prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- # Copyright (c) 2016-2022 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import pytest import gc import copy import numpy as np import pandas as pd try: import geopandas as gpd import shapely.geometry GEOPANDAS_INSTALLED = True except ImportError: GEOPANDAS_INSTALLED = False from pandapower.auxiliary import get_indices import pandapower as pp import pandapower.networks import pandapower.control import pandapower.timeseries class MemoryLeakDemo: """ Dummy class to demonstrate memory leaks """ def __init__(self, net): self.net = net # it is interesting, that if "self" is just an attribute of net, there are no problems # if "self" is saved in a DataFrame, it causes a memory leak net['memory_leak_demo'] = pd.DataFrame(data=[self], columns=['object']) class MemoryLeakDemoDF: """ Dummy class to demonstrate memory leaks """ def __init__(self, df): self.df = df # if "self" is saved in a DataFrame, it causes a memory leak df.loc[0, 'object'] = self class MemoryLeakDemoDict: """ Dummy class to demonstrate memory leaks """ def __init__(self, d): self.d = d d['object'] = self def test_get_indices(): a = [i + 100 for i in range(10)] lookup = {idx: pos for pos, idx in enumerate(a)} lookup["before_fuse"] = a # First without fused buses no magic here # after fuse result = get_indices([102, 107], lookup, fused_indices=True) assert np.array_equal(result, [2, 7]) # before fuse result = get_indices([2, 7], lookup, fused_indices=False) assert np.array_equal(result, [102, 107]) # Same setup EXCEPT we have fused buses now (bus 102 and 107 are fused) lookup[107] = lookup[102] # after fuse result = get_indices([102, 107], lookup, fused_indices=True) assert np.array_equal(result, [2, 2]) # before fuse result = get_indices([2, 7], lookup, fused_indices=False) assert np.array_equal(result, [102, 107]) def test_net_deepcopy(): net = pp.networks.example_simple() net.line_geodata.loc[0, 'coords'] = [[0, 1], [1, 2]] net.bus_geodata.loc[0, ['x', 'y']] = 0, 1 pp.control.ContinuousTapControl(net, tid=0, vm_set_pu=1) ds = pp.timeseries.DFData(pd.DataFrame(data=[[0, 1, 2], [3, 4, 5]])) pp.control.ConstControl(net, element='load', variable='p_mw', element_index=[0], profile_name=[0], data_source=ds) net1 = copy.deepcopy(net) assert not net1.controller.object.at[1].data_source is ds assert not net1.controller.object.at[1].data_source.df is ds.df assert not net1.line_geodata.coords.at[0] is net.line_geodata.coords.at[0] if GEOPANDAS_INSTALLED: for tab in ('bus_geodata', 'line_geodata'): if tab == 'bus_geodata': geometry = net[tab].apply(lambda x: shapely.geometry.Point(x.x, x.y), axis=1) else: geometry = net[tab].coords.apply(shapely.geometry.LineString) net[tab] = gpd.GeoDataFrame(net[tab], geometry=geometry) net1 = net.deepcopy() assert isinstance(net1.line_geodata, gpd.GeoDataFrame) assert isinstance(net1.bus_geodata, gpd.GeoDataFrame) assert isinstance(net1.bus_geodata.geometry.iat[0], shapely.geometry.Point) assert isinstance(net1.line_geodata.geometry.iat[0], shapely.geometry.LineString) def test_memory_leaks(): net = pp.networks.example_simple() # first, test to check that there are no memory leaks types_dict1 = pp.toolbox.get_gc_objects_dict() num = 3 for _ in range(num): net_copy = copy.deepcopy(net) # In each net copy it has only one controller pp.control.ContinuousTapControl(net_copy, tid=0, vm_set_pu=1) gc.collect() types_dict2 = pp.toolbox.get_gc_objects_dict() assert types_dict2[pandapower.auxiliary.pandapowerNet] - types_dict1[pandapower.auxiliary.pandapowerNet] == 1 assert types_dict2[pandapower.control.ContinuousTapControl] - types_dict1.get( pandapower.control.ContinuousTapControl, 0) == 1 def test_memory_leaks_demo(): net = pp.networks.example_simple() # first, test to check that there are no memory leaks types_dict1 = pp.toolbox.get_gc_objects_dict() # now, demonstrate how a memory leak occurs # emulates the earlier behavior before the fix with weakref num = 3 for _ in range(num): net_copy = copy.deepcopy(net) MemoryLeakDemo(net_copy) # demonstrate how the garbage collector doesn't remove the objects even if called explicitly gc.collect() types_dict2 = pp.toolbox.get_gc_objects_dict() assert types_dict2[pandapower.auxiliary.pandapowerNet] - types_dict1[pandapower.auxiliary.pandapowerNet] == num assert types_dict2[MemoryLeakDemo] - types_dict1.get(MemoryLeakDemo, 0) == num def test_memory_leaks_no_copy(): types_dict0 = pp.toolbox.get_gc_objects_dict() num = 3 for _ in range(num): net = pp.create_empty_network() # In each net copy it has only one controller pp.control.ConstControl(net, 'sgen', 'p_mw', 0) gc.collect() types_dict1 = pp.toolbox.get_gc_objects_dict() assert types_dict1[pandapower.control.ConstControl] - types_dict0.get(pandapower.control.ConstControl, 0) == 1 assert types_dict1[pandapower.auxiliary.pandapowerNet] - types_dict0.get(pandapower.auxiliary.pandapowerNet, 0) <= 1 def test_memory_leak_no_copy_demo(): types_dict1 = pp.toolbox.get_gc_objects_dict() # now, demonstrate how a memory leak occurs # emulates the earlier behavior before the fix with weakref num = 3 for _ in range(num): net = pp.networks.example_simple() MemoryLeakDemo(net) # demonstrate how the garbage collector doesn't remove the objects even if called explicitly gc.collect() types_dict2 = pp.toolbox.get_gc_objects_dict() assert types_dict2[pandapower.auxiliary.pandapowerNet] - \ types_dict1.get(pandapower.auxiliary.pandapowerNet, 0) >= num-1 assert types_dict2[MemoryLeakDemo] - types_dict1.get(MemoryLeakDemo, 0) == num def test_memory_leak_df(): types_dict1 = pp.toolbox.get_gc_objects_dict() num = 3 for _ in range(num): df = pd.DataFrame() MemoryLeakDemoDF(df) gc.collect() types_dict2 = pp.toolbox.get_gc_objects_dict() assert types_dict2[MemoryLeakDemoDF] - types_dict1.get(MemoryLeakDemoDF, 0) == num def test_memory_leak_dict(): types_dict1 = pp.toolbox.get_gc_objects_dict() num = 3 for _ in range(num): d = dict() MemoryLeakDemoDict(d) gc.collect() types_dict2 = pp.toolbox.get_gc_objects_dict() assert types_dict2[MemoryLeakDemoDict] - types_dict1.get(MemoryLeakDemoDict, 0) <= 1 def test_create_trafo_characteristics(): net = pp.networks.example_multivoltage() # test 2 modes, multiple index and single index, for 2w trafo pp.control.create_trafo_characteristics(net, "trafo", [1], 'vk_percent', [[-2,-1,0,1,2]], [[2,3,4,5,6]]) assert "characteristic" in net assert "tap_dependent_impedance" in net.trafo.columns assert net.trafo.tap_dependent_impedance.dtype == np.bool_ assert net.trafo.tap_dependent_impedance.at[1] assert not net.trafo.tap_dependent_impedance.at[0] assert "vk_percent_characteristic" in net.trafo.columns assert net.trafo.at[1, 'vk_percent_characteristic'] == 0 assert pd.isnull(net.trafo.at[0, 'vk_percent_characteristic']) assert net.trafo.vk_percent_characteristic.dtype == pd.Int64Dtype() assert "vkr_percent_characteristic" not in net.trafo.columns pp.control.create_trafo_characteristics(net, "trafo", 1, 'vkr_percent', [-2,-1,0,1,2], [1.323,1.324,1.325,1.326,1.327]) assert len(net.characteristic) == 2 assert "vkr_percent_characteristic" in net.trafo.columns assert net.trafo.at[1, 'vkr_percent_characteristic'] == 1 assert pd.isnull(net.trafo.at[0, 'vkr_percent_characteristic']) assert net.trafo.vkr_percent_characteristic.dtype ==
pd.Int64Dtype()
pandas.Int64Dtype
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Country data of B.1.1.7 occurrence. Function: get_country_data(). @author: @hk_nien """ import re from pathlib import Path import pandas as pd import datetime import numpy as np def _ywd2date(ywd): """Convert 'yyyy-Www-d' string to date (12:00 on that day).""" twelvehours =
pd.Timedelta('12 h')
pandas.Timedelta
""" 2021.05 Redesign _______________________________________________________________________________________________________________________ Original colloidspy design was just a series of functions that were not tied together in any meaningful way. These functions each had their own error handling and type checking to make sure it would run smoothly, however they were not very structured. This version redesigns the architecture to an object-oriented style. - Adam """ import os from pathlib import Path import numpy as np import pandas as pd import cv2 import skimage.io as io import skimage.filters as filters from skimage.util import img_as_ubyte from skimage.feature import peak_local_max from skimage.segmentation import watershed from scipy import ndimage, stats import matplotlib.pyplot as plt from matplotlib.widgets import RectangleSelector # %matplotlib qt from tqdm import tqdm def load(path, conserve_memory=True): stack = io.ImageCollection(path, conserve_memory=conserve_memory) if len(np.shape(stack)) == 4: from skimage.color import rgb2gray if np.shape(stack)[-1] == 4: from skimage.color import rgba2rgb files = stack.files stack = [rgb2gray(rgba2rgb(stack[i])) for i in range(len(stack))] else: files = stack.files stack = [rgb2gray(stack[i]) for i in range(len(stack))] return img_as_ubyte(stack), files else: return img_as_ubyte(stack), stack.files def view_particles(img, particles, min_area=0, fill=False, weight=0): if 'bool' in str(type(img[0][0])): clusters = cv2.cvtColor(np.zeros(img.shape, np.uint8), cv2.COLOR_GRAY2RGB) else: clusters = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) for particle in np.unique(particles): # if the label is zero, we are examining the 'background', so ignore it if particle == 0: continue # otherwise, allocate memory for the label region and draw it on the mask mask = np.zeros(img.shape, np.uint8) mask[particles == particle] = 255 # detect contours in the mask and grab the largest one try: cnts, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) except ValueError: ct_im, cnts, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if cv2.contourArea(cnts[0]) < min_area: continue if fill: cv2.drawContours(clusters, cnts, 0, (255, 255, 255), -1) cv2.drawContours(clusters, cnts, 0, (255, 0, 0), weight) else: cv2.drawContours(clusters, cnts, 0, (255, 0, 0), weight) return clusters class CspyStack(np.ndarray): """ Class to hold raw and process images and their respective particle data. Attributes: cropped - image ROI's, set with add_cropped() binary_otsu - ROI's binarized with otsu threshold, set with add_otsu() binary_loc - ROI's binarized with local threshold, set with add_local_threshold() binary_hyst - ROI's binarized with hysteresis threshold, set with add_hysteresis_threshold() cleaned - Cleaned binary ROI's, set with add_cleaned(BinaryStack) where BinaryStack is the set of binary images chosen earlier with otsu, local, or hysteresis threshold methods particles - ROI where the pixels of all particles are assigned a unique integer labeled by particle particle_data - pandas dataframes of particle data in each image crop_coords - (x,y) coordinates of image ROI """ def __new__(cls, input_array, filenames=None, cropped=None, crop_coords=None, binary_otsu=None, binary_loc=None, binary_hyst=None, cleaned=None, particles=None, particle_data=None): obj = np.asarray(input_array).view(cls) obj.filenames = filenames obj.cropped = cropped obj.crop_coords = crop_coords obj.binary_otsu = binary_otsu obj.binary_loc = binary_loc obj.binary_hyst = binary_hyst obj.cleaned = cleaned obj.particles = particles obj.particle_data = particle_data return obj def __array_finalize__(self, obj): if obj is None: return self.filenames = getattr(obj, 'filenames', None) self.cropped = getattr(obj, 'cropped', None) self.crop_coords = getattr(obj, 'crop_coords', None) self.binary_otsu = getattr(obj, 'binary_otsu', None) self.binary_loc = getattr(obj, 'binary_loc', None) self.binary_hyst = getattr(obj, 'binary_hyst', None) self.cleaned = getattr(obj, 'cleaned', None) self.particles = getattr(obj, 'particles', None) self.particle_data = getattr(obj, 'particle_data', None) def add_cropped(self, cropall=True): """ Interactictive image cropper, built from matplotlib. Select ROI from top-left to bottom-right with mouse, press any key to accept selection except q and r Sets CspyStack.cropped attribute :param cropall: True - Same ROI is applied to all images in stack. False - crop all images individually :return: nothing """ def line_select_callback(eclick, erelease): x1, y1 = eclick.xdata, eclick.ydata x2, y2 = erelease.xdata, erelease.ydata while erelease is None: pass print("(%3.2f, %3.2f) --> (%3.2f, %3.2f)" % (x1, y1, x2, y2)) print(" The button you used were: %s %s" % (eclick.button, erelease.button)) self.crop_coords.append(((int(x1), int(y1)), (int(x2), int(y2)))) def toggle_selector(event): print(' Key pressed.') if event.key in ['Q', 'q'] and toggle_selector.RS.active: print(' RectangleSelector deactivated.') toggle_selector.RS.set_active(False) if event.key in ['A', 'a'] and not toggle_selector.RS.active: print(' RectangleSelector activated.') toggle_selector.RS.set_active(True) def select_roi(img): fig, current_ax = plt.subplots() plt.title("Select ROI, press any key to continue.") plt.imshow(img, cmap='gray') # show the first image in the stack toggle_selector.RS = RectangleSelector(current_ax, line_select_callback, drawtype='box', useblit=True, button=[1, 3], # don't use middle button minspanx=5, minspany=5, spancoords='pixels', interactive=True) plt.connect('key_press_event', toggle_selector) plt.show() # # some IDE's (pycharm, jupyter) move on to plt.close(fig) instead of waiting for the callback to finish # # if that is the case, uncomment the next three lines keyboardClick = False while not keyboardClick: keyboardClick = plt.waitforbuttonpress() plt.close(fig) self.crop_coords = [] if len(self.shape) == 2: img = self select_roi(img) # Crop all images in the stack # Numpy's axis convention is (y,x) or (row,col) tpleft = [self.crop_coords[0][0][1], self.crop_coords[0][0][0]] btmright = [self.crop_coords[0][1][1], self.crop_coords[0][1][0]] self.cropped = CspyStack(self[tpleft[0]:btmright[0], tpleft[1]:btmright[1]]) elif len(self.shape) == 3: if cropall: img = self[0] select_roi(img) tpleft = [self.crop_coords[0][0][1], self.crop_coords[0][0][0]] btmright = [self.crop_coords[0][1][1], self.crop_coords[0][1][0]] self.cropped = CspyStack([self[i][tpleft[0]:btmright[0], tpleft[1]:btmright[1]] for i in range(len(self))]) else: cropped_imgs = [] for i in range(len(self)): img = self[i] select_roi(img) tpleft = [self.crop_coords[i][0][1], self.crop_coords[i][0][0]] btmright = [self.crop_coords[i][1][1], self.crop_coords[i][1][0]] cropped_imgs.append(self[i][tpleft[0]:btmright[0], tpleft[1]:btmright[1]]) self.cropped = CspyStack(cropped_imgs) else: raise Exception("TypeError in add_cropped - is the stack greyscale?") def add_otsu(self, nbins=256): """ Adds attribute binary_otsu from CspyStack.cropped if available. Otherwise, uses raw stack. :param nbins: number of bins in image histogram :return: nothing """ if self.cropped is None: if len(self.shape) == 3: binary = [] for i in tqdm(range(len(self)), desc='Applying otsu threshold to CspyStack.binary_otsu', leave=True): otsu = filters.threshold_otsu(self[i], nbins=nbins) binary.append(img_as_ubyte(self[i] > otsu)) self.binary_otsu = CspyStack(binary) elif len(self.shape) == 2: print('Applying otsu threshold to CspyStack.binary_otsu') otsu = filters.threshold_otsu(self, nbins=nbins) self.binary_otsu = CspyStack(img_as_ubyte(self > otsu)) else: raise Exception else: if len(self.shape) == 3: binary = [] for i in tqdm(range(len(self)), desc='Applying otsu threshold to CspyStack.binary_otsu', leave=True): otsu = filters.threshold_otsu(self.cropped[i], nbins=nbins) binary.append(img_as_ubyte(self.cropped[i] > otsu)) self.binary_otsu = CspyStack(binary) elif len(self.shape) == 2: print('Applying otsu threshold to CspyStack.binary_otsu') otsu = filters.threshold_otsu(self.cropped, nbins=nbins) self.binary_otsu = CspyStack(img_as_ubyte(self.cropped > otsu)) else: raise Exception('TypeError: shape of images not correct. Is stack greyscale?') def add_local_threshold(self, block_size=71, offset=5, cutoff=0, **kwargs): """ Adds attribute binary_loc from CspyStack.cropped if available. Otherwise, uses raw stack. See https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.threshold_local :param block_size: Odd size of pixel neighborhood which is used to calculate the threshold value :param offset: Constant subtracted from weighted mean of neighborhood to calculate the local threshold value. :param cutoff: lowest pixel value in gaussian image to be considered in threshold. Useful if large black areas are showing up as white areas in the thresholded image :param kwargs: other kwargs from skimage threshold_local() function :return: """ if self.cropped is None: if len(self.shape) == 3: binary = [] for i in tqdm(range(len(self)), desc='Applying local threshold to CspyStack.binary_loc', leave=True): local_thresh = filters.threshold_local(self[i], block_size=block_size, offset=offset, **kwargs) low_val_flags = local_thresh < cutoff local_thresh[low_val_flags] = 255 binary.append(img_as_ubyte(self[i] > local_thresh)) self.binary_loc = CspyStack(binary) elif len(self.shape) == 2: print('Applying local threshold to CspyStack.binary_loc') local_thresh = filters.threshold_local(self, block_size=block_size, offset=offset, **kwargs) low_val_flags = local_thresh < cutoff local_thresh[low_val_flags] = 255 self.binary_loc = CspyStack(img_as_ubyte(self > local_thresh)) else: raise Exception('TypeError: shape of images not correct. Is stack greyscale?') else: if len(self.shape) == 3: binary = [] for i in tqdm(range(len(self)), desc='Applying local threshold to CspyStack.binary_loc', leave=True): local_thresh = filters.threshold_local(self.cropped[i], block_size=block_size, offset=offset, **kwargs) low_val_flags = local_thresh < cutoff local_thresh[low_val_flags] = 255 binary.append(img_as_ubyte(self.cropped[i] > local_thresh)) self.binary_loc = CspyStack(binary) elif len(self.shape) == 2: print('Applying local threshold to CspyStack.binary_loc') local_thresh = filters.threshold_local(self.cropped, block_size=block_size, offset=offset, **kwargs) low_val_flags = local_thresh < cutoff local_thresh[low_val_flags] = 255 self.binary_loc = CspyStack(img_as_ubyte(self.cropped > local_thresh)) else: raise Exception('TypeError: shape of images not correct. Is stack greyscale?') def add_hysteresis_threshold(self, low=20, high=150): """ Adds attribute binary_hyst from CspyStack.cropped if available, otherwise uses raw stack. See https://scikit-image.org/docs/dev/auto_examples/filters/plot_hysteresis.html Pixels above the high theshold are considered to be a particle, pixels between low and high values are only considered part of a particle if they touch another particle that was designated as a particle. :param low: lowest pixel value to be considered as part of a potential particle :param high: pixel values higher than this threshold area always considered a particle :return: nothing """ if self.cropped is None: if len(self.shape) == 3: binary = [] for i in tqdm(range(len(self)), desc='Applying hysteresis threshold to CspyStack.binary_hyst', leave=True): binary.append(filters.apply_hysteresis_threshold(self[i], low=low, high=high)) self.binary_hyst = CspyStack(binary) elif len(self.shape) == 2: print('Applying hysteresis threshold to CspyStack.binary_hyst') self.binary_hyst = CspyStack(filters.apply_hysteresis_threshold(self, low=low, high=high)) else: raise Exception('TypeError: shape of images not correct. Is stack greyscale?') else: if len(self.shape) == 3: binary = [] for i in tqdm(range(len(self)), desc='Applying hysteresis threshold to CspyStack.binary_hyst', leave=True): binary.append(filters.apply_hysteresis_threshold(self.cropped[i], low=low, high=high)) self.binary_hyst = CspyStack(binary) elif len(self.shape) == 2: print('Applying hysteresis threshold to CspyStack.binary_hyst') self.binary_hyst = CspyStack(filters.apply_hysteresis_threshold(self.cropped, low=low, high=high)) else: raise Exception('TypeError: shape of images not correct. Is stack greyscale?') def add_cleaned(self, bin_stack): """ Adds attribute CspyStack.cleaned Removes small roughly single-pixel imperfections leaving only the major structuring elements. Uses a binary opening and closing algorithm :param bin_stack: binary images to clean. Use one of the three binary image attributes (otsu, loc, hyst) :return: """ if len(self.shape) == 3: self.cleaned = [] for i in tqdm(range(len(self)), desc='Adding cleaned to CspyStack.cleaned', leave=True): self.cleaned.append(img_as_ubyte(ndimage.binary_closing(ndimage.binary_opening(bin_stack[i])))) elif len(self.shape) == 2: print('Adding cleaned to CspyStack.cleaned') self.cleaned = img_as_ubyte(ndimage.binary_closing(ndimage.binary_opening(bin_stack))) else: raise Exception def find_particles(self, bin_stack, min_distance=7): """ Adds attribute CspyStack.particles Applies a watershed algorithm to the binary stack (preferably cleaned) to identify distinct particles. Pixels are assigned an integer, unique by particle, where 0 is the background :param bin_stack: stack of binary images with particles to detect :param min_distance: minimum distance in pixels between particle centers :return: nothing """ if type(bin_stack) == list or len(bin_stack.shape) == 3: particles = [] for i in tqdm(range(len(bin_stack)), desc='Adding detected particles to CspyStack.particles', leave=True): distance = ndimage.distance_transform_edt(bin_stack[i]) local_max = peak_local_max(distance, min_distance=min_distance, labels=bin_stack[i]) local_max_mask = np.zeros(distance.shape, dtype=bool) local_max_mask[tuple(local_max.T)] = True markers = ndimage.label(local_max_mask)[0] labels = watershed(-distance, markers, mask=bin_stack[i]) particles.append(labels) self.particles = CspyStack(particles) elif len(bin_stack.shape) == 2: print('Adding detected particles to CspyStack.particles') distance = ndimage.distance_transform_edt(bin_stack) local_max = peak_local_max(distance, min_distance=min_distance, labels=bin_stack) local_max_mask = np.zeros(distance.shape, dtype=bool) local_max_mask[tuple(local_max.T)] = True markers = ndimage.label(local_max_mask)[0] labels = watershed(-distance, markers, mask=bin_stack) self.particles = CspyStack(labels) else: raise Exception def analyze_particles(self, particles, min_area=0): """ Adds attribute CspyStack.particle_data :param particles: stack of watershed images where particles are labeled by a unique integer :param min_area: minimum particle area to be considered a particle :return: list of pandas dataframes of particle data, or single dataframe if only one image was passed """ def single(particles, min_area): # clusters = np.zeros(image.shape, np.uint8) clusters = np.zeros(particles.shape, np.uint8) cl_area = [] cl_perimeter = [] cl_center = [] cl_circularity = [] defect_len_avg = [] defect_len_std = [] defect_len_min = [] defect_len_max = [] for particle in np.unique(particles): if particle == 0: continue # mask = np.zeros(image.shape, np.uint8) mask = np.zeros(particles.shape, np.uint8) mask[particles == particle] = 255 try: cnts, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) except ValueError: # older version of opencv returns three objects instead of two ct_im, cnts, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if cv2.contourArea(cnts[0]) < min_area: continue cv2.drawContours(clusters, cnts, 0, 255, -1) cl_area.append(cv2.contourArea(cnts[0])) cl_perimeter.append(cv2.arcLength(cnts[0], 1)) M = cv2.moments(cnts[0], 0) if cl_area[-1] != 0: cl_center.append(tuple([int(M['m10'] / M['m00']), int(M['m01'] / M['m00'])])) cl_circularity.append(4 * np.pi * (cv2.contourArea(cnts[0])) / (cv2.arcLength(cnts[0], 1) ** 2)) else: cl_center.append("None") cl_circularity.append("None") # find the convex hull of the particle, and extract the defects cnt = cnts[0] hull = cv2.convexHull(cnt, returnPoints=False) # dhull = cv2.convexHull(cnt, returnPoints=True) defects = cv2.convexityDefects(cnt, hull) pt_defects = [] if defects is not None: for j in range(defects.shape[0]): s, e, f, d = defects[j, 0] # start = tuple(cnt[s][0]) # end = tuple(cnt[e][0]) far = tuple(cnt[f][0]) tfar = tuple(map(int, far)) # current(?) v of opencv-python doesnt play well with np.int32 # store the length from the defects to the hull pt_defects.append(cv2.pointPolygonTest(cnt, tfar, True)) # store the mean and stdev of the defect length # if there are no defects, just store 0 if len(pt_defects) == 0: defect_len_avg.append(0) defect_len_std.append(0) defect_len_min.append(0) defect_len_max.append(0) else: defect_len_avg.append(np.mean(pt_defects)) defect_len_std.append(np.std(pt_defects)) defect_len_min.append(min(pt_defects)) defect_len_max.append(max(pt_defects)) cluster_data = {'Area': cl_area, 'Perimeter': cl_perimeter, 'Center': cl_center, 'Circularity': cl_circularity, 'Average Defect Length': defect_len_avg, 'Stdev of Defect Length': defect_len_std, 'Min Defect Length': defect_len_min, 'Max Defect Length': defect_len_max } cluster_df =
pd.DataFrame(cluster_data)
pandas.DataFrame
import pandas as pd from selenium import webdriver from bs4 import BeautifulSoup as bs from selenium.webdriver.common.keys import Keys import time import sys """--------- Construction is Running ------------""" """--------- Developed by <NAME> ------------""" # start find Chrome webdriver path location class AutoBrowser: # end find Chrome webdriver path location def __init__(self,driver): self.driver=driver self.driver.get("https://www.linkedin.com") # start open an url link self.driver.implicitly_wait(10)# start waitting until all data is loaded properlly self.browser_settings() self.collect_login_data() # end of initialization panel def browser_settings(self): # start setup browser settings options= webdriver.ChromeOptions() options.add_argument('headless') options.add_argument('window-size=500*320') # end setup browser settings def collect_login_data(self): # start login to the linkedin # start collecting login information self.email = self.driver.find_element_by_css_selector('input[class=login-email]') self.password = self.driver.find_element_by_css_selector('input[class=login-password]') self.login = self.driver.find_element_by_css_selector('input[type="submit"]') # end collecting login information self.login_proccess() def login_proccess(self): # set user name and password then click login self.email.send_keys('linkedin user email here') self.password.send_keys('<PASSWORD>') self.login.click() # end login proccess into the linkedin # start waitting until all data is loaded properlly self.driver.implicitly_wait(10) #self.goto_nav() self.myNetwork() def myNetwork(self): #try: self.driver.get("https://www.linkedin.com/sales/search/people") self.driver.implicitly_wait(10) self.driver.find_element_by_css_selector("div[data-test-filter-code='GE']").click() self.driver.implicitly_wait(15) time.sleep(15) self.myNetwork_filter() def myNetwork_filter(self): current_url_=self.driver.current_url names=[] urls=[] titles=[] linkedin_profiles=[] counter=1 while True: # while still page running pr_link=[] Geography=self.driver.page_source for profile_link in bs(Geography,"html.parser").find_all("a",{"class":'ember-view'}): if ("%3D%3D"in profile_link["href"]) and ("NAME_SEARCH" in profile_link["href"]): p_link = ("https://www.linkedin.com"+profile_link['href']) if (p_link in pr_link) or ("similar-leads" in p_link): pass else: pr_link.append("https://www.linkedin.com"+profile_link['href']) for link_ in pr_link: self.driver.get(link_) self.driver.implicitly_wait(15) time.sleep(5) # via this goto profiles of every persons # do somthing in users profiles or get data from users profile try: name=bs(self.driver.page_source,"lxml").find("span",{"class":"profile-topcard-person-entity__name"}).text names.append(name) except: print("name problem") names.append("Not Found") try: title_with_company=bs(self.driver.page_source,"lxml").find("dd",{"class":"mt2"}).text titles.append(title_with_company) except: titles.append("not found") try: website=bs(self.driver.page_source,"lxml").find("dd",{"class":"mv2 nowrap-ellipsis mv2 Sans-14px-black-60%"}) urls.append(website.text) except: urls.append("not found") try: linkedin_pro = bs(self.driver.page_source,"lxml").find("a",{"class":"view-linkedin profile-topcard-actions__overflow-item link-without-visited-state Sans-14px-black-90%-bold block p2"}) linkedin_profiles.append(linkedin_pro) except: linkedin_profiles.append("not found") print("-----------------------------") try: self.driver.get(current_url_) self.driver.implicitly_wait(15) self.driver.find_element_by_css_selector("[class=search-results__pagination-next-button]").click() time.sleep(10) current_url_ = self.driver.current_url print("goto next page") except: data_list={"names":names,"titles":titles,"urls":urls,"linkedin profiles":linkedin_profiles} writer = pd.ExcelWriter('linkedin_leads.xlsx', engine='xlsxwriter') dataframe= pd.DataFrame(data_list) self.driver.quit() sys.exit() pr_link=[] if counter==10: break counter+=1 data_list={"names":names,"titles":titles,"urls":urls,"linkedin profiles":linkedin_profiles} writer =
pd.ExcelWriter('linkedin_leads.xlsx', engine='xlsxwriter')
pandas.ExcelWriter
from database.database import db from database.tables.price import StockPrice from tqdm import tqdm import datetime as dt import numpy as np from numpy.linalg import inv import pandas as pd import scipy import pickle from pandas_datareader import data class Black_Litterman(object): def __init__(self, selected_tickers): self.selected_tickers = selected_tickers def read_stock_file(self, tick): # Use the Flask-SQLAlchemy to query our data from database stock_data = StockPrice.find_all_by_query(comp=tick) date_ = [] high = [] low = [] open_ = [] adj_close = [] vol = [] # Store/Split the data into train & test dataframe for row in stock_data: date = dt.datetime.strptime(str(row.date), '%Y-%m-%d') date_.append(date) high.append(row.high) low.append(row.low) open_.append(row.open_) adj_close.append(row.adj_close) vol.append(row.vol) df = pd.DataFrame({ 'date': date_, 'high': high, 'low': low, 'open': open_, 'adj_close': adj_close, 'vol': vol }) df.set_index('date', inplace=True) # split dataframe into train & test part train_df, test_df = df['2012-01-01': '2016-12-31'], df['2017-01-01': '2020-06-30'] self.test_df = test_df return train_df, test_df def prepare_input(self): # 1. Collect user selected tickers' stock price all_data_df = pd.DataFrame({}) time_step = 180 for ticker in self.selected_tickers: train_df, test_df = self.read_stock_file(ticker) # axis=0 -> combine vertically dataset_total = pd.concat([train_df, test_df], axis=0) inputs = dataset_total[len(dataset_total)-len(test_df)-time_step:]['adj_close'] all_data_df[ticker] = inputs # 2. Prepare main markowitz inputs # 2-1. price_df -> price_list prices_list = [] for i in range(time_step, len(all_data_df)): price_t = all_data_df[i-time_step:i].T prices_list.append(price_t) # 2-2. get market capitalization end = dt.datetime(2016, 12, 31) market_caps = list(data.get_quote_yahoo(self.selected_tickers, end)['marketCap']) return prices_list, market_caps def assets_historical_returns_covariances(self, prices_list): all_exp_returns = [] all_covars = [] for prices in prices_list: prices = np.array(prices) rows, cols = prices.shape returns = np.empty([rows, cols - 1]) for r in range(rows): for c in range(cols-1): p0, p1 = prices[r, c], prices[r, c+1] returns[r, c] = (p1/p0) - 1 # calculate returns exp_returns = np.array([]) for r in range(rows): exp_returns = np.append(exp_returns, np.mean(returns[r])) # calculate covariances covars = np.cov(returns) # annualize returns, covariances exp_returns = (1 + exp_returns) ** (365.25) - 1 covars = covars * (365.25) all_exp_returns.append(exp_returns) all_covars.append(covars) return all_exp_returns, all_covars def portfolioMean(self, W, R): return sum(R * W) def portfolioVar(self, W, C): return np.dot(np.dot(W, C), W) def portfolioMeanVar(self, W, R, C): return self.portfolioMean(W, R), self.portfolioVar(W, C) def solve_weights(self, R, C, rf): def fitness(W, R, C, rf): mean, var = self.portfolioMeanVar(W, R, C) sharp_ratio = (mean - rf) / np.sqrt(var) # sharp ratio return 1 / sharp_ratio n = len(R) W = np.ones([n]) / n b_ = [(0., 1.) for i in range(n)] c_ = ({'type': 'eq', 'fun': lambda W: sum(W) - 1.}) optimized = scipy.optimize.minimize(fitness, W, (R, C, rf), method='SLSQP', constraints=c_, bounds=b_) return optimized.x def calculate_reverse_pi(self, W, all_R, all_C): reverse_pi = [] rf = 0.015 for i in range(len(all_R)): mean, var = self.portfolioMeanVar(W, all_R[i], all_C[i]) lmb = (mean - rf) / var # Calculate risk aversion temp = np.dot(lmb, all_C[i]) Pi = np.dot(temp, W) reverse_pi.append(Pi) return reverse_pi def get_all_weights(self): prices_list, W = self.prepare_input() # W: market capitalization all_R, all_C = self.assets_historical_returns_covariances(prices_list) BL_reverse_pi = self.calculate_reverse_pi(W, all_R, all_C) with open('./model/predict_dict_1.pkl', 'rb') as f: all_predicted_Q_1 = pickle.load(f) with open('./model/predict_dict_2.pkl', 'rb') as f: all_predicted_Q_2 = pickle.load(f) with open('./model/predict_dict_3.pkl', 'rb') as f: all_predicted_Q_3 = pickle.load(f) # get predicted return all_predicted_return = pd.DataFrame({}) for comp in self.selected_tickers: if comp in all_predicted_Q_1.keys(): comp_return = [] comp_predicted_Q = all_predicted_Q_1[comp][0] for i in range(1, len(comp_predicted_Q)): curr = comp_predicted_Q[i] prev = comp_predicted_Q[i-1] comp_return.append(np.log(curr) - np.log(prev)) all_predicted_return[comp] = comp_return elif comp in all_predicted_Q_2.keys(): comp_return = [] comp_predicted_Q = all_predicted_Q_2[comp][0] for i in range(1, len(comp_predicted_Q)): curr = comp_predicted_Q[i] prev = comp_predicted_Q[i-1] comp_return.append(np.log(curr) - np.log(prev)) all_predicted_return[comp] = comp_return else: comp_return = [] comp_predicted_Q = all_predicted_Q_3[comp][0] for i in range(1, len(comp_predicted_Q)): curr = comp_predicted_Q[i] prev = comp_predicted_Q[i-1] comp_return.append(np.log(curr) - np.log(prev)) all_predicted_return[comp] = comp_return all_Q_hat_GRU = [i.reshape(-1, 1) for i in all_predicted_return.values] BL_reverse_pi = BL_reverse_pi[1:] all_R = all_R[1:] all_C = all_C[1:] # get black-litterman weights all_weights = [] for i in tqdm(range(len(all_R))): tau = 0.025 rf = 0.015 P = np.identity(len(self.selected_tickers)) Pi = BL_reverse_pi[i] C = all_C[i] R = all_R[i] Q = all_Q_hat_GRU[i] # Calculate omega - uncertainty matrix about views omega = np.dot(np.dot(np.dot(tau, P), C), np.transpose(P)) # Calculate equilibrium excess returns with views incorporated sub_a = inv(np.dot(tau, C)) sub_b = np.dot(np.dot(np.transpose(P), inv(omega)), P) sub_c = np.dot(inv(np.dot(tau, C)), Pi).reshape(-1, 1) sub_d = np.dot(np.dot(np.transpose(P), inv(omega)), Q) Pi_adj = np.dot(inv(sub_a + sub_b), (sub_c + sub_d)).squeeze() weight = self.solve_weights(Pi_adj+rf, C, rf) all_weights.append(weight) self.weights = all_weights weights = np.clip(np.around(np.array(all_weights) * 100, 2), 0, 100) transposed_weights = weights.transpose().tolist() return transposed_weights def get_backtest_result(self): # get testing section stock price data log_return_df =
pd.DataFrame({})
pandas.DataFrame
import pytest from mapping import mappings from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np from pandas.tseries.offsets import BDay @pytest.fixture def dates(): return pd.Series( [TS('2016-10-20'), TS('2016-11-21'), TS('2016-12-20')], index=['CLX16', 'CLZ16', 'CLF17'] ) def test_not_in_roll_one_generic_static_roller(dates): dt = dates.iloc[0] contract_dates = dates.iloc[0:2] sd, ed = (dt + BDay(-8), dt + BDay(-7)) timestamps = pd.date_range(sd, ed, freq='b') cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] trans = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) midx = pd.MultiIndex.from_product([timestamps, ['CLX16']]) midx.names = ['date', 'contract'] cols = pd.Index([0], name='generic') wts_exp = pd.DataFrame([1.0, 1.0], index=midx, columns=cols) # with DatetimeIndex wts = mappings.roller(timestamps, contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) # with tuple wts = mappings.roller(tuple(timestamps), contract_dates, mappings.static_transition, transition=trans) assert_frame_equal(wts, wts_exp) def test_not_in_roll_one_generic_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_non_numeric_column_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([["CL1"], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [("CL1", 'CLX16', 1.0, ts)] assert wts == wts_exp def test_finished_roll_pre_expiry_static_transition(dates): contract_dates = dates.iloc[0:2] ts = dates.iloc[0] + BDay(-2) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-9, -8] transition = pd.DataFrame([[1.0, 0.0], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_filtering_front_contracts_static_transition(dates): # NOQA contract_dates = dates.iloc[0:2] ts = dates.iloc[1] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLZ16', 1.0, ts)] assert wts == wts_exp def test_roll_with_holiday(dates): contract_dates = dates.iloc[-2:] ts = pd.Timestamp("2016-11-17") cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) holidays = [np.datetime64("2016-11-18")] # the holiday moves the roll schedule up one day, since Friday is # excluded as a day wts = mappings.static_transition(ts, contract_dates, transition, holidays) wts_exp = [(0, 'CLZ16', 0.5, ts), (0, 'CLF17', 0.5, ts)] assert wts == wts_exp def test_not_in_roll_one_generic_zero_weight_back_contract_no_contract_static_transition(dates): # NOQA contract_dates = dates.iloc[0:1] ts = dates.iloc[0] + BDay(-8) cols = pd.MultiIndex.from_product([[0], ['front', 'back']]) idx = [-2, -1, 0] transition = pd.DataFrame([[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]], index=idx, columns=cols) wts = mappings.static_transition(ts, contract_dates, transition) wts_exp = [(0, 'CLX16', 1.0, ts)] assert wts == wts_exp def test_aggregate_weights(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list) idx = pd.MultiIndex.from_product([[ts], ["CLX16", "CLZ16"]], names=["date", "contract"]) cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_aggregate_weights_drop_date(): ts = pd.Timestamp("2015-01-01") wts_list = [(0, 'CLX16', 1.0, ts), (1, 'CLZ16', 1.0, ts)] wts = mappings.aggregate_weights(wts_list, drop_date=True) idx = pd.Index(["CLX16", "CLZ16"], name="contract") cols = pd.Index([0, 1], name="generic") wts_exp = pd.DataFrame([[1.0, 0], [0, 1.0]], index=idx, columns=cols) assert_frame_equal(wts, wts_exp) def test_static_bad_transitions(dates): contract_dates = dates.iloc[[0]] ts = dates.iloc[0] +
BDay(-8)
pandas.tseries.offsets.BDay
import os import sys import pandas as pd files = [] path_files = "" list_diff_ocu = [] count_two = 0 def more_events(val, file_nine, lane_dupli=False): global count_two if lane_dupli: count_occurrences = 0 for i, r in val.iterrows(): count_occurrences += (r.e - r.d) + 1 count_two += count_occurrences occurrences_found = int(open(path_files + file_nine, 'r').read() .count(val.head(1).iloc[0]['combined'])) difference = occurrences_found - count_occurrences if difference != 0: list_diff_ocu.append(val.head(1).iloc[0]['combined'] + ": " + str(difference)) else: count_occurrences = (val.iloc[0]['e'].astype(int) - val.iloc[0]['d'].astype(int)) + 1 count_two += count_occurrences occurrences_found = int(open(path_files + file_nine, 'r').read() .count(val.iloc[0]['combined'])) difference = occurrences_found - count_occurrences if difference != 0: list_diff_ocu.append(val.iloc[0]['combined'] + ": " + str(difference)) def open_files(): global path_files #path_files = "/home/geezylucas/Documentos/Python3/floorfiles/" path_files = sys.argv[1] + '\\' list_files = [f for f in os.listdir(path_files)] if len(list_files) < 2: raise ValueError( 'should be only one 9A or 2A file in the current directory') global files files = list(filter(lambda x: x.endswith("2A") or x.endswith("9A"), list_files)) def calculate(file_two, file_nine): my_data = pd.read_csv(path_files + file_two, decimal=",", skiprows=1, usecols=(4, 5, 6, 8, 9), names=["a", "b", "c", "d", "e"]) df = pd.DataFrame(my_data) indexs = df[(df['d'].astype(int) == 0) & (df['e'].astype(int) == 0)].index df.drop(index=indexs, inplace=True) df["combined"] = df["a"].astype(str) + "," \ + df["b"].astype(str) + "," + df["c"] df_occur =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal from woodwork.logical_types import ( Boolean, Categorical, Double, Integer, NaturalLanguage ) from evalml.pipelines.components import Imputer @pytest.fixture def imputer_test_data(): return pd.DataFrame({ "categorical col": pd.Series(["zero", "one", "two", "zero", "three"], dtype='category'), "int col": [0, 1, 2, 0, 3], "object col": ["b", "b", "a", "c", "d"], "float col": [0.0, 1.0, 0.0, -2.0, 5.], "bool col": [True, False, False, True, True], "categorical with nan": pd.Series([np.nan, "1", np.nan, "0", "3"], dtype='category'), "int with nan": [np.nan, 1, 0, 0, 1], "float with nan": [0.0, 1.0, np.nan, -1.0, 0.], "object with nan": ["b", "b", np.nan, "c", np.nan], "bool col with nan": pd.Series([True, np.nan, False, np.nan, True], dtype='boolean'), "all nan": [np.nan, np.nan, np.nan, np.nan, np.nan], "all nan cat": pd.Series([np.nan, np.nan, np.nan, np.nan, np.nan], dtype='category') }) def test_invalid_strategy_parameters(): with pytest.raises(ValueError, match="Valid impute strategies are"): Imputer(numeric_impute_strategy="not a valid strategy") with pytest.raises(ValueError, match="Valid categorical impute strategies are"): Imputer(categorical_impute_strategy="mean") def test_imputer_default_parameters(): imputer = Imputer() expected_parameters = { 'categorical_impute_strategy': 'most_frequent', 'numeric_impute_strategy': 'mean', 'categorical_fill_value': None, 'numeric_fill_value': None } assert imputer.parameters == expected_parameters @pytest.mark.parametrize("categorical_impute_strategy", ["most_frequent", "constant"]) @pytest.mark.parametrize("numeric_impute_strategy", ["mean", "median", "most_frequent", "constant"]) def test_imputer_init(categorical_impute_strategy, numeric_impute_strategy): imputer = Imputer(categorical_impute_strategy=categorical_impute_strategy, numeric_impute_strategy=numeric_impute_strategy, categorical_fill_value="str_fill_value", numeric_fill_value=-1) expected_parameters = { 'categorical_impute_strategy': categorical_impute_strategy, 'numeric_impute_strategy': numeric_impute_strategy, 'categorical_fill_value': 'str_fill_value', 'numeric_fill_value': -1 } expected_hyperparameters = { "categorical_impute_strategy": ["most_frequent"], "numeric_impute_strategy": ["mean", "median", "most_frequent"] } assert imputer.name == "Imputer" assert imputer.parameters == expected_parameters assert imputer.hyperparameter_ranges == expected_hyperparameters def test_numeric_only_input(imputer_test_data): X = imputer_test_data[["int col", "float col", "int with nan", "float with nan", "all nan"]] y =
pd.Series([0, 0, 1, 0, 1])
pandas.Series
# -*- coding: utf-8 -*- """ author: zengbin93 email: <EMAIL> create_dt: 2021/12/13 21:43 describe: 概念、行业、指数等股票聚类板块感应器 三个问题: 1)如何找出引领大盘的概念、行业、指数 2)板块内股票相比于板块走势,划分强中弱 3)根据指数强弱进行账户总仓位控制 """ import os import traceback import inspect from datetime import timedelta, datetime import pandas as pd from tqdm import tqdm from typing import Callable from czsc import envs from czsc.utils import WordWriter, io from czsc.data.ts_cache import TsDataCache, Freq from czsc.sensors.utils import get_index_beta, generate_signals, turn_over_rate, max_draw_down class ThsConceptsSensor: """ 输入:同花顺概念列表;同花顺概念日线行情 输出:每一个交易日的同花顺强势概念 """ def __init__(self, results_path: str, sdt: str, edt: str, dc: TsDataCache, get_signals: Callable, get_event: Callable, ths_index_type='N'): """ :param results_path: 结果保存路径 :param sdt: 开始日期 :param edt: 结束日期 :param dc: 数据缓存对象 :param get_signals: 信号获取函数 :param get_event: 事件定义函数 :param ths_index_type: 同花顺指数类型 N-板块指数 I-行业指数 S-同花顺特色指数 """ self.name = self.__class__.__name__ self.dc = dc self.get_signals = get_signals self.get_event = get_event self.event = get_event() self.base_freq = Freq.D.value self.freqs = [Freq.W.value, Freq.M.value] self.dc = dc self.ths_index_type = ths_index_type self.verbose = envs.get_verbose() self.cache = dict() self.results_path = results_path os.makedirs(self.results_path, exist_ok=True) self.sdt = sdt self.edt = edt self.file_docx = os.path.join(results_path, f'{self.event.name}_{self.ths_index_type}_{sdt}_{edt}.docx') writer = WordWriter(self.file_docx) if not os.path.exists(self.file_docx): writer.add_title(f"同花顺指数({self.ths_index_type})感应器报告") writer.add_page_break() writer.add_heading(f"{datetime.now().strftime('%Y-%m-%d %H:%M')} {self.event.name}", level=1) writer.add_heading("参数配置", level=2) writer.add_paragraph(f"测试方法描述:{self.event.name}") writer.add_paragraph(f"测试起止日期:{sdt} ~ {edt}") writer.add_paragraph(f"信号计算函数:\n{inspect.getsource(self.get_signals)}") writer.add_paragraph(f"事件具体描述:\n{inspect.getsource(self.get_event)}") writer.save() self.writer = writer self.file_ssd = os.path.join(results_path, f'ths_all_strong_days_{self.ths_index_type}.pkl') if os.path.exists(self.file_ssd): self.ssd, self.cache = io.read_pkl(self.file_ssd) else: self.ssd = self.get_all_strong_days() io.save_pkl([self.ssd, self.cache], self.file_ssd) self.betas = get_index_beta(dc, sdt, edt, freq='D', indices=['000001.SH', '000016.SH', '000905.SH', '000300.SH', '399001.SZ', '399006.SZ']) def get_strong_days(self, ts_code, name): """获取单个概念的强势日期 :param ts_code: 同花顺概念代码 :param name: 同花顺概念名称 :return: """ dc = self.dc event = self.event sdt = self.sdt edt = self.edt start_date = pd.to_datetime(sdt) - timedelta(days=3000) bars = dc.ths_daily(ts_code=ts_code, start_date=start_date, end_date=edt, raw_bar=True) n_bars = dc.ths_daily(ts_code=ts_code, start_date=start_date, end_date=edt, raw_bar=False) nb_dicts = {row['trade_date'].strftime("%Y%m%d"): row for row in n_bars.to_dict("records")} def __strategy(symbol): return {"symbol": symbol, "base_freq": '日线', "freqs": ['周线', '月线'], "get_signals": self.get_signals} signals = generate_signals(bars, sdt, __strategy) results = [] for s in signals: m, f = event.is_match(s) if m: res = {'ts_code': ts_code, 'name': name, 'reason': f} nb_info = nb_dicts.get(s['dt'].strftime("%Y%m%d"), None) if not nb_info: print(f"not match nb info: {nb_info}") res.update(nb_info) results.append(res) df_res =
pd.DataFrame(results)
pandas.DataFrame
__all__ = ['class_error', 'groupScatter', 'linear_spline', 'lm', 'mae', 'plotPrediction', 'plot_hist', 'r2', 'statx', 'winsorize',] import riptable as rt import numpy as np from .rt_enum import TypeRegister from .rt_fastarray import FastArray from .rt_numpy import zeros # extra classes import pandas as pd from bokeh.plotting import output_notebook, figure, show from bokeh.models import Label #TODO: Organize the functions in here better #TODO: Add documentation #TODO: Replace pandas dependence with display util def statx(X): if not isinstance(X, np.ndarray): X = np.array(X) pVals = [0.1, 1, 10, 25, 50, 75, 90, 99, 99.9] pValNames = ['min', '0.1%', '1%', '10%', '25%', '50%', '75%', '90%','99%','99.9%' , 'max' , 'Mean', 'StdDev', 'Count', 'NaN_Count'] filt = np.isfinite(X) X_sub = X[filt] vals = np.percentile(X_sub,pVals) vals =np.insert(vals,0,np.min(X_sub)) vals =np.append(vals,np.max(X_sub)) vals = np.append(vals,np.mean(X_sub)) vals = np.append(vals,np.std(X_sub)) validcount = np.sum(filt) # plain count vals = np.append(vals, X.size) #nancount vals = np.append(vals, np.sum(np.isnan(X))) out = pd.DataFrame({'Stat' : pValNames ,'Value' : vals}) return out #NOTE: people might prefer name clip/bound? def winsorize(Y, lb, ub): out = np.maximum(np.minimum(Y, ub), lb) return out def plot_hist(Y, bins): df =
pd.DataFrame({'Y': Y})
pandas.DataFrame
import numpy as np import pandas as pd import pytest from hypothesis import assume, given from pandas.testing import assert_frame_equal from janitor.testing_utils.strategies import ( categoricaldf_strategy, df_strategy, ) def test_case_when_1(): """Test case_when function.""" df = pd.DataFrame( { "a": [0, 0, 1, 2, "hi"], "b": [0, 3, 4, 5, "bye"], "c": [6, 7, 8, 9, "wait"], } ) expected = pd.DataFrame( { "a": [0, 0, 1, 2, "hi"], "b": [0, 3, 4, 5, "bye"], "c": [6, 7, 8, 9, "wait"], "value": ["x", 0, 8, 9, "hi"], } ) result = df.case_when( ((df.a == 0) & (df.b != 0)) | (df.c == "wait"), df.a, (df.b == 0) & (df.a == 0), "x", df.c, column_name="value", ) assert_frame_equal(result, expected) def test_len_args(dataframe): """Raise ValueError if `args` length is less than 3.""" with pytest.raises(ValueError, match="three arguments are required"): dataframe.case_when(dataframe.a < 10, "less_than_10", column_name="a") def test_args_even(dataframe): """Raise ValueError if `args` length is even.""" with pytest.raises(ValueError, match="`default` argument is missing"): dataframe.case_when( dataframe.a < 10, "less_than_10", dataframe.a == 5, "five", column_name="a", ) def test_column_name(dataframe): """Raise TypeError if `column_name` is not a string.""" with pytest.raises(TypeError): dataframe.case_when( dataframe.a < 10, "less_than_10", dataframe.a, column_name=("a",), ) @given(df=df_strategy()) def test_default_ndim(df): """Raise ValueError if `default` ndim > 1.""" with pytest.raises(ValueError): df.case_when(df.a < 10, "less_than_10", df, column_name="a") @given(df=df_strategy()) def test_default_length(df): """Raise ValueError if `default` length != len(df).""" assume(len(df) > 10) with pytest.raises( ValueError, match=( "length of the `default` argument should be equal to the length of" " the DataFrame" ), ): df.case_when( df.a < 10, "less_than_10", df.loc[:5, "a"], column_name="a", ) @given(df=df_strategy()) def test_error_multiple_conditions(df): """Raise ValueError for multiple conditions.""" with pytest.raises(ValueError): df.case_when(df.a < 10, "baby", df.a + 5, "kid", df.a, column_name="a") @given(df=df_strategy()) def test_case_when_condition_callable(df): """Test case_when for callable.""" result = df.case_when( lambda df: df.a < 10, "baby", "bleh", column_name="bleh" ) expected = np.where(df.a < 10, "baby", "bleh") expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=df_strategy()) def test_case_when_condition_eval(df): """Test case_when for callable.""" result = df.case_when("a < 10", "baby", "bleh", column_name="bleh") expected = np.where(df.a < 10, "baby", "bleh") expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=df_strategy()) def test_case_when_replacement_callable(df): """Test case_when for callable.""" result = df.case_when( "a > 10", lambda df: df.a + 10, lambda df: df.a * 2, column_name="bleh" ) expected = np.where(df.a > 10, df.a + 10, df.a * 2) expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=categoricaldf_strategy()) def test_case_when_default_list(df): """ Test case_when for scenarios where `default` is list-like, but not a Pandas or numpy object. """ default = range(len(df)) result = df.case_when( "numbers > 1", lambda df: df.numbers + 10, default, column_name="bleh" ) expected = np.where(df.numbers > 1, df.numbers + 10, default) expected = df.assign(bleh=expected) assert_frame_equal(result, expected) @given(df=categoricaldf_strategy()) def test_case_when_default_index(df): """Test case_when for scenarios where `default` is an index.""" default = range(len(df)) result = df.case_when( "numbers > 1", lambda df: df.numbers + 10,
pd.Index(default)
pandas.Index
import pysam import pandas as pd import numpy as np import re import os import sys import collections import scipy from scipy import stats import statsmodels from statsmodels.stats.multitest import fdrcorrection try: from . import global_para except ImportError: import global_para try: from .consensus_seq import * except ImportError: from consensus_seq import * try: from .math_stat import * except ImportError: from math_stat import * def f_0cdna(): # if 0 cdna detected, report messages to users global_para.logger.info("Program finished successfully") global_para.logger.info("No cDNA detected. Exiting.") exit(0) def f_if_0cdna(obj): if len(obj) == 0: f_0cdna() def f_warning_merge_region(df_region): # df_region = df_region_stat_bed_merge.copy() df_region['diff'] =abs( df_region.start - df_region.end) df_region_diff = df_region[df_region['diff']>10000] del df_region_diff['diff'] if len(df_region_diff)>0: global_para.logger.warning("%d extreme long regions are detected (>10 kb), please check results carefully"%len(df_region_diff)) global_para.logger.info(df_region_diff) def read_gene_model(gtf_gene_unique_file): # load gene model into a dataframe print('Loading gene model table') dict_type = { "seqname":"str", "start":"int64", "end":"int64", "gene_id":"str", "gene_name":"str", "transcript_id":"str", "exon_flank_start20":"str", "exon_flank_end20":"str", "is_exon_boundary_start":"str", "is_exon_boundary_end":"str", "exon_boundary_start_nearseq20":"str", "exon_boundary_end_nearseq20":"str"} df_gene_exon_unique = pd.read_csv(gtf_gene_unique_file, sep = '\t',header = 0) df_gene_exon_unique = df_gene_exon_unique.astype(dict_type) # convert all sequences to uppercase df_gene_exon_unique['exon_flank_start20'] = df_gene_exon_unique['exon_flank_start20'].str.upper() df_gene_exon_unique['exon_flank_end20'] = df_gene_exon_unique['exon_flank_end20'].str.upper() df_gene_exon_unique['exon_boundary_start_nearseq20'] = df_gene_exon_unique['exon_boundary_start_nearseq20'].str.upper() df_gene_exon_unique['exon_boundary_end_nearseq20'] = df_gene_exon_unique['exon_boundary_end_nearseq20'].str.upper() df_gene_exon_unique = df_gene_exon_unique.fillna('') print('Loaded %d exons\n'%(len(df_gene_exon_unique))) return(df_gene_exon_unique) def check_bam_index(genome_bam_file): ## check index of bam file; if no, generate one. print('Checking index of input bam file') if os.path.exists(genome_bam_file + '.bai') or os.path.exists(re.sub('bam$','bai',genome_bam_file)): print('Index file exists') else: print('file is not indexed, now generating index') pysam.index(genome_bam_file) print('Index file created\n') return def f_overlap_reference(genome_bam_file,df_gene_exon): # overlap reference for input bam and gene model bam_genome = pysam.AlignmentFile(genome_bam_file,'rb') reference_bam = bam_genome.references bam_genome.close() reference_exon = df_gene_exon.seqname.unique().tolist() overlap_reference = [x for x in reference_bam if x in reference_exon] if len(overlap_reference)==0: global_para.logger.error('chromosome names are not matched between gene model and bam file'); exit(1) df_gene_exon = df_gene_exon.query('seqname in @overlap_reference') return df_gene_exon def f_close_exon_merge(df_transcript_exon): df_transcript_exon = df_transcript_exon.sort_values(['transcript_id','start']) df_transcript_exon = df_transcript_exon.reset_index(drop = True) df_transcript_exon['start_next'] = df_transcript_exon.groupby(['transcript_id'])['start'].shift(-1) df_transcript_exon['dis_exon'] = abs(df_transcript_exon['end'] - df_transcript_exon['start_next']) df_transcript_exon_close = df_transcript_exon.query('dis_exon<@global_para.exon_distance') list_transcript = df_transcript_exon_close.transcript_id.unique().tolist() if len(list_transcript) >0: list_df_transcript_merge = [] for transcript_id in list_transcript: sub_df = df_transcript_exon.query('transcript_id==@transcript_id') sub_df_new = f_df_1transcript_merge(sub_df) list_df_transcript_merge.append(sub_df_new) df_transcript_exon_close_new = pd.concat(list_df_transcript_merge) df_transcript_exon_noclose = df_transcript_exon.query('transcript_id not in @list_transcript') df_transcript_exon_new =
pd.concat([df_transcript_exon_close_new, df_transcript_exon_noclose])
pandas.concat
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from distutils.version import LooseVersion import matplotlib as mat import numpy as np import pandas as pd from matplotlib.axes._base import _process_plot_format from pandas.core.dtypes.inference import is_list_like from pandas.io.formats.printing import pprint_thing from pyspark.pandas.plot import ( TopNPlotBase, SampledPlotBase, HistogramPlotBase, BoxPlotBase, unsupported_function, KdePlotBase, ) if LooseVersion(pd.__version__) < LooseVersion("0.25"): from pandas.plotting._core import ( _all_kinds, BarPlot as PandasBarPlot, BoxPlot as PandasBoxPlot, HistPlot as PandasHistPlot, MPLPlot as PandasMPLPlot, PiePlot as PandasPiePlot, AreaPlot as PandasAreaPlot, LinePlot as PandasLinePlot, BarhPlot as PandasBarhPlot, ScatterPlot as PandasScatterPlot, KdePlot as PandasKdePlot, ) else: from pandas.plotting._matplotlib import ( BarPlot as PandasBarPlot, BoxPlot as PandasBoxPlot, HistPlot as PandasHistPlot, PiePlot as PandasPiePlot, AreaPlot as PandasAreaPlot, LinePlot as PandasLinePlot, BarhPlot as PandasBarhPlot, ScatterPlot as PandasScatterPlot, KdePlot as PandasKdePlot, ) from pandas.plotting._core import PlotAccessor from pandas.plotting._matplotlib.core import MPLPlot as PandasMPLPlot _all_kinds = PlotAccessor._all_kinds class PandasOnSparkBarPlot(PandasBarPlot, TopNPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_top_n(data), **kwargs) def _plot(self, ax, x, y, w, start=0, log=False, **kwds): self.set_result_text(ax) return ax.bar(x, y, w, bottom=start, log=log, **kwds) class PandasOnSparkBoxPlot(PandasBoxPlot, BoxPlotBase): def boxplot( self, ax, bxpstats, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=None, # manage_xticks is for compatibility of matplotlib < 3.1.0. # Remove this when minimum version is 3.0.0 manage_xticks=None, autorange=False, zorder=None, precision=None, ): def update_dict(dictionary, rc_name, properties): """Loads properties in the dictionary from rc file if not already in the dictionary""" rc_str = "boxplot.{0}.{1}" if dictionary is None: dictionary = dict() for prop_dict in properties: dictionary.setdefault(prop_dict, mat.rcParams[rc_str.format(rc_name, prop_dict)]) return dictionary # Common property dictionaries loading from rc flier_props = [ "color", "marker", "markerfacecolor", "markeredgecolor", "markersize", "linestyle", "linewidth", ] default_props = ["color", "linewidth", "linestyle"] boxprops = update_dict(boxprops, "boxprops", default_props) whiskerprops = update_dict(whiskerprops, "whiskerprops", default_props) capprops = update_dict(capprops, "capprops", default_props) medianprops = update_dict(medianprops, "medianprops", default_props) meanprops = update_dict(meanprops, "meanprops", default_props) flierprops = update_dict(flierprops, "flierprops", flier_props) if patch_artist: boxprops["linestyle"] = "solid" boxprops["edgecolor"] = boxprops.pop("color") # if non-default sym value, put it into the flier dictionary # the logic for providing the default symbol ('b+') now lives # in bxp in the initial value of final_flierprops # handle all of the `sym` related logic here so we only have to pass # on the flierprops dict. if sym is not None: # no-flier case, which should really be done with # 'showfliers=False' but none-the-less deal with it to keep back # compatibility if sym == "": # blow away existing dict and make one for invisible markers flierprops = dict(linestyle="none", marker="", color="none") # turn the fliers off just to be safe showfliers = False # now process the symbol string else: # process the symbol string # discarded linestyle _, marker, color = _process_plot_format(sym) # if we have a marker, use it if marker is not None: flierprops["marker"] = marker # if we have a color, use it if color is not None: # assume that if color is passed in the user want # filled symbol, if the users want more control use # flierprops flierprops["color"] = color flierprops["markerfacecolor"] = color flierprops["markeredgecolor"] = color # replace medians if necessary: if usermedians is not None: if len(np.ravel(usermedians)) != len(bxpstats) or np.shape(usermedians)[0] != len( bxpstats ): raise ValueError("usermedians length not compatible with x") else: # reassign medians as necessary for stats, med in zip(bxpstats, usermedians): if med is not None: stats["med"] = med if conf_intervals is not None: if np.shape(conf_intervals)[0] != len(bxpstats): err_mess = "conf_intervals length not compatible with x" raise ValueError(err_mess) else: for stats, ci in zip(bxpstats, conf_intervals): if ci is not None: if len(ci) != 2: raise ValueError("each confidence interval must " "have two values") else: if ci[0] is not None: stats["cilo"] = ci[0] if ci[1] is not None: stats["cihi"] = ci[1] should_manage_ticks = True if manage_xticks is not None: should_manage_ticks = manage_xticks if manage_ticks is not None: should_manage_ticks = manage_ticks if LooseVersion(mat.__version__) < LooseVersion("3.1.0"): extra_args = {"manage_xticks": should_manage_ticks} else: extra_args = {"manage_ticks": should_manage_ticks} artists = ax.bxp( bxpstats, positions=positions, widths=widths, vert=vert, patch_artist=patch_artist, shownotches=notch, showmeans=showmeans, showcaps=showcaps, showbox=showbox, boxprops=boxprops, flierprops=flierprops, medianprops=medianprops, meanprops=meanprops, meanline=meanline, showfliers=showfliers, capprops=capprops, whiskerprops=whiskerprops, zorder=zorder, **extra_args, ) return artists def _plot(self, ax, bxpstats, column_num=None, return_type="axes", **kwds): bp = self.boxplot(ax, bxpstats, **kwds) if return_type == "dict": return bp, bp elif return_type == "both": return self.BP(ax=ax, lines=bp), bp else: return ax, bp def _compute_plot_data(self): colname = self.data.name spark_column_name = self.data._internal.spark_column_name_for(self.data._column_label) data = self.data # Updates all props with the rc defaults from matplotlib self.kwds.update(PandasOnSparkBoxPlot.rc_defaults(**self.kwds)) # Gets some important kwds showfliers = self.kwds.get("showfliers", False) whis = self.kwds.get("whis", 1.5) labels = self.kwds.get("labels", [colname]) # This one is pandas-on-Spark specific to control precision for approx_percentile precision = self.kwds.get("precision", 0.01) # # Computes mean, median, Q1 and Q3 with approx_percentile and precision col_stats, col_fences = BoxPlotBase.compute_stats(data, spark_column_name, whis, precision) # # Creates a column to flag rows as outliers or not outliers = BoxPlotBase.outliers(data, spark_column_name, *col_fences) # # Computes min and max values of non-outliers - the whiskers whiskers = BoxPlotBase.calc_whiskers(spark_column_name, outliers) if showfliers: fliers = BoxPlotBase.get_fliers(spark_column_name, outliers, whiskers[0]) else: fliers = [] # Builds bxpstats dict stats = [] item = { "mean": col_stats["mean"], "med": col_stats["med"], "q1": col_stats["q1"], "q3": col_stats["q3"], "whislo": whiskers[0], "whishi": whiskers[1], "fliers": fliers, "label": labels[0], } stats.append(item) self.data = {labels[0]: stats} def _make_plot(self): bxpstats = list(self.data.values())[0] ax = self._get_ax(0) kwds = self.kwds.copy() for stats in bxpstats: if len(stats["fliers"]) > 1000: stats["fliers"] = stats["fliers"][:1000] ax.text( 1, 1, "showing top 1,000 fliers only", size=6, ha="right", va="bottom", transform=ax.transAxes, ) ret, bp = self._plot(ax, bxpstats, column_num=0, return_type=self.return_type, **kwds) self.maybe_color_bp(bp) self._return_obj = ret labels = [l for l, _ in self.data.items()] labels = [pprint_thing(l) for l in labels] if not self.use_index: labels = [pprint_thing(key) for key in range(len(labels))] self._set_ticklabels(ax, labels) @staticmethod def rc_defaults( notch=None, vert=None, whis=None, patch_artist=None, bootstrap=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, **kwargs ): # Missing arguments default to rcParams. if whis is None: whis = mat.rcParams["boxplot.whiskers"] if bootstrap is None: bootstrap = mat.rcParams["boxplot.bootstrap"] if notch is None: notch = mat.rcParams["boxplot.notch"] if vert is None: vert = mat.rcParams["boxplot.vertical"] if patch_artist is None: patch_artist = mat.rcParams["boxplot.patchartist"] if meanline is None: meanline = mat.rcParams["boxplot.meanline"] if showmeans is None: showmeans = mat.rcParams["boxplot.showmeans"] if showcaps is None: showcaps = mat.rcParams["boxplot.showcaps"] if showbox is None: showbox = mat.rcParams["boxplot.showbox"] if showfliers is None: showfliers = mat.rcParams["boxplot.showfliers"] return dict( whis=whis, bootstrap=bootstrap, notch=notch, vert=vert, patch_artist=patch_artist, meanline=meanline, showmeans=showmeans, showcaps=showcaps, showbox=showbox, showfliers=showfliers, ) class PandasOnSparkHistPlot(PandasHistPlot, HistogramPlotBase): def _args_adjust(self): if is_list_like(self.bottom): self.bottom = np.array(self.bottom) def _compute_plot_data(self): self.data, self.bins = HistogramPlotBase.prepare_hist_data(self.data, self.bins) def _make_plot(self): # TODO: this logic is similar with KdePlot. Might have to deduplicate it. # 'num_colors' requires to calculate `shape` which has to count all. # Use 1 for now to save the computation. colors = self._get_colors(num_colors=1) stacking_id = self._get_stacking_id() output_series = HistogramPlotBase.compute_hist(self.data, self.bins) for (i, label), y in zip(enumerate(self.data._internal.column_labels), output_series): ax = self._get_ax(i) kwds = self.kwds.copy() label = pprint_thing(label if len(label) > 1 else label[0]) kwds["label"] = label style, kwds = self._apply_style_colors(colors, kwds, i, label) if style is not None: kwds["style"] = style kwds = self._make_plot_keywords(kwds, y) artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds) self._add_legend_handle(artists[0], label, index=i) @classmethod def _plot(cls, ax, y, style=None, bins=None, bottom=0, column_num=0, stacking_id=None, **kwds): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(bins) - 1) base = np.zeros(len(bins) - 1) bottom = bottom + cls._get_stacked_values(ax, stacking_id, base, kwds["label"]) # Since the counts were computed already, we use them as weights and just generate # one entry for each bin n, bins, patches = ax.hist(bins[:-1], bins=bins, bottom=bottom, weights=y, **kwds) cls._update_stacker(ax, stacking_id, n) return patches class PandasOnSparkPiePlot(PandasPiePlot, TopNPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_top_n(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkAreaPlot(PandasAreaPlot, SampledPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_sampled(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkLinePlot(PandasLinePlot, SampledPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_sampled(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkBarhPlot(PandasBarhPlot, TopNPlotBase): def __init__(self, data, **kwargs): super().__init__(self.get_top_n(data), **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkScatterPlot(PandasScatterPlot, TopNPlotBase): def __init__(self, data, x, y, **kwargs): super().__init__(self.get_top_n(data), x, y, **kwargs) def _make_plot(self): self.set_result_text(self._get_ax(0)) super()._make_plot() class PandasOnSparkKdePlot(PandasKdePlot, KdePlotBase): def _compute_plot_data(self): self.data = KdePlotBase.prepare_kde_data(self.data) def _make_plot(self): # 'num_colors' requires to calculate `shape` which has to count all. # Use 1 for now to save the computation. colors = self._get_colors(num_colors=1) stacking_id = self._get_stacking_id() sdf = self.data._internal.spark_frame for i, label in enumerate(self.data._internal.column_labels): # 'y' is a Spark DataFrame that selects one column. y = sdf.select(self.data._internal.spark_column_for(label)) ax = self._get_ax(i) kwds = self.kwds.copy() label = pprint_thing(label if len(label) > 1 else label[0]) kwds["label"] = label style, kwds = self._apply_style_colors(colors, kwds, i, label) if style is not None: kwds["style"] = style kwds = self._make_plot_keywords(kwds, y) artists = self._plot(ax, y, column_num=i, stacking_id=stacking_id, **kwds) self._add_legend_handle(artists[0], label, index=i) def _get_ind(self, y): return KdePlotBase.get_ind(y, self.ind) @classmethod def _plot( cls, ax, y, style=None, bw_method=None, ind=None, column_num=None, stacking_id=None, **kwds ): y = KdePlotBase.compute_kde(y, bw_method=bw_method, ind=ind) lines = PandasMPLPlot._plot(ax, ind, y, style=style, **kwds) return lines _klasses = [ PandasOnSparkHistPlot, PandasOnSparkBarPlot, PandasOnSparkBoxPlot, PandasOnSparkPiePlot, PandasOnSparkAreaPlot, PandasOnSparkLinePlot, PandasOnSparkBarhPlot, PandasOnSparkScatterPlot, PandasOnSparkKdePlot, ] _plot_klass = {getattr(klass, "_kind"): klass for klass in _klasses} _common_kinds = {"area", "bar", "barh", "box", "hist", "kde", "line", "pie"} _series_kinds = _common_kinds.union(set()) _dataframe_kinds = _common_kinds.union({"scatter", "hexbin"}) _pandas_on_spark_all_kinds = _common_kinds.union(_series_kinds).union(_dataframe_kinds) def plot_pandas_on_spark(data, kind, **kwargs): if kind not in _pandas_on_spark_all_kinds: raise ValueError("{} is not a valid plot kind".format(kind)) from pyspark.pandas import DataFrame, Series if isinstance(data, Series): if kind not in _series_kinds: return unsupported_function(class_name="pd.Series", method_name=kind)() return plot_series(data=data, kind=kind, **kwargs) elif isinstance(data, DataFrame): if kind not in _dataframe_kinds: return unsupported_function(class_name="pd.DataFrame", method_name=kind)() return plot_frame(data=data, kind=kind, **kwargs) def plot_series( data, kind="line", ax=None, # Series unique figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, # Series unique **kwds ): """ Make plots of Series using matplotlib / pylab. Each plot kind has a corresponding method on the ``Series.plot`` accessor: ``s.plot(kind='line')`` is equivalent to ``s.plot.line()``. Parameters ---------- data : Series kind : str - 'line' : line plot (default) - 'bar' : vertical bar plot - 'barh' : horizontal bar plot - 'hist' : histogram - 'box' : boxplot - 'kde' : Kernel Density Estimation plot - 'density' : same as 'kde' - 'area' : area plot - 'pie' : pie plot ax : matplotlib axes object If not passed, uses gca() figsize : a tuple (width, height) in inches use_index : boolean, default True Use index as ticks for x axis title : string or list Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and `subplots` is True, print each item in the list above the corresponding subplot. grid : boolean, default None (matlab style default) Axis grid lines legend : False/True/'reverse' Place legend on axis subplots style : list or dict matplotlib line style per column logx : boolean, default False Use log scaling on x axis logy : boolean, default False Use log scaling on y axis loglog : boolean, default False Use log scaling on both x and y axes xticks : sequence Values to use for the xticks yticks : sequence Values to use for the yticks xlim : 2-tuple/list ylim : 2-tuple/list rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots) fontsize : int, default None Font size for xticks and yticks colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : boolean, optional If True, plot colorbar (only relevant for 'scatter' and 'hexbin' plots) position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) table : boolean, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See :ref:`Plotting with Error Bars <visualization.errorbars>` for detail. xerr : same types as yerr. label : label argument to provide to plot secondary_y : boolean or sequence of ints, default False If True then y-axis will be on the right mark_right : boolean, default True When using a secondary_y axis, automatically mark the column labels with "(right)" in the legend **kwds : keywords Options to pass to matplotlib plotting method Returns ------- axes : :class:`matplotlib.axes.Axes` or numpy.ndarray of them Notes ----- - See matplotlib documentation online for more on this subject - If `kind` = 'bar' or 'barh', you can specify relative alignments for bar plot layout by `position` keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) """ # function copied from pandas.plotting._core # so it calls modified _plot below import matplotlib.pyplot as plt if ax is None and len(plt.get_fignums()) > 0: with plt.rc_context(): ax = plt.gca() ax =
PandasMPLPlot._get_ax_layer(ax)
pandas.plotting._matplotlib.core.MPLPlot._get_ax_layer
