_csv(f'./output/{DATE}_r{RUN_NO}_{STRAINS}_{MEDIUM}_labeled_regions.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 19 17:54:32 2019 @author: kazuki.onodera """ import numpy as np import pandas as pd from tqdm import tqdm from sklearn.externals import joblib import os, gc from itertools import combinations import utils utils.start(__file__) PREF = 'f008' alpha = 0.5 min_samples_leaf = 10 smooth_coeff = 1.0 impute = True comb_range = (1600, 2000) # Encodingの対象とするcategorical categorical_wo_version = [ 'Census_OSUILocaleIdentifier', 'AVProductsInstalled', 'Census_FirmwareVersionIdentifier', 'Wdft_IsGamer', 'Census_ThresholdOptIn', 'RtpStateBitfield', 'Census_IsSecureBootEnabled', 'AVProductsEnabled', 'HasTpm', 'IsProtected', 'Census_PrimaryDiskTypeName', 'PuaMode', 'DefaultBrowsersIdentifier', 'IsSxsPassiveMode', 'OrganizationIdentifier', 'Census_IsAlwaysOnAlwaysConnectedCapable', 'ProductName', 'GeoNameIdentifier', 'Census_IsVirtualDevice', 'Census_PowerPlatformRoleName', 'Census_IsTouchEnabled', 'Census_OSSkuName', 'OsPlatformSubRelease', 'Census_FlightRing', 'Census_OSEdition', 'Census_IsPortableOperatingSystem', 'Firewall', 'OsBuildLab', 'Census_DeviceFamily', 'Census_IsPenCapable', 'SMode', 'Platform', 'Census_IsFlightingInternal', 'Census_OEMNameIdentifier', 'Census_InternalBatteryType', 'OsBuild', 'Census_HasOpticalDiskDrive', 'Census_IsWIMBootEnabled', 'Census_OSBuildRevision', 'CityIdentifier', 'IeVerIdentifier', 'Census_ProcessorClass', 'OsSuite', 'Census_IsFlightsDisabled', 'Census_ChassisTypeName', 'LocaleEnglishNameIdentifier', 'Census_OSArchitecture', 'CountryIdentifier', 'Census_OSInstallLanguageIdentifier', 'Census_OSInstallTypeName', 'Census_OSBuildNumber', 'AutoSampleOptIn', 'OsVer', 'SkuEdition', 'UacLuaenable', 'Census_OEMModelIdentifier', 'Census_OSBranch', 'Processor', 'Census_ProcessorModelIdentifier', 'Census_ActivationChannel', 'IsBeta', 'Census_MDC2FormFactor', 'Census_OSWUAutoUpdateOptionsName', 'AVProductStatesIdentifier', 'Census_GenuineStateName', 'Census_FirmwareManufacturerIdentifier', 'Wdft_RegionIdentifier', 'Census_ProcessorManufacturerIdentifier', 'OsBuildLab_major', 'OsBuildLab_minor', 'OsBuildLab_build', 'OsBuildLab_architecture', ] X_train = pd.read_feather('../data/train.f')[categorical_wo_version] X_test =
pd.read_feather('../data/test.f')
pandas.read_feather
#!/usr/bin/env python import logging from pathlib import Path from typing import Set, List, Dict import numpy as np import pandas as pd import typer from rich.logging import RichHandler def main(nextclade_csv: Path, metadata_output: Path): from rich.traceback import install install(show_locals=True, width=120, word_wrap=True) logging.basicConfig( format="%(message)s", datefmt="[%Y-%m-%d %X]", level=logging.INFO, handlers=[RichHandler(rich_tracebacks=True, tracebacks_show_locals=True)], ) df_nextclade = pd.read_table(nextclade_csv, sep=';') # remove surrounding brackets, split on ',' to get Series of list of str AA mutations aasubs: pd.Series = df_nextclade['aaSubstitutions'].str.replace(r'^(\(|\))$', '', regex=True).str.split(',') sample_aas = sample_to_aa_mutations(aasubs, df_nextclade['seqName']) samples = list(sample_aas.keys()) unique_aas = get_sorted_aa_mutations(sample_aas) arr_aas = fill_aa_mutation_matrix(sample_aas, samples, unique_aas) dfaa =
pd.DataFrame(arr_aas, index=samples, columns=unique_aas)
pandas.DataFrame
# test_ForecasterAutoreg.py import pytest from pytest import approx import numpy as np import pandas as pd from skforecast import __version__ from skforecast.ForecasterAutoreg import ForecasterAutoreg from sklearn.linear_model import LinearRegression def test_init_lags(): ''' Check creation of self.lags attribute when initialize. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=10) assert (forecaster.lags == np.arange(10) + 1).all() forecaster = ForecasterAutoreg(LinearRegression(), lags=[1, 2, 3]) assert (forecaster.lags == np.array([1, 2, 3])).all() forecaster = ForecasterAutoreg(LinearRegression(), lags=range(1, 4)) assert (forecaster.lags == np.array(range(1, 4))).all() forecaster = ForecasterAutoreg(LinearRegression(), lags=np.arange(1, 10)) assert (forecaster.lags == np.arange(1, 10)).all() def test_init_lags_exceptions(): ''' Check exceptions when initialize lags. ''' with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=-10) with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=range(0, 4)) with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=np.arange(0, 4)) with pytest.raises(Exception): ForecasterAutoreg(LinearRegression(), lags=[0, 1, 2]) def test_create_lags(): ''' Check matrix of lags is created properly ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) results = forecaster.create_lags(y=np.arange(10)) correct = (np.array([[2., 1., 0.], [3., 2., 1.], [4., 3., 2.], [5., 4., 3.], [6., 5., 4.], [7., 6., 5.], [8., 7., 6.]]), np.array([3., 4., 5., 6., 7., 8., 9.])) assert (results[0] == correct[0]).all() assert (results[1] == correct[1]).all() def test_create_lags_exceptions(): ''' Check exceptions when creating lags. ''' with pytest.raises(Exception): forecaster = ForecasterAutoreg(LinearRegression(), lags=10) forecaster.create_lags(y=np.arange(5)) def test_fit_exceptions(): ''' Check exceptions during fit. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=5) with pytest.raises(Exception): forecaster.fit(y=np.arange(50), exog=np.arange(10)) with pytest.raises(Exception): forecaster.fit(y=np.arange(50), exog=pd.Series(np.arange(10))) def test_fit_last_window(): ''' Check last window stored during fit. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) forecaster.fit(y=np.arange(50)) assert (forecaster.last_window == np.array([47, 48, 49])).all() def test_predict_exceptions(): ''' Check exceptions when predict. ''' forecaster = ForecasterAutoreg(LinearRegression(), lags=3) with pytest.raises(Exception): forecaster.fit(y=np.arange(50)) forecaster.predict(steps=10, exog=np.arange(10)) with pytest.raises(Exception): forecaster.fit(y=np.arange(50), exog=np.arange(50)) forecaster.predict(steps=10) with pytest.raises(Exception): forecaster.fit(y=np.arange(50), exog=np.arange(50)) forecaster.predict(steps=10, exog=np.arange(5)) with pytest.raises(Exception): forecaster.fit(y=np.arange(50), exog=np.arange(50)) forecaster.predict(steps=10, exog=np.arange(5)) with pytest.raises(Exception): forecaster.fit(y=np.arange(50)) forecaster.predict(steps=10, last_window=[1,2,3]) with pytest.raises(Exception): forecaster.fit(y=np.arange(50)) forecaster.predict(steps=10, last_window=
pd.Series([1, 2])
pandas.Series
# 利用ARMA进行时间序列预测 import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.graphics.api import qqplot from statsmodels.tsa.arima_model import ARMA # 创建数据 data = [5922, 5308, 5546, 5975, 2704, 1767, 4111, 5542, 4726, 5866, 6183, 3199, 1471, 1325, 6618, 6644, 5337, 7064, 2912, 1456, 4705, 4579, 4990, 4331, 4481, 1813, 1258, 4383, 5451, 5169, 5362, 6259, 3743, 2268, 5397, 5821, 6115, 6631, 6474, 4134, 2728, 5753, 7130, 7860, 6991, 7499, 5301, 2808, 6755, 6658, 7644, 6472, 8680, 6366, 5252, 8223, 8181, 10548, 11823, 14640, 9873, 6613, 14415, 13204, 14982, 9690, 10693, 8276, 4519, 7865, 8137, 10022, 7646, 8749, 5246, 4736, 9705, 7501, 9587, 10078, 9732, 6986, 4385, 8451, 9815, 10894, 10287, 9666, 6072, 5418] data =
pd.Series(data)
pandas.Series
#!/usr/bin/env python ### Up to date as of 10/2019 ### '''Section 0: Import python libraries This code has a number of dependencies, listed below. They can be installed using the virtual environment "slab23" that is setup using script 'library/setup3env.sh'. Additional functions are housed in file 'slab2functions.py' and imported below. There are some additional dependencies used by the function file that do not need to be installed separately. ''' # stdlib imports from datetime import datetime import os.path import argparse import numpy as np from pandas import DataFrame import pandas as pd import warnings import slab2functions as s2f import math import mapio.gmt as gmt from functools import partial from multiprocess import Pool import loops as loops from scipy import ndimage import psutil import cProfile import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def main(args): '''Section 1: Setup In this section: (1) Identify necessary input files (2) Load parameters from '[slab]input.par' (3) Define optional boxes for PDF/print testing (4) Define output file names (5) Gathering optional arguments, setting defaults (6) Define search ellipsoid parameters (7) Define Average active source profiles (8) Define reference model (Slab1.0 and/or slab guides) (9) Define Trench Locations (10) Open and modify input dataset (11) Calculate seismogenic zone thickness (12) Record variable parameters used for this model (13) Define search grid (14) Identify tomography datasets (15) Initialize arrays for Section 2 ''' print('Start Section 1 of 7: Setup') print(' Loading inputs...') ''' ------ (1) Identify necessary input files ------ ''' trenches = 'library/misc/trenches_usgs_2017_depths.csv' agesFile = 'library/misc/interp_age.3.2g.nc' ageerrorsFile = 'library/misc/interp_ageerror.3.2g.nc' polygonFile = 'library/misc/slab_polygons.txt' addFile = 'library/misc/addagain.csv' parFile = args.parFile pd.options.mode.chained_assignment = None warnings.filterwarnings("ignore", message="invalid value encountered in less") warnings.filterwarnings("ignore", message="invalid value encountered in true_divide") warnings.filterwarnings("ignore", message="invalid value encountered in greater") warnings.filterwarnings("ignore", message="invalid value encountered in double_scalars") ''' ------ (2) Load parameters from '[slab]input.par' ------''' for line in open(parFile): plist = line.split() if len(plist)>2: if plist[0] == 'inFile': inFile = plist[2] if plist[0] == 'use_box': use_box = plist[2] if plist[0] == 'latmin': latmin = np.float64(plist[2]) if plist[0] == 'latmax': latmax = np.float64(plist[2]) if plist[0] == 'lonmin': lonmin = np.float64(plist[2]) if plist[0] == 'lonmax': lonmax = np.float64(plist[2]) if plist[0] == 'slab': slab = plist[2] if plist[0] == 'grid': grid = np.float64(plist[2]) if plist[0] == 'radius1': radius1 = np.float64(plist[2]) if plist[0] == 'radius2': radius2 = np.float64(plist[2]) if plist[0] == 'sdr': sdr = np.float64(plist[2]) if plist[0] == 'ddr': ddr = np.float64(plist[2]) if plist[0] == 'taper': taper = np.float64(plist[2]) if plist[0] == 'T': T = np.float64(plist[2]) if plist[0] == 'node': node = np.float64(plist[2]) if plist[0] == 'filt': filt = np.float64(plist[2]) if plist[0] == 'maxdist': maxdist = np.float64(plist[2]) if plist[0] == 'minunc': minunc = np.float64(plist[2]) if plist[0] == 'mindip': mindip = np.float64(plist[2]) if plist[0] == 'minstk': minstk = np.float64(plist[2]) if plist[0] == 'maxthickness': maxthickness = np.float64(plist[2]) if plist[0] == 'seismo_thick': seismo_thick = np.float64(plist[2]) if plist[0] == 'dipthresh': dipthresh = np.float64(plist[2]) if plist[0] == 'fracS': fracS = np.float64(plist[2]) if plist[0] == 'kdeg': kdeg = np.float64(plist[2]) if plist[0] == 'knot_no': knot_no = np.float64(plist[2]) if plist[0] == 'rbfs': rbfs = np.float64(plist[2]) # loop through to find latest slab input file if specified polyname = slab if slab == 'kur' or slab == 'izu': polyname = 'jap' if inFile == 'latest': yearmax = 0 monthmax = 0 for filename in os.listdir('Input'): if filename.endswith('.csv'): try: slabname,datei,instring = filename.split('_') except: continue if slabname == polyname and instring == 'input.csv': try: monthi, yeari = datei.split('-') except: continue yeari = int(yeari) monthi = int(monthi) if yeari >= yearmax: yearmax = yeari inFile = 'Input/%s'%filename if monthi > monthmax: monthmax = monthi inFile = 'Input/%s'%filename print (' using input file: %s'%inFile) if slab == 'mue' or slab == 'phi' or slab == 'cot' or slab == 'sul' or slab == 'ryu': if args.undergrid is None: if slab == 'mue': print ('This slab is truncated by the Caribbean (car) slab, argument -u cardepgrid is required') print ('Exiting .... ') exit() if slab == 'cot': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'sul': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'phi': print ('This slab is truncated by the Halmahera (hal) slab, argument -u haldepgrid is required') print ('Exiting .... ') exit() if slab == 'ryu': print ('This slab is truncated by the Kurils-Japan (kur) slab, argument -u kurdepgrid is required') print ('Exiting .... ') exit() else: undergrid = args.undergrid ''' ------ (4) Define output file names ------ ''' date = datetime.today().strftime('%m.%d.%y') now = datetime.now() time = '%s.%s' % (now.hour, now.minute) folder = '%s_slab2_%s' % (slab, date) os.system('mkdir Output/%s'%folder) outFile = 'Output/%s/%s_slab2_res_%s.csv' % (folder, slab, date) dataFile = 'Output/%s/%s_slab2_dat_%s.csv' % (folder, slab, date) nodeFile = 'Output/%s/%s_slab2_nod_%s.csv' % (folder, slab, date) fillFile = 'Output/%s/%s_slab2_fil_%s.csv' % (folder, slab, date) rempFile = 'Output/%s/%s_slab2_rem_%s.csv' % (folder, slab, date) clipFile = 'Output/%s/%s_slab2_clp_%s.csv' % (folder, slab, date) these_params = 'Output/%s/%s_slab2_par_%s.csv' % (folder, slab, date) datainfo = 'Output/%s/%s_slab2_din_%s.csv' % (folder, slab, date) nodeinfo = 'Output/%s/%s_slab2_nin_%s.csv' % (folder, slab, date) suppFile = 'Output/%s/%s_slab2_sup_%s.csv' % (folder, slab, date) nodexFile = 'Output/%s/%s_slab2_nox_%s.csv' % (folder, slab, date) nodeuFile = 'Output/%s/%s_slab2_nou_%s.csv' % (folder, slab, date) depTextFile = 'Output/%s/%s_slab2_dep_%s.txt' % (folder, slab, date) depGridFile = 'Output/%s/%s_slab2_dep_%s.grd' % (folder, slab, date) strTextFile = 'Output/%s/%s_slab2_str_%s.txt' % (folder, slab, date) strGridFile = 'Output/%s/%s_slab2_str_%s.grd' % (folder, slab, date) dipTextFile = 'Output/%s/%s_slab2_dip_%s.txt' % (folder, slab, date) dipGridFile = 'Output/%s/%s_slab2_dip_%s.grd' % (folder, slab, date) uncTextFile = 'Output/%s/%s_slab2_unc_%s.txt' % (folder, slab, date) uncGridFile = 'Output/%s/%s_slab2_unc_%s.grd' % (folder, slab, date) thickTextFile = 'Output/%s/%s_slab2_thk_%s.txt' % (folder, slab, date) thickGridFile = 'Output/%s/%s_slab2_thk_%s.grd' % (folder, slab, date) savedir = 'Output/%s'%folder ''' ------ (3) Define optional boxes for PDF/print testing ------''' if args.test is not None: testlonmin = args.test[0] testlonmax = args.test[1] testlatmin = args.test[2] testlatmax = args.test[3] if testlonmin < 0: testlonmin += 360 if testlonmax < 0: testlonmax += 360 testarea = [testlonmin, testlonmax, testlatmin, testlatmax] printtest = True os.system('mkdir Output/PDF%s' % (slab)) os.system('mkdir Output/multitest_%s' % (slab)) f = open(datainfo, 'w+') f.write('dataID, nodeID, used_or_where_filtered') f.write('\n') f.close() f = open(datainfo, 'w+') f.write('nodeID, len(df), status, details') f.write('\n') f.close() else: # an area not in range of any slab polygon testarea = [220, 230, 15, 20] printtest = False ''' --- (5) Gathering optional arguments, setting defaults ---''' if use_box == 'yes': check = 1 slab = s2f.rectangleIntersectsPolygon(lonmin, lonmax, latmin, latmax, polygonFile) if isinstance(slab, str): slab = slab else: try: slab = slab[0] except: print('System exit because box does not intersect slab polygon') raise SystemExit() elif use_box == 'no': check = 0 lon1, lon2, lat1, lat2 = s2f.determine_polygon_extrema(slab, polygonFile) lonmin = float(lon1) lonmax = float(lon2) latmin = float(lat1) latmax = float(lat2) else: print('use_box in slab2input.par must be "yes" or "no"') raise SystemExit() ''' ------ (6) Define search ellipsoid parameters ------''' alen = radius1 blen = radius2 ec = math.sqrt(1-((math.pow(blen, 2))/(math.pow(alen, 2)))) mdist = alen * ec ''' ------ (7) Define Average active source profiles ------''' # Different because alu is variable E/W if slab == 'alu': AA_data = pd.read_csv('library/avprofiles/alu_av5.csv') global_average = False elif slab == 'him': AA_data = pd.read_csv('library/avprofiles/him_av.csv') global_average = False elif slab == 'kur' or slab == 'izu': AA_source = 'library/avprofiles/%s_av.txt' % 'jap' AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) AA_data = AA_data[AA_data.dist < 125] global_average = False # Use RF data like AA data to constrain flat slab in Mexico elif slab == 'cam': AA_source = 'library/avprofiles/%s_av.txt' % slab AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) RF_data = pd.read_csv('library/avprofiles/cam_RF_av.csv') AA_data = pd.concat([AA_data,RF_data],sort=True) global_average = False else: global_average = False # See if there is a averace active source profile for this slab try: AA_source = 'library/avprofiles/%s_av.txt' % slab AA_data = pd.read_table(AA_source, delim_whitespace=True,\ header=None, names=['dist', 'depth']) # If there is no profile for this slab, use the global profile except: AA_global = pd.read_csv('library/avprofiles/global_as_av2.csv') AA_data = AA_global[['dist', 'depth']] global_average = True if slab == 'phi' or slab == 'mue': AA_data = AA_data[AA_data.dist < 10] if slab == 'cot': AA_data = AA_data[AA_data.dist < 10] if slab == 'ita' or slab == 'puy': AA_data = AA_data[AA_data.dist < 1] ''' ------ (8) Define reference model (Slab1.0 and/or slab guides) ------''' polyname = slab if slab == 'kur' or slab == 'izu': polyname = 'jap' # Search for slab guides in library/slabguides slabguide = None slabguide2 = None for SGfile in os.listdir('library/slabguides'): if SGfile[0:3] == polyname: SGfile1 = SGfile slabguide = gmt.GMTGrid.load('library/slabguides/%s'%SGfile1) # Find secondary slab guide for regions where there are two if polyname == 'sum' or polyname == 'man' or polyname == 'phi' or polyname =='sam' or polyname == 'sco' or polyname == 'mak' or polyname == 'jap': for f in os.listdir('library/slabguides'): if f[0:3] == polyname and f != SGfile: print ('f',f) SGfile2 = f slabguide2 = gmt.GMTGrid.load('library/slabguides/%s'%SGfile2) break break # Get Slab1.0 grid where applicable try: depgrid = s2f.get_grid(slab, 'depth') except: print (' Slab1.0 does not exist in this region, using slab guide') depgrid = gmt.GMTGrid.load('library/slabguides/%s'%SGfile1) slabguide = None # Calculate strike and dip grids strgrid, dipgrid = s2f.mkSDgrd(depgrid) slab1data = s2f.mkSlabData(depgrid, strgrid, dipgrid, printtest) slab1data.to_csv('gradtest.csv',header=True,index=False) # Add slab guide data to Slab1.0 grids where necessary if slabguide is not None: print ('slab guide for this model:',slabguide) guidestr, guidedip = s2f.mkSDgrd(slabguide) guidedata = s2f.mkSlabData(slabguide, guidestr, guidedip, printtest) if SGfile1 == 'phi_SG_north': guidedata = guidedata[guidedata.lat>14] elif slab == 'ryu': guidedata = guidedata[guidedata.lon>137] slab1data = slab1data[slab1data.lat<=137] slab1data = pd.concat([slab1data, guidedata],sort=True) slab1data = slab1data.reset_index(drop=True) if slabguide2 is not None: print ('secondary slab guide for this model:',slabguide2) guidestr, guidedip = s2f.mkSDgrd(slabguide2) guidedata = s2f.mkSlabData(slabguide2, guidestr, guidedip, printtest) if SGfile2 == 'phi_SG_north': guidedata = guidedata[guidedata.lat>14] slab1data = pd.concat([slab1data, guidedata],sort=True) slab1data = slab1data.reset_index(drop=True) #slab1data.to_csv('slab1data.csv',header=True,index=False) ''' ------ (9) Define Trench Locations ------''' TR_data = pd.read_csv(trenches) if slab == 'izu' or slab == 'kur': TR_data = TR_data[TR_data.slab == 'jap'] else: TR_data = TR_data[TR_data.slab == slab] TR_data = TR_data.reset_index(drop=True) TR_data.loc[TR_data.lon < 0, 'lon']+=360 ''' ------ (10) Open and modify input dataset ------''' eventlistALL = pd.read_table('%s' % inFile, sep=',', dtype={ 'lon': np.float64, 'lat': np.float64,'depth': np.float64, 'unc': np.float64, 'etype': str, 'ID': np.int, 'mag': np.float64, 'S1': np.float64, 'D1': np.float64, 'R1': np.float64, 'S2': np.float64, 'D2': np.float64, 'R2': np.float64, 'src': str, 'time': str, 'mlon': np.float64, 'mlat': np.float64, 'mdep': np.float64}) ogcolumns = ['lat', 'lon', 'depth', 'unc', 'etype', 'ID', 'mag', 'time', \ 'S1', 'D1', 'R1','S2', 'D2', 'R2', 'src'] kagancols = ['lat', 'lon', 'depth', 'unc', 'etype', 'ID', 'mag', 'time', \ 'S1', 'D1', 'R1','S2', 'D2', 'R2', 'src', 'mlon', 'mlat', 'mdep'] eventlist = eventlistALL[kagancols] if printtest: lat65 = eventlist[eventlist.lat>65] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist = eventlist[eventlist.lat <= 65]', datainfo,'df') dataGP = eventlist[eventlist.etype == 'GP'] if len(dataGP>0): s2f.addToDataInfo(dataGP, 0, 'eventlist = eventlist[eventlist.etype != GP]', datainfo,'df') eventlist = eventlist[eventlist.lat <= 65] eventlist = eventlist[eventlist.etype != 'GP'] maxID = eventlistALL['ID'].max() # Add/Remove manually identified points that don't follow general rules remdir = 'library/points_to_remove/current_files' for badFile in os.listdir(remdir): if badFile[0:3] == slab or badFile[0:3] == 'ALL' or ((slab == 'izu' or slab == 'kur') and badFile[0:3] == 'jap'): print (' manually removing points listed in:',badFile) donotuse = pd.read_csv('%s/%s'%(remdir,badFile)) eventlist = s2f.removePoints(donotuse, eventlist, lonmin, lonmax, latmin, latmax, printtest, datainfo, True, slab) doubleuse = pd.read_csv(addFile) eventlist, maxID = s2f.doublePoints(doubleuse, eventlist, maxID) if slab == 'kur': eventlist.loc[eventlist.etype == 'TO', 'unc'] = 100 if slab == 'sul' or slab == 'man': eventlist = eventlist[eventlist.etype != 'CP'] if slab == 'him': eventlist = eventlist[eventlist.src != 'schulte'] if slab == 'sumz' or slab == 'kur' or slab == 'jap' or slab == 'izu': if printtest: lat65 = eventlist[eventlist.etype=='TO'] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist = eventlist[eventlist.etype != TO]', datainfo,'df') eventlist = eventlist[eventlist.etype != 'TO'] if slab == 'kurz': if printtest: lat65 = eventlist[eventlist.etype=='ER'] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist = eventlist[eventlist.etype != ER]', datainfo,'df') eventlist = eventlist[eventlist.etype != 'ER'] if slab == 'sol': if printtest: lat65 = eventlist[(eventlist.etype == 'BA') & (eventlist.lon <= 149)] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist[(eventlist.etype != BA) | (eventlist.lon > 149)]', datainfo,'df') eventlist = eventlist[(eventlist.etype != 'BA') | (eventlist.lon > 149)] TR_data = TR_data[TR_data.lon>149] if slab == 'man': if printtest: lat65 = eventlist[(eventlist.etype == 'BA') & (eventlist.lon >= 120)] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist[(eventlist.etype == BA) & (eventlist.lon >= 120)]', datainfo,'df') eventlist = eventlist[(eventlist.etype != 'BA') | ((eventlist.lon < 120)|(eventlist.lat > 15))] if slab == 'sum': if printtest: lat65 = eventlist[(eventlist.etype == 'BA') & (eventlist.lat > 21)] if len(lat65)>0: s2f.addToDataInfo(lat65, 0, 'eventlist[(eventlist.etype != BA) | (eventlist.lon > 149)]', datainfo,'df') eventlist = eventlist[(eventlist.etype != 'BA') | (eventlist.lat <= 21)] if slab == 'ryu': ryutodata = eventlist[(eventlist.etype == 'TO')&(eventlist.lon>133)] if slab == 'hel': eventlist.loc[eventlist.etype == 'RF', 'etype'] = 'CP' if slab == 'puyz' or slab == 'mak': eventlist = eventlist[eventlist.src != 'ddgap'] # Set default uncertainties for events without uncertainties eventlist.loc[eventlist.etype == 'EQ', 'unc'] = 15.0 eventlist.loc[eventlist.etype == 'CP', 'unc'] = 5.0 eventlist.loc[eventlist.etype == 'BA', 'unc'] = 1.0 eventlist.loc[eventlist.etype == 'TO', 'unc'] = 40.0 eventlist.loc[(eventlist.etype == 'ER') & (eventlist.unc <5), 'unc'] = 5.0 if slab == 'puy': eventlist.loc[(eventlist.etype == 'ER') & (eventlist.unc <15), 'unc'] = 15.0 eventlist.loc[eventlist.mlon < 0, 'mlon'] += 360 # Ensure all data are within longitudes 0-360 eventlist.loc[eventlist.lon < 0, 'lon']+=360 # Define mean depth of bathymetry (for constraining interp outboard trench) meanBAlist = eventlist[eventlist.etype == 'BA'] meanBA = meanBAlist['depth'].mean() del eventlistALL ''' ----- (11) Calculate seismogenic zone thickness ------ ''' # define seismogenic thickness parameters. change if needed maxdep = 65 maxdepdiff = 20 origorcentl = 'c' origorcentd = 'c' slaborev = 'e' lengthlim = -50 ogcolumns = eventlist.columns eventlist = s2f.getReferenceKagan(slab1data, eventlist, origorcentl, origorcentd) if slab != 'hin': seismo_thick, taper_start = s2f.getSZthickness(eventlist,folder,slab,maxdep,maxdepdiff,origorcentl,origorcentd,slaborev,savedir,lengthlim) else: seismo_thick = 20 taper_start = 20 if slab == 'hel' or slab == 'car' or slab == 'mak': seismo_thick = 40 if slab == 'sol': seismo_thick = 40 if slab == 'alu' or slab == 'cot' or slab == 'sul': seismo_thick = 10 if slab == 'sol': eventlistE = eventlist[eventlist.lon>148] eventlistW = eventlist[eventlist.lon<=148] eventlistE = s2f.cmtfilter(eventlistE,seismo_thick,printtest,datainfo,slab) eventlist = pd.concat([eventlistE,eventlistW],sort=True) if slab == 'sum': eventlistS = eventlist[eventlist.lat<=22] eventlistN = eventlist[eventlist.lat>22] eventlistS = s2f.cmtfilter(eventlistS,seismo_thick,printtest,datainfo,slab) eventlist = pd.concat([eventlistS,eventlistN],sort=True) if slab != 'hal' and slab != 'him' and slab != 'pam' and slab != 'hin' and slab != 'sol' and slab != 'sum' and slab != 'cas': eventlist = s2f.cmtfilter(eventlist,seismo_thick,printtest,datainfo,slab) eventlist = eventlist[ogcolumns] ''' ------ (12) Record variable parameters used for this model ------''' f = open(these_params, 'w+') f.write('Parameters used to create file for slab_Date_time: %s_%s_%s \n' \ %(slab, date, time)) f.write('\n') f.close() f = open(these_params, 'a') f.write('inFile: %s \n' % inFile) f.write('use_box: %s \n' % use_box) f.write('latmin: %s \n' % str(latmin)) f.write('latmax: %s \n' % str(latmax)) f.write('lonmin: %s \n' % str(lonmin)) f.write('lonmax: %s \n' % str(lonmax)) f.write('slab: %s \n' % slab) f.write('grid: %s \n' % str(grid)) f.write('radius1: %s \n' % str(radius1)) f.write('radius2: %s \n' % str(radius2)) f.write('alen: %s \n' % str(alen)) f.write('blen: %s \n' % str(blen)) f.write('sdr: %s \n' % str(sdr)) f.write('ddr: %s \n' % str(ddr)) f.write('taper: %s \n' % str(taper)) f.write('T: %s \n' % str(T)) f.write('node: %s \n' % str(node)) f.write('filt: %s \n' % str(filt)) f.write('maxdist: %s \n' % str(maxdist)) f.write('mindip: %s \n' % str(mindip)) f.write('minstk: %s \n' % str(minstk)) f.write('maxthickness: %s \n' % str(maxthickness)) f.write('seismo_thick: %s \n' % str(seismo_thick)) f.write('dipthresh: %s \n' % str(dipthresh)) f.write('fracS: %s \n' % str(fracS)) f.write('knot_no: %s \n' % str(knot_no)) f.write('kdeg: %s \n' % str(kdeg)) f.write('rbfs: %s \n' % str(rbfs)) if slab == 'mue' or slab == 'phi' or slab == 'cot' or slab == 'sul' or slab == 'ryu': f.write('undergrid: %s \n' % str(undergrid)) f.close() ''' ------ (13) Define search grid ------ ''' print(' Creating search grid...') #Creates a grid over the slab region regular_grid = s2f.create_grid_nodes3(grid, lonmin, lonmax, latmin, latmax) grid_in_polygon = s2f.createGridInPolygon2(regular_grid, slab, polygonFile) lons = grid_in_polygon[:, 0] lats = grid_in_polygon[:, 1] lons = np.round(lons,decimals=1) lats = np.round(lats,decimals=1) lons[lons <0] += 360 slab1guide,slab1query = s2f.makeReference(slab1data,lons,lats,grid,printtest,slab) ''' ------ (14) Identify tomography datasets ------ ''' ## Identify how many tomography datasets are included tomo_data = eventlist[eventlist.etype == 'TO'] if len(tomo_data) > 0 and slab != 'sam': sources = tomo_data.src TOsrc = set() for x in sources: TOsrc.add(x) tomo_sets = TOsrc tomo = True else: tomo_sets = 0 tomo = False premulti = pd.DataFrame() postmulti = pd.DataFrame() OGmulti = pd.DataFrame() elistAA = pd.DataFrame() loncuts,latcuts,elistcuts = s2f.getlatloncutoffs(lons,lats,eventlist,printtest) ''' ------ (15) Initialize arrays for Section 2 ------ ''' # Creates list of events that were used for the model based on ID used_all = np.zeros((1, 2)) used_TO = np.zeros((1, 2)) warnings.filterwarnings('ignore', 'Mean of empty slice.') pd.options.mode.chained_assignment = None '''Section 2: First loop This Accomplishes: 1) Calculate error for each used tomography model. This is accomplished by determining the difference between measured depths for tomography and earthquake data, which will be used outside of the loop. 2) Identify data to constrain depth/coordinate of center of Benioff Zone. 2a) Identify local strike, dip, and depth of Slab1.0. If Slab 1.0 does not exist, acquire strike from closest trench location with a strike oriented perpendicularly to this lon/lat. If extending beyond Slab1.0 depths perpendicularly, find nearest and most perpendicular point on Slab1.0, and define depth to search from based on dip and depth of that point on Slab1.0. The dip is defined as the dip of the local Slab1.0 point. If extending along strike from Slab1.0, define depth to search from based on mean depth of data within defined radius of node. The dip of the node is defined as 0. 2b) Filter by ellipsoid oriented perpendicularly to Slab1.0. If the local dip is less than mindip, orient ellipsoid vertically and along strike found in (2a). If the local dip is greater than mindip, orient ellipsoid perpendicular to strike/dip found in (2a). The long axis of the ellipse is defined as radius1, the short axis is defined as radius2. The shallow extent of the ellipsoid is defined as sdr at depths above seismo_thick, and is tapered to 3*sdr at depths greater than seismo_thick. The deep extent of the ellipsoid is defined as sdr at depths above seismo_thick, and is tapered to ddr at depths greater than seismo_thick. 2c) Nodes outboard of the trench are only constrained by bathymetry. Nodes inboard of the trench are constrained by all but bathymetry. 2d) Conditionally add average active source/average reciever functions. If within the distance of the longest AS profile from the trench identify the average AS profile depth at that distance from trench. If there is no active source point within the search ellipsoid defined in (2b), add an average active source data point to the set of data to constrain the depth at this node. Reciever functions in cam and alu are being utilized similarly with defined distances from trench and distances along strike from key profiles that need to be utilized in the absence of seismicity. 2e) If information other than tomography is available above 300 km depth, all tomography is filtered at that node. 2f) If less than two data points are available to constrain a node, no depth is resolved at that node. 2g) If |strike of Slab1.0 at node - strike of Slab1.0 at farthest data| > minstrk, filter data at ends until < minstrk. If this node is outside of Slab1.0, reduce long axis of search ellipsoid prior to starting filters. The output of this loop is two numpy arrays and list of nodes with data: used_TO: local difference between tomography and earthquake depths and a tomography dataset identifier used_all: indices for the data used and their associated nodes This one is created to prevent the need for re-filtering in later loops ''' print("Start Section 2 of 7: First loop") lons1 = (np.ones(len(lons))*-9999).astype(np.float64) lats1 = (np.ones(len(lons))*-9999).astype(np.float64) deps1 = (np.ones(len(lons))*-9999).astype(np.float64) strs1 = (np.ones(len(lons))*-9999).astype(np.float64) dips1 = (np.ones(len(lons))*-9999).astype(np.float64) nIDs1 = (np.ones(len(lons))*-9999).astype(np.float64) aleng = (np.ones(len(lons))*-9999).astype(np.float64) bleng = (np.ones(len(lons))*-9999).astype(np.float64) cleng = (np.ones(len(lons))*-9999).astype(np.float64) sleng = (np.ones(len(lons))*-9999).astype(np.float64) dleng = (np.ones(len(lons))*-9999).astype(np.float64) elons1 = (np.ones(len(lons))*-9999).astype(np.float64) elats1 = (np.ones(len(lons))*-9999).astype(np.float64) edeps1 = (np.ones(len(lons))*-9999).astype(np.float64) estrs1 = (np.ones(len(lons))*-9999).astype(np.float64) edips1 = (np.ones(len(lons))*-9999).astype(np.float64) enIDs1 = (np.ones(len(lons))*-9999).astype(np.float64) ealeng = (np.ones(len(lons))*-9999).astype(np.float64) ebleng = (np.ones(len(lons))*-9999).astype(np.float64) ecleng = (np.ones(len(lons))*-9999).astype(np.float64) esleng = (np.ones(len(lons))*-9999).astype(np.float64) edleng = (np.ones(len(lons))*-9999).astype(np.float64) if args.nCores is not None: if args.nCores > 1 and args.nCores < 8: pooling = True elif args.nCores == 1: pooling = False else: pooling = False else: pooling = False cutcount = 1 allnewnodes = None for cut in range(len(loncuts)): theselats = latcuts[cut] theselons = loncuts[cut] theseevents = elistcuts[cut] indices = range(len(theselats)) if cut == 0: i2 = 0 cutcount+=1 if pooling: pool1 = Pool(args.nCores) partial_loop1 = partial(loops.loop1, theselons, theselats, testarea, slab, depgrid, strgrid, dipgrid, slab1query, theseevents, seismo_thick, alen, blen, mdist, sdr, ddr, mindip, maxID, AA_data, TR_data, maxdist, maxthickness, minstk, tomo_sets, meanBA,slab1guide,grid,slab1data,dipthresh,datainfo,nodeinfo) pts = pool1.map(partial_loop1, indices) #$$# pool1.close() pool1.join() for i in range(len(indices)): thisnode = pts[i] if thisnode[13]: lons1[i2] = thisnode[0] lats1[i2] = thisnode[1] deps1[i2] = thisnode[2] strs1[i2] = thisnode[3] dips1[i2] = thisnode[4] nIDs1[i2] = thisnode[5] aleng[i2] = thisnode[6] bleng[i2] = thisnode[7] cleng[i2] = thisnode[8] sleng[i2] = thisnode[14] dleng[i2] = thisnode[15] nused_TO = thisnode[9] if len(nused_TO) > 0: if used_TO is not None: used_TO = np.vstack((used_TO, nused_TO)) nused_all = thisnode[10] if len(nused_all) > 0: if used_all is not None: used_all = np.vstack((used_all, nused_all)) AAadd = thisnode[11] if len(AAadd)>0: if AAadd['unc'].mean() > 5: AAadd['etype'] = 'RF' elistAA = pd.concat([elistAA, AAadd],sort=True) newnodes = thisnode[12] if len(newnodes)>0: if allnewnodes is not None: allnewnodes = np.vstack((allnewnodes,newnodes)) else: allnewnodes = newnodes if not thisnode[13] and np.isfinite(thisnode[2]): elons1[i2] = thisnode[0] elats1[i2] = thisnode[1] edeps1[i2] = thisnode[2] estrs1[i2] = thisnode[3] edips1[i2] = thisnode[4] enIDs1[i2] = thisnode[5] ealeng[i2] = thisnode[6] ebleng[i2] = thisnode[7] ecleng[i2] = thisnode[8] esleng[i2] = thisnode[14] edleng[i2] = thisnode[15] i2 += 1 else: for nodeno in range(len(theselons)): alon, alat, alocdep, alocstr, alocdip, anID, aaleng, ableng, acleng, aused_TO, aused_tmp, atrimmedAA, newnodes, anydata, asleng, adleng = loops.loop1(theselons, theselats, testarea, slab, depgrid, strgrid, dipgrid, slab1query, theseevents, seismo_thick, alen, blen, mdist, sdr, ddr, mindip, maxID, AA_data, TR_data, maxdist, maxthickness, minstk, tomo_sets, meanBA, slab1guide, grid, slab1data, dipthresh, datainfo, nodeinfo, nodeno) if anydata: lons1[i2] = alon lats1[i2] = alat deps1[i2] = alocdep strs1[i2] = alocstr dips1[i2] = alocdip nIDs1[i2] = anID aleng[i2] = aaleng bleng[i2] = ableng cleng[i2] = acleng sleng[i2] = asleng dleng[i2] = adleng nused_TO = aused_TO if len(nused_TO) > 0: if used_TO is not None: used_TO = np.vstack((used_TO, nused_TO)) nused_all = aused_tmp if len(nused_all) > 0: if used_all is not None: used_all = np.vstack((used_all, nused_all)) AAadd = atrimmedAA if len(AAadd)>0: if AAadd['unc'].mean() > 5: AAadd['etype'] = 'RF' elistAA = pd.concat([elistAA, AAadd],sort=True) if len(newnodes)>0: if allnewnodes is not None: allnewnodes = np.vstack((allnewnodes,newnodes)) else: allnewnodes = newnodes if not anydata and np.isfinite(alocdep): elons1[i2] = alon elats1[i2] = alat edeps1[i2] = alocdep estrs1[i2] = alocstr edips1[i2] = alocdip enIDs1[i2] = anID ealeng[i2] = aaleng ebleng[i2] = ableng ecleng[i2] = acleng esleng[i2] = asleng edleng[i2] = adleng i2 += 1 lons1 = lons1[lons1>-999] lats1 = lats1[lats1>-999] deps1 = deps1[(deps1>-999)|np.isnan(deps1)] strs1 = strs1[strs1>-999] dips1 = dips1[dips1>-999] nIDs1 = nIDs1[nIDs1>-999] aleng = aleng[aleng>-999] bleng = bleng[bleng>-999] cleng = cleng[cleng>-999] sleng = sleng[sleng>-999] dleng = dleng[dleng>-999] elons1 = elons1[edleng>-999] elats1 = elats1[edleng>-999] edeps1 = edeps1[(edeps1>-999)|np.isnan(edeps1)] estrs1 = estrs1[edleng>-999] edips1 = edips1[edleng>-999] enIDs1 = enIDs1[edleng>-999] ealeng = ealeng[edleng>-999] ebleng = ebleng[edleng>-999] ecleng = ecleng[edleng>-999] esleng = esleng[edleng>-999] edleng = edleng[edleng>-999] testdf = pd.DataFrame({'lon':lons1,'lat':lats1,'depth':deps1,'strike':strs1,'dip':dips1,'id':nIDs1,'alen':aleng,'blen':bleng,'clen':cleng,'slen':sleng,'dlen':dleng}) testdf.to_csv('firstloop.csv',header=True,index=False,na_rep=np.nan) if allnewnodes is not None: theseIDs = [] for i in range(len(allnewnodes)): if allnewnodes[i,1]>0: thisnID = int('%i%i'%(allnewnodes[i,0]*10,allnewnodes[i,1]*10)) else: thisnID = int('%i0%i'%(allnewnodes[i,0]*10,allnewnodes[i,1]*-10)) theseIDs.append(thisnID) newlonsdf1 = pd.DataFrame({'lon':allnewnodes[:,0],'lat':allnewnodes[:,1],'nID':theseIDs}) newlonsdf = newlonsdf1.drop_duplicates(['nID']) theselons = newlonsdf['lon'].values theselats = newlonsdf['lat'].values if grid == 0.2: grid2 = 0.1 elif grid == 0.1: grid2 = 0.05 else: grid2 = grid slab1guide,slab1query = s2f.makeReference(slab1data,theselons,theselats,grid2,printtest,slab) newlats = [] newlons = [] newdeps = [] newstrs = [] newdips = [] newnIDs = [] newalen = [] newblen = [] newclen = [] newslen = [] newdlen = [] enewlats = [] enewlons = [] enewdeps = [] enewstrs = [] enewdips = [] enewnIDs = [] enewalen = [] enewblen = [] enewclen = [] enewslen = [] enewdlen = [] if pooling: indices = range(len(theselons)) pool1 = Pool(args.nCores) partial_loop1 = partial(loops.loop1, theselons, theselats, testarea, slab, depgrid, strgrid, dipgrid, slab1query, eventlist, seismo_thick, alen, blen, mdist, sdr, ddr, mindip, maxID, AA_data, TR_data, maxdist, maxthickness, minstk, tomo_sets, meanBA,slab1guide,grid,slab1data,dipthresh,datainfo,nodeinfo) pts = pool1.map(partial_loop1, indices) pool1.close() pool1.join() for i in range(len(indices)): thisnode = pts[i] if thisnode[13]: newlons.append(thisnode[0]) newlats.append(thisnode[1]) newdeps.append(thisnode[2]) newstrs.append(thisnode[3]) newdips.append(thisnode[4]) newnIDs.append(thisnode[5]) newalen.append(thisnode[6]) newblen.append(thisnode[7]) newclen.append(thisnode[8]) newslen.append(thisnode[14]) newdlen.append(thisnode[15]) nused_TO = thisnode[9] if len(nused_TO) > 0: if used_TO is not None: used_TO = np.vstack((used_TO, nused_TO)) nused_all = thisnode[10] if len(nused_all) > 0: if used_all is not None: used_all = np.vstack((used_all, nused_all)) AAadd = thisnode[11] if len(AAadd)>0: if AAadd['unc'].mean() > 5: AAadd['etype'] = 'RF' elistAA = pd.concat([elistAA, AAadd],sort=True) if not thisnode[13] and np.isfinite(thisnode[2]): enewlons.append(thisnode[0]) enewlats.append(thisnode[1]) enewdeps.append(thisnode[2]) enewstrs.append(thisnode[3]) enewdips.append(thisnode[4]) enewnIDs.append(thisnode[5]) enewalen.append(thisnode[6]) enewblen.append(thisnode[7]) enewclen.append(thisnode[8]) enewslen.append(thisnode[14]) enewdlen.append(thisnode[15]) else: for nodeno in range(len(theselons)): alon, alat, alocdep, alocstr, alocdip, anID, aalen, ablen, aclen, aused_TO, aused_tmp, atrimmedAA, newnodes, anydata, aslen, adlen = loops.loop1(theselons, theselats, testarea, slab, depgrid, strgrid, dipgrid, slab1query, eventlist, seismo_thick, alen, blen, mdist, sdr, ddr, mindip, maxID, AA_data, TR_data, maxdist, maxthickness, minstk, tomo_sets, meanBA, slab1guide, grid, slab1data, dipthresh, datainfo, nodeinfo, nodeno) if anydata: newlons.append(alon) newlats.append(alat) newdeps.append(alocdep) newstrs.append(alocstr) newdips.append(alocdip) newnIDs.append(anID) newalen.append(aalen) newblen.append(ablen) newclen.append(aclen) newslen.append(aslen) newdlen.append(adlen) nused_TO = aused_TO if len(nused_TO) > 0: if used_TO is not None: used_TO = np.vstack((used_TO, nused_TO)) nused_all = aused_tmp if len(nused_all) > 0: if used_all is not None: used_all = np.vstack((used_all, nused_all)) AAadd = atrimmedAA if len(AAadd)>0: if AAadd['unc'].mean() > 5: AAadd['etype'] = 'RF' elistAA = pd.concat([elistAA, AAadd],sort=True) if not anydata and np.isfinite(alocdep): enewlons.append(alon) enewlats.append(alat) enewdeps.append(alocdep) enewstrs.append(alocstr) enewdips.append(alocdip) enewnIDs.append(anID) enewalen.append(aalen) enewblen.append(ablen) enewclen.append(aclen) enewslen.append(aslen) enewdlen.append(adlen) #np.savetxt('%s_diptest.csv'%slab, allnewnodes, header='lon,lat,depth,strike,dip',fmt='%.2f', delimiter=',',comments='') if printtest: fig = plt.figure(figsize=(20, 10)) ax1 = fig.add_subplot(131) con = ax1.scatter(lons1,lats1,c=dips1,s=10,edgecolors='none',cmap='plasma') ax1.set_ylabel('Latitude') ax1.axis('equal') plt.grid() title = 'Diptest' ax1.set_title(title) cbar = fig.colorbar(con) cbar.set_label('Dip') ax2 = fig.add_subplot(132) con = ax2.scatter(allnewnodes[:,0], allnewnodes[:,1],c=allnewnodes[:,1],s=10,edgecolors='none',cmap='plasma') ax2.set_xlabel('Longitude') ax2.set_ylabel('Latitude') ax2.axis('equal') plt.grid() cbar = fig.colorbar(con) cbar.set_label('Dip') ax3 = fig.add_subplot(133) con = ax3.scatter(newlons, newlats,c=newdips,s=10,edgecolors='none',cmap='plasma') ax3.set_xlabel('Longitude') ax3.set_ylabel('Latitude') ax3.axis('equal') plt.grid() cbar = fig.colorbar(con) cbar.set_label('Dip') figtitle = 'diptest.png' fig.savefig(figtitle) plt.close() lons1 = np.append(lons1, [newlons]) lats1 = np.append(lats1, [newlats]) deps1 = np.append(deps1, [newdeps]) strs1 = np.append(strs1, [newstrs]) dips1 = np.append(dips1, [newdips]) nIDs1 = np.append(nIDs1, [newnIDs]) aleng = np.append(aleng, [newalen]) bleng = np.append(bleng, [newblen]) cleng = np.append(cleng, [newclen]) sleng = np.append(sleng, [newslen]) dleng = np.append(dleng, [newdlen]) elons1 = np.append(elons1, [enewlons]) elats1 = np.append(elats1, [enewlats]) edeps1 = np.append(edeps1, [enewdeps]) estrs1 = np.append(estrs1, [enewstrs]) edips1 = np.append(edips1, [enewdips]) enIDs1 = np.append(enIDs1, [enewnIDs]) ealeng = np.append(ealeng, [enewalen]) ebleng = np.append(ebleng, [enewblen]) ecleng = np.append(ecleng, [enewclen]) esleng = np.append(esleng, [enewslen]) edleng = np.append(edleng, [enewdlen]) #print ('lon',len(elons1),'lat',len(elats1),'ogdep',len(edeps1),'ogstr',len(estrs1),'ogdip',len(edips1),'nID',len(enIDs1),'alen',len(ealeng),'blen',len(ebleng),'clen',len(ecleng),'slen',len(esleng),'dlen',len(edleng)) emptynodes = pd.DataFrame({'lon':elons1,'lat':elats1,'ogdep':edeps1,'ogstr':estrs1,'ogdip':edips1,'nID':enIDs1,'alen':ealeng,'blen':ebleng,'clen':ecleng,'slen':esleng,'dlen':edleng}) #emptynodes.to_csv('emptynodes.csv',header=True,index=False) refdeps = pd.DataFrame({'lon':lons1, 'lat':lats1, 'ogdep':deps1}) if global_average: ''' # need to fix this after adjusting based on BA depth at trench AA_global['depthtest'] = (AA_global['depth'].values*100).astype(int) for index, row in elistAA.iterrows(): depthAA = row['depth'] depthtestAA = int(100*row['depth']) thisdepth = AA_global[AA_global.depthtest == depthtestAA] uncAA = thisdepth['unc'].values[0] elistAA.loc[elistAA.depth == depthAA, 'unc'] = uncAA*2 ''' elistAA['unc'] = 10.0 elistcuts.append(elistAA) eventlist2 = pd.concat(elistcuts,sort=True) eventlist = eventlist2.reset_index(drop=True) del eventlist2 eventlist = eventlist.drop_duplicates(['ID']) eventlist = eventlist.reset_index(drop=True) # Remove first line of zeros used_TO = used_TO[~np.all(used_TO ==0, axis=1)] used_all = used_all[~np.all(used_all ==0, axis=1)] '''Section 3: Calculate tomography uncertainties Here we use the output from the first loop to calculate tomography uncertainties. For each tomography dataset, we calculate the standard deviation of the distribution of "differences". We apply this standard deviation as the uncertainty value for each tomography datum from that dataset. ''' print("Start Section 3 of 7: Assigning tomography uncertainties") if tomo: for idx, src in enumerate(tomo_sets): tomog = used_TO[:][used_TO[:, 1] == idx] tmp_std = np.std(tomog[:, 0]) if tmp_std > 40.: tmp_std = 40. elif tmp_std < 15.: tmp_std = 15. elif np.isnan(tmp_std): tmp_std = 40 eventlist['unc'][eventlist['src'] == src] = tmp_std '''Section 4: Second loop The purpose of this loop is to determine a set of "pre-shifted" slab points that do not utilize receiver function data. This output dataset will represent a transition from slab surface at shallow depths to slab center at deeper depths. The only output from this loop is an array of the form [ lat lon dep unc nodeID ] ''' print("Start Section 4 of 7: Second loop") bzlons, bzlats, bzdeps, stds2, nIDs2 = [], [], [], [], [] lats2, lons2, str2, dip2, centsurf = [], [], [], [], [] bilats, bilons, binods, bistds = [], [], [], [] biindx, bistrs, bidips, bideps = [], [], [], [] baleng, bbleng, bcleng, onlyto = [], [], [], [] rlist = pd.DataFrame() if pooling: pool2 = Pool(args.nCores) npass = args.nCores partial_loop2 = partial(loops.loop2, testarea, lons1, lats1, nIDs1, deps1, strs1, dips1, used_all, eventlist, sdr, ddr, seismo_thick, slab, maxthickness, rlist, mindip, aleng, bleng, cleng) indices = range(len(lats1)) pts2 = pool2.map(partial_loop2, indices) pool2.close() pool2.join() for i in range(len(indices)): thisnode = pts2[i] if np.isfinite(thisnode[0]): bzlons.append(thisnode[0]) bzlats.append(thisnode[1]) bzdeps.append(thisnode[2]) stds2.append(thisnode[3]) nIDs2.append(thisnode[4]) lats2.append(thisnode[5]) lons2.append(thisnode[6]) str2.append(thisnode[7]) dip2.append(thisnode[8]) centsurf.append(thisnode[9]) baleng.append(thisnode[20]) bbleng.append(thisnode[21]) bcleng.append(thisnode[22]) onlyto.append(thisnode[23]) if np.isfinite(thisnode[10]): bilats.append(thisnode[10]) bilons.append(thisnode[11]) binods.append(thisnode[12]) bistds.append(thisnode[13]) biindx.append(thisnode[14]) bistrs.append(thisnode[15]) bidips.append(thisnode[16]) bideps.append(thisnode[17]) rlist = thisnode[18] if len(rlist) > 0: removeIDs = np.array(rlist.ID) thisID = np.ones(len(removeIDs))*thisnode[4] removearray = list(zip(thisID, removeIDs)) removeIDID = np.array(removearray) used_all = used_all[~(np.in1d(used_all[:, 1], removeIDID) & np.in1d(used_all[:, 0], thisID))] multi = thisnode[19] if len(multi) > 0: premulti = pd.concat([premulti, multi],sort=True) del pts2 else: npass = 1 for nodeno in range(len(lats1)): bpeak_lon, bpeak_lat, bpeak_depth, bstd, bnID, blat, blon, bcstr, bcdip, bcentsurf, bbilats, bbilons, bbinods, bbistds, bbiindx, bbistrs, bbidips, bbideps, brlist, bpremulti, alen, blen, clen, onlyt = loops.loop2(testarea, lons1, lats1, nIDs1, deps1, strs1, dips1, used_all, eventlist, sdr, ddr, seismo_thick, slab, maxthickness, rlist, mindip, aleng, bleng, cleng, nodeno) if np.isfinite(bpeak_lon): bzlons.append(bpeak_lon) bzlats.append(bpeak_lat) bzdeps.append(bpeak_depth) stds2.append(bstd) nIDs2.append(bnID) lats2.append(blat) lons2.append(blon) str2.append(bcstr) dip2.append(bcdip) centsurf.append(bcentsurf) baleng.append(alen) bbleng.append(blen) bcleng.append(clen) onlyto.append(onlyt) if np.isfinite(bbilats): bilats.append(bbilats) bilons.append(bbilons) binods.append(bbinods) bistds.append(bbistds) biindx.append(bbiindx) bistrs.append(bbistrs) bidips.append(bbidips) bideps.append(bbideps) rlist = brlist if len(rlist) > 0: removeIDs = np.array(rlist.ID) thisID = np.ones(len(removeIDs))*bnID removearray = list(zip(thisID, removeIDs)) removeIDID = np.array(removearray) used_all = used_all[~(np.in1d(used_all[:, 1], removeIDID) & np.in1d(used_all[:, 0], thisID))] multi = bpremulti if len(multi) > 0: premulti = pd.concat([premulti, multi],sort=True) tmp_res = pd.DataFrame({'bzlon':bzlons,'bzlat':bzlats,'depth':bzdeps,'stdv':stds2,'nID':nIDs2,'lat':lats2,'lon':lons2,'ogstr':str2,'ogdip':dip2,'centsurf':centsurf,'alen':baleng,'blen':bbleng,'clen':bcleng,'onlyto':onlyto}) for j in range(len(bilats)): lon = bilons[j] lat = bilats[j] nID = binods[j] stdv = bistds[j] stk = bistrs[j] dep = bideps[j] dip = bidips[j] if dip <= mindip: peak_depth = s2f.findMultiDepth(lon, lat, nID, tmp_res, grid, premulti, stk, slab, dep, alen, printtest) peak_lon = lon peak_lat = lat else: peak_lon, peak_lat, peak_depth = s2f.findMultiDepthP(lon, lat, nID, tmp_res, grid, premulti, stk, slab, dep, dip, alen, printtest) tmp_res.loc[tmp_res.nID == nID, 'bzlon'] = peak_lon tmp_res.loc[tmp_res.nID == nID, 'bzlat'] = peak_lat tmp_res.loc[tmp_res.nID == nID, 'depth'] = peak_depth tmp_res = s2f.addGuidePoints(tmp_res, slab) if slab == 'sol': tmp_res = tmp_res[(tmp_res.bzlon>142) & (tmp_res.bzlon<164)] if slab == 'sul': tmp_res = tmp_res[(tmp_res.bzlon<123.186518923) | (tmp_res.depth<100)] tmp_res = tmp_res[(tmp_res.bzlon<122.186518923) | (tmp_res.depth<200)] # Save data used to file used_IDs = used_all[:, 1] used_data = eventlist[eventlist['ID'].isin(used_IDs)] used_data = used_data[['lat', 'lon', 'depth', 'unc', 'etype', 'ID', 'mag', 'time', 'S1', 'D1', 'R1', 'S2', 'D2', 'R2', 'src']] used_data = used_data.drop_duplicates(['ID']) used_data.loc[used_data.lon < 0, 'lon']+=360 if slab == 'hel': used_data.loc[used_data.etype == 'CP', 'etype']='RF' used_data.to_csv(dataFile, header=True, index=False, float_format='%0.2f', na_rep = float('nan'), chunksize=100000) #tmp_res.to_csv('nodetest.csv', header=True, index=False, float_format='%0.2f', na_rep = float('nan'), chunksize=100000) '''Section 5: Calculate shifts Here we use the output of the second loop to calculate shifting locations for non-RF results. A user-specified lithospheric thickness can be read in or lithosphere thickness will be calculated using the nearest oceanic plate age. The taper and fracshift is set in the paramter file for each subduction zone. fracshift was determined via testing each individual subduztion zone to match seismicity. Shift direction is determined by the strike and dip of a surface created using the output from the second loop. A clipping mask is also created in this section using the shifted output data. ''' print("Start Section 5 of 7: Calculate shifts") # Calculate shift for each node print(" Calculating shift...") surfnode = 0.5 data0 = tmp_res[(tmp_res.stdv > -0.000001)&(tmp_res.stdv < 0.000001)] tmp_res = tmp_res[(tmp_res.stdv < -0.000001)|(tmp_res.stdv > 0.000001)] if use_box == 'yes': if lonmin<0: lonmin+=360 if lonmax<0: lonmax+=360 TR_data = TR_data[(TR_data.lon<lonmax)&(TR_data.lon>lonmin)] TR_data = TR_data[(TR_data.lat<latmax)&(TR_data.lat>latmin)] TR_data = TR_data.reset_index(drop=True) # Read in age grid files ages = gmt.GMTGrid.load(agesFile) ages_error = gmt.GMTGrid.load(ageerrorsFile) shift_out, maxthickness = s2f.slabShift_noGMT(tmp_res, node, T, TR_data, seismo_thick, taper, ages, ages_error, filt, slab, maxthickness, grid, 'bzlon', 'bzlat', 'depth', fracS, npass, meanBA, printtest, kdeg, knot_no, rbfs, use_box) del ages del ages_error tmp_res['pslon'] = tmp_res['lon'].values*1.0 tmp_res['pslat'] = tmp_res['lat'].values*1.0 tmp_res['psdepth'] = tmp_res['depth'].values*1.0 tmp_res = tmp_res[['pslon', 'pslat', 'bzlon', 'bzlat', 'psdepth', 'stdv', 'nID', 'ogstr', 'ogdip', 'centsurf', 'alen', 'blen', 'clen']] shift_out = shift_out.merge(tmp_res) shift_out.loc[shift_out.pslon < 0, 'pslon']+=360 shift_out['avstr'] = np.nan shift_out['avdip'] = np.nan shift_out['avrke'] = np.nan '''Section 6: Third loop The purpose of this loop is to produce the final location measurements for the slab. Here we edit the input data by adding the shift to the depths, then calculate a PDF with receiver functions included. The only output from this loop is a 10 column array with all results necessary to build the output. Output is of the format [ lat lon dep unc shift_mag shift_unc avg_str avg_dip avg_rak pre-shift_dep pre-shift_str pre-shift_dip nodeID ] ''' print("Start Section 6 of 7: Third (final) loop") bilats, bilons, binods, bistds = [], [], [], [] biindx, bistrs, bidips, bideps = [], [], [], [] if pooling: pool3 = Pool(args.nCores) partial_loop3 = partial(loops.loop3, shift_out, testarea, used_all, eventlist, sdr, ddr, seismo_thick, these_params, slab, maxthickness, mindip, taper) indices = shift_out['nID'].values pts3 = pool3.map(partial_loop3, indices) pool3.close() pool3.join() for i in range(len(indices)): thisnode = pts3[i] if np.isfinite(thisnode[0]): nID = thisnode[13] shift_out.loc[shift_out.nID == nID, 'depth'] = thisnode[0] shift_out.loc[shift_out.nID == nID, 'stdv'] = thisnode[1] shift_out.loc[shift_out.nID == nID, 'avstr'] = thisnode[2] shift_out.loc[shift_out.nID == nID, 'avdip'] = thisnode[3] shift_out.loc[shift_out.nID == nID, 'avrke'] = thisnode[4] shift_out.loc[shift_out.nID == nID, 'lon'] = thisnode[15] shift_out.loc[shift_out.nID == nID, 'lat'] = thisnode[16] if np.isfinite(thisnode[5]): bilats.append(thisnode[5]) bilons.append(thisnode[6]) binods.append(thisnode[7]) bistds.append(thisnode[8]) biindx.append(thisnode[9]) bistrs.append(thisnode[10]) bidips.append(thisnode[11]) bideps.append(thisnode[12]) multi = thisnode[14] if len(multi) > 0: postmulti = pd.concat([postmulti, multi],sort=True) del pts3 else: for nodeno in shift_out['nID'].values: crdepth, crstd, crstrike, crdip, crrake, cbilats, cbilons, cbinods, cbistds, cbiindx, cbistrs, cbidips, cbideps, cnID, cpostmulti, cpeak_lon, cpeak_lat = loops.loop3(shift_out, testarea, used_all, eventlist, sdr, ddr, seismo_thick, these_params, slab, maxthickness, mindip, taper, nodeno) if np.isfinite(crdepth): nID = cnID shift_out.loc[shift_out.nID == nID, 'depth'] = crdepth shift_out.loc[shift_out.nID == nID, 'stdv'] = crstd shift_out.loc[shift_out.nID == nID, 'avstr'] = crstrike shift_out.loc[shift_out.nID == nID, 'avdip'] = crdip shift_out.loc[shift_out.nID == nID, 'avrke'] = crrake shift_out.loc[shift_out.nID == nID, 'lon'] = cpeak_lon shift_out.loc[shift_out.nID == nID, 'lat'] = cpeak_lat if np.isfinite(cbilats): bilats.append(cbilats) bilons.append(cbilons) binods.append(cbinods) bistds.append(cbistds) biindx.append(cbiindx) bistrs.append(cbistrs) bidips.append(cbidips) bideps.append(cbideps) multi = cpostmulti if len(multi) > 0: postmulti =
pd.concat([postmulti, multi],sort=True)
pandas.concat
