prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import sys, math, sqlite3 import datetime, time, requests import numpy as np import matplotlib.pyplot as plt import pandas as pd from math import sqrt from sklearn.metrics import mean_squared_error from sklearn.preprocessing import MinMaxScaler # import os; os.environ['KERAS_BACKEND'] = 'theano' from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.models import load_model def getKlines(symbol, interval="1d", startTime=None, endTime=None, limit=30): url = "https://api.binance.com/api/v3/klines?symbol="+symbol+"&interval="+interval if startTime: url += "&startTime="+str(startTime) if endTime: url += "&endTime="+str(endTime) r_json = requests.get(url+"&limit="+str(limit)) print("The current weight is : "+str(r_json.headers['X-MBX-USED-WEIGHT'])) if r_json.status_code == 429 or r_json.status_code == 418: print("Weight limit of the API excedeed with code"+str(r_json.status_code)) sys.exit() if r_json.status_code != 200: print("Exiting because of unhandled status code from http header:") print("Status Code : "+str(r_json.status_code)) sys.exit() return r_json.json() # make a one-step forecast def forecast_lstm(model, batch_size, X): X = X.reshape(1, 1, len(X)) yhat = model.predict(X, batch_size=batch_size) return yhat[0,0] # inverse scaling for a forecasted value def invert_scale(scaler, X, value): new_row = [x for x in X] + [value] array = np.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] # scale train and test data to [-1, 1] def scale(train, test): # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # transform test if test.size > 0: test = test.reshape(test.shape[0], test.shape[1]) test_scaled = scaler.transform(test) else: test_scaled = [] return scaler, train_scaled, test_scaled def fit_lstm(train, batch_size, nb_epoch, neurons, loadedModel=None): X, y = train[:, 0:-1], train[:, -1] X = X.reshape(X.shape[0], 1, X.shape[1]) model = loadedModel if not loadedModel: model = Sequential() model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False) model.reset_states() return model # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # create a differenced series def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return pd.Series(diff) # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = pd.DataFrame(data) columns = [df.shift(i) for i in range(1, lag+1)] columns.append(df) df =
pd.concat(columns, axis=1)
pandas.concat
from __future__ import annotations import math import re from decimal import Decimal, ROUND_HALF_UP from dateutil.parser._parser import ParserError from typing import Dict, Hashable, Union import json import numpy import pandas from pandas import Series from .utils import to_utf8_bytes from .errors import InvalidRedshiftType Dtype = Union[str, "RedshiftType"] DtypeArg = Union[Dtype, Dict[Hashable, Dtype]] _TYPE_REGEX = re.compile(r"^([a-zA-Z0-9 ]*)(\(([0-9, ]*?)\))?$") def get_redshift_type(type_str): m = _TYPE_REGEX.match(type_str) if not m: raise InvalidRedshiftType( "Redshift type not found for '{}'".format(type_str) ) type_name = m.group(1) type_args = m.group(3) type_name = type_name.upper().strip() type_dict = { "SMALLINT": SmallInt, "INT2": SmallInt, "INTEGER": Integer, "INT": Integer, "INT4": Integer, "BIGINT": BigInt, "INT8": BigInt, "DECIMAL": Numeric, "NUMERIC": Numeric, "REAL": Real, "FLOAT4": Real, "DOUBLE PRECISION": DoublePrecision, "FLOAT8": DoublePrecision, "FLOAT": DoublePrecision, "BOOLEAN": Boolean, "BOOL": Boolean, "CHAR": Char, "CHARACTER": Char, "NCHAR": Char, "BPCHAR": BPChar, "VARCHAR": VarChar, "CHARACTER VARYING": VarChar, "NVARCHAR": VarChar, "TEXT": Text, "DATE": Date, "TIMESTAMP": TimeStamp, "TIMESTAMP WITHOUT TIME ZONE": TimeStamp, "TIMESTAMPTZ": TimeStampTz, "TIMESTAMP WITH TIME ZONE": TimeStampTz, "TIME": Time, "TIME WITHOUT TIME ZONE": Time, "TIMETZ": TimeTz, "TIME WITH TIME ZONE": TimeTz, "GEOMETRY": Geometry, "SUPER": Super, } if type_name not in type_dict: raise InvalidRedshiftType( "Redshift type not found for '{}'".format(type_str) ) redshift_type = type_dict[type_name] if type_args: type_args = [int(elm.strip()) for elm in type_args.split(",")] else: type_args = [] return redshift_type(*type_args) class RedshiftType(object): """An abstracttype for Redshift types. Each type has encoder and decoder. Methods ------- encode : Encode objects stored in a column for pandas.DataFrame to ``str``-typed notations for Redshift DMLs. decode : Map raw values from Redshift Data API to the proper type, for ease of dealing. """ _ESCAPES = [ ("\\", "\\\\"), ("'", "\\'"), ("\n", "\\n"), ("\t", "\\t"), ("\b", "\\b"), ("\f", "\\f"), ] def _check(self, text, ubytes): pass def _encode_text(self, text): if pandas.isnull(text) or pandas.isna(text): return "NULL" ubytes = to_utf8_bytes(str(text)) encoded_text = ubytes.decode("utf-8") self._check(encoded_text, ubytes) encoded_text = "\n".join(encoded_text.splitlines()) for old, new in self._ESCAPES: encoded_text = encoded_text.replace(old, new) return "'{}'".format(encoded_text) def encode(self, col: Series) -> Series: """Encode objects stored in a column for pandas.DataFrame to ``str``-typed Redshift notations, which are used in DMLs. First, values are casted to string. Next, character encoding is changed to ``utf-8``, which Redshift supports as a multibyte character set. Next, strings are checked in terms of length or multibyte characters to avoid errors when running ``INSERT`` statements. Then, escapes are replaced. Finally, the string is quoted. Parameters ---------- col : pandas.Series The column storing original objects in pandas.DataFrame. Returns ------- encoded_col : pandas.Series Column storing Redshift notations. """ encoded_col = col.fillna(numpy.nan) encoded_col = encoded_col.map(self._encode_text) return encoded_col def decode(self, col: Series) -> Series: """Decode response from Redshift data api to Python ojects. See comments on each Redshift type class to confirm what type or class is used. Parameters ---------- col : Column storing raw values in response from Redshift Data API. Returns ------- col : Column storing Python objects. """ return col def __str__(self): return self.__redshift_name__ class DoublePrecision(RedshiftType): """A type for Redshift ``DOUBLE PRECISION`` type. This type is decoded to numpy ``float64`` type. The encoder for this type accepts any types which are able to casted to numpy ``float64`` type. Methods ------- encode : Encode objects stored in a column for pandas.DataFrame to ``str``-typed notations for Redshift DMLs. decode : Map raw values from Redshift Data API to the proper numpy float type, for ease of dealing. """ __np_type__ = "float64" __redshift_name__ = "DOUBLE PRECISION" __min_abs__ = 2.22507385850721e-308 __max_abs__ = 1.79769313486231e308 __to_be_checked__ = True def _check_range(self, val): if pandas.isna(val) or val == 0.0: return val val_abs = abs(val) if val_abs < self.__min_abs__ or self.__max_abs__ < val_abs: raise TypeError( "'{}' is out of range for type '{}'".format(val, str(self)) ) return val def encode(self, col: Series) -> Series: """Encode objects stored in a column for pandas.DataFrame to ``str``-typed notations for Redshift DMLs. First, values are casted to numpy float type. Next, value range are checked to avoid overflow or underflow errors when running ``INSERT`` statements. Finally, the numeric types are casted to str. Parameters ---------- col : pandas.Series The column storing original objects in pandas.DataFrame. Returns ------- encoded_col : pandas.Series Column storing Redshift notations. """ encoded_col = col.astype(self.__np_type__) encoded_col = encoded_col.fillna(numpy.nan) if self.__to_be_checked__: encoded_col.map(self._check_range) encoded_col = encoded_col.replace([numpy.nan], ["NULL"]) encoded_col = encoded_col.astype(str) return encoded_col def decode(self, col: Series) -> Series: """Raw values in response from Redshift data api are represented in str or float types. This decoder will map these raw values to the proper numpy float type, for ease of dealing. Parameters ---------- col : Column storing raw values in response from Redshift Data API. Returns ------- col : Column storing numpy float values. """ return col.astype(self.__np_type__) class Real(DoublePrecision): """A type for Redshift ``REAL`` type. This type is decoded to numpy ``float64`` type since deciaml inaccuracy is observed in case of using numpy ``float32``. The encoder for this type accepts any values which are able to casted to numpy ``float64`` type and do not cause overflow or underflow for Redshift ``REAL`` type. Methods ------- encode : Encode objects stored in a column for pandas.DataFrame to ``str``-typed notations for Redshift DMLs. decode : Map raw values from Redshift Data API to the proper numpy float type, for ease of dealing. """ __redshift_name__ = "REAL" __min_abs__ = 1.1755e-38 __max_abs__ = 3.40282e38 class Numeric(DoublePrecision): """A type for Redshift ``DECIMAL`` type. In this library, the alias ``NUMERIC`` is used instead to avoid conflict with Python ``decimal.Decimal`` type. There are not any fixed point types in numpy. This made us develop the decoder to cast values from Redshift Data API to Python ``decimal.Decimal``. Hense, the output for the decoder looks ``object``-type Series. The encoder for this type accepts any values which are able to casted to numpy ``float128`` type and do not cause overflow for the decimal with the specific precision and scale. Methods ------- encode : Encode objects stored in a column for pandas.DataFrame to ``str``-typed notations for Redshift DMLs. decode : Map raw values from Redshift Data API to the proper ``decimal.Decimal`` type, for ease of dealing. """ __np_type__ = "float128" __redshift_name__ = "NUMERIC" def __init__(self, precision: int = 18, scale: int = 0): """Construct the Redshift ``NUMERIC`` type. Parameters ---------- precision : the numeric precision for use in DDL ``CREATE TABLE``. :param scale: the numeric scale for use in DDL ``CREATE TABLE``. """ if precision != 18 or scale != 0: self.__redshift_name__ = "NUMERIC({},{})".format(precision, scale) self.__max_abs__ = Decimal(str(math.pow(10.0, precision - scale))) self.__exp_to_quantize__ = Decimal( "1.{}".format("".join(["0" for i in range(scale)])) ) def _encode_numeric(self, val): if
pandas.isna(val)
pandas.isna
import methods import MACROS as M from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import random from time import time import xgboost from collections.abc import Iterable import warnings import sys import os if not sys.warnoptions: warnings.simplefilter("ignore") os.environ["PYTHONWARNINGS"] = "ignore" # TODO: documentation def convert_to_iterable(var): vars = var if isinstance(vars, str) or not isinstance(vars, Iterable): vars = [var] return vars def run_method(regressor, method, list_type, X_train, y_train, X_pool, n_instances): """ :param regressor: regressor init function (For example - LinearRegression (from sklearn.linear_model). The fitting (training) is executed inside this function. :param method: one of the follows: qbc, emcm, greedy_distances, greedy_predictions, cluster_uncertainty, mse_uncertainty, discretization_uncertainty, pareto, greedy_clustering. otherwise - random. :param list_type: models or bootstrap. The use is only for qbc and emcm methods. :param X_train: :param y_train: :param X_pool: :param n_instances: int. number of instances from the pool to be returned. :return: query_idx - indices of the selected instances from the pool. Use X_pool[query_idx]. """ learner_list = [] if list_type == 'models': learner_list = methods.list_by_models(X_train, y_train) elif list_type == 'bootstrap': learner_list = methods.list_by_bootstrap(X_train, y_train, regressor, 5) if method == 'qbc': query_idx = methods.query_by_committee(learner_list, X_pool, n_instances=n_instances) elif method == 'emcm': regressor = regressor.fit(X_train, y_train) query_idx = methods.expected_model_change_maximization(regressor, learner_list, X_pool, n_instances=n_instances) elif method == 'greedy_distances': query_idx = methods.greedy_distances(X_train, X_pool, n_instances=n_instances) elif method == 'greedy_predictions': regressor = regressor.fit(X_train, y_train) query_idx = methods.greedy_predictions(regressor, y_train, X_pool, n_instances=n_instances) elif method == 'cluster_uncertainty': regressor = regressor.fit(X_train, y_train) query_idx = methods.cluster_uncertainty(regressor, X_pool, n_clusters=M.N_CLUSTERS, n_instances=n_instances) elif method == 'mse_uncertainty': regressor = regressor.fit(X_train, y_train) query_idx = methods.mse_uncertainty(regressor, X_train, y_train, X_pool, n_instances=n_instances) elif method == 'discretization_uncertainty': classifier = LogisticRegression() query_idx = methods.discretization_uncertainty(classifier, X_train, y_train, X_pool, bins=M.BINS, n_instances=n_instances) elif method == 'greedy_paretos': g_features = [i for i, col in enumerate(M.FEATURES) if col in M.AL_G_FEATURES] b_features = [i for i, col in enumerate(M.FEATURES) if col in M.AL_B_FEATURES] query_idx = methods.greedy_paretos(X_train, X_pool, g_features, b_features, n_instances=n_instances) elif method == 'pareto': g_features = [i for i, col in enumerate(M.FEATURES) if col in M.AL_G_FEATURES] b_features = [i for i, col in enumerate(M.FEATURES) if col in M.AL_B_FEATURES] query_idx = methods.paretos(X_pool, g_features, b_features, n_instances=n_instances) elif method == 'greedy_clustering': query_idx = methods.greedy_clustering(X_train, X_pool, n_clusters=M.N_CLUSTERS, n_instances=n_instances) else: query_idx = random.choices(list(range(X_pool.shape[0])), k=n_instances) return query_idx def simulation(regressor, method, list_type, X_train, y_train, X_pool, y_pool, X_test, y_test): query_idx = run_method(regressor, method, list_type, X_train, y_train, X_pool, M.N_INSTANCES) X_new = X_pool[query_idx] y_new = y_pool[query_idx] regressor.fit(np.concatenate([X_train, X_new], axis=0), np.concatenate([y_train, y_new], axis=0)) y_pred = regressor.predict(X_test) mse = mean_squared_error(y_test, y_pred) mae = mean_absolute_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) return query_idx, mse, mae, r2 def create_init_train(data_train): init = data_train.groupby(M.DATE_COLUMN).apply(lambda x: x.sample(n=M.N_INIT, random_state=42)) X_train, y_train = init[M.FEATURES], init[M.Y_COLUMN] return X_train, y_train def create_datasets(data): train_date = data[M.DATE_COLUMN].min() data_train = data[data[M.DATE_COLUMN] <= train_date] X_train, y_train = create_init_train(data_train) data_val, data_test = train_test_split(data[data[M.DATE_COLUMN] > train_date], test_size=M.TEST_SIZE, random_state=42) X_test = data_test[M.FEATURES] y_test = data_test[M.Y_COLUMN] return X_train.values, y_train.values, data_val.reset_index(drop=True), X_test.values, y_test.values def run_methods_simulations(regressor, method, list_type, X_train, y_train, data_val, X_test, y_test, return_train=False): results = [] dates = data_val[M.DATE_COLUMN].unique() dates.sort() for date in dates: filtered_data = data_val[data_val[M.DATE_COLUMN] == date] X_pool = filtered_data[M.FEATURES].values y_pool = filtered_data[M.Y_COLUMN].values t0 = time() query_idx, mse, mae, r2 = simulation(regressor, method, list_type, X_train, y_train, X_pool, y_pool, X_test, y_test) method_time = (time() - t0) / 60 X_new = X_pool[query_idx] y_new = y_pool[query_idx] X_train = np.concatenate([X_train, X_new], axis=0) y_train = np.concatenate([y_train, y_new], axis=0) query_idx = filtered_data.iloc[query_idx].index.tolist() results.append({'regressor': regressor.__class__.__name__ ,'method': method, 'list_type': list_type, 'date': date, 'query_idx': query_idx, 'MSE': mse, 'MAE': mae, 'r2': r2, 'time': method_time}) results = pd.DataFrame(results) if return_train: return results, X_train, y_train else: return results def init_phase(regressor, X_train, y_train, data_val, X_test, y_test, method, steps): methods = convert_to_iterable(method) train_days = steps dates = data_val[M.DATE_COLUMN].unique() dates.sort() if len(dates) < train_days: raise ValueError("Not enough data for init phase - data_val should contain at least " + f"{train_days} dates.") results = [] method_chunk_size = int(np.ceil(train_days / len(methods))) for i, method in enumerate(methods): method_dates = dates[i * method_chunk_size: min((i+1) * method_chunk_size, train_days)] method_data_val = data_val[data_val[M.DATE_COLUMN].isin(method_dates)] method_results, X_train, y_train = run_methods_simulations(regressor, method, 'init', X_train, y_train, method_data_val, X_test, y_test, return_train=True) results.append(method_results) results = pd.concat(results, axis=0) used_dates = dates[:train_days] return results, X_train, y_train, data_val[data_val[M.DATE_COLUMN].isin(used_dates) == False], X_test, y_test def run_all_methods(regressor_alg, X_train, y_train, data_val, X_test, y_test): results = [] for method in ['greedy_distances', 'greedy_predictions', 'cluster_uncertainty', 'greedy_paretos', 'mse_uncertainty', 'discretization_uncertainty', 'greedy_clustering', 'pareto']: regressor = regressor_alg() print('\t\t', method) results.append(run_methods_simulations(regressor, method, '', X_train, y_train, data_val, X_test, y_test)) for method in ['qbc', 'emcm']: for list_type in ['bootstrap', 'models']: regressor = regressor_alg() print('\t\t', method, list_type) results.append(run_methods_simulations(regressor, method, list_type, X_train, y_train, data_val, X_test, y_test)) for i in range(15): regressor = regressor_alg() results.append(run_methods_simulations(regressor, 'random', str(i), X_train, y_train, data_val, X_test, y_test)) results = pd.concat(results, axis=0) return results def run_methods_with_init(data, regressors, init_method=None, init_steps=None): results = [] init_method_string = '_'.join([str(x) for x in convert_to_iterable(init_method)]) for regressor_alg in regressors: print(regressor_alg.__name__) X_train, y_train, data_val, X_test, y_test = create_datasets(data) print('\t', init_method_string) if init_method is not None and init_steps is not None: steps_list = convert_to_iterable(init_steps) prev_steps = 0 prev_steps_results = None for steps in steps_list: print('\t', steps) steps_results = [] regressor = regressor_alg() init_results, X_train, y_train, data_val, X_test, y_test = init_phase(regressor, X_train, y_train, data_val, X_test, y_test, init_method, steps - prev_steps) if prev_steps_results is not None: init_results = pd.concat([prev_steps_results, init_results], axis=0) prev_steps = steps prev_steps_results = init_results steps_results.append(init_results) all_methods_results = run_all_methods(regressor_alg, X_train, y_train, data_val, X_test, y_test) steps_results.append(all_methods_results) steps_results = pd.concat(steps_results, axis=0) steps_results['init'] = init_method_string + '_' + str(steps) results.append(steps_results) else: all_methods_results = run_all_methods(regressor_alg, X_train, y_train, data_val, X_test, y_test) all_methods_results['init'] = 'no_init' results.append(all_methods_results) results = pd.concat(results, axis=0) return results def random_forest(): return methods.RandomForestRegressor(n_estimators=40, min_samples_leaf=5 ,random_state=42) def xgboost_regressor(): return xgboost.XGBRegressor(objective='reg:squarederror', max_depth=20, n_estimators=40, random_state=42) def mlp_regressor(): return methods.MLPRegressor(hidden_layer_sizes=(16, 8, )) def main(): init_methods = [None, ['greedy_distances'], ['greedy_paretos'], ['greedy_clustering'], ['random']] regressors = [LogisticRegression, random_forest, xgboost_regressor] files = [] os.makedirs(M.RESULTS_FOLDER, exist_ok=True) for i in range(len(regressors)): print(regressors[i].__name__, regressors[i]()) dfs = [] for init_method in init_methods: data =
pd.read_csv(M.DATA_FILE, parse_dates=[M.DATE_COLUMN])
pandas.read_csv
# Need options to upload one to 3 files so i can do if none options # merge datasets on sch line item doing whiochever merge need it to probabily be efficent # highlight yellow if status is under review with CSAM or action sdm is Not order created on tool Not processed on LTSI tool import pandas as pd from datetime import datetime, timedelta import io import streamlit as st import numpy as np # ideas # join the all the columns then merge ? def app(): # st.set_page_config(page_title='LTSI Feedback Form') st.write(""" # LTSI Feedback ### Instructions: \n - Used when SDM feedback is in seperate files - Upload excel feedback files (up to 3) - Upload Open Orders File """) st.write("## Upload 1 to 3 Feedback Files") feedback1 = st.file_uploader("Upload Feedback File 1", type="xlsx") feedback2 = st.file_uploader("Upload Feedback File 2", type="xlsx") feedback3 = st.file_uploader("Upload Feedback File 3", type="xlsx") st.write("## Upload Open Orders File") open_orders = st.file_uploader("Upload Open Order File if feedback does not contain all open order rows", type="xlsx") if st.button("Create Feedback"): def download_file(merged): action_sdm = merged.columns[34] merged[action_sdm] = merged[action_sdm].str.lower() merged[action_sdm] = merged[action_sdm].fillna("0") merged['Status (SS)'] = np.where(merged[action_sdm].str.contains('cancel', regex=False), 'To be cancelled / reduced', merged['Status (SS)']) merged['Status (SS)'] = np.where(merged[action_sdm].str.contains('block', regex=False), 'Blocked', merged['Status (SS)']) merged[action_sdm] = merged[action_sdm].astype(str) merged[action_sdm].replace(['0', '0.0'], '', inplace=True) # Writing df to Excel Sheet buffer = io.BytesIO() with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer: merged.to_excel(writer, sheet_name='Sheet1', index=False) workbook = writer.book worksheet = writer.sheets['Sheet1'] formatdict = {'num_format': 'dd/mm/yyyy'} fmt = workbook.add_format(formatdict) worksheet.set_column('K:K', None, fmt) worksheet.set_column('L:L', None, fmt) # Light yellow fill with dark yellow text. number_rows = len(merged.index) + 1 yellow_format = workbook.add_format({'bg_color': '#FFEB9C'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Under Review with CSAM"', 'format': yellow_format}) grey_format = workbook.add_format({'bg_color': '#C0C0C0'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="To be cancelled / reduced"', 'format': grey_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Under Review with C-SAM"', 'format': yellow_format}) red_format = workbook.add_format({'bg_color': '#ffc7ce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Blocked"', 'format': red_format}) green_format = workbook.add_format({'bg_color': '#c6efce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Shippable"', 'format': green_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Scheduled Out"', 'format': green_format}) # COL MIGHT BE AH grey_format = workbook.add_format({'bg_color': '#C0C0C0'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="To be cancelled / reduced"', 'format': grey_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Under Review with CSAM"', 'format': yellow_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Under Review with C-SAM"', 'format': yellow_format}) red_format = workbook.add_format({'bg_color': '#ffc7ce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Blocked"', 'format': red_format}) green_format = workbook.add_format({'bg_color': '#c6efce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Shippable"', 'format': green_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Scheduled Out"', 'format': green_format}) for column in merged: column_width = max(merged[column].astype(str).map(len).max(), len(column)) col_idx = merged.columns.get_loc(column) writer.sheets['Sheet1'].set_column(col_idx, col_idx, column_width) worksheet.autofilter(0, 0, merged.shape[0], merged.shape[1]) worksheet.set_column(11, 12, 20) worksheet.set_column(12, 13, 20) worksheet.set_column(13, 14, 20) header_format = workbook.add_format({'bold': True, 'bottom': 2, 'bg_color': '#0AB2F7'}) # Write the column headers with the defined format. for col_num, value in enumerate(merged.columns.values): worksheet.write(0, col_num, value, header_format) my_format = workbook.add_format() my_format.set_align('left') worksheet.set_column('N:N', None, my_format) writer.save() today = datetime.today() d1 = today.strftime("%d/%m/%Y") st.write("Download Completed File:") st.download_button( label="Download Excel worksheets", data=buffer, file_name="LTSI_file_" + d1 + ".xlsx", mime="application/vnd.ms-excel" ) def columns_to_keep(): cols = ['sales_org', 'country', 'cust_num', 'customer_name', 'sales_dis', 'rtm', 'sd_line_item', 'order_method', 'del_blk', 'cust_req_date', 'ord_entry_date', 'cust_po_num', 'ship_num', 'ship_cust', 'ship_city', 'plant', 'material_num', 'brand', 'lob', 'project_code', 'material_desc', 'mpn_desc', 'ord_qty', 'shpd_qty', 'delivery_qty', 'remaining_qty', 'delivery_priority', 'opt_delivery_qt', 'rem_mod_opt_qt', 'sch_line_blocked_for_delv'] return cols def old_feedback_getter(df): cols = [8] col_count = 37 if df.shape[1] >= 39: while col_count < df.shape[1]: cols.append(col_count) col_count += 1 return df.iloc[:, cols] def new_feedback_getter(df): return df.iloc[:, [8, 34, 35, 36]] def open_new_feedback_merge(open, new_feedback): return open.merge(new_feedback, how="left", on="Sales Order and Line Item") def case2(feedback, open_orders): feed1 = pd.read_excel(feedback, sheet_name=0, engine="openpyxl") openOrders = pd.read_excel(open_orders, sheet_name=0, engine="openpyxl") old_feedback = old_feedback_getter(feed1) new_feedback = new_feedback_getter(feed1) open = openOrders.iloc[:, :34] combined_feedback = open.merge(new_feedback, how="left", on="Sales Order and Line Item") final = combined_feedback.merge(old_feedback, how="left", on="Sales Order and Line Item") cols = columns_to_keep() final.drop_duplicates(subset=cols, keep='first', inplace=True) download_file(final) def case3(feedback1, feedback2, open_orders): feed1 = pd.read_excel(feedback1, sheet_name=0, engine="openpyxl") feed2 = pd.read_excel(feedback2, sheet_name=0, engine="openpyxl") openOrders = pd.read_excel(open_orders, sheet_name=0, engine="openpyxl") old_feedback1 = old_feedback_getter(feed1) new_feedback1 = new_feedback_getter(feed1) old_feedback2 = old_feedback_getter(feed2) new_feedback2 = new_feedback_getter(feed2) open = openOrders.iloc[:, :34] joined_new_feedback = pd.concat([new_feedback1, new_feedback2], ignore_index=True) joined_old_feedback = pd.concat([old_feedback1, old_feedback2], ignore_index=True) combined_feedback = open.merge(joined_new_feedback, how="left", on="Sales Order and Line Item") final = combined_feedback.merge(joined_old_feedback, how="left", on="Sales Order and Line Item") cols = columns_to_keep() final.drop_duplicates(subset=cols, keep='first', inplace=True) download_file(final) def case4(feedback1, feedback2, feedback3, open_orders): feed1 = pd.read_excel(feedback1, sheet_name=0, engine="openpyxl") feed2 = pd.read_excel(feedback2, sheet_name=0, engine="openpyxl") feed3 = pd.read_excel(feedback3, sheet_name=0, engine="openpyxl") openOrders = pd.read_excel(open_orders, sheet_name=0, engine="openpyxl") old_feedback1 = old_feedback_getter(feed1) new_feedback1 = new_feedback_getter(feed1) old_feedback2 = old_feedback_getter(feed2) new_feedback2 = new_feedback_getter(feed2) old_feedback3 = old_feedback_getter(feed3) new_feedback3 = new_feedback_getter(feed3) open = openOrders.iloc[:, :34] joined_new_feedback =
pd.concat([new_feedback1, new_feedback2, new_feedback3], ignore_index=True)
pandas.concat
import math import pandas as pd import pandas.testing as pdt from pyam import IamDataFrame, IAMC_IDX from pyam.testing import assert_iamframe_equal from pyam.timeseries import growth_rate import pytest from conftest import META_DF EXP_DF = IamDataFrame( pd.DataFrame( [ ["model_a", "scen_a", "World", "Growth Rate", "", 0.430969], ["model_a", "scen_b", "World", "Growth Rate", "", 0.284735], ], columns=IAMC_IDX + [2005], ), meta=META_DF, ) @pytest.mark.parametrize("append", (False, True)) def test_growth_rate(test_df_year, append): """Check computing the growth rate from an IamDataFrame""" if append: obs = test_df_year.copy() obs.compute.growth_rate({"Primary Energy": "Growth Rate"}, append=True) assert_iamframe_equal(test_df_year.append(EXP_DF), obs) else: obs = test_df_year.compute.growth_rate({"Primary Energy": "Growth Rate"}) assert_iamframe_equal(EXP_DF, obs) @pytest.mark.parametrize("append", (False, True)) def test_growth_rate_empty(test_df_year, append): """Assert that computing the growth rate with invalid variables returns empty""" if append: obs = test_df_year.copy() obs.compute.growth_rate({"foo": "bar"}, append=True) assert_iamframe_equal(test_df_year, obs) # assert that no data was added else: obs = test_df_year.compute.growth_rate({"foo": "bar"}) assert obs.empty @pytest.mark.parametrize("x2010", (1, 27, -3)) @pytest.mark.parametrize("rates", ([0.05, 1.25], [0.5, -0.5])) def test_growth_rate_timeseries(x2010, rates): """Check several combinations of growth rates directly on the timeseries""" x2013 = x2010 * math.pow(1 + rates[0], 3) # 3 years: 2010 - 2013 x2017 = x2013 * math.pow(1 + rates[1], 4) # 4 years: 2013 - 2017 pdt.assert_series_equal( growth_rate(pd.Series([x2010, x2013, x2017], index=[2010, 2013, 2017])), pd.Series(rates, index=[2010, 2013]), ) @pytest.mark.parametrize("value", (0, -1)) def test_growth_rate_timeseries_fails(value): """Check that a timeseries reaching/crossing 0 raises""" with pytest.raises(ValueError, match="Cannot compute growth rate when*."): growth_rate(
pd.Series([1.0, value])
pandas.Series
import requests import re from bs4 import BeautifulSoup import pandas as pd import sys from PyQt4.QtGui import QApplication from PyQt4.QtCore import QUrl from PyQt4.QtWebKit import QWebPage import bs4 as bs import urllib.request import time import random import urllib3 import datetime import os today=datetime.date.today() urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) user_agent = {'User-agent':'Mozilla/5.0'} base_url = 'https://www.gsmarena.com/makers.php3' ur='https://www.gsmarena.com/' country = 'INDIA' company = 'YU' model_list = [] usp = [] display_list = [] memory_list = [] processor_list = [] camera_list = [] battery_list = [] thickness_list = [] extras_links = [] records = [] href = [] st_list_heads=[] st_list_dets=[] hr=[] spec_url=[] HREF=[] BRANDS=[] device_num=[] price_list=[] launch_date_list=[] company_name_list=[] devnum=[] r=requests.get(base_url) soup=BeautifulSoup(r.text,'html.parser') results=soup.find_all('div',attrs={'class':'st-text'}) URL='' PAGES=[] for a in range(len(results)): sa=results[a].find_all('table') #print(len(sa)) for b in range(len(sa)): sb=sa[b].find_all('tr') #print(len(sb)) for c in range(len(sb)): sc=sb[c].find_all('td') for d in range(len(sc)): sd=sc[d].find('a') if'yu' in sd.text.lower(): URL=sc[d].find('a')['href'] URL=ur+URL #print(URL) R=requests.get(URL) soup=BeautifulSoup(R.text,'html5lib') results1=soup.find('div',attrs={'class':'nav-pages'}) PAGES.append(URL) print(results1) if (results1) is not None: sa=results1.find_all('a') for a in range(len(sa)): PAGES.append(ur+ sa[a]['href']) for i in range(len(PAGES)): PAGES[i]=ur+PAGES[i] print(PAGES[i]) for a in range(len(PAGES)): r=requests.get(PAGES[a]) soup=BeautifulSoup(r.text,'html.parser') results=soup.find_all('div',attrs={'class':'makers'}) for b in range(len(results)): sb=results[b].find_all('ul') for c in range(len(sb)): sc=sb[c].find_all('li') for d in range(len(sc)): href.append(sc[d].find('a')['href']) usp.append(sc[d].find('img')['title']) model_list.append(sc[d].find('strong').text.strip()) print('href:-',end='') print(len(href)) print('USP:-',end='') print(len(usp)) print('model list:-',end='') print(len(model_list)) for i in range(len(href)): href[i]=ur+href[i] c1='' d1='' r=requests.get(href[i]) soup = BeautifulSoup(r.text,'html5lib') results=soup.find_all('div',attrs={'id':'specs-list'}) for a in range(len(results)): sa=results[a].find_all('table',attrs={'cellspacing':'0'}) for b in range(len(sa)): sb=sa[b].find_all('tbody') for c in range(len(sb)): sc=sb[c].find('th').text if 'body' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'dimension' in se[e].text.lower(): thickness_list.append(sf[e].text) if 'platform' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'cpu' in se[e].text.lower(): processor_list.append(sf[e].text) if 'memory' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'internal' in se[e].text.lower(): memory_list.append(sf[e].text) if 'camera' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'primary' in se[e].text.lower() or 'secondary' in se[e].text.lower(): c1=c1+se[e].text+':- '+sf[e].text+' || ' if 'display' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'type' in se[e].text.lower() or 'size' in se[e].text.lower(): d1=d1+se[e].text+':- '+sf[e].text+' || ' if 'battery' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'mah' in sf[e].text.lower(): battery_list.append(sf[e].text) if 'launch' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'announce' in se[e].text.lower(): launch_date_list.append(sf[e].text.strip()) if 'misc' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'price' in se[e].text.lower(): price_list.append(sf[e].text.strip()) if d1!='': display_list.append(d1) if c1!='': camera_list.append(c1) if len(battery_list)==i: battery_list.append('Not Available') if len(memory_list)==i: memory_list.append('Not Available') if len(processor_list)==i: processor_list.append('Not Available') if len(display_list)==i: display_list.append('Not Available') if len(thickness_list)==i: thickness_list.append('Not Available') if len(camera_list)==i: camera_list.append('Not Available') if len(price_list)==i: price_list.append('Not Available') if len(usp)==i: usp.append('Not Available') if len(launch_date_list)==i: launch_date_list.append('Not Available') ## if var==500: ## break print('DISPLAY LIST:- ') print(len(display_list)) ##for i in display_list: ## print(i) ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('PROCESSOR LIST:- ') print(len(processor_list)) ##for i in processor_list: ## print(i) ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('MEMORY LIST:- ') print(len(memory_list)) ##for i in memory_list: ## print(i) ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('CAMERA LIST:- ') print(len(camera_list)) ##for i in camera_list: ## print(i) ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('BATTERY LIST:- ') print(len(battery_list)) ##for i in battery_list: ## print(i) ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('THICKNESS LIST:-') print(len(thickness_list)) ##for i in thickness_list: ## print(i) ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('PRICE LIST:_') print(len(price_list)) ##for i in price_list: ## print(i) ##print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('LAUNCH DATE:-') print(len(launch_date_list)) ##for i in launch_date_list: ## print(i) extras_links = href for i in range(len(model_list)): records.append((country,company,model_list[i],price_list[i],launch_date_list[i], usp[i], display_list[i], camera_list[i], memory_list[i], battery_list[i], thickness_list[i], processor_list[i], extras_links[i])) path='C:\\LavaWebScraper\\GSMARENA\\' df =
pd.DataFrame(records, columns = ['COUNTRY','COMPANY', 'MODEL', 'PRICE','LAUNCH DATE', 'USP', 'DISPLAY', 'CAMERA', 'MEMORY', 'BATTERY', 'THICKNESS', 'PROCESSOR', 'EXTRAS/ LINKS'])
pandas.DataFrame