# --- # jupyter: # jupytext: # cell_metadata_filter: -all # comment_magics: true # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.8 # kernelspec: # display_name: 'Python 3.8.12 64-bit (''mapping_parenting_tech'': conda)' # language: python # name: python3 # --- # %% from mapping_parenting_tech.utils import ( play_store_utils as psu, text_preprocessing_utils as tpu, ) from mapping_parenting_tech import PROJECT_DIR, logging from pathlib import Path from tqdm import tqdm from datetime import datetime import tomotopy as tp import altair as alt import pandas as pd import numpy as np import csv INPUT_DATA = PROJECT_DIR / "inputs/data/play_store" OUTPUT_DATA = PROJECT_DIR / "outputs/data" REVIEWS_DATA = PROJECT_DIR / "outputs/data/app_reviews" # %% # Read in the ids of the relevant apps (as manually id'd by Nesta staff) app_info = pd.read_csv(INPUT_DATA / "relevant_app_ids.csv") app_clusters = app_info["cluster"].unique().tolist() # %% # load the reviews for the relevant apps app_reviews = psu.load_some_app_reviews(app_info["appId"].to_list()) # add the cluster that each add is in to the review app_reviews = app_reviews.merge(app_info, on="appId") # what have we got...? app_reviews.shape # %% # get a subset of reviews - here it's those written in the last year about apps in the # cluster 'Numeracy development' target_reviews = app_reviews.loc[ (app_reviews["at"] >= pd.to_datetime("2021-02-01")) # & (app_reviews["cluster"] == "Numeracy development") ] target_reviews.shape # %% # if we want to visualise the distribution of the reviews, group the apps by their id and cluster # and count the number of reviews for each app app_review_counts = target_reviews.groupby(["appId", "cluster"]).agg( review_count=("reviewId", "count"), ) # reset the index so we just have one app_review_counts.reset_index(inplace=True) # %% # plot the data # x-axis groups clusters together and assigns a 'jitter' value to randomly distribute apps w/in the cluster horizontally # y-axis is simply the number of reviews for an app stripplot = ( alt.Chart(app_review_counts, width=75) .mark_circle(size=20) .encode( x=alt.X( "jitter:Q", title=None, axis=alt.Axis(values=[0], ticks=True, grid=False, labels=False), scale=alt.Scale(), ), y=alt.Y( "review_count:Q", # scale=alt.Scale(range=(0,10000)), ), color=alt.Color("cluster:N", legend=None), column=alt.Column( "cluster:N", header=alt.Header( labelAngle=-90, titleOrient="top", labelOrient="bottom", labelAlign="right", labelPadding=3, ), ), tooltip=["appId"], ) .transform_calculate( # Generate Gaussian jitter with a Box-Muller transform jitter="sqrt(-2*log(random()))*cos(2*PI*random())" ) .configure_facet(spacing=0) .configure_view(stroke=None) ) stripplot # %% # Now let's look at the distributions of reviews for each cluster app_review_counts.groupby("cluster").agg( total_reviews=("review_count", "sum"), mean=("review_count", "mean"), median=("review_count", np.median), ).sort_values("total_reviews") # %% [markdown] # ## Topic modelling # %% # get a subset of reviews tp_reviews = target_reviews[target_reviews.cluster == "Drawing and colouring"] tp_reviews.shape # %% [markdown] # **NB** Following code **should not** be executed unless reviews need to be pre-processed. This step, once complete, should save the reviews for later use # # **Ignore all that follows, up until the next markdown cell** # %% # get a preprocess the review text ready for topic modelling # this will take some time for 10,000s of reviews... tp_reviews.loc[:, "preprocessed_review"] = tpu.get_preprocessed_documents( [str(review) for review in tp_reviews["content"].to_list()] ) # %% # get reviews that have 5 tokens or more tp_reviews = tp_reviews[tp_reviews.preprocessed_review.str.count(" ") + 1 > 4] tp_reviews.shape # %% # save processed reviews tp_reviews.to_csv(OUTPUT_DATA / "pre_processed_drawing_app_reviews.csv") # %% # load reviews into a dict: {cluster: [review_1, review_2 ... review_n] raw_reviews_by_cluster = dict() for cluster in tqdm(app_clusters): raw_reviews_by_cluster[cluster] = tp_reviews[ tp_reviews.cluster == cluster ].content.to_list() # %% # set up a Corpus which we'll load our documents (reviews) into corpus = tp.utils.Corpus() # %% # tokenize the reviews and add to corpus for review in tp_reviews.preprocessed_review.to_list(): doc = tpu.simple_tokenizer(review) corpus.add_doc(doc) # %% # initialise the model and confirm the number of documents in it model = tp.LDAModel(k=n_topics, corpus=corpus) print(len(model.docs)) # %% # Set up a function to help explore the variables we need to train the model - at what point does log likelihood and/or coherence converge? def test_model( corpus, n_topics: int = 20, max_iters: int = 1000, iter_step: int = 50, seed: int = None, ) -> int: model = tp.LDAModel(k=n_topics, corpus=corpus) model_scores = [] for i in range(0, max_iters, iter_step): model.train(iter=iter_step) ll_per_word = model.ll_per_word c_v = tp.coherence.Coherence(model, coherence="c_v") model_scores.append( { "N_TOPICS": n_topics, "N_ITER": i, "LOG_LIKELIHOOD": ll_per_word, "COHERENCE": c_v.get_score(), "SEED": seed, } ) model_scores = pd.DataFrame(model_scores) return model_scores[model_scores["COHERENCE"] == model_scores["COHERENCE"].max()] # %% iters = [] for j in tqdm(range(5, 25), position=0): for i in range(100, 1500, 250): iters.append(test_model(corpus, n_topics=j, max_iters=1050, seed=250)) model_scores = pd.concat(iters) # %% # model_scores = model_scores.sort_values("COHERENCE", ascending=False) # model_scores.head() model_scores.plot.scatter("N_ITER", "LOG_LIKELIHOOD") # %% print( f"Number of unique words: {len(model.used_vocabs):,}", f"\nTotal number of tokens: {model.num_words:,}", ) # %% def print_topic_words(model, top_n=5): for k in range(model.k): top_words = model.get_topic_words(topic_id=k, top_n=top_n) top_words = [f"{tup[0]} ({tup[1]:.04f}%)" for tup in top_words] print(f"Topic #{k}:", f"\n+ {', '.join(top_words)}") # %% print_topic_words(model) # %% word_dist = model.get_topic_word_dist(topic_id=2) pd.Series(word_dist, index=model.used_vocabs).sort_values(ascending=False).head(15) # %% topic_sizes = model.get_count_by_topics() print("Number of words per topic:") for k in range(0, 5): print(f"+ Topic #{k}: {topic_sizes[k]:,} words") # %% print("Topic proportion across the corpus:") for k in range(0, 5): print(f"+ Topic #{k}: {topic_sizes[k] / model.num_words:0.2f}%") # %% print_topic_words(best_p) # %% n_topic_range = range(5, 35) n_iters = 1050 coherence_scores = [] for k in tqdm(n_topic_range): _model = tp.LDAModel(k=k, corpus=corpus, seed=250) _model.train(iter=n_iters) coherence = tp.coherence.Coherence(_model, coherence="c_v") coherence_scores.append({"N_TOPICS": k, "COHERENCE_SCORE": coherence.get_score()}) # %% coherence_scores =
pd.DataFrame(coherence_scores)
pandas.DataFrame
""" HWRF_Rainfall_cron.py -- cron job script for HWRF data """ import sys, os import yaml import requests from bs4 import BeautifulSoup import logging import subprocess from osgeo import gdal import pandas as pd import geopandas as gpd import csv import json import rasterio from rasterio.mask import mask import numpy as np from rasterio import Affine import math from shapely.geometry import Point import shutil import zipfile def load_config(onetime=''): """load configuration file """ with open("HWRF_config.yml", "r") as ymlfile: cfg = yaml.safe_load(ymlfile) global hosturl hosturl = cfg['HWRF']['host'] folderprefix = cfg['datalocation']['folderprefix'] folderprefix = os.path.abspath(folderprefix) + os.path.sep global HWRFsummary HWRFsummary = folderprefix + cfg['datalocation']['HWRFsummary'] + os.path.sep global HWRFimage HWRFimage = folderprefix + cfg['datalocation']['HWRFimage'] + os.path.sep global HWRFoutput HWRFoutput = folderprefix + cfg['datalocation']['HWRFoutput'] global HWRFraw HWRFraw = folderprefix + cfg['datalocation']['HWRFraw'] + os.path.sep global flood_HWRF flood_HWRF= folderprefix + cfg['datalocation']['flood_HWRF'] + os.path.sep global flooddata flooddata= folderprefix + cfg['datalocation']['flooddata'] + os.path.sep # set up logging file logging.basicConfig(filename = cfg['datalocation']['loggingfile'], format='%(asctime)s %(message)s', level=logging.INFO) def check_status(adate): """ check if a give date is processed""" processed_list = os.listdir(HWRFsummary) processed = any(adate in x for x in processed_list) return processed def generate_procesing_list(): """ generate the processing list""" reqs = requests.get(hosturl) soup = BeautifulSoup(reqs.text,"html.parser") datelist = {} for link in soup.find_all('a'): fstr = link.string if (fstr[:5] == 'hwrf.'): a_entry = fstr.split('.')[1] a_entry = a_entry.replace("/","") if check_status(a_entry): continue datelist[a_entry] = hosturl + fstr return datelist def HWRF_download(hwrfurl): """ download rainfall data""" reqs = requests.get(hwrfurl) soup = BeautifulSoup(reqs.text,"html.parser") ascii_list = [] for link in soup.find_all('a'): fstr = link.string if "rainfall.ascii" in fstr: if not os.path.exists(HWRFraw + fstr): wgetcmd = "wget " + hwrfurl + fstr + " -P " + HWRFraw subprocess.call(wgetcmd, shell=True) ascii_list.append(fstr) return ascii_list def process_rain(adate,TC_Rain): """process rainfall data""" ## VRT template to read the csv vrt_template="""<OGRVRTDataSource> <OGRVRTLayer name='{}'> <SrcDataSource>{}</SrcDataSource> <GeometryType>wkbPoint</GeometryType> <GeometryField encoding="PointFromColumns" x="lon" y="lat" z="Z"/> </OGRVRTLayer> </OGRVRTDataSource>""" ## Read each text file and create the separate tiff file for i in TC_Rain: with open(i,'r') as f: variable=csv.reader(f, delimiter=' ') row_count=1 for row in variable: if row_count == 1: while ('' in row): row.remove('') XLC=float(row[0]) XRC=float(row[1]) YBC=float(row[2]) YTC=float(row[3]) res=float(row[4]) nrows=float(row[5]) ncol=float(row[6]) row_count = row_count + 1 df = (pd.read_table(i, skiprows=1, delim_whitespace=True, names=('lat', 'lon', 'Z'))).fillna(-999) df.sort_values(by=["lat","lon"], ascending=[False, True]) df=df[['lon','lat','Z']] df = df[df.lon >= XLC] df = df[df.lon <= XRC] df = df[df.lat >= YBC] df = df[df.lat <= YTC] df = df[df.Z > 0] df.to_csv(i.replace(".ascii",".csv"),index=False, sep=" ") with open(i.replace(".ascii",".vrt"),"w") as g: g.write(vrt_template.format(i.replace(".ascii",""),i.replace(".ascii",".csv"))) g.close() r=gdal.Rasterize(i.replace(".ascii",".tiff"),i.replace(".ascii",".vrt"),outputSRS="EPSG:4326",xRes=res, yRes=res,attribute="Z", noData=-999) r=None os.remove(i.replace(".ascii",".csv")) ##merge all tiffs file als # nd delete the individual tiff, vrt and ascii file TC_Rain_tiff=[] for i in TC_Rain: TC_Rain_tiff.append(i.replace(".ascii",".tiff")) filename="hwrf."+ adate +"rainfall.vrt" raintiff = filename.replace(".vrt",".tiff") vrt = gdal.BuildVRT(filename, TC_Rain_tiff) gdal.Translate(raintiff, vrt) vrt=None # no need #gdalcmd = "gdal_translate -of GTiff " + filename + " " + raintiff #subprocess.call(gdalcmd, shell=True) # create a zipfile zip_file="hwrf."+ adate +"rainfall.zip" with zipfile.ZipFile(zip_file, 'w',zipfile.ZIP_DEFLATED) as zipObj: for i in TC_Rain_tiff: asfile = i.replace(".tiff",".ascii") zipObj.write(asfile) for i in TC_Rain_tiff: os.remove(i) os.remove(i.replace(".tiff",".ascii")) os.remove(i.replace(".tiff",".vrt")) return raintiff def HWRF_extract_by_mask(mask_json,tiff): """extract by each watershed""" with rasterio.open(tiff) as src: try: out_image, out_transform = mask(src, [mask_json['features'][0]['geometry']], crop=True) except ValueError as e: #'Input shapes do not overlap raster.' #print(e) src = None # return empty dataframe return
pd.DataFrame()
pandas.DataFrame
''' author: <NAME> || @slothfulwave612 Python module for i/o operations on the dataset. ''' ## import necessary packages/modules import os import numpy as np import pandas as pd from pandas.io.json import json_normalize import json import math import multiprocessing from tqdm.auto import tqdm, trange import statsmodels.api as sm def get_competition(path): ''' Function for getting data about all the competitions. Argument: path -- str, path to competition.json file. Returns: comp_df -- pandas dataframe, all competition data. ''' ## load the json file comp_data = json.load(open(path)) ## make pandas dataframe comp_df = pd.DataFrame(comp_data) return comp_df def flatten_json(sub_str): ''' Function to take out values from nested dictionary present in the json file, so to make a representable dataframe. ---> This piece of code was found on stackoverflow <-- Argument: sub_str -- substructure defined in the json file. Returns: flattened out information. ''' out = {} def flatten(x, name=''): if type(x) is dict: for a in x: flatten(x[a], name + a + '_') elif type(x) is list: i = 0 for a in x: flatten(a, name + str(i) + '_') i += 1 else: out[name[:-1]] = x flatten(sub_str) return out def get_matches(comp_id, season_id, path): ''' Function for getting match-data for a given competition Arguments: comp_id -- int, the competition id. season_id -- int, the season id. path -- str, path to .json file containing match data. Returns: match_df -- pandas dataframe, containing all the matches ''' ## loading up the data from json file match_data = json.load(open(path, encoding='utf8')) ## flattening the json file match_flatten = [flatten_json(x) for x in match_data] ## creating a dataframe match_df = pd.DataFrame(match_flatten) match_df_cols = list(match_df.columns) ## renaming the dataframe for i in range(len(match_df_cols)): if match_df_cols[i].count('away_team') == 2: ## for away_team columns match_df_cols[i] = match_df_cols[i][len('away_team_'):] elif match_df_cols[i].count('_0') == 1: ## for _0 columns match_df_cols[i] = match_df_cols[i].replace('_0', '') elif match_df_cols[i].count('competition') == 2: ## for competition columns match_df_cols[i] = match_df_cols[i][len('competition_'):] elif match_df_cols[i].count('home_team') == 2: ## for away_team columns match_df_cols[i] = match_df_cols[i][len('home_team_'):] elif match_df_cols[i].count('season') == 2: ## for away_team columns match_df_cols[i] = match_df_cols[i][len('season_'):] match_df.columns = match_df_cols return match_df def make_event_df(match_id, path): ''' Function for making event dataframe. Argument: match_id -- int, the required match id for which event data will be constructed. path -- str, path to .json file containing event data. Returns: df -- pandas dataframe, the event dataframe for the particular match. ''' ## read in the json file event_json = json.load(open(path, encoding='utf-8')) ## normalize the json data df = json_normalize(event_json, sep='_') return df def full_season_events(match_df, match_ids, path, comp_name=None, leave=True, shot="basic"): ''' Function to make event dataframe for a full season. Arguments: match_df -- pandas dataframe, containing match-data. match_id -- list, list of match id. path -- str, path to directory where .json file is listed. e.g. '../input/Statsbomb/data/events' comp_name -- str, competition name + season name, default: None. leave -- keeps all traces of the progressbar upon termination of iteration. Returns: event_df -- pandas dataframe, containing event data for the whole season. ''' ## init an empty dataframe event_df = pd.DataFrame() if comp_name == None: t = match_ids else: t = tqdm(match_ids, desc=f'Grabbing data for {comp_name}', position=0, leave=leave) for match_id in t: ## .json file temp_path = path + f'/{match_id}.json' temp_df = make_event_df(match_id, temp_path) event_df = pd.concat([event_df, temp_df], sort=False) if shot == "basic": return event_df.loc[event_df['type_name'] == 'Shot'] elif shot == "intermediate": return intermediate_dataset(event_df) elif shot == "advance": return intermediate_dataset(event_df, adv=True) def multiple_season_event_df(comp_name, comp_id, season_ids, path_match, path_season, shot): ''' Function for making event dataframe having multile seasons for the same competition. Arguments: comp_name -- str, competition name + season comp_id -- int, competition id. season_ids -- list, list containing season ids. path_match -- str, path to .json file containing match data. path_season -- str, path to directory where .json file is listed. e.g. '../input/Statsbomb/data/events' Returns: event_df -- pandas dataframe, containing event of multiple seasons. ''' ## init an empty dataframe event_df = pd.DataFrame() ## making the event-dataframe for season_id in tqdm(season_ids, desc=f'Grabbing data for {comp_name}', leave=True): ## add season id to path-match team_path_match = path_match + f'/{comp_id}/{season_id}.json' ## make a match dataframe for a particular season match_df = get_matches(comp_id, season_id, team_path_match) ## list all the match ids match_ids = list(match_df['match_id'].unique()) comp_name_ = match_df['competition_name'].unique()[0] + '-' + match_df['season_name'].unique()[0] ## create the event dataframe for the whole season temp_df = full_season_events(match_df, match_ids, path_season, comp_name=comp_name_, leave=False, shot=shot) ## add competition temp_df["comp_name"] = comp_name_ ## concat the dataframes event_df = pd.concat([event_df, temp_df], sort=False) ## make final dataframe event_df = event_df.reset_index(drop=True) return event_df def goal(value): ''' Function to output 1: if goal or 0: otherwise. Arguments: value -- str, shot-outcome-name. Returns: 0 or 1 -- 0 means no goal 1 means goal. ''' if value == 'Goal': return 1 else: return 0 def body_part(value): ''' Function to output: Head -- if it is a header, Foot -- if it is right/left foot, Other -- if any other body part ''' if value == "Left Foot" or value == "Right Foot": return "Foot" else: return value def change_dims(old_value, old_min, old_max, new_min, new_max): ''' Function for changing the coordinates to our pitch dimensions. Arguments: old_value, old_min, old_max, new_min, new_max -- float values. Returns: new_value -- float value(the coordinate value either x or y). ''' ## calculate the value new_value = ( (old_value - old_min) / (old_max - old_min) ) * (new_max - new_min) + new_min return new_value def coordinates_x(value): ''' Return x coordinate ''' value_x = change_dims(value[0], 0, 120, 0, 104) return value_x def coordinates_y(value): ''' Return 80 - x coordinate ''' value_y = change_dims(80- value[1], 0, 80, 0, 68) return value_y def distance_bw_coordinates(x1, y1, x2=104.0, y2=34.0): ''' Function for calculating the distance between shot location and the goal post. Arguments: x1, y1 -- float, the x and y coordinate for shot location. x2, y2 -- float, the x and y coordinate for the goal post location.(default for Statsbomb defined goal-post) ''' diff_sqr_x = (x2 - x1)**2 diff_sqr_y = (y2 - y1)**2 distance = math.sqrt(diff_sqr_x + diff_sqr_y) ## euclidean distnace return distance def post_angle(x, y, g1_x=104, g1_y=30.34, g2_x=104, g2_y=37.66): ''' Function to calculate the post angle. Arguments: x -- float, x coordinate from where the shot was taken. y -- float, y coordinate from where the shot was taken. g1 and g2 are the coordinates of the two woodwork, default values specifying the woodwork coordinate for Statsbomb data. Returns: angle -- float, the angle in degrees. ''' if x == 104 and (30.34 <= y <= 37.66): return 180 if x == 104 and (y > 37.66 or y < 30.34): return 0 ## calculating the three sides of the triangle. A_dis = distance_bw_coordinates(x, y, g1_x, g1_y) B_dis = distance_bw_coordinates(x, y, g2_x, g2_y) C_dis = distance_bw_coordinates(g1_x, g1_y, g2_x, g2_y) ## using cosine law value = ((A_dis**2) + (B_dis**2) - (C_dis**2)) / (2 * A_dis * B_dis) angle = np.degrees(np.arccos(value)) return angle def create_result_df(df, length, col): ''' Function to create a result dataframe(statsbomb_xg vs predicted_xg). Arguments: df -- pandas dataframe. length -- int, length of the dataframe. col -- str, column name for predicted xG value. Returns: result -- pandas dataframe containing statsbomb_xg and predicted_xg as columns. ''' ## fetch all the player names players = df.loc[df['target'] == 1, 'player_name'].value_counts()[:length].index ## init a dictionary result_dict = { 'player_name': [], 'shots': [], 'goals': [], 'statsbomb_xg': [], 'predicted_xg': [] } ## calculate required values for player in players: ## total number of shots taken by a player shots = len(df.loc[(df['player_name'] == player)]) ## total number of goals scored by a player goals = len(df.loc[ (df['player_name'] == player) & (df['target'] == 1) ]) ## aggregated statsbomb-xG-value for a player stats_xg = df.loc[ (df['player_name'] == player), 'shot_statsbomb_xg' ].sum() ## aggregated predicted-xG-value for a player pred_xg = df.loc[ (df['player_name'] == player), col ].sum() ## append result to result_dict result_dict['player_name'].append(player) result_dict['shots'].append(shots) result_dict['goals'].append(goals) result_dict['statsbomb_xg'].append(stats_xg) result_dict['predicted_xg'].append(pred_xg) ## create pandas dataframe result =
pd.DataFrame(result_dict)
pandas.DataFrame
import os import sys import subprocess import datetime import fire import pickle import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from xgboost import XGBClassifier AIP_MODEL_DIR = os.environ["AIP_MODEL_DIR"] def train_evaluate(training_dataset_path, validation_dataset_path,max_depth,n_estimators): df_train =
pd.read_csv(training_dataset_path)
pandas.read_csv
import structurelearning import pandas as pd import math from operator import mul from functools import reduce import itertools from collections import defaultdict import numpy as np from collections import namedtuple def variableElimination(index, observations, model): #print('Starting Variable Elimination!') adj_matrix, cpt_list = model if not observations[0]: return cpt_list[index] observed_indices = [o_id for o_id, o_value in observations] # Local CPT instantiated by evidence factors_cpts = factorize(adj_matrix, observations, cpt_list) reduced_factors = factors_cpts.copy() # Eliminate irrelevant variables, i.e. those which are not successors to any of the observed or queried variable indices_to_keep = get_all_ancestors(index, observed_indices, adj_matrix) # Eliminate all hidden variables (i.e. except target and observed) for hidden_var in range(len(cpt_list)): if hidden_var not in indices_to_keep: # ignore all irrelevant variable for key, value in reduced_factors.items(): if key.var == hidden_var: del reduced_factors[key] break continue if hidden_var != index and hidden_var not in observed_indices: reduced_factors = eliminate_variable(hidden_var, reduced_factors) # Join all remaining factors if len(reduced_factors) != 1: #print('Only observed and target left:', reduced_factors) reduced_factors, reduced_cpt = pointwise_product(index, reduced_factors, reduced_factors.copy()) #print('Variable elimination finished!') final_cpt = normalize(reduced_cpt) # print('Final cpt:', final_cpt) # print('Final factors:', reduced_factors) return final_cpt def get_all_ancestors(index, observed_indices, adj_matrix): all_present_vars = observed_indices all_present_vars.append(index) ancestors = [] adj_matrix_transposed =
pd.DataFrame(adj_matrix)
pandas.DataFrame
from datetime import date, datetime, timedelta from dateutil import tz import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm class TestDatetimeIndex: def test_setitem_with_datetime_tz(self): # 16889 # support .loc with alignment and tz-aware DatetimeIndex mask = np.array([True, False, True, False]) idx = date_range("20010101", periods=4, tz="UTC") df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) idx = date_range("20010101", periods=4) df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) def test_indexing_with_datetime_tz(self): # GH#8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) df = DataFrame({"A": idx, "B": dr}) df["C"] = idx df.iloc[1, 1] = pd.NaT df.iloc[1, 2] = pd.NaT # indexing result = df.iloc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) result = df.loc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) # indexing - fast_xs df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")}) result = df.iloc[5] expected = Series( [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5 ) tm.assert_series_equal(result, expected) result = df.loc[5] tm.assert_series_equal(result, expected) # indexing - boolean result = df[df.a > df.a[3]] expected = df.iloc[4:] tm.assert_frame_equal(result, expected) # indexing - setting an element df = DataFrame( data=pd.to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]), columns=["time"], ) df["new_col"] = ["new", "old"] df.time = df.set_index("time").index.tz_localize("UTC") v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific") # trying to set a single element on a part of a different timezone # this converts to object df2 = df.copy() df2.loc[df2.new_col == "new", "time"] = v expected = Series([v[0], df.loc[1, "time"]], name="time") tm.assert_series_equal(df2.time, expected) v = df.loc[df.new_col == "new", "time"] + pd.Timedelta("1s") df.loc[df.new_col == "new", "time"] = v tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v) def test_consistency_with_tz_aware_scalar(self): # xef gh-12938 # various ways of indexing the same tz-aware scalar df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame() df = pd.concat([df, df]).reset_index(drop=True) expected = Timestamp("2016-03-30 14:35:25+0200", tz="Europe/Brussels") result = df[0][0] assert result == expected result = df.iloc[0, 0] assert result == expected result = df.loc[0, 0] assert result == expected result = df.iat[0, 0] assert result == expected result = df.at[0, 0] assert result == expected result = df[0].loc[0] assert result == expected result = df[0].at[0] assert result == expected def test_indexing_with_datetimeindex_tz(self): # GH 12050 # indexing on a series with a datetimeindex with tz index = date_range("2015-01-01", periods=2, tz="utc") ser = Series(range(2), index=index, dtype="int64") # list-like indexing for sel in (index, list(index)): # getitem tm.assert_series_equal(ser[sel], ser) # setitem result = ser.copy() result[sel] = 1 expected =
Series(1, index=index)
pandas.Series
import pandas as pd import numpy as np import pickle import shap from lightgbm import LGBMClassifier def get_new_prediction(bus_line, hour, month, day, bus_carrying_cap, city, temp, pressure, bus_age, total_rain): ''' This function calculates new predictions for a given bus line, hour, month, day, bus carrying capacity, bus age (years), city, temperature (degrees celcius), pressure (kPA) and rain (mm). Assumes that a file named final_fitted.pickle is in the results/ml_model directory. This is solely for use in the interactive report so the user can dynamically generate a graph as needed by querying results from the model. Arguments are fed to this function via. user selected input in the report. Parameters: bus_line: A str that represents one of the bus lines in the Greater Vancouver area. hour: An integer 0-23 representing a particular hour of the day. month: An integer 1-12 representing a particular month of the year. day: A str (Mon, Tue, Wed, Thu, Fri, Sat, Sun) that represents a particular day of the week. bus_carrying_cap: An integer representing the carrying capacity of a bus. city: A str representing the city of interest. temp: A float representing the temperature in degrees celsius. pressure: A float representing the atmospheric pressure in kPa bus_age: An integer representing the bus age in years. total_rain: A float representing the total rain in mm. Returns: dict A dictionary with keys shap, predicted, and column_names containing the SHAP scores (numpy array), predicted 0/1 scores (numpy array), and column names used in the model fit (list). ''' shuttles = ["23", "31", "42", "68", "103", "105", "109", "131", "132", "146", "147", "148", "157", "169", "170", "171", "172", "173", "174", "175", "180", "181", "182", "184", "185", "186", "187", "189", "215", "227", "251", "252", "256", "262", "280", "281", "282", "310", "322", "360", "361", "362", "363", "370", "371", "372", "373", "412", "413", "414", "416", "560", "561", "562", "563", "564", "609", "614", "616", "617", "618", "619", "719", "722", "733", "741", "743", "744", "745", "746", "748", "749"] # The values that are held constant: just use the means/modes new_data = pd.DataFrame({ 'hour': pd.Series(hour, dtype='int'), 'day_of_week': pd.Series(day, dtype='str'), 'bus_age': pd.Series(bus_age, dtype='float'), 'bus_carry_capacity': pd.Series(bus_carrying_cap if bus_carrying_cap != "NA" else np.nan, dtype='float'), 'line_no': pd.Series(bus_line, dtype='str'), 'city': pd.Series(city, dtype='str'), 'pressure': pd.Series(pressure, dtype='float'), 'rel_hum': pd.Series(93, dtype='float'), 'elev': pd.Series(2.5, dtype='float'), 'temp': pd.Series(temp, dtype='float'), 'visib': pd.Series(48.3, dtype='float'), 'wind_dir': pd.Series(0, dtype='float'), 'wind_spd': pd.Series(2, dtype='float'), 'total_precip': pd.Series(total_rain, dtype='float'), 'total_rain': pd.Series(total_rain, dtype='float'), 'total_snow':
pd.Series(0, dtype='float')
pandas.Series
# -*- coding: utf-8 -*- """ Input file loading and caching system. """ import itertools import json import os import pathlib import re import secrets import sys from typing import Dict, List, Optional, Tuple, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.interpolate as scpi import scipy.spatial.transform as scpt import seaborn as sns import swifter from perceptree.common.cache import update_dict_recursively from perceptree.common.configuration import Config from perceptree.common.configuration import Configurable from perceptree.common.graph_saver import GraphSaver from perceptree.common.logger import Logger from perceptree.common.logger import ParsingBar from perceptree.common.logger import LoadingBar from perceptree.common.math import carthesian_to_spherical from perceptree.common.math import spherical_to_carthesian from perceptree.common.util import dict_of_lists from perceptree.common.util import parse_bool_string from perceptree.common.util import tuple_array_to_numpy from perceptree.data.treeio import TreeFile from perceptree.data.treeio import TreeImage from perceptree.data.treeio import TreeStatistic class BaseDataLoader(Logger): """ Input file loading and caching system. """ @staticmethod def _create_empty_scores() -> pd.DataFrame: """ Create empty results dataframe as per _compile_scores return. """ return pd.DataFrame({ "tree_id": int(), "tree_variant_id": int(), "tree_jod": int(), "tree_jod_low": float(), "tree_jod_high": float(), "tree_jod_var": float() }, index=[ ]).set_index([ "tree_id", "tree_variant_id" ]) @staticmethod def _generate_reduced_scores(full_scores: pd.DataFrame) -> pd.DataFrame: """ Generate reduced scores from given full scores. """ return full_scores.reset_index() \ .drop([ "tree_variant_id" ], axis=1) \ .set_index([ "tree_id" ]) @staticmethod def _create_empty_results() -> pd.DataFrame: """ Create empty results dataframe as per _extract_results return. """ return pd.DataFrame({ "index": int(), "first_tree_id": int(), "first_tree_variant_id": int(), "first_view_id": int(), "first_view_variant_id": int(), "second_tree_id": int(), "second_tree_variant_id": int(), "second_view_id": int(), "second_view_variant_id": int(), "worker_id": str(), "choice": int() }, index=[ ]).set_index("index") @staticmethod def _generate_reduced_results(full_results: pd.DataFrame) -> pd.DataFrame: """ Generate reduced results from given full results. """ return full_results.reset_index() \ .drop([ "first_tree_variant_id", "first_view_variant_id", "second_tree_variant_id", "second_view_variant_id" ], axis=1) \ .set_index([ "index" ]) @staticmethod def _create_empty_view_catalogue() -> pd.DataFrame: """ Create empty results dataframe as per _view_catalogue return. """ return pd.DataFrame({ "tree_id": int(), "tree_variant_id": int(), "view_id": int(), "view_variant_id": int(), "view_type": str(), "path": str(), "json_path": str(), "data": object() }, index=[ ]).set_index(["tree_id", "view_id", "view_variant_id", "view_type"]) @staticmethod def _generate_reduced_view_catalogue(full_view_catalogue: pd.DataFrame) -> pd.DataFrame: """ Generate reduced view catalogue from given full view catalogue. """ return full_view_catalogue.reset_index() \ .drop([ "tree_variant_id", "view_variant_id", "json_path" ], axis=1) \ .set_index([ "tree_id", "view_id", "view_type" ]) @staticmethod def _create_empty_tree_catalogue() -> pd.DataFrame: """ Create empty results dataframe as per _tree_catalogue return. """ return pd.DataFrame({ "tree_id": int(), "tree_variant_id": int(), "path": str(), "json_path": str(), "data": object() }, index=[ ]).set_index(["tree_id", "tree_variant_id"]) @staticmethod def _generate_reduced_tree_catalogue(full_tree_catalogue: pd.DataFrame) -> pd.DataFrame: """ Generate reduced tree catalogue from given full tree catalogue. """ return full_tree_catalogue.reset_index() \ .drop([ "tree_variant_id", "json_path" ], axis=1) \ .set_index([ "tree_id" ]) @staticmethod def _create_empty_tree_data() -> dict: """ Create empty results dict as per _tree_data return. """ return { } @staticmethod def _create_empty_available_features() -> dict: """ Create empty results dict as per _available_features return. """ return { } @staticmethod def _create_empty_dataset_path() -> str: """ Create empty results str as per _dataset_path return. """ return "" @staticmethod def _create_empty_dataset_meta() -> dict: """ Create empty results dict as per _dataset_meta return. """ return { "unique_id": "EMPTY" } @staticmethod def _create_empty_indexed_scores() -> pd.DataFrame: """ Create empty results dataframe as per _index_scores return. """ return pd.DataFrame({ "tree_id": int(), "tree_variant_id": int(), "view_id": int(), "view_variant_id": int(), "jod": float(), "jod_low": float(), "jod_high": float(), "jod_var": float() }, index=[ ]).set_index(["tree_id", "tree_variant_id", "view_id", "view_variant_id"]) @staticmethod def _generate_reduced_scores_indexed(full_scores_indexed: pd.DataFrame) -> pd.DataFrame: """ Generate reduced indexed scores from given full indexed scores. """ return full_scores_indexed.reset_index() \ .drop([ "tree_variant_id", "view_variant_id" ], axis=1) \ .set_index([ "tree_id", "view_id" ]) @staticmethod def _create_empty_spherical_indexed_scores() -> pd.DataFrame: """ Create empty results dataframe as per _spherical_scores_indexed return. """ return pd.DataFrame({ "tree_id": int(), "tree_variant_id": int(), "view_id": int(), "view_variant_id": int(), "jod": float(), "jod_low": float(), "jod_high": float(), "jod_var": float() }, index=[ ]).set_index(["tree_id", "tree_variant_id", "view_id", "view_variant_id"]) def _index_scores(self, scores: pd.DataFrame) -> pd.DataFrame: """ Create indexed score data-frame, where -1st view is for the complete tree. :param scores: Input scores data-frame. :return: Returns data-frame indexed by ("tree_id", "view_id"), where view_id == -1 contains data for the whole tree. Result contains following columns: * tree_id, view_id - Integer index for unique tree/view. * jod, jod_low, jod_high, jod_var - JOD properties. """ self.__l.info(f"Indexing {len(scores)} scores...") if len(scores) <= 0: self.__l.info(f"Input scores are empty, returning empty frame!") return BaseDataLoader._create_empty_indexed_scores() def convert_row(row): view_count = (len(row) // 4) - 1 return pd.DataFrame(([ { "tree_id": row["tree_id"], "tree_variant_id": row["tree_variant_id"], "view_id": -1, "view_variant_id": 0, # TODO - Add support for tree and view variants. "jod": row["tree_jod"], "jod_low": row["tree_jod_low"], "jod_high": row["tree_jod_high"], "jod_var": row["tree_jod_var"], } ] if "tree_jod" in row else [ ]) + ([ { "tree_id": row["tree_id"], "tree_variant_id": row["tree_variant_id"], "view_id": view_idx, "view_variant_id": 0, # TODO - Add support for tree and view variants. "jod": row[f"view{view_idx}_jod"], "jod_low": row[f"view{view_idx}_jod_low"], "jod_high": row[f"view{view_idx}_jod_high"], "jod_var": row[f"view{view_idx}_jod_var"], } for view_idx in range(view_count) ])) scores_indexed = pd.concat([ convert_row(row) for index, row in scores.reset_index().iterrows() ]) scores_indexed["tree_id"] = scores_indexed["tree_id"].astype("int64") scores_indexed["tree_variant_id"] = scores_indexed["tree_variant_id"].astype("int64") scores_indexed.set_index(["tree_id", "tree_variant_id", "view_id", "view_variant_id"], inplace=True) self.__l.info(f"\tIndexing complete, resulting in {len(scores_indexed)} records.") return scores_indexed def _check_view_tree_catalogue(self, base_path: str, view_catalogue: pd.DataFrame, tree_catalogue: pd.DataFrame, scores_indexed: pd.DataFrame) -> bool: """ Check whether all necessary view are accounted for and present in the data-set. :param base_path: Base path where the data-set exists. :param view_catalogue: Catalogue containing all information about the views. :param tree_catalogue: Catalogue containing all information about trees. :param scores_indexed: Indexed scores for trees and views. :return: Returns True if all necessary views are present. """ self.__l.info(f"Checking view catalogue with {len(view_catalogue)} views...") tree_count = len(view_catalogue.index.unique(level=0)) tree_variant_count = len(view_catalogue.index.unique(level=1)) view_count = len(view_catalogue.index.unique(level=2)) view_variant_count = len(view_catalogue.index.unique(level=3)) view_type_count = len(view_catalogue.index.unique(level=4)) expected_view_count = tree_count * tree_variant_count * view_count * view_variant_count * view_type_count if len(view_catalogue) != expected_view_count: self.__l.warning(f"\tView catalogue does not contain all expected " f"views ({len(view_catalogue)} / {expected_view_count})!") #return False # Check views: if len(view_catalogue) < 1000: for index, view in view_catalogue.iterrows(): if not os.path.isfile(f"{base_path}/{view.path}"): self.__l.warning(f"\tView catalogue contains non-existent view " f"\"{view.path}\"!") return False if view.json_path and not os.path.isfile(f"{base_path}/{view.json_path}"): self.__l.warning(f"\tView catalogue contains non-existent json description " f"\"{view.json_path}\"!") return False else: self.__l.warning(f"\tSkipping view catalog checking since it has {len(view_catalogue)} items!") self.__l.info(f"\tView catalogue successfully checked!") self.__l.info(f"Checking tree catalogue with {len(tree_catalogue)} trees...") # Check .tree files: for index, tree in tree_catalogue.iterrows(): if not os.path.isfile(f"{base_path}/{tree.path}"): self.__l.warning(f"\tView catalogue contains non-existent tree " f"\"{tree.path}\"!") return False if tree.json_path and not os.path.isfile(f"{base_path}/{tree.json_path}"): self.__l.warning(f"\tView catalogue contains non-existent json description " f"\"{tree.json_path}\"!") return False self.__l.info(f"\tTree catalogue successfully checked!") return True def _prepare_spherical_knots(self, variant_jsons: dict, tree_scores: pd.DataFrame) -> (dict, np.array): """ Prepare tree view knot points for spherical interpolation. """ base_view_json = variant_jsons[(0, 0)] base_height = base_view_json["state"]["camera"]["height"]["base"] base_distance = base_view_json["state"]["camera"]["distance"]["base"] origin_pos = np.array([ 0.0, 0.0, 0.0 ]) bottom_pos = np.array([ 0.0, -base_distance, 0.0 ]) top_pos = np.array([ 0.0, base_distance, 0.0 ]) base_pos = np.array([ base_distance, base_height, 0.0 ]) scores = tree_scores.set_index("view_id") knot_dict = { view_id: { "score": scores.loc[view_id].jod, "pos": scpt.Rotation.from_euler( "XYZ", variant_json["tree"]["rotation"], degrees=False ).apply(variant_json["camera"]["pos"]) } for (view_id, variant_id), variant_json in variant_jsons.items() if variant_id == 0 } knot_dict[-3] = { "score": scores.loc[-1].jod, "pos": origin_pos } knot_dict[-2] = { "score": scores.loc[-1].jod, "pos": bottom_pos } knot_dict[-1] = { "score": scores.loc[-1].jod, "pos": top_pos } knots = np.array([ [spherical[1], spherical[2], score["score"]] for view_id, score in knot_dict.items() for spherical in [carthesian_to_spherical(score["pos"])] ]) return knot_dict, knots def _prepare_spherical_lut(self, knots: np.array, method: str) -> (object, dict): """ Calculate spherical interpolation look-up table for given knots. """ if method == "rbf": lut = scpi.Rbf(knots[:, 0], knots[:, 1], knots[:, 2], function="multiquadric") lut_kws = { } if method == "wrap_rbf": def great_circle_distance(u: np.array, v: np.array) -> float: """ Calculate great circle distance. """ u_lats, v_lats = u[1], v[1] u_lons, v_lons = u[0], v[0] delta_lons = np.abs(v_lons - u_lons) return np.arctan2( np.sqrt( (np.cos(v_lats) * np.sin(delta_lons)) ** 2.0 + (np.cos(u_lats) * np.sin(v_lats) - np.sin(u_lats) * np.cos(v_lats) * np.cos(delta_lons)) ** 2.0 ), np.sin(u_lats) * np.sin(v_lats) + np.cos(u_lats) * np.cos(v_lats) * np.cos(delta_lons) ) def wrap_around_norm(u: np.array, v: np.array) -> np.array: return great_circle_distance(u, v) lut = scpi.Rbf(knots[:, 0], knots[:, 1], knots[:, 2], function="gaussian", norm=wrap_around_norm) lut_kws = { } elif method == "smooth": lut = scpi.SmoothSphereBivariateSpline(knots[:, 0], knots[:, 1], knots[:, 2], s=32.0) lut_kws = { "grid": False } elif method == "rect": orig_resolution = ( np.where(knots[1:, 0] == knots[0, 0])[0][0] + 1, np.where((knots[1:, 1] - knots[:-1, 1]) > 0.0)[0][0] + 1 ) fit_knots = [ knots[:orig_resolution[0], 0], knots[::orig_resolution[1], 1], knots[:, 2].reshape((orig_resolution[0], orig_resolution[1])) ] fit_knots[0][0] += 0.0001 fit_knots[1][-1] -= 0.0001 lut = scpi.RectSphereBivariateSpline(fit_knots[0], fit_knots[1], fit_knots[2], pole_continuity=False) lut_kws = { "grid": False } elif method == "lsq": orig_resolution = ( np.where(knots[1:, 0] == knots[0, 0])[0][0] + 1, np.where((knots[1:, 1] - knots[:-1, 1]) > 0.0)[0][0] + 1 ) fit_knots = [ knots[:orig_resolution[0], 0], knots[::orig_resolution[1], 1], knots[:, 2].reshape((orig_resolution[0], orig_resolution[1])) ] fit_knots[0][0] += 0.0001 fit_knots[0][-1] -= 0.0001 fit_knots[1][0] += 0.0001 fit_knots[1][-1] -= 0.0001 lut = scpi.LSQSphereBivariateSpline(knots[:, 0], knots[:, 1], knots[:, 2], fit_knots[0], fit_knots[1]) lut_kws = { "grid": False } return lut, lut_kws def _prepare_spherical_smooth_grid(self, knots: np.array, lut: object, lut_kws: dict, resolution: tuple, visualize: bool = False, visualize_knots: bool = False) -> (np.array, np.array): """ Calculate smooth grid using provided knot points and a look-up table. """ smooth_grid = np.meshgrid(np.linspace(0.0, np.pi, resolution[0]), np.linspace(0.0, 2.0 * np.pi, resolution[1])) smooth_data = np.reshape(lut(smooth_grid[0].ravel(), smooth_grid[1].ravel(), **lut_kws), resolution) if visualize: fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot() vmin, vmax = np.min(smooth_data), np.max(smooth_data) cmap = plt.get_cmap("viridis") ax.imshow(smooth_data, origin="lower", extent=(0.0, np.pi, 0.0, 2.0 * np.pi), interpolation="nearest", cmap=cmap, vmin=vmin, vmax=vmax) if visualize_knots: ax.scatter(knots[:, 0], knots[:, 1], c=knots[:, 2], s=45, cmap=cmap, vmin=vmin, vmax=vmax) ax.scatter(knots[:, 0], knots[:, 1], c="red", s=5) ax.set_xlabel("Phi") ax.set_ylabel("Theta") plt.show() return smooth_data, smooth_grid def _prepare_spherical_map(self, knots: np.array, resolutions: List[tuple], methods: List[str], visualize_map: bool = False, visualize_views: bool = False, visualize_view_count: int = 10) -> (object, dict): """ Create final look-up table for spherical coordinate views, mapping to scores. """ if len(resolutions) == 0 or len(resolutions) != len(methods): return None, { } current_knots = knots for idx, (resolution, method) in enumerate(zip(resolutions, methods)): is_first = idx == 0 is_last = idx == len(resolutions) - 1 lut, lut_kws = self._prepare_spherical_lut( knots=current_knots, method=method ) if not is_last: smooth_data, smooth_grid = self._prepare_spherical_smooth_grid( knots=current_knots, lut=lut, lut_kws=lut_kws, resolution=resolution, visualize=visualize_map, visualize_knots=is_first ) current_knots = np.array([ [ phi, theta, score ] for phi, theta, score in zip(smooth_grid[0].ravel(), smooth_grid[1].ravel(), smooth_data.ravel()) ]) if visualize_views: smooth_data, smooth_grid = self._prepare_spherical_smooth_grid( knots=current_knots, lut=lut, lut_kws=lut_kws, resolution=resolutions[-1], visualize=visualize_map, visualize_knots=False ) points = np.array([ spherical_to_carthesian([ 1.0, phi, theta ]) for phi, theta, score in zip(smooth_grid[0].ravel(), smooth_grid[1].ravel(), smooth_data.ravel()) ]) colors = np.array([ score for phi, theta, score in zip(smooth_grid[0].ravel(), smooth_grid[1].ravel(), smooth_data.ravel()) ]) colors = (colors - np.min(colors)) / (np.max(colors) - np.min(colors)) cmap = plt.get_cmap("viridis") fig = plt.figure(figsize=(4 * visualize_view_count, 4)) for idx, rotation in enumerate(np.linspace(0.0, 360.0, visualize_view_count + 1)[:-1]): ax = fig.add_subplot(1, visualize_view_count, idx + 1, projection="3d") ax.plot_surface(points[:, 0].reshape(smooth_data.shape), points[:, 1].reshape(smooth_data.shape), points[:, 2].reshape(smooth_data.shape), rstride=1, cstride=1, facecolors=cmap(colors.reshape(smooth_data.shape))) ax.set_axis_off() ax.view_init(0, rotation) plt.show() return lut, lut_kws def _prepare_spherical_scores(self, variant_jsons: dict, tree_scores: pd.DataFrame, lut: object, lut_kws: dict) -> dict: """ Calculate interpolated variant scores using look-up table. """ scores = tree_scores.set_index("view_id") spherical_scores = { (view_id, variant_id): { "car_pos": view_pos, "sph_pos": sph_pos, "base_score": scores.loc[view_id].jod, "score": lut(sph_pos[0], sph_pos[1], **lut_kws) } for (view_id, variant_id), variant_json in variant_jsons.items() for view_pos in [ scpt.Rotation.from_euler( "XYZ", variant_json["tree"]["rotation"], degrees=False ).apply(variant_json["camera"]["pos"]) ] for sph_pos in [ carthesian_to_spherical(view_pos) ] } # Add spherical score for the complete tree. spherical_scores[( -1, 0 )] = { "car_pos": np.array([ 0.0, 0.0, 0.0 ]), "sph_pos": carthesian_to_spherical(np.array([ 0.0, 0.0, 0.0 ])), "base_score": scores.loc[-1].jod, "score": scores.loc[-1].jod, } return spherical_scores def _prepare_spherical_indexed_scores(self, base_path: str, view_catalogue: pd.DataFrame, tree_catalogue: pd.DataFrame, scores_indexed: pd.DataFrame) -> pd.DataFrame: """ Augment indexed score data-frame with spherical interpolation for each view/tree variant. :param base_path: Base path where the data-set exists. :param view_catalogue: Catalogue containing all information about the views. :param tree_catalogue: Catalogue containing all information about trees. :param scores_indexed: Indexed scores for trees and views. :return: Returns data-frame indexed by ("tree_id", "view_id", "view_variant_id"), where view_id == -1 contains data for the whole tree. Result contains following columns: * tree_id, view_id, view_variant_id - Integer index for unique tree/view and the specific view variant. * jod, jod_low, jod_high, jod_var - JOD properties. """ if len(scores_indexed) <= 0: self.__l.info(f"Input scores are empty, returning empty spherical scores frame!") return BaseDataLoader._create_empty_spherical_indexed_scores() all_views = view_catalogue.reset_index() all_scores = scores_indexed.reset_index() tree_ids = scores_indexed.index.unique(level=0) # TODO - Support tree variants. tree_variant = 0 spherical_indexed_scores = [ ] self.__l.info(f"Preparing spherical indexed scores for {len(tree_catalogue)} trees...") loading_progress = LoadingBar("", max=len(tree_catalogue)) for tree_id in tree_ids: # Calculate interpolations for each tree. tree_views = all_views[ (all_views.tree_id == tree_id) & (all_views.tree_variant_id == tree_variant) ] tree_scores = all_scores[ (all_scores.tree_id == tree_id) & (all_scores.tree_variant_id == tree_variant) ] # Prepare variants and load descriptions. variant_jsons = { } variants = set() for idx, row in tree_views.iterrows(): variants.add(( row.tree_id, row.tree_variant_id, row.view_id, row.view_variant_id )) if (row.view_id, row.view_variant_id) in variant_jsons or row.json_path == "": continue with open(f"{base_path}/{row.json_path}", "r") as jf: variant_jsons[(row.view_id, row.view_variant_id)] = json.load(jf) # Add variant for the complete tree. variants.add(( tree_id, 0, -1, 0 )) if len(variant_jsons) == 0: # No variants or missing json descriptions -> Use existing scores. for variant in variants: scores = scores_indexed.loc[(variant[0], variant[1], variant[2], variant[3])] spherical_indexed_scores.append(( variant[0], variant[1], variant[2], variant[3], # Use the same JOD for variant as the base. scores.jod, scores.jod, scores.jod_low, scores.jod_high, scores.jod_var )) continue # Sanity check, we should always have at least view, variant with ID (0, 0). assert((0, 0) in variant_jsons) # Calculate spherical interpolation map. knot_dict, knots = self._prepare_spherical_knots( variant_jsons=variant_jsons, tree_scores=tree_scores ) lut, lut_kws = self._prepare_spherical_map( # TODO - Parameterize this by script arguments. knots=knots, resolutions=[ (36, 36), (72, 72) ], methods=[ "wrap_rbf", "rbf" ], visualize_map=False, visualize_views=False, visualize_view_count=10 ) # Interpolate variant scores using the spherical map. spherical_scores = self._prepare_spherical_scores( variant_jsons=variant_jsons, tree_scores=tree_scores, lut=lut, lut_kws=lut_kws ) # Save results. for variant in variants: scores = scores_indexed.loc[(variant[0], variant[1], variant[2], 0)] new_scores = spherical_scores[(variant[2], variant[3])] assert(scores.jod == new_scores["base_score"]) spherical_indexed_scores.append(( variant[0], variant[1], variant[2], variant[3], # Use the new interpolated JOD score. new_scores["score"], scores.jod, scores.jod_low, scores.jod_high, scores.jod_var )) loading_progress.next(1) loading_progress.finish() spherical_scores_indexed = pd.DataFrame( data=spherical_indexed_scores, columns=( "tree_id", "tree_variant_id", "view_id", "view_variant_id", "jod", "base_jod", "jod_low", "jod_high", "jod_var" ) ) spherical_scores_indexed.set_index(["tree_id", "tree_variant_id", "view_id", "view_variant_id"], inplace=True) spherical_scores_indexed.sort_index(inplace=True) self.__l.info(f"\tDone, prepared {len(spherical_indexed_scores)} spherical scores.") return spherical_scores_indexed def _load_tree_data(self, base_path: str = "", tree_catalogue: pd.DataFrame = pd.DataFrame(), load_node_data: bool = True, allow_preloaded: bool = False) -> Dict[Tuple[int, int], TreeFile]: """ Load all tree data files from given catalogue. """ self.__l.info(f"Loading tree data from {len(tree_catalogue)} .tree files...") tree_data = { } parsing_progress = ParsingBar("", max=len(tree_catalogue)) for index, tree in tree_catalogue.iterrows(): if allow_preloaded and tree.data is not None: tree_data[index] = tree.data else: tree_data[index] = TreeFile( file_path=f"{base_path}/{tree.path}", load_node=load_node_data, ) if tree.path else None parsing_progress.next(1) parsing_progress.finish() self.__l.info(f"\tDone, loaded {len(tree_data)} tree files.") return tree_data def _determine_available_features(self, view_catalogue: pd.DataFrame, tree_data: Dict[Tuple[int, int], TreeFile], load_node_data: bool) -> dict: """ Create a hierarchy of feature names available for use. """ self.__l.info(f"Determining available features...") available_features = { "stat": np.unique([ name for tree in tree_data.values() if tree is not None and "stats" in tree.dynamic_meta_data for name, item in tree.dynamic_meta_data["stats"].items() if TreeStatistic.is_stat_dict(item) ]), "image": np.unique([ name for tree in tree_data.values() if tree is not None and "stats" in tree.dynamic_meta_data and "visual" in tree.dynamic_meta_data["stats"] for name, item in tree.dynamic_meta_data["stats"]["visual"].items() if TreeImage.is_image_dict(item) ]), "other": dict_of_lists([ v.split(".") for v in np.unique([ f"{name}.{element}" for tree in tree_data.values() if tree is not None and "stats" in tree.dynamic_meta_data for name, item in tree.dynamic_meta_data["stats"].items() if not TreeStatistic.is_stat_dict(item) and name != "visual" for element in item.keys() ]) ]), "view": view_catalogue.reset_index().view_type.unique(), # TODO - Detect available skeleton features? "skeleton": [ "segment", "position", "thickness" ] if load_node_data else [ ] } totals = { name: len(features) for name, features in available_features.items() } self.__l.info(f"\tDone, found { totals } available features.") return available_features def _load_empty(self): """ Load empty data definitions. """ self._full_results = self._create_empty_results() self._results = self._generate_reduced_results( full_results=self._full_results ) self._users = self._create_empty_users() self._full_scores = self._create_empty_scores() self._scores = self._generate_reduced_scores( full_scores=self._full_scores ) self._full_scores_indexed = self._create_empty_indexed_scores() self._scores_indexed = self._generate_reduced_scores_indexed( full_scores_indexed=self._full_scores_indexed ) self._full_view_catalogue = self._create_empty_view_catalogue() self._view_catalogue = self._generate_reduced_view_catalogue( full_view_catalogue=self._full_view_catalogue ) self._full_tree_catalogue = self._create_empty_tree_catalogue() self._tree_catalogue = self._generate_reduced_tree_catalogue( full_tree_catalogue=self._full_tree_catalogue ) self._spherical_scores_indexed = self._create_empty_spherical_indexed_scores() self._tree_data = self._create_empty_tree_data() self._available_features = self._create_empty_available_features() self._view_base_path = self._create_empty_dataset_path() self._dataset_meta = self._create_empty_dataset_meta() def _load_as_dataset(self, dataset_path: str, use_dithered: bool, use_augment: bool, use_augment_variants: Optional[int]): """ Load data as a pre-exported data-set. """ results_path = f"{dataset_path}/results.csv" if not os.path.isfile(results_path): raise RuntimeError(f"Dataset at \"{dataset_path}\" does not contain results.csv!") users_path = f"{dataset_path}/users.csv" if not os.path.isfile(users_path): raise RuntimeError(f"Dataset at \"{dataset_path}\" does not contain users.csv!") scores_path = f"{dataset_path}/scores.csv" if not os.path.isfile(scores_path): raise RuntimeError(f"Dataset at \"{dataset_path}\" does not contain scores.csv!") scores_indexed_path = f"{dataset_path}/scores_indexed.csv" if not os.path.isfile(scores_indexed_path): self.__l.warning(f"Dataset at \"{dataset_path}\" does not contain scores_indexed.csv, using a dummy!") dummy_df = BaseDataLoader._create_empty_indexed_scores() dummy_df.to_csv(scores_indexed_path, sep=";", index=True) spherical_scores_indexed_path = f"{dataset_path}/spherical_scores_indexed.csv" if not os.path.isfile(spherical_scores_indexed_path): self.__l.warning(f"Dataset at \"{dataset_path}\" does not contain spherical_scores_indexed.csv, using a dummy!") dummy_df = BaseDataLoader._create_empty_spherical_indexed_scores() dummy_df.to_csv(spherical_scores_indexed_path, sep=";", index=True) view_catalogue_path = f"{dataset_path}/view_catalogue.csv" if not os.path.isfile(view_catalogue_path): raise RuntimeError(f"Dataset at \"{dataset_path}\" does not contain view_catalogue.csv!") tree_catalogue_path = f"{dataset_path}/tree_catalogue.csv" if not os.path.isfile(tree_catalogue_path): raise RuntimeError(f"Dataset at \"{dataset_path}\" does not contain tree_catalogue.csv!") dataset_meta_path = f"{dataset_path}/dataset_meta.json" if not os.path.isfile(dataset_meta_path): raise RuntimeError(f"Dataset at \"{dataset_path}\" does not contain dataset_meta.json!") results = pd.read_csv(results_path, sep=";") if "first_view_variant_id" not in results: # Old-style dataset -> Add new columns: results["first_tree_variant_id"] = 0 results["first_view_variant_id"] = 0 results["second_tree_variant_id"] = 0 results["second_view_variant_id"] = 0 users = pd.read_csv(users_path, sep=";") users.set_index(["worker_id"], inplace=True) scores = pd.read_csv(scores_path, sep=";") if "tree_variant_id" not in scores: # Old-style dataset -> Add new columns: scores["tree_variant_id"] = 0 scores["tree_id"] = scores["tree_id"].astype(int) scores.set_index(["tree_id", "tree_variant_id"]) view_catalogue = pd.read_csv(view_catalogue_path, sep=";") view_catalogue["data"] = None if "view_variant_id" not in view_catalogue: # Old-style dataset -> Add new columns: view_catalogue["tree_variant_id"] = 0 view_catalogue["view_variant_id"] = 0 view_catalogue["json_path"] = "" view_catalogue.loc[
pd.isna(view_catalogue.json_path)
pandas.isna
# Import dependencies from bs4 import BeautifulSoup import requests from splinter import Browser from webdriver_manager.chrome import ChromeDriverManager import pandas as pd def init_browser(): # Note: Replace the path with your actual path to the chromedriver executable_path = {'executable_path': '/usr/local/bin/chromedriver'} return Browser('chrome', **executable_path, headless=False) ''' # @NOTE: Replace the path with your actual path to the chromedriver executable_path = {'executable_path': '/usr/local/bin/chromedriver'} browser = Browser('chrome', **executable_path, headless=False)''' def scrape(): scraped_data={} output=NASA_Mars_News() scraped_data['mars_news_title']=output[0] scraped_data['mars_paragraph']=output[1] scraped_data['mars_image']=NASA_Mars_Image() scraped_data['mars_facts']=NASA_Mars_Facts() scraped_data['mars_hemisphere']=NASA_Mars_Hemispheres() return scraped_data def NASA_Mars_News(): browser=init_browser() url = 'https://mars.nasa.gov/news/' browser.visit(url) html = browser.html # create a Beautifulsoup object and parse with 'html.parser' soup = BeautifulSoup(html,'html.parser') latest_news_article_title = soup.find("div", class_='list_text').find('a').text latest_news_article_paragraph = soup.find("div", class_='article_teaser_body').text output=[latest_news_article_title,latest_news_article_paragraph] browser.quit() return output def NASA_Mars_Image(): browser = init_browser() url = 'https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars' browser.visit(url) html = browser.html # create a Beautifulsoup object and parse with 'html.parser' soup = BeautifulSoup(html,'html.parser') image = soup.find('div',class_='carousel_items') image_url = image.article['style'] new_image_url = image_url.split(' ')[1].split("(")[1].split(" ' ")[0][1:-3] new_image_url featured_image_url = "https://www.jpl.nasa.gov" + new_image_url browser.quit() return featured_image_url def NASA_Mars_Facts(): browser = init_browser() url = 'https://space-facts.com/mars/' browser.visit(url) mars_facts = pd.read_html(url) mars_facts_df =
pd.DataFrame(mars_facts[0])
pandas.DataFrame
import pandas as pd from sequence.app.random_request import RandomRequestApp from sequence.kernel.timeline import Timeline from sequence.topology.node import QuantumRouter, BSMNode from sequence.topology.topology import Topology if __name__ == "__main__": # Experiment params and config network_config_file = "example/starlight.json" runtime = 1e15 tl = Timeline(runtime) tl.seed(1) network_topo = Topology("network_topo", tl) network_topo.load_config(network_config_file) # set memory parameters MEMO_FREQ = 2e3 MEMO_EXPIRE = 1.3 MEMO_EFFICIENCY = 0.75 MEMO_FIDELITY = 0.9349367588934053 for name, node in network_topo.nodes.items(): if isinstance(node, QuantumRouter): node.memory_array.update_memory_params("frequency", MEMO_FREQ) node.memory_array.update_memory_params("coherence_time", MEMO_EXPIRE) node.memory_array.update_memory_params("efficiency", MEMO_EFFICIENCY) node.memory_array.update_memory_params("raw_fidelity", MEMO_FIDELITY) # set detector parameters DETECTOR_EFFICIENCY = 0.8 DETECTOR_COUNT_RATE = 5e7 DETECTOR_RESOLUTION = 100 for name, node in network_topo.nodes.items(): if isinstance(node, BSMNode): node.bsm.update_detectors_params("efficiency", DETECTOR_EFFICIENCY) node.bsm.update_detectors_params("count_rate", DETECTOR_COUNT_RATE) node.bsm.update_detectors_params("time_resolution", DETECTOR_RESOLUTION) # set quantum channel parameters ATTENUATION = 0.0002 QC_FREQ = 1e11 for qc in network_topo.qchannels: qc.attenuation = ATTENUATION qc.frequency = QC_FREQ # set entanglement swapping parameters SWAP_SUCC_PROB = 0.64 SWAP_DEGRADATION = 0.99 for name, node in network_topo.nodes.items(): if isinstance(node, QuantumRouter): node.network_manager.protocol_stack[1].set_swapping_success_rate(SWAP_SUCC_PROB) node.network_manager.protocol_stack[1].set_swapping_degradation(SWAP_DEGRADATION) nodes_name = [] for name, node in network_topo.nodes.items(): if isinstance(node, QuantumRouter): nodes_name.append(name) apps = [] for i, name in enumerate(nodes_name): app_node_name = name others = nodes_name[:] others.remove(app_node_name) app = RandomRequestApp(network_topo.nodes[app_node_name], others, i, min_dur=1e13, max_dur=2e13, min_size=10, max_size=25, min_fidelity=0.8, max_fidelity=1.0) apps.append(app) app.start() tl.init() tl.run() for app in apps: print(app.node.name) print(" ", len(app.get_wait_time())) print(" ", app.get_wait_time()) throughput = app.get_throughput() print(" ", app.reserves) print(" ", throughput) initiators = [] responders = [] start_times = [] end_times = [] memory_sizes = [] fidelities = [] wait_times = [] throughputs = [] for node in network_topo.nodes.values(): if isinstance(node, QuantumRouter): initiator = node.name reserves = node.app.reserves _wait_times = node.app.get_wait_time() _throughputs = node.app.get_all_throughput() min_size = min(len(reserves), len(_wait_times), len(_throughputs)) reserves = reserves[:min_size] _wait_times = _wait_times[:min_size] _throughputs = _throughputs[:min_size] for reservation, wait_time, throughput in zip(reserves, _wait_times, _throughputs): responder, s_t, e_t, size, fidelity = reservation initiators.append(initiator) responders.append(responder) start_times.append(s_t) end_times.append(e_t) memory_sizes.append(size) fidelities.append(fidelity) wait_times.append(wait_time) throughputs.append(throughput) log = {"Initiator": initiators, "Responder": responders, "Start_time": start_times, "End_time": end_times, "Memory_size": memory_sizes, "Fidelity": fidelities, "Wait_time": wait_times, "Throughput": throughputs} df =
pd.DataFrame(log)
pandas.DataFrame
""" Generic data algorithms. This module is experimental at the moment and not intended for public consumption """ from __future__ import annotations import operator from textwrap import dedent from typing import ( TYPE_CHECKING, Literal, Union, cast, final, ) from warnings import warn import numpy as np from pandas._libs import ( algos, hashtable as htable, iNaT, lib, ) from pandas._typing import ( AnyArrayLike, ArrayLike, DtypeObj, Scalar, TakeIndexer, npt, ) from pandas.util._decorators import doc from pandas.core.dtypes.cast import ( construct_1d_object_array_from_listlike, infer_dtype_from_array, sanitize_to_nanoseconds, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_object, ensure_platform_int, is_array_like, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_datetime64_dtype, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import PandasDtype from pandas.core.dtypes.generic import ( ABCDatetimeArray, ABCExtensionArray, ABCIndex, ABCMultiIndex, ABCRangeIndex, ABCSeries, ABCTimedeltaArray, ) from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, ) from pandas.core.array_algos.take import take_nd from pandas.core.construction import ( array as pd_array, ensure_wrapped_if_datetimelike, extract_array, ) from pandas.core.indexers import validate_indices if TYPE_CHECKING: from pandas._typing import ( NumpySorter, NumpyValueArrayLike, ) from pandas import ( Categorical, DataFrame, Index, Series, ) from pandas.core.arrays import ( DatetimeArray, ExtensionArray, TimedeltaArray, ) _shared_docs: dict[str, str] = {} # --------------- # # dtype access # # --------------- # def _ensure_data(values: ArrayLike) -> np.ndarray: """ routine to ensure that our data is of the correct input dtype for lower-level routines This will coerce: - ints -> int64 - uint -> uint64 - bool -> uint64 (TODO this should be uint8) - datetimelike -> i8 - datetime64tz -> i8 (in local tz) - categorical -> codes Parameters ---------- values : np.ndarray or ExtensionArray Returns ------- np.ndarray """ if not isinstance(values, ABCMultiIndex): # extract_array would raise values = extract_array(values, extract_numpy=True) # we check some simple dtypes first if is_object_dtype(values.dtype): return ensure_object(np.asarray(values)) elif is_bool_dtype(values.dtype): if isinstance(values, np.ndarray): # i.e. actually dtype == np.dtype("bool") return np.asarray(values).view("uint8") else: # i.e. all-bool Categorical, BooleanArray try: return np.asarray(values).astype("uint8", copy=False) except TypeError: # GH#42107 we have pd.NAs present return np.asarray(values) elif is_integer_dtype(values.dtype): return np.asarray(values) elif is_float_dtype(values.dtype): # Note: checking `values.dtype == "float128"` raises on Windows and 32bit # error: Item "ExtensionDtype" of "Union[Any, ExtensionDtype, dtype[Any]]" # has no attribute "itemsize" if values.dtype.itemsize in [2, 12, 16]: # type: ignore[union-attr] # we dont (yet) have float128 hashtable support return ensure_float64(values) return np.asarray(values) elif is_complex_dtype(values.dtype): # Incompatible return value type (got "Tuple[Union[Any, ExtensionArray, # ndarray[Any, Any]], Union[Any, ExtensionDtype]]", expected # "Tuple[ndarray[Any, Any], Union[dtype[Any], ExtensionDtype]]") return values # type: ignore[return-value] # datetimelike elif needs_i8_conversion(values.dtype): if isinstance(values, np.ndarray): values = sanitize_to_nanoseconds(values) npvalues = values.view("i8") npvalues = cast(np.ndarray, npvalues) return npvalues elif is_categorical_dtype(values.dtype): values = cast("Categorical", values) values = values.codes return values # we have failed, return object values = np.asarray(values, dtype=object) return ensure_object(values) def _reconstruct_data( values: ArrayLike, dtype: DtypeObj, original: AnyArrayLike ) -> ArrayLike: """ reverse of _ensure_data Parameters ---------- values : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype original : AnyArrayLike Returns ------- ExtensionArray or np.ndarray """ if isinstance(values, ABCExtensionArray) and values.dtype == dtype: # Catch DatetimeArray/TimedeltaArray return values if not isinstance(dtype, np.dtype): # i.e. ExtensionDtype cls = dtype.construct_array_type() if isinstance(values, cls) and values.dtype == dtype: return values values = cls._from_sequence(values) elif is_bool_dtype(dtype): values = values.astype(dtype, copy=False) # we only support object dtypes bool Index if isinstance(original, ABCIndex): values = values.astype(object, copy=False) elif dtype is not None: if is_datetime64_dtype(dtype): dtype = np.dtype("datetime64[ns]") elif is_timedelta64_dtype(dtype): dtype = np.dtype("timedelta64[ns]") values = values.astype(dtype, copy=False) return values def _ensure_arraylike(values) -> ArrayLike: """ ensure that we are arraylike if not already """ if not is_array_like(values): inferred = lib.infer_dtype(values, skipna=False) if inferred in ["mixed", "string", "mixed-integer"]: # "mixed-integer" to ensure we do not cast ["ss", 42] to str GH#22160 if isinstance(values, tuple): values = list(values) values = construct_1d_object_array_from_listlike(values) else: values = np.asarray(values) return values _hashtables = { "complex128": htable.Complex128HashTable, "complex64": htable.Complex64HashTable, "float64": htable.Float64HashTable, "float32": htable.Float32HashTable, "uint64": htable.UInt64HashTable, "uint32": htable.UInt32HashTable, "uint16": htable.UInt16HashTable, "uint8": htable.UInt8HashTable, "int64": htable.Int64HashTable, "int32": htable.Int32HashTable, "int16": htable.Int16HashTable, "int8": htable.Int8HashTable, "string": htable.StringHashTable, "object": htable.PyObjectHashTable, } def _get_hashtable_algo(values: np.ndarray): """ Parameters ---------- values : np.ndarray Returns ------- htable : HashTable subclass values : ndarray """ values = _ensure_data(values) ndtype = _check_object_for_strings(values) htable = _hashtables[ndtype] return htable, values def _get_values_for_rank(values: ArrayLike) -> np.ndarray: if is_categorical_dtype(values): values = cast("Categorical", values)._values_for_rank() values = _ensure_data(values) if values.dtype.kind in ["i", "u", "f"]: # rank_t includes only object, int64, uint64, float64 dtype = values.dtype.kind + "8" values = values.astype(dtype, copy=False) return values def get_data_algo(values: ArrayLike): values = _get_values_for_rank(values) ndtype = _check_object_for_strings(values) htable = _hashtables.get(ndtype, _hashtables["object"]) return htable, values def _check_object_for_strings(values: np.ndarray) -> str: """ Check if we can use string hashtable instead of object hashtable. Parameters ---------- values : ndarray Returns ------- str """ ndtype = values.dtype.name if ndtype == "object": # it's cheaper to use a String Hash Table than Object; we infer # including nulls because that is the only difference between # StringHashTable and ObjectHashtable if lib.infer_dtype(values, skipna=False) in ["string"]: ndtype = "string" return ndtype # --------------- # # top-level algos # # --------------- # def unique(values): """ Hash table-based unique. Uniques are returned in order of appearance. This does NOT sort. Significantly faster than numpy.unique for long enough sequences. Includes NA values. Parameters ---------- values : 1d array-like Returns ------- numpy.ndarray or ExtensionArray The return can be: * Index : when the input is an Index * Categorical : when the input is a Categorical dtype * ndarray : when the input is a Series/ndarray Return numpy.ndarray or ExtensionArray. See Also -------- Index.unique : Return unique values from an Index. Series.unique : Return unique values of Series object. Examples -------- >>> pd.unique(pd.Series([2, 1, 3, 3])) array([2, 1, 3]) >>> pd.unique(pd.Series([2] + [1] * 5)) array([2, 1]) >>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")])) array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.unique( ... pd.Series( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] >>> pd.unique( ... pd.Index( ... [ ... pd.Timestamp("20160101", tz="US/Eastern"), ... pd.Timestamp("20160101", tz="US/Eastern"), ... ] ... ) ... ) DatetimeIndex(['2016-01-01 00:00:00-05:00'], dtype='datetime64[ns, US/Eastern]', freq=None) >>> pd.unique(list("baabc")) array(['b', 'a', 'c'], dtype=object) An unordered Categorical will return categories in the order of appearance. >>> pd.unique(pd.Series(pd.Categorical(list("baabc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] >>> pd.unique(pd.Series(pd.Categorical(list("baabc"), categories=list("abc")))) ['b', 'a', 'c'] Categories (3, object): ['a', 'b', 'c'] An ordered Categorical preserves the category ordering. >>> pd.unique( ... pd.Series( ... pd.Categorical(list("baabc"), categories=list("abc"), ordered=True) ... ) ... ) ['b', 'a', 'c'] Categories (3, object): ['a' < 'b' < 'c'] An array of tuples >>> pd.unique([("a", "b"), ("b", "a"), ("a", "c"), ("b", "a")]) array([('a', 'b'), ('b', 'a'), ('a', 'c')], dtype=object) """ values = _ensure_arraylike(values) if is_extension_array_dtype(values.dtype): # Dispatch to extension dtype's unique. return values.unique() original = values htable, values = _get_hashtable_algo(values) table = htable(len(values)) uniques = table.unique(values) uniques = _reconstruct_data(uniques, original.dtype, original) return uniques unique1d = unique def isin(comps: AnyArrayLike, values: AnyArrayLike) -> npt.NDArray[np.bool_]: """ Compute the isin boolean array. Parameters ---------- comps : array-like values : array-like Returns ------- ndarray[bool] Same length as `comps`. """ if not is_list_like(comps): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(comps).__name__}]" ) if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(values).