""" Also test support for datetime64[ns] in Series / DataFrame """ from datetime import datetime, timedelta import re import numpy as np import pytest from pandas._libs import iNaT import pandas._libs.index as _index import pandas as pd from pandas import DataFrame, DatetimeIndex, NaT, Series, Timestamp, date_range import pandas._testing as tm def test_fancy_getitem(): dti = date_range( freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) ) s = Series(np.arange(len(dti)), index=dti) assert s[48] == 48 assert s["1/2/2009"] == 48 assert s["2009-1-2"] == 48 assert s[datetime(2009, 1, 2)] == 48 assert s[Timestamp(datetime(2009, 1, 2))] == 48 with pytest.raises(KeyError, match=r"^'2009-1-3'$"): s["2009-1-3"] tm.assert_series_equal( s["3/6/2009":"2009-06-05"], s[datetime(2009, 3, 6) : datetime(2009, 6, 5)] ) def test_fancy_setitem(): dti = date_range( freq="WOM-1FRI", start=datetime(2005, 1, 1), end=datetime(2010, 1, 1) ) s = Series(np.arange(len(dti)), index=dti) s[48] = -1 assert s[48] == -1 s["1/2/2009"] = -2 assert s[48] == -2 s["1/2/2009":"2009-06-05"] = -3 assert (s[48:54] == -3).all() def test_dti_reset_index_round_trip(): dti = date_range(start="1/1/2001", end="6/1/2001", freq="D")._with_freq(None) d1 = DataFrame({"v": np.random.rand(len(dti))}, index=dti) d2 = d1.reset_index() assert d2.dtypes[0] == np.dtype("M8[ns]") d3 = d2.set_index("index") tm.assert_frame_equal(d1, d3, check_names=False) # #2329 stamp = datetime(2012, 11, 22) df = DataFrame([[stamp, 12.1]], columns=["Date", "Value"]) df = df.set_index("Date") assert df.index[0] == stamp assert df.reset_index()["Date"][0] == stamp @pytest.mark.slow def test_slice_locs_indexerror(): times = [datetime(2000, 1, 1) + timedelta(minutes=i * 10) for i in range(100000)] s = Series(range(100000), times) s.loc[datetime(1900, 1, 1) : datetime(2100, 1, 1)] def test_slicing_datetimes(): # GH 7523 # unique df = DataFrame( np.arange(4.0, dtype="float64"), index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 3, 4]], ) result = df.loc[datetime(2001, 1, 1, 10) :] tm.assert_frame_equal(result, df) result = df.loc[: datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 10) : datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 11) :] expected = df.iloc[1:] tm.assert_frame_equal(result, expected) result = df.loc["20010101 11":] tm.assert_frame_equal(result, expected) # duplicates df = DataFrame( np.arange(5.0, dtype="float64"), index=[datetime(2001, 1, i, 10, 00) for i in [1, 2, 2, 3, 4]], ) result = df.loc[datetime(2001, 1, 1, 10) :] tm.assert_frame_equal(result, df) result = df.loc[: datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 10) : datetime(2001, 1, 4, 10)] tm.assert_frame_equal(result, df) result = df.loc[datetime(2001, 1, 1, 11) :] expected = df.iloc[1:] tm.assert_frame_equal(result, expected) result = df.loc["20010101 11":] tm.assert_frame_equal(result, expected) def test_getitem_setitem_datetime_tz_pytz(): from pytz import timezone as tz N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="US/Eastern") ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] tm.assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() # comparison dates with datetime MUST be localized! date = tz("US/Central").localize(datetime(1990, 1, 1, 3)) result[date] = 0 result[date] = ts[4] tm.assert_series_equal(result, ts) def test_getitem_setitem_datetime_tz_dateutil(): from dateutil.tz import tzutc from pandas._libs.tslibs.timezones import dateutil_gettz as gettz tz = ( lambda x: tzutc() if x == "UTC" else gettz(x) ) # handle special case for utc in dateutil N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="America/New_York") ts = Series(np.random.randn(N), index=rng) # also test Timestamp tz handling, GH #2789 result = ts.copy() result["1990-01-01 09:00:00+00:00"] = 0 result["1990-01-01 09:00:00+00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result["1990-01-01 03:00:00-06:00"] = 0 result["1990-01-01 03:00:00-06:00"] = ts[4] tm.assert_series_equal(result, ts) # repeat with datetimes result = ts.copy() result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = 0 result[datetime(1990, 1, 1, 9, tzinfo=tz("UTC"))] = ts[4] tm.assert_series_equal(result, ts) result = ts.copy() result[datetime(1990, 1, 1, 3, tzinfo=tz("America/Chicago"))] = 0 result[datetime(1990, 1, 1, 3, tzinfo=tz("America/Chicago"))] = ts[4] tm.assert_series_equal(result, ts) def test_getitem_setitem_datetimeindex(): N = 50 # testing with timezone, GH #2785 rng = date_range("1/1/1990", periods=N, freq="H", tz="US/Eastern") ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04:00:00"] expected = ts[4] assert result == expected result = ts.copy() result["1990-01-01 04:00:00"] = 0 result["1990-01-01 04:00:00"] = ts[4] tm.assert_series_equal(result, ts) result = ts["1990-01-01 04:00:00":"1990-01-01 07:00:00"] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = 0 result["1990-01-01 04:00:00":"1990-01-01 07:00:00"] = ts[4:8] tm.assert_series_equal(result, ts) lb = "1990-01-01 04:00:00" rb = "1990-01-01 07:00:00" # GH#18435 strings get a pass from tzawareness compat result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) lb = "1990-01-01 04:00:00-0500" rb = "1990-01-01 07:00:00-0500" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) # But we do not give datetimes a pass on tzawareness compat # TODO: do the same with Timestamps and dt64 msg = "Cannot compare tz-naive and tz-aware datetime-like objects" naive = datetime(1990, 1, 1, 4) with tm.assert_produces_warning(FutureWarning): # GH#36148 will require tzawareness compat result = ts[naive] expected = ts[4] assert result == expected result = ts.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4)] = 0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4)] = ts[4] tm.assert_series_equal(result, ts) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result = ts[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] = 0 with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # GH#36148 will require tzawareness compat result[datetime(1990, 1, 1, 4) : datetime(1990, 1, 1, 7)] = ts[4:8] tm.assert_series_equal(result, ts) lb = datetime(1990, 1, 1, 4) rb = datetime(1990, 1, 1, 7) msg = r"Invalid comparison between dtype=datetime64\[ns, US/Eastern\] and datetime" with pytest.raises(TypeError, match=msg): # tznaive vs tzaware comparison is invalid # see GH#18376, GH#18162 ts[(ts.index >= lb) & (ts.index <= rb)] lb = pd.Timestamp(datetime(1990, 1, 1, 4)).tz_localize(rng.tzinfo) rb = pd.Timestamp(datetime(1990, 1, 1, 7)).tz_localize(rng.tzinfo) result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts[ts.index[4]] expected = ts[4] assert result == expected result = ts[ts.index[4:8]] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result.iloc[4:8] = ts.iloc[4:8] tm.assert_series_equal(result, ts) # also test partial date slicing result = ts["1990-01-02"] expected = ts[24:48] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-02"] = 0 result["1990-01-02"] = ts[24:48] tm.assert_series_equal(result, ts) def test_getitem_setitem_periodindex(): from pandas import period_range N = 50 rng = period_range("1/1/1990", periods=N, freq="H") ts = Series(np.random.randn(N), index=rng) result = ts["1990-01-01 04"] expected = ts[4] assert result == expected result = ts.copy() result["1990-01-01 04"] = 0 result["1990-01-01 04"] = ts[4] tm.assert_series_equal(result, ts) result = ts["1990-01-01 04":"1990-01-01 07"] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result["1990-01-01 04":"1990-01-01 07"] = 0 result["1990-01-01 04":"1990-01-01 07"] = ts[4:8] tm.assert_series_equal(result, ts) lb = "1990-01-01 04" rb = "1990-01-01 07" result = ts[(ts.index >= lb) & (ts.index <= rb)] expected = ts[4:8] tm.assert_series_equal(result, expected) # GH 2782 result = ts[ts.index[4]] expected = ts[4] assert result == expected result = ts[ts.index[4:8]] expected = ts[4:8] tm.assert_series_equal(result, expected) result = ts.copy() result[ts.index[4:8]] = 0 result.iloc[4:8] = ts.iloc[4:8] tm.assert_series_equal(result, ts) def test_datetime_indexing(): index = date_range("1/1/2000", "1/7/2000") index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp("1/8/2000") with pytest.raises(KeyError, match=re.escape(repr(stamp))): s[stamp] s[stamp] = 0 assert s[stamp] == 0 # not monotonic s = Series(len(index), index=index) s = s[::-1] with pytest.raises(KeyError, match=re.escape(repr(stamp))): s[stamp] s[stamp] = 0 assert s[stamp] == 0 """ test duplicates in time series """ @pytest.fixture def dups(): dates = [ datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5), ] return Series(np.random.randn(len(dates)), index=dates) def test_constructor(dups): assert isinstance(dups, Series) assert isinstance(dups.index, DatetimeIndex) def test_is_unique_monotonic(dups): assert not dups.index.is_unique def test_index_unique(dups): uniques = dups.index.unique() expected = DatetimeIndex( [ datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5), ] ) assert uniques.dtype == "M8[ns]" # sanity tm.assert_index_equal(uniques, expected) assert dups.index.nunique() == 4 # #2563 assert isinstance(uniques, DatetimeIndex) dups_local = dups.index.tz_localize("US/Eastern") dups_local.name = "foo" result = dups_local.unique() expected = DatetimeIndex(expected, name="foo") expected = expected.tz_localize("US/Eastern") assert result.tz is not None assert result.name == "foo" tm.assert_index_equal(result, expected) # NaT, note this is excluded arr = [1370745748 + t for t in range(20)] + [iNaT] idx = DatetimeIndex(arr * 3) tm.assert_index_equal(idx.unique(), DatetimeIndex(arr)) assert idx.nunique() == 20 assert idx.nunique(dropna=False) == 21 arr = [ Timestamp("2013-06-09 02:42:28") + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) tm.assert_index_equal(idx.unique(), DatetimeIndex(arr)) assert idx.nunique() == 20 assert idx.nunique(dropna=False) == 21 def test_duplicate_dates_indexing(dups): ts = dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: tm.assert_series_equal(result, expected) else: tm.assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) tm.assert_series_equal(cp, expected) key = datetime(2000, 1, 6) with pytest.raises(KeyError, match=re.escape(repr(key))): ts[key] # new index ts[datetime(2000, 1, 6)] = 0 assert ts[datetime(2000, 1, 6)] == 0 def test_range_slice(): idx = DatetimeIndex(["1/1/2000", "1/2/2000", "1/2/2000", "1/3/2000", "1/4/2000"]) ts = Series(np.random.randn(len(idx)), index=idx) result = ts["1/2/2000":] expected = ts[1:] tm.assert_series_equal(result, expected) result = ts["1/2/2000":"1/3/2000"] expected = ts[1:4] tm.assert_series_equal(result, expected) def test_groupby_average_dup_values(dups): result = dups.groupby(level=0).mean() expected = dups.groupby(dups.index).mean() tm.assert_series_equal(result, expected) def test_indexing_over_size_cutoff(): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame( np.random.randn(len(dates), 4), index=dates, columns=list("ABCD") ) pos = n * 3 timestamp = df.index[pos] assert timestamp in df.index # it works! df.loc[timestamp] assert len(df.loc[[timestamp]]) > 0 finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_over_size_cutoff_period_index(monkeypatch): # GH 27136 monkeypatch.setattr(_index, "_SIZE_CUTOFF", 1000) n = 1100 idx = pd.period_range("1/1/2000", freq="T", periods=n) assert idx._engine.over_size_threshold s = Series(np.random.randn(len(idx)), index=idx) pos = n - 1 timestamp = idx[pos] assert timestamp in s.index # it works! s[timestamp] assert len(s.loc[[timestamp]]) > 0 def test_indexing_unordered(): # GH 2437 rng = date_range(start="2011-01-01", end="2011-01-15") ts = Series(np.random.rand(len(rng)), index=rng) ts2 = pd.concat([ts[0:4], ts[-4:], ts[4:-4]]) for t in ts.index: expected = ts[t] result = ts2[t] assert expected == result # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] expected.index = expected.index._with_freq(None)
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
""" Utility function to load and process the output files of a DeepProfiler run. """ import os import pathlib import numpy as np import pandas as pd import warnings from pycytominer import aggregate from pycytominer.cyto_utils import load_npz, infer_cp_features class AggregateDeepProfiler: """This class holds all functions needed to load and annotate the DeepProfiler (DP) run. Attributes ---------- profile_dir : str file location of the output profiles from DeepProfiler (e.g. `/project1/outputs/results/features/`) aggregate_operation : ['median', 'mean'] method of aggregation aggregate_on : ['site', 'well', 'plate'] up to which level to aggregate filename_delimiter : default = '_' delimiter for the filenames of the profiles (e.g. B02_4.npz). file_extension : default = '.npz' extension of the profile file. index_df : pandas.DataFrame load in the index.csv file from DeepProfiler, provided by an input index file. filenames : list of paths list of Purepaths that point to the npz files. aggregated_profiles : pandas.DataFrame df to hold the metadata and profiles. file_aggregate : dict dict that holds the file names and metadata. Is used to load in the npz files in the correct order and grouping. output_file : str If provided, will write annotated profiles to folder. Defaults to "none". Methods ------- aggregate_deep() Given an initialized AggregateDeepProfiler() class, run this function to output level 3 profiles (aggregated profiles with annotated metadata). """ def __init__( self, index_file, profile_dir, aggregate_operation="median", aggregate_on="well", filename_delimiter="_", file_extension=".npz", output_file="none", ): """ __init__ function for this class. Arguments --------- index_file : str file location of the index.csv from DP See above for all other parameters. """ assert aggregate_operation in [ "median", "mean", ], "Input of aggregate_operation is incorrect, it must be either median or mean" assert aggregate_on in [ "site", "well", "plate", ], "Input of aggregate_on is incorrect, it must be either site or well or plate" self.index_df = pd.read_csv(index_file, dtype=str) self.profile_dir = profile_dir self.aggregate_operation = aggregate_operation self.aggregate_on = aggregate_on self.filename_delimiter = filename_delimiter self.file_extension = file_extension if not self.file_extension.startswith("."): self.file_extension = f".{self.file_extension}" self.output_file = output_file def build_filenames(self): """ Create file names indicated by plate, well, and site information """ self.filenames = self.index_df.apply( self.build_filename_from_index, axis="columns" ) self.filenames = [ pathlib.PurePath(f"{self.profile_dir}/{x}") for x in self.filenames ] def build_filename_from_index(self, row): """ Builds the name of the profile files """ plate = row["Metadata_Plate"] well = row["Metadata_Well"] site = row["Metadata_Site"] filename = f"{plate}/{well}_{site}{self.file_extension}" return filename def extract_filename_metadata(self, npz_file, delimiter="_"): """ Extract metadata (site, well and plate) from the filename. The input format of the file: path/plate/well_site.npz Arguments --------- npz_file : str file path delimiter : str the delimiter used in the naming convention of the files. default = '_' Returns ------- loc : dict dict with metadata """ base_file = os.path.basename(npz_file).strip(".npz").split(delimiter) site = base_file[-1] well = base_file[-2] plate = str(npz_file).split("/")[-2] loc = {"site": site, "well": well, "plate": plate} return loc def setup_aggregate(self): """ Sets up the file_aggregate attribute. This is a helper function to aggregate_deep(). the file_aggregate dictionary contains the file locations and metadata for each grouping. If for example we are grouping by well then the keys of self.file_aggregate would be: plate1/well1, plate1/well2, plate2/well1, etc. """ if not hasattr(self, "filenames"): self.build_filenames() self.file_aggregate = {} for filename in self.filenames: file_info = self.extract_filename_metadata( filename, self.filename_delimiter ) file_key = file_info[self.aggregate_on] if self.aggregate_on == "site": file_key = ( f"{file_info['plate']}/{file_info['well']}_{file_info['site']}" ) if self.aggregate_on == "well": file_key = f"{file_info['plate']}/{file_info['well']}" if file_key in self.file_aggregate: self.file_aggregate[file_key]["files"].append(filename) else: self.file_aggregate[file_key] = {} self.file_aggregate[file_key]["files"] = [filename] self.file_aggregate[file_key]["metadata"] = file_info def aggregate_deep(self): """ Main function of this class. Aggregates the profiles into a pandas dataframe. For each key in file_aggregate, the profiles are loaded, concatenated and then aggregated. If files are missing, we throw a warning but continue the code. After aggregation, the metadata is concatenated back onto the dataframe. Returns ------- df_out : pandas.dataframe dataframe with all metadata and the feature space. This is the input to any further pycytominer or pycytominer-eval processing """ if not hasattr(self, "file_aggregate"): self.setup_aggregate() self.aggregated_profiles = [] self.aggregate_merge_col = f"Metadata_{self.aggregate_on.capitalize()}_Position" # Iterates over all sites, wells or plates for metadata_level in self.file_aggregate: # uses custom load function to create df with metadata and profiles arr = [load_npz(x) for x in self.file_aggregate[metadata_level]["files"]] # empty dataframes from missing files are deleted arr = [x for x in arr if not x.empty] # if no files were found there is a miss-match between the index and the output files if not len(arr): warnings.warn( f"No files for the key {metadata_level} could be found.\nThis program will continue, but be aware that this might induce errors!" ) continue df =
pd.concat(arr)
pandas.concat
#!/usr/bin/env python """ findNeighbour4 is a server providing relatedness information for bacterial genomes via a Restful API. See documentation for full details of its functionality. There are unit tests for the server component. To run them: # starting a test RESTFUL server # NOTE: this uses the default testing config file at config/default_test_config.json, which launches a server on 5020 nohup pipenv run python3 findNeighbour4_server.py & # And then launching unit tests with pipenv run python3 -m unittest test/test_server.py # tests the server running on the default testing port, 5020 """ # import libraries import os import requests import json import warnings import datetime import pandas as pd import markdown import codecs import uuid # only used for unit testing from Bio import SeqIO import unittest from urllib.parse import urljoin as urljoiner RESTBASEURL = "http://127.0.0.1:5020" print( "Running unit tests against a server expected to be operational on {0}".format( RESTBASEURL ) ) ISDEBUG = True LISTEN_TO = "127.0.0.1" # only local addresses def isjson(content): """returns true if content parses as json, otherwise false. used by unit testing.""" try: json.loads(content.decode("utf-8")) return True except json.decoder.JSONDecodeError: return False def tojson(content): """json dumps, formatting dates as isoformat""" def converter(o): if isinstance(o, datetime.datetime): return o.isoformat() else: return json.JSONEncoder.default(o) return json.dumps(content, default=converter) def do_GET(relpath): """makes a GET request to relpath. Used for unit testing.""" url = urljoiner(RESTBASEURL, relpath) # print("GETing from: {0}".format(url)) session = requests.Session() session.trust_env = False # print out diagnostics # print("About to GET from url {0}".format(url)) response = session.get(url=url, timeout=None) # print("Result:") # print("code: {0}".format(response.status_code)) # print("reason: {0}".format(response.reason)) try: "text: {0}".format(response.text[:100]) except UnicodeEncodeError: # which is what happens if you try to display a gz file as text, which it isn't warnings.warn( "Response cannot be coerced to unicode; is this a gz file? The response content had {0} bytes.".format( len(response.text) ) ) warnings.warn("headers: {0}".format(response.headers)) session.close() return response def do_POST(relpath, payload): """makes a POST request to relpath. Used for unit testing. payload should be a dictionary""" url = urljoiner(RESTBASEURL, relpath) # print out diagnostics # print("POSTING to url {0}".format(url)) if not isinstance(payload, dict): raise TypeError("not a dict {0}".format(payload)) response = requests.post(url=url, data=payload) # print("Result:") # print("code: {0}".format(response.status_code)) # print("reason: {0}".format(response.reason)) # print("content: {0}".format(response.content)) return response def render_markdown(md_file): """render markdown as html""" with codecs.open(md_file, mode="r", encoding="utf-8") as f: text = f.read() html = markdown.markdown(text, extensions=["tables"]) return html class test_reset(unittest.TestCase): """tests route /api/v2/reset; ensures that guids are removed""" def runTest(self): relpath = "/api/v2/guids" res = do_GET(relpath) n_pre = len(res.json()) # len(json.loads(str(res.text))) # get all the guids #print("Pre insert guids", res.json()) guid_to_insert = "{0}_{1}".format(n_pre + 1, uuid.uuid4().hex) inputfile = "COMPASS_reference/R39/R00000039.fasta" with open(inputfile, "rt") as f: for record in SeqIO.parse(f, "fasta"): seq = str(record.seq) relpath = "/api/v2/insert" #print("inserting", guid_to_insert) res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq}) relpath = "/api/v2/guids" res = do_GET(relpath) #print("post-insert guids", res.json()) n_post = len(res.json()) # get all the guids self.assertEqual(n_post, n_pre + 1) relpath = "/api/v2/reset" res = do_POST(relpath, payload={}) #print("Reset message:", res.json()) self.assertEqual(res.status_code, 200) relpath = "/api/v2/guids" res = do_GET(relpath) #print("Post-reset guids", res.json()) n_post_reset = len(res.json()) # get all the guids #print("number post reset", n_post_reset) self.assertTrue(n_post_reset == 0) class test_guid_name_validity(unittest.TestCase): """tests whether insertion of guids which don't conform to expectations is permitted""" def runTest(self): relpath = "/api/v2/guids" res = do_GET(relpath) n_pre = len(json.loads(str(res.text))) # get all the guids guid_to_insert = "X" * 90 # too long inputfile = "COMPASS_reference/R39/R00000039.fasta" with open(inputfile, "rt") as f: for record in SeqIO.parse(f, "fasta"): seq = str(record.seq) relpath = "/api/v2/insert" res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq}) self.assertEqual(res.status_code, 403) relpath = "/api/v2/guids" res = do_GET(relpath) n_post = len(json.loads(str(res.text))) # get all the guids self.assertEqual(n_post, n_pre) class test_guids(unittest.TestCase): """tests routes /guids, /valid_guids and /invalid_guids""" def runTest(self): relpath = "/api/v2/reset" res = do_POST(relpath, payload={}) relpath = "/api/v2/guids" res = do_GET(relpath) self.assertEqual(0, len(json.loads(str(res.text)))) # get all the guids guid_to_insert = "valid" inputfile = "COMPASS_reference/R39/R00000039.fasta" with open(inputfile, "rt") as f: for record in SeqIO.parse(f, "fasta"): seq = str(record.seq) relpath = "/api/v2/insert" res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq}) seq2 = "".join("N" * len(seq)) guid_to_insert = "invalid" res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq2}) relpath = "/api/v2/guids" res = do_GET(relpath) self.assertEqual( set(["valid", "invalid"]), set(json.loads(str(res.text))) ) # get all the guids relpath = "/api/v2/valid_guids" res = do_GET(relpath) self.assertEqual( set(["valid"]), set(json.loads(str(res.text))) ) # get all the guids relpath = "/api/v2/invalid_guids" res = do_GET(relpath) self.assertEqual( set(["invalid"]), set(json.loads(str(res.text))) ) # get all the guids class test_guid_validity(unittest.TestCase): """tests routes /validity_guids""" def runTest(self): relpath = "/api/v2/reset" res = do_POST(relpath, payload={}) relpath = "/api/v2/guids" res = do_GET(relpath) self.assertEqual(0, len(json.loads(str(res.text)))) # get all the guids guid_to_insert = "valid_guid" inputfile = "COMPASS_reference/R39/R00000039.fasta" with open(inputfile, "rt") as f: for record in SeqIO.parse(f, "fasta"): seq = str(record.seq) relpath = "/api/v2/insert" res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq}) seq2 = "".join("N" * len(seq)) guid_to_insert = "invalid_guid" res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq2}) relpath = "/api/v2/invalid_guid/valid" res = do_GET(relpath) valid_code = json.loads(str(res.text)) self.assertEqual(valid_code, 1) relpath = "/api/v2/valid_guid/valid" res = do_GET(relpath) valid_code = json.loads(str(res.text)) self.assertEqual(valid_code, 0) relpath = "/api/v2/missing_guid/valid" res = do_GET(relpath) valid_code = json.loads(str(res.text)) self.assertEqual(valid_code, -1) class test_cl2network(unittest.TestCase): """tests return of a change_id number from clustering engine""" def runTest(self): relpath = "/api/v2/reset" res = do_POST(relpath, payload={}) # add four samples, two mixed inputfile = "COMPASS_reference/R39/R00000039.fasta" with open(inputfile, "rt") as f: for record in SeqIO.parse(f, "fasta"): originalseq = list(str(record.seq)) guids_inserted = list() relpath = "/api/v2/guids" res = do_GET(relpath) n_pre = len(json.loads(str(res.text))) # get all the guids for i in range(1, 4): seq = originalseq if i % 2 == 0: is_mixed = True guid_to_insert = "mixed_cl2_{0}".format(n_pre + i) else: is_mixed = False guid_to_insert = "nomix_cl2_{0}".format(n_pre + i) # make i mutations at position 500,000 offset = 500000 for j in range(i): mutbase = offset + j ref = seq[mutbase] if is_mixed is False: if not ref == "T": seq[mutbase] = "T" if not ref == "A": seq[mutbase] = "A" if is_mixed is True: seq[mutbase] = "N" seq = "".join(seq) guids_inserted.append(guid_to_insert) relpath = "/api/v2/insert" res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq}) self.assertEqual(res.status_code, 200) # run the clustering engine. os.system("pipenv run python3 findNeighbour4_clustering.py") # do tests relpath = "/api/v2/clustering/SNV12_ignore/cluster_ids" res = do_GET(relpath) self.assertEqual(res.status_code, 200) retVal = json.loads(res.text) # plot the cluster with the highest clusterid relpath = "/api/v2/clustering/SNV12_ignore/{0}/network".format(max(retVal)) res = do_GET(relpath) self.assertEqual(res.status_code, 200) jsonresp = json.loads(str(res.text)) self.assertTrue(isinstance(jsonresp, dict)) self.assertTrue("elements" in jsonresp.keys()) # plot the cluster with the highest clusterid res = None relpath = "/api/v2/clustering/SNV12_ignore/{0}/minimum_spanning_tree".format( max(retVal) ) res = do_GET(relpath) self.assertEqual(res.status_code, 200) jsonresp = json.loads(str(res.text)) self.assertTrue(isinstance(jsonresp, dict)) self.assertTrue("elements" in jsonresp.keys()) class test_msa_2(unittest.TestCase): """tests route /api/v2/multiple_alignment/guids, with additional samples.""" def runTest(self): relpath = "/api/v2/reset" res = do_POST(relpath, payload={}) relpath = "/api/v2/guids" res = do_GET(relpath) n_pre = len(json.loads(str(res.text))) # get all the guids inputfile = "COMPASS_reference/R39/R00000039.fasta" with open(inputfile, "rt") as f: for record in SeqIO.parse(f, "fasta"): originalseq = list(str(record.seq)) inserted_guids = ["guid_ref"] seq = "".join(originalseq) res = do_POST("/api/v2/insert", payload={"guid": "guid_ref", "seq": seq}) for k in range(0, 1): # form one clusters for i in range(0, 3): guid_to_insert = "msa2_{1}_guid_{0}".format(n_pre + k * 100 + i, k) inserted_guids.append(guid_to_insert) muts = 0 seq = originalseq # make i mutations at position 500,000 offset = 500000 if k == 1: for j in range(1000000, 1000100): # make 100 mutants at position 1m mutbase = offset + j ref = seq[mutbase] if not ref == "T": seq[mutbase] = "T" if not ref == "A": seq[mutbase] = "A" muts += 1 for j in range(i): mutbase = offset + j ref = seq[mutbase] if not ref == "T": seq[mutbase] = "T" if not ref == "A": seq[mutbase] = "A" muts += 1 seq = "".join(seq) # print("Adding TB sequence {2} of {0} bytes with {1} mutations relative to ref.".format(len(seq), muts, guid_to_insert)) self.assertEqual(len(seq), 4411532) # check it's the right sequence relpath = "/api/v2/insert" res = do_POST(relpath, payload={"guid": guid_to_insert, "seq": seq}) self.assertTrue(isjson(content=res.content)) info = json.loads(res.content.decode("utf-8")) self.assertEqual(info, "Guid {0} inserted.".format(guid_to_insert)) relpath = "/api/v2/multiple_alignment/guids" payload = {"guids": ";".join(inserted_guids), "output_format": "html"} res = do_POST(relpath, payload=payload) self.assertFalse(isjson(res.content)) self.assertEqual(res.status_code, 200) self.assertTrue(b"</table>" in res.content) payload = {"guids": ";".join(inserted_guids), "output_format": "json"} res = do_POST(relpath, payload=payload) self.assertTrue(isjson(res.content)) self.assertEqual(res.status_code, 200) self.assertFalse(b"</table>" in res.content) d = json.loads(res.content.decode("utf-8")) expected_keys = set( [ "variant_positions", "invalid_guids", "valid_guids", "expected_p1", "sample_size", "df_dict", "what_tested", "outgroup", "creation_time", "fconst", ] ) self.assertEqual(set(d.keys()), set(expected_keys)) payload = {"guids": ";".join(inserted_guids), "output_format": "json-records"} res = do_POST(relpath, payload=payload) self.assertTrue(isjson(res.content)) self.assertEqual(res.status_code, 200) self.assertFalse(b"</table>" in res.content) d = json.loads(res.content.decode("utf-8")) payload = {"guids": ";".join(inserted_guids), "output_format": "fasta"} res = do_POST(relpath, payload=payload) self.assertFalse(isjson(res.content)) self.assertEqual(res.status_code, 200) payload = {"guids": ";".join(inserted_guids), "output_format": "json-fasta"} res = do_POST(relpath, payload=payload) self.assertTrue(isjson(res.content)) self.assertEqual(res.status_code, 200) retVal = json.loads(res.content.decode("utf_8")) self.assertTrue(isinstance(retVal, dict)) self.assertEqual(set(retVal.keys()), set(["fasta"])) relpath = "/api/v2/multiple_alignment/guids" payload = { "guids": ";".join(inserted_guids), "output_format": "html", "what": "N", } res = do_POST(relpath, payload=payload) self.assertFalse(isjson(res.content)) self.assertEqual(res.status_code, 200) self.assertTrue(b"</table>" in res.content) relpath = "/api/v2/multiple_alignment/guids" payload = { "guids": ";".join(inserted_guids), "output_format": "html", "what": "M", } res = do_POST(relpath, payload=payload) self.assertFalse(isjson(res.content)) self.assertEqual(res.status_code, 200) self.assertTrue(b"</table>" in res.content) relpath = "/api/v2/multiple_alignment/guids" payload = { "guids": ";".join(inserted_guids), "output_format": "html", "what": "N_or_M", } res = do_POST(relpath, payload=payload) self.assertFalse(isjson(res.content)) self.assertEqual(res.status_code, 200) self.assertTrue(b"</table>" in res.content) relpath = "/api/v2/multiple_alignment/guids" payload = { "guids": ";".join(inserted_guids), "output_format": "interactive", "what": "N_or_M", } res = do_POST(relpath, payload=payload) self.assertFalse(isjson(res.content)) self.assertEqual(res.status_code, 200) self.assertTrue(b"</html>" in res.content) relpath = "/api/v2/multiple_alignment/guids" payload = { "guids": ";".join(inserted_guids), "output_format": "json-records", "what": "N", } res = do_POST(relpath, payload=payload) self.assertEqual(res.status_code, 200) self.assertTrue(isjson(res.content)) d = json.loads(res.content.decode("utf-8")) df =
pd.DataFrame.from_records(d)
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- """ Created on Sat Aug 29 11:29:34 2020 @author: Pavan """ import pandas as pd pd.set_option('mode.chained_assignment', None) import numpy as np import math import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.ticker as mtick mpl.rcParams['font.family'] = 'serif' import scipy.stats as stats import itertools from datetime import datetime, date import os import yfinance as yf # from functools import partial from american_option_pricing import american_option import density_utilities as du import prediction_ensemble_py as pe import warnings warnings.simplefilter(action='ignore', category=FutureWarning) """ ####################################################################################### Import Data ####################################################################################### """ data = pd.read_excel('spy.xlsx', index_col=None) current_date = date(2020,9,29) expiry_date = date(2020,10,2) days_to_expiry = np.busday_count( current_date, expiry_date)-1 # min_p_profit = 35 # hor_leg_factor = 0.05 forecast_dens = False save_results = True save_plots = True Strategies = [] Strategies = ["Butterfly","Double Broken Wing Butterfly","Iron Condor"] # Strategies = ["Iron Condor"] """ ####################################################################################### Get Risk Free Date ####################################################################################### """ print("\n Gathering Risk Free Rate") rf_eod_data = yf.download("^IRX", start="2020-07-01", end= current_date.strftime("%Y-%m-%d")) for col in rf_eod_data.columns: rf_eod_data[col] = pd.to_numeric(rf_eod_data[col],errors='coerce') rf_eod_data=rf_eod_data.fillna(method='ffill') rf_eod_data['interest']=((1+(rf_eod_data['Adj Close']/100))**(1/252))-1 rf_eod_data['annualized_interest']=252*(((1+(rf_eod_data['Adj Close']/100))**(1/252))-1) rf_value =rf_eod_data['annualized_interest'].iloc[-1] print("\nCurrent Risk Free Rate is :",'{:.3f}%'.format(rf_value*100)) """ ####################################################################################### Data Cleaning ####################################################################################### """ def wrang_1(df, col_names): for col in col_names: df[col] = df[col].str.rstrip('%') df[col] = pd.to_numeric(df[col],errors='coerce') df[col] = [float(x)/100.0 for x in df[col].values] return df convert_cols = ["Impl Vol", "Prob.ITM","Prob.OTM","Prob.Touch"] data = wrang_1(data,convert_cols) def label_type(row): if row['Symbol'][0] == "." : return 'Option' return 'Stock' data['Type']=data.apply(lambda row: label_type(row), axis=1) data['Expiry_Date']= data.Symbol.str.extract('(\d+)') data['Expiry_Date'] = data['Expiry_Date'].apply(lambda x: pd.to_datetime(str(x), format='%y%m%d')) expiry_date_str = expiry_date.strftime("%Y%m%d") data['Expiry_Date'] = data['Expiry_Date'].fillna(pd.Timestamp(expiry_date_str)) data['Expiry_Date'] = data['Expiry_Date'].apply(lambda x: x.strftime('%Y_%m_%d')) #TODO: Change the logic for new symbol. Works only for this year. data['Group']= data.Symbol.apply(lambda st: st[st.find(".")+1:st.find("20")]) data['Group'] = np.where(data['Type'] == "Stock", data['Symbol'],data['Group']) data['Chain_ID'] = data['Group']+"_"+data['Expiry_Date'] data['Spread'] = data['Bid']-data['Ask'] stock_data = data[data['Type'] == "Stock"] stock_data.rename(columns={"Description": "stock_Description", "Last": "stock_Last", "High":"stock_High", "Low":"stock_Low", "Open" : "stock_Open", "Volume":"stock_Volume", "Bid":"stock_Bid", "Ask":"stock_Ask", "Impl Vol":"stock_Impl_Vol", "Spread":"stock_Spread"}, inplace=True) stock_data = stock_data[["stock_Description","stock_Last","stock_High","stock_Low", "stock_Open","stock_Volume","stock_Bid","stock_Ask", "stock_Impl_Vol","stock_Spread","Chain_ID"]] option_data = data[data['Type']=="Option"] option_data['Option_type'] = option_data.loc[:,'Description'].str.split(' ').str[-1] final_dataset =
pd.merge(option_data,stock_data,on=['Chain_ID'])
pandas.merge
from collections import Counter from mypymatch.Matcher import Matcher import numpy as np import pandas as pd from datetime import date, timedelta import datetime from tqdm import tqdm from joblib import Parallel, delayed import multiprocessing as mp from collections import defaultdict import os import re import sys import scipy.stats as stats import sys sys.path.append(sys.argv[0]) sys.setrecursionlimit(1000000) from statsmodels.tools.sm_exceptions import ConvergenceWarning import warnings warnings.filterwarnings( "error", message='Maximum number of iterations has been exceeded', category=ConvergenceWarning) ####################### def turnover_class(Y): """ Y: Rank_Turn / DayOut generate rules converting y to y' ; nominal out come value converted into sub classes: heavy sell (100,000 dollar sell) ; sell ; zero ; buy ; heavy buy return a array of y' in accordance of y, and a dictionary of outcome and its classification rule in a dictionary """ col = Y.name Y = pd.DataFrame(Y) Y = Y.reset_index().sort_values(by=col) # to fast the speed if col == 'Rank_Turn' or col =='ref': turnover_threshold = 0.1 mask_z = (Y[col] == 1.0) # rank 1.0 means turnover = 0 mask_b = (Y[col] < 1.0) & (Y[col] >= turnover_threshold) mask_hb = Y[col] < turnover_threshold Y = Y.assign(cls='') Y.cls = Y.cls.mask(mask_z, 'Zero') Y.cls = Y.cls.mask(mask_b, 'Norm') Y.cls = Y.cls.mask(mask_hb, 'Popular') elif col == 'PopRef': mask_p = (Y[col] == 1.0) # value=1 means Poppular mask_n = (Y[col] == 0.0) Y = Y.assign(cls='') Y.cls = Y.cls.mask(mask_n, 'NonPopular') Y.cls = Y.cls.mask(mask_p, 'Popular') elif col == 'DayOut': turnover_threshold = 50 mask_hs = Y[col] < -1 * turnover_threshold mask_s = (Y[col] < 0) & (Y[col] >= (-1 * turnover_threshold)) mask_z = Y[col] == 0 mask_b = (Y[col] > 0) & (Y[col] <= turnover_threshold) mask_hb = Y[col] > turnover_threshold Y = Y.assign(cls='') Y.cls = Y.cls.mask(mask_hs, 'HeavySell') Y.cls = Y.cls.mask(mask_s, 'Sell') Y.cls = Y.cls.mask(mask_z, 'Zero') Y.cls = Y.cls.mask(mask_b, 'Buy') Y.cls = Y.cls.mask(mask_hb, 'HeavyBuy') return Y class MyRows: def __init__(self, rows, outcome_col): self.value = rows self.dependent_name = outcome_col self.dependent = rows[self.dependent_name] self.dep_val = self.dependent self.ref_name = None global args dep = args.dep if dep =='mix': self.ref_name = 'ref' self.dep_val = rows['ref'] self.corr_data = self.value def get_correlated_features(self, alpha=np.nan): """ Get un-correlated feature rows out from the data sample Parameters: df: pd.Dataframe, features columns + outcome columns outcome_col: object, the column name of outcome alpha: float, choice of significant level for t-test to keep the correlated variables. ---- return: df : pd.DataFrame ; correlated features + outcome col """ if np.isnan(alpha): global args alpha = args.alpha df = self.value outcome_col = self.dependent_name #df = pd.get_dummies(df) if pd.DataFrame.isna(df).any().any(): raise ValueError('Input feature dataframe contains NaN.') if len(df) < 3: return df # change '-' in the column names into '_' df.columns = df.columns.str.strip().str.replace('-', '_') # only get numerical columns to check if no_col = df.select_dtypes( include=['int', 'float', 'int64', 'float64']).columns if outcome_col in no_col: no_col = no_col.drop(outcome_col) if 'ref' in no_col: no_col = no_col.drop('ref') for col in no_col: arr = df[col] outcome = df[outcome_col] corr, pvalue = stats.pearsonr(arr, outcome) if pvalue > alpha: # if fail to reject the null hypothesis that the correlation # coefficient IS NOT significantly different from 0. df = df.drop(col, axis=1) # remove the column df = df.reset_index(drop=True) self.corr_data = df return df def find_best_question(Rows, question_excluded): """Find the best question to ask by iterating over every feature / value and calculating the information gain. para: question_excluded, questions already asked during building the tree""" Rows.get_correlated_features() rows, outcome_col = Rows.corr_data, Rows.dependent_name best_ceffect = 0 # keep track of the best information gain best_question = None # keep train of the feature / value that produced it question_list = rows.columns.drop(Rows.dependent_name) if Rows.ref_name: question_list = question_list.drop(Rows.ref_name) qkeys, qcount = np.unique(question_excluded, return_counts=True) qdict = defaultdict(list) maxAskCount = 2 # delete the cols(questions) that are asked twice for (c, k) in zip(qcount, qkeys): qdict[c].append(k) if maxAskCount in qdict.keys(): # if the col is used more than maxAskCount, # remove from the questionlist for item in qdict[maxAskCount]: if item in question_list: question_list = question_list.drop(item) if len(question_list) == 0: import warnings warnings.warn('Find Best Question: Rows is empty') return best_ceffect, best_question # get the question list for processing testQlist = [] for col in question_list: # for each feature values = list(set(rows[col])) # unique values in the column if is_numeric( values[0]): # if too many numeric value in ValueSet,deduct some global args SplitCount = args.sp if len(values) > SplitCount: values = np.linspace(min(rows[col]), max( rows[col]), SplitCount)[1:-1] else: if len(values) == 2: values = values[:-1] # if not a numeric question set and with unique set number of 2, # it means one is the complimentary of the other, so cancel one # here. for val in values: # for each value testQlist += [Question(col, val)] # Start multiprocessing cpu_cores = mp.cpu_count() if cpu_cores > 10: num_cores = int(np.floor(mp.cpu_count() / 4)) else: num_cores = 1 # for q in tqdm(testQlist, desc='calculating p_value and gini for {} rows'.format(len(Rows.value))): # q.cal_pvalue_gain(Rows) def para_run(Q): # Q is a Question Instance global args alpha = args.alpha Q.cal_causal_effect_gain(Rows, alpha) return Q resQlist = Parallel(n_jobs=num_cores)(delayed(para_run)(q)for q in tqdm( testQlist, desc='calculating p_value and gini for {} rows'.format(len(Rows.value)))) res_df = pd.DataFrame(columns=['col', 'val', 'ceffect', 'gain']) for q in resQlist: res_df.loc[len(res_df), ['col', 'val', 'ceffect', 'gain']] = [ q.column, q.value, q.ceffect, q.gain] #weights = [0.15, 0.85] weights = [0.8, 0.2] # pvalue the smaller the better; gain the bigger the better,here the # q.gain is the 1-gain # weighted rank over Causal Effect (bigger the better) and gini info gain res_df['ranks'] = res_df[['ceffect', 'gain']].mul(weights).sum(1) res_df = res_df.sort_values( by=['ranks'], ascending=False).reset_index( drop=True) best_question = Question( res_df.col[0], res_df.val[0]) best_ceffect = res_df.ceffect[0] return best_ceffect, best_question def is_numeric(value): """Test if a value is numeric.""" return isinstance(value, int) or isinstance(value, float) class Question: """A Question is used to partition a dataset. This class just records a 'column number' (e.g., 0 for Color) and a 'column value' (e.g., Green). The 'match' method is used to compare the feature value in an example to the feature value stored in the question. See the demo below. """ def __init__(self, column, value): self.column = column self.value = value def match(self, example): # Compare the feature value in an example to the # feature value in this question. val = example[self.column] if is_numeric(val): return val < self.value else: return val == self.value def cal_causal_effect_gain(self, Rows, alpha): Rows.get_correlated_features() rows, outcome_col = Rows.corr_data, Rows.dependent_name # try splitting the dataset true_rows, false_rows = partition(rows, self) TrRows = MyRows(true_rows, Rows.dependent_name) FlRows = MyRows(false_rows, Rows.dependent_name) # Skip this split if it doesn't divide the # dataset. if len(true_rows) == 0 or len(false_rows) == 0: self.gain = 0 self.ceffect = 0 return try: # Get Prospensity_matched dataset matchdf = prospensity_match(rows, self, outcome_col) except BaseException: # if failed match, then use the original dataset Yvar = self.column Yvar_new = varnameQuestion(self) true_rows, false_rows = partition(rows, self) true_rows = true_rows.rename(columns={Yvar: Yvar_new}) false_rows = false_rows.rename(columns={Yvar: Yvar_new}) true_rows[Yvar_new] = 1 false_rows[Yvar_new] = 0 matchdf = true_rows.append(false_rows) try: # Calculate the p-value from this split cau_effect, pvalue = match_ttest(matchdf, self, outcome_col) except BaseException: pvalue = 1.0 cau_effect = 0 # Calculate the information gain from this split current_uncertainty = gini_r(Rows) gain = info_gain(TrRows, FlRows, current_uncertainty) self.gain = gain # if pass the significant test ( two groups are significantly # different) if pvalue <= alpha: self.ceffect = cau_effect else: self.ceffect = 0 def __repr__(self): # This is just a helper method to print # the question in a readable format. condition = "==" if is_numeric(self.value): condition = "<" return "{0} {1} {2:.2f}" .format( self.column, condition, self.value) return "%s %s %s" % ( self.column, condition, str(self.value)) def partition(rows, question): """Partitions a dataset. For each row in the dataset, check if it matches the question. If so, add it to 'true rows', otherwise, add it to 'false rows'. """ true_rows = pd.DataFrame(columns=rows.columns) false_rows = pd.DataFrame(columns=rows.columns) for i in rows.index: row = rows.loc[i, :] if question.match(row): true_rows = true_rows.append(row) else: false_rows = false_rows.append(row) return true_rows, false_rows def varnameQuestion(question): Yvar = question.column Value = question.value if is_numeric(Value) and (type(Value) is not bool): critic = '_leq_' val_str = str(np.round(Value, 2)).replace('.', '_') else: critic = '_is_' val_str = str(Value) return Yvar + critic + val_str def prospensity_match(df_rows, question, outcome_col): ''' according to the binary question, return matched df_rows ''' Yvar = question.column Yvar_new = varnameQuestion(question) # get categorical variables into dummy variables split_rows = pd.get_dummies(df_rows.drop([Yvar], axis=1), drop_first=True) true_rows, false_rows = partition(split_rows, question) # get the binary attribute value colum as Yvar true_rows = true_rows.rename(columns={Yvar: Yvar_new}) false_rows = false_rows.rename(columns={Yvar: Yvar_new}) true_rows[Yvar_new] = 1 false_rows[Yvar_new] = 0 # # Before getting into propensity match, we should exclude cols that cause # # perfect separations # # categorical_cols = list( # df_rows.select_dtypes( # include=[ # 'bool', # 'object']).columns) # if Yvar in categorical_cols: # categorical_cols.remove(Yvar) # in case of yvar is an bool or object # # # if only categorical_cols in the df_rows cols, then directly return # # without matching # # if len(categorical_cols) + 2 == len(df_rows.columns): # df_rows = df_rows.rename(columns={Yvar: Yvar_new}) # return df_rows m = Matcher( false_rows, true_rows, yvar=Yvar_new, exclude=[outcome_col]) # np.random.seed(20170925) acc = m.fit_scores(balance=True, ret=True) if abs( acc - 0.5) < 0.01: # if it is already a balanced dataset, then no need for propensity match return m.data else: try: m.predict_scores() except Exception as e: # if error in print('Predict Score Error:{}, We adopt random scores here'.format(e)) m.data['scores'] = np.random.rand(len(m.data)) return m.data m.match(method="min", nmatches=1, threshold=0.0001) m.assign_weight_vector() return m.matched_data def match_ttest(matchdf, question, outcome_col): classification_var = varnameQuestion(question) try: X = matchdf[matchdf[classification_var] == question.value][outcome_col] Y = matchdf[matchdf[classification_var] != question.value][outcome_col] except BaseException: print(matchdf.columns + '+' + classification_var) from scipy.stats import ttest_ind if len(X) < 2 or len(Y) < 2: return 0 else: caueffect = np.abs(np.mean(X) - np.mean(Y)) tstats, pvalue = ttest_ind(X, Y) return caueffect, pvalue class Leaf: """A Leaf node classifies data. This holds a dictionary of class (e.g., "Apple") -> number of times it appears in the rows from the training data that reach this leaf. """ def __init__(self, Rows): res = turnover_class(Rows.dep_val) keys, count = np.unique(res.cls, return_counts=True) self.predictions = dict(zip(keys, count)) self.value = max(self.predictions, key=self.predictions.get) self.real = [] class Decision_Node: """A Decision Node asks a question. This holds a reference to the question, and to the two child nodes. """ def __init__(self, question, true_branch, false_branch, Rows): self.question = question self.true_branch = true_branch self.false_branch = false_branch self.dependent = Rows.dependent self.real = [] # if pruned as a leaf, save it here res = turnover_class(Rows.dep_val) keys, count = np.unique(res.cls, return_counts=True) self.predictions = dict(zip(keys, count)) def build_tree(Rows, height, question_excluded=[]): """Builds the tree. Rules of recursion: 1) Believe that it works. 2) Start by checking for the base case (no further information gain). 3) Prepare for giant stack traces. """ # Base case: no further info gain # Since we can ask no further questions, # we'll return a leaf. if height == 0 or len(Rows.value.columns) == 1: return Leaf(Rows) # Try partitioing the dataset on each of the unique attribute, # calculate the information gain, # and return the question that produces the highest gain. best_ceffect, question = find_best_question(Rows, question_excluded) if not question: # if no questions can be asked, then return a leaf node return Leaf(Rows) else: question_excluded.append(question.column) # If we reach here, we have found a useful feature / value # to partition on. Rows.get_correlated_features() true_rows, false_rows = partition(Rows.corr_data, question) if len(true_rows) == 0 or len(false_rows) == 0: return Leaf(Rows) elif len(false_rows) == 0 and len(true_rows) == 0: raise ValueError('Empty rows from partition') else: TrRows = MyRows(true_rows, Rows.dependent_name) FlRows = MyRows(false_rows, Rows.dependent_name) # Recursively build the true branch. # CurrentNodePos = LastNodePos+1 true_branch = build_tree(TrRows, height - 1, question_excluded) # Recursively build the false branch. false_branch = build_tree(FlRows, height - 1, question_excluded) # Return a Question node. # This records the best feature / value to ask at this point, # the last node, # as well as the branches to follow # depending on the answer. return Decision_Node(question, true_branch, false_branch, Rows) # BEST PARTITION def gini(counts): """Calculate the Gini Impurity for a list of counts. There are a few different ways to do this, I thought this one was the most concise. See: https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity Smaller the purer """ impurity = 1 sum_count = sum([val for val in counts.values()]) for lbl in counts: prob_of_lbl = counts[lbl] / float(sum_count) impurity -= prob_of_lbl ** 2 return impurity def gini_r(Rows): """Calculate the Gini Impurity for a list of rows. There are a few different ways to do this, I thought this one was the most concise. See: https://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity """ counts = Leaf(Rows).predictions return gini(counts) def info_gain(leftRows, rightRows, current_uncertainty): """Information Gain. The uncertainty of the starting node, minus the weighted impurity of two child nodes. bigger the better """ left = leftRows.value right = rightRows.value p = float(len(left)) / (len(left) + len(right)) return current_uncertainty - p * \ gini_r(leftRows) - (1 - p) * gini_r(rightRows) def print_tree( node, height=0, spacing="", sourceFile=open( '../mytree.txt', 'a+'), last_node=0, branch_type=''): ''' print the tree from the root node to the sourceFile Parameters ---------- node: Decision_Node, start node for printing the tree height: int , current height of the tree, default = 0 spacing: str , the spacing between sourceFile: output file default '../mytree.txt' last_node : int, index number of the last number branch_type: in our example, for the root and leaves, it's '', for the branching nodes, it's either 'True' or 'False' Returns: None ------- ''' # Base case: we've reached a leaf if isinstance(node, Leaf): this_node = generate_ind() print(str(last_node) + ' -> ' + str(this_node) + ' [headlabel=' + branch_type + '] ;', file=sourceFile) print( str(this_node) + ' [label="' + spacing + spacing, node.value, "\\n\\n", str( node.predictions).replace( ',', ',\n'), " \\nGINI:{0:.2f}".format( gini( node.predictions)), '"] ;', file=sourceFile) return if isinstance(node.real, Leaf): this_node = generate_ind() print(str(last_node) + ' -> ' + str(this_node) + ' [headlabel=' + branch_type + '] ;', file=sourceFile) print( str(this_node) + ' [label="' + spacing + spacing, node.real.value, "\\n\\n", str( node.real.predictions).replace( ',', ',\n'), " \\nGINI:{0:.2f}".format( gini( node.real.predictions)), '"] ;', file=sourceFile) return # Print the question at this node this_node = generate_ind() if last_node != 0: print(str(last_node) + ' -> ' + str(this_node) + ' [headlabel=' + branch_type + '] ;', file=sourceFile) print( str(this_node) + ' [label="' + spacing + str( node.question) + spacing + "\\n", str( node.predictions).replace( ',', ',\n'), " \\nGINI:{0:.2f}".format( gini( node.predictions)), '"] ;', file=sourceFile) # Call this function recursively on the true branch #print(str(height) + spacing + '--> True:', file=sourceFile) print_tree( node.true_branch, height + 1, spacing + " ", sourceFile, this_node, 'True') # Call this function recursively on the false branch #print(str(height) + spacing + '--> False:', file=sourceFile) print_tree( node.false_branch, height + 1, spacing + " ", sourceFile, this_node, 'False') node_num = 0 def generate_ind(): global node_num node_num = node_num + 1 return node_num def TreePruning(node): if isinstance(node, Leaf): return if isinstance(node.real, Leaf): return original_leaf_check = isinstance( node.true_branch, Leaf) and isinstance( node.false_branch, Leaf) # if leaf as both children real_leaf_check = isinstance( # if both children has already been pruned as leaf node.true_branch.real, Leaf) and isinstance( node.false_branch.real, Leaf) half_blood_t_leaf_check = isinstance( # if true branch children has already been pruned as leaf node.true_branch.real, Leaf) and isinstance( node.false_branch, Leaf) half_blood_f_leaf_check = isinstance( # if false branch children has already been pruned as leaf node.true_branch, Leaf) and isinstance( node.false_branch.real, Leaf) if original_leaf_check: if node.true_branch.value == node.false_branch.value: node.real = node.true_branch node.real.predictions = dict( Counter( node.true_branch.predictions) + Counter( node.false_branch.predictions)) return if real_leaf_check: if node.true_branch.real.value == node.false_branch.real.value: node.real = node.true_branch.real node.real.predictions = dict( Counter( node.true_branch.real.predictions) + Counter( node.false_branch.real.predictions)) return # if both child are the same, then delete the leaves, turn the father # node into a leaf if half_blood_t_leaf_check: if node.true_branch.real.value == node.false_branch.value: node.real = node.true_branch.real node.real.predictions = dict( Counter( node.true_branch.real.predictions) + Counter( node.false_branch.predictions)) return if half_blood_f_leaf_check: if node.true_branch.value == node.false_branch.real.value: node.real = node.false_branch.real node.real.predictions = dict( Counter( node.true_branch.predictions) + Counter( node.false_branch.real.predictions)) return TreePruning(node.true_branch) TreePruning(node.false_branch) def _main(): import argparse parser = argparse.ArgumentParser( description='A script for causal decision tree for continuous varible') parser.add_argument( "--sp", default=6, type=int, help="Number of split for continuous ") parser.add_argument( "--hmax", default=5, type=int, help="Maximum height of the tree") parser.add_argument( "--random", default=False, type=bool, help="Whether we random pick samples from original data (for testing)") parser.add_argument( "--pick", default=2000, type=int, help="Number of random pick from the original data") parser.add_argument( "--alpha", default=0.1, type=float, help="Significance level for correlation check") parser.add_argument( "--dep", default = 'Rank_Turn', type = str, help = 'Dependent value of the tree: \n' 'Rank_Turn: turnover daily ranking ; \n' 'DayNetTurnover: Net turnover daily ranking ; \n' 'DayOut: Day change of out contracts; \n' 'PopRef: 1.0 if turnover rank<0.1 \n' 'mix: using Rank_Turn to run the tree construction, classification show PopRef' ) global args args = parser.parse_args() h_max = args.hmax random_flag = args.random random_pick = args.pick hsi_df =
pd.read_csv('../data/input.csv')
pandas.read_csv
import os import numpy as np import pandas as pd from .BaseEmbed import BaseEmbed pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pandas.set_option
import pandas as pd from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import SGDClassifier import argparse rate = "0.5" # 默认为6:4的正负样本比例,若要改为1:1则取rate=“0.5” class SGD: def __init__(self, trainfile, validfile, testfile): super(SGD, self).__init__() train: pd.DataFrame = pd.read_csv(trainfile) train: pd.DataFrame = train[train['label'].notna()] valid: pd.DataFrame = pd.read_csv(validfile) valid: pd.DataFrame = valid[valid['label'].notna()] test: pd.DataFrame =
pd.read_csv(testfile)
pandas.read_csv
from data.data_utils import ensure_dir_exist import pandas as pd,numpy as np,logging,os def my_logger(logging_path): # 生成日志 logger = logging.getLogger(__name__) logger.setLevel(level=logging.INFO) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') logger.handlers = [] assert len(logger.handlers) == 0 handler = logging.FileHandler(logging_path) handler.setLevel(logging.INFO) handler.setFormatter(formatter) console = logging.StreamHandler() console.setLevel(logging.INFO) logger.addHandler(handler) logger.addHandler(console) return logger def get_num_params(var_list,exclude_embedding_matrix=True): if exclude_embedding_matrix: return np.sum([np.prod(v.get_shape().as_list()) for v in var_list if "embedding_matrix" not in v.name]) else: return np.sum([np.prod(v.get_shape().as_list()) for v in var_list]) def update_history_summary(mode, history, summary, avg_l, avg_f, avg_a, avg_p, avg_r): assert mode in ["train", "valid"] history[mode + "_loss"].append(avg_l) history[mode + "_f1"].append(avg_f) history[mode + "_acc"].append(avg_a) history[mode + "_pre"].append(avg_p) history[mode + "_rec"].append(avg_r) if summary is not None: summary.value[0].simple_value = avg_l summary.value[1].simple_value = avg_f summary.value[2].simple_value = avg_a summary.value[3].simple_value = avg_p summary.value[4].simple_value = avg_r return history, summary def WriteToSubmission(res,fileName): ensure_dir_exist(os.path.dirname(fileName)) if isinstance(res,dict): res = [[int(key), int(value)] for (key, value) in res.items()] tmp=
pd.DataFrame(res,columns=["id","label"])
pandas.DataFrame
# imports #region import os import pyreadstat import pandas as pd import numpy as np from statsmodels.stats.weightstats import DescrStatsW from sklearn.linear_model import LinearRegression import statsmodels.api as sm import statsmodels.formula.api as smf import seaborn as sns import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt from libs.utils import * from libs.plots import * from libs.extensions import * plt.ioff() #endregion # ----------------------------- # --- FOOD CARBON FOOTPRINT --- # Can I parse the LCA meta model database? --- root = 'D:\\projects\\fakta-o-klimatu\\work\\389-food-carbon-footprint' path = root + '\\LCA+Meta-Analysis_database-static.xlsx' df = pd.read_excel(path, header=2) df.columns labels = df[np.isfinite(df['Unnamed: 0'])][['Unnamed: 0', 'Reference']] df['Unnamed: 0'] = df['Unnamed: 0'].fillna(method='ffill') ghg_cols = { 'GHG Emis \n(kg CO2 eq)': 'ghg_total', 'LUC Burn': 'luc_burn', 'LUC C Stock': 'luc_stock', 'Feed': 'feed', 'Farm': 'farm', 'Prcssing': 'processing', 'Tran & Str': 'transport', 'Packging': 'packaging', 'Ret\nail': 'retail', 'Loss.1': 'loss' } w_col = 'Weight' g_col = 'Unnamed: 0' data = df[[g_col, w_col, *ghg_cols]].rename(columns={w_col: 'weight', g_col: 'product', **ghg_cols}) data['processing'] = data['processing'].replace(to_replace='-', value=0) data.show() data.dtypes data['luc'] = data[''] ghgs = list(ghg_cols.values()) df.dtypes.reset_index().show() df.columns[65:76] data data.dtypes data.groupby('product')['weight'].sum() data.groupby('product')['weight'].sum() for c in ghgs: data[f'{c}_w'] = data[c] * data['weight'] avgs = data.groupby('product')[[f'{c}_w' for c in ghgs]].sum().reset_index().rename(columns={f'{c}_w':c for c in ghgs}) labels.columns = ['product', 'label'] labels = labels.iloc[:-1] avgs = pd.merge(avgs, labels) avgs = avgs[['label', *ghgs]].copy() avgs['luc'] = avgs.luc_burn + avgs.luc_stock avgs.show() plain = data.groupby('product')[ghgs].mean().reset_index() plain =
pd.merge(plain, labels)
pandas.merge
import pandas_datareader.data as web import pandas as pd def fetch_from_web(symbol, start_date, end_date): return web.DataReader(symbol, 'yahoo', start_date, end_date) def get_data(symbols, start_date, end_date): """Load daily data from web""" dates =
pd.date_range(start_date, end_date)
pandas.date_range