""" THIS IS A SAMPLE CUSTOM ALGORITHM to provide a skeleton to develop your own custom algorithms. The algorithm itself, although viable, is not recommended for production or general use, it is simply a toy algorithm here to demonstrate the structure of a simple custom algorithm that has ``algorithm_parameters`` passed as an empty dict {}. It is documented via comments # """ # REQUIRED Skyline imports. All custom algorithms MUST have the following two # imports. These are required for exception handling and to record algorithm # errors regardless of debug_logging setting for the custom_algorithm import logging import traceback from custom_algorithms import record_algorithm_error # Import ALL modules that the custom algorithm requires. Remember that if a # requirement is not one that is provided by the Skyline requirements.txt you # must ensure it is installed in the Skyline virtualenv import pandas as pd # To test max_execution_time import sleep # from time import sleep from functions.numpy.percent_different import get_percent_different # Define your simple algorithm. # The name of the function MUST be the same as the name declared in # settings.CUSTOM_ALGORITHMS. # It MUST have 3 parameters: # current_skyline_app, timeseries, algorithm_parameters # See https://earthgecko-skyline.readthedocs.io/en/latest/algorithms/custom-algorithms.html # for a full explanation about each. # ALWAYS WRAP YOUR ALGORITHM IN try and except def significant_change_window_percent_sustained( current_skyline_app, parent_pid, timeseries, algorithm_parameters): """ A data point is anomalous if it is x percent different from the median of the window (seconds resample) of the last p period (seconds). A few examples, If the value is 10% different from the median value of the 10min windows of the last hour. algorithm_parameters: {'window': 600, 'percent': 10.0, 'period': 3600} If the value is 50% different from the median value of the 10min windows of the last day. algorithm_parameters: {'window': 600, 'percent': 50.0, 'period': 86400} :param current_skyline_app: the Skyline app executing the algorithm. This will be passed to the algorithm by Skyline. This is **required** for error handling and logging. You do not have to worry about handling the argument in the scope of the custom algorithm itself, but the algorithm must accept it as the first agrument. :param parent_pid: the parent pid which is executing the algorithm, this is **required** for error handling and logging. You do not have to worry about handling this argument in the scope of algorithm, but the algorithm must accept it as the second argument. :param timeseries: the time series as a list e.g. ``[[1578916800.0, 29.0], [1578920400.0, 55.0], ... [1580353200.0, 55.0]]`` :param algorithm_parameters: a dictionary of any parameters and their arguments you wish to pass to the algorithm. :type current_skyline_app: str :type parent_pid: int :type timeseries: list :type algorithm_parameters: dict :return: True, False or Non :rtype: boolean """ # You MUST define the algorithm_name algorithm_name = 'significant_change_window_percent_sustained' # If you wanted to log, you can but this should only be done during # testing and development def get_log(current_skyline_app): current_skyline_app_logger = current_skyline_app + 'Log' current_logger = logging.getLogger(current_skyline_app_logger) return current_logger # Define the default state of None and None, anomalous does not default to # False as that is not correct, False is only correct if the algorithm # determines the data point is not anomalous. The same is true for the # anomalyScore. anomalous = None anomalyScore = None # Use the algorithm_parameters to determine the sample_period debug_logging = None try: debug_logging = algorithm_parameters['debug_logging'] except: debug_logging = False if debug_logging: try: current_logger = get_log(current_skyline_app) current_logger.debug('debug :: %s :: debug_logging enabled with algorithm_parameters - %s' % ( algorithm_name, str(algorithm_parameters))) except: # This except pattern MUST be used in ALL custom algortihms to # facilitate the traceback from any errors. The algorithm we want to # run super fast and without spamming the log with lots of errors. # But we do not want the function returning and not reporting # anything to the log, so the pythonic except is used to "sample" any # algorithm errors to a tmp file and report once per run rather than # spewing tons of errors into the log e.g. analyzer.log record_algorithm_error(current_skyline_app, parent_pid, algorithm_name, traceback.format_exc()) # Return None and None as the algorithm could not determine True or False return (anomalous, anomalyScore) # window in seconds window = 600 try: window = algorithm_parameters['window'] except: pass resample_window = '%sS' % str(window) # Allow the LevelShiftAD c parameter to be passed in the # algorithm_parameters percent = 10.0 try: percent = algorithm_parameters['percent'] except: pass period = 3600 try: period = algorithm_parameters['period'] except: pass return_percent_as_anomalyScore = False try: return_percent_as_anomalyScore = algorithm_parameters['return_percent_as_anomalyScore'] except: pass times_in_a_row = 0 try: times_in_a_row = algorithm_parameters['times_in_a_row'] except: pass # To test max_execution_time enable a sleep # sleep(1) # ALWAYS WRAP YOUR ALGORITHM IN try and the BELOW except try: timestamp = int(timeseries[-1][0]) value = timeseries[-1][1] values = [] if times_in_a_row: values = [item[1] for item in timeseries[-times_in_a_row:]] from_timestamp = timestamp - period applicable_timeseries = [item for item in timeseries if int(item[0] >= from_timestamp)] del timeseries df = pd.DataFrame(applicable_timeseries, columns=['date', 'value']) df['date'] = pd.to_datetime(df['date'], unit='s') datetime_index = pd.DatetimeIndex(df['date'].values) df = df.set_index(datetime_index) df.drop('date', axis=1, inplace=True) resampled_df = df.resample(resample_window, origin='epoch').median() del df resampled_values = resampled_df['value'].values.tolist() series =
pd.Series([x for x in resampled_values])
pandas.Series
# SPDX-License-Identifier: Apache-2.0 # # Copyright (C) 2015, ARM Limited and contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Latency Analysis Module """ import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np import pandas as pd import pylab as pl import re import os from collections import namedtuple from analysis_module import AnalysisModule from devlib.utils.misc import memoized from trappy.utils import listify # Tuple representing all IDs data of a Task TaskData = namedtuple('TaskData', ['pid', 'names', 'label']) CDF = namedtuple('CDF', ['df', 'threshold', 'above', 'below']) class LatencyAnalysis(AnalysisModule): """ Support for plotting Latency Analysis data :param trace: input Trace object :type trace: :class:`trace.Trace` """ def __init__(self, trace): super(LatencyAnalysis, self).__init__(trace) ############################################################################### # DataFrame Getter Methods ############################################################################### @memoized def _dfg_latency_df(self, task): """ DataFrame of task's wakeup/suspend events The returned DataFrame index is the time, in seconds, an event related to `task` happened. The DataFrame has these columns: - target_cpu: the CPU where the task has been scheduled reported only for wakeup events - curr_state: the current task state: A letter which corresponds to the standard events reported by the prev_state field of a sched_switch event. Only exception is 'A', which is used to represent active tasks, i.e. tasks RUNNING on a CPU - next_state: the next status for the task - t_start: the time when the current status started, it matches Time - t_delta: the interval of time after witch the task will switch to the next_state :param task: the task to report wakeup latencies for :type task: int or str """ if not self._trace.hasEvents('sched_wakeup'): self._log.warning('Events [sched_wakeup] not found, ' 'cannot compute CPU active signal!') return None if not self._trace.hasEvents('sched_switch'): self._log.warning('Events [sched_switch] not found, ' 'cannot compute CPU active signal!') return None # Get task data td = self._getTaskData(task) if not td: return None wk_df = self._dfg_trace_event('sched_wakeup') sw_df = self._dfg_trace_event('sched_switch') # Filter Task's WAKEUP events task_wakeup = wk_df[wk_df.pid == td.pid][['target_cpu', 'pid']] # Filter Task's START events task_events = (sw_df.prev_pid == td.pid) | (sw_df.next_pid == td.pid) task_switches_df = sw_df[task_events]\ [['__cpu', 'prev_pid', 'next_pid', 'prev_state']] # Unset prev_state for switch_in events, i.e. # we don't care about the status of a task we are replacing task_switches_df.prev_state = task_switches_df.apply( lambda r : np.nan if r['prev_pid'] != td.pid else self._taskState(r['prev_state']), axis=1) # Rename prev_state task_switches_df.rename(columns={'prev_state' : 'curr_state'}, inplace=True) # Fill in Running status # We've just set curr_state (a.k.a prev_state) to nan where td.pid was # switching in, so set the state to 'A' ("active") in those places. task_switches_df.curr_state = task_switches_df.curr_state.fillna(value='A') # Join Wakeup and SchedSwitch events task_latency_df = task_wakeup.join(task_switches_df, how='outer', lsuffix='_wkp', rsuffix='_slp') # Remove not required columns task_latency_df = task_latency_df[['target_cpu', '__cpu', 'curr_state']] # Set Wakeup state on each Wakeup event task_latency_df.curr_state = task_latency_df.curr_state.fillna(value='W') # Sanity check for all task states to be mapped to a char numbers = 0 for value in task_switches_df.curr_state.unique(): if type(value) is not str: self._log.warning('The [sched_switch] events contain "prev_state" value [%s]', value) numbers += 1 if numbers: verb = 'is' if numbers == 1 else 'are' self._log.warning(' which %s not currently mapped into a task state.', verb) self._log.warning('Check mappings in:') self._log.warning(' %s::%s _taskState()', __file__, self.__class__.__name__) # Forward annotate task state task_latency_df['next_state'] = task_latency_df.curr_state.shift(-1) # Forward account for previous state duration task_latency_df['t_start'] = task_latency_df.index task_latency_df['t_delta'] = ( task_latency_df['t_start'].shift(-1) - task_latency_df['t_start'] ) # Fix the last entry, which will have a NaN state duration # Set duration to trace_end - last_event task_latency_df.loc[task_latency_df.index[-1], 't_delta'] = ( self._trace.start_time + self._trace.time_range - task_latency_df.index[-1] ) return task_latency_df # Select Wakeup latency def _dfg_latency_wakeup_df(self, task): """ DataFrame of task's wakeup latencies The returned DataFrame index is the time, in seconds, `task` waken-up. The DataFrame has just one column: - wakeup_latency: the time the task waited before getting a CPU :param task: the task to report wakeup latencies for :type task: int or str """ task_latency_df = self._dfg_latency_df(task) if task_latency_df is None: return None df = task_latency_df[ (task_latency_df.curr_state == 'W') & (task_latency_df.next_state == 'A')][['t_delta']] df.rename(columns={'t_delta' : 'wakeup_latency'}, inplace=True) return df # Select Wakeup latency def _dfg_latency_preemption_df(self, task): """ DataFrame of task's preemption latencies The returned DataFrame index is the time, in seconds, `task` has been preempted. The DataFrame has just one column: - preemption_latency: the time the task waited before getting again a CPU :param task: the task to report wakeup latencies for :type task: int or str """ task_latency_df = self._dfg_latency_df(task) if task_latency_df is None: return None df = task_latency_df[ (task_latency_df.curr_state.isin([0, 'R', 'R+'])) & (task_latency_df.next_state == 'A')][['t_delta']] df.rename(columns={'t_delta' : 'preempt_latency'}, inplace=True) return df @memoized def _dfg_activations_df(self, task): """ DataFrame of task's wakeup intrvals The returned DataFrame index is the time, in seconds, `task` has waken-up. The DataFrame has just one column: - activation_interval: the time since the previous wakeup events :param task: the task to report runtimes for :type task: int or str """ # Select all wakeup events wkp_df = self._dfg_latency_df(task) wkp_df = wkp_df[wkp_df.curr_state == 'W'].copy() # Compute delta between successive wakeup events wkp_df['activation_interval'] = ( wkp_df['t_start'].shift(-1) - wkp_df['t_start']) wkp_df['activation_interval'] = wkp_df['activation_interval'].shift(1) # Return the activation period each time the task wakeups wkp_df = wkp_df[['activation_interval']].shift(-1) return wkp_df @memoized def _dfg_runtimes_df(self, task): """ DataFrame of task's runtime each time the task blocks The returned DataFrame index is the time, in seconds, `task` completed an activation (i.e. sleep or exit) The DataFrame has just one column: - running_time: the time the task spent RUNNING since its last wakeup :param task: the task to report runtimes for :type task: int or str """ # Select all wakeup events run_df = self._dfg_latency_df(task) # Filter function to add up RUNNING intervals of each activation def cr(row): if row['curr_state'] in ['S']: return cr.runtime if row['curr_state'] in ['W']: if cr.spurious_wkp: cr.runtime += row['t_delta'] cr.spurious_wkp = False return cr.runtime cr.runtime = 0 return cr.runtime if row['curr_state'] != 'A': return cr.runtime if row['next_state'] in ['R', 'R+', 'S', 'x', 'D']: cr.runtime += row['t_delta'] return cr.runtime # This is required to capture strange trace sequences where # a switch_in event is follower by a wakeup_event. # This sequence is not expected, but we found it in some traces. # Possible reasons could be: # - misplaced sched_wakeup events # - trace buffer artifacts # TO BE BETTER investigated in kernel space. # For the time being, we account this interval as RUNNING time, # which is what kernelshark does. if row['next_state'] in ['W']: cr.runtime += row['t_delta'] cr.spurious_wkp = True return cr.runtime if row['next_state'] in ['n']: return cr.runtime self._log.warning("Unexpected next state: %s @ %f", row['next_state'], row['t_start']) return 0 # cr's static variables intialization cr.runtime = 0 cr.spurious_wkp = False # Add up RUNNING intervals of each activation run_df['running_time'] = run_df.apply(cr, axis=1) # Return RUNTIME computed for each activation, # each time the task blocks or terminate run_df = run_df[run_df.next_state.isin(['S', 'x'])][['running_time']] return run_df @memoized def _dfg_task_residency(self, task): """ DataFrame of a task's execution time on each CPU The returned DataFrame index is the CPU indexes The DataFrame has just one column: - runtime: the time the task spent being active on a given CPU, in seconds. :param task: the task to report runtimes for :type task: int or str """ cpus = range(self._platform['cpus_count']) runtimes = {cpu : 0.0 for cpu in cpus} df = self._dfg_latency_df(task) # Exclude sleep time df = df[df.curr_state != 'S'] for time, data in df.iterrows(): cpu = data['__cpu'] # When waking up, '__cpu' is NaN but 'target_cpu' is populated instead if np.isnan(cpu): if data['curr_state'] == 'W': cpu = data['target_cpu'] else: raise RuntimeError('No CPU data for latency_df @{}'.format(time)) runtimes[cpu] += data['t_delta'] data = [(cpu, time) for cpu, time in runtimes.iteritems()] return pd.DataFrame(data, columns=['CPU', 'runtime']).set_index('CPU') ############################################################################### # Plotting Methods ############################################################################### def plotLatency(self, task, kind='all', tag=None, threshold_ms=1, bins=64): """ Generate a set of plots to report the WAKEUP and PREEMPT latencies the specified task has been subject to. A WAKEUP latencies is the time from when a task becomes RUNNABLE till the first time it gets a CPU. A PREEMPT latencies is the time from when a RUNNING task is suspended because of the CPU is assigned to another task till when the task enters the CPU again. :param task: the task to report latencies for :type task: int or list(str) :param kind: the kind of latencies to report (WAKEUP and/or PREEMPT") :type kind: str :param tag: a string to add to the plot title :type tag: str :param threshold_ms: the minimum acceptable [ms] value to report graphically in the generated plots :type threshold_ms: int or float :param bins: number of bins to be used for the runtime's histogram :type bins: int :returns: a DataFrame with statistics on ploted latencies """ if not self._trace.hasEvents('sched_switch'): self._log.warning('Event [sched_switch] not found, ' 'plot DISABLED!') return if not self._trace.hasEvents('sched_wakeup'): self._log.warning('Event [sched_wakeup] not found, ' 'plot DISABLED!') return # Get task data td = self._getTaskData(task) if not td: return None # Load wakeup latencies (if required) wkp_df = None if 'all' in kind or 'wakeup' in kind: wkp_df = self._dfg_latency_wakeup_df(td.pid) if wkp_df is not None: wkp_df.rename(columns={'wakeup_latency' : 'latency'}, inplace=True) self._log.info('Found: %5d WAKEUP latencies', len(wkp_df)) # Load preempt latencies (if required) prt_df = None if 'all' in kind or 'preempt' in kind: prt_df = self._dfg_latency_preemption_df(td.pid) if prt_df is not None: prt_df.rename(columns={'preempt_latency' : 'latency'}, inplace=True) self._log.info('Found: %5d PREEMPT latencies', len(prt_df)) if wkp_df is None and prt_df is None: self._log.warning('No Latency info for task [%s]', td.label) return # Join the two data frames df = wkp_df.append(prt_df) ymax = 1.1 * df.latency.max() self._log.info('Total: %5d latency events', len(df)) # Build the series for the CDF cdf = self._getCDF(df.latency, (threshold_ms / 1000.)) self._log.info('%.1f %% samples below %d [ms] threshold', 100. * cdf.below, threshold_ms) # Setup plots gs = gridspec.GridSpec(2, 2, height_ratios=[2,1], width_ratios=[1,1]) plt.figure(figsize=(16, 8)) plot_title = "[{}]: {} latencies".format(td.label, kind.upper()) if tag: plot_title = "{} [{}]".format(plot_title, tag) plot_title = "{}, threshold @ {} [ms]".format(plot_title, threshold_ms) # Latency events duration over time axes = plt.subplot(gs[0,0:2]) axes.set_title(plot_title) try: wkp_df.rename(columns={'latency': 'wakeup'}, inplace=True) wkp_df.plot(style='b+', logy=True, ax=axes) except: pass try: prt_df.rename(columns={'latency' : 'preempt'}, inplace=True) prt_df.plot(style='r+', logy=True, ax=axes) except: pass axes.axhline(threshold_ms / 1000., linestyle='--', color='g') self._trace.analysis.status.plotOverutilized(axes) axes.legend(loc='lower center', ncol=2) axes.set_xlim(self._trace.x_min, self._trace.x_max) # Cumulative distribution of latencies samples axes = plt.subplot(gs[1,0]) cdf.df.plot(ax=axes, legend=False, xlim=(0,None), title='Latencies CDF ({:.1f}% within {} [ms] threshold)'\ .format(100. * cdf.below, threshold_ms)) axes.axvspan(0, threshold_ms / 1000., facecolor='g', alpha=0.5); axes.axhline(y=cdf.below, linewidth=1, color='r', linestyle='--') # Histogram of all latencies axes = plt.subplot(gs[1,1]) df.latency.plot(kind='hist', bins=bins, ax=axes, xlim=(0,ymax), legend=False, title='Latency histogram ({} bins, {} [ms] green threshold)'\ .format(bins, threshold_ms)); axes.axvspan(0, threshold_ms / 1000., facecolor='g', alpha=0.5); # Save generated plots into datadir task_name = re.sub('[\ :/]', '_', td.label) figname = '{}/{}task_latencies_{}_{}.png'\ .format(self._trace.plots_dir, self._trace.plots_prefix, td.pid, task_name) pl.savefig(figname, bbox_inches='tight') # Return statistics stats_df = df.describe(percentiles=[0.95, 0.99]) label = '{:.1f}%'.format(100. * cdf.below) stats = { label : cdf.threshold } return stats_df.append(pd.DataFrame( stats.values(), columns=['latency'], index=stats.keys())) def plotLatencyBands(self, task, axes=None): """ Draw a plot that shows intervals of time when the execution of a RUNNABLE task has been delayed. The plot reports: WAKEUP lantecies as RED colored bands PREEMPTION lantecies as BLUE colored bands The optional axes parameter allows to plot the signal on an existing graph. :param task: the task to report latencies for :type task: str :param axes: axes on which to plot the signal :type axes: :mod:`matplotlib.axes.Axes` """ if not self._trace.hasEvents('sched_switch'): self._log.warning('Event [sched_switch] not found, ' 'plot DISABLED!') return if not self._trace.hasEvents('sched_wakeup'): self._log.warning('Event [sched_wakeup] not found, ' 'plot DISABLED!') return # Get task PID td = self._getTaskData(task) if not td: return None wkl_df = self._dfg_latency_wakeup_df(td.pid) prt_df = self._dfg_latency_preemption_df(td.pid) if wkl_df is None and prt_df is None: self._log.warning('No task with name [%s]', td.label) return # If not axis provided: generate a standalone plot if not axes: gs = gridspec.GridSpec(1, 1) plt.figure(figsize=(16, 2)) axes = plt.subplot(gs[0, 0]) axes.set_title('Latencies on [{}] ' '(red: WAKEUP, blue: PREEMPT)'\ .format(td.label)) axes.set_xlim(self._trace.x_min, self._trace.x_max) axes.set_yticklabels([]) axes.set_xlabel('Time [s]') axes.grid(True) # Draw WAKEUP latencies try: bands = [(t, wkl_df['wakeup_latency'][t]) for t in wkl_df.index] for (start, duration) in bands: end = start + duration axes.axvspan(start, end, facecolor='r', alpha=0.1) axes.set_xlim(self._trace.x_min, self._trace.x_max) except: pass # Draw PREEMPTION latencies try: bands = [(t, prt_df['preempt_latency'][t]) for t in prt_df.index] for (start, duration) in bands: end = start + duration axes.axvspan(start, end, facecolor='b', alpha=0.1) axes.set_xlim(self._trace.x_min, self._trace.x_max) except: pass def plotActivations(self, task, tag=None, threshold_ms=16, bins=64): """ Plots "activation intervals" for the specified task An "activation interval" is time incurring between two consecutive wakeups of a task. A set of plots is generated to report: - Activations interval at wakeup time: every time a task wakeups a point is plotted to represent the time interval since the previous wakeup. - Activations interval cumulative function: reports the cumulative function of the activation intervals. - Activations intervals histogram: reports a 64 bins histogram of the activation intervals. All plots are parameterized based on the value of threshold_ms, which can be used to filter activations intervals bigger than 2 times this value. Such a threshold is useful to filter out from the plots outliers thus focusing the analysis in the most critical periodicity under analysis. The number and percentage of discarded samples is reported in output. A default threshold of 16 [ms] is used, which is useful for example to analyze a 60Hz rendering pipelines. A PNG of the generated plots is generated and saved in the same folder where the trace is. :param task: the task to report latencies for :type task: int or list(str) :param tag: a string to add to the plot title :type tag: str :param threshold_ms: the minimum acceptable [ms] value to report graphically in the generated plots :type threshold_ms: int or float :param bins: number of bins to be used for the runtime's histogram :type bins: int :returns: a DataFrame with statistics on ploted activation intervals """ if not self._trace.hasEvents('sched_switch'): self._log.warning('Event [sched_switch] not found, ' 'plot DISABLED!') return if not self._trace.hasEvents('sched_wakeup'): self._log.warning('Event [sched_wakeup] not found, ' 'plot DISABLED!') return # Get task data td = self._getTaskData(task) if not td: return None # Load activation data wkp_df = self._dfg_activations_df(td.pid) if wkp_df is None: return None self._log.info('Found: %5d activations for [%s]', len(wkp_df), td.label) # Disregard data above two time the specified threshold y_max = (2 * threshold_ms) / 1000. len_tot = len(wkp_df) wkp_df = wkp_df[wkp_df.activation_interval <= y_max] len_plt = len(wkp_df) if len_plt < len_tot: len_dif = len_tot - len_plt len_pct = 100. * len_dif / len_tot self._log.warning('Discarding {} activation intervals (above 2 x threshold_ms, ' '{:.1f}% of the overall activations)'\ .format(len_dif, len_pct)) ymax = 1.1 * wkp_df.activation_interval.max() # Build the series for the CDF cdf = self._getCDF(wkp_df.activation_interval, (threshold_ms / 1000.)) self._log.info('%.1f %% samples below %d [ms] threshold', 100. * cdf.below, threshold_ms) # Setup plots gs = gridspec.GridSpec(2, 2, height_ratios=[2,1], width_ratios=[1,1]) plt.figure(figsize=(16, 8)) plot_title = "[{}]: activaton intervals (@ wakeup time)".format(td.label) if tag: plot_title = "{} [{}]".format(plot_title, tag) plot_title = "{}, threshold @ {} [ms]".format(plot_title, threshold_ms) # Activations intervals over time axes = plt.subplot(gs[0,0:2]) axes.set_title(plot_title) wkp_df.plot(style='g+', logy=False, ax=axes) axes.axhline(threshold_ms / 1000., linestyle='--', color='g') self._trace.analysis.status.plotOverutilized(axes) axes.legend(loc='lower center', ncol=2) axes.set_xlim(self._trace.x_min, self._trace.x_max) # Cumulative distribution of all activations intervals axes = plt.subplot(gs[1,0]) cdf.df.plot(ax=axes, legend=False, xlim=(0,None), title='Activations CDF ({:.1f}% within {} [ms] threshold)'\ .format(100. * cdf.below, threshold_ms)) axes.axvspan(0, threshold_ms / 1000., facecolor='g', alpha=0.5); axes.axhline(y=cdf.below, linewidth=1, color='r', linestyle='--') # Histogram of all activations intervals axes = plt.subplot(gs[1,1]) wkp_df.plot(kind='hist', bins=bins, ax=axes, xlim=(0,ymax), legend=False, title='Activation intervals histogram ({} bins, {} [ms] green threshold)'\ .format(bins, threshold_ms)); axes.axvspan(0, threshold_ms / 1000., facecolor='g', alpha=0.5); # Save generated plots into datadir task_name = re.sub('[\ :/]', '_', td.label) figname = '{}/{}task_activations_{}_{}.png'\ .format(self._trace.plots_dir, self._trace.plots_prefix, td.pid, task_name) pl.savefig(figname, bbox_inches='tight') # Return statistics stats_df = wkp_df.describe(percentiles=[0.95, 0.99]) label = '{:.1f}%'.format(100. * cdf.below) stats = { label : cdf.threshold } return stats_df.append(pd.DataFrame( stats.values(), columns=['activation_interval'], index=stats.keys())) def plotRuntimes(self, task, tag=None, threshold_ms=8, bins=64): """ Plots "running times" for the specified task A "running time" is the sum of all the time intervals a task executed in between a wakeup and the next sleep (or exit). A set of plots is generated to report: - Running times at block time: every time a task blocks a point is plotted to represent the cumulative time the task has be running since its last wakeup - Running time cumulative function: reports the cumulative function of the running times. - Running times histogram: reports a 64 bins histogram of the running times. All plots are parameterized based on the value of threshold_ms, which can be used to filter running times bigger than 2 times this value. Such a threshold is useful to filter out from the plots outliers thus focusing the analysis in the most critical periodicity under analysis. The number and percentage of discarded samples is reported in output. A default threshold of 16 [ms] is used, which is useful for example to analyze a 60Hz rendering pipelines. A PNG of the generated plots is generated and saved in the same folder where the trace is. :param task: the task to report latencies for :type task: int or list(str) :param tag: a string to add to the plot title :type tag: str :param threshold_ms: the minimum acceptable [ms] value to report graphically in the generated plots :type threshold_ms: int or float :param bins: number of bins to be used for the runtime's histogram :type bins: int :returns: a DataFrame with statistics on ploted running times """ if not self._trace.hasEvents('sched_switch'): self._log.warning('Event [sched_switch] not found, ' 'plot DISABLED!') return if not self._trace.hasEvents('sched_wakeup'): self._log.warning('Event [sched_wakeup] not found, ' 'plot DISABLED!') return # Get task data td = self._getTaskData(task) if not td: return None # Load runtime data run_df = self._dfg_runtimes_df(td.pid) if run_df is None: return None self._log.info('Found: %5d activations for [%s]', len(run_df), td.label) # Disregard data above two time the specified threshold y_max = (2 * threshold_ms) / 1000. len_tot = len(run_df) run_df = run_df[run_df.running_time <= y_max] len_plt = len(run_df) if len_plt < len_tot: len_dif = len_tot - len_plt len_pct = 100. * len_dif / len_tot self._log.warning('Discarding {} running times (above 2 x threshold_ms, ' '{:.1f}% of the overall activations)'\ .format(len_dif, len_pct)) ymax = 1.1 * run_df.running_time.max() # Build the series for the CDF cdf = self._getCDF(run_df.running_time, (threshold_ms / 1000.)) self._log.info('%.1f %% samples below %d [ms] threshold', 100. * cdf.below, threshold_ms) # Setup plots gs = gridspec.GridSpec(2, 2, height_ratios=[2,1], width_ratios=[1,1]) plt.figure(figsize=(16, 8)) plot_title = "[{}]: running times (@ block time)".format(td.label) if tag: plot_title = "{} [{}]".format(plot_title, tag) plot_title = "{}, threshold @ {} [ms]".format(plot_title, threshold_ms) # Running time over time axes = plt.subplot(gs[0,0:2]) axes.set_title(plot_title) run_df.plot(style='g+', logy=False, ax=axes) axes.axhline(threshold_ms / 1000., linestyle='--', color='g') self._trace.analysis.status.plotOverutilized(axes) axes.legend(loc='lower center', ncol=2) axes.set_xlim(self._trace.x_min, self._trace.x_max) # Cumulative distribution of all running times axes = plt.subplot(gs[1,0]) cdf.df.plot(ax=axes, legend=False, xlim=(0,None), title='Runtime CDF ({:.1f}% within {} [ms] threshold)'\ .format(100. * cdf.below, threshold_ms)) axes.axvspan(0, threshold_ms / 1000., facecolor='g', alpha=0.5); axes.axhline(y=cdf.below, linewidth=1, color='r', linestyle='--') # Histogram of all running times axes = plt.subplot(gs[1,1]) run_df.plot(kind='hist', bins=bins, ax=axes, xlim=(0,ymax), legend=False, title='Latency histogram ({} bins, {} [ms] green threshold)'\ .format(bins, threshold_ms)); axes.axvspan(0, threshold_ms / 1000., facecolor='g', alpha=0.5); # Save generated plots into datadir task_name = re.sub('[\ :/]', '_', td.label) figname = '{}/{}task_runtimes_{}_{}.png'\ .format(self._trace.plots_dir, self._trace.plots_prefix, td.pid, task_name) pl.savefig(figname, bbox_inches='tight') # Return statistics stats_df = run_df.describe(percentiles=[0.95, 0.99]) label = '{:.1f}%'.format(100. * cdf.below) stats = { label : cdf.threshold } return stats_df.append(pd.DataFrame( stats.values(), columns=['running_time'], index=stats.keys())) def plotTaskResidency(self, task): """ Plot CPU residency of the specified task This will show an overview of how much time that task spent being active on each available CPU, in seconds. :param task: the task to report runtimes for :type task: int or str """ df = self._dfg_task_residency(task) ax = df.plot(kind='bar', figsize=(16, 6)) ax.set_title('CPU residency of task {}'.format(task)) figname = os.path.join( self._trace.plots_dir, '{}task_cpu_residency_{}.png'.format( self._trace.plots_prefix, task ) ) pl.savefig(figname, bbox_inches='tight') ############################################################################### # Utility Methods ############################################################################### @memoized def _getTaskData(self, task): # Get task PID if isinstance(task, str): task_pids = self._trace.getTaskByName(task) if len(task_pids) == 0: self._log.warning('No tasks found with name [%s]', task) return None task_pid = task_pids[0] if len(task_pids) > 1: self._log.warning('Multiple PIDs for task named [%s]', task) for pid in task_pids: self._log.warning(' %5d : %s', pid, ','.join(self._trace.getTaskByPid(pid))) self._log.warning('Returning stats only for PID: %d', task_pid) task_name = self._trace.getTaskByPid(task_pid) # Get task name elif isinstance(task, int): task_pid = task task_name = self._trace.getTaskByPid(task_pid) if task_name is None: self._log.warning('No tasks found with name [%s]', task) return None else: raise ValueError("Task must be either an int or str") task_label = "{}: {}".format(task_pid, task_name) return TaskData(task_pid, task_name, task_label) @memoized def _taskState(self, state): try: state = int(state) except ValueError: # State already converted to symbol return state # Tasks STATE flags (Linux 3.18) TASK_STATES = { 0: "R", # TASK_RUNNING 1: "S", # TASK_INTERRUPTIBLE 2: "D", # TASK_UNINTERRUPTIBLE 4: "T", # __TASK_STOPPED 8: "t", # __TASK_TRACED 16: "X", # EXIT_DEAD 32: "Z", # EXIT_ZOMBIE 64: "x", # TASK_DEAD 128: "K", # TASK_WAKEKILL 256: "W", # TASK_WAKING 512: "P", # TASK_PARKED 1024: "N", # TASK_NOLOAD } kver = self._trace.platform['kernel']['parts'] if kver is None: kver = (3, 18) self._log.info('Parsing sched_switch states assuming kernel v%d.%d', kver[0], kver[1]) if kver >= (4, 8): TASK_STATES[2048] = "n" # TASK_NEW TASK_MAX_STATE = 2 * max(TASK_STATES) res = "R" if state & (TASK_MAX_STATE - 1) != 0: res = "" for key in TASK_STATES.keys(): if key & state: res += TASK_STATES[key] if state & TASK_MAX_STATE: res += "+" else: res = '|'.join(res) return res def _getCDF(self, data, threshold): """ Build the "Cumulative Distribution Function" (CDF) for the given data """ # Build the series of sorted values ser = data.sort_values() if len(ser) < 1000: # Append again the last (and largest) value. # This step is important especially for small sample sizes # in order to get an unbiased CDF ser = ser.append(
pd.Series(ser.iloc[-1])
pandas.Series
from __future__ import print_function import os import pandas as pd import xgboost as xgb import time import shutil from sklearn import preprocessing from sklearn.cross_validation import train_test_split import numpy as np from sklearn.utils import shuffle from sklearn import metrics import sys def archive_results(filename,results,algo,script): """ :type algo: basestring :type script: basestring :type results: DataFrame """ #assert results == pd.DataFrame now=time.localtime()[0:5] dirname='../archive' subdirfmt='%4d-%02d-%02d-%02d-%02d' subdir=subdirfmt %now if not os.path.exists(os.path.join(dirname,str(algo))): os.mkdir(os.path.join(dirname,str(algo))) dir_to_create=os.path.join(dirname,str(algo),subdir) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) os.chdir(dir_to_create) results.to_csv(filename,index=False,float_format='%.6f') shutil.copy2(script,'.') return ############################################################################################### # support class to redirect stderr class flushfile(): def __init__(self, f): self.f = f def __getattr__(self,name): return object.__getattribute__(self.f, name) def write(self, x): self.f.write(x) self.f.flush() def flush(self): self.f.flush() # Stderr oldstderr = sys.stderr # global def capture_stderr(log): oldstderr = sys.stderr sys.stderr = open(log, 'w') sys.stderr = flushfile(sys.stderr) return log def restore_stderr(): sys.stderr = oldstderr def parse_xgblog(xgblog): import re pattern = re.compile(r'^\[(?P<round>\d+)\]\s*\D+:(?P<validation>\d+.\d+)\s*\D+:(?P<train>\d+.\d+)') xgb_list = [] with open(xgblog, "r") as ins: next(ins) for line in ins: match = pattern.match(line) if match: idx = int(match.group("round")) validation = float(match.group("validation")) training = float(match.group("train")) xgb_list.append([idx, validation, training]) else: pass # raise Exception("Failed to parse!") return xgb_list def preprocess_data(train,test): id_test=test['patient_id'] train=train.drop(['patient_id'],axis=1) test=test.drop(['patient_id'],axis=1) y=train['is_screener'] train=train.drop(['is_screener'],axis=1) for f in train.columns: if train[f].dtype == 'object': print(f) lbl = preprocessing.LabelEncoder() lbl.fit(list(train[f].values) + list(test[f].values)) train[f] = lbl.transform(list(train[f].values)) test[f] = lbl.transform(list(test[f].values)) return id_test,test,train,y os.chdir(os.getcwd()) train_file = '../input/patients_train.csv.gz' test_file = '../input/patients_test.csv.gz' train = pd.read_csv(train_file) test = pd.read_csv(test_file) train.drop( 'patient_gender', axis = 1, inplace = True ) test.drop( 'patient_gender', axis = 1, inplace = True ) ########## last asctivity files activity_file=('../input/activity_selected_last.csv.gz') diagnosis_file=('../input/diagnosis_selected_last.csv.gz') procedure_file=('../input/procedure_selected_last.csv.gz') surgical_file=('../input/surgical_selected_last.csv.gz') prescription_file=('../input/prescription_selected_last.csv.gz') physicians_file=('../input/physicians.csv.gz') drugs_file=('../input/drugs.csv.gz') ############ first activity files activity_file_first=('../input/activity_selected_last.csv.gz') diagnosis_file_first=('../input/diagnosis_selected_last.csv.gz') procedure_file_first=('../input/procedure_selected_last.csv.gz') surgical_file_first=('../input/surgical_selected_last.csv.gz') prescription_file=('../input/prescription_selected_last.csv.gz') activity=pd.read_csv(activity_file ) #Fa=pd.read_csv(activity_file_first,usecols=['activity_year']) #print(Fa) #activity['activity_first_year']=Fa['activity_year'] #activity['delta_time_activity']=activity['activity_year']-activity['activity_first_year'] #print(activity[activity['delta_time_activity']!=0,'delta_time_activity']) train=pd.merge(train,activity, on='patient_id',how='left') test=pd.merge(test,activity, on='patient_id',how='left') print('after merging activity') print(train.shape,test.shape) procedure=pd.read_csv(procedure_file ) diagnosis=pd.read_csv(diagnosis_file) diagnosis=pd.merge(diagnosis,procedure,on=['patient_id','claim_id'],how='left') train=pd.merge(train,diagnosis, on='patient_id',how='left') test=pd.merge(test,diagnosis, on='patient_id',how='left') print('after merging diagnosis ') print(train.shape,test.shape) prescription=pd.read_csv(prescription_file) drugs=pd.read_csv(drugs_file) physicians=pd.read_csv(physicians_file) prescription=pd.merge(prescription,drugs ,on='drug_id',how='left') prescription=pd.merge(prescription,physicians,on='practitioner_id',how='left') train=pd.merge(train,prescription,on='patient_id',how='left') test=
pd.merge(test,prescription,on='patient_id',how='left')
pandas.merge