__name__}]" ) if not isinstance(values, (ABCIndex, ABCSeries, ABCExtensionArray, np.ndarray)): values = _ensure_arraylike(list(values)) elif isinstance(values, ABCMultiIndex): # Avoid raising in extract_array values = np.array(values) else: values = extract_array(values, extract_numpy=True, extract_range=True) comps = _ensure_arraylike(comps) comps = extract_array(comps, extract_numpy=True) if not isinstance(comps, np.ndarray): # i.e. Extension Array return comps.isin(values) elif needs_i8_conversion(comps.dtype): # Dispatch to DatetimeLikeArrayMixin.isin return pd_array(comps).isin(values) elif needs_i8_conversion(values.dtype) and not is_object_dtype(comps.dtype): # e.g. comps are integers and values are datetime64s return np.zeros(comps.shape, dtype=bool) # TODO: not quite right ... Sparse/Categorical elif needs_i8_conversion(values.dtype): return isin(comps, values.astype(object)) elif is_extension_array_dtype(values.dtype): return isin(np.asarray(comps), np.asarray(values)) # GH16012 # Ensure np.in1d doesn't get object types or it *may* throw an exception # Albeit hashmap has O(1) look-up (vs. O(logn) in sorted array), # in1d is faster for small sizes if len(comps) > 1_000_000 and len(values) <= 26 and not is_object_dtype(comps): # If the values include nan we need to check for nan explicitly # since np.nan it not equal to np.nan if isna(values).any(): def f(c, v): return np.logical_or(np.in1d(c, v), np.isnan(c)) else: f = np.in1d else: # error: List item 0 has incompatible type "Union[Any, dtype[Any], # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, # Tuple[Any, Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, # Any]]" # error: List item 1 has incompatible type "Union[Any, ExtensionDtype]"; # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" # error: List item 1 has incompatible type "Union[dtype[Any], ExtensionDtype]"; # expected "Union[dtype[Any], None, type, _SupportsDType, str, Tuple[Any, # Union[int, Sequence[int]]], List[Any], _DTypeDict, Tuple[Any, Any]]" common = np.find_common_type( [values.dtype, comps.dtype], [] # type: ignore[list-item] ) values = values.astype(common, copy=False) comps = comps.astype(common, copy=False) f = htable.ismember return f(comps, values) def factorize_array( values: np.ndarray, na_sentinel: int = -1, size_hint: int | None = None, na_value=None, mask: np.ndarray | None = None, ) -> tuple[npt.NDArray[np.intp], np.ndarray]: """ Factorize a numpy array to codes and uniques. This doesn't do any coercion of types or unboxing before factorization. Parameters ---------- values : ndarray na_sentinel : int, default -1 size_hint : int, optional Passed through to the hashtable's 'get_labels' method na_value : object, optional A value in `values` to consider missing. Note: only use this parameter when you know that you don't have any values pandas would consider missing in the array (NaN for float data, iNaT for datetimes, etc.). mask : ndarray[bool], optional If not None, the mask is used as indicator for missing values (True = missing, False = valid) instead of `na_value` or condition "val != val". Returns ------- codes : ndarray[np.intp] uniques : ndarray """ hash_klass, values = get_data_algo(values) table = hash_klass(size_hint or len(values)) uniques, codes = table.factorize( values, na_sentinel=na_sentinel, na_value=na_value, mask=mask ) codes = ensure_platform_int(codes) return codes, uniques @doc( values=dedent( """\ values : sequence A 1-D sequence. Sequences that aren't pandas objects are coerced to ndarrays before factorization. """ ), sort=dedent( """\ sort : bool, default False Sort `uniques` and shuffle `codes` to maintain the relationship. """ ), size_hint=dedent( """\ size_hint : int, optional Hint to the hashtable sizer. """ ), ) def factorize( values, sort: bool = False, na_sentinel: int | None = -1, size_hint: int | None = None, ) -> tuple[np.ndarray, np.ndarray | Index]: """ Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. `factorize` is available as both a top-level function :func:`pandas.factorize`, and as a method :meth:`Series.factorize` and :meth:`Index.factorize`. Parameters ---------- {values}{sort} na_sentinel : int or None, default -1 Value to mark "not found". If None, will not drop the NaN from the uniques of the values. .. versionchanged:: 1.1.2 {size_hint}\ Returns ------- codes : ndarray An integer ndarray that's an indexer into `uniques`. ``uniques.take(codes)`` will have the same values as `values`. uniques : ndarray, Index, or Categorical The unique valid values. When `values` is Categorical, `uniques` is a Categorical. When `values` is some other pandas object, an `Index` is returned. Otherwise, a 1-D ndarray is returned. .. note :: Even if there's a missing value in `values`, `uniques` will *not* contain an entry for it. See Also -------- cut : Discretize continuous-valued array. unique : Find the unique value in an array. Examples -------- These examples all show factorize as a top-level method like ``pd.factorize(values)``. The results are identical for methods like :meth:`Series.factorize`. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) With ``sort=True``, the `uniques` will be sorted, and `codes` will be shuffled so that the relationship is the maintained. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True) >>> codes array([1, 1, 0, 2, 1]...) >>> uniques array(['a', 'b', 'c'], dtype=object) Missing values are indicated in `codes` with `na_sentinel` (``-1`` by default). Note that missing values are never included in `uniques`. >>> codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b']) >>> codes array([ 0, -1, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) Thus far, we've only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas objects, the type of `uniques` will differ. For Categoricals, a `Categorical` is returned. >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques ['a', 'c'] Categories (3, object): ['a', 'b', 'c'] Notice that ``'b'`` is in ``uniques.categories``, despite not being present in ``cat.values``. For all other pandas objects, an Index of the appropriate type is returned. >>> cat = pd.Series(['a', 'a', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques Index(['a', 'c'], dtype='object') If NaN is in the values, and we want to include NaN in the uniques of the values, it can be achieved by setting ``na_sentinel=None``. >>> values = np.array([1, 2, 1, np.nan]) >>> codes, uniques = pd.factorize(values) # default: na_sentinel=-1 >>> codes array([ 0, 1, 0, -1]) >>> uniques array([1., 2.]) >>> codes, uniques = pd.factorize(values, na_sentinel=None) >>> codes array([0, 1, 0, 2]) >>> uniques array([ 1., 2., nan]) """ # Implementation notes: This method is responsible for 3 things # 1.) coercing data to array-like (ndarray, Index, extension array) # 2.) factorizing codes and uniques # 3.) Maybe boxing the uniques in an Index # # Step 2 is dispatched to extension types (like Categorical). They are # responsible only for factorization. All data coercion, sorting and boxing # should happen here. if isinstance(values, ABCRangeIndex): return values.factorize(sort=sort) values = _ensure_arraylike(values) original = values if not isinstance(values, ABCMultiIndex): values = extract_array(values, extract_numpy=True) # GH35667, if na_sentinel=None, we will not dropna NaNs from the uniques # of values, assign na_sentinel=-1 to replace code value for NaN. dropna = True if na_sentinel is None: na_sentinel = -1 dropna = False if ( isinstance(values, (ABCDatetimeArray, ABCTimedeltaArray)) and values.freq is not None ): codes, uniques = values.factorize(sort=sort) if isinstance(original, ABCIndex): uniques = original._shallow_copy(uniques, name=None) elif isinstance(original, ABCSeries): from pandas import Index uniques = Index(uniques) return codes, uniques if not isinstance(values.dtype, np.dtype): # i.e. ExtensionDtype codes, uniques = values.factorize(na_sentinel=na_sentinel) dtype = original.dtype else: dtype = values.dtype values = _ensure_data(values) na_value: Scalar if original.dtype.kind in ["m", "M"]: # Note: factorize_array will cast NaT bc it has a __int__ # method, but will not cast the more-correct dtype.type("nat") na_value = iNaT else: na_value = None codes, uniques = factorize_array( values, na_sentinel=na_sentinel, size_hint=size_hint, na_value=na_value ) if sort and len(uniques) > 0: uniques, codes = safe_sort( uniques, codes, na_sentinel=na_sentinel, assume_unique=True, verify=False ) code_is_na = codes == na_sentinel if not dropna and code_is_na.any(): # na_value is set based on the dtype of uniques, and compat set to False is # because we do not want na_value to be 0 for integers na_value = na_value_for_dtype(uniques.dtype, compat=False) uniques = np.append(uniques, [na_value]) codes = np.where(code_is_na, len(uniques) - 1, codes) uniques = _reconstruct_data(uniques, dtype, original) # return original tenor if isinstance(original, ABCIndex): if original.dtype.kind in ["m", "M"] and isinstance(uniques, np.ndarray): original._data = cast( "Union[DatetimeArray, TimedeltaArray]", original._data ) uniques = type(original._data)._simple_new(uniques, dtype=original.dtype) uniques = original._shallow_copy(uniques, name=None) elif isinstance(original, ABCSeries): from pandas import Index uniques = Index(uniques) return codes, uniques def value_counts( values, sort: bool = True, ascending: bool = False, normalize: bool = False, bins=None, dropna: bool = True, ) -> Series: """ Compute a histogram of the counts of non-null values. Parameters ---------- values : ndarray (1-d) sort : bool, default True Sort by values ascending : bool, default False Sort in ascending order normalize: bool, default False If True then compute a relative histogram bins : integer, optional Rather than count values, group them into half-open bins, convenience for pd.cut, only works with numeric data dropna : bool, default True Don't include counts of NaN Returns ------- Series """ from pandas.core.series import Series name = getattr(values, "name", None) if bins is not None: from pandas.core.reshape.tile import cut values = Series(values) try: ii = cut(values, bins, include_lowest=True) except TypeError as err: raise TypeError("bins argument only works with numeric data.") from err # count, remove nulls (from the index), and but the bins result = ii.value_counts(dropna=dropna) result = result[result.index.notna()] result.index = result.index.astype("interval") result = result.sort_index() # if we are dropna and we have NO values if dropna and (result._values == 0).all(): result = result.iloc[0:0] # normalizing is by len of all (regardless of dropna) counts = np.array([len(ii)]) else: if is_extension_array_dtype(values): # handle Categorical and sparse, result = Series(values)._values.value_counts(dropna=dropna) result.name = name counts = result._values else: keys, counts = value_counts_arraylike(values, dropna) result = Series(counts, index=keys, name=name) if sort: result = result.sort_values(ascending=ascending) if normalize: result = result / counts.sum() return result # Called once from SparseArray, otherwise could be private def value_counts_arraylike(values, dropna: bool): """ Parameters ---------- values : arraylike dropna : bool Returns ------- uniques : np.ndarray or ExtensionArray counts : np.ndarray """ values = _ensure_arraylike(values) original = values values = _ensure_data(values) # TODO: handle uint8 keys, counts = htable.value_count(values, dropna) if needs_i8_conversion(original.dtype): # datetime, timedelta, or period if dropna: msk = keys != iNaT keys, counts = keys[msk], counts[msk] res_keys = _reconstruct_data(keys, original.dtype, original) return res_keys, counts def duplicated( values: ArrayLike, keep: Literal["first", "last", False] = "first" ) -> npt.NDArray[np.bool_]: """ Return boolean ndarray denoting duplicate values. Parameters ---------- values : nd.array, ExtensionArray or Series Array over which to check for duplicate values. keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : ndarray[bool] """ values = _ensure_data(values) return htable.duplicated(values, keep=keep) def mode(values, dropna: bool = True) -> Series: """ Returns the mode(s) of an array. Parameters ---------- values : array-like Array over which to check for duplicate values. dropna : bool, default True Don't consider counts of NaN/NaT. Returns ------- mode : Series """ from pandas import Series from pandas.core.indexes.api import default_index values = _ensure_arraylike(values) original = values # categorical is a fast-path if is_categorical_dtype(values): if isinstance(values, Series): # TODO: should we be passing `name` below? return Series(values._values.mode(dropna=dropna), name=values.name) return values.mode(dropna=dropna) if dropna and needs_i8_conversion(values.dtype): mask = values.isnull() values = values[~mask] values = _ensure_data(values) npresult = htable.mode(values, dropna=dropna) try: npresult = np.sort(npresult) except TypeError as err: warn(f"Unable to sort modes: {err}") result = _reconstruct_data(npresult, original.dtype, original) # Ensure index is type stable (should always use int index) return Series(result, index=default_index(len(result))) def rank( values: ArrayLike, axis: int = 0, method: str = "average", na_option: str = "keep", ascending: bool = True, pct: bool = False, ) -> np.ndarray: """ Rank the values along a given axis. Parameters ---------- values : array-like Array whose values will be ranked. The number of dimensions in this array must not exceed 2. axis : int, default 0 Axis over which to perform rankings. method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' The method by which tiebreaks are broken during the ranking. na_option : {'keep', 'top'}, default 'keep' The method by which NaNs are placed in the ranking. - ``keep``: rank each NaN value with a NaN ranking - ``top``: replace each NaN with either +/- inf so that they there are ranked at the top ascending : bool, default True Whether or not the elements should be ranked in ascending order. pct : bool, default False Whether or not to the display the returned rankings in integer form (e.g. 1, 2, 3) or in percentile form (e.g. 0.333..., 0.666..., 1). """ is_datetimelike = needs_i8_conversion(values.dtype) values = _get_values_for_rank(values) if values.ndim == 1: ranks = algos.rank_1d( values, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) elif values.ndim == 2: ranks = algos.rank_2d( values, axis=axis, is_datetimelike=is_datetimelike, ties_method=method, ascending=ascending, na_option=na_option, pct=pct, ) else: raise TypeError("Array with ndim > 2 are not supported.") return ranks def checked_add_with_arr( arr: np.ndarray, b, arr_mask: npt.NDArray[np.bool_] | None = None, b_mask: npt.NDArray[np.bool_] | None = None, ) -> np.ndarray: """ Perform array addition that checks for underflow and overflow. Performs the addition of an int64 array and an int64 integer (or array) but checks that they do not result in overflow first. For elements that are indicated to be NaN, whether or not there is overflow for that element is automatically ignored. Parameters ---------- arr : array addend. b : array or scalar addend. arr_mask : np.ndarray[bool] or None, default None array indicating which elements to exclude from checking b_mask : np.ndarray[bool] or None, default None array or scalar indicating which element(s) to exclude from checking Returns ------- sum : An array for elements x + b for each element x in arr if b is a scalar or an array for elements x + y for each element pair (x, y) in (arr, b). Raises ------ OverflowError if any x + y exceeds the maximum or minimum int64 value. """ # For performance reasons, we broadcast 'b' to the new array 'b2' # so that it has the same size as 'arr'. b2 = np.broadcast_to(b, arr.shape) if b_mask is not None: # We do the same broadcasting for b_mask as well. b2_mask = np.broadcast_to(b_mask, arr.shape) else: b2_mask = None # For elements that are NaN, regardless of their value, we should # ignore whether they overflow or not when doing the checked add. if arr_mask is not None and b2_mask is not None: not_nan = np.logical_not(arr_mask | b2_mask) elif arr_mask is not None: not_nan = np.logical_not(arr_mask) elif b_mask is not None: not_nan = np.logical_not(b2_mask) else: not_nan = np.empty(arr.shape, dtype=bool) not_nan.fill(True) # gh-14324: For each element in 'arr' and its corresponding element # in 'b2', we check the sign of the element in 'b2'. If it is positive, # we then check whether its sum with the element in 'arr' exceeds # np.iinfo(np.int64).max. If so, we have an overflow error. If it # it is negative, we then check whether its sum with the element in # 'arr' exceeds np.iinfo(np.int64).min. If so, we have an overflow # error as well. i8max = lib.i8max i8min = iNaT mask1 = b2 > 0 mask2 = b2 < 0 if not mask1.any(): to_raise = ((i8min - b2 > arr) & not_nan).any() elif not mask2.any(): to_raise = ((i8max - b2 < arr) & not_nan).any() else: to_raise = ((i8max - b2[mask1] < arr[mask1]) & not_nan[mask1]).any() or ( (i8min - b2[mask2] > arr[mask2]) & not_nan[mask2] ).any() if to_raise: raise OverflowError("Overflow in int64 addition") return arr + b def quantile(x, q, interpolation_method="fraction"): """ Compute sample quantile or quantiles of the input array. For example, q=0.5 computes the median. The `interpolation_method` parameter supports three values, namely `fraction` (default), `lower` and `higher`. Interpolation is done only, if the desired quantile lies between two data points `i` and `j`. For `fraction`, the result is an interpolated value between `i` and `j`; for `lower`, the result is `i`, for `higher` the result is `j`. Parameters ---------- x : ndarray Values from which to extract score. q : scalar or array Percentile at which to extract score. interpolation_method : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: - fraction: `i + (j - i)*fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. -lower: `i`. - higher: `j`. Returns ------- score : float Score at percentile. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ x = np.asarray(x) mask = isna(x) x = x[~mask] values = np.sort(x) def _interpolate(a, b, fraction): """ Returns the point at the given fraction between a and b, where 'fraction' must be between 0 and 1. """ return a + (b - a) * fraction def _get_score(at): if len(values) == 0: return np.nan idx = at * (len(values) - 1) if idx % 1 == 0: score = values[int(idx)] else: if interpolation_method == "fraction": score = _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1) elif interpolation_method == "lower": score = values[np.floor(idx)] elif interpolation_method == "higher": score = values[np.ceil(idx)] else: raise ValueError( "interpolation_method can only be 'fraction' " ", 'lower' or 'higher'" ) return score if is_scalar(q): return _get_score(q) q = np.asarray(q, np.float64) result = [_get_score(x) for x in q] return np.array(result, dtype=np.float64) # --------------- # # select n # # --------------- # class SelectN: def __init__(self, obj, n: int, keep: str): self.obj = obj self.n = n self.keep = keep if self.keep not in ("first", "last", "all"): raise ValueError('keep must be either "first", "last" or "all"') def compute(self, method: str) -> DataFrame | Series: raise NotImplementedError @final def nlargest(self): return self.compute("nlargest") @final def nsmallest(self): return self.compute("nsmallest") @final @staticmethod def is_valid_dtype_n_method(dtype: DtypeObj) -> bool: """ Helper function to determine if dtype is valid for nsmallest/nlargest methods """ return ( is_numeric_dtype(dtype) and not is_complex_dtype(dtype) ) or needs_i8_conversion(dtype) class SelectNSeries(SelectN): """ Implement n largest/smallest for Series Parameters ---------- obj : Series n : int keep : {'first', 'last'}, default 'first' Returns ------- nordered : Series """ def compute(self, method: str) -> Series: from pandas.core.reshape.concat import concat n = self.n dtype = self.obj.dtype if not self.is_valid_dtype_n_method(dtype): raise TypeError(f"Cannot use method '{method}' with dtype {dtype}") if n <= 0: return self.obj[[]] dropped = self.obj.dropna() nan_index = self.obj.drop(dropped.index) if is_extension_array_dtype(dropped.dtype): # GH#41816 bc we have dropped NAs above, MaskedArrays can use the # numpy logic. from pandas.core.arrays import BaseMaskedArray arr = dropped._values if isinstance(arr, BaseMaskedArray): ser = type(dropped)(arr._data, index=dropped.index, name=dropped.name) result = type(self)(ser, n=self.n, keep=self.keep).compute(method) return result.astype(arr.dtype) # slow method if n >= len(self.obj): ascending = method == "nsmallest" return self.obj.sort_values(ascending=ascending).head(n) # fast method new_dtype = dropped.dtype arr = _ensure_data(dropped.values) if method == "nlargest": arr = -arr if is_integer_dtype(new_dtype): # GH 21426: ensure reverse ordering at boundaries arr -= 1 elif is_bool_dtype(new_dtype): # GH 26154: ensure False is smaller than True arr = 1 - (-arr) if self.keep == "last": arr = arr[::-1] nbase = n findex = len(self.obj) narr = len(arr) n = min(n, narr) # arr passed into kth_smallest must be contiguous. We copy # here because kth_smallest will modify its input kth_val = algos.kth_smallest(arr.copy(order="C"), n - 1) (ns,) = np.nonzero(arr <= kth_val) inds = ns[arr[ns].argsort(kind="mergesort")] if self.keep != "all": inds = inds[:n] findex = nbase if self.keep == "last": # reverse indices inds = narr - 1 - inds return concat([dropped.iloc[inds], nan_index]).iloc[:findex] class SelectNFrame(SelectN): """ Implement n largest/smallest for DataFrame Parameters ---------- obj : DataFrame n : int keep : {'first', 'last'}, default 'first' columns : list or str Returns ------- nordered : DataFrame """ def __init__(self, obj, n: int, keep: str, columns): super().__init__(obj, n, keep) if not is_list_like(columns) or isinstance(columns, tuple): columns = [columns] columns = list(columns) self.columns = columns def compute(self, method: str) -> DataFrame: from pandas.core.api import Int64Index n = self.n frame = self.obj columns = self.columns for column in columns: dtype = frame[column].dtype if not self.is_valid_dtype_n_method(dtype): raise TypeError( f"Column {repr(column)} has dtype {dtype}, " f"cannot use method {repr(method)} with this dtype" ) def get_indexer(current_indexer, other_indexer): """ Helper function to concat `current_indexer` and `other_indexer` depending on `method` """ if method == "nsmallest": return current_indexer.append(other_indexer) else: return other_indexer.append(current_indexer) # Below we save and reset the index in case index contains duplicates original_index = frame.index cur_frame = frame = frame.reset_index(drop=True) cur_n = n indexer = Int64Index([]) for i, column in enumerate(columns): # For each column we apply method to cur_frame[column]. # If it's the last column or if we have the number of # results desired we are done. # Otherwise there are duplicates of the largest/smallest # value and we need to look at the rest of the columns # to determine which of the rows with the largest/smallest # value in the column to keep. series = cur_frame[column] is_last_column = len(columns) - 1 == i values = getattr(series, method)( cur_n, keep=self.keep if is_last_column else "all" ) if is_last_column or len(values) <= cur_n: indexer = get_indexer(indexer, values.index) break # Now find all values which are equal to # the (nsmallest: largest)/(nlargest: smallest) # from our series. border_value = values == values[values.index[-1]] # Some of these values are among the top-n # some aren't. unsafe_values = values[border_value] # These values are definitely among the top-n safe_values = values[~border_value] indexer = get_indexer(indexer, safe_values.index) # Go on and separate the unsafe_values on the remaining # columns. cur_frame = cur_frame.loc[unsafe_values.index] cur_n = n - len(indexer) frame = frame.take(indexer) # Restore the index on frame frame.index = original_index.take(indexer) # If there is only one column, the frame is already sorted. if len(columns) == 1: return frame ascending = method == "nsmallest" return frame.sort_values(columns, ascending=ascending, kind="mergesort") # ---- # # take # # ---- # def take( arr, indices: TakeIndexer, axis: int = 0, allow_fill: bool = False, fill_value=None, ): """ Take elements from an array. Parameters ---------- arr : array-like or scalar value Non array-likes (sequences/scalars without a dtype) are coerced to an ndarray. indices : sequence of int or one-dimensional np.ndarray of int Indices to be taken. axis : int, default 0 The axis over which to select values. allow_fill : bool, default False How to handle negative values in `indices`. * False: negative values in `indices` indicate positional indices from the right (the default). This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values. These values are set to `fill_value`. Any other negative values raise a ``ValueError``. fill_value : any, optional Fill value to use for NA-indices when `allow_fill` is True. This may be ``None``, in which case the default NA value for the type (``self.dtype.na_value``) is used. For multi-dimensional `arr`, each *element* is filled with `fill_value`. Returns ------- ndarray or ExtensionArray Same type as the input. Raises ------ IndexError When `indices` is out of bounds for the array. ValueError When the indexer contains negative values other than ``-1`` and `allow_fill` is True. Notes ----- When `allow_fill` is False, `indices` may be whatever dimensionality is accepted by NumPy for `arr`. When `allow_fill` is True, `indices` should be 1-D. See Also -------- numpy.take : Take elements from an array along an axis. Examples -------- >>> from pandas.api.extensions import take With the default ``allow_fill=False``, negative numbers indicate positional indices from the right. >>> take(np.array([10, 20, 30]), [0, 0, -1]) array([10, 10, 30]) Setting ``allow_fill=True`` will place `fill_value` in those positions. >>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True) array([10., 10., nan]) >>> take(np.array([10, 20, 30]), [0, 0, -1], allow_fill=True, ... fill_value=-10) array([ 10, 10, -10]) """ if not is_array_like(arr): arr = np.asarray(arr) indices = np.asarray(indices, dtype=np.intp) if allow_fill: # Pandas style, -1 means NA validate_indices(indices, arr.shape[axis]) result = take_nd( arr, indices, axis=axis, allow_fill=True, fill_value=fill_value ) else: # NumPy style result = arr.take(indices, axis=axis) return result # ------------ # # searchsorted # # ------------ # def searchsorted( arr: ArrayLike, value: NumpyValueArrayLike | ExtensionArray, side: Literal["left", "right"] = "left", sorter: NumpySorter = None, ) -> npt.NDArray[np.intp] | np.intp: """ Find indices where elements should be inserted to maintain order. .. versionadded:: 0.25.0 Find the indices into a sorted array `arr` (a) such that, if the corresponding elements in `value` were inserted before the indices, the order of `arr` would be preserved. Assuming that `arr` is sorted: ====== ================================ `side` returned index `i` satisfies ====== ================================ left ``arr[i-1] < value <= self[i]`` right ``arr[i-1] <= value < self[i]`` ====== ================================ Parameters ---------- arr: np.ndarray, ExtensionArray, Series Input array. If `sorter` is None, then it must be sorted in ascending order, otherwise `sorter` must be an array of indices that sort it. value : array-like or scalar Values to insert into `arr`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array-like, optional Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort. Returns ------- array of ints or int If value is array-like, array of insertion points. If value is scalar, a single integer. See Also -------- numpy.searchsorted : Similar method from NumPy. """ if sorter is not None: sorter = ensure_platform_int(sorter) if ( isinstance(arr, np.ndarray) and is_integer_dtype(arr.dtype) and (is_integer(value) or is_integer_dtype(value)) ): # if `arr` and `value` have different dtypes, `arr` would be # recast by numpy, causing a slow search. # Before searching below, we therefore try to give `value` the # same dtype as `arr`, while guarding against integer overflows. iinfo = np.iinfo(arr.dtype.type) value_arr = np.array([value]) if is_scalar(value) else np.array(value) if (value_arr >= iinfo.min).all() and (value_arr <= iinfo.max).all(): # value within bounds, so no overflow, so can convert value dtype # to dtype of arr dtype = arr.dtype else: dtype = value_arr.dtype if is_scalar(value): # We know that value is int value = cast(int, dtype.type(value)) else: value = pd_array(cast(ArrayLike, value), dtype=dtype) elif not ( is_object_dtype(arr) or is_numeric_dtype(arr) or is_categorical_dtype(arr) ): # E.g. if `arr` is an array with dtype='datetime64[ns]' # and `value` is a pd.Timestamp, we may need to convert value arr = ensure_wrapped_if_datetimelike(arr) # Argument 1 to "searchsorted" of "ndarray" has incompatible type # "Union[NumpyValueArrayLike, ExtensionArray]"; expected "NumpyValueArrayLike" return arr.searchsorted(value, side=side, sorter=sorter) # type: ignore[arg-type] # ---- # # diff # # ---- # _diff_special = {"float64", "float32", "int64", "int32", "int16", "int8"} def diff(arr, n: int, axis: int = 0, stacklevel: int = 3): """ difference of n between self, analogous to s-s.shift(n) Parameters ---------- arr : ndarray or ExtensionArray n : int number of periods axis : {0, 1} axis to shift on stacklevel : int, default 3 The stacklevel for the lost dtype warning. Returns ------- shifted """ n = int(n) na = np.nan dtype = arr.dtype is_bool = is_bool_dtype(dtype) if is_bool: op = operator.xor else: op = operator.sub if isinstance(dtype, PandasDtype): # PandasArray cannot necessarily hold shifted versions of itself. arr = arr.to_numpy() dtype = arr.dtype if not isinstance(dtype, np.dtype): # i.e ExtensionDtype if hasattr(arr, f"__{op.__name__}__"): if axis != 0: raise ValueError(f"cannot diff {type(arr).__name__} on axis={axis}") return op(arr, arr.shift(n)) else: warn( "dtype lost in 'diff()'. In the future this will raise a " "TypeError. Convert to a suitable dtype prior to calling 'diff'.", FutureWarning, stacklevel=stacklevel, ) arr = np.asarray(arr) dtype = arr.dtype is_timedelta = False if needs_i8_conversion(arr.dtype): dtype = np.int64 arr = arr.view("i8") na = iNaT is_timedelta = True elif is_bool: # We have to cast in order to be able to hold np.nan dtype = np.object_ elif is_integer_dtype(dtype): # We have to cast in order to be able to hold np.nan # int8, int16 are incompatible with float64, # see https://github.com/cython/cython/issues/2646 if arr.dtype.name in ["int8", "int16"]: dtype = np.float32 else: dtype = np.float64 orig_ndim = arr.ndim if orig_ndim == 1: # reshape so we can always use algos.diff_2d arr = arr.reshape(-1, 1) # TODO: require axis == 0 dtype = np.dtype(dtype) out_arr = np.empty(arr.shape, dtype=dtype) na_indexer = [slice(None)] * 2 na_indexer[axis] = slice(None, n) if n >= 0 else slice(n, None) out_arr[tuple(na_indexer)] = na if arr.dtype.name in _diff_special: # TODO: can diff_2d dtype specialization troubles be fixed by defining # out_arr inside diff_2d? algos.diff_2d(arr, out_arr, n, axis, datetimelike=is_timedelta) else: # To keep mypy happy, _res_indexer is a list while res_indexer is # a tuple, ditto for lag_indexer. _res_indexer = [slice(None)] * 2 _res_indexer[axis] = slice(n, None) if n >= 0 else slice(None, n) res_indexer = tuple(_res_indexer) _lag_indexer = [slice(None)] * 2 _lag_indexer[axis] = slice(None, -n) if n > 0 else slice(-n, None) lag_indexer = tuple(_lag_indexer) out_arr[res_indexer] = op(arr[res_indexer], arr[lag_indexer]) if is_timedelta: out_arr = out_arr.view("timedelta64[ns]") if orig_ndim == 1: out_arr = out_arr[:, 0] return out_arr # -------------------------------------------------------------------- # Helper functions # Note: safe_sort is in algorithms.py instead of sorting.py because it is # low-dependency, is used in this module, and used private methods from # this module. def safe_sort( values, codes=None, na_sentinel: int = -1, assume_unique: bool = False, verify: bool = True, ) -> np.ndarray | tuple[np.ndarray, np.ndarray]: """ Sort ``values`` and reorder corresponding ``codes``. ``values`` should be unique if ``codes`` is not None. Safe for use with mixed types (int, str), orders ints before strs. Parameters ---------- values : list-like Sequence; must be unique if ``codes`` is not None. codes : list_like, optional Indices to ``values``. All out of bound indices are treated as "not found" and will be masked with ``na_sentinel``. na_sentinel : int, default -1 Value in ``codes`` to mark "not found". Ignored when ``codes`` is None. assume_unique : bool, default False When True, ``values`` are assumed to be unique, which can speed up the calculation. Ignored when ``codes`` is None. verify : bool, default True Check if codes are out of bound for the values and put out of bound codes equal to na_sentinel. If ``verify=False``, it is assumed there are no out of bound codes. Ignored when ``codes`` is None. .. versionadded:: 0.25.0 Returns ------- ordered : ndarray Sorted ``values`` new_codes : ndarray Reordered ``codes``; returned when ``codes`` is not None. Raises ------ TypeError * If ``values`` is not list-like or if ``codes`` is neither None nor list-like * If ``values`` cannot be sorted ValueError * If ``codes`` is not None and ``values`` contain duplicates. """ if not is_list_like(values): raise TypeError( "Only list-like objects are allowed to be passed to safe_sort as values" ) if not isinstance(values, (np.ndarray, ABCExtensionArray)): # don't convert to string types dtype, _ = infer_dtype_from_array(values) # error: Argument "dtype" to "asarray" has incompatible type "Union[dtype[Any], # ExtensionDtype]"; expected "Union[dtype[Any], None, type, _SupportsDType, str, # Union[Tuple[Any, int], Tuple[Any, Union[int, Sequence[int]]], List[Any], # _DTypeDict, Tuple[Any, Any]]]" values = np.asarray(values, dtype=dtype) # type: ignore[arg-type] sorter = None if ( not is_extension_array_dtype(values) and lib.infer_dtype(values, skipna=False) == "mixed-integer" ): ordered = _sort_mixed(values) else: try: sorter = values.argsort() ordered = values.take(sorter) except TypeError: # Previous sorters failed or were not applicable, try `_sort_mixed` # which would work, but which fails for special case of 1d arrays # with tuples. if values.size and isinstance(values[0], tuple): ordered = _sort_tuples(values) else: ordered = _sort_mixed(values) # codes: if codes is None: return ordered if not is_list_like(codes): raise TypeError( "Only list-like objects or None are allowed to " "be passed to safe_sort as codes" ) codes = ensure_platform_int(np.asarray(codes)) if not assume_unique and not len(unique(values)) == len(values): raise ValueError("values should be unique if codes is not None") if sorter is None: # mixed types hash_klass, values = get_data_algo(values) t = hash_klass(len(values)) t.map_locations(values) sorter = ensure_platform_int(t.lookup(ordered)) if na_sentinel == -1: # take_nd is faster, but only works for na_sentinels of -1 order2 = sorter.argsort() new_codes = take_nd(order2, codes, fill_value=-1) if verify: mask = (codes < -len(values)) | (codes >= len(values)) else: mask = None else: reverse_indexer = np.empty(len(sorter), dtype=np.int_) reverse_indexer.put(sorter, np.arange(len(sorter))) # Out of bound indices will be masked with `na_sentinel` next, so we # may deal with them here without performance loss using `mode='wrap'` new_codes = reverse_indexer.take(codes, mode="wrap") mask = codes == na_sentinel if verify: mask = mask | (codes < -len(values)) | (codes >= len(values)) if mask is not None: np.putmask(new_codes, mask, na_sentinel) return ordered, ensure_platform_int(new_codes) def _sort_mixed(values) -> np.ndarray: """order ints before strings in 1d arrays, safe in py3""" str_pos = np.array([isinstance(x, str) for x in values], dtype=bool) nums = np.sort(values[~str_pos]) strs = np.sort(values[str_pos]) return np.concatenate([nums, np.asarray(strs, dtype=object)]) def _sort_tuples(values: np.ndarray) -> np.ndarray: """ Convert array of tuples (1d) to array or array (2d). We need to keep the columns separately as they contain different types and nans (can't use `np.sort` as it may fail when str and nan are mixed in a column as types cannot be compared). """ from pandas.core.internals.construction import to_arrays from pandas.core.sorting import lexsort_indexer arrays, _ = to_arrays(values, None) indexer =
lexsort_indexer(arrays, orders=True)
pandas.core.sorting.lexsort_indexer
# dataset.py import audformat #import audb import pandas as pd import ast import os from random import sample from util import Util from plots import Plots import glob_conf import configparser import os.path class Dataset: """ Class to represent datasets""" name = '' # An identifier for the dataset config = None # The configuration db = None # The database object df = None # The whole dataframe df_train = None # The training split df_test = None # The evaluation split def __init__(self, name): """Constructor setting up name and configuration""" self.name = name self.target = glob_conf.config['DATA']['target'] self.util = Util() self.plot = Plots() self.limit = int(self.util.config_val_data(self.name, 'limit', 0)) def _get_tables(self): tables = [] targets = self.util.config_val_data(self.name, 'target_tables', False) if targets: target_tables = ast.literal_eval(targets) tables += target_tables files = self.util.config_val_data(self.name, 'files_tables', False) if files: files_tables = ast.literal_eval(files) tables += files_tables tests = self.util.config_val_data(self.name, 'test_tables', False) if tests: test_tables = ast.literal_eval(tests) tables += test_tables trains = self.util.config_val_data(self.name, 'train_tables', False) if trains: train_tables = ast.literal_eval(trains) tables += train_tables return tables def load(self): """Load the dataframe with files, speakers and task labels""" self.util.debug(f'{self.name}: loading ...') store = self.util.get_path('store') store_file = f'{store}{self.name}.pkl' if os.path.isfile(store_file): self.util.debug(f'{self.name}: reusing previously stored file {store_file}') self.df = pd.read_pickle(store_file) got_target = self.target in self.df got_gender = 'gender' in self.df got_speaker = 'speaker' in self.df self.is_labeled = got_target self.util.debug(f'{self.name}: loaded with {self.df.shape[0]} '\ f'samples: got targets: {got_target}, got speakers: {got_speaker}, '\ f'got sexes: {got_gender}') return root = self.util.config_val_data(self.name, '', '') self.util.debug(f'{self.name}: loading from {root}') try: db = audformat.Database.load(root) except FileNotFoundError: self.util.error( f'{self.name}: no database found at {root}') tables = self._get_tables() self.util.debug(f'{self.name}: loading tables: {tables}') #db = audb.load(root, ) # map the audio file paths db.map_files(lambda x: os.path.join(root, x)) # the dataframes (potentially more than one) with at least the file names df_files = self.util.config_val_data(self.name, 'files_tables', '[\'files\']') df_files_tables = ast.literal_eval(df_files) # The label for the target column self.col_label = self.util.config_val_data(self.name, 'label', self.target) df, got_target, got_speaker, got_gender = self._get_df_for_lists(db, df_files_tables) if False in {got_target, got_speaker, got_gender}: try : # There might be a separate table with the targets, e.g. emotion or age df_targets = self.util.config_val_data(self.name, 'target_tables', f'[\'{self.target}\']') df_target_tables = ast.literal_eval(df_targets) df_target, got_target2, got_speaker2, got_gender2 = self._get_df_for_lists(db, df_target_tables) got_target = got_target2 or got_target got_speaker = got_speaker2 or got_speaker got_gender = got_gender2 or got_gender if got_target2: df[self.target] = df_target[self.target] if got_speaker2: df['speaker'] = df_target['speaker'] if got_gender2: df['gender'] = df_target['gender'] except audformat.core.errors.BadKeyError: pass try: # for experiments that do separate sex models s = glob_conf.config['DATA']['sex'] df = df[df.gender==s] except KeyError: pass if got_target: # remember the target in case they get labelencoded later df['class_label'] = df[self.target] df.is_labeled = got_target self.df = df self.db = db self.util.debug(f'{self.name}: loaded data with {df.shape[0]} '\ f'samples: got targets: {got_target}, got speakers: {got_speaker}, '\ f'got sexes: {got_gender}') if self.util.config_val_data(self.name, 'value_counts', False): if not got_gender or not got_speaker: self.util.error('can\'t plot value counts if no speaker or gender is given') else: self.plot.describe_df(self.name, df, self.target, f'{self.name}_distplot.png') self.is_labeled = got_target self.df.is_labeled = self.is_labeled # Perform some filtering if desired required = self.util.config_val_data(self.name, 'required', False) if required: pre = self.df.shape[0] self.df = self.df[self.df[required].notna()] post = self.df.shape[0] self.util.debug(f'{self.name}: kept {post} samples with {required} (from {pre}, filtered {pre-post})') samples_per_speaker = self.util.config_val_data(self.name, 'max_samples_per_speaker', False) if samples_per_speaker: pre = self.df.shape[0] self.df = self._limit_speakers(self.df, int(samples_per_speaker)) post = self.df.shape[0] self.util.debug(f'{self.name}: kept {post} samples with {samples_per_speaker} per speaker (from {pre}, filtered {pre-post})') if self.limit: pre = self.df.shape[0] self.df = self.df.head(self.limit) post = self.df.shape[0] self.util.debug(f'{self.name}: lmited to {post} samples (from {pre}, filtered {pre-post})') # store the dataframe self.df.to_pickle(store_file) def _get_df_for_lists(self, db, df_files): got_target, got_speaker, got_gender = False, False, False df = pd.DataFrame() for table in df_files: source_df = db.tables[table].df # create a dataframe with the index (the filenames) df_local = pd.DataFrame(index=source_df.index) # try to get the targets from this dataframe try: # try to get the target values df_local[self.target] = source_df[self.col_label] got_target = True except (KeyError, ValueError, audformat.errors.BadKeyError) as e: pass try: # try to get the speaker values df_local['speaker'] = source_df['speaker'] got_speaker = True except (KeyError, ValueError, audformat.errors.BadKeyError) as e: pass try: # try to get the gender values df_local['gender'] = source_df['gender'] got_gender = True except (KeyError, ValueError, audformat.errors.BadKeyError) as e: pass try: # also it might be possible that the sex is part of the speaker description df_local['gender'] = db[table]['speaker'].get(map='gender') got_gender = True except (ValueError, audformat.errors.BadKeyError) as e: pass try: # same for the target, e.g. "age" df_local[self.target] = db[table]['speaker'].get(map=self.target) got_target = True except (ValueError, audformat.core.errors.BadKeyError) as e: pass df = df.append(df_local) return df, got_target, got_speaker, got_gender def _limit_speakers(self, df, max=20): """ limit number of samples per speaker the samples are selected randomly """ df_ret = pd.DataFrame() for s in df.speaker.unique(): s_df = df[df['speaker'].eq(s)] if s_df.shape[0] < max: df_ret = df_ret.append(s_df) else: df_ret = df_ret.append(s_df.sample(max)) return df_ret def split(self): """Split the datbase into train and development set""" store = self.util.get_path('store') storage_test = f'{store}{self.name}_testdf.pkl' storage_train = f'{store}{self.name}_traindf.pkl' split_strategy = self.util.config_val_data(self.name,'split_strategy', 'database') # 'database' (default), 'speaker_split', 'specified', 'reuse' if os.path.isfile(storage_test) and os.path.isfile(storage_train) and split_strategy != 'speaker_split': self.util.debug(f'splits: reusing previously stored files {storage_test} and {storage_train}') self.df_test = pd.read_pickle(storage_test) self.df_train = pd.read_pickle(storage_train) return if split_strategy == 'database': # use the splits from the database testdf = self.db.tables[self.target+'.test'].df traindf = self.db.tables[self.target+'.train'].df # use only the train and test samples that were not perhaps filtered out by an earlier processing step self.df_test = self.df.loc[self.df.index.intersection(testdf.index)] self.df_train = self.df.loc[self.df.index.intersection(traindf.index)] elif split_strategy == 'train': self.df_train = self.df self.df_test = pd.DataFrame() elif split_strategy == 'test': self.df_test = self.df self.df_train = pd.DataFrame() elif split_strategy == 'specified': traindf, testdf = pd.DataFrame(),
pd.DataFrame()
pandas.DataFrame
from PriceIndices import Indices, MarketHistory import pandas as pd import numpy as np history = MarketHistory() def get_coin_data(crypto='bitcoin', start_date='20130428', end_date='20200501', save_data=None): df = history.get_price(crypto, start_date, end_date) df_bi = Indices.get_bvol_index(df) # Bitmax Volatility Index df_bi.drop('price', axis=1, inplace=True) df_rsi = Indices.get_rsi(df) # Relative Strength Index df_rsi.drop(['price', 'RS_Smooth', 'RSI_1'], axis=1, inplace=True) df_sma = Indices.get_simple_moving_average(df) # Simple Moving Average df_sma.drop(['price'], axis=1, inplace=True) df_bb = Indices.get_bollinger_bands(df) # Bollunger Bands df_bb.drop(['price'], axis=1, inplace=True) df_ema = Indices.get_exponential_moving_average(df, [20, 50]) # Exponential Moving Average df_ema.drop(['price'], axis=1, inplace=True) df_macd = Indices.get_moving_average_convergence_divergence(df) # Moving Average Convergence Divergence df_macd.drop(['price',], axis=1, inplace=True) df =
pd.merge(df, df_macd, on='date', how='left')
pandas.merge
# pylint: disable=invalid-name """ Tests for Evaluation class """ import unittest import pandas as pd from ftpvl.evaluation import Evaluation from ftpvl.processors import MinusOne from pandas.testing import assert_frame_equal class TestEvaluation(unittest.TestCase): """ Testing by partition: __init__() get_df() defensive copying get_eval_num() get_copy() process(List[Processor]) 0, 1, 1+ processors __add__() direct add reverse add sum """ def test_evaluation_get_df_equality(self): """ get_df() should return a dataframe with values equal to constructor argument """ df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result = Evaluation(df).get_df() self.assertIsInstance(result, pd.DataFrame) self.assertTrue(result.equals(df)) def test_evaluation_get_df_defensive_copy(self): """ get_df() should return a copy of the constructor argument to prevent caller from mutating the dataframe """ df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result = Evaluation(df).get_df() result["a"][0] = 5 # mutate result self.assertFalse(result.equals(df)) def test_evaluation_get_eval_id(self): """ get_eval_id() should return the eval_id specified when initialized """ df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result = Evaluation(df, eval_id=1000) assert result.get_eval_id() == 1000 result = Evaluation(df, eval_id=0) assert result.get_eval_id() == 0 def test_evaluation_get_copy(self): """ get_copy() should return a deep copy of Evaluation """ df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) eval1 = Evaluation(df, eval_id=1000) result = eval1.get_copy() assert result.get_eval_id() == 1000 assert_frame_equal(result.get_df(), df) # change original df.iloc[0]["a"] = 0 # assert that copy has not changed assert result.get_df().iloc[0]["a"] == 1 def test_evaluation_process_empty(self): """ Calling process() with an empty list of processors should return the input DF without any changes. """ df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result = Evaluation(df).process([]).get_df() self.assertTrue(result.equals(df)) def test_evaluation_process_single(self): """ Calling process() with one MinusOne should return a new df that subtract one from every input value, but not affect the input dataframe. """ pipeline = [MinusOne()] df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result = Evaluation(df).process(pipeline).get_df() expected = pd.DataFrame([{"a": 0, "b": 1}, {"a": 2, "b": 3}]) # check if input eval has been altered self.assertFalse(result.equals(df)) self.assertFalse(df.equals(expected)) # check if output eval has correct values self.assertTrue(result.equals(expected)) def test_evaluation_process_multiple(self): """ Calling process() with two MinusOne should return a new df that subtract two from every input value, but not affect the input dataframe. """ pipeline = [MinusOne(), MinusOne()] df = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result = Evaluation(df).process(pipeline).get_df() expected = pd.DataFrame([{"a": -1, "b": 0}, {"a": 1, "b": 2}]) # check if input eval has been altered self.assertFalse(result.equals(df)) self.assertFalse(df.equals(expected)) # check if output eval has correct values self.assertTrue(result.equals(expected)) def test_evaluation_add(self): """ Using the + magic method should return a new Evaluation that consists of the concatenated Evaluations. """ df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result1 = Evaluation(df1) df2 = pd.DataFrame([{"a": 5, "b": 6}, {"a": 7, "b": 8}]) result2 = Evaluation(df2) sum_result = result1 + result2 expected = pd.DataFrame([ {"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5, "b": 6}, {"a": 7, "b": 8} ]) assert_frame_equal(sum_result.get_df(), expected) assert sum_result.get_eval_id() is None def test_evaluation_add_different_columns(self): """ Using the + magic method should return a new Evaluation that consists of the concatenated Evaluations, even if columns don't match """ df1 = pd.DataFrame([{"a": 1, "b": 2}, {"a": 3, "b": 4}]) result1 = Evaluation(df1) df2 = pd.DataFrame([{"a": 5}, {"a": 7}]) result2 = Evaluation(df2) sum_result = result1 + result2 expected = pd.DataFrame([ {"a": 1, "b": 2}, {"a": 3, "b": 4}, {"a": 5}, {"a": 7} ]) assert_frame_equal(sum_result.get_df(), expected) assert sum_result.get_eval_id() is None def test_evaluation_add_multiple(self): """ Using the sum() built-in function should return a new Evaluation that consists of concatenated Evaluations """ eval1 = Evaluation(pd.DataFrame([{"a": 1, "b": 2}])) eval2 = Evaluation(pd.DataFrame([{"a": 3, "b": 4}])) eval3 = Evaluation(
pd.DataFrame([{"a": 5, "b": 6}])
pandas.DataFrame
import pandas as pd raw_csv_data = pd.read_csv('data/Absenteeism-data.csv') df = raw_csv_data.copy() # dropping the ID columns df = df.drop(['ID'], axis=1) # print(df.head()) # converting the categorical column reason for absence into dummy columns reason_columns =
pd.get_dummies(df['Reason for Absence'], drop_first=True)
pandas.get_dummies
#!/usr/bin/env python import sys import re import pandas as pd import datetime as dt import numpy as np def to_time(s): return dt.datetime.strptime(s, '%Y-%m-%d %H:%M:%S,%f') def main(filename): detector_sizes = {} bits_per_symbol = {} # Format: (time string, block, uuid, samples, time elapsed) vals = [] spy_errors = [] with open(filename, "r") as f: i = 0 redetect = re.compile('([0-9\-]+ [0-9:,]+) :DEBUG: (packet detect) ([a-f0-9]{6}) [\w\s\(\)]+ ([0-9]+) samples in ([0-9\.]+) seconds') reother = re.compile('([0-9\-]+ [0-9:,]+) :DEBUG: ([a-z2_\ ]+) ([a-f0-9]{6}) [\w\s]+ ([0-9]+) [\w\s]+ ([0-9\.\-e]+) seconds') respy = re.compile('([0-9\-]+ [0-9:,]+) :DEBUG: ([a-z2_\ ]+) ([a-f0-9]{6}) spy ber ([0-9\.]+) above threshold ([0-9\.]+)') for line in f: # Read in initialization info if i < 25: s = re.search('DETECTOR ([a-f0-9]{6}): Packet Size = ([0-9]+) samples', line) if s is not None: detector_sizes[s.group(1)] = int(s.group(2)) s = re.search('([\w]+ [\w]+) ([a-f0-9]{6}): ([0-9]+) bits per symbol', line) if s is not None: bits_per_symbol[s.group(2)] = (int(s.group(3)), s.group(1)) i += 1 # Read runtime logging det = redetect.search(line) oth = reother.search(line) spy = respy.search(line) if det is not None: # time, type, uuid, samples, telapsed vals.append([to_time(det.group(1)), det.group(2), det.group(3), int(det.group(4)), float(det.group(5))]) elif oth is not None: # time, type, uuid, bits, telapsed vals.append([to_time(oth.group(1)), oth.group(2), oth.group(3), int(oth.group(4)), float(oth.group(5))]) if spy is not None: # time, type, uuid, BER, cutoff spy_errors.append([to_time(spy.group(1)), spy.group(2), spy.group(3), float(spy.group(4)), float(spy.group(5))]) # Print initialization info print("Detector Packet Sizes") for k in detector_sizes: print("\tdetector {} {}".format(k, detector_sizes[k])) print("Bits Per Symbol") for k in bits_per_symbol: print("\t{} \t{} \t{}".format(bits_per_symbol[k][1], k, bits_per_symbol[k][0])) # Analyze log body # Processing time info df = pd.DataFrame(vals, columns=['log_time', 'block', 'uuid', 'samples', 'time']) vals = [] for b in
pd.unique(df.block)
pandas.unique
#!/usr/bin/env python from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np import pandas as pd import re import util import os import entrez as ez import stats import parallel import xgmml import db import random from six.moves import range import setting class Cache(object): DATA_DIR=setting.go['DATA_DIR'] # share by all tax_id CATEGORY={'LOCAL':None, 'GPDB':None, 'L1k':None} GO_DESCRIPTION={'LOCAL':None, 'GPDB':None, 'L1k':None} GO_CATEGORY={'LOCAL':None, 'GPDB':None, 'L1k':None} # per tax_id TOTAL_GENE_COUNT={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} ALL_GENE={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} CATEGORY_COUNT={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} GO_GENE_ENRICH={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} GO_GENE={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} GENE_GO={'LOCAL':{}, 'GPDB':{}, 'L1k':{}} N_TRIVIAL=800 @staticmethod def get(l_use_GPDB=True, tax_id=9606, l_L1k=False): if tax_id==-9606: tax_id=9606 s_key=Cache.key(l_use_GPDB, l_L1k) if l_L1k and tax_id!=9606: util.error_msg('L1k is only for tax_id 9606!') if tax_id not in Cache.TOTAL_GENE_COUNT[s_key]: Cache.load(tax_id=tax_id, l_use_GPDB=l_use_GPDB, l_L1k=l_L1k) #if l_L1k: # Cache.loadL1k() #else: # Cache.load(tax_id=tax_id, l_use_GPDB=l_use_GPDB) return (Cache.CATEGORY[s_key], Cache.GO_DESCRIPTION[s_key], Cache.GO_CATEGORY[s_key], # per tax_id, above are shared across tax_id Cache.TOTAL_GENE_COUNT[s_key][tax_id], Cache.ALL_GENE[s_key][tax_id], Cache.CATEGORY_COUNT[s_key][tax_id], Cache.GO_GENE_ENRICH[s_key][tax_id], Cache.GO_GENE[s_key][tax_id], Cache.GENE_GO[s_key][tax_id] ) @staticmethod def info(): for s_key in ('LOCAL','GPDB', 'L1k'): print(">Databases: %s" % s_key) print("CATEGORY=%d" % (0 if Cache.CATEGORY[s_key] is None else len(Cache.CATEGORY[s_key]))) print("GO_DESCRIPTION=%d" % (0 if Cache.GO_DESCRIPTION[s_key] is None else len(Cache.GO_DESCRIPTION[s_key]))) print("GO_CATEGORY=%d" % (0 if Cache.GO_CATEGORY[s_key] is None else len(Cache.GO_CATEGORY[s_key]))) for tax_id in Cache.TOTAL_GENE_COUNT[s_key].keys(): print("TAX_ID=%d (%s)" % (tax_id, ez.Cache.C_TAX_NAME.get(tax_id, "UNKNOWN"))) print("TOTAL_GENE_COUNT=%d" % Cache.TOTAL_GENE_COUNT[s_key][tax_id]) print("ALL_GENE=%d" % len(Cache.ALL_GENE[s_key][tax_id])) print("CATEGORY_COUNT=%d" % len(Cache.CATEGORY_COUNT[s_key][tax_id])) print("GO_GENE_ENRICH=%d" % len(Cache.GO_GENE_ENRICH[s_key][tax_id])) print("GO_GENE=%d" % len(Cache.GO_GENE[s_key][tax_id])) print("GENE_GO=%d" % len(Cache.GENE_GO[s_key][tax_id])) print("") @staticmethod def unload(tax_id, l_use_GPDB, l_L1k): if tax_id==-9606: tax_id=9606 s_key=Cache.key(l_use_GPDB, l_L1k) if tax_id in Cache.TOTAL_GENE_COUNT[s_key]: del Cache.CATEGORY_COUNT[s_key][tax_id] del Cache.TOTAL_GENE_COUNT[s_key][tax_id] del Cache.ALL_GENE[s_key][tax_id] del Cache.GO_GENE_ENRICH[s_key][tax_id] del Cache.GO_GENE[s_key][tax_id] del Cache.GENE_GO[s_key][tax_id] @staticmethod def key(l_use_GPDB, l_L1k): if l_L1k: return "L1k" return 'GPDB' if l_use_GPDB else 'LOCAL' @staticmethod def load(tax_id=9606, l_use_GPDB=True, user_go=None, l_L1k=False): """tax_id is None, defaults to 9606, if 0, means load all supported species, entrez_gene is only used in local mode to accelerate Symbol retrieval""" if tax_id is None: util.error_msg('tax_id must be an9606 int, or 0 mans all supported species') tax_id=abs(tax_id) s_key=Cache.key(l_use_GPDB, l_L1k=l_L1k) if tax_id!=0 and tax_id in Cache.TOTAL_GENE_COUNT[s_key]: return S_tax_id=[] # performance optimization if l_L1k: return Cache.loadL1k() if not l_use_GPDB: if tax_id not in (0,9606): util.error_msg('Local database only supports human!') tax_id=9606 if tax_id in Cache.TOTAL_GENE_COUNT[s_key]: return S_tax_id=[tax_id] else: mydb=db.DB('METASCAPE') if tax_id>0: S_tax_id=[tax_id] else: t=mydb.from_sql('SELECT DISTINCT tax_id FROM gid2source_id') S_tax_id=[x for x in t.tax_id.astype(int).tolist() if x not in Cache.TOTAL_GENE_COUNT[s_key]] if len(S_tax_id)==0: return s_tax_id=",".join(util.iarray2sarray(S_tax_id)) print("Load %s GO database for tax_id: %s ..." % (s_key, s_tax_id)) if l_use_GPDB: s_where_L1k="term_category_id>=91" if l_L1k else "term_category_id<91" if Cache.CATEGORY[s_key] is None: t=mydb.from_sql("SELECT term_category_id,category_name FROM term_category where "+s_where_L1k) Cache.CATEGORY[s_key] = {t.ix[i,'term_category_id']:t.ix[i,'category_name'] for i in t.index} t=mydb.from_sql("SELECT t.term_id GO,term_name AS DESCRIPTION,term_category_id CATEGORY_ID FROM term t where "+s_where_L1k) X=t.DESCRIPTION.isnull() if sum(X): t.ix[X, 'DESCRIPTION']=t.ix[X, 'GO'] #if not util.is_python3(): # t['DESCRIPTION']=t['DESCRIPTION'].apply(lambda x: unicode(x, encoding="ISO-8859-1", errors='ignore')) # L1000 has micro Mol Cache.GO_DESCRIPTION[s_key]=dict(zip(t.GO, t.DESCRIPTION)) t['CATEGORY_ID']=t['CATEGORY_ID'].astype(int) Cache.GO_CATEGORY[s_key]={re.sub(r'^\d+_', '', row.GO):int(row.CATEGORY_ID) for row in t.itertuples() } if tax_id==0: t=mydb.from_sql("SELECT COUNT(*) as N,tax_id FROM annotation a where a.annotation_type_id=3 AND content='protein-coding' group by tax_id") else: t=mydb.sql_in("SELECT COUNT(*) as N,tax_id FROM annotation a where a.annotation_type_id=3 AND content='protein-coding' and tax_id in (", ") group by tax_id", S_tax_id) Cache.TOTAL_GENE_COUNT[s_key]=dict(zip(t.tax_id, t.N)) if tax_id==0: t=mydb.from_sql("SELECT term_id GO,gids GENES,tax_id FROM term2gids where "+s_where_L1k) else: t=mydb.sql_in("SELECT term_id GO,gids GENES,tax_id FROM term2gids WHERE "+s_where_L1k+" and tax_id in (", ")", S_tax_id) #tmp=t[t.GO.apply(lambda x: x.startswith('6'))] #print tmp[:4] else: DATA_FILE=setting.go['DATA_FILE'] #TAX_ID,GeneID t_gene=pd.read_csv(DATA_FILE) t_gene=t_gene[t_gene.TAX_ID==tax_id] C_GENE=set(t_gene['GeneID'].astype(str).tolist()) Cache.TOTAL_GENE_COUNT[s_key][tax_id]=len(C_GENE) if user_go is not None: if os.path.isfile(user_go): if user_go.upper().endswith(".CSV"): t=pd.read_csv(user_go) else: t=pd.read_table(user_go) elif os.path.isfile(Cache.DATA_DIR+"AllAnnotations.tsv"): t=pd.read_csv(Cache.DATA_DIR+"AllAnnotations.tsv", sep='\t') if t is None: util.error_msg('No GO Annotations available.') #GO TYPE GENES DESCRIPTION S=util.unique(t.TYPE) Cache.CATEGORY[s_key] = dict(zip(S, S)) Cache.GO_CATEGORY[s_key]=dict(zip(t.GO, t.TYPE)) Cache.GO_DESCRIPTION[s_key]=dict(zip(t.GO, t.DESCRIPTION)) t['tax_id']=tax_id for x in S_tax_id: Cache.ALL_GENE[s_key][x]=set() Cache.GENE_GO[s_key][x]={} Cache.GO_GENE[s_key][x]={} Cache.CATEGORY_COUNT[s_key][x]={} Cache.GO_GENE_ENRICH[s_key][x]=set() #sw=util.StopWatch("AAAAAAA") for tax_id2,t_v in t.groupby('tax_id'): #t_v=t_v.copy() GENE_GO={} GO_GENE={} GO_GENE_ENRICH=set() ALL_GENE=set() CATEGORY_COUNT={} s_cat=0 S_genes=[ (row.GO, row.GENES.split(",")) for row in t_v.itertuples() ] if not l_use_GPDB: S_genes=[ (x, [y for y in Y if (y in C_GENE)]) for x,Y in S_genes ] GO_GENE={x: set(Y) for x,Y in S_genes if (len(Y)>0 and len(Y)<=Cache.N_TRIVIAL) } GO_GENE_ENRICH=set(GO_GENE.keys()) if l_use_GPDB: for x in GO_GENE_ENRICH: if re.sub(r'^\d+_', '', x) not in Cache.GO_CATEGORY[s_key]: print(">>>>>>>>>>>>>>>>>>>", x, s_key, re.sub(r'^\d+_', '', x)) exit() S_cat=[ Cache.GO_CATEGORY[s_key][re.sub(r'^\d+_','', x)] for x in GO_GENE_ENRICH ] else: S_cat=[ Cache.GO_CATEGORY[s_key][x] for x in GO_GENE_ENRICH ] CATEGORY_COUNT=util.unique_count(S_cat) # reduce is slower #ALL_GENE=reduce(lambda a,b : a|b, GO_GENE.values()) ALL_GENE=set([x for Y in GO_GENE.values() for x in Y]) #for row in t_v.itertuples(): ##for i in t_v.index: # s_go=row.GO #t_v.ix[i, 'GO'] # S_genes=row.GENES.split(",") #t_v.ix[i, 'GENES'].split(",") # if not l_use_GPDB: # ### warning, gene ids not recognized are treated as tax ID 0!!! # S_genes=[s for s in S_genes if s in C_GENE] # if len(S_genes)==0: continue # if len(S_genes)<=Cache.N_TRIVIAL: # GO_GENE_ENRICH.add(s_go) # if l_use_GPDB: # s_cat=Cache.GO_CATEGORY[s_key].get(re.sub(r'^\d+_','',s_go), 0) # CATEGORY_COUNT[s_cat]=CATEGORY_COUNT.get(s_cat, 0)+1 # GO_GENE[s_go]=set(S_genes) # ALL_GENE.update(GO_GENE[s_go]) #sw.check("TTTTTTTTT "+str(tax_id)) for k,v in GO_GENE.items(): for s_gene in v: if s_gene not in GENE_GO: GENE_GO[s_gene]={k} else: GENE_GO[s_gene].add(k) Cache.ALL_GENE[s_key][tax_id2]=ALL_GENE Cache.GENE_GO[s_key][tax_id2]=GENE_GO Cache.TOTAL_GENE_COUNT[s_key][tax_id2]=max(Cache.TOTAL_GENE_COUNT[s_key][tax_id2], len(GENE_GO)) Cache.CATEGORY_COUNT[s_key][tax_id2]=CATEGORY_COUNT Cache.GO_GENE[s_key][tax_id2]=GO_GENE Cache.GO_GENE_ENRICH[s_key][tax_id2]=GO_GENE_ENRICH if l_L1k: s_path=setting.go['L1000_PATH'] S_gene=util.read_list(s_path+'/L1kAllGenes.txt') Cache.ALL_GENE[s_key][tax_id]=set(S_gene) Cache.TOTAL_GENE_COUNT[s_key][tax_id]=len(S_gene) @staticmethod def loadL1k(): """Load L1000 terms""" sw=util.StopWatch() print("Loading L1k terms ...") tax_id=9606 s_key="L1k" s_path=setting.go['L1000_PATH'] S_gene=util.read_list(s_path+"/L1kAllGenes.txt") Cache.TOTAL_GENE_COUNT[s_key][tax_id]=len(S_gene) t1=
pd.read_csv(s_path+"/Term2Gid_L1000_PhaseI.csv")
pandas.read_csv
import numpy as np import pandas as pd ots = pd.read_csv("data/ot.csv",sep=',') ots=ots.sort_values('Pedido') xlsx_file = "data/layout.xlsx" layout = pd.read_excel(xlsx_file, sheet_name="layout") adyacencia=pd.read_excel(xlsx_file, sheet_name="adyacencia") cant_ordenes=len(ots['Pedido'].unique()) pasillos=layout['pasillo'].unique() tiempo_pickeo=20 velocidad=20 lista=[] for x in range(cant_ordenes): obj=list(ots.loc[ots["Pedido"]==x+1]["Cod.Prod"]) lista.append(obj) ordenes=np.array(lista) l=[] for pasillo in pasillos: l.append([pasillo,False, 0]) pasillo_bool=
pd.DataFrame(l,columns=["pasillo","ocupado","pickeador"])
pandas.DataFrame
import os import pandas as pd import sys sys.path.append('../') from load_paths import load_box_paths from datetime import date, timedelta, datetime from processing_helpers import * from scenario_sets import * from data_comparison import load_sim_data datapath, projectpath, wdir,exe_dir, git_dir = load_box_paths() today = datetime.today() mixed_scenarios = True simdate = "20200506" plot_first_day = pd.to_datetime('2020/3/1') plot_last_day = pd.to_datetime('2021/4/1') channels = ['infected', 'new_detected', 'new_deaths', 'hospitalized', 'critical', 'ventilators'] if mixed_scenarios == False: sim_path = os.path.join(wdir, 'simulation_output') plotdir = os.path.join(sim_path, '_plots') out_dir = os.path.join(projectpath, 'NU_civis_outputs', today.strftime('%Y%m%d'), 'csv') plot_name = simdate + '_' + stem + '_test' sim_scenarios_1 = [x for x in os.listdir(os.path.join(wdir, 'simulation_output')) if 'scenario1' in x] sim_scenarios_2 = [x for x in os.listdir(os.path.join(wdir, 'simulation_output')) if 'scenario2' in x] sim_scenarios_3 = [x for x in os.listdir(os.path.join(wdir, 'simulation_output')) if 'scenario3' in x] #sim_scenarios = sim_scenarios[2:] + sim_scenarios[:2] ## workaround to get right order 1-11 sim_scenarios = [sim_scenarios_1, sim_scenarios_2, sim_scenarios_3] filenames = [ 'nu_ems_endsip_'+ simdate +'.csv' , 'nu_ems_neversip_'+ simdate +'.csv' , 'nu_ems_baseline_'+ simdate +'.csv' ] if mixed_scenarios == True: sim_path = os.path.join(wdir, 'simulation_output', simdate + '_mixed_reopening', 'simulations') plotdir = os.path.join(wdir, 'simulation_output', simdate + '_mixed_reopening', 'plots') out_dir = os.path.join(wdir, 'simulation_output', simdate + '_mixed_reopening', 'csv') sim_scenarios, sim_label, intervention_label = def_scenario_set(simdate) nsets = len(sim_scenarios) filenames = [] for i in range(1, nsets): filenames = filenames + ['nu_ems_set' + str(i) + '.csv'] for num, exp_names in enumerate(sim_scenarios): adf = pd.DataFrame() for d, exp_name in enumerate(exp_names): sim_output_path = os.path.join(sim_path, exp_name) ems = int(exp_name.split('_')[2]) df = pd.read_csv(os.path.join(sim_output_path, 'projection_for_civis.csv')) #first_day = datetime.strptime(df['startdate'].unique()[0], '%Y-%m-%d') df = df.rename(columns={"date": "Date", "infected_median": "Number of Covid-19 infections", "infected_95CI_lower": "Lower error bound of covid-19 infections", "infected_95CI_upper": "Upper error bound of covid-19 infections", "new_symptomatic_median": "Number of Covid-19 symptomatic", "new_symptomatic_95CI_lower": "Lower error bound of covid-19 symptomatic", "new_symptomatic_95CI_upper": "Upper error bound of covid-19 symptomatic", "new_deaths_median": "Number of covid-19 deaths", "new_deaths_95CI_lower": "Lower error bound of covid-19 deaths", "new_deaths_95CI_upper": "Upper error bound of covid-19 deaths", "hospitalized_median": "Number of hospital beds occupied", "hospitalized_95CI_lower": "Lower error bound of number of hospital beds occupied", "hospitalized_95CI_upper": "Upper error bound of number of hospital beds occupied", "critical_median": "Number of ICU beds occupied", "critical_95CI_lower": "Lower error bound of number of ICU beds occupied", "critical_95CI_upper": "Upper error bound of number of ICU beds occupied", "ventilators_median": "Number of ventilators used", "ventilators_95CI_lower": "Lower error bound of number of ventilators used", "ventilators_95CI_upper": "Upper error bound of number of ventilators used"}) df['ems'] = ems df['Date'] = pd.to_datetime(df['Date']) df = df[(df['Date'] >= plot_first_day) & (df['Date'] <= plot_last_day)] adf =
pd.concat([adf, df])
pandas.concat
import numpy as np import pandas as pd from tqdm import tqdm import os import sys import hashlib def generateId(image_url, prefix, exisiting_ids): id = f"{prefix}:{hashlib.md5(image_url.encode()).hexdigest()}" # while id in exisiting_ids: # print(f"id {id} exists!") # image_url = image_url + "1" # id = f"{prefix}:{hashlib.blake2s(image_url.encode()).hexdigest()}" # print(f"Changed to {id}") return id def combine(taxonfiles, imagefiles, outputfolder, previousImageList): tqdm.pandas() taxa = pd.read_csv(taxonfiles[0]) for i, file in enumerate(taxonfiles): if i > 0: taxa = pd.concat([taxa,
pd.read_csv(file)
pandas.read_csv
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.signals import nb seed = 42 day_dt = np.timedelta64(86400000000000) sig = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]), columns=['a', 'b', 'c']) ts = pd.Series([1., 2., 3., 2., 1.], index=sig.index) price = pd.DataFrame({ 'open': [10, 11, 12, 11, 10], 'high': [11, 12, 13, 12, 11], 'low': [9, 10, 11, 10, 9], 'close': [10, 11, 12, 11, 10] }) # ############# accessors.py ############# # class TestAccessors: def test_freq(self): assert sig.vbt.signals.wrapper.freq == day_dt assert sig['a'].vbt.signals.wrapper.freq == day_dt assert sig.vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert sig['a'].vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.wrapper.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(sig['a'].vbt.signals.fshift(test_n), sig['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( sig['a'].vbt.signals.fshift(test_n).values, nb.fshift_1d_nb(sig['a'].values, test_n) ) pd.testing.assert_frame_equal(sig.vbt.signals.fshift(test_n), sig.shift(test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(sig['a']), pd.Series(np.full(sig['a'].shape, False), index=sig['a'].index, name=sig['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(sig), pd.DataFrame(np.full(sig.shape, False), index=sig.index, columns=sig.columns) ) def test_generate(self): @njit def choice_func_nb(from_i, to_i, col, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i - n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=sig['a'].index, name=sig['a'].name), pd.Series( np.array([True, True, True, True, True]), index=sig['a'].index, name=sig['a'].name ) ) with pytest.raises(Exception) as e_info: _ = pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate((5, 3), choice_func_nb, 1, index=sig.index, columns=sig.columns), pd.DataFrame( np.array([ [True, True, False], [True, False, False], [True, False, False], [True, False, False], [True, False, True] ]), index=sig.index, columns=sig.columns ) ) def test_generate_both(self): @njit def entry_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] @njit def exit_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((sig.shape[0],), dtype=np.int_) en, ex = pd.Series.vbt.signals.generate_both( 5, entry_func_nb, exit_func_nb, (temp_int,), (temp_int,), index=sig['a'].index, name=sig['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, True, False]), index=sig['a'].index, name=sig['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func_nb, exit_func_nb, (temp_int,), (temp_int,), index=sig.index, columns=sig.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, True], [False, False, False], [True, True, True] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [True, True, True], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, exit_func_nb, (temp_int,), (temp_int,), index=sig['a'].index, name=sig['a'].name, entry_wait=1, exit_wait=0) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([True, True, True, True, True]), index=sig['a'].index, name=sig['a'].name ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, exit_func_nb, (temp_int,), (temp_int,), index=sig['a'].index, name=sig['a'].name, entry_wait=0, exit_wait=1) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, True, True, True]), index=sig['a'].index, name=sig['a'].name ) ) def test_generate_exits(self): @njit def choice_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((sig.shape[0],), dtype=np.int_) pd.testing.assert_series_equal( sig['a'].vbt.signals.generate_exits(choice_func_nb, temp_int), pd.Series( np.array([False, True, False, False, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_frame_equal( sig.vbt.signals.generate_exits(choice_func_nb, temp_int), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( sig.vbt.signals.generate_exits(choice_func_nb, temp_int, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=sig.index, columns=sig.columns ) ) def test_clean(self): entries = pd.DataFrame([ [True, False, True], [True, False, False], [True, True, True], [False, True, False], [False, True, True] ], index=sig.index, columns=sig.columns) exits = pd.Series([True, False, True, False, True], index=sig.index) pd.testing.assert_frame_equal( entries.vbt.signals.clean(), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[1], pd.DataFrame( np.array([ [False, True, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=sig.index, columns=sig.columns ) ) with pytest.raises(Exception) as e_info: _ = pd.Series.vbt.signals.clean(entries, entries, entries) def test_generate_random(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, n=3, seed=seed, index=sig['a'].index, name=sig['a'].name), pd.Series( np.array([False, True, True, False, True]), index=sig['a'].index, name=sig['a'].name ) ) with pytest.raises(Exception) as e_info: _ = pd.Series.vbt.signals.generate_random((5, 2), n=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=3, seed=seed, index=sig.index, columns=sig.columns), pd.DataFrame( np.array([ [False, False, True], [True, True, True], [True, True, False], [False, True, True], [True, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=[0, 1, 2], seed=seed, index=sig.index, columns=sig.columns), pd.DataFrame( np.array([ [False, False, True], [False, False, True], [False, False, False], [False, True, False], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, prob=0.5, seed=seed, index=sig['a'].index, name=sig['a'].name), pd.Series( np.array([True, False, False, False, True]), index=sig['a'].index, name=sig['a'].name ) ) with pytest.raises(Exception) as e_info: _ = pd.Series.vbt.signals.generate_random((5, 2), prob=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=0.5, seed=seed, index=sig.index, columns=sig.columns), pd.DataFrame( np.array([ [True, True, True], [False, True, False], [False, False, False], [False, False, True], [True, False, True] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], seed=seed, index=sig.index, columns=sig.columns), pd.DataFrame( np.array([ [False, True, True], [False, True, True], [False, False, True], [False, False, True], [False, False, True] ]), index=sig.index, columns=sig.columns ) ) with pytest.raises(Exception) as e_info: pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_random_exits(self): pd.testing.assert_series_equal( sig['a'].vbt.signals.generate_random_exits(seed=seed), pd.Series( np.array([False, False, True, False, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_frame_equal( sig.vbt.signals.generate_random_exits(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, False], [False, False, False], [True, False, True] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( sig.vbt.signals.generate_random_exits(seed=seed, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_series_equal( sig['a'].vbt.signals.generate_random_exits(prob=1., seed=seed), pd.Series( np.array([False, True, False, False, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_frame_equal( sig.vbt.signals.generate_random_exits(prob=1., seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( sig.vbt.signals.generate_random_exits(prob=[0., 0.5, 1.], seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( sig.vbt.signals.generate_random_exits(prob=1., wait=0, seed=seed), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=sig.index, columns=sig.columns ) ) def test_generate_random_both(self): # n en, ex = pd.Series.vbt.signals.generate_random_both( 5, n=2, seed=seed, index=sig['a'].index, name=sig['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, False]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, True]), index=sig['a'].index, name=sig['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=2, seed=seed, index=sig.index, columns=sig.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, False], [False, False, True], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, True, False], [True, False, True] ]), index=sig.index, columns=sig.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=[0, 1, 2], seed=seed, index=sig.index, columns=sig.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, False, True], [False, True, False], [False, False, False], [False, False, True], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, True], [False, False, False], [False, True, False], [False, False, True] ]), index=sig.index, columns=sig.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((2, 3), n=2, seed=seed, entry_wait=1, exit_wait=0) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True] ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((3, 3), n=2, seed=seed, entry_wait=0, exit_wait=1) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((7, 3), n=2, seed=seed, entry_wait=2, exit_wait=2) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True] ]) ) ) n = 10 a = np.full(n * 2, 0.) for i in range(10000): en, ex = pd.Series.vbt.signals.generate_random_both(1000, n, entry_wait=2, exit_wait=2) _a = np.empty((n * 2,), dtype=np.int_) _a[0::2] = np.flatnonzero(en) _a[1::2] = np.flatnonzero(ex) a += _a greater = a > 10000000 / (2 * n + 1) * np.arange(0, 2 * n) less = a < 10000000 / (2 * n + 1) * np.arange(2, 2 * n + 2) assert np.all(greater & less) # probs en, ex = pd.Series.vbt.signals.generate_random_both( 5, entry_prob=0.5, exit_prob=1., seed=seed, index=sig['a'].index, name=sig['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, False, False, True]), index=sig['a'].index, name=sig['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, False]), index=sig['a'].index, name=sig['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=0.5, exit_prob=1., seed=seed, index=sig.index, columns=sig.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, True] ]), index=sig.index, columns=sig.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=[0., 0.5, 1.], exit_prob=[0., 0.5, 1.], seed=seed, index=sig.index, columns=sig.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, True], [False, False, False], [False, False, True] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, True, True], [False, False, False], [False, False, True], [False, False, False] ]), index=sig.index, columns=sig.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., exit_wait=0, seed=seed, index=sig.index, columns=sig.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=sig.index, columns=sig.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=sig.index, columns=sig.columns ) ) # none with pytest.raises(Exception) as e_info: pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_stop_exits(self): e = pd.Series([True, False, False, False, False, False]) t = pd.Series([2, 3, 4, 3, 2, 1]).astype(np.float64) # stop loss pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits(t.vbt.tile(3), [-0., -0.5, -1.], trailing=True, first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, True, False], [False, True, False] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # take profit pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits((4 - t).vbt.tile(3), [0., 0.5, 1.], trailing=True, first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, True, True], [False, True, True] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # iteratively e =