import pandas as pd import numpy as np import sys # DS TODO: Comment this please :) """ Function to convert the parameter dataframe to a scaled and fitted array. Inputs: 1) The Parameters dataframe 2) The fix/float/constrain constraints dictionary is inside runprops Outputs: 1) The fitted array of floating parameters 2) The array of the names of each array 3) The dataframe of fixed values 4) The list of all column names in order for recombination 5) The original fit scale which will be needed later during recombination """ def from_param_df_to_fit_array(dataframe, runprops): fix_float_dict = runprops.get("float_dict") total_df_names = np.array([]) for i in dataframe.columns: if 'period' in i[0]: for j in range(runprops.get('numobjects')): if str(j+1) in i[0]: total_df_names = np.append(total_df_names, 'sprate_'+str(j+1)) else: total_df_names = np.append(total_df_names, i[0]) fit_names = [] for i in range(0,runprops.get('numobjects')): if runprops.get('lockspinanglesflag') == True: if int(runprops.get('dynamicstoincludeflags')[i]) != 0: if int(runprops.get('dynamicstoincludeflags')[i]) == 2: dataframe[['spaop_'+str(i+1)]] = dataframe[['aop_2']].values dataframe[['spinc_'+str(i+1)]] = dataframe[['inc_2']].values dataframe[['splan_'+str(i+1)]] = dataframe[['lan_2']].values if fix_float_dict.get('spaop_'+str(i+1)) == 1: print('Since you have chosen to lock the spin angles, please change the spaop_'+str(i+1)+' variable in the float_dict to be fixed.') sys.exit() if fix_float_dict.get('spinc_'+str(i+1)) == 1: print('Since you have chosen to lock the spin angles, please change the spinc_'+str(i+1)+' variable in the float_dict to be fixed.') sys.exit() if fix_float_dict.get('splan_'+str(i+1)) == 1: print('Since you have chosen to lock the spin angles, please change the splan_'+str(i+1)+' variable in the float_dict to be fixed.') sys.exit() if runprops.get('transform'): if runprops.get('numobjects') > 3: print('Warning: Only masses 1-3 will be used in the transformations for now. Future work can be done later to increase this') if fix_float_dict.get('mass_1') == 1 and fix_float_dict.get('mass_2') == 1: if fix_float_dict.get('mass_3') == 1: dataframe[['mass_2']] = np.array(dataframe[['mass_1']])+np.array(dataframe[['mass_2']]) dataframe[['mass_3']] = np.array(dataframe[['mass_3']])+np.array(dataframe[['mass_2']]) fit_names.append('mass1+2') fit_names.append('mass1+2+3') else: dataframe[['mass_2']] = np.array(dataframe[['mass_1']])+np.array(dataframe[['mass_2']]) fit_names.append('mass1+2') for i in range(runprops.get('numobjects')-1): pomega = np.array(dataframe[['aop_'+str(i+2)]])+np.array(dataframe[['lan_'+str(i+2)]]) Lambda = pomega + np.array(dataframe[['mea_'+str(i+2)]]) fit_names.append('lambda_'+str(i+2)) fit_names.append('pomega_'+str(i+2)) if fix_float_dict.get('lan_'+str(i+2)) == 1 and fix_float_dict.get('aop_'+str(i+2)) == 1: dataframe[['aop_'+str(i+2)]] = pomega if fix_float_dict.get('mea_'+str(i+2)) == 1 and fix_float_dict.get('aop_'+str(i+2)) == 1: dataframe[['mea_'+str(i+2)]] = Lambda if fix_float_dict.get('ecc_'+str(i+2)) == 1 and fix_float_dict.get('aop_'+str(i+2)) == 1: ecc = np.array(dataframe[['ecc_'+str(i+2)]]) pomega_rad = np.array(dataframe[['aop_'+str(i+2)]])*np.pi/180 dataframe[['ecc_'+str(i+2)]] = np.array(ecc)*np.sin(pomega_rad) dataframe[['aop_'+str(i+2)]] = np.array(ecc)*np.cos(pomega_rad) if fix_float_dict.get('inc_'+str(i+2)) == 1 and fix_float_dict.get('lan_'+str(i+2)) == 1: inc = np.array(dataframe[['inc_'+str(i+2)]])*np.pi/180 lan = np.array(dataframe[['lan_'+str(i+2)]])*np.pi/180 dataframe[['inc_'+str(i+2)]] = np.tan(inc/2)*np.sin(lan) dataframe[['lan_'+str(i+2)]] = np.tan(inc/2)*np.cos(lan) for i in range(runprops.get('numobjects')): if fix_float_dict.get('spinc_'+str(i+1)) == 1 and fix_float_dict.get('splan_'+str(i+1)) == 1: spinc = np.array(dataframe[['spinc_'+str(i+1)]])*np.pi/180 splan = np.array(dataframe[['splan_'+str(i+1)]])*np.pi/180 a = np.cos(spinc/2)*np.sin(splan) b = np.cos(spinc/2)*np.cos(splan) dataframe[['spinc_'+str(i+1)]] = a dataframe[['splan_'+str(i+1)]] = b num = 0 fit_scale = dataframe.iloc[0] fit_scale = fit_scale.to_frame().transpose() #Scale every column down by the values in the first row. for col in dataframe.columns: if fit_scale[col][0] != 0.0: dataframe[col] = dataframe[col]/fit_scale[col][0] num = num+1 key_list = list(fix_float_dict.keys()) val_list = list(fix_float_dict.values()) fixed_df = pd.DataFrame(index = range(len(dataframe.index))) float_df = pd.DataFrame() float_names = [] num = 0 float_array = np.array([]) if len(key_list) == 0: float_array = dataframe.to_numpy() else: #Split the fixed and floating values into seperate dataframes for col in dataframe.columns: #If the value is fixed name = col[0] if "period" in name: for i in range(runprops.get('numobjects')): if str(i+1) in name: name = "sprate_"+str(i+1) if fix_float_dict.get(name) == 0: fixed_df[name] = dataframe[col] #If the value is floating elif fix_float_dict.get(col[0]) == 1: float_df[name] = dataframe[col] float_names.append(name) num = num+1 float_arr = float_df.to_numpy() for col in fit_scale.columns: if "period" in col[0]: for i in range(runprops.get('numobjects')): if str(i+1) in col[0]: newcol = ('sprate_'+str(i+1),) fit_scale.rename(columns={col[0]: newcol[0]}, inplace=True) j = 1 for i in runprops.get('dynamicstoincludeflags'): if int(i) > 0: fit_names.append('period_'+str(j)) j = j+1 if int(runprops.get('dynamicstoincludeflags')[0]) > 0: for i in range(runprops.get('numobjects')-1): fit_names.append('sat_spin_inc_'+str(i+2)) return float_arr, float_names, fixed_df, total_df_names, fit_scale, fit_names """ Function to convert a fitted array into the parameter dataframe Inputs: 1) The fitted float array 2) names of each column in the float_array 3) Fixed dataframe of values 4) All names of parameters in order 5) The scale of fit variables Outputs: 1) Dataframe in parameter format """ def from_fit_array_to_param_df(float_array, float_names, fixed_df, total_df_names, fit_scale, names_dict, runprops): #First, turn the float_array back into dataframe with the column names given #if runprops.get('includesun') == 1: # np.delete(float_array, np.s_[0:5:1],0) # np.delete(float_names, np.s_[0:5:1],0) Index = range(len(fixed_df.index)) float_df = pd.DataFrame(data = [float_array],index = Index, columns = float_names) param_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import pytest import re from numpy import nan as NA import numpy as np from numpy.random import randint from pandas.compat import range, u import pandas.compat as compat from pandas import Index, Series, DataFrame, isna, MultiIndex, notna from pandas.util.testing import assert_series_equal import pandas.util.testing as tm import pandas.core.strings as strings class TestStringMethods(object): def test_api(self): # GH 6106, GH 9322 assert Series.str is strings.StringMethods assert isinstance(Series(['']).str, strings.StringMethods) # GH 9184 invalid = Series([1]) with tm.assert_raises_regex(AttributeError, "only use .str accessor"): invalid.str assert not hasattr(invalid, 'str') def test_iter(self): # GH3638 strs = 'google', 'wikimedia', 'wikipedia', 'wikitravel' ds = Series(strs) for s in ds.str: # iter must yield a Series assert isinstance(s, Series) # indices of each yielded Series should be equal to the index of # the original Series tm.assert_index_equal(s.index, ds.index) for el in s: # each element of the series is either a basestring/str or nan assert isinstance(el, compat.string_types) or isna(el) # desired behavior is to iterate until everything would be nan on the # next iter so make sure the last element of the iterator was 'l' in # this case since 'wikitravel' is the longest string assert s.dropna().values.item() == 'l' def test_iter_empty(self): ds = Series([], dtype=object) i, s = 100, 1 for i, s in enumerate(ds.str): pass # nothing to iterate over so nothing defined values should remain # unchanged assert i == 100 assert s == 1 def test_iter_single_element(self): ds = Series(['a']) for i, s in enumerate(ds.str): pass assert not i assert_series_equal(ds, s) def test_iter_object_try_string(self): ds = Series([slice(None, randint(10), randint(10, 20)) for _ in range( 4)]) i, s = 100, 'h' for i, s in enumerate(ds.str): pass assert i == 100 assert s == 'h' def test_cat(self): one = np.array(['a', 'a', 'b', 'b', 'c', NA], dtype=np.object_) two = np.array(['a', NA, 'b', 'd', 'foo', NA], dtype=np.object_) # single array result = strings.str_cat(one) exp = 'aabbc' assert result == exp result = strings.str_cat(one, na_rep='NA') exp = 'aabbcNA' assert result == exp result = strings.str_cat(one, na_rep='-') exp = 'aabbc-' assert result == exp result = strings.str_cat(one, sep='_', na_rep='NA') exp = 'a_a_b_b_c_NA' assert result == exp result = strings.str_cat(two, sep='-') exp = 'a-b-d-foo' assert result == exp # Multiple arrays result = strings.str_cat(one, [two], na_rep='NA') exp = np.array(['aa', 'aNA', 'bb', 'bd', 'cfoo', 'NANA'], dtype=np.object_) tm.assert_numpy_array_equal(result, exp) result = strings.str_cat(one, two) exp = np.array(['aa', NA, 'bb', 'bd', 'cfoo', NA], dtype=np.object_) tm.assert_almost_equal(result, exp) def test_count(self): values = np.array(['foo', 'foofoo', NA, 'foooofooofommmfoo'], dtype=np.object_) result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_count(mixed, 'a') xp = np.array([1, NA, 0, NA, NA, 0, NA, NA, NA]) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.count('a') xp = Series([1, NA, 0, NA, NA, 0, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = [u('foo'), u('foofoo'), NA, u('foooofooofommmfoo')] result = strings.str_count(values, 'f[o]+') exp = np.array([1, 2, NA, 4]) tm.assert_numpy_array_equal(result, exp) result = Series(values).str.count('f[o]+') exp = Series([1, 2, NA, 4]) assert isinstance(result, Series) tm.assert_series_equal(result, exp) def test_contains(self): values = np.array(['foo', NA, 'fooommm__foo', 'mmm_', 'foommm[_]+bar'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, NA, True, True, False], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, regex=False) expected = np.array([False, NA, False, False, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) values = ['foo', 'xyz', 'fooommm__foo', 'mmm_'] result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # case insensitive using regex values = ['Foo', 'xYz', 'fOOomMm__fOo', 'MMM_'] result = strings.str_contains(values, 'FOO|mmm', case=False) expected = np.array([True, False, True, True]) tm.assert_numpy_array_equal(result, expected) # case insensitive without regex result = strings.str_contains(values, 'foo', regex=False, case=False) expected = np.array([True, False, True, False]) tm.assert_numpy_array_equal(result, expected) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_contains(mixed, 'o') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.contains('o') xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = np.array([u'foo', NA, u'fooommm__foo', u'mmm_'], dtype=np.object_) pat = 'mmm[_]+' result = strings.str_contains(values, pat) expected = np.array([False, np.nan, True, True], dtype=np.object_) tm.assert_numpy_array_equal(result, expected) result = strings.str_contains(values, pat, na=False) expected = np.array([False, False, True, True]) tm.assert_numpy_array_equal(result, expected) values = np.array(['foo', 'xyz', 'fooommm__foo', 'mmm_'], dtype=np.object_) result = strings.str_contains(values, pat) expected = np.array([False, False, True, True]) assert result.dtype == np.bool_ tm.assert_numpy_array_equal(result, expected) # na values = Series(['om', 'foo', np.nan]) res = values.str.contains('foo', na="foo") assert res.loc[2] == "foo" def test_startswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = np.array(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.], dtype=np.object_) rs = strings.str_startswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, True, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.startswith('f') assert isinstance(rs, Series) xp = Series([False, NA, False, NA, NA, True, NA, NA, NA]) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.startswith('foo') exp = Series([False, NA, True, False, False, NA, True]) tm.assert_series_equal(result, exp) result = values.str.startswith('foo', na=True) tm.assert_series_equal(result, exp.fillna(True).astype(bool)) def test_endswith(self): values = Series(['om', NA, 'foo_nom', 'nom', 'bar_foo', NA, 'foo']) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) # mixed mixed = ['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.] rs = strings.str_endswith(mixed, 'f') xp = np.array([False, NA, False, NA, NA, False, NA, NA, NA], dtype=np.object_) tm.assert_numpy_array_equal(rs, xp) rs = Series(mixed).str.endswith('f') xp = Series([False, NA, False, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('foo_nom'), u('nom'), u('bar_foo'), NA, u('foo')]) result = values.str.endswith('foo') exp = Series([False, NA, False, False, True, NA, True]) tm.assert_series_equal(result, exp) result = values.str.endswith('foo', na=False) tm.assert_series_equal(result, exp.fillna(False).astype(bool)) def test_title(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.title() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.title() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_lower_upper(self): values = Series(['om', NA, 'nom', 'nom']) result = values.str.upper() exp = Series(['OM', NA, 'NOM', 'NOM']) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('om'), NA, u('nom'), u('nom')]) result = values.str.upper() exp = Series([u('OM'), NA, u('NOM'), u('NOM')]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) def test_capitalize(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.capitalize() exp = Series(["Foo", "Bar", NA, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "blah", None, 1, 2.]) mixed = mixed.str.capitalize() exp = Series(["Foo", NA, "Bar", NA, NA, "Blah", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.capitalize() exp = Series([u("Foo"), NA, u("Bar"), u("Blurg")]) tm.assert_series_equal(results, exp) def test_swapcase(self): values = Series(["FOO", "BAR", NA, "Blah", "blurg"]) result = values.str.swapcase() exp = Series(["foo", "bar", NA, "bLAH", "BLURG"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", NA, "bar", True, datetime.today(), "Blah", None, 1, 2.]) mixed = mixed.str.swapcase() exp = Series(["foo", NA, "BAR", NA, NA, "bLAH", NA, NA, NA]) tm.assert_almost_equal(mixed, exp) # unicode values = Series([u("FOO"), NA, u("bar"), u("Blurg")]) results = values.str.swapcase() exp = Series([u("foo"), NA, u("BAR"), u("bLURG")]) tm.assert_series_equal(results, exp) def test_casemethods(self): values = ['aaa', 'bbb', 'CCC', 'Dddd', 'eEEE'] s = Series(values) assert s.str.lower().tolist() == [v.lower() for v in values] assert s.str.upper().tolist() == [v.upper() for v in values] assert s.str.title().tolist() == [v.title() for v in values] assert s.str.capitalize().tolist() == [v.capitalize() for v in values] assert s.str.swapcase().tolist() == [v.swapcase() for v in values] def test_replace(self): values = Series(['fooBAD__barBAD', NA]) result = values.str.replace('BAD[_]*', '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series(['foobarBAD', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace('BAD[_]*', '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace('BAD[_]*', '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace('BAD[_]*', '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) result = values.str.replace(r"(?<=\w),(?=\w)", ", ", flags=re.UNICODE) tm.assert_series_equal(result, exp) # GH 13438 for klass in (Series, Index): for repl in (None, 3, {'a': 'b'}): for data in (['a', 'b', None], ['a', 'b', 'c', 'ad']): values = klass(data) pytest.raises(TypeError, values.str.replace, 'a', repl) def test_replace_callable(self): # GH 15055 values = Series(['fooBAD__barBAD', NA]) # test with callable repl = lambda m: m.group(0).swapcase() result = values.str.replace('[a-z][A-Z]{2}', repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) # test with wrong number of arguments, raising an error if compat.PY2: p_err = r'takes (no|(exactly|at (least|most)) ?\d+) arguments?' else: p_err = (r'((takes)|(missing)) (?(2)from \d+ to )?\d+ ' r'(?(3)required )positional arguments?') repl = lambda: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) repl = lambda m, x, y=None: None with tm.assert_raises_regex(TypeError, p_err): values.str.replace('a', repl) # test regex named groups values = Series(['Foo Bar Baz', NA]) pat = r"(?P<first>\w+) (?P<middle>\w+) (?P<last>\w+)" repl = lambda m: m.group('middle').swapcase() result = values.str.replace(pat, repl) exp = Series(['bAR', NA]) tm.assert_series_equal(result, exp) def test_replace_compiled_regex(self): # GH 15446 values = Series(['fooBAD__barBAD', NA]) # test with compiled regex pat = re.compile(r'BAD[_]*') result = values.str.replace(pat, '') exp = Series(['foobar', NA]) tm.assert_series_equal(result, exp) # mixed mixed = Series(['aBAD', NA, 'bBAD', True, datetime.today(), 'fooBAD', None, 1, 2.]) rs = Series(mixed).str.replace(pat, '') xp = Series(['a', NA, 'b', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA]) result = values.str.replace(pat, '') exp = Series([u('foobar'), NA]) tm.assert_series_equal(result, exp) result = values.str.replace(pat, '', n=1) exp = Series([u('foobarBAD'), NA]) tm.assert_series_equal(result, exp) # flags + unicode values = Series([b"abcd,\xc3\xa0".decode("utf-8")]) exp = Series([b"abcd, \xc3\xa0".decode("utf-8")]) pat = re.compile(r"(?<=\w),(?=\w)", flags=re.UNICODE) result = values.str.replace(pat, ", ") tm.assert_series_equal(result, exp) # case and flags provided to str.replace will have no effect # and will produce warnings values = Series(['fooBAD__barBAD__bad', NA]) pat = re.compile(r'BAD[_]*') with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', flags=re.IGNORECASE) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=False) with tm.assert_raises_regex(ValueError, "case and flags cannot be"): result = values.str.replace(pat, '', case=True) # test with callable values = Series(['fooBAD__barBAD', NA]) repl = lambda m: m.group(0).swapcase() pat = re.compile('[a-z][A-Z]{2}') result = values.str.replace(pat, repl, n=2) exp = Series(['foObaD__baRbaD', NA]) tm.assert_series_equal(result, exp) def test_repeat(self): values = Series(['a', 'b', NA, 'c', NA, 'd']) result = values.str.repeat(3) exp = Series(['aaa', 'bbb', NA, 'ccc', NA, 'ddd']) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series(['a', 'bb', NA, 'cccc', NA, 'dddddd']) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.repeat(3) xp = Series(['aaa', NA, 'bbb', NA, NA, 'foofoofoo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('d')]) result = values.str.repeat(3) exp = Series([u('aaa'), u('bbb'), NA, u('ccc'), NA, u('ddd')]) tm.assert_series_equal(result, exp) result = values.str.repeat([1, 2, 3, 4, 5, 6]) exp = Series([u('a'), u('bb'), NA, u('cccc'), NA, u('dddddd')]) tm.assert_series_equal(result, exp) def test_match(self): # New match behavior introduced in 0.13 values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) values = Series(['fooBAD__barBAD', NA, 'foo']) result = values.str.match('.*BAD[_]+.*BAD') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # test passing as_indexer still works but is ignored values = Series(['fooBAD__barBAD', NA, 'foo']) exp = Series([True, NA, False]) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=True) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*BAD[_]+.*BAD', as_indexer=False) tm.assert_series_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = values.str.match('.*(BAD[_]+).*(BAD)', as_indexer=True) tm.assert_series_equal(result, exp) pytest.raises(ValueError, values.str.match, '.*(BAD[_]+).*(BAD)', as_indexer=False) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.match('.*(BAD[_]+).*(BAD)') xp = Series([True, NA, True, NA, NA, False, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.match('.*(BAD[_]+).*(BAD)') exp = Series([True, NA, False]) tm.assert_series_equal(result, exp) # na GH #6609 res = Series(['a', 0, np.nan]).str.match('a', na=False) exp = Series([True, False, False]) assert_series_equal(exp, res) res = Series(['a', 0, np.nan]).str.match('a') exp = Series([True, np.nan, np.nan]) assert_series_equal(exp, res) def test_extract_expand_None(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)', expand=None) def test_extract_expand_unspecified(self): values = Series(['fooBAD__barBAD', NA, 'foo']) with tm.assert_produces_warning(FutureWarning): values.str.extract('.*(BAD[_]+).*(BAD)') def test_extract_expand_False(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=False) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(['A1', 'A2', 'A3', 'A4', 'B5']) with tm.assert_raises_regex(ValueError, "supported"): idx.str.extract('([AB])([123])', expand=False) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=False) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=False) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=False) assert result.name == 'uno' exp = klass(['A', 'A'], name='uno') if klass == Series: tm.assert_series_equal(result, exp) else: tm.assert_index_equal(result, exp) s = Series(['A1', 'B2', 'C3']) # one group, no matches result = s.str.extract('(_)', expand=False) exp = Series([NA, NA, NA], dtype=object) tm.assert_series_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=False) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=False) exp = Series(['A', 'B', NA], name='letter') tm.assert_series_equal(result, exp) # two named groups result = s.str.extract('(?P<letter>[AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]], columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=False) exp = Series(['A', 'B', NA]) tm.assert_series_equal(result, exp) # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], [NA, '3']], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=False) exp = DataFrame([['A', '1'], ['B', '2'], ['C', NA]], columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] s = Series(data, index=index) result = s.str.extract(r'(\d)', expand=False) exp = Series(['1', '2', NA], index=index) tm.assert_series_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=False) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) # single_series_name_is_preserved. s = Series(['a3', 'b3', 'c2'], name='bob') r = s.str.extract(r'(?P<sue>[a-z])', expand=False) e = Series(['a', 'b', 'c'], name='sue') tm.assert_series_equal(r, e) assert r.name == e.name def test_extract_expand_True(self): # Contains tests like those in test_match and some others. values = Series(['fooBAD__barBAD', NA, 'foo']) er = [NA, NA] # empty row result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD__', 'BAD'], er, er]) tm.assert_frame_equal(result, exp) # mixed mixed = Series(['aBAD_BAD', NA, 'BAD_b_BAD', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([['BAD_', 'BAD'], er, ['BAD_', 'BAD'], er, er, er, er, er, er]) tm.assert_frame_equal(rs, exp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo')]) result = values.str.extract('.*(BAD[_]+).*(BAD)', expand=True) exp = DataFrame([[u('BAD__'), u('BAD')], er, er]) tm.assert_frame_equal(result, exp) # these should work for both Series and Index for klass in [Series, Index]: # no groups s_or_idx = klass(['A1', 'B2', 'C3']) f = lambda: s_or_idx.str.extract('[ABC][123]', expand=True) pytest.raises(ValueError, f) # only non-capturing groups f = lambda: s_or_idx.str.extract('(?:[AB]).*', expand=True) pytest.raises(ValueError, f) # single group renames series/index properly s_or_idx = klass(['A1', 'A2']) result_df = s_or_idx.str.extract(r'(?P<uno>A)\d', expand=True) assert isinstance(result_df, DataFrame) result_series = result_df['uno'] assert_series_equal(result_series, Series(['A', 'A'], name='uno')) def test_extract_series(self): # extract should give the same result whether or not the # series has a name. for series_name in None, "series_name": s = Series(['A1', 'B2', 'C3'], name=series_name) # one group, no matches result = s.str.extract('(_)', expand=True) exp = DataFrame([NA, NA, NA], dtype=object) tm.assert_frame_equal(result, exp) # two groups, no matches result = s.str.extract('(_)(_)', expand=True) exp = DataFrame([[NA, NA], [NA, NA], [NA, NA]], dtype=object) tm.assert_frame_equal(result, exp) # one group, some matches result = s.str.extract('([AB])[123]', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) # two groups, some matches result = s.str.extract('([AB])([123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one named group result = s.str.extract('(?P<letter>[AB])', expand=True) exp = DataFrame({"letter": ['A', 'B', NA]}) tm.assert_frame_equal(result, exp) # two named groups result = s.str.extract( '(?P<letter>[AB])(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # mix named and unnamed groups result = s.str.extract('([AB])(?P<number>[123])', expand=True) exp = DataFrame(e_list, columns=[0, 'number']) tm.assert_frame_equal(result, exp) # one normal group, one non-capturing group result = s.str.extract('([AB])(?:[123])', expand=True) exp = DataFrame(['A', 'B', NA]) tm.assert_frame_equal(result, exp) def test_extract_optional_groups(self): # two normal groups, one non-capturing group result = Series(['A11', 'B22', 'C33']).str.extract( '([AB])([123])(?:[123])', expand=True) exp = DataFrame([['A', '1'], ['B', '2'], [NA, NA]]) tm.assert_frame_equal(result, exp) # one optional group followed by one normal group result = Series(['A1', 'B2', '3']).str.extract( '(?P<letter>[AB])?(?P<number>[123])', expand=True) e_list = [ ['A', '1'], ['B', '2'], [NA, '3'] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # one normal group followed by one optional group result = Series(['A1', 'B2', 'C']).str.extract( '(?P<letter>[ABC])(?P<number>[123])?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number']) tm.assert_frame_equal(result, exp) # GH6348 # not passing index to the extractor def check_index(index): data = ['A1', 'B2', 'C'] index = index[:len(data)] result = Series(data, index=index).str.extract( r'(\d)', expand=True) exp = DataFrame(['1', '2', NA], index=index) tm.assert_frame_equal(result, exp) result = Series(data, index=index).str.extract( r'(?P<letter>\D)(?P<number>\d)?', expand=True) e_list = [ ['A', '1'], ['B', '2'], ['C', NA] ] exp = DataFrame(e_list, columns=['letter', 'number'], index=index) tm.assert_frame_equal(result, exp) i_funs = [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, tm.makeRangeIndex ] for index in i_funs: check_index(index()) def test_extract_single_group_returns_frame(self): # GH11386 extract should always return DataFrame, even when # there is only one group. Prior to v0.18.0, extract returned # Series when there was only one group in the regex. s = Series(['a3', 'b3', 'c2'], name='series_name') r = s.str.extract(r'(?P<letter>[a-z])', expand=True) e = DataFrame({"letter": ['a', 'b', 'c']}) tm.assert_frame_equal(r, e) def test_extractall(self): subject_list = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', '<EMAIL> some text <EMAIL>', '<EMAIL> some text c@d.<EMAIL> and <EMAIL>', np.nan, "", ] expected_tuples = [ ("dave", "google", "com"), ("tdhock5", "gmail", "com"), ("maudelaperriere", "gmail", "com"), ("rob", "gmail", "com"), ("steve", "gmail", "com"), ("a", "b", "com"), ("c", "d", "com"), ("e", "f", "com"), ] named_pattern = r""" (?P<user>[a-z0-9]+) @ (?P<domain>[a-z]+) \. (?P<tld>[a-z]{2,4}) """ expected_columns = ["user", "domain", "tld"] S = Series(subject_list) # extractall should return a DataFrame with one row for each # match, indexed by the subject from which the match came. expected_index = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (4, 0), (4, 1), (4, 2), ], names=(None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = S.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # The index of the input Series should be used to construct # the index of the output DataFrame: series_index = MultiIndex.from_tuples([ ("single", "Dave"), ("single", "Toby"), ("single", "Maude"), ("multiple", "robAndSteve"), ("multiple", "abcdef"), ("none", "missing"), ("none", "empty"), ]) Si = Series(subject_list, series_index) expected_index = MultiIndex.from_tuples([ ("single", "Dave", 0), ("single", "Toby", 0), ("single", "Maude", 0), ("multiple", "robAndSteve", 0), ("multiple", "robAndSteve", 1), ("multiple", "abcdef", 0), ("multiple", "abcdef", 1), ("multiple", "abcdef", 2), ], names=(None, None, "match")) expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Si.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # MultiIndexed subject with names. Sn = Series(subject_list, series_index) Sn.index.names = ("matches", "description") expected_index.names = ("matches", "description", "match") expected_df = DataFrame( expected_tuples, expected_index, expected_columns) computed_df = Sn.str.extractall(named_pattern, re.VERBOSE) tm.assert_frame_equal(computed_df, expected_df) # optional groups. subject_list = ['', 'A1', '32'] named_pattern = '(?P<letter>[AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(named_pattern) expected_index = MultiIndex.from_tuples([ (1, 0), (2, 0), (2, 1), ], names=(None, "match")) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=['letter', 'number']) tm.assert_frame_equal(computed_df, expected_df) # only one of two groups has a name. pattern = '([AB])?(?P<number>[123])' computed_df = Series(subject_list).str.extractall(pattern) expected_df = DataFrame([ ('A', '1'), (NA, '3'), (NA, '2'), ], expected_index, columns=[0, 'number']) tm.assert_frame_equal(computed_df, expected_df) def test_extractall_single_group(self): # extractall(one named group) returns DataFrame with one named # column. s = Series(['a3', 'b3', 'd4c2'], name='series_name') r = s.str.extractall(r'(?P<letter>[a-z])') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame({"letter": ['a', 'b', 'd', 'c']}, i) tm.assert_frame_equal(r, e) # extractall(one un-named group) returns DataFrame with one # un-named column. r = s.str.extractall(r'([a-z])') e = DataFrame(['a', 'b', 'd', 'c'], i) tm.assert_frame_equal(r, e) def test_extractall_single_group_with_quantifier(self): # extractall(one un-named group with quantifier) returns # DataFrame with one un-named column (GH13382). s = Series(['ab3', 'abc3', 'd4cd2'], name='series_name') r = s.str.extractall(r'([a-z]+)') i = MultiIndex.from_tuples([ (0, 0), (1, 0), (2, 0), (2, 1), ], names=(None, "match")) e = DataFrame(['ab', 'abc', 'd', 'cd'], i) tm.assert_frame_equal(r, e) def test_extractall_no_matches(self): s = Series(['a3', 'b3', 'd4c2'], name='series_name') # one un-named group. r = s.str.extractall('(z)') e = DataFrame(columns=[0]) tm.assert_frame_equal(r, e) # two un-named groups. r = s.str.extractall('(z)(z)') e = DataFrame(columns=[0, 1]) tm.assert_frame_equal(r, e) # one named group. r = s.str.extractall('(?P<first>z)') e = DataFrame(columns=["first"]) tm.assert_frame_equal(r, e) # two named groups. r = s.str.extractall('(?P<first>z)(?P<second>z)') e = DataFrame(columns=["first", "second"]) tm.assert_frame_equal(r, e) # one named, one un-named. r = s.str.extractall('(z)(?P<second>z)') e = DataFrame(columns=[0, "second"]) tm.assert_frame_equal(r, e) def test_extractall_stringindex(self): s = Series(["a1a2", "b1", "c1"], name='xxx') res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([(0, 0), (0, 1), (1, 0)], names=[None, 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) # index should return the same result as the default index without name # thus index.name doesn't affect to the result for idx in [Index(["a1a2", "b1", "c1"]), Index(["a1a2", "b1", "c1"], name='xxx')]: res = idx.str.extractall(r"[ab](?P<digit>\d)") tm.assert_frame_equal(res, exp) s = Series(["a1a2", "b1", "c1"], name='s_name', index=Index(["XX", "yy", "zz"], name='idx_name')) res = s.str.extractall(r"[ab](?P<digit>\d)") exp_idx = MultiIndex.from_tuples([("XX", 0), ("XX", 1), ("yy", 0)], names=["idx_name", 'match']) exp = DataFrame({'digit': ["1", "2", "1"]}, index=exp_idx) tm.assert_frame_equal(res, exp) def test_extractall_errors(self): # Does not make sense to use extractall with a regex that has # no capture groups. (it returns DataFrame with one column for # each capture group) s = Series(['a3', 'b3', 'd4c2'], name='series_name') with tm.assert_raises_regex(ValueError, "no capture groups"): s.str.extractall(r'[a-z]') def test_extract_index_one_two_groups(self): s = Series(['a3', 'b3', 'd4c2'], index=["A3", "B3", "D4"], name='series_name') r = s.index.str.extract(r'([A-Z])', expand=True) e = DataFrame(['A', "B", "D"]) tm.assert_frame_equal(r, e) # Prior to v0.18.0, index.str.extract(regex with one group) # returned Index. With more than one group, extract raised an # error (GH9980). Now extract always returns DataFrame. r = s.index.str.extract( r'(?P<letter>[A-Z])(?P<digit>[0-9])', expand=True) e_list = [ ("A", "3"), ("B", "3"), ("D", "4"), ] e = DataFrame(e_list, columns=["letter", "digit"]) tm.assert_frame_equal(r, e) def test_extractall_same_as_extract(self): s = Series(['a3', 'b3', 'c2'], name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_multi_index = s.str.extractall(pattern_two_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_multi_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_multi_index = s.str.extractall(pattern_two_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_multi_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_multi_index = s.str.extractall(pattern_one_named) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_multi_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_multi_index = s.str.extractall(pattern_one_noname) no_multi_index = has_multi_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_multi_index) def test_extractall_same_as_extract_subject_index(self): # same as above tests, but s has an MultiIndex. i = MultiIndex.from_tuples([ ("A", "first"), ("B", "second"), ("C", "third"), ], names=("capital", "ordinal")) s = Series(['a3', 'b3', 'c2'], i, name='series_name') pattern_two_noname = r'([a-z])([0-9])' extract_two_noname = s.str.extract(pattern_two_noname, expand=True) has_match_index = s.str.extractall(pattern_two_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_noname, no_match_index) pattern_two_named = r'(?P<letter>[a-z])(?P<digit>[0-9])' extract_two_named = s.str.extract(pattern_two_named, expand=True) has_match_index = s.str.extractall(pattern_two_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_two_named, no_match_index) pattern_one_named = r'(?P<group_name>[a-z])' extract_one_named = s.str.extract(pattern_one_named, expand=True) has_match_index = s.str.extractall(pattern_one_named) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_named, no_match_index) pattern_one_noname = r'([a-z])' extract_one_noname = s.str.extract(pattern_one_noname, expand=True) has_match_index = s.str.extractall(pattern_one_noname) no_match_index = has_match_index.xs(0, level="match") tm.assert_frame_equal(extract_one_noname, no_match_index) def test_empty_str_methods(self): empty_str = empty = Series(dtype=object) empty_int = Series(dtype=int) empty_bool = Series(dtype=bool) empty_bytes = Series(dtype=object) # GH7241 # (extract) on empty series tm.assert_series_equal(empty_str, empty.str.cat(empty)) assert '' == empty.str.cat() tm.assert_series_equal(empty_str, empty.str.title()) tm.assert_series_equal(empty_int, empty.str.count('a')) tm.assert_series_equal(empty_bool, empty.str.contains('a')) tm.assert_series_equal(empty_bool, empty.str.startswith('a')) tm.assert_series_equal(empty_bool, empty.str.endswith('a')) tm.assert_series_equal(empty_str, empty.str.lower()) tm.assert_series_equal(empty_str, empty.str.upper()) tm.assert_series_equal(empty_str, empty.str.replace('a', 'b')) tm.assert_series_equal(empty_str, empty.str.repeat(3)) tm.assert_series_equal(empty_bool, empty.str.match('^a')) tm.assert_frame_equal( DataFrame(columns=[0], dtype=str), empty.str.extract('()', expand=True)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=True)) tm.assert_series_equal( empty_str, empty.str.extract('()', expand=False)) tm.assert_frame_equal( DataFrame(columns=[0, 1], dtype=str), empty.str.extract('()()', expand=False)) tm.assert_frame_equal(DataFrame(dtype=str), empty.str.get_dummies()) tm.assert_series_equal(empty_str, empty_str.str.join('')) tm.assert_series_equal(empty_int, empty.str.len()) tm.assert_series_equal(empty_str, empty_str.str.findall('a')) tm.assert_series_equal(empty_int, empty.str.find('a')) tm.assert_series_equal(empty_int, empty.str.rfind('a')) tm.assert_series_equal(empty_str, empty.str.pad(42)) tm.assert_series_equal(empty_str, empty.str.center(42)) tm.assert_series_equal(empty_str, empty.str.split('a')) tm.assert_series_equal(empty_str, empty.str.rsplit('a')) tm.assert_series_equal(empty_str, empty.str.partition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.rpartition('a', expand=False)) tm.assert_series_equal(empty_str, empty.str.slice(stop=1)) tm.assert_series_equal(empty_str, empty.str.slice(step=1)) tm.assert_series_equal(empty_str, empty.str.strip()) tm.assert_series_equal(empty_str, empty.str.lstrip()) tm.assert_series_equal(empty_str, empty.str.rstrip()) tm.assert_series_equal(empty_str, empty.str.wrap(42)) tm.assert_series_equal(empty_str, empty.str.get(0)) tm.assert_series_equal(empty_str, empty_bytes.str.decode('ascii')) tm.assert_series_equal(empty_bytes, empty.str.encode('ascii')) tm.assert_series_equal(empty_str, empty.str.isalnum()) tm.assert_series_equal(empty_str, empty.str.isalpha()) tm.assert_series_equal(empty_str, empty.str.isdigit()) tm.assert_series_equal(empty_str, empty.str.isspace()) tm.assert_series_equal(empty_str, empty.str.islower()) tm.assert_series_equal(empty_str, empty.str.isupper()) tm.assert_series_equal(empty_str, empty.str.istitle()) tm.assert_series_equal(empty_str, empty.str.isnumeric()) tm.assert_series_equal(empty_str, empty.str.isdecimal()) tm.assert_series_equal(empty_str, empty.str.capitalize()) tm.assert_series_equal(empty_str, empty.str.swapcase()) tm.assert_series_equal(empty_str, empty.str.normalize('NFC')) if compat.PY3: table = str.maketrans('a', 'b') else: import string table = string.maketrans('a', 'b') tm.assert_series_equal(empty_str, empty.str.translate(table)) def test_empty_str_methods_to_frame(self): empty = Series(dtype=str) empty_df = DataFrame([]) tm.assert_frame_equal(empty_df, empty.str.partition('a')) tm.assert_frame_equal(empty_df, empty.str.rpartition('a')) def test_ismethods(self): values = ['A', 'b', 'Xy', '4', '3A', '', 'TT', '55', '-', ' '] str_s = Series(values) alnum_e = [True, True, True, True, True, False, True, True, False, False] alpha_e = [True, True, True, False, False, False, True, False, False, False] digit_e = [False, False, False, True, False, False, False, True, False, False] # TODO: unused num_e = [False, False, False, True, False, False, # noqa False, True, False, False] space_e = [False, False, False, False, False, False, False, False, False, True] lower_e = [False, True, False, False, False, False, False, False, False, False] upper_e = [True, False, False, False, True, False, True, False, False, False] title_e = [True, False, True, False, True, False, False, False, False, False] tm.assert_series_equal(str_s.str.isalnum(), Series(alnum_e)) tm.assert_series_equal(str_s.str.isalpha(), Series(alpha_e)) tm.assert_series_equal(str_s.str.isdigit(), Series(digit_e)) tm.assert_series_equal(str_s.str.isspace(), Series(space_e)) tm.assert_series_equal(str_s.str.islower(), Series(lower_e)) tm.assert_series_equal(str_s.str.isupper(), Series(upper_e)) tm.assert_series_equal(str_s.str.istitle(), Series(title_e)) assert str_s.str.isalnum().tolist() == [v.isalnum() for v in values] assert str_s.str.isalpha().tolist() == [v.isalpha() for v in values] assert str_s.str.isdigit().tolist() == [v.isdigit() for v in values] assert str_s.str.isspace().tolist() == [v.isspace() for v in values] assert str_s.str.islower().tolist() == [v.islower() for v in values] assert str_s.str.isupper().tolist() == [v.isupper() for v in values] assert str_s.str.istitle().tolist() == [v.istitle() for v in values] def test_isnumeric(self): # 0x00bc: ¼ VULGAR FRACTION ONE QUARTER # 0x2605: ★ not number # 0x1378: ፸ ETHIOPIC NUMBER SEVENTY # 0xFF13: 3 Em 3 values = ['A', '3', u'¼', u'★', u'፸', u'3', 'four'] s = Series(values) numeric_e = [False, True, True, False, True, True, False] decimal_e = [False, True, False, False, False, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) unicodes = [u'A', u'3', u'¼', u'★', u'፸', u'3', u'four'] assert s.str.isnumeric().tolist() == [v.isnumeric() for v in unicodes] assert s.str.isdecimal().tolist() == [v.isdecimal() for v in unicodes] values = ['A', np.nan, u'¼', u'★', np.nan, u'3', 'four'] s = Series(values) numeric_e = [False, np.nan, True, False, np.nan, True, False] decimal_e = [False, np.nan, False, False, np.nan, True, False] tm.assert_series_equal(s.str.isnumeric(), Series(numeric_e)) tm.assert_series_equal(s.str.isdecimal(), Series(decimal_e)) def test_get_dummies(self): s = Series(['a|b', 'a|c', np.nan]) result = s.str.get_dummies('|') expected = DataFrame([[1, 1, 0], [1, 0, 1], [0, 0, 0]], columns=list('abc')) tm.assert_frame_equal(result, expected) s = Series(['a;b', 'a', 7]) result = s.str.get_dummies(';') expected = DataFrame([[0, 1, 1], [0, 1, 0], [1, 0, 0]], columns=list('7ab')) tm.assert_frame_equal(result, expected) # GH9980, GH8028 idx = Index(['a|b', 'a|c', 'b|c']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0), (1, 0, 1), (0, 1, 1)], names=('a', 'b', 'c')) tm.assert_index_equal(result, expected) def test_get_dummies_with_name_dummy(self): # GH 12180 # Dummies named 'name' should work as expected s = Series(['a', 'b,name', 'b']) result = s.str.get_dummies(',') expected = DataFrame([[1, 0, 0], [0, 1, 1], [0, 1, 0]], columns=['a', 'b', 'name']) tm.assert_frame_equal(result, expected) idx = Index(['a|b', 'name|c', 'b|name']) result = idx.str.get_dummies('|') expected = MultiIndex.from_tuples([(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)], names=('a', 'b', 'c', 'name')) tm.assert_index_equal(result, expected) def test_join(self): values = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h']) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.split('_').str.join('_') xp = Series(['a_b', NA, 'asdf_cas_asdf', NA, NA, 'foo', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a_b_c'), u('c_d_e'), np.nan, u('f_g_h')]) result = values.str.split('_').str.join('_') tm.assert_series_equal(values, result) def test_len(self): values = Series(['foo', 'fooo', 'fooooo', np.nan, 'fooooooo']) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b', NA, 'asdf_cas_asdf', True, datetime.today(), 'foo', None, 1, 2.]) rs = Series(mixed).str.len() xp = Series([3, NA, 13, NA, NA, 3, NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('foo'), u('fooo'), u('fooooo'), np.nan, u( 'fooooooo')]) result = values.str.len() exp = values.map(lambda x: len(x) if notna(x) else NA) tm.assert_series_equal(result, exp) def test_findall(self): values = Series(['fooBAD__barBAD', NA, 'foo', 'BAD']) result = values.str.findall('BAD[_]*') exp = Series([['BAD__', 'BAD'], NA, [], ['BAD']]) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['fooBAD__barBAD', NA, 'foo', True, datetime.today(), 'BAD', None, 1, 2.]) rs = Series(mixed).str.findall('BAD[_]*') xp = Series([['BAD__', 'BAD'], NA, [], NA, NA, ['BAD'], NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('fooBAD__barBAD'), NA, u('foo'), u('BAD')]) result = values.str.findall('BAD[_]*') exp = Series([[u('BAD__'), u('BAD')], NA, [], [u('BAD')]]) tm.assert_almost_equal(result, exp) def test_find(self): values = Series(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF', 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, 3, 1, 0, -1])) expected = np.array([v.find('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF') for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, 3, 7, 4, -1])) expected = np.array([v.find('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, 5, 7, 4, -1])) expected = np.array([v.rfind('EF', 3) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.find('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, 3, -1, 4, -1])) expected = np.array([v.rfind('EF', 3, 6) for v in values.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.find(0) with tm.assert_raises_regex(TypeError, "expected a string object, not int"): result = values.str.rfind(0) def test_find_nan(self): values = Series(['ABCDEFG', np.nan, 'DEFGHIJEF', np.nan, 'XXXX']) result = values.str.find('EF') tm.assert_series_equal(result, Series([4, np.nan, 1, np.nan, -1])) result = values.str.rfind('EF') tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.rfind('EF', 3) tm.assert_series_equal(result, Series([4, np.nan, 7, np.nan, -1])) result = values.str.find('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) result = values.str.rfind('EF', 3, 6) tm.assert_series_equal(result, Series([4, np.nan, -1, np.nan, -1])) def test_index(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['ABCDEFG', 'BCDEFEF', 'DEFGHIJEF', 'EFGHEF']) result = s.str.index('EF') _check(result, klass([4, 3, 1, 0])) expected = np.array([v.index('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF') _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF') for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('EF', 3) _check(result, klass([4, 3, 7, 4])) expected = np.array([v.index('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('EF', 3) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.rindex('EF', 3) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.index('E', 4, 8) _check(result, klass([4, 5, 7, 4])) expected = np.array([v.index('E', 4, 8) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) result = s.str.rindex('E', 0, 5) _check(result, klass([4, 3, 1, 4])) expected = np.array([v.rindex('E', 0, 5) for v in s.values], dtype=np.int64) tm.assert_numpy_array_equal(result.values, expected) with tm.assert_raises_regex(ValueError, "substring not found"): result = s.str.index('DE') with tm.assert_raises_regex(TypeError, "expected a string " "object, not int"): result = s.str.index(0) # test with nan s = Series(['abcb', 'ab', 'bcbe', np.nan]) result = s.str.index('b') tm.assert_series_equal(result, Series([1, 1, 0, np.nan])) result = s.str.rindex('b') tm.assert_series_equal(result, Series([3, 1, 2, np.nan])) def test_pad(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left') exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='left') xp = Series([' a', NA, ' b', NA, NA, ' ee', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='right') xp = Series(['a ', NA, 'b ', NA, NA, 'ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) mixed = Series(['a', NA, 'b', True, datetime.today(), 'ee', None, 1, 2. ]) rs = Series(mixed).str.pad(5, side='both') xp = Series([' a ', NA, ' b ', NA, NA, ' ee ', NA, NA, NA]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.pad(5, side='left') exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right') exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both') exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_pad_fillchar(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.pad(5, side='left', fillchar='X') exp = Series(['XXXXa', 'XXXXb', NA, 'XXXXc', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='right', fillchar='X') exp = Series(['aXXXX', 'bXXXX', NA, 'cXXXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.pad(5, side='both', fillchar='X') exp = Series(['XXaXX', 'XXbXX', NA, 'XXcXX', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.pad(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.pad(5, fillchar=5) def test_pad_width(self): # GH 13598 s = Series(['1', '22', 'a', 'bb']) for f in ['center', 'ljust', 'rjust', 'zfill', 'pad']: with tm.assert_raises_regex(TypeError, "width must be of " "integer type, not*"): getattr(s.str, f)('f') def test_translate(self): def _check(result, expected): if isinstance(result, Series): tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) for klass in [Series, Index]: s = klass(['abcdefg', 'abcc', 'cdddfg', 'cdefggg']) if not compat.PY3: import string table = string.maketrans('abc', 'cde') else: table = str.maketrans('abc', 'cde') result = s.str.translate(table) expected = klass(['cdedefg', 'cdee', 'edddfg', 'edefggg']) _check(result, expected) # use of deletechars is python 2 only if not compat.PY3: result = s.str.translate(table, deletechars='fg') expected = klass(['cdede', 'cdee', 'eddd', 'ede']) _check(result, expected) result = s.str.translate(None, deletechars='fg') expected = klass(['abcde', 'abcc', 'cddd', 'cde']) _check(result, expected) else: with tm.assert_raises_regex( ValueError, "deletechars is not a valid argument"): result = s.str.translate(table, deletechars='fg') # Series with non-string values s = Series(['a', 'b', 'c', 1.2]) expected = Series(['c', 'd', 'e', np.nan]) result = s.str.translate(table) tm.assert_series_equal(result, expected) def test_center_ljust_rjust(self): values = Series(['a', 'b', NA, 'c', NA, 'eeeeee']) result = values.str.center(5) exp = Series([' a ', ' b ', NA, ' c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series(['a ', 'b ', NA, 'c ', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([' a', ' b', NA, ' c', NA, 'eeeeee']) tm.assert_almost_equal(result, exp) # mixed mixed = Series(['a', NA, 'b', True, datetime.today(), 'c', 'eee', None, 1, 2.]) rs = Series(mixed).str.center(5) xp = Series([' a ', NA, ' b ', NA, NA, ' c ', ' eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.ljust(5) xp = Series(['a ', NA, 'b ', NA, NA, 'c ', 'eee ', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) rs = Series(mixed).str.rjust(5) xp = Series([' a', NA, ' b', NA, NA, ' c', ' eee', NA, NA, NA ]) assert isinstance(rs, Series) tm.assert_almost_equal(rs, xp) # unicode values = Series([u('a'), u('b'), NA, u('c'), NA, u('eeeeee')]) result = values.str.center(5) exp = Series([u(' a '), u(' b '), NA, u(' c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.ljust(5) exp = Series([u('a '), u('b '), NA, u('c '), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) result = values.str.rjust(5) exp = Series([u(' a'), u(' b'), NA, u(' c'), NA, u('eeeeee')]) tm.assert_almost_equal(result, exp) def test_center_ljust_rjust_fillchar(self): values = Series(['a', 'bb', 'cccc', 'ddddd', 'eeeeee']) result = values.str.center(5, fillchar='X') expected = Series(['XXaXX', 'XXbbX', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.center(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.ljust(5, fillchar='X') expected = Series(['aXXXX', 'bbXXX', 'ccccX', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.ljust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.rjust(5, fillchar='X') expected = Series(['XXXXa', 'XXXbb', 'Xcccc', 'ddddd', 'eeeeee']) tm.assert_series_equal(result, expected) expected = np.array([v.rjust(5, 'X') for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) # If fillchar is not a charatter, normal str raises TypeError # 'aaa'.ljust(5, 'XY') # TypeError: must be char, not str with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.center(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.ljust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not str"): result = values.str.rjust(5, fillchar='XY') with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.center(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.ljust(5, fillchar=1) with tm.assert_raises_regex(TypeError, "fillchar must be a " "character, not int"): result = values.str.rjust(5, fillchar=1) def test_zfill(self): values = Series(['1', '22', 'aaa', '333', '45678']) result = values.str.zfill(5) expected = Series(['00001', '00022', '00aaa', '00333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(5) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) result = values.str.zfill(3) expected = Series(['001', '022', 'aaa', '333', '45678']) tm.assert_series_equal(result, expected) expected = np.array([v.zfill(3) for v in values.values], dtype=np.object_) tm.assert_numpy_array_equal(result.values, expected) values = Series(['1', np.nan, 'aaa', np.nan, '45678']) result = values.str.zfill(5) expected = Series(['00001', np.nan, '00aaa', np.nan, '45678']) tm.assert_series_equal(result, expected) def test_split(self): values = Series(['a_b_c', 'c_d_e', NA, 'f_g_h']) result = values.str.split('_') exp = Series([['a', 'b', 'c'], ['c', 'd', 'e'], NA, ['f', 'g', 'h']]) tm.assert_series_equal(result, exp) # more than one char values = Series(['a__b__c', 'c__d__e', NA, 'f__g__h']) result = values.str.split('__') tm.assert_series_equal(result, exp) result = values.str.split('__', expand=False) tm.assert_series_equal(result, exp) # mixed mixed = Series(['a_b_c', NA, 'd_e_f', True, datetime.today(), None, 1, 2.]) result = mixed.str.split('_') exp = Series([['a', 'b', 'c'], NA, ['d', 'e', 'f'], NA, NA, NA, NA, NA ]) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split('_', expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) # unicode values = Series([u('a_b_c'), u('c_d_e'), NA, u('f_g_h')]) result = values.str.split('_') exp = Series([[u('a'), u('b'), u('c')], [u('c'), u('d'), u('e')], NA, [u('f'), u('g'), u('h')]])
tm.assert_series_equal(result, exp)
pandas.util.testing.assert_series_equal