import pandas as pd def prep_events(events: pd.DataFrame, sort_by_date: bool = True): events_p = events.copy() events_p['asPitcher'] = 1 events_p['playerId'] = events_p['pitcherId'] events_p['teamId'] = events_p['pitcherTeamId'] events_h = events.copy() events_h['asPitcher'] = 0 events_h['playerId'] = events_p['hitterId'] events_h['teamId'] = events_p['hitterTeamId'] if sort_by_date: events_stacked = pd.concat([events_p, events_h]).sort_values( by=['dailyDataDate', 'gamePk', 'inning']).reset_index( drop=True) events_stacked['dailyDataDate'] = pd.to_datetime(events_stacked['dailyDataDate'], format='%Y%m%d') else: events_stacked =
pd.concat([events_p, events_h])
pandas.concat
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from __future__ import print_function import warnings from functools import reduce import numpy as np import pandas as pd from pandas.io import pytables from .measures.transformation import time_interpolate as time_interpolate_ from .measures.transformation import transformations_matrix from ..utils import print_progress import logging log = logging.getLogger(__name__) __all__ = [] class Trajectories(pd.DataFrame): """ This class is a subclass of the class :class:`pandas.DataFrame`. It is mainly here to provide utility attributes and syntactic shugar. Attributes ---------- t_stamps : ndarray unique values of the `t_stamps` index of `self.trajs` labels : ndarray unique values of the `labels` index of `self.trajs` iter_segments : iterator yields a `(label, segment)` pair where `label` is iterated over `self.labels` and `segment` is a chunk of `self.trajs` segment_idxs : dictionnary Keys are the segent label and values are a list of `(t_stamp, label)` tuples for each time point of the segment Parameters ---------- trajs : :class:`pandas.DataFrame` Examples -------- >>> from sktracker import data >>> from sktracker.trajectories import Trajectories >>> >>> trajs = data.with_gaps_df() >>> trajs = Trajectories(trajs) >>> >>> # One of the available method can display trajectories with matplotlib. >>> trajs.show(xaxis='t', yaxis='x') <matplotlib.axes.AxesSubplot at 0x7f027ecc2cf8> """ def __init__(self, *args, **kwargs): """ """ super(self.__class__, self).__init__(*args, **kwargs) @classmethod def empty_trajs(cls, columns=['x', 'y', 'z']): empty_index = pd.MultiIndex.from_arrays(np.empty((2, 0)), names=['t_stamp', 'label']) empty_trajs = pd.DataFrame(np.empty((0, len(columns))), index=empty_index, columns=columns) return cls(empty_trajs) def check_trajs_df_structure(self, index=None, columns=None): """Check wether trajectories contains a specified structure. Parameters ---------- index : list Index names (order is important) columns : list Column names (order does not matter here) Raises ------ ValueError in both case """ error_mess = "Trajectories does not contain correct indexes : {}" if index and self.index.names != index: raise ValueError(error_mess.format(index)) error_mess = "Trajectories does not contain correct columns : {}" if columns: columns = set(columns) if not columns.issubset(set(self.columns)): raise ValueError(error_mess.format(columns)) # Trajs getter methods @property def t_stamps(self): return self.index.get_level_values('t_stamp').unique() @property def labels(self): if 'label' in self.columns: return self['label'].unique() else: return self.index.get_level_values('label').unique() @property def segment_idxs(self): return self.groupby(level='label').groups @property def iter_segments(self): for lbl, idxs in self.segment_idxs.items(): yield lbl, self.loc[idxs] def get_bounds(self, column=None): """Get bounds of all segments. Parameters ---------- column : string By default the method will return bounds as 't_stamp'. If you want another value from column ('t' for example), you can put the column's name here. asarray : bool Return bounds as dict of as array wether it's True Returns ------- bounds as dict or ndarray """ all_segs = self.segment_idxs.items() if column: bounds = {k: (self.loc[v[0], column], self.loc[v[-1], column]) for k, v in all_segs} else: bounds = {k: (v[0][0], v[-1][0]) for k, v in all_segs} return bounds def get_segments(self): """A segment contains all the data from `self.trajs` with Returns ------- A dict with labels as keys and segments as values """ return {key: segment for key, segment in self.iter_segments} def get_longest_segments(self, n): """Get the n th longest segments label indexes. Parameters ---------- n : int """ idxs = self.segment_idxs return list(dict(sorted(idxs.items(), key=lambda x: len(x[1]))[-n:]).keys()) def get_shortest_segments(self, n): """Get the n th shortest segments label indexes. Parameters ---------- n : int """ idxs = self.segment_idxs return list(dict(sorted(idxs.items(), key=lambda x: len(x[1]))[:n]).keys()) def copy(self): """ """ trajs = super(self.__class__, self).copy() return Trajectories(trajs) def get_colors(self, cmap="hsv", alpha=None, rgba=False): '''Get color for each label. Parameters ---------- cmap : string See http://matplotlib.org/examples/color/colormaps_reference.html for a list of available colormap. alpha : float Between 0 and 1 to add transparency on color. rgba : bool If True return RGBA tuple for each color. If False return HTML color code. Returns ------- dict of `label : color` pairs for each segment. ''' import matplotlib.pyplot as plt cmap = plt.cm.get_cmap(name=cmap) n = len(self.labels) ite = zip(np.linspace(0, 0.9, n), self.labels) colors = {label: cmap(i, alpha=alpha) for i, label in ite} if not rgba: def get_hex(rgba): rgba = np.round(np.array(rgba) * 255).astype('int') if not alpha: rgba = rgba[:3] return "#" + "".join(['{:02X}'.format(a) for a in rgba]) colors = {label: get_hex(color) for label, color in colors.items()} return colors def get_t_stamps_correspondences(self, data_values, column): """For a given column return 't_stamp' values corresponding to 1d vector of this column. Parameters ---------- data_values : 1d np.ndarray Data found in self[column] column : str Which column to use. Returns ------- np.ndarray with the same length as 'data_values'. """ t_stamps = self.t_stamps values = self[column].unique() index = np.argsort(values) values_sorted = values[index] sorted_index = np.searchsorted(values_sorted, data_values) yindex = np.take(index, sorted_index) return t_stamps[yindex] # Segment / spot modification methods def remove_spots(self, spots, inplace=False): """Remove spots identified by (t_stamp, label). Parameters ---------- spots : tuple or list of tuple Each tuple must contain (t_stamp, label) to remove. Returns ------- Copy of modified trajectories or None wether inplace is True. """ return Trajectories(self.drop(spots, inplace=inplace)) def remove_segments(self, segments_idx, inplace=False): """Remove segments from trajectories. Parameters ---------- segments_idx : list List of label to remove """ return Trajectories(self.drop(segments_idx, level='label', inplace=inplace)) def merge_segments(self, labels, inplace=False): """Merge segments from a list of labels. If spots have the same t_stamp, only the first spot for the t_stamp is keept (we may want to reconsider that behaviour later). Parameters ---------- labels : list Labels to merge. Returns ------- Copy of modified trajectories or None wether inplace is True. """ if inplace: trajs = self else: trajs = self.copy() new_label = labels[0] trajs.sortlevel(inplace=True) trajs.loc[:, 'new_label'] = trajs.index.get_level_values('label').values idx = pd.IndexSlice for label in labels[1:]: trajs.loc[idx[:, label], 'new_label'] = new_label trajs.reset_index('label', inplace=True) trajs.drop('label', axis=1, inplace=True) trajs.rename(columns={'new_label': 'label'}, inplace=True) trajs.set_index('label', append=True, inplace=True) trajs.sortlevel(inplace=True) # Remove duplicate spots from the same t_stamp gps = trajs.groupby(level=['t_stamp', 'label']) trajs = Trajectories(gps.apply(lambda x: x.iloc[0])) if inplace: return None else: return trajs def cut_segments(self, spot, inplace=False): """Cut segment. All spots with same label as `spot` and with `t_stamp` greater than `spot` will have a new label. Parameters ---------- spot : tuple Must contain (t_stamp, label) Returns ------- Copy of modified trajectories or None wether inplace is True. """ if inplace: trajs = self else: trajs = self.copy() trajs.sortlevel(inplace=True) t_stamp, label = spot new_label = trajs.index.get_level_values('label').max() + 1 trajs.loc[:, 'new_label'] = trajs.index.get_level_values('label').values idxs = (trajs.index.get_level_values('t_stamp') > t_stamp) & (trajs.index.get_level_values('label') == label) trajs.loc[idxs, 'new_label'] = new_label trajs.reset_index('label', inplace=True) trajs.drop('label', axis=1, inplace=True) trajs.rename(columns={'new_label': 'label'}, inplace=True) trajs.set_index('label', append=True, inplace=True) trajs.sortlevel(inplace=True) if inplace: return None else: return trajs def duplicate_segments(self, label): """Duplicate segment. Parameters ---------- label : int Label index. Returns ------- Copy of modified :class:`sktracker.trajectories.Trajectories` or None wether inplace is True. """ trajs = self.copy() new_label = trajs.labels.max() + 1 index_names = trajs.index.names trajs.reset_index(inplace=True) new_segment = trajs[trajs['label'] == label].copy() new_segment.loc[:, 'label'] = new_label trajs = Trajectories(
pd.concat([trajs, new_segment])
pandas.concat
""" Cleaning and transforming the single pandas dataframe """ import os import numpy as np import pandas as pd from scipy import stats def clean_and_wrangle(_df, station_info_path=os.path.join('references', 'nyc_subway_station_info.csv')): # Create datetime columns _df['DATETIME'] = pd.to_datetime(_df['DATE'] + ' ' + _df['TIME']) # Create Datetime variable _df['DATE'] =
pd.to_datetime(_df['DATE'], infer_datetime_format=True)
pandas.to_datetime
# ============================================================================ # # IMPORTS # # ============================================================================ # import numpy as np import time import tqdm import cv2 import pandas as pd import os from collections import defaultdict from sklearn.metrics import confusion_matrix from sklearn.utils.multiclass import unique_labels import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # ============================================================================ # # TOOLS # # ============================================================================ # def display_imgs(imgs): columns = 3 rows = 3 img_nums = np.random.choice(len(imgs), columns * rows) img_data = imgs[img_nums] fig = plt.figure(figsize=(columns * 5, rows * 4)) for i in range(rows): for j in range(columns): idx = i + j * columns fig.add_subplot(rows, columns, idx + 1) plt.axis('off') # img = img_data[idx].astype(np.float32) img = img_data[idx] plt.imshow(img) plt.tight_layout() plt.show() def plot_history(history): plt.figure(figsize=(8, 10)) ax_loss = plt.subplot(311) plt.plot(history.history['loss']) plt.plot(history.history['regression_loss']) plt.plot(history.history['classification_loss']) ax_loss.set_yscale('log') plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['loss', 'regression_loss', 'classification_loss']) plt.subplot(312) plt.plot(history.history['mAP']) plt.title('mAP') plt.xlabel('epoch') ax_lr = plt.subplot(313) plt.plot(history.history['lr']) plt.title('learning rate') plt.xlabel('epoch') ax_lr.set_yscale('log') plt.subplots_adjust(hspace=0.5) plt.show() # ============================================================================ # # LOAD DATASETS # # ============================================================================ # # ------------------------------ helper functions ------------------------------ def load_images(paths, N_max=1000, alpha_chnl=False): ''' Purpose: load images from paths. for drones use alpha channel ''' if len(paths) > N_max: paths = paths[0: N_max] # imgs = np.zeros((len(paths), *img_shape, 3), dtype=np.uint8) imgs = [] for num, img_path in enumerate(paths): if alpha_chnl: img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) imgs.append(cv2.cvtColor(img, cv2.COLOR_BGRA2RGBA)) else: img = cv2.imread(img_path, cv2.IMREAD_COLOR) imgs.append(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) return np.array(imgs) def read_file_paths(file_name): ''' Purpose: Read file paths from data frame ''' data =
pd.read_csv(file_name)
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt from pathlib import Path # function for loading data from disk def load_data(): """ this function is responsible for loading traing data from disk. and performs some basic opertaions like - one-hot encoding - feature scaling - reshaping data Parameters: (no-parameters) Returns: X : numpy array (contains all features of training data) y : numpy array (contains all targets of traing data) """ path = "../data/train.csv" if(not Path(path).is_file()): print("[util]: train data not found at '",path,"'") #quit() print("[util]: Loading '",path,"'") train = pd.read_csv(path) y = np.array(pd.get_dummies(train['label'])) X = train.drop(['label'], axis=1) X = np.array(X/255) X = X.reshape(X.shape + (1,)) y = y.reshape(y.shape + (1,)) del train return X, y # sigmoid activation function with derivative def sigmoid(x, derivative=False): if(derivative): return sigmoid(x) * (1 - sigmoid(x)) return 1.0/(1.0 + np.exp(-x)) # relu activation function with derivative def relu(x, derivative=False): if(derivative): return x > 0 return np.maximum(x, 0) # softmax activation function def softmax(z): return np.exp(z) / np.sum(np.exp(z)) # function for viewing digit from numpy array def view_digit(x, title): """ function for viewing one sample Parameters: x : numpy array (contains one sample of all features) title: string (a predicted digit) Returns: (no-returns) """ plt.matshow(x.reshape(28,28)) plt.suptitle(" predicted as "+title) plt.show() # function for shuffling the features and labels def shuffle(X, y): """ function for shuffleing both features and targets. Parameters: X : numpy array (contains all features) y : numpy array (contains all targets) Returns: (no-returns) """ n = np.random.randint(1, 100) np.random.seed(n) np.random.shuffle(X) np.random.seed(n) np.random.shuffle(y) # custom function for loading kaggle test data def load_test_data(): """ this function is responsible for loading test data from disk. Parameters: (no-parameters) Returns: kt : numpy array (contains all features of test data) """ path = "../data/test.csv" if(not Path(path).is_file()): print("[util]: test data not found at '",path,"'") #quit() print("[util]: Loading test data from: '",path,"'") test =
pd.read_csv(path)
pandas.read_csv
import torch import json from foobar.model.lstm import LSTM from foobar.model.model_loader import download_model from foobar.db_utils.cassandra_utils import query_table from foobar.prediction.predictor import prediction import os import pandas as pd import numpy as np import boto3 class FinnHubPredictor: def __init__(self, gamestop_table : str, bucket_name : str = None, bucket=None) : self.MODEL_FILE = "m1.pth" self.LOCAL_FILE = self.MODEL_FILE self.TIMESTAMP_COLUMN = "hour" self.GAMESTOP_TABLE = gamestop_table self.BUCKET_NAME = bucket_name if bucket is None: session = boto3.Session( aws_access_key_id=os.environ['AWS_ACCESS_KEY_ID'], aws_secret_access_key=os.environ['AWS_SECRET_KEY'], region_name=os.environ['REGION_NAME']) s3 = session.resource('s3') self.bucket = s3.Bucket(bucket_name) else: self.bucket = bucket def predictNewData(self, newdata_df=None): # if historicaldata_ is None: # historicaldata_ = query_table(self.GAMESTOP_TABLE) print("queried gamestop table") if newdata_df is None: print("Cant continue without data") return None data_ = newdata_df newpredictionids = data_[data_['prediction_finn'] == -1] predictions = self.producePredictions(data_) if predictions is None : return None newpredictions =
pd.merge(predictions, newpredictionids[['hour']], on='hour')
pandas.merge
import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, ) import pandas._testing as tm dt_data = [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timestamp("2011-01-03"), ] tz_data = [ pd.Timestamp("2011-01-01", tz="US/Eastern"), pd.Timestamp("2011-01-02", tz="US/Eastern"), pd.Timestamp("2011-01-03", tz="US/Eastern"), ] td_data = [ pd.Timedelta("1 days"), pd.Timedelta("2 days"), pd.Timedelta("3 days"), ] period_data = [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2011-03", freq="M"), ] data_dict = { "bool": [True, False, True], "int64": [1, 2, 3], "float64": [1.1, np.nan, 3.3], "category": Categorical(["X", "Y", "Z"]), "object": ["a", "b", "c"], "datetime64[ns]": dt_data, "datetime64[ns, US/Eastern]": tz_data, "timedelta64[ns]": td_data, "period[M]": period_data, } class TestConcatAppendCommon: """ Test common dtype coercion rules between concat and append. """ @pytest.fixture(params=sorted(data_dict.keys())) def item(self, request): key = request.param return key, data_dict[key] item2 = item def _check_expected_dtype(self, obj, label): """ Check whether obj has expected dtype depending on label considering not-supported dtypes """ if isinstance(obj, Index): assert obj.dtype == label elif isinstance(obj, Series): if label.startswith("period"): assert obj.dtype == "Period[M]" else: assert obj.dtype == label else: raise ValueError def test_dtypes(self, item): # to confirm test case covers intended dtypes typ, vals = item self._check_expected_dtype(Index(vals), typ) self._check_expected_dtype(Series(vals), typ) def test_concatlike_same_dtypes(self, item): # GH 13660 typ1, vals1 = item vals2 = vals1 vals3 = vals1 if typ1 == "category": exp_data = Categorical(list(vals1) + list(vals2)) exp_data3 = Categorical(list(vals1) + list(vals2) + list(vals3)) else: exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append res = Index(vals1).append(Index(vals2)) exp = Index(exp_data) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3) tm.assert_index_equal(res, exp) # index.append name mismatch i1 = Index(vals1, name="x") i2 = Index(vals2, name="y") res = i1.append(i2) exp = Index(exp_data) tm.assert_index_equal(res, exp) # index.append name match i1 = Index(vals1, name="x") i2 = Index(vals2, name="x") res = i1.append(i2) exp = Index(exp_data, name="x") tm.assert_index_equal(res, exp) # cannot append non-index with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append(vals2) with pytest.raises(TypeError, match="all inputs must be Index"): Index(vals1).append([Index(vals2), vals3]) # ----- Series ----- # # series.append res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) # concat res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements res = Series(vals1)._append([Series(vals2), Series(vals3)], ignore_index=True) exp = Series(exp_data3) tm.assert_series_equal(res, exp) res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) # name mismatch s1 = Series(vals1, name="x") s2 = Series(vals2, name="y") res = s1._append(s2, ignore_index=True) exp = Series(exp_data) tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # name match s1 = Series(vals1, name="x") s2 = Series(vals2, name="x") res = s1._append(s2, ignore_index=True) exp = Series(exp_data, name="x") tm.assert_series_equal(res, exp, check_index_type=True) res = pd.concat([s1, s2], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # cannot append non-index msg = ( r"cannot concatenate object of type '.+'; " "only Series and DataFrame objs are valid" ) with pytest.raises(TypeError, match=msg): Series(vals1)._append(vals2) with pytest.raises(TypeError, match=msg): Series(vals1)._append([Series(vals2), vals3]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), vals2]) with pytest.raises(TypeError, match=msg): pd.concat([Series(vals1), Series(vals2), vals3]) def test_concatlike_dtypes_coercion(self, item, item2, request): # GH 13660 typ1, vals1 = item typ2, vals2 = item2 vals3 = vals2 # basically infer exp_index_dtype = None exp_series_dtype = None if typ1 == typ2: # same dtype is tested in test_concatlike_same_dtypes return elif typ1 == "category" or typ2 == "category": # The `vals1 + vals2` below fails bc one of these is a Categorical # instead of a list; we have separate dedicated tests for categorical return warn = None # specify expected dtype if typ1 == "bool" and typ2 in ("int64", "float64"): # series coerces to numeric based on numpy rule # index doesn't because bool is object dtype exp_series_dtype = typ2 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif typ2 == "bool" and typ1 in ("int64", "float64"): exp_series_dtype = typ1 mark = pytest.mark.xfail(reason="GH#39187 casting to object") request.node.add_marker(mark) warn = FutureWarning elif ( typ1 == "datetime64[ns, US/Eastern]" or typ2 == "datetime64[ns, US/Eastern]" or typ1 == "timedelta64[ns]" or typ2 == "timedelta64[ns]" ): exp_index_dtype = object exp_series_dtype = object exp_data = vals1 + vals2 exp_data3 = vals1 + vals2 + vals3 # ----- Index ----- # # index.append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Index(vals1).append(Index(vals2)) exp = Index(exp_data, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # 3 elements res = Index(vals1).append([Index(vals2), Index(vals3)]) exp = Index(exp_data3, dtype=exp_index_dtype) tm.assert_index_equal(res, exp) # ----- Series ----- # # series._append with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append(Series(vals2), ignore_index=True) exp = Series(exp_data, dtype=exp_series_dtype) tm.assert_series_equal(res, exp, check_index_type=True) # concat with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat([Series(vals1), Series(vals2)], ignore_index=True) tm.assert_series_equal(res, exp, check_index_type=True) # 3 elements with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = Series(vals1)._append( [Series(vals2), Series(vals3)], ignore_index=True ) exp = Series(exp_data3, dtype=exp_series_dtype) tm.assert_series_equal(res, exp) with tm.assert_produces_warning(warn, match="concatenating bool-dtype"): # GH#39817 res = pd.concat( [Series(vals1), Series(vals2), Series(vals3)], ignore_index=True, ) tm.assert_series_equal(res, exp) def test_concatlike_common_coerce_to_pandas_object(self): # GH 13626 # result must be Timestamp/Timedelta, not datetime.datetime/timedelta dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"]) tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Timestamp("2011-01-01"), pd.Timestamp("2011-01-02"), pd.Timedelta("1 days"), pd.Timedelta("2 days"), ] ) res = dti.append(tdi) tm.assert_index_equal(res, exp) assert isinstance(res[0], pd.Timestamp) assert isinstance(res[-1], pd.Timedelta) dts = Series(dti) tds = Series(tdi) res = dts._append(tds) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) res = pd.concat([dts, tds]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) assert isinstance(res.iloc[0], pd.Timestamp) assert isinstance(res.iloc[-1], pd.Timedelta) def test_concatlike_datetimetz(self, tz_aware_fixture): tz = tz_aware_fixture # GH 7795 dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz=tz) exp = pd.DatetimeIndex( ["2011-01-01", "2011-01-02", "2012-01-01", "2012-01-02"], tz=tz ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) @pytest.mark.parametrize("tz", ["UTC", "US/Eastern", "Asia/Tokyo", "EST5EDT"]) def test_concatlike_datetimetz_short(self, tz): # GH#7795 ix1 = pd.date_range(start="2014-07-15", end="2014-07-17", freq="D", tz=tz) ix2 = pd.DatetimeIndex(["2014-07-11", "2014-07-21"], tz=tz) df1 = DataFrame(0, index=ix1, columns=["A", "B"]) df2 = DataFrame(0, index=ix2, columns=["A", "B"]) exp_idx = pd.DatetimeIndex( ["2014-07-15", "2014-07-16", "2014-07-17", "2014-07-11", "2014-07-21"], tz=tz, ) exp = DataFrame(0, index=exp_idx, columns=["A", "B"]) tm.assert_frame_equal(df1._append(df2), exp) tm.assert_frame_equal(pd.concat([df1, df2]), exp) def test_concatlike_datetimetz_to_object(self, tz_aware_fixture): tz = tz_aware_fixture # GH 13660 # different tz coerces to object dti1 = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz) dti2 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"]) exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01"), pd.Timestamp("2012-01-02"), ], dtype=object, ) res = dti1.append(dti2) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts2 = Series(dti2) res = dts1._append(dts2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) # different tz dti3 = pd.DatetimeIndex(["2012-01-01", "2012-01-02"], tz="US/Pacific") exp = Index( [ pd.Timestamp("2011-01-01", tz=tz), pd.Timestamp("2011-01-02", tz=tz), pd.Timestamp("2012-01-01", tz="US/Pacific"), pd.Timestamp("2012-01-02", tz="US/Pacific"), ], dtype=object, ) res = dti1.append(dti3) tm.assert_index_equal(res, exp) dts1 = Series(dti1) dts3 = Series(dti3) res = dts1._append(dts3) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([dts1, dts3]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period(self): # GH 13660 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01", "2012-02"], freq="M") exp = pd.PeriodIndex(["2011-01", "2011-02", "2012-01", "2012-02"], freq="M") res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_diff_freq_to_object(self): # GH 13221 pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") pi2 = pd.PeriodIndex(["2012-01-01", "2012-02-01"], freq="D") exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Period("2012-01-01", freq="D"), pd.Period("2012-02-01", freq="D"), ], dtype=object, ) res = pi1.append(pi2) tm.assert_index_equal(res, exp) ps1 = Series(pi1) ps2 = Series(pi2) res = ps1._append(ps2) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) res = pd.concat([ps1, ps2]) tm.assert_series_equal(res, Series(exp, index=[0, 1, 0, 1])) def test_concatlike_common_period_mixed_dt_to_object(self): # GH 13221 # different datetimelike pi1 = pd.PeriodIndex(["2011-01", "2011-02"], freq="M") tdi = pd.TimedeltaIndex(["1 days", "2 days"]) exp = Index( [ pd.Period("2011-01", freq="M"), pd.Period("2011-02", freq="M"), pd.Timedelta("1 days"),
pd.Timedelta("2 days")
pandas.Timedelta
import pandas as pd import numpy as np from sklearn import preprocessing from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import StandardScaler def generate_model_df(Ion, CrystalSystem, Spacegroup, Charge, Discharge): """Generates dataframe to input into the neural network model. The dataframe must contain the working ion, crystal system, spacegroup number, charge formula, and discharge formula""" import pandas as pd bat_dataframe =
pd.DataFrame()
pandas.DataFrame
from __future__ import division import pandas as pd from base.uber_model import UberModel, ModelSharedInputs from .rice_functions import RiceFunctions class RiceInputs(ModelSharedInputs): """ Input class for Rice. """ def __init__(self): """Class representing the inputs for Rice""" super(RiceInputs, self).__init__() self.mai = pd.Series([], dtype="float") self.dsed = pd.Series([], dtype="float") self.area = pd.Series([], dtype="float") self.pb = pd.Series([], dtype="float") self.dw = pd.Series([], dtype="float") self.osed = pd.Series([], dtype="float") self.kd = pd.Series([], dtype="float") class RiceOutputs(object): """ Output class for Rice. """ def __init__(self): """Class representing the outputs for Rice""" super(RiceOutputs, self).__init__() self.out_msed = pd.Series(name="out_msed", dtype="object") self.out_vw = pd.Series(name="out_vw", dtype="object") self.out_mass_area = pd.Series(name="out_mass_area", dtype="object") self.out_cw =
pd.Series(name="out_cw", dtype="object")
pandas.Series
import os import sys import gc import numpy as np import pandas as pd import math import scipy.stats as scst import scipy as sp import scipy.linalg as la from bgen_reader import read_bgen import qtl_loader_utils import pdb from glimix_core.lmm import LMM def run_QTL_analysis_load_intersect_phenotype_covariates_kinship_sample_mapping(pheno_filename, anno_filename, geno_prefix, plinkGenotype, minimum_test_samples= 10, relatedness_score=None, cis_mode=True, skipAutosomeFiltering = False, snps_filename=None, feature_filename=None, snp_feature_filename=None, selection='all', covariates_filename=None, randomeff_filename=None, sample_mapping_filename=None, extended_anno_filename=None, feature_variant_covariate_filename=None): # pheno_filename = "/Users/chaaya/dhonveli_dkfz/hipsci_pipeline/geuvadis_CEU_test_data/Expression/Geuvadis_CEU_YRI_Expr.txt.gz" # anno_filename = "/Users/chaaya/dhonveli_dkfz/hipsci_pipeline/geuvadis_CEU_test_data/Expression/Geuvadis_CEU_Annot.txt" # geno_prefix = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis" # plinkGenotype = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis" # minimum_test_samples = 10 # relatedness_score = 0.95 # cis_mode = True # skipAutosomeFiltering = False # snps_filename = None # feature_filename = None # snp_feature_filename = None # selection = 'all' # covariates_filename = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Expression/Geuvadis_CEU_YRI_covariates.txt" # randomeff_filename = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis_chr1_kinship.normalized.txt,/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Genotypes/Geuvadis_readdepth.txt" # sample_mapping_filename = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Geuvadis_CEU_gte.txt" # extended_anno_filename = None # feature_variant_covariate_filename = None # output_dir = "/Users/chaaya/dhonveli_dkfz/limix_qtl/limix_qtl-master/Limix_QTL/test_data/Output2/" # window_size = 250000 # min_maf = 0.05 # min_hwe_P = 0.001 # min_call_rate = 0.95 # blocksize = 1000 # gaussianize_method = None # genetic_range = "all" # seed = np.random.randint(40000) # n_perm = 0 # write_permutations = False # regressCovariatesUpfront = False # write_feature_top_permutations = False # selection based on coordinates selectionStart = None selectionEnd = None if(":" in selection): parts = selection.split(":") if("-" not in parts[1]): print("No correct sub selection.") print("Given in: "+selection) print("Expected format: (chr number):(start location)-(stop location)") sys.exit() chromosome = parts[0] if("-" in parts[1]): parts2 = parts[1].split("-") selectionStart = int(parts2[0]) selectionEnd = int(parts2[1]) else : chromosome=selection ''' function to take input and intersect sample and genotype.''' #Load input data files & filter for relevant data #Load input data filesf # loading phenotype and annotation files phenotype_df = qtl_loader_utils.get_phenotype_df(pheno_filename) annotation_df = qtl_loader_utils.get_annotation_df(anno_filename) phenotype_df.columns = phenotype_df.columns.astype("str") phenotype_df.index = phenotype_df.index.astype("str") annotation_df.columns = annotation_df.columns.astype("str") annotation_df.index = annotation_df.index.astype("str") # loading genotype if(plinkGenotype): bim,fam,bed = qtl_loader_utils.get_genotype_data(geno_prefix) bgen=None else : bgen = read_bgen(geno_prefix+'.bgen', verbose=False) bed=None fam =bgen['samples'] fam = fam.to_frame("iid") fam.index=fam["iid"] bim = bgen['variants'].compute() bim = bim.assign(i = range(bim.shape[0])) bim['id'] = bim['rsid'] bim = bim.rename(index=str, columns={"id": "snp"}) bim['a1'] = bim['allele_ids'].str.split(",", expand=True)[0] bim.index = bim["snp"].astype(str).values bim.index.name = "candidate" ##Fix chromosome ids bim['chrom'].replace('^chr','',regex=True,inplace=True) bim['chrom'].replace(['X', 'Y', 'XY', 'MT'], ['23', '24', '25', '26'],inplace=True) ##Remove non-biallelic & non-ploidy 2 (to be sure). print("Warning, the current software only supports biallelic SNPs and ploidy 2") bim.loc[np.logical_and(bim['nalleles']<3,bim['nalleles']>0),:] # converting chromsome names annotation_df.replace(['X', 'Y', 'XY', 'MT'], ['23', '24', '25', '26'],inplace=True) if chromosome=='X' : chromosome = '23' elif chromosome=='Y': chromosome = '24' elif chromosome=='XY': chromosome='25' elif chromosome=='MT': chromosome='26' print("Intersecting data.") if(annotation_df.shape[0] != annotation_df.groupby(annotation_df.index).first().shape[0]): print("Only one location per feature supported. If multiple locations are needed please look at: --extended_anno_file") sys.exit() ##Make sure that there is only one entry per feature id!. sample2individual_df = qtl_loader_utils.get_samplemapping_df(sample_mapping_filename,list(phenotype_df.columns),'sample') sample2individual_df.index = sample2individual_df.index.astype('str') sample2individual_df = sample2individual_df.astype('str') sample2individual_df['sample']=sample2individual_df.index sample2individual_df = sample2individual_df.drop_duplicates(); ##Filter first the linking files! #Subset linking to relevant genotypes. orgSize = sample2individual_df.shape[0] sample2individual_df = sample2individual_df.loc[sample2individual_df['iid'].map(lambda x: x in list(map(str, fam.index))),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the genotype file.") #Subset linking to relevant phenotypes. sample2individual_df = sample2individual_df.loc[np.intersect1d(sample2individual_df.index,phenotype_df.columns),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the phenotype file.") #Subset linking vs kinship. kinship_df = None readdepth_df = None if randomeff_filename is not None: kinship_df,readdepth_df = qtl_loader_utils.get_randeff_df(randomeff_filename) if kinship_df is not None: #Filter from individual2sample_df & sample2individual_df since we don't want to filter from the genotypes. sample2individual_df = sample2individual_df[sample2individual_df['iid'].map(lambda x: x in list(map(str, kinship_df.index)))] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the kinship file.") if readdepth_df is not None: #This needs to come from the covariate site not the genotype side! #Filter from individual2sample_df & sample2individual_df since we don't want to filter from the genotypes. sample2individual_df = sample2individual_df[sample2individual_df['sample'].map(lambda x: x in list(map(str, readdepth_df.index)))] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the second random effect file.") #Subset linking vs covariates. covariate_df = qtl_loader_utils.get_covariate_df(covariates_filename) if covariate_df is not None: if np.nansum(covariate_df==1,0).max()<covariate_df.shape[0]: covariate_df.insert(0, 'ones', np.ones(covariate_df.shape[0])) sample2individual_df = sample2individual_df.loc[list(set(sample2individual_df.index) & set(covariate_df.index)),:] diff = orgSize- sample2individual_df.shape[0] orgSize = sample2individual_df.shape[0] print("Dropped: "+str(diff)+" samples because they are not present in the covariate file.") ### print("Number of samples with genotype & phenotype data: " + str(sample2individual_df.shape[0])) if(sample2individual_df.shape[0]<minimum_test_samples): print("Not enough samples with both genotype & phenotype data.") sys.exit() ##Filter now the actual data! #Filter phenotype data based on the linking files. phenotype_df = phenotype_df.loc[list(set(phenotype_df.index)&set(annotation_df.index)),sample2individual_df.index.values] #Filter kinship data based on the linking files. genetically_unique_individuals = None if kinship_df is not None: kinship_df = kinship_df.loc[np.intersect1d(kinship_df.index,sample2individual_df['iid']),np.intersect1d(kinship_df.index,sample2individual_df['iid'])] if (kinship_df is not None) and (relatedness_score is not None): genetically_unique_individuals = get_unique_genetic_samples(kinship_df, relatedness_score); #Filter covariate data based on the linking files. snp_feature_filter_df= qtl_loader_utils.get_snp_feature_df(snp_feature_filename) try: feature_filter_df = qtl_loader_utils.get_snp_df(feature_filename) except: if feature_filename is not None: feature_filter_df=
pd.DataFrame(index=feature_filename)
pandas.DataFrame