pd.Series([True, True, True, True, True, True])
pandas.Series
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list =
to_datetime(recons.index)
pandas.to_datetime
#!/usr/bin/env python3 import pandas as pd import numpy as np import logging def find_all_columns(csv_file, columns_to_exclude, range_fraction=0.1, separator=','): """ Sometimes, csv files have way too many columns to make you want to list them all. This method will create a list of column objects for you, excluding whatever columns are in the columns_to_exclude_list. If columns are numeric/ranges acceptable range is set to 10 percent (range_fraction, modify if you want) of the average of the field. If you need more fine-grained control over this, :param csv_file: Full path to csv file. :param columns_to_exclude: List of column headers you DO NOT want Column objects created for. :param range_fraction: How much numeric columns can vary by, as a fraction of the mean of the column :param separator: Delimiter used by pandas when reading the report. Allows for parsing of .tsv ('\t' delimiter) as well as .csv (',' delimiter) files. Default is ',' :return: List of column objects to be used by a Validator """ column_list = list() df =
pd.read_csv(csv_file, sep=separator)
pandas.read_csv
#attendance_file is the source file and list_file is the destination file __author__ = "<NAME>" __version__ = '0.0.0' from os import listdir from os.path import isfile, join import tkinter as tk import pandas as pd import re from tkinter import * from tkinter import filedialog from tkinter.filedialog import askopenfile threshold = 20 #Minimum time of attendance to be marked present root=Tk() def attendance_marker(attendance_file_path, list_file_path):#Core Function pd.set_option('display.max_colwidth', 1000) file = pd.read_csv(attendance_file_path) file.drop(file.index[0]) names = re.findall('([A-Za-z]+.*)', file.to_string()) date = re.findall("[0-9][0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]", names[0])[0]#getting date on which the lecture was delivered names.remove(names[0]) durations = [] #stores duration of each duration of attendance (read README file to understand) for item in names: x = re.findall('\((\S+)min\)', item) if(len(x)>0): durations.append(x) duration = []#stores the net duration of attnedance of each student for i in range(len(durations)): duration.append(0) for j in range(len(durations[i])): duration[i] = duration[i]+int(float(durations[i][j])) for i in range(len(names)): index = names[i].find('\\') names[i] = names[i][0:index] names.remove(names[0]) #Feature 4 implemented (see README file) for i in range(len(names)): for j in range(len(names[i])): if ((names[i][j] == ' ') and (names[i][0:j] == names[i][j+1:len(names[i][j])])): names[i] = names[i][0:j] #Changing date to DD-MM-YYYY format elements = re.findall("([0-9]+)", date) date = elements[2]+'-'+elements[1]+'-'+elements[0] slist = pd.read_excel(list_file_path) nameList = pd.DataFrame(slist, columns= ['Name']) attendance_list = [] for row_index, row in nameList.iterrows(): attendance_list.append(re.findall('Name (\S+.*)', row.to_string())[0]) numbers_list = []#0 or 1 to be marked l = len(duration) i = 0 #feature 3 implemented while(i<l): if(duration[i]<threshold): names.remove(names[i]) duration.remove(duration[i]) l = l-1 else: i = i+1 for i in range(len(attendance_list)): status = 0 for j in range(len(names)): if(attendance_list[i].casefold() == names[j].casefold()): status = 1 break numbers_list.append(status) slist[date] = numbers_list writer = pd.ExcelWriter(list_file_path) slist.to_excel(writer, index = False) #Writing to destination file # save the excel writer.save() writer.close() def file_submit():#Implements feature 1(see README file) pd.set_option('display.max_colwidth', 1000) file = askopenfile(mode ='r', filetypes =[('Attendance File(csv)', '*.csv')])#Getting souce file attendance_file_path = re.findall('\'(.+\.csv)\'', str(file))[0]#Getting souce file path canvas.pack() file1 = askopenfile(mode ='r', filetypes =[('Class list File(xlsx)', '*.xlsx')])#Getting destination file list_file_path = re.findall('\'(.+\.xlsx)\'', str(file1))[0]#Getting destination file path attendance_marker(attendance_file_path, list_file_path) print("Done") canvas.create_text(310, 280, font = ("Purisa", 13), text = "DONE", fill = 'black') canvas.create_text(310, 310, font = ("Purisa", 13), text = "You may quit now.", fill = 'black') canvas.create_text(310, 330, font = ("Purisa", 13), text = "or", fill = 'black') canvas.create_text(310, 350, font = ("Purisa", 13), text = "Continue by clicking one of the buttons again.", fill = 'black') def folder_submit():#Implements feature 2(see README file) mypath = filedialog.askdirectory()#Getting destination folder onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] files = []# stores path of each source fle in the folder for item in onlyfiles: if(item[-3:] == 'csv'):# only csv files in the selected folder will be considered files.append(mypath+'\\'+item) file1 = askopenfile(mode ='r', filetypes =[('Class list File(xlsx)', '*.xlsx')])#Getting destination file list_file_path = re.findall('\'(.+\.xlsx)\'', str(file1))[0]#Getting destination file(Only xcel files) path
pd.set_option('display.max_colwidth', 1000)
pandas.set_option
"""Implementation of prototype set models with sklearn compatible interface. Copyright by <NAME> Released under the MIT license - see LICENSE file for details This submodule creates a logger named like itself that logs to a NullHandler and tracks progress on model fitting at log level INFO. The invoking application needs to manage log output. """ from abc import ABCMeta, abstractmethod import logging import numpy as np import pandas as pd from scipy.optimize import fmin_l_bfgs_b from scipy.stats import rankdata from sklearn.base import BaseEstimator from sklearn.preprocessing import LabelEncoder from sklearn.utils import check_X_y from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.validation import check_array, check_is_fitted, check_random_state from statsmodels.distributions.empirical_distribution import ECDF from proset.objective import ClassifierObjective from proset.set_manager import ClassifierSetManager from proset.shared import find_changes, check_feature_names, check_scale_offset, LOG_OFFSET logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) LOG_CAPTION = " ".join(["{:>10s}"] * 6 + ["{:s}"]).format( "Iterations", "Calls", "Objective", "Gradient", "Features", "Prototypes", "Status" ) LOG_MESSAGE = " ".join(["{:10d}", "{:10d}", "{:10.1e}", "{:10.1e}", "{:10d}", "{:10d}", "{:s}"]) LIMITED_M = 10 # parameters controlling L-BFGS-B fit LIMITED_FACTR = 1e7 LIMITED_PGTOL = 1e-5 LIMITED_MAXFUN = 15000 LIMITED_MAXITER = 15000 LIMITED_MAXLS = 20 # noinspection PyPep8Naming, PyAttributeOutsideInit class Model(BaseEstimator, metaclass=ABCMeta): """Base class for prototype set models. """ def __init__( self, n_iter=1, lambda_v=1e-3, lambda_w=1e-8, alpha_v=0.95, alpha_w=0.95, num_candidates=1000, max_fraction=0.5, random_state=None ): """Initialize prototype set model with hyperparameters. :param n_iter: non-negative integer; number of batches of prototypes to fit :param lambda_v: non-negative float; penalty weight for the feature weights :param lambda_w: non-negative float; penalty weight for the prototype weights :param alpha_v: float in [0.0, 1.0]; fraction of lambda_v assigned as l2 penalty weight to feature weights; the remainder is assigned as l1 penalty weight :param alpha_w: float in [0.0, 1.0]; fraction of lambda_w assigned as l2 penalty weight to prototype weights; the remainder is assigned as l1 penalty weight :param num_candidates: positive integer; number of candidates for prototypes to try for each batch :param max_fraction: float in (0.0, 1.0); maximum fraction of candidates to draw from one group of candidates; candidates are grouped by class and whether the current model classifies them correctly or not :param random_state: instance of np.random.RandomState, integer, or None; if a random state is passed, that state will be used for randomization; if an integer or None is passed, a new random state is generated using the argument as seed for every call to fit() """ self.n_iter = n_iter self.lambda_v = lambda_v self.lambda_w = lambda_w self.alpha_v = alpha_v self.alpha_w = alpha_w self.num_candidates = num_candidates self.max_fraction = max_fraction self.random_state = random_state def fit(self, X, y, sample_weight=None, warm_start=False): """Fit proset model to data. :param X: 2D numpy float array; feature matrix; sparse matrices or infinite/missing values not supported :param y: list-like object; target for supervised learning :param sample_weight: 1D numpy array of positive floats or None; sample weights used for likelihood calculation; pass None to use unit weights :param warm_start: boolean; whether to create a new model or to add batches to an existing model :return: no return value; model updated in place """ self._check_hyperparameters() X, y, sample_weight = self._validate_arrays(X=X, y=y, sample_weight=sample_weight, reset=not warm_start) logger.info("Fit proset model with {} batches and penalties lambda_v = {:0.2e}, lambda_w = {:0.2e}".format( self.n_iter, self.lambda_v, self.lambda_w )) MySetManager, MyObjective = self._get_compute_classes() # pylint: disable=invalid-name if not warm_start or not hasattr(self, "set_manager_"): self.set_manager_ = MySetManager(target=y) # pylint: disable=attribute-defined-outside-init for i in range(self.n_iter): objective = MyObjective( features=X, target=y, weights=sample_weight, num_candidates=self.num_candidates, max_fraction=self.max_fraction, set_manager=self.set_manager_, lambda_v=self.lambda_v, lambda_w=self.lambda_w, alpha_v=self.alpha_v, alpha_w=self.alpha_w, random_state=check_random_state(self.random_state) ) starting_point, bounds = objective.get_starting_point_and_bounds() solution = fmin_l_bfgs_b( func=objective.evaluate, x0=starting_point, bounds=bounds, m=LIMITED_M, factr=LIMITED_FACTR, pgtol=LIMITED_PGTOL, maxfun=LIMITED_MAXFUN, maxiter=LIMITED_MAXITER, maxls=LIMITED_MAXLS ) batch_info = objective.get_batch_info(solution[0]) # solution[0] is the parameter vector self.set_manager_.add_batch(batch_info) if logger.isEnabledFor(logging.INFO): # pragma: no cover logger.info("Batch {} fit results".format(i + 1)) logger.info(LOG_CAPTION) logger.info(LOG_MESSAGE.format( solution[2]["nit"], solution[2]["funcalls"], solution[1], np.max(np.abs(solution[2]["grad"])), len(np.nonzero(batch_info["feature_weights"])[0]), len(np.nonzero(batch_info["prototype_weights"])[0]), self._parse_solver_status(solution[2]) )) logger.info("Model fit complete") return self def _check_hyperparameters(self): """Check that model hyperparameters are valid. :return: no return value; raises a ValueError if an issue is found """ if not np.issubdtype(type(self.n_iter), np.integer): raise TypeError("Parameter n_iter must be integer.") if self.n_iter < 0: raise ValueError("Parameter n_iter must not be negative.") # validation of other parameters is left to the classes or functions relying on them # noinspection PyMethodMayBeStatic, PyUnresolvedReferences def _validate_arrays(self, X, y, sample_weight, reset): """Check or transform input target, features, and sample weights as appropriate for the model. :param X: see docstring of fit() for details :param y: see docstring of fit() for details :param sample_weight: see docstring of fit() for details :param reset: boolean; whether to prepare the model for a new fit or enable warm start :return: transformed versions of X and y; may also update the state of the model instance """ X, y = check_X_y(X=X, y=y) if reset or not hasattr(self, "n_features_in_"): self.n_features_in_ = X.shape[1] # pylint: disable=attribute-defined-outside-init # the n_features_in_ attribute for tabular input is an sklearn convention elif self.n_features_in_ != X.shape[1]: raise ValueError("Parameter X must have {} columns.".format(self.n_features_in_)) if sample_weight is not None: sample_weight = check_array(sample_weight, ensure_2d=False) if sample_weight.shape[0] != X.shape[0]: raise ValueError("Parameter sample_weight must have one element per row of X if not None.") return X, self._validate_y(y, reset), sample_weight @abstractmethod def _validate_y(self, y, reset): # pragma: no cover """Perform checks on estimator target that depend on estimator type. :param y: 1D numpy array; target for supervised learning :param reset: boolean; whether to prepare the model for a new fit or enable warm start :return: y after applying appropriate checks and transforms """ raise NotImplementedError("Abstract method Model._validate_y() has no default implementation.") @staticmethod @abstractmethod def _get_compute_classes(): # pragma: no cover """Provide classes implementing the set manager and objective function for the model. :return: subclasses of proset.set_manager.SetManager and proset.objective.Objective """ raise NotImplementedError("Abstract method Model._get_compute_classes() has no default implementation.") @staticmethod def _parse_solver_status(solver_status): """Translate L-BFGS-B solver status into human-readable format. :param solver_status: dict; third output argument of scipy.fmin_l_bfgs_b() :return: string; solver exit status """ if solver_status["warnflag"] == 0: return "converged" if solver_status["warnflag"] == 1: return "reached limit on iterations or function calls" return "not converged ({})".format(solver_status["task"]) def predict(self, X, n_iter=None, compute_familiarity=False): """Predict class labels for a feature matrix. :param X: 2D numpy array; feature matrix; sparse matrices or infinite/missing values not supported :param n_iter: non-negative integer, 1D numpy array of non-negative and strictly increasing integers, or None; number of batches to use for evaluation; pass None for all batches; pass an array to evaluate for multiple values at once :param compute_familiarity: boolean; whether to compute the familiarity for each sample :return: 1D numpy array or list of 1D numpy arrays; if n_iter is integer or None, a single set of predictions is returned as an array; if n_iter is an array, a list of predictions is returned with one element for each element of the array; if compute_familiarity is True, also returns a 1D numpy float array or list of float arrays containing the familiarity of each sample """ check_is_fitted(self, attributes="set_manager_") return self._compute_prediction(X=check_array(X), n_iter=n_iter, compute_familiarity=compute_familiarity) @abstractmethod def _compute_prediction(self, X, n_iter, compute_familiarity): # pragma: no cover """Compute prediction. :param X: see docstring of predict() for details :param n_iter: see docstring of predict() for details :param compute_familiarity: see docstring of predict() for details :return: see docstring of predict() for details """ raise NotImplementedError("Abstract method Model._get_prediction() has no default implementation.") def score(self, X, y, sample_weight=None, n_iter=None): """Use trained model to score sample data. :param X: 2D numpy array; feature matrix; sparse matrices or infinite/missing values not supported :param y: list-like object; target for supervised learning :param sample_weight: 1D numpy array of positive floats or None; sample weights used for likelihood calculation; pass None to use unit weights :param n_iter: non-negative integer, 1D numpy array of non-negative and strictly increasing integers, or None; number of batches to use for evaluation; pass None for all batches; pass an array to evaluate for multiple values at once :return: float or 1D numpy array of floats; if n_iter is integer or None, a single score is returned as a float value; if n_iter is an array, an array of scores of the same length is returned """ check_is_fitted(self, attributes="set_manager_") X, y, sample_weight = self._validate_arrays(X=X, y=y, sample_weight=sample_weight, reset=False) return self._compute_score(X=X, y=y, sample_weight=sample_weight, n_iter=n_iter) @abstractmethod def _compute_score(self, X, y, sample_weight, n_iter): # pragma: no cover """Compute score. :param X: see docstring of score() for details :param y: numpy array; target for supervised learning :param sample_weight: see docstring of score() for details :param n_iter: see docstring of score() for details :return: as return value of score() """ raise NotImplementedError("Abstract method Model._compute_score() has no default implementation.") def export( self, n_iter=None, train_names=None, include_features=True, feature_names=None, scale=None, offset=None ): """Export information on prototypes and parameters from trained model. :param n_iter: non-negative integer, or None; number of batches to use for evaluation; pass None for all batches :param train_names: list of strings or None; names for the original training samples in order; these are associated with the prototypes in the report; pass None to use default names 'sample 0', 'sample 1', etc. :param include_features: boolean; whether to include information on relevant features :param feature_names: list of strings or None; if not None, must have one element per column of features; feature names to be used as column headers; pass None to use default names X0, X1, etc.; only used if include_features is True :param scale: 1D numpy array of positive floats or None; if not None, must have one element per column of features; use this to scale features back to their original values for the report; pass None for no scaling; only used if include_features is True :param offset: 1D numpy array of floats or None; if not None, must have one element per column of features; use this to shift features back to their original values for the report; pass None for no offset; only used if include_features is True :return: pandas data frame with the following columns; columns containing the feature name are repeated once for each active feature; active features are ordered by decreasing weight over batches as per set_manager.SetManager.get_feature_weights(): - batch: non-negative float; integer batch index for prototypes, np.Nan for properties of the baseline distribution - sample: non-negative float; integer sample index for prototypes, np.Nan for properties of the baseline distribution - sample name: string; sample name - target: varies; target for supervised learning - prototype weight: positive float; prototype weight - <feature> weight: non-negative float; feature weight for the associated batch, np.NaN means the feature plays no role for the batch; only included of include_features is True - <feature> value: float; feature value as used by the model; set to np.NaN if the feature weight is np.NaN; only included of include_features is True - <feature> original: float; original feature value; set to np.NaN if the feature weight is np.Nan; this column is not generated if both scale and offset are None; only included of include_features is True """ check_is_fitted(self, attributes="set_manager_") feature_columns, include_original, scale, offset = self._check_report_input( feature_names=feature_names, num_features=self.n_features_in_, scale=scale, offset=offset, sample_name=None )[:4] batches = self.set_manager_.get_batches(features=None, num_batches=n_iter) report = self._make_prototype_report(batches=batches, train_names=train_names, compute_impact=False) if include_features: report = pd.concat([report, self._make_feature_report( batches=batches, feature_columns=feature_columns, include_original=include_original, scale=scale, offset=offset, active_features=self.set_manager_.get_feature_weights(num_batches=n_iter)["feature_index"], include_similarities=False )], axis=1) report = report.sort_values(["batch", "prototype weight"], ascending=[True, False]) report = pd.concat([self._make_baseline_for_export(), report]) report.reset_index(inplace=True, drop=True) return report @staticmethod def _check_report_input(feature_names, num_features, scale, offset, sample_name): """Check input for export() and explain() for consistency and apply defaults. :param feature_names: see docstring of export() for details :param num_features: positive integer; number of features :param scale: see docstring of export() for details :param offset: see docstring of export() for details :param sample_name: string or None; name used for reference sample :return: five return arguments: - list of lists of strings; each list contains column names associated with one feature in the report - boolean; whether original values need to be included in the report - 1D numpy float array; scale as input or vector of ones if input is None - 1D numpy float array; offset as input or vector of zeros if input is None - string; sample name as input or default raise an error if a check fails """ feature_names = check_feature_names( num_features=num_features, feature_names=feature_names, active_features=None ) feature_columns = [[ "{} weight".format(feature_name), "{} value".format(feature_name), "{} original".format(feature_name), "{} similarity".format(feature_name) ] for feature_name in feature_names] include_original = scale is not None or offset is not None scale, offset = check_scale_offset(num_features=num_features, scale=scale, offset=offset) if sample_name is None: sample_name = "new sample" return feature_columns, include_original, scale, offset, sample_name @classmethod def _make_prototype_report(cls, batches, train_names, compute_impact): """Format prototype information for report. :param batches: list as generated by set_manager.SetManager.get_batches() :param train_names: see docstring of export() for details :param compute_impact: boolean; whether to compute the similarity and impact for each prototype relative to a reference sample; if True, the information for each non-empty batch needs to contain the key 'similarities' :return: pandas data frame with the following columns: - batch: positive integer; batch index - sample: non-negative integer; sample index for prototypes - sample name: string; sample name - target: varies; target for supervised learning - prototype weight: positive float; prototype weight - similarity: float in (0.0, 1.0]; similarity between prototype and reference sample; only included if compute_impact is True - impact: positive float; impact of prototype on reference sample; only included if compute_impact is True """ parts = [ cls._format_batch(batch=batch, batch_index=i, train_names=train_names) for i, batch in enumerate(batches) if batch is not None ] if len(parts) > 0: report = pd.concat(parts, axis=0) report.reset_index(inplace=True, drop=True) return report columns = ["batch", "sample", "sample name", "target", "prototype weight"] if compute_impact: columns.extend(["similarity", "impact"]) return pd.DataFrame(columns=columns) @staticmethod def _format_batch(batch, batch_index, train_names): """Format information for a single batch of prototypes to include in the report. :param batch: one element from the output list generated by set_manager.SetManager.get_batches(); must not be None :param batch_index: non-negative integer; batch index :param train_names: see docstring of export() for details :return: as return value of _make_prototype_report(); the function determines whether impact needs to be computed by checking whether the batch definitions contain the key "similarities" """ formatted = { "batch": batch_index + 1, "sample": batch["sample_index"], "sample name": [ train_names[j] if train_names is not None else "sample {}".format(j) for j in batch["sample_index"] ], "target": batch["target"], "prototype weight": batch["prototype_weights"] } columns = ["batch", "sample", "sample name", "target", "prototype weight"] if "similarities" in batch.keys(): formatted["similarity"] = np.exp(np.sum(np.log(batch["similarities"] + LOG_OFFSET), axis=1)) # use sum of logarithms instead of product for numerical stability formatted["impact"] = formatted["similarity"] * formatted["prototype weight"] columns.extend(["similarity", "impact"]) return pd.DataFrame(formatted, columns=columns) @classmethod def _make_feature_report( cls, batches, feature_columns, include_original, scale, offset, active_features, include_similarities ): """Format feature information for report. :param batches: list as generated by set_manager.SetManager.get_batches() :param feature_columns: as first return value of _check_report_input() :param include_original: boolean; whether to include original feature values in the report :param scale: see docstring of export() for details; None is not allowed :param offset: see docstring of export() for details; None is not allowed :param active_features: 1D numpy array of non-negative integers; indices of active features across all batches :param include_similarities: boolean; whether to include per-feature similarities in the report; if True, the information for each non-empty batch needs to contain the key 'similarities' :return: pandas data frame with the following columns: - <feature> weight: non-negative float; feature weight for the associated batch, np.NaN means the feature plays no role for the batch - <feature> value: float; feature value as used by the model; set to np.NaN if the feature weight is np.NaN - <feature> original: float; original feature value; set to np.NaN if the feature weight is np.Nan; this column is not generated if both scale and offset are None - <feature> similarity: float in (0.0, 1.0]; per-feature similarity between the prototype and reference sample; this is only included if include_similarities is True """ if active_features.shape[0] == 0: return
pd.DataFrame()
pandas.DataFrame
""" Additional tests for PandasArray that aren't covered by the interface tests. """ import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.arrays import PandasArray from pandas.core.arrays.numpy_ import PandasDtype @pytest.fixture( params=[ np.array(["a", "b"], dtype=object), np.array([0, 1], dtype=float), np.array([0, 1], dtype=int), np.array([0, 1 + 2j], dtype=complex), np.array([True, False], dtype=bool), np.array([0, 1], dtype="datetime64[ns]"), np.array([0, 1], dtype="timedelta64[ns]"), ] ) def any_numpy_array(request): """ Parametrized fixture for NumPy arrays with different dtypes. This excludes string and bytes. """ return request.param # ---------------------------------------------------------------------------- # PandasDtype @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", True), ("uint", True), ("float", True), ("complex", True), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_numeric(dtype, expected): dtype = PandasDtype(dtype) assert dtype._is_numeric is expected @pytest.mark.parametrize( "dtype, expected", [ ("bool", True), ("int", False), ("uint", False), ("float", False), ("complex", False), ("str", False), ("bytes", False), ("datetime64[ns]", False), ("object", False), ("void", False), ], ) def test_is_boolean(dtype, expected): dtype = PandasDtype(dtype) assert dtype._is_boolean is expected def test_repr(): dtype = PandasDtype(np.dtype("int64")) assert repr(dtype) == "PandasDtype('int64')" def test_constructor_from_string(): result = PandasDtype.construct_from_string("int64") expected = PandasDtype(np.dtype("int64")) assert result == expected # ---------------------------------------------------------------------------- # Construction def test_constructor_no_coercion(): with pytest.raises(ValueError, match="NumPy array"): PandasArray([1, 2, 3]) def test_series_constructor_with_copy(): ndarray = np.array([1, 2, 3]) ser = pd.Series(PandasArray(ndarray), copy=True) assert ser.values is not ndarray def test_series_constructor_with_astype(): ndarray = np.array([1, 2, 3]) result = pd.Series(PandasArray(ndarray), dtype="float64") expected = pd.Series([1.0, 2.0, 3.0], dtype="float64") tm.assert_series_equal(result, expected) def test_from_sequence_dtype(): arr = np.array([1, 2, 3], dtype="int64") result =
PandasArray._from_sequence(arr, dtype="uint64")
pandas.arrays.PandasArray._from_sequence
import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import pickle import statsmodels.formula.api as smf import statsmodels.api as sm from statsmodels.tsa.seasonal import seasonal_decompose import seaborn as sns import pandas_profiling import datetime import sqlite3 import calendar import matplotlib.pyplot as plt import matplotlib matplotlib.use('TkAgg') def submission_format(row): return row['air_store_id']+"_"+str(row['visit_year'])+"-"+str(row['visit_month']).zfill(2)+"-"+str(row['visit_day']).zfill(2) def prediction_creation(data_train, data_test, models_dict, half_models_dict,nodata_model): # Generation of predictions and submission file # # With all the models created, we can finally predict the visitors for the test dataset. # We'll start by filtering the test dataset by the first predicted date. data_test.set_index(pd.to_datetime(data_test.visit_year*10000+data_test.visit_month*100+data_test.visit_day,format='%Y%m%d'), inplace=True) data_test = data_test[data_test.index > '2017-04-22'] # We need to complete the forecasting days, as not all days had visitors and only those were the ones in our datasets. sample_submission = pd.read_csv('../data/raw/sample_submission.csv') restaurants = sample_submission.id.str[:20].unique() start_date = datetime.datetime.strptime('2017-04-23', "%Y-%m-%d") end_date = datetime.datetime.strptime('2017-05-31', "%Y-%m-%d") #We'll use a new dataframe to store the prediction data and the new dates predict_df = pd.DataFrame(columns=data_test.columns) for restaurant in restaurants: while start_date <= end_date: if len(data_test[(data_test['air_store_id']==restaurant) & (data_test['visit_month']==start_date.month) & (data_test['visit_day']==start_date.day)]): predict_df = predict_df.append(data_test[(data_test['air_store_id']==restaurant) & (data_test['visit_month']==start_date.month) & (data_test['visit_day']==start_date.day)], ignore_index=True) else: position = len(predict_df) predict_df.loc[position,"air_store_id"] = restaurant predict_df.loc[position,"visit_year"] = start_date.year predict_df.loc[position,"visit_month"] = start_date.month predict_df.loc[position,"visit_day"] = start_date.day predict_df.loc[position,"dow"] = calendar.day_name[start_date.weekday()] start_date += datetime.timedelta(days=1) start_date = datetime.datetime.strptime('2017-04-23', "%Y-%m-%d") # We now have a complete test dataset, for all ids and dates to be forecasted. # Lets format now the dataframe in order to be able to use it in the previously obtained models. date_info = pd.read_csv('../data/raw/date_info.csv',parse_dates=['calendar_date']) date_info['calendar_year'] = date_info['calendar_date'].dt.year date_info['calendar_month'] = date_info['calendar_date'].dt.month date_info['calendar_day'] = date_info['calendar_date'].dt.day date_info.drop(['calendar_date'], axis=1, inplace=True) predict_df = pd.merge(predict_df, date_info, left_on=['visit_year','visit_month','visit_day'], right_on=['calendar_year','calendar_month','calendar_day'], how='left') predict_df = pd.get_dummies(predict_df, columns=['dow']) predict_df = pd.merge(predict_df, data_train[['air_store_id','visitors_rest_mean']].drop_duplicates(), on='air_store_id', how='left') predict_df.drop(['holiday_flg_x','day_of_week','calendar_year','calendar_month','calendar_day','latitude', 'longitude','air_area_name','genre'], axis=1, inplace=True) predict_df=predict_df.rename(columns = {'holiday_flg_y':'holiday_flg'}) predict_df.sort_values(by=['reserve_visitors','visitors_rest_mean'], ascending=[True,True], inplace=True) predict_df.reserve_visitors = pd.to_numeric(predict_df.reserve_visitors) predict_df.visit_year = pd.to_numeric(predict_df.visit_year) predict_df.visit_month =
pd.to_numeric(predict_df.visit_month)
pandas.to_numeric
# -*- coding: utf-8 -*- """Device curtailment plots. This module creates plots are related to the curtailment of generators. @author: <NAME> """ import os import logging import pandas as pd from collections import OrderedDict import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.dates as mdates import matplotlib.ticker as mtick import marmot.config.mconfig as mconfig import marmot.plottingmodules.plotutils.plot_library as plotlib from marmot.plottingmodules.plotutils.plot_data_helper import PlotDataHelper from marmot.plottingmodules.plotutils.plot_exceptions import (MissingInputData, DataSavedInModule, UnderDevelopment, MissingZoneData) class MPlot(PlotDataHelper): """curtailment MPlot class. All the plotting modules use this same class name. This class contains plotting methods that are grouped based on the current module name. The curtailment.py module contains methods that are related to the curtailment of generators . MPlot inherits from the PlotDataHelper class to assist in creating figures. """ def __init__(self, argument_dict: dict): """ Args: argument_dict (dict): Dictionary containing all arguments passed from MarmotPlot. """ # iterate over items in argument_dict and set as properties of class # see key_list in Marmot_plot_main for list of properties for prop in argument_dict: self.__setattr__(prop, argument_dict[prop]) # Instantiation of MPlotHelperFunctions super().__init__(self.Marmot_Solutions_folder, self.AGG_BY, self.ordered_gen, self.PLEXOS_color_dict, self.Scenarios, self.ylabels, self.xlabels, self.gen_names_dict, Region_Mapping=self.Region_Mapping) self.logger = logging.getLogger('marmot_plot.'+__name__) self.x = mconfig.parser("figure_size","xdimension") self.y = mconfig.parser("figure_size","ydimension") self.y_axes_decimalpt = mconfig.parser("axes_options","y_axes_decimalpt") self.curtailment_prop = mconfig.parser("plot_data","curtailment_property") def curt_duration_curve(self, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Curtailment duration curve (line plot) Displays curtailment sorted from highest occurrence to lowest over given time period. Args: prop (str, optional): Controls type of re to include in plot. Controlled through the plot_select.csv. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True,f"generator_{self.curtailment_prop}",self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() for zone_input in self.Zones: self.logger.info(f"{self.AGG_BY} = {zone_input}") RE_Curtailment_DC = pd.DataFrame() PV_Curtailment_DC = pd.DataFrame() for scenario in self.Scenarios: self.logger.info(f"Scenario = {scenario}") re_curt = self[f"generator_{self.curtailment_prop}"].get(scenario) # Timeseries [MW] RE curtailment [MWh] try: #Check for regions missing all generation. re_curt = re_curt.xs(zone_input,level = self.AGG_BY) except KeyError: self.logger.info(f'No curtailment in {zone_input}') continue re_curt = self.df_process_gen_inputs(re_curt) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': re_curt = self.assign_curtailment_techs(re_curt) # Timeseries [MW] PV curtailment [MWh] pv_curt = re_curt[re_curt.columns.intersection(self.pv_gen_cat)] re_curt = re_curt.sum(axis=1) pv_curt = pv_curt.sum(axis=1) re_curt = re_curt.squeeze() #Convert to Series pv_curt = pv_curt.squeeze() #Convert to Series if pd.notna(start_date_range): self.logger.info(f"Plotting specific date range: \ {str(start_date_range)} to {str(end_date_range)}") re_curt = re_curt[start_date_range : end_date_range] pv_curt = pv_curt[start_date_range : end_date_range] if re_curt.empty is True and prop == "PV+Wind": self.logger.warning('No data in selected Date Range') continue if pv_curt.empty is True and prop == "PV": self.logger.warning('No data in selected Date Range') continue # Sort from larget to smallest re_cdc = re_curt.sort_values(ascending=False).reset_index(drop=True) pv_cdc = pv_curt.sort_values(ascending=False).reset_index(drop=True) re_cdc.rename(scenario, inplace=True) pv_cdc.rename(scenario, inplace=True) RE_Curtailment_DC = pd.concat([RE_Curtailment_DC, re_cdc], axis=1, sort=False) PV_Curtailment_DC = pd.concat([PV_Curtailment_DC, pv_cdc], axis=1, sort=False) # Remove columns that have values less than 1 RE_Curtailment_DC = RE_Curtailment_DC.loc[:, (RE_Curtailment_DC >= 1).any(axis=0)] PV_Curtailment_DC = PV_Curtailment_DC.loc[:, (PV_Curtailment_DC >= 1).any(axis=0)] # Replace _ with white space RE_Curtailment_DC.columns = RE_Curtailment_DC.columns.str.replace('_',' ') PV_Curtailment_DC.columns = PV_Curtailment_DC.columns.str.replace('_',' ') # Create Dictionary from scenario names and color list colour_dict = dict(zip(RE_Curtailment_DC.columns, self.color_list)) fig2, ax = plt.subplots(figsize=(self.x,self.y)) if prop == "PV": if PV_Curtailment_DC.empty: out = MissingZoneData() outputs[zone_input] = out continue # unit conversion return divisor and energy units unitconversion = PlotDataHelper.capacity_energy_unitconversion(PV_Curtailment_DC.values.max()) PV_Curtailment_DC = PV_Curtailment_DC/unitconversion['divisor'] Data_Table_Out = PV_Curtailment_DC Data_Table_Out = Data_Table_Out.add_suffix(f" ({unitconversion['units']})") x_axis_lim = 1.25 * len(PV_Curtailment_DC) for column in PV_Curtailment_DC: ax.plot(PV_Curtailment_DC[column], linewidth=3, color=colour_dict[column], label=column) ax.legend(loc='lower left',bbox_to_anchor=(1,0), facecolor='inherit', frameon=True) ax.set_ylabel(f"PV Curtailment ({unitconversion['units']})", color='black', rotation='vertical') if prop == "PV+Wind": if RE_Curtailment_DC.empty: out = MissingZoneData() outputs[zone_input] = out continue # unit conversion return divisor and energy units unitconversion = PlotDataHelper.capacity_energy_unitconversion(RE_Curtailment_DC.values.max()) RE_Curtailment_DC = RE_Curtailment_DC/unitconversion['divisor'] Data_Table_Out = RE_Curtailment_DC Data_Table_Out = Data_Table_Out.add_suffix(f" ({unitconversion['units']})") x_axis_lim = 1.25 * len(RE_Curtailment_DC) for column in RE_Curtailment_DC: ax.plot(RE_Curtailment_DC[column], linewidth=3, color=colour_dict[column], label=column) ax.legend(loc='lower left',bbox_to_anchor=(1,0), facecolor='inherit', frameon=True) ax.set_ylabel(f"PV + Wind Curtailment ({unitconversion['units']})", color='black', rotation='vertical') ax.set_xlabel('Hours', color='black', rotation='horizontal') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis='y', which='major', length=5, width=1) ax.tick_params(axis='x', which='major', length=5, width=1) ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda x, p: format(x, f',.{self.y_axes_decimalpt}f'))) ax.margins(x=0.01) #ax.set_xlim(0, 9490) ax.set_xlim(0,x_axis_lim) ax.set_ylim(bottom=0) if mconfig.parser("plot_title_as_region"): ax.set_title(zone_input) outputs[zone_input] = {'fig': fig2, 'data_table': Data_Table_Out} return outputs def curt_pen(self, prop: str = None, start_date_range: str = None, end_date_range: str = None, **_): """Plot of curtailment vs penetration. Each scenario is represented by a different symbel on a x, y axis Args: prop (str, optional): Controls type of re to include in plot. Controlled through the plot_select.csv. Defaults to None. start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True, "generator_Generation", self.Scenarios), (True, "generator_Available_Capacity", self.Scenarios), (True, f"generator_{self.curtailment_prop}", self.Scenarios), (True, "generator_Total_Generation_Cost", self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() for zone_input in self.Zones: Penetration_Curtailment_out = pd.DataFrame() self.logger.info(f"{self.AGG_BY } = {zone_input}") for scenario in self.Scenarios: self.logger.info(f"Scenario = {scenario}") gen = self["generator_Generation"].get(scenario) try: #Check for regions missing all generation. gen = gen.xs(zone_input,level = self.AGG_BY) except KeyError: self.logger.info(f'No generation in {zone_input}') continue avail_gen = self["generator_Available_Capacity"].get(scenario) avail_gen = avail_gen.xs(zone_input,level=self.AGG_BY) re_curt = self[f"generator_{self.curtailment_prop}"].get(scenario) try: re_curt = re_curt.xs(zone_input,level=self.AGG_BY) except KeyError: self.logger.info(f'No curtailment in {zone_input}') continue re_curt = self.df_process_gen_inputs(re_curt) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': re_curt = self.assign_curtailment_techs(re_curt) # Finds the number of unique hours in the year no_hours_year = len(gen.index.unique(level="timestamp")) # Total generation across all technologies [MWh] total_gen = float(gen.sum()) # Timeseries [MW] and Total VRE generation [MWh] vre_gen = (gen.loc[(slice(None), self.vre_gen_cat),:]) total_vre_gen = float(vre_gen.sum()) # Timeseries [MW] and Total RE generation [MWh] re_gen = (gen.loc[(slice(None), self.re_gen_cat),:]) total_re_gen = float(re_gen.sum()) # Timeseries [MW] and Total PV generation [MWh] pv_gen = (gen.loc[(slice(None), self.pv_gen_cat),:]) total_pv_gen = float(pv_gen.sum()) # % Penetration of generation classes across the year VRE_Penetration = (total_vre_gen/total_gen)*100 RE_Penetration = (total_re_gen/total_gen)*100 PV_Penetration = (total_pv_gen/total_gen)*100 # Timeseries [MW] and Total RE available [MWh] re_avail = (avail_gen.loc[(slice(None), self.re_gen_cat),:]) total_re_avail = float(re_avail.sum()) # Timeseries [MW] and Total PV available [MWh] pv_avail = (avail_gen.loc[(slice(None), self.pv_gen_cat),:]) total_pv_avail = float(pv_avail.sum()) # Total RE curtailment [MWh] total_re_curt = float(re_curt.sum().sum()) # Timeseries [MW] and Total PV curtailment [MWh] pv_curt = re_curt[re_curt.columns.intersection(self.pv_gen_cat)] total_pv_curt = float(pv_curt.sum().sum()) # % of hours with curtailment Prct_hr_RE_curt = (len((re_curt.sum(axis=1)).loc[(re_curt.sum(axis=1))>0])/no_hours_year)*100 Prct_hr_PV_curt = (len((pv_curt.sum(axis=1)).loc[(pv_curt.sum(axis=1))>0])/no_hours_year)*100 # Max instantaneous curtailment if re_curt.empty == True: continue else: Max_RE_Curt = max(re_curt.sum(axis=1)) if pv_curt.empty == True: continue else: Max_PV_Curt = max(pv_curt.sum(axis=1)) # % RE and PV Curtailment Capacity Factor if total_pv_curt > 0: RE_Curt_Cap_factor = (total_re_curt/Max_RE_Curt)/no_hours_year PV_Curt_Cap_factor = (total_pv_curt/Max_PV_Curt)/no_hours_year else: RE_Curt_Cap_factor = 0 PV_Curt_Cap_factor = 0 # % Curtailment across the year if total_re_avail == 0: continue else: Prct_RE_curt = (total_re_curt/total_re_avail)*100 if total_pv_avail == 0: continue else: Prct_PV_curt = (total_pv_curt/total_pv_avail)*100 # Total generation cost Total_Gen_Cost = self["generator_Total_Generation_Cost"].get(scenario) Total_Gen_Cost = Total_Gen_Cost.xs(zone_input,level=self.AGG_BY) Total_Gen_Cost = float(Total_Gen_Cost.sum()) vg_out = pd.Series([PV_Penetration ,RE_Penetration, VRE_Penetration, Max_PV_Curt, Max_RE_Curt, Prct_PV_curt, Prct_RE_curt, Prct_hr_PV_curt, Prct_hr_RE_curt, PV_Curt_Cap_factor, RE_Curt_Cap_factor, Total_Gen_Cost], index=["% PV Penetration", "% RE Penetration", "% VRE Penetration", "Max PV Curtailment [MW]", "Max RE Curtailment [MW]", "% PV Curtailment", '% RE Curtailment',"% PV hrs Curtailed", "% RE hrs Curtailed", "PV Curtailment Capacity Factor", "RE Curtailment Capacity Factor", "Gen Cost"]) vg_out = vg_out.rename(scenario) Penetration_Curtailment_out = pd.concat([Penetration_Curtailment_out, vg_out], axis=1, sort=False) Penetration_Curtailment_out = Penetration_Curtailment_out.T # Data table of values to return to main program Data_Table_Out = Penetration_Curtailment_out VG_index = pd.Series(Penetration_Curtailment_out.index) # VG_index = VG_index.str.split(n=1, pat="_", expand=True) # VG_index.rename(columns = {0:"Scenario"}, inplace=True) VG_index.rename("Scenario", inplace=True) # VG_index = VG_index["Scenario"] Penetration_Curtailment_out.loc[:, "Scenario"] = VG_index[:,].values marker_dict = dict(zip(VG_index.unique(), self.marker_style)) colour_dict = dict(zip(VG_index.unique(), self.color_list)) Penetration_Curtailment_out["colour"] = [colour_dict.get(x, '#333333') for x in Penetration_Curtailment_out.Scenario] Penetration_Curtailment_out["marker"] = [marker_dict.get(x, '.') for x in Penetration_Curtailment_out.Scenario] if Penetration_Curtailment_out.empty: self.logger.warning(f'No Generation in {zone_input}') out = MissingZoneData() outputs[zone_input] = out continue fig1, ax = plt.subplots(figsize=(self.x,self.y)) for index, row in Penetration_Curtailment_out.iterrows(): if prop == "PV": ax.scatter(row["% PV Penetration"], row["% PV Curtailment"], marker=row["marker"], c=row["colour"], s=100, label = row["Scenario"]) ax.set_ylabel('% PV Curtailment', color='black', rotation='vertical') ax.set_xlabel('% PV Penetration', color='black', rotation='horizontal') elif prop == "PV+Wind": ax.scatter(row["% RE Penetration"], row["% RE Curtailment"], marker=row["marker"], c=row["colour"], s=40, label = row["Scenario"]) ax.set_ylabel('% PV + Wind Curtailment', color='black', rotation='vertical') ax.set_xlabel('% PV + Wind Penetration', color='black', rotation='horizontal') ax.set_ylim(bottom=0) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(axis='y', which='major', length=5, width=1) ax.tick_params(axis='x', which='major', length=5, width=1) ax.margins(x=0.01) if mconfig.parser("plot_title_as_region"): ax.set_title(zone_input) handles, labels = plt.gca().get_legend_handles_labels() by_label = OrderedDict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys(), loc = 'lower right') outputs[zone_input] = {'fig': fig1, 'data_table': Data_Table_Out} return outputs def curt_total(self, start_date_range: str = None, end_date_range: str = None, **_): """Creates stacked barplots of total curtailment by technology. A separate bar is created for each scenario. Args: start_date_range (str, optional): Defines a start date at which to represent data from. Defaults to None. end_date_range (str, optional): Defines a end date at which to represent data to. Defaults to None. Returns: dict: dictionary containing the created plot and its data table. """ outputs = {} # List of properties needed by the plot, properties are a set of tuples and contain 3 parts: # required True/False, property name and scenarios required, scenarios must be a list. properties = [(True, f"generator_{self.curtailment_prop}", self.Scenarios), (True, "generator_Available_Capacity", self.Scenarios)] # Runs get_formatted_data within PlotDataHelper to populate PlotDataHelper dictionary # with all required properties, returns a 1 if required data is missing check_input_data = self.get_formatted_data(properties) if 1 in check_input_data: return MissingInputData() for zone_input in self.Zones: self.logger.info(f"{self.AGG_BY} = {zone_input}") Total_Curtailment_out = pd.DataFrame() Total_Available_gen = pd.DataFrame() vre_curt_chunks = [] avail_gen_chunks = [] for scenario in self.Scenarios: self.logger.info(f"Scenario = {scenario}") vre_collection = {} avail_vre_collection = {} vre_curt = self[f"generator_{self.curtailment_prop}"].get(scenario) try: vre_curt = vre_curt.xs(zone_input,level=self.AGG_BY) except KeyError: self.logger.info(f'No curtailment in {zone_input}') continue vre_curt = self.df_process_gen_inputs(vre_curt) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': vre_curt = self.assign_curtailment_techs(vre_curt) avail_gen = self["generator_Available_Capacity"].get(scenario) try: #Check for regions missing all generation. avail_gen = avail_gen.xs(zone_input,level = self.AGG_BY) except KeyError: self.logger.info(f'No available generation in {zone_input}') continue avail_gen = self.df_process_gen_inputs(avail_gen) # If using Marmot's curtailment property if self.curtailment_prop == 'Curtailment': avail_gen = self.assign_curtailment_techs(avail_gen) all_empty = True if pd.notna(start_date_range): self.logger.info(f"Plotting specific date range: \ {str(start_date_range)} to {str(end_date_range)}") for vre_type in self.vre_gen_cat: try: vre_curt_type = vre_curt[vre_type] # vre_curt_type = vre_curt.xs(vre_type,level='tech') except KeyError: self.logger.info(f'No {vre_type} in {zone_input}') continue avail_gen_type = avail_gen[vre_type] # Code to index data by date range, if a date range is listed in marmot_plot_select.csv if pd.notna(start_date_range): avail_gen_type = avail_gen_type.groupby(['timestamp']).sum() vre_curt_type = vre_curt_type.groupby(['timestamp']).sum() vre_curt_type = vre_curt_type[start_date_range : end_date_range] avail_gen_type = avail_gen_type[start_date_range : end_date_range] if vre_curt_type.empty is False and avail_gen_type.empty is False: all_empty = False vre_collection[vre_type] = float(vre_curt_type.sum()) avail_vre_collection[vre_type] = float(avail_gen_type.sum()) if all_empty: self.logger.warning('No data in selected Date Range') continue vre_table = pd.DataFrame(vre_collection,index=[scenario]) avail_gen_table = pd.DataFrame(avail_vre_collection,index=[scenario]) vre_curt_chunks.append(vre_table) avail_gen_chunks.append(avail_gen_table) if not vre_curt_chunks: outputs[zone_input] = MissingZoneData() continue Total_Curtailment_out = pd.concat(vre_curt_chunks, axis=0, sort=False) Total_Available_gen =
pd.concat(avail_gen_chunks, axis=0, sort=False)
pandas.concat
"""Methods to find information in the different pipelines of Clinica.""" import os from glob import glob from os import path import pandas as pd def pet_volume_pipeline( caps_dir, df, group_selection=None, volume_atlas_selection=None, pvc_restriction=None, tracers_selection=None, **kwargs, ): """Merge the data of the PET-Volume pipeline to the merged file containing the BIDS information. Args: caps_dir: the path to the CAPS directory df: the DataFrame containing the BIDS information group_selection: allows to choose the DARTEL groups to merge. If None all groups are selected. volume_atlas_selection: allows to choose the atlas to merge (default = 'all') pvc_restriction: gives the restriction on the inclusion or not of the file with the label 'pvc-rbv' 1 --> only the atlases containing the label will be used 0 --> the atlases containing the label won't be used None --> all the atlases will be used tracers_selection: allows to choose the PET tracer to merge (default = 'all') Returns: final_df: a DataFrame containing the information of the bids and the pipeline """ pet_path = path.join("pet", "preprocessing") return volume_pipeline( caps_dir, df, pet_path, group_selection=group_selection, atlas_selection=volume_atlas_selection, pvc_restriction=pvc_restriction, pipeline_name="pet-volume", tracers_selection=tracers_selection, ) def t1_freesurfer_pipeline(caps_dir, df, freesurfer_atlas_selection=None, **kwargs): """Merge the data of the PET-Volume pipeline to the merged file containing the BIDS information. Args: caps_dir: the path to the CAPS directory df: the DataFrame containing the BIDS information freesurfer_atlas_selection: allows to choose the atlas to merge (default = 'all') Returns: final_df: a DataFrame containing the information of the bids and the pipeline """ from clinica.iotools.converters.adni_to_bids.adni_utils import ( replace_sequence_chars, ) from clinica.utils.stream import cprint # Ensures that df is correctly indexed if "participant_id" in df.columns.values: df.set_index(["participant_id", "session_id"], inplace=True, drop=True) subjects_dir = path.join(caps_dir, "subjects") pipeline_df = pd.DataFrame() for participant_id, session_id in df.index.values: ses_path = path.join(subjects_dir, participant_id, session_id) mod_path = path.join( ses_path, "t1", "freesurfer_cross_sectional", "regional_measures" ) ses_df = pd.DataFrame( [[participant_id, session_id]], columns=["participant_id", "session_id"] ) ses_df.set_index(["participant_id", "session_id"], inplace=True, drop=True) if os.path.exists(mod_path): # Looking for atlases atlas_paths = glob( path.join(mod_path, f"{participant_id}_{session_id}_*thickness.tsv") ) for atlas_path in atlas_paths: atlas_name = atlas_path.split("_parcellation-")[1].split("_")[0] if path.exists(atlas_path) and ( not freesurfer_atlas_selection or ( freesurfer_atlas_selection and atlas_name in freesurfer_atlas_selection ) ): atlas_df =
pd.read_csv(atlas_path, sep="\t")
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # The decision which model to use or what hyperparameters are most suitable is often based on some Cross-Validation technique producing an estimate of the out-of-sample prediction error $\bar{Err}$. # # An alternative technique to produce an estimate of the out-of-sample error is the bootstrap, specifically the .632 estimator and the .632+ estimator mentioned in Elements of Statistical Learning. Surprisingly though, I could not find an implementation in sklearn. # # Both techniques at first estimate an upward biased estimate of the prediction error $\hat{Err}$ and then reduce that bias differently. <br /> # $\hat{Err}$ is obtained through # # $$\hat{Err} = \frac {1}{N} \displaystyle\sum_{i=1}^{N} \frac {1}{|C^{-i}|} \displaystyle\sum_{b \in {C^{-i}}} L(y_{i}, \hat{f}^{*b}(x_{i})).$$ # # Where # * $N$ denotes the sample size. # * $b$ denotes a specific bootstrap sample, whereas $B$ denotes the set of bootstrap samples. # * $C^{-i}$ denotes the number of bootstrap samples $b$ where observation $i$ is not contained in. # * $\hat{f}^{*b}(x_{i})$ denotes the estimated value of target $y_{i}$ by model $\hat{f}$ based on bootstrap sample $b$ and data $x_{i}$. # * $L(y_{i}, \hat{f}^{*b}(x_{i}))$ denotes the loss-function between real value $y_{i}$ and estimated value $\hat{f}^{*b}(x_{i})$. # # The pseudo-algorithm looks like this: # 1. Create $B$ bootstrap samples $b$ with the same size $N$ as the original data <br /> # 2. For $i = 1, ..., N$ <br /> # I) &nbsp;&nbsp;&nbsp; For $b = 1, ..., B$ <br /> # Ia) &nbsp;&nbsp;&nbsp;&nbsp;If $i$ not in $b$ <br /> # Iai) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Estimate $\hat{f}^{*b}(x_{i})$ <br /> # Iaii) &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Compute $L(y_{i}, \hat{f}^{*b}(x_{i}))$ <br /> # Ib) &nbsp;&nbsp;&nbsp;&nbsp;else next $b$ <br /> # II) &nbsp;&nbsp;Compute $\frac {1}{|C^{-i}|} \displaystyle\sum_{b \in {C^{-i}}} L(y_{i}, \hat{f}^{*b}(x_{i}))$ <br /> # 3. Compute $\frac {1}{N} \displaystyle\sum_{i=1}^{N} \frac {1}{|C^{-i}|} \displaystyle\sum_{b \in {C^{-i}}} L(y_{i}, \hat{f}^{*b}(x_{i}))$ # # The .632 estimator then calculates # $$\bar{Err} = 0.632*\hat{Err} + 0.368*inSampleError$$, # whereas the .632+ estimator demands a slightly more complex procedure to estimate $\bar{Err}$. # However, due to its simplicity only the .632 estimator is presented in this kernel. # # This is computationally intensive but when forced to work with a small data set where cross-validation is unreasonable. Estimating the test error through the bootstrap is a viable option. # # After some brief data exploration and manipulation the above algorithm is implemented. Afterwards, the 5-fold cross-validation estimate of the test error is also computed and both are compared to the true test error. # # In this kernel $\hat{f}$ is always represented by the linear regression and $L(y, \hat{f}(x))$ is represented by the MSE. # A reduced data set is used because the implementation in python is not very fast. # In[ ]: import pandas as pd import numpy as np import matplotlib.pyplot as plt from scipy.stats import jarque_bera data = pd.read_csv('../input/kc_house_data.csv') data = data.iloc[0:1000,:] data.drop_duplicates('id', inplace=True) print(('Take a look at the data: \n', data.head(), '\n')) print(('Examine data types of each predictor: \n', data.info(), '\n')) print(('Check out summary statistics: \n', data.describe(), '\n')) print(('Missing values?', data.columns.isnull().any(), '\n')) print(('Columns names:', data.columns.values.tolist())) # In[ ]: data = data.drop('zipcode', axis=1) data = data.drop('date', axis=1) nums = ['id', 'price', 'bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors', 'sqft_above', 'sqft_basement', 'yr_built', 'sqft_living15', 'sqft_lot15'] numsData = data[nums] numsData.hist(bins=50, figsize=(20,15)) plt.show() # price, sqft_above, sqft_living, sqft_living15, sqft_lot, sqft_lot15 seem to be right-skewed and are transformed. # In this case inverse-hyperbolic tranform is used, because, unlike log, it can handle zeros. # Normally, one would re-transform the produced predictions of the target and the target itself before the loss-function is applied, however, in this case the scale of the target is not of interest. # In[ ]: def arcsinh(data, colList): for item in colList: data.loc[:,item] = np.arcsinh(data.loc[:,item].values) return data jbCols = ['price', 'sqft_above', 'sqft_living', 'sqft_living15', 'sqft_lot', 'sqft_lot15'] numsData = arcsinh(numsData, jbCols) numsData.hist(bins=50, figsize=(20,15)) data.loc[:,nums] = numsData # Splitting data set and obtaining the $inSampleError$. # In[ ]: from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( data.drop('price', axis=1), data['price'], test_size=0.25, random_state=42) from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error lr = LinearRegression() lr.fit(X_train, y_train) inSamplePreds = lr.predict(X_train) inSampleErr = mean_squared_error(inSamplePreds, y_train) print(('In-sample-error:', inSampleErr)) # Now, the Leave-One-Out Bootstrap function is implemented. # It needs 4 arguments to be passed in. # 1. The data as a numpy array WITH an id-column, which uniquely identifies each observation, as the first column and # NO target column. # 2. The target column as a numpy array. # 3. The number of bootstrap samples to be created, and # 4. keyworded arguments of the model to be used. # # While coding this function, it came to my mind that it is better to create $B$ bootstraped id-columns instead of $B$ complete data sets that all have to be stored in memory the whole time the function is running. # This way, only the id-columns are stored all the time and each corresponding bootstrap data set is created through a JOIN-command as needed and then deleted when not in use anymore. # However, because I could not get the numpy-JOIN to work as I wanted it to, the function unfortunately switches to pandas to execute the join command and then switches back to numpy. # These cumbersome operations definitely do not improve the function's execution speed. # In[ ]: kwargs = {'fit_intercept': True, 'normalize': False, 'copy_X': True, 'n_jobs': 1} # or kwargs = {} def LOOB(data, targetCol, B_samples, **kwargs): avgLossVec = np.zeros((data.shape[0], 1)) bootMat = np.zeros((data.shape[0], B_samples)) idCol = np.zeros((data.shape[0], 1)) idCol = data[:, 0] targetCol = np.stack((idCol, targetCol)) targetCol = targetCol.T for column in range(bootMat.shape[1]): bootMat[:,column] = np.random.choice(idCol, idCol.shape[0],replace=True) for i in np.nditer(idCol): bootLossVec = np.zeros((1, 1)) target = targetCol[targetCol[:,0]==i,1] targetData = data[data[:,0]==i, 1:] for column in range(bootMat.shape[1]): if i not in bootMat[:,column]: tempVec =
pd.DataFrame(bootMat[:,column])
pandas.DataFrame
import datetime from time import sleep import pandas as pd from loguru import logger import ofanalysis.const as const import ofanalysis.utility as ut import tushare as ts class TSDataUpdate: def __init__(self, ts_pro_token:str): self.__pro = ts.pro_api(ts_pro_token) self.__today = datetime.date.today() def retrieve_all(self): self.retrieve_stock_basic() self.retrieve_stock_daily_basic() self.retrieve_stock_daily() self.retrieve_fund_basic() self.retrieve_fund_nav() self.retrieve_fund_share() self.retrieve_fund_manager() self.retrieve_fund_portfolio() def retrieve_stock_basic(self): logger.info('全量更新股票基础信息stock_basic') # 分页读取数据 df_stock_basic = pd.DataFrame() i = 0 while True: # 分页读取数据 df_batch_result = self.__pro.stock_basic(**{ "ts_code": "", "name": "", "exchange": "", "market": "", "is_hs": "", "list_status": "", "limit": const.EACH_TIME_ITEM, "offset": i }, fields=[ "ts_code", "symbol", "name", "area", "industry", "market", "list_date", "is_hs", "delist_date", "list_status", "curr_type", "exchange", "cnspell", "enname", "fullname" ]) if len(df_batch_result) == 0: break df_stock_basic = pd.concat([df_stock_basic, df_batch_result], ignore_index=True) i += const.EACH_TIME_ITEM ut.db_del_dict_from_mongodb( # 非增量更新 先清空数据 mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_STOCK_BASIC, query_dict={} ) ut.db_save_dict_to_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_STOCK_BASIC, target_dict=df_stock_basic.to_dict(orient='records') ) def retrieve_stock_daily_basic(self): check_field = 'trade_date' # 设置增量更新依据字段 logger.info('更新股票每日指标stock_daily_basic') existed_records = ut.db_get_distinct_from_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_STOCK_DAILY_BASIC, field=check_field ) if len(existed_records) == 0: # 空表 trade_cal_start_date = '20000101' else: existed_records.sort(reverse=True) # 倒排 trade_cal_start_date = pd.to_datetime(existed_records[-1]) + datetime.timedelta(days=1) trade_cal_start_date = trade_cal_start_date.strftime('%Y%m%d') trade_cal_list = ut.get_trade_cal_from_ts(ts_pro_token=self.__pro, start_date=trade_cal_start_date) for date in [x for x in trade_cal_list if x not in existed_records]: logger.info('更新股票每日指标stock_daily_basic: %s的数据' % date) df_daily = pd.DataFrame() i = 0 while True: # 分页读取数据 for _ in range(const.RETRY_TIMES): # 重试机制 try: df_batch_daily = self.__pro.daily_basic(**{ "ts_code": "", "trade_date": date, "start_date": "", "end_date": "", "limit": const.EACH_TIME_ITEM, "offset": i }, fields=[ "ts_code", "trade_date", "close", "turnover_rate", "turnover_rate_f", "volume_ratio", "pe", "pe_ttm", "pb", "ps", "ps_ttm", "dv_ratio", "dv_ttm", "total_share", "float_share", "free_share", "total_mv", "circ_mv" ]) except: sleep(1) else: break if len(df_batch_daily) == 0: break df_daily = pd.concat([df_daily, df_batch_daily], ignore_index=True) i += const.EACH_TIME_ITEM if len(df_daily) == 0: logger.info('日期:%s, 股票每日指标stock_daily_basic返回为空' % date) continue ut.db_save_dict_to_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_STOCK_DAILY_BASIC, target_dict=df_daily.to_dict(orient='records') ) def retrieve_stock_daily(self): check_field = 'trade_date' # 设置增量更新依据字段 logger.info('更新股票日线行情stock_daily') existed_records = ut.db_get_distinct_from_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_STOCK_DAILY, field=check_field ) if len(existed_records) == 0: # 空表 trade_cal_start_date = '20000101' else: existed_records.sort(reverse=True) # 倒排 trade_cal_start_date = pd.to_datetime(existed_records[-1]) + datetime.timedelta(days=1) trade_cal_start_date = trade_cal_start_date.strftime('%Y%m%d') trade_cal_list = ut.get_trade_cal_from_ts(ts_pro_token=self.__pro, start_date=trade_cal_start_date) for date in [x for x in trade_cal_list if x not in existed_records]: logger.info('更新股票日线行情stock_daily: %s的数据' % date) df_daily = pd.DataFrame() i = 0 while True: # 分页读取数据 for _ in range(const.RETRY_TIMES): # 重试机制 try: df_batch_daily = self.__pro.daily(**{ "ts_code": "", "trade_date": date, "start_date": "", "end_date": "", "offset": i, "limit": const.EACH_TIME_ITEM }, fields=[ "ts_code", "trade_date", "open", "high", "low", "close", "pre_close", "change", "pct_chg", "vol", "amount" ]) except: sleep(1) else: break if len(df_batch_daily) == 0: break df_daily = pd.concat([df_daily, df_batch_daily], ignore_index=True) i += const.EACH_TIME_ITEM if len(df_daily) == 0: logger.info('日期:%s, 股票日线行情stock_daily返回为空' % date) continue ut.db_save_dict_to_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_STOCK_DAILY, target_dict=df_daily.to_dict(orient='records') ) def retrieve_fund_basic(self): logger.info('全量更新基金基础信息fund_basic') df_all_fund = pd.DataFrame() i = 0 while True: # 分页读取数据 df_batch_result = self.__pro.fund_basic(**{ "ts_code": "", "market": "", "update_flag": "", "offset": i, "limit": const.EACH_TIME_ITEM, "status": "" }, fields=[ "ts_code", "name", "management", "custodian", "fund_type", "found_date", "due_date", "list_date", "issue_date", "delist_date", "issue_amount", "m_fee", "c_fee", "duration_year", "p_value", "min_amount", "exp_return", "benchmark", "status", "invest_type", "type", "trustee", "purc_startdate", "redm_startdate", "market" ]) if len(df_batch_result) == 0: break df_all_fund = pd.concat([df_all_fund, df_batch_result], ignore_index=True) i += const.EACH_TIME_ITEM sleep(8) ut.db_del_dict_from_mongodb( # 非增量更新 先清空数据 mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_FUND_BASIC, query_dict={} ) ut.db_save_dict_to_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_FUND_BASIC, target_dict=df_all_fund.to_dict(orient='records') ) def retrieve_fund_nav(self): check_field = 'nav_date' # 设置增量更新依据字段 logger.info('更新基金净值行情fund_nav') existed_records = ut.db_get_distinct_from_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_FUND_NAV, field=check_field ) if len(existed_records) == 0: # 空表 trade_cal_start_date = '20000101' else: existed_records.sort(reverse=True) # 倒排 trade_cal_start_date = pd.to_datetime(existed_records[-1]) + datetime.timedelta(days=1) trade_cal_start_date = trade_cal_start_date.strftime('%Y%m%d') trade_cal_list = ut.get_trade_cal_from_ts(ts_pro_token=self.__pro, start_date=trade_cal_start_date) for date in [x for x in trade_cal_list if x not in existed_records]: logger.info('更新基金净值行情fund_nav: %s的数据' % date) df_daily = pd.DataFrame() i = 0 while True: # 分页读取数据 for _ in range(const.RETRY_TIMES): # 重试机制 try: df_batch_daily = self.__pro.fund_nav(**{ "ts_code": "", "nav_date": date, "offset": i, "limit": const.EACH_TIME_ITEM, "market": "", "start_date": "", "end_date": "" }, fields=[ "ts_code", "ann_date", "nav_date", "unit_nav", "accum_nav", "accum_div", "net_asset", "total_netasset", "adj_nav", "update_flag" ]) except: sleep(1) else: break if len(df_batch_daily) == 0: break df_daily = pd.concat([df_daily, df_batch_daily], ignore_index=True) i += const.EACH_TIME_ITEM if len(df_daily) == 0: logger.info('日期:%s, 基金净值行情fund_nav返回为空' % date) continue ut.db_save_dict_to_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_FUND_NAV, target_dict=df_daily.to_dict(orient='records') ) def retrieve_fund_share(self): check_field = 'trade_date' # 设置增量更新依据字段 logger.info('更新基金净值规模fund_share') existed_records = ut.db_get_distinct_from_mongodb( mongo_db_name=const.MONGODB_DB_TUSHARE, col_name=const.MONGODB_COL_TS_FUND_SHARE, field=check_field ) if len(existed_records) == 0: # 空表 trade_cal_start_date = '20000101' else: existed_records.sort(reverse=True) # 倒排 trade_cal_start_date =
pd.to_datetime(existed_records[-1])
pandas.to_datetime
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree(): c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent m = Node('m', children=[p]) p = m['p'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 1 assert 'p' in m.children assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) c1.price == 100 c2.price == 100 i = 1 s.update(dts[i], data.ix[dts[i]]) c1.price == 105 c2.price == 95 i = 2 s.update(dts[i], data.ix[dts[i]]) c1.price == 100 c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.ix[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.ix[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.ix[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.ix[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert s.price == 100 s.adjust(1000) assert s.price == 100 assert s.value == 1000 assert s._value == 1000 c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.price == 100 i = 1 s.update(dts[i], data.ix[dts[i]]) assert c1.position == 5 assert c1.value == 525 assert c1.weight == 525.0 / 1025 assert s.capital == 1000 - 500 assert s.value == 1025 assert np.allclose(s.price, 102.5) def test_strategybase_universe(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 def test_strategybase_allocate(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 def test_strategybase_close(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 s.close('c1') assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_flatten(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] s.allocate(100, 'c2') c2 = s['c2'] assert c1.position == 1 assert c1.value == 100 assert c2.position == 1 assert c2.value == 100 assert s.value == 1000 s.flatten() assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_multiple_calls(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.ix[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) c2 == s['c2'] assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 1 assert 'c2' in s.children c2 == s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1050.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1 == s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_preset_secs(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('s', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.ix[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 2 assert c2.value == 1000 assert c2.weight == 1000.0 / 1050. assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_no_post_update(): s = StrategyBase('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.ix[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 999 assert s.capital == 49 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 999 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1049 assert s.capital == 49 assert len(s.children) == 1 assert 'c2' in s.children c2 == s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1049.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1047 assert s.capital == 2 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1047 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1102 assert s.capital == 2 assert c1.value == 1100 assert c1.weight == 1100.0 / 1102 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1096 assert s.capital == 51 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1096 assert c2.price == 95 def test_strategybase_prices(): dts = pd.date_range('2010-01-01', periods=21) rawd = [13.555, 13.75, 14.16, 13.915, 13.655, 13.765, 14.02, 13.465, 13.32, 14.65, 14.59, 14.175, 13.865, 13.865, 13.89, 13.85, 13.565, 13.47, 13.225, 13.385, 12.89] data = pd.DataFrame(index=dts, data=rawd, columns=['a']) s = StrategyBase('s') s.set_commissions(lambda q, p: 1) s.setup(data) # buy 100 shares on day 1 - hold until end # just enough to buy 100 shares + 1$ commission s.adjust(1356.50) s.update(dts[0]) # allocate all capital to child a # a should be dynamically created and should have # 100 shares allocated. s.capital should be 0 s.allocate(s.value, 'a') assert s.capital == 0 assert s.value == 1355.50 assert len(s.children) == 1 aae(s.price, 99.92628, 5) a = s['a'] assert a.position == 100 assert a.value == 1355.50 assert a.weight == 1 assert a.price == 13.555 assert len(a.prices) == 1 # update through all dates and make sure price is ok s.update(dts[1]) aae(s.price, 101.3638, 4) s.update(dts[2]) aae(s.price, 104.3863, 4) s.update(dts[3]) aae(s.price, 102.5802, 4) # finish updates and make sure ok at end for i in range(4, 21): s.update(dts[i]) assert len(s.prices) == 21 aae(s.prices[-1], 95.02396, 5) aae(s.prices[-2], 98.67306, 5) def test_fail_if_root_value_negative(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data =
pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100)
pandas.DataFrame
import unittest import pandas as pd from mmvec.heatmap import ( _parse_taxonomy_strings, _parse_heatmap_metadata_annotations, _process_microbe_metadata, _process_metabolite_metadata, _normalize_table) import pandas.util.testing as pdt class TestParseTaxonomyStrings(unittest.TestCase): def setUp(self): self.taxa = pd.Series([ 'k__Bacteria; p__Proteobacteria; c__Deltaproteobacteria; ' 'o__Desulfobacterales; f__Desulfobulbaceae; g__; s__', 'k__Bacteria; p__Cyanobacteria; c__Chloroplast; o__Streptophyta', 'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; ' 'o__Rickettsiales; f__mitochondria; g__Lardizabala; s__biternata', 'k__Archaea; p__Euryarchaeota; c__Methanomicrobia; ' 'o__Methanosarcinales; f__Methanosarcinaceae; g__Methanosarcina', 'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; ' 'o__Rickettsiales; f__mitochondria; g__Pavlova; s__lutheri', 'k__Archaea; p__[Parvarchaeota]; c__[Parvarchaea]; o__WCHD3-30', 'k__Bacteria; p__Proteobacteria; c__Alphaproteobacteria; ' 'o__Sphingomonadales; f__Sphingomonadaceae'], index=
pd.Index([c for c in 'ABCDEFG'], name='feature-id')
pandas.Index
#src module from src import utilities as u from src.enums import * from src.utilities import Preprocessing #sklearn from sklearn.model_selection import ShuffleSplit from sklearn.utils import shuffle from sklearn.utils import resample #other import pandas as pd class MakeDataset: '''Prepares data.''' def read_csv(self, full_path, delimiter='\t'): '''Reads raw data from the full path.''' return u.read_csv(full_path, delimiter=delimiter) def preprocess(self, text): try: upre=Preprocessing() text=upre.remove_emojis(text) text=upre.remove_hashtag(text) text=upre.remove_mention(text) text=upre.remove_rt(text) text=upre.remove_urls(text) text=upre.remove_non_alnum(text) text=upre.remove_space(text) text=upre.lower_text(text) text=upre.strip_text(text) text=upre.compress_words(text) return text except Exception as e: print('text> {}'.format(text)) raise Exception(e) def preprocess_data(self, data): data=data[~data.sexist.isnull()] data=data[data.text.notna()] data=data[data.text != ''] data['preprocessed']=data.text.apply(lambda x: self.preprocess(x)) data=data[data.preprocessed != ''] data['sexist'] = data.copy()['sexist'].astype(int) return data def read_data(self, full_path): data = self.read_csv(full_path) return self.preprocess_data(data) def get_n_splits(self, X, n_splits, test_size, random_state): '''Split data into training and test set. Returns: split_dict (dictionary) = dictionary that includes split training and test set ''' split_dict = [] ss = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=random_state) for train_index, test_index in ss.split(X): split = {'X_train': X.iloc[train_index], 'X_test': X.iloc[test_index] } split_dict.append(split) return split_dict def get_splits(self, X, n_splits, test_size, random_state): split_dict_s=self.get_n_splits(X[X.sexist == 1], n_splits, test_size, random_state) split_dict_ns=self.get_n_splits(X[X.sexist == 0], n_splits, test_size, random_state) X_train=pd.concat([split_dict_s[0]['X_train'], split_dict_ns[0]['X_train']]) X_test=pd.concat([split_dict_s[0]['X_test'], split_dict_ns[0]['X_test']]) return X_train, X_test def get_original_data(self, data): '''Gets original data.''' return data[data['of_id'].isnull()] def get_adversarial_examples(self, data): '''Gets adversarial examples.''' return data[data['of_id'].notna()] def get_modified_data(self, original_data, adversarial_examples, sample_proportion): '''Modifies given data domain by injecting adversarial examples (while maintaining equal size) Step 1.Sample 'sample_proportion' of the sexist examples from original data domain. Step 2.Retrieve the modified version of sexist examples on step 1 from adversarial examples Step 3.Discard a corresponding number of non-sexist examples from the original data set. (to maintain equal size) Step 4.Inject retrieved adversarial examples on step 2 Step 5.Shuffle Example: >>> training_sample_proportion=0.5, test_sample_proportion=1 >>> get_modified_data(original_data, adversarial_examples, training_sample_proportion) ''' original_data = shuffle(original_data, random_state=0) ### To check the size end of the method begin_len_sexist = len(original_data[original_data['sexist'] == 1]) begin_len_nonsexist = len(original_data[original_data['sexist'] == 0]) ### #Step 1.Sample 'sample_proportion' of the sexist examples sexist = original_data[original_data['sexist'] == 1] sample_count = int(len(sexist) * sample_proportion) sexist = sexist.head(sample_count) #Step 2.Retrieve the modified version of sexist examples on step 1 adversarial_examples = adversarial_examples[adversarial_examples['of_id'].isin(sexist['_id'])] #print(len(adversarial_examples)) if len(adversarial_examples) > sample_count: #There might be more than one modified example for a sexist tweet. Select the first one. adversarial_examples = adversarial_examples.drop_duplicates(subset ='of_id', keep = 'first') #print(len(adversarial_examples)) #Step 3.Discard a corresponding number of non-sexist examples from the original data set. (to maintain equal size) non_sexist = original_data[original_data['sexist'] == 0].head(len(adversarial_examples)) original_data = original_data[~original_data['_id'].isin(non_sexist['_id'])] #Step 4.Inject retrieved adversarial examples on step 2 #NOTE: When sexist examples > nonsexist examples, adversarial_examples might be more than non_sexist example count. #To maintain equal size in that case, concat original_data with: adversarial_examples.head(len(non_sexist) original_data = pd.concat([original_data, adversarial_examples.head(len(non_sexist))], axis=0) ######### To compare the data size before and after injection ############## end_len_sexist = len(original_data[original_data['sexist'] == 1]) end_len_nonsexist = len(original_data[original_data['sexist'] == 0]) if begin_len_sexist != end_len_sexist or begin_len_nonsexist != end_len_nonsexist: print('equal size did not maintain: sexist begin {} sexist end {} nonsexist begin {} nonsexist end {}'.format(begin_len_sexist, end_len_sexist, begin_len_nonsexist, end_len_nonsexist)) ########################################################################## #Step 5.Shuffle original_data=shuffle(original_data, random_state=0) return original_data def downsample(self, df, random_state): '''Balances dataset by downsampling the majority class. Uses sklearn resample method to downsample. ''' nonsexist_count=len(df[df.sexist==0]) sexist_count=len(df[df.sexist==1]) # Separate majority and minority classes df_minority, df_majority=None, None n_samples= 0 if sexist_count < nonsexist_count: df_minority = df[df.sexist==1] df_majority = df[df.sexist==0] n_samples=sexist_count else: df_minority = df[df.sexist==0] df_majority = df[df.sexist==1] n_samples=nonsexist_count # Downsample majority class df_majority_downsampled = resample(df_majority, replace=False, # sample without replacement n_samples=n_samples, # to match minority class random_state=random_state) # reproducible results # Combine minority class with downsampled majority class df_downsampled =
pd.concat([df_majority_downsampled, df_minority])
pandas.concat
# The script generates the Dataframes with the VC, PBLH, u_mean. import BoundaryLayerToolbox as blt import pandas as pd import numpy as np import h5py import os import shutil path2wrf = '/Volumes/BUFFALO_SOLDIER/datos_VC/' path2DataFrames = "../datos/dataframes_VC/" path2pollutants = "../datos/contaminantes/2015/" months = {'jan': '01', 'feb': '02', 'mar': '03', 'apr': '04', 'may': '05', 'jun': '06', 'jul': '07', 'aug': '08', 'sep': '09', 'oct': '10', 'nov': '11', 'dic': '12'} def E1or30(month): if month in ['jan', 'mar', 'may', 'jul', 'aug', 'oct', 'dic']: return '31' elif month in ['apr', 'jun', 'sep', 'jul', 'nov']: return '30' elif month == 'feb': return '28' location = ['MER', 'PED', 'SAG', 'TLA', 'UIZ', 'SFE'] stations = pd.read_csv('../datos/Stations_Info.csv', index_col=0) xlat = np.loadtxt('../datos/xlat_d02_interpolado.txt') xlong = np.loadtxt('../datos/xlong_d02_interpolado.txt') h_i = "00:00:00" h_f = "23:50:00" h_f_wrf = "23:00:00" print('***START***') for st in location: print('-- ' + st + ' --') xlat_st, xlong_st = stations.loc[st][['Latitud', 'Longitud']] # contaminantes o3_path = path2pollutants + st + "/" + st + "_O3_2015.csv" o3_2015 = pd.read_csv(o3_path, names=['date', 'station', 'pollutant', 'O3', 'units']) o3_2015.index = pd.date_range('2015-01-01 01:00', '2016-01-01 00:00', freq='1H') o3_2015 = o3_2015.reindex(pd.date_range('2015-01-01 00:00', '2015-12-31 23:00', freq='1H')) o3_2015 = o3_2015.drop(['date', 'station', 'pollutant', 'units'], axis=1) pm25_path = path2pollutants + st + "/" + st + "_PM2.5_2015.csv" pm25_2015 = pd.read_csv(pm25_path, names=['date', 'station', 'pollutant', 'PM2.5', 'units']) pm25_2015.index = pd.date_range('2015-01-01 01:00', '2016-01-01 00:00', freq='1H') pm25_2015 = pm25_2015.reindex(pd.date_range('2015-01-01 00:00', '2015-12-31 23:00', freq='1H')) pm25_2015 = pm25_2015.drop(['date', 'station', 'pollutant', 'units'], axis=1) pm10_path = path2pollutants + st + "/" + st + "_PM10_2015.csv" pm10_2015 = pd.read_csv(pm10_path, names=['date', 'station', 'pollutant', 'PM10', 'units']) pm10_2015.index = pd.date_range('2015-01-01 01:00', '2016-01-01 00:00', freq='1H') pm10_2015 = pm10_2015.reindex(pd.date_range('2015-01-01 00:00', '2015-12-31 23:00', freq='1H')) pm10_2015 = pm10_2015.drop(['date', 'station', 'pollutant', 'units'], axis=1) Pollutants = pd.concat([o3_2015, pm25_2015, pm10_2015], axis=1) VC_year = pd.DataFrame() dir = path2DataFrames + st if os.path.exists(dir): shutil.rmtree(dir) os.makedirs(dir) for mm in months.keys(): date_i = '2015-' + months[mm] + '-01' + ' ' + h_i date_f = '2015-' + months[mm] + '-' + E1or30(mm) + ' ' + h_f date_f_wrf = '2015-' + months[mm] + '-' + E1or30(mm) + ' ' + h_f_wrf xx, yy = blt.near_coord_loc(xlong, xlat, xlong_st, xlat_st) file_24 = h5py.File(path2wrf + months[mm] + '/' + mm + '_24.h5', 'r') vc_24 = np.array(file_24.get('vc_24h')) pblh_24 = np.array(file_24.get('pblh_24h')) u_mean_24 = np.array(file_24.get('u_mean_24h')) if mm == 'nov': BEG = pd.date_range('2015-11-01 00:00:00', '2015-11-05 23:00:00', freq='1H') ENDD = pd.date_range('2015-11-07 00:00:00', '2015-11-18 23:00:00', freq='1H') BEG = BEG.union(ENDD) ENDD = pd.date_range('2015-11-20 00:00:00', '2015-11-20 23:00:00', freq='1H') BEG = BEG.union(ENDD) ENDD = pd.date_range('2015-11-22 00:00:00', '2015-11-30 23:00:00', freq='1H') month_t_range = BEG.union(ENDD) elif mm == 'jun': BEG = pd.date_range('2015-06-01 00:00:00', '2015-06-11 23:00:00', freq='1H') ENDD = pd.date_range('2015-06-13 00:00:00', '2015-06-30 23:00:00', freq='1H') month_t_range = BEG.union(ENDD) elif mm == 'oct': BEG = pd.date_range('2015-10-01 00:00:00', '2015-10-03 23:00:00', freq='1H') ENDD = pd.date_range('2015-10-05 00:00:00', '2015-10-31 23:00:00', freq='1H') month_t_range = BEG.union(ENDD) elif mm == 'jan': month_t_range = pd.date_range('2015-01-15 00:00:00', '2015-01-31 23:00:00', freq='1H') elif mm == 'apr': month_t_range = pd.date_range('2015-04-02 00:00:00', '2015-04-30 23:00:00', freq='1H') else: month_t_range = pd.date_range(date_i, date_f_wrf, freq='1H') wrf_df = blt.wrf2dataframe(vc_24, pblh_24, u_mean_24, month_t_range, xx, yy) wrf_df = wrf_df.asfreq('1H') VC_year =
pd.concat([VC_year, wrf_df], axis=0)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # COVID-19 - Global Cases - EDA and Forecasting # This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL). # # Data is sourced from https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data # # # * Visual Dashboard (desktop): # https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6 # # * Visual Dashboard (mobile): # http://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61 # # * Lancet Article: # An interactive web-based dashboard to track COVID-19 in real time # # * Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): # https://systems.jhu.edu/ # # * Data Sources: # # - World Health Organization (WHO): https://www.who.int/ # - DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. # - BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ # - National Health Commission of the People’s Republic of China (NHC): # http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml # - China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm # - Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html # - Macau Government: https://www.ssm.gov.mo/portal/ # - Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 # - US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html # - Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html # - Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance # - European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases # - Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 # - Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus # # - Additional Information about the Visual Dashboard: # https://systems.jhu.edu/research/public-health/ncov/ # # Contact Us: # # Email: <EMAIL> # # Terms of Use: # # This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited. # __For better viewing experience, I recommend to enable NBextensions as guided @__ # # https://github.com/lsunku/DataScience/tree/master/JupyterNotebook # # Steps invoved in this notebook # 1. Import Python Libraries for data analysis and ML # 2. Local user defined functions # 3. Sourcing the Data # 4. Inspect and Clean the Data # 5. Exploratory Data Analysis # 6. Preparing the data for modelling(train-test split, rescaling etc) # 7. Model evaluation for Advanced Regression Criteria # 8. Linear Regression Model for World Wide Case Predictions # 9. Linear Regression Model for Italy Predictions # 10. Linear Regression Model for US Predictions # 11. Linear Regression Model for Spain Predictions # 12. Linear Regression Model for Germany Predictions # 13. Linear Regression Model for India Predictions # __Notes:__ Currently, I have used only time_series_covid19_confirmed_global for the following analysis. When I get time, I shall enhance the same with additional files time_series_covid19_deaths_global, time_series_covid19_recovered_global and integrate with daily reports. # # __Import Python Functions__ # In[284]: # Local classes and Local flags # Local Classes class color: PURPLE = '\033[95m' CYAN = '\033[96m' DARKCYAN = '\033[36m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' # Debug flag for investigative purpose DEBUG = 0 # Default random_state rndm_stat = 42 # In[285]: # Python libraries for Data processing and analysis import time as time strt = time.time() import pandas as pd pd.set_option('display.max_columns', 200) pd.set_option('display.max_rows', 100) pd.options.mode.use_inf_as_na = True import numpy as np import matplotlib.pyplot as plt import seaborn as sns import datetime import glob from matplotlib.pyplot import figure import warnings import math import itertools warnings.filterwarnings('ignore') sns.set_style("whitegrid") from math import sqrt import re from prettytable import PrettyTable # ML Libraries import statsmodels import statsmodels.api as sm import sklearn as sk from sklearn.model_selection import train_test_split,GridSearchCV, KFold,RandomizedSearchCV,StratifiedKFold from sklearn.metrics import r2_score,mean_squared_error,mean_absolute_error from sklearn.linear_model import LinearRegression, Ridge, Lasso from sklearn.pipeline import make_pipeline from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, StandardScaler,OrdinalEncoder,LabelEncoder,Normalizer,RobustScaler,PowerTransformer,PolynomialFeatures from statsmodels.stats.outliers_influence import variance_inflation_factor import xgboost from sklearn.ensemble import GradientBoostingRegressor,RandomForestRegressor # # __Local User Defined Functions__ # ## Local functions for data overview and data cleaning # In[286]: # local functions # Function to read a file & Store it in Pandas # read_file takes either csv or excel file as input and reuturns a pandas DF and # also prints head, tail, description, info and shape of the DF def read_file(l_fname,l_path,head=0): i = l_fname.split(".") f_path = l_path+'/'+l_fname print(f_path,i[0],i[1]) if (i[1] == "xlsx"): l_df =
pd.read_excel(f_path,header=head,encoding = "ISO-8859-1",infer_datetime_format=True)
pandas.read_excel
''' CIS 419/519 project: Using decision tree ensembles to infer the pathological cause of age-related neurodegenerative changes based on clinical assessment nadfahors: <NAME>, <NAME>, & <NAME> This file contains code for preparing NACC data for analysis, including: * synthesis of pathology data to create pathology class outcomes * dropping uninformative variables from predictor set * identifying and merging/resolving redundant clusters of variables * identifying missing data codes and replacing with NaNs as appropriate * creating change variables from longitudinal data * imputation of missing data * categorizing retained variables as interval/ratio, ordinal, or nominal * creation of dummy variables for nominal variables * standardizing interval/ratio and ordinal variables * creating date variables, then converting these to useful ages or intervals * quadratic expansion for interval/ratio variables? ''' # Module imports import pandas as pd import numpy as np import datetime # Read in full dataset. Warning: this is about 340 MB. fulldf = pd.read_csv('investigator_nacc48.csv') # List of Uniform Data Set (UDS) values that will serve as potential # predictors. Those with a "False" next to them will be excluded after data # preparation; those with a True will be kept. xvar = pd.read_csv('xvar.csv') # Variables from the NACC neuropathology table that will be used to group # individuals by pathology class: # 1) Alzheimer's disease (AD); # 2) frontotemporal lobar degeneration due to tauopathy (FTLD-tau) # 3) frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP) # 4) Lewy body disease due to alpha synuclein (including Lewy body dementia and Parkinson's disease) # 5) vascular disease # Path classes: AD (ABC criteria); FTLD-tau; FTLD-TDP, including ALS; Lewy body disease (are PD patients captured here?); vascular npvar = pd.DataFrame(np.array(["NPPMIH",0, # Postmortem interval--keep in as a potential confound variable? "NPFIX",0, "NPFIXX",0, "NPWBRWT",0, "NPWBRF",0, "NACCBRNN",0, "NPGRCCA",0, "NPGRLA",0, "NPGRHA",0, "NPGRSNH",0, "NPGRLCH",0, "NACCAVAS",0, "NPTAN",False, "NPTANX",False, "NPABAN",False, "NPABANX",False, "NPASAN",False, "NPASANX",False, "NPTDPAN",False, "NPTDPANX",False, "NPHISMB",False, "NPHISG",False, "NPHISSS",False, "NPHIST",False, "NPHISO",False, "NPHISOX",False, "NPTHAL",False,# Use for ABC scoring to create ordinal measure of AD change "NACCBRAA",False,# Use for ABC scoring to create ordinal measure of AD change "NACCNEUR",False,# Use for ABC scoring to create ordinal measure of AD change "NPADNC",False,# Use for ABC scoring to create ordinal measure of AD change "NACCDIFF",False, "NACCVASC",False,# Vasc presence/absence "NACCAMY",False, "NPLINF",False, "NPLAC",False, "NPINF",False,# Derived variable summarizing several assessments of infarcts and lacunes "NPINF1A",False, "NPINF1B",False, "NPINF1D",False, "NPINF1F",False, "NPINF2A",False, "NPINF2B",False, "NPINF2D",False, "NPINF2F",False, "NPINF3A",False, "NPINF3B",False, "NPINF3D",False, "NPINF3F",False, "NPINF4A",False, "NPINF4B",False, "NPINF4D",False, "NPINF4F",False, "NACCINF",False, "NPHEM",False, "NPHEMO",False, "NPHEMO1",False, "NPHEMO2",False, "NPHEMO3",False, "NPMICRO",False, "NPOLD",False, "NPOLD1",False, "NPOLD2",False, "NPOLD3",False, "NPOLD4",False, "NACCMICR",False,# Derived variable for microinfarcts "NPOLDD",False, "NPOLDD1",False, "NPOLDD2",False, "NPOLDD3",False, "NPOLDD4",False, "NACCHEM",False,# Derived variables for microbleeds and hemorrhages "NACCARTE",False, "NPWMR",False, "NPPATH",False,# Other ischemic/vascular pathology "NACCNEC",False, "NPPATH2",False, "NPPATH3",False, "NPPATH4",False, "NPPATH5",False, "NPPATH6",False, "NPPATH7",False, "NPPATH8",False, "NPPATH9",False, "NPPATH10",False, "NPPATH11",False, "NPPATHO",False, "NPPATHOX",False, "NPART",False, "NPOANG",False, "NACCLEWY",False,# Note that limbic/transitional and amygdala-predominant are not differentiated "NPLBOD",False,# But here they are differentiated! "NPNLOSS",False, "NPHIPSCL",False, "NPSCL",False, "NPFTDTAU",False,# FTLD-tau "NACCPICK",False,# FTLD-tau "NPFTDT2",False,# FTLD-tau "NACCCBD",False,# FTLD-tau "NACCPROG",False,# FTLD-tau "NPFTDT5",False,# FTLD-tau "NPFTDT6",False,# FTLD-tau "NPFTDT7",False,# FTLD-tau "NPFTDT8",False,# This is FTLD-tau but associated with ALS/parkinsonism--wut? "NPFTDT9",False,# tangle-dominant disease--is this PART? Maybe exclude cases who have this as only path type. "NPFTDT10",False,# FTLD-tau: other 3R+4R tauopathy. What is this if not AD? Maybe exclude. How many cases? "NPFRONT",False,# FTLD-tau "NPTAU",False,# FTLD-tau "NPFTD",False,# FTLD-TDP "NPFTDTDP",False,# FTLD-TDP "NPALSMND",False,# FTLD-TDP (but exclude FUS and SOD1) "NPOFTD",False, "NPOFTD1",False, "NPOFTD2",False, "NPOFTD3",False, "NPOFTD4",False, "NPOFTD5",False, "NPFTDNO",False, "NPFTDSPC",False, "NPTDPA",False,# In second pass, use anatomical distribution to stage "NPTDPB",False,# In second pass, use anatomical distribution to stage "NPTDPC",False,# In second pass, use anatomical distribution to stage "NPTDPD",False,# In second pass, use anatomical distribution to stage "NPTDPE",False,# In second pass, use anatomical distribution to stage "NPPDXA",False,# Exclude? "NPPDXB",False,# Exclude "NACCPRIO",False,# Exclude "NPPDXD",False,# Exclude "NPPDXE",False, "NPPDXF",False, "NPPDXG",False, "NPPDXH",False, "NPPDXI",False, "NPPDXJ",False, "NPPDXK",False, "NPPDXL",False, "NPPDXM",False, "NPPDXN",False, "NACCDOWN",False, "NACCOTHP",False,# Survey for exclusion criteria "NACCWRI1",False,# Survey for exclusion criteria "NACCWRI2",False,# Survey for exclusion criteria "NACCWRI3",False,# Survey for exclusion criteria "NACCBNKF",False, "NPBNKB",False, "NACCFORM",False, "NACCPARA",False, "NACCCSFP",False, "NPBNKF",False, "NPFAUT",False, "NPFAUT1",False, "NPFAUT2",False, "NPFAUT3",False, "NPFAUT4",False, "NACCINT",False, "NPNIT",False, "NPCERAD",False,# What sort of variable? "NPADRDA",False, "NPOCRIT",False, "NPVOTH",False, "NPLEWYCS",False, "NPGENE",True,# Family history--include in predictors? "NPFHSPEC",False,# Code as dummy variables if useful. "NPCHROM",False,# Exclusion factor? Genetic/chromosomal abnormalities "NPPNORM",False,# Check all the following variables for redundancy with the ones above. "NPCNORM",False, "NPPADP",False, "NPCADP",False, "NPPAD",False, "NPCAD",False, "NPPLEWY",False, "NPCLEWY",False, "NPPVASC",False, "NPCVASC",False, "NPPFTLD",False, "NPCFTLD",False, "NPPHIPP",False, "NPCHIPP",False, "NPPPRION",False, "NPCPRION",False, "NPPOTH1",False, "NPCOTH1",False, "NPOTH1X",False, "NPPOTH2",False, "NPCOTH2",False, "NPOTH2X",False, "NPPOTH3",False, "NPCOTH3",False, "NPOTH3X",0]).reshape((-1,2))) npvar.columns = ['Variable','Keep'] ## Case selection process. # Include only those with autopsy data. aut = fulldf[fulldf.NACCAUTP == 1] del fulldf def table(a,b): print(pd.crosstab(aut[a],aut[b],dropna=False,margins=True)) # Exclude for Down's, Huntington's, and other conditions. aut = aut.loc[aut.DOWNS != 1] aut = aut.loc[aut.HUNT != 1] aut = aut.loc[aut.PRION != 1] aut = aut.loc[~aut.MSAIF.isin([1,2,3])] aut = aut.loc[~aut.NEOPIF.isin([1,2,3])] aut = aut.loc[~aut.SCHIZOIF.isin([1,2,3])] aut.index = list(range(aut.shape[0])) # How many unique IDs? # For now, keep in follow-up visits to increase our training data. uids = aut.NACCID[~aut.NACCID.duplicated()] #aut = aut[~aut.NACCID.duplicated()] ## Coding of pathology class outcomes. # Create binary variables for the presence of each pathology class of interest. # Code Alzheimer's disease pathology based on NPADNC, which implements # ABC scoring based on Montine et al. (2012). aut = aut.assign(ADPath = 0) aut.loc[aut.NPADNC.isin((2,3)),'ADPath'] = 1 aut.loc[aut.NPPAD == 1,'ADPath'] = 1 # The following two commands make the ADPath variable false if the AD path # diagnosis is as contributing, not as primary. aut.loc[aut.NPPAD == 2,'ADPath'] = 0 aut.loc[aut.NPCAD == 1,'ADPath'] = 0 aut.loc[aut.NPPVASC == 1,'ADPath'] = 0 aut.loc[aut.NPPLEWY == 1,'ADPath'] = 0 aut.loc[aut.NPPFTLD == 1,'ADPath'] = 0 # Several variables pertain to FTLD tauopathies. aut = aut.assign(TauPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPFTDTAU == 1,'TauPath'] = 1 aut.loc[aut.NACCPICK == 1,'TauPath'] = 1 aut.loc[aut.NACCCBD == 1,'TauPath'] = 1 aut.loc[aut.NACCPROG == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT2 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT5 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT6 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT7 == 1,'TauPath'] = 1 aut.loc[aut.NPFTDT9 == 1,'TauPath'] = 1 aut.loc[aut.NPFRONT == 1,'TauPath'] = 1 aut.loc[aut.NPTAU == 1,'TauPath'] = 1 aut.loc[aut.ADPath == 1, 'TauPath'] = 0 aut.loc[aut.NPCFTLD == 1, 'TauPath'] = 0 # Code Lewy body disease based on NPLBOD variable. Do not include amygdala- # predominant, brainstem-predominant, or olfactory-only cases. # See Toledo et al. (2016, Acta Neuropathol) and Irwin et al. (2018, Nat Rev # Neuro). aut = aut.assign(LBPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPLBOD.isin((2,3)),'LBPath'] = 1 aut.loc[aut.NPPLEWY == 1,'LBPath'] = 1 aut.loc[aut.NPPLEWY == 2,'LBPath'] = 0 aut.loc[aut.NPCLEWY == 1,'LBPath'] = 0 aut.loc[aut.ADPath == 1 & (aut.NPPLEWY != 1), 'LBPath'] = 0 aut.loc[aut.TauPath == 1 & (aut.NPPLEWY != 1),'LBPath'] = 0 # Code TDP-43 pathology based on NPFTDTDP and NPALSMND, excluding FUS and SOD1 # cases. aut = aut.assign(TDPPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPFTD == 1,'TDPPath'] = 1 aut.loc[aut.NPFTDTDP == 1,'TDPPath'] = 1 aut.loc[aut.NPALSMND == 1,'TDPPath'] = 1 aut.loc[aut.ADPath == 1, 'TDPPath'] = 0 aut.loc[aut.LBPath == 1, 'TDPPath'] = 0 aut.loc[aut.TauPath == 1, 'TDPPath'] = 0 # Code vascular disease based on relevant derived variables: aut = aut.assign(VPath = [0 for i in range(aut.shape[0])]) aut.loc[aut.NPINF == 1,'VPath'] = 1 aut.loc[aut.NACCMICR == 1,'VPath'] = 1 aut.loc[aut.NACCHEM == 1,'VPath'] = 1 aut.loc[aut.NPPATH == 1,'VPath'] = 1 aut.loc[aut.NPPVASC == 1,'VPath'] = 1 aut.loc[aut.NPPVASC == 2,'VPath'] = 0 aut.loc[aut.NPCVASC == 1,'VPath'] = 0 aut.loc[aut.ADPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut.loc[aut.LBPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut.loc[aut.NPPFTLD == 1 & (aut.NPPVASC != 1),'VPath'] = 0 aut.loc[aut.TDPPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut.loc[aut.TauPath == 1 & (aut.NPPVASC != 1), 'VPath'] = 0 aut = aut.assign(Class = aut.ADPath) aut.loc[aut.TauPath == 1,'Class'] = 2 aut.loc[aut.TDPPath == 1,'Class'] = 3 aut.loc[aut.LBPath == 1,'Class'] = 4 aut.loc[aut.VPath == 1,'Class'] = 5 aut = aut.loc[aut.Class != 0] aut.index = list(range(aut.shape[0])) ## Predictor variable preparation: one-hot-encoding, date/age/interval operations, # consolidating redundant variables, consolidating free-text variables. aut = aut.assign(DOB = aut.BIRTHYR) aut = aut.assign(DOD = aut.NACCYOD) aut = aut.assign(VISITDATE = aut.VISITYR) for i in range(aut.shape[0]): aut.loc[i,'DOB'] = datetime.datetime.strptime('-'.join([str(aut.BIRTHYR.loc[i]),str(aut.BIRTHMO.loc[i]),'01']),'%Y-%m-%d') aut.loc[i,'DOD'] = datetime.datetime.strptime('-'.join([str(aut.NACCYOD.loc[i]),str(aut.NACCMOD.loc[i]),'01']),'%Y-%m-%d') aut.loc[i,'VISITDATE'] = datetime.datetime.strptime('-'.join([str(aut.VISITYR.loc[i]),str(aut.VISITMO.loc[i]),str(aut.VISITDAY.loc[i])]),'%Y-%m-%d') # Some time/interval variables aut = aut.assign(SinceQUITSMOK = aut.NACCAGE - aut.QUITSMOK) # Years since quitting smoking aut = aut.assign(AgeStroke = aut.NACCSTYR - aut.BIRTHYR) aut = aut.assign(AgeTIA = aut.NACCTIYR - aut.BIRTHYR) aut = aut.assign(AgePD = aut.PDYR - aut.BIRTHYR) aut = aut.assign(AgePDOTHR = aut.PDOTHRYR - aut.BIRTHYR) aut = aut.assign(AgeTBI = aut.TBIYEAR - aut.BIRTHYR) aut = aut.assign(Duration = aut.NACCAGE - aut.DECAGE) # Hispanic origin aut.HISPORX = aut.HISPORX.str.lower() aut.loc[aut.HISPORX == 'spanish','HISPORX'] = 'spain' # Race. RACESECX and RACETERX have too few values to be useful. aut.RACEX = aut.RACEX.str.lower().str.replace(' ','').str.replace('-','') aut.loc[aut.RACEX.isin(['hispanic','puerto rican']),'RACEX'] = 'latino' aut.loc[aut.RACEX.isin(['guam - chamorro']),'RACEX'] = 'chamorro' aut.loc[aut.RACEX.isin(['multi racial']),'RACEX'] = 'multiracial' # Other language. But actually, let's just drop this and code as English/non-English. #aut.PRIMLANX = aut.PRIMLANX.str.lower().str.replace(' ','').str.replace('-','') # Drug list. First get a list of all the unique drug names, then code as dummy variables. # Update as of 04/01/2020: drugs alone are going to be a huge amount of work. # For now, just rely on the NACC derived variables for diabetes meds, cardiac drugs, etc. drugcols = ['DRUG' + str(i) for i in range(1,41)] drugs = aut[drugcols].stack() # Several varieties of insulin--important to distinguish? # drop "*not-codable" # drop "diphtheria/hepb/pertussis,acel/polio/tetanus" drugs = drugs.unique() drugs = [eachdrug.lower() for eachdrug in drugs.tolist()] drugs = pd.Series(drugs) drug_corrections = [("multivitamin with minerals","multivitamin"), ("multivitamin, prenatal","multivitamin"), ("omega 3-6-9","omega369"), ("omega-3","omega3"), ("vitamin-d","vitamin d"), ("acetyl-l-carnitine","acetyl l carnitine"), ("levodopa","levadopa"), ("pro-stat","prostat"), ("alpha-d-galactosidase","alpha d galactosidase"), ("indium pentetate in-111","indium pentetate in111"), ("fludeoxyglucose f-18","fludeoxyglucose f18"), ("calcium with vitamins d and k", "calcium-vitamin d-vitamin k"), ("aloe vera topical", "aloe vera"), ("ammonium lactate topical", "ammonium lactate")] for i in range(len(drug_corrections)): oldval = drug_corrections[i][0] newval = drug_corrections[i][1] drugs = drugs.str.replace(pat = oldval, repl = newval) drugs = drugs.loc[drugs != "*not codable*"] drugs = drugs.loc[drugs != "diphtheria/hepb/pertussis,acel/polio/tetanus"] drugs = np.unique([ss for eachdrug in drugs for ss in eachdrug.split('-')]) drugs = np.unique([ss for eachdrug in drugs for ss in eachdrug.split('/')]) drugs.sort() ## Combining redundant variables. Often this reflects a change in form or # variable name between UDS version 2 & 3. aut.loc[(aut.CVPACE == -4) & (aut.CVPACDEF == 0),'CVPACE'] = 0 aut.loc[(aut.CVPACE == -4) & (aut.CVPACDEF == 1),'CVPACE'] = 1 xvar.loc[xvar.Variable == 'CVPACDEF','Keep'] = False # Combine TBIBRIEF and TRAUMBRF. aut.loc[(aut.TBIBRIEF == -4) & (aut.TRAUMBRF.isin([0])),'TBIBRIEF'] = 0 aut.loc[(aut.TBIBRIEF == -4) & (aut.TRAUMBRF.isin([1,2])),'TBIBRIEF'] = 1 xvar.loc[xvar.Variable == 'TRAUMBRF','Keep'] = False # More data cleaning aut.ABRUPT = aut.ABRUPT.replace(to_replace = 2, value = 1) aut.FOCLSYM = aut.FOCLSYM.replace(to_replace = 2, value = 1) aut.FOCLSIGN = aut.FOCLSIGN.replace(to_replace = 2, value = 1) # Convert language to a binary variable (English/non-English) aut = aut.assign(English = 0) aut.loc[aut.PRIMLANG == 1,'English'] = 1 xvar.loc[xvar.Variable == 'PRIMLANG','Keep'] = False # Some dummy coding vv = xvar.Variable.loc[(xvar.Keep) & (xvar.Comments == "Dummy coding for (95,96,97,98)")] for v in vv: aut[v + '_couldnt'] = 0 aut.loc[aut[v].isin([95,96,97,98]),v + '_couldnt'] = 1 vv = xvar.Variable.loc[xvar.Comments == "Dummy coding for (995,996,997,998)"] for v in vv: aut[v + '_couldnt'] = 0 aut.loc[aut[v].isin([995,996,997,998]),v + '_couldnt'] = 1 # Drop all columns where xvar.Keep == False. aut2 = aut xvar.loc[xvar.Variable == 'NACCID','Keep'] = True xvar.loc[xvar.Variable == 'NACCID','Type'] = "ID" xvar.loc[xvar.Variable == 'VISITDATE','Keep'] = True xvar.loc[xvar.Variable == 'VISITDATE','Type'] = "ID" aut = aut.drop(columns = xvar.Variable[~xvar.Keep]) # Fill with NA values xvar = xvar.loc[xvar.Keep] xvar.index = range(xvar.shape[0]) for i in range(xvar.shape[0]): if not xvar.NaNValues.isna()[i]: v = xvar.Variable[i] badval = eval(xvar.NaNValues[i]) #print(v,badval) if isinstance(badval,int): badval = [badval] aut[v].mask(aut[v].isin(badval),inplace = True) # Get rid of variables with very few meaningful observations. valcounts = aut.describe().iloc[0] aut = aut.drop(columns = valcounts.loc[valcounts < 100].index) #aut = aut[valcounts.loc[valcounts >= 100].index] # Find correlated variables and drop. ac = aut.corr() acs = ac.unstack(level = 0) acs = acs.loc[abs(acs)>0.8] acsind = list(acs.index) diagnames = [ind for ind in acsind if ind[0] == ind[1]] acs = acs.drop(labels=diagnames) acs = pd.DataFrame(acs) acs.columns = ['r'] acs['v1'] = acs.index acs[['v1','v2']] = pd.DataFrame(acs['v1'].tolist(),index = acs.index) y = aut.Class X = aut.drop(columns = npvar.Variable.loc[npvar.Variable.isin(aut.columns)]) X = X.drop(columns = ['Class','ADPath','TauPath','TDPPath','LBPath','VPath']) xd = X.describe().iloc[0] # Impute numeric variables with the mean. from sklearn.impute import SimpleImputer numvar = X.columns.intersection(xvar.Variable.loc[xvar.Type == "Numeric"]) imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') imp_mean.fit(X[numvar]) Xnumimp = imp_mean.transform(X[numvar]) Xnumimp = pd.DataFrame(Xnumimp) Xnumimp.columns = X[numvar].columns # Impute ordinal variables with the median. ordvar = X.columns.intersection(xvar.Variable.loc[xvar.Type == "Ordinal"]) imp_med = SimpleImputer(missing_values=np.nan, strategy='median') imp_med.fit(X[ordvar]) Xordimp = imp_med.transform(X[ordvar]) Xordimp = pd.DataFrame(Xordimp) Xordimp.columns = X[ordvar].columns # Impute boolean variables with zero. boolvar = X.columns.intersection(xvar.Variable.loc[xvar.Type == "Boolean"]) boolenc = SimpleImputer(missing_values = np.nan, strategy = 'constant', fill_value = 0) boolenc.fit(X[boolvar]) Xbool = boolenc.transform(X[boolvar]) Xbool = pd.DataFrame(Xbool) Xbool.columns = X[boolvar].columns # One-hot encoding for nominal (not boolean, ordinal, or numeric) variables. from sklearn.preprocessing import OneHotEncoder nomvar = X.columns.intersection(xvar.Variable.loc[xvar.Type == "Nominal"]) enc = OneHotEncoder(handle_unknown='ignore',sparse = False) Xfull = X[nomvar].fillna(value = 0) enc.fit(Xfull) Xohe = enc.transform(Xfull) Xohe =
pd.DataFrame(Xohe)
pandas.DataFrame
import datetime from dateutil.relativedelta import * from fuzzywuzzy import fuzz import argparse import glob import numpy as np import pandas as pd from scipy.stats import ttest_1samp import sys import xarray as xr from paths_bra import * sys.path.append('./..') from refuelplot import * setup() from utils import * gen_path = bra_path + '/generation' # get GWA version parser = argparse.ArgumentParser(description='Insert optionally GWA') parser.add_argument('-GWA') args = parser.parse_args() if(args.GWA == None): GWA = "3" else: GWA = args.GWA if GWA == "2": results_path2 = results_path results_path = results_path + '/results_GWA2' # load generation data print('load generation data') # load usinas hourly if gen_path + '/hourly/usinas.pkl' not in glob.glob(gen_path + '/hourly/*.pkl'): USIh = pd.read_csv(gen_path + '/hourly/Comparativo_Geração_de_Energia_Semana_data_usinas.csv', sep = ';', index_col = 0, parse_dates = True, dayfirst = True).iloc[1:,[6,8]].sort_index() # remove missing values USIh = USIh.loc[USIh.index.notnull()].dropna() USIh.columns = ['usina','prod_GWh'] # in RIO DO FOGO there is one duplicate hour after one missing hour -> change timestamps of those hours idxUSIh = USIh.index.values midxUSIh = USIh.reset_index().set_index(['usina','Data Escala de Tempo 1 GE Comp 3']).index idxUSIh[midxUSIh.duplicated(keep='last')] = idxUSIh[midxUSIh.duplicated(keep='first')] - np.timedelta64(1,'h') USIh.index = pd.DatetimeIndex(idxUSIh) USIhs = USIh.reset_index().set_index(['usina','index']).unstack(level=0).prod_GWh USIhs.to_csv(gen_path + '/hourly/usinas.csv') USIhs.to_pickle(gen_path + '/hourly/usinas.pkl') wpUSIhs = pd.read_pickle(gen_path + '/hourly/usinas.pkl') # load and match aneel and ons windparks def get_cap_df(cap,comdate): com = pd.DataFrame({'capacity': cap}).groupby(comdate).sum() cap_cum = com.capacity.cumsum() # if only years given for commissioning dates -> gradual capacity increase over year, full capacity at end of year if type(cap_cum.index.values[0]) == np.int64: cap_cum.index = [np.datetime64(str(int(year))+"-12-31 23:00:00") for year in cap_cum.index.values] # create yearly dates at yearends drcc = pd.date_range(np.datetime64('2005-12-31 23:00:00'), np.datetime64('2019-12-31 23:00:00'),freq= 'y') cap_cum = pd.Series(drcc.map(cap_cum),index = drcc) # if first year emtpy: either year before or 0 if nothing before if(sum(com.index<2000) > 0): cap_cum[0] = com.cumsum()[com.index<2000].max() else: cap_cum[0] = 0 # if missing years -> put capacity of year before cap_cum = cap_cum.ffill() dr = pd.date_range('1/1/2006','31/12/2019 23:00:00',freq = 'h') cap_ts = pd.Series(dr.map(cap_cum),index = dr) cap_ts[0] = cap_cum[cap_cum.index<=pd.Timestamp('2006-01-01')].max() if type(comdate[0]) == np.int64: return(cap_ts.interpolate(method='linear')) else: return(cap_ts.fillna(method='ffill')) def matchWords(word, statements): # function to match a word to different statements # output: ratio of matching (0-100) for all provided statements results = [] for s in statements: r = fuzz.ratio(word, s) results.append(r) return results def match_string(string, array): # function for matching casefolded strings Slc = string.strip().casefold() Alc = [arr.casefold() for arr in array.str.strip().unique()] scores = matchWords(Slc, Alc) mscore = max(scores) strarr = array.unique()[np.where(np.array(scores)==mscore)][0] return(string,strarr,mscore) def match_anl(string): # function to match ONS to ANL windparks return(match_string(string,ANL2.name)) print('match wind parks') # load ANEEL and ONS windparks ONS = pd.read_csv(bra_path + '/ONS_windparks.csv', index_col = 0) # remove those with CONJUNTO EOLICO - they're there twice and capacities don't match with ANEEL data ONS = ONS[~ONS.usina.str.contains('CONJUNTO EOLICO')] # remove some other duplicate windparks ONS = ONS[[d not in [' CANOA QUEBRADA (E-RV-ACEP)',' PV DO NORDESTE',' SM (SANTA MARIA)',' SÃO BENTO NORTE II'] for d in ONS.usina]] ANL = pd.read_csv(bra_path + '/turbine_data.csv', index_col = 0) # characters and strings to replace for better matching letters = {'õ':'õ', 'ó':'o', 'ã':'a', 'á':'a', 'â':'a', 'é':'e', 'Ã':'A', 'Á':'A', 'Â':'A', 'Ó':'O', 'É':'E', 'ú':'u', 'ô':'o', 'Ô':'O', 'ú':'u', 'Ú':'U', 'ç':'c', 'Ç':'C', 'í':'i', 'Í':'I', 'Ê':'E'} remove = {' 2LER':'', ' 2LFA':'', ' LFA':'', 'EOL ':'', ' 3LER':'', 'Usina Eolica ':'', 'Eólica ':'', ' ENERGIAS RENOVAVEIS':'', # ' CONJUNTO EOLICO':'', '\(E-BV-ACEP\)':'', '\(E-RV-ACEP\)':'', '\(BELA BISTA\)':'', '\(ENERGEN\)':'', '\(Antiga Ventos Maranhenses 05\)':'', 'PARQUE EOLICO ':'', ' - N HORIZ':'', 'ENERGETICA S/A':'', '\(ILHEUS\)':'', ' EOLOS':'', 'S\.A\.':''} replace = {'LAG DO':'LAGOA DO', 'VENTOS S VICENTE':'VENTOS DE SAO VICENTE', 'SERRA BABILONIA':'SERRA DA BABILONIA', 'CORREDOR SENANDES':'CORREDOR DO SENANDES', 'SAO BENTO NORTE':'SAO BENTO DO NORTE', 'GAMELEIRAS':'GAMELERIAS', 'Lagoinha':'Lagoinh', 'PAPAGAIOS':'PAPAGAIO', 'VENTOS DE SAO ABRAAO':'VENTOS DO SANTO ABRAAO', 'VENTOS DO SAO MARIO':'VENTOS DE SAO MARIO', 'DAGUA':'D AGUA', 'B VEN':'BONS VENTOS', 'NOVA BURITI':'BURITI', 'NOVA CAJUCOCO':'CAJUCOCO', 'PALMAS':'DE PALMAS', 'DE PALMARES':'PALMARES', 'PV DO NORDESTE':'VENTOS DO NORDESTE', 'Aura Lagoa do Barro':'Lagoa do Barro', 'AURA LAGOA DO BARRO':'LAGOA DO BARRO', 'LAGOA BARRO':'LAGOA DO BARRO', 'GRAVATA':'GRAVATA FRUITRADE', 'FAZENDA DO ROSARIO':'FAZENDA ROSARIO', 'Parque Eolico do Horizonte':'Ventos de Horizonte', 'S BENTO':'SAO BENTO', 'SANTO ANTONIO (BTG PACTUAL)':'SANTO ANTONIO DE PADUA', 'SM \(SANTA MARIA\)':'SANTA MARIA', 'SAO JORGE CE':'SAO JORGE', 'VENT DA ST ESPERANCA':'VENTOS DA SANTA ESPERANCA', 'VENTOS DA STA DULCE':'VENTOS DA SANTA DULCE', 'ESPERANCA NORDESTE':'ESPERANCA DO NORDESTE', 'Eolica Delta':'Delta', 'Eolica Serra das Vacas':'Serra das Vacas', 'Ventos de Santo Augusto':'Santo Augusto', 'Ventos do Sao Gabriel':'Sao Gabriel', 'GE <NAME>':'<NAME>'} numbers = {'10':'X', '11':'XI', '12':'XII', '13':'XIII', '14':'XIV', '15':'XV', '17':'XVII', '19':'XIX', '21':'XXI', '23':'XXIII', '24':'XXIV', '25':'XXV', '26':'XXVI', '27':'XXVII', '28':'XXVIII', '29':'XXIX', '31':'XXXI', '34':'XXXIV', '35':'XXXV', '36':'XXXVI', '01':'I', '02':'II', '03':'III', '04':'IV', '05':'V', '06':'VI', '07':'VII', '08':'VIII', '09':'IX', '1':'I', '2':'II', '3':'III', '4':'IV', '5':'V', '6':'VI', '7':'VII', '8':'VIII', '9':'IX'} # replace characters ONS2 = ONS.copy(deep=True) ANL2 = ANL.copy(deep=True) for i in letters: ONS2.usina = ONS2.usina.str.replace(i,letters.get(i)) ANL2.name = ANL2.name.str.replace(i,letters.get(i)) for i in replace: ONS2.usina = ONS2.usina.str.replace(i,replace.get(i)) ANL2.name = ANL2.name.str.replace(i,replace.get(i)) for i in remove: ONS2.usina = ONS2.usina.str.replace(i,remove.get(i)) for i in numbers: ONS2.usina = ONS2.usina.str.replace(i,numbers.get(i)) ANL2.name = ANL2.name.str.replace(i,numbers.get(i)) # match windparks matches = ONS2.usina.apply(match_anl).apply(pd.Series) matches.columns = ['ONS_name','ANL_name','score'] ONSd =
pd.Series(ONS.usina.values,index=ONS2.usina.values)
pandas.Series
import pandas as pd import numpy as np def read_data(grb): outpath='./data/' db=pd.read_csv(outpath+grb+'.txt',skiprows=[0,1],header=None,sep='\s+') # find index where each block starts idx = db[db[0]=='NO'].index.values.astype(int) idx_name = db[db[0]=='!'].index # NOTE: 140903 has inverted blocks if grb == '140903A': db01gamma=db[0:idx[0]] else: db01=db[0:idx[0]] if len(idx) > 1: if grb == '140903A': db01=db[idx[0]+2:idx[1]] else: db01gamma=db[idx[0]+2:idx[1]] else: if grb == '140903A': db01=db[idx[0]+2:] else: db01gamma=db[idx[0]+2:] db0=db01 db0gamma=db01gamma if len(idx_name) > 1: if 'wt' in db[1].iloc[idx_name[1]]: # if second block is wt then first block is slew db02=db[idx[1]+2:idx[2]] db02gamma=db[idx[2]+2:idx[3]] db03=db[idx[3]+2:idx[4]] db03gamma=db[idx[4]+2:] db0=
pd.concat([db01,db02,db03])
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import os.path import configparser import pandas as pd from tqdm import tqdm from tsfresh.utilities.dataframe_functions import impute from tsfresh.feature_extraction import feature_calculators def main(): if len(sys.argv) < 2: print('Usage: ./extract_best_features.py datafile.csv') exit(1) load_params() if not os.path.isfile('timeseries.csv') or not os.path.isfile('labels.csv'): filename = sys.argv[1] raw_price_data =
pd.read_csv(filename, index_col=None, header=0, thousands=',')
pandas.read_csv
import random import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, NaT, Timestamp, date_range, ) import pandas._testing as tm class TestDataFrameSortValues: def test_sort_values(self): frame = DataFrame( [[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list("ABC") ) # by column (axis=0) sorted_df = frame.sort_values(by="A") indexer = frame["A"].argsort().values expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) indexer = indexer[::-1] expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=["A"], ascending=[False]) tm.assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=["B", "C"]) expected = frame.loc[[2, 1, 3]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=["B", "C"], ascending=False) tm.assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=["B", "A"], ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=2, inplace=True) # by row (axis=1): GH#10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis="columns") expected = frame.reindex(columns=["B", "A", "C"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) msg = r"Length of ascending \(5\) != length of by \(2\)" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=0, ascending=[True] * 5) def test_sort_values_by_empty_list(self): # https://github.com/pandas-dev/pandas/issues/40258 expected = DataFrame({"a": [1, 4, 2, 5, 3, 6]}) result = expected.sort_values(by=[]) tm.assert_frame_equal(result, expected) assert result is not expected def test_sort_values_inplace(self): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", inplace=True) assert return_value is None expected = frame.sort_values(by="A") tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by=1, axis=1, inplace=True) assert return_value is None expected = frame.sort_values(by=1, axis=1) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", ascending=False, inplace=True) assert return_value is None expected = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by=["A", "B"], ascending=False, inplace=True ) assert return_value is None expected = frame.sort_values(by=["A", "B"], ascending=False) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_multicolumn(self): A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({"A": A, "B": B, "C": np.random.randn(100)}) result = frame.sort_values(by=["A", "B"]) indexer = np.lexsort((frame["B"], frame["A"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["A", "B"], ascending=False) indexer = np.lexsort( (frame["B"].rank(ascending=False), frame["A"].rank(ascending=False)) ) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["B", "A"]) indexer = np.lexsort((frame["A"], frame["B"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) def test_sort_values_multicolumn_uint64(self): # GH#9918 # uint64 multicolumn sort df = DataFrame( { "a":
pd.Series([18446637057563306014, 1162265347240853609])
pandas.Series
from app import app from bokeh.io import show from bokeh.embed import components from bokeh.plotting import figure from bokeh.resources import INLINE from bokeh.models import NumeralTickFormatter from bokeh.models import ColumnDataSource, HoverTool from bokeh.palettes import Category20c from bokeh.transform import cumsum from bokeh.layouts import gridplot from flask import render_template, flash, redirect, url_for, request, jsonify from flask_login import current_user, login_user, logout_user, login_required from datetime import datetime from math import pi from app.db import get_db, query from app.plot import formatter, hbar, multiline import pandas as pd import numpy as np import math @app.route('/employees', methods=['GET', 'POST']) @login_required def employees(): """ Render employee page """ date_start = request.form.get('date_start', '2018-01-01') date_end = request.form.get('date_end', '2018-01-31') time_frame = request.form.get('time_frame') if request.form.get('time_frame') is None: time_frame = 'date' else: time_frame = request.form.get('time_frame') # average order_numbers avg = get_avg_selling_per(date_start, date_end) avg_order = formatter(avg[0][0]) avg_revenue = formatter(avg[1][0], 'dollar') # most revenue revenue_total = get_employee_revenue_total(date_start, date_end) # sql result is reversed due to the hbar layout most_revenue_name = revenue_total.loc[9, 'employee'] # Revenue by employee js_revenue_total, div_revenue_total = hbar(revenue_total, 'revenue', 'employee') # most orders orders_total = get_employee_orders_total(date_start, date_end) # sql result is reversed due to the hbar layout most_orders_name = orders_total.loc[9, 'employee'] # Order numbers by employee js_orders_total, div_orders_total = hbar(orders_total, 'order_number', 'employee') time_dict = {'date': 'date', 'ww': 'week', 'mon': 'month', 'q': 'quarter'} # Top 5 revenue employee trend rev_top10 = revenue_total.loc[::-1, 'employee'].tolist() # sql result is reversed thus first reverse to correct sequence rev_top5 = rev_top10[: 5] rev_trend_data = get_employee_trend(date_start, date_end, time_frame, rev_top5, 'revenue') rev_trend_js, rev_trend_div = multiline(rev_trend_data, time_dict[time_frame], 'revenue', 'dollar', rev_top5[0], rev_top5[1], rev_top5[2], rev_top5[3], rev_top5[4]) # top 5 order number employee trend num_top10 = orders_total.loc[::-1 , 'employee'].tolist() num_top5 = num_top10[: 5] num_trend_data = get_employee_trend(date_start, date_end, time_frame, num_top5, 'order_number') num_trend_js, num_trend_div = multiline(num_trend_data, time_dict[time_frame], 'order_number', 'number', num_top5[0], num_top5[1], num_top5[2], num_top5[3], num_top5[4]) # gender relation distribution in order g = get_ec_gender(date_start, date_end) gender = pd.Series(g).reset_index(name='orders').rename(columns={'index':'gender'}) gender['angle'] = gender['orders']/gender['orders'].sum() * 2*pi gender['color'] = Category20c[len(g)] gender_hover = HoverTool(tooltips=[('Gender', '@gender'), ('Order number', '@orders{0.00 a}')]) gender_fig = figure(sizing_mode='scale_width', height=400, toolbar_location=None, tools=[gender_hover], x_range=(-0.5, 1.0)) gender_fig.wedge(x=0, y=1, radius=0.4, start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), line_color="white", fill_color='color', legend='gender', source=gender, hover_color='red', hover_fill_alpha=0.8) gender_fig.axis.axis_label=None gender_fig.axis.visible=False gender_fig.grid.grid_line_color = None js_gender, div_gender = components(gender_fig) # state relation distribution in order s = get_ec_state(date_start, date_end) state = pd.Series(s).reset_index(name='orders').rename(columns={'index':'state'}) state['angle'] = state['orders']/state['orders'].sum() * 2*pi state['color'] = ["#3182bd", "#9ecae1"] state_hover = HoverTool(tooltips=[('State', '@state'), ('Order number', '@orders{0.00 a}')]) state_fig = figure(sizing_mode='scale_width', height=400, toolbar_location=None, tools=[state_hover], x_range=(-0.5, 1.0)) state_fig.wedge(x=0, y=1, radius=0.4, start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'), line_color="white", fill_color='color', legend='state', source=state, hover_color='red', hover_fill_alpha=0.8) state_fig.axis.axis_label=None state_fig.axis.visible=False state_fig.grid.grid_line_color = None js_state, div_state = components(state_fig) js_resources = INLINE.render_js() css_resources = INLINE.render_css() html = render_template( 'employees.html', js_resources=js_resources, css_resources=css_resources, rev_trend_js=rev_trend_js, rev_trend_div=rev_trend_div, num_trend_js=num_trend_js, num_trend_div=num_trend_div, div_revenue_total=div_revenue_total, js_revenue_total=js_revenue_total, div_orders_total=div_orders_total, js_orders_total=js_orders_total, js_gender=js_gender, div_gender=div_gender, js_state=js_state, div_state=div_state, most_orders_name=most_orders_name, most_revenue_name=most_revenue_name, avg_order=avg_order, avg_revenue=avg_revenue, date_start=date_start, date_end=date_end, ) return html def get_employee_revenue_total(date_start, date_end): """ return employee name and revenue for top 10 """ sql = f""" select * from(select employee.name, sum(sales.total) as revenue from sales, employee where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and sales.employeeID = employee.employeeID group by employee.name order by sum(sales.total) desc) where rownum < 11 order by revenue asc """ # need to make output to be ascending order to further plot be descending order rows = query(sql) df = pd.DataFrame(rows, columns=['employee', 'revenue']) return df def get_employee_orders_total(date_start, date_end): """ return employee name and order number for top 10 """ sql = f""" select * from (select employee.name as name, count(sales.salesID) as order_number from sales, employee where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and sales.employeeID = employee.employeeID group by employee.name order by count(sales.salesID) desc) where rownum < 11 order by order_number asc """ rows = query(sql) df = pd.DataFrame(rows, columns=['employee', 'order_number']) # print(df.head()) return df def get_avg_selling_per(date_start, date_end): """ Return the average order numbers of each employee within the time range. """ sql = f""" select sum(order_num) / count(name), sum(revenue) / count(name) from (select count(sales.salesID) as order_num, sum(sales.total) as revenue, employee.name as name from sales, employee where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and sales.employeeID = employee.employeeID group by employee.name) """ rows = query(sql) df = pd.DataFrame(rows) return df def get_employee_trend(date_start, date_end, time_frame, employee, basis='revenue'): """ Return the revenue trend of top 5 employee Returned employee names replaced space to underscore """ # employee = get_employee_top5(date_start, date_end, basis) basis_dict = {'revenue': 'sum(sales.total)', 'order_number': 'count(sales.salesID)'} time_dict = {'date': 'date', 'ww': 'week', 'mon': 'month', 'q': 'quarter'} if time_frame == 'date' or time_frame is None: # None is used for switch page default frame sql = f''' select salesdate, sum(case when employee = '{employee[0]}' then {basis} else 0 end) as name1, sum(case when employee = '{employee[1]}' then {basis} else 0 end) as name2, sum(case when employee = '{employee[2]}' then {basis} else 0 end) as name3, sum(case when employee = '{employee[3]}' then {basis} else 0 end) as name4, sum(case when employee = '{employee[4]}' then {basis} else 0 end) as name5 from (select salesdate, employee.name as employee, {basis_dict[basis]} as {basis} from sales, employee where salesdate between to_date('{date_start}', 'YYYY-MM-DD') and to_date('{date_end}', 'YYYY-MM-DD') and sales.employeeID = employee.employeeID and employee.name in ('{employee[0]}', '{employee[1]}', '{employee[2]}', '{employee[3]}', '{employee[4]}') group by salesdate, employee.name) group by salesdate order by salesdate ''' # the reason use name1/2/3/4/5 here is because {employee[0]} includes space -> error rows = query(sql) # replace the space in name to underscore otherwise will have problem to access dataframe column df = pd.DataFrame(columns=['date', employee[0].replace(" ", "_"), employee[1].replace(" ", "_"), employee[2].replace(" ", "_"), employee[3].replace(" ", "_"), employee[4].replace(" ", "_")]) for row in rows: df.loc[len(df), :] = row df['date'] =
pd.to_datetime(df['date'])
pandas.to_datetime
import random import numpy as np import pandas as pd from pandas import DataFrame from rake_nltk import Rake from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import cosine_similarity from users.models import Student from .models import * def get_recommendations_cf(uid): subs = get_enrolled_subjects(uid) if len(subs) == 0: recommmend_list = random.choices(list(Course.objects.all()), k=min(len(list(Course.objects.all())),10)) else: l1=[] cats=[sub.course.category for sub in subs] for cat in cats: l1 += list(Course.objects.filter(category = cat)) l1=list(set(l1)) l2=[] for sub in subs: l2 +=list(Course.objects.filter(instructor = sub.course.instructor)) #l2 +=list(Course.objects.filter(cost = sub.cost)) l2 +=list(Course.objects.filter(platform = sub.course.platform)) l2 +=list(Course.objects.filter(language = sub.course.language)) l2 +=list(Course.objects.filter(level = sub.course.level)) l2=list(set(l2)) recommmend_list = random.choices(list(set(l1+l2)), k=min(len(list(set(l1+l2))),10)) def get_recommmendations(user): is_valid, enrolled_subjects = _validate(user) if is_valid: recommendations = _from_content_based(enrolled_subjects) else: recommendations = _from_random() return recommendations def _validate(user): is_valid = False enrolled_subjects = [] if user.is_authenticated: # atuthenticated user enrolled_subjects = get_enrolled_subjects(user.id).values_list('course', flat=True) if enrolled_subjects.count() >= 1: is_valid = True return is_valid, enrolled_subjects def _from_random(): subjects_size = Course.objects.count() random_list = random.sample(range(0, subjects_size), 3) recommendations = _retrieve_recommendations_and_sort_by(random_list) return recommendations def _from_content_based(subject_list): df = DataFrame(list(Course.objects.values('name', 'category__name'))) df = _data_clean(df, subject_list) # instantiating and generating the count matrix count = CountVectorizer() count_matrix = count.fit_transform(df['key_words']) # generating the cosine similarity matrix cosine_sim = cosine_similarity(count_matrix, count_matrix) rd_list, rating = _recommendations(subject_list, df, cosine_sim) recommendations = _retrieve_recommendations_and_sort_by(rd_list) _calculate_ratings(rd_list, df, cosine_sim) return recommendations def _data_clean(dataframe, subject_list): enrolled_key_words = "" dataframe['name_keywords'] = "" for index, row in dataframe.iterrows(): name = row['name'] r = Rake() r.extract_keywords_from_text(name) keywords_dict = r.get_word_degrees() name_keywords_str = ' '.join(list(keywords_dict.keys())) row['name_keywords'] = name_keywords_str if index+1 in subject_list: enrolled_key_words += name_keywords_str + " " + row['category__name'] + " " dataframe['key_words'] = dataframe['name_keywords'] + ' ' + dataframe['category__name'].map(str) dataframe = dataframe.append({'key_words': enrolled_key_words}, ignore_index=True) return dataframe def _recommendations(subject_list, df, cosine_sim): enrolledIndex = df.shape[0] - 1 indices = pd.Series(df.index) # initializing the empty list of recommended subjects recommended_subjects = [] # gettin the index of the subject that matches the id idx = indices[indices == enrolledIndex].index[0] # creating a Series with the similarity scores in descending order score_series = pd.Series(cosine_sim[idx]).sort_values(ascending=False) # select top 10 recommended subjects that are not in the enrolled subject list real_sims = [] sum_of_product = 0 sum_of_sims = 0 for items in score_series.iteritems(): if len(recommended_subjects) > 9: break indx = items[0] real_sim = items[1] if indx is not enrolledIndex: subjectId = indx + 1 if subjectId not in subject_list: recommended_subjects.append(subjectId) real_sims.append(real_sim) subject_name = Course.objects.get(id=subjectId) rating_list = SubjectRating.objects.filter(subject = subject_name).values_list('rating', flat=True) if(rating_list.count() > 0): average_rating = sum(rating_list) / rating_list.count() else: average_rating = 0 sum_of_product += real_sim * average_rating sum_of_sims+=real_sim if(sum_of_sims > 0): rating = sum_of_product / sum_of_sims else: rating = 0 ''' print(real_sims) print(rating) #evaluation()''' return recommended_subjects, rating def _retrieve_recommendations_and_sort_by(subject_list): # return detailed information of recommendation list recommendations = list(Course.objects.filter(pk__in=subject_list).values()) recommendations.sort(key=lambda t: subject_list.index(t['id'])) return recommendations def _calculate_ratings(rd_list, df, cosine_sim): index=0 single_list = [] rating_list = [] for subject in rd_list: single_list.append(rd_list[index]) tmp_list, rating = _recommendations(single_list, df, cosine_sim) rating_list.append(rating) index +=1 rating_series =
pd.Series(rd_list, index=rating_list)
pandas.Series
#Copyright (c) 2018 <NAME> - MIT License import json import pandas as pd import os from operator import itemgetter import gspread from oauth2client.service_account import ServiceAccountCredentials from expworkup.handlers import parser from expworkup.handlers import calcmmol from expworkup.handlers import calcmolarity from expworkup.handlers import inchigen debug = 0 #args.Debug finalvol_entries=2 ## Hard coded number of formic acid entries at the end of the run (this needs fixing) ### General Setup Information ### ##GSpread Authorization information scope= ['https://www.googleapis.com/auth/spreadsheets.readonly'] credentials = ServiceAccountCredentials.from_json_keyfile_name('expworkup/creds/creds.json', scope) gc =gspread.authorize(credentials) #Import the most recent chemical data sheet from google drive to process the inchi keys and data about chemicals #Eventually needs to be linked to database import and broader database information def ChemicalData(): print('Obtaining chemical information from Google Drive..', end='') chemsheetid = "1JgRKUH_ie87KAXsC-fRYEw_5SepjOgVt7njjQBETxEg" ChemicalBook = gc.open_by_key(chemsheetid) chemicalsheet = ChemicalBook.get_worksheet(0) chemical_list = chemicalsheet.get_all_values() chemdf=pd.DataFrame(chemical_list, columns=chemical_list[0]) chemdf=chemdf.iloc[1:] chemdf=chemdf.reset_index(drop=True) chemdf=chemdf.set_index(['InChI Key (ID)']) print('.done') return(chemdf) #Will eventually create a dataframe from the robot handling information def robo_handling(): pass #The name cleaner is hard coded at the moment for the chemicals we are using. This will need to be generalized somehow... def nameCleaner(sub_dirty_df): inorganic_list=[] organic_df=pd.DataFrame() cleaned_M=pd.DataFrame() for header in sub_dirty_df.columns: #GBl handling -- > Solvent labeled (or other solvent such as DMF) if 'YEJRWHAVMIAJKC-UHFFFAOYSA-N' in header:# or 'ZMXDDKWLCZADIW-UHFFFAOYSA-N' in header: print("1") pass #Acid handling --> Acid labeld --> will need to declare type in the future or something elif "BDAGIHXWWSANSR-UHFFFAOYSA-N" in header: cleaned_M['_rxn_M_acid']=sub_dirty_df[header] # molarity_df['_rxn_M_acid'] = mmol_reagent_df[header] / (calculated_volumes_df['_raw_final_volume']/1000) #PBI2 handling --> inorganic label elif 'RQQRAHKHDFPBMC-UHFFFAOYSA-L' in header:# or 'ZASWJUOMEGBQCQ-UHFFFAOYSA-L' in header: cleaned_M['_rxn_M_inorganic']=sub_dirty_df[header] # molarity_df['_rxn_M_inorganic'] = mmol_reagent_df[header] / (calculated_volumes_df['_raw_final_volume']/1000) else: organic_df[header]=sub_dirty_df[header] cleaned_M['_rxn_M_organic']=organic_df.sum(axis=1) return(cleaned_M) #cleans up the name space and the csv output for distribution def cleaner(dirty_df, raw): rxn_M_clean = nameCleaner(dirty_df.filter(like='_raw_M_')) rxn_df=dirty_df.filter(like='_rxn_') feat_df=dirty_df.filter(like='_feat_') out_df=dirty_df.filter(like='_out_') if raw == 0: raw_df=dirty_df.filter(like='_raw_') squeaky_clean_df=pd.concat([out_df,rxn_M_clean,rxn_df,feat_df, raw_df], axis=1) else: squeaky_clean_df=pd.concat([out_df,rxn_M_clean,rxn_df,feat_df], axis=1) return(squeaky_clean_df) ## Unpack logic #most granular data for each row of the final CSV is the well information. #Each well will need all associated information of chemicals, run, etc. #Unpack those values first and then copy the generated array to each of the invidual wells ### developed enough now that it should be broken up into smaller pieces! def unpackJSON(myjson_fol): chem_df=(ChemicalData()) #Grabs relevant chemical data frame from google sheets (only once no matter how many runs) concat_df_raw=
pd.DataFrame()
pandas.DataFrame
from datetime import datetime from unittest.mock import mock_open, patch import numpy as np import pandas as pd import pytest from pgcom import exc from .conftest import commuter, delete_table, with_table def create_test_table(table_name): return f""" CREATE TABLE IF NOT EXISTS {table_name} ( var_1 timestamp, var_2 integer NOT NULL PRIMARY KEY, var_3 text, var_4 real, var_5 integer); """ def create_test_table_serial(table_name): return f""" CREATE TABLE IF NOT EXISTS {table_name} ( id SERIAL PRIMARY KEY, var_1 timestamp, var_2 integer NOT NULL, var_3 text, var_4 real); """ def create_child_table(child_name, parent_name): return f""" CREATE TABLE IF NOT EXISTS {child_name} ( var_1 integer, var_2 integer, var_3 integer, FOREIGN KEY (var_1) REFERENCES {parent_name}(var_2)); """ def create_category_table(table_name): return f""" CREATE TABLE IF NOT EXISTS {table_name} ( category_id SERIAL PRIMARY KEY, category TEXT); """ def create_test_table_with_categories(table_name): return f""" CREATE TABLE IF NOT EXISTS {table_name} ( var_1 integer NOT NULL PRIMARY KEY, var_2 text, var_3 text, var_4 text); """ def create_composite_category_table(table_name): return f""" CREATE TABLE IF NOT EXISTS {table_name} ( category_id SERIAL PRIMARY KEY, category_1 TEXT, category_2 TEXT, category_3 TEXT); """ def create_test_data(): return pd.DataFrame( { "var_1": pd.date_range(datetime.now(), periods=3), "var_2": [1, 2, 3], "var_3": ["x", "xx", "xxx"], "var_4": [1.1, 2.2, 3.3], "var_5": [1, 2, 3], } ) def test_repr(): assert repr(commuter)[0] == "(" assert repr(commuter)[-1] == ")" @with_table("test_table", create_test_table) def test_execute(): assert commuter.is_table_exist("test_table") with pytest.raises(exc.QueryExecutionError) as e: commuter.execute("SELECT 1 FROM fake_table") assert e.type == exc.QueryExecutionError @with_table("test_table", create_test_table) def test_execute_script(): assert commuter.is_table_exist("test_table") with patch("builtins.open", mock_open(read_data="DROP TABLE test_table")): commuter.execute_script("path/to/open") assert not commuter.is_table_exist("test_table") @with_table("test_table", create_test_table) def test_select_insert(): commuter.insert("test_table", create_test_data()) df = commuter.select("SELECT * FROM test_table") df["date"] = pd.to_datetime(df["var_1"]) assert df["date"][0].date() == datetime.now().date() assert len(df) == 3 @with_table("test_table", create_test_table) def test_multiple_select(): commuter.insert("test_table", create_test_data()) n_conn = commuter.get_connections_count() for i in range(300): df = commuter.select("SELECT * FROM test_table") assert len(df) == 3 assert commuter.get_connections_count() - n_conn < 10 def test_insert(): with pytest.raises(exc.QueryExecutionError) as e: commuter.insert("fake_table", create_test_data()) assert e.type == exc.QueryExecutionError @with_table("test_table", create_test_table) def test_select_one(): cmd = "SELECT MAX(var_2) FROM test_table" value = commuter.select_one(cmd=cmd, default=0) assert value == 0 commuter.copy_from("test_table", create_test_data()) value = commuter.select_one("SELECT MAX(var_2) FROM test_table") assert value == 3 cmd = "SELECT MAX(var_2) FROM test_table WHERE var_2 > 10" value = commuter.select_one(cmd=cmd, default=-1) assert value == -1 value = commuter.select_one("DROP TABLE test_table", default=1) assert value == 1 @with_table("test_table", create_test_table) def test_table_exist(): assert commuter.is_table_exist("test_table") delete_table(table_name="test_table") assert not commuter.is_table_exist("test_table") @with_table("test_table", create_test_table) def test_copy_from(): commuter.copy_from("test_table", create_test_data()) df = commuter.select("SELECT * FROM test_table") df["date"] = pd.to_datetime(df["var_1"]) assert df["date"][0].date() == datetime.now().date() assert len(df) == 3 with pytest.raises(exc.CopyError) as e: commuter.copy_from("fake_table", create_test_data()) assert e.type == exc.CopyError @with_table("model.test_table", create_test_table) def test_copy_from_schema(): assert commuter.is_table_exist("model.test_table") df = create_test_data() df["var_2"] = [1, 2, 3.01] df["new_var_1"] = 1 df.insert(loc=0, column="new_var_2", value=[3, 2, 1]) assert df.shape == (3, 7) commuter.copy_from("model.test_table", df, format_data=True) data = commuter.select("SELECT * FROM model.test_table") data["date"] =
pd.to_datetime(data["var_1"])
pandas.to_datetime