# notes # ask michael if we can get the locations of the different cells # this thing (LSE) but on the whole brain # compare to the omni one # bic curves for both # compute ARI # slides for tomorrow # when we present (seems like it should be obvious) # then show the result, know whether it is what they would have expected # ARI curve # best ARI # BIC Curve # best bic # at least one where we get cliques (across cliques) #%% Imports import math import os from operator import itemgetter import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from graspy.cluster import GaussianCluster from graspy.embed import AdjacencySpectralEmbed, OmnibusEmbed from graspy.models import SBMEstimator from graspy.plot import heatmap, pairplot from graspy.utils import binarize, cartprod, pass_to_ranks from joblib.parallel import Parallel, delayed from matplotlib.colors import LogNorm from sklearn.cluster import KMeans from sklearn.metrics import adjusted_rand_score from spherecluster import SphericalKMeans from src.data import load_everything from src.utils import savefig, export_skeleton_json from src.visualization import sankey FNAME = os.path.basename(__file__)[:-3] print(FNAME) # %% [markdown] # # Parameters MB_VERSION = "mb_2019-09-23" BRAIN_VERSION = "2019-09-18-v2" GRAPH_TYPES = ["Gad", "Gaa", "Gdd", "Gda"] GRAPH_TYPE_LABELS = [r"A $\to$ D", r"A $\to$ A", r"D $\to$ D", r"D $\to$ A"] N_GRAPH_TYPES = len(GRAPH_TYPES) SAVEFIGS = False DEFAULT_FMT = "png" DEFUALT_DPI = 150 MAX_CLUSTERS = 6 MIN_CLUSTERS = 6 N_INIT = 1 PTR = True # Functions def stashfig(name, **kws): if SAVEFIGS: savefig(name, foldername=FNAME, fmt=DEFAULT_FMT, dpi=DEFUALT_DPI, **kws) def annotate_arrow(ax, coords=(0.061, 0.93)): arrow_args = dict( arrowstyle="-|>", color="k", connectionstyle="arc3,rad=-0.4", # "angle3,angleA=90,angleB=90" ) t = ax.annotate("Target", xy=coords, xycoords="figure fraction") ax.annotate( "Source", xy=(0, 0.5), xycoords=t, xytext=(-1.4, -2.1), arrowprops=arrow_args ) def ase(adj, n_components): if PTR: adj = pass_to_ranks(adj) ase = AdjacencySpectralEmbed(n_components=n_components) latent = ase.fit_transform(adj) latent = np.concatenate(latent, axis=-1) return latent def to_laplace(graph, form="DAD", regularizer=None): r""" A function to convert graph adjacency matrix to graph laplacian. Currently supports I-DAD, DAD, and R-DAD laplacians, where D is the diagonal matrix of degrees of each node raised to the -1/2 power, I is the identity matrix, and A is the adjacency matrix. R-DAD is regularized laplacian: where :math:`D_t = D + regularizer*I`. Parameters ---------- graph: object Either array-like, (n_vertices, n_vertices) numpy array, or an object of type networkx.Graph. form: {'I-DAD' (default), 'DAD', 'R-DAD'}, string, optional - 'I-DAD' Computes :math:`L = I - D*A*D` - 'DAD' Computes :math:`L = D*A*D` - 'R-DAD' Computes :math:`L = D_t*A*D_t` where :math:`D_t = D + regularizer*I` regularizer: int, float or None, optional (default=None) Constant to be added to the diagonal of degree matrix. If None, average node degree is added. If int or float, must be >= 0. Only used when ``form`` == 'R-DAD'. Returns ------- L: numpy.ndarray 2D (n_vertices, n_vertices) array representing graph laplacian of specified form References ---------- .. [1] <NAME>, and <NAME>. "Regularized spectral clustering under the degree-corrected stochastic blockmodel." In Advances in Neural Information Processing Systems, pp. 3120-3128. 2013 """ valid_inputs = ["I-DAD", "DAD", "R-DAD"] if form not in valid_inputs: raise TypeError("Unsuported Laplacian normalization") A = graph in_degree = np.sum(A, axis=0) out_degree = np.sum(A, axis=1) # regularize laplacian with parameter # set to average degree if form == "R-DAD": if regularizer is None: regularizer = 1 elif not isinstance(regularizer, (int, float)): raise TypeError( "Regularizer must be a int or float, not {}".format(type(regularizer)) ) elif regularizer < 0: raise ValueError("Regularizer must be greater than or equal to 0") regularizer = regularizer * np.mean(out_degree) in_degree += regularizer out_degree += regularizer with np.errstate(divide="ignore"): in_root = 1 / np.sqrt(in_degree) # this is 10x faster than ** -0.5 out_root = 1 / np.sqrt(out_degree) in_root[np.isinf(in_root)] = 0 out_root[np.isinf(out_root)] = 0 in_root = np.diag(in_root) # just change to sparse diag for sparse support out_root = np.diag(out_root) if form == "I-DAD": L = np.diag(in_degree) - A L = in_root @ L @ in_root elif form == "DAD" or form == "R-DAD": L = out_root @ A @ in_root # return symmetrize(L, method="avg") # sometimes machine prec. makes this necessary return L def lse(adj, n_components, regularizer=None): if PTR: adj = pass_to_ranks(adj) lap = to_laplace(adj, form="R-DAD") ase = AdjacencySpectralEmbed(n_components=n_components) latent = ase.fit_transform(lap) latent = np.concatenate(latent, axis=-1) return latent def omni(adjs, n_components): if PTR: adjs = [pass_to_ranks(a) for a in adjs] omni = OmnibusEmbed(n_components=n_components // len(adjs)) latent = omni.fit_transform(adjs) latent = np.concatenate(latent, axis=-1) # first is for in/out latent = np.concatenate(latent, axis=-1) # second is for concat. each graph return latent def ase_concatenate(adjs, n_components): if PTR: adjs = [pass_to_ranks(a) for a in adjs] ase = AdjacencySpectralEmbed(n_components=n_components // len(adjs)) graph_latents = [] for a in adjs: latent = ase.fit_transform(a) latent = np.concatenate(latent, axis=-1) graph_latents.append(latent) latent = np.concatenate(graph_latents, axis=-1) return latent def degree(adjs, *args): deg_mat = np.zeros((n_verts, 2 * N_GRAPH_TYPES)) for i, g in enumerate(adjs): deg_mat[:, i] = g.sum(axis=0) deg_mat[:, i + N_GRAPH_TYPES] = g.sum(axis=1) return deg_mat def get_sbm_prob(adj, labels): sbm = SBMEstimator(directed=True, loops=True) sbm.fit(binarize(adj), y=labels) data = sbm.block_p_ uni_labels, counts = np.unique(labels, return_counts=True) sort_inds = np.argsort(counts)[::-1] uni_labels = uni_labels[sort_inds] data = data[np.ix_(sort_inds, sort_inds)] prob_df =
pd.DataFrame(columns=uni_labels, index=uni_labels, data=data)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # EDA + CenterNet Baseline # # References: # * Took 3D visualization code from https://www.kaggle.com/zstusnoopy/visualize-the-location-and-3d-bounding-box-of-car # * CenterNet paper https://arxiv.org/pdf/1904.07850.pdf # * CenterNet repository https://github.com/xingyizhou/CenterNet # # What is this competition about? # 1. You are given the images taken from the roof of a car # * ~4k training images # * Always the same car and the same camera # 2. You are asked to detect other cars on that image # * There can be many cars # * You need to predict their positions # ![](https://i.ibb.co/7RJ2Wbs/results-33-2.png) # # ## What is in this notebook? # * Data distributions: 1D, 2D and 3D # * Functions to transform between camera coordinates and road coordinates # * Simple CenterNet baseline # # ## CenterNet # This architecture predicts centers of objects as a heatmap. # It predicts sizes of the boxes as a regression task. # ![](https://github.com/xingyizhou/CenterNet/raw/master/readme/fig2.png) # # It is also used for pose estimation: # ![](https://raw.githubusercontent.com/xingyizhou/CenterNet/master/readme/pose3.png) # *(images from the [original repository](https://github.com/xingyizhou/CenterNet))* # Coordinates of human joints are also predicted using regression. # # I use this idea to predict `x, y, z` coordinates of the vehicle and also `yaw, pitch_cos, pitch_sin, roll` angles. # For `pitch` I predict sin and cos, because, as we will see, this angle can be both near 0 and near 3.14. # These 7 parameters are my regression target variables instead of `shift_x, shift_y, size_x, size_y`. # In[2]: import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import cv2 from tqdm import tqdm import matplotlib.pyplot as plt import seaborn as sns from functools import reduce import os from sklearn.model_selection import train_test_split from scipy.optimize import minimize import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.optim import lr_scheduler from torch.utils.data import Dataset, DataLoader from torchvision import models from torchvision import transforms, utils PATH = '/home/hy/pkuad/' os.listdir(PATH) # # Load data # In[3]: train = pd.read_csv(PATH + 'train.csv') test = pd.read_csv(PATH + 'sample_submission.csv') bad_list = ['ID_1a5a10365', 'ID_1db0533c7', 'ID_53c3fe91a', 'ID_408f58e9f', 'ID_4445ae041', 'ID_bb1d991f6', 'ID_c44983aeb', 'ID_f30ebe4d4', 'ID_1a5a10365', 'ID_4d238ae90', 'ID_408f58e9f', 'ID_bb1d991f6', 'ID_c44983aeb'] train = train.loc[~train['ImageId'].isin(bad_list)] # From camera.zip camera_matrix = np.array([[2304.5479, 0, 1686.2379], [0, 2305.8757, 1354.9849], [0, 0, 1]], dtype=np.float32) camera_matrix_inv = np.linalg.inv(camera_matrix) train.head() # **ImageId** column contains names of images: # In[4]: def str2coords(s, names=['id', 'yaw', 'pitch', 'roll', 'x', 'y', 'z']): ''' Input: s: PredictionString (e.g. from train dataframe) names: array of what to extract from the string Output: list of dicts with keys from `names` ''' coords = [] for l in np.array(s.split()).reshape([-1, 7]): coords.append(dict(zip(names, l.astype('float')))) if 'id' in coords[-1]: coords[-1]['id'] = int(coords[-1]['id']) return coords # In[5]: inp = train['PredictionString'][0] print('Example input:\n', inp) print() print('Output:\n', str2coords(inp)) # In[6]: def imread(path, fast_mode=False): img = cv2.imread(path) if not fast_mode and img is not None and len(img.shape) == 3: img = np.array(img[:, :, ::-1]) return img img = imread(PATH + 'train_images/ID_8a6e65317' + '.jpg') IMG_SHAPE = img.shape # In[7]: def get_img_coords(s): ''' Input is a PredictionString (e.g. from train dataframe) Output is two arrays: xs: x coordinates in the image ys: y coordinates in the image ''' coords = str2coords(s) xs = [c['x'] for c in coords] ys = [c['y'] for c in coords] zs = [c['z'] for c in coords] P = np.array(list(zip(xs, ys, zs))).T img_p = np.dot(camera_matrix, P).T img_p[:, 0] /= img_p[:, 2] img_p[:, 1] /= img_p[:, 2] img_xs = img_p[:, 0] img_ys = img_p[:, 1] img_zs = img_p[:, 2] # z = Distance from the camera return img_xs, img_ys # In[8]: def rotate(x, angle): x = x + angle x = x - (x + np.pi) // (2 * np.pi) * 2 * np.pi return x # One point is out of image! # Let's look at the distribution of all points. Image is here just for reference. # In[9]: from math import sin, cos # convert euler angle to rotation matrix def euler_to_Rot(yaw, pitch, roll): Y = np.array([[cos(yaw), 0, sin(yaw)], [0, 1, 0], [-sin(yaw), 0, cos(yaw)]]) P = np.array([[1, 0, 0], [0, cos(pitch), -sin(pitch)], [0, sin(pitch), cos(pitch)]]) R = np.array([[cos(roll), -sin(roll), 0], [sin(roll), cos(roll), 0], [0, 0, 1]]) return np.dot(Y, np.dot(P, R)) # # Image preprocessing # In[10]: IMG_WIDTH = 2052 IMG_HEIGHT = 1026 MODEL_SCALE = 8 def _regr_preprocess(regr_dict): for name in ['x', 'y', 'z']: regr_dict[name] = regr_dict[name] / 100 regr_dict['roll'] = rotate(regr_dict['roll'], np.pi) regr_dict['pitch_sin'] = sin(regr_dict['pitch']) regr_dict['pitch_cos'] = cos(regr_dict['pitch']) regr_dict.pop('pitch') regr_dict.pop('id') return regr_dict def _regr_back(regr_dict): for name in ['x', 'y', 'z']: regr_dict[name] = regr_dict[name] * 100 regr_dict['roll'] = rotate(regr_dict['roll'], -np.pi) pitch_sin = regr_dict['pitch_sin'] / np.sqrt(regr_dict['pitch_sin']**2 + regr_dict['pitch_cos']**2) pitch_cos = regr_dict['pitch_cos'] / np.sqrt(regr_dict['pitch_sin']**2 + regr_dict['pitch_cos']**2) regr_dict['pitch'] = np.arccos(pitch_cos) * np.sign(pitch_sin) return regr_dict def preprocess_image(img): img = img[img.shape[0] // 2:] bg = np.ones_like(img) * img.mean(1, keepdims=True).astype(img.dtype) bg = bg[:, :img.shape[1] // 4] img = np.concatenate([bg, img, bg], 1) img = cv2.resize(img, (IMG_WIDTH, IMG_HEIGHT)) return (img / 255).astype('float32') def get_mask_and_regr(img, labels): mask = np.zeros([IMG_HEIGHT // MODEL_SCALE, IMG_WIDTH // MODEL_SCALE], dtype='float32') regr_names = ['x', 'y', 'z', 'yaw', 'pitch', 'roll'] regr = np.zeros([IMG_HEIGHT // MODEL_SCALE, IMG_WIDTH // MODEL_SCALE, 7], dtype='float32') coords = str2coords(labels) xs, ys = get_img_coords(labels) for x, y, regr_dict in zip(xs, ys, coords): x, y = y, x x = (x - img.shape[0] // 2) * IMG_HEIGHT / (img.shape[0] // 2) / MODEL_SCALE x = np.round(x).astype('int') y = (y + img.shape[1] // 4) * IMG_WIDTH / (img.shape[1] * 1.5) / MODEL_SCALE y = np.round(y).astype('int') if x >= 0 and x < IMG_HEIGHT // MODEL_SCALE and y >= 0 and y < IMG_WIDTH // MODEL_SCALE: mask[x, y] = 1 regr_dict = _regr_preprocess(regr_dict) regr[x, y] = [regr_dict[n] for n in sorted(regr_dict)] return mask, regr # In[11]: img0 = imread(PATH + 'train_images/' + train['ImageId'][0] + '.jpg') img = preprocess_image(img0) mask, regr = get_mask_and_regr(img0, train['PredictionString'][0]) print('img.shape', img.shape, 'std:', np.std(img)) print('mask.shape', mask.shape, 'std:', np.std(mask)) print('regr.shape', regr.shape, 'std:', np.std(regr)) # # PyTorch Dataset # In[12]: class CarDataset(Dataset): """Car dataset.""" def __init__(self, dataframe, root_dir, training=True, transform=None): self.df = dataframe self.root_dir = root_dir self.transform = transform self.training = training def __len__(self): return len(self.df) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() # Get image name idx, labels = self.df.values[idx] img_name = self.root_dir.format(idx) # Read image img0 = imread(img_name, True) img = preprocess_image(img0) img = np.rollaxis(img, 2, 0) # Get mask and regression maps if self.training: mask, regr = get_mask_and_regr(img0, labels) regr = np.rollaxis(regr, 2, 0) else: mask, regr = 0, 0 return [img, mask, regr] # In[13]: train_images_dir = PATH + 'train_images/{}.jpg' test_images_dir = PATH + 'test_images/{}.jpg' df_train, df_dev = train_test_split(train, test_size=0.1, random_state=42) df_test = test # Create dataset objects train_dataset = CarDataset(df_train, train_images_dir) dev_dataset = CarDataset(df_dev, train_images_dir) test_dataset = CarDataset(df_test, test_images_dir) # Show some generated examples # In[ ]: BATCH_SIZE = 2 # Create data generators - they will produce batches train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=4) dev_loader = DataLoader(dataset=dev_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4) test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=4) # # PyTorch Model # In[ ]: #!pip install efficientnet-pytorch # In[ ]: from efficientnet_pytorch import EfficientNet # In[ ]: class double_conv(nn.Module): '''(conv => BN => ReLU) * 2''' def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class up(nn.Module): def __init__(self, in_ch, out_ch, bilinear=True): super(up, self).__init__() # would be a nice idea if the upsampling could be learned too, # but my machine do not have enough memory to handle all those weights if bilinear: self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) else: self.up = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2) self.conv = double_conv(in_ch, out_ch) def forward(self, x1, x2=None): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX//2, diffY // 2, diffY - diffY//2)) # for padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd if x2 is not None: x = torch.cat([x2, x1], dim=1) else: x = x1 x = self.conv(x) return x def get_mesh(batch_size, shape_x, shape_y): mg_x, mg_y = np.meshgrid(np.linspace(0, 1, shape_y), np.linspace(0, 1, shape_x)) mg_x = np.tile(mg_x[None, None, :, :], [batch_size, 1, 1, 1]).astype('float32') mg_y = np.tile(mg_y[None, None, :, :], [batch_size, 1, 1, 1]).astype('float32') mesh = torch.cat([torch.tensor(mg_x).to(device), torch.tensor(mg_y).to(device)], 1) return mesh # In[ ]: class MyUNet(nn.Module): '''Mixture of previous classes''' def __init__(self, n_classes): super(MyUNet, self).__init__() self.base_model = EfficientNet.from_pretrained('efficientnet-b0') self.conv0 = double_conv(5, 64) self.conv1 = double_conv(64, 128) self.conv2 = double_conv(128, 512) self.conv3 = double_conv(512, 1024) self.mp = nn.MaxPool2d(2) #self.up1 = up(3074, 512) self.up1 = up(1282 + 1024, 512) self.up2 = up(512 + 512, 256) self.outc = nn.Conv2d(256, n_classes, 1) def forward(self, x): batch_size = x.shape[0] mesh1 = get_mesh(batch_size, x.shape[2], x.shape[3]) x0 = torch.cat([x, mesh1], 1) x1 = self.mp(self.conv0(x0)) x2 = self.mp(self.conv1(x1)) x3 = self.mp(self.conv2(x2)) x4 = self.mp(self.conv3(x3)) feats = self.base_model.extract_features(x) # Add positional info mesh2 = get_mesh(batch_size, feats.shape[2], feats.shape[3]) feats = torch.cat([feats, mesh2], 1) x = self.up1(feats, x4) x = self.up2(x, x3) x = self.outc(x) return x # In[ ]: # Gets the GPU if there is one, otherwise the cpu device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) n_epochs = 16 model = MyUNet(8).to(device) optimizer = optim.AdamW(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False) exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=max(n_epochs, 10) * len(train_loader) // 3, gamma=0.1) # # Training # In[ ]: def criterion(prediction, mask, regr, size_average=True): # Binary mask loss pred_mask = torch.sigmoid(prediction[:, 0]) # mask_loss = mask * (1 - pred_mask)**2 * torch.log(pred_mask + 1e-12) + (1 - mask) * pred_mask**2 * torch.log(1 - pred_mask + 1e-12) mask_loss = mask * torch.log(pred_mask + 1e-12) + (1 - mask) * torch.log(1 - pred_mask + 1e-12) mask_loss = -mask_loss.mean(0).sum() # Regression L1 loss pred_regr = prediction[:, 1:] regr_loss = (torch.abs(pred_regr - regr).sum(1) * mask).sum(1).sum(1) / mask.sum(1).sum(1) regr_loss = regr_loss.mean(0) # Sum loss = mask_loss + regr_loss if not size_average: loss *= prediction.shape[0] return loss # In[ ]: def train(epoch, history=None): model.train() for batch_idx, (img_batch, mask_batch, regr_batch) in enumerate(tqdm(train_loader)): img_batch = img_batch.to(device) mask_batch = mask_batch.to(device) regr_batch = regr_batch.to(device) optimizer.zero_grad() output = model(img_batch) loss = criterion(output, mask_batch, regr_batch) if history is not None: history.loc[epoch + batch_idx / len(train_loader), 'train_loss'] = loss.data.cpu().numpy() loss.backward() optimizer.step() exp_lr_scheduler.step() print('Train Epoch: {} \tLR: {:.6f}\tLoss: {:.6f}'.format( epoch, optimizer.state_dict()['param_groups'][0]['lr'], loss.data)) def evaluate(epoch, history=None): model.eval() loss = 0 with torch.no_grad(): for img_batch, mask_batch, regr_batch in dev_loader: img_batch = img_batch.to(device) mask_batch = mask_batch.to(device) regr_batch = regr_batch.to(device) output = model(img_batch) loss += criterion(output, mask_batch, regr_batch, size_average=False).data loss /= len(dev_loader.dataset) if history is not None: history.loc[epoch, 'dev_loss'] = loss.cpu().numpy() print('Dev loss: {:.4f}'.format(loss)) # In[ ]: #get_ipython().run_cell_magic('time', '', "import gc\n\nhistory = pd.DataFrame()\n\nfor epoch in range(n_epochs):\n torch.cuda.empty_cache()\n gc.collect()\n train(epoch, history)\n torch.save(model.state_dict(), './b0_sz-2052-1026_ep-%s.pth'%(epoch))\n evaluate(epoch, history)") import gc history = pd.DataFrame() for epoch in range(n_epochs): torch.cuda.empty_cache() gc.collect() train(epoch, history) torch.save(model.state_dict(), './b0_sz-2052-1026_ep-%s.pth'%(epoch)) evaluate(epoch, history) # In[ ]: torch.save(model.state_dict(), './b0_sz-2052-1026_final.pth') # In[ ]: #history['train_loss'].iloc[100:].plot(); # In[ ]: #series = history.dropna()['dev_loss'] #plt.scatter(series.index, series); # # Visualize predictions # In[ ]: DISTANCE_THRESH_CLEAR = 2 def convert_3d_to_2d(x, y, z, fx = 2304.5479, fy = 2305.8757, cx = 1686.2379, cy = 1354.9849): # stolen from https://www.kaggle.com/theshockwaverider/eda-visualization-baseline return x * fx / z + cx, y * fy / z + cy def optimize_xy(r, c, x0, y0, z0): def distance_fn(xyz): x, y, z = xyz x, y = convert_3d_to_2d(x, y, z0) y, x = x, y x = (x - IMG_SHAPE[0] // 2) * IMG_HEIGHT / (IMG_SHAPE[0] // 2) / MODEL_SCALE x = np.round(x).astype('int') y = (y + IMG_SHAPE[1] // 4) * IMG_WIDTH / (IMG_SHAPE[1] * 1.5) / MODEL_SCALE y = np.round(y).astype('int') return (x-r)**2 + (y-c)**2 res = minimize(distance_fn, [x0, y0, z0], method='Powell') x_new, y_new, z_new = res.x return x_new, y_new, z0 def clear_duplicates(coords): for c1 in coords: xyz1 = np.array([c1['x'], c1['y'], c1['z']]) for c2 in coords: xyz2 = np.array([c2['x'], c2['y'], c2['z']]) distance = np.sqrt(((xyz1 - xyz2)**2).sum()) if distance < DISTANCE_THRESH_CLEAR: if c1['confidence'] < c2['confidence']: c1['confidence'] = -1 return [c for c in coords if c['confidence'] > 0] def extract_coords(prediction): logits = prediction[0] regr_output = prediction[1:] points = np.argwhere(logits > 0) col_names = sorted(['x', 'y', 'z', 'yaw', 'pitch_sin', 'pitch_cos', 'roll']) coords = [] for r, c in points: regr_dict = dict(zip(col_names, regr_output[:, r, c])) coords.append(_regr_back(regr_dict)) coords[-1]['confidence'] = 1 / (1 + np.exp(-logits[r, c])) coords[-1]['x'], coords[-1]['y'], coords[-1]['z'] = optimize_xy(r, c, coords[-1]['x'], coords[-1]['y'], coords[-1]['z']) coords = clear_duplicates(coords) return coords def coords2str(coords, names=['yaw', 'pitch', 'roll', 'x', 'y', 'z', 'confidence']): s = [] for c in coords: for n in names: s.append(str(c.get(n, 0))) return ' '.join(s) # In[ ]: torch.cuda.empty_cache() gc.collect() # # Make submission # In[ ]: predictions = [] test_loader = DataLoader(dataset=test_dataset, batch_size=16, shuffle=False, num_workers=4) model.eval() print('In predcition Stage') for img, _, _ in tqdm(test_loader): with torch.no_grad(): output = model(img.to(device)) output = output.data.cpu().numpy() for out in output: coords = extract_coords(out) s = coords2str(coords) predictions.append(s) # In[ ]: test =
pd.read_csv(PATH + 'sample_submission.csv')
pandas.read_csv
import os import streamlit as st import pandas as pd import altair as alt import sqlite3 from sqlite3 import Connection import requests import json import plotly.express as px # spotify stuff SPOTIFY_CLIENT_ID = os.environ.get('SPOTIFY_CLIENT_ID') SPOTIFY_CLIENT_SECRET = os.environ.get('SPOTIFY_CLIENT_SECRET') def get_spotify_token(): url='https://accounts.spotify.com/api/token' grant_type = 'client_credentials' body_params = {'grant_type' : grant_type} r = requests.post(url, data=body_params, auth = (SPOTIFY_CLIENT_ID, SPOTIFY_CLIENT_SECRET)) r.raise_for_status() token_raw = json.loads(r.text) token = token_raw["access_token"] return token def spotify_search(song): token = get_spotify_token() url = f'https://api.spotify.com/v1/search?q={song}&type=track&limit=1' headers = { 'Accept': 'application/json', 'Content-type': 'application/json', 'Authorization': f'Bearer {token}' } r = requests.get(url, headers=headers) r.raise_for_status() if r.status_code == 200: data = r.json() result = data['tracks']['items'][0] thirty_sec_preview_url = result['preview_url'] return thirty_sec_preview_url else: raise Exception('Failed to get Spotify data.') @st.cache(hash_funcs={Connection: id}) # add caching so we load the data only once def get_connection(path_to_db): # connect to db try: conn = sqlite3.connect(path_to_db, check_same_thread=False) return conn except Exception as e: print(e) def get_data(conn: Connection): sql_query = """ SELECT song, artist, album, date, energy, valence, danceability, instrumentalness, tempo FROM acoustic_features WHERE artist LIKE '%<NAME>%' ORDER BY date DESC """ df =
pd.read_sql(sql_query, con=conn)
pandas.read_sql
""" Test the datasets module """ # Author: <NAME> # License: simplified BSD import os import uuid from pathlib import Path import re import gzip from collections import OrderedDict import numpy as np import json import nibabel import pandas as pd import pytest from nibabel.tmpdirs import TemporaryDirectory from sklearn.utils import check_random_state from nilearn.datasets import func from nilearn.datasets._testing import list_to_archive, dict_to_archive from nilearn.datasets.utils import _get_dataset_dir from nilearn._utils.testing import check_deprecation def _load_localizer_index(): data_dir = Path(__file__).parent / "data" with (data_dir / "localizer_index.json").open() as of: localizer_template = json.load(of) localizer_index = {} for idx in range(1, 95): sid = 'S{:02}'.format(idx) localizer_index.update(dict( (key.format(sid), uuid.uuid4().hex) for key in localizer_template)) localizer_index['/localizer/phenotype/behavioural.tsv'] = uuid.uuid4().hex localizer_index['/localizer/participants.tsv'] = uuid.uuid4().hex tsv_files = {} tsv_files['/localizer/phenotype/behavioural.tsv'] = pd.read_csv( str(data_dir / 'localizer_behavioural.tsv'), sep='\t') tsv_files['/localizer/participants.tsv'] = pd.read_csv( str(data_dir / 'localizer_participants.tsv'), sep='\t') return localizer_index, tsv_files @pytest.fixture() def localizer_mocker(request_mocker): """ Mocks the index for localizer dataset. """ index, tsv_files = _load_localizer_index() request_mocker.url_mapping["https://osf.io/hwbm2/download"] = json.dumps( index) for k, v in tsv_files.items(): request_mocker.url_mapping[ "*{}?".format(index[k][1:])] = v.to_csv(index=False, sep="\t") def _make_haxby_subject_data(match, response): sub_files = ['bold.nii.gz', 'labels.txt', 'mask4_vt.nii.gz', 'mask8b_face_vt.nii.gz', 'mask8b_house_vt.nii.gz', 'mask8_face_vt.nii.gz', 'mask8_house_vt.nii.gz', 'anat.nii.gz'] return list_to_archive(Path(match.group(1), f) for f in sub_files) def test_fetch_haxby(tmp_path, request_mocker): request_mocker.url_mapping[ re.compile(r".*(subj\d).*\.tar\.gz")] = _make_haxby_subject_data for i in range(1, 6): haxby = func.fetch_haxby(data_dir=tmp_path, subjects=[i], verbose=0) # subject_data + (md5 + mask if first subj) assert request_mocker.url_count == i + 2 assert len(haxby.func) == 1 assert len(haxby.anat) == 1 assert len(haxby.session_target) == 1 assert haxby.mask is not None assert len(haxby.mask_vt) == 1 assert len(haxby.mask_face) == 1 assert len(haxby.mask_house) == 1 assert len(haxby.mask_face_little) == 1 assert len(haxby.mask_house_little) == 1 assert haxby.description != '' # subjects with list subjects = [1, 2, 6] haxby = func.fetch_haxby(data_dir=tmp_path, subjects=subjects, verbose=0) assert len(haxby.func) == len(subjects) assert len(haxby.mask_house_little) == len(subjects) assert len(haxby.anat) == len(subjects) assert haxby.anat[2] is None assert isinstance(haxby.mask, str) assert len(haxby.mask_face) == len(subjects) assert len(haxby.session_target) == len(subjects) assert len(haxby.mask_vt) == len(subjects) assert len(haxby.mask_face_little) == len(subjects) subjects = ['a', 8] message = "You provided invalid subject id {0} in a list" for sub_id in subjects: with pytest.raises(ValueError, match=message.format(sub_id)): func.fetch_haxby(data_dir=tmp_path, subjects=[sub_id]) def _adhd_example_subject(match, request): contents = [ Path("data", match.group(1), match.expand(r"\1_regressors.csv")), Path("data", match.group(1), match.expand(r"\1_rest_tshift_RPI_voreg_mni.nii.gz")) ] return list_to_archive(contents) def _adhd_metadata(): sub1 = [3902469, 7774305, 3699991] sub2 = [2014113, 4275075, 1019436, 3154996, 3884955, 27034, 4134561, 27018, 6115230, 27037, 8409791, 27011] sub3 = [3007585, 8697774, 9750701, 10064, 21019, 10042, 10128, 2497695, 4164316, 1552181, 4046678, 23012] sub4 = [1679142, 1206380, 23008, 4016887, 1418396, 2950754, 3994098, 3520880, 1517058, 9744150, 1562298, 3205761, 3624598] subs =
pd.DataFrame({"Subject": sub1 + sub2 + sub3 + sub4})
pandas.DataFrame
# Copyright WillianFuks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for module main.py. Fixtures comes from file conftest.py located at the same dir of this file. """ import mock import numpy as np import pandas as pd import pytest import tensorflow as tf import tensorflow_probability as tfp from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal from causalimpact import CausalImpact from causalimpact.misc import standardize @pytest.mark.slow def test_default_causal_cto(rand_data, pre_int_period, post_int_period): ci = CausalImpact(rand_data, pre_int_period, post_int_period) assert_frame_equal(ci.data, rand_data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = rand_data.loc[post_int_period[0]: post_int_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'fit_method': 'hmc', 'niter': 1000, 'prior_level_sd': 0.01, 'season_duration': 1, 'nseasons': 1, 'standardize': True} assert isinstance(ci.model, tfp.sts.Sum) design_matrix = ci.model.components[1].design_matrix.to_dense() assert_array_equal( design_matrix, pd.concat([normed_pre_data, normed_post_data]).astype(np.float32).iloc[:, 1:] ) assert ci.inferences is not None assert ci.inferences.index.dtype == rand_data.index.dtype assert ci.summary_data is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.model_args['niter'] == 1000 assert ci.model_samples is not None @pytest.mark.slow def test_default_causal_cto_with_date_index(date_rand_data, pre_str_period, post_str_period): ci = CausalImpact(date_rand_data, pre_str_period, post_str_period) assert_frame_equal(ci.data, date_rand_data) assert ci.pre_period == pre_str_period assert ci.post_period == post_str_period pre_data = date_rand_data.loc[pre_str_period[0]: pre_str_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = date_rand_data.loc[post_str_period[0]: post_str_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'fit_method': 'hmc', 'niter': 1000, 'prior_level_sd': 0.01, 'season_duration': 1, 'nseasons': 1, 'standardize': True} assert isinstance(ci.model, tfp.sts.Sum) design_matrix = ci.model.components[1].design_matrix.to_dense() assert_array_equal( design_matrix, pd.concat([normed_pre_data, normed_post_data]).astype(np.float32).iloc[:, 1:] ) assert ci.inferences is not None assert ci.inferences.index.dtype == date_rand_data.index.dtype assert ci.summary_data is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.model_args['niter'] == 1000 assert ci.model_samples is not None @pytest.mark.slow def test_default_causal_cto_no_covariates(rand_data, pre_int_period, post_int_period): rand_data = pd.DataFrame(rand_data.iloc[:, 0]) ci = CausalImpact(rand_data, pre_int_period, post_int_period) assert_frame_equal(ci.data, rand_data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period pre_data = rand_data.loc[pre_int_period[0]: pre_int_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = rand_data.loc[post_int_period[0]: post_int_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig assert_frame_equal(ci.normed_post_data, normed_post_data) assert ci.mu_sig == (mu[0], sig[0]) assert ci.model_args == {'fit_method': 'hmc', 'niter': 1000, 'prior_level_sd': 0.01, 'season_duration': 1, 'nseasons': 1, 'standardize': True} assert isinstance(ci.model, tfp.sts.LocalLevel) assert ci.inferences is not None assert ci.inferences.index.dtype == rand_data.index.dtype assert ci.summary_data is not None assert ci.p_value > 0 and ci.p_value < 1 assert ci.model_args['niter'] == 1000 assert ci.model_samples is not None @pytest.mark.slow def test_default_causal_cto_with_np_array(rand_data, pre_int_period, post_int_period): data = rand_data.values ci = CausalImpact(data, pre_int_period, post_int_period) assert_array_equal(ci.data, data) assert ci.pre_period == pre_int_period assert ci.post_period == post_int_period data = pd.DataFrame(data) pre_data = data.loc[pre_int_period[0]: pre_int_period[1], :] assert_frame_equal(ci.pre_data, pre_data) post_data = data.loc[post_int_period[0]: post_int_period[1], :] assert_frame_equal(ci.post_data, post_data) assert ci.alpha == 0.05 normed_pre_data, (mu, sig) = standardize(pre_data) assert_frame_equal(ci.normed_pre_data, normed_pre_data) normed_post_data = (post_data - mu) / sig
assert_frame_equal(ci.normed_post_data, normed_post_data)
pandas.util.testing.assert_frame_equal
# CONTINUED IN https://github.com/rcsmit/COVIDcases/blob/main/covid_dashboard_rcsmit.py # 27/28 feb 2021 # Calculate the relation between gliding R and mobility (Apple and Google) # Calculate the corelation with hospital admissions and factors mentioned above # Plotting a heatmap with correlations # Plotting a scattermap # Plotting a graph in time, with an adjusted x- # 1 maart 2021 # Merging files on date in different date formats # Remove outliers (doesnt work) # Calculating moving avarages # Make different statistics for weekdays and weekend # Scraping statistics from RIVM # 2 maart # R van ziekenhuisopnames # weekgrafiek # corrigeren vd merge functie # 3 maart # added restrictions (file van @HK_nien, MIT-licence) # downloaden en mergen hospital admission # downloaden en mergen r-getal RIVM # alles omgeFzet in functies # 4 maart # meer onderverdeling in functies. Alles aan te roepen vanuit main() met parameters # 5 maart # custom colors # weekend different color in barplot # annoying problem met een join (van outer naar inner naar outer en toen werkte het weer) # R value (14 days back due to smoothing) #6 maart # last row in bar-graph was omitted due to ["date of statistics"] instead of ["date"] in addwalkingR # Bug wit an reset.index() somewhere. Took a long time to find out # Tried to first calculate SMA and R, and then cut of FROM/UNTIL. Doesnt # work. Took also a huge amount of time. Reversed everything afterwards # 7 maart # weekgraph function with parameters # 8 maart # find columns with max correlation # find the timelag between twee columns # added a second way to calculate and display R # 9-11 maart: Grafieken van Dissel : bezetting bedden vs R # 12 maart # Genormeerde grafiek (max = 1 of begin = 100) # Various Tg vd de R-number-curves # I used iloc. Iterating through pandas objects is generally slow. # In many cases, iterating manually over the rows is not needed and # can be avoided with one of the following approaches: # http://pandas-docs.github.io/pandas-docs-travis/getting_started/basics.html#iteration import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.dates as mdates import seaborn as sn from scipy import stats import datetime as dt from datetime import datetime, timedelta from matplotlib.backends.backend_agg import RendererAgg from matplotlib.font_manager import FontProperties from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator) import matplotlib.ticker as ticker import math _lock = RendererAgg.lock from scipy.signal import savgol_filter import urllib import urllib.request from pathlib import Path from inspect import currentframe, getframeinfo # R-numbers from 'https://data.rivm.nl/covid-19/COVID-19_reproductiegetal.json' # Google mobilty from https://www.google.com/covid19/mobility/?hl=nl # Apple mobility from https://covid19.apple.com/mobility # # Merged in one file in Excel and saved to CSV # Hospitals from RIVM 'https://data.rivm.nl/covid-19/COVID-19_ziekenhuisopnames.csv def download_mob_r(): """ _ _ _ """ df_mob_r = pd.read_csv( r'covid19_seir_models\input\mobility.csv', delimiter=';', low_memory=False ) # datum is 16-2-2020 df_mob_r['date']=pd.to_datetime(df_mob_r['date'], format="%d-%m-%Y") df_mob_r.set_index('date') return df_mob_r def download_hospital_admissions(): """ _ _ _ """ # THIS ARE THE SAME NUMBERS AS ON THE DASHBOARD if download : # Code by <NAME> - MIT License url='https://data.rivm.nl/covid-19/COVID-19_ziekenhuisopnames.csv' #url="https://lcps.nu/wp-content/uploads/covid-19.csv" fpath = Path('covid19_seir_models\input\COVID-19_ziekenhuisopnames.csv') print(f'Getting new daily case statistics file ziekenhuisopnames. ..') with urllib.request.urlopen(url) as response: data_bytes = response.read() fpath.write_bytes(data_bytes) print(f'Wrote {fpath} .') df_hospital = pd.read_csv( r'covid19_seir_models\input\COVID-19_ziekenhuisopnames.csv', delimiter=';', #delimiter=',', low_memory=False ) # datum is 2020-02-27 df_hospital['Date_of_statistics'] = df_hospital['Date_of_statistics'].astype('datetime64[D]') df_hospital = df_hospital.groupby(['Date_of_statistics'] , sort=True).sum().reset_index() #print ("Last hospital admissions : # " (df_hospital.iloc[len (df_hospital)]['Date_of_statistics']) # compression_opts = dict(method=None, # archive_name='out.csv') # df_hospital.to_csv('outhospital.csv', index=False, # compression=compression_opts) #print (df_hospital) #save_df(df_hospital,"ziekenhuisopnames_RIVM") return df_hospital def download_lcps(): """Download data from LCPS""" if download : # Code by <NAME> - MIT License url='https://lcps.nu/wp-content/uploads/covid-19.csv' #url="https://lcps.nu/wp-content/uploads/covid-19.csv" fpath = Path('covid19_seir_models\input\LCPS.csv') print(f'Getting new daily case statistics file LCPS...') with urllib.request.urlopen(url) as response: data_bytes = response.read() fpath.write_bytes(data_bytes) print(f'Wrote {fpath} .') df_lcps = pd.read_csv( r'covid19_seir_models\input\LCPS.csv', delimiter=',', #delimiter=',', low_memory=False ) # print (df_lcps) # print (df_lcps.dtypes) # Datum,IC_Bedden_COVID,IC_Bedden_Non_COVID,Kliniek_Bedden,IC_Nieuwe_Opnames_COVID, # Kliniek_Nieuwe_Opnames_COVID # datum is 2020-02-27 df_lcps['Datum']=pd.to_datetime(df_lcps['Datum'], format="%d-%m-%Y") #df_lcps = df_lcps.groupby(['Datum'] , sort=True).sum().reset_index() # compression_opts = dict(method=None, # archive_name='out.csv') # df_hospital.to_csv('outhospital.csv', index=False, # compression=compression_opts) return df_lcps def download_reproductiegetal(): """ _ _ _ """ #https://data.rivm.nl/covid-19/COVID-19_reproductiegetal.json if download == True: print ("Download reproductiegetal-file") #df_reprogetal = pd.read_json (r'covid19_seir_models\input\COVID-19_reproductiegetal.json') df_reprogetal = pd.read_json (r'https://data.rivm.nl/covid-19/COVID-19_reproductiegetal.json') # url = 'https://data.rivm.nl/covid-19/COVID-19_reproductiegetal.json' compression_opts = dict(method=None, archive_name='reprogetal.csv') df_reprogetal.to_csv('covid19_seir_models\\input\\reprogetal.csv', index=False, compression=compression_opts) df_reprogetal.set_index("Date") else: df_reprogetal = pd.read_csv( r'covid19_seir_models\input\reprogetal.csv', delimiter=',', #delimiter=',', low_memory=False) df_reprogetal['Date']=pd.to_datetime(df_reprogetal['Date'], format="%Y-%m-%d") # als er nog geen reprogetal berekend is, neem dan het gemiddeld van low en up # vanaf half juni is dit altijd het geval geweest (0,990 en 1,000) #df_reprogetal.loc[df_reprogetal["Rt_avg"].isnull(),'Rt_avg'] = round(((df_reprogetal["Rt_low"] + df_reprogetal["Rt_up"])/2),2) #print (df_reprogetal) return df_reprogetal def download_gemeente_per_dag(): """ _ _ _ """ if download : # Code by <NAME> - MIT License url='https://data.rivm.nl/covid-19/COVID-19_aantallen_gemeente_per_dag.csv' # Het werkelijke aantal COVID-19 patiënten opgenomen in het ziekenhuis is hoger dan # het aantal opgenomen patiënten gemeld in de surveillance, omdat de GGD niet altijd op # de hoogte is van ziekenhuisopname als deze na melding plaatsvindt. # Daarom benoemt het RIVM sinds 6 oktober actief de geregistreerde ziekenhuisopnames # van Stichting NICE #url="https://lcps.nu/wp-content/uploads/covid-19.csv" fpath = Path('covid19_seir_models\input\COVID-19_aantallen_gemeente_per_dag.csv') print(f'Getting new daily case statistics file - aantallen-gemeente-per-dag - ...') with urllib.request.urlopen(url) as response: data_bytes = response.read() fpath.write_bytes(data_bytes) print(f'Wrote {fpath} .') df_gemeente_per_dag = pd.read_csv( r'covid19_seir_models\input\COVID-19_aantallen_gemeente_per_dag.csv', delimiter=';', #delimiter=',', low_memory=False) df_gemeente_per_dag['Date_of_publication'] = df_gemeente_per_dag['Date_of_publication'].astype('datetime64[D]') df_gemeente_per_dag = df_gemeente_per_dag.groupby(['Date_of_publication'] , sort=True).sum().reset_index() #save_df(df_gemeente_per_dag,"COVID-19_aantallen_per_dag") return df_gemeente_per_dag def download_uitgevoerde_testen(): """ _ _ _ """ # Version;Date_of_report;Date_of_statistics;Security_region_code; # Security_region_name;Tested_with_result;Tested_positive if download : # Code by <NAME> - MIT License url='https://data.rivm.nl/covid-19/COVID-19_uitgevoerde_testen.csv' fpath = Path('covid19_seir_models\input\COVID-19_uitgevoerde_testen.csv') print(f'Getting new daily case statistics file - testen - ...') with urllib.request.urlopen(url) as response: data_bytes = response.read() fpath.write_bytes(data_bytes) print(f'Wrote {fpath} .') df_uitgevoerde_testen = pd.read_csv( r'covid19_seir_models\input\COVID-19_uitgevoerde_testen.csv', delimiter=';', #delimiter=',', low_memory=False) #df_uitgevoerde_testen['Date_of_publication'] = df_uitgevoerde_testen['Date_of_publication'].astype('datetime64[D]') df_uitgevoerde_testen['Date_of_statistics'] = df_uitgevoerde_testen['Date_of_statistics'].astype('datetime64[D]') df_uitgevoerde_testen = df_uitgevoerde_testen.groupby(['Date_of_statistics'] , sort=True).sum().reset_index() df_uitgevoerde_testen['Percentage_positive'] = round((df_uitgevoerde_testen['Tested_positive'] / df_uitgevoerde_testen['Tested_with_result'] * 100),2 ) #save_df(df_uitgevoerde_testen,"COVID-19_uitgevoerde_testen") return df_uitgevoerde_testen ################################################################### def get_data(): """ _ _ _ """ df_hospital = download_hospital_admissions() #sliding_r_df = walkingR(df_hospital, "Hospital_admission") df_lcps = download_lcps() df_mob_r = download_mob_r() df_gemeente_per_dag = download_gemeente_per_dag() df_reprogetal = download_reproductiegetal() df_uitgevoerde_testen = download_uitgevoerde_testen() type_of_join = "outer" df = pd.merge(df_mob_r, df_hospital, how=type_of_join, left_on = 'date', right_on="Date_of_statistics") #df = df_hospital df.loc[df['date'].isnull(),'date'] = df['Date_of_statistics'] df = pd.merge(df, df_lcps, how=type_of_join, left_on = 'date', right_on="Datum") df.loc[df['date'].isnull(),'date'] = df['Datum'] #df = pd.merge(df, sliding_r_df, how=type_of_join, left_on = 'date', right_on="date_sR", left_index=True ) df = pd.merge(df, df_gemeente_per_dag, how=type_of_join, left_on = 'date', right_on="Date_of_publication", left_index=True ) df = pd.merge(df, df_reprogetal, how=type_of_join, left_on = 'date', right_on="Date", left_index=True ) df = pd.merge(df, df_uitgevoerde_testen, how=type_of_join, left_on = 'date', right_on="Date_of_statistics", left_index=True ) df = df.sort_values(by=['date']) df = splitupweekweekend(df) df, werkdagen, weekend_ = last_manipulations(df, None, None) df.set_index('date') return df, werkdagen, weekend_ ################################################### def calculate_cases(df): column = df["date"] b_= column.max().date() #fr = '2021-1-10' #doesnt work fr = FROM a_ = dt.datetime.strptime(fr,'%Y-%m-%d').date() #b_ = dt.datetime.strptime(UNTIL,'%Y-%m-%d').date() datediff = ( abs((a_ - b_).days))+1+30 f = 1 ry1 = 0.8 * f ry2 = 1.15 * f total_cases_0 = 7500 sec_variant = 10 population = 17_500_000 immune_day_zero = 2_500_000 suspectible_0 = population - immune_day_zero cumm_cases = 0 cases_1 = ((100-sec_variant)/100)* total_cases_0 cases_2 = (sec_variant/100)* total_cases_0 temp_1 = cases_1 temp_2 = cases_2 r_temp_1 = ry1 r_temp_2 = ry2 immeratio = 1 df_calculated = pd.DataFrame({'date_calc': a_, 'variant_1': cases_1,'variant_2' :cases_2, 'variant_12' : int(cases_1+cases_2)}, index=[0]) Tg = 4 #print (df_calculated.dtypes) #a_ = dt.datetime.strptime(a,'%m/%d/%Y').date() column = df["date"] max_value = column. max() for day in range (1, datediff): thalf1 = Tg * math.log(0.5) / math.log(immeratio*ry1) thalf2 = Tg * math.log(0.5) / math.log(immeratio*ry2) day = a_ + timedelta(days=day) pt1 = (temp_1 * (0.5**(1/thalf1))) pt2 = (temp_2* (0.5**(1/thalf2))) day_ = day.strftime("%Y-%m-%d") # FROM object TO string day__ = dt.datetime.strptime(day_,'%Y-%m-%d') # from string to daytime df_calculated =df_calculated .append({'date_calc':day_, 'variant_1' : int(pt1), 'variant_2' : int(pt2) , 'variant_12' : int(pt1+pt2) },ignore_index=True) temp_1 = pt1 temp_2 = pt2 cumm_cases += pt1 + pt2 immeratio = (1-(cumm_cases/suspectible_0 )) df_calculated['date_calc'] = pd.to_datetime( df_calculated['date_calc']) df = pd.merge(df, df_calculated, how='outer', left_on = 'date', right_on="date_calc", left_index=True ) print (df.dtypes) df.loc[df['date'].isnull(),'date'] = df['date_calc'] return df, ry1, ry2 def splitupweekweekend(df): """ _ _ _ """ # SPLIT UP IN WEEKDAY AND WEEKEND # https://stackoverflow.com/posts/56336718/revisions df['WEEKDAY'] = pd.to_datetime(df['date']).dt.dayofweek # monday = 0, sunday = 6 df['weekend'] = 0 # Initialize the column with default value of 0 df.loc[df['WEEKDAY'].isin([5, 6]), 'weekend'] = 1 # 5 and 6 correspond to Sat and Sun return df # remove outliers - doesnt work # df = df[(np.abs(stats.zscore(df['retail_and_recreation'])) < 3)] # df = df[(np.abs(stats.zscore(df['transit_stations'])) < 3)] # df = df[(np.abs(stats.zscore(df['workplaces'])) < 3)] # df = df[(np.abs(stats.zscore(df['grocery_and_pharmacy'])) < 3)] def add_walking_r(df, smoothed_columns, how_to_smooth, tg): """ _ _ _ """ #print(df) # Calculate walking R from a certain base. Included a second methode to calculate R # de rekenstappen: (1) n=lopend gemiddelde over 7 dagen; (2) Rt=exp(Tc*d(ln(n))/dt) # met Tc=4 dagen, (3) data opschuiven met rapportagevertraging (10 d) + vertraging # lopend gemiddelde (3 d). # https://twitter.com/hk_nien/status/1320671955796844546 column_list_r_smoothened = [] column_list_r_sec_smoothened = [] d= 1 d2=2 r_sec = [] for base in smoothed_columns: column_name_R = 'R_value_from_'+ base +'_tg'+str(tg) column_name_R_sec = 'R_value_(hk)_from_'+ base #df, new_column = smooth_columnlist(df,[base],how_to_smooth) column_name_r_smoothened = 'R_value_from_'+ base +'_tg'+str(tg) + '_'+ how_to_smooth + '_' + str(WDW3) column_name_r_sec_smoothened = 'R_value_sec_from_'+ base +'_tg'+str(tg) + '_'+ how_to_smooth + '_' + str(WDW3) #df[SMA1] = df.iloc[:,df.columns.get_loc(base)].rolling(window=WDW2).mean() sliding_r_df= pd.DataFrame({'date_sR': [], column_name_R: [],column_name_R_sec: []}) for i in range(len(df)): if df.iloc[i][base] != None: date_ =
pd.to_datetime(df.iloc[i]['date'], format="%Y-%m-%d")
pandas.to_datetime
# %% import pandas as pd import numpy as np import os,sys import re from sklearn.preprocessing import OneHotEncoder from sklearn.decomposition import PCA #%% initial path cur_path = sys.path[0].split(os.path.sep) workspace_path = os.path.sep.join(cur_path[:cur_path.index("bestpaycup2020")+1]) os.chdir(workspace_path) # 把运行目录强制转移到【工作区】 print(f"把运行目录强制转移到【工作区】{os.getcwd()}") #%% TRAIN_BASE_PATH = "./dataset/raw_dataset/trainset/train_base.csv" TRAIN_OP_PATH = "./dataset/raw_dataset/trainset/train_op.csv" TRAIN_TRANS_PATH = "./dataset/raw_dataset/trainset/train_trans.csv" TEST_A_BASE_PATH = "./dataset/raw_dataset/testset/test_a_base.csv" TEST_A_OP_PATH = "./dataset/raw_dataset/testset/test_a_op.csv" TEST_A_TRANS_PATH = "./dataset/raw_dataset/testset/test_a_trans.csv" TEST_B_BASE_PATH = "./dataset/raw_dataset/testset/test_b_base.csv" TEST_B_OP_PATH = "./dataset/raw_dataset/testset/test_b_op.csv" TEST_B_TRANS_PATH = "./dataset/raw_dataset/testset/test_b_trans.csv" SAMPLE_BASE_PATH = "./dataset/raw_dataset/sample_trainset/sample_base.csv" SAMPLE_OP_PATH = "./dataset/raw_dataset/sample_trainset/sample_op.csv" SAMPLE_TRANS_PATH = "./dataset/raw_dataset/sample_trainset/sample_trans.csv" PROCESSED_TRAIN_BASE_PATH = "./dataset/dataset1/trainset/train_base.csv" PROCESSED_TEST_A_BASE_PATH = "./dataset/dataset1/testset/test_a_base.csv" PROCESSED_TEST_B_BASE_PATH = "./dataset/dataset1/testset/test_b_base.csv" # %% def process_base(base_path,verbose=False): # TODO: provider, province和city都各有一个缺失值,需要众数填补 def to_int(entry): if type(entry) is str: level = re.search("^(category |level |Train_|TestA_|TestB_)([0-9]+)",entry) if level: return int(level.group(2)) return entry # 读取数据,制作备份,数据转型 base = pd.read_csv(base_path) base2 = base.copy() for e in base2.columns: base2[e] = base[e].apply(to_int) # 处理缺失值 # base2["sex"][base2["sex"].isna()] = 3 base2["sex"].fillna(base2["sex"].mode()[0], inplace=True) base2["balance_avg"].fillna(base2["balance_avg"].mode()[0],inplace=True) base2["balance1_avg"].fillna(base2["balance1_avg"].mode()[0],inplace=True) # base2["balance1_avg"][base2["balance1_avg"].isna()]=base2["balance1_avg"].mode()[0] # 合并service3项 base2["service3"][base2["service3"]==0] = -1 base2["service3"][base2["service3"] != -1] = base2["service3_level"][base2["service3_level"].notna()] base2.drop("service3_level",axis=1,inplace=True) # 删除service3_level列 print(f"{base_path} has shape {base2.shape} after processing") if verbose: print(base2.info()) print(base2.discribe()) return base2 #%% for base_path,processed_base_path in [(TRAIN_BASE_PATH,PROCESSED_TRAIN_BASE_PATH), (TEST_A_BASE_PATH,PROCESSED_TEST_A_BASE_PATH), (TEST_B_BASE_PATH,PROCESSED_TEST_B_BASE_PATH)]: base2 = process_base(base_path) if not os.path.exists(os.path.split(processed_base_path)[0]): os.makedirs(os.path.split(processed_base_path)[0]) with open(processed_base_path,"w") as f: base2.to_csv(f,index=False,line_terminator='\n') # %% # base_path = TEST_B_BASE_PATH # processed_base_path = PROCESSED_TEST_B_BASE_PATH # base_df = process_base(base_path) # if not os.path.exists(os.path.split(processed_base_path)[0]): # os.makedirs(os.path.split(processed_base_path)[0]) # with open(processed_base_path, "w") as f: # base_df.to_csv(f, index=False, line_terminator='\n') # %% def process_base_onehot(base_dir, dim): train_df = pd.read_csv(base_dir + '/dataset/dataset1/trainset/train_base.csv') test_a_df = pd.read_csv(base_dir + '/dataset/dataset1/testset/test_a_base.csv') test_b_df = pd.read_csv(base_dir + '/dataset/dataset1/testset/test_b_base.csv') province =
pd.concat([train_df['province'], test_a_df['province'], test_b_df['province']])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Mon Jan 18 21:33:10 2021 @author: Devineni """ import pandas as pd import numpy as np from statistics import mean import time import datetime as dt import matplotlib.pyplot as plt from tabulate import tabulate # import mysql.connector import os import pymysql from sqlalchemy import create_engine from openpyxl import load_workbook import statistics from easygui import * import sys def prRed(skk): print("\033[31;1;m {}\033[00m" .format(skk)) from uncertainties import ufloat engine = create_engine("mysql+pymysql://root:Password123@localhost/",pool_pre_ping=True) #%%% import datetime import matplotlib.dates as mdates import matplotlib.units as munits from pylab import rcParams rcParams['figure.figsize'] = 7,4.5 # rcParams['figure.figsize'] = 19,15 # word plt.rcParams["font.family"] = "calibri" plt.rcParams["font.weight"] = "normal" plt.rcParams["font.size"] = 10 #%% Automated Outdoor results ''' This section deals with taking input selection of the experiment easygui module was used to create the dialogue boxes for easy input this is just a more visual way for experiment selection ''' i=0 result1 = pd.DataFrame(["Outdoor Summary"]) databases = ["ESHL_summer", "ESHL_winter", "CBo_summer", "CBo_winter"] for database in databases: times = pd.read_excel('C:/Users/Raghavakrishna/OneDrive - bwedu/MA_Raghavakrishna/0_Evaluation/excel_files/Times_thesis.xlsx', sheet_name= database) choices = list(times['short name']) for experiment in choices: z = int(times[times['short name'] == experiment].index.values) Vdot_sheets = {"ESHL_summer":"ESHL_Vdot", "ESHL_winter":"ESHL_Vdot", "CBo_summer":"CBo_Vdot", "CBo_winter":"CBo_Vdot"} t0 = times.loc[z,"Start"] tn = times.loc[z,"End"] #%%% result = pd.DataFrame(["Outdoor Results"]) ;result.loc[0,1] = experiment r = 1 adf = pd.read_sql_query("SELECT * FROM weather.außen WHERE datetime BETWEEN '{}' AND '{}'".format(t0,tn), con = engine).drop("index", axis = 1).set_index("datetime") result.loc[r,0] = "parameter" ; result.loc[r,1] = "min" ; result.loc[r,2] = "max"; result.loc[r,3] = "mean" ; result.loc[r,4] = "std" r += 1 result.loc[r,0] = "temp_°C" ; result.loc[r,1] = adf["temp_°C"].min() ; result.loc[r,2] = adf["temp_°C"].max(); result.loc[r,3] = adf["temp_°C"].mean() ; result.loc[r,4] = adf["temp_°C"].std() r += 1 result.loc[r,0] = "RH_%rH" ; result.loc[r,1] = adf["RH_%rH"].min() ; result.loc[r,2] = adf["RH_%rH"].max(); result.loc[r,3] = adf["RH_%rH"].mean() ; result.loc[r,4] = adf["RH_%rH"].std() r += 1 result.loc[r,0] = "CO2_ppm" ; result.loc[r,1] = adf["CO2_ppm"].min() ; result.loc[r,2] = adf["CO2_ppm"].max(); result.loc[r,3] = adf["CO2_ppm"].mean() ; result.loc[r,4] = adf["CO2_ppm"].std() wdf = pd.read_sql_query("SELECT * FROM weather.weather_all WHERE datetime BETWEEN '{}' AND '{}'".format(t0,tn), con = engine).set_index("datetime") r += 1 result.loc[r,0] = "Wind Speed, m/s" ; result.loc[r,1] = wdf["Wind Speed, m/s"].min() ; result.loc[r,2] = wdf["Wind Speed, m/s"].max(); result.loc[r,3] = wdf["Wind Speed, m/s"].mean() ; result.loc[r,4] = wdf["Wind Speed, m/s"].std() r += 1 result.loc[r,0] = "Gust Speed, m/s" ; result.loc[r,1] = wdf["Gust Speed, m/s"].min() ; result.loc[r,2] = wdf["Gust Speed, m/s"].max(); result.loc[r,3] = wdf["Gust Speed, m/s"].mean() ; result.loc[r,4] = wdf["Gust Speed, m/s"].std() #%%%writer # path = "C:/Users/Devineni/OneDrive - bwedu/MA_Raghavakrishna/0_Evaluation/results/outdoor_results.xlsx" # book = load_workbook(path) # writer = pd.ExcelWriter(path, engine = 'openpyxl') # writer.book = book # result.to_excel(writer, index = False , sheet_name = experiment[:10]) # writer.save() # writer.close() #%%% result1.loc[i+1,0] = experiment; result1.loc[i+1,1] = adf["temp_°C"].mean(); result1.loc[i+1,2] = adf["temp_°C"].std() result1.loc[i+1,3] = adf["RH_%rH"].mean();result1.loc[i+1,4] = adf["RH_%rH"].std() result1.loc[i+1,5] = adf["CO2_ppm"].mean();result1.loc[i+1,6] = adf["CO2_ppm"].std() result1.loc[i+1,7] = wdf["Wind Speed, m/s"].mean();result1.loc[i+1,8] = wdf["Wind Speed, m/s"].std() result1.loc[i+1,9] = wdf["Gust Speed, m/s"].mean();result1.loc[i+1,10] = wdf["Gust Speed, m/s"].std(); result1.loc[i+1,11] = wdf["Wind Direction"].mean();result1.loc[i+1,12] = wdf["Wind Direction"].std() result1.loc[i+1,13] = wdf["Temperature °C"].mean();result1.loc[i+1,14] = wdf["Temperature °C"].std(); result1.loc[i+1,15] = wdf["RH %"].mean();result1.loc[i+1,16] = wdf["RH %"].std() i = i+1 result1.columns = ["experiment", "temp_°C","std","RH_%rH","std","CO2_ppm" ,"std","Wind Speed, m/s","std","Gust Speed, m/s","std","Wind Direction","std", "Temperature °C","std", "RH %","std"] #%%%writer # path = "C:/Users/Devineni/OneDrive - bwedu/MA_Raghavakrishna/0_Evaluation/results/outdoor_results.xlsx" # book = load_workbook(path) # writer = pd.ExcelWriter(path, engine = 'openpyxl') # writer.book = book # result1.to_excel(writer, index = False , sheet_name = "summary") # writer.save() # writer.close() #%%% Manual selection # ''' # This section deals with taking input selection of the experiment # easygui module was used to create the dialogue boxes for easy input # this is just a more visual way for experiment selection # ''' # msg ="Please select a Location/Season you like to analyze" # title = "Season selection" # choices = ["ESHL_summer", "ESHL_winter", "CBo_summer", "CBo_winter"] # database = choicebox(msg, title, choices) # times = pd.read_excel('C:/Users/Devineni/OneDrive - bwedu/MA_Raghavakrishna/0_Evaluation/excel_files/Times_thesis.xlsx', sheet_name= database) # msg ="Please select an experiment you would like to analyse in {database}".format(database = str(database)) # title = "Experiment selection" # choices = list(times['short name']) # experiment = choicebox(msg, title, choices) # z = int(times[times['short name'] == experiment].index.values) # Vdot_sheets = {"ESHL_summer":"ESHL_Vdot", "ESHL_winter":"ESHL_Vdot", "CBo_summer":"CBo_Vdot", "CBo_winter":"CBo_Vdot"} # t0 = times.loc[z,"Start"] # tn = times.loc[z,"End"] # #%% # result = pd.DataFrame(["Outdoor Results"]) ;result.loc[0,1] = experiment # r = 1 # adf = pd.read_sql_query("SELECT * FROM weather.außen WHERE datetime BETWEEN '{}' AND '{}'".format(t0,tn), con = engine).drop("index", axis = 1).set_index("datetime") # result.loc[r,0] = "parameter" ; result.loc[r,1] = "min" ; result.loc[r,2] = "max"; result.loc[r,3] = "mean" ; result.loc[r,4] = "std" # r += 1 # result.loc[r,0] = "temp_°C" ; result.loc[r,1] = adf["temp_°C"].min() ; result.loc[r,2] = adf["temp_°C"].max(); result.loc[r,3] = adf["temp_°C"].mean() ; result.loc[r,4] = adf["temp_°C"].std() # r += 1 # result.loc[r,0] = "RH_%rH" ; result.loc[r,1] = adf["RH_%rH"].min() ; result.loc[r,2] = adf["RH_%rH"].max(); result.loc[r,3] = adf["RH_%rH"].mean() ; result.loc[r,4] = adf["RH_%rH"].std() # r += 1 # result.loc[r,0] = "CO2_ppm" ; result.loc[r,1] = adf["CO2_ppm"].min() ; result.loc[r,2] = adf["CO2_ppm"].max(); result.loc[r,3] = adf["CO2_ppm"].mean() ; result.loc[r,4] = adf["CO2_ppm"].std() # wdf = pd.read_sql_query("SELECT * FROM weather.weather_all WHERE datetime BETWEEN '{}' AND '{}'".format(t0,tn), con = engine).set_index("datetime") # r += 1 # result.loc[r,0] = "Wind Speed, m/s" ; result.loc[r,1] = wdf["Wind Speed, m/s"].min() ; result.loc[r,2] = wdf["Wind Speed, m/s"].max(); result.loc[r,3] = wdf["Wind Speed, m/s"].mean() ; result.loc[r,4] = wdf["Wind Speed, m/s"].std() # r += 1 # result.loc[r,0] = "Gust Speed, m/s" ; result.loc[r,1] = wdf["Gust Speed, m/s"].min() ; result.loc[r,2] = wdf["Gust Speed, m/s"].max(); result.loc[r,3] = wdf["Gust Speed, m/s"].mean() ; result.loc[r,4] = wdf["Gust Speed, m/s"].std() # #%% # path = "C:/Users/Devineni/OneDrive - bwedu/MA_Raghavakrishna/0_Evaluation/results/outdoor_results.xlsx" # book = load_workbook(path) # writer = pd.ExcelWriter(path, engine = 'openpyxl') # writer.book = book # result.to_excel(writer, index = False , sheet_name = experiment[:10]) # writer.save() # writer.close() #%% Wall temperature Indoor i=0 wall_dict = {"ESHL_summer":"eshl_summer_wall", "ESHL_winter":"eshl_winter_wall", "CBo_summer":"cbo_summer_wall", "CBo_winter":"cbo_winter_wall"} result_wall = pd.DataFrame(["Wall Summary"]) databases = ["ESHL_summer", "ESHL_winter", "CBo_summer", "CBo_winter"] for database in databases: times = pd.read_excel('C:/Users/Raghavakrishna/OneDrive - bwedu/MA_Raghavakrishna/0_Evaluation/excel_files/Times_thesis.xlsx', sheet_name= database) choices = list(times['short name']) for experiment in choices: z = int(times[times['short name'] == experiment].index.values) Vdot_sheets = {"ESHL_summer":"ESHL_Vdot", "ESHL_winter":"ESHL_Vdot", "CBo_summer":"CBo_Vdot", "CBo_winter":"CBo_Vdot"} t0 = times.loc[z,"Start"] tn = times.loc[z,"End"] #%% schema = "weather" ''' this engine is used where ever connection is required to database''' engine = create_engine("mysql+pymysql://root:Password123@localhost/{}".format(schema),pool_pre_ping=True) wadf = pd.read_sql_query("SELECT * FROM weather.{} WHERE datetime BETWEEN '{}' AND '{}'".format(wall_dict[database],t0,tn), con = engine).set_index("datetime") result_wall.loc[i+1,0] = experiment; result_wall.loc[i+1,1] = wadf.mean().mean();result_wall.loc[i+1,2] = wadf.mean().std() i = i+1 result_wall.columns = ["experiment", "temp_°C", "std"] #%%writer # path = "C:/Users/Devineni/OneDrive - bwedu/MA_Raghavakrishna/0_Evaluation/results/indoor_results.xlsx" # book = load_workbook(path) # writer = pd.ExcelWriter(path, engine = 'openpyxl') # writer.book = book # result_wall.to_excel(writer, index = False , sheet_name = "wall_temp") # writer.save() # writer.close() #%% Humidity Indoor result_humidity =
pd.DataFrame(["Humidity Summary"])
pandas.DataFrame
# License: Apache-2.0 import databricks.koalas as ks import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from gators.feature_generation.elementary_arithmethics import ElementaryArithmetics @pytest.fixture def data_add(): X = pd.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC")) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, -2.0, -4.0], [3.0, 4.0, 5.0, -5.0, -7.0], [6.0, 7.0, 8.0, -8.0, -10.0], ] ), columns=["A", "B", "C", "A__-__B", "A__-__C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), coef=-2.0, operator="+" ).fit(X) return obj, X, X_expected @pytest.fixture def data_float32_add(): X = pd.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC")) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, -2.0, -4.0], [3.0, 4.0, 5.0, -5.0, -7.0], [6.0, 7.0, 8.0, -8.0, -10.0], ] ), columns=["A", "B", "C", "A__-__B", "A__-__C"], ).astype(np.float32) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), coef=-2.0, operator="+", dtype=np.float32, ).fit(X) return obj, X, X_expected @pytest.fixture def data_name_add(): X = pd.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC"), dtype=np.float64) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, -2.0, -4.0], [3.0, 4.0, 5.0, -5.0, -7.0], [6.0, 7.0, 8.0, -8.0, -10.0], ] ), columns=["A", "B", "C", "A+B", "A+C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), coef=-2.0, operator="+", column_names=["A+B", "A+C"], ).fit(X) return obj, X, X_expected @pytest.fixture def data_mult(): X = pd.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC"), dtype=np.float64) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, 0.0, 0.0], [3.0, 4.0, 5.0, 12.0, 15.0], [6.0, 7.0, 8.0, 42.0, 48.0], ] ), columns=["A", "B", "C", "A__*__B", "A__*__C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), operator="*" ).fit(X) return obj, X, X_expected @pytest.fixture def data_div(): X = pd.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC"), dtype=np.float64) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, 0.0, 0], [3.0, 4.0, 5.0, 0.75, 0.59999988], [6.0, 7.0, 8.0, 0.85714286, 0.7499999], ] ), columns=["A", "B", "C", "A__/__B", "A__/__C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), operator="/" ).fit(X) return obj, X, X_expected @pytest.fixture def data_add_ks(): X = ks.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC")) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, -2.0, -4.0], [3.0, 4.0, 5.0, -5.0, -7.0], [6.0, 7.0, 8.0, -8.0, -10.0], ] ), columns=["A", "B", "C", "A__-__B", "A__-__C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), coef=-2.0, operator="+" ).fit(X) return obj, X, X_expected @pytest.fixture def data_float32_add_ks(): X = ks.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC")) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, -2.0, -4.0], [3.0, 4.0, 5.0, -5.0, -7.0], [6.0, 7.0, 8.0, -8.0, -10.0], ] ), columns=["A", "B", "C", "A__-__B", "A__-__C"], ).astype(np.float32) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), coef=-2.0, operator="+", dtype=np.float32, ).fit(X) return obj, X, X_expected @pytest.fixture def data_name_add_ks(): X = ks.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC"), dtype=np.float64) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, -2.0, -4.0], [3.0, 4.0, 5.0, -5.0, -7.0], [6.0, 7.0, 8.0, -8.0, -10.0], ] ), columns=["A", "B", "C", "A+B", "A+C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), coef=-2.0, operator="+", column_names=["A+B", "A+C"], ).fit(X) return obj, X, X_expected @pytest.fixture def data_mult_ks(): X = ks.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC"), dtype=np.float64) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, 0.0, 0.0], [3.0, 4.0, 5.0, 12.0, 15.0], [6.0, 7.0, 8.0, 42.0, 48.0], ] ), columns=["A", "B", "C", "A__*__B", "A__*__C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), operator="*" ).fit(X) return obj, X, X_expected @pytest.fixture def data_div_ks(): X = ks.DataFrame(np.arange(9).reshape(3, 3), columns=list("ABC"), dtype=np.float64) X_expected = pd.DataFrame( np.array( [ [0.0, 1.0, 2.0, 0.0, 0], [3.0, 4.0, 5.0, 0.75, 0.59999988], [6.0, 7.0, 8.0, 0.85714286, 0.7499999], ] ), columns=["A", "B", "C", "A__/__B", "A__/__C"], ) obj = ElementaryArithmetics( columns_a=list("AA"), columns_b=list("BC"), operator="/" ).fit(X) return obj, X, X_expected def test_add_pd(data_add): obj, X, X_expected = data_add X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_add_ks(data_add_ks): obj, X, X_expected = data_add_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_add_pd_np(data_add): obj, X, X_expected = data_add X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_add_ks_np(data_add_ks): obj, X, X_expected = data_add_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) def test_float32_add_pd(data_float32_add): obj, X, X_expected = data_float32_add X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_float32_add_ks_ks(data_float32_add_ks): obj, X, X_expected = data_float32_add_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_float32_add_pd_np(data_float32_add): obj, X, X_expected = data_float32_add X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_float32_add_ks_np_ks(data_float32_add_ks): obj, X, X_expected = data_float32_add_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) def test_mult_pd(data_mult): obj, X, X_expected = data_mult X_new = obj.transform(X) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_mult_ks(data_mult_ks): obj, X, X_expected = data_mult_ks X_new = obj.transform(X) assert_frame_equal(X_new.to_pandas(), X_expected) def test_mult_pd_np(data_mult): obj, X, X_expected = data_mult X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values) assert_frame_equal(X_new, X_expected) @pytest.mark.koalas def test_mult_ks_np(data_mult_ks): obj, X, X_expected = data_mult_ks X_numpy_new = obj.transform_numpy(X.to_numpy()) X_new = pd.DataFrame(X_numpy_new) X_expected = pd.DataFrame(X_expected.values)
assert_frame_equal(X_new, X_expected)