import time from pprint import pprint import requests import json from shapely.geometry import Point import geopandas as gpd import pandas as pd from geopandas import GeoDataFrame import matplotlib.pyplot as plt import numpy as np API_KEY = '<KEY>' # normal account FILENAME = 'crawled_ips.txt' RESPONSE_FILE = 'responses.json' def get_ips(filename: str) -> list: """ Reads ips from a list of files """ ips = [] with open(filename, 'r') as f: ips = f.read().splitlines() return ips def fetch_locations(ips: list) -> list: """ Use ips give in list format to make API calls to ipstack to get locations """ info = [] count = 1 responses = [] for ip in ips: api = 'http://api.ipstack.com/' + ip + '?access_key=' + API_KEY response = requests.get(api).json() print('({}/{}) Found location for {} at {}, {} ({}, {})'.format( \ count, len(ips), ip, response['country_name'], response['city'], response['latitude'], response['longitude'])) info.append((response['latitude'], response['longitude'], \ response['country_name'], response['city'], \ response['connection']['isp'])) count += 1 responses.append(response) save_response_to_file(responses) return info def load_from_file(filename: str) -> list: """Can load the files provided they are in the same json format as what is given in the free version of ipstack """ with open(filename, 'r') as f: responses = json.load(f) info = [] for response in responses: info.append((response['latitude'], response['longitude'], \ response['country_name'], response['city'], \ response['connection']['isp'])) return info def save_response_to_file(responses: dict): """ Saves the responses from fetching to a file""" with open(RESPONSE_FILE, 'w') as f: j = json.dumps(responses, indent=4) print(j, file=f) def format_pct(df_column): """Used for formatting the numbers on the pie chart the pie function accepts formatpct as a keyword arg that requires a function reference""" def format(val): a = np.round(val/100*sum(df_column.tolist()), 0) return '%d(%.2f%s)' % (int(a), val, '%') return format def country_breakdown(info:list, countries: list): """Provides a country breakdown visualisation as a pie chart""" d = {'isp': [], 'country': []} for coord in info: d['isp'].append(coord[-1]) d['country'].append(coord[2]) df = pd.DataFrame(data=d) mask1 = df['country'].isin(countries) others = df[~mask1] print(others) others = others.groupby('country', as_index=False)['country'].agg({'isp_country_count':'count'}).set_index('country') others = others.sort_values(by='isp_country_count', ascending=False) for country in countries: print('####' + country + '####') mask = df['country'] == country df_isp = df.loc[mask] df_isp = df_isp.groupby('isp', as_index=False)['isp'].agg({'isp_country_count':'count'}).set_index('isp') df_isp = df_isp.sort_values(by='isp_country_count', ascending=False) if len(df_isp) > 7: tmp = df_isp[:7].copy() # Take the top 10 countries new_row = pd.DataFrame(data={ 'isp': ['others'], 'isp_country_count': [df_isp['isp_country_count'][7:].sum()] }).set_index('isp') df_isp = pd.concat([tmp, new_row]) df_isp.plot.pie(y='isp_country_count', autopct=format_pct(df_isp['isp_country_count']), pctdistance=0.8, colors=plt.cm.tab20.colors) legend = plt.legend() legend.remove() plt.axis('off') plt.savefig('breakdown_for_' + country + '.png', bbox_inches='tight') def breakdown_isp_cities(info: list, cities: list): """ Provides a visualization using a pie chart of all ISPs on where their nodes are located by city""" d = {'isp': [], 'city': []} for coord in info: d['isp'].append(coord[-1]) d['city'].append(coord[3]) df = pd.DataFrame(data=d) for city in cities: print('####' + city + '####') mask = df['city'] == city df_isp = df.loc[mask] df_isp = df_isp.groupby('isp', as_index=False)['isp'].agg({'isp_city_count':'count'}).set_index('isp') df_isp = df_isp.sort_values(by='isp_city_count', ascending=False) if len(df_isp) > 8: tmp = df_isp[:8].copy() # Take the top 10 countries new_row = pd.DataFrame(data={ 'isp': ['others'], 'isp_city_count': [df_isp['isp_city_count'][8:].sum()] }).set_index('isp') df_isp = pd.concat([tmp, new_row]) df_isp.plot.pie(y='isp_city_count', autopct=format_pct(df_isp['isp_city_count']), pctdistance=0.7, colors=plt.cm.tab20.colors) legend = plt.legend() legend.remove() plt.axis('off') plt.savefig('isp_breakdown_for_' + city + '.png') def breakdown_isp_countries(info: list, isps: list): """ Provides a visualization of all ISPs on where their nodes are located by country""" d = {'isp': [], 'country': []} for coord in info: d['isp'].append(coord[-1]) d['country'].append(coord[2]) df = pd.DataFrame(data=d) mask1 = df['isp'].isin(isps) for isp in isps: print('####' + isp + '####') mask = df['isp'] == isp df_isp = df.loc[mask] df_isp = df_isp.groupby('country', as_index=False)['country'].agg({'isp_country_count':'count'}).set_index('country') df_isp = df_isp.sort_values(by='isp_country_count', ascending=False) if len(df_isp) > 8: tmp = df_isp[:8].copy() # Take the top 10 countries new_row = pd.DataFrame(data={ 'country': ['others'], 'isp_country_count': [df_isp['isp_country_count'][8:].sum()] }).set_index('country') df_isp = pd.concat([tmp, new_row]) if isp == 'Alibaba (Us) Technology Co. Ltd.': tmp = df_isp[:5].copy() # Take the top 10 countries new_row = pd.DataFrame(data={ 'country': ['others'], 'isp_country_count': [df_isp['isp_country_count'][5:].sum()] }).set_index('country') df_isp = pd.concat([tmp, new_row]) df_isp.plot.pie(y='isp_country_count', autopct=format_pct(df_isp['isp_country_count']), pctdistance=0.7, colors=plt.cm.tab20.colors) legend = plt.legend() legend.remove() plt.axis('off') plt.savefig('breakdown_for_' + isp + '.png', bbox_inches='tight') def breakdown_isp_alt(info: list): """ Piechart to visualize the top 10 cloud hosts on the network""" d = {'isp': []} for coord in info: d['isp'].append(coord[-1]) df = pd.DataFrame(data=d) df = df.groupby('isp', as_index=False)['isp'].agg({'isp_count':'count'}).set_index('isp') df = df.sort_values(by='isp_count', ascending=False) alt_row = pd.DataFrame(data={ 'isp': ['Cloud hosted'], 'isp_count': [df['isp_count'][:10].sum()] }).set_index('isp') new_row = pd.DataFrame(data={ 'isp': ['Individually hosted'], 'isp_count': [df['isp_count'][10:].sum()] }).set_index('isp') df_final = pd.concat([alt_row, new_row]) df_final.plot.pie(y='isp_count', autopct=format_pct(df['isp_count']), colors=plt.cm.tab20.colors) legend = plt.legend() legend.remove() plt.axis('off') plt.savefig('isp_count_alt.png', bbox_inches='tight') def breakdown_isp(info: list): """ Break down of ISPs for all nodes across the world and graphed on a pie chart """ d = {'isp': []} for coord in info: d['isp'].append(coord[-1]) df = pd.DataFrame(data=d) df_country =
pd.DataFrame(data=d)
pandas.DataFrame
# -*- coding: utf-8 -*- # ################# # This script takes as an input the supplementary data # from Saunois et al. (2020), imported in csv format from # the original .xlsx file, and returns a csv file with # data for the 2008-2017 period for the different regions # defined in Human Impacts by the Numbers. Data is provided # for both the Top-Down (TD) and Bottom-Up (BU) estimates. # # Last updated: Nov 2020 # Author: <NAME> # ################# import numpy as np import pandas as pd def add_agg_col(df, col_inds, type_ = float): df_agg_col = df[col_inds[0]].astype(float) for i in range(1,len(col_inds)): df_agg_col = df_agg_col + df[col_inds[i]].astype(float) return df_agg_col ######### Get TD 2008-2017 data ######### data_ = pd.read_csv('../source/TD_2008_2017_clean.csv', header=0) # Drop spurious row data_ = data_.drop([0], axis=0) # Generate standard regional data data_['North America'] = add_agg_col(data_, ["Canada", "USA", "Central America"]) data_['Africa'] = add_agg_col(data_, ['Northern Africa', 'Equatorial Africa', 'Southern Africa']) data_['Europe and Russia'] = add_agg_col(data_, ['Europe', 'Russia']) data_['Asia'] = add_agg_col(data_, ['South Asia', 'Southeast Asia', 'Central Asia', 'Middle East', 'China', 'Korean Japan']) data_['South America'] = add_agg_col(data_, ['Northern South America', 'Brazil', 'Southwest South America']) # Create new DataFrame to store regional data cols = ['Africa', 'Europe and Russia', 'Asia', 'South America', 'North America', 'Oceania'] sectors_ = ['Wetlands', 'Other Natural Sources', 'Agriculture and Waste', 'Fossil Fuels', 'Biomass and Biofuel Burning', 'Total Anthropogenic'] source_range = np.linspace(0, 132, 7).astype(int) # Add sample mean of all available references td_mean = pd.DataFrame(data_[cols].iloc[ source_range[0]:source_range[1]].astype(float).mean(), columns=[sectors_[0]]) for j in range(1, len(source_range)-1): td_mean[sectors_[j]] = data_[cols].iloc[ source_range[j]:source_range[j+1]].astype(float).mean() td_mean["Measure"] = "Sample Mean" # Add standard deviation of sample mean td_std = pd.DataFrame(data_[cols].iloc[ source_range[0]:source_range[1]].astype(float).std()/ np.sqrt(source_range[1]-source_range[0]), columns=[sectors_[0]]) for j in range(len(source_range)-1): td_std[sectors_[j]] = data_[cols].iloc[ source_range[j]:source_range[j+1]].astype(float).std( )/np.sqrt(source_range[j+1]-source_range[j]) td_std["Measure"] = "Std of Sample Mean" # Concatenate mean and std values td_total = pd.concat([td_mean, td_std], axis=0, ignore_index=False) td_total["Region"] = td_total.index td_total["Estimate type"] = "Top-Down" td_total["Period"] = "2008-2017" # Rearrange columns td_total = td_total[["Region", "Period", "Estimate type", "Measure", 'Total Anthropogenic', 'Wetlands', 'Other Natural Sources', 'Agriculture and Waste', 'Fossil Fuels', 'Biomass and Biofuel Burning']] ######### Get BU 2008-2017 data ######### data_ =
pd.read_csv('../source/BU_2008_2017_clean.csv', header=0)
pandas.read_csv
from PIL import Image from jieba.analyse import extract_tags from os import path import pandas as pd import wordcloud as wc import jieba # 短線多頭 df =
pd.read_excel('closes_acc.xlsx', index_col=0)
pandas.read_excel
import pandas import matplotlib.pyplot as plt import pickle import numpy as np import warnings warnings.filterwarnings("ignore") from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.linear_model import Ridge, Lasso from sklearn.ensemble import RandomForestRegressor class MovingTimeRegression: def __init__(self, cleanedRoute, modelsRoute, scalerRoute, paramsRoute, cleanedFileName): # define data routes and csv names! self.cleanedRoute = cleanedRoute self.modelsRoute = modelsRoute self.scalerRoute = scalerRoute self.paramsRoute = paramsRoute self.dataset = pandas.read_csv(cleanedRoute+cleanedFileName, sep="|") self.allTrainX = None self.allTestX = None self.allTrainy = None self.allTesty = None self.reducedTrainX = None self.reducedTestX = None self.reducedTrainy = None self.reducedTesty = None self.baseTrainX = None self.baseTestX = None self.baseTrainy = None self.baseTesty = None self.allRidgeModel = None self.reducedRidgeModel = None self.baseRidgeModel = None self.allLassoModel = None self.reducedLassoModel = None self.baseLassoModel = None self.allRandomForestModel = None self.reducedRandomForestModel = None self.baseRandomForestModel = None self.allStandardScaler = None self.reducedStandardScaler = None self.baseStandardScaler = None self.CatCols8 = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087', '#f95d6a', '#ff7c43', '#ffa600'] self.CatCols5 = ['#003f5c', '#3d61f4', '#bc5090', '#ff6361', '#ffa600'] self.CatCols3 = ['#003f5c', '#bc5090', '#ffa600'] print('call .dataset to see the cleaned dataset') def prepareData(self): # all data X = self.dataset.copy() Y = X['moving_time'].copy() X.drop(columns=['moving_time', 'elapsed_time', 'average_speed'], inplace=True) names = X.columns self.allStandardScaler = StandardScaler() scaledX = self.allStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.allTrainX, self.allTestX, self.allTrainy, self.allTesty = train_test_split(scaledX, Y, random_state=42) # reduced data X = self.dataset[['age_0.0', 'age_1.0', 'age_2.0', 'distance', 'elev_high', 'elev_low', 'hashed_id', 'total_elevation_gain', 'trainer_onehot', 'workout_type_11.0', 'workout_type_10.0', 'workout_type_12.0']].copy() Y = self.dataset['moving_time'].copy() names = X.columns self.reducedStandardScaler = StandardScaler() scaledX = self.reducedStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty = train_test_split(scaledX, Y, random_state=42) # base data X = self.dataset[['distance', 'elev_high', 'elev_low', 'total_elevation_gain', 'trainer_onehot']].copy() Y = self.dataset['moving_time'].copy() names = X.columns self.baseStandardScaler = StandardScaler() scaledX = self.baseStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.baseTrainX, self.baseTestX, self.baseTrainy, self.baseTesty = train_test_split(scaledX, Y, random_state=42) # TODO: print info about the 3 dataset and the train-test pars def trainModels(self, verbose=False, writeToFile=False): # fitting models on all data print('-- Fitting models on all data -- ') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.allTrainX, self.allTestX, self.allTrainy, self.allTesty) self.allRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.allRidgeModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.allTrainX, self.allTestX, self.allTrainy, self.allTesty) self.allLassoModel = Lasso(alpha=lassoParams['alpha']) self.allLassoModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') # TODO: calc best params for Random Forest if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute+'moving_time_all_random_forest_params.p', 'rb')) self.allRandomForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf'] ) self.allRandomForestModel.fit(self.allTrainX, self.allTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on allTesty data: ') print(' - Ridge: '+str(self.allRidgeModel.score(self.allTestX, self.allTesty))) print(' - Lasso: '+str(self.allLassoModel.score(self.allTestX, self.allTesty))) print(' - RandomForest: '+str(self.allRandomForestModel.score(self.allTestX, self.allTesty))) print('') # fitting models on reduced data print('-- Fitting models on reduced data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty) self.reducedRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.reducedRidgeModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty) self.reducedLassoModel = Lasso(alpha=lassoParams['alpha']) self.reducedLassoModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') # TODO: calc best params for Random Forest if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'moving_time_reduced_random_forest_params.p', 'rb')) self.reducedRandomForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.reducedRandomForestModel.fit(self.reducedTrainX, self.reducedTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on reudcedTesty data: ') print(' - Ridge: ' + str(self.reducedRidgeModel.score(self.reducedTestX, self.reducedTesty))) print(' - Lasso: ' + str(self.reducedLassoModel.score(self.reducedTestX, self.reducedTesty))) print(' - RandomForest: ' + str(self.reducedRandomForestModel.score(self.reducedTestX, self.reducedTesty))) print('') # fitting models on base data print('-- Fitting models on base data --') if verbose: print('Calculating best params for Ridge...') ridgeParams = getBestParamsForRidge(self.baseTrainX, self.baseTestX, self.baseTrainy, self.baseTesty) self.baseRidgeModel = Ridge(alpha=ridgeParams['alpha'], solver=ridgeParams['solver']) self.baseRidgeModel.fit(self.baseTrainX, self.baseTrainy) if verbose: print('Done. Params: ') print(ridgeParams) print('') if verbose: print('Calculating best params for Lasso...') lassoParams = getBestParamsForLasso(self.baseTrainX, self.baseTestX, self.baseTrainy, self.baseTesty) self.baseLassoModel = Lasso(alpha=lassoParams['alpha']) self.baseLassoModel.fit(self.baseTrainX, self.baseTrainy) if verbose: print('Done. Params: ') print(lassoParams) print('') if verbose: print('Loading best params for RandomForest...') forestParams = pickle.load(open(self.paramsRoute + 'moving_time_base_random_forest_params.p', 'rb')) self.baseRandomForestModel = RandomForestRegressor(n_estimators=forestParams['n_estimators'], max_features=forestParams['max_features'], min_samples_leaf=forestParams['min_samples_leaf']) self.baseRandomForestModel.fit(self.baseTrainX, self.baseTrainy) if verbose: print('Done. Params: ') print(forestParams) print('') print('Scores on baseTesty data: ') print(' - Ridge: ' + str(self.baseRidgeModel.score(self.baseTestX, self.baseTesty))) print(' - Lasso: ' + str(self.baseLassoModel.score(self.baseTestX, self.baseTesty))) print(' - RandomForest: ' + str(self.baseRandomForestModel.score(self.baseTestX, self.baseTesty))) print('') if writeToFile: writeRegressionModels(self.allRidgeModel, self.allLassoModel, self.allRandomForestModel, 'all', 'moving', self.modelsRoute) writeRegressionModels(self.reducedRidgeModel, self.reducedLassoModel, self.reducedRandomForestModel, 'reduced', 'moving', self.modelsRoute) writeRegressionModels(self.baseRidgeModel, self.baseLassoModel, self.baseRandomForestModel, 'base', 'moving', self.modelsRoute) writeScalerModel(self.allStandardScaler, 'all', 'moving', self.scalerRoute) writeScalerModel(self.reducedStandardScaler, 'reduced', 'moving', self.scalerRoute) writeScalerModel(self.baseStandardScaler, 'base', 'moving', self.scalerRoute) print('Get predictions: ') print(' - based on all data: call getPredictionWithAllModels(list) func., where list has 27 elements ') print(' - based on reduced data: call getPredictionWithReducedModels(list) func., where list has 9 elements ') print(' - based on all data: call getPredictionWithBaseModels(list) func., where list has 5 elements ') def calulateBestParamsForRandomForest(self): print('Warning: this function will take several hours: the results already available in the ./results/params folder') print('Consider interrupting the kernel') GridSearchForRandomForest(pandas.concat([self.allTrainX, self.allTestX]), pandas.concat([self.allTrainy, self.allTesty]), 'moving', 'all') GridSearchForRandomForest(pandas.concat([self.reducedTrainX, self.reducedTestX]), pandas.concat([self.reducedTrainy, self.reducedTesty]), 'moving', 'reduced') GridSearchForRandomForest(pandas.concat([self.baseTrainX, self.baseTestX]), pandas.concat([self.baseTrainy, self.baseTesty]), 'moving', 'base') def getPredictionWithAllModels(self, X): if len(X) != 26: print('Shape mismatch: X should contains 26 values like the allTrainX dataset') return #X.append(0.0) scaled = self.allStandardScaler.transform(np.reshape(X, (1,-1))) # TODO: scale X before calling predict func ridgeResult = self.allRidgeModel.predict(scaled) lassoResult = self.allLassoModel.predict(scaled) forestResult = self.allRandomForestModel.predict(scaled) print(' - ridge: '+ str(ridgeResult)) print(' - lasso: '+ str(lassoResult)) print(' - random forest: '+ str(forestResult)) # TODO: create graph def getPredictionWithReducedModels(self, X): if len(X) != 9: print('Shape mismatch: X should contains 9 values like the reducedTrainX dataset') return # TODO: scale X before calling predict func scaled = self.reducedStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.reducedRidgeModel.predict(scaled) lassoResult = self.reducedLassoModel.predict(scaled) forestResult = self.reducedRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) print(' - random forest: ' + str(forestResult)) # TODO: create graph def getPredictionWithBaseModels(self, X): if len(X) != 5: print('Shape mismatch: X should contains 5 values like the baseTrainX dataset') return # TODO: scale X before calling predict func scaled = self.baseStandardScaler.transform(np.reshape(X, (1,-1))) ridgeResult = self.baseRidgeModel.predict(scaled) lassoResult = self.baseLassoModel.predict(scaled) forestResult = self.baseRandomForestModel.predict(scaled) print(' - ridge: ' + str(ridgeResult)) print(' - lasso: ' + str(lassoResult)) print(' - random forest: ' + str(forestResult)) # TODO: create graph def loadTrainedModelsAndScalers(self): self.loadRegressionModels() self.loadScalers() print('Regression models and scalers are loaded') print('Use the following functions to get predictions:') print(' - getPredictionWithAllModels') print(' - getPredictionWithReducedModels') print(' - getPredictionWithBaseModels') def loadRegressionModels(self): # loading models based on all dataset self.allRidgeModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'all' + '_' + 'ridge.p', 'rb')) self.allLassoModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'all' + '_' + 'lasso.p', 'rb')) self.allRandomForestModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'all' + '_' + 'random_forest.p', 'rb')) # loading models based on reduced dataset self.reducedRidgeModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'reduced' + '_' + 'ridge.p', 'rb')) self.reducedLassoModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'reduced' + '_' + 'lasso.p', 'rb')) self.reducedRandomForestModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'reduced' + '_' + 'random_forest.p', 'rb')) # loading models based on base dataset self.baseRidgeModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'base' + '_' + 'ridge.p', 'rb')) self.baseLassoModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'base' + '_' + 'lasso.p', 'rb')) self.baseRandomForestModel = pickle.load( open(self.modelsRoute + 'moving_time_' + 'base' + '_' + 'random_forest.p', 'rb')) def loadScalers(self): # load fitted scaler models self.allStandardScaler = pickle.load(open(self.scalerRoute + 'moving_time_all_scaler.p', 'rb')) self.reducedStandardScaler = pickle.load(open(self.scalerRoute + 'moving_time_reduced_scaler.p', 'rb')) self.baseStandardScaler = pickle.load(open(self.scalerRoute + 'moving_time_base_scaler.p', 'rb')) def mps_to_kmph(self, m_per_s): return m_per_s * 3.6 def kmph_to_mps(self, km_h): return km_h / 3.6 ## END OF MOVING TIME CLASS ## ELAPSED TIME class ElapsedTimeRegression(): def __init__(self, cleanedRoute, modelsRoute, scalerRoute, paramsRoute, cleanedFileName): # define data routes and csv names! self.cleanedRoute = cleanedRoute self.modelsRoute = modelsRoute self.scalerRoute = scalerRoute self.paramsRoute = paramsRoute self.dataset = pandas.read_csv(cleanedRoute + cleanedFileName, sep="|") # all data self.allTrainX = None self.allTestX = None self.allTrainy = None self.allTesty = None # reduced data self.reducedTrainX = None self.reducedTestX = None self.reducedTrainy = None self.reducedTesty = None # age group null data self.ageNullTrainX = None self.ageNullTestX = None self.ageNullTrainy = None self.ageNullTesty = None # age group one data self.ageOneTrainX = None self.ageOneTestX = None self.ageOneTrainy = None self.ageOneTesty = None # age group two data self.ageTwoTrainX = None self.ageTwoTestX = None self.ageTwoTrainy = None self.ageTwoTesty = None # distance small data self.distanceSmallTrainX = None self.distanceSmallTestX = None self.distanceSmallTrainy = None self.distanceSmallTesty = None # distance big data self.distanceBigTrainX = None self.distanceBigTestX = None self.distanceBigTrainy = None self.distanceBigTesty = None # user data self.userTrainX = None self.userTestX = None self.userTrainy = None self.userTesty = None # regression model initialization # ridge self.allRidgeModel = None self.reducedRidgeModel = None self.ageNullRidgeModel = None self.ageOneRidgeModel = None self.ageTwoRidgeModel = None self.distanceSmallRidgeModel = None self.distanceBigRidgeModel = None self.userRidgeModel = None # lasso self.allLassoModel = None self.reducedLassoModel = None self.ageNullLassoModel = None self.ageOneLassoModel = None self.ageTwoLassoModel = None self.distanceSmallLassoModel = None self.distanceBigLassoModel = None self.userLassoModel = None # random forest self.allForestModel = None self.reducedForestModel = None self.ageNullForestModel = None self.ageOneForestModel = None self.ageTwoForestModel = None self.distanceSmallForestModel = None self.distanceBigForestModel = None self.userForestModel = None self.allStandardScaler = None self.reducedStandardScaler = None self.ageNullStandardScaler = None self.ageOneStandardScaler = None self.ageTwoStandardScaler = None self.distanceSmallStandardScaler = None self.distanceBigStandardScaler = None self.userStandardScaler = None self.CatCols8 = ['#003f5c', '#2f4b7c', '#665191', '#a05195', '#d45087', '#f95d6a', '#ff7c43', '#ffa600'] self.CatCols5 = ['#003f5c', '#3d61f4', '#bc5090', '#ff6361', '#ffa600'] self.CatCols3 = ['#003f5c', '#bc5090', '#ffa600'] print('call .dataset to see the cleaned dataset') def prepareData(self): # all data X = self.dataset.copy() Y = X['elapsed_time'].copy() X.drop(columns=['elapsed_time', 'average_speed'], inplace=True) names = X.columns self.allStandardScaler = StandardScaler() scaledX = self.allStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.allTrainX, self.allTestX, self.allTrainy, self.allTesty = train_test_split(scaledX, Y, random_state=42) # reduced data X = self.dataset[['age_0.0', 'age_1.0', 'age_2.0', 'distance', 'elev_high', 'elev_low', 'hashed_id', 'total_elevation_gain', 'moving_time', 'trainer_onehot', 'workout_type_11.0', 'workout_type_10.0', 'workout_type_12.0']].copy() Y = self.dataset['elapsed_time'].copy() names = X.columns self.reducedStandardScaler = StandardScaler() scaledX = self.reducedStandardScaler.fit_transform(X) scaledX = pandas.DataFrame(scaledX, columns=names) self.reducedTrainX, self.reducedTestX, self.reducedTrainy, self.reducedTesty = train_test_split(scaledX, Y, random_state=42) # age group: null data ageNull = self.dataset[self.dataset['age_0.0'] == 1].copy() Y = ageNull['elapsed_time'].copy() ageNull.drop(columns=['age_0.0', 'age_1.0', 'age_2.0', 'elapsed_time', 'average_speed'], inplace=True) names = ageNull.columns self.ageNullStandardScaler = StandardScaler() scaledX = self.ageNullStandardScaler.fit_transform(ageNull) scaledX = pandas.DataFrame(scaledX, columns=names) self.ageNullTrainX, self.ageNullTestX, self.ageNullTrainy, self.ageNullTesty = train_test_split(scaledX, Y, random_state=42) # age group: one data ageOne = self.dataset[self.dataset['age_1.0'] == 1].copy() Y = ageOne['elapsed_time'].copy() ageOne.drop(columns=['age_0.0', 'age_1.0', 'age_2.0', 'elapsed_time', 'average_speed'], inplace=True) names = ageOne.columns self.ageOneStandardScaler = StandardScaler() scaledX = self.ageNullStandardScaler.fit_transform(ageOne) scaledX = pandas.DataFrame(scaledX, columns=names) self.ageOneTrainX, self.ageOneTestX, self.ageOneTrainy, self.ageOneTesty = train_test_split(scaledX, Y, random_state=42) # age group: two data ageTwo = self.dataset[self.dataset['age_2.0'] == 1].copy() Y = ageTwo['elapsed_time'].copy() ageTwo.drop(columns=['age_0.0', 'age_1.0', 'age_2.0', 'elapsed_time', 'average_speed'], inplace=True) names = ageTwo.columns self.ageTwoStandardScaler = StandardScaler() scaledX = self.ageTwoStandardScaler.fit_transform(ageTwo) scaledX =
pandas.DataFrame(scaledX, columns=names)
pandas.DataFrame
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import json import numpy as np import pytest import pyarrow as pa from pyarrow.fs import LocalFileSystem, SubTreeFileSystem from pyarrow.tests.parquet.common import ( parametrize_legacy_dataset, parametrize_legacy_dataset_not_supported) from pyarrow.util import guid from pyarrow.vendored.version import Version try: import pyarrow.parquet as pq from pyarrow.tests.parquet.common import (_read_table, _test_dataframe, _write_table) except ImportError: pq = None try: import pandas as pd import pandas.testing as tm from pyarrow.tests.parquet.common import (_roundtrip_pandas_dataframe, alltypes_sample) except ImportError: pd = tm = None @pytest.mark.pandas def test_pandas_parquet_custom_metadata(tempdir): df = alltypes_sample(size=10000) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) assert b'pandas' in arrow_table.schema.metadata _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms') metadata = pq.read_metadata(filename).metadata assert b'pandas' in metadata js = json.loads(metadata[b'pandas'].decode('utf8')) assert js['index_columns'] == [{'kind': 'range', 'name': None, 'start': 0, 'stop': 10000, 'step': 1}] @pytest.mark.pandas def test_merging_parquet_tables_with_different_pandas_metadata(tempdir): # ARROW-3728: Merging Parquet Files - Pandas Meta in Schema Mismatch schema = pa.schema([ pa.field('int', pa.int16()), pa.field('float', pa.float32()), pa.field('string', pa.string()) ]) df1 = pd.DataFrame({ 'int': np.arange(3, dtype=np.uint8), 'float': np.arange(3, dtype=np.float32), 'string': ['ABBA', 'EDDA', 'ACDC'] }) df2 = pd.DataFrame({ 'int': [4, 5], 'float': [1.1, None], 'string': [None, None] }) table1 = pa.Table.from_pandas(df1, schema=schema, preserve_index=False) table2 = pa.Table.from_pandas(df2, schema=schema, preserve_index=False) assert not table1.schema.equals(table2.schema, check_metadata=True) assert table1.schema.equals(table2.schema) writer = pq.ParquetWriter(tempdir / 'merged.parquet', schema=schema) writer.write_table(table1) writer.write_table(table2) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_column_multiindex(tempdir, use_legacy_dataset): df = alltypes_sample(size=10) df.columns = pd.MultiIndex.from_tuples( list(zip(df.columns, df.columns[::-1])), names=['level_1', 'level_2'] ) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) assert arrow_table.schema.pandas_metadata is not None _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms') table_read = pq.read_pandas( filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_2_0_roundtrip_read_pandas_no_index_written( tempdir, use_legacy_dataset ): df = alltypes_sample(size=10000) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df, preserve_index=False) js = arrow_table.schema.pandas_metadata assert not js['index_columns'] # ARROW-2170 # While index_columns should be empty, columns needs to be filled still. assert js['columns'] _write_table(arrow_table, filename, version='2.6', coerce_timestamps='ms') table_read = pq.read_pandas( filename, use_legacy_dataset=use_legacy_dataset) js = table_read.schema.pandas_metadata assert not js['index_columns'] read_metadata = table_read.schema.metadata assert arrow_table.schema.metadata == read_metadata df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) # TODO(dataset) duplicate column selection actually gives duplicate columns now @pytest.mark.pandas @parametrize_legacy_dataset_not_supported def test_pandas_column_selection(tempdir, use_legacy_dataset): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16) }) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) _write_table(arrow_table, filename) table_read = _read_table( filename, columns=['uint8'], use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df[['uint8']], df_read) # ARROW-4267: Selection of duplicate columns still leads to these columns # being read uniquely. table_read = _read_table( filename, columns=['uint8', 'uint8'], use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df[['uint8']], df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_native_file_roundtrip(tempdir, use_legacy_dataset): df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version='2.6') buf = imos.getvalue() reader = pa.BufferReader(buf) df_read = _read_table( reader, use_legacy_dataset=use_legacy_dataset).to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_read_pandas_column_subset(tempdir, use_legacy_dataset): df = _test_dataframe(10000) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version='2.6') buf = imos.getvalue() reader = pa.BufferReader(buf) df_read = pq.read_pandas( reader, columns=['strings', 'uint8'], use_legacy_dataset=use_legacy_dataset ).to_pandas() tm.assert_frame_equal(df[['strings', 'uint8']], df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_empty_roundtrip(tempdir, use_legacy_dataset): df = _test_dataframe(0) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() _write_table(arrow_table, imos, version='2.6') buf = imos.getvalue() reader = pa.BufferReader(buf) df_read = _read_table( reader, use_legacy_dataset=use_legacy_dataset).to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas def test_pandas_can_write_nested_data(tempdir): data = { "agg_col": [ {"page_type": 1}, {"record_type": 1}, {"non_consecutive_home": 0}, ], "uid_first": "1001" } df = pd.DataFrame(data=data) arrow_table = pa.Table.from_pandas(df) imos = pa.BufferOutputStream() # This succeeds under V2 _write_table(arrow_table, imos) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_pyfile_roundtrip(tempdir, use_legacy_dataset): filename = tempdir / 'pandas_pyfile_roundtrip.parquet' size = 5 df = pd.DataFrame({ 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0, 'strings': ['foo', 'bar', None, 'baz', 'qux'] }) arrow_table = pa.Table.from_pandas(df) with filename.open('wb') as f: _write_table(arrow_table, f, version="1.0") data = io.BytesIO(filename.read_bytes()) table_read = _read_table(data, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas @parametrize_legacy_dataset def test_pandas_parquet_configuration_options(tempdir, use_legacy_dataset): size = 10000 np.random.seed(0) df = pd.DataFrame({ 'uint8': np.arange(size, dtype=np.uint8), 'uint16': np.arange(size, dtype=np.uint16), 'uint32': np.arange(size, dtype=np.uint32), 'uint64': np.arange(size, dtype=np.uint64), 'int8': np.arange(size, dtype=np.int16), 'int16': np.arange(size, dtype=np.int16), 'int32': np.arange(size, dtype=np.int32), 'int64': np.arange(size, dtype=np.int64), 'float32': np.arange(size, dtype=np.float32), 'float64': np.arange(size, dtype=np.float64), 'bool': np.random.randn(size) > 0 }) filename = tempdir / 'pandas_roundtrip.parquet' arrow_table = pa.Table.from_pandas(df) for use_dictionary in [True, False]: _write_table(arrow_table, filename, version='2.6', use_dictionary=use_dictionary) table_read = _read_table( filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) for write_statistics in [True, False]: _write_table(arrow_table, filename, version='2.6', write_statistics=write_statistics) table_read = _read_table(filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) for compression in ['NONE', 'SNAPPY', 'GZIP', 'LZ4', 'ZSTD']: if (compression != 'NONE' and not pa.lib.Codec.is_available(compression)): continue _write_table(arrow_table, filename, version='2.6', compression=compression) table_read = _read_table( filename, use_legacy_dataset=use_legacy_dataset) df_read = table_read.to_pandas() tm.assert_frame_equal(df, df_read) @pytest.mark.pandas def test_spark_flavor_preserves_pandas_metadata(): df = _test_dataframe(size=100) df.index = np.arange(0, 10 * len(df), 10) df.index.name = 'foo' result = _roundtrip_pandas_dataframe(df, {'version': '2.0', 'flavor': 'spark'}) tm.assert_frame_equal(result, df) @pytest.mark.pandas @parametrize_legacy_dataset def test_index_column_name_duplicate(tempdir, use_legacy_dataset): data = { 'close': { pd.Timestamp('2017-06-30 01:31:00'): 154.99958999999998, pd.Timestamp('2017-06-30 01:32:00'): 154.99958999999998, }, 'time': { pd.Timestamp('2017-06-30 01:31:00'): pd.Timestamp( '2017-06-30 01:31:00' ), pd.Timestamp('2017-06-30 01:32:00'): pd.Timestamp( '2017-06-30 01:32:00' ), } } path = str(tempdir / 'data.parquet') dfx = pd.DataFrame(data).set_index('time', drop=False) tdfx = pa.Table.from_pandas(dfx) _write_table(tdfx, path) arrow_table = _read_table(path, use_legacy_dataset=use_legacy_dataset) result_df = arrow_table.to_pandas() tm.assert_frame_equal(result_df, dfx) @pytest.mark.pandas @parametrize_legacy_dataset def test_multiindex_duplicate_values(tempdir, use_legacy_dataset): num_rows = 3 numbers = list(range(num_rows)) index = pd.MultiIndex.from_arrays( [['foo', 'foo', 'bar'], numbers], names=['foobar', 'some_numbers'], ) df = pd.DataFrame({'numbers': numbers}, index=index) table = pa.Table.from_pandas(df) filename = tempdir / 'dup_multi_index_levels.parquet' _write_table(table, filename) result_table = _read_table(filename, use_legacy_dataset=use_legacy_dataset) assert table.equals(result_table) result_df = result_table.to_pandas() tm.assert_frame_equal(result_df, df) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_index_naming(datadir, use_legacy_dataset): expected_string = b"""\ carat cut color clarity depth table price x y z 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" expected = pd.read_csv(io.BytesIO(expected_string), sep=r'\s{2,}', index_col=None, header=0, engine='python') table = _read_table( datadir / 'v0.7.1.parquet', use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_index_multi_level_named( datadir, use_legacy_dataset ): expected_string = b"""\ carat cut color clarity depth table price x y z 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" expected = pd.read_csv( io.BytesIO(expected_string), sep=r'\s{2,}', index_col=['cut', 'color', 'clarity'], header=0, engine='python' ).sort_index() table = _read_table(datadir / 'v0.7.1.all-named-index.parquet', use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_index_multi_level_some_named( datadir, use_legacy_dataset ): expected_string = b"""\ carat cut color clarity depth table price x y z 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75 0.24 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48 0.24 Very Good I VVS1 62.3 57.0 336 3.95 3.98 2.47 0.26 Very Good H SI1 61.9 55.0 337 4.07 4.11 2.53 0.22 Fair E VS2 65.1 61.0 337 3.87 3.78 2.49 0.23 Very Good H VS1 59.4 61.0 338 4.00 4.05 2.39""" expected = pd.read_csv( io.BytesIO(expected_string), sep=r'\s{2,}', index_col=['cut', 'color', 'clarity'], header=0, engine='python' ).sort_index() expected.index = expected.index.set_names(['cut', None, 'clarity']) table = _read_table(datadir / 'v0.7.1.some-named-index.parquet', use_legacy_dataset=use_legacy_dataset) result = table.to_pandas() tm.assert_frame_equal(result, expected) @pytest.mark.pandas @parametrize_legacy_dataset def test_backwards_compatible_column_metadata_handling( datadir, use_legacy_dataset ): expected = pd.DataFrame( {'a': [1, 2, 3], 'b': [.1, .2, .3], 'c': pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')}) expected.index = pd.MultiIndex.from_arrays( [['a', 'b', 'c'],
pd.date_range("2017-01-01", periods=3, tz='Europe/Brussels')
pandas.date_range