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( ( (oc2['DOB'] + pd.DateOffset(years=4) == start) # ??? | (oc2['DOB'] + pd.DateOffset(years=17) == start) ) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() & oc2['SDQ_REASON'].isna() ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_157(): error = ErrorDefinition( code='157', description="Child is aged 4 years or over at the beginning of the year or 16 years or under at the end of the " "year and Strengths and Difficulties Questionnaire (SDQ) 1 has been recorded as the reason for no " "Strengths and Difficulties Questionnaire (SDQ) score.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( oc2['CONTINUOUSLY_LOOKED_AFTER'] & (oc2['DOB'] + pd.DateOffset(years=4) <= start) & (oc2['DOB'] + pd.DateOffset(years=16) >= endo) & oc2['SDQ_SCORE'].isna() & (oc2['SDQ_REASON'] == 'SDQ1') ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_357(): error = ErrorDefinition( code='357', description='If this is the first episode ever for this child, reason for new episode must be S. ' 'Check whether there is an episode immediately preceding this one, which has been left out. ' 'If not the reason for new episode code must be amended to S.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} eps = dfs['Episodes'] eps['DECOM'] = pd.to_datetime(eps['DECOM'], format='%d/%m/%Y', errors='coerce') eps = eps.loc[eps['DECOM'].notnull()] first_eps = eps.loc[eps.groupby('CHILD')['DECOM'].idxmin()] errs = first_eps[first_eps['RNE'] != 'S'].index.to_list() return {'Episodes': errs} return error, _validate def validate_117(): error = ErrorDefinition( code='117', description='Date of decision that a child should/should no longer be placed for adoption is beyond the current collection year or after the child ceased to be looked after.', affected_fields=['DATE_PLACED_CEASED', 'DATE_PLACED', 'DEC', 'REC', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placed_adoption = dfs['PlacedAdoption'] collection_end = dfs['metadata']['collection_end'] # datetime placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # Drop nans and continuing episodes episodes = episodes.dropna(subset=['DECOM']) episodes = episodes[episodes['REC'] != 'X1'] episodes = episodes.loc[episodes.groupby('CHILD')['DECOM'].idxmax()] # prepare to merge placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) p4a_cols = ['DATE_PLACED', 'DATE_PLACED_CEASED'] # latest episodes merged = episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) mask = ( (merged['DATE_PLACED'] > collection_end) | (merged['DATE_PLACED'] > merged['DEC']) | (merged['DATE_PLACED_CEASED'] > collection_end) | (merged['DATE_PLACED_CEASED'] > merged['DEC']) ) # If provided <DATE_PLACED> and/or <DATE_PLACED_CEASED> must not be > <COLLECTION_END_DATE> or <DEC> of latest episode where <REC> not = 'X1' pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_118(): error = ErrorDefinition( code='118', description='Date of decision that a child should no longer be placed for adoption is before the current collection year or before the date the child started to be looked after.', affected_fields=['DECOM', 'DECOM', 'LS'] ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] code_list = ['V3', 'V4'] # datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' filter_by_ls = episodes[~(episodes['LS'].isin(code_list))] earliest_episode_idxs = filter_by_ls.groupby('CHILD')['DECOM'].idxmin() earliest_episodes = episodes[episodes.index.isin(earliest_episode_idxs)] # prepare to merge placed_adoption.reset_index(inplace=True) earliest_episodes.reset_index(inplace=True) # merge merged = earliest_episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) # drop rows where DATE_PLACED_CEASED is not provided merged = merged.dropna(subset=['DATE_PLACED_CEASED']) # If provided <DATE_PLACED_CEASED> must not be prior to <COLLECTION_START_DATE> or <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' mask = (merged['DATE_PLACED_CEASED'] < merged['DECOM']) | (merged['DATE_PLACED_CEASED'] < collection_start) # error locations pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_352(): error = ErrorDefinition( code='352', description='Child who started to be looked after was aged 18 or over.', affected_fields=['DECOM', 'RNE'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') care_start = episodes_merged['RNE'].str.upper().astype(str).isin(['S']) started_over_18 = episodes_merged['DOB18'] <= episodes_merged['DECOM'] error_mask = care_start & started_over_18 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_209(): error = ErrorDefinition( code='209', description='Child looked after is of school age and should not have an unknown Unique Pupil Number (UPN) code of UN1.', affected_fields=['UPN', 'DOB'] ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] collection_start = dfs['metadata']['collection_start'] # convert to datetime header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') yr = collection_start.year - 1 reference_date = pd.to_datetime('31/08/' + str(yr), format='%d/%m/%Y', errors='coerce') # If <DOB> >= 4 years prior to 31/08/YYYY then <UPN> should not be 'UN1' Note: YYYY in this instance refers to the year prior to the collection start (for collection year 2019-2020, it would be looking at the 31/08/2018). mask = (reference_date >= (header['DOB'] + pd.offsets.DateOffset(years=4))) & (header['UPN'] == 'UN1') # error locations error_locs_header = header.index[mask] return {'Header': error_locs_header.tolist()} return error, _validate def validate_198(): error = ErrorDefinition( code='198', description="Child has not been looked after continuously for at least 12 months at 31 March but a reason " "for no Strengths and Difficulties (SDQ) score has been completed. ", affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_REASON'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_185(): error = ErrorDefinition( code='185', description="Child has not been looked after continuously for at least 12 months at " + "31 March but a Strengths and Difficulties (SDQ) score has been completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_186(): error = ErrorDefinition( code='186', description="Children aged 4 or over at the start of the year and children aged under 17 at the " + "end of the year and who have been looked after for at least 12 months continuously " + "should have a Strengths and Difficulties (SDQ) score completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_start_str = dfs['metadata']['collection_start'] collection_end_str = dfs['metadata']['collection_end'] collection_start = pd.to_datetime(collection_start_str, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2 = add_CLA_column(dfs, 'OC2') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) oc2['17th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=17) error_mask = ( (oc2['4th_bday'] <= collection_start) & (oc2['17th_bday'] > collection_end) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_187(): error = ErrorDefinition( code='187', description="Child cannot be looked after continuously for 12 months at " + "31 March (OC2) and have any of adoption or care leavers returns completed.", affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR', # OC3 'IN_TOUCH', 'ACTIV', 'ACCOM'], # AD1 ) def _validate(dfs): if ( 'OC3' not in dfs or 'AD1' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column ad1, oc3 = add_CLA_column(dfs, ['AD1', 'OC3']) # OC3 should_be_blank = ['IN_TOUCH', 'ACTIV', 'ACCOM'] oc3_mask = oc3['CONTINUOUSLY_LOOKED_AFTER'] & oc3[should_be_blank].notna().any(axis=1) oc3_error_locs = oc3[oc3_mask].index.to_list() # AD1 should_be_blank = ['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ad1_mask = ad1['CONTINUOUSLY_LOOKED_AFTER'] & ad1[should_be_blank].notna().any(axis=1) ad1_error_locs = ad1[ad1_mask].index.to_list() return {'AD1': ad1_error_locs, 'OC3': oc3_error_locs} return error, _validate def validate_188(): error = ErrorDefinition( code='188', description="Child is aged under 4 years at the end of the year, " "but a Strengths and Difficulties (SDQ) score or a reason " "for no SDQ score has been completed. ", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_end_str = dfs['metadata']['collection_end'] collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) error_mask = ( (oc2['4th_bday'] > collection_end) & oc2[['SDQ_SCORE', 'SDQ_REASON']].notna().any(axis=1) ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_190(): error = ErrorDefinition( code='190', description="Child has not been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been completed.", affected_fields=['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] , # AD1 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_blank = ['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] mask = ~oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_blank].notna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_191(): error = ErrorDefinition( code='191', description="Child has been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been left blank.", affected_fields=['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], # OC2 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_present = ['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'] mask = oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_present].isna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_607(): error = ErrorDefinition( code='607', description='Child ceased to be looked after in the year, but mother field has not been completed.', affected_fields=['DEC', 'REC', 'MOTHER', 'LS', 'SEX'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] code_list = ['V3', 'V4'] # convert to datetiime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # CEASED_TO_BE_LOOKED_AFTER = DEC is not null and REC is filled but not equal to X1 CEASED_TO_BE_LOOKED_AFTER = merged['DEC'].notna() & ((merged['REC'] != 'X1') & merged['REC'].notna()) # and <LS> not = ‘V3’ or ‘V4’ check_LS = ~(merged['LS'].isin(code_list)) # and <DEC> is in <CURRENT_COLLECTION_YEAR check_DEC = (collection_start <= merged['DEC']) & (merged['DEC'] <= collection_end) # Where <CEASED_TO_BE_LOOKED_AFTER> = ‘Y’, and <LS> not = ‘V3’ or ‘V4’ and <DEC> is in <CURRENT_COLLECTION_YEAR> and <SEX> = ‘2’ then <MOTHER> should be provided. mask = CEASED_TO_BE_LOOKED_AFTER & check_LS & check_DEC & (merged['SEX'] == '2') & (merged['MOTHER'].isna()) header_error_locs = merged.loc[mask, 'index_er'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_210(): error = ErrorDefinition( code='210', description='Children looked after for more than a week at 31 March should not have an unknown Unique Pupil Number (UPN) code of UN4.', affected_fields=['UPN', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_end = dfs['metadata']['collection_end'] # convert to datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') yr = collection_end.year reference_date = ref_date = pd.to_datetime('24/03/' + str(yr), format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) # the logical way is to merge left on UPN but that will be a one to many merge and may not go as well as a many to one merge that we've been doing. merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <UPN> = 'UN4' then no episode <DECOM> must be >` = 24/03/YYYY Note: YYYY refers to the current collection year. mask = (merged['UPN'] == 'UN4') & (merged['DECOM'] >= reference_date) # error locations error_locs_header = merged.loc[mask, 'index_er'] error_locs_eps = merged.loc[mask, 'index_eps'] return {'Episodes': error_locs_eps.tolist(), 'Header': error_locs_header.unique().tolist()} return error, _validate def validate_1010(): error = ErrorDefinition( code='1010', description='This child has no episodes loaded for current year even though there was an open episode of ' + 'care at the end of the previous year, and care leaver data has been entered.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] oc3 = dfs['OC3'] # convert DECOM to datetime, drop missing/invalid sort by CHILD then DECOM, episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last = episodes_last.dropna(subset=['DECOM']).sort_values(['CHILD', 'DECOM'], ascending=True) # Keep only the final episode for each child (ie where the following row has a different CHILD value) episodes_last = episodes_last[ episodes_last['CHILD'].shift(-1) != episodes_last['CHILD'] ] # Keep only the final episodes that were still open episodes_last = episodes_last[episodes_last['DEC'].isna()] # The remaining children ought to have episode data in the current year if they are in OC3 has_current_episodes = oc3['CHILD'].isin(episodes['CHILD']) has_open_episode_last = oc3['CHILD'].isin(episodes_last['CHILD']) error_mask = ~has_current_episodes & has_open_episode_last validation_error_locations = oc3.index[error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_525(): error = ErrorDefinition( code='525', description='A child for whom the decision to be placed for adoption has been reversed cannot be adopted during the year.', affected_fields=['DATE_PLACED_CEASED', 'DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs or 'AD1' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] ad1 = dfs['AD1'] # prepare to merge placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = placed_adoption.merge(ad1, on='CHILD', how='left', suffixes=['_placed', '_ad1']) # If <DATE_PLACED_CEASED> not Null, then <DATE_INT>; <DATE_MATCH>; <FOSTER_CARE>; <NB_ADOPTR>; <SEX_ADOPTR>; and <LS_ADOPTR> should not be provided mask = merged['DATE_PLACED_CEASED'].notna() & ( merged['DATE_INT'].notna() | merged['DATE_MATCH'].notna() | merged['FOSTER_CARE'].notna() | merged['NB_ADOPTR'].notna() | merged['SEX_ADOPTR'].notna() | merged['LS_ADOPTR'].notna()) # error locations pa_error_locs = merged.loc[mask, 'index_placed'] ad_error_locs = merged.loc[mask, 'index_ad1'] # return result return {'PlacedAdoption': pa_error_locs.tolist(), 'AD1': ad_error_locs.tolist()} return error, _validate def validate_335(): error = ErrorDefinition( code='335', description='The current foster value (0) suggests that child is not adopted by current foster carer, but last placement is A2, A3, or A5. Or the current foster value (1) suggests that child is adopted by current foster carer, but last placement is A1, A4 or A6.', affected_fields=['PLACE', 'FOSTER_CARE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'AD1' not in dfs: return {} else: episodes = dfs['Episodes'] ad1 = dfs['AD1'] # prepare to merge episodes.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = episodes.merge(ad1, on='CHILD', how='left', suffixes=['_eps', '_ad1']) # Where <PL> = 'A2', 'A3' or 'A5' and <DEC> = 'E1', 'E11', 'E12' <FOSTER_CARE> should not be '0'; Where <PL> = ‘A1’, ‘A4’ or ‘A6’ and <REC> = ‘E1’, ‘E11’, ‘E12’ <FOSTER_CARE> should not be ‘1’. mask = ( merged['REC'].isin(['E1', 'E11', 'E12']) & ( (merged['PLACE'].isin(['A2', 'A3', 'A5']) & (merged['FOSTER_CARE'].astype(str) == '0')) | (merged['PLACE'].isin(['A1', 'A4', 'A6']) & (merged['FOSTER_CARE'].astype(str) == '1')) ) ) eps_error_locs = merged.loc[mask, 'index_eps'] ad1_error_locs = merged.loc[mask, 'index_ad1'] # use .unique since join is many to one return {'Episodes': eps_error_locs.tolist(), 'AD1': ad1_error_locs.unique().tolist()} return error, _validate def validate_215(): error = ErrorDefinition( code='215', description='Child has care leaver information but one or more data items relating to children looked after for 12 months have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM', 'CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] ) def _validate(dfs): if 'OC3' not in dfs or 'OC2' not in dfs: return {} else: oc3 = dfs['OC3'] oc2 = dfs['OC2'] # prepare to merge oc3.reset_index(inplace=True) oc2.reset_index(inplace=True) merged = oc3.merge(oc2, on='CHILD', how='left', suffixes=['_3', '_2']) # If any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided then <CONVICTED>; <HEALTH_CHECK>; <IMMUNISATIONS>; <TEETH_CHECK>; <HEALTH_ASSESSMENT>; <SUBSTANCE MISUSE>; <INTERVENTION_RECEIVED>; <INTERVENTION_OFFERED>; should not be provided mask = (merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) & ( merged['CONVICTED'].notna() | merged['HEALTH_CHECK'].notna() | merged['IMMUNISATIONS'].notna() | merged['TEETH_CHECK'].notna() | merged['HEALTH_ASSESSMENT'].notna() | merged[ 'SUBSTANCE_MISUSE'].notna() | merged['INTERVENTION_RECEIVED'].notna() | merged[ 'INTERVENTION_OFFERED'].notna()) # error locations oc3_error_locs = merged.loc[mask, 'index_3'] oc2_error_locs = merged.loc[mask, 'index_2'] return {'OC3': oc3_error_locs.tolist(), 'OC2': oc2_error_locs.tolist()} return error, _validate def validate_399(): error = ErrorDefinition( code='399', description='Mother field, review field or participation field are completed but ' + 'child is looked after under legal status V3 or V4.', affected_fields=['MOTHER', 'LS', 'REVIEW', 'REVIEW_CODE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs or 'Reviews' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] reviews = dfs['Reviews'] code_list = ['V3', 'V4'] # prepare to merge episodes['index_eps'] = episodes.index header['index_hdr'] = header.index reviews['index_revs'] = reviews.index # merge merged = (episodes.merge(header, on='CHILD', how='left') .merge(reviews, on='CHILD', how='left')) # If <LS> = 'V3' or 'V4' then <MOTHER>, <REVIEW> and <REVIEW_CODE> should not be provided mask = merged['LS'].isin(code_list) & ( merged['MOTHER'].notna() | merged['REVIEW'].notna() | merged['REVIEW_CODE'].notna()) # Error locations eps_errors = merged.loc[mask, 'index_eps'] header_errors = merged.loc[mask, 'index_hdr'].unique() revs_errors = merged.loc[mask, 'index_revs'].unique() return {'Episodes': eps_errors.tolist(), 'Header': header_errors.tolist(), 'Reviews': revs_errors.tolist()} return error, _validate def validate_189(): error = ErrorDefinition( code='189', description='Child is aged 17 years or over at the beginning of the year, but an Strengths and Difficulties ' + '(SDQ) score or a reason for no Strengths and Difficulties (SDQ) score has been completed.', affected_fields=['DOB', 'SDQ_SCORE', 'SDQ_REASON'] ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] collection_start = dfs['metadata']['collection_start'] # datetime format allows appropriate comparison between dates oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # If <DOB> >17 years prior to <COLLECTION_START_DATE> then <SDQ_SCORE> and <SDQ_REASON> should not be provided mask = ((oc2['DOB'] + pd.offsets.DateOffset(years=17)) <= collection_start) & ( oc2['SDQ_REASON'].notna() | oc2['SDQ_SCORE'].notna()) # That is, raise error if collection_start > DOB + 17years oc_error_locs = oc2.index[mask] return {'OC2': oc_error_locs.tolist()} return error, _validate def validate_226(): error = ErrorDefinition( code='226', description='Reason for placement change is not required.', affected_fields=['REASON_PLACE_CHANGE', 'PLACE'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] code_list = ['T0', 'T1', 'T2', 'T3', 'T4'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # create column to see previous REASON_PLACE_CHANGE episodes = episodes.sort_values(['CHILD', 'DECOM']) episodes['PREVIOUS_REASON'] = episodes.groupby('CHILD')['REASON_PLACE_CHANGE'].shift(1) # If <PL> = 'T0'; 'T1'; 'T2'; 'T3' or 'T4' then <REASON_PLACE_CHANGE> should be null in current episode and current episode - 1 mask = episodes['PLACE'].isin(code_list) & ( episodes['REASON_PLACE_CHANGE'].notna() | episodes['PREVIOUS_REASON'].notna()) # error locations error_locs = episodes.index[mask] return {'Episodes': error_locs.tolist()} return error, _validate def validate_358(): error = ErrorDefinition( code='358', description='Child with this legal status should not be under 10.', affected_fields=['DECOM', 'DOB', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['J1', 'J2', 'J3'] # convert dates to datetime format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # Where <LS> = ‘J1’ or ‘J2’ or ‘J3’ then <DOB> should <= to 10 years prior to <DECOM> mask = merged['LS'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=10) < merged['DECOM']) # That is, raise error if DECOM > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_407(): error = ErrorDefinition( code='407', description='Reason episode ceased is Special Guardianship Order, but child has reached age 18.', affected_fields=['DEC', 'DOB', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['E45', 'E46', 'E47', 'E48'] # convert dates to datetime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <REC> = ‘E45’ or ‘E46’ or ‘E47’ or ‘E48’ then <DOB> must be < 18 years prior to <DEC> mask = merged['REC'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=18) < merged['DEC']) # That is, raise error if DEC > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_1007(): error = ErrorDefinition( code='1007', description='Care leaver information is not required for 17- or 18-year olds who are still looked after.', affected_fields=['DEC', 'REC', 'DOB', 'IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_end = dfs['metadata']['collection_end'] # convert dates to datetime format oc3['DOB'] = pd.to_datetime(oc3['DOB'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) oc3.reset_index(inplace=True) merged = episodes.merge(oc3, on='CHILD', how='left', suffixes=['_eps', '_oc3']) # If <DOB> < 19 and >= to 17 years prior to <COLLECTION_END_DATE> and current episode <DEC> and or <REC> not provided then <IN_TOUCH>, <ACTIV> and <ACCOM> should not be provided check_age = (merged['DOB'] + pd.offsets.DateOffset(years=17) <= collection_end) & ( merged['DOB'] + pd.offsets.DateOffset(years=19) > collection_end) # That is, check that 17<=age<19 check_dec_rec = merged['REC'].isna() | merged['DEC'].isna() # if either DEC or REC are absent mask = check_age & check_dec_rec & ( merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) # Then raise an error if either IN_TOUCH, ACTIV, or ACCOM have been provided too # error locations oc3_error_locs = merged.loc[mask, 'index_oc3'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'OC3': oc3_error_locs.unique().tolist()} return error, _validate def validate_442(): error = ErrorDefinition( code='442', description='Unique Pupil Number (UPN) field is not completed.', affected_fields=['UPN', 'LS'] ) def _validate(dfs): if ('Episodes' not in dfs) or ('Header' not in dfs): return {} else: episodes = dfs['Episodes'] header = dfs['Header'] episodes.reset_index(inplace=True) header.reset_index(inplace=True) code_list = ['V3', 'V4'] # merge left on episodes to get all children for which episodes have been recorded even if they do not exist on the header. merged = episodes.merge(header, on=['CHILD'], how='left', suffixes=['_eps', '_er']) # Where any episode present, with an <LS> not = 'V3' or 'V4' then <UPN> must be provided mask = (~merged['LS'].isin(code_list)) & merged['UPN'].isna() episode_error_locs = merged.loc[mask, 'index_eps'] header_error_locs = merged.loc[mask, 'index_er'] return {'Episodes': episode_error_locs.tolist(), # Select unique values since many episodes are joined to one header # and multiple errors will be raised for the same index. 'Header': header_error_locs.dropna().unique().tolist()} return error, _validate def validate_344(): error = ErrorDefinition( code='344', description='The record shows the young person has died or returned home to live with parent(s) or someone with parental responsibility for a continuous period of 6 months or more, but activity and/or accommodation on leaving care have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'DIED' or 'RHOM' then <ACTIV> and <ACCOM> should not be provided mask = ((oc3['IN_TOUCH'] == 'DIED') | (oc3['IN_TOUCH'] == 'RHOM')) & ( oc3['ACTIV'].notna() | oc3['ACCOM'].notna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_345(): error = ErrorDefinition( code='345', description='The data collection record shows the local authority is in touch with this young person, but activity and/or accommodation data items are zero.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'Yes' then <ACTIV> and <ACCOM> must be provided mask = (oc3['IN_TOUCH'] == 'YES') & (oc3['ACTIV'].isna() | oc3['ACCOM'].isna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_384(): error = ErrorDefinition( code='384', description='A child receiving respite care cannot be in a long-term foster placement ', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # Where <LS> = 'V3' or 'V4' then <PL> must not be 'U1' or 'U4' mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( (episodes['PLACE'] == 'U1') | (episodes['PLACE'] == 'U4')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_390(): error = ErrorDefinition( code='390', description='Reason episode ceased is adopted but child has not been previously placed for adoption.', affected_fields=['PLACE', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # If <REC> = 'E11' or 'E12' then <PL> must be one of 'A3', 'A4', 'A5' or 'A6' mask = ((episodes['REC'] == 'E11') | (episodes['REC'] == 'E12')) & ~( (episodes['PLACE'] == 'A3') | (episodes['PLACE'] == 'A4') | (episodes['PLACE'] == 'A5') | ( episodes['PLACE'] == 'A6')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_378(): error = ErrorDefinition( code='378', description='A child who is placed with parent(s) cannot be looked after under a single period of accommodation under Section 20 of the Children Act 1989.', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # the & sign supercedes the ==, so brackets are necessary here mask = (episodes['PLACE'] == 'P1') & (episodes['LS'] == 'V2') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_398(): error = ErrorDefinition( code='398', description='Distance field completed but child looked after under legal status V3 or V4.', affected_fields=['LS', 'HOME_POST', 'PL_POST'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( episodes['HOME_POST'].notna() | episodes['PL_POST'].notna()) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_451(): error = ErrorDefinition( code='451', description='Child is still freed for adoption, but freeing orders could not be applied for since 30 December 2005.', affected_fields=['DEC', 'REC', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = episodes['DEC'].isna() & episodes['REC'].isna() & (episodes['LS'] == 'D1') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_519(): error = ErrorDefinition( code='519', description='Data entered on the legal status of adopters shows civil partnership couple, but data entered on genders of adopters does not show it as a couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = (ad1['LS_ADOPTR'] == 'L2') & ( (ad1['SEX_ADOPTR'] != 'MM') & (ad1['SEX_ADOPTR'] != 'FF') & (ad1['SEX_ADOPTR'] != 'MF')) error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_520(): error = ErrorDefinition( code='520', description='Data entry on the legal status of adopters shows different gender married couple but data entry on genders of adopters shows it as a same gender couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] # check condition mask = (ad1['LS_ADOPTR'] == 'L11') & (ad1['SEX_ADOPTR'] != 'MF') error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_522(): error = ErrorDefinition( code='522', description='Date of decision that the child should be placed for adoption must be on or before the date that a child should no longer be placed for adoption.', affected_fields=['DATE_PLACED', 'DATE_PLACED_CEASED'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] # Convert to datetimes placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # Boolean mask mask = placed_adoption['DATE_PLACED_CEASED'] > placed_adoption['DATE_PLACED'] error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_563(): error = ErrorDefinition( code='563', description='The child should no longer be placed for adoption but the date of the decision that the child should be placed for adoption is blank', affected_fields=['DATE_PLACED', 'REASON_PLACED_CEASED', 'DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] mask = placed_adoption['REASON_PLACED_CEASED'].notna() & placed_adoption['DATE_PLACED_CEASED'].notna() & \ placed_adoption['DATE_PLACED'].isna() error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_544(): error = ErrorDefinition( code='544', description="Any child who has conviction information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['CONVICTED', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] convict = oc2['CONVICTED'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = convict & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_634(): error = ErrorDefinition( code='634', description='There are entries for previous permanence options, but child has not started to be looked after from 1 April 2016 onwards.', affected_fields=['LA_PERM', 'PREV_PERM', 'DATE_PERM', 'DECOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'PrevPerm' not in dfs: return {} else: episodes = dfs['Episodes'] prevperm = dfs['PrevPerm'] collection_start = dfs['metadata']['collection_start'] # convert date field to appropriate format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # the maximum date has the highest possibility of satisfying the condition episodes['LAST_DECOM'] = episodes.groupby('CHILD')['DECOM'].transform('max') # prepare to merge episodes.reset_index(inplace=True) prevperm.reset_index(inplace=True) merged = prevperm.merge(episodes, on='CHILD', how='left', suffixes=['_prev', '_eps']) # If <PREV_PERM> or <LA_PERM> or <DATE_PERM> provided, then at least 1 episode must have a <DECOM> later than 01/04/2016 mask = (merged['PREV_PERM'].notna() | merged['DATE_PERM'].notna() | merged['LA_PERM'].notna()) & ( merged['LAST_DECOM'] < collection_start) eps_error_locs = merged.loc[mask, 'index_eps'] prevperm_error_locs = merged.loc[mask, 'index_prev'] # return {'PrevPerm':prevperm_error_locs} return {'Episodes': eps_error_locs.unique().tolist(), 'PrevPerm': prevperm_error_locs.unique().tolist()} return error, _validate def validate_158(): error = ErrorDefinition( code='158', description='If a child has been recorded as receiving an intervention for their substance misuse problem, then the additional item on whether an intervention was offered should be left blank.', affected_fields=['INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] error_mask = oc2['INTERVENTION_RECEIVED'].astype(str).eq('1') & oc2['INTERVENTION_OFFERED'].notna() error_locations = oc2.index[error_mask] return {'OC2': error_locations.tolist()} return error, _validate def validate_133(): error = ErrorDefinition( code='133', description='Data entry for accommodation after leaving care is invalid. If reporting on a childs accommodation after leaving care the data entry must be valid', affected_fields=['ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] valid_codes = ['B1', 'B2', 'C1', 'C2', 'D1', 'D2', 'E1', 'E2', 'G1', 'G2', 'H1', 'H2', 'K1', 'K2', 'R1', 'R2', 'S2', 'T1', 'T2', 'U1', 'U2', 'V1', 'V2', 'W1', 'W2', 'X2', 'Y1', 'Y2', 'Z1', 'Z2', '0'] error_mask = ~oc3['ACCOM'].isna() & ~oc3['ACCOM'].isin(valid_codes) error_locations = oc3.index[error_mask] return {'OC3': error_locations.tolist()} return error, _validate def validate_565(): error = ErrorDefinition( code='565', description='The date that the child started to be missing or away from placement without authorisation has been completed but whether the child was missing or away from placement without authorisation has not been completed.', affected_fields=['MISSING', 'MIS_START'] ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] mask = missing['MIS_START'].notna() & missing['MISSING'].isna() error_locations = missing.index[mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_433(): error = ErrorDefinition( code='433', description='The reason for new episode suggests that this is a continuation episode, but the episode does not start on the same day as the last episode finished.', affected_fields=['RNE', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['original_index'] = episodes.index episodes.sort_values(['CHILD', 'DECOM', 'DEC'], inplace=True) episodes[['PREVIOUS_DEC', 'PREVIOUS_CHILD']] = episodes[['DEC', 'CHILD']].shift(1) rne_is_ongoing = episodes['RNE'].str.upper().astype(str).isin(['P', 'L', 'T', 'U', 'B']) date_mismatch = episodes['PREVIOUS_DEC'] != episodes['DECOM'] missing_date = episodes['PREVIOUS_DEC'].isna() | episodes['DECOM'].isna() same_child = episodes['PREVIOUS_CHILD'] == episodes['CHILD'] error_mask = rne_is_ongoing & (date_mismatch | missing_date) & same_child error_locations = episodes['original_index'].loc[error_mask].sort_values() return {'Episodes': error_locations.to_list()} return error, _validate def validate_437(): error = ErrorDefinition( code='437', description='Reason episode ceased is child has died or is aged 18 or over but there are further episodes.', affected_fields=['REC'], ) # !# potential false negatives, as this only operates on the current year's data def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes.sort_values(['CHILD', 'DECOM'], inplace=True) episodes[['NEXT_DECOM', 'NEXT_CHILD']] = episodes[['DECOM', 'CHILD']].shift(-1) # drop rows with missing DECOM as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) ceased_e2_e15 = episodes['REC'].str.upper().astype(str).isin(['E2', 'E15']) has_later_episode = episodes['CHILD'] == episodes['NEXT_CHILD'] error_mask = ceased_e2_e15 & has_later_episode error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_547(): error = ErrorDefinition( code='547', description="Any child who has health promotion information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] healthck = oc2['HEALTH_CHECK'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = healthck & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_635(): error = ErrorDefinition( code='635', description='There are entries for date of order and local authority code where previous permanence option was arranged but previous permanence code is Z1', affected_fields=['LA_PERM', 'DATE_PERM', 'PREV_PERM'] ) def _validate(dfs): if 'PrevPerm' not in dfs: return {} else: prev_perm = dfs['PrevPerm'] # raise and error if either LA_PERM or DATE_PERM are present, yet PREV_PERM is absent. mask = ((prev_perm['LA_PERM'].notna() | prev_perm['DATE_PERM'].notna()) & prev_perm['PREV_PERM'].isna()) error_locations = prev_perm.index[mask] return {'PrevPerm': error_locations.to_list()} return error, _validate def validate_550(): error = ErrorDefinition( code='550', description='A placement provider code of PR0 can only be associated with placement P1.', affected_fields=['PLACE', 'PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = (episodes['PLACE'] != 'P1') & episodes['PLACE_PROVIDER'].eq('PR0') validation_error_locations = episodes.index[mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_217(): error = ErrorDefinition( code='217', description='Children who are placed for adoption with current foster carers (placement types A3 or A5) must have a reason for new episode of S, T or U.', affected_fields=['PLACE', 'DECOM', 'RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') max_decom_allowed = pd.to_datetime('01/04/2015', format='%d/%m/%Y', errors='coerce') reason_new_ep = ['S', 'T', 'U'] place_codes = ['A3', 'A5'] mask = (episodes['PLACE'].isin(place_codes) & (episodes['DECOM'] >= max_decom_allowed)) & ~episodes[ 'RNE'].isin(reason_new_ep) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_518(): error = ErrorDefinition( code='518', description='If reporting legal status of adopters is L4 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L4') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_517(): error = ErrorDefinition( code='517', description='If reporting legal status of adopters is L3 then the genders of adopters should be coded as MF. MF = the adopting couple are male and female.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L3') & ~AD1['SEX_ADOPTR'].isin(['MF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_558(): error = ErrorDefinition( code='558', description='If a child has been adopted, then the decision to place them for adoption has not been disrupted and the date of the decision that a child should no longer be placed for adoption should be left blank. if the REC code is either E11 or E12 then the DATE PLACED CEASED date should not be provided', affected_fields=['DATE_PLACED_CEASED', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() rec_codes = ['E11', 'E12'] placeEpisodes = episodes[episodes['REC'].isin(rec_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED_CEASED'].notna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_453(): error = ErrorDefinition( code='453', description='Contradiction between placement distance in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_DISTANCE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['PL_DISTANCE'] = pd.to_numeric(episodes['PL_DISTANCE'], errors='coerce') episodes_last['PL_DISTANCE'] = pd.to_numeric(episodes_last['PL_DISTANCE'], errors='coerce') # drop rows with missing DECOM before finding idxmin/max, as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) episodes_last = episodes_last.dropna(subset=['DECOM']) episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_dist = abs(episodes_merged['PL_DISTANCE'] - episodes_merged['PL_DISTANCE_last']) >= 0.2 error_mask = in_both_years & same_rne & last_year_open & different_pl_dist validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_516(): error = ErrorDefinition( code='516', description='The episode data submitted for this child does not show that he/she was with their former foster carer(s) during the year.If the code in the reason episode ceased is E45 or E46 the child must have a placement code of U1 to U6.', affected_fields=['REC', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] place_codes = ['U1', 'U2', 'U3', 'U4', 'U5', 'U6'] rec_codes = ['E45', 'E46'] error_mask = episodes['REC'].isin(rec_codes) & ~episodes['PLACE'].isin(place_codes) validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_511(): error = ErrorDefinition( code='511', description='If reporting that the number of person(s) adopting the looked after child is two adopters then the code should only be MM, FF or MF. MM = the adopting couple are both males; FF = the adopting couple are both females; MF = The adopting couple are male and female.', affected_fields=['NB_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] mask = AD1['NB_ADOPTR'].astype(str).eq('2') & AD1['SEX_ADOPTR'].isin(['M1', 'F1']) validation_error_mask = mask validation_error_locations = AD1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_524(): error = ErrorDefinition( code='524', description='If reporting legal status of adopters is L12 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L12') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_441(): error = ErrorDefinition( code='441', description='Participation method indicates child was 4 years old or over at the time of the review, but the date of birth and review date indicates the child was under 4 years old.', affected_fields=['DOB', 'REVIEW', 'REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: reviews = dfs['Reviews'] reviews['DOB'] = pd.to_datetime(reviews['DOB'], format='%d/%m/%Y', errors='coerce') reviews['REVIEW'] = pd.to_datetime(reviews['REVIEW'], format='%d/%m/%Y', errors='coerce') reviews = reviews.dropna(subset=['REVIEW', 'DOB']) mask = reviews['REVIEW_CODE'].isin(['PN1', 'PN2', 'PN3', 'PN4', 'PN5', 'PN6', 'PN7']) & ( reviews['REVIEW'] < reviews['DOB'] + pd.offsets.DateOffset(years=4)) validation_error_mask = mask validation_error_locations = reviews.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_184(): error = ErrorDefinition( code='184', description='Date of decision that a child should be placed for adoption is before the child was born.', affected_fields=['DATE_PLACED', # PlacedAdoptino 'DOB'], # Header ) def _validate(dfs): if 'Header' not in dfs or 'PlacedAdoption' not in dfs: return {} else: child_record = dfs['Header'] placed_for_adoption = dfs['PlacedAdoption'] all_data = (placed_for_adoption .reset_index() .merge(child_record, how='left', on='CHILD', suffixes=[None, '_P4A'])) all_data['DATE_PLACED'] = pd.to_datetime(all_data['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') all_data['DOB'] = pd.to_datetime(all_data['DOB'], format='%d/%m/%Y', errors='coerce') mask = (all_data['DATE_PLACED'] >= all_data['DOB']) | all_data['DATE_PLACED'].isna() validation_error = ~mask validation_error_locations = all_data[validation_error]['index'].unique() return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_612(): error = ErrorDefinition( code='612', description="Date of birth field has been completed but mother field indicates child is not a mother.", affected_fields=['SEX', 'MOTHER', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] error_mask = ( ((header['MOTHER'].astype(str) == '0') | header['MOTHER'].isna()) & (header['SEX'].astype(str) == '2') & header['MC_DOB'].notna() ) validation_error_locations = header.index[error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_552(): """ This error checks that the first adoption episode is after the last decision ! If there are multiple of either there may be unexpected results ! """ error = ErrorDefinition( code="552", description="Date of Decision to place a child for adoption should be on or prior to the date that the child was placed for adoption.", # Field that defines date of decision to place a child for adoption is DATE_PLACED and the start of adoption is defined by DECOM with 'A' placement types. affected_fields=['DATE_PLACED', 'DECOM'], ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: # get the required datasets placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] # keep index values so that they stay the same when needed later on for error locations placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) adoption_eps = episodes[episodes['PLACE'].isin(['A3', 'A4', 'A5', 'A6'])].copy() # find most recent adoption decision placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # remove rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption['DATE_PLACED'].notna()] placed_adoption_inds = placed_adoption.groupby('CHILD')['DATE_PLACED'].idxmax(skipna=True) last_decision = placed_adoption.loc[placed_adoption_inds] # first time child started adoption adoption_eps["DECOM"] = pd.to_datetime(adoption_eps['DECOM'], format='%d/%m/%Y', errors='coerce') adoption_eps = adoption_eps[adoption_eps['DECOM'].notna()] adoption_eps_inds = adoption_eps.groupby('CHILD')['DECOM'].idxmin(skipna=True) # full information of first adoption first_adoption = adoption_eps.loc[adoption_eps_inds] # date of decision and date of start of adoption (DECOM) have to be put in one table merged = first_adoption.merge(last_decision, on=['CHILD'], how='left', suffixes=['_EP', '_PA']) # check to see if date of decision to place is less than or equal to date placed. decided_after_placed = merged["DECOM"] < merged["DATE_PLACED"] # find the corresponding location of error values per file. episode_error_locs = merged.loc[decided_after_placed, 'index_EP'] placedadoption_error_locs = merged.loc[decided_after_placed, 'index_PA'] return {"PlacedAdoption": placedadoption_error_locs.to_list(), "Episodes": episode_error_locs.to_list()} return error, _validate def validate_551(): error = ErrorDefinition( code='551', description='Child has been placed for adoption but there is no date of the decision that the child should be placed for adoption.', affected_fields=['DATE_PLACED', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() place_codes = ['A3', 'A4', 'A5', 'A6'] placeEpisodes = episodes[episodes['PLACE'].isin(place_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED'].isna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_557(): error = ErrorDefinition( code='557', description="Child for whom the decision was made that they should be placed for adoption has left care " + "but was not adopted and information on the decision that they should no longer be placed for " + "adoption items has not been completed.", affected_fields=['DATE_PLACED_CEASED', 'REASON_PLACED_CEASED', # PlacedAdoption 'PLACE', 'LS', 'REC'], # Episodes ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'PlacedAdoption' not in dfs: return {} else: eps = dfs['Episodes'] placed = dfs['PlacedAdoption'] eps = eps.reset_index() placed = placed.reset_index() child_placed = eps['PLACE'].isin(['A3', 'A4', 'A5', 'A6']) order_granted = eps['LS'].isin(['D1', 'E1']) not_adopted = ~eps['REC'].isin(['E11', 'E12']) & eps['REC'].notna() placed['ceased_incomplete'] = ( placed['DATE_PLACED_CEASED'].isna() | placed['REASON_PLACED_CEASED'].isna() ) eps = eps[(child_placed | order_granted) & not_adopted] eps = eps.merge(placed, on='CHILD', how='left', suffixes=['_EP', '_PA'], indicator=True) eps = eps[(eps['_merge'] == 'left_only') | eps['ceased_incomplete']] EP_errors = eps['index_EP'] PA_errors = eps['index_PA'].dropna() return { 'Episodes': EP_errors.to_list(), 'PlacedAdoption': PA_errors.to_list(), } return error, _validate def validate_207(): error = ErrorDefinition( code='207', description='Mother status for the current year disagrees with the mother status already recorded for this child.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' mother_is_different = header_merged['MOTHER'].astype(str) != header_merged['MOTHER_last'].astype(str) mother_was_true = header_merged['MOTHER_last'].astype(str) == '1' error_mask = in_both_years & mother_is_different & mother_was_true error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_523(): error = ErrorDefinition( code='523', description="Date of decision that the child should be placed for adoption should be the same date as the decision that adoption is in the best interest (date should be placed).", affected_fields=['DATE_PLACED', 'DATE_INT'], ) def _validate(dfs): if ("AD1" not in dfs) or ("PlacedAdoption" not in dfs): return {} else: placed_adoption = dfs["PlacedAdoption"] ad1 = dfs["AD1"] # keep initial index values to be reused for locating errors later on. placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) # convert to datetime to enable comparison placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format="%d/%m/%Y", errors='coerce') ad1["DATE_INT"] = pd.to_datetime(ad1['DATE_INT'], format='%d/%m/%Y', errors='coerce') # drop rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption["DATE_PLACED"].notna()] ad1 = ad1[ad1["DATE_INT"].notna()] # bring corresponding values together from both dataframes merged_df = placed_adoption.merge(ad1, on=['CHILD'], how='inner', suffixes=["_AD", "_PA"]) # find error values different_dates = merged_df['DATE_INT'] != merged_df['DATE_PLACED'] # map error locations to corresponding indices pa_error_locations = merged_df.loc[different_dates, 'index_PA'] ad1_error_locations = merged_df.loc[different_dates, 'index_AD'] return {"PlacedAdoption": pa_error_locations.to_list(), "AD1": ad1_error_locations.to_list()} return error, _validate def validate_3001(): error = ErrorDefinition( code='3001', description='Where care leavers information is being returned for a young person around their 17th birthday, the accommodation cannot be with their former foster carer(s).', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'OC3' not in dfs: return {} else: header = dfs['Header'] oc3 = dfs['OC3'] collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') header['DOB17'] = header['DOB'] + pd.DateOffset(years=17) oc3_merged = oc3.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') accom_foster = oc3_merged['ACCOM'].str.upper().astype(str).isin(['Z1', 'Z2']) age_17_in_year = (oc3_merged['DOB17'] <= collection_end) & (oc3_merged['DOB17'] >= collection_start) error_mask = accom_foster & age_17_in_year error_locations = oc3.index[error_mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_389(): error = ErrorDefinition( code='389', description='Reason episode ceased is that child transferred to care of adult social care services, but child is aged under 16.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB16'] = header['DOB'] + pd.DateOffset(years=16) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_asc = episodes_merged['REC'].str.upper().astype(str).isin(['E7']) ceased_over_16 = episodes_merged['DOB16'] <= episodes_merged['DEC'] error_mask = ceased_asc & ~ceased_over_16 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_387(): error = ErrorDefinition( code='387', description='Reason episode ceased is child moved into independent living arrangement, but the child is aged under 14.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB14'] = header['DOB'] + pd.DateOffset(years=14) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_indep = episodes_merged['REC'].str.upper().astype(str).isin(['E5', 'E6']) ceased_over_14 = episodes_merged['DOB14'] <= episodes_merged['DEC'] dec_present = episodes_merged['DEC'].notna() error_mask = ceased_indep & ~ceased_over_14 & dec_present error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_452(): error = ErrorDefinition( code='452', description='Contradiction between local authority of placement code in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_la = episodes_merged['PL_LA'].astype(str) != episodes_merged['PL_LA_last'].astype(str) error_mask = in_both_years & same_rne & last_year_open & different_pl_la validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_386(): error = ErrorDefinition( code='386', description='Reason episode ceased is adopted but child has reached age 18.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = ( episodes .reset_index() .merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True) .set_index('index') .dropna(subset=['DOB18', 'DEC']) ) ceased_adopted = episodes_merged['REC'].str.upper().astype(str).isin(['E11', 'E12']) ceased_under_18 = episodes_merged['DOB18'] > episodes_merged['DEC'] error_mask = ceased_adopted & ~ceased_under_18 error_locations = episodes_merged.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_363(): error = ErrorDefinition( code='363', description='Child assessment order (CAO) lasted longer than 7 days allowed in the Children Act 1989.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] L2_eps = episodes[episodes['LS'] == 'L3'].copy() L2_eps['original_index'] = L2_eps.index L2_eps = L2_eps[L2_eps['DECOM'].notna()] L2_eps.loc[L2_eps['DEC'].isna(), 'DEC'] = collection_end_str L2_eps['DECOM'] = pd.to_datetime(L2_eps['DECOM'], format='%d/%m/%Y', errors='coerce') L2_eps = L2_eps.dropna(subset=['DECOM']) L2_eps['DEC'] = pd.to_datetime(L2_eps['DEC'], format='%d/%m/%Y', errors='coerce') L2_eps.sort_values(['CHILD', 'DECOM']) L2_eps['index'] = pd.RangeIndex(0, len(L2_eps)) L2_eps['index+1'] = L2_eps['index'] + 1 L2_eps = L2_eps.merge(L2_eps, left_on='index', right_on='index+1', how='left', suffixes=[None, '_prev']) L2_eps = L2_eps[['original_index', 'DECOM', 'DEC', 'DEC_prev', 'CHILD', 'CHILD_prev', 'LS']] L2_eps['new_period'] = ( (L2_eps['DECOM'] > L2_eps['DEC_prev']) | (L2_eps['CHILD'] != L2_eps['CHILD_prev']) ) L2_eps['duration'] = (L2_eps['DEC'] - L2_eps['DECOM']).dt.days L2_eps['period_id'] = L2_eps['new_period'].astype(int).cumsum() L2_eps['period_duration'] = L2_eps.groupby('period_id')['duration'].transform(sum) error_mask = L2_eps['period_duration'] > 7 return {'Episodes': L2_eps.loc[error_mask, 'original_index'].to_list()} return error, _validate def validate_364(): error = ErrorDefinition( code='364', description='Sections 41-46 of Police and Criminal Evidence (PACE; 1984) severely limits ' + 'the time a child can be detained in custody in Local Authority (LA) accommodation.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] J2_eps = episodes[episodes['LS'] == 'J2'].copy() J2_eps['original_index'] = J2_eps.index J2_eps['DECOM'] = pd.to_datetime(J2_eps['DECOM'], format='%d/%m/%Y', errors='coerce') J2_eps = J2_eps[J2_eps['DECOM'].notna()] J2_eps.loc[J2_eps['DEC'].isna(), 'DEC'] = collection_end_str J2_eps['DEC'] = pd.to_datetime(J2_eps['DEC'], format='%d/%m/%Y', errors='coerce') J2_eps.sort_values(['CHILD', 'DECOM']) J2_eps['index'] = pd.RangeIndex(0, len(J2_eps)) J2_eps['index_prev'] = J2_eps['index'] + 1 J2_eps = J2_eps.merge(J2_eps, left_on='index', right_on='index_prev', how='left', suffixes=[None, '_prev']) J2_eps = J2_eps[['original_index', 'DECOM', 'DEC', 'DEC_prev', 'CHILD', 'CHILD_prev', 'LS']] J2_eps['new_period'] = ( (J2_eps['DECOM'] > J2_eps['DEC_prev']) | (J2_eps['CHILD'] != J2_eps['CHILD_prev']) ) J2_eps['duration'] = (J2_eps['DEC'] - J2_eps['DECOM']).dt.days J2_eps['period_id'] = J2_eps['new_period'].astype(int).cumsum() J2_eps['period_duration'] = J2_eps.groupby('period_id')['duration'].transform(sum) error_mask = J2_eps['period_duration'] > 21 return {'Episodes': J2_eps.loc[error_mask, 'original_index'].to_list()} return error, _validate def validate_365(): error = ErrorDefinition( code='365', description='Any individual short- term respite placement must not exceed 17 days.', affected_fields=['LS', 'DECOM', 'DEC'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} episodes = dfs['Episodes'] collection_end_str = dfs['metadata']['collection_end'] episodes.loc[episodes['DEC'].isna(), 'DEC'] = collection_end_str episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] =
pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce')
pandas.to_datetime
import numpy as np import pytest import pandas as pd import pandas.util.testing as tm from .base import BaseExtensionTests class BaseMissingTests(BaseExtensionTests): def test_isna(self, data_missing): expected = np.array([True, False]) result = pd.isna(data_missing) tm.assert_numpy_array_equal(result, expected) result = pd.Series(data_missing).isna() expected = pd.Series(expected) self.assert_series_equal(result, expected) # GH 21189 result = pd.Series(data_missing).drop([0, 1]).isna() expected = pd.Series([], dtype=bool) self.assert_series_equal(result, expected) def test_dropna_array(self, data_missing): result = data_missing.dropna() expected = data_missing[[1]] self.assert_extension_array_equal(result, expected) def test_dropna_series(self, data_missing): ser = pd.Series(data_missing) result = ser.dropna() expected = ser.iloc[[1]] self.assert_series_equal(result, expected) def test_dropna_frame(self, data_missing): df = pd.DataFrame({"A": data_missing}) # defaults result = df.dropna() expected = df.iloc[[1]] self.assert_frame_equal(result, expected) # axis = 1 result = df.dropna(axis='columns') expected = pd.DataFrame(index=[0, 1]) self.assert_frame_equal(result, expected) # multiple df = pd.DataFrame({"A": data_missing, "B": [1, np.nan]}) result = df.dropna() expected = df.iloc[:0] self.assert_frame_equal(result, expected) def test_fillna_scalar(self, data_missing): valid = data_missing[1] result = data_missing.fillna(valid) expected = data_missing.fillna(valid) self.assert_extension_array_equal(result, expected) def test_fillna_limit_pad(self, data_missing): arr = data_missing.take([1, 0, 0, 0, 1]) result =
pd.Series(arr)
pandas.Series
#!/usr/bin/env python # coding: utf-8 import os import pprint import pandas as pd from collections import OrderedDict def get_parameters(): # Read Data try: df_363 = pd.read_excel( io=os.path.join(os.path.dirname(__file__), 'data', 'tab_dd_363.xlsx'), sheet_name='dd_363', index_col=0 ) except Exception as e: #print(e, '\n') #print('Read table from GitHub') df_363 = pd.read_excel( io='https://github.com/gaemapiracicaba/norma_dd_363_11/raw/main/src/normas/data/tab_dd_363.xlsx', sheet_name='dd_363', index_col=0 ) # Filter only quality df_363 = df_363.loc[(df_363['tipo_padrao'] == 'qualidade')] # Classes list_classes = list(set(df_363['padrao_qualidade'])) list_classes = [x for x in list_classes if pd.notnull(x)] list_classes.sort() return df_363, list_classes def filter_by_classe(df_363, classe): # Filter dataframe by Classe df_363 = df_363.loc[(df_363['padrao_qualidade'] == classe)] # Parâmetros list_parametros = list(set(df_363['parametro_descricao'])) list_parametros = [x for x in list_parametros if pd.notnull(x)] list_parametros.sort() return df_363, list_parametros # def filter_by_parameters(df_363, parametro): # # Filter dataframe by Parametro # df_363 = df_363.loc[(df_363['parametro_descricao'] == parametro)] # # # Check and Get Results # if len(df_363) == 1: # dict_363 = df_363.to_dict(orient='records')[0] # dict_363 = OrderedDict(sorted(dict_363.items(), key=lambda x: df_363.columns.get_loc(x[0]))) # return dict_363 # else: # return 'erro' def filter_by_parameters(df_363, parametro, condicao=None): # Filter dataframe by Parametro df_363 = df_363.loc[(df_363['parametro_descricao'] == parametro)] # Condição array = df_363['condicao'].values dict_condicao = dict(enumerate(array.flatten(), 1)) # Check and Get Results if len(df_363) == 1 and len(array) == 1: dict_363 = df_363.to_dict(orient='records')[0] dict_363 = OrderedDict(sorted(dict_363.items(), key=lambda x: df_363.columns.get_loc(x[0]))) return dict_363 elif len(df_363) > 1 and len(array) > 1 and condicao is not None: try: # Filtra a Condição #condicao = df_357['condicao'].values[condicao] df_363 = df_363.loc[(df_363['condicao'] == dict_condicao[int(condicao)])] dict_363 = df_363.to_dict(orient='records')[0] dict_363 = OrderedDict(sorted(dict_363.items(), key=lambda x: df_363.columns.get_loc(x[0]))) return dict_363 except Exception as e: #print(e) print('A condição definida foi "{}".\nAs opções possíveis são:\n'.format(condicao)) print(*('{} - {}'.format(k, v) for k,v in dict_condicao.items()), sep='\n') else: print('Parâmetro "{}" tem mais de um registro.\nFaz-se necessário definir condição!\n'.format(parametro)) print(*('{} - {}'.format(k, v) for k,v in dict_condicao.items()), sep='\n') def set_type_desconformidade(dict_363): if pd.isnull(dict_363['valor_minimo_permitido']) & pd.notnull(dict_363['valor_maximo_permitido']): #print('Parâmetro só tem "valor máximo". Caso o valor medido esteja acima, é amostra desconforme!') tipo_363 = 'acima>desconforme' elif
pd.notnull(dict_363['valor_minimo_permitido'])
pandas.notnull
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return
_new_PeriodIndex(cls, **d)
pandas.core.indexes.period._new_PeriodIndex
# # (c) <NAME> # 2018, All Rights Reserved # from i3d import Inception3D import cv2 import configs from os import path import pandas as pd import numpy as np import helper import communication import time import matplotlib.pyplot as plt def validation_score(model_path, type, save=False, debugging=False): model = Inception3D(input_shape=(configs.LENGTH, configs.IMG_HEIGHT, configs.IMG_WIDTH, 3), weights_path=model_path) # read the steering labels and image path df_truth =
pd.read_csv('/home/neil/dataset/speedchallenge/data/validation.csv')
pandas.read_csv
import streamlit as st import streamlit.components.v1 as components import gca_requests as gl import datetime import urllib.parse import pandas as pd import gca_main_functions as mf def gca_page_2(): st.title("GOOGLE CALENDARS ANALYTICS PAGE 2") st.write(f'## 2 GOOGLE CALENDAR SPECIFIC ANALYSIS (1 CALENDAR)') st.sidebar.write(f'#### 2 GOOGLE CALENDAR SPECIFIC ANALYSIS (1 CALENDAR)') input_calendar_name = st.sidebar.selectbox('2 SELECT CALENDAR:', mf.list_calendar_names) input_calendar_id = [x["id"] for x in mf.list_calendar if x["summary"] == input_calendar_name][0] input_dates_analyze = st.sidebar.date_input("2_b SELECT RANGE OF DATES TO ANALYZE", [datetime.date(2019, 1, 1), datetime.date.today()], key="spe_di") input_calendar_specific_type = st.sidebar.selectbox('2_b SELECT EVENTS TYPE:', ["HOURS EVENTS", "DAYS EVENTS"], key="spe_sb") # Visualize events of selected calendar input_calendar_events = gl.retrieve_calendar_events_by_id(input_calendar_id) if len(input_calendar_events) == 0: st.write("No values in this calendar.") else: #TODO Filter before dataframe # df_events = filter_by_dates(input_calendar_events, input_dates_analyze, input_calendar_specific_type) df_events =
pd.DataFrame(input_calendar_events)
pandas.DataFrame
################################################ import pandas as pd df =
pd.read_csv(r'C:\Users\mikol\Desktop\Python_Met_II/WorldCupMatches.csv')
pandas.read_csv
from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression import pandas as pd import numpy as np from sklearn import preprocessing from sklearn.model_selection import train_test_split import numpy as np, tensorflow as tf from sklearn.preprocessing import OneHotEncoder import os import csv import gc from sklearn.metrics import mean_squared_error import math from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import ConstantKernel, RBF from sklearn.gaussian_process.kernels import RationalQuadratic from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RepeatedKFold from sklearn import linear_model from xgboost.sklearn import XGBRegressor from sklearn.decomposition import PCA import copy import pyflux as pf import datetime os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' PRICED_BITCOIN_FILE_PATH = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/pricedBitcoin2009-2018.csv" DAILY_OCCURRENCE_FILE_PATH = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/dailyOccmatrices/" betti0_input_path = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/betti_0(100).csv" betti1_input_path = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/betti_1(100).csv" DAILY_FILTERED_OCCURRENCE_FILE_PATH = "C:/Users/wang.yuhao/Documents/ChainNet/data/original_data/filteredDailyOccMatrices/" ROW = -1 COLUMN = -1 TEST_SPLIT = 0.01 ALL_YEAR_INPUT_ALLOWED = False YEAR = 2017 # Baseline from sklearn.metrics import mean_squared_error from sklearn import metrics import matplotlib.pyplot as plt def exclude_days(train, test): row, column = train.shape train_days = np.asarray(train[:, -1]).reshape(-1, 1) x_train = train[:, 0:column - 1] test_days = np.asarray(test[:, -1]).reshape(-1, 1) x_test = test[:, 0:column - 1] return x_train, x_test, train_days, test_days def merge_data(occurrence_data, daily_occurrence_normalized_matrix, aggregation_of_previous_days_allowed): if(aggregation_of_previous_days_allowed): if(occurrence_data.size==0): occurrence_data = daily_occurrence_normalized_matrix else: occurrence_data = np.add(occurrence_data, daily_occurrence_normalized_matrix) else: if(occurrence_data.size == 0): occurrence_data = daily_occurrence_normalized_matrix else: occurrence_data = np.concatenate((occurrence_data, daily_occurrence_normalized_matrix), axis=0) #print("merge_data shape: {} occurrence_data: {} ".format(occurrence_data.shape, occurrence_data)) return occurrence_data def get_normalized_matrix_from_file(day, year, totaltx): daily_occurrence_matrix_path_name = DAILY_OCCURRENCE_FILE_PATH + "occ" + str(year) + '{:03}'.format(day) + '.csv' daily_occurence_matrix = pd.read_csv(daily_occurrence_matrix_path_name, sep=",", header=None).values return np.asarray(daily_occurence_matrix).reshape(1, daily_occurence_matrix.size)/totaltx def fl_get_normalized_matrix_from_file(day, year, totaltx, n_components): daily_occurence_matrix = np.asarray([],dtype=np.float32) for filter_number in range(0, 50, 10): daily_occurrence_matrix_path_name = DAILY_FILTERED_OCCURRENCE_FILE_PATH + "occ" + str(year) + '{:03}'.format(day) + "_" + str(filter_number) +'.csv' daily_occurence_matrix_read = pd.read_csv(daily_occurrence_matrix_path_name, sep=",", header=None).values if(daily_occurence_matrix.size == 0): daily_occurence_matrix = daily_occurence_matrix_read else: daily_occurence_matrix = np.concatenate((daily_occurence_matrix, daily_occurence_matrix_read), axis = 1) pca = PCA(n_components = 20) pca.fit(daily_occurence_matrix) daily_occurence_matrix = pca.transform(daily_occurence_matrix) #print("daily_occurence_matrix: ", daily_occurence_matrix, daily_occurence_matrix.shape) #return np.asarray(daily_occurence_matrix).reshape(1, daily_occurence_matrix.size)/totaltx return np.asarray(daily_occurence_matrix).reshape(1, daily_occurence_matrix.size) def get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): #print("priced_bitcoin: ", priced_bitcoin, priced_bitcoin.shape) #print("current_row: ", current_row, current_row.shape) previous_price_data = np.array([], dtype=np.float32) occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) #print("previous_price_data: ", previous_price_data,row['day'], row['year'], row['totaltx']) #print("occurrence_data: ", occurrence_data) if(is_price_of_previous_days_allowed): #print("previous_price_data: ", np.asarray(previous_price_data).reshape(1, -1), np.asarray(previous_price_data).reshape(1, -1).shape) occurrence_data = np.asarray(previous_price_data).reshape(1, -1) occurrence_input = np.concatenate((occurrence_data, np.asarray(current_row['price']).reshape(1,1)), axis=1) #print("current_row: ", current_row, current_row.shape) #print(" price occurrence_input: ", np.asarray(current_row['price']).reshape(1,1), (np.asarray(current_row['price']).reshape(1,1)).shape) #print("concatenate with price occurrence_input: ", occurrence_input, occurrence_input.shape) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) #print(" price occurrence_input: ", np.asarray(current_row['day']).reshape(1,1), (np.asarray(current_row['day']).reshape(1,1)).shape) #print("concatenate with day occurrence_input: ", occurrence_input, occurrence_input.shape) return occurrence_input def betti_get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.array([], dtype=np.float32) previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) betti0_50 = read_betti(betti0_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti0_50).reshape(1,-1)) betti1_50 = read_betti(betti1_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti1_50).reshape(1,-1)) if occurrence_data.size == 0: occurrence_data = previous_price_data else: occurrence_data = np.row_stack((occurrence_data,previous_price_data)) #print(occurrence_data, occurrence_data.shape) #print(previous_price_data, previous_price_data.shape) occurrence_data = np.asarray(occurrence_data).reshape(1, -1) #betti0_50 = read_betti(betti0_input_path, current_row['day']) #occurrence_input = np.concatenate((occurrence_data, np.asarray(betti0_50).reshape(1,-1)), axis=1) #betti1_50 = read_betti(betti1_input_path, current_row['day']) #occurrence_input = np.concatenate((occurrence_input, np.asarray(betti1_50).reshape(1,-1)), axis=1) occurrence_input = np.concatenate((occurrence_data, np.asarray(current_row['price']).reshape(1,1)), axis=1) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) return occurrence_input def betti_der_get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): #print("priced_bitcoin: ", priced_bitcoin, priced_bitcoin.shape) #print("current_row: ", current_row, current_row.shape) previous_price_data = np.array([], dtype=np.float32) occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) betti0_50 = read_betti(betti0_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti0_50).reshape(1,-1)) betti1_50 = read_betti(betti1_input_path, row['day']) previous_price_data = np.append(previous_price_data, np.asarray(betti1_50).reshape(1,-1)) betti0_50_diff1 = betti0_50.diff(1).dropna() previous_price_data = np.concatenate((previous_price_data.reshape(1,-1), np.asarray(betti0_50_diff1).reshape(1,-1)), axis=1) betti1_50_diff1 = betti1_50.diff(1).dropna() previous_price_data = np.concatenate((previous_price_data, np.asarray(betti1_50_diff1).reshape(1,-1)), axis=1) if occurrence_data.size == 0: occurrence_data = previous_price_data else: occurrence_data = np.concatenate((occurrence_data, previous_price_data.reshape(1,-1)), axis=1) #print(occurrence_data, occurrence_data.shape) #print("previous_price_data: ", previous_price_data,row['day'], row['year'], row['totaltx']) occurrence_data = np.asarray(occurrence_data).reshape(1, -1) occurrence_input = np.concatenate((occurrence_data, np.asarray(current_row['price']).reshape(1,1)), axis=1) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) return occurrence_input def fl_get_daily_occurrence_matrices(priced_bitcoin, current_row, is_price_of_previous_days_allowed, aggregation_of_previous_days_allowed): previous_price_data = np.array([], dtype=np.float32) occurrence_data = np.array([], dtype=np.float32) for index, row in priced_bitcoin.iterrows(): if not ((row.values == current_row.values).all()): previous_price_data = np.append(previous_price_data, row['price']) previous_price_data = np.append(previous_price_data, row['totaltx']) daily_occurrence_normalized_matrix = fl_get_normalized_matrix_from_file(row['day'], row['year'], row['totaltx'], 20) occurrence_data = merge_data(occurrence_data, daily_occurrence_normalized_matrix, aggregation_of_previous_days_allowed) #print("occurrence_data: ",occurrence_data, occurrence_data.shape) if(is_price_of_previous_days_allowed): occurrence_data = np.concatenate((occurrence_data.reshape(1,-1), np.asarray(previous_price_data).reshape(1,-1)), axis=1) occurrence_input = np.concatenate((occurrence_data.reshape(1,-1), np.asarray(current_row['price']).reshape(1,1)), axis=1) occurrence_input = np.concatenate((occurrence_input, np.asarray(current_row['day']).reshape(1,1)), axis=1) #print("occurrence_input: ",occurrence_input, occurrence_input.shape) return occurrence_input def read_betti(file_path, day): day = day - 1 betti =
pd.read_csv(file_path, index_col=0)
pandas.read_csv
import gym from gym import spaces import torch import torch.nn as nn from matplotlib import pyplot as plt import pandas as pd import numpy as np from xitorch.interpolate import Interp1D from tqdm.auto import tqdm, trange import time from rcmodel.room import Room from rcmodel.building import Building from rcmodel.RCModel import RCModel from rcmodel.tools import InputScaling from rcmodel.tools import BuildingTemperatureDataset class PolicyNetwork(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() n = 10 self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(in_dim, n), nn.ReLU(), nn.Linear(n, n), nn.ReLU(), nn.Linear(n, out_dim), ) self.on_policy_reset() def forward(self, state): logits = self.linear_relu_stack(state) return logits def get_action(self, state): pd = torch.distributions.categorical.Categorical(logits=self.forward(state)) # make a probability distribution action = pd.sample() # sample from distribution pi(a|s) (action given state) return action, pd.log_prob(action) def on_policy_reset(self): # this stores log_probs during an integration step. self.log_probs = [] # self.rewards = [] class Reinforce: def __init__(self, env, time_data, temp_data, gamma=0.99, alpha=1e-3): assert len(time_data) == len(temp_data) self.env = env # self.pi = pi self.time_data = time_data self.temp_data = temp_data self.gamma = gamma self.alpha = alpha self.optimiser = torch.optim.Adam(self.env.RC.cooling_policy.parameters(), lr=self.alpha) def update_policy(self, rewards, log_probs): # Calculate Discounted Reward: discounted_rewards = torch.zeros(len(rewards)) R = 0 indx = len(rewards) - 1 for r in reversed(rewards): R = r + self.gamma * R # Discounted Reward is calculated from last reward to first. discounted_rewards[indx] = R # Fill array back to front to un-reverse the order indx -= 1 # Normalise rewards discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / ( discounted_rewards.std() + 1e-9) # discounted_rewards = torch.tensor(np.array(discounted_rewards.detach().numpy())) expected_reward = -torch.stack(log_probs) * discounted_rewards # negative for maximising expected_reward = torch.sum(expected_reward) # print(f'ER {expected_reward}') # Update parameters in pi self.optimiser.zero_grad() expected_reward.backward() self.optimiser.step() # print(list(self.pi.parameters())[0].grad) # check on grads if needed return expected_reward def train(self, num_episodes, step_size): self.env.RC.cooling_policy.train() # Put in training mode total_ER = [] total_rewards = [] loss_fn = torch.nn.MSELoss(reduction='none') # Squared Error # with tqdm(total=len(self.env.time_data) * num_episodes, position=0, leave=False) as pbar: # progress bar for episode in range(num_episodes): self.env.reset() episode_rewards = [] episode_ER = [] # Time is increased in steps, with the policy updating after every step. while self.env.t_index < len(self.env.time_data) - 1: # takes a step_size forward in time pred = self.env.step(step_size).squeeze(-1) # state and action produced in step actual = self.temp_data[self.env.t_index:int(self.env.t_index + step_size), 0:self.env.n_rooms] # negative so reward can be maximised reward = -loss_fn(pred[:, 2:], actual) # Do gradient decent on sample ER = self.update_policy(reward, self.env.RC.cooling_policy.log_probs) self.env.RC.cooling_policy.on_policy_reset() # empty buffer # get last output and use for next initial value self.env.RC.iv = pred[-1, :].unsqueeze(1).detach() # MUST DETACH GRAD episode_rewards.append(sum(reward)) episode_ER.append(ER) self.env.t_index += int(step_size) # increase environment time # print(f'Episode {episode+1}, Expected Reward: {sum(episode_ER).item():.2f}, total_reward: {sum(episode_rewards).item():.2f}') total_ER.append(sum(episode_ER).detach()) total_rewards.append(sum(episode_rewards).detach()) return total_rewards, total_ER class LSIEnv(gym.Env): """Custom Environment that follows gym interface""" metadata = {'render.modes': ['human']} def __init__(self, RC, time_data): super().__init__() self.RC = RC # RCModel Class self.time_data = time_data # timeseries self.t_index = 0 # used to keep track of index through timeseries # ----- GYM Stuff ----- self.n_rooms = len(self.RC.building.rooms) self.low_state = -10 self.high_state = 50 # Define action and observation space # They must be gym.spaces objects # Example when using discrete actions: self.action_space = spaces.Discrete(2, ) # Observation is temperature of each room. self.observation_space = spaces.Box( low=self.low_state, high=self.high_state, shape=(self.n_rooms,), dtype=np.float32 ) # action def step(self, step_size): # Execute a chunk of timeseries t_eval = self.time_data[self.t_index:int(self.t_index + step_size)] # actions are decided and stored by the policy while integrating the ODE: pred = self.RC(t_eval) return pred.detach() # No need for grad # (observation, reward, done, info) # self.state, reward, done, {} def reset(self): # Reset the state of the environment to an initial state self.t_index = 0 self.RC.reset_iv() self.RC.cooling_policy.on_policy_reset() def render(self, mode='human', close=False): # Render the environment to the screen return if __name__ == '__main__': def initialise_model(pi): torch.cuda.is_available = lambda: False device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def change_origin(coords): x0 = 92.07 y0 = 125.94 for i in range(len(coords)): coords[i][0] = round((coords[i][0] - x0) / 10, 2) coords[i][1] = round((coords[i][1] - y0) / 10, 2) return coords capacitance = 3000 # Variable changed later rooms = [] name = "seminar_rm_a_t0106" coords = change_origin( [[92.07, 125.94], [92.07, 231.74], [129.00, 231.74], [154.45, 231.74], [172.64, 231.74], [172.64, 125.94]]) rooms.append(Room(name, capacitance, coords)) # Initialise Building height = 1 Re = [4, 1, 0.55] # Sum of R makes Uval=0.18 #Variable changed later Ce = [1.2 * 10 ** 3, 0.8 * 10 ** 3] # Variable changed later Rint = 0.66 # Uval = 1/R = 1.5 #Variable changed later bld = Building(rooms, height, Re, Ce, Rint) rm_CA = [200, 800] # [min, max] Capacitance/area ex_C = [1.5 * 10 ** 4, 10 ** 6] # Capacitance R = [0.2, 1.2] # Resistance ((K.m^2)/W) scaling = InputScaling(rm_CA, ex_C, R) scale_fn = scaling.physical_scaling # function to scale parameters back to physical values path_Tout = '/Users/benfourcin/OneDrive - University of Exeter/PhD/LSI/Data/Met Office Weather Files/JuneSept.csv' df =
pd.read_csv(path_Tout)
pandas.read_csv
from __future__ import annotations import pytest from pandas.errors import ParserWarning import pandas.util._test_decorators as td from pandas import ( DataFrame, Series, to_datetime, ) import pandas._testing as tm from pandas.io.xml import read_xml @pytest.fixture(params=[pytest.param("lxml", marks=td.skip_if_no("lxml")), "etree"]) def parser(request): return request.param @pytest.fixture( params=[None, {"book": ["category", "title", "author", "year", "price"]}] ) def iterparse(request): return request.param def read_xml_iterparse(data, **kwargs): with tm.ensure_clean() as path: with open(path, "w") as f: f.write(data) return read_xml(path, **kwargs) xml_types = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>00360</degrees> <sides>4.0</sides> </row> <row> <shape>circle</shape> <degrees>00360</degrees> <sides/> </row> <row> <shape>triangle</shape> <degrees>00180</degrees> <sides>3.0</sides> </row> </data>""" xml_dates = """<?xml version='1.0' encoding='utf-8'?> <data> <row> <shape>square</shape> <degrees>00360</degrees> <sides>4.0</sides> <date>2020-01-01</date> </row> <row> <shape>circle</shape> <degrees>00360</degrees> <sides/> <date>2021-01-01</date> </row> <row> <shape>triangle</shape> <degrees>00180</degrees> <sides>3.0</sides> <date>2022-01-01</date> </row> </data>""" # DTYPE def test_dtype_single_str(parser): df_result = read_xml(xml_types, dtype={"degrees": "str"}, parser=parser) df_iter = read_xml_iterparse( xml_types, parser=parser, dtype={"degrees": "str"}, iterparse={"row": ["shape", "degrees", "sides"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": [4.0, float("nan"), 3.0], } ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtypes_all_str(parser): df_result = read_xml(xml_dates, dtype="string", parser=parser) df_iter = read_xml_iterparse( xml_dates, parser=parser, dtype="string", iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": ["00360", "00360", "00180"], "sides": ["4.0", None, "3.0"], "date": ["2020-01-01", "2021-01-01", "2022-01-01"], }, dtype="string", ) tm.assert_frame_equal(df_result, df_expected) tm.assert_frame_equal(df_iter, df_expected) def test_dtypes_with_names(parser): df_result = read_xml( xml_dates, names=["Col1", "Col2", "Col3", "Col4"], dtype={"Col2": "string", "Col3": "Int64", "Col4": "datetime64"}, parser=parser, ) df_iter = read_xml_iterparse( xml_dates, parser=parser, names=["Col1", "Col2", "Col3", "Col4"], dtype={"Col2": "string", "Col3": "Int64", "Col4": "datetime64"}, iterparse={"row": ["shape", "degrees", "sides", "date"]}, ) df_expected = DataFrame( { "Col1": ["square", "circle", "triangle"], "Col2":
Series(["00360", "00360", "00180"])
pandas.Series