pandas.testing.assert_frame_equal
import pandas as pd import sys # 节点列 nodes = ['车系1', '车型', '基本参数', '车身', '变速箱', '底盘转向', '车轮制动', '发动机'] # 基本参数 base_parameters = ['厂商', '级别', '能源类型', '环保标准', '上市时间', '最大功率(kW)', '发动机', '变速箱', '车身结构', '最高车速(km/h)', '工信部综合油耗(L/100km)', '整车质保'] # 车身 car_body = ['高度(mm)', '轴距(mm)', '前轮距(mm)', '后轮距(mm)', '最小离地间隙(mm)', '整备质量(kg)', '车身结构', '车门数(个)', '座位数(个)', '后排车门开启方式', '油箱容积(L)', '货箱尺寸(mm)'] # 变速箱 bian_su_xiang = ['简称', '变速箱类型'] # 底盘转向 di_pan_zhuan_xiang = ['前悬架类型', '后悬架类型', '助力类型', '车体结构'] # 车轮制动 che_lun_zhi_dong = ['前轮胎规格', '后轮胎规格'] # 发动机 fa_dong_ji = [ '排量(L)', '进气形式', '气缸排列形式', '气缸数(个)', '每缸气门数(个)', '压缩比', '配气机构', '缸径(mm)', '行程(mm)', '最大马力(Ps)', '最大功率(kW)', '最大功率转速(rpm)', '最大扭矩(N·m)', '最大扭矩转速(rpm)', '燃料形式', '燃油标号', '供油方式', '缸盖材料', '缸体材料', '环保标准'] # 文件名mapping filenames_mapping = {'车系1':'che_xi', '车型':'che_xing', '基本参数':'base_parameters', '车身':'car_body', '变速箱':'bian_su_xiang', '底盘转向':'di_pan_zhuan_xiang', '车轮制动':'che_lun_zhi_dong', '发动机':'fa_dong_ji'} if __name__ == '__main__': data = pd.read_excel('./data/test3.xlsx', index_col='Unnamed: 0') # 车系和车型节点 current_index = 0 for node in nodes[:2]: result = pd.DataFrame(columns=['id:ID', 'name']) temp = list(set(data[node])) result['name'] = temp result['id:ID'] = [i for i in range(current_index, current_index + len(temp))] current_index += len(temp) # to csv result.to_csv('./data/entities/' + filenames_mapping[node] + '.csv', encoding='utf-8', index=False) che_xi =
pd.read_csv('./data/entities/che_xi.csv')
pandas.read_csv
""" Titanic: Machine Learning from Disaster Predict which passengers survived the Titanic shipwreck. https://www.kaggle.com/c/titanic/overview """ import pickle import numpy as np import pandas as pd from sklearn import preprocessing from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report, f1_score from sklearn.linear_model import LogisticRegressionCV from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.naive_bayes import ComplementNB from xgboost import XGBClassifier # ------------------------ Helper Functions ------------------------ def scale_feature(data): scaler = preprocessing.MinMaxScaler() dataScaled = scaler.fit_transform(data) return dataScaled def encode_words(data): encoder = preprocessing.OrdinalEncoder().fit(data) dataEnc = encoder.transform(data) return dataEnc def count_survivors(dataY): """ DEPRECATED """ survived = np.count_nonzero(dataY) died = len(dataY) - survived print('Survived/Died: {}/{}'.format(survived, died)) return survived, died def balance_data(data): """ DEPRECATED """ survived, died = count_survivors(data['Survived']) remove_n = abs(survived - died) dropId = [] if survived > died: dropid = np.random.choice(data[data['Survived'] == 1].index, remove_n, replace=false) elif survived < died: dropId = np.random.choice(data[data['Survived'] == 0].index, remove_n, replace=False) dataBalanced = data.drop(dropId) return dataBalanced # ------------------------ Features Settings ------------------------ def get_features(data): # scale numerical features data['Age'] = scale_feature(data['Age'].fillna(data['Age'].median()).values.reshape(-1, 1)) data['Fare'] = scale_feature(data['Fare'].fillna(data['Fare'].median()).values.reshape(-1, 1)) # encode cathegorical features data['Sex'] = encode_words(data['Sex'].values.reshape(-1, 1)) data['Embarked'] = encode_words(data['Embarked'].fillna('A').values.reshape(-1, 1)) # select features xlabels = ['Pclass', 'Age', 'SibSp', 'Fare', 'Parch', 'Sex', 'Embarked'] dataX = data[xlabels].values.reshape(-1, len(xlabels)) return dataX # ------------------------ Model settings ------------------------ def log_regression(trainX, trainY): """ Logistic regression with CV """ model = LogisticRegressionCV(penalty='l2', solver='liblinear') model.fit(trainX, trainY) pickle.dump(model, open('model.pickle', 'wb')) def naive_bayes(trainX, trainY): """ The Complement Naive Bayes classifier """ model = ComplementNB() model.fit(trainX, trainY) pickle.dump(model, open('model.pickle', 'wb')) def svm_rbf(trainX, trainY): """ SVM model. Kernel: linear, poly, rbf, sigmoid """ model = svm.SVC(kernel='rbf') model.fit(trainX, trainY) pickle.dump(model, open('model.pickle', 'wb')) def random_forest(trainX, trainY): """ A random forest classifier. """ model = RandomForestClassifier(n_estimators=20, max_depth=5) model.fit(trainX, trainY) pickle.dump(model, open('model.pickle', 'wb')) def decision_tree(trainX, trainY): """ A decision tree classifier. Criterion: gini, entropy """ model = DecisionTreeClassifier(criterion='gini', max_depth=3) model.fit(trainX, trainY) pickle.dump(model, open('model.pickle', 'wb')) def mlp_classifier(trainX, trainY): model = MLPClassifier( hidden_layer_sizes=(128, ), activation='relu', solver='adam', alpha=0.0001, batch_size=20, learning_rate='adaptive', learning_rate_init=0.001, early_stopping=True) model.fit(trainX, trainY) pickle.dump(model, open('model.pickle', 'wb')) def xgboost_classifier(trainX, trainY): model = XGBClassifier(max_depth=2, learning_rate=0.001, reg_alpha=0.0001, reg_lambda=0.0001) model.fit(trainX, trainY) pickle.dump(model, open('model.pickle', 'wb')) # ------------------------ Test settings ------------------------ def predict(dataX): # load model model = pickle.load(open('model.pickle', 'rb')) # predict predY = model.predict(dataX) return predY def run_test(testX, testY): predY = predict(testX) # model metrics confMatrix = confusion_matrix(testY, predY) report = classification_report(testY, predY) f1 = f1_score(testY, predY) # print(confMatrix) # print(report) return f1 def train_test_all(trainX, testX, trainY, testY): log_regression(trainX, trainY) print('log_regression_f1 = {:.2f}'.format(run_test(testX, testY))) naive_bayes(trainX, trainY) print('naive_bayes_f1 = {:.2f}'.format(run_test(testX, testY))) svm_rbf(trainX, trainY) print('svm_rbf_f1 = {:.2f}'.format(run_test(testX, testY))) random_forest(trainX, trainY) print('random_forest_f1 = {:.2f}'.format(run_test(testX, testY))) decision_tree(trainX, trainY) print('decision_tree_f1 = {:.2f}'.format(run_test(testX, testY))) mlp_classifier(trainX, trainY) print('mlp_classifier_f1 = {:.2f}'.format(run_test(testX, testY))) xgboost_classifier(trainX, trainY) print('xgboost_classifier_f1 = {:.2f}'.format(run_test(testX, testY))) def get_submission(data): dataX = get_features(data) predY = predict(dataX) # write to csv result = pd.DataFrame({'Survived': predY}, index=data.index) result.to_csv('submission.csv', index=True) print('Submission saved.') def main(): # load data dataTrain = pd.read_csv('train.csv', index_col='PassengerId', header=0) dataTest =
pd.read_csv('test.csv', index_col='PassengerId', header=0)
pandas.read_csv
# -*- coding: utf-8 -*- # @author: Elie #%% ========================================================== # Import libraries set library params # ============================================================ import pandas as pd import numpy as np import os pd.options.mode.chained_assignment = None #Pandas warnings off #plotting import seaborn as sns from matplotlib import pyplot as plt import matplotlib.lines as mlines import matplotlib as mpl # stats from scipy import stats #set matplotlib rcparams mpl.rcParams['savefig.transparent'] = "False" mpl.rcParams['axes.facecolor'] = "white" mpl.rcParams['figure.facecolor'] = "white" mpl.rcParams['font.size'] = "5" plt.rcParams['savefig.transparent'] = "False" plt.rcParams['axes.facecolor'] = "white" plt.rcParams['figure.facecolor'] = "white" plt.rcParams['font.size'] = "5" #%% ========================================================== # define these feature/headers here in case the headers # are out of order in input files (often the case) # ============================================================ snv_categories = ["sample", "A[C>A]A", "A[C>A]C", "A[C>A]G", "A[C>A]T", "C[C>A]A", "C[C>A]C", "C[C>A]G", "C[C>A]T", "G[C>A]A", "G[C>A]C", "G[C>A]G", "G[C>A]T", "T[C>A]A", "T[C>A]C", "T[C>A]G", "T[C>A]T", "A[C>G]A", "A[C>G]C", "A[C>G]G", "A[C>G]T", "C[C>G]A", "C[C>G]C", "C[C>G]G", "C[C>G]T", "G[C>G]A", "G[C>G]C", "G[C>G]G", "G[C>G]T", "T[C>G]A", "T[C>G]C", "T[C>G]G", "T[C>G]T", "A[C>T]A", "A[C>T]C", "A[C>T]G", "A[C>T]T", "C[C>T]A", "C[C>T]C", "C[C>T]G", "C[C>T]T", "G[C>T]A", "G[C>T]C", "G[C>T]G", "G[C>T]T", "T[C>T]A", "T[C>T]C", "T[C>T]G", "T[C>T]T", "A[T>A]A", "A[T>A]C", "A[T>A]G", "A[T>A]T", "C[T>A]A", "C[T>A]C", "C[T>A]G", "C[T>A]T", "G[T>A]A", "G[T>A]C", "G[T>A]G", "G[T>A]T", "T[T>A]A", "T[T>A]C", "T[T>A]G", "T[T>A]T", "A[T>C]A", "A[T>C]C", "A[T>C]G", "A[T>C]T", "C[T>C]A", "C[T>C]C", "C[T>C]G", "C[T>C]T", "G[T>C]A", "G[T>C]C", "G[T>C]G", "G[T>C]T", "T[T>C]A", "T[T>C]C", "T[T>C]G", "T[T>C]T", "A[T>G]A", "A[T>G]C", "A[T>G]G", "A[T>G]T", "C[T>G]A", "C[T>G]C", "C[T>G]G", "C[T>G]T", "G[T>G]A", "G[T>G]C", "G[T>G]G", "G[T>G]T", "T[T>G]A", "T[T>G]C", "T[T>G]G", "T[T>G]T"] indel_categories = ["sample", "1:Del:C:0", "1:Del:C:1", "1:Del:C:2", "1:Del:C:3", "1:Del:C:4", "1:Del:C:5", "1:Del:T:0", "1:Del:T:1", "1:Del:T:2", "1:Del:T:3", "1:Del:T:4", "1:Del:T:5", "1:Ins:C:0", "1:Ins:C:1", "1:Ins:C:2", "1:Ins:C:3", "1:Ins:C:4", "1:Ins:C:5", "1:Ins:T:0", "1:Ins:T:1", "1:Ins:T:2", "1:Ins:T:3", "1:Ins:T:4", "1:Ins:T:5", "2:Del:R:0", "2:Del:R:1", "2:Del:R:2", "2:Del:R:3", "2:Del:R:4", "2:Del:R:5", "3:Del:R:0", "3:Del:R:1", "3:Del:R:2", "3:Del:R:3", "3:Del:R:4", "3:Del:R:5", "4:Del:R:0", "4:Del:R:1", "4:Del:R:2", "4:Del:R:3", "4:Del:R:4", "4:Del:R:5", "5:Del:R:0", "5:Del:R:1", "5:Del:R:2", "5:Del:R:3", "5:Del:R:4", "5:Del:R:5", "2:Ins:R:0", "2:Ins:R:1", "2:Ins:R:2", "2:Ins:R:3", "2:Ins:R:4", "2:Ins:R:5", "3:Ins:R:0", "3:Ins:R:1", "3:Ins:R:2", "3:Ins:R:3", "3:Ins:R:4", "3:Ins:R:5", "4:Ins:R:0", "4:Ins:R:1", "4:Ins:R:2", "4:Ins:R:3", "4:Ins:R:4", "4:Ins:R:5", "5:Ins:R:0", "5:Ins:R:1", "5:Ins:R:2", "5:Ins:R:3", "5:Ins:R:4", "5:Ins:R:5", "2:Del:M:1", "3:Del:M:1", "3:Del:M:2", "4:Del:M:1", "4:Del:M:2", "4:Del:M:3", "5:Del:M:1", "5:Del:M:2", "5:Del:M:3", "5:Del:M:4", "5:Del:M:5"] cnv_categories = ["sample", "BCper10mb_0", "BCper10mb_1", "BCper10mb_2", "BCper10mb_3", "CN_0", "CN_1", "CN_2", "CN_3", "CN_4", "CN_5", "CN_6", "CN_7", "CN_8", "CNCP_0", "CNCP_1", "CNCP_2", "CNCP_3", "CNCP_4", "CNCP_5", "CNCP_6", "CNCP_7", "BCperCA_0", "BCperCA_1", "BCperCA_2", "BCperCA_3", "BCperCA_4", "BCperCA_5", "SegSize_0", "SegSize_1", "SegSize_2", "SegSize_3", "SegSize_4", "SegSize_5", "SegSize_6", "SegSize_7", "SegSize_8", "SegSize_9", "SegSize_10", "CopyFraction_0", "CopyFraction_1", "CopyFraction_2", "CopyFraction_3", "CopyFraction_4", "CopyFraction_5", "CopyFraction_6"] #%% ========================================================== # make concat sig dataframe # ============================================================ def load_data(snv_counts_path, indel_counts_path, cnv_counts_path): df_snv = pd.read_csv(snv_counts_path, sep='\t', low_memory=False) df_snv = df_snv[snv_categories] df_snv["sample"] = df_snv["sample"].astype(str) df_indel = pd.read_csv(indel_counts_path, sep='\t', low_memory=False) df_indel = df_indel[indel_categories] df_indel["sample"] = df_indel["sample"].astype(str) df_cnv = pd.read_csv(cnv_counts_path, sep='\t', low_memory=False) df_cnv = df_cnv[cnv_categories] df_cnv["sample"] = df_cnv["sample"].astype(str) df_sigs = pd.merge(df_snv, df_indel, on="sample", how='left').fillna(0) df_sigs = pd.merge(df_sigs, df_cnv, on="sample", how='left').reset_index(drop=True) return df_sigs #%% ========================================================== # get paths, load data and make df with each file merged # ============================================================ #file from paths relative to this script rootdir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) figdir = os.path.join(rootdir, "figures", "sup_fig1") datadir = os.path.join(rootdir, "data") cohort_data = os.path.join(datadir, "cohort.tsv") snv_features = os.path.join(datadir, "tns_features.tsv") ndl_features = os.path.join(datadir, "ndl_features.tsv") cnv_features = os.path.join(datadir, "cnv_features.tsv") sigs = load_data(snv_features, ndl_features, cnv_features) sample_labels =
pd.read_csv(cohort_data, sep='\t', low_memory=False)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # Vatsal's Code # This notebook shows you how to build a model for predicting degradation at various locations along RNA sequence. # * We will first pre-process and tokenize the sequence, secondary structure and loop type. # * Then, we will use all the information to train a model on degradations recorded by the researchers from OpenVaccine. # * Finally, we run our model on the public test set (shorter sequences) and the private test set (longer sequences), and submit the predictions. # # In[1]: # %%capture # !pip install forgi # !yes Y |conda install -c bioconda viennarna # In[2]: import json,os, math import subprocess # from forgi.graph import bulge_graph # import forgi.visual.mplotlib as fvm import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import tensorflow.keras.backend as K import plotly.express as px import tensorflow.keras.layers as L import tensorflow as tf import warnings warnings.filterwarnings('ignore') import tensorflow_addons as tfa from itertools import combinations_with_replacement from sklearn.model_selection import train_test_split, KFold, StratifiedKFold,GroupKFold from keras.utils import plot_model from colorama import Fore, Back, Style # ### Configuration # In[3]: ###### USE DIFFERENT SEED FOR DIFFERENT STRATIFIED KFOLD SEED = 53 ###### NUMBER OF FOLDS. USE 3, 5, 7,... n_folds=5 ###### TRAIN DEBUG debug=True ###### APPLY WINDOW FEATURES Window_features = True ###### Number of Feature Given to Model # cat_feature = 3 ## ( Categorical Features Only) # num_features = 1 ## ( Numerical Features Only) ###### Model Configuration ###### model_name="GG" ## MODEL NAME (Files will save according to this ) epochs=100 ## NUMBER OF EPOCHS MODEL TRAIN IN EACH FOLD. USE 3, 5, 7,... BATCH_SIZE = 32 ## NUMBER OF BATCH_SIZE USE 16, 32, 64, 128,... n_layers = 2 ## Number of Layers Present in model # ex. 3 Layer of GRU Model layers = ["GRU","GRU"] ## Stacking sequence of GRU and LSTM (list of length == n_layers) hidden_dim = [128, 128] ## Hidden Dimension in Model (Default : [128,128]) (list of length == n_layers) dropout = [0.5, 0.5] ## 1.0 means no dropout, and 0.0 means no outputs from the layer. sp_dropout = 0.2 ## SpatialDropout1D (Fraction of the input units to drop) [https://stackoverflow.com/a/55244985] embed_dim = 250 ## Output Dimention of Embedding Layer (Default : 75) num_hidden_units = 8 ## Number of GRU units after num_input layer ###### LR Schedular ###### Cosine_Schedule = True ## cosine_schedule Rate Rampup_decy_lr = False ## Rampup decy lr Schedule # ### Set Seed # In[4]: def seed_everything(seed=1234): np.random.seed(seed) tf.random.set_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) os.environ['TF_DETERMINISTIC_OPS'] = '1' seed_everything(SEED) # ### Used Columns # # In[5]: target_cols = ['reactivity', 'deg_Mg_pH10', 'deg_Mg_50C', 'deg_pH10', 'deg_50C'] window_columns = ['sequence','structure','predicted_loop_type'] categorical_features = ['sequence', 'structure', 'predicted_loop_type',] # 'predicted_loop_index'] cat_feature = len(categorical_features) if Window_features: cat_feature += len(window_columns) numerical_features = ['BPPS_Max','BPPS_nb', 'BPPS_sum', 'positional_entropy', 'stems', 'interior_loops', 'multiloops',#'hairpin loops', 'fiveprimes', 'threeprimes', 'A_percent', 'G_percent','C_percent', 'U_percent', 'U-G', 'C-G', 'U-A', 'G-C', 'A-U', 'G-U', # 'E', 'S', 'H', 'B', 'X', 'I', 'M', 'pair_map', 'pair_distance', ] num_features = len(numerical_features) ## ( Numerical Features Only) feature_cols = categorical_features + numerical_features pred_col_names = ["pred_"+c_name for c_name in target_cols] target_eval_col = ['reactivity','deg_Mg_pH10','deg_Mg_50C'] pred_eval_col = ["pred_"+c_name for c_name in target_eval_col] # ### Load and preprocess data # In[6]: data_dir = '/kaggle/input/stanford-covid-vaccine/' fearure_data_path = '../input/openvaccine/' # train = pd.read_csv(fearure_data_path+'train.csv') # test = pd.read_csv(fearure_data_path+'test.csv') train = pd.read_json(fearure_data_path+'train.json') test = pd.read_json(fearure_data_path+'test.json') # train_j = pd.read_json(data_dir + 'train.json', lines=True) # test_j = pd.read_json(data_dir + 'test.json', lines=True) sample_sub = pd.read_csv(data_dir + 'sample_submission.csv') # In[7]: train[target_cols] = train[target_cols].applymap(lambda x: x[1:-1].split(", ")) # In[8]: # train = train[train['SN_filter'] == 1] train = train[train['signal_to_noise'] >= 0.5] # In[9]: def pair_feature(row): arr = list(row) its = [iter(['_']+arr[:]) ,iter(arr[1:]+['_'])] list_touple = list(zip(*its)) return list(map("".join,list_touple)) # In[10]: def preprocess_categorical_inputs(df, cols=categorical_features,Window_features=Window_features): if Window_features: for c in window_columns: df["pair_"+c] = df[c].apply(pair_feature) cols.append("pair_"+c) cols = list(set(cols)) return np.transpose( np.array( df[cols] .applymap(lambda seq: [token2int[x] for x in seq]) .values .tolist() ), (0, 2, 1) ) # In[11]: def preprocess_numerical_inputs(df, cols=numerical_features): return np.transpose( np.array( df[cols].values.tolist() ), (0, 2, 1) ) # In[12]: # We will use this dictionary to map each character to an integer # so that it can be used as an input in keras # ().ACGUBEHIMSXshftim0123456789[]{}'_, token_list = list("().<KEY>") if Window_features: comb = combinations_with_replacement(list('_().<KEY>'*2), 2) token_list += list(set(list(map("".join,comb)))) token2int = {x:i for i, x in enumerate(list(set(token_list)))} print("token_list Size :",len(token_list)) train_inputs_all_cat = preprocess_categorical_inputs(train,cols=categorical_features) train_inputs_all_num = preprocess_numerical_inputs(train,cols=numerical_features) train_labels_all = np.array(train[target_cols].values.tolist(),dtype =np.float32).transpose((0, 2, 1)) print("Train categorical Features Shape : ",train_inputs_all_cat.shape) print("Train numerical Features Shape : ",train_inputs_all_num.shape) print("Train labels Shape : ",train_labels_all.shape) # ### Reduce Train Data # In[13]: # train_inputs_all_cat = train_inputs_all_cat[:,:68,:] # train_inputs_all_num = train_inputs_all_num[:,:68,:] # train_labels_all = train_labels_all[:,:68,:] # print("Train categorical Features Shape : ",train_inputs_all_cat.shape) # print("Train numerical Features Shape : ",train_inputs_all_num.shape) # print("Train labels Shape : ",train_labels_all.shape) # #### Public and private sets have different sequence lengths, so we will preprocess them separately and load models of different tensor shapes. # In[14]: public_df = test.query("seq_length == 107") private_df = test.query("seq_length == 130") print("public_df : ",public_df.shape) print("private_df : ",private_df.shape) public_inputs_cat = preprocess_categorical_inputs(public_df) private_inputs_cat = preprocess_categorical_inputs(private_df) public_inputs_num = preprocess_numerical_inputs(public_df,cols=numerical_features) private_inputs_num = preprocess_numerical_inputs(private_df,cols=numerical_features) print("Public categorical Features Shape : ",public_inputs_cat.shape) print("Public numerical Features Shape : ",public_inputs_num.shape) print("Private categorical Features Shape : ",private_inputs_cat.shape) print("Private numerical Features Shape : ",private_inputs_num.shape) # ### loss Function # In[15]: ### Custom Loss Function for ['reactivity','deg_Mg_pH10','deg_Mg_50C'] target Columns # def rmse(y_actual, y_pred): # mse = tf.keras.losses.mean_squared_error(y_actual, y_pred) # return K.sqrt(mse) # def MCRMSE(y_actual, y_pred, num_scored=3): # score = 0 # for i in range(num_scored): # score += rmse(y_actual[:,:, i], y_pred[:,:, i]) / num_scored # return score def MCRMSE(y_true, y_pred): colwise_mse = tf.reduce_mean(tf.square(y_true[:,:,:3] - y_pred[:,:,:3]), axis=1) return tf.reduce_mean(tf.sqrt(colwise_mse), axis=1) # ### Learning Rate Schedulars # ### Rampup decy lr Schedule # In[16]: def get_lr_callback(batch_size=8): lr_start = 0.00001 lr_max = 0.004 lr_min = 0.00005 lr_ramp_ep = 45 lr_sus_ep = 2 lr_decay = 0.8 def lrfn(epoch): if epoch < lr_ramp_ep: lr = (lr_max - lr_start) / lr_ramp_ep * epoch + lr_start elif epoch < lr_ramp_ep + lr_sus_ep: lr = lr_max else: lr = (lr_max - lr_min) * lr_decay**(epoch - lr_ramp_ep - lr_sus_ep) + lr_min return lr lr_callback = tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=False) return lr_callback # ### Cosine schedule with warmup # In[17]: def get_cosine_schedule_with_warmup(lr,num_warmup_steps, num_training_steps, num_cycles=3.5): """ Modified version of the get_cosine_schedule_with_warmup from huggingface. (https://huggingface.co/transformers/_modules/transformers/optimization.html#get_cosine_schedule_with_warmup) Create a schedule with a learning rate that decreases following the values of the cosine function between 0 and `pi * cycles` after a warmup period during which it increases linearly between 0 and 1. """ def lrfn(epoch): if epoch < num_warmup_steps: return (float(epoch) / float(max(1, num_warmup_steps))) * lr progress = float(epoch - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps)) return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))) * lr return tf.keras.callbacks.LearningRateScheduler(lrfn, verbose=False) # ### Different Layers # In[18]: def lstm_layer(hidden_dim, dropout): return tf.keras.layers.Bidirectional( tf.keras.layers.LSTM(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer = 'orthogonal')) # In[19]: def gru_layer(hidden_dim, dropout): return L.Bidirectional( L.GRU(hidden_dim, dropout=dropout, return_sequences=True, kernel_initializer='orthogonal') ) # ### Model Building # In[20]: # def build_model(embed_size, # seq_len = 107, # pred_len = 68, # dropout = dropout, # sp_dropout = sp_dropout, # num_features = num_features, # num_hidden_units = num_hidden_units, # embed_dim = embed_dim, # layers = layers, # hidden_dim = hidden_dim, # n_layers = n_layers, # cat_feature = cat_feature): # inputs = L.Input(shape=(seq_len, cat_feature),name='category_input') # embed = L.Embedding(input_dim=embed_size, output_dim=embed_dim)(inputs) # reshaped = tf.reshape(embed, shape=(-1, embed.shape[1], embed.shape[2] * embed.shape[3])) # reshaped_conv = tf.keras.layers.Conv1D(filters=512, kernel_size=3,strides=1, padding='same', activation='elu')(reshaped) # numerical_input = L.Input(shape=(seq_len, num_features), name='numeric_input') # n_Dense_1 = L.Dense(64)(numerical_input) # n_Dense_2 = L.Dense(128)(n_Dense_1) # numerical_conv = tf.keras.layers.Conv1D(filters=256, kernel_size=4,strides=1, padding='same', activation='elu')(n_Dense_2) # hidden = L.concatenate([reshaped_conv, numerical_conv]) # hidden = L.SpatialDropout1D(sp_dropout)(hidden) # for x in range(n_layers): # if layers[x] == "GRU": # hidden = gru_layer(hidden_dim[x], dropout[x])(hidden) # else: # hidden = lstm_layer(hidden_dim[x], dropout[x])(hidden) # # Since we are only making predictions on the first part of each sequence, # # we have to truncate it # truncated = hidden[:, :pred_len] # out = L.Dense(5)(truncated) # model = tf.keras.Model(inputs=[inputs] + [numerical_input], outputs=out) # adam = tf.optimizers.Adam() # radam = tfa.optimizers.RectifiedAdam() # lookahead = tfa.optimizers.Lookahead(adam, sync_period=6) # ranger = tfa.optimizers.Lookahead(radam, sync_period=6) # model.compile(optimizer=radam, loss=MCRMSE) # return model # In[21]: def build_model(embed_size, seq_len = 107, pred_len = 68, dropout = dropout, sp_dropout = sp_dropout, num_features = num_features, num_hidden_units = num_hidden_units, embed_dim = embed_dim, layers = layers, hidden_dim = hidden_dim, n_layers = n_layers, cat_feature = cat_feature): inputs = L.Input(shape=(seq_len, cat_feature),name='category_input') embed = L.Embedding(input_dim=embed_size, output_dim=embed_dim)(inputs) reshaped = tf.reshape(embed, shape=(-1, embed.shape[1], embed.shape[2] * embed.shape[3])) reshaped = L.SpatialDropout1D(sp_dropout)(reshaped) reshaped_conv = tf.keras.layers.Conv1D(filters=512, kernel_size=3,strides=1, padding='same', activation='elu')(reshaped) numerical_input = L.Input(shape=(seq_len, num_features), name='numeric_input') # n_Dense_1 = L.Dense(64)(numerical_input) # n_Dense_2 = L.Dense(128)(n_Dense_1) # numerical_conv = tf.keras.layers.Conv1D(filters=256, kernel_size=4,strides=1, padding='same', activation='elu')(n_Dense_2) hidden = L.concatenate([reshaped_conv, numerical_input]) hidden_1 = tf.keras.layers.Conv1D(filters=256, kernel_size=4,strides=1, padding='same', activation='elu')(hidden) hidden = gru_layer(128, 0.5)(hidden_1) hidden = L.concatenate([hidden, hidden_1]) # hidden = L.SpatialDropout1D(sp_dropout)(hidden) for x in range(n_layers): if layers[x] == "GRU": hidden = gru_layer(hidden_dim[x], dropout[x])(hidden) else: hidden = lstm_layer(hidden_dim[x], dropout[x])(hidden) hidden = L.concatenate([hidden, hidden_1]) # Since we are only making predictions on the first part of each sequence, # we have to truncate it truncated = hidden[:, :pred_len] out = L.Dense(5)(truncated) model = tf.keras.Model(inputs=[inputs] + [numerical_input], outputs=out) adam = tf.optimizers.Adam() radam = tfa.optimizers.RectifiedAdam() lookahead = tfa.optimizers.Lookahead(adam, sync_period=6) ranger = tfa.optimizers.Lookahead(radam, sync_period=6) model.compile(optimizer=radam, loss=MCRMSE) return model # ### Build and train model # # We will train a bi-directional GRU model. It has three layer and has dropout. To learn more about RNNs, LSTM and GRU, please see [this blog post](https://colah.github.io/posts/2015-08-Understanding-LSTMs/). # In[22]: model = build_model(embed_size=len(token_list)) plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) # ### Add Augmentation Data # ### stratify_group Based on structure and SN_Filter # In[23]: def get_stratify_group(row): snf = row['SN_filter'] snr = row['signal_to_noise'] cnt = row['cnt'] id_ = row['id'] structure = row['structure'] if snf == 0: if snr<0: snr_c = 0 elif 0<= snr < 2: snr_c = 1 elif 2<= snr < 4: snr_c = 2 elif 4<= snr < 5.5: snr_c = 3 elif 5.5<= snr < 10: snr_c = 4 elif snr >= 10: snr_c = 5 else: # snf == 1 if snr<0: snr_c = 6 elif 0<= snr < 1: snr_c = 7 elif 1<= snr < 2: snr_c = 8 elif 2<= snr < 3: snr_c = 9 elif 3<= snr < 4: snr_c = 10 elif 4<= snr < 5: snr_c = 11 elif 5<= snr < 6: snr_c = 12 elif 6<= snr < 7: snr_c = 13 elif 7<= snr < 8: snr_c = 14 elif 8<= snr < 9: snr_c = 15 elif 9<= snr < 10: snr_c = 15 elif snr >= 10: snr_c = 16 return '{}_{}'.format(id_,snr_c) train['stratify_group'] = train.apply(get_stratify_group, axis=1) train['stratify_group'] = train['stratify_group'].astype('category').cat.codes skf = StratifiedKFold(n_folds, shuffle=True, random_state=SEED) gkf = GroupKFold(n_splits=n_folds) fig, ax = plt.subplots(n_folds,3,figsize=(20,5*n_folds)) for Fold, (train_index, val_index) in enumerate(gkf.split(train_inputs_all_cat, groups=train['stratify_group'])): print(Fore.YELLOW);print('#'*45);print("### Fold : ", str(Fold+1));print('#'*45);print(Style.RESET_ALL) train_data = train.iloc[train_index] val_data = train.iloc[val_index] print("Augmented data Present in Val Data : ",len(val_data[val_data['cnt'] != 1])) print("Augmented data Present in Train Data : ",len(train_data[train_data['cnt'] != 1])) val_data = val_data[val_data['cnt'] == 1] print("Data Lekage : ",len(val_data[val_data['id'].isin(train_data['id'])])) # print(train_data['stratify_group'].unique(),val_data['stratify_group'].unique()) print("number of Train Data points : ",len(train_data)) print("number of val_data Data points : ",len(val_data)) print("number of unique Structure in Train data : ", len(train_data.structure.unique())) print("number of unique Structure in val data : ",len(val_data.structure.unique()), val_data.structure.value_counts()[:5].values) print("Train SN_Filter == 1 : ", len(train_data[train_data['SN_filter']==1])) print("val_data SN_Filter == 1 : ", len(val_data[val_data['SN_filter']==1])) print("Train SN_Filter == 0 : ", len(train_data[train_data['SN_filter']==0])) print("val_data SN_Filter == 0 : ", len(val_data[val_data['SN_filter']==0])) print("Unique ID :",len(train_data.id.unique())) sns.kdeplot(train[train['SN_filter']==0]['signal_to_noise'],ax=ax[Fold][0],color="Red",label='Train All') sns.kdeplot(train_data[train_data['SN_filter']==0]['signal_to_noise'],ax=ax[Fold][0],color="Blue",label='Train') sns.kdeplot(val_data[val_data['SN_filter']==0]['signal_to_noise'],ax=ax[Fold][0],color="Green",label='Validation') ax[Fold][0].set_title(f'Fold : {Fold+1} Signal/Noise & SN_filter == 0') sns.kdeplot(train[train['SN_filter']==1]['signal_to_noise'],ax=ax[Fold][1],color="Red",label='Train All') sns.kdeplot(train_data[train_data['SN_filter']==1]['signal_to_noise'],ax=ax[Fold][1],color="Blue",label='Train') sns.kdeplot(val_data[val_data['SN_filter']==1]['signal_to_noise'],ax=ax[Fold][1],color="Green",label='Validation') ax[Fold][1].set_title(f'Fold : {Fold+1} Signal/Noise & SN_filter == 1') sns.kdeplot(train['signal_to_noise'],ax=ax[Fold][2],color="Red",label='Train All') sns.kdeplot(train_data['signal_to_noise'],ax=ax[Fold][2],color="Blue",label='Train') sns.kdeplot(val_data['signal_to_noise'],ax=ax[Fold][2],color="Green",label='Validation') ax[Fold][2].set_title(f'Fold : {Fold+1} Signal/Noise') plt.show() # In[24]: submission = pd.DataFrame(index=sample_sub.index, columns=target_cols).fillna(0) # test dataframe with 0 values val_losses = [] historys = [] oof_preds_all = [] stacking_pred_all = [] kf = KFold(n_folds, shuffle=True, random_state=SEED) skf = StratifiedKFold(n_folds, shuffle=True, random_state=SEED) gkf = GroupKFold(n_splits=n_folds) for Fold, (train_index, val_index) in enumerate(gkf.split(train_inputs_all_cat, groups=train['stratify_group'])): print(Fore.YELLOW);print('#'*45);print("### Fold : ", str(Fold+1));print('#'*45);print(Style.RESET_ALL) print(f"|| Batch_size: {BATCH_SIZE} \n|| n_layers: {n_layers} \n|| embed_dim: {embed_dim}") print(f"|| cat_feature: {cat_feature} \n|| num_features: {num_features}") print(f"|| layers : {layers} \n|| hidden_dim: {hidden_dim} \n|| dropout: {dropout} \n|| sp_dropout: {sp_dropout}") train_data = train.iloc[train_index] val_data = train.iloc[val_index] print("|| number Augmented data Present in Val Data : ",len(val_data[val_data['cnt'] != 1])) print("|| number Augmented data Present in Train Data : ",len(train_data[train_data['cnt'] != 1])) print("|| Data Lekage : ",len(val_data[val_data['id'].isin(train_data['id'])])) val_data = val_data[val_data['cnt'] == 1] model_train = build_model(embed_size=len(token_list)) model_short = build_model(embed_size=len(token_list),seq_len=107, pred_len=107) model_long = build_model(embed_size=len(token_list),seq_len=130, pred_len=130) train_inputs_cat = preprocess_categorical_inputs(train_data,cols=categorical_features) train_inputs_num = preprocess_numerical_inputs(train_data,cols=numerical_features) train_labels = np.array(train_data[target_cols].values.tolist(),dtype =np.float32).transpose((0, 2, 1)) val_inputs_cat = preprocess_categorical_inputs(val_data,cols=categorical_features) val_inputs_num = preprocess_numerical_inputs(val_data,cols=numerical_features) val_labels = np.array(val_data[target_cols].values.tolist(),dtype =np.float32).transpose((0, 2, 1)) # train_inputs_cat, train_labels = train_inputs_all_cat[train_index], train_labels_all[train_index] # val_inputs_cat, val_labels = train_inputs_all_cat[val_index], train_labels_all[val_index] # train_inputs_num, val_inputs_num = train_inputs_all_num[train_index],train_inputs_all_num[val_index] # csv_logger csv_logger = tf.keras.callbacks.CSVLogger(f'Fold_{Fold}_log.csv', separator=',', append=False) # SAVE BEST MODEL EACH FOLD checkpoint = tf.keras.callbacks.ModelCheckpoint(f'{model_name}_Fold_{Fold}.h5', monitor='val_loss', verbose=0, mode='min', save_freq='epoch') if Cosine_Schedule: #cosine Callback lr_schedule= get_cosine_schedule_with_warmup(lr=0.001, num_warmup_steps=20, num_training_steps=epochs) elif Rampup_decy_lr : # Rampup decy lr lr_schedule = get_lr_callback(BATCH_SIZE) else: lr_schedule = tf.keras.callbacks.ReduceLROnPlateau() history = model_train.fit( {'numeric_input': train_inputs_num, 'category_input': train_inputs_cat} , train_labels, validation_data=({'numeric_input': val_inputs_num, 'category_input': val_inputs_cat} ,val_labels), batch_size=BATCH_SIZE, epochs=epochs, callbacks=[lr_schedule, checkpoint, csv_logger,lr_schedule], verbose=1 if debug else 0 ) print("Min Validation Loss : ", min(history.history['val_loss'])) print("Min Validation Epoch : ",np.argmin( history.history['val_loss'] )+1) val_losses.append(min(history.history['val_loss'])) historys.append(history) model_short.load_weights(f'{model_name}_Fold_{Fold}.h5') model_long.load_weights(f'{model_name}_Fold_{Fold}.h5') public_preds = model_short.predict({'numeric_input': public_inputs_num, 'category_input': public_inputs_cat}) private_preds = model_long.predict({'numeric_input': private_inputs_num, 'category_input': private_inputs_cat}) oof_preds = model_train.predict({'numeric_input': val_inputs_num, 'category_input': val_inputs_cat}) stacking_pred = model_short.predict({'numeric_input': val_inputs_num, 'category_input': val_inputs_cat}) preds_model = [] for df, preds in [(public_df, public_preds), (private_df, private_preds)]: for i, uid in enumerate(df.id): single_pred = preds[i] single_df = pd.DataFrame(single_pred, columns=target_cols) single_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_df.shape[0])] preds_model.append(single_df) preds_model_df = pd.concat(preds_model) preds_model_df = preds_model_df.groupby(['id_seqpos'],as_index=True).mean() submission[target_cols] += preds_model_df[target_cols].values / n_folds for df, preds in [(val_data, oof_preds)]: for i, uid in enumerate(df.id): single_pred = preds[i] single_label = val_labels[i] single_label_df = pd.DataFrame(single_label, columns=target_cols) single_label_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_label_df.shape[0])] single_label_df['id'] = [f'{uid}' for x in range(single_label_df.shape[0])] single_label_df['s_id'] = [x for x in range(single_label_df.shape[0])] single_df = pd.DataFrame(single_pred, columns=pred_col_names) single_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_df.shape[0])] single_df = pd.merge(single_label_df,single_df, on="id_seqpos", how="left") oof_preds_all.append(single_df) for df, preds in [(val_data, stacking_pred)]: for i, uid in enumerate(df.id): single_pred = preds[i] # single_label = val_labels[i] # single_label_df = pd.DataFrame(single_label, columns=target_cols) # single_label_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_label_df.shape[0])] # single_label_df['id'] = [f'{uid}' for x in range(single_label_df.shape[0])] # single_label_df['s_id'] = [x for x in range(single_label_df.shape[0])] single_df = pd.DataFrame(single_pred, columns=pred_col_names) single_df['id_seqpos'] = [f'{uid}_{x}' for x in range(single_df.shape[0])] single_df['id'] = [uid for x in range(single_df.shape[0])] stacking_pred_all.append(single_df) # PLOT TRAINING history_data = pd.read_csv(f'Fold_{Fold}_log.csv') EPOCHS = len(history_data['epoch']) history = pd.DataFrame({'history':history_data.to_dict('list')}) fig = plt.figure(figsize=(15,5)) plt.plot(np.arange(EPOCHS),history.history['lr'],'-',label='Learning Rate',color='#ff7f0e') x = np.argmax( history.history['lr'] ); y = np.max( history.history['lr'] ) xdist = plt.xlim()[1] - plt.xlim()[0]; ydist = plt.ylim()[1] - plt.ylim()[0] plt.scatter(x,y,s=200,color='#1f77b4'); plt.text(x-0.03*xdist,y-0.13*ydist,f'Max Learning Rate : {y}' ,size=12) plt.ylabel('Learning Rate',size=14); plt.xlabel('Epoch',size=14) plt.legend(loc=1) plt2 = plt.gca().twinx() plt2.plot(np.arange(EPOCHS),history.history['loss'],'-o',label='Train Loss',color='#2ca02c') plt2.plot(np.arange(EPOCHS),history.history['val_loss'],'-o',label='Val Loss',color='#d62728') x = np.argmin( history.history['val_loss'] ); y = np.min( history.history['val_loss'] ) ydist = plt.ylim()[1] - plt.ylim()[0] plt.scatter(x,y,s=200,color='#d62728'); plt.text(x-0.03*xdist,y+0.05*ydist,'min loss',size=14) plt.ylabel('Loss',size=14) fig.text(s=f"Model Name : {model_name}" , x=0.5, y=1.08, fontsize=18, ha='center', va='center',color="green") fig.text(s=f"|| Fold : {Fold+1} | Batch_size: {BATCH_SIZE} | num_features: {num_features} | cat_feature: {cat_feature} |n_layers: {n_layers} | embed_dim: {embed_dim} ||", x=0.5, y=1.0, fontsize=15, ha='center', va='center',color="red") fig.text(s=f"|| layers : {layers} | hidden_dim: {hidden_dim} | dropout: {dropout} | sp_dropout: {sp_dropout} ||", x=0.5, y=0.92, fontsize=15, ha='center', va='center',color="blue") plt.legend(loc=3) plt.savefig(f'Fold_{Fold+1}.png', bbox_inches='tight') plt.show() submission["id_seqpos"] = preds_model_df.index submission =
pd.merge(sample_sub["id_seqpos"], submission, on="id_seqpos", how="left")
pandas.merge
# -*- coding: utf-8 -*- """ Created on Mon May 17 10:42:22 2021 @author: ali.raza """ import socket import pickle import threading import time from mlsocket import MLSocket import pygad import pygad.nn import pygad.gann import numpy import pygad import pygad.nn import pygad.gann import numpy import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix from keras.utils.np_utils import to_categorical from sklearn.utils import class_weight import warnings from keras.callbacks import TensorBoard import numpy as np from tensorflow import keras from tensorflow.keras import layers from keras.models import Model from keras.models import Sequential from keras.layers import Convolution1D, ZeroPadding1D, MaxPooling1D, BatchNormalization, Activation, Dropout, Flatten, Dense from keras.layers import Conv1D, Dense, MaxPool1D, Flatten, Input import tensorflow as tf from sklearn.utils import resample from sklearn.model_selection import train_test_split from tensorflow.keras import datasets, layers, models from sklearn.metrics import precision_recall_curve, roc_curve from sklearn.preprocessing import label_binarize from tensorflow.keras.models import Sequential, load_model import cv2 import h5py from sklearn.model_selection import train_test_split #-----------------------------------------Datan Preparation-------------------------------------------------------------------------- warnings.filterwarnings('ignore') train_df=pd.read_csv('mitbih_train.csv',header=None) test_df=pd.read_csv('mitbih_test.csv',header=None) df_1=train_df[train_df[188]==1] df_2=train_df[train_df[188]==2] df_3=train_df[train_df[188]==3] df_4=train_df[train_df[188]==4] df_0=(train_df[train_df[188]==0]).sample(n=20000,random_state=42) df_1_upsample=resample(df_1,replace=True,n_samples=20000,random_state=123) df_2_upsample=resample(df_2,replace=True,n_samples=20000,random_state=124) df_3_upsample=resample(df_3,replace=True,n_samples=20000,random_state=125) df_4_upsample=resample(df_4,replace=True,n_samples=20000,random_state=126) df=pd.concat([df_0,df_1_upsample,df_2_upsample,df_3_upsample,df_4_upsample]) dft_1=test_df[test_df[188]==1] dft_2=test_df[test_df[188]==2] dft_3=test_df[test_df[188]==3] dft_4=test_df[test_df[188]==4] dft_0=(test_df[test_df[188]==0]).sample(n=10000,random_state=42) dft_1_upsample=resample(dft_1,replace=True,n_samples=10000,random_state=123) dft_2_upsample=resample(dft_2,replace=True,n_samples=10000,random_state=124) dft_3_upsample=resample(dft_3,replace=True,n_samples=10000,random_state=125) dft_4_upsample=resample(dft_4,replace=True,n_samples=10000,random_state=126) dft=
pd.concat([dft_0,dft_1_upsample,dft_2_upsample,dft_3_upsample,dft_4_upsample])
pandas.concat
import nose import unittest import os import sys import warnings from datetime import datetime import numpy as np from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, Index) from pandas.io.pytables import HDFStore, get_store, Term, IncompatibilityWarning import pandas.util.testing as tm from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas import concat, Timestamp try: import tables except ImportError: raise nose.SkipTest('no pytables') from distutils.version import LooseVersion _default_compressor = LooseVersion(tables.__version__) >= '2.2' \ and 'blosc' or 'zlib' _multiprocess_can_split_ = False class TestHDFStore(unittest.TestCase): path = '__test__.h5' scratchpath = '__scratch__.h5' def setUp(self): self.store = HDFStore(self.path) def tearDown(self): self.store.close() os.remove(self.path) def test_factory_fun(self): try: with get_store(self.scratchpath) as tbl: raise ValueError('blah') except ValueError: pass with get_store(self.scratchpath) as tbl: tbl['a'] = tm.makeDataFrame() with get_store(self.scratchpath) as tbl: self.assertEquals(len(tbl), 1) self.assertEquals(type(tbl['a']), DataFrame) os.remove(self.scratchpath) def test_keys(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.assertEquals(len(self.store), 5) self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar'])) def test_repr(self): repr(self.store) self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.store.append('e', tm.makePanel()) repr(self.store) str(self.store) def test_contains(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() self.store['foo/bar'] = tm.makeDataFrame() self.assert_('a' in self.store) self.assert_('b' in self.store) self.assert_('c' not in self.store) self.assert_('foo/bar' in self.store) self.assert_('/foo/bar' in self.store) self.assert_('/foo/b' not in self.store) self.assert_('bar' not in self.store) def test_versioning(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) self.assert_(self.store.root.a._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.b._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.df1._v_attrs.pandas_version == '0.10') # write a file and wipe its versioning self.store.remove('df2') self.store.append('df2', df) self.store.get_node('df2')._v_attrs.pandas_version = None self.store.select('df2') self.store.select('df2', [ Term('index','>',df.index[2]) ]) def test_meta(self): raise nose.SkipTest('no meta') meta = { 'foo' : [ 'I love pandas ' ] } s = tm.makeTimeSeries() s.meta = meta self.store['a'] = s self.assert_(self.store['a'].meta == meta) df = tm.makeDataFrame() df.meta = meta self.store['b'] = df self.assert_(self.store['b'].meta == meta) # this should work, but because slicing doesn't propgate meta it doesn self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) results = self.store['df1'] #self.assert_(getattr(results,'meta',None) == meta) # no meta df = tm.makeDataFrame() self.store['b'] = df self.assert_(hasattr(self.store['b'],'meta') == False) def test_reopen_handle(self): self.store['a'] = tm.makeTimeSeries() self.store.open('w', warn=False) self.assert_(self.store.handle.isopen) self.assertEquals(len(self.store), 0) def test_flush(self): self.store['a'] = tm.makeTimeSeries() self.store.flush() def test_get(self): self.store['a'] = tm.makeTimeSeries() left = self.store.get('a') right = self.store['a'] tm.assert_series_equal(left, right) left = self.store.get('/a') right = self.store['/a'] tm.assert_series_equal(left, right) self.assertRaises(KeyError, self.store.get, 'b') def test_put(self): ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() self.store['a'] = ts self.store['b'] = df[:10] self.store['foo/bar/bah'] = df[:10] self.store['foo'] = df[:10] self.store['/foo'] = df[:10] self.store.put('c', df[:10], table=True) # not OK, not a table self.assertRaises(ValueError, self.store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False in # this case self.assertRaises(ValueError, self.store.put, 'f', df[10:], append=True) # OK self.store.put('c', df[10:], append=True) # overwrite table self.store.put('c', df[:10], table=True, append=False) tm.assert_frame_equal(df[:10], self.store['c']) def test_put_string_index(self): index = Index([ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(20), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + [ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(21), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) def test_put_compression(self): df = tm.makeTimeDataFrame() self.store.put('c', df, table=True, compression='zlib') tm.assert_frame_equal(self.store['c'], df) # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='zlib') def test_put_compression_blosc(self): tm.skip_if_no_package('tables', '2.2', app='blosc support') df = tm.makeTimeDataFrame() # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='blosc') self.store.put('c', df, table=True, compression='blosc') tm.assert_frame_equal(self.store['c'], df) def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_append(self): df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) tm.assert_frame_equal(self.store['df1'], df) self.store.remove('df2') self.store.put('df2', df[:10], table=True) self.store.append('df2', df[10:]) tm.assert_frame_equal(self.store['df2'], df) self.store.remove('df3') self.store.append('/df3', df[:10]) self.store.append('/df3', df[10:]) tm.assert_frame_equal(self.store['df3'], df) # this is allowed by almost always don't want to do it warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) self.store.remove('/df3 foo') self.store.append('/df3 foo', df[:10]) self.store.append('/df3 foo', df[10:]) tm.assert_frame_equal(self.store['df3 foo'], df) warnings.filterwarnings('always', category=tables.NaturalNameWarning) # panel wp = tm.makePanel() self.store.remove('wp1') self.store.append('wp1', wp.ix[:,:10,:]) self.store.append('wp1', wp.ix[:,10:,:]) tm.assert_panel_equal(self.store['wp1'], wp) # ndim p4d = tm.makePanel4D() self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:]) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using axis labels self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=['items','major_axis','minor_axis']) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using differnt number of items on each axis p4d2 = p4d.copy() p4d2['l4'] = p4d['l1'] p4d2['l5'] = p4d['l1'] self.store.remove('p4d2') self.store.append('p4d2', p4d2, axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d2'], p4d2) # test using differt order of items on the non-index axes self.store.remove('wp1') wp_append1 = wp.ix[:,:10,:] self.store.append('wp1', wp_append1) wp_append2 = wp.ix[:,10:,:].reindex(items = wp.items[::-1]) self.store.append('wp1', wp_append2) tm.assert_panel_equal(self.store['wp1'], wp) def test_append_frame_column_oriented(self): # column oriented df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df.ix[:,:2], axes = ['columns']) self.store.append('df1', df.ix[:,2:]) tm.assert_frame_equal(self.store['df1'], df) result = self.store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # this isn't supported self.assertRaises(Exception, self.store.select, 'df1', ('columns=A', Term('index','>',df.index[4]))) # selection on the non-indexable result = self.store.select('df1', ('columns=A', Term('index','=',df.index[0:4]))) expected = df.reindex(columns=['A'],index=df.index[0:4]) tm.assert_frame_equal(expected, result) def test_ndim_indexables(self): """ test using ndim tables in new ways""" p4d = tm.makePanel4D() def check_indexers(key, indexers): for i,idx in enumerate(indexers): self.assert_(getattr(getattr(self.store.root,key).table.description,idx)._v_pos == i) # append then change (will take existing schema) indexers = ['items','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # same as above, but try to append with differnt axes self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['labels','items','major_axis']) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # pass incorrect number of axes self.store.remove('p4d') self.assertRaises(Exception, self.store.append, 'p4d', p4d.ix[:,:,:10,:], axes=['major_axis','minor_axis']) # different than default indexables #1 indexers = ['labels','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # different than default indexables #2 indexers = ['major_axis','labels','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # partial selection result = self.store.select('p4d',['labels=l1']) expected = p4d.reindex(labels = ['l1']) tm.assert_panel4d_equal(result, expected) # partial selection2 result = self.store.select('p4d',[Term('labels=l1'), Term('items=ItemA'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = ['ItemA'], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) # non-existant partial selection result = self.store.select('p4d',[Term('labels=l1'), Term('items=Item1'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = [], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) def test_append_with_strings(self): wp = tm.makePanel() wp2 = wp.rename_axis(dict([ (x,"%s_extra" % x) for x in wp.minor_axis ]), axis = 2) self.store.append('s1', wp, min_itemsize = 20) self.store.append('s1', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s1'], expected) # test dict format self.store.append('s2', wp, min_itemsize = { 'minor_axis' : 20 }) self.store.append('s2', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s2'], expected) # apply the wrong field (similar to #1) self.store.append('s3', wp, min_itemsize = { 'major_axis' : 20 }) self.assertRaises(Exception, self.store.append, 's3') # test truncation of bigger strings self.store.append('s4', wp) self.assertRaises(Exception, self.store.append, 's4', wp2) # avoid truncation on elements df = DataFrame([[123,'asdqwerty'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big',df, min_itemsize = { 'values' : 1024 }) tm.assert_frame_equal(self.store.select('df_big'), df) # appending smaller string ok df2 = DataFrame([[124,'asdqy'], [346,'dggnhefbdfb']]) self.store.append('df_big',df2) expected = concat([ df, df2 ]) tm.assert_frame_equal(self.store.select('df_big'), expected) # avoid truncation on elements df = DataFrame([[123,'as<PASSWORD>'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big2',df, min_itemsize = { 'values' : 10 }) tm.assert_frame_equal(self.store.select('df_big2'), df) # bigger string on next append self.store.append('df_new',df, min_itemsize = { 'values' : 16 }) df_new = DataFrame([[124,'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']]) self.assertRaises(Exception, self.store.append, 'df_new',df_new) def test_create_table_index(self): wp = tm.makePanel() self.store.append('p5', wp) self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.is_indexed == True) assert(self.store.handle.root.p5.table.cols.minor_axis.is_indexed == False) # default optlevels assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') # let's change the indexing scheme self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', optlevel=9) assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', kind='full') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'full') self.store.create_table_index('p5', optlevel=1, kind='light') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 1) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'light') df = tm.makeTimeDataFrame() self.store.append('f', df[:10]) self.store.append('f', df[10:]) self.store.create_table_index('f') # try to index a non-table self.store.put('f2', df) self.assertRaises(Exception, self.store.create_table_index, 'f2') # try to change the version supports flag from pandas.io import pytables pytables._table_supports_index = False self.assertRaises(Exception, self.store.create_table_index, 'f') # test out some versions original = tables.__version__ for v in ['2.2','2.2b']: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.assertRaises(Exception, self.store.create_table_index, 'f') for v in ['2.3.1','2.3.1b','2.4dev','2.4',original]: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.store.create_table_index('f') pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = original def test_big_table(self): raise nose.SkipTest('no big table') # create and write a big table wp = Panel(np.random.randn(20, 1000, 1000), items= [ 'Item%s' % i for i in xrange(20) ], major_axis=date_range('1/1/2000', periods=1000), minor_axis = [ 'E%s' % i for i in xrange(1000) ]) wp.ix[:,100:200,300:400] = np.nan try: store = HDFStore(self.scratchpath) store._debug_memory = True store.append('wp',wp) recons = store.select('wp') finally: store.close() os.remove(self.scratchpath) def test_append_diff_item_order(self): raise nose.SkipTest('append diff item order') wp = tm.makePanel() wp1 = wp.ix[:, :10, :] wp2 = wp.ix[['ItemC', 'ItemB', 'ItemA'], 10:, :] self.store.put('panel', wp1, table=True) self.assertRaises(Exception, self.store.put, 'panel', wp2, append=True) def test_table_index_incompatible_dtypes(self): df1 = DataFrame({'a': [1, 2, 3]}) df2 = DataFrame({'a': [4, 5, 6]}, index=date_range('1/1/2000', periods=3)) self.store.put('frame', df1, table=True) self.assertRaises(Exception, self.store.put, 'frame', df2, table=True, append=True) def test_table_values_dtypes_roundtrip(self): df1 = DataFrame({'a': [1, 2, 3]}, dtype = 'f8') self.store.append('df1', df1) assert df1.dtypes == self.store['df1'].dtypes df2 = DataFrame({'a': [1, 2, 3]}, dtype = 'i8') self.store.append('df2', df2) assert df2.dtypes == self.store['df2'].dtypes # incompatible dtype self.assertRaises(Exception, self.store.append, 'df2', df1) def test_table_mixed_dtypes(self): # frame def _make_one_df(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 return df.consolidate() df1 = _make_one_df() self.store.append('df1_mixed', df1) tm.assert_frame_equal(self.store.select('df1_mixed'), df1) # panel def _make_one_panel(): wp = tm.makePanel() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['ItemA'] > 0 wp['bool2'] = wp['ItemB'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p1 = _make_one_panel() self.store.append('p1_mixed', p1) tm.assert_panel_equal(self.store.select('p1_mixed'), p1) # ndim def _make_one_p4d(): wp = tm.makePanel4D() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['l1'] > 0 wp['bool2'] = wp['l2'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p4d = _make_one_p4d() self.store.append('p4d_mixed', p4d) tm.assert_panel4d_equal(self.store.select('p4d_mixed'), p4d) def test_remove(self): ts = tm.makeTimeSeries() df = tm.makeDataFrame() self.store['a'] = ts self.store['b'] = df self.store.remove('a') self.assertEquals(len(self.store), 1) tm.assert_frame_equal(df, self.store['b']) self.store.remove('b') self.assertEquals(len(self.store), 0) # pathing self.store['a'] = ts self.store['b/foo'] = df self.store.remove('foo') self.store.remove('b/foo') self.assertEquals(len(self.store), 1) self.store['a'] = ts self.store['b/foo'] = df self.store.remove('b') self.assertEquals(len(self.store), 1) # __delitem__ self.store['a'] = ts self.store['b'] = df del self.store['a'] del self.store['b'] self.assertEquals(len(self.store), 0) def test_remove_where(self): # non-existance crit1 = Term('index','>','foo') self.store.remove('a', where=[crit1]) # try to remove non-table (with crit) # non-table ok (where = None) wp = tm.makePanel() self.store.put('wp', wp, table=True) self.store.remove('wp', [('minor_axis', ['A', 'D'])]) rs = self.store.select('wp') expected = wp.reindex(minor_axis = ['B','C']) tm.assert_panel_equal(rs,expected) # empty where self.store.remove('wp') self.store.put('wp', wp, table=True) # deleted number (entire table) n = self.store.remove('wp', []) assert(n == 120) # non - empty where self.store.remove('wp') self.store.put('wp', wp, table=True) self.assertRaises(Exception, self.store.remove, 'wp', ['foo']) # selectin non-table with a where #self.store.put('wp2', wp, table=False) #self.assertRaises(Exception, self.store.remove, # 'wp2', [('column', ['A', 'D'])]) def test_remove_crit(self): wp = tm.makePanel() # group row removal date4 = wp.major_axis.take([ 0,1,2,4,5,6,8,9,10 ]) crit4 = Term('major_axis',date4) self.store.put('wp3', wp, table=True) n = self.store.remove('wp3', where=[crit4]) assert(n == 36) result = self.store.select('wp3') expected = wp.reindex(major_axis = wp.major_axis-date4) tm.assert_panel_equal(result, expected) # upper half self.store.put('wp', wp, table=True) date = wp.major_axis[len(wp.major_axis) // 2] crit1 = Term('major_axis','>',date) crit2 = Term('minor_axis',['A', 'D']) n = self.store.remove('wp', where=[crit1]) assert(n == 56) n = self.store.remove('wp', where=[crit2]) assert(n == 32) result = self.store['wp'] expected = wp.truncate(after=date).reindex(minor=['B', 'C']) tm.assert_panel_equal(result, expected) # individual row elements self.store.put('wp2', wp, table=True) date1 = wp.major_axis[1:3] crit1 = Term('major_axis',date1) self.store.remove('wp2', where=[crit1]) result = self.store.select('wp2') expected = wp.reindex(major_axis=wp.major_axis-date1) tm.assert_panel_equal(result, expected) date2 = wp.major_axis[5] crit2 = Term('major_axis',date2) self.store.remove('wp2', where=[crit2]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])) tm.assert_panel_equal(result, expected) date3 = [wp.major_axis[7],wp.major_axis[9]] crit3 = Term('major_axis',date3) self.store.remove('wp2', where=[crit3]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])-Index(date3)) tm.assert_panel_equal(result, expected) # corners self.store.put('wp4', wp, table=True) n = self.store.remove('wp4', where=[Term('major_axis','>',wp.major_axis[-1])]) result = self.store.select('wp4') tm.assert_panel_equal(result, wp) def test_terms(self): wp = tm.makePanel() p4d = tm.makePanel4D() self.store.put('wp', wp, table=True) self.store.put('p4d', p4d, table=True) # some invalid terms terms = [ [ 'minor', ['A','B'] ], [ 'index', ['20121114'] ], [ 'index', ['20121114', '20121114'] ], ] for t in terms: self.assertRaises(Exception, self.store.select, 'wp', t) self.assertRaises(Exception, Term.__init__) self.assertRaises(Exception, Term.__init__, 'blah') self.assertRaises(Exception, Term.__init__, 'index') self.assertRaises(Exception, Term.__init__, 'index', '==') self.assertRaises(Exception, Term.__init__, 'index', '>', 5) # panel result = self.store.select('wp',[