"""High-level functions to help perform complex tasks """ from __future__ import print_function, division import os import multiprocessing as mp import warnings from datetime import datetime import platform import struct import shutil import copy import time from ast import literal_eval import traceback import sys import numpy as np import pandas as pd pd.options.display.max_colwidth = 100 from ..pyemu_warnings import PyemuWarning try: import flopy except: pass import pyemu from pyemu.utils.os_utils import run, start_workers def geostatistical_draws( pst, struct_dict, num_reals=100, sigma_range=4, verbose=True, scale_offset=True ): """construct a parameter ensemble from a prior covariance matrix implied by geostatistical structure(s) and parameter bounds. Args: pst (`pyemu.Pst`): a control file (or the name of control file). The parameter bounds in `pst` are used to define the variance of each parameter group. struct_dict (`dict`): a dict of GeoStruct (or structure file), and list of pilot point template files pairs. If the values in the dict are `pd.DataFrames`, then they must have an 'x','y', and 'parnme' column. If the filename ends in '.csv', then a pd.DataFrame is loaded, otherwise a pilot points file is loaded. num_reals (`int`, optional): number of realizations to draw. Default is 100 sigma_range (`float`): a float representing the number of standard deviations implied by parameter bounds. Default is 4.0, which implies 95% confidence parameter bounds. verbose (`bool`, optional): flag to control output to stdout. Default is True. flag for stdout. scale_offset (`bool`,optional): flag to apply scale and offset to parameter bounds when calculating variances - this is passed through to `pyemu.Cov.from_parameter_data()`. Default is True. Returns `pyemu.ParameterEnsemble`: the realized parameter ensemble. Note: parameters are realized by parameter group. The variance of each parameter group is used to scale the resulting geostatistical covariance matrix Therefore, the sill of the geostatistical structures in `struct_dict` should be 1.0 Example:: pst = pyemu.Pst("my.pst") sd = {"struct.dat":["hkpp.dat.tpl","vka.dat.tpl"]} pe = pyemu.helpers.geostatistical_draws(pst,struct_dict=sd} pe.to_csv("my_pe.csv") """ if isinstance(pst, str): pst = pyemu.Pst(pst) assert isinstance(pst, pyemu.Pst), "pst arg must be a Pst instance, not {0}".format( type(pst) ) if verbose: print("building diagonal cov") full_cov = pyemu.Cov.from_parameter_data( pst, sigma_range=sigma_range, scale_offset=scale_offset ) full_cov_dict = {n: float(v) for n, v in zip(full_cov.col_names, full_cov.x)} # par_org = pst.parameter_data.copy # not sure about the need or function of this line? (BH) par = pst.parameter_data par_ens = [] pars_in_cov = set() keys = list(struct_dict.keys()) keys.sort() for gs in keys: items = struct_dict[gs] if verbose: print("processing ", gs) if isinstance(gs, str): gss = pyemu.geostats.read_struct_file(gs) if isinstance(gss, list): warnings.warn( "using first geostat structure in file {0}".format(gs), PyemuWarning ) gs = gss[0] else: gs = gss if gs.sill != 1.0: warnings.warn("GeoStruct {0} sill != 1.0 - this is bad!".format(gs.name)) if not isinstance(items, list): items = [items] # items.sort() for iitem, item in enumerate(items): if isinstance(item, str): assert os.path.exists(item), "file {0} not found".format(item) if item.lower().endswith(".tpl"): df = pyemu.pp_utils.pp_tpl_to_dataframe(item) elif item.lower.endswith(".csv"): df = pd.read_csv(item) else: df = item if "pargp" in df.columns: if verbose: print("working on pargroups {0}".format(df.pargp.unique().tolist())) for req in ["x", "y", "parnme"]: if req not in df.columns: raise Exception("{0} is not in the columns".format(req)) missing = df.loc[df.parnme.apply(lambda x: x not in par.parnme), "parnme"] if len(missing) > 0: warnings.warn( "the following parameters are not " + "in the control file: {0}".format(",".join(missing)), PyemuWarning, ) df = df.loc[df.parnme.apply(lambda x: x not in missing)] if df.shape[0] == 0: warnings.warn( "geostatistical_draws(): empty parameter df at position {0} items for geostruct {1}, skipping...".format( iitem, gs ) ) continue if "zone" not in df.columns: df.loc[:, "zone"] = 1 zones = df.zone.unique() aset = set(pst.adj_par_names) for zone in zones: df_zone = df.loc[df.zone == zone, :].copy() df_zone = df_zone.loc[df_zone.parnme.apply(lambda x: x in aset), :] if df_zone.shape[0] == 0: warnings.warn( "all parameters in zone {0} tied and/or fixed, skipping...".format( zone ), PyemuWarning, ) continue # df_zone.sort_values(by="parnme",inplace=True) df_zone.sort_index(inplace=True) if verbose: print("build cov matrix") cov = gs.covariance_matrix(df_zone.x, df_zone.y, df_zone.parnme) if verbose: print("done") if verbose: print("getting diag var cov", df_zone.shape[0]) # tpl_var = np.diag(full_cov.get(list(df_zone.parnme)).x).max() tpl_var = max([full_cov_dict[pn] for pn in df_zone.parnme]) if verbose: print("scaling full cov by diag var cov") # cov.x *= tpl_var for i in range(cov.shape[0]): cov.x[i, :] *= tpl_var # no fixed values here pe = pyemu.ParameterEnsemble.from_gaussian_draw( pst=pst, cov=cov, num_reals=num_reals, by_groups=False, fill=False ) # df = pe.iloc[:,:] par_ens.append(pe._df) pars_in_cov.update(set(pe.columns)) if verbose: print("adding remaining parameters to diagonal") fset = set(full_cov.row_names) diff = list(fset.difference(pars_in_cov)) if len(diff) > 0: name_dict = {name: i for i, name in enumerate(full_cov.row_names)} vec = np.atleast_2d(np.array([full_cov.x[name_dict[d]] for d in diff])) cov = pyemu.Cov(x=vec, names=diff, isdiagonal=True) # cov = full_cov.get(diff,diff) # here we fill in the fixed values pe = pyemu.ParameterEnsemble.from_gaussian_draw( pst, cov, num_reals=num_reals, fill=False ) par_ens.append(pe._df) par_ens = pd.concat(par_ens, axis=1) par_ens = pyemu.ParameterEnsemble(pst=pst, df=par_ens) return par_ens def geostatistical_prior_builder( pst, struct_dict, sigma_range=4, verbose=False, scale_offset=False ): """construct a full prior covariance matrix using geostastical structures and parameter bounds information. Args: pst (`pyemu.Pst`): a control file instance (or the name of control file) struct_dict (`dict`): a dict of GeoStruct (or structure file), and list of pilot point template files pairs. If the values in the dict are `pd.DataFrames`, then they must have an 'x','y', and 'parnme' column. If the filename ends in '.csv', then a pd.DataFrame is loaded, otherwise a pilot points file is loaded. sigma_range (`float`): a float representing the number of standard deviations implied by parameter bounds. Default is 4.0, which implies 95% confidence parameter bounds. verbose (`bool`, optional): flag to control output to stdout. Default is True. flag for stdout. scale_offset (`bool`): a flag to apply scale and offset to parameter upper and lower bounds before applying log transform. Passed to pyemu.Cov.from_parameter_data(). Default is False Returns: `pyemu.Cov`: a covariance matrix that includes all adjustable parameters in the control file. Note: The covariance of parameters associated with geostatistical structures is defined as a mixture of GeoStruct and bounds. That is, the GeoStruct is used to construct a pyemu.Cov, then the entire pyemu.Cov is scaled by the uncertainty implied by the bounds and sigma_range. Most users will want to sill of the geostruct to sum to 1.0 so that the resulting covariance matrices have variance proportional to the parameter bounds. Sounds complicated... Example:: pst = pyemu.Pst("my.pst") sd = {"struct.dat":["hkpp.dat.tpl","vka.dat.tpl"]} cov = pyemu.helpers.geostatistical_draws(pst,struct_dict=sd} cov.to_binary("prior.jcb") """ if isinstance(pst, str): pst = pyemu.Pst(pst) assert isinstance(pst, pyemu.Pst), "pst arg must be a Pst instance, not {0}".format( type(pst) ) if verbose: print("building diagonal cov") full_cov = pyemu.Cov.from_parameter_data( pst, sigma_range=sigma_range, scale_offset=scale_offset ) full_cov_dict = {n: float(v) for n, v in zip(full_cov.col_names, full_cov.x)} # full_cov = None par = pst.parameter_data for gs, items in struct_dict.items(): if verbose: print("processing ", gs) if isinstance(gs, str): gss = pyemu.geostats.read_struct_file(gs) if isinstance(gss, list): warnings.warn( "using first geostat structure in file {0}".format(gs), PyemuWarning ) gs = gss[0] else: gs = gss if gs.sill != 1.0: warnings.warn( "geostatistical_prior_builder() warning: geostruct sill != 1.0, user beware!" ) if not isinstance(items, list): items = [items] for item in items: if isinstance(item, str): assert os.path.exists(item), "file {0} not found".format(item) if item.lower().endswith(".tpl"): df = pyemu.pp_utils.pp_tpl_to_dataframe(item) elif item.lower.endswith(".csv"): df = pd.read_csv(item) else: df = item for req in ["x", "y", "parnme"]: if req not in df.columns: raise Exception("{0} is not in the columns".format(req)) missing = df.loc[df.parnme.apply(lambda x: x not in par.parnme), "parnme"] if len(missing) > 0: warnings.warn( "the following parameters are not " + "in the control file: {0}".format(",".join(missing)), PyemuWarning, ) df = df.loc[df.parnme.apply(lambda x: x not in missing)] if "zone" not in df.columns: df.loc[:, "zone"] = 1 zones = df.zone.unique() aset = set(pst.adj_par_names) for zone in zones: df_zone = df.loc[df.zone == zone, :].copy() df_zone = df_zone.loc[df_zone.parnme.apply(lambda x: x in aset), :] if df_zone.shape[0] == 0: warnings.warn( "all parameters in zone {0} tied and/or fixed, skipping...".format( zone ), PyemuWarning, ) continue # df_zone.sort_values(by="parnme",inplace=True) df_zone.sort_index(inplace=True) if verbose: print("build cov matrix") cov = gs.covariance_matrix(df_zone.x, df_zone.y, df_zone.parnme) if verbose: print("done") # find the variance in the diagonal cov if verbose: print("getting diag var cov", df_zone.shape[0]) # tpl_var = np.diag(full_cov.get(list(df_zone.parnme)).x).max() tpl_var = max([full_cov_dict[pn] for pn in df_zone.parnme]) # if np.std(tpl_var) > 1.0e-6: # warnings.warn("pars have different ranges" +\ # " , using max range as variance for all pars") # tpl_var = tpl_var.max() if verbose: print("scaling full cov by diag var cov") cov *= tpl_var if verbose: print("test for inversion") try: ci = cov.inv except: df_zone.to_csv("prior_builder_crash.csv") raise Exception("error inverting cov {0}".format(cov.row_names[:3])) if verbose: print("replace in full cov") full_cov.replace(cov) # d = np.diag(full_cov.x) # idx = np.argwhere(d==0.0) # for i in idx: # print(full_cov.names[i]) return full_cov def _rmse(v1, v2): """return root mean squared error between v1 and v2 Args: v1 (iterable): one vector v2 (iterable): another vector Returns: scalar: root mean squared error of v1,v2 """ return np.sqrt(np.mean(np.square(v1 - v2))) def calc_observation_ensemble_quantiles( ens, pst, quantiles, subset_obsnames=None, subset_obsgroups=None ): """Given an observation ensemble, and requested quantiles, this function calculates the requested quantile point-by-point in the ensemble. This resulting set of values does not, however, correspond to a single realization in the ensemble. So, this function finds the minimum weighted squared distance to the quantile and labels it in the ensemble. Also indicates which realizations correspond to the selected quantiles. Args: ens (pandas DataFrame): DataFrame read from an observation pst (pyemy.Pst object) - needed to obtain observation weights quantiles (iterable): quantiles ranging from 0-1.0 for which results requested subset_obsnames (iterable): list of observation names to include in calculations subset_obsgroups (iterable): list of observation groups to include in calculations Returns: ens (pandas DataFrame): same ens object that was input but with quantile realizations appended as new rows labelled with 'q_#' where '#' is the slected quantile quantile_idx (dictionary): dictionary with keys being quantiles and values being realizations corresponding to each realization """ # TODO: handle zero weights due to PDC quantile_idx = {} # make sure quantiles and subset names and groups are lists if not isinstance(quantiles, list): quantiles = list(quantiles) if not isinstance(subset_obsnames, list) and subset_obsnames is not None: subset_obsnames = list(subset_obsnames) if not isinstance(subset_obsgroups, list) and subset_obsgroups is not None: subset_obsgroups = list(subset_obsgroups) if "real_name" in ens.columns: ens.set_index("real_name") # if 'base' real was lost, then the index is of type int. needs to be string later so set here ens.index = [str(i) for i in ens.index] if not isinstance(pst, pyemu.Pst): raise Exception("pst object must be of type pyemu.Pst") # get the observation data obs = pst.observation_data.copy() # confirm that the indices and weights line up if False in np.unique(ens.columns == obs.index): raise Exception("ens and pst observation names do not align") # deal with any subsetting of observations that isn't handled through weights trimnames = obs.index.values if subset_obsgroups is not None and subset_obsnames is not None: raise Exception( "can only specify information in one of subset_obsnames of subset_obsgroups. not both" ) if subset_obsnames is not None: trimnames = subset_obsnames if len(set(trimnames) - set(obs.index.values)) != 0: raise Exception( "the following names in subset_obsnames are not in the ensemble:\n" + ["{}\n".format(i) for i in (set(trimnames) - set(obs.index.values))] ) if subset_obsgroups is not None: if len((set(subset_obsgroups) - set(pst.obs_groups))) != 0: raise Exception( "the following groups in subset_obsgroups are not in pst:\n" + [ "{}\n".format(i) for i in (set(subset_obsgroups) - set(pst.obs_groups)) ] ) trimnames = obs.loc[obs.obgnme.isin(subset_obsgroups)].obsnme.tolist() if len((set(trimnames) - set(obs.index.values))) != 0: raise Exception( "the following names in subset_obsnames are not in the ensemble:\n" + ["{}\n".format(i) for i in (set(trimnames) - set(obs.index.values))] ) # trim the data to subsets (or complete ) ens_eval = ens[trimnames].copy() weights = obs.loc[trimnames].weight.values for cq in quantiles: # calculate the point-wise quantile values qfit = np.quantile(ens_eval, cq, axis=0) # calculate the weighted distance between all reals and the desired quantile qreal = np.argmin( np.linalg.norm([(i - qfit) * weights for i in ens_eval.values], axis=1) ) quantile_idx["q{}".format(cq)] = qreal ens = ens.append(ens.iloc[qreal]) idx = ens.index.values idx[-1] = "q{}".format(cq) ens.set_index(idx, inplace=True) return ens, quantile_idx def calc_rmse_ensemble(ens, pst, bygroups=True, subset_realizations=None): """Calculates RMSE (without weights) to quantify fit to observations for ensemble members Args: ens (pandas DataFrame): DataFrame read from an observation pst (pyemy.Pst object) - needed to obtain observation weights bygroups (Bool): Flag to summarize by groups or not. Defaults to True. subset_realizations (iterable, optional): Subset of realizations for which to report RMSE. Defaults to None which returns all realizations. Returns: rmse (pandas DataFrame object): rows are realizations. Columns are groups. Content is RMSE """ # TODO: handle zero weights due to PDC # make sure subset_realizations is a list if not isinstance(subset_realizations, list) and subset_realizations is not None: subset_realizations = list(subset_realizations) if "real_name" in ens.columns: ens.set_index("real_name") if not isinstance(pst, pyemu.Pst): raise Exception("pst object must be of type pyemu.Pst") # get the observation data obs = pst.observation_data.copy() # confirm that the indices and observations line up if False in np.unique(ens.columns == obs.index): raise Exception("ens and pst observation names do not align") rmse = pd.DataFrame(index=ens.index) if subset_realizations is not None: rmse = rmse.loc[subset_realizations] # calculate the rmse total first rmse["total"] = [_rmse(ens.loc[i], obs.obsval) for i in rmse.index] # if bygroups, do the groups as columns if bygroups is True: for cg in obs.obgnme.unique(): cnames = obs.loc[obs.obgnme == cg].obsnme rmse[cg] = [ _rmse(ens.loc[i][cnames], obs.loc[cnames].obsval) for i in rmse.index ] return rmse def _condition_on_par_knowledge(cov, par_knowledge_dict): """experimental function to include conditional prior information for one or more parameters in a full covariance matrix """ missing = [] for parnme in par_knowledge_dict.keys(): if parnme not in cov.row_names: missing.append(parnme) if len(missing): raise Exception( "par knowledge dict parameters not found: {0}".format(",".join(missing)) ) # build the selection matrix and sigma epsilon # sel = pyemu.Cov(x=np.identity(cov.shape[0]),names=cov.row_names) sel = cov.zero2d sel = cov.to_pearson() new_cov_diag = pyemu.Cov(x=np.diag(cov.as_2d.diagonal()), names=cov.row_names) # new_cov_diag = cov.zero2d for parnme, var in par_knowledge_dict.items(): idx = cov.row_names.index(parnme) # sel.x[idx,:] = 1.0 # sel.x[idx,idx] = var new_cov_diag.x[idx, idx] = var # cov.x[idx,idx] new_cov_diag = sel * new_cov_diag * sel.T for _ in range(2): for parnme, var in par_knowledge_dict.items(): idx = cov.row_names.index(parnme) # sel.x[idx,:] = 1.0 # sel.x[idx,idx] = var new_cov_diag.x[idx, idx] = var # cov.x[idx,idx] new_cov_diag = sel * new_cov_diag * sel.T print(new_cov_diag) return new_cov_diag def kl_setup( num_eig, sr, struct, prefixes, factors_file="kl_factors.dat", islog=True, basis_file=None, tpl_dir=".", ): """setup a karhuenen-Loeve based parameterization for a given geostatistical structure. Args: num_eig (`int`): the number of basis vectors to retain in the reduced basis sr (`flopy.reference.SpatialReference`): a spatial reference instance struct (`str`): a PEST-style structure file. Can also be a `pyemu.geostats.Geostruct` instance. prefixes ([`str`]): a list of parameter prefixes to generate KL parameterization for. factors_file (`str`, optional): name of the PEST-style interpolation factors file to write (can be processed with FAC2REAL). Default is "kl_factors.dat". islog (`bool`, optional): flag to indicate if the parameters are log transformed. Default is True basis_file (`str`, optional): the name of the PEST-style binary (e.g. jco) file to write the reduced basis vectors to. Default is None (not saved). tpl_dir (`str`, optional): the directory to write the resulting template files to. Default is "." (current directory). Returns: `pandas.DataFrame`: a dataframe of parameter information. Note: This is the companion function to `helpers.apply_kl()` Example:: m = flopy.modflow.Modflow.load("mymodel.nam") prefixes = ["hk","vka","ss"] df = pyemu.helpers.kl_setup(10,m.sr,"struct.dat",prefixes) """ try: import flopy except Exception as e: raise Exception("error import flopy: {0}".format(str(e))) assert isinstance(sr, flopy.utils.SpatialReference) # for name,array in array_dict.items(): # assert isinstance(array,np.ndarray) # assert array.shape[0] == sr.nrow # assert array.shape[1] == sr.ncol # assert len(name) + len(str(num_eig)) <= 12,"name too long:{0}".\ # format(name) if isinstance(struct, str): assert os.path.exists(struct) gs = pyemu.utils.read_struct_file(struct) else: gs = struct names = [] for i in range(sr.nrow): names.extend(["i{0:04d}j{1:04d}".format(i, j) for j in range(sr.ncol)]) cov = gs.covariance_matrix( sr.xcentergrid.flatten(), sr.ycentergrid.flatten(), names=names ) eig_names = ["eig_{0:04d}".format(i) for i in range(cov.shape[0])] trunc_basis = cov.u trunc_basis.col_names = eig_names # trunc_basis.col_names = [""] if basis_file is not None: trunc_basis.to_binary(basis_file) trunc_basis = trunc_basis[:, :num_eig] eig_names = eig_names[:num_eig] pp_df = pd.DataFrame({"name": eig_names}, index=eig_names) pp_df.loc[:, "x"] = -1.0 * sr.ncol pp_df.loc[:, "y"] = -1.0 * sr.nrow pp_df.loc[:, "zone"] = -999 pp_df.loc[:, "parval1"] = 1.0 pyemu.pp_utils.write_pp_file(os.path.join("temp.dat"), pp_df) _eigen_basis_to_factor_file( sr.nrow, sr.ncol, trunc_basis, factors_file=factors_file, islog=islog ) dfs = [] for prefix in prefixes: tpl_file = os.path.join(tpl_dir, "{0}.dat_kl.tpl".format(prefix)) df = pyemu.pp_utils.pilot_points_to_tpl("temp.dat", tpl_file, prefix) shutil.copy2("temp.dat", tpl_file.replace(".tpl", "")) df.loc[:, "tpl_file"] = tpl_file df.loc[:, "in_file"] = tpl_file.replace(".tpl", "") df.loc[:, "prefix"] = prefix df.loc[:, "pargp"] = "kl_{0}".format(prefix) dfs.append(df) # arr = pyemu.geostats.fac2real(df,factors_file=factors_file,out_file=None) df = pd.concat(dfs) df.loc[:, "parubnd"] = 10.0 df.loc[:, "parlbnd"] = 0.1 return pd.concat(dfs) # back_array_dict = {} # f = open(tpl_file,'w') # f.write("ptf ~\n") # f.write("name,org_val,new_val\n") # for name,array in array_dict.items(): # mname = name+"mean" # f.write("{0},{1:20.8E},~ {2} ~\n".format(mname,0.0,mname)) # #array -= array.mean() # array_flat = pyemu.Matrix(x=np.atleast_2d(array.flatten()).transpose() # ,col_names=["flat"],row_names=names, # isdiagonal=False) # factors = trunc_basis * array_flat # enames = ["{0}{1:04d}".format(name,i) for i in range(num_eig)] # for n,val in zip(enames,factors.x): # f.write("{0},{1:20.8E},~ {0} ~\n".format(n,val[0])) # back_array_dict[name] = (factors.T * trunc_basis).x.reshape(array.shape) # print(array_back) # print(factors.shape) # # return back_array_dict def _eigen_basis_to_factor_file(nrow, ncol, basis, factors_file, islog=True): assert nrow * ncol == basis.shape[0] with open(factors_file, "w") as f: f.write("junk.dat\n") f.write("junk.zone.dat\n") f.write("{0} {1}\n".format(ncol, nrow)) f.write("{0}\n".format(basis.shape[1])) [f.write(name + "\n") for name in basis.col_names] t = 0 if islog: t = 1 for i in range(nrow * ncol): f.write("{0} {1} {2} {3:8.5e}".format(i + 1, t, basis.shape[1], 0.0)) [ f.write(" {0} {1:12.8g} ".format(i + 1, w)) for i, w in enumerate(basis.x[i, :]) ] f.write("\n") def kl_apply(par_file, basis_file, par_to_file_dict, arr_shape): """Apply a KL parameterization transform from basis factors to model input arrays. Args: par_file (`str`): the csv file to get factor values from. Must contain the following columns: "name", "new_val", "org_val" basis_file (`str`): the PEST-style binary file that contains the reduced basis par_to_file_dict (`dict`): a mapping from KL parameter prefixes to array file names. arr_shape (tuple): a length 2 tuple of number of rows and columns the resulting arrays should have. Note: This is the companion function to kl_setup. This function should be called during the forward run """ df = pd.read_csv(par_file) assert "name" in df.columns assert "org_val" in df.columns assert "new_val" in df.columns df.loc[:, "prefix"] = df.name.apply(lambda x: x[:-4]) for prefix in df.prefix.unique(): assert prefix in par_to_file_dict.keys(), "missing prefix:{0}".format(prefix) basis = pyemu.Matrix.from_binary(basis_file) assert basis.shape[1] == arr_shape[0] * arr_shape[1] arr_min = 1.0e-10 # a temp hack # means = df.loc[df.name.apply(lambda x: x.endswith("mean")),:] # print(means) df = df.loc[df.name.apply(lambda x: not x.endswith("mean")), :] for prefix, filename in par_to_file_dict.items(): factors = pyemu.Matrix.from_dataframe(df.loc[df.prefix == prefix, ["new_val"]]) factors.autoalign = False basis_prefix = basis[: factors.shape[0], :] arr = (factors.T * basis_prefix).x.reshape(arr_shape) # arr += means.loc[means.prefix==prefix,"new_val"].values arr[arr < arr_min] = arr_min np.savetxt(filename, arr, fmt="%20.8E") def zero_order_tikhonov(pst, parbounds=True, par_groups=None, reset=True): """setup preferred-value regularization in a pest control file. Args: pst (`pyemu.Pst`): the control file instance parbounds (`bool`, optional): flag to weight the new prior information equations according to parameter bound width - approx the KL transform. Default is True par_groups (`list`): a list of parameter groups to build PI equations for. If None, all adjustable parameters are used. Default is None reset (`bool`): a flag to remove any existing prior information equations in the control file. Default is True Example:: pst = pyemu.Pst("my.pst") pyemu.helpers.zero_order_tikhonov(pst) pst.write("my_reg.pst") """ if par_groups is None: par_groups = pst.par_groups pilbl, obgnme, weight, equation = [], [], [], [] for idx, row in pst.parameter_data.iterrows(): pt = row["partrans"].lower() try: pt = pt.decode() except: pass if pt not in ["tied", "fixed"] and row["pargp"] in par_groups: pilbl.append(row["parnme"]) weight.append(1.0) ogp_name = "regul" + row["pargp"] obgnme.append(ogp_name[:12]) parnme = row["parnme"] parval1 = row["parval1"] if pt == "log": parnme = "log(" + parnme + ")" parval1 = np.log10(parval1) eq = "1.0 * " + parnme + " ={0:15.6E}".format(parval1) equation.append(eq) if reset: pst.prior_information = pd.DataFrame( {"pilbl": pilbl, "equation": equation, "obgnme": obgnme, "weight": weight} ) else: pi = pd.DataFrame( {"pilbl": pilbl, "equation": equation, "obgnme": obgnme, "weight": weight} ) pst.prior_information = pst.prior_information.append(pi) if parbounds: _regweight_from_parbound(pst) if pst.control_data.pestmode == "estimation": pst.control_data.pestmode = "regularization" def _regweight_from_parbound(pst): """sets regularization weights from parameter bounds which approximates the KL expansion. Called by zero_order_tikhonov(). """ pst.parameter_data.index = pst.parameter_data.parnme pst.prior_information.index = pst.prior_information.pilbl for idx, parnme in enumerate(pst.prior_information.pilbl): if parnme in pst.parameter_data.index: row = pst.parameter_data.loc[parnme, :] lbnd, ubnd = row["parlbnd"], row["parubnd"] if row["partrans"].lower() == "log": weight = 1.0 / (np.log10(ubnd) - np.log10(lbnd)) else: weight = 1.0 / (ubnd - lbnd) pst.prior_information.loc[parnme, "weight"] = weight else: print( "prior information name does not correspond" + " to a parameter: " + str(parnme) ) def first_order_pearson_tikhonov(pst, cov, reset=True, abs_drop_tol=1.0e-3): """setup preferred-difference regularization from a covariance matrix. Args: pst (`pyemu.Pst`): the PEST control file cov (`pyemu.Cov`): a covariance matrix instance with some or all of the parameters listed in `pst`. reset (`bool`): a flag to remove any existing prior information equations in the control file. Default is True abs_drop_tol (`float`, optional): tolerance to control how many pi equations are written. If the absolute value of the Pearson CC is less than abs_drop_tol, the prior information equation will not be included in the control file. Note: The weights on the prior information equations are the Pearson correlation coefficients implied by covariance matrix. Example:: pst = pyemu.Pst("my.pst") cov = pyemu.Cov.from_ascii("my.cov") pyemu.helpers.first_order_pearson_tikhonov(pst,cov) pst.write("my_reg.pst") """ assert isinstance(cov, pyemu.Cov) print("getting CC matrix") cc_mat = cov.to_pearson() # print(pst.parameter_data.dtypes) try: ptrans = pst.parameter_data.partrans.apply(lambda x: x.decode()).to_dict() except: ptrans = pst.parameter_data.partrans.to_dict() pi_num = pst.prior_information.shape[0] + 1 pilbl, obgnme, weight, equation = [], [], [], [] sadj_names = set(pst.adj_par_names) print("processing") for i, iname in enumerate(cc_mat.row_names): if iname not in sadj_names: continue for j, jname in enumerate(cc_mat.row_names[i + 1 :]): if jname not in sadj_names: continue # print(i,iname,i+j+1,jname) cc = cc_mat.x[i, j + i + 1] if cc < abs_drop_tol: continue pilbl.append("pcc_{0}".format(pi_num)) iiname = str(iname) if str(ptrans[iname]) == "log": iiname = "log(" + iname + ")" jjname = str(jname) if str(ptrans[jname]) == "log": jjname = "log(" + jname + ")" equation.append("1.0 * {0} - 1.0 * {1} = 0.0".format(iiname, jjname)) weight.append(cc) obgnme.append("regul_cc") pi_num += 1 df = pd.DataFrame( {"pilbl": pilbl, "equation": equation, "obgnme": obgnme, "weight": weight} ) df.index = df.pilbl if reset: pst.prior_information = df else: pst.prior_information = pst.prior_information.append(df) if pst.control_data.pestmode == "estimation": pst.control_data.pestmode = "regularization" def simple_tpl_from_pars(parnames, tplfilename="model.input.tpl"): """Make a simple template file from a list of parameter names. Args: parnames ([`str`]): list of parameter names to put in the new template file tplfilename (`str`): Name of the template file to create. Default is "model.input.tpl" Note: writes a file `tplfilename` with each parameter name in `parnames` on a line """ with open(tplfilename, "w") as ofp: ofp.write("ptf ~\n") [ofp.write("~{0:^12}~\n".format(cname)) for cname in parnames] def simple_ins_from_obs(obsnames, insfilename="model.output.ins"): """write a simple instruction file that reads the values named in obsnames in order, one per line from a model output file Args: obsnames (`str`): list of observation names to put in the new instruction file insfilename (`str`): the name of the instruction file to create. Default is "model.output.ins" Note: writes a file `insfilename` with each observation read off of a single line """ with open(insfilename, "w") as ofp: ofp.write("pif ~\n") [ofp.write("!{0}!\n".format(cob)) for cob in obsnames] def pst_from_parnames_obsnames( parnames, obsnames, tplfilename="model.input.tpl", insfilename="model.output.ins" ): """Creates a Pst object from a list of parameter names and a list of observation names. Args: parnames (`str`): list of parameter names obsnames (`str`): list of observation names tplfilename (`str`): template filename. Default is "model.input.tpl" insfilename (`str`): instruction filename. Default is "model.output.ins" Returns: `pyemu.Pst`: the generic control file """ simple_tpl_from_pars(parnames, tplfilename) simple_ins_from_obs(obsnames, insfilename) modelinputfilename = tplfilename.replace(".tpl", "") modeloutputfilename = insfilename.replace(".ins", "") return pyemu.Pst.from_io_files( tplfilename, modelinputfilename, insfilename, modeloutputfilename ) def read_pestpp_runstorage(filename, irun=0, with_metadata=False): """read pars and obs from a specific run in a pest++ serialized run storage file into dataframes. Args: filename (`str`): the name of the run storage file irun (`int`): the run id to process. If 'all', then all runs are read. Default is 0 with_metadata (`bool`): flag to return run stats and info txt as well Returns: tuple containing - **pandas.DataFrame**: parameter information - **pandas.DataFrame**: observation information - **pandas.DataFrame**: optionally run status and info txt. """ header_dtype = np.dtype( [ ("n_runs", np.int64), ("run_size", np.int64), ("p_name_size", np.int64), ("o_name_size", np.int64), ] ) try: irun = int(irun) except: if irun.lower() == "all": irun = irun.lower() else: raise Exception( "unrecognized 'irun': should be int or 'all', not '{0}'".format(irun) ) def status_str(r_status): if r_status == 0: return "not completed" if r_status == 1: return "completed" if r_status == -100: return "canceled" else: return "failed" assert os.path.exists(filename) f = open(filename, "rb") header = np.fromfile(f, dtype=header_dtype, count=1) p_name_size, o_name_size = header["p_name_size"][0], header["o_name_size"][0] par_names = ( struct.unpack("{0}s".format(p_name_size), f.read(p_name_size))[0] .strip() .lower() .decode() .split("\0")[:-1] ) obs_names = ( struct.unpack("{0}s".format(o_name_size), f.read(o_name_size))[0] .strip() .lower() .decode() .split("\0")[:-1] ) n_runs, run_size = header["n_runs"][0], header["run_size"][0] run_start = f.tell() def _read_run(irun): f.seek(run_start + (irun * run_size)) r_status = np.fromfile(f, dtype=np.int8, count=1) info_txt = struct.unpack("41s", f.read(41))[0].strip().lower().decode() par_vals = np.fromfile(f, dtype=np.float64, count=len(par_names) + 1)[1:] obs_vals = np.fromfile(f, dtype=np.float64, count=len(obs_names) + 1)[:-1] par_df = pd.DataFrame({"parnme": par_names, "parval1": par_vals}) par_df.index = par_df.pop("parnme") obs_df = pd.DataFrame({"obsnme": obs_names, "obsval": obs_vals}) obs_df.index = obs_df.pop("obsnme") return r_status, info_txt, par_df, obs_df if irun == "all": par_dfs, obs_dfs = [], [] r_stats, txts = [], [] for irun in range(n_runs): # print(irun) r_status, info_txt, par_df, obs_df = _read_run(irun) par_dfs.append(par_df) obs_dfs.append(obs_df) r_stats.append(r_status) txts.append(info_txt) par_df = pd.concat(par_dfs, axis=1).T par_df.index = np.arange(n_runs) obs_df = pd.concat(obs_dfs, axis=1).T obs_df.index = np.arange(n_runs) meta_data = pd.DataFrame({"r_status": r_stats, "info_txt": txts}) meta_data.loc[:, "status"] = meta_data.r_status.apply(status_str) else: assert irun <= n_runs r_status, info_txt, par_df, obs_df = _read_run(irun) meta_data = pd.DataFrame({"r_status": [r_status], "info_txt": [info_txt]}) meta_data.loc[:, "status"] = meta_data.r_status.apply(status_str) f.close() if with_metadata: return par_df, obs_df, meta_data else: return par_df, obs_df def jco_from_pestpp_runstorage(rnj_filename, pst_filename): """read pars and obs from a pest++ serialized run storage file (e.g., .rnj) and return jacobian matrix instance Args: rnj_filename (`str`): the name of the run storage file pst_filename (`str`): the name of the pst file Note: This can then be passed to Jco.to_binary or Jco.to_coo, etc., to write jco file in a subsequent step to avoid memory resource issues associated with very large problems. Returns: `pyemu.Jco`: a jacobian matrix constructed from the run results and pest control file information. """ header_dtype = np.dtype( [ ("n_runs", np.int64), ("run_size", np.int64), ("p_name_size", np.int64), ("o_name_size", np.int64), ] ) pst = pyemu.Pst(pst_filename) par = pst.parameter_data log_pars = set(par.loc[par.partrans == "log", "parnme"].values) with open(rnj_filename, "rb") as f: header = np.fromfile(f, dtype=header_dtype, count=1) try: base_par, base_obs = read_pestpp_runstorage(rnj_filename, irun=0) except: raise Exception("couldn't get base run...") par = par.loc[base_par.index, :] li = base_par.index.map(lambda x: par.loc[x, "partrans"] == "log") base_par.loc[li] = base_par.loc[li].apply(np.log10) jco_cols = {} for irun in range(1, int(header["n_runs"])): par_df, obs_df = read_pestpp_runstorage(rnj_filename, irun=irun) par_df.loc[li] = par_df.loc[li].apply(np.log10) obs_diff = base_obs - obs_df par_diff = base_par - par_df # check only one non-zero element per col(par) if len(par_diff[par_diff.parval1 != 0]) > 1: raise Exception( "more than one par diff - looks like the file wasn't created during jco filling..." ) parnme = par_diff[par_diff.parval1 != 0].index[0] parval = par_diff.parval1.loc[parnme] # derivatives jco_col = obs_diff / parval # some tracking, checks print("processing par {0}: {1}...".format(irun, parnme)) print( "%nzsens: {0}%...".format( (jco_col[abs(jco_col.obsval) > 1e-8].shape[0] / jco_col.shape[0]) * 100.0 ) ) jco_cols[parnme] = jco_col.obsval jco_cols = pd.DataFrame.from_records( data=jco_cols, index=list(obs_diff.index.values) ) jco_cols = pyemu.Jco.from_dataframe(jco_cols) # write # memory considerations important here for very large matrices - break into chunks... # jco_fnam = "{0}".format(filename[:-4]+".jco") # jco_cols.to_binary(filename=jco_fnam, droptol=None, chunk=None) return jco_cols def parse_dir_for_io_files(d, prepend_path=False): """find template/input file pairs and instruction file/output file pairs by extension. Args: d (`str`): directory to search for interface files prepend_path (`bool`, optional): flag to prepend `d` to each file name. Default is False Note: the return values from this function can be passed straight to `pyemu.Pst.from_io_files()` classmethod constructor. Assumes the template file names are <input_file>.tpl and instruction file names are <output_file>.ins. Returns: tuple containing - **[`str`]**: list of template files in d - **[`str`]**: list of input files in d - **[`str`]**: list of instruction files in d - **[`str`]**: list of output files in d """ files = os.listdir(d) tpl_files = [f for f in files if f.endswith(".tpl")] in_files = [f.replace(".tpl", "") for f in tpl_files] ins_files = [f for f in files if f.endswith(".ins")] out_files = [f.replace(".ins", "") for f in ins_files] if prepend_path: tpl_files = [os.path.join(d, item) for item in tpl_files] in_files = [os.path.join(d, item) for item in in_files] ins_files = [os.path.join(d, item) for item in ins_files] out_files = [os.path.join(d, item) for item in out_files] return tpl_files, in_files, ins_files, out_files def pst_from_io_files( tpl_files, in_files, ins_files, out_files, pst_filename=None, pst_path=None ): """create a Pst instance from model interface files. Args: tpl_files ([`str`]): list of template file names in_files ([`str`]): list of model input file names (pairs with template files) ins_files ([`str`]): list of instruction file names out_files ([`str`]): list of model output file names (pairs with instruction files) pst_filename (`str`): name of control file to write. If None, no file is written. Default is None pst_path (`str`): the path to append to the template_file and in_file in the control file. If not None, then any existing path in front of the template or in file is split off and pst_path is prepended. If python is being run in a directory other than where the control file will reside, it is useful to pass `pst_path` as `.