#!/usr/bin/env python3 """ Script to test the runtime of different approximation techniques """ import os from datetime import datetime from uuid import uuid4 import time from itertools import product from argparse import ArgumentParser import pandas as pd from dmt import morse_approx_binning, morse_approx_along_gradients, morse_approx_induced_matching from dmt.data import load_complex, get_complex_names from dmt.dmt import reduce_until_stable from dmt.binning import bin_cechmate from dmt.perseus import to_nmfsimtop, perseus_unreduced_count, get_tmp_fpath, cleanup RESULTS_FOLDER = os.path.join(os.path.dirname(__file__), "..", "timings") if not os.path.exists(RESULTS_FOLDER): os.mkdir(RESULTS_FOLDER) def perseus_reduction(cplx, delta, prereduced_cplx=None, deltatrick=True): tmp_filename = get_tmp_fpath() binned_cechmate = bin_cechmate(cplx.cechmate_complex, delta, deltatrick=deltatrick) to_nmfsimtop(binned_cechmate, tmp_filename) unreduced_count = perseus_unreduced_count(tmp_filename) cleanup(tmp_filename) return cplx.size - unreduced_count def reduction_wrapper(fn): def reduction_fn(cplx, delta, prereduced_cplx=None, deltatrick=True): original_size = cplx.size if prereduced_cplx is not None: cplx = prereduced_cplx return original_size - fn(cplx, delta, deltatrick=deltatrick).size return reduction_fn binning_reduction = reduction_wrapper(morse_approx_binning) gradient_reduction = reduction_wrapper(morse_approx_along_gradients) induced_reduction = reduction_wrapper(morse_approx_induced_matching) ALGO_MAP = {"binning": binning_reduction, "gradient": gradient_reduction, "induced": induced_reduction, "perseus": perseus_reduction } def mytimeit(fun, *args, **kwargs): start = time.process_time() result = fun(*args, **kwargs) duration = time.process_time() - start return {"result": result, "time_s": duration} def combine(dict1, dict2): """ update in place """ dict1.update(dict2) return dict1 def compute_times(complex_fname, deltas, runs=3, algorithms=None): runs = list(range(runs)) cplx = load_complex(complex_fname) prereduced_cplx = reduce_until_stable(cplx) algo_names = ALGO_MAP.keys() if algorithms is None else algorithms return pd.DataFrame([combine({"complex": str(type(cplx)), "filename": complex_fname, "run": uuid4().hex, "points": cplx.points.shape[0], "dim": cplx.points.shape[1], "size": cplx.size, "size_prereduced": prereduced_cplx.size, "delta": delta, "algorithm": algo_name}, mytimeit(lambda: ALGO_MAP[algo_name](cplx, delta, prereduced_cplx=prereduced_cplx)) ) for (algo_name, run, delta) in product(algo_names, runs, deltas)]) def run_experiment(deltas, runs=5, complex_fnames=None, algorithms=None): times_dfs = [] for complex_fname in complex_fnames or get_complex_names(): print("Computing times for complex %s" % complex_fname) toc = time.time() times_df = compute_times(complex_fname, deltas, runs=runs, algorithms=algorithms) times_df.to_csv(times_fname(complex_fname)) times_dfs.append(times_df) print("Done in %ss" % (time.time() - toc)) return
pd.concat(times_dfs)
pandas.concat
#! /usr/bin/env python import maple import maple.data as data import maple.audio as audio import numpy as np import joblib import pandas as pd import argparse import datetime import sounddevice as sd from scipy import signal from pathlib import Path from sklearn import preprocessing from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier labels = { 0: 'none', 1: 'whine', 2: 'howl', 3: 'bark', 4: 'play', 5: 'scratch_cage', 6: 'scratch_door', } class LabelAudio(object): """Label audio from Audio""" def __init__(self, args=argparse.Namespace()): self.menu = { 'home': { 'msg': 'Press [s] to start, Press [q] to quit. Response: ', 'function': self.menu_handle, }, 'preview': { 'msg': 'Use clip? [y]es, [n]o, [r]epeat, [q]uit. Response: ', 'function': self.preview_handle, }, 'label': { 'msg': '[0] none, [1] whine, [2] howl, [3] bark, [4] play, [5] cage, [6] door, [r]epeat, [R]epeat full, [s] to skip, [q]uit. Reponse: '.\ format(', '.join(['[' + str(key) + '] ' + val for key, val in labels.items()])), 'function': self.label_handle, }, } if args.label_data is None: raise Exception("You must supply --label-data") self.state = 'home' self.subevent_time = 0.25 # in seconds self.cols = [ 'session_id', 'event_id', 'subevent_id', 't_start', 't_end', 'label', 'date_labeled', ] self.label_data_path = Path(args.label_data) if self.label_data_path.exists(): self.data = pd.read_csv(self.label_data_path, sep='\t') else: self.data = pd.DataFrame({}, columns=self.cols) print(f'You have {self.data.shape[0]} labelled data') if args.session_paths is None: session_paths = sorted(maple.db_dir.glob('*/events.db')) else: session_paths = sorted([Path(x.strip()) for x in open(args.session_paths).readlines()]) self.sessions = {} for session_path in session_paths: print(f'Loading session path {session_path}') session_db = data.SessionAnalysis(path=session_path) session_db.trim_ends(minutes=1) if session_db.dog.empty: continue session_id = session_db.meta[session_db.meta['key'] == 'id'].iloc[0]['value'] session_db.dog['session_id'] = session_id self.sessions[session_id] = session_db.dog session_db.disconnect() self.filter() def run(self): while True: self.menu[self.state]['function'](input(self.menu[self.state]['msg'])) print() if self.state == 'done': self.save_data() print('Any new data has been saved. Bye.') break def menu_handle(self, response): if response == 's': self.event = self.sample_event() self.play_event(self.event) self.state = 'preview' elif response == 'q': self.state = 'done' else: print('invalid input') def preview_handle(self, response): if response == 'y': self.set_subevents(self.event) self.play_subevent(self.curr_subevent) self.state = 'label' elif response == 'n': self.event = self.sample_event() self.play_event(self.event) elif response == 'r': self.play_event(self.event) elif response == 'q': self.state = 'done' else: print('invalid input') def label_handle(self, response): if response == 'r': self.play_subevent(self.curr_subevent) elif response == 'R': self.play_event(self.event) elif response == 's': if not self.increment_subevent(): print('Finished event') self.cache_event_labels() self.event = self.sample_event() self.play_event(self.event) self.state = 'preview' return self.play_subevent(self.curr_subevent) elif response in [str(x) for x in labels.keys()]: self.append(response) if not self.increment_subevent(): print('Finished event') self.cache_event_labels() self.event = self.sample_event() self.play_event(self.event) self.state = 'preview' return self.play_subevent(self.curr_subevent) elif response == 'q': self.state = 'done' else: print('invalid input') def sample_event(self): self.event_data = {x: [] for x in self.cols} while True: session_id = np.random.choice(list(self.sessions.keys())) event = self.sessions[session_id].sample().iloc[0] for _, row in self.data.iterrows(): if row['session_id'] == session_id and row['event_id'] == event['event_id']: break else: break return event def cache_event_labels(self): self.event_data = pd.DataFrame(self.event_data) self.data = pd.concat([self.data, self.event_data], ignore_index=True) def save_data(self): self.data['event_id'] = self.data['event_id'].astype(int) self.data['subevent_id'] = self.data['subevent_id'].astype(int) self.data.to_csv(self.label_data_path, sep='\t', index=False) def append(self, response): self.event_data['session_id'].append(self.event['session_id']) self.event_data['event_id'].append(self.event['event_id']) self.event_data['subevent_id'].append(self.curr_subevent_id) self.event_data['t_start'].append(self.curr_subevent_id * self.subevent_time) self.event_data['t_end'].append((self.curr_subevent_id + 1) * self.subevent_time) self.event_data['label'].append(labels[int(response)]) self.event_data['date_labeled'].append(datetime.datetime.now()) def increment_subevent(self): if self.curr_subevent_id == self.num_subevents - 1: return False self.curr_subevent_id += 1 self.curr_subevent = self.subevents[self.curr_subevent_id] return True def set_subevents(self, event): self.subevents = [] self.num_subevents = int(event.t_len // self.subevent_time) subevent_len = int(self.subevent_time * maple.RATE) event_audio = event['audio'] for i in range(self.num_subevents): self.subevents.append(event_audio[i*subevent_len: (i+1)*subevent_len]) self.curr_subevent = self.subevents[0] self.curr_subevent_id = 0 def play_event(self, event): # Normalize volumes so barks aren't too loud, and grrrs aren't too soft audio = np.copy(event['audio']).astype(float) audio *= 10000 / np.max(audio) audio = audio.astype(maple.ARRAY_DTYPE) sd.play(audio, blocking=True) def play_subevent(self, subevent): # Normalize volumes so barks aren't too loud, and grrrs aren't too soft audio = np.copy(subevent).astype(float) audio *= 10000 / np.max(audio) audio = audio.astype(maple.ARRAY_DTYPE) sd.play(audio, blocking=True) def filter(self, max_t_len=10): for events in self.sessions.values(): events = events[events['t_len'] <= max_t_len] class Train(object): def __init__(self, args=argparse.Namespace()): """Train a model based off label data Parameters ========== args : argparse.Namespace An `argparse.Namespace` object with `label_data` and `model_dir` paths. `label_data` is a string pointing to the label data filepath to be used for training. `model_dir` is a string pointing to a directory where the model will be stored. The directory must not exist. """ self.label_dict = {v: k for k, v in labels.items()} if args.label_data is None: raise Exception("Must provide --label-data in order to train!") A = lambda x: args.__dict__.get(x, None) self.trans = A('transformation') or 'spectrogram' self.log = A('log_the_data') if self.log and self.trans not in ['spectrogram', 'fourier']: raise Exception("Cannot log transform data unless --transformation is in {'spectrogram', 'fourier'}") self.model_dir = Path(A('model_dir') or maple.model_dir) self.label_data_path = Path(args.label_data) self.label_data =
pd.read_csv(self.label_data_path, sep='\t')
pandas.read_csv
import pandas as pd from datetime import datetime from pjud import data import os from tqdm.auto import tqdm import numpy as np import click def convierte_fecha(fecha): try: day,month,year = map(int,fecha.split(sep = "-")) except: #print(f"no pude ejecutar {fecha}") return pd.NaT return datetime(year,month,day) def obtiene_año(rit): try: rol,year = map(int,rit.split(sep = "-")) except: #print(f"no pude ejecutar {fecha}") return pd.NaT return (year) def elimina_tilde(str_variable): replacements = {'Á': 'A', 'É': 'E', 'Í': 'I', 'Ó': 'O', 'Ú': 'U', 'Ü': 'U', } for a, b in replacements.items(): str_variable = str_variable.astype(str).str.replace(a, b) return str_variable def elimina_espacios(col): if col.dtypes == object: return (col.astype(str).str.rstrip()) return col def limpia_rit(str_rit): return str_rit.replace('--','-') def limpieza_caracteres(str_col): replacements = {'-': '', '\xa0': '', '\n': '' } for a, b in replacements.items(): str_col = str_col.astype(str).str.replace(a, b) return str_col def transforma_numero(str_numero): replacements = {"ún": "1", "un": "1", "dós": "2", "dos": "2", "tres": "3", "cuatro": "4", "cinco": "5", "seis": "6", "seís": "6", "séis": "6", "siete": "7", "ocho": "8", "nueve": "9", "diez": "10", "once": "11", "doce": "12", "trece": "13", "dieci": "1", "veinti": "2", "veinte": "20" } for a, b in replacements.items(): str_numero = str_numero.replace(a, b) return str_numero def separa_regiones(str_region): reemplazar_region = {"DECIMA REGION": "REGION", "UNDECIMA REGION": "REGION", "DUODECIMA REGION": "REGION", "DECIMOCUARTA REGION": "REGION", "DECIMOQUINTA REGION": "REGION", "PRIMERA REGION": "REGION", "SEGUNDA REGION": "REGION", "TERCERA REGION": "REGION", "CUARTA REGION": "REGION", "QUINTA REGION": "REGION", "SEXTA REGION": "REGION", "SEPTIMA REGION": "REGION", "OCTAVA REGION": "REGION", "NOVENA REGION": "REGION", "BIOBIO": "REGION DEL BIO BIO", "AYSEN": "REGION DE AISEN", "MAGALLANES Y DE LA ANTARTICA CHILENA": "REGION DE MAGALLANES Y ANTARTICA CHILENA" } for old, new in reemplazar_region.items(): str_region = str_region.replace(old, new) return str_region def transforma_asiento(str_asiento): if str_asiento.find("JUZGADO DE GARANTIA") != -1 or str_asiento.find("TRIBUNAL DE JUICIO ORAL EN LO PENAL") != -1: str_asiento = "SANTIAGO" return str_asiento def cambio_nombre_juzgados(str_tribunal): reemplazar_texto = {"1º JUZGADO DE LETRAS": "JUZGADO DE LETRAS", "6º TRIBUNAL DE JUICIO ORAL EN LO PENAL DE SAN MIGUEL": "SEXTO TRIBUNAL DE JUICIO ORAL EN LO PENAL SANTIAGO", "10º JUZGADO DE GARANTIA": "DECIMO JUZGADO DE GARANTIA", "11º JUZGADO DE GARANTIA": "UNDECIMO JUZGADO DE GARANTIA", "12º JUZGADO DE GARANTIA": "DUODECIMO JUZGADO DE GARANTIA", "13º JUZGADO DE GARANTIA": "DECIMOTERCER JUZGADO DE GARANTIA", "14º JUZGADO DE GARANTIA": "DECIMOCUARTO JUZGADO DE GARANTIA", "15º JUZGADO DE GARANTIA": "DECIMOQUINTO JUZGADO DE GARANTIA", "TRIBUNAL ORAL EN LO PENAL DE": "TRIBUNAL DE JUICIO ORAL EN LO PENAL", "1º": "PRIMER", "2º": "SEGUNDO", "3º": "TERCER", "4º": "CUARTO", "5º": "QUINTO", "6º": "SEXTO", "7º": "SEPTIMO", "8º": "OCTAVO", "9º": "NOVENO", "TRIBUNAL DE JUICIO ORAL EN LO PENAL DE DE ": "TRIBUNAL DE JUICIO ORAL EN LO PENAL ", "TRIBUNAL DE JUICIO ORAL EN LO PENAL DE": "TRIBUNAL DE JUICIO ORAL EN LO PENAL", "JUZGADO DE GARANTIA DE DE ": "JUZGADO DE GARANTIA ", "JUZGADO DE GARANTIA DE": "JUZGADO DE GARANTIA", "JUZGADO DE LETRAS Y GARANTIA DE": "JUZGADO DE LETRAS Y GARANTIA", "JUZGADO DE LETRAS DE": "JUZGADO DE LETRAS Y GARANTIA", "LA CALERA": "CALERA", "PUERTO NATALES": "NATALES", "PUERTO AYSEN": "AISEN", "PUERTO CISNES": "CISNES", "SAN VICENTE DE TAGUA-TAGUA": "SAN VICENTE", "ACHAO": "QUINCHAO", "COYHAIQUE": "COIHAIQUE" } for old, new in reemplazar_texto.items(): str_tribunal = str_tribunal.replace(old, new) return str_tribunal def cambio_termino_causa(str_termino): if pd.notnull(str_termino): str_termino = str_termino.replace(".","") return str_termino def load_concatenate_by_filename(needle: str, src_path = "data/raw/pjud"): archivos = os.listdir(src_path) tqdm.pandas() dataframes = [] for archivo in archivos: if archivo.find(needle) != -1: df = pd.read_csv(f"{src_path}/{archivo}", sep=";", encoding='cp850', dtype='unicode', low_memory=True) dataframes.append(df) return pd.concat(dataframes) def carga_limpieza_ingresos_materia(): df_ingresos_materia = load_concatenate_by_filename('Ingresos por Materia Penal') df_ingresos_materia['TOTAL INGRESOS POR MATERIAS'] = df_ingresos_materia['TOTAL INGRESOS POR MATERIAS'].fillna( df_ingresos_materia['TOTAL INGRESOS POR MATERIAS(*)']) df_ingresos_materia.drop(['N°', 'TOTAL INGRESOS POR MATERIAS(*)'], axis='columns', inplace=True) df_ingresos_materia.drop([ '(*)Se agregó columna total de ingresos, dado que en algunas causas, la materia se repite (error de tramitación)'], axis='columns', inplace=True) # TRANSFORMAMOS DE FLOAT A INTEGER df_ingresos_materia['COD. CORTE'] = df_ingresos_materia['COD. CORTE'].fillna(0).astype(np.int16) df_ingresos_materia['COD. TRIBUNAL'] = df_ingresos_materia['COD. TRIBUNAL'].fillna(0).astype(np.int16) df_ingresos_materia['COD. MATERIA'] = df_ingresos_materia['COD. MATERIA'].fillna(0).astype(np.int16) df_ingresos_materia['AÑO INGRESO'] = df_ingresos_materia['AÑO INGRESO'].fillna(0).astype(np.int16) df_ingresos_materia['TOTAL INGRESOS POR MATERIAS'] = df_ingresos_materia['TOTAL INGRESOS POR MATERIAS'].fillna(0).astype(np.int8) # Transformamos fechas click.echo('Transformando fechas') df_ingresos_materia['FECHA INGRESO'] = df_ingresos_materia['FECHA INGRESO'].progress_apply(convierte_fecha) # Elimino espacios en las columnas tipo objetos click.echo('Eliminando espacios en objetos') df_ingresos_materia = df_ingresos_materia.progress_apply(elimina_espacios, axis=0) # Elimino tildes click.echo('Eliminando tildes') cols = df_ingresos_materia.select_dtypes(include=["object"]).columns df_ingresos_materia[cols] = df_ingresos_materia[cols].progress_apply(elimina_tilde) # Categorizacion df_ingresos_materia['CORTE'] = df_ingresos_materia['CORTE'].astype('category') tipo_causa = df_ingresos_materia[df_ingresos_materia['TIPO CAUSA'] != 'Ordinaria'] df_ingresos_materia.drop(tipo_causa.index, axis=0, inplace=True) data.save_feather(df_ingresos_materia, 'clean_IngresosMateria') click.echo("Generado archivo Feather 'clean_IngresosMateria.feather'. Proceso Terminado") def carga_limpieza_terminos_materia(): df_termino_materia = load_concatenate_by_filename('Términos por Materia Penal') df_metge = df_termino_materia[df_termino_materia['SISTEMA']=='METGE'] df_termino_materia.drop(df_metge.index, axis=0, inplace=True) # Estandarización de nombres de variables df_termino_materia.rename(columns = {'CÓD. CORTE':'COD. CORTE', 'CÓD. TRIBUNAL':'COD. TRIBUNAL', 'CÓD. MATERIA':'COD. MATERIA', 'MOTIVO DE TÉRMINO':'MOTIVO TERMINO', 'DURACIÓN CAUSA':'DURACION CAUSA', 'FECHA TÉRMINO':'FECHA TERMINO', 'MES TÉRMINO':'MES TERMINO', 'AÑO TÉRMINO':'AÑO TERMINO', 'TOTAL TÉRMINOS':'TOTAL TERMINOS' },inplace = True) df_termino_materia.drop(['N°','SISTEMA'], axis = 'columns', inplace = True) # TRANSFORMAMOS DE FLOAT A INTEGER df_termino_materia['COD. CORTE'] = df_termino_materia['COD. CORTE'].fillna(0).astype(np.int16) df_termino_materia['COD. TRIBUNAL'] = df_termino_materia['COD. TRIBUNAL'].fillna(0).astype(np.int16) df_termino_materia['COD. MATERIA'] = df_termino_materia['COD. MATERIA'].fillna(0).astype(np.int16) df_termino_materia['DURACION CAUSA'] = df_termino_materia['DURACION CAUSA'].fillna(0).astype(np.int16) df_termino_materia['AÑO TERMINO'] = df_termino_materia['AÑO TERMINO'].fillna(0).astype(np.int16) df_termino_materia['TOTAL TERMINOS'] = df_termino_materia['TOTAL TERMINOS'].fillna(0).astype(np.int8) # Transformamos formato fecha click.echo('Convirtiendo fechas') df_termino_materia['FECHA INGRESO'] = df_termino_materia['FECHA INGRESO'].progress_apply(convierte_fecha) df_termino_materia['FECHA TERMINO'] = df_termino_materia['FECHA TERMINO'].progress_apply(convierte_fecha) # Elimino espacios en las columnas tipo objetos click.echo('Eliminando espacios') df_termino_materia = df_termino_materia.progress_apply(elimina_espacios, axis=0) # Elimino tildes de object click.echo('Eliminando tilde') cols = df_termino_materia.select_dtypes(include = ["object"]).columns df_termino_materia[cols] = df_termino_materia[cols].progress_apply(elimina_tilde) # Limpieza de RIT click.echo('Limpieza de RIT') df_termino_materia['RIT'] = df_termino_materia['RIT'].progress_apply(limpia_rit) # Categorizar variables df_termino_materia['CORTE'] = df_termino_materia['CORTE'].astype('category') df_termino_materia['MOTIVO TERMINO'] = df_termino_materia['MOTIVO TERMINO'].astype('category') #Dejo solo causas Ordinarias tipo_causa = df_termino_materia[df_termino_materia['TIPO CAUSA']!='Ordinaria'] df_termino_materia.drop(tipo_causa.index, axis=0, inplace=True) # Reset el index para realizar feather data.save_feather(df_termino_materia, 'clean_TerminosMateria') click.echo("Generado archivo Feather 'clean_TerminosMateria.feather'. Proceso Terminado") def carga_limpieza_ingresos_rol(): df_ingresos_rol = load_concatenate_by_filename('Ingresos por Rol Penal') # Transformamos variables float64 a int16 df_ingresos_rol['COD. CORTE'] = df_ingresos_rol['COD. CORTE'].fillna(0).astype(np.int16) df_ingresos_rol['COD. TRIBUNAL'] = df_ingresos_rol['COD. TRIBUNAL'].fillna(0).astype(np.int16) df_ingresos_rol['AÑO INGRESO'] = df_ingresos_rol['AÑO INGRESO'].fillna(0).astype(np.int16) df_ingresos_rol.drop(['N°'], axis = 'columns', inplace = True) click.echo('Transformando Fechas') df_ingresos_rol['FECHA INGRESO'] = df_ingresos_rol['FECHA INGRESO'].progress_apply(convierte_fecha) click.echo('Eliminando espacios en columnas objetos') df_ingresos_rol = df_ingresos_rol.progress_apply(elimina_espacios, axis=0) click.echo('Eliminando tildes') cols = df_ingresos_rol.select_dtypes(include = ["object"]).columns df_ingresos_rol[cols] = df_ingresos_rol[cols].progress_apply(elimina_tilde) # Transformamos en variables categoricas df_ingresos_rol['CORTE'] = df_ingresos_rol['CORTE'].astype('category') # Elimina de causas que no sean del tipo ordinaria tipo_causa = df_ingresos_rol[df_ingresos_rol['TIPO CAUSA']!='Ordinaria'] df_ingresos_rol.drop(tipo_causa.index, axis=0, inplace=True) data.save_feather(df_ingresos_rol,'clean_IngresosRol') click.echo("Generado archivo Feather 'clena_IngresosRol.feather'. Proceso Terminado") def carga_limpieza_terminos_rol(): df_termino_rol = load_concatenate_by_filename('Términos por Rol Penal') # Elimino causas que no sean SIAGJ df_no_siagj = df_termino_rol[df_termino_rol['SISTEMA']!='SIAGJ'] df_termino_rol.drop(df_no_siagj.index, axis=0, inplace=True) # Elimino filas vacias o con datos NaN df_termino_rol = df_termino_rol.dropna() df_termino_rol.drop(['N°','SISTEMA'], axis = 'columns', inplace = True) # Cambio de nombre a algunas columnas para dejarlas iguales a otros dataframes df_termino_rol.rename(columns = {'CÓD. CORTE':'COD. CORTE', 'CÓD. TRIBUNAL':'COD. TRIBUNAL', 'DURACIÓN CAUSA ':'DURACION CAUSA', 'MOTIVO DE TÉRMINO':'MOTIVO TERMINO', 'FECHA TÉRMINO':'FECHA TERMINO', 'MES TÉRMINO':'MES TERMINO', 'AÑO TÉRMINO':'AÑO TERMINO', 'TOTAL TÉRMINOS':'TOTAL TERMINOS' }, inplace = True) # Transformamos variables float64 a int16 df_termino_rol['COD. CORTE'] = df_termino_rol['COD. CORTE'].fillna(0).astype(np.int16) df_termino_rol['COD. TRIBUNAL'] = df_termino_rol['COD. TRIBUNAL'].fillna(0).astype(np.int16) df_termino_rol['DURACION CAUSA'] = df_termino_rol['DURACION CAUSA'].fillna(0).astype(np.int16) df_termino_rol['AÑO TERMINO'] = df_termino_rol['AÑO TERMINO'].fillna(0).astype(np.int16) df_termino_rol['TOTAL TERMINOS'] = df_termino_rol['TOTAL TERMINOS'].fillna(0).astype(np.int8) click.echo('Elimino tildes de las columnas object') cols = df_termino_rol.select_dtypes(include = ["object"]).columns df_termino_rol[cols] = df_termino_rol[cols].progress_apply(elimina_tilde) click.echo('Transformando fechas') df_termino_rol['FECHA INGRESO'] = df_termino_rol['FECHA INGRESO'].progress_apply(convierte_fecha) df_termino_rol['FECHA TERMINO'] = df_termino_rol['FECHA TERMINO'].progress_apply(convierte_fecha) click.echo('Elimino espacios en las columnas tipo objeto') df_termino_rol = df_termino_rol.progress_apply(elimina_espacios, axis=0) click.echo('Limpieza de RIT') df_termino_rol['RIT'] = df_termino_rol['RIT'].progress_apply(limpia_rit) # Transformamos en variables categoricas df_termino_rol['CORTE'] = df_termino_rol['CORTE'].astype('category') df_termino_rol['MOTIVO TERMINO'] = df_termino_rol['MOTIVO TERMINO'].astype('category') # Dejo solo causas Ordinarias tipo_causa = df_termino_rol[df_termino_rol['TIPO CAUSA']!='Ordinaria'] df_termino_rol.drop(tipo_causa.index, axis=0, inplace=True) data.save_feather(df_termino_rol,'clean_TerminosRol') click.echo("Generado archivo Feather clean_TerminosRol.feather'. Proceso Terminado") def carga_limpieza_inventario(): df_inventario = load_concatenate_by_filename('Inventario Causas en Tramitación Penal') # Elimino registros de METGE df_metge = df_inventario[df_inventario['SISTEMA']=='METGE'] df_inventario.drop(df_metge.index, axis=0, inplace=True) # ESTANDARIZACION DE NOMBRES DE VARIABLES df_inventario.rename(columns = {'CÓDIGO CORTE':'COD. CORTE', 'CÓDIGO TRIBUNAL':'COD. TRIBUNAL', 'CÓDIGO MATERIA':'COD. MATERIA', ' MATERIA':'MATERIA' }, inplace = True) df_inventario.drop(['SISTEMA'], axis = 'columns', inplace = True) # TRANSFORMAMOS DE FLOAT A INTEGER df_inventario['COD. CORTE'] = df_inventario['COD. CORTE'].fillna(0).astype(np.int16) df_inventario['COD. TRIBUNAL'] = df_inventario['COD. TRIBUNAL'].fillna(0).astype(np.int16) df_inventario['COD. MATERIA'] = df_inventario['COD. MATERIA'].fillna(0).astype(np.int16) df_inventario['TOTAL INVENTARIO'] = df_inventario['TOTAL INVENTARIO'].fillna(0).astype(np.int8) click.echo('Transformamos fechas') df_inventario['FECHA INGRESO'] = df_inventario['FECHA INGRESO'].progress_apply(convierte_fecha) df_inventario['FECHA ULT. DILIGENCIA'] = df_inventario['FECHA ULT. DILIGENCIA'].progress_apply(convierte_fecha) click.echo('Elimino espacios en las columnas tipo objetos') df_inventario = df_inventario.progress_apply(elimina_espacios, axis=0) click.echo('Elimino tildes de las columnas object') cols = df_inventario.select_dtypes(include = ["object"]).columns df_inventario[cols] = df_inventario[cols].progress_apply(elimina_tilde) # CATEGORIZACION DE VARIABLES df_inventario['CORTE'] = df_inventario['CORTE'].astype('category') df_inventario['COMPETENCIA'] = df_inventario['COMPETENCIA'].astype('category') df_inventario['TIPO ULT. DILIGENCIA'] = df_inventario['TIPO ULT. DILIGENCIA'].astype('category') # Dejo solo causas Ordinarias tipo_causa = df_inventario[df_inventario['TIPO CAUSA']!='Ordinaria'] df_inventario.drop(tipo_causa.index, axis=0, inplace=True) data.save_feather(df_inventario,'clean_Inventario') click.echo("Generado archivo Feather 'clean_Inventario.feather'. Proceso Terminado") def carga_limpieza_audiencias(): df_audiencias = load_concatenate_by_filename('Audiencias Realizadas Penal') df_audiencias.rename(columns = {'CÓD. CORTE':'COD. CORTE', 'CÓD. TRIBUNAL':'COD. TRIBUNAL', 'DURACIÓN AUDIENCIA':'DURACION AUDIENCIA', 'AGENDAMIENTO (DÍAS CORRIDOS)':'DIAS AGENDAMIENTO', 'DURACIÓN AUDIENCIA (MINUTOS)':'DURACION AUDIENCIA (MIN)', 'FECHA PROGRAMACIÓN AUDIENCIA':'FECHA PROGRAMACION AUDIENCIA' }, inplace = True) # TRANSFORMAMOS DE FLOAT A INTEGER df_audiencias['COD. CORTE'] = df_audiencias['COD. CORTE'].fillna(0).astype(np.int16) df_audiencias['COD. TRIBUNAL'] = df_audiencias['COD. TRIBUNAL'].fillna(0).astype(np.int16) df_audiencias['TOTAL AUDIENCIAS'] = df_audiencias['TOTAL AUDIENCIAS'].fillna(0).astype(np.int8) # Podemos observar que existen columnas que se repiten, y que tienen datos NAN en algunas pero esos datos # en otras columnas, pasa en TIPO AUDIENCIA=TIPO DE AUDIENCIA, AGENDAMIENTO (DÍAS CORRIDOS)=PLAZO AGENDAMIENTO # (DÍAS CORRIDOS), DURACIÓN AUDIENCIA (MINUTOS)= DURACIÓN AUDIENCIA df_audiencias['TIPO DE AUDIENCIA'] = df_audiencias['TIPO DE AUDIENCIA'].fillna(df_audiencias['TIPO AUDIENCIA']) df_audiencias['DIAS AGENDAMIENTO'] = df_audiencias['DIAS AGENDAMIENTO'].fillna(df_audiencias['PLAZO AGENDAMIENTO (DIAS CORRIDOS)']).astype(np.int16) df_audiencias['DURACION AUDIENCIA (MIN)'] = df_audiencias['DURACION AUDIENCIA (MIN)'].fillna(df_audiencias['DURACION AUDIENCIA']) # Elimino las columnas reemplazadas df_audiencias.drop(['TIPO AUDIENCIA','PLAZO AGENDAMIENTO (DIAS CORRIDOS)','DURACION AUDIENCIA'], axis = 'columns', inplace = True) click.echo('Transformamos fechas') df_audiencias['FECHA PROGRAMACION AUDIENCIA'] = df_audiencias['FECHA PROGRAMACION AUDIENCIA'].progress_apply(convierte_fecha) df_audiencias['FECHA AUDIENCIA'] = df_audiencias['FECHA AUDIENCIA'].progress_apply(convierte_fecha) click.echo('Elimino espacios en las columnas tipo objetos') df_audiencias = df_audiencias.progress_apply(elimina_espacios, axis=0) click.echo('Elimino tildes') cols = df_audiencias.select_dtypes(include = ["object"]).columns df_audiencias[cols] = df_audiencias[cols].progress_apply(elimina_tilde) # Categorizar df_audiencias['CORTE'] = df_audiencias['CORTE'].astype('category') # Dejo solo causas Ordinarias tipo_causa = df_audiencias[df_audiencias['TIPO CAUSA']!='Ordinaria'] df_audiencias.drop(tipo_causa.index, axis=0, inplace=True) data.save_feather(df_audiencias,'clean_Audiencias') click.echo("Generado archivo Feather 'clean_Audiencias.feather'. Proceso Terminado") def carga_limpieza_duraciones(): df_duraciones = load_concatenate_by_filename('Duraciones por Rol Penal') # Elimino causas que no sean SIAGJ df_no_siagj = df_duraciones[df_duraciones['SISTEMA']!='SIAGJ'] df_duraciones.drop(df_no_siagj.index, axis=0, inplace=True) df_duraciones.rename(columns = {'CÓD. CORTE':'COD. CORTE', 'CÓD. TRIBUNAL':'COD. TRIBUNAL', 'DURACIÓN CAUSA ':'DURACIÓN CAUSA', 'FECHA TÉRMINO':'FECHA TERMINO', 'MOTIVO DE TÉRMINO':'MOTIVO TERMINO', 'MES TÉRMINO':'MES TERMINO', 'AÑO TÉRMINO':'AÑO TERMINO', 'TOTAL TÉRMINOS':'TOTAL TERMINOS' }, inplace = True) df_duraciones.drop(['N°','SISTEMA'], axis = 'columns', inplace = True) df_duraciones = df_duraciones.dropna() # TRANSFORMAMOS DE FLOAT A INTEGER df_duraciones['COD. CORTE'] = df_duraciones['COD. CORTE'].fillna(0).astype(np.int16) df_duraciones['COD. TRIBUNAL'] = df_duraciones['COD. TRIBUNAL'].fillna(0).astype(np.int16) df_duraciones['AÑO TERMINO'] = df_duraciones['AÑO TERMINO'].fillna(0).astype(np.int16) df_duraciones['TOTAL TERMINOS'] = df_duraciones['TOTAL TERMINOS'].fillna(0).astype(np.int8) click.echo('Transformamos fechas') df_duraciones['FECHA INGRESO'] = df_duraciones['FECHA INGRESO'].progress_apply(convierte_fecha) df_duraciones['FECHA TERMINO'] = df_duraciones['FECHA TERMINO'].progress_apply(convierte_fecha) click.echo('Elimino espacios en las columnas tipo objetos') df_duraciones = df_duraciones.progress_apply(elimina_espacios, axis=0) click.echo('Elimino tildes') cols = df_duraciones.select_dtypes(include = ["object"]).columns df_duraciones[cols] = df_duraciones[cols].progress_apply(elimina_tilde) click.echo('Transformar el formato del RIT--AÑO a RIT-AÑO') df_duraciones['RIT'] = df_duraciones['RIT'].progress_apply(limpia_rit) # Categorizacion df_duraciones['CORTE'] = df_duraciones['CORTE'].astype('category') df_duraciones['MOTIVO TERMINO'] = df_duraciones['MOTIVO TERMINO'].astype('category') # Dejo solo causas Ordinarias tipo_causa = df_duraciones[df_duraciones['TIPO CAUSA']!='Ordinaria'] df_duraciones.drop(tipo_causa.index, axis=0, inplace=True) data.save_feather(df_duraciones, 'clean_Duraciones') click.echo("Generado archivo Feather 'clean_Duraciones.feather'. Proceso Terminado") def carga_limpieza_delitos(): tqdm.pandas() path_raw = "data/raw/delitos" codigos_delitos = pd.read_excel(f"{path_raw}/codigos_penal_2020.xlsx", sheet_name = "codigos vigentes", engine='openpyxl') # elimino filas con NaN codigos_delitos = codigos_delitos.drop_duplicates() # elimino 2 primeras filas que son titulos codigos_delitos = codigos_delitos.drop([0,1,2], axis = 0) # elimino columnas con datos NaN variables = range(2,248) columnas = [] for variable in variables: columnas.append("Unnamed: " + str(variable)) codigos_delitos = codigos_delitos.drop(columns = columnas, axis = 1) # cambio nombres columnas codigos_delitos = codigos_delitos.rename(columns = {'VERSION AL 01/01/2018':'COD. MATERIA', 'Unnamed: 1':'MATERIA'}) delitos_vigentes = [] for item in codigos_delitos.index: if str(codigos_delitos['COD. MATERIA'][item]).isupper(): tipologia_delito=str(codigos_delitos['COD. MATERIA'][item]) else: delitos_vigentes.append([codigos_delitos['COD. MATERIA'][item], str(codigos_delitos['MATERIA'][item]).upper().rstrip(), tipologia_delito,'VIGENTE']) df_delitos_vigentes = pd.DataFrame(delitos_vigentes,columns = ['COD. MATERIA','MATERIA','TIPOLOGIA MATERIA','VIGENCIA MATERIA']) click.echo('Elimino tildes de las columnas object') cols = df_delitos_vigentes.select_dtypes(include = ["object"]).columns df_delitos_vigentes[cols] = df_delitos_vigentes[cols].progress_apply(elimina_tilde) df_delitos_vigentes[cols] = df_delitos_vigentes[cols].progress_apply(limpieza_caracteres) df_delitos_vigentes['COD. MATERIA'] = df_delitos_vigentes['COD. MATERIA'].fillna(0).astype('int16') # CARGA Y LIMPIEZA DE DATOS RELACIONADOS A DELITOS NO VIGENTES codigos_delitos_novigentes = pd.read_excel(f"{path_raw}/codigos_penal_2020.xlsx", sheet_name = "Codigos no vigentes", engine='openpyxl') # cambio nombres columnas codigos_delitos_novigentes = codigos_delitos_novigentes.rename(columns = {'MATERIAS PENALES NO VIGENTES':'TIPOLOGIA MATERIA', 'Unnamed: 1':'COD. MATERIA','Unnamed: 2':'MATERIA'}) # elimino primera fila que son titulos codigos_delitos_novigentes = codigos_delitos_novigentes.drop([0], axis = 0) # reemplazo Nan por ST codigos_delitos_novigentes = codigos_delitos_novigentes.fillna('ST') delitos_no_vigentes = [] for item in codigos_delitos_novigentes.index: tipologia_delito = codigos_delitos_novigentes['TIPOLOGIA MATERIA'][item] if tipologia_delito != 'ST': tipologia = codigos_delitos_novigentes['TIPOLOGIA MATERIA'][item] else: tipologia_delito = tipologia delitos_no_vigentes.append([codigos_delitos_novigentes['COD. MATERIA'][item], codigos_delitos_novigentes['MATERIA'][item].rstrip(), tipologia_delito,'NO VIGENTE']) df_delitos_no_vigentes = pd.DataFrame(delitos_no_vigentes, columns = ['COD. MATERIA','MATERIA','TIPOLOGIA MATERIA','VIGENCIA MATERIA']) click.echo('Elimino tildes de las columnas object') cols = df_delitos_no_vigentes.select_dtypes(include = ["object"]).columns df_delitos_no_vigentes[cols] = df_delitos_no_vigentes[cols].progress_apply(elimina_tilde) df_delitos_no_vigentes['COD. MATERIA'] = df_delitos_no_vigentes['COD. MATERIA'].astype('int16') # UNION DE AMBOS DATASET CON DELITOS VIGENTES Y NO VIGENTES df_delitos =
pd.concat([df_delitos_vigentes,df_delitos_no_vigentes])
pandas.concat
import numpy as np import pandas as pd import pytest from pandas.testing import assert_series_equal from src.policies.single_policy_functions import _interpolate_activity_level from src.policies.single_policy_functions import reduce_recurrent_model from src.policies.single_policy_functions import reduce_work_model from src.policies.single_policy_functions import reopen_other_model from src.policies.single_policy_functions import shut_down_model @pytest.fixture def fake_states(): states = pd.DataFrame(index=np.arange(10)) states["state"] = ["Bayern", "Berlin"] * 5 # date at which schools are open in Berlin but closed in Bavaria # date with uneven week number, i.e. where group a attends school states["date"] = pd.Timestamp("2020-04-23") states["school_group_a"] = [0, 1] * 5 states["occupation"] = pd.Categorical( ["school"] * 8 + ["preschool_teacher", "school_teacher"] ) states["educ_worker"] = [False] * 8 + [True] * 2 states["age"] = np.arange(10) return states def test_shut_down_model_non_recurrent(): contacts = pd.Series(np.arange(3)) states = pd.DataFrame(index=["a", "b", "c"]) calculated = shut_down_model(states, contacts, 123, is_recurrent=False) expected = pd.Series(0, index=["a", "b", "c"]) assert_series_equal(calculated, expected) def test_shut_down_model_recurrent(): contacts = pd.Series(np.arange(3)) states = pd.DataFrame(index=["a", "b", "c"]) calculated = shut_down_model(states, contacts, 123, is_recurrent=True) expected = pd.Series(False, index=["a", "b", "c"]) assert_series_equal(calculated, expected) def test_reduce_recurrent_model_set_zero(): states = pd.DataFrame(index=[0, 1, 2, 3]) contacts = pd.Series([True, True, False, False]) calculated = reduce_recurrent_model(states, contacts, 333, multiplier=0.0) assert (calculated == 0).all() def test_reduce_recurrent_model_no_change(): states =
pd.DataFrame(index=[0, 1, 2, 3])
pandas.DataFrame
from bs4 import BeautifulSoup import re import urllib3 import pandas as pd http = urllib3.PoolManager() url = 'https://www.sports-reference.com/cbb/' response = http.request('GET', url) soup = BeautifulSoup(response.data) links = soup.find('div', id = "schools").find('select', id = 'selector_1').find_all("option") all_teams = [] for link in links: name = re.findall(r">(.*?)<", str(link))[0] ext = re.findall(r'value="(.*?)"', str(link))[0] if ext is not '': out = {"team": name, "link": ext} all_teams.append(out) # pd.DataFrame(all_teams).to_csv('sports_reference_teams.csv', index = False) ranking_df_list = [] player_df_list = [] player_detail_list = [] for team in all_teams: url = f'https://www.sports-reference.com{team["link"]}' print(url) response = http.request('GET', url) soup = BeautifulSoup(response.data) ptags = soup.find('div', id = 'info').find_all('p') for tag in ptags: if str(tag).find("Location") != -1: place = re.findall(r'\n(.*)', str(tag))[1].strip() team['location'] = place try: data = pd.read_html(f'{url}/polls.html')[0] data = data[~data.Rk.str.contains("Season|Rk")].drop("Rk", axis = 1) data['team'] = team['team'] data['team_location'] = team['location'] ranking_df_list.append(data) except: print(f"Could Not Find Ranking Data For {team['team']}") continue for year in range(2003, 2022): try: player_data_a = pd.read_html(f'{url}/{year}.html') player_data = player_data_a[0] player_data['year'] = year player_data['team'] = team['team'] player_df_list.append(player_data) for table in player_data_a[1:]: if table.shape[0] > 10: table['season'] = year table['team'] = team['team'] player_detail_list.append(table) except: print(f"Could Not Find Player Level Data For {team['team']} in Year {year}") pd.concat(player_df_list, ignore_index=True).to_csv("player_stats_0321.csv", index=False) pd.concat(player_detail_list, ignore_index=True).to_csv("player_stats_detail_0321.csv", index=False)
pd.concat(ranking_df_list, ignore_index=True)
pandas.concat
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import sys import unittest import pytest from numpy.testing import assert_array_equal import numpy as np from pandas.util.testing import assert_frame_equal import pandas as pd import pyarrow as pa from pyarrow.compat import guid from pyarrow.feather import (read_feather, write_feather, FeatherReader) from pyarrow.lib import FeatherWriter def random_path(): return 'feather_{}'.format(guid()) class TestFeatherReader(unittest.TestCase): def setUp(self): self.test_files = [] def tearDown(self): for path in self.test_files: try: os.remove(path) except os.error: pass def test_file_not_exist(self): with self.assertRaises(pa.ArrowIOError): FeatherReader('test_invalid_file') def _get_null_counts(self, path, columns=None): reader = FeatherReader(path) counts = [] for i in range(reader.num_columns): col = reader.get_column(i) if columns is None or col.name in columns: counts.append(col.null_count) return counts def _check_pandas_roundtrip(self, df, expected=None, path=None, columns=None, null_counts=None, nthreads=1): if path is None: path = random_path() self.test_files.append(path) write_feather(df, path) if not os.path.exists(path): raise Exception('file not written') result = read_feather(path, columns, nthreads=nthreads) if expected is None: expected = df assert_frame_equal(result, expected) if null_counts is None: null_counts = np.zeros(len(expected.columns)) np.testing.assert_array_equal(self._get_null_counts(path, columns), null_counts) def _assert_error_on_write(self, df, exc, path=None): # check that we are raising the exception # on writing if path is None: path = random_path() self.test_files.append(path) def f(): write_feather(df, path) self.assertRaises(exc, f) def test_num_rows_attr(self): df = pd.DataFrame({'foo': [1, 2, 3, 4, 5]}) path = random_path() self.test_files.append(path) write_feather(df, path) reader = FeatherReader(path) assert reader.num_rows == len(df) df = pd.DataFrame({}) path = random_path() self.test_files.append(path) write_feather(df, path) reader = FeatherReader(path) assert reader.num_rows == 0 def test_float_no_nulls(self): data = {} numpy_dtypes = ['f4', 'f8'] num_values = 100 for dtype in numpy_dtypes: values = np.random.randn(num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) self._check_pandas_roundtrip(df) def test_float_nulls(self): num_values = 100 path = random_path() self.test_files.append(path) writer = FeatherWriter() writer.open(path) null_mask = np.random.randint(0, 10, size=num_values) < 3 dtypes = ['f4', 'f8'] expected_cols = [] null_counts = [] for name in dtypes: values = np.random.randn(num_values).astype(name) writer.write_array(name, values, null_mask) values[null_mask] = np.nan expected_cols.append(values) null_counts.append(null_mask.sum()) writer.close() ex_frame = pd.DataFrame(dict(zip(dtypes, expected_cols)), columns=dtypes) result = read_feather(path) assert_frame_equal(result, ex_frame) assert_array_equal(self._get_null_counts(path), null_counts) def test_integer_no_nulls(self): data = {} numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 for dtype in numpy_dtypes: values = np.random.randint(0, 100, size=num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) self._check_pandas_roundtrip(df) def test_platform_numpy_integers(self): data = {} numpy_dtypes = ['longlong'] num_values = 100 for dtype in numpy_dtypes: values = np.random.randint(0, 100, size=num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) self._check_pandas_roundtrip(df) def test_integer_with_nulls(self): # pandas requires upcast to float dtype path = random_path() self.test_files.append(path) int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 writer = FeatherWriter() writer.open(path) null_mask = np.random.randint(0, 10, size=num_values) < 3 expected_cols = [] for name in int_dtypes: values = np.random.randint(0, 100, size=num_values) writer.write_array(name, values, null_mask) expected = values.astype('f8') expected[null_mask] = np.nan expected_cols.append(expected) ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)), columns=int_dtypes) writer.close() result = read_feather(path) assert_frame_equal(result, ex_frame) def test_boolean_no_nulls(self): num_values = 100 np.random.seed(0) df = pd.DataFrame({'bools': np.random.randn(num_values) > 0}) self._check_pandas_roundtrip(df) def test_boolean_nulls(self): # pandas requires upcast to object dtype path = random_path() self.test_files.append(path) num_values = 100 np.random.seed(0) writer = FeatherWriter() writer.open(path) mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 10, size=num_values) < 5 writer.write_array('bools', values, mask) expected = values.astype(object) expected[mask] = None writer.close() ex_frame = pd.DataFrame({'bools': expected}) result = read_feather(path) assert_frame_equal(result, ex_frame) def test_buffer_bounds_error(self): # ARROW-1676 path = random_path() self.test_files.append(path) for i in range(16, 256): values = pa.array([None] + list(range(i)), type=pa.float64()) writer = FeatherWriter() writer.open(path) writer.write_array('arr', values) writer.close() result = read_feather(path) expected = pd.DataFrame({'arr': values.to_pandas()})
assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
import re from more_itertools import flatten import pandas as pd import numpy as np def originHandle(): with open("./renmin.txt", "r") as inp, open("./renmin2.txt", "w") as outp: for line in inp.readlines(): line = line.split(" ") i = 1 while i < len(line) - 1: if line[i][0] == "[": # [中央/n', '人民/n', '广播/vn', '电台/n]nt', outp.write(line[i].split("/")[0][1:]) i += 1 while i < len(line) - 1 and line[i].find("]") == -1: # 找不到 "]" if line[i] != "": outp.write(line[i].split("/")[0]) # 人民 i += 1 outp.write(line[i].split("/")[0].strip() + "/" + line[i].strip("/")[1][-2:] + " ") elif line[i].split("/")[1] == "nr": # nr: 人名 word = line[i].split("/")[0] i += 1 if i < len(line) - 1 and line[i].split("/")[1] == "nr": outp.write(word+line[i].split('/')[0]+'/nr ') i += 1 else: outp.write(word + "/nr") continue else: outp.write(line[i] + " ") i += 1 outp.write("\n") def originHandle2(): with open('./renmin2.txt', 'r') as inp, open('./renmin3.txt', 'w') as outp: for line in inp.readlines(): line = line.split(' ') i = 0 while i < len(line)-1: if line[i] == '': i += 1 continue word = line[i].split('/')[0] tag = line[i].split('/')[1] if tag == 'nr' or tag == 'ns' or tag == 'nt': # 人名 地名 组织名 中共中央/nt outp.write(word[0]+"/B_"+tag+" ") # 中共中央/B_ for j in word[1:len(word)-1]: if j != ' ': outp.write(j+"/M_"+tag+" ") outp.write(word[-1]+"/E_"+tag+" ") else: for wor in word: outp.write(wor+'/O ') i += 1 outp.write('\n') def sentence2split(): with open('./renmin3.txt','r') as inp, open('./renmin4.txt','w') as outp: texts = inp.read() sentences = re.split(r'[,。!?、‘’“”:]/[O]', texts) for sentence in sentences: if sentence != " ": outp.write(sentence.strip()+'\n') def data2pkl(): datas = [] labels = [] tags = set() tags.add('') input_data = open('renmin4.txt', 'r') for line in input_data.readlines(): line = line.split() linedata = [] linelabel = [] numNotO = 0 for word in line: word = word.split('/') linedata.append(word[0]) linelabel.append(word[1]) tags.add(word[1]) if word[1] != 'O': numNotO += 1 if numNotO != 0: datas.append(linedata) labels.append(linelabel) input_data.close() # 选出需要的行 print(len(datas)) # [[], [], ..] print(len(labels)) # from compiler.ast import flatten all_words = flatten(datas) # 合并 [...] sr_allwords = pd.Series(all_words) sr_allwords = sr_allwords.value_counts() """ >>> import pandas as pd >>> data=pd.Series(['python','java','python','php','php','java','python','java']) >>> data 0 python 1 java 2 python 3 php 4 php 5 java 6 python 7 java dtype: object >>> >>> data.value_counts() python 3 java 3 php 2 dtype: int64 """ set_words = sr_allwords.index set_ids = range(1, len(set_words) + 1) """ >>> data.index RangeIndex(start=0, stop=8, step=1) >>> set_words = data.index >>> set_idx = range(1, len(set_words) + 1) >>> set_idx range(1, 9) """ tags = [i for i in tags] tag_ids = range(len(tags)) word2id = pd.Series(set_ids, index=set_words) id2word =
pd.Series(set_words, index=set_ids)
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/10/23 0023 # @Author : justin.郑 <EMAIL> # @File : index_toutiao.py # @Desc : 头条指数 import json import pandas as pd import requests from gopup.index.cons import index_toutiao_headers def toutiao_index(keyword="python", start_date="20201016", end_date="20201022", app_name="toutiao"): """ 头条指数数据 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :param app_name: 平台 :return: datetime 日期 index 指数 """ # list_keyword = '["%s"]' % keyword try: url = "https://trendinsight.oceanengine.com/api/open/index/get_multi_keyword_hot_trend" data = { "keyword_list": [keyword], "start_date": start_date, "end_date": end_date, "app_name": app_name } res = requests.post(url, json=data, headers=index_toutiao_headers) hot_list = json.loads(res.text)['data']['hot_list'][0]['hot_list'] df = pd.DataFrame(hot_list) return df except: return None def toutiao_relation(keyword="python", start_date="20201012", end_date="20201018", app_name="toutiao"): """ 头条相关分析 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :return: relation_word 相关词 relation_score 相关性值 score_rank 相关性值排名 search_hot 搜索热点值 search_ratio 搜索比率 """ try: url = "https://trendinsight.oceanengine.com/api/open/index/get_relation_word" data = {"param": {"keyword": keyword, "start_date": start_date, "end_date": end_date, "app_name": app_name} } res = requests.post(url, json=data, headers=index_toutiao_headers) relation_word_list = json.loads(res.text)['data']['relation_word_list'] df = pd.DataFrame(relation_word_list) return df except: return None # def toutiao_sentiment(keyword="python", start_date="20201012", end_date="20201018"): # """ # 头条情感分析 # :param keyword: 关键词 # :param start_date: 开始日期 # :param end_date: 截止日期 # :return: # keyword 关键词 # score 情感值 # """ # url = "https://index.toutiao.com/api/v1/get_keyword_sentiment" # data = { # "keyword": keyword, # "start_date": start_date, # "end_date": end_date # } # res = requests.get(url, params=data, headers=index_toutiao_headers) # score = json.loads(res.text)['data']['score'] # df = pd.DataFrame([{"score": score, "keyword": keyword}]) # return df def toutiao_province(keyword="python", start_date="20201012", end_date="20201018", app_name="toutiao"): """ 头条地域分析 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :return: name 省份 value 渗透率 """ try: url = "https://trendinsight.oceanengine.com/api/open/index/get_portrait" data = {"param": {"keyword": keyword, "start_date": start_date, "end_date": end_date, "app_name": app_name} } res = requests.post(url, json=data, headers=index_toutiao_headers) res_text = json.loads(res.text)['data']['data'][2]['label_list'] df = pd.DataFrame(res_text) df['name'] = df['name_zh'] df = df.drop(['label_id', 'name_zh'], axis=1) df = df.sort_values(by="value", ascending=False) return df except: return None def toutiao_city(keyword="python", start_date="20201012", end_date="20201018", app_name="toutiao"): """ 头条城市分析 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :return: name 城市 value 渗透率 """ try: url = "https://trendinsight.oceanengine.com/api/open/index/get_portrait" data = {"param": {"keyword": keyword, "start_date": start_date, "end_date": end_date, "app_name": app_name} } res = requests.post(url, json=data, headers=index_toutiao_headers) res_text = json.loads(res.text)['data']['data'][3]['label_list'] df = pd.DataFrame(res_text) df['name'] = df['name_zh'] df = df.drop(['label_id', 'name_zh'], axis=1) df = df.sort_values(by="value", ascending=False) return df except: return None def toutiao_age(keyword="python", start_date="20201012", end_date="20201018", app_name="toutiao"): """ 头条年龄分析 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :return: name 年龄区间 value 渗透率 """ try: url = "https://trendinsight.oceanengine.com/api/open/index/get_portrait" data = {"param": {"keyword": keyword, "start_date": start_date, "end_date": end_date, "app_name": app_name} } res = requests.post(url, json=data, headers=index_toutiao_headers) res_text = json.loads(res.text)['data']['data'][0]['label_list'] df = pd.DataFrame(res_text) df['name'] = df['name_zh'] df = df.drop(['label_id', 'name_zh'], axis=1) return df except: return None def toutiao_gender(keyword="python", start_date="20201012", end_date="20201018", app_name="toutiao"): """ 头条性别分析 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :return: name 性别 value 渗透率 """ try: url = "https://trendinsight.oceanengine.com/api/open/index/get_portrait" data = {"param": {"keyword": keyword, "start_date": start_date, "end_date": end_date, "app_name": app_name} } res = requests.post(url, json=data, headers=index_toutiao_headers) res_text = json.loads(res.text)['data']['data'][1]['label_list'] df = pd.DataFrame(res_text) df['name'] = df['name_zh'] df = df.drop(['label_id', 'name_zh'], axis=1) df = df.sort_values(by="value", ascending=False) return df except: return None def toutiao_interest_category(keyword="python", start_date="20201012", end_date="20201018", app_name="toutiao"): """ 头条用户阅读兴趣分类 :param keyword: 关键词 :param start_date: 开始日期 :param end_date: 截止日期 :return: name 分类 value 渗透率 """ try: url = "https://trendinsight.oceanengine.com/api/open/index/get_portrait" data = {"param": {"keyword": keyword, "start_date": start_date, "end_date": end_date, "app_name": app_name} } res = requests.post(url, json=data, headers=index_toutiao_headers) res_text = json.loads(res.text)['data']['data'][4]['label_list'] df =
pd.DataFrame(res_text)
pandas.DataFrame
import logging import multiprocessing import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy as sp import seaborn as sns from sklearn import ( cross_validation, ensemble, grid_search, learning_curve, linear_model, metrics, naive_bayes, pipeline, preprocessing) from imblearn.metrics import specificity_score ############### # Classifiers # ############### CLASSIFIERS = { 'ExtraTrees': { 'name': 'Extra Randomized Trees', 'class': ensemble.ExtraTreesClassifier, 'best_params': { # MCC: 0.582 'max_depth': 9, 'criterion': 'entropy', 'min_samples_leaf': 7, 'bootstrap': True, 'max_features': 0.47, 'min_samples_split': 4, 'n_jobs': 2 }, 'param_distributions': { 'max_depth': sp.stats.randint(5, 10), 'max_features': sp.stats.uniform(0.05, 0.5), 'min_samples_split': sp.stats.randint(1, 8), 'min_samples_leaf': sp.stats.randint(6, 15), 'bootstrap': [True, False], 'criterion': ['gini', 'entropy'], 'n_jobs': [2] } }, 'RandomForest': { 'name': 'Random Forest', 'best_params': { # MCC: 0.638 'bootstrap': True, 'criterion': 'gini', 'max_depth': 9, 'max_features': 0.49, 'min_samples_leaf': 10, 'min_samples_split': 2, 'n_estimators': 13, 'n_jobs': 4, }, 'class': ensemble.RandomForestClassifier, 'param_distributions': { 'n_estimators': sp.stats.randint(5, 20), 'criterion': ['gini', 'entropy'], 'max_features': sp.stats.uniform(0.05, 0.5), 'min_samples_split': sp.stats.randint(1, 8), 'min_samples_leaf': sp.stats.randint(6, 15), 'bootstrap': [True, False], 'n_jobs': [2] } }, 'AdaBoost': { 'name': 'Ada Boost', 'class': ensemble.AdaBoostClassifier, 'best_params': { # MCC: 0.641 'n_estimators': 258 }, 'param_distributions': { 'n_estimators': sp.stats.randint(50, 300) } }, 'LogisticRegression': { 'name': 'Logistic Regression', 'class': linear_model.LogisticRegression, 'best_params': { # MCC: 0.487 'C': 1.425494495402806, 'dual': False, 'fit_intercept': True, 'max_iter': 146, 'n_jobs': 2, 'penalty': 'l2', 'solver': 'lbfgs' }, 'param_distributions': { 'penalty': ['l2'], # (default) 'dual': [False], # (default), better when # samples > # features 'C': sp.stats.uniform(0.5, 1.5), # (default: 1.0) 'fit_intercept': [True], # (default), add biast to decision 'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag'], # liblinear 'max_iter': sp.stats.randint(100, 250), # (default: 100) 'n_jobs': [2] } }, 'SGD': { 'name': 'Stochastic Gradient Descent', 'class': linear_model.SGDClassifier, 'best_params': { # MCC: 0.488 'loss': 'log', 'n_iter': 11, 'penalty': 'l1' }, 'param_distributions': { 'loss': ['hinge', 'log', 'modified_huber', 'perceptron', 'huber'], 'penalty': ['l2', 'l1', 'elasticnet'], 'n_iter': sp.stats.randint(6, 15) } }, 'NaiveBayes': { 'name': 'Gaussian Naive Bayes', 'class': naive_bayes.GaussianNB, 'best_params': {}, # No parameters 'param_distributions': {} } } # Set classifier colors for classifier_name, color in zip(sorted(CLASSIFIERS), sns.color_palette()): CLASSIFIERS[classifier_name]['color'] = color # Swap nicer colors _red = CLASSIFIERS['LogisticRegression']['color'] _gold = CLASSIFIERS['RandomForest']['color'] CLASSIFIERS['LogisticRegression']['color'] = _gold CLASSIFIERS['RandomForest']['color'] = _red def _get_classifier(classifier_name, classifier_params=None): if classifier_params: return CLASSIFIERS[classifier_name]['class'](**classifier_params) else: return CLASSIFIERS[classifier_name]['class']( **CLASSIFIERS[classifier_name]['best_params']) def _get_estimator(classifier_name, classifier_params=None): classifier = _get_classifier(classifier_name, classifier_params) return pipeline.Pipeline([ ("imputer", preprocessing.Imputer(strategy="median")), ("scaler", preprocessing.StandardScaler()), ("classifier", classifier)]) ######### # Folds # ######### FOLDS = { 'kfold': { 'name': 'k-fold', 'class': cross_validation.KFold, 'params': { 'n_folds': 10, 'shuffle': True, } }, 'stratified_kfold': { 'name': 'Stratified k-fold', 'class': cross_validation.StratifiedKFold, 'params': { 'n_folds': 10, 'shuffle': True, } }, 'label_kfold': { 'name': 'Label k-fold', 'class': cross_validation.LabelKFold, 'params': { 'n_folds': 10, } }, 'predefined': { 'name': 'Predefined split', 'class': cross_validation.PredefinedSplit, 'params': {} } } def _get_folds(folds_name, y, folds_params=None, labels=None): # Get default params params = FOLDS[folds_name]['params'] # Update params if given if folds_params: params.update(folds_params) # Set default params depending on y and labels if folds_name == 'kfold': params['n'] = len(y) elif folds_name == 'stratified_kfold': params['y'] = y elif folds_name == 'label_kfold': params['labels'] = labels # Get folds return FOLDS[folds_name]['class'](**params) def _evaluate(X, y, estimator, train, test, percentiles=None, scores=None): if not percentiles: percentiles = [100] estimator.fit(X[train], y[train]) prob = estimator.predict_proba(X[test])[:, 1] pred = prob > 0.5 results =
pd.DataFrame()
pandas.DataFrame
"""Tests for importing and exporting data to SBDF files.""" import datetime import decimal import os import unittest from time import perf_counter import pandas from spotfire import fast_sbdf, sbdf def fast_slow_parity(filename): start = perf_counter() slow_df = sbdf.import_data(filename) mid = perf_counter() fast_df = fast_sbdf.import_data(filename) end = perf_counter() t1 = mid - start t2 = end - mid print(f"Slow read took {t1:.4f}s, fast read took {t2:.4f}s") with
pandas.option_context("display.max_columns", 30, "display.expand_frame_repr", False)
pandas.option_context
# coding: utf-8 # Import libraries import pandas as pd from pandas import ExcelWriter def genes_mapping(): """ The GENES_MAPPING operation creates creates a mapping table for all the human genes (downloaded from HGNC), providing their current official Gene Symbols, their main IDs, and, if existing, the transcription factors they encode (with their corresponding UniProt IDs). The mapping table is returned as a Pandas dataframe and exported locally in the Excel file 'Genes Mapping.xlsx'. :return: a Pandas dataframe Example:: import genereg as gr mapping_df = gr.GenesMapping.genes_mapping() """ # Load input data files: # HGNC hgnc_df =
pd.read_csv('./0_Genes_Mapping/DATA/HGNC.tsv', sep='\t', names=['HGNC_ID','GENE_SYMBOL','Previous Symbols','Synonyms','ENTREZ_GENE_ID','RefSeq_ID','UniProt_ID','ENSEMBL_GENE_ID'], dtype={'HGNC_ID':str,'ENTREZ_GENE_ID':str},skiprows=1)
pandas.read_csv
#!/usr/bin/env python """Train HMMs for alignment of signal data from the MinION """ import sys import os import glob import pandas as pd import numpy as np from timeit import default_timer as timer from argparse import ArgumentParser from shutil import copyfile from subprocess import check_call import shutil import tempfile from py3helpers.utils import create_dot_dict, merge_lists, all_string_permutations, save_json, load_json, \ count_lines_in_file, merge_dicts, list_dir from py3helpers.multiprocess import * from signalalign.signalAlignment import multithread_signal_alignment_samples, create_signalAlignment_args, \ SignalAlignSample from signalalign.hiddenMarkovModel import HmmModel, parse_assignment_file, parse_alignment_file, read_in_alignment_file from signalalign.utils.fileHandlers import FolderHandler from signalalign.utils.parsers import read_fasta from signalalign.utils.sequenceTools import get_motif_kmers, get_sequence_kmers, CustomAmbiguityPositions from signalalign.build_alignments import generate_top_n_kmers_from_sa_output def make_master_assignment_table(list_of_assignment_paths, min_probability=0.0, full=False): """Create a master assignment table from a list of assignment paths :param list_of_assignment_paths: list of all paths to assignment.tsv files to concat :param min_probability: minimum probabilty to keep :return: pandas DataFrame of all assignments """ assignment_dfs = [] for f in list_of_assignment_paths: assignment_dfs.append(get_assignment_table(f, min_probability, full)) return pd.concat(assignment_dfs, ignore_index=True) def multiprocess_make_master_assignment_table(list_of_assignment_paths, min_probability=0.0, full=False, worker_count=1): """Create a master assignment table from a list of assignment paths :param list_of_assignment_paths: list of all paths to assignment.tsv files to concat :param min_probability: minimum probabilty to keep :return: pandas DataFrame of all assignments """ extra_args = {"min_probability": min_probability, "full": full} service = BasicService(get_assignment_table, service_name="multiprocess_make_master_assignment_table") total, failure, messages, output = run_service(service.run, list_of_assignment_paths, extra_args, ["file_path"], worker_count) return pd.concat(output, ignore_index=True) def get_assignment_table(file_path, min_probability, full): if full: data = parse_alignment_file(file_path) else: data = parse_assignment_file(file_path) return data.loc[data['prob'] >= min_probability] def multiprocess_make_kmer_assignment_tables(list_of_assignment_paths, kmers, strands, min_probability=0.0, verbose=True, full=False, max_assignments=10, worker_count=1): """Create a master assignment tables from a list of assignment paths :param kmers: :param strands: :param verbose: :param full: :param max_assignments: :param worker_count: :param list_of_assignment_paths: list of all paths to assignment.tsv files to concat :param min_probability: minimum probabilty to keep :return: pandas DataFrame of all assignments """ # just in case we get a set kmers = list(kmers) # Multiprocess reading in files extra_args = {"min_probability": min_probability, "full": full, "kmers": kmers} service = BasicService(get_assignment_kmer_tables, service_name="get_assignment_kmer_tables") total, failure, messages, output = run_service(service.run, list_of_assignment_paths, extra_args, ["file_path"], worker_count) kmer_tables = [(pd.concat(x, ignore_index=True), kmers[i]) for i, x in enumerate(zip(*output))] # Multiprocess sorting each kmer table extra_args = {"strands": strands, "verbose": verbose, "max_assignments": max_assignments} service = BasicService(sort_dataframe_wrapper, service_name="sort_dataframe_wrapper") total, failure, messages, output = run_service(service.run, kmer_tables, extra_args, ["data_table", "kmer"], worker_count) return pd.concat(output, ignore_index=True) def get_assignment_kmer_tables(file_path, kmers, min_probability, full): if full: data = parse_alignment_file(file_path) else: data = parse_assignment_file(file_path) data = data.loc[data['prob'] >= min_probability] all_kmers = [] for k in kmers: all_kmers.append(data.loc[data.kmer == k]) return all_kmers def sort_dataframe_wrapper(data_table, kmer, max_assignments=10, verbose=False, strands=('t', 'c')): assert len(strands) > 0, \ "strands must be a list and not be empty. strands: {}".format(strands) final_output = [] if data_table.empty and verbose: print("missing kmer {}, continuing".format(kmer)) final_output = data_table else: for strand in strands: by_strand = data_table.loc[data_table['strand'] == strand] kmer_assignments = by_strand.sort_values(['prob'], ascending=0)[:max_assignments] if len(kmer_assignments) < max_assignments and verbose: print("WARNING didn't find {max} requested assignments for {kmer} only found {found}" "".format(max=max_assignments, kmer=kmer, found=len(kmer_assignments))) final_output.append(kmer_assignments) final_output =
pd.concat(final_output, ignore_index=True)
pandas.concat
"""This module contains most of the pyemu.Pst object definition. This object is the primary mechanism for dealing with PEST control files """ from __future__ import print_function, division import os import re import copy import warnings import numpy as np import pandas as pd pd.options.display.max_colwidth = 100 from pyemu.pst.pst_controldata import ControlData, SvdData, RegData from pyemu.pst import pst_utils class Pst(object): """basic class for handling pest control files to support linear analysis as well as replicate some of the functionality of the pest utilities Parameters ---------- filename : str the name of the control file load : (boolean) flag to load the control file. Default is True resfile : str corresponding residual file. If None, a residual file with the control file base name is sought. Default is None Returns ------- Pst : Pst a control file object """ def __init__(self, filename, load=True, resfile=None): self.filename = filename self.resfile = resfile self.__res = None self.__pi_count = 0 for key,value in pst_utils.pst_config.items(): self.__setattr__(key,copy.copy(value)) self.tied = None self.control_data = ControlData() self.svd_data = SvdData() self.reg_data = RegData() if load: assert os.path.exists(filename),\ "pst file not found:{0}".format(filename) self.load(filename) def __setattr__(self, key, value): if key == "model_command": if isinstance(value, str): value = [value] super(Pst,self).__setattr__(key,value) @property def phi(self): """get the weighted total objective function Returns ------- phi : float sum of squared residuals """ sum = 0.0 for grp, contrib in self.phi_components.items(): sum += contrib return sum @property def phi_components(self): """ get the individual components of the total objective function Returns ------- dict : dict dictionary of observation group, contribution to total phi Raises ------ Assertion error if Pst.observation_data groups don't match Pst.res groups """ # calculate phi components for each obs group components = {} ogroups = self.observation_data.groupby("obgnme").groups rgroups = self.res.groupby("group").groups for og in ogroups.keys(): assert og in rgroups.keys(),"Pst.adjust_weights_res() obs group " +\ "not found: " + str(og) og_res_df = self.res.ix[rgroups[og]] og_res_df.index = og_res_df.name og_df = self.observation_data.ix[ogroups[og]] og_df.index = og_df.obsnme og_res_df = og_res_df.loc[og_df.index,:] assert og_df.shape[0] == og_res_df.shape[0],\ " Pst.phi_components error: group residual dataframe row length" +\ "doesn't match observation data group dataframe row length" + \ str(og_df.shape) + " vs. " + str(og_res_df.shape) components[og] = np.sum((og_res_df["residual"] * og_df["weight"]) ** 2) if not self.control_data.pestmode.startswith("reg") and \ self.prior_information.shape[0] > 0: ogroups = self.prior_information.groupby("obgnme").groups for og in ogroups.keys(): assert og in rgroups.keys(),"Pst.adjust_weights_res() obs group " +\ "not found: " + str(og) og_res_df = self.res.ix[rgroups[og]] og_res_df.index = og_res_df.name og_df = self.prior_information.ix[ogroups[og]] og_df.index = og_df.pilbl og_res_df = og_res_df.loc[og_df.index,:] assert og_df.shape[0] == og_res_df.shape[0],\ " Pst.phi_components error: group residual dataframe row length" +\ "doesn't match observation data group dataframe row length" + \ str(og_df.shape) + " vs. " + str(og_res_df.shape) components[og] = np.sum((og_res_df["residual"] * og_df["weight"]) ** 2) return components @property def phi_components_normalized(self): """ get the individual components of the total objective function normalized to the total PHI being 1.0 Returns ------- dict : dict dictionary of observation group, normalized contribution to total phi Raises ------ Assertion error if self.observation_data groups don't match self.res groups """ # use a dictionary comprehension to go through and normalize each component of phi to the total phi_components_normalized = {i: self.phi_components[i]/self.phi for i in self.phi_components} return phi_components_normalized def set_res(self,res): """ reset the private Pst.res attribute Parameters ---------- res : (varies) something to use as Pst.res attribute """ self.__res = res @property def res(self): """get the residuals dataframe attribute Returns ------- res : pandas.DataFrame Note ---- if the Pst.__res attribute has not been loaded, this call loads the res dataframe from a file """ if self.__res is not None: return self.__res else: if self.resfile is not None: assert os.path.exists(self.resfile),"Pst.res: self.resfile " +\ str(self.resfile) + " does not exist" else: self.resfile = self.filename.replace(".pst", ".res") if not os.path.exists(self.resfile): self.resfile = self.resfile.replace(".res", ".rei") if not os.path.exists(self.resfile): raise Exception("Pst.res: " + "could not residual file case.res" + " or case.rei") res = pst_utils.read_resfile(self.resfile) missing_bool = self.observation_data.obsnme.apply\ (lambda x: x not in res.name) missing = self.observation_data.obsnme[missing_bool] if missing.shape[0] > 0: raise Exception("Pst.res: the following observations " + "were not found in " + "{0}:{1}".format(self.resfile,','.join(missing))) self.__res = res return self.__res @property def nprior(self): """number of prior information equations Returns ------- nprior : int the number of prior info equations """ self.control_data.nprior = self.prior_information.shape[0] return self.control_data.nprior @property def nnz_obs(self): """ get the number of non-zero weighted observations Returns ------- nnz_obs : int the number of non-zeros weighted observations """ nnz = 0 for w in self.observation_data.weight: if w > 0.0: nnz += 1 return nnz @property def nobs(self): """get the number of observations Returns ------- nobs : int the number of observations """ self.control_data.nobs = self.observation_data.shape[0] return self.control_data.nobs @property def npar_adj(self): """get the number of adjustable parameters (not fixed or tied) Returns ------- npar_adj : int the number of adjustable parameters """ pass np = 0 for t in self.parameter_data.partrans: if t not in ["fixed", "tied"]: np += 1 return np @property def npar(self): """get number of parameters Returns ------- npar : int the number of parameters """ self.control_data.npar = self.parameter_data.shape[0] return self.control_data.npar @property def forecast_names(self): """get the forecast names from the pestpp options (if any). Returns None if no forecasts are named Returns ------- forecast_names : list a list of forecast names. """ if "forecasts" in self.pestpp_options.keys(): return self.pestpp_options["forecasts"].lower().split(',') elif "predictions" in self.pestpp_options.keys(): return self.pestpp_options["predictions"].lower().split(',') else: return None @property def obs_groups(self): """get the observation groups Returns ------- obs_groups : list a list of unique observation groups """ og = list(self.observation_data.groupby("obgnme").groups.keys()) #og = list(map(pst_utils.SFMT, og)) return og @property def nnz_obs_groups(self): """ get the observation groups that contain at least one non-zero weighted observation Returns ------- nnz_obs_groups : list a list of observation groups that contain at least one non-zero weighted observation """ og = [] obs = self.observation_data for g in self.obs_groups: if obs.loc[obs.obgnme==g,"weight"].sum() > 0.0: og.append(g) return og @property def par_groups(self): """get the parameter groups Returns ------- par_groups : list a list of parameter groups """ pass return list(self.parameter_data.groupby("pargp").groups.keys()) @property def prior_groups(self): """get the prior info groups Returns ------- prior_groups : list a list of prior information groups """ og = list(self.prior_information.groupby("obgnme").groups.keys()) #og = list(map(pst_utils.SFMT, og)) return og @property def prior_names(self): """ get the prior information names Returns ------- prior_names : list a list of prior information names """ return list(self.prior_information.groupby( self.prior_information.index).groups.keys()) @property def par_names(self): """get the parameter names Returns ------- par_names : list a list of parameter names """ return list(self.parameter_data.parnme.values) @property def adj_par_names(self): """ get the adjustable (not fixed or tied) parameter names Returns ------- adj_par_names : list list of adjustable (not fixed or tied) parameter names """ adj_names = [] for t,n in zip(self.parameter_data.partrans, self.parameter_data.parnme): if t.lower() not in ["tied","fixed"]: adj_names.append(n) return adj_names @property def obs_names(self): """get the observation names Returns ------- obs_names : list a list of observation names """ pass return list(self.observation_data.obsnme.values) @property def nnz_obs_names(self): """get the non-zero weight observation names Returns ------- nnz_obs_names : list a list of non-zero weighted observation names """ nz_names = [] for w,n in zip(self.observation_data.weight, self.observation_data.obsnme): if w > 0.0: nz_names.append(n) return nz_names @property def zero_weight_obs_names(self): """ get the zero-weighted observation names Returns ------- zero_weight_obs_names : list a list of zero-weighted observation names """ self.observation_data.index = self.observation_data.obsnme groups = self.observation_data.groupby( self.observation_data.weight.apply(lambda x: x==0.0)).groups if True in groups: return list(self.observation_data.loc[groups[True],"obsnme"]) else: return [] # @property # def regul_section(self): # phimlim = float(self.nnz_obs) # #sect = "* regularisation\n" # sect = "{0:15.6E} {1:15.6E}\n".format(phimlim, phimlim*1.15) # sect += "1.0 1.0e-10 1.0e10 linreg continue\n" # sect += "1.3 1.0e-2 1\n" # return sect @property def estimation(self): """ check if the control_data.pestmode is set to estimation Returns ------- estimation : bool True if pestmode is estmation, False otherwise """ if self.control_data.pestmode == "estimation": return True return False @staticmethod def _read_df(f,nrows,names,converters,defaults=None): """ a private method to read part of an open file into a pandas.DataFrame. Parameters ---------- f : file object nrows : int number of rows to read names : list names to set the columns of the dataframe with converters : dict dictionary of lambda functions to convert strings to numerical format defaults : dict dictionary of default values to assign columns. Default is None Returns ------- pandas.DataFrame : pandas.DataFrame """ seek_point = f.tell() df = pd.read_csv(f, header=None,names=names, nrows=nrows,delim_whitespace=True, converters=converters, index_col=False) # in case there was some extra junk at the end of the lines if df.shape[1] > len(names): df = df.iloc[:,len(names)] df.columns = names if defaults is not None: for name in names: df.loc[:,name] = df.loc[:,name].fillna(defaults[name]) elif np.any(
pd.isnull(df)
pandas.isnull