Term('major_axis<20000108')
pandas.io.pytables.Term
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import math from sklearn.preprocessing import MinMaxScaler from sklearn.cluster import DBSCAN class ClusterBound: def __init__(self, x1, y1, w, h): self.x1 = x1 self.x2 = x1 + w self.y1 = y1 self.y2 = y1 + h def contains(self, xp, yp): return self.x1 <= xp <= self.x2 and self.y1 <= yp <= self.y2 class ManualClusterModel(): def __init__(self, cluster_bounds): self.cluster_bounds = cluster_bounds def fit(self, X): def find_cluster(x, cluster_bounds): for i, c in enumerate(cluster_bounds): if c.contains(x[0], x[1]): return i return -1 self.labels_ = X.apply(lambda x: find_cluster(x, self.cluster_bounds), axis=1) MirageCalloutClusteringModel = ManualClusterModel([ ClusterBound(162, 169, 64, 65), # van ClusterBound(227, 173, 32, 41), # b plat ClusterBound(259, 173, 89, 40), # b front apt ClusterBound(112, 231, 49, 93), # bench ClusterBound(162, 214, 167, 41), # b default out of site ClusterBound(203, 254, 68, 75), # b site ClusterBound(170, 395, 32, 90), # kitchen door ClusterBound(207, 396, 133, 90), # kitchen ClusterBound(342, 234, 54, 46), # side cat ClusterBound(342, 280, 160, 45), # cat site ClusterBound(430, 328, 28, 119), # underpass ClusterBound(463, 409, 218, 38), # cat ClusterBound(396, 435, 32, 62), # window ClusterBound(433, 446, 60, 59), # bottom mid ClusterBound(495, 448, 59, 56), # mid mid ClusterBound(556, 447, 131, 56), # top mid ClusterBound(682, 313, 69, 124), # top top mid ClusterBound(712, 440, 39, 59), # boxes ClusterBound(383, 571, 84, 79), # jungle ClusterBound(482, 508, 65, 91), # connector ClusterBound(573, 504, 179, 28), # mid chair ClusterBound(469, 601, 66, 54), # connector by stairs ClusterBound(538, 601, 29, 69), # stairs ClusterBound(643, 696, 42, 86), # palace deck/shadow ClusterBound(382, 498, 45, 71), # mid window hidden ClusterBound(648, 783, 50, 40), # front palace ClusterBound(441, 827, 43, 49), # ticket booth ClusterBound(319, 772, 149, 56), # ct ClusterBound(164, 332, 175, 60), # b market side ClusterBound(692, 627, 127, 57), # A ramp ClusterBound(568, 646, 30, 20), # sandwich ClusterBound(617, 624, 37, 29), # tetris ClusterBound(480, 741, 42, 47), # triple box ClusterBound(579, 791, 51, 35), # firebox ClusterBound(521, 737, 93, 51), # front a site ClusterBound(479, 671, 158, 65), # open a site ClusterBound(463, 329, 52, 79) # b short ]) #Convert map coordinates to image coordinates, from <NAME>'s analysis def pointx_to_resolutionx(xinput,startX=-3217,endX=1912,resX=1024): sizeX = endX - startX if startX < 0: xinput += startX * (-1.0) else: xinput += startX xoutput = float((xinput / abs(sizeX)) * resX); return xoutput def pointy_to_resolutiony(yinput,startY=-3401,endY=1682,resY=1024): sizeY=endY-startY if startY < 0: yinput += startY *(-1.0) else: yinput += startY youtput = float((yinput / abs(sizeY)) * resY); return resY-youtput def cluster_positions(firefight_df, cluster_map, verbose=False, scale=True): """ Clusters the dataframe spatially into common positions by type of position, map, and team. Clusters DMG_VIC and DMG_ATT together. Input: cluster_df: result of DataLoader.load_firefight_df, with columns ['file_round', 'seconds', 'pos_x', 'pos_y', 'hp_dmg'] eps_map: the eps to use for DBSCAN for each pos_type Output: the input cluster_df, with new columns ['pos_cluster'] """ min_max_scaler = MinMaxScaler() cluster_df = firefight_df.copy() if scale: cluster_df[["pos_x", "pos_y"]] = min_max_scaler.fit_transform(cluster_df[["pos_x", "pos_y"]]) cluster_df['pos_cluster'] = None for map_name in cluster_df['map'].unique(): for team in cluster_df['att_side'].unique(): # Cluster nade positions for pos_type in [t for t in cluster_df['pos_type'].unique() if t not in ['DMG_VIC', 'DMG_ATT']]: mask = (cluster_df['map'] == map_name) & (cluster_df['pos_type'] == pos_type) & (cluster_df['att_side'] == team) group = cluster_df[mask] # https://medium.com/@tarammullin/dbscan-parameter-estimation-ff8330e3a3bd cluster_model = cluster_map[pos_type] #cluster_model = DBSCAN(eps=0.05, min_samples=min_samples) pts = pd.concat([group['pos_x'], group['pos_y']], axis=1) cluster_model.fit(pts) firefight_df.loc[mask, 'pos_cluster'] = cluster_model.labels_ if verbose: print(f"{team}, {pos_type}, {map_name}: {np.unique(cluster_model.labels_, return_counts=True)}") # Cluster attack/victim positions print(cluster_df['pos_type'].unique()) mask = ((cluster_df['pos_type'] == 'DMG_VIC') | (cluster_df['pos_type'] == 'DMG_ATT')) & (cluster_df['att_side'] == team) & (cluster_df['map'] == map_name) group = cluster_df[mask] # https://medium.com/@tarammullin/dbscan-parameter-estimation-ff8330e3a3bd cluster_model = cluster_map['DMG'] #cluster_model = DBSCAN(eps=0.05, min_samples=min_samples) pts = pd.concat([group['pos_x'], group['pos_y']], axis=1) cluster_model.fit(pts) firefight_df.loc[mask, 'pos_cluster'] = cluster_model.labels_ if verbose: print(f"{team}, DMG, {map_name}: {np.unique(cluster_model.labels_, return_counts=True)}") return firefight_df def cluster_firefights(firefight_df, eps=0.08, min_samples=6, n_seconds_equiv_to_quarter_map=20, verbose=False, return_scaled=False): """ Clusters the dataframe spatio-temporally into "firefights" - groups of points within a round that are within a similar space and time. Also calculates the net damage taken by either team within each firefight. Input: cluster_df: result of DataLoader.load_firefight_df, with columns ['file_round', 'seconds', 'pos_x', 'pos_y', 'hp_dmg'] eps: the eps to use for DBSCAN min_samples: the min_samples to use for DBSCAN n_seconds_equiv_to_quarter_map: The number of seconds considered equivalent to a quarter of the map when clustering. Output: the input cluster_df, with new columns ['firefight_cluster', 'firefight_net_t_dmg', ''firefight_net_ct_dmg'] """ max_round_length = firefight_df['seconds'].max() min_max_scaler = MinMaxScaler() cluster_df = firefight_df.copy() cluster_df[["seconds", "pos_x", "pos_y"]] = min_max_scaler.fit_transform(cluster_df[["seconds", "pos_x", "pos_y"]]) # scale time so that 20 seconds is roughly equivalent to one quarter of the map cluster_df['seconds'] *= (max_round_length/n_seconds_equiv_to_quarter_map) * (1/4) # cluster firefights spatio-temporally firefight_df['firefight_cluster'] = None cluster_df['firefight_cluster'] = None firefight_df['firefight_net_t_dmg'] = None firefight_df['firefight_net_ct_dmg'] = None num_filerounds = len(cluster_df['file_round'].unique()) for i, (name, group) in enumerate(cluster_df.groupby('file_round')): # https://medium.com/@tarammullin/dbscan-parameter-estimation-ff8330e3a3bd cluster_model = DBSCAN(eps=eps, min_samples=min_samples) pts = pd.concat([group['seconds'], group['pos_x'], group['pos_y']], axis=1) cluster_model.fit(pts) cluster_df.loc[(firefight_df['file_round'] == name), 'firefight_cluster'] = cluster_model.labels_ firefight_df.loc[(firefight_df['file_round'] == name), 'firefight_cluster'] = cluster_model.labels_ if verbose: print(f"{i}/{num_filerounds}, {name}: {np.unique(cluster_model.labels_)}") # Find net damage for each firefight for name, group in cluster_df.groupby(['file_round', 'firefight_cluster']): ct_att_pts = group[(group['pos_type'] == 'DMG_VIC') & (group['att_side'] == 'CounterTerrorist')] t_att_pts = group[(group['pos_type'] == 'DMG_VIC') & (group['att_side'] == 'Terrorist')] t_net_dmg = np.sum(t_att_pts['hp_dmg']) ct_net_dmg = np.sum(ct_att_pts['hp_dmg']) mask = (firefight_df['file_round'] == name[0]) & (firefight_df['firefight_cluster'] == name[1]) firefight_df.loc[mask, 'firefight_net_t_dmg'] = t_net_dmg firefight_df.loc[mask, 'firefight_net_ct_dmg'] = ct_net_dmg cluster_df.loc[mask, 'firefight_net_t_dmg'] = t_net_dmg cluster_df.loc[mask, 'firefight_net_ct_dmg'] = ct_net_dmg if verbose: print(f"{name}: t_dmg={t_net_dmg}, ct_dmg={ct_net_dmg}") if return_scaled: return cluster_df return firefight_df class DataLoader: def __init__(self, use_data_pt2=False): self.use_data_pt2 = use_data_pt2 def load_map_df(self): map_df = pd.read_csv('../data/map_data.csv') map_df = map_df.rename( columns={'Unnamed: 0':'map_name'}).set_index('map_name') return map_df def load_meta_df(self): meta_df = pd.read_csv('../data/esea_meta_demos.part1.csv') if self.use_data_pt2: meta_df = meta_df.append(pd.read_csv('../data/esea_meta_demos.part2.csv')) meta_df = meta_df[['file', 'map', 'round', 'start_seconds', 'winner_side', 'round_type', 'ct_eq_val', 't_eq_val']] return meta_df def load_dmg_df(self, nrows=None, scale_to_map=True, dropna=True, map_name=None): dmg_df = pd.read_csv('../data/esea_master_dmg_demos.part1.csv', nrows=nrows) if self.use_data_pt2: dmg_df = dmg_df.append(pd.read_csv('../data/esea_master_kills_demos.part2.csv', nrows=None if nrows is None else nrows - len(dmg_df))) dmg_df = dmg_df[['file', 'round', 'seconds', 'att_side', 'vic_side', 'is_bomb_planted', 'bomb_site', 'hp_dmg', 'arm_dmg', 'hitbox', 'wp', 'wp_type', 'att_id', 'vic_id', 'att_pos_x', 'att_pos_y', 'vic_pos_x', 'vic_pos_y']] meta_df = self.load_meta_df() dmg_df = pd.merge(dmg_df, meta_df, how='left', left_on=['file','round'], right_on = ['file','round']) if map_name is not None: dmg_df = dmg_df[dmg_df['map'] == map_name] dmg_df['seconds'] -= dmg_df['start_seconds'] dmg_df = dmg_df.drop(columns=['start_seconds']) if scale_to_map: map_df = self.load_map_df() for map_info in map_df.iterrows(): map_name = map_info[0] map_data = map_info[1] mask = (dmg_df['map'] == map_name) map_df = dmg_df[mask] dmg_df.loc[mask, 'att_pos_y'] = map_df['att_pos_y'].apply(pointy_to_resolutiony, args=(map_data['StartY'], map_data['EndY'], map_data['ResY'])) dmg_df.loc[mask, 'att_pos_x'] = map_df['att_pos_x'].apply(pointx_to_resolutionx, args=(map_data['StartX'], map_data['EndX'], map_data['ResX'])) dmg_df.loc[mask, 'vic_pos_y'] = map_df['vic_pos_y'].apply(pointy_to_resolutiony, args=(map_data['StartY'], map_data['EndY'], map_data['ResY'])) dmg_df.loc[mask, 'vic_pos_x'] = map_df['vic_pos_x'].apply(pointx_to_resolutionx, args=(map_data['StartX'], map_data['EndX'], map_data['ResX'])) if dropna: dmg_df = dmg_df.dropna() return dmg_df def load_kill_df(self, nrows=None): kill_df = pd.read_csv('../data/esea_master_dmg_demos.part1.csv', nrows=nrows) if self.use_data_pt2: kill_df = grenade_df.append(pd.read_csv('../data/esea_master_kills_demos.part2.csv')) kill_df = kill_df[['file', 'round', 'seconds', 'att_side', 'vic_side', 'is_bomb_planted', 'wp', 'wp_type']] meta_df = self.load_meta_df() kill_df =
pd.merge(kill_df, meta_df, how='left', left_on=['file','round'], right_on = ['file','round'])
pandas.merge
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest from copy import deepcopy import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt.utils.random_ import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.portfolio['attach_call_seq'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_execute_order_nb(): # Errors, ignored and rejected orders with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(-100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.nan, 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.inf, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., np.nan, 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., np.nan, 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., -10., 100., 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., np.nan, 10., 1100., 0, 0), nb.order_nb(10, 10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, size_type=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=-2)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=20)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., -100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, -10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, slippage=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=np.inf)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=0)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, max_size=-10)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=np.nan)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=-1)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., np.nan, 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., -10., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.inf, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., -10., 1100, 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., np.nan, 1100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -10., 0., 100., 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=200.0, position=-20.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 10., 0., 100., 10., 1100., 0, 0), nb.order_nb(0, 10)) assert exec_state == ExecuteOrderState(cash=100.0, position=10.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(15, 10, max_size=10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, reject_prob=1.)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 100., 0., 0., 10., 1100., 0, 0), nb.order_nb(10, 10, direction=Direction.Both)) assert exec_state == ExecuteOrderState(cash=0.0, position=100.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100, 0., np.inf, np.nan, 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.LongOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.ShortOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.ShortOnly)) with pytest.raises(Exception): _ = nb.execute_order_nb( ProcessOrderState(np.inf, 100., 0., np.inf, 10., 1100., 0, 0), nb.order_nb(-np.inf, 10, direction=Direction.Both)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, direction=Direction.LongOnly)) assert exec_state == ExecuteOrderState(cash=100.0, position=0.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, fixed_fees=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(100, 10, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, min_size=100)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-200, 10, direction=Direction.LongOnly, allow_partial=False)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 100., 0., 100., 10., 1100., 0, 0), nb.order_nb(-10, 10, fixed_fees=1000)) assert exec_state == ExecuteOrderState(cash=100.0, position=100.0, debt=0.0, free_cash=100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=0.0, position=8.18181818181818, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=180.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, fees=0.1, fixed_fees=1, slippage=0.1)) assert exec_state == ExecuteOrderState(cash=909.0, position=-100.0, debt=900.0, free_cash=-891.0) assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-10, 10, size_type=SizeType.TargetAmount)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.Value)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-100, 10, size_type=SizeType.TargetValue)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.TargetPercent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=7.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=125.0, position=-2.5, debt=25.0, free_cash=75.0) assert_same_tuple(order_result, OrderResult( size=7.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-2.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=25.0, position=-2.5, debt=0.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-0.5, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=75.0, position=-7.5, debt=25.0, free_cash=25.0) assert_same_tuple(order_result, OrderResult( size=2.5, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(50., -5., 0., 50., 10., 100., 0, 0), nb.order_nb(-1, 10, size_type=SizeType.Percent)) assert exec_state == ExecuteOrderState(cash=100.0, position=-10.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=10.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 0., 100., 10., 100., 0, 0), nb.order_nb(np.inf, 10)) assert exec_state == ExecuteOrderState(cash=0.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=200.0, position=-10.0, debt=100.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(150., -5., 0., 150., 10., 100., 0, 0), nb.order_nb(-np.inf, 10)) assert exec_state == ExecuteOrderState(cash=300.0, position=-20.0, debt=150.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., 0., 0., 50., 10., 100., 0, 0), nb.order_nb(10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=50.0, position=5.0, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=5.0, price=10.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(1000., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 17.5, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=850.0, position=3.571428571428571, debt=0.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=8.571428571428571, price=17.5, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(100., -5., 50., 50., 10., 100., 0, 0), nb.order_nb(10, 100, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=37.5, position=-4.375, debt=43.75, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=0.625, price=100.0, fees=0.0, side=0, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 10., 0., -50., 10., 100., 0, 0), nb.order_nb(-20, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=150.0, position=-5.0, debt=50.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=15.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 1., 0., -50., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=10.0, position=0.0, debt=0.0, free_cash=-40.0) assert_same_tuple(order_result, OrderResult( size=1.0, price=10.0, fees=0.0, side=1, status=0, status_info=-1)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., -100., 10., 100., 0, 0), nb.order_nb(-10, 10, lock_cash=True)) assert exec_state == ExecuteOrderState(cash=0.0, position=0.0, debt=0.0, free_cash=-100.0) assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) exec_state, order_result = nb.execute_order_nb( ProcessOrderState(0., 0., 0., 100., 10., 100., 0, 0), nb.order_nb(-20, 10, fees=0.1, slippage=0.1, fixed_fees=1., lock_cash=True)) assert exec_state == ExecuteOrderState(cash=80.0, position=-10.0, debt=90.0, free_cash=0.0) assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_both(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='both', **kwargs) def from_orders_longonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='longonly', **kwargs) def from_orders_shortonly(close=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(close, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_both().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1), (8, 2, 0, 100.0, 1.0, 0.0, 0), (9, 2, 1, 100.0, 2.0, 0.0, 1), (10, 2, 3, 50.0, 4.0, 0.0, 0), (11, 2, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 2, 0, 100.0, 1.0, 0.0, 1), (5, 2, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) pf = from_orders_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_both(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 198.01980198019803, 2.02, 0.0, 1), (2, 0, 3, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 1), (2, 0, 3, 49.504950495049506, 4.04, 0.0, 0), (3, 0, 4, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 1, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 0), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 3, 33.333333333333336, 3.0, 0.0, 1), (1, 0, 4, 33.333333333333336, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value').order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_orders_both(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_both(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_longonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_longonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_orders_shortonly(close=price_nan, size=order_size_one, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_orders_shortonly(close=price_nan, size=order_size_one, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 1, 3, 1.0, 4.0, 0.4, 0), (7, 1, 4, 1.0, 5.0, 0.5, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 2.0, 1), (10, 2, 3, 1.0, 4.0, 4.0, 0), (11, 2, 4, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 1, 3, 1.0, 4.0, 0.4, 1), (7, 1, 4, 1.0, 5.0, 0.5, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 2.0, 0), (10, 2, 3, 1.0, 4.0, 4.0, 1), (11, 2, 4, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_both(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 1, 3, 1.0, 4.0, 0.1, 0), (7, 1, 4, 1.0, 5.0, 0.1, 1), (8, 2, 0, 1.0, 1.0, 1.0, 0), (9, 2, 1, 1.0, 2.0, 1.0, 1), (10, 2, 3, 1.0, 4.0, 1.0, 0), (11, 2, 4, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 1, 3, 1.0, 4.0, 0.1, 1), (7, 1, 4, 1.0, 5.0, 0.1, 0), (8, 2, 0, 1.0, 1.0, 1.0, 1), (9, 2, 1, 1.0, 2.0, 1.0, 0), (10, 2, 3, 1.0, 4.0, 1.0, 1), (11, 2, 4, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_both(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 1, 3, 1.0, 4.4, 0.0, 0), (7, 1, 4, 1.0, 4.5, 0.0, 1), (8, 2, 0, 1.0, 2.0, 0.0, 0), (9, 2, 1, 1.0, 0.0, 0.0, 1), (10, 2, 3, 1.0, 8.0, 0.0, 0), (11, 2, 4, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 1, 3, 1.0, 3.6, 0.0, 1), (7, 1, 4, 1.0, 5.5, 0.0, 0), (8, 2, 0, 1.0, 0.0, 0.0, 1), (9, 2, 1, 1.0, 4.0, 0.0, 0), (10, 2, 3, 1.0, 0.0, 0.0, 1), (11, 2, 4, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_both(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_both(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.5, 4.0, 0.0, 0), (3, 0, 4, 0.5, 5.0, 0.0, 1), (4, 1, 0, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 1, 3, 1.0, 4.0, 0.0, 0), (7, 1, 4, 1.0, 5.0, 0.0, 1), (8, 2, 0, 1.0, 1.0, 0.0, 0), (9, 2, 1, 1.0, 2.0, 0.0, 1), (10, 2, 3, 1.0, 4.0, 0.0, 0), (11, 2, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.5, 4.0, 0.0, 1), (3, 0, 4, 0.5, 5.0, 0.0, 0), (4, 1, 0, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 1, 3, 1.0, 4.0, 0.0, 1), (7, 1, 4, 1.0, 5.0, 0.0, 0), (8, 2, 0, 1.0, 1.0, 0.0, 1), (9, 2, 1, 1.0, 2.0, 0.0, 0), (10, 2, 3, 1.0, 4.0, 0.0, 1), (11, 2, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_both(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 1, 3, 1.0, 4.0, 0.0, 0), (6, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 1.0, 2.0, 0.0, 1), (2, 0, 3, 1.0, 4.0, 0.0, 0), (3, 0, 4, 1.0, 5.0, 0.0, 1), (4, 1, 3, 1.0, 4.0, 0.0, 0), (5, 1, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 1.0, 2.0, 0.0, 0), (2, 0, 3, 1.0, 4.0, 0.0, 1), (3, 0, 4, 1.0, 5.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_lock_cash(self): pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [143.12812469365747, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-49.5, -49.5] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 1]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [94.6034702480149, 47.54435839623566] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [49.5, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=False, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [1.4312812469365748, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [0.0, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [-96.16606313106556, -96.16606313106556] ]) ) pf = vbt.Portfolio.from_orders( pd.Series([1, 100]), pd.DataFrame([[-25, -25], [np.inf, np.inf]]), group_by=True, cash_sharing=True, lock_cash=True, fees=0.01, fixed_fees=1., slippage=0.01) np.testing.assert_array_equal( pf.asset_flow().values, np.array([ [-25.0, -25.0], [0.4699090272918124, 0.0] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True).values, np.array([ [123.5025, 147.005], [98.06958012596222, 98.06958012596222] ]) ) np.testing.assert_array_equal( pf.cash(group_by=False, in_sim_order=True, free=True).values, np.array([ [74.0025, 48.004999999999995], [0.0, 0.0] ]) ) pf = from_orders_both(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 1000., 2., 0., 1), (2, 0, 3, 500., 4., 0., 0), (3, 0, 4, 1000., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 200., 2., 0., 1), (6, 1, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-1600.0, 0.0], [-6600.0, 0.0] ]) ) pf = from_orders_longonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 100., 2., 0., 1), (2, 0, 3, 50., 4., 0., 0), (3, 0, 4, 50., 5., 0., 1), (4, 1, 0, 100., 1., 0., 0), (5, 1, 1, 100., 2., 0., 1), (6, 1, 3, 50., 4., 0., 0), (7, 1, 4, 50., 5., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [0.0, 0.0], [200.0, 200.0], [200.0, 200.0], [0.0, 0.0], [250.0, 250.0] ]) ) pf = from_orders_shortonly(size=order_size_one * 1000, lock_cash=[[False, True]]) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 1000., 1., 0., 1), (1, 0, 1, 550., 2., 0., 0), (2, 0, 3, 1000., 4., 0., 1), (3, 0, 4, 800., 5., 0., 0), (4, 1, 0, 100., 1., 0., 1), (5, 1, 1, 100., 2., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.cash(free=True).values, np.array([ [-900.0, 0.0], [-900.0, 0.0], [-900.0, 0.0], [-4900.0, 0.0], [-3989.6551724137926, 0.0] ]) ) def test_allow_partial(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 1, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0), (4, 1, 0, 1000.0, 1.0, 0.0, 1), (5, 1, 3, 1000.0, 4.0, 0.0, 1), (6, 1, 4, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1), (4, 1, 0, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 1, 3, 50.0, 4.0, 0.0, 0), (7, 1, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 1, 100.0, 2.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_both(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 1000.0, 2.0, 0.0, 1), (2, 0, 3, 500.0, 4.0, 0.0, 0), (3, 0, 4, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 2.0, 0.0, 1), (2, 0, 3, 50.0, 4.0, 0.0, 0), (3, 0, 4, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 1, 550.0, 2.0, 0.0, 0), (2, 0, 3, 1000.0, 4.0, 0.0, 1), (3, 0, 4, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_orders_both(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 1, 0.0, 100.0, 0.0, 0.0, 2.0, 200.0, -np.inf, 2.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 2.0, 200.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 0, 0, 2, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, 3.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 400.0, -100.0, 200.0, 0.0, 3.0, 100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 0, 0, 3, 400.0, -100.0, 200.0, 0.0, 4.0, 0.0, np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 4.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 0, 0, 4, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, -np.inf, 5.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 200.0, 2.0, 0.0, 1), (2, 0, 3, 100.0, 4.0, 0.0, 0), (3, 1, 0, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 3, 100.0, 4.0, 0.0, 0), (6, 2, 0, 100.0, 1.0, 0.0, 0), (7, 2, 1, 200.0, 2.0, 0.0, 1), (8, 2, 3, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_orders_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 1, 200., 2., 0., 1), (2, 0, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_orders_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 1, 200., 2., 0., 1), (2, 1, 3, 100., 4., 0., 0), (3, 2, 0, 100., 1., 0., 0), (4, 2, 1, 200., 2., 0., 1), (5, 2, 3, 100., 4., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_orders_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_orders_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_value(self): record_arrays_close( from_orders_both(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 0.5, 2.0, 0.0, 1), (2, 0, 3, 0.25, 4.0, 0.0, 0), (3, 0, 4, 0.2, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, size_type='value').order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 1, 0.5, 2.0, 0.0, 0), (2, 0, 3, 0.25, 4.0, 0.0, 1), (3, 0, 4, 0.2, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_target_amount(self): record_arrays_close( from_orders_both(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetamount').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=75., size_type='targetamount', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_both(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 1, 2, 8.333333333333332, 3.0, 0.0, 0), (8, 1, 3, 4.166666666666668, 4.0, 0.0, 0), (9, 1, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 2.0, 0.0, 1), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (4, 0, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 25.0, 2.0, 0.0, 0), (2, 0, 2, 8.333333333333332, 3.0, 0.0, 0), (3, 0, 3, 4.166666666666668, 4.0, 0.0, 0), (4, 0, 4, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0), (2, 0, 1, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 2, 1, 25.0, 2.0, 0.0, 0), (5, 0, 2, 8.333333333333332, 3.0, 0.0, 1), (6, 1, 2, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 0, 3, 4.166666666666668, 4.0, 0.0, 1), (9, 1, 3, 4.166666666666668, 4.0, 0.0, 1), (10, 2, 3, 4.166666666666668, 4.0, 0.0, 1), (11, 0, 4, 2.5, 5.0, 0.0, 1), (12, 1, 4, 2.5, 5.0, 0.0, 1), (13, 2, 4, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1), (5, 1, 0, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 1, 2, 6.25, 3.0, 0.0, 0), (8, 1, 3, 2.34375, 4.0, 0.0, 0), (9, 1, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 1), (2, 0, 2, 6.25, 3.0, 0.0, 1), (3, 0, 3, 3.90625, 4.0, 0.0, 1), (4, 0, 4, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 0, 1, 37.5, 2.0, 0.0, 0), (2, 0, 2, 6.25, 3.0, 0.0, 0), (3, 0, 3, 2.34375, 4.0, 0.0, 0), (4, 0, 4, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_update_value(self): record_arrays_close( from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=False).order_records, from_orders_both(size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, update_value=True).order_records ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=False).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.9465661198057499, 2.02, 0.019120635620076154, 0), (4, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (5, 1, 2, 0.018558300554959377, 3.0300000000000002, 0.0005623165068152705, 0), (6, 0, 3, 0.00037870218456959037, 3.96, 1.4996606508955778e-05, 1), (7, 1, 3, 0.0003638525743521767, 4.04, 1.4699644003827875e-05, 0), (8, 0, 4, 7.424805112066224e-06, 4.95, 3.675278530472781e-07, 1), (9, 1, 4, 7.133664827307231e-06, 5.05, 3.6025007377901643e-07, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='targetpercent', fees=0.01, slippage=0.01, group_by=np.array([0, 0, 0]), cash_sharing=True, update_value=True).order_records, np.array([ (0, 0, 0, 50.0, 1.01, 0.505, 0), (1, 1, 0, 48.02960494069208, 1.01, 0.485099009900992, 0), (2, 0, 1, 0.9851975296539592, 1.98, 0.019506911087148394, 1), (3, 1, 1, 0.7303208018821721, 2.02, 0.014752480198019875, 0), (4, 2, 1, 0.21624531792357785, 2.02, 0.0043681554220562635, 0), (5, 0, 2, 0.019315704924103727, 2.9699999999999998, 0.0005736764362458806, 1), (6, 1, 2, 0.009608602243410758, 2.9699999999999998, 0.00028537548662929945, 1), (7, 2, 2, 0.02779013180558861, 3.0300000000000002, 0.0008420409937093393, 0), (8, 0, 3, 0.0005670876809631409, 3.96, 2.2456672166140378e-05, 1), (9, 1, 3, 0.00037770350099464167, 3.96, 1.4957058639387809e-05, 1), (10, 2, 3, 0.0009077441794302741, 4.04, 3.6672864848982974e-05, 0), (11, 0, 4, 1.8523501267964093e-05, 4.95, 9.169133127642227e-07, 1), (12, 1, 4, 1.2972670177191503e-05, 4.95, 6.421471737709794e-07, 1), (13, 2, 4, 3.0261148547590434e-05, 5.05, 1.5281880016533242e-06, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_both(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0), (5, 1, 0, 50., 1., 0., 1), (6, 1, 1, 12.5, 2., 0., 1), (7, 1, 2, 4.16666667, 3., 0., 1), (8, 1, 3, 1.5625, 4., 0., 1), (9, 1, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 12.5, 2., 0., 0), (2, 0, 2, 4.16666667, 3., 0., 0), (3, 0, 3, 1.5625, 4., 0., 0), (4, 0, 4, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 1, 12.5, 2., 0., 1), (2, 0, 2, 4.16666667, 3., 0., 1), (3, 0, 3, 1.5625, 4., 0., 1), (4, 0, 4, 0.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_orders_both( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 1, 0, 2.50000000e+01, 1., 0., 0), (2, 2, 0, 1.25000000e+01, 1., 0., 0), (3, 0, 1, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 2, 1, 7.81250000e-01, 2., 0., 0), (6, 0, 2, 2.60416667e-01, 3., 0., 0), (7, 1, 2, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 0, 3, 2.44140625e-02, 4., 0., 0), (10, 1, 3, 1.22070312e-02, 4., 0., 0), (11, 2, 3, 6.10351562e-03, 4., 0., 0), (12, 0, 4, 2.44140625e-03, 5., 0., 0), (13, 1, 4, 1.22070312e-03, 5., 0., 0), (14, 2, 4, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_both( close=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').asset_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_both(close=price_wide) _ = from_orders_both(close=price_wide, max_orders=9) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_both(close=price_wide, log=True) _ = from_orders_both(close=price_wide, log=True, max_logs=15) with pytest.raises(Exception): _ = from_orders_both(close=price_wide, log=True, max_logs=14) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='both', **kwargs) def from_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, direction='shortonly', **kwargs) def from_ls_signals_both(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, False, exits, False, **kwargs) def from_ls_signals_longonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, entries, exits, False, False, **kwargs) def from_ls_signals_shortonly(close=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(close, False, False, entries, exits, **kwargs) class TestFromSignals: @pytest.mark.parametrize( "test_ls", [False, True], ) def test_one_column(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both() pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert pf.wrapper.ndim == 1 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_ls", [False, True], ) def test_multiple_columns(self, test_ls): _from_signals_both = from_ls_signals_both if test_ls else from_signals_both _from_signals_longonly = from_ls_signals_longonly if test_ls else from_signals_longonly _from_signals_shortonly = from_ls_signals_shortonly if test_ls else from_signals_shortonly record_arrays_close( _from_signals_both(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 200., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_longonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 100., 4., 0., 1), (2, 1, 0, 100., 1., 0., 0), (3, 1, 3, 100., 4., 0., 1), (4, 2, 0, 100., 1., 0., 0), (5, 2, 3, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( _from_signals_shortonly(close=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 0, 3, 50., 4., 0., 0), (2, 1, 0, 100., 1., 0., 1), (3, 1, 3, 50., 4., 0., 0), (4, 2, 0, 100., 1., 0., 1), (5, 2, 3, 50., 4., 0., 0) ], dtype=order_dt) ) pf = _from_signals_both(close=price_wide) pd.testing.assert_index_equal( pf.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( pf.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert pf.wrapper.ndim == 2 assert pf.wrapper.freq == day_dt assert pf.wrapper.grouper.group_by is None def test_custom_signal_func(self): @njit def signal_func_nb(c, long_num_arr, short_num_arr): long_num = nb.get_elem_nb(c, long_num_arr) short_num = nb.get_elem_nb(c, short_num_arr) is_long_entry = long_num > 0 is_long_exit = long_num < 0 is_short_entry = short_num > 0 is_short_exit = short_num < 0 return is_long_entry, is_long_exit, is_short_entry, is_short_exit pf_base = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), entries=pd.Series([True, False, False, False, False]), exits=pd.Series([False, False, True, False, False]), short_entries=pd.Series([False, True, False, True, False]), short_exits=pd.Series([False, False, False, False, True]), size=1, upon_opposite_entry='ignore' ) pf = vbt.Portfolio.from_signals( pd.Series([1, 2, 3, 4, 5]), signal_func_nb=signal_func_nb, signal_args=(vbt.Rep('long_num_arr'), vbt.Rep('short_num_arr')), broadcast_named_args=dict( long_num_arr=pd.Series([1, 0, -1, 0, 0]), short_num_arr=pd.Series([0, 1, 0, 1, -1]) ), size=1, upon_opposite_entry='ignore' ) record_arrays_close( pf_base.order_records, pf.order_records ) def test_amount(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 2.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='amount').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_value(self): record_arrays_close( from_signals_both(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 0.3125, 4.0, 0.0, 1), (2, 1, 4, 0.1775, 5.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 2, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[0, 1, np.inf]], size_type='value').order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 1), (1, 1, 3, 1.0, 4.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 2, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception): _ = from_signals_both(size=0.5, size_type='percent') record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1), (2, 0, 4, 25., 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=0.5, size_type='percent', upon_opposite_entry='close', accumulate=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 12.5, 2.0, 0.0, 0), (2, 0, 3, 62.5, 4.0, 0.0, 1), (3, 0, 4, 27.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 3, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 1), (1, 0, 3, 37.5, 4., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 25., 1., 0., 0), (2, 2, 0, 12.5, 1., 0., 0), (3, 0, 3, 50., 4., 0., 1), (4, 1, 3, 25., 4., 0., 1), (5, 2, 3, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_both(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 0, 3, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 0, 3, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 0, 3, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=np.inf).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_both(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=-np.inf).order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 1), (1, 0, 3, 66.66666666666667, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_val_price(self): price_nan = pd.Series([1, 2, np.nan, 4, 5], index=price.index) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price, size_type='value').order_records ) shift_price = price_nan.ffill().shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value').order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price, size_type='value').order_records ) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=price_nan, size_type='value', ffill_val_price=False).order_records ) shift_price_nan = price_nan.shift(1) record_arrays_close( from_signals_both(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_both(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_longonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_longonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) record_arrays_close( from_signals_shortonly(close=price_nan, size=1, val_price=-np.inf, size_type='value', ffill_val_price=False).order_records, from_signals_shortonly(close=price_nan, size=1, val_price=shift_price_nan, size_type='value', ffill_val_price=False).order_records ) def test_fees(self): record_arrays_close( from_signals_both(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.8, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.4, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.4, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_both(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 2.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.1, 0), (3, 1, 3, 1.0, 4.0, 0.1, 1), (4, 2, 0, 1.0, 1.0, 1.0, 0), (5, 2, 3, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.1, 1), (3, 1, 3, 1.0, 4.0, 0.1, 0), (4, 2, 0, 1.0, 1.0, 1.0, 1), (5, 2, 3, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_both(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 2.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.1, 0.0, 0), (3, 1, 3, 1.0, 3.6, 0.0, 1), (4, 2, 0, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 0.9, 0.0, 1), (3, 1, 3, 1.0, 4.4, 0.0, 0), (4, 2, 0, 1.0, 0.0, 0.0, 1), (5, 2, 3, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_both(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_both(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 0, 4, 0.5, 5.0, 0.0, 1), (3, 1, 0, 1.0, 1.0, 0.0, 0), (4, 1, 3, 1.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 0, 3, 0.5, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 0, 3, 0.5, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_both(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_both(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1), (2, 1, 3, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 0, 3, 275.0, 4.0, 0.0, 0), (2, 1, 0, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 0, 3, 50.0, 4.0, 0.0, 0), (2, 1, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_both(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_both(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception): _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_signals_both(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 0.0, 100.0, 1.0, 100.0, np.inf, 1.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 0.0, 100.0, 0.0, 0.0, 1.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 0, 0, 3, 0.0, 100.0, 0.0, 0.0, 4.0, 400.0, -np.inf, 4.0, 0, 2, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, False, True, False, True, 800.0, -100.0, 400.0, 0.0, 4.0, 400.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_accumulate(self): record_arrays_close( from_signals_both(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 2.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 3.0, 4.0, 0.0, 1), (5, 1, 4, 1.0, 5.0, 0.0, 1), (6, 2, 0, 1.0, 1.0, 0.0, 0), (7, 2, 3, 1.0, 4.0, 0.0, 1), (8, 2, 4, 1.0, 5.0, 0.0, 1), (9, 3, 0, 1.0, 1.0, 0.0, 0), (10, 3, 1, 1.0, 2.0, 0.0, 0), (11, 3, 3, 1.0, 4.0, 0.0, 1), (12, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 3, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 1.0, 0.0, 0), (3, 1, 1, 1.0, 2.0, 0.0, 0), (4, 1, 3, 2.0, 4.0, 0.0, 1), (5, 2, 0, 1.0, 1.0, 0.0, 0), (6, 2, 3, 1.0, 4.0, 0.0, 1), (7, 3, 0, 1.0, 1.0, 0.0, 0), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 3, 1.0, 4.0, 0.0, 1), (10, 3, 4, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=[['disabled', 'addonly', 'removeonly', 'both']]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 1.0, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 1, 1.0, 2.0, 0.0, 1), (4, 1, 3, 2.0, 4.0, 0.0, 0), (5, 2, 0, 1.0, 1.0, 0.0, 1), (6, 2, 3, 1.0, 4.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 1), (9, 3, 3, 1.0, 4.0, 0.0, 0), (10, 3, 4, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_long_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_long_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 1, 1.0, 2.0, 0.0, 0), (5, 2, 2, 1.0, 3.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 0), (8, 5, 1, 1.0, 2.0, 0.0, 0), (9, 5, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_short_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_short_conflict=[[ 'ignore', 'entry', 'exit', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 1, 1.0, 2.0, 0.0, 1), (5, 2, 2, 1.0, 3.0, 0.0, 0), (6, 3, 1, 1.0, 2.0, 0.0, 1), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 5, 1, 1.0, 2.0, 0.0, 1), (9, 5, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_dir_conflict(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, True, True, True, True, True, True], [True, True, True, True, False, True, False], [True, True, True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True, True, True], [False, False, False, False, True, False, True], [True, True, True, True, True, True, True] ]), size=1., accumulate=True, upon_dir_conflict=[[ 'ignore', 'long', 'short', 'adjacent', 'adjacent', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 1, 1.0, 2.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 1, 2, 1.0, 3.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 1, 1.0, 2.0, 0.0, 0), (6, 2, 2, 1.0, 3.0, 0.0, 1), (7, 3, 1, 1.0, 2.0, 0.0, 0), (8, 3, 2, 1.0, 3.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 1), (11, 5, 1, 1.0, 2.0, 0.0, 0), (12, 5, 2, 1.0, 3.0, 0.0, 1), (13, 6, 1, 1.0, 2.0, 0.0, 1), (14, 6, 2, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_upon_opposite_entry(self): kwargs = dict( close=price[:3], entries=pd.DataFrame([ [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False] ]), exits=pd.DataFrame([ [False, True, False, True, False, True, False, True, False, True], [True, False, True, False, True, False, True, False, True, False], [False, True, False, True, False, True, False, True, False, True] ]), size=1., upon_opposite_entry=[[ 'ignore', 'ignore', 'close', 'close', 'closereduce', 'closereduce', 'reverse', 'reverse', 'reversereduce', 'reversereduce' ]] ) record_arrays_close( from_signals_both(**kwargs).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 1.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 1, 1.0, 2.0, 0.0, 1), (4, 2, 2, 1.0, 3.0, 0.0, 0), (5, 3, 0, 1.0, 1.0, 0.0, 1), (6, 3, 1, 1.0, 2.0, 0.0, 0), (7, 3, 2, 1.0, 3.0, 0.0, 1), (8, 4, 0, 1.0, 1.0, 0.0, 0), (9, 4, 1, 1.0, 2.0, 0.0, 1), (10, 4, 2, 1.0, 3.0, 0.0, 0), (11, 5, 0, 1.0, 1.0, 0.0, 1), (12, 5, 1, 1.0, 2.0, 0.0, 0), (13, 5, 2, 1.0, 3.0, 0.0, 1), (14, 6, 0, 1.0, 1.0, 0.0, 0), (15, 6, 1, 2.0, 2.0, 0.0, 1), (16, 6, 2, 2.0, 3.0, 0.0, 0), (17, 7, 0, 1.0, 1.0, 0.0, 1), (18, 7, 1, 2.0, 2.0, 0.0, 0), (19, 7, 2, 2.0, 3.0, 0.0, 1), (20, 8, 0, 1.0, 1.0, 0.0, 0), (21, 8, 1, 2.0, 2.0, 0.0, 1), (22, 8, 2, 2.0, 3.0, 0.0, 0), (23, 9, 0, 1.0, 1.0, 0.0, 1), (24, 9, 1, 2.0, 2.0, 0.0, 0), (25, 9, 2, 2.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both(**kwargs, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 2, 1.0, 3.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 2, 1.0, 3.0, 0.0, 1), (4, 2, 0, 1.0, 1.0, 0.0, 0), (5, 2, 1, 1.0, 2.0, 0.0, 1), (6, 2, 2, 1.0, 3.0, 0.0, 0), (7, 3, 0, 1.0, 1.0, 0.0, 1), (8, 3, 1, 1.0, 2.0, 0.0, 0), (9, 3, 2, 1.0, 3.0, 0.0, 1), (10, 4, 0, 1.0, 1.0, 0.0, 0), (11, 4, 1, 1.0, 2.0, 0.0, 1), (12, 4, 2, 1.0, 3.0, 0.0, 0), (13, 5, 0, 1.0, 1.0, 0.0, 1), (14, 5, 1, 1.0, 2.0, 0.0, 0), (15, 5, 2, 1.0, 3.0, 0.0, 1), (16, 6, 0, 1.0, 1.0, 0.0, 0), (17, 6, 1, 2.0, 2.0, 0.0, 1), (18, 6, 2, 2.0, 3.0, 0.0, 0), (19, 7, 0, 1.0, 1.0, 0.0, 1), (20, 7, 1, 2.0, 2.0, 0.0, 0), (21, 7, 2, 2.0, 3.0, 0.0, 1), (22, 8, 0, 1.0, 1.0, 0.0, 0), (23, 8, 1, 1.0, 2.0, 0.0, 1), (24, 8, 2, 1.0, 3.0, 0.0, 0), (25, 9, 0, 1.0, 1.0, 0.0, 1), (26, 9, 1, 1.0, 2.0, 0.0, 0), (27, 9, 2, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_both(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 3, 1.0, 4.0, 0.0, 1), (1, 1, 0, 1.0, 1.0, 0.0, 0), (2, 1, 3, 2.0, 4.0, 0.0, 1), (3, 2, 0, 1.0, 1.0, 0.0, 0), (4, 2, 3, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 1, 0, 1.0, 1.0, 0.0, 0), (1, 1, 3, 1.0, 4.0, 0.0, 1), (2, 2, 0, 1.0, 1.0, 0.0, 0), (3, 2, 3, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(close=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 0, 3, 0.25, 4.0, 0.0, 0), (2, 1, 0, 1.0, 1.0, 0.0, 1), (3, 1, 3, 0.5, 4.0, 0.0, 0), (4, 2, 0, 1.0, 1.0, 0.0, 1), (5, 2, 3, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception): _ = from_signals_both(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception): _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 3, 200.0, 4.0, 0.0, 1), (2, 1, 0, 100.0, 1.0, 0.0, 0), (3, 1, 3, 200.0, 4.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 2, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not pf.cash_sharing def test_cash_sharing(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( pf.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( pf.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert pf.cash_sharing with pytest.raises(Exception): _ = pf.regroup(group_by=False) def test_call_seq(self): pf = from_signals_both(close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( pf.order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 0, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) pf = from_signals_both( close=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( pf.order_records, np.array([ (0, 1, 0, 100., 1., 0., 0), (1, 1, 3, 200., 4., 0., 1), (2, 2, 0, 100., 1., 0., 0), (3, 2, 3, 200., 4., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( close=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) pf = from_signals_both(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 200., 1., 0., 1), (2, 1, 1, 200., 1., 0., 0), (3, 1, 2, 200., 1., 0., 1), (4, 0, 2, 200., 1., 0., 0), (5, 0, 3, 200., 1., 0., 1), (6, 2, 3, 200., 1., 0., 0), (7, 2, 4, 200., 1., 0., 1), (8, 1, 4, 200., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_longonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 0), (1, 2, 1, 100., 1., 0., 1), (2, 1, 1, 100., 1., 0., 0), (3, 1, 2, 100., 1., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 0, 3, 100., 1., 0., 1), (6, 2, 3, 100., 1., 0., 0), (7, 2, 4, 100., 1., 0., 1), (8, 1, 4, 100., 1., 0., 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) pf = from_signals_shortonly(**kwargs) record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100., 1., 0., 1), (1, 2, 1, 100., 1., 0., 0), (2, 0, 2, 100., 1., 0., 1), (3, 0, 3, 100., 1., 0., 0), (4, 1, 4, 100., 1., 0., 1) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 1, 0], [1, 0, 2] ]) ) pf = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( pf.order_records, np.array([ (0, 2, 0, 100.0, 1.0, 0.0, 0), (1, 2, 1, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 1, 2, 100.0, 1.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 0, 3, 100.0, 1.0, 0.0, 1), (6, 2, 3, 100.0, 1.0, 0.0, 0), (7, 2, 4, 100.0, 1.0, 0.0, 1), (8, 1, 4, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( pf.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_sl_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.0, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 3, 20.0, 2.0, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 1, 1, 20.0, 4.25, 0.0, 1), (3, 2, 0, 20.0, 5.0, 0.0, 0), (4, 2, 1, 20.0, 4.25, 0.0, 1), (5, 3, 0, 20.0, 5.0, 0.0, 0), (6, 3, 1, 20.0, 4.0, 0.0, 1), (7, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 2, 0, 20.0, 5.0, 0.0, 1), (3, 3, 0, 20.0, 5.0, 0.0, 1), (4, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 2.0, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 3, 50.0, 4.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 2, 0, 100.0, 1.0, 0.0, 0), (3, 3, 0, 100.0, 1.0, 0.0, 0), (4, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.75, 0.0, 0), (3, 2, 0, 100.0, 1.0, 0.0, 1), (4, 2, 1, 100.0, 1.75, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 1, 100.0, 2.0, 0.0, 0), (7, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_ts_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(ts_stop=-0.1) close = pd.Series([4., 5., 4., 3., 2.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.0, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 4, 25.0, 2.0, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.0, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 3, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) print('here') record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.1, 0.5, np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 0), (1, 1, 0, 25.0, 4.0, 0.0, 0), (2, 1, 2, 25.0, 4.25, 0.0, 1), (3, 2, 0, 25.0, 4.0, 0.0, 0), (4, 2, 2, 25.0, 4.25, 0.0, 1), (5, 3, 0, 25.0, 4.0, 0.0, 0), (6, 3, 2, 25.0, 4.125, 0.0, 1), (7, 4, 0, 25.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.15, 0.2, 0.25, np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 25.0, 4.0, 0.0, 1), (1, 1, 0, 25.0, 4.0, 0.0, 1), (2, 1, 1, 25.0, 5.25, 0.0, 0), (3, 2, 0, 25.0, 4.0, 0.0, 1), (4, 2, 1, 25.0, 5.25, 0.0, 0), (5, 3, 0, 25.0, 4.0, 0.0, 1), (6, 3, 1, 25.0, 5.25, 0.0, 0), (7, 4, 0, 25.0, 4.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([2., 1., 2., 3., 4.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 1.0, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 3, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 2.0, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 4, 50.0, 4.0, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, sl_stop=[[np.nan, 0.5, 3., np.inf]], sl_trail=True).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 50.0, 2.0, 0.0, 0), (2, 1, 1, 50.0, 0.75, 0.0, 1), (3, 2, 0, 50.0, 2.0, 0.0, 0), (4, 2, 1, 50.0, 0.5, 0.0, 1), (5, 3, 0, 50.0, 2.0, 0.0, 0), (6, 4, 0, 50.0, 2.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[np.nan, 0.5, 0.75, 1., np.inf]], sl_trail=True).order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 1), (1, 1, 0, 50.0, 2.0, 0.0, 1), (2, 1, 2, 50.0, 1.75, 0.0, 0), (3, 2, 0, 50.0, 2.0, 0.0, 1), (4, 2, 2, 50.0, 1.75, 0.0, 0), (5, 3, 0, 50.0, 2.0, 0.0, 1), (6, 3, 2, 50.0, 1.75, 0.0, 0), (7, 4, 0, 50.0, 2.0, 0.0, 1) ], dtype=order_dt) ) def test_tp_stop(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) with pytest.raises(Exception): _ = from_signals_both(sl_stop=-0.1) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.0, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 3, 20.0, 2.0, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.1, 0.5, np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 0), (1, 1, 0, 20.0, 5.0, 0.0, 0), (2, 2, 0, 20.0, 5.0, 0.0, 0), (3, 3, 0, 20.0, 5.0, 0.0, 0), (4, 4, 0, 20.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.1, 0.15, 0.2, np.inf]]).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 1, 0, 20.0, 5.0, 0.0, 1), (2, 1, 1, 20.0, 4.25, 0.0, 0), (3, 2, 0, 20.0, 5.0, 0.0, 1), (4, 2, 1, 20.0, 4.25, 0.0, 0), (5, 3, 0, 20.0, 5.0, 0.0, 1), (6, 3, 1, 20.0, 4.0, 0.0, 0), (7, 4, 0, 20.0, 5.0, 0.0, 1) ], dtype=order_dt) ) close = pd.Series([1., 2., 3., 4., 5.], index=price.index) open = close - 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 2.0, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 3, 100.0, 4.0, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_longonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_both( close=close, entries=exits, exits=entries, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records, from_signals_shortonly( close=close, entries=entries, exits=exits, tp_stop=[[np.nan, 0.5, 3., np.inf]]).order_records ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 1.0, 0.0, 0), (2, 1, 1, 100.0, 1.75, 0.0, 1), (3, 2, 0, 100.0, 1.0, 0.0, 0), (4, 2, 1, 100.0, 1.75, 0.0, 1), (5, 3, 0, 100.0, 1.0, 0.0, 0), (6, 3, 1, 100.0, 2.0, 0.0, 1), (7, 4, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, tp_stop=[[np.nan, 0.5, 0.75, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 1.0, 0.0, 1), (2, 2, 0, 100.0, 1.0, 0.0, 1), (3, 3, 0, 100.0, 1.0, 0.0, 1), (4, 4, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_stop_entry_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='val_price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.625, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='price', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.75, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='fillprice', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 3.0250000000000004, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 3, 16.52892561983471, 1.5125000000000002, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, val_price=1.05 * close, stop_entry_price='close', stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (1, 0, 1, 16.52892561983471, 4.25, 0.0, 1), (2, 1, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (3, 1, 2, 16.52892561983471, 2.5, 0.0, 1), (4, 2, 0, 16.52892561983471, 6.050000000000001, 0.0, 0), (5, 2, 4, 16.52892561983471, 1.25, 0.0, 1) ], dtype=order_dt) ) def test_stop_exit_price(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) open = close + 0.25 high = close + 0.5 low = close - 0.5 record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stoplimit', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 4.25, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.5, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.25, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='stopmarket', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.825, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.25, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 1.125, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='close', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.6, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.7, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly( close=close, entries=entries, exits=exits, open=open, high=high, low=low, sl_stop=[[0.05, 0.5, 0.75]], price=1.1 * close, stop_exit_price='price', slippage=0.1).order_records, np.array([ (0, 0, 0, 16.528926, 6.05, 0.0, 0), (1, 0, 1, 16.528926, 3.9600000000000004, 0.0, 1), (2, 1, 0, 16.528926, 6.05, 0.0, 0), (3, 1, 2, 16.528926, 2.97, 0.0, 1), (4, 2, 0, 16.528926, 6.05, 0.0, 0), (5, 2, 4, 16.528926, 0.9900000000000001, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_exit(self): entries = pd.Series([True, False, False, False, False], index=price.index) exits = pd.Series([False, False, False, False, False], index=price.index) close = pd.Series([5., 4., 3., 2., 1.], index=price.index) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']], accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_both( close=close, entries=entries, exits=exits, size=1, sl_stop=0.1, upon_stop_exit=[['close', 'closereduce', 'reverse', 'reversereduce']]).order_records, np.array([ (0, 0, 0, 1.0, 5.0, 0.0, 0), (1, 0, 1, 1.0, 4.0, 0.0, 1), (2, 1, 0, 1.0, 5.0, 0.0, 0), (3, 1, 1, 1.0, 4.0, 0.0, 1), (4, 2, 0, 1.0, 5.0, 0.0, 0), (5, 2, 1, 2.0, 4.0, 0.0, 1), (6, 3, 0, 1.0, 5.0, 0.0, 0), (7, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) def test_upon_stop_update(self): entries = pd.Series([True, True, False, False, False], index=price.index) exits =
pd.Series([False, False, False, False, False], index=price.index)
pandas.Series
__author__ = "<NAME>, University of Kansas" __version__ = "1.3" # Change these to your values, you will also likely have to edit the variable names (such as RH for humidity # or AT for the Temperature) in the below code CWOPid = "FW####" DataFile = 'Mesonet.dat' Lat = '####.##N' Lon = '#####.##W' StationHeight = 67 # in M #---------------------------------------------------------------------------------- # Imports necessary modules import pandas as pd import subprocess as sp import socket import schedule import time # Unit Conversion Functions def mps_to_mph(WindSpeed): return WindSpeed * 2.23694 def Cel_to_F(Temperature): return ((9.0/5.0) * Temperature) + 32 def AltimeterAdjust(Press): Height = StationHeight P1 = Press - 0.3 Frac1 = ((1013.25**0.19284) * 0.0065) / 288 Frac2 = Height / ((Press-0.3)**(0.190284)) P2 = (1 + (Frac1*Frac2))**(1/0.190284) return P1*P2 # Definition of Operational Code class MesoToCWOP: def __init__(self, file): self.filename = file def GetLastData(self): '''Retrieves and saves the last line of data''' File = self.filename self.LastData =
pd.read_csv(File, skiprows=[0,2,3], parse_dates=[0])