`. Default is None Returns: `Pst`: new control file instance with parameter and observation names found in `tpl_files` and `ins_files`, repsectively. Note: calls `pyemu.helpers.pst_from_io_files()` Assigns generic values for parameter info. Tries to use INSCHEK to set somewhat meaningful observation values all file paths are relatively to where python is running. Example:: tpl_files = ["my.tpl"] in_files = ["my.in"] ins_files = ["my.ins"] out_files = ["my.out"] pst = pyemu.Pst.from_io_files(tpl_files,in_files,ins_files,out_files) pst.control_data.noptmax = 0 pst.write("my.pst) """ par_names = set() if not isinstance(tpl_files, list): tpl_files = [tpl_files] if not isinstance(in_files, list): in_files = [in_files] assert len(in_files) == len(tpl_files), "len(in_files) != len(tpl_files)" for tpl_file in tpl_files: assert os.path.exists(tpl_file), "template file not found: " + str(tpl_file) # new_names = [name for name in pyemu.pst_utils.parse_tpl_file(tpl_file) if name not in par_names] # par_names.extend(new_names) new_names = pyemu.pst_utils.parse_tpl_file(tpl_file) par_names.update(new_names) if not isinstance(ins_files, list): ins_files = [ins_files] if not isinstance(out_files, list): out_files = [out_files] assert len(ins_files) == len(out_files), "len(out_files) != len(out_files)" obs_names = [] for ins_file in ins_files: assert os.path.exists(ins_file), "instruction file not found: " + str(ins_file) obs_names.extend(pyemu.pst_utils.parse_ins_file(ins_file)) new_pst = pyemu.pst_utils.generic_pst(list(par_names), list(obs_names)) if "window" in platform.platform().lower() and pst_path == ".": pst_path = "" # new_pst.instruction_files = ins_files # new_pst.output_files = out_files new_pst.model_output_data = pd.DataFrame( {"pest_file": ins_files, "model_file": out_files}, index=ins_files ) # try to run inschek to find the observtion values # do this here with full paths to files pyemu.pst_utils.try_process_output_pst(new_pst) if pst_path is not None: tpl_files = [ os.path.join(pst_path, os.path.split(tpl_file)[-1]) for tpl_file in tpl_files ] in_files = [ os.path.join(pst_path, os.path.split(in_file)[-1]) for in_file in in_files ] # now set the true path location to instruction files and output files ins_files = [ os.path.join(pst_path, os.path.split(ins_file)[-1]) for ins_file in ins_files ] out_files = [ os.path.join(pst_path, os.path.split(out_file)[-1]) for out_file in out_files ] new_pst.model_input_data = pd.DataFrame( {"pest_file": tpl_files, "model_file": in_files}, index=tpl_files ) new_pst.model_output_data = pd.DataFrame( {"pest_file": ins_files, "model_file": out_files}, index=ins_files ) new_pst.try_parse_name_metadata() if pst_filename: new_pst.write(pst_filename) return new_pst wildass_guess_par_bounds_dict = { "hk": [0.01, 100.0], "vka": [0.1, 10.0], "sy": [0.25, 1.75], "ss": [0.1, 10.0], "cond": [0.01, 100.0], "flux": [0.25, 1.75], "rech": [0.9, 1.1], "stage": [0.9, 1.1], } class PstFromFlopyModel(object): """a monster helper class to setup a complex PEST interface around an existing MODFLOW-2005-family model. Args: model (`flopy.mbase`): a loaded flopy model instance. If model is an str, it is treated as a MODFLOW nam file (requires org_model_ws) new_model_ws (`str`): a directory where the new version of MODFLOW input files and PEST(++) files will be written org_model_ws (`str`): directory to existing MODFLOW model files. Required if model argument is an str. Default is None pp_props ([[`str`,[`int`]]]): pilot point multiplier parameters for grid-based properties. A nested list of grid-scale model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices. For example, ["lpf.hk",[0,1,2,]] would setup pilot point multiplier parameters for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup pilot point multiplier parameters for recharge for stress period 1,5,11,and 16. const_props ([[`str`,[`int`]]]): constant (uniform) multiplier parameters for grid-based properties. A nested list of grid-scale model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices. For example, ["lpf.hk",[0,1,2,]] would setup constant (uniform) multiplier parameters for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup constant (uniform) multiplier parameters for recharge for stress period 1,5,11,and 16. temporal_list_props ([[`str`,[`int`]]]): list-type input stress-period level multiplier parameters. A nested list of list-type input elements to parameterize using name, iterable pairs. The iterable is zero-based stress-period indices. For example, to setup multipliers for WEL flux and for RIV conductance, temporal_list_props = [["wel.flux",[0,1,2]],["riv.cond",None]] would setup multiplier parameters for well flux for stress periods 1,2 and 3 and would setup one single river conductance multiplier parameter that is applied to all stress periods spatial_list_props ([[`str`,[`int`]]]): list-type input for spatial multiplier parameters. A nested list of list-type elements to parameterize using names (e.g. [["riv.cond",0],["wel.flux",1] to setup up cell-based parameters for each list-type element listed. These multiplier parameters are applied across all stress periods. For this to work, there must be the same number of entries for all stress periods. If more than one list element of the same type is in a single cell, only one parameter is used to multiply all lists in the same cell. grid_props ([[`str`,[`int`]]]): grid-based (every active model cell) multiplier parameters. A nested list of grid-scale model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices (e.g., ["lpf.hk",[0,1,2,]] would setup a multiplier parameter for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3 in every active model cell). For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup grid-based multiplier parameters in every active model cell for recharge for stress period 1,5,11,and 16. sfr_pars (`bool`): setup parameters for the stream flow routing modflow package. If list is passed it defines the parameters to set up. sfr_temporal_pars (`bool`) flag to include stress-period level spatially-global multipler parameters in addition to the spatially-discrete `sfr_pars`. Requires `sfr_pars` to be passed. Default is False grid_geostruct (`pyemu.geostats.GeoStruct`): the geostatistical structure to build the prior parameter covariance matrix elements for grid-based parameters. If None, a generic GeoStruct is created using an "a" parameter that is 10 times the max cell size. Default is None pp_space (`int`): number of grid cells between pilot points. If None, use the default in pyemu.pp_utils.setup_pilot_points_grid. Default is None zone_props ([[`str`,[`int`]]]): zone-based multiplier parameters. A nested list of zone-based model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices (e.g., ["lpf.hk",[0,1,2,]] would setup a multiplier parameter for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3 for unique zone values in the ibound array. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup zone-based multiplier parameters for recharge for stress period 1,5,11,and 16. pp_geostruct (`pyemu.geostats.GeoStruct`): the geostatistical structure to use for building the prior parameter covariance matrix for pilot point parameters. If None, a generic GeoStruct is created using pp_space and grid-spacing information. Default is None par_bounds_dict (`dict`): a dictionary of model property/boundary condition name, upper-lower bound pairs. For example, par_bounds_dict = {"hk":[0.01,100.0],"flux":[0.5,2.0]} would set the bounds for horizontal hydraulic conductivity to 0.001 and 100.0 and set the bounds for flux parameters to 0.5 and 2.0. For parameters not found in par_bounds_dict, `pyemu.helpers.wildass_guess_par_bounds_dict` is used to set somewhat meaningful bounds. Default is None temporal_list_geostruct (`pyemu.geostats.GeoStruct`): the geostastical struture to build the prior parameter covariance matrix for time-varying list-type multiplier parameters. This GeoStruct express the time correlation so that the 'a' parameter is the length of time that boundary condition multiplier parameters are correlated across. If None, then a generic GeoStruct is created that uses an 'a' parameter of 3 stress periods. Default is None spatial_list_geostruct (`pyemu.geostats.GeoStruct`): the geostastical struture to build the prior parameter covariance matrix for spatially-varying list-type multiplier parameters. If None, a generic GeoStruct is created using an "a" parameter that is 10 times the max cell size. Default is None. remove_existing (`bool`): a flag to remove an existing new_model_ws directory. If False and new_model_ws exists, an exception is raised. If True and new_model_ws exists, the directory is destroyed - user beware! Default is False. k_zone_dict (`dict`): a dictionary of zero-based layer index, zone array pairs. e.g. {lay: np.2darray} Used to override using ibound zones for zone-based parameterization. If None, use ibound values greater than zero as zones. Alternatively a dictionary of dictionaries can be passed to allow different zones to be defined for different parameters. e.g. {"upw.hk" {lay: np.2darray}, "extra.rc11" {lay: np.2darray}} or {"hk" {lay: np.2darray}, "rc11" {lay: np.2darray}} use_pp_zones (`bool`): a flag to use ibound zones (or k_zone_dict, see above) as pilot point zones. If False, ibound values greater than zero are treated as a single zone for pilot points. Default is False obssim_smp_pairs ([[`str`,`str`]]: a list of observed-simulated PEST-type SMP file pairs to get observations from and include in the control file. Default is [] external_tpl_in_pairs ([[`str`,`str`]]: a list of existing template file, model input file pairs to parse parameters from and include in the control file. Default is [] external_ins_out_pairs ([[`str`,`str`]]: a list of existing instruction file, model output file pairs to parse observations from and include in the control file. Default is [] extra_pre_cmds ([`str`]): a list of preprocessing commands to add to the forward_run.py script commands are executed with os.system() within forward_run.py. Default is None. redirect_forward_output (`bool`): flag for whether to redirect forward model output to text files (True) or allow model output to be directed to the screen (False). Default is True extra_post_cmds ([`str`]): a list of post-processing commands to add to the forward_run.py script. Commands are executed with os.system() within forward_run.py. Default is None. tmp_files ([`str`]): a list of temporary files that should be removed at the start of the forward run script. Default is []. model_exe_name (`str`): binary name to run modflow. If None, a default from flopy is used, which is dangerous because of the non-standard binary names (e.g. MODFLOW-NWT_x64, MODFLOWNWT, mfnwt, etc). Default is None. build_prior (`bool`): flag to build prior covariance matrix. Default is True sfr_obs (`bool`): flag to include observations of flow and aquifer exchange from the sfr ASCII output file hfb_pars (`bool`): add HFB parameters. uses pyemu.gw_utils.write_hfb_template(). the resulting HFB pars have parval1 equal to the values in the original file and use the spatial_list_geostruct to build geostatistical covariates between parameters kl_props ([[`str`,[`int`]]]): karhunen-loeve based multiplier parameters. A nested list of KL-based model properties to parameterize using name, iterable pairs. For 3D properties, the iterable is zero-based layer indices (e.g., ["lpf.hk",[0,1,2,]] would setup a multiplier parameter for layer property file horizontal hydraulic conductivity for model layers 1,2, and 3 for unique zone values in the ibound array. For time-varying properties (e.g. recharge), the iterable is for zero-based stress period indices. For example, ["rch.rech",[0,4,10,15]] would setup zone-based multiplier parameters for recharge for stress period 1,5,11,and 16. kl_num_eig (`int`): the number of KL-based eigenvector multiplier parameters to use for each KL parameter set. default is 100 kl_geostruct (`pyemu.geostats.Geostruct`): the geostatistical structure to build the prior parameter covariance matrix elements for KL-based parameters. If None, a generic GeoStruct is created using an "a" parameter that is 10 times the max cell size. Default is None Note: Setup up multiplier parameters for an existing MODFLOW model. Does all kinds of coolness like building a meaningful prior, assigning somewhat meaningful parameter groups and bounds, writes a forward_run.py script with all the calls need to implement multiplier parameters, run MODFLOW and post-process. Works a lot better if TEMPCHEK, INSCHEK and PESTCHEK are available in the system path variable """ def __init__( self, model, new_model_ws, org_model_ws=None, pp_props=[], const_props=[], temporal_bc_props=[], temporal_list_props=[], grid_props=[], grid_geostruct=None, pp_space=None, zone_props=[], pp_geostruct=None, par_bounds_dict=None, sfr_pars=False, temporal_sfr_pars=False, temporal_list_geostruct=None, remove_existing=False, k_zone_dict=None, mflist_waterbudget=True, mfhyd=True, hds_kperk=[], use_pp_zones=False, obssim_smp_pairs=None, external_tpl_in_pairs=None, external_ins_out_pairs=None, extra_pre_cmds=None, extra_model_cmds=None, extra_post_cmds=None, redirect_forward_output=True, tmp_files=None, model_exe_name=None, build_prior=True, sfr_obs=False, spatial_bc_props=[], spatial_list_props=[], spatial_list_geostruct=None, hfb_pars=False, kl_props=None, kl_num_eig=100, kl_geostruct=None, ): self.logger = pyemu.logger.Logger("PstFromFlopyModel.log") self.log = self.logger.log self.logger.echo = True self.zn_suffix = "_zn" self.gr_suffix = "_gr" self.pp_suffix = "_pp" self.cn_suffix = "_cn" self.kl_suffix = "_kl" self.arr_org = "arr_org" self.arr_mlt = "arr_mlt" self.list_org = "list_org" self.list_mlt = "list_mlt" self.forward_run_file = "forward_run.py" self.remove_existing = remove_existing self.external_tpl_in_pairs = external_tpl_in_pairs self.external_ins_out_pairs = external_ins_out_pairs self._setup_model(model, org_model_ws, new_model_ws) self._add_external() self.arr_mult_dfs = [] self.par_bounds_dict = par_bounds_dict self.pp_props = pp_props self.pp_space = pp_space self.pp_geostruct = pp_geostruct self.use_pp_zones = use_pp_zones self.const_props = const_props self.grid_props = grid_props self.grid_geostruct = grid_geostruct self.zone_props = zone_props self.kl_props = kl_props self.kl_geostruct = kl_geostruct self.kl_num_eig = kl_num_eig if len(temporal_bc_props) > 0: if len(temporal_list_props) > 0: self.logger.lraise( "temporal_bc_props and temporal_list_props. " + "temporal_bc_props is deprecated and replaced by temporal_list_props" ) self.logger.warn( "temporal_bc_props is deprecated and replaced by temporal_list_props" ) temporal_list_props = temporal_bc_props if len(spatial_bc_props) > 0: if len(spatial_list_props) > 0: self.logger.lraise( "spatial_bc_props and spatial_list_props. " + "spatial_bc_props is deprecated and replaced by spatial_list_props" ) self.logger.warn( "spatial_bc_props is deprecated and replaced by spatial_list_props" ) spatial_list_props = spatial_bc_props self.temporal_list_props = temporal_list_props self.temporal_list_geostruct = temporal_list_geostruct if self.temporal_list_geostruct is None: v = pyemu.geostats.ExpVario( contribution=1.0, a=180.0 ) # 180 correlation length self.temporal_list_geostruct = pyemu.geostats.GeoStruct( variograms=v, name="temporal_list_geostruct" ) self.spatial_list_props = spatial_list_props self.spatial_list_geostruct = spatial_list_geostruct if self.spatial_list_geostruct is None: dist = 10 * float( max(self.m.dis.delr.array.max(), self.m.dis.delc.array.max()) ) v = pyemu.geostats.ExpVario(contribution=1.0, a=dist) self.spatial_list_geostruct = pyemu.geostats.GeoStruct( variograms=v, name="spatial_list_geostruct" ) self.obssim_smp_pairs = obssim_smp_pairs self.hds_kperk = hds_kperk self.sfr_obs = sfr_obs self.frun_pre_lines = [] self.frun_model_lines = [] self.frun_post_lines = [] self.tmp_files = [] self.extra_forward_imports = [] if tmp_files is not None: if not isinstance(tmp_files, list): tmp_files = [tmp_files] self.tmp_files.extend(tmp_files) if k_zone_dict is None: self.k_zone_dict = { k: self.m.bas6.ibound[k].array for k in np.arange(self.m.nlay) } else: # check if k_zone_dict is a dictionary of dictionaries if np.all([isinstance(v, dict) for v in k_zone_dict.values()]): # loop over outer keys for par_key in k_zone_dict.keys(): for k, arr in k_zone_dict[par_key].items(): if k not in np.arange(self.m.nlay): self.logger.lraise( "k_zone_dict for par {1}, layer index not in nlay:{0}".format( k, par_key ) ) if arr.shape != (self.m.nrow, self.m.ncol): self.logger.lraise( "k_zone_dict arr for k {0} for par{2} has wrong shape:{1}".format( k, arr.shape, par_key ) ) else: for k, arr in k_zone_dict.items(): if k not in np.arange(self.m.nlay): self.logger.lraise( "k_zone_dict layer index not in nlay:{0}".format(k) ) if arr.shape != (self.m.nrow, self.m.ncol): self.logger.lraise( "k_zone_dict arr for k {0} has wrong shape:{1}".format( k, arr.shape ) ) self.k_zone_dict = k_zone_dict # add any extra commands to the forward run lines for alist, ilist in zip( [self.frun_pre_lines, self.frun_model_lines, self.frun_post_lines], [extra_pre_cmds, extra_model_cmds, extra_post_cmds], ): if ilist is None: continue if not isinstance(ilist, list): ilist = [ilist] for cmd in ilist: self.logger.statement("forward_run line:{0}".format(cmd)) alist.append("pyemu.os_utils.run('{0}')\n".format(cmd)) # add the model call if model_exe_name is None: model_exe_name = self.m.exe_name self.logger.warn( "using flopy binary to execute the model:{0}".format(model) ) if redirect_forward_output: line = "pyemu.os_utils.run('{0} {1} 1>{1}.stdout 2>{1}.stderr')".format( model_exe_name, self.m.namefile ) else: line = "pyemu.os_utils.run('{0} {1} ')".format( model_exe_name, self.m.namefile ) self.logger.statement("forward_run line:{0}".format(line)) self.frun_model_lines.append(line) self.tpl_files, self.in_files = [], [] self.ins_files, self.out_files = [], [] self._setup_mult_dirs() self.mlt_files = [] self.org_files = [] self.m_files = [] self.mlt_counter = {} self.par_dfs = {} self.mlt_dfs = [] self._setup_list_pars() self._setup_array_pars() if not sfr_pars and temporal_sfr_pars: self.logger.lraise("use of `temporal_sfr_pars` requires `sfr_pars`") if sfr_pars: if isinstance(sfr_pars, str): sfr_pars = [sfr_pars] if isinstance(sfr_pars, list): self._setup_sfr_pars(sfr_pars, include_temporal_pars=temporal_sfr_pars) else: self._setup_sfr_pars(include_temporal_pars=temporal_sfr_pars) if hfb_pars: self._setup_hfb_pars() self.mflist_waterbudget = mflist_waterbudget self.mfhyd = mfhyd self._setup_observations() self.build_pst() if build_prior: self.parcov = self.build_prior() else: self.parcov = None self.log("saving intermediate _setup_<> dfs into {0}".format(self.m.model_ws)) for tag, df in self.par_dfs.items(): df.to_csv( os.path.join( self.m.model_ws, "_setup_par_{0}_{1}.csv".format( tag.replace(" ", "_"), self.pst_name ), ) ) for tag, df in self.obs_dfs.items(): df.to_csv( os.path.join( self.m.model_ws, "_setup_obs_{0}_{1}.csv".format( tag.replace(" ", "_"), self.pst_name ), ) ) self.log("saving intermediate _setup_<> dfs into {0}".format(self.m.model_ws)) self.logger.statement("all done") def _setup_sfr_obs(self): """setup sfr ASCII observations""" if not self.sfr_obs: return if self.m.sfr is None: self.logger.lraise("no sfr package found...") org_sfr_out_file = os.path.join( self.org_model_ws, "{0}.sfr.out".format(self.m.name) ) if not os.path.exists(org_sfr_out_file): self.logger.lraise( "setup_sfr_obs() error: could not locate existing sfr out file: {0}".format( org_sfr_out_file ) ) new_sfr_out_file = os.path.join( self.m.model_ws, os.path.split(org_sfr_out_file)[-1] ) shutil.copy2(org_sfr_out_file, new_sfr_out_file) seg_group_dict = None if isinstance(self.sfr_obs, dict): seg_group_dict = self.sfr_obs df = pyemu.gw_utils.setup_sfr_obs( new_sfr_out_file, seg_group_dict=seg_group_dict, model=self.m, include_path=True, ) if df is not None: self.obs_dfs["sfr"] = df self.frun_post_lines.append("pyemu.gw_utils.apply_sfr_obs()") def _setup_sfr_pars(self, par_cols=None, include_temporal_pars=None): """setup multiplier parameters for sfr segment data Adding support for reachinput (and isfropt = 1)""" assert self.m.sfr is not None, "can't find sfr package..." if isinstance(par_cols, str): par_cols = [par_cols] reach_pars = False # default to False seg_pars = True par_dfs = {} df = pyemu.gw_utils.setup_sfr_seg_parameters( self.m, par_cols=par_cols, include_temporal_pars=include_temporal_pars ) # now just pass model # self.par_dfs["sfr"] = df if df.empty: warnings.warn("No sfr segment parameters have been set up", PyemuWarning) par_dfs["sfr"] = [] seg_pars = False else: par_dfs["sfr"] = [df] # may need df for both segs and reaches self.tpl_files.append("sfr_seg_pars.dat.tpl") self.in_files.append("sfr_seg_pars.dat") if include_temporal_pars: self.tpl_files.append("sfr_seg_temporal_pars.dat.tpl") self.in_files.append("sfr_seg_temporal_pars.dat") if self.m.sfr.reachinput: # if include_temporal_pars: # raise NotImplementedError("temporal pars is not set up for reach data style") df = pyemu.gw_utils.setup_sfr_reach_parameters(self.m, par_cols=par_cols) if df.empty: warnings.warn("No sfr reach parameters have been set up", PyemuWarning) else: self.tpl_files.append("sfr_reach_pars.dat.tpl") self.in_files.append("sfr_reach_pars.dat") reach_pars = True par_dfs["sfr"].append(df) if len(par_dfs["sfr"]) > 0: self.par_dfs["sfr"] = pd.concat(par_dfs["sfr"]) self.frun_pre_lines.append( "pyemu.gw_utils.apply_sfr_parameters(seg_pars={0}, reach_pars={1})".format( seg_pars, reach_pars ) ) else: warnings.warn("No sfr parameters have been set up!", PyemuWarning) def _setup_hfb_pars(self): """setup non-mult parameters for hfb (yuck!)""" if self.m.hfb6 is None: self.logger.lraise("couldn't find hfb pak") tpl_file, df = pyemu.gw_utils.write_hfb_template(self.m) self.in_files.append(os.path.split(tpl_file.replace(".tpl", ""))[-1]) self.tpl_files.append(os.path.split(tpl_file)[-1]) self.par_dfs["hfb"] = df def _setup_mult_dirs(self): """setup the directories to use for multiplier parameterization. Directories are make within the PstFromFlopyModel.m.model_ws directory """ # setup dirs to hold the original and multiplier model input quantities set_dirs = [] # if len(self.pp_props) > 0 or len(self.zone_props) > 0 or \ # len(self.grid_props) > 0: if ( self.pp_props is not None or self.zone_props is not None or self.grid_props is not None or self.const_props is not None or self.kl_props is not None ): set_dirs.append(self.arr_org) set_dirs.append(self.arr_mlt) # if len(self.bc_props) > 0: if len(self.temporal_list_props) > 0 or len(self.spatial_list_props) > 0: set_dirs.append(self.list_org) if len(self.spatial_list_props): set_dirs.append(self.list_mlt) for d in set_dirs: d = os.path.join(self.m.model_ws, d) self.log("setting up '{0}' dir".format(d)) if os.path.exists(d): if self.remove_existing: shutil.rmtree(d, onerror=remove_readonly) else: raise Exception("dir '{0}' already exists".format(d)) os.mkdir(d) self.log("setting up '{0}' dir".format(d)) def _setup_model(self, model, org_model_ws, new_model_ws): """setup the flopy.mbase instance for use with multipler parameters. Changes model_ws, sets external_path and writes new MODFLOW input files """ split_new_mws = [i for i in os.path.split(new_model_ws) if len(i) > 0] if len(split_new_mws) != 1: self.logger.lraise( "new_model_ws can only be 1 folder-level deep:{0}".format( str(split_new_mws) ) ) if isinstance(model, str): self.log("loading flopy model") try: import flopy except: raise Exception("from_flopy_model() requires flopy") # prepare the flopy model self.org_model_ws = org_model_ws self.new_model_ws = new_model_ws self.m = flopy.modflow.Modflow.load( model, model_ws=org_model_ws, check=False, verbose=True, forgive=False ) self.log("loading flopy model") else: self.m = model self.org_model_ws = str(self.m.model_ws) self.new_model_ws = new_model_ws self.log("updating model attributes") self.m.array_free_format = True self.m.free_format_input = True self.m.external_path = "." self.log("updating model attributes") if os.path.exists(new_model_ws): if not self.remove_existing: self.logger.lraise("'new_model_ws' already exists") else: self.logger.warn("removing existing 'new_model_ws") shutil.rmtree(new_model_ws, onerror=pyemu.os_utils._remove_readonly) time.sleep(1) self.m.change_model_ws(new_model_ws, reset_external=True) self.m.exe_name = self.m.exe_name.replace(".exe", "") self.m.exe = self.m.version self.log("writing new modflow input files") self.m.write_input() self.log("writing new modflow input files") def _get_count(self, name): """get the latest counter for a certain parameter type.""" if name not in self.mlt_counter: self.mlt_counter[name] = 1 c = 0 else: c = self.mlt_counter[name] self.mlt_counter[name] += 1 # print(name,c) return c def _prep_mlt_arrays(self): """prepare multipler arrays. Copies existing model input arrays and writes generic (ones) multiplier arrays """ par_props = [ self.pp_props, self.grid_props, self.zone_props, self.const_props, self.kl_props, ] par_suffixs = [ self.pp_suffix, self.gr_suffix, self.zn_suffix, self.cn_suffix, self.kl_suffix, ] # Need to remove props and suffixes for which no info was provided (e.g. still None) del_idx = [] for i, cp in enumerate(par_props): if cp is None: del_idx.append(i) for i in del_idx[::-1]: del par_props[i] del par_suffixs[i] mlt_dfs = [] for par_prop, suffix in zip(par_props, par_suffixs): if len(par_prop) == 2: if not isinstance(par_prop[0], list): par_prop = [par_prop] if len(par_prop) == 0: continue for pakattr, k_org in par_prop: attr_name = pakattr.split(".")[1] pak, attr = self._parse_pakattr(pakattr) ks = np.arange(self.m.nlay) if isinstance(attr, flopy.utils.Transient2d): ks = np.arange(self.m.nper) try: k_parse = self._parse_k(k_org, ks) except Exception as e: self.logger.lraise("error parsing k {0}:{1}".format(k_org, str(e))) org, mlt, mod, layer = [], [], [], [] c = self._get_count(attr_name) mlt_prefix = "{0}{1}".format(attr_name, c) mlt_name = os.path.join( self.arr_mlt, "{0}.dat{1}".format(mlt_prefix, suffix) ) for k in k_parse: # horrible kludge to avoid passing int64 to flopy # this gift may give again... if type(k) is np.int64: k = int(k) if isinstance(attr, flopy.utils.Util2d): fname = self._write_u2d(attr) layer.append(k) elif isinstance(attr, flopy.utils.Util3d): fname = self._write_u2d(attr[k]) layer.append(k) elif isinstance(attr, flopy.utils.Transient2d): fname = self._write_u2d(attr.transient_2ds[k]) layer.append(0) # big assumption here mod.append(os.path.join(self.m.external_path, fname)) mlt.append(mlt_name) org.append(os.path.join(self.arr_org, fname)) df = pd.DataFrame( { "org_file": org, "mlt_file": mlt, "model_file": mod, "layer": layer, } ) df.loc[:, "suffix"] = suffix df.loc[:, "prefix"] = mlt_prefix df.loc[:, "attr_name"] = attr_name mlt_dfs.append(df) if len(mlt_dfs) > 0: mlt_df = pd.concat(mlt_dfs, ignore_index=True) return mlt_df def _write_u2d(self, u2d): """write a flopy.utils.Util2D instance to an ASCII text file using the Util2D filename """ filename = os.path.split(u2d.filename)[-1] np.savetxt( os.path.join(self.m.model_ws, self.arr_org, filename), u2d.array, fmt="%15.6E", ) return filename def _write_const_tpl(self, name, tpl_file, zn_array): """write a template file a for a constant (uniform) multiplier parameter""" parnme = [] with open(os.path.join(self.m.model_ws, tpl_file), "w") as f: f.write("ptf ~\n") for i in range(self.m.nrow): for j in range(self.m.ncol): if zn_array[i, j] < 1: pname = " 1.0 " else: pname = "{0}{1}".format(name, self.cn_suffix) if len(pname) > 12: self.logger.warn( "zone pname too long for pest:{0}".format(pname) ) parnme.append(pname) pname = " ~ {0} ~".format(pname) f.write(pname) f.write("\n") df = pd.DataFrame({"parnme": parnme}, index=parnme) # df.loc[:,"pargp"] = "{0}{1}".format(self.cn_suffixname) df.loc[:, "pargp"] = "{0}_{1}".format(self.cn_suffix.replace("_", ""), name) df.loc[:, "tpl"] = tpl_file return df def _write_grid_tpl(self, name, tpl_file, zn_array): """write a template file a for grid-based multiplier parameters""" parnme, x, y = [], [], [] with open(os.path.join(self.m.model_ws, tpl_file), "w") as f: f.write("ptf ~\n") for i in range(self.m.nrow): for j in range(self.m.ncol): if zn_array[i, j] < 1: pname = " 1.0 " else: pname = "{0}{1:03d}{2:03d}".format(name, i, j) if len(pname) > 12: self.logger.warn( "grid pname too long for pest:{0}".format(pname) ) parnme.append(pname) pname = " ~ {0} ~ ".format(pname) x.append(self.m.sr.xcentergrid[i, j]) y.append(self.m.sr.ycentergrid[i, j]) f.write(pname) f.write("\n") df = pd.DataFrame({"parnme": parnme, "x": x, "y": y}, index=parnme) df.loc[:, "pargp"] = "{0}{1}".format(self.gr_suffix.replace("_", ""), name) df.loc[:, "tpl"] = tpl_file return df def _grid_prep(self): """prepare grid-based parameterizations""" if len(self.grid_props) == 0: return if self.grid_geostruct is None: self.logger.warn( "grid_geostruct is None," " using ExpVario with contribution=1 and a=(max(delc,delr)*10" ) dist = 10 * float( max(self.m.dis.delr.array.max(), self.m.dis.delc.array.max()) ) v = pyemu.geostats.ExpVario(contribution=1.0, a=dist) self.grid_geostruct = pyemu.geostats.GeoStruct( variograms=v, name="grid_geostruct", transform="log" ) def _pp_prep(self, mlt_df): """prepare pilot point based parameterization""" if len(self.pp_props) == 0: return if self.pp_space is None: self.logger.warn("pp_space is None, using 10...\n") self.pp_space = 10 if self.pp_geostruct is None: self.logger.warn( "pp_geostruct is None," " using ExpVario with contribution=1 and a=(pp_space*max(delr,delc))" ) pp_dist = self.pp_space * float( max(self.m.dis.delr.array.max(), self.m.dis.delc.array.max()) ) v = pyemu.geostats.ExpVario(contribution=1.0, a=pp_dist) self.pp_geostruct = pyemu.geostats.GeoStruct( variograms=v, name="pp_geostruct", transform="log" ) pp_df = mlt_df.loc[mlt_df.suffix == self.pp_suffix, :] layers = pp_df.layer.unique() layers.sort() pp_dict = { l: list(pp_df.loc[pp_df.layer == l, "prefix"].unique()) for l in layers } # big assumption here - if prefix is listed more than once, use the lowest layer index pp_dict_sort = {} for i, l in enumerate(layers): p = set(pp_dict[l]) pl = list(p) pl.sort() pp_dict_sort[l] = pl for ll in layers[i + 1 :]: pp = set(pp_dict[ll]) d = list(pp - p) d.sort() pp_dict_sort[ll] = d pp_dict = pp_dict_sort pp_array_file = {p: m for p, m in zip(pp_df.prefix, pp_df.mlt_file)} self.logger.statement("pp_dict: {0}".format(str(pp_dict))) self.log("calling setup_pilot_point_grid()") if self.use_pp_zones: # check if k_zone_dict is a dictionary of dictionaries if np.all([isinstance(v, dict) for v in self.k_zone_dict.values()]): ib = { p.split(".")[-1]: k_dict for p, k_dict in self.k_zone_dict.items() } for attr in pp_df.attr_name.unique(): if attr not in [p.split(".")[-1] for p in ib.keys()]: if "general_zn" not in ib.keys(): warnings.warn( "Dictionary of dictionaries passed as zones, {0} not in keys: {1}. " "Will use ibound for zones".format(attr, ib.keys()), PyemuWarning, ) else: self.logger.statement( "Dictionary of dictionaries passed as pp zones, " "using 'general_zn' for {0}".format(attr) ) if "general_zn" not in ib.keys(): ib["general_zn"] = { k: self.m.bas6.ibound[k].array for k in range(self.m.nlay) } else: ib = {"general_zn": self.k_zone_dict} else: ib = {} for k in range(self.m.nlay): a = self.m.bas6.ibound[k].array.copy() a[a > 0] = 1 ib[k] = a for k, i in ib.items(): if np.any(i < 0): u, c = np.unique(i[i > 0], return_counts=True) counts = dict(zip(u, c)) mx = -1.0e10 imx = None for u, c in counts.items(): if c > mx: mx = c imx = u self.logger.warn( "resetting negative ibound values for PP zone" + "array in layer {0} : {1}".format(k + 1, u) ) i[i < 0] = u ib[k] = i ib = {"general_zn": ib} pp_df = pyemu.pp_utils.setup_pilotpoints_grid( self.m, ibound=ib, use_ibound_zones=self.use_pp_zones, prefix_dict=pp_dict, every_n_cell=self.pp_space, pp_dir=self.m.model_ws, tpl_dir=self.m.model_ws, shapename=os.path.join(self.m.model_ws, "pp.shp"), ) self.logger.statement( "{0} pilot point parameters created".format(pp_df.shape[0]) ) self.logger.statement( "pilot point 'pargp':{0}".format(",".join(pp_df.pargp.unique())) ) self.log("calling setup_pilot_point_grid()") # calc factors for each layer pargp = pp_df.pargp.unique() pp_dfs_k = {} fac_files = {} pp_processed = set() pp_df.loc[:, "fac_file"] = np.NaN for pg in pargp: ks = pp_df.loc[pp_df.pargp == pg, "k"].unique() if len(ks) == 0: self.logger.lraise( "something is wrong in fac calcs for par group {0}".format(pg) ) if len(ks) == 1: if np.all( [isinstance(v, dict) for v in ib.values()] ): # check is dict of dicts if np.any([pg.startswith(p) for p in ib.keys()]): p = next(p for p in ib.keys() if pg.startswith(p)) # get dict relating to parameter prefix ib_k = ib[p][ks[0]] else: p = "general_zn" ib_k = ib[p][ks[0]] else: ib_k = ib[ks[0]] if len(ks) != 1: # TODO # self.logger.lraise("something is wrong in fac calcs for par group {0}".format(pg)) self.logger.warn( "multiple k values for {0},forming composite zone array...".format( pg ) ) ib_k = np.zeros((self.m.nrow, self.m.ncol)) for k in ks: t = ib["general_zn"][k].copy() t[t < 1] = 0 ib_k[t > 0] = t[t > 0] k = int(ks[0]) kattr_id = "{}_{}".format(k, p) kp_id = "{}_{}".format(k, pg) if kp_id not in pp_dfs_k.keys(): self.log("calculating factors for p={0}, k={1}".format(pg, k)) fac_file = os.path.join(self.m.model_ws, "pp_k{0}.fac".format(kattr_id)) var_file = fac_file.replace(".fac", ".var.dat") pp_df_k = pp_df.loc[pp_df.pargp == pg] if kattr_id not in pp_processed: self.logger.statement( "saving krige variance file:{0}".format(var_file) ) self.logger.statement( "saving krige factors file:{0}".format(fac_file) ) ok_pp = pyemu.geostats.OrdinaryKrige(self.pp_geostruct, pp_df_k) ok_pp.calc_factors_grid( self.m.sr, var_filename=var_file, zone_array=ib_k, num_threads=10, ) ok_pp.to_grid_factors_file(fac_file) pp_processed.add(kattr_id) fac_files[kp_id] = fac_file self.log("calculating factors for p={0}, k={1}".format(pg, k)) pp_dfs_k[kp_id] = pp_df_k for kp_id, fac_file in fac_files.items(): k = int(kp_id.split("_")[0]) pp_prefix = kp_id.split("_", 1)[-1] # pp_files = pp_df.pp_filename.unique() fac_file = os.path.split(fac_file)[-1] # pp_prefixes = pp_dict[k] # for pp_prefix in pp_prefixes: self.log("processing pp_prefix:{0}".format(pp_prefix)) if pp_prefix not in pp_array_file.keys(): self.logger.lraise( "{0} not in self.pp_array_file.keys()".format( pp_prefix, ",".join(pp_array_file.keys()) ) ) out_file = os.path.join( self.arr_mlt, os.path.split(pp_array_file[pp_prefix])[-1] ) pp_files = pp_df.loc[ pp_df.pp_filename.apply( lambda x: os.path.split(x)[-1].split(".")