# -*- coding: utf-8 -*- """ =============================================================================== FINANCIAL IMPACT FILE =============================================================================== Most recent update: 21 January 2019 =============================================================================== Made by: <NAME> Copyright: <NAME>, 2018 For more information, please email: <EMAIL> =============================================================================== """ import numpy as np import pandas as pd import sys sys.path.insert(0, '/***YOUR LOCAL FILE PATH***/CLOVER 4.0/Scripts/Conversion scripts') from Conversion import Conversion class Finance(): def __init__(self): self.location = 'Bahraich' self.CLOVER_filepath = '/***YOUR LOCAL FILE PATH***/CLOVER 4.0' self.location_filepath = self.CLOVER_filepath + '/Locations/' + self.location self.location_inputs = pd.read_csv(self.location_filepath + '/Location Data/Location inputs.csv',header=None,index_col=0)[1] self.finance_filepath = self.location_filepath + '/Impact/Finance inputs.csv' self.finance_inputs = pd.read_csv(self.finance_filepath,header=None,index_col=0).round(decimals=3)[1] self.inverter_inputs = pd.read_csv(self.location_filepath + '/Load/Device load/yearly_load_statistics.csv',index_col=0) #%% #============================================================================== # EQUIPMENT EXPENDITURE (NOT DISCOUNTED) # Installation costs (not discounted) for new equipment installations #============================================================================== # PV array costs def get_PV_cost(self,PV_array_size,year=0): ''' Function: Calculates cost of PV Inputs: PV_array_size Capacity of PV being installed year Installation year Outputs: Undiscounted cost ''' PV_cost = PV_array_size * self.finance_inputs.loc['PV cost'] annual_reduction = 0.01 * self.finance_inputs.loc['PV cost decrease'] return PV_cost * (1.0 - annual_reduction)**year # PV balance of systems costs def get_BOS_cost(self,PV_array_size,year=0): ''' Function: Calculates cost of PV BOS Inputs: PV_array_size Capacity of PV being installed year Installation year Outputs: Undiscounted cost ''' BOS_cost = PV_array_size * self.finance_inputs.loc['BOS cost'] annual_reduction = 0.01 * self.finance_inputs.loc['BOS cost decrease'] return BOS_cost * (1.0 - annual_reduction)**year # Battery storage costs def get_storage_cost(self,storage_size,year=0): ''' Function: Calculates cost of battery storage Inputs: storage_size Capacity of battery storage being installed year Installation year Outputs: Undiscounted cost ''' storage_cost = storage_size * self.finance_inputs.loc['Storage cost'] annual_reduction = 0.01 * self.finance_inputs.loc['Storage cost decrease'] return storage_cost * (1.0 - annual_reduction)**year # Diesel generator costs def get_diesel_cost(self,diesel_size,year=0): ''' Function: Calculates cost of diesel generator Inputs: diesel_size Capacity of diesel generator being installed year Installation year Outputs: Undiscounted cost ''' diesel_cost = diesel_size * self.finance_inputs.loc['Diesel generator cost'] annual_reduction = 0.01 * self.finance_inputs.loc['Diesel generator cost decrease'] return diesel_cost * (1.0 - annual_reduction)**year # Installation costs def get_installation_cost(self,PV_array_size,diesel_size,year=0): ''' Function: Calculates cost of installation Inputs: PV_array_size Capacity of PV being installed diesel_size Capacity of diesel generator being installed year Installation year Outputs: Undiscounted cost ''' PV_installation = PV_array_size * self.finance_inputs.loc['PV installation cost'] annual_reduction_PV = 0.01 * self.finance_inputs.loc['PV installation cost decrease'] diesel_installation = diesel_size * self.finance_inputs.loc['Diesel installation cost'] annual_reduction_diesel = 0.01 * self.finance_inputs.loc['Diesel installation cost decrease'] return PV_installation * (1.0 - annual_reduction_PV)**year + diesel_installation * (1.0 - annual_reduction_diesel)**year # Miscellaneous costs def get_misc_costs(self,PV_array_size,diesel_size): ''' Function: Calculates cost of miscellaneous capacity-related costs Inputs: PV_array_size Capacity of PV being installed diesel_size Capacity of diesel generator being installed Outputs: Undiscounted cost ''' misc_costs = (PV_array_size + diesel_size) * self.finance_inputs.loc['Misc. costs'] return misc_costs # Total cost of newly installed equipment def get_total_equipment_cost(self,PV_array_size,storage_size,diesel_size,year=0): ''' Function: Calculates cost of all equipment costs Inputs: PV_array_size Capacity of PV being installed storage_size Capacity of battery storage being installed diesel_size Capacity of diesel generator being installed year Installation year Outputs: Undiscounted cost ''' PV_cost = self.get_PV_cost(PV_array_size,year) BOS_cost = self.get_BOS_cost(PV_array_size,year) storage_cost = self.get_storage_cost(storage_size,year) diesel_cost = self.get_diesel_cost(diesel_size,year) installation_cost = self.get_installation_cost(PV_array_size,diesel_size,year) misc_costs = self.get_misc_costs(PV_array_size,diesel_size) return PV_cost + BOS_cost + storage_cost + diesel_cost + installation_cost + misc_costs #%% #============================================================================== # EQUIPMENT EXPENDITURE (DISCOUNTED) # Find system equipment capital expenditure (discounted) for new equipment #============================================================================== def discounted_equipment_cost(self,PV_array_size,storage_size,diesel_size,year=0): ''' Function: Calculates cost of all equipment costs Inputs: PV_array_size Capacity of PV being installed storage_size Capacity of battery storage being installed diesel_size Capacity of diesel generator being installed year Installation year Outputs: Discounted cost ''' undiscounted_cost = self.get_total_equipment_cost(PV_array_size,storage_size,diesel_size,year) discount_fraction = (1.0 - self.finance_inputs.loc['Discount rate'])**year return undiscounted_cost * discount_fraction def get_connections_expenditure(self,households,year=0): ''' Function: Calculates cost of connecting households to the system Inputs: households DataFrame of households from Energy_System().simulation(...) year Installation year Outputs: Discounted cost ''' households = pd.DataFrame(households) connection_cost = self.finance_inputs.loc['Connection cost'] new_connections = np.max(households) - np.min(households) undiscounted_cost = float(connection_cost * new_connections) discount_fraction = (1.0 - self.finance_inputs.loc['Discount rate'])**year total_discounted_cost = undiscounted_cost * discount_fraction # Section in comments allows a more accurate consideration of the discounted # cost for new connections, but substantially increases the processing time. # new_connections = [0] # for t in range(int(households.shape[0])-1): # new_connections.append(households['Households'][t+1] - households['Households'][t]) # new_connections = pd.DataFrame(new_connections) # new_connections_daily = Conversion().hourly_profile_to_daily_sum(new_connections) # total_daily_cost = connection_cost * new_connections_daily # total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost # Grid extension components def get_grid_extension_cost(self,grid_extension_distance,year): ''' Function: Calculates cost of extending the grid network to a community Inputs: grid_extension_distance Distance to the existing grid network year Installation year Outputs: Discounted cost ''' grid_extension_cost = self.finance_inputs.loc['Grid extension cost'] # per km grid_infrastructure_cost = self.finance_inputs.loc['Grid infrastructure cost'] discount_fraction = (1.0 - self.finance_inputs.loc['Discount rate'])**year return grid_extension_distance * grid_extension_cost * discount_fraction + grid_infrastructure_cost #%% # ============================================================================= # EQUIPMENT EXPENDITURE (DISCOUNTED) ON INDEPENDENT EXPENDITURE # Find expenditure (discounted) on items independent of simulation periods # ============================================================================= def get_independent_expenditure(self,start_year,end_year): ''' Function: Calculates cost of equipment which is independent of simulation periods Inputs: start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' inverter_expenditure = self.get_inverter_expenditure(start_year,end_year) total_expenditure = inverter_expenditure # ... + other components as required return total_expenditure def get_inverter_expenditure(self,start_year,end_year): ''' Function: Calculates cost of inverters based on load calculations Inputs: start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' # Initialise inverter replacement periods replacement_period = int(self.finance_inputs.loc['Inverter lifetime']) system_lifetime = int(self.location_inputs['Years']) replacement_intervals = pd.DataFrame(np.arange(0,system_lifetime,replacement_period)) replacement_intervals.columns = ['Installation year'] # Check if inverter should be replaced in the specified time interval if replacement_intervals.loc[replacement_intervals['Installation year'].isin( range(start_year,end_year))].empty == True: inverter_discounted_cost = float(0.0) return inverter_discounted_cost # Initialise inverter sizing calculation max_power = [] inverter_step = float(self.finance_inputs.loc['Inverter size increment']) inverter_size = [] for i in range(len(replacement_intervals)): # Calculate maximum power in interval years start = replacement_intervals['Installation year'].iloc[i] end = start + replacement_period max_power_interval = self.inverter_inputs['Maximum'].iloc[start:end].max() max_power.append(max_power_interval) # Calculate resulting inverter size inverter_size_interval = np.ceil(0.001*max_power_interval / inverter_step) * inverter_step inverter_size.append(inverter_size_interval) inverter_size = pd.DataFrame(inverter_size) inverter_size.columns = ['Inverter size (kW)'] inverter_info = pd.concat([replacement_intervals,inverter_size],axis=1) # Calculate inverter_info['Discount rate'] = [(1 - self.finance_inputs.loc['Discount rate']) ** inverter_info['Installation year'].iloc[i] for i in range(len(inverter_info))] inverter_info['Inverter cost ($/kW)'] = [self.finance_inputs.loc['Inverter cost'] * (1 - 0.01*self.finance_inputs.loc['Inverter cost decrease']) **inverter_info['Installation year'].iloc[i] for i in range(len(inverter_info))] inverter_info['Discounted expenditure ($)'] = [inverter_info['Discount rate'].iloc[i] * inverter_info['Inverter size (kW)'].iloc[i] * inverter_info['Inverter cost ($/kW)'].iloc[i] for i in range(len(inverter_info))] inverter_discounted_cost = np.sum(inverter_info.loc[inverter_info['Installation year']. isin(np.array(range(start_year,end_year))) ]['Discounted expenditure ($)']).round(2) return inverter_discounted_cost #%% #============================================================================== # EXPENDITURE (DISCOUNTED) ON RUNNING COSTS # Find expenditure (discounted) incurred during the simulation period #============================================================================== def get_kerosene_expenditure(self,kerosene_lamps_in_use_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of kerosene usage Inputs: kerosene_lamps_in_use_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' kerosene_cost = kerosene_lamps_in_use_hourly * self.finance_inputs.loc['Kerosene cost'] total_daily_cost = Conversion().hourly_profile_to_daily_sum(kerosene_cost) total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost def get_kerosene_expenditure_mitigated(self,kerosene_lamps_mitigated_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of kerosene usage that has been avoided by using the system Inputs: kerosene_lamps_mitigated_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' kerosene_cost = kerosene_lamps_mitigated_hourly * self.finance_inputs.loc['Kerosene cost'] total_daily_cost = Conversion().hourly_profile_to_daily_sum(kerosene_cost) total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost def get_grid_expenditure(self,grid_energy_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of grid electricity used by the system Inputs: grid_energy_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' grid_cost = grid_energy_hourly * self.finance_inputs.loc['Grid cost'] total_daily_cost = Conversion().hourly_profile_to_daily_sum(grid_cost) total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost def get_diesel_fuel_expenditure(self,diesel_fuel_usage_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of diesel fuel used by the system Inputs: diesel_fuel_usage_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' diesel_fuel_usage_daily = Conversion().hourly_profile_to_daily_sum(diesel_fuel_usage_hourly) start_day = start_year * 365 end_day = end_year * 365 diesel_price_daily = [] original_diesel_price = self.finance_inputs.loc['Diesel fuel cost'] r_y = 0.01 * self.finance_inputs.loc['Diesel fuel cost decrease'] r_d = ((1.0 + r_y) ** (1.0/365.0)) - 1.0 for t in range(start_day,end_day): diesel_price = original_diesel_price * (1.0 - r_d)**t diesel_price_daily.append(diesel_price) diesel_price_daily = pd.DataFrame(diesel_price_daily) total_daily_cost = pd.DataFrame(diesel_fuel_usage_daily.values * diesel_price_daily.values) total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost #%% #============================================================================== # OPERATION AND MAINTENANCE EXPENDITURE (DISCOUNTED) # Find O&M costs (discounted) incurred during simulation #============================================================================== # PV O&M for entire PV array def get_PV_OM(self,PV_array_size,start_year=0,end_year=20): ''' Function: Calculates O&M cost of PV the simulation period Inputs: PV_array_size Capacity of PV installed start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' PV_OM_cost = PV_array_size * self.finance_inputs.loc['PV O&M'] # $ per year PV_OM_cost_daily = PV_OM_cost / 365.0 # $ per day total_daily_cost = pd.DataFrame([PV_OM_cost_daily]*(end_year-start_year)*365) return self.discounted_cost_total(total_daily_cost,start_year,end_year) # Storage O&M for entire storage system def get_storage_OM(self,storage_size,start_year=0,end_year=20): ''' Function: Calculates O&M cost of storage the simulation period Inputs: storage_size Capacity of battery storage installed start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' storage_OM_cost = storage_size * self.finance_inputs.loc['Storage O&M'] # $ per year storage_OM_cost_daily = storage_OM_cost / 365.0 # $ per day total_daily_cost = pd.DataFrame([storage_OM_cost_daily]*(end_year-start_year)*365) return self.discounted_cost_total(total_daily_cost,start_year,end_year) # Diesel O&M for entire diesel genset def get_diesel_OM(self,diesel_size,start_year=0,end_year=20): ''' Function: Calculates O&M cost of diesel generation the simulation period Inputs: diesel_size Capacity of diesel generator installed start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' diesel_OM_cost = diesel_size * self.finance_inputs.loc['Diesel O&M'] # $ per year diesel_OM_cost_daily = diesel_OM_cost / 365.0 # $ per day total_daily_cost =
pd.DataFrame([diesel_OM_cost_daily]*(end_year-start_year)*365)
pandas.DataFrame
import streamlit as st import pandas as pd import datetime import altair as alt now = datetime.datetime.now() def curva_activos_recuperados(f_inicio,f_termino): df = obtener_datos() data = pd.DataFrame(data=df) data = data.groupby(['Fecha']).sum() return data.loc[str(f_inicio):str(f_termino)] def obtener_datos(): url = 'https://raw.githubusercontent.com/MinCiencia/Datos-COVID19/master/output/producto46/activos_vs_recuperados.csv' return
pd.read_csv(url,header=0,names=['Fecha','Activos','Recuperados'])
pandas.read_csv
# Passed arguments: # $1 - The input database file. Used for subsetting the master precomputed one # $2 - A file (path) which to write as a subset of master database # $3 - The folder where to look for a precomputed database # $4 - The database name to gather the _all and _one files # $5 - A file (path) which to write as a subset of "one" database. So we gather # the organisms that have only one 16S in their genome # Import linraries import pandas as pd import sys import os def process_dataframe(file): ''' Returns processed dataframe from standard csv file, as downloaded from NCBI The dataframe contains two colums Code and Organism Code is a filename, as the last /string in GenBank FTP field Organism is an organism name, as name + strains, if strain is not listed in name. ''' #Need to properly display all names. If less - strings are incomplete pd.options.display.max_colwidth = 100 df = pd.read_csv(file) #Make tmp dataframe with splited GenBank FNT field df1 = df["GenBank FTP"].str.split(pat = '/') #Make new dataframe to append to df_clean = pd.DataFrame(columns = ['Code', 'Organism']) i = 0 for row in df1.iteritems(): #Checks if information in strain field is already in name field, #If not, concatenate name and atrin fileds if df['#Organism Name'].iloc[i].split(' ')[-1] == str(str(df['Strain'].iloc[i]).split(' ')[-1]): name = df['#Organism Name'].iloc[i] else: name = df['#Organism Name'].iloc[i] +' '+str(df['Strain'].iloc[i]).replace("/",'_') #Appends information to clean dataframe df_clean = df_clean.append(pd.Series([row[-1][-1], name], index = df_clean.columns), ignore_index = True) i+=1 return df_clean def check_two_dataframes(master, subset): ''' Compare to dataframes - master one (compare to) and subset one (which to compare). The master dataframe should contain 'Organism' column. The subset is a csv from Genbank, organisms from which are going to be renamed and checked with the master 'Organism' column ''' cleaned_subset = [name.replace(' ', '_').replace('/', '_').replace(':', '_')\ .replace(';', '_').replace(',', '_').replace('[','').replace(']','') \ for name in list(subset['Organism'])] subset_final = master[master.Names.isin(cleaned_subset)] return subset_final # Read master dataframe files and subset one master_csv =
pd.read_csv(sys.argv[3]+"/" +sys.argv[4]+"_all.csv")
pandas.read_csv
from typing import Optional import numpy as np import pandas as pd import pytest from pandas import testing as pdt from rle_array.autoconversion import auto_convert_to_rle, decompress from rle_array.dtype import RLEDtype pytestmark = pytest.mark.filterwarnings("ignore:performance") @pytest.mark.parametrize( "orig, threshold, expected", [ ( # orig pd.DataFrame( { "int64": pd.Series([1], dtype=np.int64), "int32": pd.Series([1], dtype=np.int32), "uint64": pd.Series([1], dtype=np.uint64), "float64": pd.Series([1.2], dtype=np.float64), "bool": pd.Series([True], dtype=np.bool_), "object": pd.Series(["foo"], dtype=np.object_), "datetime64": pd.Series( [pd.Timestamp("2020-01-01")], dtype="datetime64[ns]" ), } ), # threshold None, # expected pd.DataFrame( { "int64": pd.Series([1], dtype=RLEDtype(np.int64)), "int32": pd.Series([1], dtype=RLEDtype(np.int32)), "uint64": pd.Series([1], dtype=RLEDtype(np.uint64)), "float64": pd.Series([1.2], dtype=RLEDtype(np.float64)), "bool": pd.Series([True], dtype=RLEDtype(np.bool_)), "object": pd.Series(["foo"]).astype(RLEDtype(np.object_)), "datetime64": pd.Series( [pd.Timestamp("2020-01-01")], dtype="datetime64[ns]" ), } ), ), ( # orig pd.DataFrame( { "int64": pd.Series([1], dtype=np.int64), "int32": pd.Series([1], dtype=np.int32), "uint64": pd.Series([1], dtype=np.uint64), "float64": pd.Series([1.2], dtype=np.float64), "bool": pd.Series([True], dtype=np.bool_), "object": pd.Series(["foo"], dtype=np.object_), "datetime64": pd.Series( [pd.Timestamp("2020-01-01")], dtype="datetime64[ns]" ), } ), # threshold 2.0, # expected pd.DataFrame( { "int64": pd.Series([1], dtype=RLEDtype(np.int64)), "int32": pd.Series([1], dtype=np.int32), "uint64": pd.Series([1], dtype=RLEDtype(np.uint64)), "float64": pd.Series([1.2], dtype=RLEDtype(np.float64)), "bool": pd.Series([True], dtype=np.bool_), "object": pd.Series(["foo"]).astype(RLEDtype(np.object_)), "datetime64": pd.Series( [pd.Timestamp("2020-01-01")], dtype="datetime64[ns]" ), } ), ), ( # orig pd.DataFrame( { "single_value": pd.Series([1, 1, 1, 1, 1, 1], dtype=np.int64), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series([1, 2, 3, 4, 5, 6], dtype=np.int64), } ), # threshold None, # expected pd.DataFrame( { "single_value": pd.Series( [1, 1, 1, 1, 1, 1], dtype=RLEDtype(np.int64) ), "two_values": pd.Series( [1, 1, 1, 2, 2, 2], dtype=RLEDtype(np.int64) ), "increasing": pd.Series( [1, 2, 3, 4, 5, 6], dtype=RLEDtype(np.int64) ), } ), ), ( # orig pd.DataFrame( { "single_value": pd.Series([1, 1, 1, 1, 1, 1], dtype=np.int64), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series([1, 2, 3, 4, 5, 6], dtype=np.int64), } ), # threshold 0.9, # expected pd.DataFrame( { "single_value": pd.Series( [1, 1, 1, 1, 1, 1], dtype=RLEDtype(np.int64) ), "two_values": pd.Series( [1, 1, 1, 2, 2, 2], dtype=RLEDtype(np.int64) ), "increasing": pd.Series([1, 2, 3, 4, 5, 6], dtype=np.int64), } ), ), ( # orig pd.DataFrame( { "single_value": pd.Series([1, 1, 1, 1, 1, 1], dtype=np.int64), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series([1, 2, 3, 4, 5, 6], dtype=np.int64), } ), # threshold 0.5, # expected pd.DataFrame( { "single_value": pd.Series( [1, 1, 1, 1, 1, 1], dtype=RLEDtype(np.int64) ), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series([1, 2, 3, 4, 5, 6], dtype=np.int64), } ), ), ( # orig pd.DataFrame( { "single_value": pd.Series([1, 1, 1, 1, 1, 1], dtype=np.int64), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series([1, 2, 3, 4, 5, 6], dtype=np.int64), } ), # threshold 0.0, # expected pd.DataFrame( { "single_value": pd.Series([1, 1, 1, 1, 1, 1], dtype=np.int64), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series([1, 2, 3, 4, 5, 6], dtype=np.int64), } ), ), ( # orig pd.DataFrame({"x": pd.Series([], dtype=np.int64)}), # threshold 0.0, # expected pd.DataFrame({"x": pd.Series([], dtype=np.int64)}), ), ( # orig pd.DataFrame({"x": pd.Series([], dtype=np.int64)}), # threshold 0.1, # expected pd.DataFrame({"x": pd.Series([], dtype=RLEDtype(np.int64))}), ), ( # orig pd.DataFrame( { "single_value": pd.Series([1, 1, 1, 1, 1, 1], dtype=np.int64), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series( [1, 2, 3, 4, 5, 6], dtype=RLEDtype(np.int64) ), } ), # threshold 0.5, # expected pd.DataFrame( { "single_value": pd.Series( [1, 1, 1, 1, 1, 1], dtype=RLEDtype(np.int64) ), "two_values": pd.Series([1, 1, 1, 2, 2, 2], dtype=np.int64), "increasing": pd.Series( [1, 2, 3, 4, 5, 6], dtype=RLEDtype(np.int64) ), } ), ), ( # orig pd.DataFrame({"x": pd.Series(range(10), dtype=np.int64)}), # threshold 1.0, # expected pd.DataFrame({"x": pd.Series(range(10), dtype=np.int64)}), ), ( # orig pd.DataFrame(), # threshold None, # expected pd.DataFrame(), ), ], ) @pytest.mark.filterwarnings("ignore:.*would use a DatetimeBlock:UserWarning") def test_auto_convert_to_rle_ok( orig: pd.DataFrame, threshold: Optional[float], expected: pd.DataFrame ) -> None: actual = auto_convert_to_rle(orig, threshold) pdt.assert_frame_equal(actual, expected) def test_datetime_warns() -> None: df = pd.DataFrame( { "i1": pd.Series([1], dtype=np.int64), "d1": pd.Series([pd.Timestamp("2020-01-01")], dtype="datetime64[ns]"), "i2": pd.Series([1], dtype=np.int64), "d2": pd.Series([pd.Timestamp("2020-01-01")], dtype="datetime64[ns]"), } ) with pytest.warns(None) as record: auto_convert_to_rle(df, 0.5) assert len(record) == 2 assert ( str(record[0].message) == "Column d1 would use a DatetimeBlock and can currently not be RLE compressed." ) assert ( str(record[1].message) == "Column d2 would use a DatetimeBlock and can currently not be RLE compressed." ) def test_auto_convert_to_rle_threshold_out_of_range() -> None: df = pd.DataFrame({"x": [1]}) with pytest.raises(ValueError, match=r"threshold \(-0.1\) must be non-negative"): auto_convert_to_rle(df, -0.1) @pytest.mark.parametrize( "orig, expected", [ ( # orig pd.DataFrame( { "int64": pd.Series([1], dtype=RLEDtype(np.int64)), "int32": pd.Series([1], dtype=RLEDtype(np.int32)), "uint64": pd.Series([1], dtype=RLEDtype(np.uint64)), "float64": pd.Series([1.2], dtype=RLEDtype(np.float64)), "bool": pd.Series([True], dtype=RLEDtype(np.bool_)), "object": pd.Series(["foo"]).astype(RLEDtype(np.object_)), "datetime64": pd.Series( [pd.Timestamp("2020-01-01")], dtype="datetime64[ns]" ), } ), # expected pd.DataFrame( { "int64": pd.Series([1], dtype=np.int64), "int32": pd.Series([1], dtype=np.int32), "uint64": pd.Series([1], dtype=np.uint64), "float64": pd.Series([1.2], dtype=np.float64), "bool": pd.Series([True], dtype=np.bool_), "object": pd.Series(["foo"], dtype=np.object_), "datetime64": pd.Series( [pd.Timestamp("2020-01-01")], dtype="datetime64[ns]" ), } ), ), ( # orig pd.DataFrame( { "int64": pd.Series([1], dtype=np.int64), "int32": pd.Series([1], dtype=np.int32), "uint64": pd.Series([1], dtype=np.uint64), "float64": pd.Series([1.2], dtype=np.float64), "bool": pd.Series([True], dtype=np.bool_), "object": pd.Series(["foo"], dtype=np.object_), "datetime64": pd.Series( [pd.Timestamp("2020-01-01")], dtype="datetime64[ns]" ), } ), # expected pd.DataFrame( { "int64": pd.Series([1], dtype=np.int64), "int32": pd.Series([1], dtype=np.int32), "uint64": pd.Series([1], dtype=np.uint64), "float64": pd.Series([1.2], dtype=np.float64), "bool": pd.Series([True], dtype=np.bool_), "object": pd.Series(["foo"], dtype=np.object_), "datetime64": pd.Series( [
pd.Timestamp("2020-01-01")
pandas.Timestamp
import pandas as pd import numpy as np from sklearn import impute data = { 'size': ['XL','L','M', np.nan ,'M','M'], 'color': ['red','green','blue','green','red','green'], 'gender': ['female','male', np.nan,'female','female','male'],'price': [ 199.0 , 89.0, np.nan,129.0, 79.0, 89.0], 'weight': [ 500,450,300, np.nan, 410,np.nan ], 'bought': ['yes','no','yes','no','yes','no'] } df =
pd.DataFrame(data)
pandas.DataFrame
import logging from collections import defaultdict from concurrent.futures import ThreadPoolExecutor from dataclasses import dataclass from decimal import Decimal from functools import cached_property from pathlib import Path from typing import Dict, List, Tuple, Union import pandas as pd from brownie import Contract, chain, convert, multicall, web3 from joblib.parallel import Parallel, delayed from pandas import DataFrame from pandas.core.tools.datetimes import DatetimeScalar from pony.orm import OperationalError, db_session from rich import print from rich.progress import track from web3._utils.abi import filter_by_name from web3._utils.events import construct_event_topic_set from yearn.events import decode_logs, get_logs_asap from yearn.exceptions import UnsupportedNetwork from yearn.multicall2 import batch_call from yearn.networks import Network from yearn.partners.charts import make_partner_charts from yearn.partners.constants import OPEX_COST, get_tier from yearn.prices import magic from yearn.utils import contract, contract_creation_block, get_block_timestamp from yearn.v2.registry import Registry from yearn.v2.vaults import Vault try: from yearn.entities import PartnerHarvestEvent from yearn.outputs.postgres.utils import cache_address USE_POSTGRES_CACHE = True except OperationalError as e: if "Is the server running on that host and accepting TCP/IP connections?" in str(e): USE_POSTGRES_CACHE = False else: raise logger = logging.getLogger(__name__) def get_timestamps(blocks: Tuple[int,...]) -> DatetimeScalar: data = Parallel(10, 'threading')( delayed(get_block_timestamp)(block) for block in blocks ) return pd.to_datetime([x * 1e9 for x in data]) def get_protocol_fees(address: str, start_block: int = None) -> Dict[int,Decimal]: """ Get all protocol fee payouts for a given vault. Fees can be found as vault share transfers to the rewards address. """ vault = Vault.from_address(address) rewards = vault.vault.rewards() topics = construct_event_topic_set( filter_by_name('Transfer', vault.vault.abi)[0], web3.codec, {'sender': address, 'receiver': rewards}, ) logs = decode_logs(get_logs_asap(address, topics, from_block=start_block)) return {log.block_number: Decimal(log['value']) / Decimal(vault.scale) for log in logs} @dataclass class Wrapper: def __init__(self, name: str, vault: str, wrapper: str) -> None: self.name = name self.vault = convert.to_address(vault) self.wrapper = convert.to_address(wrapper) @db_session def read_cache(self) -> DataFrame: entities = PartnerHarvestEvent.select(lambda e: e.vault == self.vault and e.wrapper.address == self.wrapper and e.wrapper.chainid == chain.id)[:] cache = [ { 'block': e.block, 'timestamp': pd.to_datetime(e.timestamp,unit='s'), 'balance': e.balance, 'total_supply': e.total_supply, 'vault_price': e.vault_price, 'balance_usd': e.balance_usd, 'share': e.share, 'payout_base': e.payout_base, 'protocol_fee': e.protocol_fee, 'wrapper': e.wrapper.address, 'vault': e.vault, } for e in entities ] return DataFrame(cache) def protocol_fees(self, start_block: int = None) -> Dict[int,Decimal]: return get_protocol_fees(self.vault, start_block=start_block) def balances(self, blocks: Tuple[int,...]) -> List[Decimal]: vault = Vault.from_address(self.vault) balances = batch_call( [[vault.vault, 'balanceOf', self.wrapper, block] for block in blocks] ) return [Decimal(balance) / Decimal(vault.scale) for balance in balances] def total_supplies(self, blocks: Tuple[int,...]) -> List[Decimal]: vault = Vault.from_address(self.vault) supplies = batch_call([[vault.vault, 'totalSupply', block] for block in blocks]) return [Decimal(supply) / Decimal(vault.scale) for supply in supplies] def vault_prices(self, blocks: Tuple[int,...]) -> List[Decimal]: prices = Parallel(10, 'threading')( delayed(magic.get_price)(self.vault, block=block) for block in blocks ) return [Decimal(price) for price in prices] class BentoboxWrapper(Wrapper): """ Use BentoBox deposits by wrapper. """ def balances(self, blocks) -> List[Decimal]: bentobox = contract('0xF5BCE5077908a1b7370B9ae04AdC565EBd643966') vault = Vault.from_address(self.vault) balances = batch_call( [ [bentobox, 'balanceOf', self.vault, self.wrapper, block] for block in blocks ] ) return [Decimal(balance or 0) / Decimal(vault.scale) for balance in balances] @dataclass class WildcardWrapper: """ Automatically find and generate all valid (wrapper, vault) pairs. """ name: str wrapper: Union[str, List[str]] # can unpack multiple wrappers def unwrap(self) -> List[Wrapper]: registry = Registry() wrappers = [self.wrapper] if isinstance(self.wrapper, str) else self.wrapper topics = construct_event_topic_set( filter_by_name('Transfer', registry.vaults[0].vault.abi)[0], web3.codec, {'receiver': wrappers}, ) addresses = [str(vault.vault) for vault in registry.vaults] from_block = min(ThreadPoolExecutor().map(contract_creation_block, addresses)) # wrapper -> {vaults} deposits = defaultdict(set) for log in decode_logs(get_logs_asap(addresses, topics, from_block)): deposits[log['receiver']].add(log.address) return [ Wrapper(name=vault.name, vault=str(vault.vault), wrapper=wrapper) for wrapper in wrappers for vault in registry.vaults if str(vault.vault) in deposits[wrapper] ] @dataclass class YApeSwapFactoryWrapper(WildcardWrapper): name: str wrapper: str def unwrap(self) -> List[Wrapper]: factory = contract(self.wrapper) with multicall: pairs = [factory.allPairs(i) for i in range(factory.allPairsLength())] ratios = [Contract(pair).farmingRatio() for pair in pairs] # pools with ratio.min > 0 deploy to yearn vaults farming = [str(pair) for pair, ratio in zip(pairs, ratios) if ratio['min'] > 0] return WildcardWrapper(self.name, farming).unwrap() class GearboxWrapper(Wrapper): """ Use Gearbox CAs as wrappers. """ def balances(self, blocks) -> List[Decimal]: GearboxAccountFactory = contract(self.wrapper) vault = Vault.from_address(self.vault) with multicall: CAs = [GearboxAccountFactory.creditAccounts(i) for i in range(GearboxAccountFactory.countCreditAccounts())] balances = [] for block in blocks: balances_at_block = batch_call( [ [ vault.vault, 'balanceOf', ca, block ] for ca in CAs ] ) tvl = sum(balance / Decimal(vault.scale) for balance in balances_at_block) balances.append(tvl) return balances @dataclass class Partner: name: str wrappers: List[Wrapper] treasury: str = None @cached_property def flat_wrappers(self) -> List[Wrapper]: # unwrap wildcard wrappers to a flat list flat_wrappers = [] for wrapper in self.wrappers: if isinstance(wrapper, Wrapper): flat_wrappers.append(wrapper) elif isinstance(wrapper, WildcardWrapper): flat_wrappers.extend(wrapper.unwrap()) return flat_wrappers def process(self, use_postgres_cache: bool = USE_POSTGRES_CACHE) -> Tuple[DataFrame,DataFrame]: # snapshot wrapper share at each harvest wrappers = [] for wrapper in track(self.flat_wrappers, self.name): if use_postgres_cache: cache = wrapper.read_cache() try: max_cached_block = int(cache['block'].max()) start_block = max_cached_block + 1 logger.debug(f'{self.name} {wrapper.name} is cached thru block {max_cached_block}') except KeyError: start_block = None logger.debug(f'no harvests cached for {self.name} {wrapper.name}') logger.debug(f'start block: {start_block}') else: start_block = None protocol_fees = wrapper.protocol_fees(start_block=start_block) try: blocks, protocol_fees = zip(*protocol_fees.items()) wrap = DataFrame( { 'block': blocks, 'timestamp': get_timestamps(blocks), 'protocol_fee': protocol_fees, 'balance': wrapper.balances(blocks), 'total_supply': wrapper.total_supplies(blocks), 'vault_price': wrapper.vault_prices(blocks), } ) wrap['balance_usd'] = wrap.balance * wrap.vault_price wrap['share'] = wrap.balance / wrap.total_supply wrap['payout_base'] = wrap.share * wrap.protocol_fee * Decimal(1 - OPEX_COST) wrap['protocol_fee'] = wrap.protocol_fee wrap['wrapper'] = wrapper.wrapper wrap['vault'] = wrapper.vault except ValueError as e: if str(e) != 'not enough values to unpack (expected 2, got 0)': raise wrap =
DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ml_package_code.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1slXIOwuXRSfAQpsAAsGs1DIkqMU3hHYZ """ import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from keras.utils import to_categorical from sklearn.impute import SimpleImputer from keras.models import Sequential from keras.layers import Dense import seaborn as sns import matplotlib.pyplot as plt def read_dataset(param): y_var = param[1] path = param[0] ind = param[2] if ind ==' ': df = pd.read_csv(path) y = df[y_var] x = df.drop(columns=y_var) print(df.head()) return df,x,y else: df = pd.read_csv(path,index_col=ind) y = df[y_var] x = df.drop(columns=y_var) print(df.head()) return df,x,y def one_hot(x,y,cat=False,exc=False,onlyoutcome=False,onlyx=False): if cat =='~': for j in x.columns: onehot = pd.get_dummies(x[j],prefix=j) x = x.drop(columns=[j]) x = pd.concat([x,onehot],axis=1) y = pd.get_dummies(y) return x,y elif exc == True: col = x.columns col1 = list(col) for i in cat: col1.remove(i) for j in col1: onehot = pd.get_dummies(x[j],prefix=j) x = x.drop(columns=[j]) x = pd.concat([x,onehot],axis=1) y = pd.get_dummies(y) return x,y elif onlyoutcome == True: y =
pd.get_dummies(y)
pandas.get_dummies
import pandas as pd import glob from pathlib import Path class DataProcessor: def __init__(self): pass def write_data(self, save_file): """Write processed data to directory.""" self.data.to_pickle(save_file) class GameLogProcessor(DataProcessor): def read_data(self, input_filepath): """Read raw data into DataProcessor.""" game_logs = Path(input_filepath) / 'gl1871_2020' all_files = glob.glob(str(game_logs / "GL201*.TXT")) header_file = Path(input_filepath) / 'game_log_header.csv' fields = pd.read_csv(header_file) li = [] for filename in all_files: df = pd.read_csv(filename, header=None, names=fields.columns) li.append(df) df = pd.concat(li, axis=0, ignore_index=True) self.data = df def process_data(self, stable=True): """Process raw data into useful files for model.""" self.data['GAME_ID'] = self.data['HomeTeam'] + \ self.data['Date'].map(str) + \ self.data['DoubleHeader'].map(str) self.data['Date'] = pd.to_datetime(self.data['Date'], format='%Y%m%d') self.data['year'] = self.data.Date.dt.year class EventsProcessor(DataProcessor): def read_data(self, input_filepath): """Read raw data into DataProcessor.""" header_file = Path(input_filepath) / 'fields.csv' all_files = glob.glob(str(Path(input_filepath) / "Event201*.txt")) fields = pd.read_csv(header_file) header = fields['Header'].to_numpy() li = [] for filename in all_files: year = int(filename[-8:-4]) df = pd.read_csv(filename, header=None, names=header, low_memory=False) df['year'] = year li.append(df) df =
pd.concat(li, axis=0, ignore_index=True)
pandas.concat
import pandas as pd import numpy as np import datetime from contextlib import contextmanager from xbbg import const, pipeline from xbbg.io import logs, files, storage from xbbg.core import utils, conn, process def bsrch(tickers, flds, domain, variables, **kwargs): logger = logs.get_logger(bdp, **kwargs) service = conn.bbg_service(service='//blp/exrsvc', **kwargs) request = service.createRequest("ExcelGetGridRequest") request.set("Domain", domain) overrides = request.getElement("Overrides") for key, value in variables.items(): override1 = overrides.appendElement() override1.setElement("name", key) override1.setElement("value", value) process.init_request(request=request, tickers=tickers, flds=flds, **kwargs) logger.debug(f'Sending request to Bloomberg ...\n{request}') conn.send_request(request=request, **kwargs) res = pd.DataFrame(process.rec_events(func=process.process_ref)) if kwargs.get('raw', False): return res if res.empty or any(fld not in res for fld in ['ticker', 'field']): return pd.DataFrame() col_maps = kwargs.get('col_maps', None) cols = res.field.unique() return ( res .set_index(['ticker', 'field']) .unstack(level=1) .rename_axis(index=None, columns=[None, None]) .droplevel(axis=1, level=0) .loc[:, cols] .pipe(pipeline.standard_cols, col_maps=col_maps) ) def bdp(tickers, flds, **kwargs) -> pd.DataFrame: """ Bloomberg reference data Args: tickers: tickers flds: fields to query **kwargs: Bloomberg overrides Returns: pd.DataFrame """ logger = logs.get_logger(bdp, **kwargs) if isinstance(tickers, str): tickers = [tickers] if isinstance(flds, str): flds = [flds] service = conn.bbg_service(service='//blp/refdata', **kwargs) request = service.createRequest('ReferenceDataRequest') process.init_request(request=request, tickers=tickers, flds=flds, **kwargs) logger.debug(f'Sending request to Bloomberg ...\n{request}') conn.send_request(request=request, **kwargs) res = pd.DataFrame(process.rec_events(func=process.process_ref)) if kwargs.get('raw', False): return res if res.empty or any(fld not in res for fld in ['ticker', 'field']): return pd.DataFrame() col_maps = kwargs.get('col_maps', None) cols = res.field.unique() return ( res .set_index(['ticker', 'field']) .unstack(level=1) .rename_axis(index=None, columns=[None, None]) .droplevel(axis=1, level=0) .loc[:, cols] .pipe(pipeline.standard_cols, col_maps=col_maps) ) def bds(tickers, flds, **kwargs) -> pd.DataFrame: """ Bloomberg block data Args: tickers: ticker(s) flds: field **kwargs: other overrides for query Returns: pd.DataFrame: block data """ logger = logs.get_logger(bds, **kwargs) service = conn.bbg_service(service='//blp/refdata', **kwargs) request = service.createRequest('ReferenceDataRequest') if isinstance(tickers, str): data_file = storage.ref_file( ticker=tickers, fld=flds, has_date=True, ext='pkl', **kwargs ) if files.exists(data_file): logger.debug(f'Loading Bloomberg data from: {data_file}') return pd.DataFrame(pd.read_pickle(data_file)) process.init_request(request=request, tickers=tickers, flds=flds, **kwargs) logger.debug(f'Sending request to Bloomberg ...\n{request}') conn.send_request(request=request, **kwargs) res = pd.DataFrame(process.rec_events(func=process.process_ref)) if kwargs.get('raw', False): return res if res.empty or any(fld not in res for fld in ['ticker', 'field']): return pd.DataFrame() data = ( res .set_index(['ticker', 'field']) .droplevel(axis=0, level=1) .rename_axis(index=None) .pipe(pipeline.standard_cols, col_maps=kwargs.get('col_maps', None)) ) if data_file: logger.debug(f'Saving Bloomberg data to: {data_file}') files.create_folder(data_file, is_file=True) data.to_pickle(data_file) return data else: return pd.DataFrame(pd.concat([ bds(tickers=ticker, flds=flds, **kwargs) for ticker in tickers ], sort=False)) def bdh( tickers, flds=None, start_date=None, end_date='today', adjust=None, **kwargs ) -> pd.DataFrame: """ Bloomberg historical data Args: tickers: ticker(s) flds: field(s) start_date: start date end_date: end date - default today adjust: `all`, `dvd`, `normal`, `abn` (=abnormal), `split`, `-` or None exact match of above words will adjust for corresponding events Case 0: `-` no adjustment for dividend or split Case 1: `dvd` or `normal|abn` will adjust for all dividends except splits Case 2: `adjust` will adjust for splits and ignore all dividends Case 3: `all` == `dvd|split` == adjust for all Case 4: None == Bloomberg default OR use kwargs **kwargs: overrides Returns: pd.DataFrame """ logger = logs.get_logger(bdh, **kwargs) if flds is None: flds = ['Last_Price'] e_dt = utils.fmt_dt(end_date, fmt='%Y%m%d') if start_date is None: start_date = pd.Timestamp(e_dt) - pd.Timedelta(weeks=8) s_dt = utils.fmt_dt(start_date, fmt='%Y%m%d') service = conn.bbg_service(service='//blp/refdata', **kwargs) request = service.createRequest('HistoricalDataRequest') process.init_request( request=request, tickers=tickers, flds=flds, start_date=s_dt, end_date=e_dt, adjust=adjust, **kwargs ) logger.debug(f'Sending request to Bloomberg ...\n{request}') conn.send_request(request=request, **kwargs) res = pd.DataFrame(process.rec_events(process.process_hist)) if kwargs.get('raw', False): return res if res.empty or any(fld not in res for fld in ['ticker', 'date']): return pd.DataFrame() return ( res .set_index(['ticker', 'date']) .unstack(level=0) .rename_axis(index=None, columns=[None, None]) .swaplevel(0, 1, axis=1) ) def bdib( ticker: str, dt, session='allday', typ='TRADE', **kwargs ) -> pd.DataFrame: """ Bloomberg intraday bar data Args: ticker: ticker name dt: date to download session: [allday, day, am, pm, pre, post] typ: [TRADE, BID, ASK, BID_BEST, ASK_BEST, BEST_BID, BEST_ASK] **kwargs: batch: whether is batch process to download data log: level of logs Returns: pd.DataFrame """ from xbbg.core import missing logger = logs.get_logger(bdib, **kwargs) exch = const.exch_info(ticker=ticker) if exch.empty: raise KeyError(f'Cannot find exchange info for {ticker}') ss_rng = process.time_range(dt=dt, ticker=ticker, session=session, tz=exch.tz) data_file = storage.bar_file(ticker=ticker, dt=dt, typ=typ) if files.exists(data_file) and kwargs.get('cache', True) \ and (not kwargs.get('reload', False)): res = ( pd.read_parquet(data_file) .pipe(pipeline.add_ticker, ticker=ticker) .loc[ss_rng[0]:ss_rng[1]] ) if not res.empty: logger.debug(f'Loading Bloomberg intraday data from: {data_file}') return res t_1 = pd.Timestamp('today').date() - pd.Timedelta('1D') whole_day = pd.Timestamp(dt).date() < t_1 batch = kwargs.pop('batch', False) if (not whole_day) and batch: logger.warning(f'Querying date {t_1} is too close, ignoring download ...') return pd.DataFrame() cur_dt = pd.Timestamp(dt).strftime('%Y-%m-%d') info_log = f'{ticker} / {cur_dt} / {typ}' q_tckr = ticker if exch.get('is_fut', False): if 'freq' not in exch: logger.error(f'[freq] missing in info for {info_log} ...') is_sprd = exch.get('has_sprd', False) and (len(ticker[:-1]) != exch['tickers'][0]) if not is_sprd: q_tckr = fut_ticker(gen_ticker=ticker, dt=dt, freq=exch['freq']) if q_tckr == '': logger.error(f'cannot find futures ticker for {ticker} ...') return pd.DataFrame() info_log = f'{q_tckr} / {cur_dt} / {typ}' miss_kw = dict(ticker=ticker, dt=dt, typ=typ, func='bdib') cur_miss = missing.current_missing(**miss_kw) if cur_miss >= 2: if batch: return pd.DataFrame() logger.info(f'{cur_miss} trials with no data {info_log}') return
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas._libs.tslibs.period import IncompatibleFrequency import pandas as pd import pandas._testing as tm from pandas.core.arrays import PeriodArray, period_array @pytest.mark.parametrize( "data, freq, expected", [ ([pd.Period("2017", "D")], None, [17167]), ([pd.Period("2017", "D")], "D", [17167]), ([2017], "D", [17167]), (["2017"], "D", [17167]), ([
pd.Period("2017", "D")
pandas.Period
import ipyvuetify as v import pandas as pd from ipywidgets import Output from matplotlib import pyplot as plt from component import parameter as cp class LayerFull(v.Layout): COLORS = cp.gradient(5) + ['grey'] def __init__(self, layer_name, values, aoi_names, colors): # read the layer list and find the layer information based on the layer name layer_list = pd.read_csv(cp.layer_list).fillna('') layer_row = layer_list[layer_list.layer_name == layer_name] if len(layer_row) != 1: raise IndexError(f"The layer {layer_name} is not part of the existing layers of the application. Please contact our maintainer.") # build the internal details details = v.ExpansionPanels(xs12=True, class_="mt-3", children= [ v.ExpansionPanel(children = [ v.ExpansionPanelHeader(children=['Details'], expand_icon='mdi-help-circle-outline', disable_icon_rotate=True), v.ExpansionPanelContent(children=[layer_row.layer_info.values[0]]) ]) ]) # create a title with the layer name title = v.Html(class_="mt-2 mb-2", xs12= True, tag="h3", children=[f'{layer_name} ({layer_row.unit.values[0]})']) # taken from https://stackoverflow.com/questions/579310/formatting-long-numbers-as-strings-in-python def human_format(num, round_to=2): magnitude = 0 while abs(num) >= 1000: magnitude += 1 num = round(num / 1000.0, round_to) return '{:.{}f}{}'.format(round(num, round_to), round_to, ['', 'K', 'M', 'G', 'T', 'P'][magnitude]) # create a matplotlib stack horizontal bar chart chart = Output() with chart: # change pyplot style plt.style.use('dark_background') # create the chart fig, ax = plt.subplots(figsize=[50, len(values)*2], facecolor=((0,0,0,0))) # set the datas max_value = max(values) norm_values = [v/max_value*100 for v in reversed(values)] human_values = [f"{human_format(val)}" for val in reversed(values)] colors = [colors[i-1] if i else v.theme.themes.dark.primary for i in range(len(values))][::-1] # add the axes ax.barh(aoi_names, norm_values, color=colors) # add the text for i, (norm, name, val, color) in enumerate(zip(norm_values, aoi_names, human_values, colors)): ax.text(norm+1, i, val, fontsize=40, color=color) # cosmetic tuning ax.set_xlim(0, 110) ax.tick_params(axis='y', which='major', pad=30, labelsize=40, left=False) ax.tick_params(axis='x', bottom=False, labelbottom=False) ax.set_frame_on(False) plt.show() super().__init__( class_ = "ma-5", row=True, children=[ v.Flex(xs12=True, children = [title]), v.Flex(xs12=True, children=[chart]), v.Flex(xs12=True, children=[details]) ] ) class LayerPercentage(v.Layout): def __init__(self, layer_name, pcts, colors): # read the layer list and find the layer information based on the layer name layer_list =
pd.read_csv(cp.layer_list)
pandas.read_csv
import base64 import io import pandas as pd from dash import html def check_non_default_index(df): if not ((type(df.index) == pd.RangeIndex) and (df.index.name is None)): return True else: return False def numeric_cols_in_df(df): numeric_cols = ~ df.apply(lambda s: pd.to_numeric(s, errors='coerce').isna().all()) return numeric_cols def datetime_strcols_in_df(df, return_numeric_cols=False): numeric_cols = numeric_cols_in_df(df) datetime_strcols = ~ df.loc[:, ~numeric_cols].apply(lambda s: pd.to_datetime(s, errors='coerce').isna().all()) datetime_strcols = (~ numeric_cols ) & datetime_strcols if return_numeric_cols: return datetime_strcols, numeric_cols else: return datetime_strcols def monotonic_cols_in_df(df): monotonic_cols = df.apply(lambda s: s.is_monotonic) return monotonic_cols def find_closest(value, df, colname, return_lower='True'): if check_non_default_index(df): df = df.reset_index() exactmatch = df[df[colname] == value] if not exactmatch.empty: return exactmatch.index[0] elif return_lower: lowerneighbour_ind = df[df[colname] < value][colname].idxmax() return lowerneighbour_ind else: upperneighbour_ind = df[df[colname] > value][colname].idxmin() return upperneighbour_ind def convert_to_numeric_datetime(df): datetime_strcols, numeric_cols = datetime_strcols_in_df(df, return_numeric_cols=True) numeric_colnames = numeric_cols[numeric_cols].index datetime_strcolnames = datetime_strcols[datetime_strcols].index df[numeric_colnames] = df[numeric_colnames].apply(lambda s:
pd.to_numeric(s, errors='coerce')
pandas.to_numeric
import pandas as pd import logging as log import collections import re import random class dprep(pd.DataFrame): df =
pd.DataFrame(index=[""], columns=[""])
pandas.DataFrame
import pandas as pd import glob import numpy as np from pandas_profiling import ProfileReport from fuzzywuzzy import fuzz from fuzzywuzzy import process # Loading HERA data path = r'./hera/' # use your path USE_COLS = ['ISO_3', 'DATE', 'REGION', 'CONTAMINES', 'DECES', 'GUERIS', 'CONTAMINES_FEMME', 'CONTAMINES_HOMME', 'CONTAMINES_GENRE_NON_SPECIFIE'] all_files = glob.glob(path + "/*.csv") li = [] for filename in all_files: df = pd.read_csv(filename, index_col=None, header=0, delimiter=";", usecols=USE_COLS) li.append(df) frame = pd.concat(li, axis=0, ignore_index=True) # Loading Africa Admin Level 1 boundaries FILE_LOCATION = "africa_admin1.csv" admin = pd.read_csv(FILE_LOCATION, delimiter=",") admin = admin.rename(columns={'parent_cod': 'ISO_3'}) # Loading COVID19za data FILE_LOCATION_ZA_CASES = "./covid19za/covid19za_provincial_cumulative_timeline_confirmed.csv" FILE_LOCATION_ZA_DEATHS = "./covid19za/covid19za_provincial_cumulative_timeline_deaths.csv" FILE_LOCATION_ZA_RECOVERIES = "./covid19za/covid19za_provincial_cumulative_timeline_recoveries.csv" cases_za = pd.read_csv(FILE_LOCATION_ZA_CASES, delimiter=",", low_memory=False) deaths_za =
pd.read_csv(FILE_LOCATION_ZA_DEATHS, delimiter=",", low_memory=False)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 15 19:43:26 2021 @author: llothar """ from sens_tape import tape import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.style.use(['science','no-latex']) data = pd.read_csv('f9ad.csv') drops = ['Unnamed: 0', 'Unnamed: 0.1', 'RHX_RT unitless', 'Pass Name unitless', 'nameWellbore', 'name','RGX_RT unitless', 'MWD Continuous Azimuth dega'] dfs = data.iloc[2000:10000] index = 'Measured Depth m' target = 'MWD Continuous Inclination dega', fig, axs = plt.subplots(1, 2, sharey=True, figsize=(8,3)) index_dr = np.diff(dfs[index]) index_mean = np.mean(index_dr) index_std = np.std(index_dr) index_maxgap = np.max(index_dr) h = 5 x = np.arange(np.min(dfs[index].to_numpy()), np.max(dfs[index].to_numpy()), index_maxgap*h) from sklearn.neighbors import RadiusNeighborsRegressor # raw = dfs['MWD Continuous Inclination dega'].interpolate().ffill().bfill().to_numpy() # reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) # y = reg.predict(x.reshape(-1,1)) # plt.xlim(650,700) # plt.plot(x,y) # plt.plot(dfs[index].to_numpy(),raw) # plt.show() reg = RadiusNeighborsRegressor(radius=index_maxgap*1, weights='uniform') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[0].plot(x,y, c='blue', linewidth=1, label='r = 1 max step', linestyle="-") reg = RadiusNeighborsRegressor(radius=index_maxgap*20, weights='uniform') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[0].plot(x,y, c='black', linewidth=1, label='r = 20 max step', linestyle="-") reg = RadiusNeighborsRegressor(radius=index_maxgap*100, weights='uniform') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[0].plot(x,y, c='black', linewidth=1, label='r = 100 max step', linestyle="--") raw_x = dfs[index].to_numpy() axs[0].plot(raw_x,raw, c='red', linestyle=':', label='raw data') axs[0].grid() plt.tight_layout() axs[0].set_xlim(650,690) plt.ylim(0,60) axs[0].legend() axs[0].set_title('Uniform weight') axs[0].set_ylabel('Rate of Penetration [m/h]') axs[0].set_xlabel('Measured Depth [m]') reg = RadiusNeighborsRegressor(radius=index_maxgap*1, weights='distance') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[1].plot(x,y, c='blue', linewidth=1, label='r = 1 max step', linestyle="-") reg = RadiusNeighborsRegressor(radius=index_maxgap*20, weights='distance') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[1].plot(x,y, c='black', linewidth=1, label='r = 20 max step', linestyle="-") reg = RadiusNeighborsRegressor(radius=index_maxgap*100, weights='distance') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[1].plot(x,y, c='black', linewidth=1, label='r = 100 max step', linestyle="--") raw_x = dfs[index].to_numpy() axs[1].plot(raw_x,raw, c='red', linestyle=':', label='raw data') axs[1].grid() plt.tight_layout() axs[1].set_xlim(650,690) plt.ylim(0,60) axs[1].legend() axs[1].set_title('Distance weight') axs[1].set_xlabel('Measured Depth [m]') plt.savefig('resampling_radius_rnr.pdf') plt.show() #%% data = pd.read_csv('f9ad.csv') drops = ['Unnamed: 0', 'Unnamed: 0.1', 'RHX_RT unitless', 'Pass Name unitless', 'nameWellbore', 'name','RGX_RT unitless', 'MWD Continuous Azimuth dega'] dfs = data.iloc[2000:10000] index = 'Measured Depth m' target = 'MWD Continuous Inclination dega', fig, axs = plt.subplots(1, 2, sharey=True, figsize=(8,3)) index_dr = np.diff(dfs[index]) index_mean = np.mean(index_dr) index_std = np.std(index_dr) index_maxgap = np.max(index_dr) h = 5 x = np.arange(np.min(dfs[index].to_numpy()), np.max(dfs[index].to_numpy()), index_maxgap*h) from sklearn.neighbors import KNeighborsRegressor # raw = dfs['MWD Continuous Inclination dega'].interpolate().ffill().bfill().to_numpy() # reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) # y = reg.predict(x.reshape(-1,1)) # plt.xlim(650,700) # plt.plot(x,y) # plt.plot(dfs[index].to_numpy(),raw) # plt.show() reg = KNeighborsRegressor(n_neighbors=1, weights='uniform') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[0].plot(x,y, c='blue', linewidth=1, label='K = 1', linestyle="-") reg = KNeighborsRegressor(n_neighbors=20, weights='uniform') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[0].plot(x,y, c='black', linewidth=1, label='K = 20', linestyle="-") reg = KNeighborsRegressor(n_neighbors=100, weights='uniform') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[0].plot(x,y, c='black', linewidth=1, label='K = 100', linestyle="--") raw_x = dfs[index].to_numpy() axs[0].plot(raw_x,raw, c='red', linestyle=':', label='raw data') axs[0].grid() plt.tight_layout() axs[0].set_xlim(650,690) plt.ylim(0,60) axs[0].legend() axs[0].set_title('Uniform weight') axs[0].set_ylabel('Rate of Penetration [m/h]') axs[0].set_xlabel('Measured Depth [m]') reg = KNeighborsRegressor(n_neighbors=1, weights='distance') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[1].plot(x,y, c='blue', linewidth=1, label='K = 1', linestyle="-") reg = KNeighborsRegressor(n_neighbors=20, weights='distance') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[1].plot(x,y, c='black', linewidth=1, label='K = 20', linestyle="-") reg = KNeighborsRegressor(n_neighbors=100, weights='distance') raw = dfs['Rate of Penetration m/h'].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) y = reg.predict(x.reshape(-1,1)) axs[1].plot(x,y, c='black', linewidth=1, label='K = 100', linestyle="--") raw_x = dfs[index].to_numpy() axs[1].plot(raw_x,raw, c='red', linestyle=':', label='raw data') axs[1].grid() plt.tight_layout() axs[1].set_xlim(650,690) plt.ylim(0,60) axs[1].legend() axs[1].set_title('Distance weight') axs[1].set_xlabel('Measured Depth [m]') plt.savefig('resampling_radius_knn.pdf') plt.show() #%% from shapely.geometry import Polygon from shapely.geometry import LineString from shapely.ops import unary_union from shapely.ops import unary_union, polygonize data = pd.read_csv('f9ad.csv') drops = ['Unnamed: 0', 'Pass Name unitless', 'MWD Magnetic Toolface dega', 'nameWellbore', 'name', 'IMP/ARC Attenuation Conductivity 40-in. at 2 MHz mS/m', 'ARC Annular Pressure kPa', 'MWD Collar RPM rpm', 'IMP/ARC Non-BHcorr Phase-Shift Resistivity 28-in. at 2 MHz ohm.m', 'IMP/ARC Phase-Shift Conductivity 40-in. at 2 MHz mS/m', 'Annular Temperature degC', 'IMP/ARC Non-BHcorr Phase-Shift Resistivity 40-in. at 2 MHz ohm.m', 'ARC Gamma Ray (BH corrected) gAPI', 'IMP/ARC Non-BHcorr Attenuation Resistivity 40-in. at 2 MHz ohm.m', 'MWD Stick-Slip PKtoPK RPM rpm', 'IMP/ARC Non-BHcorr Attenuation Resistivity 28-in. at 2 MHz ohm.m', 'IMP/ARC Phase-Shift Conductivity 28-in. at 2 MHz mS/m' ] data = data.drop(drops, axis=1) dfs = data.iloc[2000:10000] index = 'Measured Depth m' target = 'Rate of Penetration m/h' #'MWD Continuous Inclination dega' index_dr = np.diff(dfs[index]) index_mean = np.mean(index_dr) index_std = np.std(index_dr) index_maxgap = np.max(index_dr) h = 5 data_x = np.arange(np.min(dfs[index].to_numpy()), np.max(dfs[index].to_numpy()), index_maxgap*h) #%% for target in list(data): # try: areas = [] samples = np.arange(1,200,10) weightss = ['uniform', 'distance'] for weights in weightss: areas = [] for i in samples: reg = RadiusNeighborsRegressor(radius=index_maxgap*i, weights=weights) raw = dfs[target].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) data_y = reg.predict(data_x.reshape(-1,1)) x_y_curve1 = np.rot90([data_x,data_y]) x_y_curve2 = np.rot90([dfs[index].to_numpy(), raw]) polygon_points = [] #creates a empty list where we will append the points to create the polygon for xyvalue in x_y_curve1: polygon_points.append([xyvalue[0],xyvalue[1]]) #append all xy points for curve 1 for xyvalue in x_y_curve2[::-1]: polygon_points.append([xyvalue[0],xyvalue[1]]) #append all xy points for curve 2 in the reverse order (from last point to first point) for xyvalue in x_y_curve1[0:1]: polygon_points.append([xyvalue[0],xyvalue[1]]) #append the first point in curve 1 again, to it "closes" the polygon polygon = Polygon(polygon_points) area = polygon.area x,y = polygon.exterior.xy # original data ls = LineString(np.c_[x, y]) # closed, non-simple lr = LineString(ls.coords[:] + ls.coords[0:1]) lr.is_simple # False mls = unary_union(lr) mls.geom_type # MultiLineString' Area_cal =[] for polygon in polygonize(mls): Area_cal.append(polygon.area) Area_poly = (np.asarray(Area_cal).sum()) areas.append(Area_poly) plt.plot(samples,areas, label=f'RNR, {weights}') from sklearn.neighbors import KNeighborsRegressor ks = np.arange(1,200,10) for weights in weightss: areas = [] for i in ks: reg = KNeighborsRegressor(n_neighbors=i, weights=weights) raw = dfs[target].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) data_y = reg.predict(data_x.reshape(-1,1)) x_y_curve1 = np.rot90([data_x,data_y]) x_y_curve2 = np.rot90([dfs[index].to_numpy(), raw]) polygon_points = [] #creates a empty list where we will append the points to create the polygon for xyvalue in x_y_curve1: polygon_points.append([xyvalue[0],xyvalue[1]]) #append all xy points for curve 1 for xyvalue in x_y_curve2[::-1]: polygon_points.append([xyvalue[0],xyvalue[1]]) #append all xy points for curve 2 in the reverse order (from last point to first point) for xyvalue in x_y_curve1[0:1]: polygon_points.append([xyvalue[0],xyvalue[1]]) #append the first point in curve 1 again, to it "closes" the polygon polygon = Polygon(polygon_points) area = polygon.area x,y = polygon.exterior.xy # original data ls = LineString(np.c_[x, y]) # closed, non-simple lr = LineString(ls.coords[:] + ls.coords[0:1]) lr.is_simple # False mls = unary_union(lr) mls.geom_type # MultiLineString' Area_cal =[] for polygon in polygonize(mls): Area_cal.append(polygon.area) Area_poly = (np.asarray(Area_cal).sum()) areas.append(Area_poly) plt.plot(ks,areas, label=f'KNN, {weights}') plt.legend() plt.title(target) plt.grid() plt.show() # except: # print(f'{target} failed for some reason') #%% # no poly version def myr2(x,y,data_x, data_y): try: x1 = np.max(data_x[data_x < x]) x2 = np.min(data_x[data_x > x]) loc1 = np.where(data_x == x1) loc2 = np.where(data_x == x2) y1 = data_y[loc1][-1] y2 = data_y[loc2][0] m = (y1-y2)/(x1-x2) b = (x1*y2 - x2*y1)/(x1-x2) y_inter = m * x + b return np.power(y-y_inter, 2) except: return 0 n = 0 for target in list(data): # try: plt.figure(figsize=(5,5)) areas = [] samples = np.arange(1,31,1) weightss = ['uniform', 'distance'] for weights in weightss: areas = [] for i in samples: reg = RadiusNeighborsRegressor(radius=index_maxgap*i, weights=weights) raw = dfs[target].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) data_y = reg.predict(data_x.reshape(-1,1)) totals = [] for row in np.rot90([data_x,data_y]): x = row[0] y = row[1] totals.append(myr2(x,y,dfs[index].to_numpy(), raw)) Area_poly = np.power((np.sum(totals)/len(totals)),0.5) areas.append(Area_poly) plt.plot(samples,areas, label=f'RNR, {weights}') from sklearn.neighbors import KNeighborsRegressor ks = np.arange(1,31,1) for weights in weightss: areas = [] for i in ks: reg = KNeighborsRegressor(n_neighbors=i, weights=weights) raw = dfs[target].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) data_y = reg.predict(data_x.reshape(-1,1)) totals = [] for row in np.rot90([data_x,data_y]): x = row[0] y = row[1] totals.append(myr2(x,y,dfs[index].to_numpy(), raw)) Area_poly = np.power((np.sum(totals)/len(totals)),0.5) areas.append(Area_poly) plt.plot(ks,areas, label=f'KNN, {weights}') plt.xlabel('K \ radius multiplier') plt.ylabel('Error [RMS]') plt.legend() plt.title(target) plt.grid() plt.yscale('log') plt.savefig(f'{n}.pdf') n += 1 plt.show() # except: # print(f'{target} failed for some reason') #%% # no poly version, Riemann squared def myr2multi(x_start, y_start, x_stop, y_stop, data_x, data_y, res): try: loc_results = [] x_range = np.linspace(x_start, x_stop, res+1)[:-1] y_range = np.linspace(y_start, y_stop, res+1)[:-1] for i in range(res): x = x_range[i] y = y_range[i] x1 = np.max(data_x[data_x <= x]) x2 = np.min(data_x[data_x > x]) loc1 = np.where(data_x == x1) loc2 = np.where(data_x == x2) y1 = data_y[loc1][-1] y2 = data_y[loc2][0] m = (y1-y2)/(x1-x2) b = (x1*y2 - x2*y1)/(x1-x2) y_inter = m * x + b loc_results.append(np.power(y-y_inter, 2)) return loc_results except: return 0 print('oops') n = 0 res = 10 global_results = [] colors = ['red', 'green', 'blue', 'black'] linestyles = ['-','--', '-.', ':'] for target in list(data): # try: c = 0 local_result = [[],[],[],[]] plt.figure(figsize=(4,4)) areas = [] samples = np.arange(1,31,1) weightss = ['uniform', 'distance'] plotno = 0 for weights in weightss: areas = [] for i in samples: reg = RadiusNeighborsRegressor(radius=index_maxgap*i, weights=weights) raw = dfs[target].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) data_y = reg.predict(data_x.reshape(-1,1)) totals = [] newdata = np.rot90([data_x,data_y]) for i in range(1,len(newdata)): x_start = newdata[i-1][0] y_start = newdata[i-1][1] x_stop = newdata[i][0] y_stop = newdata[i][1] result = myr2multi(x_start, y_start, x_stop, y_stop, dfs[index].to_numpy(), raw, res) totals.append(result) # added /np.mean(raw) totals = np.asarray(totals) Area_poly = np.power((np.sum(totals)/totals.size),0.5) areas.append(Area_poly) plt.plot(samples,areas, label=f'RNR\n{weights}', c = colors[c], linestyle = linestyles[c],linewidth=1.5 ) c += 1 local_result[plotno] = areas plotno += 1 from sklearn.neighbors import KNeighborsRegressor ks = np.arange(1,31,1) for weights in weightss: areas = [] for i in ks: reg = KNeighborsRegressor(n_neighbors=i, weights=weights) raw = dfs[target].interpolate().ffill().bfill().to_numpy() reg.fit(dfs[index].to_numpy().reshape(-1,1),raw) data_y = reg.predict(data_x.reshape(-1,1)) totals = [] newdata = np.rot90([data_x,data_y]) for i in range(1,len(newdata)): x_start = newdata[i-1][0] y_start = newdata[i-1][1] x_stop = newdata[i][0] y_stop = newdata[i][1] totals.append(myr2multi(x_start, y_start, x_stop, y_stop, dfs[index].to_numpy(), raw, res)) totals = np.asarray(totals) Area_poly = np.power((np.sum(totals)/totals.size),0.5) areas.append(Area_poly) plt.plot(ks,areas, label=f'KNN\n{weights}', c = colors[c], linestyle = linestyles[c],linewidth=1.5 ) c += 1 local_result[plotno] = areas plotno += 1 local_result = local_result/np.min(local_result) global_results.append(local_result) plt.xlabel('neigbor count / radius multiplier') plt.ylabel('error [RMRS]') plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') plt.title(target) plt.grid() plt.yscale('log') plt.savefig(f'multi_{n}.pdf') n += 1 plt.show() plt.plot(local_result[0]) plt.plot(local_result[1]) plt.plot(local_result[2]) plt.plot(local_result[3]) plt.show() # except: # print(f'{target} failed for some reason') np.save('global_results.npy', global_results) #%% global_results = np.load('global_results.npy') plt.figure(figsize=(4,4)) global_results = np.asarray(global_results) methods_plot = [ 'RNR\nuniform', 'RNR\ndistance', 'KNN\nuniform', 'KNN\ndistance' ] colors = ['red', 'green', 'blue', 'black'] linestyles = ['-','--', '-.', ':'] for i in range(4): plt.plot(np.nanmean(global_results[:,i,:], axis=0), label=methods_plot[i], c=colors[i], linewidth=1.5, linestyle = linestyles[i]) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') plt.yscale('log') ymax = 3.1 plt.yticks(np.arange(1,ymax,0.2), np.arange(100,ymax*100,20).astype(int)) plt.grid() plt.xlabel('neighbor count / radius multiplier') plt.ylabel('RMRS error compared\nto best selection [%]') plt.ylim(1,3) plt.xticks(np.arange(-1,31,5), np.arange(0,32,5)) plt.savefig('algocompare.pdf') #%% plt.figure(figsize=(5,4)) plt.rc('axes', axisbelow=True) plt.grid(linewidth=1, color='gray') x = np.arange(1,101,1) y = 1/x import matplotlib cmap = matplotlib.cm.get_cmap('hsv') n = 15 for i in range(n+1): for j in range(i): if i == n: plt.bar(x=i, height=y[j]/np.sum(y[:i]), bottom=np.sum(y[:j])/np.sum(y[:i]), color = cmap(j/(n+1)), label=f'd = {j+1}', edgecolor='black') else: plt.bar(x=i, height=y[j]/np.sum(y[:i]), bottom=np.sum(y[:j])/np.sum(y[:i]), color = cmap(j/(n+2)), edgecolor='black') plt.xlim(0,n+1) plt.xticks(np.arange(1,n+1,1), rotation=90) plt.yticks(np.linspace(0,1,11), np.linspace(0,100,11).astype(int)) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') plt.xlabel('Radius Neighbour Regressor radius limit') plt.ylabel('Datapoint weights, percent') plt.tight_layout() #plt.grid() plt.savefig('Cumulative weights.pdf') #%% plt.figure(figsize=(5,4)) plt.rc('axes', axisbelow=True) plt.grid(linewidth=1, color='gray') x = np.ones(100) y = x import matplotlib cmap = matplotlib.cm.get_cmap('hsv') n = 15 for i in range(n+1): for j in range(i): if i == n: plt.bar(x=i, height=y[j]/np.sum(y[:i]), bottom=np.sum(y[:j])/np.sum(y[:i]), color = cmap(j/(n+1)), label=f'd = {j+1}', edgecolor='black') else: plt.bar(x=i, height=y[j]/np.sum(y[:i]), bottom=np.sum(y[:j])/np.sum(y[:i]), color = cmap(j/(n+2)), edgecolor='black') plt.xlim(0,n+1) plt.xticks(np.arange(1,n+1,1), rotation=90) plt.yticks(np.linspace(0,1,11), np.linspace(0,100,11).astype(int)) plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') plt.xlabel('Radius Neighbour Regressor radius limit') plt.ylabel('Datapoint weights, percent') plt.tight_layout() plt.savefig('Cumulative weights2.pdf') #%% import glob filelist = (glob.glob("full_log*.npy")) data_array = [] for file in filelist: data = np.load(file, allow_pickle=True) if len(data) > 0: data_array.append(data) data = np.vstack(data_array) plt.figure(figsize=(4,2.5)) df = pd.DataFrame(data=data, columns=["method", "n", "param"]) df['n'] = df['n'].astype(int) methods = ['KNN uniform', 'KNN distance', 'RNR uniform', 'RNR distance'] ns = np.arange(1,11,1) ms = np.arange(0,4,1) summary = [] for m in ms: for n in ns: dft = df[df['method'] == methods[m]] dft = dft[dft['n'] == n] summary.append([m,n,len(dft)]) summary = np.asarray(summary) methods_plot = ['KNN\nuniform', 'KNN\ndistance', 'RNR\nuniform', 'RNR\ndistance'] scaler = 1.5 plt.scatter(x=summary[:,1], y=summary[:,0], s=summary[:,2]*scaler, c='steelblue') plt.xticks(ns) plt.yticks(ms, methods_plot) sizes = np.arange(100,401,100) sizes = np.hstack((1,sizes)) for s in sizes: plt.scatter([],[],s=s*scaler, c='steelblue', label=f'{s}\n ') plt.legend(title='winner count', bbox_to_anchor=(1.0, 1), loc='upper left') plt.xlabel('Neighbor count / Radius multiplier') #%% import glob filelist = (glob.glob("simann*.npy")) data_array = [] for file in filelist: data = np.load(file, allow_pickle=True) if len(data) > 0: data_array.append(data) data = np.vstack(data_array) plt.figure(figsize=(4,2.5)) df =
pd.DataFrame(data=data, columns=["method", "n", "param"])
pandas.DataFrame
#Import semua modul yang diperlukan import json import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st #------------------------------------------- #Open file f = open("kode_negara_lengkap.json") file_json = json.load(f) df_csv =
pd.read_csv("produksi_minyak_mentah.csv")
pandas.read_csv
import numpy as np import pandas as pd import datetime as dt from datetime import datetime import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func, inspect from flask import Flask, jsonify, request def toDate(dateString): return dt.datetime.strptime(dateString, "%Y-%m-%d").date() ################################################# # Database Setup ################################################# engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) print(Base.classes.keys()) # Save reference to the table # Assign the measurement class to a variable called `Measurement` Measurement = Base.classes.measurement # Assign the station class to a variable called `Station` Station = Base.classes.station ################################################# # Flask Setup ################################################# app = Flask(__name__) ################################################# # Flask Routes ################################################# @app.route("/") def welcome(): """List all available api routes.""" return ( f"Available Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/YYYY-MM-DD (trip start date - enter any date before 2017-08-23)<br/>" f"/api/v1.0/YYYY-MM-DD (trip start date)/YYYY-MM-DD (trip end date)<br/>" ) @app.route("/api/v1.0/precipitation") def precipitation(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all dates and precipitations""" # Query all passengers results = session.query(Measurement.date, Measurement.prcp).order_by(Measurement.date.desc()).all() session.close() # Convert list of tuples into normal list prcp_list = list(np.ravel(results)) print(len(prcp_list)) # Create a dictionary from normal list all_prcp = [] for date, prcp in results: prcp_dict = {} prcp_dict["date"] = date prcp_dict["prcp"] = prcp all_prcp.append(prcp_dict) return jsonify(all_prcp) @app.route("/api/v1.0/stations") def stations(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all stations""" # Query all stations results = session.query(Measurement.station, func.avg(Measurement.tobs))\ .group_by(Measurement.station)\ .order_by(Measurement.station).all() session.close() # Convert list of tuples into normal list stations = list(np.ravel(results)) # Create a dictionary from normal list all_stations = [] for station, avg_temp in stations: stations_dict = {} stations_dict["station"] = station all_stations.append(stations_dict) return jsonify(all_stations) @app.route("/api/v1.0/tobs") def tobs(): # Create our session (link) from Python to the DB session = Session(engine) results_last_date = session.query(Measurement.date, Measurement.prcp)\ .order_by(Measurement.date.desc()).first() last_date =
pd.to_datetime(results_last_date[0])
pandas.to_datetime
import pandas as pd import matplotlib.pyplot as plt import matplotlib.animation as animation from typing import List class Animator: def __init__( self, pred_df: pd.DataFrame, actual_df: pd.DataFrame, animation_interval: int, number_of_plots: int, pairs: List[str], ops_freq: int, ): self._animation_interval = animation_interval self._number_of_plots = number_of_plots self._fig = plt.figure() self._pred_df = pred_df self._actual_df = actual_df self._batch_size = f"{ops_freq}T" self._pairs = pairs self._generate_pair_df_plot_dict() plt.show(block=False) def _generate_pair_df_plot_dict(self): self._plots = {} for i, pair in enumerate(self._pairs): self._plots[pair] = self._fig.add_subplot( len(self._pairs), 1, i + 1, ylabel=pair ) def animate(self, i): for pair in self._pairs: actual = self._actual_df[self._actual_df["pair"] == pair] actual["datetime"] = pd.to_datetime(actual["ts"], unit="s") actual = actual.set_index("datetime").resample(self._batch_size).mean() pred = self._pred_df[self._pred_df["pair"] == pair] pred["datetime"] =
pd.to_datetime(pred["ts"], unit="s")
pandas.to_datetime
import argparse import os import warnings import subprocess subprocess.call(['pip', 'install', 'sagemaker-experiments']) import pandas as pd import numpy as np import tarfile from smexperiments.tracker import Tracker from sklearn.externals import joblib from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.compose import make_column_transformer from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) columns = ["status","duration","credit_history","purpose","amount","savings","employment_duration","installment_rate","personal_status_sex","other_debtors","present_residence","property","age","other_installment_plans","housing","number_credits","job","people_liable","telephone","foreign_worker","credit_risk"] if __name__=='__main__': # Read the arguments passed to the script. parser = argparse.ArgumentParser() parser.add_argument('--train-test-split-ratio', type=float, default=0.3) args, _ = parser.parse_known_args() # Tracking specific parameter value during job. tracker = Tracker.load() tracker.log_parameter('train-test-split-ratio', args.train_test_split_ratio) print('Received arguments {}'.format(args)) # Read input data into a Pandas dataframe. input_data_path = os.path.join('/opt/ml/processing/input', 'SouthGermanCredit.txt') print('Reading input data from {}'.format(input_data_path)) df =
pd.read_csv(input_data_path,names=columns,header=0,sep=r' ')
pandas.read_csv