pandas.read_csv
import pandas as pd import numpy as np from sklearn.datasets import make_blobs from sklearn.decomposition import PCA import altair as alt def show_clusters(data, clusters, centroids = None): """ This function reduces a data set to 2 dimensions using principle component analysis (PCA) and colours clusters of points. Parameters ---------- data : DataFrame Scaled data clusters : list, pandas Series corresponding cluster for X centroids: 2d array Coordinates of cluster centroids Returns ------- plot A 2d principle components scatter plot coloured by cluster Examples -------- >>> from sklearn.datasets import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2) >>> show_clusters(X, y, centroids) """ # Exception handling try: data =
pd.DataFrame(data)
pandas.DataFrame
import pandas as pd import pytest from pybaseball.datahelpers import transform from unittest.mock import patch @pytest.fixture(name='fielding') def _fielding() -> pd.DataFrame: return pd.DataFrame([ ['1', 2015, 'P', 157], ['1', 2015, 'CF', 5], ['1', 2016, 'CF', 162], ['2', 2015, 'C', 1], ], columns=['playerID', 'yearID', 'POS', 'G']) @pytest.fixture(name='people') def _people() -> pd.DataFrame: return pd.DataFrame([ ['1', 1990], ['2', 1985], ], columns=['playerID', 'birthYear']) @pytest.fixture(name='stats') def _stats() -> pd.DataFrame: return pd.DataFrame([ ['1', 2015], ['1', 2016], ['2', 2015], ], columns=['playerID', 'yearID']) def test_get_age(stats: pd.DataFrame, people: pd.DataFrame) -> None: expected = pd.DataFrame([ ['1', 2015, 25], ['1', 2016, 26], ['2', 2015, 30], ], columns=['playerID', 'yearID', 'age'] ) result = transform.get_age(stats, people) pd.testing.assert_frame_equal(expected, result, check_dtype=False) def test_get_age_default_people(stats: pd.DataFrame, people: pd.DataFrame) -> None: expected = pd.DataFrame([ ['1', 2015, 25], ['1', 2016, 26], ['2', 2015, 30], ], columns=['playerID', 'yearID', 'age'] ) with patch('pybaseball.datahelpers.transform.people', return_value=people) as people_mock: result = transform.get_age(stats) pd.testing.assert_frame_equal(expected, result, check_dtype=False) people_mock.assert_called_once() def test_get_primary_position(fielding: pd.DataFrame) -> None: expected = pd.DataFrame([ ['1', 2015, 'P'], ['1', 2016, 'CF'], ['2', 2015, 'C'], ], columns=['playerID', 'yearID', 'primaryPos'], index=
pd.RangeIndex(1, 4)
pandas.RangeIndex
##set default values for all constants ##these can all be changed when calling PostClassificationModel embeddings_path = '../Data/glove.6B.50d.txt' max_features = 40000 #number of words to put in dictionary maxlen=40 #number of words of title (or title+selftext combination) you will use batch_size = 32 #batch size for training NN epochs = 20 #number of epochs for training NN meta_embedding_dims = 64 #dimension of the embedding for the time information dense_layer_size = 256 #size of the final dense layer in the NN text_cols_used=['title'] #which text columns to use exclude_removed = True #exclude removed and deleted posts from the data set use_year = True #whether to include the year in the calculation split = 0.25 #percent of training set to use for validation test_size = 0.2 #percent of data set to use for testing optimization_quantity = ['val_main_out_accuracy','max'] #we want to maximize the accuracy on the validation set early_stopping_patience = 5 #how soon to stop if accuracy is not improving model_loss='binary_crossentropy' #loss function used in model model_optimizer='adam' #optimizer used in model model_metrics=['accuracy'] #metric used to gauge model performance model_loss_weights=[1, 0.2] #first weight is for main loss, second is for auxiliary loss (adjusting the word embedding) custom_seed = 123 import numpy as np import os import csv from random import random, sample, seed import pandas as pd from datetime import datetime from keras.preprocessing import sequence from keras.preprocessing.text import text_to_word_sequence, Tokenizer from keras.models import Input, Model from keras.layers import Dense, Embedding, GlobalAveragePooling1D, concatenate, Activation from keras.layers.core import Masking, Dropout, Reshape from keras.layers.normalization import BatchNormalization from keras.callbacks import EarlyStopping from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split def buildnets(subreddits): results = [] for subreddit in subreddits: data_path = f'../Data/subreddit_{subreddit}' model, accuracies, word_tokenizer, cleaned_df = PostClassificationModel(data_path = data_path, use_year = True) #save model model.save( f'../Data/subreddit_{subreddit}/NN_model.keras') results.append( (model, accuracies, word_tokenizer, cleaned_df )) return results #For predicting time series of post popularity. def encode_text(text, word_tokenizer, maxlen=maxlen): encoded = word_tokenizer.texts_to_sequences([text]) return sequence.pad_sequences(encoded, maxlen=maxlen) def timeseries(df, text, model, word_tokenizer): #get the minimum year appearing in the data set min_year = min(np.array(df.utc.apply(lambda x : x.year), dtype=int)) df['date'] = df.utc.apply( lambda x : x.date()) all_dates_utcs = df.date.unique() #all_dates_utc = [datetime.datetime.(x[0]+min_year,1,1) + datetime.timedelta(x[1]) for x in all_dates] encoded_text = encode_text(text,word_tokenizer) # Fixing a specific time for input on each day input_hour = np.array([12]) input_minute = np.array([0]) predict_list = [] for date in all_dates_utcs: input_dayofweek = np.array([date.weekday()]) input_dayofyear = np.array([date.timetuple().tm_yday-1]) input_year = np.array([date.year-min_year]) predict_list.append(model.predict([encoded_text, input_hour, input_dayofweek, input_minute, input_dayofyear, input_year])[0][0][0]) plt.ylim(0,1) ax = plt.gca() for tick in ax.get_xticklabels(): tick.set_rotation(45) plt.xlabel("Date") plt.ylabel("Probability of Success") plt.scatter(all_dates_utcs, predict_list) #returns 1 if ups>threshold, 0 otherwise def GoodPost(ups,threshold=1): if ups>threshold: return 1 return 0 #take dfog, restrict to only posts with selftext, exclude posts that were removed or deleted (if exclude_removed is True), and drop columns in drop_na_cols with NaN entries def DataSetup(dfog, exclude_removed=True, drop_na_cols=['title']): if exclude_removed: tempdf=dfog.loc[(((dfog.removed_by_category.isnull()))) & ((dfog.is_self==True))] #tempdf=dfog.loc[(((dfog.removed_by_category.isnull()))) & ((dfog.is_self==True) & ~(dfog["title"].str.contains("Thread|thread|Sunday Live Chat|consolidation zone|Containment Zone|Daily Discussion|Daily discussion|Saturday Chat|What Are Your Moves Tomorrow|What Are Your Moves Today|MEGATHREAD",na=False)))] else: tempdf=dfog.loc[dfog.is_self==True] #tempdf=dfog.loc[((dfog.is_self==True) & ~(dfog["title"].str.contains("Thread|thread|Sunday Live Chat|consolidation zone|Containment Zone|Daily Discussion|Daily discussion|Saturday Chat|What Are Your Moves Tomorrow|What Are Your Moves Today|MEGATHREAD",na=False)))] tempdf=tempdf.dropna(subset = drop_na_cols) tempdf['utc']=tempdf.created_utc.apply(lambda x : datetime.utcfromtimestamp(x)) return tempdf def make_embedding_matrix(word_tokenizer, embeddings_path): embedding_vectors = {} with open(embeddings_path, 'r',encoding='latin-1') as f: for line in f: #print(line) line_split = line.strip().split(" ") vec = np.array(line_split[1:], dtype=float) word = line_split[0] embedding_vectors[word] = vec embedding_dims = len(embedding_vectors['the']) weights_matrix = np.zeros((max_features + 1, embedding_dims)) for word, i in word_tokenizer.word_index.items(): embedding_vector = embedding_vectors.get(word) if embedding_vector is not None and i <= max_features: weights_matrix[i] = embedding_vector return weights_matrix, embedding_dims #data_path should either be a string (the location of the subreddit data) or a pandas dataframe #embeddings_path should be a string, the location of the embeddings file #returns a pair: the model and a list [accuracy to beat, accuracy on validation set, accuracy on test set] def PostClassificationModel(data_path, embeddings_path = embeddings_path, custom_seed=custom_seed, max_features = max_features, maxlen = maxlen, batch_size = batch_size, epochs = epochs, meta_embedding_dims = meta_embedding_dims, dense_layer_size = dense_layer_size, text_cols_used = text_cols_used, exclude_removed = exclude_removed, use_year = use_year, split = split, test_size = test_size, optimization_quantity = optimization_quantity, early_stopping_patience = early_stopping_patience, model_loss = model_loss, model_optimizer = model_optimizer, model_metrics = model_metrics, model_loss_weights = model_loss_weights): print("Starting Post Classification Model.") #if data_path is a string, read in the corresponding file as df. Otherwise we assume it's a pandas dataframe if type(data_path) == str: df =
pd.read_csv(data_path + "/full.csv")
pandas.read_csv
""" Created on Jun 28 10:39 2018 @author: nishit """ import time import math import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression from sklearn.preprocessing import MinMaxScaler from utils_intern.messageLogger import MessageLogger logger = MessageLogger.get_logger_parent() class OfflineProcessingData: def __init__(self): self.new_df = None def expand_and_resample(self, raw_data, dT): step = float(dT) j = len(raw_data) - 1 new_data = [] if j > 0: start_time = raw_data[j][0] start_value = raw_data[j][1] new_data.append([start_time, start_value]) prev_time = start_time prev_value = start_value required_diff = step j -= 1 while j >= 0: end_time = raw_data[j][0] end_value = raw_data[j][1] diff_sec = prev_time - end_time if diff_sec >= required_diff: ratio = required_diff / diff_sec inter_time = prev_time - required_diff inter_value = prev_value - (prev_value - end_value) * ratio new_data.append([inter_time, inter_value]) prev_time = inter_time prev_value = inter_value required_diff = step else: required_diff -= diff_sec prev_time = end_time prev_value = end_value j -= 1 else: new_data = raw_data new_data.reverse() return new_data def preprocess_data_predict(self, raw_data, num_timesteps, output_size): # Loading Data # df = pd.DataFrame(raw_data, columns=col_heads) df = pd.DataFrame(raw_data) df = df[df.columns[:2]] df.columns = ['Time', 'Electricity'] new_df = df new_df.columns = ['DateTime', 'Electricity'] # Changing dtype to pandas datetime format new_df['DateTime'] = pd.to_datetime(new_df['DateTime'], unit='s') new_df = new_df.set_index('DateTime') # checking for null values and if any, replacing them with last valid observation new_df.isnull().sum() new_df.Electricity.fillna(method='pad', inplace=True) # scale the data to be in the range (0, 1) data = new_df.values.reshape(-1, 1) scaler = MinMaxScaler(feature_range=(0, 1), copy=False) data = scaler.fit_transform(data) look_back = num_timesteps num_features = 1 nb_samples = data.shape[0] - num_timesteps x_train_reshaped = np.zeros((nb_samples, look_back, num_features)) # y_train_reshaped = np.zeros((nb_samples, output_size)) logger.info("data dim = "+str(data.shape)) for i in range(nb_samples): y_position_start = i + look_back x_train_reshaped[i] = data[i:y_position_start] Xtest = x_train_reshaped logger.debug(str(Xtest.shape)) return Xtest, scaler, 0 def postprocess_data(self, prediction, startTimestamp, delta, scaler): data = prediction.reshape(-1, 1) data = scaler.inverse_transform(data) data = data.reshape(-1) startTime = startTimestamp result = {} for pred in data: result[startTime] = pred startTime += delta return result def append_mock_data(self, data, num_timesteps, dT): l = len(data) diff = num_timesteps - l if l == 0: earliest_timestamp = time.time() else: earliest_timestamp = data[0][0] new_data = data for i in range(diff): earliest_timestamp -= dT new_data.insert(0, [earliest_timestamp, - 0.000001]) return new_data def break_series_into_countinous_blocks(self, raw_data, dT, horizon_steps): allowed_continous_gap_percent = 0.1 duration_of_one_data_set = horizon_steps * dT required_mins = math.ceil(duration_of_one_data_set / 60.0) allowed_continous_gap_mins = required_mins * allowed_continous_gap_percent continous_series = [] temp_data = [] logger.info("allowed "+str(allowed_continous_gap_mins)) prev_time = raw_data[0][0] for i in range(len(raw_data)): curr_time = raw_data[i][0] minute_diff = (curr_time - prev_time) / 60.0 if minute_diff > allowed_continous_gap_mins: continous_series.append(temp_data.copy()) temp_data = [] temp_data.append(raw_data[i]) prev_time = curr_time if len(temp_data) > 0: continous_series.append(temp_data.copy()) return continous_series def expand_and_resample_into_blocks(self, raw_data, dT, horizon_steps, num_timesteps, output_size): if len(raw_data) > 0: blocks = self.break_series_into_countinous_blocks(raw_data, dT, horizon_steps) logger.info("num blocks = "+str(len(blocks))) resampled_blocks = [] block_has_min_length = [] merged = False min_length = num_timesteps + output_size for block in blocks: resampled_block = self.expand_and_resample(block, dT) if len(resampled_block) > 0: resampled_blocks.append(resampled_block) logger.info("block size = "+str(len(resampled_block))) if len(resampled_block) >= min_length: block_has_min_length.append(True) else: block_has_min_length.append(False) if len(block_has_min_length) > 0 and not any(block_has_min_length): logger.info("merging block because insufficient data") new_block = [] end_time = resampled_blocks[-1][-1][0] # TODO : check logic for i in reversed(range(len(resampled_blocks))): rsb = resampled_blocks[i] start_time = rsb[0][0] if end_time - start_time < min_length * dT: rsb.extend(new_block) new_block = rsb merged = True else: rsb.extend(new_block) new_block = rsb merged = True break logger.info(new_block) if merged: new_block = self.expand_and_resample(new_block, dT) logger.info(new_block) logger.info("length of merged blocks after expand = "+str(len(new_block))) new_blocks = [new_block] resampled_blocks = new_blocks return resampled_blocks, merged else: return [], False def preprocess_data_train(self, blocks, num_timesteps, output_size): x_list = [] y_list = [] look_back = num_timesteps num_features = 1 count = 0 for raw_data in blocks: # Loading Data if len(raw_data) >= num_timesteps + output_size + 5: raw_data = raw_data[-7200:] latest_timestamp = raw_data[-1:][0][0] logger.debug(latest_timestamp) # df = pd.DataFrame(raw_data, columns=col_heads) df = pd.DataFrame(raw_data) df = df[df.columns[:2]] df.columns = ['Time', 'Electricity'] new_df = df new_df.columns = ['DateTime', 'Electricity'] # Changing dtype to pandas datetime format new_df['DateTime'] =
pd.to_datetime(new_df['DateTime'], unit='s')
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt def read_dataframe(): # Read input file df =
pd.read_csv('../data/epa_raw/Alabama/AQDM_907365160.txt', low_memory=False)
pandas.read_csv
''' Script for preprocessing in single machine ''' import os from typing import Dict, List, Set, Tuple, Union import re import json import datetime as dt from collections import Counter from tqdm.auto import tqdm import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer RAW_BASE_PATH = '../data/raw/{fname}' ADMISSIONS_FNAME = 'ADMISSIONS.csv.gz' DIAGNOSES_FNAME = 'DIAGNOSES_ICD.csv.gz' LABEVENTS_FNAME = 'LABEVENTS.csv.gz' PRESCRIPTIONS_FNAME = 'PRESCRIPTIONS.csv.gz' PATIENTS_FNAME = 'PATIENTS.csv.gz' NOTES_FNAME = 'NOTEEVENTS.csv.gz' PATH_PROCESSED = '../data/processed/' DIAG_PATH = RAW_BASE_PATH.format(fname=DIAGNOSES_FNAME) PATIENTS_PATH = RAW_BASE_PATH.format(fname=PATIENTS_FNAME) PATIENT_SAMPLE_SIZE = 1000 # total is 46520 TRAIN_SIZE = 0.8 # We need to take into account only the events that happened during the observation window. The end of observation window is N days before death for deceased patients and date of last event for alive patients. We can have several sets of events (e.g. labs, diags, meds), so we need to choose the latest date out of those. # OBSERVATION_WINDOW = 2000 OBSERVATION_WINDOW = 365*2 PREDICTION_WINDOW = 50 RANDOM_SEED = 1 # Respiratory illnesses ICD9 diag codes. Sources: # https://en.wikipedia.org/wiki/List_of_ICD-9_codes_460–519:_diseases_of_the_respiratory_system # https://basicmedicalkey.com/diseases-of-the-respiratory-system-icd-9-cm-chapter-8-codes-460-519-and-icd-10-cm-chapter-10-codes-j00-j99/ acute_diag_codes = [ 460, 461, 462, 463, 464, 465, 466 ] other_resp_tract_diag_codes = [ 470, 471, 472, 473, 474, 475, 476, 477, 478 ] pneumonia_and_influenza_diag_codes = [ 480, 481, 482, 483, 484, 485, 486, 487, 488 ] grp4 = [ 490, 491, 492, 493, 494, 495, 496 ] grp5 = [ 500, 501, 502, 503, 504, 505, 506, 507, 508 ] grp6 = [ 510, 511, 512, 513, 514, 515, 516, 517, 518, 519 ] relevant_diag_codes: List[int] = [*acute_diag_codes, *other_resp_tract_diag_codes, *pneumonia_and_influenza_diag_codes, *grp4, *grp5, *grp6] RELEVANT_DIAG_CODES = [str(e) for e in relevant_diag_codes] def get_patient_sample() -> Tuple[set, pd.Series, Dict[int, dt.date]]: patients = pd.read_csv(PATIENTS_PATH) #sampling random patients patients_sample = patients.sample(n=PATIENT_SAMPLE_SIZE, random_state=RANDOM_SEED) sample_ids = set(patients_sample.SUBJECT_ID) patients_sample = patients[patients.SUBJECT_ID.isin(sample_ids)] # Moratality set deceased_to_date: Dict[int, dt.date] = patients_sample[patients_sample.EXPIRE_FLAG == 1] \ .set_index('SUBJECT_ID').DOD.map(lambda x: pd.to_datetime(x).date()).to_dict() return sample_ids, patients_sample, deceased_to_date def _get_data_for_sample(patient_ids: set, file_name: str, chunksize: int = 10_000) -> pd.DataFrame: '''Get the data only relevant for the sample.''' full_path = RAW_BASE_PATH.format(fname=file_name) iterator =
pd.read_csv(full_path, iterator=True, chunksize=chunksize)
pandas.read_csv
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def mssql_url() -> str: conn = os.environ["MSSQL_URL"] return conn @pytest.mark.xfail def test_on_non_select(mssql_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" df = read_sql(mssql_url, query) def test_aggregation(mssql_url: str) -> None: query = ( "SELECT test_bool, SUM(test_float) as sum FROM test_table GROUP BY test_bool" ) df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "sum": pd.Series([10.9, 5.2, -10.0], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation(mssql_url: str) -> None: query = ( "SELECT test_bool, SUM(test_int) AS test_int FROM test_table GROUP BY test_bool" ) df = read_sql(mssql_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "test_int": pd.Series([4, 5, 1315], dtype="Int64"), }, ) df.sort_values(by="test_int", inplace=True, ignore_index=True) assert_frame_equal(df, expected, check_names=True) def test_aggregation2(mssql_url: str) -> None: query = "select DISTINCT(test_bool) from test_table" df = read_sql(mssql_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation2(mssql_url: str) -> None: query = "select MAX(test_int) as max, MIN(test_int) as min from test_table" df = read_sql(mssql_url, query, partition_on="max", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "max":
pd.Series([1314], dtype="Int64")
pandas.Series
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import inspect import numpy as np import pandas as pd import pyspark import databricks.koalas as ks from databricks.koalas.exceptions import PandasNotImplementedError from databricks.koalas.missing.indexes import _MissingPandasLikeIndex, _MissingPandasLikeMultiIndex from databricks.koalas.testing.utils import ReusedSQLTestCase, TestUtils class IndexesTest(ReusedSQLTestCase, TestUtils): @property def pdf(self): return pd.DataFrame({ 'a': [1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [4, 5, 6, 3, 2, 1, 0, 0, 0], }, index=[0, 1, 3, 5, 6, 8, 9, 9, 9]) @property def kdf(self): return ks.from_pandas(self.pdf) def test_index(self): for pdf in [pd.DataFrame(np.random.randn(10, 5), index=list('abcdefghij')), pd.DataFrame(np.random.randn(10, 5), index=pd.date_range('2011-01-01', freq='D', periods=10)), pd.DataFrame(np.random.randn(10, 5), columns=list('abcde')).set_index(['a', 'b'])]: kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index, pdf.index) def test_index_getattr(self): kidx = self.kdf.index item = 'databricks' expected_error_message = ("'Index' object has no attribute '{}'".format(item)) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_multi_index_getattr(self): arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] idx = pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) kidx = kdf.index item = 'databricks' expected_error_message = ("'MultiIndex' object has no attribute '{}'".format(item)) with self.assertRaisesRegex(AttributeError, expected_error_message): kidx.__getattr__(item) def test_to_series(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name='a'), pidx.to_series(name='a')) # FIXME: the index values are not addressed the change. (#1190) # self.assert_eq((kidx + 1).to_series(), (pidx + 1).to_series()) pidx = self.pdf.set_index('b', append=True).index kidx = self.kdf.set_index('b', append=True).index with self.sql_conf({'spark.sql.execution.arrow.enabled': False}): self.assert_eq(kidx.to_series(), pidx.to_series()) self.assert_eq(kidx.to_series(name='a'), pidx.to_series(name='a')) def test_to_frame(self): pidx = self.pdf.index kidx = self.kdf.index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) pidx.name = 'a' kidx.name = 'a' self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion('0.24'): # The `name` argument is added in pandas 0.24. self.assert_eq(repr(kidx.to_frame(name='x')), repr(pidx.to_frame(name='x'))) self.assert_eq(repr(kidx.to_frame(index=False, name='x')), repr(pidx.to_frame(index=False, name='x'))) pidx = self.pdf.set_index('b', append=True).index kidx = self.kdf.set_index('b', append=True).index self.assert_eq(repr(kidx.to_frame()), repr(pidx.to_frame())) self.assert_eq(repr(kidx.to_frame(index=False)), repr(pidx.to_frame(index=False))) if LooseVersion(pd.__version__) >= LooseVersion('0.24'): # The `name` argument is added in pandas 0.24. self.assert_eq(repr(kidx.to_frame(name=['x', 'y'])), repr(pidx.to_frame(name=['x', 'y']))) self.assert_eq(repr(kidx.to_frame(index=False, name=['x', 'y'])), repr(pidx.to_frame(index=False, name=['x', 'y']))) def test_index_names(self): kdf = self.kdf self.assertIsNone(kdf.index.name) idx = pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name='x') pdf = pd.DataFrame(np.random.randn(10, 5), idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.name, pdf.index.name) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.name = 'renamed' kidx.name = 'renamed' self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) pidx.name = None kidx.name = None self.assertEqual(kidx.name, pidx.name) self.assertEqual(kidx.names, pidx.names) self.assert_eq(kidx, pidx) with self.assertRaisesRegex(ValueError, "Names must be a list-like"): kidx.names = 'hi' expected_error_message = ("Length of new names must be {}, got {}" .format(len(kdf._internal.index_map), len(['0', '1']))) with self.assertRaisesRegex(ValueError, expected_error_message): kidx.names = ['0', '1'] def test_multi_index_names(self): arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] idx = pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.names, pdf.index.names) pidx = pdf.index kidx = kdf.index pidx.names = ['renamed_number', 'renamed_color'] kidx.names = ['renamed_number', 'renamed_color'] self.assertEqual(kidx.names, pidx.names) pidx.names = ['renamed_number', None] kidx.names = ['renamed_number', None] self.assertEqual(kidx.names, pidx.names) if LooseVersion(pyspark.__version__) < LooseVersion('2.4'): # PySpark < 2.4 does not support struct type with arrow enabled. with self.sql_conf({'spark.sql.execution.arrow.enabled': False}): self.assert_eq(kidx, pidx) else: self.assert_eq(kidx, pidx) with self.assertRaises(PandasNotImplementedError): kidx.name with self.assertRaises(PandasNotImplementedError): kidx.name = 'renamed' def test_index_rename(self): pdf = pd.DataFrame(np.random.randn(10, 5), index=pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], name='x')) kdf = ks.from_pandas(pdf) pidx = pdf.index kidx = kdf.index self.assert_eq(kidx.rename('y'), pidx.rename('y')) self.assert_eq(kdf.index.names, pdf.index.names) kidx.rename('z', inplace=True) pidx.rename('z', inplace=True) self.assert_eq(kidx, pidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kidx.rename(None), pidx.rename(None)) self.assert_eq(kdf.index.names, pdf.index.names) def test_multi_index_rename(self): arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] idx = pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) pmidx = pdf.index kmidx = kdf.index self.assert_eq(kmidx.rename(['n', 'c']), pmidx.rename(['n', 'c'])) self.assert_eq(kdf.index.names, pdf.index.names) kmidx.rename(['num', 'col'], inplace=True) pmidx.rename(['num', 'col'], inplace=True) self.assert_eq(kmidx, pmidx) self.assert_eq(kdf.index.names, pdf.index.names) self.assert_eq(kmidx.rename([None, None]), pmidx.rename([None, None])) self.assert_eq(kdf.index.names, pdf.index.names) self.assertRaises(TypeError, lambda: kmidx.rename('number')) self.assertRaises(ValueError, lambda: kmidx.rename(['number'])) def test_multi_index_levshape(self): pidx = pd.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2)]) kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2)]) self.assertEqual(pidx.levshape, kidx.levshape) def test_index_unique(self): kidx = self.kdf.index # here the output is different than pandas in terms of order expected = [0, 1, 3, 5, 6, 8, 9] self.assert_eq(expected, sorted(kidx.unique().to_pandas())) self.assert_eq(expected, sorted(kidx.unique(level=0).to_pandas())) expected = [1, 2, 4, 6, 7, 9, 10] self.assert_eq(expected, sorted((kidx + 1).unique().to_pandas())) with self.assertRaisesRegexp(IndexError, "Too many levels*"): kidx.unique(level=1) with self.assertRaisesRegexp(KeyError, "Requested level (hi)*"): kidx.unique(level='hi') def test_multi_index_copy(self): arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] idx = pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) pdf = pd.DataFrame(np.random.randn(4, 5), idx) kdf = ks.from_pandas(pdf) self.assert_eq(kdf.index.copy(), pdf.index.copy()) def test_index_symmetric_difference(self): idx = ks.Index(['a', 'b', 'c']) midx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) with self.assertRaisesRegexp(NotImplementedError, "Doesn't support*"): idx.symmetric_difference(midx) def test_multi_index_symmetric_difference(self): idx = ks.Index(['a', 'b', 'c']) midx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) midx_ = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')]) self.assert_eq( midx.symmetric_difference(midx_), midx.to_pandas().symmetric_difference(midx_.to_pandas())) with self.assertRaisesRegexp(NotImplementedError, "Doesn't support*"): midx.symmetric_difference(idx) def test_missing(self): kdf = ks.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}) # Index functions missing_functions = inspect.getmembers(_MissingPandasLikeIndex, inspect.isfunction) unsupported_functions = [name for (name, type_) in missing_functions if type_.__name__ == 'unsupported_function'] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name)): getattr(kdf.set_index('a').index, name)() deprecated_functions = [name for (name, type_) in missing_functions if type_.__name__ == 'deprecated_function'] for name in deprecated_functions: with self.assertRaisesRegex(PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name)): getattr(kdf.set_index('a').index, name)() # MultiIndex functions missing_functions = inspect.getmembers(_MissingPandasLikeMultiIndex, inspect.isfunction) unsupported_functions = [name for (name, type_) in missing_functions if type_.__name__ == 'unsupported_function'] for name in unsupported_functions: with self.assertRaisesRegex( PandasNotImplementedError, "method.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name)): getattr(kdf.set_index(['a', 'b']).index, name)() deprecated_functions = [name for (name, type_) in missing_functions if type_.__name__ == 'deprecated_function'] for name in deprecated_functions: with self.assertRaisesRegex(PandasNotImplementedError, "method.*Index.*{}.*is deprecated".format(name)): getattr(kdf.set_index(['a', 'b']).index, name)() # Index properties missing_properties = inspect.getmembers(_MissingPandasLikeIndex, lambda o: isinstance(o, property)) unsupported_properties = [name for (name, type_) in missing_properties if type_.fget.__name__ == 'unsupported_property'] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name)): getattr(kdf.set_index('a').index, name) deprecated_properties = [name for (name, type_) in missing_properties if type_.fget.__name__ == 'deprecated_property'] for name in deprecated_properties: with self.assertRaisesRegex(PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name)): getattr(kdf.set_index('a').index, name) # MultiIndex properties missing_properties = inspect.getmembers(_MissingPandasLikeMultiIndex, lambda o: isinstance(o, property)) unsupported_properties = [name for (name, type_) in missing_properties if type_.fget.__name__ == 'unsupported_property'] for name in unsupported_properties: with self.assertRaisesRegex( PandasNotImplementedError, "property.*Index.*{}.*not implemented( yet\\.|\\. .+)".format(name)): getattr(kdf.set_index(['a', 'b']).index, name) deprecated_properties = [name for (name, type_) in missing_properties if type_.fget.__name__ == 'deprecated_property'] for name in deprecated_properties: with self.assertRaisesRegex(PandasNotImplementedError, "property.*Index.*{}.*is deprecated".format(name)): getattr(kdf.set_index(['a', 'b']).index, name) def test_index_has_duplicates(self): indexes = [("a", "b", "c"), ("a", "a", "c"), (1, 3, 3), (1, 2, 3)] names = [None, 'ks', 'ks', None] has_dup = [False, True, True, False] for idx, name, expected in zip(indexes, names, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(idx, name=name)) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multiindex_has_duplicates(self): indexes = [[list("abc"), list("edf")], [list("aac"), list("edf")], [list("aac"), list("eef")], [[1, 4, 4], [4, 6, 6]]] has_dup = [False, False, True, True] for idx, expected in zip(indexes, has_dup): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=idx) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.has_duplicates, expected) def test_multi_index_not_supported(self): kdf = ks.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}) with self.assertRaisesRegex(TypeError, "cannot perform any with this index type"): kdf.set_index(['a', 'b']).index.any() with self.assertRaisesRegex(TypeError, "cannot perform all with this index type"): kdf.set_index(['a', 'b']).index.all() def test_index_nlevels(self): pdf = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index(['a', 'b', 'c'])) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 1) def test_multiindex_nlevel(self): pdf = pd.DataFrame({'a': [1, 2, 3]}, index=[list('abc'), list('def')]) kdf = ks.from_pandas(pdf) self.assertEqual(kdf.index.nlevels, 2) def test_multiindex_from_arrays(self): arrays = [['a', 'a', 'b', 'b'], ['red', 'blue', 'red', 'blue']] pidx = pd.MultiIndex.from_arrays(arrays) kidx = ks.MultiIndex.from_arrays(arrays) self.assert_eq(pidx, kidx) def test_multiindex_swaplevel(self): pidx = pd.MultiIndex.from_arrays([['a', 'b'], [1, 2]]) kidx = ks.MultiIndex.from_arrays([['a', 'b'], [1, 2]]) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([['a', 'b'], [1, 2]], names=['word', 'number']) kidx = ks.MultiIndex.from_arrays([['a', 'b'], [1, 2]], names=['word', 'number']) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) pidx = pd.MultiIndex.from_arrays([['a', 'b'], [1, 2]], names=['word', None]) kidx = ks.MultiIndex.from_arrays([['a', 'b'], [1, 2]], names=['word', None]) self.assert_eq(pidx.swaplevel(-2, -1), kidx.swaplevel(-2, -1)) self.assert_eq(pidx.swaplevel(0, 1), kidx.swaplevel(0, 1)) self.assert_eq(pidx.swaplevel('word', 1), kidx.swaplevel('word', 1)) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(-3, 'word') with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, 2) with self.assertRaisesRegex(IndexError, "Too many levels: Index"): kidx.swaplevel(0, -3) with self.assertRaisesRegex(KeyError, "Level work not found"): kidx.swaplevel(0, 'work') def test_index_fillna(self): pidx = pd.DataFrame({'a': ['a', 'b', 'c']}, index=[1, 2, None]).index kidx = ks.DataFrame({'a': ['a', 'b', 'c']}, index=[1, 2, None]).index self.assert_eq(pidx.fillna(0), kidx.fillna(0)) self.assert_eq(pidx.rename('name').fillna(0), kidx.rename('name').fillna(0)) with self.assertRaisesRegex(TypeError, "Unsupported type <class 'list'>"): kidx.fillna([1, 2]) def test_index_drop(self): pidx = pd.DataFrame({'a': ['a', 'b', 'c']}, index=[1, 2, 3]).index kidx = ks.DataFrame({'a': ['a', 'b', 'c']}, index=[1, 2, 3]).index self.assert_eq(pidx.drop(1), kidx.drop(1)) self.assert_eq(pidx.drop([1, 2]), kidx.drop([1, 2])) def test_multiindex_drop(self): pidx = pd.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')], names=['level1', 'level2']) kidx = ks.MultiIndex.from_tuples([('a', 'x'), ('b', 'y'), ('c', 'z')], names=['level1', 'level2']) self.assert_eq(pidx.drop('a'), kidx.drop('a')) self.assert_eq(pidx.drop(['a', 'b']), kidx.drop(['a', 'b'])) self.assert_eq(pidx.drop(['x', 'y'], level='level2'), kidx.drop(['x', 'y'], level='level2')) def test_sort_values(self): pidx = pd.Index([-10, -100, 200, 100]) kidx = ks.Index([-10, -100, 200, 100]) self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx.name = 'koalas' kidx.name = 'koalas' self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) pidx = pd.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) pidx.names = ['hello', 'koalas', 'goodbye'] kidx.names = ['hello', 'koalas', 'goodbye'] self.assert_eq(pidx.sort_values(), kidx.sort_values()) self.assert_eq(pidx.sort_values(ascending=False), kidx.sort_values(ascending=False)) def test_index_drop_duplicates(self): pidx = pd.Index([1, 1, 2]) kidx = ks.Index([1, 1, 2]) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) pidx = pd.MultiIndex.from_tuples([(1, 1), (1, 1), (2, 2)], names=['level1', 'level2']) kidx = ks.MultiIndex.from_tuples([(1, 1), (1, 1), (2, 2)], names=['level1', 'level2']) self.assert_eq(pidx.drop_duplicates().sort_values(), kidx.drop_duplicates().sort_values()) def test_index_sort(self): idx = ks.Index([1, 2, 3, 4, 5]) midx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2)]) with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead"): idx.sort() with self.assertRaisesRegex( TypeError, "cannot sort an Index object in-place, use sort_values instead"): midx.sort() def test_multiindex_isna(self): kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) with self.assertRaisesRegex( NotImplementedError, "isna is not defined for MultiIndex"): kidx.isna() with self.assertRaisesRegex( NotImplementedError, "isna is not defined for MultiIndex"): kidx.isnull() with self.assertRaisesRegex( NotImplementedError, "notna is not defined for MultiIndex"): kidx.notna() with self.assertRaisesRegex( NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_index_nunique(self): pidx = pd.Index([1, 1, 2, None]) kidx = ks.Index([1, 1, 2, None]) self.assert_eq(pidx.nunique(), kidx.nunique()) self.assert_eq(pidx.nunique(dropna=True), kidx.nunique(dropna=True)) def test_multiindex_nunique(self): kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) with self.assertRaisesRegex( NotImplementedError, "notna is not defined for MultiIndex"): kidx.notnull() def test_multiindex_rename(self): pidx = pd.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) pidx = pidx.rename(list('ABC')) kidx = kidx.rename(list('ABC')) self.assert_eq(pidx, kidx) pidx = pidx.rename(['my', 'name', 'is']) kidx = kidx.rename(['my', 'name', 'is']) self.assert_eq(pidx, kidx) def test_multiindex_set_names(self): pidx = pd.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) pidx = pidx.set_names(['set', 'new', 'names']) kidx = kidx.set_names(['set', 'new', 'names']) self.assert_eq(pidx, kidx) pidx.set_names(['set', 'new', 'names'], inplace=True) kidx.set_names(['set', 'new', 'names'], inplace=True) self.assert_eq(pidx, kidx) pidx = pidx.set_names('first', level=0) kidx = kidx.set_names('first', level=0) self.assert_eq(pidx, kidx) pidx = pidx.set_names('second', level=1) kidx = kidx.set_names('second', level=1) self.assert_eq(pidx, kidx) pidx = pidx.set_names('third', level=2) kidx = kidx.set_names('third', level=2) self.assert_eq(pidx, kidx) pidx.set_names('first', level=0, inplace=True) kidx.set_names('first', level=0, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names('second', level=1, inplace=True) kidx.set_names('second', level=1, inplace=True) self.assert_eq(pidx, kidx) pidx.set_names('third', level=2, inplace=True) kidx.set_names('third', level=2, inplace=True) self.assert_eq(pidx, kidx) def test_multiindex_from_product(self): iterables = [[0, 1, 2], ['green', 'purple']] pidx = pd.MultiIndex.from_product(iterables) kidx = ks.MultiIndex.from_product(iterables) self.assert_eq(pidx, kidx) def test_multiindex_tuple_column_name(self): column_index = pd.MultiIndex.from_tuples([('a', 'x'), ('a', 'y'), ('b', 'z')]) pdf = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], columns=column_index) pdf.set_index(('a', 'x'), append=True, inplace=True) kdf = ks.from_pandas(pdf) self.assert_eq(pdf, kdf) def test_len(self): pidx = pd.Index(range(10000)) kidx = ks.Index(range(10000)) self.assert_eq(len(pidx), len(kidx)) pidx = pd.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) self.assert_eq(len(pidx), len(kidx)) def test_append(self): # Index pidx = pd.Index(range(10000)) kidx = ks.Index(range(10000)) self.assert_eq( pidx.append(pidx), kidx.append(kidx)) # Index with name pidx1 = pd.Index(range(10000), name='a') pidx2 = pd.Index(range(10000), name='b') kidx1 = ks.Index(range(10000), name='a') kidx2 = ks.Index(range(10000), name='b') self.assert_eq( pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq( pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame pdf1 = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6]}, index=['a', 'b', 'c']) pdf2 = pd.DataFrame({ 'a': [7, 8, 9], 'd': [10, 11, 12]}, index=['x', 'y', 'z']) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index('a').index pidx2 = pdf2.set_index('d').index kidx1 = kdf1.set_index('a').index kidx2 = kdf2.set_index('d').index self.assert_eq( pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq( pidx2.append(pidx1), kidx2.append(kidx1)) # Index from DataFrame with MultiIndex columns pdf1 = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6]}) pdf2 = pd.DataFrame({ 'a': [7, 8, 9], 'd': [10, 11, 12]}) pdf1.columns = pd.MultiIndex.from_tuples([('a', 'x'), ('b', 'y')]) pdf2.columns = pd.MultiIndex.from_tuples([('a', 'x'), ('d', 'y')]) kdf1 = ks.from_pandas(pdf1) kdf2 = ks.from_pandas(pdf2) pidx1 = pdf1.set_index(('a', 'x')).index pidx2 = pdf2.set_index(('d', 'y')).index kidx1 = kdf1.set_index(('a', 'x')).index kidx2 = kdf2.set_index(('d', 'y')).index self.assert_eq( pidx1.append(pidx2), kidx1.append(kidx2)) self.assert_eq( pidx2.append(pidx1), kidx2.append(kidx1)) # MultiIndex pmidx = pd.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) kmidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) self.assert_eq(pmidx.append(pmidx), kmidx.append(kmidx)) # MultiIndex with names pmidx1 = pd.MultiIndex.from_tuples( [('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)], names=['x', 'y', 'z']) pmidx2 = pd.MultiIndex.from_tuples( [('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)], names=['p', 'q', 'r']) kmidx1 = ks.MultiIndex.from_tuples( [('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)], names=['x', 'y', 'z']) kmidx2 = ks.MultiIndex.from_tuples( [('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)], names=['p', 'q', 'r']) self.assert_eq( pmidx1.append(pmidx2), kmidx1.append(kmidx2)) self.assert_eq( pmidx2.append(pmidx1), kmidx2.append(kmidx1)) self.assert_eq( pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) self.assert_eq( pmidx1.append(pmidx2).names, kmidx1.append(kmidx2).names) # Index & MultiIndex currently is not supported expected_error_message = r"append\(\) between Index & MultiIndex currently is not supported" with self.assertRaisesRegex(NotImplementedError, expected_error_message): kidx.append(kmidx) with self.assertRaisesRegex(NotImplementedError, expected_error_message): kmidx.append(kidx) def test_argmin(self): pidx = pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) kidx = ks.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0]) self.assert_eq(pidx.argmin(), kidx.argmin()) # MultiIndex kidx = ks.MultiIndex.from_tuples([('a', 'x', 1), ('b', 'y', 2), ('c', 'z', 3)]) with self.assertRaisesRegex( TypeError, "reduction operation 'argmin' not allowed for this dtype"): kidx.argmin() def test_argmax(self): pidx =
pd.Index([100, 50, 10, 20, 30, 60, 0, 50, 0, 100, 100, 100, 20, 0, 0])
pandas.Index
import json import networkx as nx import numpy as np import os import pandas as pd from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.preprocessing import LabelEncoder from tqdm import tqdm from config import logger, config def read_profile_data(): profile_na = np.zeros(67) profile_na[0] = -1 profile_na = pd.DataFrame(profile_na.reshape(1, -1)) profile_df = pd.read_csv(config.profile_file) profile_na.columns = profile_df.columns profile_df = profile_df.append(profile_na) return profile_df def merge_raw_data(): tr_queries = pd.read_csv(config.train_query_file, parse_dates=['req_time']) te_queries = pd.read_csv(config.test_query_file, parse_dates=['req_time']) tr_plans = pd.read_csv(config.train_plan_file, parse_dates=['plan_time']) te_plans = pd.read_csv(config.test_plan_file, parse_dates=['plan_time']) tr_click = pd.read_csv(config.train_click_file) trn = tr_queries.merge(tr_click, on='sid', how='left') trn = trn.merge(tr_plans, on='sid', how='left') trn = trn.drop(['click_time'], axis=1) trn['click_mode'] = trn['click_mode'].fillna(0) tst = te_queries.merge(te_plans, on='sid', how='left') tst['click_mode'] = -1 df = pd.concat([trn, tst], axis=0, sort=False) df = df.drop(['plan_time'], axis=1) df = df.reset_index(drop=True) df['weekday'] = df['req_time'].dt.weekday df['day'] = df['req_time'].dt.day df['hour'] = df['req_time'].dt.hour df = df.drop(['req_time'], axis=1) logger.info('total data size: {}'.format(df.shape)) logger.info('data columns: {}'.format(', '.join(df.columns))) return df def extract_plans(df): plans = [] for sid, plan in tqdm(zip(df['sid'].values, df['plans'].values)): try: p = json.loads(plan) for x in p: x['sid'] = sid plans.extend(p) except: pass return pd.DataFrame(plans) def generate_od_features(df): feat = df[['o','d']].drop_duplicates() feat = feat.merge(df.groupby('o')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='o') feat.rename(columns={'day': 'o_nunique_day', 'hour': 'o_nunique_hour', 'pid': 'o_nunique_pid', 'click_mode': 'o_nunique_click'}, inplace=True) feat = feat.merge(df.groupby('d')[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on='d') feat.rename(columns={'day': 'd_nunique_day', 'hour': 'd_nunique_hour', 'pid': 'd_nunique_pid', 'click_mode': 'd_nunique_click'}, inplace=True) feat = feat.merge(df.groupby(['o', 'd'])[['day', 'hour', 'pid', 'click_mode']].nunique().reset_index(), how='left', on=['o', 'd']) feat.rename(columns={'day': 'od_nunique_day', 'hour': 'od_nunique_hour', 'pid': 'od_nunique_pid', 'click_mode': 'od_nunique_click'}, inplace=True) return feat def generate_pid_features(df): feat = df.groupby('pid')[['hour', 'day']].nunique().reset_index() feat.rename(columns={'hour': 'pid_nunique_hour', 'day': 'pid_nunique_day'}, inplace=True) feat['nunique_hour_d_nunique_day'] = feat['pid_nunique_hour'] / feat['pid_nunique_day'] feat = feat.merge(df.groupby('pid')[['o', 'd']].nunique().reset_index(), how='left', on='pid') feat.rename(columns={'o': 'pid_nunique_o', 'd': 'pid_nunique_d'}, inplace=True) feat['nunique_o_d_nunique_d'] = feat['pid_nunique_o'] / feat['pid_nunique_d'] return feat def generate_od_cluster_features(df): G = nx.Graph() G.add_nodes_from(df['o'].unique().tolist()) G.add_nodes_from(df['d'].unique().tolist()) edges = df[['o','d']].apply(lambda x: (x[0],x[1]), axis=1).tolist() G.add_edges_from(edges) cluster = nx.clustering(G) cluster_df = pd.DataFrame([{'od': key, 'cluster': cluster[key]} for key in cluster.keys()]) return cluster_df def gen_od_feas(data): data['o1'] = data['o'].apply(lambda x: float(x.split(',')[0])) data['o2'] = data['o'].apply(lambda x: float(x.split(',')[1])) data['d1'] = data['d'].apply(lambda x: float(x.split(',')[0])) data['d2'] = data['d'].apply(lambda x: float(x.split(',')[1])) data = data.drop(['o', 'd'], axis=1) return data def gen_plan_feas(data): n = data.shape[0] mode_list_feas = np.zeros((n, 12)) max_dist, min_dist, mean_dist, std_dist = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_price, min_price, mean_price, std_price = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_eta, min_eta, mean_eta, std_eta = np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) min_dist_mode, max_dist_mode, min_price_mode, max_price_mode, min_eta_mode, max_eta_mode, first_mode = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) mode_texts = [] for i, plan in tqdm(enumerate(data['plans'].values)): try: cur_plan_list = json.loads(plan) except: cur_plan_list = [] if len(cur_plan_list) == 0: mode_list_feas[i, 0] = 1 first_mode[i] = 0 max_dist[i] = -1 min_dist[i] = -1 mean_dist[i] = -1 std_dist[i] = -1 max_price[i] = -1 min_price[i] = -1 mean_price[i] = -1 std_price[i] = -1 max_eta[i] = -1 min_eta[i] = -1 mean_eta[i] = -1 std_eta[i] = -1 min_dist_mode[i] = -1 max_dist_mode[i] = -1 min_price_mode[i] = -1 max_price_mode[i] = -1 min_eta_mode[i] = -1 max_eta_mode[i] = -1 mode_texts.append('word_null') else: distance_list = [] price_list = [] eta_list = [] mode_list = [] for tmp_dit in cur_plan_list: distance_list.append(int(tmp_dit['distance'])) if tmp_dit['price'] == '': price_list.append(0) else: price_list.append(int(tmp_dit['price'])) eta_list.append(int(tmp_dit['eta'])) mode_list.append(int(tmp_dit['transport_mode'])) mode_texts.append( ' '.join(['word_{}'.format(mode) for mode in mode_list])) distance_list = np.array(distance_list) price_list = np.array(price_list) eta_list = np.array(eta_list) mode_list = np.array(mode_list, dtype='int') mode_list_feas[i, mode_list] = 1 distance_sort_idx = np.argsort(distance_list) price_sort_idx = np.argsort(price_list) eta_sort_idx = np.argsort(eta_list) max_dist[i] = distance_list[distance_sort_idx[-1]] min_dist[i] = distance_list[distance_sort_idx[0]] mean_dist[i] = np.mean(distance_list) std_dist[i] = np.std(distance_list) max_price[i] = price_list[price_sort_idx[-1]] min_price[i] = price_list[price_sort_idx[0]] mean_price[i] = np.mean(price_list) std_price[i] = np.std(price_list) max_eta[i] = eta_list[eta_sort_idx[-1]] min_eta[i] = eta_list[eta_sort_idx[0]] mean_eta[i] = np.mean(eta_list) std_eta[i] = np.std(eta_list) first_mode[i] = mode_list[0] max_dist_mode[i] = mode_list[distance_sort_idx[-1]] min_dist_mode[i] = mode_list[distance_sort_idx[0]] max_price_mode[i] = mode_list[price_sort_idx[-1]] min_price_mode[i] = mode_list[price_sort_idx[0]] max_eta_mode[i] = mode_list[eta_sort_idx[-1]] min_eta_mode[i] = mode_list[eta_sort_idx[0]] feature_data = pd.DataFrame(mode_list_feas) feature_data.columns = ['mode_feas_{}'.format(i) for i in range(12)] feature_data['max_dist'] = max_dist feature_data['min_dist'] = min_dist feature_data['mean_dist'] = mean_dist feature_data['std_dist'] = std_dist feature_data['max_price'] = max_price feature_data['min_price'] = min_price feature_data['mean_price'] = mean_price feature_data['std_price'] = std_price feature_data['max_eta'] = max_eta feature_data['min_eta'] = min_eta feature_data['mean_eta'] = mean_eta feature_data['std_eta'] = std_eta feature_data['max_dist_mode'] = max_dist_mode feature_data['min_dist_mode'] = min_dist_mode feature_data['max_price_mode'] = max_price_mode feature_data['min_price_mode'] = min_price_mode feature_data['max_eta_mode'] = max_eta_mode feature_data['min_eta_mode'] = min_eta_mode feature_data['first_mode'] = first_mode logger.info('mode tfidf...') tfidf_enc = TfidfVectorizer(ngram_range=(1, 2)) tfidf_vec = tfidf_enc.fit_transform(mode_texts) svd_enc = TruncatedSVD(n_components=10, n_iter=20, random_state=2019) mode_svd = svd_enc.fit_transform(tfidf_vec) mode_svd = pd.DataFrame(mode_svd) mode_svd.columns = ['svd_mode_{}'.format(i) for i in range(10)] data = pd.concat([data, feature_data, mode_svd], axis=1) data = data.drop(['plans'], axis=1) return data def gen_profile_feas(data): profile_data = read_profile_data() x = profile_data.drop(['pid'], axis=1).values svd = TruncatedSVD(n_components=20, n_iter=20, random_state=2019) svd_x = svd.fit_transform(x) svd_feas = pd.DataFrame(svd_x) svd_feas.columns = ['svd_fea_{}'.format(i) for i in range(20)] svd_feas['pid'] = profile_data['pid'].values data['pid'] = data['pid'].fillna(-1) data = data.merge(svd_feas, on='pid', how='left') return data def group_weekday_and_hour(row): if row['weekday'] == 0 or row['weekday'] == 6: w = 0 else: w = row['weekday'] if row['hour'] > 7 and row['hour'] < 18: # 7:00 - 18:00 h = row['hour'] elif row['hour'] >= 18 and row['hour'] < 21: # 18:00 - 21:00 h = 1 elif row['hour'] >= 21 or row['hour'] < 6: # 21:00 - 6:00 h = 0 else: # 6:00 - 7:00 h = 2 return str(w) + '_' + str(h) def gen_ratio_feas(data): data['dist-d-eta'] = data['mean_dist'] / data['mean_eta'] data['price-d-dist'] = data['mean_price'] / data['mean_dist'] data['price-d-eta'] = data['mean_price'] / data['mean_eta'] data['o1-d-d1'] = data['o1'] / data['d1'] data['o2-d-d2'] = data['o2'] / data['d2'] return data def gen_fly_dist_feas(data): data['fly-dist'] = ((data['d1'] - data['o1'])**2 + (data['d2'] - data['o2'])**2)**0.5 data['fly-dist-d-dist'] = data['fly-dist'] / data['mean_dist'] data['fly-dist-d-eta'] = data['fly-dist'] / data['mean_eta'] data['price-d-fly-dist'] = data['mean_price'] / data['fly-dist'] return data def gen_aggregate_profile_feas(data): aggr = data.groupby('pid')['sid'].agg(['count']) aggr.columns = ['%s_%s' % ('sid', col) for col in aggr.columns.values] aggr = aggr.reset_index() aggr.loc[aggr['pid'] == -1.0,'sid_count'] = 0 # reset in case pid == -1 data = data.merge(aggr, how='left', on=['pid']) return data def gen_pid_feat(data): feat = pd.read_csv(config.pid_feature_file) data = data.merge(feat, how='left', on='pid') return data def gen_od_feat(data): feat = pd.read_csv(config.od_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) logger.info('sid shape={}'.format(sid.shape)) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) logger.info('feature shape={}'.format(feat.shape)) logger.info('feature columns={}'.format(feat.columns)) data = data.merge(feat, how='left', on='sid') click_cols = [c for c in feat.columns if c.endswith('click')] data.drop(click_cols, axis=1, inplace=True) return data def gen_od_cluster_feat(data): feat = pd.read_csv(config.od_cluster_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) f = feat.copy() feat = sid.merge(feat, how='left', left_on='o', right_on='od').drop(['od','o'], axis=1) feat.rename(columns={'cluster': 'o_cluster'}, inplace=True) feat = feat.merge(f, how='left', left_on='d', right_on='od').drop(['od','d'], axis=1) feat.rename(columns={'cluster': 'd_cluster'}, inplace=True) data = data.merge(feat, how='left', on='sid') return data def gen_od_eq_feat(data): data['o1-eq-d1'] = (data['o1'] == data['d1']).astype(int) data['o2-eq-d2'] = (data['o2'] == data['d2']).astype(int) data['o-eq-d'] = data['o1-eq-d1']*data['o2-eq-d2'] data['o1-m-o2'] = np.abs(data['o1'] - data['o2']) data['d1-m-d2'] = np.abs(data['d1'] - data['d2']) data['od_area'] = data['o1-m-o2']*data['d1-m-d2'] data['od_ratio'] = data['o1-m-o2']/data['d1-m-d2'] return data def gen_od_mode_cnt_feat(data): feat = pd.read_csv(config.od_mode_cnt_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d']) sid = pd.concat((tr_sid, te_sid)) feat = sid.merge(feat, how='left', on=['o','d']).drop(['o','d'], axis=1) data = data.merge(feat, how='left', on='sid') return data def gen_weekday_hour_cnt_feat(data): feat = pd.read_csv(config.weekday_hour_feature_file) tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','req_time']) te_sid = pd.read_csv(config.test_query_file, usecols=['sid','req_time']) sid = pd.concat((tr_sid, te_sid)) sid['req_time'] = pd.to_datetime(sid['req_time']) sid['hour'] = sid['req_time'].map(lambda x: x.hour) sid['weekday'] = sid['req_time'].map(lambda x: x.weekday()) feat = sid.merge(feat, how='left', on=['hour','weekday']).drop(['hour','weekday','req_time'], axis=1) data = data.merge(feat, how='left', on='sid') return data def gen_od_plan_agg_feat(data): #feat = pd.read_csv(config.od_plan_agg_feature_file) #tr_sid = pd.read_csv(config.train_query_file, usecols=['sid','o','d','req_time']) #te_sid = pd.read_csv(config.test_query_file, usecols=['sid','o','d', 'req_time']) #sid = pd.concat((tr_sid, te_sid)) #sid['req_time'] = pd.to_datetime(sid['req_time']) #sid['hour'] = sid['req_time'].map(lambda x: x.hour) #feat = sid.merge(feat, how='left', on=['o','d','hour']).drop(['o','d','hour','req_time'], axis=1) feat = pd.read_csv(config.od_plan_agg_feature_file) data = data.merge(feat, how='left', on='sid') return data def gen_mode_feat(data): feat = pd.read_csv(config.mode_feature_file) data = data.merge(feat, how='left', on='sid') return data def gen_mode_stats_feat(data): feat =
pd.read_csv(config.od_stats_file)
pandas.read_csv
""" Methods to edit existing protocols to add: - new traces - reversal ramp (activating prepulse + deactivating ramp) - interleaved pulse trains """ import pyabf import numpy as np import pandas as pd import glob import os import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.style.use("dark_background") cmap = plt.cm.get_cmap("coolwarm") # where output will be saved, if saving is enabled out_dir = "./data/protocols/" # whether to save output save_output = False def find_abf_epochs(fname): data_dir = r"C:/Users/delbe/Downloads/wut/wut/Post_grad/UBC/Research/lab/data_files/delbert/" fname += ".abf" for root, dirs, files in os.walk(data_dir): for name in files: if fname in name: path = os.path.join(root, name) break # open abf file abf = pyabf.ABF(path) # return epochs p1s = [] levels = [] for i in abf.sweepList: abf.setSweep(i) p1s.append(abf.sweepEpochs.p1s) levels.append(abf.sweepEpochs.levels) return p1s, levels class edit_existing_protocol(): def __init__(self, fname, out_name, csv_path=None): if csv_path is None: csv_path = r"C:/Users/delbe/Downloads/wut/wut/Post_grad/UBC/Research/lab/Github_repos/hcn-gating-kinetics/data/current_time_course/Pooled_2020/" try: df = pd.read_csv(csv_path + fname + ".csv", header=None, index_col=0) # extract voltage command N = int(df.shape[1]/2) # check that there are equal number of current and voltage sweeps if df.shape[1] != 2*N: print(" Uneven number of current/voltage sweeps. Deleting last voltage sweep.") df = df.iloc[:,:-1] N = int(df.shape[1]/2) # voltage protocol self.df = df.iloc[:,N:] except: print(" %s not found in csv_path." % fname) try: # CellML csv export df = pd.read_csv(fname, header=0, index_col=None) df.index *= 1/2 self.df = df except: print(" Could not open `fname` as file.") exit() # sampling frequency self.khz = int( 1/(df.index[1] - df.index[0])) self.fname = fname self.out_name = out_name def create_reversal_ramp(self, Vact=-120, Tact=3000, Vramp=[-50, 10], Tramp=150, Tcap=10): """ Create steps for reversal ramp: maximally activating prepulse, followed by deactivating ramp. `Vact` = prepulse voltage \\ `Tact` = duration of activation prepulse \\ `Vramp` = start and end voltages of deactivating ramp \\ `Tramp` = duration of reversal ramp `Tcap` = short pulse of same voltage as `Vramp[0]` to cancel capacitive currents Returns `ramp`, array containing prepulse and ramp command """ # duration of capacitive step Tcap = 20 # slope of reversal ramp dvdt = (Vramp[1] - Vramp[0])/Tramp # times of reversal ramp Tramp = np.arange(0, Tramp+Tcap, 1/self.khz) # convert Tcap to samples Tcap = int(Tcap * self.khz) ramp = Tramp.copy() ramp[:Tcap] = Vramp[0] ramp[Tcap:] = [(dvdt*(t-Tramp[Tcap]) + Vramp[0]) for t in Tramp[Tcap:]] return ramp def create_leak_ramp(self, volts=[-35, 35], thalf=500, khz=2, add_MT_step=True): """ Create array of voltages for leak ramp """ if add_MT_step: out = np.zeros((thalf*2*khz + 2000*khz,)) else: out = np.zeros((thalf*2*khz,)) out[:1000*khz] = -35 ts = np.arange(0, thalf, 1/khz) out[1000*khz:(thalf+1000)*khz] = (ts*(volts[1]-volts[0])/(thalf)) + volts[0] if add_MT_step: out[(thalf+1000)*khz:-1000*khz] = (ts*(volts[0]-volts[1])/thalf) + volts[1] t = 1000 while t > 400: out[-t*khz:-(t-200)*khz] = -35 out[-(t-200)*khz:-(t-400)*khz] = 20 t -= 400 out[-t*khz:] = -35 else: out[(thalf+1000)*khz:] = (ts*(volts[0]-volts[1])/thalf) + volts[1] return out def add_leak_ramp(self): leak_ramp = self.create_leak_ramp(khz=int(1/self.df.index[1])) out = pd.DataFrame(np.array([leak_ramp,]*self.df.shape[1])).T try: out =
pd.concat([out, self.df], axis=0, ignore_index=True)
pandas.concat
from typing import List from datetime import datetime from pandas import DataFrame, Series import pandas as pd from pydantic import BaseModel, Field from .measurements import IntensityForecast from .mixes import GenerationMixDetails, MixComponent class Region(BaseModel): region_id: int = Field(..., alias="regionid") dno_region: str = Field(..., alias="dnoregion") short_name: str = Field(..., alias="shortname") def to_series(self): record = { "region_id": self.region_id, "dno_region": self.dno_region, "short_name": self.short_name, } return Series(record) class RegionGenerationMix(Region): intensity: IntensityForecast generation_mix: List[MixComponent] = Field(..., alias="generationmix") def to_series(self): record = Series( { **self.intensity.dict(), **{item.fuel: item.percentage for item in self.generation_mix}, } ) return super().to_series().append(record) class RegionListDetails(BaseModel): from_: datetime = Field(..., alias="from") to: datetime regions: List[RegionGenerationMix] def to_dataframe(self) -> DataFrame: record = Series({"from": self.from_, "to": self.to}) regions = [region.to_series().append(record) for region in self.regions] return
DataFrame(regions)
pandas.DataFrame
""" Tests for SARIMAX models Author: <NAME> License: Simplified-BSD """ import os import warnings from statsmodels.compat.platform import PLATFORM_WIN import numpy as np import pandas as pd import pytest from statsmodels.tsa.statespace import sarimax, tools from .results import results_sarimax from statsmodels.tools import add_constant from statsmodels.tools.tools import Bunch from numpy.testing import ( assert_, assert_equal, assert_almost_equal, assert_raises, assert_allclose ) current_path = os.path.dirname(os.path.abspath(__file__)) realgdp_path = os.path.join('results', 'results_realgdpar_stata.csv') realgdp_results = pd.read_csv(current_path + os.sep + realgdp_path) coverage_path = os.path.join('results', 'results_sarimax_coverage.csv') coverage_results = pd.read_csv(os.path.join(current_path, coverage_path)) class TestSARIMAXStatsmodels(object): """ Test ARIMA model using SARIMAX class against statsmodels ARIMA class Notes ----- Standard errors are quite good for the OPG case. """ @classmethod def setup_class(cls): cls.true = results_sarimax.wpi1_stationary endog = cls.true['data'] # Old results from statsmodels.arima.ARIMA taken before it was removed # to let test continue to run. On old statsmodels, can run # result_a = arima.ARIMA(endog, order=(1, 1, 1)).fit(disp=-1) result_a = Bunch() result_a.llf = -135.3513139733829 result_a.aic = 278.7026279467658 result_a.bic = 289.9513653682555 result_a.hqic = 283.27183681851653 result_a.params = np.array([0.74982449, 0.87421135, -0.41202195]) result_a.bse = np.array([0.29207409, 0.06377779, 0.12208469]) cls.result_a = result_a cls.model_b = sarimax.SARIMAX(endog, order=(1, 1, 1), trend='c', simple_differencing=True, hamilton_representation=True) cls.result_b = cls.model_b.fit(disp=-1) def test_loglike(self): assert_allclose(self.result_b.llf, self.result_a.llf) def test_aic(self): assert_allclose(self.result_b.aic, self.result_a.aic) def test_bic(self): assert_allclose(self.result_b.bic, self.result_a.bic) def test_hqic(self): assert_allclose(self.result_b.hqic, self.result_a.hqic) def test_mle(self): # ARIMA estimates the mean of the process, whereas SARIMAX estimates # the intercept. Convert the mean to intercept to compare params_a = self.result_a.params.copy() params_a[0] = (1 - params_a[1]) * params_a[0] assert_allclose(self.result_b.params[:-1], params_a, atol=5e-5) def test_bse(self): # Test the complex step approximated BSE values cpa = self.result_b._cov_params_approx(approx_complex_step=True) bse = cpa.diagonal()**0.5 assert_allclose(bse[1:-1], self.result_a.bse[1:], atol=1e-5) def test_t_test(self): import statsmodels.tools._testing as smt # to trigger failure, un-comment the following: # self.result_b._cache['pvalues'] += 1 smt.check_ttest_tvalues(self.result_b) smt.check_ftest_pvalues(self.result_b) class TestRealGDPARStata(object): """ Includes tests of filtered states and standardized forecast errors. Notes ----- Could also test the usual things like standard errors, etc. but those are well-tested elsewhere. """ @classmethod def setup_class(cls): dlgdp = np.log(realgdp_results['value']).diff()[1:].values cls.model = sarimax.SARIMAX(dlgdp, order=(12, 0, 0), trend='n', hamilton_representation=True) # Estimated by Stata params = [ .40725515, .18782621, -.01514009, -.01027267, -.03642297, .11576416, .02573029, -.00766572, .13506498, .08649569, .06942822, -.10685783, .00007999607 ] cls.results = cls.model.filter(params) def test_filtered_state(self): for i in range(12): assert_allclose( realgdp_results.iloc[1:]['u%d' % (i+1)], self.results.filter_results.filtered_state[i], atol=1e-6 ) def test_standardized_forecasts_error(self): assert_allclose( realgdp_results.iloc[1:]['rstd'], self.results.filter_results.standardized_forecasts_error[0], atol=1e-3 ) class SARIMAXStataTests(object): def test_loglike(self): assert_almost_equal( self.result.llf, self.true['loglike'], 4 ) def test_aic(self): assert_almost_equal( self.result.aic, self.true['aic'], 3 ) def test_bic(self): assert_almost_equal( self.result.bic, self.true['bic'], 3 ) def test_hqic(self): hqic = ( -2*self.result.llf + 2*np.log(np.log(self.result.nobs_effective)) * self.result.params.shape[0] ) assert_almost_equal( self.result.hqic, hqic, 3 ) def test_standardized_forecasts_error(self): cython_sfe = self.result.standardized_forecasts_error self.result._standardized_forecasts_error = None python_sfe = self.result.standardized_forecasts_error assert_allclose(cython_sfe, python_sfe) class ARIMA(SARIMAXStataTests): """ ARIMA model Stata arima documentation, Example 1 """ @classmethod def setup_class(cls, true, *args, **kwargs): cls.true = true endog = true['data'] kwargs.setdefault('simple_differencing', True) kwargs.setdefault('hamilton_representation', True) cls.model = sarimax.SARIMAX(endog, order=(1, 1, 1), trend='c', *args, **kwargs) # Stata estimates the mean of the process, whereas SARIMAX estimates # the intercept of the process. Get the intercept. intercept = (1 - true['params_ar'][0]) * true['params_mean'][0] params = np.r_[intercept, true['params_ar'], true['params_ma'], true['params_variance']] cls.result = cls.model.filter(params) def test_mle(self): result = self.model.fit(disp=-1) assert_allclose( result.params, self.result.params, atol=1e-3 ) class TestARIMAStationary(ARIMA): """ Notes ----- Standard errors are very good for the OPG and complex step approximation cases. """ @classmethod def setup_class(cls): super(TestARIMAStationary, cls).setup_class( results_sarimax.wpi1_stationary ) def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[1], self.true['se_ar_opg'], atol=1e-7) assert_allclose(self.result.bse[2], self.true['se_ma_opg'], atol=1e-7) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-7) assert_allclose(bse[2], self.true['se_ma_oim'], atol=1e-7) # The below tests pass irregularly; they give a sense of the precision # available with finite differencing # finite difference, non-centered # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-2) # assert_allclose(bse[2], self.true['se_ma_oim'], atol=1e-1) # # finite difference, centered # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-3) # assert_allclose(bse[2], self.true['se_ma_oim'], atol=1e-3) def test_bse_oim(self): # OIM covariance type oim_bse = self.result.cov_params_oim.diagonal()**0.5 assert_allclose(oim_bse[1], self.true['se_ar_oim'], atol=1e-3) assert_allclose(oim_bse[2], self.true['se_ma_oim'], atol=1e-2) def test_bse_robust(self): robust_oim_bse = self.result.cov_params_robust_oim.diagonal()**0.5 cpra = self.result.cov_params_robust_approx robust_approx_bse = cpra.diagonal()**0.5 true_robust_bse = np.r_[ self.true['se_ar_robust'], self.true['se_ma_robust'] ] assert_allclose(robust_oim_bse[1:3], true_robust_bse, atol=1e-2) assert_allclose(robust_approx_bse[1:3], true_robust_bse, atol=1e-3) class TestARIMADiffuse(ARIMA): """ Notes ----- Standard errors are very good for the OPG and quite good for the complex step approximation cases. """ @classmethod def setup_class(cls, **kwargs): kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = ( results_sarimax.wpi1_diffuse['initial_variance'] ) super(TestARIMADiffuse, cls).setup_class(results_sarimax.wpi1_diffuse, **kwargs) def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[1], self.true['se_ar_opg'], atol=1e-7) assert_allclose(self.result.bse[2], self.true['se_ma_opg'], atol=1e-7) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-4) assert_allclose(bse[2], self.true['se_ma_oim'], atol=1e-4) # The below tests do not pass # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # # finite difference, non-centered : failure # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-4) # assert_allclose(bse[2], self.true['se_ma_oim'], atol=1e-4) # # finite difference, centered : failure # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-4) # assert_allclose(bse[2], self.true['se_ma_oim'], atol=1e-4) def test_bse_oim(self): # OIM covariance type bse = self.result._cov_params_oim().diagonal()**0.5 assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-2) assert_allclose(bse[2], self.true['se_ma_oim'], atol=1e-1) class AdditiveSeasonal(SARIMAXStataTests): """ ARIMA model with additive seasonal effects Stata arima documentation, Example 2 """ @classmethod def setup_class(cls, true, *args, **kwargs): cls.true = true endog = np.log(true['data']) kwargs.setdefault('simple_differencing', True) kwargs.setdefault('hamilton_representation', True) cls.model = sarimax.SARIMAX( endog, order=(1, 1, (1, 0, 0, 1)), trend='c', *args, **kwargs ) # Stata estimates the mean of the process, whereas SARIMAX estimates # the intercept of the process. Get the intercept. intercept = (1 - true['params_ar'][0]) * true['params_mean'][0] params = np.r_[intercept, true['params_ar'], true['params_ma'], true['params_variance']] cls.result = cls.model.filter(params) def test_mle(self): result = self.model.fit(disp=-1) assert_allclose( result.params, self.result.params, atol=1e-3 ) class TestAdditiveSeasonal(AdditiveSeasonal): """ Notes ----- Standard errors are very good for the OPG and quite good for the complex step approximation cases. """ @classmethod def setup_class(cls): super(TestAdditiveSeasonal, cls).setup_class( results_sarimax.wpi1_seasonal ) def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[1], self.true['se_ar_opg'], atol=1e-6) assert_allclose(self.result.bse[2:4], self.true['se_ma_opg'], atol=1e-5) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-4) assert_allclose(bse[2:4], self.true['se_ma_oim'], atol=1e-4) # The below tests pass irregularly; they give a sense of the precision # available with finite differencing # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # # finite difference, non-centered # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-2) # assert_allclose(bse[2:4], self.true['se_ma_oim'], atol=1e-2) # # finite difference, centered # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-3) # assert_allclose(bse[2:4], self.true['se_ma_oim'], atol=1e-3) def test_bse_oim(self): # OIM covariance type bse = self.result._cov_params_oim().diagonal()**0.5 assert_allclose(bse[1], self.true['se_ar_oim'], atol=1e-2) assert_allclose(bse[2:4], self.true['se_ma_oim'], atol=1e-1) class Airline(SARIMAXStataTests): """ Multiplicative SARIMA model: "Airline" model Stata arima documentation, Example 3 """ @classmethod def setup_class(cls, true, *args, **kwargs): cls.true = true endog = np.log(true['data']) kwargs.setdefault('simple_differencing', True) kwargs.setdefault('hamilton_representation', True) cls.model = sarimax.SARIMAX( endog, order=(0, 1, 1), seasonal_order=(0, 1, 1, 12), trend='n', *args, **kwargs ) params = np.r_[true['params_ma'], true['params_seasonal_ma'], true['params_variance']] cls.result = cls.model.filter(params) def test_mle(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") result = self.model.fit(disp=-1) assert_allclose( result.params, self.result.params, atol=1e-4 ) class TestAirlineHamilton(Airline): """ Notes ----- Standard errors are very good for the OPG and complex step approximation cases. """ @classmethod def setup_class(cls): super(TestAirlineHamilton, cls).setup_class( results_sarimax.air2_stationary ) def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[0], self.true['se_ma_opg'], atol=1e-6) assert_allclose(self.result.bse[1], self.true['se_seasonal_ma_opg'], atol=1e-6) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-6) assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], atol=1e-6) # The below tests pass irregularly; they give a sense of the precision # available with finite differencing # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # # finite difference, non-centered # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-2) # assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], # atol=1e-2) # # finite difference, centered # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-4) # assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], # atol=1e-4) def test_bse_oim(self): # OIM covariance type oim_bse = self.result.cov_params_oim.diagonal()**0.5 assert_allclose(oim_bse[0], self.true['se_ma_oim'], atol=1e-1) assert_allclose(oim_bse[1], self.true['se_seasonal_ma_oim'], atol=1e-1) class TestAirlineHarvey(Airline): """ Notes ----- Standard errors are very good for the OPG and complex step approximation cases. """ @classmethod def setup_class(cls): super(TestAirlineHarvey, cls).setup_class( results_sarimax.air2_stationary, hamilton_representation=False ) def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[0], self.true['se_ma_opg'], atol=1e-6) assert_allclose(self.result.bse[1], self.true['se_seasonal_ma_opg'], atol=1e-6) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-6) assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], atol=1e-6) # The below tests pass irregularly; they give a sense of the precision # available with finite differencing # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # # finite difference, non-centered # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-2) # assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], # atol=1e-2) # # finite difference, centered # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-4) # assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], # atol=1e-4) def test_bse_oim(self): # OIM covariance type oim_bse = self.result.cov_params_oim.diagonal()**0.5 assert_allclose(oim_bse[0], self.true['se_ma_oim'], atol=1e-1) assert_allclose(oim_bse[1], self.true['se_seasonal_ma_oim'], atol=1e-1) class TestAirlineStateDifferencing(Airline): """ Notes ----- Standard errors are very good for the OPG and quite good for the complex step approximation cases. """ @classmethod def setup_class(cls): super(TestAirlineStateDifferencing, cls).setup_class( results_sarimax.air2_stationary, simple_differencing=False, hamilton_representation=False ) def test_bic(self): # Due to diffuse component of the state (which technically changes the # BIC calculation - see Durbin and Koopman section 7.4), this is the # best we can do for BIC assert_almost_equal( self.result.bic, self.true['bic'], 0 ) def test_mle(self): result = self.model.fit(method='nm', maxiter=1000, disp=0) assert_allclose( result.params, self.result.params, atol=1e-3) def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[0], self.true['se_ma_opg'], atol=1e-6) assert_allclose(self.result.bse[1], self.true['se_seasonal_ma_opg'], atol=1e-6) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-4) assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], atol=1e-4) # The below tests do not pass # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # # finite difference, non-centered : failure with NaNs # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-2) # assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], # atol=1e-2) # # finite difference, centered : failure with NaNs # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ma_oim'], atol=1e-4) # assert_allclose(bse[1], self.true['se_seasonal_ma_oim'], # atol=1e-4) def test_bse_oim(self): # OIM covariance type oim_bse = self.result.cov_params_oim.diagonal()**0.5 assert_allclose(oim_bse[0], self.true['se_ma_oim'], atol=1e-1) assert_allclose(oim_bse[1], self.true['se_seasonal_ma_oim'], atol=1e-1) class Friedman(SARIMAXStataTests): """ ARMAX model: Friedman quantity theory of money Stata arima documentation, Example 4 """ @classmethod def setup_class(cls, true, exog=None, *args, **kwargs): cls.true = true endog = np.r_[true['data']['consump']] if exog is None: exog = add_constant(true['data']['m2']) kwargs.setdefault('simple_differencing', True) kwargs.setdefault('hamilton_representation', True) cls.model = sarimax.SARIMAX( endog, exog=exog, order=(1, 0, 1), *args, **kwargs ) params = np.r_[true['params_exog'], true['params_ar'], true['params_ma'], true['params_variance']] cls.result = cls.model.filter(params) class TestFriedmanMLERegression(Friedman): """ Notes ----- Standard errors are very good for the OPG and complex step approximation cases. """ @classmethod def setup_class(cls): super(TestFriedmanMLERegression, cls).setup_class( results_sarimax.friedman2_mle ) def test_mle(self): result = self.model.fit(disp=-1) # Use ratio to make atol more meaningful parameter scale differs ratio = result.params / self.result.params assert_allclose(ratio, np.ones(5), atol=1e-2, rtol=1e-3) def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[0:2], self.true['se_exog_opg'], atol=1e-4) assert_allclose(self.result.bse[2], self.true['se_ar_opg'], atol=1e-6) assert_allclose(self.result.bse[3], self.true['se_ma_opg'], atol=1e-6) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[0:2], self.true['se_exog_oim'], atol=1e-4) assert_allclose(bse[2], self.true['se_ar_oim'], atol=1e-6) assert_allclose(bse[3], self.true['se_ma_oim'], atol=1e-6) # The below tests pass irregularly; they give a sense of the precision # available with finite differencing # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # # finite difference, non-centered # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[0], self.true['se_exog_oim'][0], rtol=1) # assert_allclose(bse[1], self.true['se_exog_oim'][1], atol=1e-2) # assert_allclose(bse[2], self.true['se_ar_oim'], atol=1e-2) # assert_allclose(bse[3], self.true['se_ma_oim'], atol=1e-2) # # finite difference, centered # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[0], self.true['se_exog_oim'][0], rtol=1) # assert_allclose(bse[1], self.true['se_exog_oim'][1], atol=1e-2) # assert_allclose(bse[2], self.true['se_ar_oim'], atol=1e-2) # assert_allclose(bse[3], self.true['se_ma_oim'], atol=1e-2) def test_bse_oim(self): # OIM covariance type bse = self.result.cov_params_oim.diagonal()**0.5 assert_allclose(bse[0], self.true['se_exog_oim'][0], rtol=1) assert_allclose(bse[1], self.true['se_exog_oim'][1], atol=1e-2) assert_allclose(bse[2], self.true['se_ar_oim'], atol=1e-2) assert_allclose(bse[3], self.true['se_ma_oim'], atol=1e-2) class TestFriedmanStateRegression(Friedman): """ Notes ----- MLE is not very close and standard errors are not very close for any set of parameters. This is likely because we're comparing against the model where the regression coefficients are also estimated by MLE. So this test should be considered just a very basic "sanity" test. """ @classmethod def setup_class(cls): # Remove the regression coefficients from the parameters, since they # will be estimated as part of the state vector true = dict(results_sarimax.friedman2_mle) exog = add_constant(true['data']['m2']) / 10. true['mle_params_exog'] = true['params_exog'][:] true['mle_se_exog'] = true['se_exog_opg'][:] true['params_exog'] = [] true['se_exog'] = [] super(TestFriedmanStateRegression, cls).setup_class( true, exog=exog, mle_regression=False ) cls.true_params = np.r_[true['params_exog'], true['params_ar'], true['params_ma'], true['params_variance']] cls.result = cls.model.filter(cls.true_params) def test_mle(self): result = self.model.fit(disp=-1) assert_allclose( result.params, self.result.params, atol=1e-1, rtol=2e-1 ) def test_regression_parameters(self): # The regression effects are integrated into the state vector as # the last two states (thus the index [-2:]). The filtered # estimates of the state vector produced by the Kalman filter and # stored in `filtered_state` for these state elements give the # recursive least squares estimates of the regression coefficients # at each time period. To get the estimates conditional on the # entire dataset, use the filtered states from the last time # period (thus the index [-1]). assert_almost_equal( self.result.filter_results.filtered_state[-2:, -1] / 10., self.true['mle_params_exog'], 1 ) # Loglikelihood (and so aic, bic) is slightly different when states are # integrated into the state vector def test_loglike(self): pass def test_aic(self): pass def test_bic(self): pass def test_bse(self): # test defaults assert_equal(self.result.cov_type, 'opg') assert_equal(self.result._cov_approx_complex_step, True) assert_equal(self.result._cov_approx_centered, False) # default covariance type (opg) assert_allclose(self.result.bse[0], self.true['se_ar_opg'], atol=1e-2) assert_allclose(self.result.bse[1], self.true['se_ma_opg'], atol=1e-2) def test_bse_approx(self): # complex step bse = self.result._cov_params_approx( approx_complex_step=True).diagonal()**0.5 assert_allclose(bse[0], self.true['se_ar_oim'], atol=1e-1) assert_allclose(bse[1], self.true['se_ma_oim'], atol=1e-1) # The below tests do not pass # with warnings.catch_warnings(): # warnings.simplefilter("ignore") # # finite difference, non-centered : # # failure (catastrophic cancellation) # bse = self.result._cov_params_approx( # approx_complex_step=False).diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ar_oim'], atol=1e-3) # assert_allclose(bse[1], self.true['se_ma_oim'], atol=1e-2) # # finite difference, centered : failure (nan) # cpa = self.result._cov_params_approx( # approx_complex_step=False, approx_centered=True) # bse = cpa.diagonal()**0.5 # assert_allclose(bse[0], self.true['se_ar_oim'], atol=1e-3) # assert_allclose(bse[1], self.true['se_ma_oim'], atol=1e-3) def test_bse_oim(self): # OIM covariance type bse = self.result._cov_params_oim().diagonal()**0.5 assert_allclose(bse[0], self.true['se_ar_oim'], atol=1e-1) assert_allclose(bse[1], self.true['se_ma_oim'], atol=1e-1) class TestFriedmanPredict(Friedman): """ ARMAX model: Friedman quantity theory of money, prediction Stata arima postestimation documentation, Example 1 - Dynamic forecasts This follows the given Stata example, although it is not truly forecasting because it compares using the actual data (which is available in the example but just not used in the parameter MLE estimation) against dynamic prediction of that data. Here `test_predict` matches the first case, and `test_dynamic_predict` matches the second. """ @classmethod def setup_class(cls): super(TestFriedmanPredict, cls).setup_class( results_sarimax.friedman2_predict ) # loglike, aic, bic are not the point of this test (they could pass, but we # would have to modify the data so that they were calculated to # exclude the last 15 observations) def test_loglike(self): pass def test_aic(self): pass def test_bic(self): pass def test_predict(self): assert_almost_equal( self.result.predict(), self.true['predict'], 3 ) def test_dynamic_predict(self): dynamic = len(self.true['data']['consump'])-15-1 assert_almost_equal( self.result.predict(dynamic=dynamic), self.true['dynamic_predict'], 3 ) class TestFriedmanForecast(Friedman): """ ARMAX model: Friedman quantity theory of money, forecasts Variation on: Stata arima postestimation documentation, Example 1 - Dynamic forecasts This is a variation of the Stata example, in which the endogenous data is actually made to be missing so that the predict command must forecast. As another unit test, we also compare against the case in State when predict is used against missing data (so forecasting) with the dynamic option also included. Note, however, that forecasting in State space models amounts to running the Kalman filter against missing datapoints, so it is not clear whether "dynamic" forecasting (where instead of missing datapoints for lags, we plug in previous forecasted endog values) is meaningful. """ @classmethod def setup_class(cls): true = dict(results_sarimax.friedman2_predict) true['forecast_data'] = { 'consump': true['data']['consump'][-15:], 'm2': true['data']['m2'][-15:] } true['data'] = { 'consump': true['data']['consump'][:-15], 'm2': true['data']['m2'][:-15] } super(TestFriedmanForecast, cls).setup_class(true) cls.result = cls.model.filter(cls.result.params) # loglike, aic, bic are not the point of this test (they could pass, but we # would have to modify the data so that they were calculated to # exclude the last 15 observations) def test_loglike(self): pass def test_aic(self): pass def test_bic(self): pass def test_forecast(self): end = len(self.true['data']['consump'])+15-1 exog = add_constant(self.true['forecast_data']['m2']) assert_almost_equal( self.result.predict(end=end, exog=exog), self.true['forecast'], 3 ) def test_dynamic_forecast(self): end = len(self.true['data']['consump'])+15-1 dynamic = len(self.true['data']['consump'])-1 exog = add_constant(self.true['forecast_data']['m2']) assert_almost_equal( self.result.predict(end=end, dynamic=dynamic, exog=exog), self.true['dynamic_forecast'], 3 ) class SARIMAXCoverageTest(object): @classmethod def setup_class(cls, i, decimal=4, endog=None, *args, **kwargs): # Dataset if endog is None: endog = results_sarimax.wpi1_data # Loglikelihood, parameters cls.true_loglike = coverage_results.loc[i]['llf'] cls.true_params = np.array([ float(x) for x in coverage_results.loc[i]['parameters'].split(',')] ) # Stata reports the standard deviation; make it the variance cls.true_params[-1] = cls.true_params[-1]**2 # Test parameters cls.decimal = decimal # Compare using the Hamilton representation and simple differencing kwargs.setdefault('simple_differencing', True) kwargs.setdefault('hamilton_representation', True) cls.model = sarimax.SARIMAX(endog, *args, **kwargs) def test_loglike(self): self.result = self.model.filter(self.true_params) assert_allclose( self.result.llf, self.true_loglike, atol=0.7 * 10**(-self.decimal) ) def test_start_params(self): # just a quick test that start_params is not throwing an exception # (other than related to invertibility) stat = self.model.enforce_stationarity inv = self.model.enforce_invertibility self.model.enforce_stationarity = False self.model.enforce_invertibility = False self.model.start_params self.model.enforce_stationarity = stat self.model.enforce_invertibility = inv def test_transform_untransform(self): model = self.model stat, inv = model.enforce_stationarity, model.enforce_invertibility true_constrained = self.true_params # Sometimes the parameters given by Stata are not stationary and / or # invertible, so we need to skip those transformations for those # parameter sets model.update(self.true_params) par = model.polynomial_ar psar = model.polynomial_seasonal_ar contracted_psar = psar[psar.nonzero()] model.enforce_stationarity = ( (model.k_ar == 0 or tools.is_invertible(np.r_[1, -par[1:]])) and (len(contracted_psar) <= 1 or tools.is_invertible(np.r_[1, -contracted_psar[1:]])) ) pma = model.polynomial_ma psma = model.polynomial_seasonal_ma contracted_psma = psma[psma.nonzero()] model.enforce_invertibility = ( (model.k_ma == 0 or tools.is_invertible(np.r_[1, pma[1:]])) and (len(contracted_psma) <= 1 or tools.is_invertible(np.r_[1, contracted_psma[1:]])) ) unconstrained = model.untransform_params(true_constrained) constrained = model.transform_params(unconstrained) assert_almost_equal(constrained, true_constrained, 4) model.enforce_stationarity = stat model.enforce_invertibility = inv def test_results(self): self.result = self.model.filter(self.true_params) # Just make sure that no exceptions are thrown during summary self.result.summary() # Make sure no expections are thrown calculating any of the # covariance matrix types self.result.cov_params_default self.result.cov_params_approx self.result.cov_params_oim self.result.cov_params_opg self.result.cov_params_robust_oim self.result.cov_params_robust_approx @pytest.mark.matplotlib def test_plot_diagnostics(self, close_figures): # Make sure that no exceptions are thrown during plot_diagnostics self.result = self.model.filter(self.true_params) self.result.plot_diagnostics() def test_predict(self): result = self.model.filter(self.true_params) # Test predict does not throw exceptions, and produces the right shaped # output predict = result.predict() assert_equal(predict.shape, (self.model.nobs,)) predict = result.predict(start=10, end=20) assert_equal(predict.shape, (11,)) predict = result.predict(start=10, end=20, dynamic=10) assert_equal(predict.shape, (11,)) # Test forecasts if self.model.k_exog == 0: predict = result.predict(start=self.model.nobs, end=self.model.nobs+10, dynamic=-10) assert_equal(predict.shape, (11,)) predict = result.predict(start=self.model.nobs, end=self.model.nobs+10, dynamic=-10) forecast = result.forecast() assert_equal(forecast.shape, (1,)) forecast = result.forecast(10) assert_equal(forecast.shape, (10,)) else: k_exog = self.model.k_exog exog = np.r_[[0]*k_exog*11].reshape(11, k_exog) predict = result.predict(start=self.model.nobs, end=self.model.nobs+10, dynamic=-10, exog=exog) assert_equal(predict.shape, (11,)) predict = result.predict(start=self.model.nobs, end=self.model.nobs+10, dynamic=-10, exog=exog) exog = np.r_[[0]*k_exog].reshape(1, k_exog) forecast = result.forecast(exog=exog) assert_equal(forecast.shape, (1,)) def test_init_keys_replicate(self): mod1 = self.model kwargs = self.model._get_init_kwds() endog = mod1.data.orig_endog exog = mod1.data.orig_exog model2 = sarimax.SARIMAX(endog, exog, **kwargs) res1 = self.model.filter(self.true_params) res2 = model2.filter(self.true_params) rtol = 1e-6 if PLATFORM_WIN else 1e-13 assert_allclose(res2.llf, res1.llf, rtol=rtol) class Test_ar(SARIMAXCoverageTest): # // AR: (p, 0, 0) x (0, 0, 0, 0) # arima wpi, arima(3, 0, 0) noconstant vce(oim) # save_results 1 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) super(Test_ar, cls).setup_class(0, *args, **kwargs) class Test_ar_as_polynomial(SARIMAXCoverageTest): # // AR: (p, 0, 0) x (0, 0, 0, 0) # arima wpi, arima(3, 0, 0) noconstant vce(oim) # save_results 1 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = ([1, 1, 1], 0, 0) super(Test_ar_as_polynomial, cls).setup_class(0, *args, **kwargs) class Test_ar_trend_c(SARIMAXCoverageTest): # // 'c' # arima wpi c, arima(3, 0, 0) noconstant vce(oim) # save_results 2 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) kwargs['trend'] = 'c' super(Test_ar_trend_c, cls).setup_class(1, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[0] = (1 - tps[1:4].sum()) * tps[0] class Test_ar_trend_ct(SARIMAXCoverageTest): # // 'ct' # arima wpi c t, arima(3, 0, 0) noconstant vce(oim) # save_results 3 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) kwargs['trend'] = 'ct' super(Test_ar_trend_ct, cls).setup_class(2, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] class Test_ar_trend_polynomial(SARIMAXCoverageTest): # // polynomial [1, 0, 0, 1] # arima wpi c t3, arima(3, 0, 0) noconstant vce(oim) # save_results 4 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) kwargs['trend'] = [1, 0, 0, 1] super(Test_ar_trend_polynomial, cls).setup_class(3, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] class Test_ar_diff(SARIMAXCoverageTest): # // AR and I(d): (p, d, 0) x (0, 0, 0, 0) # arima wpi, arima(3, 2, 0) noconstant vce(oim) # save_results 5 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 2, 0) super(Test_ar_diff, cls).setup_class(4, *args, **kwargs) class Test_ar_seasonal_diff(SARIMAXCoverageTest): # // AR and I(D): (p, 0, 0) x (0, D, 0, s) # arima wpi, arima(3, 0, 0) sarima(0, 2, 0, 4) noconstant vce(oim) # save_results 6 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) kwargs['seasonal_order'] = (0, 2, 0, 4) super(Test_ar_seasonal_diff, cls).setup_class(5, *args, **kwargs) class Test_ar_diffuse(SARIMAXCoverageTest): # // AR and diffuse initialization # arima wpi, arima(3, 0, 0) noconstant vce(oim) diffuse # save_results 7 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = 1e9 super(Test_ar_diffuse, cls).setup_class(6, *args, **kwargs) class Test_ar_no_enforce(SARIMAXCoverageTest): # // AR: (p, 0, 0) x (0, 0, 0, 0) # arima wpi, arima(3, 0, 0) noconstant vce(oim) # save_results 1 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) kwargs['enforce_stationarity'] = False kwargs['enforce_invertibility'] = False kwargs['initial_variance'] = 1e9 kwargs['loglikelihood_burn'] = 0 super(Test_ar_no_enforce, cls).setup_class(6, *args, **kwargs) # Reset loglikelihood burn, which gets automatically set to the number # of states if enforce_stationarity = False cls.model.ssm.loglikelihood_burn = 0 def test_init_keys_replicate(self): mod1 = self.model kwargs = self.model._get_init_kwds() endog = mod1.data.orig_endog exog = mod1.data.orig_exog model2 = sarimax.SARIMAX(endog, exog, **kwargs) # Fixes needed for edge case model model2.ssm.initialization = mod1.ssm.initialization res1 = self.model.filter(self.true_params) res2 = model2.filter(self.true_params) rtol = 1e-6 if PLATFORM_WIN else 1e-13 assert_allclose(res2.llf, res1.llf, rtol=rtol) class Test_ar_exogenous(SARIMAXCoverageTest): # // ARX # arima wpi x, arima(3, 0, 0) noconstant vce(oim) # save_results 8 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 super(Test_ar_exogenous, cls).setup_class(7, *args, **kwargs) class Test_ar_exogenous_in_state(SARIMAXCoverageTest): # // ARX # arima wpi x, arima(3, 0, 0) noconstant vce(oim) # save_results 8 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 0) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 kwargs['mle_regression'] = False super(Test_ar_exogenous_in_state, cls).setup_class(7, *args, **kwargs) cls.true_regression_coefficient = cls.true_params[0] cls.true_params = cls.true_params[1:] def test_loglike(self): # Regression in the state vector gives a different loglikelihood, so # just check that it's approximately the same self.result = self.model.filter(self.true_params) assert_allclose( self.result.llf, self.true_loglike, atol=2 ) def test_regression_coefficient(self): # Test that the regression coefficient (estimated as the last filtered # state estimate for the regression state) is the same as the Stata # MLE state self.result = self.model.filter(self.true_params) assert_allclose( self.result.filter_results.filtered_state[3][-1], self.true_regression_coefficient, self.decimal ) class Test_ma(SARIMAXCoverageTest): # // MA: (0, 0, q) x (0, 0, 0, 0) # arima wpi, arima(0, 0, 3) noconstant vce(oim) # save_results 9 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 3) super(Test_ma, cls).setup_class(8, *args, **kwargs) class Test_ma_as_polynomial(SARIMAXCoverageTest): # // MA: (0, 0, q) x (0, 0, 0, 0) # arima wpi, arima(0, 0, 3) noconstant vce(oim) # save_results 9 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, [1, 1, 1]) super(Test_ma_as_polynomial, cls).setup_class(8, *args, **kwargs) class Test_ma_trend_c(SARIMAXCoverageTest): # // 'c' # arima wpi c, arima(0, 0, 3) noconstant vce(oim) # save_results 10 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 3) kwargs['trend'] = 'c' super(Test_ma_trend_c, cls).setup_class(9, *args, **kwargs) class Test_ma_trend_ct(SARIMAXCoverageTest): # // 'ct' # arima wpi c t, arima(0, 0, 3) noconstant vce(oim) # save_results 11 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 3) kwargs['trend'] = 'ct' super(Test_ma_trend_ct, cls).setup_class(10, *args, **kwargs) class Test_ma_trend_polynomial(SARIMAXCoverageTest): # // polynomial [1, 0, 0, 1] # arima wpi c t3, arima(0, 0, 3) noconstant vce(oim) # save_results 12 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 3) kwargs['trend'] = [1, 0, 0, 1] super(Test_ma_trend_polynomial, cls).setup_class(11, *args, **kwargs) class Test_ma_diff(SARIMAXCoverageTest): # // MA and I(d): (0, d, q) x (0, 0, 0, 0) # arima wpi, arima(0, 2, 3) noconstant vce(oim) # save_results 13 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 2, 3) super(Test_ma_diff, cls).setup_class(12, *args, **kwargs) class Test_ma_seasonal_diff(SARIMAXCoverageTest): # // MA and I(D): (p, 0, 0) x (0, D, 0, s) # arima wpi, arima(0, 0, 3) sarima(0, 2, 0, 4) noconstant vce(oim) # save_results 14 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 3) kwargs['seasonal_order'] = (0, 2, 0, 4) super(Test_ma_seasonal_diff, cls).setup_class(13, *args, **kwargs) class Test_ma_diffuse(SARIMAXCoverageTest): # // MA and diffuse initialization # arima wpi, arima(0, 0, 3) noconstant vce(oim) diffuse # save_results 15 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 3) kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = 1e9 super(Test_ma_diffuse, cls).setup_class(14, *args, **kwargs) class Test_ma_exogenous(SARIMAXCoverageTest): # // MAX # arima wpi x, arima(0, 0, 3) noconstant vce(oim) # save_results 16 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 3) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 super(Test_ma_exogenous, cls).setup_class(15, *args, **kwargs) class Test_arma(SARIMAXCoverageTest): # // ARMA: (p, 0, q) x (0, 0, 0, 0) # arima wpi, arima(3, 0, 3) noconstant vce(oim) # save_results 17 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 3) super(Test_arma, cls).setup_class(16, *args, **kwargs) class Test_arma_trend_c(SARIMAXCoverageTest): # // 'c' # arima wpi c, arima(3, 0, 2) noconstant vce(oim) # save_results 18 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 2) kwargs['trend'] = 'c' super(Test_arma_trend_c, cls).setup_class(17, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:1] = (1 - tps[1:4].sum()) * tps[:1] class Test_arma_trend_ct(SARIMAXCoverageTest): # // 'ct' # arima wpi c t, arima(3, 0, 2) noconstant vce(oim) # save_results 19 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 2) kwargs['trend'] = 'ct' super(Test_arma_trend_ct, cls).setup_class(18, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] class Test_arma_trend_polynomial(SARIMAXCoverageTest): # // polynomial [1, 0, 0, 1] # arima wpi c t3, arima(3, 0, 2) noconstant vce(oim) # save_results 20 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 2) kwargs['trend'] = [1, 0, 0, 1] super(Test_arma_trend_polynomial, cls).setup_class(19, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] class Test_arma_diff(SARIMAXCoverageTest): # // ARMA and I(d): (p, d, q) x (0, 0, 0, 0) # arima wpi, arima(3, 2, 2) noconstant vce(oim) # save_results 21 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 2, 2) super(Test_arma_diff, cls).setup_class(20, *args, **kwargs) class Test_arma_seasonal_diff(SARIMAXCoverageTest): # // ARMA and I(D): (p, 0, q) x (0, D, 0, s) # arima wpi, arima(3, 0, 2) sarima(0, 2, 0, 4) noconstant vce(oim) # save_results 22 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 2) kwargs['seasonal_order'] = (0, 2, 0, 4) super(Test_arma_seasonal_diff, cls).setup_class(21, *args, **kwargs) class Test_arma_diff_seasonal_diff(SARIMAXCoverageTest): # // ARMA and I(d) and I(D): (p, d, q) x (0, D, 0, s) # arima wpi, arima(3, 2, 2) sarima(0, 2, 0, 4) noconstant vce(oim) # save_results 23 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 2, 2) kwargs['seasonal_order'] = (0, 2, 0, 4) super(Test_arma_diff_seasonal_diff, cls).setup_class( 22, *args, **kwargs) class Test_arma_diffuse(SARIMAXCoverageTest): # // ARMA and diffuse initialization # arima wpi, arima(3, 0, 2) noconstant vce(oim) diffuse # save_results 24 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 2) kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = 1e9 super(Test_arma_diffuse, cls).setup_class(23, *args, **kwargs) class Test_arma_exogenous(SARIMAXCoverageTest): # // ARMAX # arima wpi x, arima(3, 0, 2) noconstant vce(oim) # save_results 25 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 0, 2) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 super(Test_arma_exogenous, cls).setup_class(24, *args, **kwargs) class Test_seasonal_ar(SARIMAXCoverageTest): # // SAR: (0, 0, 0) x (P, 0, 0, s) # arima wpi, sarima(3, 0, 0, 4) noconstant vce(oim) # save_results 26 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 0, 4) super(Test_seasonal_ar, cls).setup_class(25, *args, **kwargs) class Test_seasonal_ar_as_polynomial(SARIMAXCoverageTest): # // SAR: (0, 0, 0) x (P, 0, 0, s) # arima wpi, sarima(3, 0, 0, 4) noconstant vce(oim) # save_results 26 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = ([1, 1, 1], 0, 0, 4) super(Test_seasonal_ar_as_polynomial, cls).setup_class( 25, *args, **kwargs) class Test_seasonal_ar_trend_c(SARIMAXCoverageTest): # // 'c' # arima wpi c, sarima(3, 0, 0, 4) noconstant vce(oim) # save_results 27 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 0, 4) kwargs['trend'] = 'c' super(Test_seasonal_ar_trend_c, cls).setup_class(26, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:1] = (1 - tps[1:4].sum()) * tps[:1] class Test_seasonal_ar_trend_ct(SARIMAXCoverageTest): # // 'ct' # arima wpi c t, sarima(3, 0, 0, 4) noconstant vce(oim) # save_results 28 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 0, 4) kwargs['trend'] = 'ct' super(Test_seasonal_ar_trend_ct, cls).setup_class(27, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] class Test_seasonal_ar_trend_polynomial(SARIMAXCoverageTest): # // polynomial [1, 0, 0, 1] # arima wpi c t3, sarima(3, 0, 0, 4) noconstant vce(oim) # save_results 29 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 0, 4) kwargs['trend'] = [1, 0, 0, 1] super(Test_seasonal_ar_trend_polynomial, cls).setup_class( 28, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] class Test_seasonal_ar_diff(SARIMAXCoverageTest): # // SAR and I(d): (0, d, 0) x (P, 0, 0, s) # arima wpi, arima(0, 2, 0) sarima(3, 0, 0, 4) noconstant vce(oim) # save_results 30 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 2, 0) kwargs['seasonal_order'] = (3, 0, 0, 4) super(Test_seasonal_ar_diff, cls).setup_class(29, *args, **kwargs) class Test_seasonal_ar_seasonal_diff(SARIMAXCoverageTest): # // SAR and I(D): (0, 0, 0) x (P, D, 0, s) # arima wpi, sarima(3, 2, 0, 4) noconstant vce(oim) # save_results 31 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 2, 0, 4) super(Test_seasonal_ar_seasonal_diff, cls).setup_class( 30, *args, **kwargs) class Test_seasonal_ar_diffuse(SARIMAXCoverageTest): # // SAR and diffuse initialization # arima wpi, sarima(3, 0, 0, 4) noconstant vce(oim) diffuse # save_results 32 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 0, 4) kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = 1e9 super(Test_seasonal_ar_diffuse, cls).setup_class(31, *args, **kwargs) class Test_seasonal_ar_exogenous(SARIMAXCoverageTest): # // SARX # arima wpi x, sarima(3, 0, 0, 4) noconstant vce(oim) # save_results 33 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 0, 4) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 super(Test_seasonal_ar_exogenous, cls).setup_class(32, *args, **kwargs) class Test_seasonal_ma(SARIMAXCoverageTest): # // SMA # arima wpi, sarima(0, 0, 3, 4) noconstant vce(oim) # save_results 34 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 0, 3, 4) super(Test_seasonal_ma, cls).setup_class(33, *args, **kwargs) class Test_seasonal_ma_as_polynomial(SARIMAXCoverageTest): # // SMA # arima wpi, sarima(0, 0, 3, 4) noconstant vce(oim) # save_results 34 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 0, [1, 1, 1], 4) super(Test_seasonal_ma_as_polynomial, cls).setup_class( 33, *args, **kwargs) class Test_seasonal_ma_trend_c(SARIMAXCoverageTest): # // 'c' # arima wpi c, sarima(0, 0, 3, 4) noconstant vce(oim) # save_results 35 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 0, 3, 4) kwargs['trend'] = 'c' kwargs['decimal'] = 3 super(Test_seasonal_ma_trend_c, cls).setup_class(34, *args, **kwargs) class Test_seasonal_ma_trend_ct(SARIMAXCoverageTest): # // 'ct' # arima wpi c t, sarima(0, 0, 3, 4) noconstant vce(oim) # save_results 36 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 0, 3, 4) kwargs['trend'] = 'ct' super(Test_seasonal_ma_trend_ct, cls).setup_class(35, *args, **kwargs) class Test_seasonal_ma_trend_polynomial(SARIMAXCoverageTest): # // polynomial [1, 0, 0, 1] # arima wpi c t3, sarima(0, 0, 3, 4) noconstant vce(oim) # save_results 37 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 0, 3, 4) kwargs['trend'] = [1, 0, 0, 1] kwargs['decimal'] = 3 super(Test_seasonal_ma_trend_polynomial, cls).setup_class( 36, *args, **kwargs) class Test_seasonal_ma_diff(SARIMAXCoverageTest): # // SMA and I(d): (0, d, 0) x (0, 0, Q, s) # arima wpi, arima(0, 2, 0) sarima(0, 0, 3, 4) noconstant vce(oim) # save_results 38 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 2, 0) kwargs['seasonal_order'] = (0, 0, 3, 4) super(Test_seasonal_ma_diff, cls).setup_class(37, *args, **kwargs) class Test_seasonal_ma_seasonal_diff(SARIMAXCoverageTest): # // SMA and I(D): (0, 0, 0) x (0, D, Q, s) # arima wpi, sarima(0, 2, 3, 4) noconstant vce(oim) # save_results 39 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 2, 3, 4) super(Test_seasonal_ma_seasonal_diff, cls).setup_class( 38, *args, **kwargs) class Test_seasonal_ma_diffuse(SARIMAXCoverageTest): # // SMA and diffuse initialization # arima wpi, sarima(0, 0, 3, 4) noconstant vce(oim) diffuse # save_results 40 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 0, 3, 4) kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = 1e9 super(Test_seasonal_ma_diffuse, cls).setup_class(39, *args, **kwargs) class Test_seasonal_ma_exogenous(SARIMAXCoverageTest): # // SMAX # arima wpi x, sarima(0, 0, 3, 4) noconstant vce(oim) # save_results 41 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (0, 0, 3, 4) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 super(Test_seasonal_ma_exogenous, cls).setup_class(40, *args, **kwargs) class Test_seasonal_arma(SARIMAXCoverageTest): # // SARMA: (0, 0, 0) x (P, 0, Q, s) # arima wpi, sarima(3, 0, 2, 4) noconstant vce(oim) # save_results 42 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 2, 4) super(Test_seasonal_arma, cls).setup_class(41, *args, **kwargs) class Test_seasonal_arma_trend_c(SARIMAXCoverageTest): # // 'c' # arima wpi c, sarima(3, 0, 2, 4) noconstant vce(oim) # save_results 43 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 2, 4) kwargs['trend'] = 'c' super(Test_seasonal_arma_trend_c, cls).setup_class(42, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:1] = (1 - tps[1:4].sum()) * tps[:1] class Test_seasonal_arma_trend_ct(SARIMAXCoverageTest): # // 'ct' # arima wpi c t, sarima(3, 0, 2, 4) noconstant vce(oim) # save_results 44 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 2, 4) kwargs['trend'] = 'ct' super(Test_seasonal_arma_trend_ct, cls).setup_class( 43, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] class Test_seasonal_arma_trend_polynomial(SARIMAXCoverageTest): # // polynomial [1, 0, 0, 1] # arima wpi c t3, sarima(3, 0, 2, 4) noconstant vce(oim) # save_results 45 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 2, 4) kwargs['trend'] = [1, 0, 0, 1] kwargs['decimal'] = 3 super(Test_seasonal_arma_trend_polynomial, cls).setup_class( 44, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[:2] = (1 - tps[2:5].sum()) * tps[:2] def test_results(self): self.result = self.model.filter(self.true_params) # Just make sure that no exceptions are thrown during summary self.result.summary() # Make sure no expections are thrown calculating any of the # covariance matrix types self.result.cov_params_default # Known failure due to the complex step inducing non-stationary # parameters, causing a failure in the solve_discrete_lyapunov call # self.result.cov_params_approx self.result.cov_params_oim self.result.cov_params_opg class Test_seasonal_arma_diff(SARIMAXCoverageTest): # // SARMA and I(d): (0, d, 0) x (P, 0, Q, s) # arima wpi, arima(0, 2, 0) sarima(3, 0, 2, 4) noconstant vce(oim) # save_results 46 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 2, 0) kwargs['seasonal_order'] = (3, 0, 2, 4) super(Test_seasonal_arma_diff, cls).setup_class(45, *args, **kwargs) class Test_seasonal_arma_seasonal_diff(SARIMAXCoverageTest): # // SARMA and I(D): (0, 0, 0) x (P, D, Q, s) # arima wpi, sarima(3, 2, 2, 4) noconstant vce(oim) # save_results 47 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 2, 2, 4) super(Test_seasonal_arma_seasonal_diff, cls).setup_class( 46, *args, **kwargs) class Test_seasonal_arma_diff_seasonal_diff(SARIMAXCoverageTest): # // SARMA and I(d) and I(D): (0, d, 0) x (P, D, Q, s) # arima wpi, arima(0, 2, 0) sarima(3, 2, 2, 4) noconstant vce(oim) # save_results 48 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 2, 0) kwargs['seasonal_order'] = (3, 2, 2, 4) super(Test_seasonal_arma_diff_seasonal_diff, cls).setup_class( 47, *args, **kwargs) def test_results(self): self.result = self.model.filter(self.true_params) # Just make sure that no exceptions are thrown during summary self.result.summary() # Make sure no expections are thrown calculating any of the # covariance matrix types self.result.cov_params_default # Known failure due to the complex step inducing non-stationary # parameters, causing a failure in the solve_discrete_lyapunov call # self.result.cov_params_approx self.result.cov_params_oim self.result.cov_params_opg class Test_seasonal_arma_diffuse(SARIMAXCoverageTest): # // SARMA and diffuse initialization # arima wpi, sarima(3, 0, 2, 4) noconstant vce(oim) diffuse # save_results 49 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 2, 4) kwargs['decimal'] = 3 kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = 1e9 super(Test_seasonal_arma_diffuse, cls).setup_class(48, *args, **kwargs) class Test_seasonal_arma_exogenous(SARIMAXCoverageTest): # // SARMAX # arima wpi x, sarima(3, 0, 2, 4) noconstant vce(oim) # save_results 50 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (0, 0, 0) kwargs['seasonal_order'] = (3, 0, 2, 4) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 super(Test_seasonal_arma_exogenous, cls).setup_class( 49, *args, **kwargs) class Test_sarimax_exogenous(SARIMAXCoverageTest): # // SARIMAX and exogenous # arima wpi x, arima(3, 2, 2) sarima(3, 2, 2, 4) noconstant vce(oim) # save_results 51 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 2, 2) kwargs['seasonal_order'] = (3, 2, 2, 4) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 super(Test_sarimax_exogenous, cls).setup_class(50, *args, **kwargs) def test_results_params(self): result = self.model.filter(self.true_params) assert_allclose(self.true_params[1:4], result.arparams) assert_allclose(self.true_params[4:6], result.maparams) assert_allclose(self.true_params[6:9], result.seasonalarparams) assert_allclose(self.true_params[9:11], result.seasonalmaparams) class Test_sarimax_exogenous_not_hamilton(SARIMAXCoverageTest): # // SARIMAX and exogenous # arima wpi x, arima(3, 2, 2) sarima(3, 2, 2, 4) noconstant vce(oim) # save_results 51 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 2, 2) kwargs['seasonal_order'] = (3, 2, 2, 4) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 kwargs['hamilton_representation'] = False kwargs['simple_differencing'] = False super(Test_sarimax_exogenous_not_hamilton, cls).setup_class( 50, *args, **kwargs) class Test_sarimax_exogenous_diffuse(SARIMAXCoverageTest): # // SARIMAX and exogenous diffuse # arima wpi x, arima(3, 2, 2) sarima(3, 2, 2, 4) noconstant vce(oim) # diffuse # save_results 52 @classmethod def setup_class(cls, *args, **kwargs): kwargs['order'] = (3, 2, 2) kwargs['seasonal_order'] = (3, 2, 2, 4) endog = results_sarimax.wpi1_data kwargs['exog'] = (endog - np.floor(endog))**2 kwargs['decimal'] = 2 kwargs['initialization'] = 'approximate_diffuse' kwargs['initial_variance'] = 1e9 super(Test_sarimax_exogenous_diffuse, cls).setup_class( 51, *args, **kwargs) class Test_arma_exog_trend_polynomial_missing(SARIMAXCoverageTest): # // ARMA and exogenous and trend polynomial and missing # gen wpi2 = wpi # replace wpi2 = . in 10/19 # arima wpi2 x c t3, arima(3, 0, 2) noconstant vce(oim) # save_results 53 @classmethod def setup_class(cls, *args, **kwargs): endog = np.r_[results_sarimax.wpi1_data] # Note we're using the non-missing exog data kwargs['exog'] = ((endog - np.floor(endog))**2)[1:] endog[9:19] = np.nan endog = endog[1:] - endog[:-1] endog[9] = np.nan kwargs['order'] = (3, 0, 2) kwargs['trend'] = [0, 0, 0, 1] kwargs['decimal'] = 1 super(Test_arma_exog_trend_polynomial_missing, cls).setup_class( 52, endog=endog, *args, **kwargs) # Modify true params to convert from mean to intercept form tps = cls.true_params cls.true_params[0] = (1 - tps[2:5].sum()) * tps[0] # Miscellaneous coverage tests def test_simple_time_varying(): # This tests time-varying parameters regression when in fact the parameters # are not time-varying, and in fact the regression fit is perfect endog = np.arange(100)*1.0 exog = 2*endog mod = sarimax.SARIMAX( endog, exog=exog, order=(0, 0, 0), time_varying_regression=True, mle_regression=False) # Ignore the warning that MLE does not converge with warnings.catch_warnings(): warnings.simplefilter("ignore") res = mod.fit(disp=-1) # Test that the estimated variances of the errors are essentially zero # 5 digits necessary to accommodate 32-bit numpy/scipy with OpenBLAS 0.2.18 assert_almost_equal(res.params, [0, 0], 5) # Test that the time-varying coefficients are all 0.5 (except the first # one) assert_almost_equal(res.filter_results.filtered_state[0][1:], [0.5]*99, 9) def test_invalid_time_varying(): assert_raises( ValueError, sarimax.SARIMAX, endog=[1, 2, 3], mle_regression=True, time_varying_regression=True) def test_manual_stationary_initialization(): endog = results_sarimax.wpi1_data # Create the first model to compare against mod1 = sarimax.SARIMAX(endog, order=(3, 0, 0)) res1 = mod1.filter([0.5, 0.2, 0.1, 1]) # Create a second model with "known" initialization mod2 = sarimax.SARIMAX(endog, order=(3, 0, 0)) mod2.ssm.initialize_known(res1.filter_results.initial_state, res1.filter_results.initial_state_cov) res2 = mod2.filter([0.5, 0.2, 0.1, 1]) # Create a third model with "known" initialization, but specified in kwargs mod3 = sarimax.SARIMAX( endog, order=(3, 0, 0), initialization='known', initial_state=res1.filter_results.initial_state, initial_state_cov=res1.filter_results.initial_state_cov) res3 = mod3.filter([0.5, 0.2, 0.1, 1]) # Create the forth model with stationary initialization specified in kwargs mod4 = sarimax.SARIMAX(endog, order=(3, 0, 0), initialization='stationary') res4 = mod4.filter([0.5, 0.2, 0.1, 1]) # Just test a couple of things to make sure the results are the same assert_almost_equal(res1.llf, res2.llf) assert_almost_equal(res1.filter_results.filtered_state, res2.filter_results.filtered_state) assert_almost_equal(res1.llf, res3.llf) assert_almost_equal(res1.filter_results.filtered_state, res3.filter_results.filtered_state) assert_almost_equal(res1.llf, res4.llf) assert_almost_equal(res1.filter_results.filtered_state, res4.filter_results.filtered_state) def test_manual_approximate_diffuse_initialization(): endog = results_sarimax.wpi1_data # Create the first model to compare against mod1 = sarimax.SARIMAX(endog, order=(3, 0, 0)) mod1.ssm.initialize_approximate_diffuse(1e9) res1 = mod1.filter([0.5, 0.2, 0.1, 1]) # Create a second model with "known" initialization mod2 = sarimax.SARIMAX(endog, order=(3, 0, 0)) mod2.ssm.initialize_known(res1.filter_results.initial_state, res1.filter_results.initial_state_cov) res2 = mod2.filter([0.5, 0.2, 0.1, 1]) # Create a third model with "known" initialization, but specified in kwargs mod3 = sarimax.SARIMAX( endog, order=(3, 0, 0), initialization='known', initial_state=res1.filter_results.initial_state, initial_state_cov=res1.filter_results.initial_state_cov) res3 = mod3.filter([0.5, 0.2, 0.1, 1]) # Create the forth model with approximate diffuse initialization specified # in kwargs mod4 = sarimax.SARIMAX(endog, order=(3, 0, 0), initialization='approximate_diffuse', initial_variance=1e9) res4 = mod4.filter([0.5, 0.2, 0.1, 1]) # Just test a couple of things to make sure the results are the same assert_almost_equal(res1.llf, res2.llf) assert_almost_equal(res1.filter_results.filtered_state, res2.filter_results.filtered_state) assert_almost_equal(res1.llf, res3.llf) assert_almost_equal(res1.filter_results.filtered_state, res3.filter_results.filtered_state) assert_almost_equal(res1.llf, res4.llf) assert_almost_equal(res1.filter_results.filtered_state, res4.filter_results.filtered_state) def test_results(): endog = results_sarimax.wpi1_data mod = sarimax.SARIMAX(endog, order=(1, 0, 1)) res = mod.filter([0.5, -0.5, 1], cov_type='oim') assert_almost_equal(res.arroots, 2.) assert_almost_equal(res.maroots, 2.) assert_almost_equal(res.arfreq, np.arctan2(0, 2) / (2*np.pi)) assert_almost_equal(res.mafreq, np.arctan2(0, 2) / (2*np.pi)) assert_almost_equal(res.arparams, [0.5]) assert_almost_equal(res.maparams, [-0.5]) def test_misc_exog(): # Tests for missing data nobs = 20 k_endog = 1 np.random.seed(1208) endog = np.random.normal(size=(nobs, k_endog)) endog[:4, 0] = np.nan exog1 = np.random.normal(size=(nobs, 1)) exog2 = np.random.normal(size=(nobs, 2)) index = pd.date_range('1970-01-01', freq='QS', periods=nobs) endog_pd = pd.DataFrame(endog, index=index) exog1_pd = pd.Series(exog1.squeeze(), index=index) exog2_pd = pd.DataFrame(exog2, index=index) models = [ sarimax.SARIMAX(endog, exog=exog1, order=(1, 1, 0)), sarimax.SARIMAX(endog, exog=exog2, order=(1, 1, 0)), sarimax.SARIMAX(endog, exog=exog2, order=(1, 1, 0), simple_differencing=False), sarimax.SARIMAX(endog_pd, exog=exog1_pd, order=(1, 1, 0)), sarimax.SARIMAX(endog_pd, exog=exog2_pd, order=(1, 1, 0)), sarimax.SARIMAX(endog_pd, exog=exog2_pd, order=(1, 1, 0), simple_differencing=False), ] for mod in models: # Smoke tests mod.start_params res = mod.fit(disp=False) res.summary() res.predict() res.predict(dynamic=True) res.get_prediction() oos_exog = np.random.normal(size=(1, mod.k_exog)) res.forecast(steps=1, exog=oos_exog) res.get_forecast(steps=1, exog=oos_exog) # Smoke tests for invalid exog oos_exog = np.random.normal(size=(2, mod.k_exog)) assert_raises(ValueError, res.forecast, steps=1, exog=oos_exog) oos_exog = np.random.normal(size=(1, mod.k_exog + 1)) assert_raises(ValueError, res.forecast, steps=1, exog=oos_exog) # Test invalid model specifications assert_raises(ValueError, sarimax.SARIMAX, endog, exog=np.zeros((10, 4)), order=(1, 1, 0)) @pytest.mark.smoke def test_datasets(): # Test that some unusual types of datasets work np.random.seed(232849) endog = np.random.binomial(1, 0.5, size=100) exog = np.random.binomial(1, 0.5, size=100) mod = sarimax.SARIMAX(endog, exog=exog, order=(1, 0, 0)) mod.fit(disp=-1) def test_predict_custom_index(): np.random.seed(328423) endog = pd.DataFrame(np.random.normal(size=50)) mod = sarimax.SARIMAX(endog, order=(1, 0, 0)) res = mod.smooth(mod.start_params) out = res.predict(start=1, end=1, index=['a']) assert_equal(out.index.equals(
pd.Index(['a'])
pandas.Index