[0] == "{0}pp".format(pp_prefix) ), "pp_filename", ] if pp_files.unique().shape[0] != 1: self.logger.lraise( "wrong number of pp_files found:{0}".format(",".join(pp_files)) ) pp_file = os.path.split(pp_files.iloc[0])[-1] pp_df.loc[pp_df.pargp == pp_prefix, "fac_file"] = fac_file pp_df.loc[pp_df.pargp == pp_prefix, "pp_file"] = pp_file pp_df.loc[pp_df.pargp == pp_prefix, "out_file"] = out_file pp_df.loc[:, "pargp"] = pp_df.pargp.apply(lambda x: "pp_{0}".format(x)) out_files = mlt_df.loc[ mlt_df.mlt_file.apply(lambda x: x.endswith(self.pp_suffix)), "mlt_file" ] # mlt_df.loc[:,"fac_file"] = np.NaN # mlt_df.loc[:,"pp_file"] = np.NaN for out_file in out_files: pp_df_pf = pp_df.loc[pp_df.out_file == out_file, :] fac_files = pp_df_pf.fac_file if fac_files.unique().shape[0] != 1: self.logger.lraise( "wrong number of fac files:{0}".format(str(fac_files.unique())) ) fac_file = fac_files.iloc[0] pp_files = pp_df_pf.pp_file if pp_files.unique().shape[0] != 1: self.logger.lraise( "wrong number of pp files:{0}".format(str(pp_files.unique())) ) pp_file = pp_files.iloc[0] mlt_df.loc[mlt_df.mlt_file == out_file, "fac_file"] = fac_file mlt_df.loc[mlt_df.mlt_file == out_file, "pp_file"] = pp_file mlt_df.loc[mlt_df.mlt_file == out_file, "pp_fill_value"] = 1.0 mlt_df.loc[mlt_df.mlt_file == out_file, "pp_lower_limit"] = 1.0e-10 mlt_df.loc[mlt_df.mlt_file == out_file, "pp_upper_limit"] = 1.0e+10 self.par_dfs[self.pp_suffix] = pp_df mlt_df.loc[mlt_df.suffix == self.pp_suffix, "tpl_file"] = np.NaN def _kl_prep(self, mlt_df): """prepare KL based parameterizations""" if len(self.kl_props) == 0: return if self.kl_geostruct is None: self.logger.warn( "kl_geostruct is None," " using ExpVario with contribution=1 and a=(10.0*max(delr,delc))" ) kl_dist = 10.0 * float( max(self.m.dis.delr.array.max(), self.m.dis.delc.array.max()) ) v = pyemu.geostats.ExpVario(contribution=1.0, a=kl_dist) self.kl_geostruct = pyemu.geostats.GeoStruct( variograms=v, name="kl_geostruct", transform="log" ) kl_df = mlt_df.loc[mlt_df.suffix == self.kl_suffix, :] layers = kl_df.layer.unique() # kl_dict = {l:list(kl_df.loc[kl_df.layer==l,"prefix"].unique()) for l in layers} # big assumption here - if prefix is listed more than once, use the lowest layer index # for i,l in enumerate(layers): # p = set(kl_dict[l]) # for ll in layers[i+1:]: # pp = set(kl_dict[ll]) # d = pp - p # kl_dict[ll] = list(d) kl_prefix = list(kl_df.loc[:, "prefix"]) kl_array_file = {p: m for p, m in zip(kl_df.prefix, kl_df.mlt_file)} self.logger.statement("kl_prefix: {0}".format(str(kl_prefix))) fac_file = os.path.join(self.m.model_ws, "kl.fac") self.log("calling kl_setup() with factors file {0}".format(fac_file)) kl_df = kl_setup( self.kl_num_eig, self.m.sr, self.kl_geostruct, kl_prefix, factors_file=fac_file, basis_file=fac_file + ".basis.jcb", tpl_dir=self.m.model_ws, ) self.logger.statement("{0} kl parameters created".format(kl_df.shape[0])) self.logger.statement("kl 'pargp':{0}".format(",".join(kl_df.pargp.unique()))) self.log("calling kl_setup() with factors file {0}".format(fac_file)) kl_mlt_df = mlt_df.loc[mlt_df.suffix == self.kl_suffix] for prefix in kl_df.prefix.unique(): prefix_df = kl_df.loc[kl_df.prefix == prefix, :] in_file = os.path.split(prefix_df.loc[:, "in_file"].iloc[0])[-1] assert prefix in mlt_df.prefix.values, "{0}:{1}".format( prefix, mlt_df.prefix ) mlt_df.loc[mlt_df.prefix == prefix, "pp_file"] = in_file mlt_df.loc[mlt_df.prefix == prefix, "fac_file"] = os.path.split(fac_file)[ -1 ] mlt_df.loc[mlt_df.prefix == prefix, "pp_fill_value"] = 1.0 mlt_df.loc[mlt_df.prefix == prefix, "pp_lower_limit"] = 1.0e-10 mlt_df.loc[mlt_df.prefix == prefix, "pp_upper_limit"] = 1.0e+10 print(kl_mlt_df) mlt_df.loc[mlt_df.suffix == self.kl_suffix, "tpl_file"] = np.NaN self.par_dfs[self.kl_suffix] = kl_df # calc factors for each layer def _setup_array_pars(self): """main entry point for setting up array multipler parameters""" mlt_df = self._prep_mlt_arrays() if mlt_df is None: return mlt_df.loc[:, "tpl_file"] = mlt_df.mlt_file.apply( lambda x: os.path.split(x)[-1] + ".tpl" ) # mlt_df.loc[mlt_df.tpl_file.apply(lambda x:pd.notnull(x.pp_file)),"tpl_file"] = np.NaN mlt_files = mlt_df.mlt_file.unique() # for suffix,tpl_file,layer,name in zip(self.mlt_df.suffix, # self.mlt_df.tpl,self.mlt_df.layer, # self.mlt_df.prefix): par_dfs = {} for mlt_file in mlt_files: suffixes = mlt_df.loc[mlt_df.mlt_file == mlt_file, "suffix"] if suffixes.unique().shape[0] != 1: self.logger.lraise("wrong number of suffixes for {0}".format(mlt_file)) suffix = suffixes.iloc[0] tpl_files = mlt_df.loc[mlt_df.mlt_file == mlt_file, "tpl_file"] if tpl_files.unique().shape[0] != 1: self.logger.lraise("wrong number of tpl_files for {0}".format(mlt_file)) tpl_file = tpl_files.iloc[0] layers = mlt_df.loc[mlt_df.mlt_file == mlt_file, "layer"] # if layers.unique().shape[0] != 1: # self.logger.lraise("wrong number of layers for {0}"\ # .format(mlt_file)) layer = layers.iloc[0] names = mlt_df.loc[mlt_df.mlt_file == mlt_file, "prefix"] if names.unique().shape[0] != 1: self.logger.lraise("wrong number of names for {0}".format(mlt_file)) name = names.iloc[0] attr_names = mlt_df.loc[mlt_df.mlt_file == mlt_file, "attr_name"] if attr_names.unique().shape[0] != 1: self.logger.lraise( "wrong number of attr_names for {0}".format(mlt_file) ) attr_name = attr_names.iloc[0] # ib = self.k_zone_dict[layer] df = None if suffix == self.cn_suffix: self.log("writing const tpl:{0}".format(tpl_file)) # df = self.write_const_tpl(name,tpl_file,self.m.bas6.ibound[layer].array) try: df = write_const_tpl( name, os.path.join(self.m.model_ws, tpl_file), self.cn_suffix, self.m.bas6.ibound[layer].array, (self.m.nrow, self.m.ncol), self.m.sr, ) except Exception as e: self.logger.lraise( "error writing const template: {0}".format(str(e)) ) self.log("writing const tpl:{0}".format(tpl_file)) elif suffix == self.gr_suffix: self.log("writing grid tpl:{0}".format(tpl_file)) # df = self.write_grid_tpl(name,tpl_file,self.m.bas6.ibound[layer].array) try: df = write_grid_tpl( name, os.path.join(self.m.model_ws, tpl_file), self.gr_suffix, self.m.bas6.ibound[layer].array, (self.m.nrow, self.m.ncol), self.m.sr, ) except Exception as e: self.logger.lraise( "error writing grid template: {0}".format(str(e)) ) self.log("writing grid tpl:{0}".format(tpl_file)) elif suffix == self.zn_suffix: self.log("writing zone tpl:{0}".format(tpl_file)) if np.all( [isinstance(v, dict) for v in self.k_zone_dict.values()] ): # check is dict of dicts if attr_name in [p.split(".")[-1] for p in self.k_zone_dict.keys()]: k_zone_dict = next( k_dict for p, k_dict in self.k_zone_dict.items() if p.split(".")[-1] == attr_name ) # get dict relating to parameter prefix else: assert ( "general_zn" in self.k_zone_dict.keys() ), "Neither {0} nor 'general_zn' are in k_zone_dict keys: {1}".format( attr_name, self.k_zone_dict.keys() ) k_zone_dict = self.k_zone_dict["general_zn"] else: k_zone_dict = self.k_zone_dict # df = self.write_zone_tpl(self.m, name, tpl_file, self.k_zone_dict[layer], self.zn_suffix, self.logger) try: df = write_zone_tpl( name, os.path.join(self.m.model_ws, tpl_file), self.zn_suffix, k_zone_dict[layer], (self.m.nrow, self.m.ncol), self.m.sr, ) except Exception as e: self.logger.lraise( "error writing zone template: {0}".format(str(e)) ) self.log("writing zone tpl:{0}".format(tpl_file)) if df is None: continue if suffix not in par_dfs: par_dfs[suffix] = [df] else: par_dfs[suffix].append(df) for suf, dfs in par_dfs.items(): self.par_dfs[suf] = pd.concat(dfs) if self.pp_suffix in mlt_df.suffix.values: self.log("setting up pilot point process") self._pp_prep(mlt_df) self.log("setting up pilot point process") if self.gr_suffix in mlt_df.suffix.values: self.log("setting up grid process") self._grid_prep() self.log("setting up grid process") if self.kl_suffix in mlt_df.suffix.values: self.log("setting up kl process") self._kl_prep(mlt_df) self.log("setting up kl process") mlt_df.to_csv(os.path.join(self.m.model_ws, "arr_pars.csv")) ones = np.ones((self.m.nrow, self.m.ncol)) for mlt_file in mlt_df.mlt_file.unique(): self.log("save test mlt array {0}".format(mlt_file)) np.savetxt(os.path.join(self.m.model_ws, mlt_file), ones, fmt="%15.6E") self.log("save test mlt array {0}".format(mlt_file)) tpl_files = mlt_df.loc[mlt_df.mlt_file == mlt_file, "tpl_file"] if tpl_files.unique().shape[0] != 1: self.logger.lraise("wrong number of tpl_files for {0}".format(mlt_file)) tpl_file = tpl_files.iloc[0] if pd.notnull(tpl_file): self.tpl_files.append(tpl_file) self.in_files.append(mlt_file) # for tpl_file,mlt_file in zip(mlt_df.tpl_file,mlt_df.mlt_file): # if pd.isnull(tpl_file): # continue # self.tpl_files.append(tpl_file) # self.in_files.append(mlt_file) os.chdir(self.m.model_ws) try: apply_array_pars() except Exception as e: os.chdir("..") self.logger.lraise( "error test running apply_array_pars():{0}".format(str(e)) ) os.chdir("..") line = "pyemu.helpers.apply_array_pars()\n" self.logger.statement("forward_run line:{0}".format(line)) self.frun_pre_lines.append(line) def _setup_observations(self): """main entry point for setting up observations""" obs_methods = [ self._setup_water_budget_obs, self._setup_hyd, self._setup_smp, self._setup_hob, self._setup_hds, self._setup_sfr_obs, ] obs_types = [ "mflist water budget obs", "hyd file", "external obs-sim smp files", "hob", "hds", "sfr", ] self.obs_dfs = {} for obs_method, obs_type in zip(obs_methods, obs_types): self.log("processing obs type {0}".format(obs_type)) obs_method() self.log("processing obs type {0}".format(obs_type)) def draw(self, num_reals=100, sigma_range=6, use_specsim=False, scale_offset=True): """draw from the geostatistically-implied parameter covariance matrix Args: num_reals (`int`): number of realizations to generate. Default is 100 sigma_range (`float`): number of standard deviations represented by the parameter bounds. Default is 6. use_specsim (`bool`): flag to use spectral simulation for grid-based parameters. Requires a regular grid but is wicked fast. Default is False scale_offset (`bool`, optional): flag to apply scale and offset to parameter bounds when calculating variances - this is passed through to `pyemu.Cov.from_parameter_data`. Default is True. Note: operates on parameters by groups to avoid having to construct a very large covariance matrix for problems with more the 30K parameters. uses `helpers.geostatitical_draw()` Returns: `pyemu.ParameterEnsemble`: The realized parameter ensemble """ self.log("drawing realizations") struct_dict = {} gr_par_pe = None if self.pp_suffix in self.par_dfs.keys(): pp_df = self.par_dfs[self.pp_suffix] pp_dfs = [] for pargp in pp_df.pargp.unique(): gp_df = pp_df.loc[pp_df.pargp == pargp, :] p_df = gp_df.drop_duplicates(subset="parnme") pp_dfs.append(p_df) # pp_dfs = [pp_df.loc[pp_df.pargp==pargp,:].copy() for pargp in pp_df.pargp.unique()] struct_dict[self.pp_geostruct] = pp_dfs if self.gr_suffix in self.par_dfs.keys(): gr_df = self.par_dfs[self.gr_suffix] if not use_specsim: gr_dfs = [] for pargp in gr_df.pargp.unique(): gp_df = gr_df.loc[gr_df.pargp == pargp, :] p_df = gp_df.drop_duplicates(subset="parnme") gr_dfs.append(p_df) # gr_dfs = [gr_df.loc[gr_df.pargp==pargp,:].copy() for pargp in gr_df.pargp.unique()] struct_dict[self.grid_geostruct] = gr_dfs else: if not pyemu.geostats.SpecSim2d.grid_is_regular( self.m.dis.delr.array, self.m.dis.delc.array ): self.logger.lraise( "draw() error: can't use spectral simulation with irregular grid" ) gr_df.loc[:, "i"] = gr_df.parnme.apply(lambda x: int(x[-6:-3])) gr_df.loc[:, "j"] = gr_df.parnme.apply(lambda x: int(x[-3:])) if gr_df.i.max() > self.m.nrow - 1 or gr_df.i.min() < 0: self.logger.lraise( "draw(): error parsing grid par names for 'i' index" ) if gr_df.j.max() > self.m.ncol - 1 or gr_df.j.min() < 0: self.logger.lraise( "draw(): error parsing grid par names for 'j' index" ) self.log("spectral simulation for grid-scale pars") ss = pyemu.geostats.SpecSim2d( delx=self.m.dis.delr.array, dely=self.m.dis.delc.array, geostruct=self.grid_geostruct, ) gr_par_pe = ss.grid_par_ensemble_helper( pst=self.pst, gr_df=gr_df, num_reals=num_reals, sigma_range=sigma_range, logger=self.logger, ) self.log("spectral simulation for grid-scale pars") if "temporal_list" in self.par_dfs.keys(): bc_df = self.par_dfs["temporal_list"] bc_df.loc[:, "y"] = 0 bc_df.loc[:, "x"] = bc_df.timedelta.apply(lambda x: x.days) bc_dfs = [] for pargp in bc_df.pargp.unique(): gp_df = bc_df.loc[bc_df.pargp == pargp, :] p_df = gp_df.drop_duplicates(subset="parnme") # print(p_df) bc_dfs.append(p_df) # bc_dfs = [bc_df.loc[bc_df.pargp==pargp,:].copy() for pargp in bc_df.pargp.unique()] struct_dict[self.temporal_list_geostruct] = bc_dfs if "spatial_list" in self.par_dfs.keys(): bc_df = self.par_dfs["spatial_list"] bc_dfs = [] for pargp in bc_df.pargp.unique(): gp_df = bc_df.loc[bc_df.pargp == pargp, :] # p_df = gp_df.drop_duplicates(subset="parnme") # print(p_df) bc_dfs.append(gp_df) struct_dict[self.spatial_list_geostruct] = bc_dfs pe = geostatistical_draws( self.pst, struct_dict=struct_dict, num_reals=num_reals, sigma_range=sigma_range, scale_offset=scale_offset, ) if gr_par_pe is not None: pe.loc[:, gr_par_pe.columns] = gr_par_pe.values self.log("drawing realizations") return pe def build_prior( self, fmt="ascii", filename=None, droptol=None, chunk=None, sigma_range=6 ): """build and optionally save the prior parameter covariance matrix. Args: fmt (`str`, optional): the format to save the cov matrix. Options are "ascii","binary","uncfile", "coo". Default is "ascii". If "none" (lower case string, not None), then no file is created. filename (`str`, optional): the filename to save the prior cov matrix to. If None, the name is formed using model nam_file name. Default is None. droptol (`float`, optional): tolerance for dropping near-zero values when writing compressed binary. Default is None. chunk (`int`, optional): chunk size to write in a single pass - for binary only. Default is None (no chunking). sigma_range (`float`): number of standard deviations represented by the parameter bounds. Default is 6. Returns: `pyemu.Cov`: the full prior parameter covariance matrix, generated by processing parameters by groups """ fmt = fmt.lower() acc_fmts = ["ascii", "binary", "uncfile", "none", "coo"] if fmt not in acc_fmts: self.logger.lraise( "unrecognized prior save 'fmt':{0}, options are: {1}".format( fmt, ",".join(acc_fmts) ) ) self.log("building prior covariance matrix") struct_dict = {} if self.pp_suffix in self.par_dfs.keys(): pp_df = self.par_dfs[self.pp_suffix] pp_dfs = [] for pargp in pp_df.pargp.unique(): gp_df = pp_df.loc[pp_df.pargp == pargp, :] p_df = gp_df.drop_duplicates(subset="parnme") pp_dfs.append(p_df) # pp_dfs = [pp_df.loc[pp_df.pargp==pargp,:].copy() for pargp in pp_df.pargp.unique()] struct_dict[self.pp_geostruct] = pp_dfs if self.gr_suffix in self.par_dfs.keys(): gr_df = self.par_dfs[self.gr_suffix] gr_dfs = [] for pargp in gr_df.pargp.unique(): gp_df = gr_df.loc[gr_df.pargp == pargp, :] p_df = gp_df.drop_duplicates(subset="parnme") gr_dfs.append(p_df) # gr_dfs = [gr_df.loc[gr_df.pargp==pargp,:].copy() for pargp in gr_df.pargp.unique()] struct_dict[self.grid_geostruct] = gr_dfs if "temporal_list" in self.par_dfs.keys(): bc_df = self.par_dfs["temporal_list"] bc_df.loc[:, "y"] = 0 bc_df.loc[:, "x"] = bc_df.timedelta.apply(lambda x: x.days) bc_dfs = [] for pargp in bc_df.pargp.unique(): gp_df = bc_df.loc[bc_df.pargp == pargp, :] p_df = gp_df.drop_duplicates(subset="parnme") # print(p_df) bc_dfs.append(p_df) # bc_dfs = [bc_df.loc[bc_df.pargp==pargp,:].copy() for pargp in bc_df.pargp.unique()] struct_dict[self.temporal_list_geostruct] = bc_dfs if "spatial_list" in self.par_dfs.keys(): bc_df = self.par_dfs["spatial_list"] bc_dfs = [] for pargp in bc_df.pargp.unique(): gp_df = bc_df.loc[bc_df.pargp == pargp, :] # p_df = gp_df.drop_duplicates(subset="parnme") # print(p_df) bc_dfs.append(gp_df) struct_dict[self.spatial_list_geostruct] = bc_dfs if "hfb" in self.par_dfs.keys(): if self.spatial_list_geostruct in struct_dict.keys(): struct_dict[self.spatial_list_geostruct].append(self.par_dfs["hfb"]) else: struct_dict[self.spatial_list_geostruct] = [self.par_dfs["hfb"]] if "sfr" in self.par_dfs.keys(): self.logger.warn("geospatial prior not implemented for SFR pars") if len(struct_dict) > 0: cov = pyemu.helpers.geostatistical_prior_builder( self.pst, struct_dict=struct_dict, sigma_range=sigma_range ) else: cov = pyemu.Cov.from_parameter_data(self.pst, sigma_range=sigma_range) if filename is None: filename = os.path.join(self.m.model_ws, self.pst_name + ".prior.cov") if fmt != "none": self.logger.statement( "saving prior covariance matrix to file {0}".format(filename) ) if fmt == "ascii": cov.to_ascii(filename) elif fmt == "binary": cov.to_binary(filename, droptol=droptol, chunk=chunk) elif fmt == "uncfile": cov.to_uncfile(filename) elif fmt == "coo": cov.to_coo(filename, droptol=droptol, chunk=chunk) self.log("building prior covariance matrix") return cov def build_pst(self, filename=None): """build the pest control file using the parameters and observations. Args: filename (`str`): the filename to save the contorl file to. If None, the name if formed from the model namfile name. Default is None. The control is saved in the `PstFromFlopy.m.model_ws` directory. Note: calls pyemu.Pst.from_io_files calls PESTCHEK """ self.logger.statement("changing dir in to {0}".format(self.m.model_ws)) os.chdir(self.m.model_ws) tpl_files = copy.deepcopy(self.tpl_files) in_files = copy.deepcopy(self.in_files) try: files = os.listdir(".") new_tpl_files = [ f for f in files if f.endswith(".tpl") and f not in tpl_files ] new_in_files = [f.replace(".tpl", "") for f in new_tpl_files] tpl_files.extend(new_tpl_files) in_files.extend(new_in_files) ins_files = [f for f in files if f.endswith(".ins")] out_files = [f.replace(".ins", "") for f in ins_files] for tpl_file, in_file in zip(tpl_files, in_files): if tpl_file not in self.tpl_files: self.tpl_files.append(tpl_file) self.in_files.append(in_file) for ins_file, out_file in zip(ins_files, out_files): if ins_file not in self.ins_files: self.ins_files.append(ins_file) self.out_files.append(out_file) self.log("instantiating control file from i/o files") self.logger.statement("tpl files: {0}".format(",".join(self.tpl_files))) self.logger.statement("ins files: {0}".format(",".join(self.ins_files))) pst = pyemu.Pst.from_io_files( tpl_files=self.tpl_files, in_files=self.in_files, ins_files=self.ins_files, out_files=self.out_files, ) self.log("instantiating control file from i/o files") except Exception as e: os.chdir("..") self.logger.lraise("error build Pst:{0}".format(str(e))) os.chdir("..") # more customization here par = pst.parameter_data for name, df in self.par_dfs.items(): if "parnme" not in df.columns: continue df.index = df.parnme for col in par.columns: if col in df.columns: par.loc[df.parnme, col] = df.loc[:, col] par.loc[:, "parubnd"] = 10.0 par.loc[:, "parlbnd"] = 0.1 for name, df in self.par_dfs.items(): if "parnme" not in df: continue df.index = df.parnme for col in ["parubnd", "parlbnd", "pargp"]: if col in df.columns: par.loc[df.index, col] = df.loc[:, col] for tag, [lw, up] in wildass_guess_par_bounds_dict.items(): par.loc[par.parnme.apply(lambda x: x.startswith(tag)), "parubnd"] = up par.loc[par.parnme.apply(lambda x: x.startswith(tag)), "parlbnd"] = lw if self.par_bounds_dict is not None: for tag, [lw, up] in self.par_bounds_dict.items(): par.loc[par.parnme.apply(lambda x: x.startswith(tag)), "parubnd"] = up par.loc[par.parnme.apply(lambda x: x.startswith(tag)), "parlbnd"] = lw obs = pst.observation_data for name, df in self.obs_dfs.items(): if "obsnme" not in df.columns: continue df.index = df.obsnme for col in df.columns: if col in obs.columns: obs.loc[df.obsnme, col] = df.loc[:, col] self.pst_name = self.m.name + ".pst" pst.model_command = ["python forward_run.py"] pst.control_data.noptmax = 0 self.log("writing forward_run.py") self.write_forward_run() self.log("writing forward_run.py") if filename is None: filename = os.path.join(self.m.model_ws, self.pst_name) self.logger.statement("writing pst {0}".format(filename)) pst.write(filename) self.pst = pst self.log("running pestchek on {0}".format(self.pst_name)) os.chdir(self.m.model_ws) try: pyemu.os_utils.run("pestchek {0} >pestchek.stdout".format(self.pst_name)) except Exception as e: self.logger.warn("error running pestchek:{0}".format(str(e))) for line in open("pestchek.stdout"): self.logger.statement("pestcheck:{0}".format(line.strip())) os.chdir("..") self.log("running pestchek on {0}".format(self.pst_name)) def _add_external(self): """add external (existing) template files and/or instruction files to the Pst instance """ if self.external_tpl_in_pairs is not None: if not isinstance(self.external_tpl_in_pairs, list): external_tpl_in_pairs = [self.external_tpl_in_pairs] for tpl_file, in_file in self.external_tpl_in_pairs: if not os.path.exists(tpl_file): self.logger.lraise( "couldn't find external tpl file:{0}".format(tpl_file) ) self.logger.statement("external tpl:{0}".format(tpl_file)) shutil.copy2( tpl_file, os.path.join(self.m.model_ws, os.path.split(tpl_file)[-1]) ) if os.path.exists(in_file): shutil.copy2( in_file, os.path.join(self.m.model_ws, os.path.split(in_file)[-1]), ) if self.external_ins_out_pairs is not None: if not isinstance(self.external_ins_out_pairs, list): external_ins_out_pairs = [self.external_ins_out_pairs] for ins_file, out_file in self.external_ins_out_pairs: if not os.path.exists(ins_file): self.logger.lraise( "couldn't find external ins file:{0}".format(ins_file) ) self.logger.statement("external ins:{0}".format(ins_file)) shutil.copy2( ins_file, os.path.join(self.m.model_ws, os.path.split(ins_file)[-1]) ) if os.path.exists(out_file): shutil.copy2( out_file, os.path.join(self.m.model_ws, os.path.split(out_file)[-1]), ) self.logger.warn( "obs listed in {0} will have values listed in {1}".format( ins_file, out_file ) ) else: self.logger.warn("obs listed in {0} will have generic values") def write_forward_run(self): """write the forward run script forward_run.py Note: This method can be called repeatedly, especially after any changed to the pre- and/or post-processing routines. """ with open(os.path.join(self.m.model_ws, self.forward_run_file), "w") as f: f.write( "import os\nimport multiprocessing as mp\nimport numpy as np" + "\nimport pandas as pd\nimport flopy\n" ) f.write("import pyemu\n") f.write("def main():\n") f.write("\n") s = " " for ex_imp in self.extra_forward_imports: f.write(s + "import {0}\n".format(ex_imp)) for tmp_file in self.tmp_files: f.write(s + "try:\n") f.write(s + " os.remove('{0}')\n".format(tmp_file)) f.write(s + "except Exception as e:\n") f.write( s + " print('error removing tmp file:{0}')\n".format(tmp_file) ) for line in self.frun_pre_lines: f.write(s + line + "\n") for line in self.frun_model_lines: f.write(s + line + "\n") for line in self.frun_post_lines: f.write(s + line + "\n") f.write("\n") f.write("if __name__ == '__main__':\n") f.write(" mp.freeze_support()\n main()\n\n") def _parse_k(self, k, vals): """parse the iterable from a property or boundary condition argument""" try: k = int(k) except: pass else: assert k in vals, "k {0} not in vals".format(k) return [k] if k is None: return vals else: try: k_vals = vals[k] except Exception as e: raise Exception("error slicing vals with {0}:{1}".format(k, str(e))) return k_vals def _parse_pakattr(self, pakattr): """parse package-iterable pairs from a property or boundary condition argument """ raw = pakattr.lower().split(".") if len(raw) != 2: self.logger.lraise("pakattr is wrong:{0}".format(pakattr)) pakname = raw[0] attrname = raw[1] pak = self.m.get_package(pakname) if pak is None: if pakname == "extra": self.logger.statement("'extra' pak detected:{0}".format(pakattr)) ud = flopy.utils.Util3d( self.m, (self.m.nlay, self.m.nrow, self.m.ncol), np.float32, 1.0, attrname, ) return "extra", ud self.logger.lraise("pak {0} not found".format(pakname)) if hasattr(pak, attrname): attr = getattr(pak, attrname) return pak, attr elif hasattr(pak, "stress_period_data"): dtype = pak.stress_period_data.dtype if attrname not in dtype.names: self.logger.lraise( "attr {0} not found in dtype.names for {1}.stress_period_data".format( attrname, pakname ) ) attr = pak.stress_period_data return pak, attr, attrname # elif hasattr(pak,'hfb_data'): # dtype = pak.hfb_data.dtype # if attrname not in dtype.names: # self.logger.lraise('attr {0} not found in dtypes.names for {1}.hfb_data. Thanks for playing.'.\ # format(attrname,pakname)) # attr = pak.hfb_data # return pak, attr, attrname else: self.logger.lraise("unrecognized attr:{0}".format(attrname)) def _setup_list_pars(self): """main entry point for setting up list multiplier parameters """ tdf = self._setup_temporal_list_pars() sdf = self._setup_spatial_list_pars() if tdf is None and sdf is None: return os.chdir(self.m.model_ws) try: apply_list_pars() except Exception as e: os.chdir("..") self.logger.lraise( "error test running apply_list_pars():{0}".format(str(e)) ) os.chdir("..") line = "pyemu.helpers.apply_list_pars()\n" self.logger.statement("forward_run line:{0}".format(line)) self.frun_pre_lines.append(line) def _setup_temporal_list_pars(self): if len(self.temporal_list_props) == 0: return self.log("processing temporal_list_props") bc_filenames = [] bc_cols = [] bc_pak = [] bc_k = [] bc_dtype_names = [] bc_parnme = [] if len(self.temporal_list_props) == 2: if not isinstance(self.temporal_list_props[0], list): self.temporal_list_props = [self.temporal_list_props] for pakattr, k_org in self.temporal_list_props: pak, attr, col = self._parse_pakattr(pakattr) k_parse = self._parse_k(k_org, np.arange(self.m.nper)) c = self._get_count(pakattr) for k in k_parse: bc_filenames.append(self._list_helper(k, pak, attr, col)) bc_cols.append(col) pak_name = pak.name[0].lower() bc_pak.append(pak_name) bc_k.append(k) bc_dtype_names.append(",".join(attr.dtype.names)) bc_parnme.append("{0}{1}_{2:03d}".format(pak_name, col, c)) df = pd.DataFrame( { "filename": bc_filenames, "col": bc_cols, "kper": bc_k, "pak": bc_pak, "dtype_names": bc_dtype_names, "parnme": bc_parnme, } ) tds = pd.to_timedelta(np.cumsum(self.m.dis.perlen.array), unit="d") dts = pd.to_datetime(self.m._start_datetime) + tds df.loc[:, "datetime"] = df.kper.apply(lambda x: dts[x]) df.loc[:, "timedelta"] = df.kper.apply(lambda x: tds[x]) df.loc[:, "val"] = 1.0 # df.loc[:,"kper"] = df.kper.apply(np.int) # df.loc[:,"parnme"] = df.apply(lambda x: "{0}{1}_{2:03d}".format(x.pak,x.col,x.kper),axis=1) df.loc[:, "tpl_str"] = df.parnme.apply(lambda x: "~ {0} ~".format(x)) df.loc[:, "list_org"] = self.list_org df.loc[:, "model_ext_path"] = self.m.external_path df.loc[:, "pargp"] = df.parnme.apply(lambda x: x.split("_")[0]) names = [ "filename", "dtype_names", "list_org", "model_ext_path", "col", "kper", "pak", "val", ] df.loc[:, names].to_csv( os.path.join(self.m.model_ws, "temporal_list_pars.dat"), sep=" " ) df.loc[:, "val"] = df.tpl_str tpl_name = os.path.join(self.m.model_ws, "temporal_list_pars.dat.tpl") # f_tpl = open(tpl_name,'w') # f_tpl.write("ptf ~\n") # f_tpl.flush() # df.loc[:,names].to_csv(f_tpl,sep=' ',quotechar=' ') # f_tpl.write("index ") # f_tpl.write(df.loc[:,names].to_string(index_names=True)) # f_tpl.close() _write_df_tpl( tpl_name, df.loc[:, names], sep=" ", index_label="index", quotechar=" " ) self.par_dfs["temporal_list"] = df self.log("processing temporal_list_props") return True def _setup_spatial_list_pars(self): if len(self.spatial_list_props) == 0: return self.log("processing spatial_list_props") bc_filenames = [] bc_cols = [] bc_pak = [] bc_k = [] bc_dtype_names = [] bc_parnme = [] if len(self.spatial_list_props) == 2: if not isinstance(self.spatial_list_props[0], list): self.spatial_list_props = [self.spatial_list_props] for pakattr, k_org in self.spatial_list_props: pak, attr, col = self._parse_pakattr(pakattr) k_parse = self._parse_k(k_org, np.arange(self.m.nlay)) if len(k_parse) > 1: self.logger.lraise( "spatial_list_pars error: each set of spatial list pars can only be applied " + "to a single layer (e.g. [wel.flux,0].\n" + "You passed [{0},{1}], implying broadcasting to layers {2}".format( pakattr, k_org, k_parse ) ) # # horrible special case for HFB since it cannot vary over time # if type(pak) != flopy.modflow.mfhfb.ModflowHfb: for k in range(self.m.nper): bc_filenames.append(self._list_helper(k, pak, attr, col)) bc_cols.append(col) pak_name = pak.name[0].lower() bc_pak.append(pak_name) bc_k.append(k_parse[0]) bc_dtype_names.append(",".join(attr.dtype.names)) info_df = pd.DataFrame( { "filename": bc_filenames, "col": bc_cols, "k": bc_k, "pak": bc_pak, "dtype_names": bc_dtype_names, } ) info_df.loc[:, "list_mlt"] = self.list_mlt info_df.loc[:, "list_org"] = self.list_org info_df.loc[:, "model_ext_path"] = self.m.external_path # check that all files for a given package have the same number of entries info_df.loc[:, "itmp"] = np.NaN pak_dfs = {} for pak in info_df.pak.unique(): df_pak = info_df.loc[info_df.pak == pak, :] itmp = [] for filename in df_pak.filename: names = df_pak.dtype_names.iloc[0].split(",") # mif pak != 'hfb6': fdf = pd.read_csv( os.path.join(self.m.model_ws, filename), delim_whitespace=True, header=None, names=names, ) for c in ["k", "i", "j"]: fdf.loc[:, c] -= 1 # else: # # need to navigate the HFB file to skip both comments and header line # skiprows = sum( # [1 if i.strip().startswith('#') else 0 # for i in open(os.path.join(self.m.model_ws, filename), 'r').readlines()]) + 1 # fdf = pd.read_csv(os.path.join(self.m.model_ws, filename), # delim_whitespace=True, header=None, names=names, skiprows=skiprows ).dropna() # # for c in ['k', 'irow1','icol1','irow2','icol2']: # fdf.loc[:, c] -= 1 itmp.append(fdf.shape[0]) pak_dfs[pak] = fdf info_df.loc[info_df.pak == pak, "itmp"] = itmp if np.unique(np.array(itmp)).shape[0] != 1: info_df.to_csv("spatial_list_trouble.csv") self.logger.lraise( "spatial_list_pars() error: must have same number of " + "entries for every stress period for {0}".format(pak) ) # make the pak dfs have unique model indices for pak, df in pak_dfs.items(): # if pak != 'hfb6': df.loc[:, "idx"] = df.apply( lambda x: "{0:02.0f}{1:04.0f}{2:04.0f}".format(x.k, x.i, x.j), axis=1 ) # else: # df.loc[:, "idx"] = df.apply(lambda x: "{0:02.0f}{1:04.0f}{2:04.0f}{2:04.0f}{2:04.0f}".format(x.k, x.irow1, x.icol1, # x.irow2, x.icol2), axis=1) if df.idx.unique().shape[0] != df.shape[0]: self.logger.warn( "duplicate entries in list pak {0}...collapsing".format(pak) ) df.drop_duplicates(subset="idx", inplace=True) df.index = df.idx pak_dfs[pak] = df # write template files - find which cols are parameterized... par_dfs = [] for pak, df in pak_dfs.items(): pak_df = info_df.loc[info_df.pak == pak, :] # reset all non-index cols to 1.0 for col in df.columns: if col not in [ "k", "i", "j", "inode", "irow1", "icol1", "irow2", "icol2", ]: df.loc[:, col] = 1.0 in_file = os.path.join(self.list_mlt, pak + ".csv") tpl_file = os.path.join(pak + ".csv.tpl") # save an all "ones" mult df for testing df.to_csv(os.path.join(self.m.model_ws, in_file), sep=" ") parnme, pargp = [], [] # if pak != 'hfb6': x = df.apply( lambda x: self.m.sr.xcentergrid[int(x.i), int(x.j)], axis=1 ).values y = df.apply( lambda x: self.m.sr.ycentergrid[int(x.i), int(x.j)], axis=1 ).values # else: # # note -- for HFB6, only row and col for node 1 # x = df.apply(lambda x: self.m.sr.xcentergrid[int(x.irow1),int(x.icol1)],axis=1).values # y = df.apply(lambda x: self.m.sr.ycentergrid[int(x.irow1),int(x.icol1)],axis=1).values for col in pak_df.col.unique(): col_df = pak_df.loc[pak_df.col == col] k_vals = col_df.k.unique() npar = col_df.k.apply(lambda x: x in k_vals).shape[0] if npar == 0: continue names = df.index.map(lambda x: "{0}{1}{2}".format(pak[0], col[0], x)) df.loc[:, col] = names.map(lambda x: "~ {0} ~".format(x)) df.loc[df.k.apply(lambda x: x not in k_vals), col] = 1.0 par_df = pd.DataFrame( {"parnme": names, "x": x, "y": y, "k": df.k.values}, index=names ) par_df = par_df.loc[par_df.k.apply(lambda x: x in k_vals)] if par_df.shape[0] == 0: self.logger.lraise( "no parameters found for spatial list k,pak,attr {0}, {1}, {2}".format( k_vals, pak, col ) ) par_df.loc[:, "pargp"] = df.k.apply( lambda x: "{0}{1}_k{2:02.0f}".format(pak, col, int(x)) ).values par_df.loc[:, "tpl_file"] = tpl_file par_df.loc[:, "in_file"] = in_file par_dfs.append(par_df) # with open(os.path.join(self.m.model_ws,tpl_file),'w') as f: # f.write("ptf ~\n") # f.flush() # df.to_csv(f) # f.write("index ") # f.write(df.to_string(index_names=False)+'\n') _write_df_tpl( os.path.join(self.m.model_ws, tpl_file), df, sep=" ", quotechar=" ", index_label="index", ) self.tpl_files.append(tpl_file) self.in_files.append(in_file) par_df = pd.concat(par_dfs) self.par_dfs["spatial_list"] = par_df info_df.to_csv(os.path.join(self.m.model_ws, "spatial_list_pars.dat"), sep=" ") self.log("processing spatial_list_props") return True def _list_helper(self, k, pak, attr, col): """helper to setup list multiplier parameters for a given k, pak, attr set. """ # special case for horrible HFB6 exception # if type(pak) == flopy.modflow.mfhfb.ModflowHfb: # filename = pak.file_name[0] # else: filename = attr.get_filename(k) filename_model = os.path.join(self.m.external_path, filename) shutil.copy2( os.path.join(self.m.model_ws, filename_model), os.path.join(self.m.model_ws, self.list_org, filename), ) return filename_model def _setup_hds(self): """setup modflow head save file observations for given kper (zero-based stress period index) and k (zero-based layer index) pairs using the kperk argument. """ if self.hds_kperk is None or len(self.hds_kperk) == 0: return from .gw_utils import setup_hds_obs # if len(self.hds_kperk) == 2: # try: # if len(self.hds_kperk[0] == 2): # pass # except: # self.hds_kperk = [self.hds_kperk] oc = self.m.get_package("OC") if oc is None: raise Exception("can't find OC package in model to setup hds grid obs") if not oc.savehead: raise Exception("OC not saving hds, can't setup grid obs") hds_unit = oc.iuhead hds_file = self.m.get_output(unit=hds_unit) assert os.path.exists( os.path.join(self.org_model_ws, hds_file) ), "couldn't find existing hds file {0} in org_model_ws".format(hds_file) shutil.copy2( os.path.join(self.org_model_ws, hds_file), os.path.join(self.m.model_ws, hds_file), ) inact = None if self.m.lpf is not None: inact = self.m.lpf.hdry elif self.m.upw is not None: inact = self.m.upw.hdry if inact is None: skip = lambda x: np.NaN if x == self.m.bas6.hnoflo else x else: skip = lambda x: np.NaN if x == self.m.bas6.hnoflo or x == inact else x print(self.hds_kperk) frun_line, df = setup_hds_obs( os.path.join(self.m.model_ws, hds_file), kperk_pairs=self.hds_kperk, skip=skip, ) self.obs_dfs["hds"] = df self.frun_post_lines.append( "pyemu.gw_utils.apply_hds_obs('{0}')".format(hds_file) ) self.tmp_files.append(hds_file) def _setup_smp(self): """setup observations from PEST-style SMP file pairs""" if self.obssim_smp_pairs is None: return if len(self.obssim_smp_pairs) == 2: if isinstance(self.obssim_smp_pairs[0], str): self.obssim_smp_pairs = [self.obssim_smp_pairs] for obs_smp, sim_smp in self.obssim_smp_pairs: self.log("processing {0} and {1} smp files".format(obs_smp, sim_smp)) if not os.path.exists(obs_smp): self.logger.lraise("couldn't find obs smp: {0}".format(obs_smp)) if not os.path.exists(sim_smp): self.logger.lraise("couldn't find sim smp: {0}".format(sim_smp)) new_obs_smp = os.path.join(self.m.model_ws, os.path.split(obs_smp)[-1]) shutil.copy2(obs_smp, new_obs_smp) new_sim_smp = os.path.join(self.m.model_ws, os.path.split(sim_smp)[-1]) shutil.copy2(sim_smp, new_sim_smp) pyemu.smp_utils.smp_to_ins(new_sim_smp) def _setup_hob(self): """setup observations from the MODFLOW HOB package""" if self.m.hob is None: return hob_out_unit = self.m.hob.iuhobsv new_hob_out_fname = os.path.join( self.m.model_ws, self.m.get_output_attribute(unit=hob_out_unit) ) org_hob_out_fname = os.path.join( self.org_model_ws, self.m.get_output_attribute(unit=hob_out_unit) ) if not os.path.exists(org_hob_out_fname): self.logger.warn( "could not find hob out file: {0}...skipping".format(hob_out_fname) ) return shutil.copy2(org_hob_out_fname, new_hob_out_fname) hob_df = pyemu.gw_utils.modflow_hob_to_instruction_file(new_hob_out_fname) self.obs_dfs["hob"] = hob_df self.tmp_files.append(os.path.split(hob_out_fname)) def _setup_hyd(self): """setup observations from the MODFLOW HYDMOD package""" if self.m.hyd is None: return if self.mfhyd: org_hyd_out = os.path.join(self.org_model_ws, self.m.name + ".hyd.bin") if not os.path.exists(org_hyd_out): self.logger.warn( "can't find existing hyd out file:{0}...skipping".format( org_hyd_out ) ) return new_hyd_out = os.path.join(self.m.model_ws, os.path.split(org_hyd_out)[-1]) shutil.copy2(org_hyd_out, new_hyd_out) df = pyemu.gw_utils.modflow_hydmod_to_instruction_file(new_hyd_out) df.loc[:, "obgnme"] = df.obsnme.apply(lambda x: "_".join(x.split("_")[:-1])) line = "pyemu.gw_utils.modflow_read_hydmod_file('{0}')".format( os.path.split(new_hyd_out)[-1] ) self.logger.statement("forward_run line: {0}".format(line)) self.frun_post_lines.append(line) self.obs_dfs["hyd"] = df self.tmp_files.append(os.path.split(new_hyd_out)[-1]) def _setup_water_budget_obs(self): """setup observations from the MODFLOW list file for volume and flux water buget information """ if self.mflist_waterbudget: org_listfile = os.path.join(self.org_model_ws, self.m.lst.file_name[0]) if os.path.exists(org_listfile): shutil.copy2( org_listfile, os.path.join(self.m.model_ws, self.m.lst.file_name[0]) ) else: self.logger.warn( "can't find existing list file:{0}...skipping".format(org_listfile) ) return list_file = os.path.join(self.m.model_ws, self.m.lst.file_name[0]) flx_file = os.path.join(self.m.model_ws, "flux.dat") vol_file = os.path.join(self.m.model_ws, "vol.dat") df = pyemu.gw_utils.setup_mflist_budget_obs( list_file, flx_filename=flx_file, vol_filename=vol_file, start_datetime=self.m.start_datetime, ) if df is not None: self.obs_dfs["wb"] = df # line = "try:\n os.remove('{0}')\nexcept:\n pass".format(os.path.split(list_file)[-1]) # self.logger.statement("forward_run line:{0}".format(line)) # self.frun_pre_lines.append(line) self.tmp_files.append(os.path.split(list_file)[-1]) line = "pyemu.gw_utils.apply_mflist_budget_obs('{0}',flx_filename='{1}',vol_filename='{2}',start_datetime='{3}')".format( os.path.split(list_file)[-1], os.path.split(flx_file)[-1], os.path.split(vol_file)[-1], self.m.start_datetime, ) self.logger.statement("forward_run line:{0}".format(line)) self.frun_post_lines.append(line) def apply_list_and_array_pars(arr_par_file="mult2model_info.csv", chunk_len=50): """Apply multiplier parameters to list and array style model files Args: arr_par_file (str): chunk_len (`int`): the number of files to process per multiprocessing chunk in appl_array_pars(). default is 50. Returns: Note: Used to implement the parameterization constructed by PstFrom during a forward run Should be added to the forward_run.py script """ df = pd.read_csv(arr_par_file, index_col=0) arr_pars = df.loc[df.index_cols.isna()].copy() list_pars = df.loc[df.index_cols.notna()].copy() # extract lists from string in input df list_pars["index_cols"] = list_pars.index_cols.apply(lambda x: literal_eval(x)) list_pars["use_cols"] = list_pars.use_cols.apply(lambda x: literal_eval(x)) list_pars["lower_bound"] = list_pars.lower_bound.apply(lambda x: literal_eval(x)) list_pars["upper_bound"] = list_pars.upper_bound.apply(lambda x: literal_eval(x)) # TODO check use_cols is always present apply_genericlist_pars(list_pars, chunk_len=chunk_len) apply_array_pars(arr_pars, chunk_len=chunk_len) def _process_chunk_fac2real(chunk, i): for args in chunk: pyemu.geostats.fac2real(**args) print("process", i, " processed ", len(chunk), "fac2real calls") def _process_chunk_array_files(chunk, i, df): for model_file in chunk: _process_array_file(model_file, df) print("process", i, " processed ", len(chunk), "process_array_file calls") def _process_array_file(model_file, df): # find all mults that need to be applied to this array df_mf = df.loc[df.model_file == model_file, :] results = [] org_file = df_mf.org_file.unique() if org_file.shape[0] != 1: raise Exception("wrong number of org_files for {0}".format(model_file)) org_arr = np.loadtxt(org_file[0]) if "mlt_file" in df_mf.columns: for mlt in df_mf.mlt_file: if pd.isna(mlt): continue mlt_data = np.loadtxt(mlt) if org_arr.shape != mlt_data.shape: raise Exception( "shape of org file {}:{} differs from mlt file {}:{}".format( org_file, org_arr.shape, mlt, mlt_data.shape ) ) org_arr *= np.loadtxt(mlt) if "upper_bound" in df.columns: ub_vals = df_mf.upper_bound.value_counts().dropna().to_dict() if len(ub_vals) == 0: pass elif len(ub_vals) > 1: print(ub_vals) raise Exception("different upper bound values for {0}".format(org_file)) else: ub = float(list(ub_vals.keys())[0]) org_arr[org_arr > ub] = ub if "lower_bound" in df.columns: lb_vals = df_mf.lower_bound.value_counts().dropna().to_dict() if len(lb_vals) == 0: pass elif len(lb_vals) > 1: raise Exception("different lower bound values for {0}".format(org_file)) else: lb = float(list(lb_vals.keys())[0]) org_arr[org_arr < lb] = lb np.savetxt(model_file, np.atleast_2d(org_arr), fmt="%15.6E", delimiter="") def apply_array_pars(arr_par="arr_pars.csv", arr_par_file=None, chunk_len=50): """a function to apply array-based multipler parameters. Args: arr_par (`str` or `pandas.DataFrame`): if type `str`, path to csv file detailing parameter array multipliers. This file can be written by PstFromFlopy. if type `pandas.DataFrame` is Dataframe with columns of ['mlt_file', 'model_file', 'org_file'] and optionally ['pp_file', 'fac_file']. chunk_len (`int`) : the number of files to process per chunk with multiprocessing - applies to both fac2real and process_ input_files. Default is 50. Note: Used to implement the parameterization constructed by PstFromFlopyModel during a forward run This function should be added to the forward_run.py script but can be called on any correctly formatted csv This function using multiprocessing, spawning one process for each model input array (and optionally pp files). This speeds up execution time considerably but means you need to make sure your forward run script uses the proper multiprocessing idioms for freeze support and main thread handling. """ if arr_par_file is not None: warnings.warn( "`arr_par_file` argument is deprecated and replaced " "by arr_par. Method now support passing DataFrame as " "arr_par arg.", PyemuWarning, ) arr_par = arr_par_file if isinstance(arr_par, str): df = pd.read_csv(arr_par, index_col=0) elif isinstance(arr_par, pd.DataFrame): df = arr_par else: raise TypeError( "`arr_par` argument must be filename string or " "Pandas DataFrame, " "type {0} passed".format(type(arr_par)) ) # for fname in df.model_file: # try: # os.remove(fname) # except: # print("error removing mult array:{0}".format(fname)) if "pp_file" in df.columns: print("starting fac2real", datetime.now()) pp_df = df.loc[df.pp_file.notna(), ["pp_file", "fac_file", "mlt_file", "pp_fill_value","pp_lower_limit","pp_upper_limit"]].rename( columns={"fac_file": "factors_file", "mlt_file": "out_file", "pp_fill_value":"fill_value","pp_lower_limit":"lower_lim","pp_upper_limit":"upper_lim"} ) # don't need to process all (e.g. if const. mults apply across kper...) pp_args = pp_df.drop_duplicates().to_dict("records") num_ppargs = len(pp_args) num_chunk_floor = num_ppargs // chunk_len main_chunks = ( np.array(pp_args)[: num_chunk_floor * chunk_len] .reshape([-1, chunk_len]) .tolist() ) remainder = np.array(pp_args)[num_chunk_floor * chunk_len :].tolist() chunks = main_chunks + [remainder] print("number of chunks to process:",len(chunks)) if len(chunks) == 1: _process_chunk_fac2real(chunks[0], 0) else: pool = mp.Pool() x = [ pool.apply_async(_process_chunk_fac2real, args=(chunk, i)) for i, chunk in enumerate(chunks) ] [xx.get() for xx in x] pool.close() pool.join() # procs = [] # for chunk in chunks: # p = mp.Process(target=_process_chunk_fac2real, args=[chunk]) # p.start() # procs.append(p) # for p in procs: # p.join() print("finished fac2real", datetime.now()) print("starting arr mlt", datetime.now()) uniq = df.model_file.unique() # unique model input files to be produced num_uniq = len(uniq) # number of input files to be produced # number of files to send to each processor # lazy plitting the files to be processed into even chunks num_chunk_floor = num_uniq // chunk_len # number of whole chunks main_chunks = ( uniq[: num_chunk_floor * chunk_len].reshape([-1, chunk_len]).tolist() ) # the list of files broken down into chunks remainder = uniq[num_chunk_floor * chunk_len :].tolist() # remaining files chunks = main_chunks + [remainder] print("number of chunks to process:", len(chunks)) if len(chunks) == 1: _process_chunk_array_files(chunks[0],0,df) # procs = [] # for chunk in chunks: # now only spawn processor for each chunk # p = mp.Process(target=_process_chunk_model_files, args=[chunk, df]) # p.start() # procs.append(p) # for p in procs: # r = p.get(False) # p.join() else: pool = mp.Pool() x = [ pool.apply_async(_process_chunk_array_files, args=(chunk, i, df)) for i, chunk in enumerate(chunks) ] [xx.get() for xx in x] pool.close() pool.join() print("finished arr mlt", datetime.now()) def apply_list_pars(): """a function to apply boundary condition multiplier parameters. Note: Used to implement the parameterization constructed by PstFromFlopyModel during a forward run Requires either "temporal_list_pars.csv" or "spatial_list_pars.csv" Should be added to the forward_run.py script """ temp_file = "temporal_list_pars.dat" spat_file = "spatial_list_pars.dat" temp_df, spat_df = None, None if os.path.exists(temp_file): temp_df = pd.read_csv(temp_file, delim_whitespace=True) temp_df.loc[:, "split_filename"] = temp_df.filename.apply( lambda x: os.path.split(x)[-1] ) org_dir = temp_df.list_org.iloc[0] model_ext_path = temp_df.model_ext_path.iloc[0] if os.path.exists(spat_file): spat_df = pd.read_csv(spat_file, delim_whitespace=True) spat_df.loc[:, "split_filename"] = spat_df.filename.apply( lambda x: os.path.split(x)[-1] ) mlt_dir = spat_df.list_mlt.iloc[0] org_dir = spat_df.list_org.iloc[0] model_ext_path = spat_df.model_ext_path.iloc[0] if temp_df is None and spat_df is None: raise Exception("apply_list_pars() - no key dfs found, nothing to do...") # load the spatial mult dfs sp_mlts = {} if spat_df is not None: for f in os.listdir(mlt_dir): pak = f.split(".")[0].lower() df = pd.read_csv( os.path.join(mlt_dir, f), index_col=0, delim_whitespace=True ) # if pak != 'hfb6': df.index = df.apply( lambda x: "{0:02.0f}{1:04.0f}{2:04.0f}".format(x.k, x.i, x.j), axis=1 ) # else: # df.index = df.apply(lambda x: "{0:02.0f}{1:04.0f}{2:04.0f}{2:04.0f}{2:04.0f}".format(x.k, x.irow1, x.icol1, # x.irow2, x.icol2), axis = 1) if pak in sp_mlts.keys(): raise Exception("duplicate multiplier csv for pak {0}".format(pak)) if df.shape[0] == 0: raise Exception("empty dataframe for spatial list file: {0}".format(f)) sp_mlts[pak] = df org_files = os.listdir(org_dir) # for fname in df.filename.unique(): for fname in org_files: # need to get the PAK name to handle stupid horrible expceptions for HFB... # try: # pakspat = sum([True if fname in i else False for i in spat_df.filename]) # if pakspat: # pak = spat_df.loc[spat_df.filename.str.contains(fname)].pak.values[0] # else: # pak = 'notHFB' # except: # pak = "notHFB" names = None if temp_df is not None and fname in temp_df.split_filename.values: temp_df_fname = temp_df.loc[temp_df.split_filename == fname, :] if temp_df_fname.shape[0] > 0: names = temp_df_fname.dtype_names.iloc[0].split(",") if spat_df is not None and fname in spat_df.split_filename.values: spat_df_fname = spat_df.loc[spat_df.split_filename == fname, :] if spat_df_fname.shape[0] > 0: names = spat_df_fname.dtype_names.iloc[0].split(",") if names is not None: df_list = pd.read_csv( os.path.join(org_dir, fname), delim_whitespace=True, header=None, names=names, ) df_list.loc[:, "idx"] = df_list.apply( lambda x: "{0:02.0f}{1:04.0f}{2:04.0f}".format( x.k - 1, x.i - 1, x.j - 1 ), axis=1, ) df_list.index = df_list.idx pak_name = fname.split("_")[0].lower() if pak_name in sp_mlts: mlt_df = sp_mlts[pak_name] mlt_df_ri = mlt_df.reindex(df_list.index) for col in df_list.columns: if col in [ "k", "i", "j", "inode", "irow1", "icol1", "irow2", "icol2", "idx", ]: continue if col in mlt_df.columns: # print(mlt_df.loc[mlt_df.index.duplicated(),:]) # print(df_list.loc[df_list.index.duplicated(),:]) df_list.loc[:, col] *= mlt_df_ri.loc[:, col].values if temp_df is not None and fname in temp_df.split_filename.values: temp_df_fname = temp_df.loc[temp_df.split_filename == fname, :] for col, val in zip(temp_df_fname.col, temp_df_fname.val): df_list.loc[:, col] *= val fmts = "" for name in names: if name in ["i", "j", "k", "inode", "irow1", "icol1", "irow2", "icol2"]: fmts += " %9d" else: fmts += " %9G" np.savetxt( os.path.join(model_ext_path, fname), df_list.loc[:, names].values, fmt=fmts ) def calc_array_par_summary_stats(arr_par_file="mult2model_info.csv"): """read and generate summary statistics for the resulting model input arrays from applying array par multipliers Args: arr_par_file (`str`): the array multiplier key file Returns: pd.DataFrame: dataframe of summary stats for each model_file entry Note: this function uses an optional "zone_file" column. If multiple zones files are used, then zone arrays are aggregated to a single array "dif" values are original array values minus model input array values """ df = pd.read_csv(arr_par_file, index_col=0) df = df.loc[df.index_cols.isna(),:].copy() if df.shape[0] == 0: return None model_input_files = df.model_file.unique() model_input_files.sort() records = dict() stat_dict = {"mean":np.nanmean,"stdev":np.nanstd,"median":np.nanmedian,"min":np.nanmin,"max":np.nanmax} quantiles = [0.05,0.25,0.75,0.95] for stat in stat_dict.keys(): records[stat] = [] records[stat+"_org"] = [] records[stat + "_dif"] = [] for q in quantiles: records["quantile_{0}".format(q)] = [] records["quantile_{0}_org".format(q)] = [] records["quantile_{0}_dif".format(q)] = [] records["upper_bound"] = [] records["lower_bound"] = [] records["upper_bound_org"] = [] records["lower_bound_org"] = [] records["upper_bound_dif"] = [] records["lower_bound_dif"] = [] for model_input_file in model_input_files: arr = np.loadtxt(model_input_file) org_file = df.loc[df.model_file==model_input_file,"org_file"].values org_file = org_file[0] org_arr = np.loadtxt(org_file) if "zone_file" in df.columns: zone_file = df.loc[df.model_file == model_input_file,"zone_file"].dropna().unique() if len(zone_file) > 1: zone_arr = np.zeros_like(arr) for zf in zone_file: za = np.loadtxt(zf) zone_arr[za!=0] = 1 else: zone_arr = np.loadtxt(zone_file[0]) arr[zone_arr==0] = np.NaN org_arr[zone_arr==0] = np.NaN for stat,func in stat_dict.items(): v = func(arr) records[stat].append(v) ov = func(org_arr) records[stat+"_org"].append(ov) records[stat+"_dif"].append(ov-v) for q in quantiles: v = np.nanquantile(arr,q) ov = np.nanquantile(org_arr,q) records["quantile_{0}".format(q)].append(v) records["quantile_{0}_org".format(q)].append(ov) records["quantile_{0}_dif".format(q)].append(ov-v) ub = df.loc[df.model_file==model_input_file,"upper_bound"].max() lb = df.loc[df.model_file == model_input_file, "lower_bound"].min() if
pd.isna(ub)
pandas.isna
#!/usr/bin/env python3 """ Author: <NAME> Load data, extract feature set, train model with feature set, make predictions. usage: ./predict-tm.py -d [Pfam expression profiles] -t [MMETSP training data] -l [Training labels] -o [Output path and file name for results] -f [Feature set] -use-rf [make predictions with random forest model] """ import pandas as pd import numpy as np import warnings import argparse from sklearn.preprocessing import MinMaxScaler from xgboost import XGBClassifier from sklearn.ensemble import RandomForestClassifier parser = argparse.ArgumentParser() parser.add_argument('-d', action='store', dest='data', help="Path to pfam expression profiles for classification.") parser.add_argument('-t', action='store', dest='train', help='Path to MMETSP training data.') parser.add_argument('-f', action='store', dest='feat', help="Path to feature set file.") parser.add_argument('-l', action='store', dest='labels', help="Path to training labels file.") parser.add_argument('-o', action='store', dest='out', help="Results destination.") parser.add_argument('-use-rf', action='store', dest='rf', type=bool, default=False, help="Use the random forest model for classification. [Not recommended]") # Define a warning just to be a bit more specific. class DataFormatWarning(Warning): pass class PfamLoader(): # Initialize the class with the path to profiles you want to classify, the path to the MMETSP training dataset, # and the list of features (common, all selected features). def __init__(self, data, train_data, train_labels, features): self.pfam_path = data self.train_path = train_data self.feat_path = features self.labels_path = train_labels def load_pfam_profiles(self): d = pd.read_csv(self.pfam_path) # A common part of pfam annotation leaves you with pfam ids that have decimal + number. We want to # get rid of those! _cols = [col for col in d.columns if '.' in col] if len(_cols) != 0: d.columns = d.columns.str.split(".").str[0] # Run simple checks on the data content. We want more than 800 non-zero pfams. # Very simple check. if d.shape[1] < 800: warnings.warn("Pfam profiles have less than the suggested 800 non-zero columns.", DataFormatWarning) # After the simple check passes, its possible that some rows still have less than 800 non-zero elements. counts = list(d.astype(bool).sum(axis=1)) if min(counts) < 800: warnings.warn("Pfam profiles have less than the suggested 800 non-zero columns.", DataFormatWarning) self.pfam_data = d def get_subset_profiles(self): feats = pd.read_csv(self.feat_path) train =
pd.read_csv(self.train_path)
pandas.read_csv
import argparse from collections import defaultdict from multiprocessing import Queue, Process import os import random import numpy as np import pandas as pd import torch from data_model.simple_continuous_model import SimpleContinuousModel from direct_method.simple_direct import SimpleDirectModel from direct_method.two_stage_direct import TwoStageDirectModel from evaluation.estimate_policy_value import estimate_policy_value from evaluation.estimate_policy_value_direct import \ get_mu_t_direct_train_test, get_dr_policy_value from utils.hide_output import HideOutput from weights_learning.quadprog_learning_x_continuous import \ BalancedWeightsLearningContinuousQuadprogX from weights_learning.quadprog_learning_z_continuous import \ BalancedWeightsLearningContinuousQuadprog def y_activation_cubic(y): return y ** 3 def y_activation_sign(y): return 3 * np.sign(1.0 * y) def y_activation_exp(y): return np.exp(1.0 * y) def toy_continuous_policy(x, t): # score = (x * np.array([-1, 1, -1, 2])).sum() / 10 score = (x * np.array([-1, 2, 2, -1, -1, -1, 1, 1, 1, -1])).sum() * 0.1 zero_probability = np.exp(score) / (np.exp(score) + np.exp(-score)) if t == 0: return zero_probability else: return 1 - zero_probability def main(): parser = argparse.ArgumentParser() parser.add_argument("-r", "--random_seed", default=527, type=int, help="initial random seed of first process " "(i'th process starts with seed random_seed+i)") parser.add_argument("-l", "--link_function", default="step", help="link function to use with data model (available" " options are: step, exp, cubic, linear)", type=str) parser.add_argument("-n", "--num_reps", default=64, type=int, help="number of repetitions") parser.add_argument("-p", "--num_procs", default=1, type=int, help="number of parallel processes") parser.add_argument("-d", "--num_data_range", default="2000,1000,500,200", help="range of num data values") parser.add_argument("-m", "--sigma_mul_range", default="0.001,0.2,1.0,5.0", help="range of sigma matrix multipliers to test") parser.add_argument("save_path", help="path to save results '.csv' file to") # parser.add_argument() args = parser.parse_args() num_treatment = 2 if args.link_function == "step": y_activation = y_activation_sign elif args.link_function == "exp": y_activation = y_activation_exp elif args.link_function == "cubic": y_activation = y_activation_cubic elif args.link_function == "linear": y_activation = None else: raise ValueError("Invalid link activation:", args.link_function) data_model_class = SimpleContinuousModel data_model_args = {"y_activation": y_activation} kernel = "rbf" policy = toy_continuous_policy num_data_policy_estimate = 1000000 # num_data_range = (2000, 1000, 500, 200) num_data_range = tuple([int(n) for n in args.num_data_range.split(",")]) sigma_mul_range = tuple([float(n) for n in args.sigma_mul_range.split(",")]) save_path = args.save_path save_dir = os.path.dirname(save_path) if save_dir: os.makedirs(save_dir, exist_ok=True) job_queue = Queue() results_queue = Queue() num_jobs = 0 for num_data in num_data_range: for rep in range(args.num_reps): num_jobs += 1 job_queue.put((num_data, rep)) procs = [] for p_i in range(args.num_procs): job_queue.put("STOP") config = { "num_treatment": num_treatment, "data_model_class": data_model_class, "data_model_args": data_model_args, "kernel": kernel, "policy": policy, "link_function": args.link_function, "seed": args.random_seed + p_i, "sigma_mul_range": sigma_mul_range, } p_args = (job_queue, results_queue, config) p = Process(target=worker_loop, args=p_args) p.start() procs.append(p) rows = [] all_results = defaultdict(lambda: defaultdict(list)) num_done = 0 while num_done < num_jobs: num_data, rep, results = results_queue.get() for method, tau in results.items(): row = {"method": method, "num_data": num_data, "rep": rep, "tau": tau} rows.append(row) all_results[num_data][method].append(tau) num_done += 1 for p in procs: p.join() data_model = data_model_class(**data_model_args) policy_value = estimate_policy_value(data_model, policy, num_treatment, num_data=num_data_policy_estimate) print("") print("true policy value with %s link function: %f" % (args.link_function, policy_value)) for num_data, results in sorted(all_results.items()): print("") print("printing results for num-data=%d" % num_data) for method, tau_list in sorted(results.items()): mse = ((np.array(tau_list) - policy_value) ** 2).mean() bias = np.abs(np.array(tau_list).mean() - policy_value) bias_std = np.array(tau_list).std(ddof=1) bias_std /= (args.num_reps ** 0.5) variance = mse - bias ** 2 mse_se = ((np.array(tau_list) - policy_value) ** 2).std(ddof=1) mse_se /= (args.num_reps ** 0.5) print("method=%s, mse=%.3f±%.3f, bias=%.3f±%.3f, variance=%.3f" % (method, mse, mse_se, bias, bias_std, variance)) print("") for row in rows: row["policy_value"] = policy_value row["se"] = (row["tau"] - policy_value) ** 2 data =
pd.DataFrame(rows)
pandas.DataFrame
import os import math import pandas as pd import sklearn.metrics as metrics from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score, accuracy_score from sklearn.metrics import average_precision_score from numpyencoder import NumpyEncoder from get_data import read_params import argparse import joblib import json def train_and_evaluate(config_path): """ This function trains and evaluates a machine learning model on the dataset. :param config_path: the path of the config file to use """ # Read configuration options config = read_params(config_path) model_type = config["train_and_evaluate"]["model"] test_data_path = config["split_data"]["test_path"] train_data_path = config["split_data"]["train_path"] random_state = config["base"]["random_state"] model_dir = config["model_dir"] target = [config["base"]["target_col"]] scores_file = config["reports"]["scores"] prc_file = config["reports"]["prc"] roc_file = config["reports"]["roc"] # Load training and validation datasets train =
pd.read_csv(train_data_path, sep=",")
pandas.read_csv
from pathlib import Path import pandas as pd import numpy as np import click from ...exceptions import InvalidFileExtension from ...utilities import safe_load def merge_command(files, output, **kwargs): verbose = kwargs.pop("verbose", False) tscol = kwargs.pop("tscol", "timestamp_iso") # create an array of timestamp column names to try tscols = [tscol, "timestamp", "timestamp_local"] # make sure the extension is either a csv or feather format output = Path(output) if output.suffix not in (".csv", ".feather"): raise InvalidFileExtension("Invalid file extension") save_as_csv = True if output.suffix == ".csv" else False # concat everything in filepath if verbose: click.secho("Files to read: {}".format(files), fg='green') df = pd.DataFrame() with click.progressbar(files, label="Parsing files") as bar: for f in bar: tmp = safe_load(f) # check for the column name and set to best guess for c in tscols: if c in tmp.columns: tscol = c break if not tscol in tmp.columns: click.secho("Time tscol was not found in the file; skipping file.", fg='red') continue # convert the timestamp column to a pandas datetime if not pd.core.dtypes.common.is_datetime_or_timedelta_dtype(tmp[tscol]): tmp[tscol] = tmp[tscol].apply(lambda x: pd.to_datetime(x, errors='coerce')) # drop the bad rows tmp = tmp.dropna(how='any', subset=[tscol]) # re-convert to timestamp in case it's not if not
pd.core.dtypes.common.is_datetime_or_timedelta_dtype(tmp[tscol])
pandas.core.dtypes.common.is_datetime_or_timedelta_dtype
# -*- coding: utf-8 -*- from __future__ import print_function from distutils.version import LooseVersion from numpy import nan, random import numpy as np from pandas.compat import lrange from pandas import (DataFrame, Series, Timestamp, date_range) import pandas as pd from pandas.util.testing import (assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.util.testing as tm from pandas.tests.frame.common import TestData, _check_mixed_float def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') class TestDataFrameMissingData(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_dropEmptyRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) original = Series(mat, index=self.frame.index, name='foo') expected = original.dropna() inplace_frame1, inplace_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna(how='all') # check that original was preserved assert_series_equal(frame['foo'], original) inplace_frame1.dropna(how='all', inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame1['foo'], expected) smaller_frame = frame.dropna(how='all', subset=['foo']) inplace_frame2.dropna(how='all', subset=['foo'], inplace=True) assert_series_equal(smaller_frame['foo'], expected) assert_series_equal(inplace_frame2['foo'], expected) def test_dropIncompleteRows(self): N = len(self.frame.index) mat = random.randn(N) mat[:5] = nan frame = DataFrame({'foo': mat}, index=self.frame.index) frame['bar'] = 5 original = Series(mat, index=self.frame.index, name='foo') inp_frame1, inp_frame2 = frame.copy(), frame.copy() smaller_frame = frame.dropna() assert_series_equal(frame['foo'], original) inp_frame1.dropna(inplace=True) exp = Series(mat[5:], index=self.frame.index[5:], name='foo') tm.assert_series_equal(smaller_frame['foo'], exp) tm.assert_series_equal(inp_frame1['foo'], exp) samesize_frame = frame.dropna(subset=['bar']) assert_series_equal(frame['foo'], original) self.assertTrue((frame['bar'] == 5).all()) inp_frame2.dropna(subset=['bar'], inplace=True) self.assert_index_equal(samesize_frame.index, self.frame.index) self.assert_index_equal(inp_frame2.index, self.frame.index) def test_dropna(self): df = DataFrame(np.random.randn(6, 4)) df[2][:2] = nan dropped = df.dropna(axis=1) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0) expected = df.ix[lrange(2, 6)] inp = df.copy() inp.dropna(axis=0, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) # threshold dropped = df.dropna(axis=1, thresh=5) expected = df.ix[:, [0, 1, 3]] inp = df.copy() inp.dropna(axis=1, thresh=5, inplace=True) assert_frame_equal(dropped, expected) assert_frame_equal(inp, expected) dropped = df.dropna(axis=0, thresh=4) expected = df.ix[
lrange(2, 6)
pandas.compat.lrange
import os import time import json import orjson import pandas as pd import numpy as np import glob2 import pickle from itertools import repeat from multiprocessing import Pool, Process, current_process, cpu_count def get_file_list(folder_path, extensions =['zip']): ''' Returns the list of files with all given extensions inside the specified folder in the current working directory, ''' file_list = [] for extension in extensions: file_list.extend(glob2.glob(os.path.join(folder_path, '*.' + extension))) return file_list def json_to_dict(json_file): '''This function returns dictionary format of the given json file''' with open(json_file, 'r') as f: json_report = orjson.loads(f.read()) return json_report def get_index(json_report, index_value): '''This function returns index value from "file information" of json report''' try: return json_report['file_information'][index_value] except Exception as e: raise Exception('get_index ERROR', e) def get_label(json_report, category): '''This function is used to retrieve the sample label, e.g. malware, ransomware and goodware''' try: return json_report['file_class'][category + '_label'] except Exception as e: raise Exception('get_label ERROR', e) def set_metadata(selection, json_report, index_value): '''This function is used to set metadata, e.g. label is used for malware-goodware case and sublabel is used for ransomware-malware case respectively''' selection[index_value] = get_index(json_report, index_value) selection['label'] = get_label(json_report, 'class') selection['sublabel'] = get_label(json_report, 'subclass') def get_encoded_apistats(json_file, one_hot = False, index_value = 'md5'): '''This function returns one hot encoded API stats data from json report''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) apistats = json_report['api_calls']['apistats'] set_metadata(apistats, json_report, index_value) encoded_apistats = pd.json_normalize(apistats, max_level=0).set_index(index_value) if one_hot == True: labels = encoded_apistats[['label', 'sublabel']] features = encoded_apistats.drop(['label', 'sublabel'], axis=1) features[features!=0] = 1 encoded_apistats = features.join(labels) print('Processed :', json_file) return encoded_apistats except Exception as e: print('KEY ERROR', e) def remove_dll(dlls, substring = ['virusshare', 'cucko'], unique=True): '''This function returns DLL feature list, leaving only unique values''' occurences = [] if unique: dlls = list(set([ os.path.splitext(dll.lower().replace(os.path.sep, '/'))[0] for dll in dlls ])) for dll in dlls: for target in substring: if target in dll : if dll not in occurences: occurences.append(dll) for dll in occurences: dlls.remove(dll) return dlls def get_encoded_dll_loaded(json_file, index_value = 'md5'): '''this function returns one hot encoded DLL data''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) dll_loaded = json_report['dll_loaded']['loaded_dll'] pruned_dll_loaded = remove_dll(dll_loaded, substring = ['virusshare', 'cucko'], unique=True) dll_loaded_todict = { dll : 1 for dll in pruned_dll_loaded } set_metadata(dll_loaded_todict, json_report, index_value) encoded_dll_loaded = pd.json_normalize(dll_loaded_todict, max_level=0).set_index(index_value) print('Processed :', json_file) return encoded_dll_loaded except Exception as e: print('dll_loaded KEY ERROR', e) def get_file_operations_counts(json_file, index_value = 'md5'): '''This function retrieves file operations count features.''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) file_operations_counts = json_report['file_operations']['files_counts'] set_metadata(file_operations_counts, json_report, index_value) encoded_file_operations = pd.json_normalize(file_operations_counts, max_level=0).set_index(index_value) print('Processed :', json_file) return encoded_file_operations except Exception as e: print('file_operations_counts KEY ERROR', e) def get_regkeys_counts(json_file, index_value = 'md5'): '''This function retrieves registry keys operations count features.''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) regkeys_counts = json_report['regkeys']['regkey_counts'] set_metadata(regkeys_counts, json_report, index_value) encoded_regkeys_counts = pd.json_normalize(regkeys_counts, max_level=0).set_index(index_value) print('Processed :', json_file) return encoded_regkeys_counts except Exception as e: print('regkeys_counts KEY ERROR', e) def get_encoded_pe_imports(json_file, dll_name = None, index_value = 'md5'): '''This function retrieves one hot encoded PE Imports features''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) pe_imports = json_report['pe_analysis']['pe_imports'] if dll_name is not None: pe_imports_todict = { import_ : 1 for import_ in pe_imports[dll_name] } else: pe_imports_todict = { dll_name_ : 1 for dll_name_ in pe_imports.keys() } set_metadata(pe_imports_todict, json_report, index_value) encoded_pe_imports = pd.json_normalize(pe_imports_todict, max_level=0).set_index(index_value) print('Processed :', json_file) return encoded_pe_imports except Exception as e: print('pe_imports KEY ERROR', e) def get_regkeys(json_file, category, index_value = 'md5'): '''This function retrieves nested registry keys features.''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) regkeys = json_report['regkeys']['regkey_values'][category] regkeys_todict = {k:1 for k in regkeys} set_metadata(regkeys_todict, json_report, index_value) encoded_regkeys = pd.json_normalize(regkeys_todict, max_level=0).set_index(index_value) print('Processed :', json_file) return encoded_regkeys except Exception as e: print(f'regkeys {category} KEY ERROR', e) def get_key(nested_key, level=1, sep=os.path.sep): '''This function deals with separating values in registry keys features, as they ususally contain path information and other details''' keys = [key.lower() for key in nested_key.split(sep)] try: return keys[:level] except: if level > 1: return get_key(nested_key, level=level-1) else: pass def get_all_keys(regkeys, level=1, unique=True, sep='/'): '''This function returns list of unique nested registry key values up to a certain level''' results = [] for nested_key in regkeys: results.extend(get_key(nested_key, level=level, sep=sep)) if unique: results = list(set(results)) return results def remove_keys(keys, substring=None, numeric=True): '''This function removes unwanted symbols in nested registry keys data''' occurences = [] for key in keys: if numeric: if key.replace('.', '').replace('-', '').isnumeric(): occurences.append(key) for target in substring: if target in key: occurences.append(key) for key in occurences: keys.remove(key) return keys def get_nested_regkeys(json_file, category, level = 15, index_value = 'md5'): '''This function retrieves all nested registry keys from json, cleaned and encoded.''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) regkeys = json_report['regkeys']['regkey_values'][category] nested_regkeys = get_all_keys(regkeys, level=level, sep='\\') pruned_nested_regkeys = remove_keys(nested_regkeys, substring=['virusshare', 'cucko', 'default'], numeric=True) nested_regkeys_todict = {k:1 for k in pruned_nested_regkeys} set_metadata(nested_regkeys_todict, json_report, index_value) encoded_nested_regkeys = pd.json_normalize(nested_regkeys_todict, max_level=0).set_index(index_value) print('Processed :', json_file) return encoded_nested_regkeys except Exception as e: print(f'Nested Regkeys {category} KEY ERROR', e) def get_nested_fileops(json_file, category, level = 15, index_value = 'md5'): '''This function retrieve nested file operations from json, cleaned and encoded''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) fileops = json_report['file_operations']['files_values'][category] nested_files = get_all_keys(fileops, level=level, sep='\\') pruned_nested_files = remove_keys(nested_files, substring=['virusshare', 'cucko', 'default'], numeric=True) nested_files_todict = {k:1 for k in pruned_nested_files} set_metadata(nested_files_todict, json_report, index_value) encoded_nested_files = pd.json_normalize(nested_files_todict, max_level=0).set_index(index_value) print('Processed :', json_file) return encoded_nested_files except Exception as e: print(f'Nested File Operations {category} KEY ERROR', e) def get_pe_entropy(json_file, index_value = 'md5'): '''This function retrieves PE entropy features from json report.''' try: print('Processing :', json_file) json_report = json_to_dict(json_file) pe_entropy = json_report['pe_analysis']['pe_entropy'] pe_entropy_values = {k:v for k,v in zip(pe_entropy['names'], pe_entropy['entropy_values'])} set_metadata(pe_entropy_values, json_report, index_value) encoded_pe_entropy =
pd.json_normalize(pe_entropy_values, max_level=0)
pandas.json_normalize
import pickle import inflection import pandas as pd import numpy as np import math import datetime class Rossmann (object ): def __init__(self): state = 1 self.competition_distance_scaler = pickle.load(open('parameter/competition_distance_scaler.pkl', 'rb') ) self.competition_time_month_scaler = pickle.load(open('parameter/competition_time_month_scaler.pkl', 'rb') ) self.promo_time_week_scaler = pickle.load(open('parameter/promo_time_week_scaler.pkl', 'rb') ) self.year_scaler = pickle.load(open('parameter/year_scaler.pkl', 'rb') ) self.store_type_scaler = pickle.load(open('parameter/store_type_scaler.pkl', 'rb') ) self.year_scaler = pickle.load(open('parameter/year_scaler.pkl', 'rb') ) def data_cleaning(self,df1): ## 1.1. Rename Columns cols_old = ['Store', 'DayOfWeek', 'Date', 'Open', 'Promo', 'StateHoliday', 'SchoolHoliday', 'StoreType', 'Assortment', 'CompetitionDistance', 'CompetitionOpenSinceMonth','CompetitionOpenSinceYear', 'Promo2', 'Promo2SinceWeek','Promo2SinceYear', 'PromoInterval'] snakecase = lambda x: inflection.underscore( x ) cols_new = list(map(snakecase, cols_old)) #Rename df1.columns = cols_new ## 1.3. Data Type #mudando DateTime df1['date'] =
pd.to_datetime(df1['date'])
pandas.to_datetime
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time')
tm.assert_frame_equal(expected, df)
pandas.util.testing.assert_frame_equal
#!/bin/env python3 """create_csv_of_kp_predicate_triples.py Creates a CSV of all predicate triples of the form (node type, edge type, node type) for KG1, KG2, and BTE (ARAX's current knowledge providers). Resulting columns are: subject_type, edge_type, object_type Usage: python create_csv_of_kp_predicate_triples.py """ # adapted from <NAME> code in create_csv_of_kp_node_pairs.py import requests import sys import os import csv import time import pandas as pd from neo4j import GraphDatabase sys.path.append(os.path.dirname(os.path.abspath(__file__))+"/../../") # code directory from RTXConfiguration import RTXConfiguration def run_neo4j_query(cypher, kg_name, data_type): rtx_config = RTXConfiguration() if kg_name != "KG1": rtx_config.live = kg_name driver = GraphDatabase.driver(rtx_config.neo4j_bolt, auth=(rtx_config.neo4j_username, rtx_config.neo4j_password)) with driver.session() as session: start = time.time() print(f"Grabbing {data_type} from {kg_name} neo4j...") results = session.run(cypher).data() print(f"...done. Query took {round((time.time() - start) / 60, 2)} minutes.") driver.close() return results def get_kg1_predicate_triples(): cypher = 'match (n)-[r]->(m) with distinct labels(n) as n1s, type(r) as rel, '+\ 'labels(m) as n2s unwind n1s as n1 unwind n2s as n2 with distinct n1 as '+\ 'node1, rel as relationship, n2 as node2 where node1 <> "Base" and '+\ 'node2 <> "Base" return node1, relationship, node2' # Changed this from using n.category so that it can handle node with multiple labels # Unfortunetly that makes the cypher a little more unweildly and likely slows a query a bit. results = run_neo4j_query(cypher, "KG1", "predicate triples") triples_dict = {"subject":[], "predicate":[], "object":[]} for result in results: subject_type = result.get('node1') object_type = result.get('node2') predicate = result.get('relationship') triples_dict['subject'].append(subject_type) triples_dict['object'].append(object_type) triples_dict['predicate'].append(predicate) return pd.DataFrame(triples_dict) def get_kg2_predicate_triples(): cypher = 'match (n)-[r]->(m) with distinct labels(n) as n1s, type(r) as rel, '+\ 'labels(m) as n2s unwind n1s as n1 unwind n2s as n2 with distinct n1 as '+\ 'node1, rel as relationship, n2 as node2 where node1 <> "Base" and '+\ 'node2 <> "Base" return node1, relationship, node2' # Changed this from using n.category so that it can handle node with multiple labels # Unfortunetly this makes the cypher a little more unweildly and likely slows a query a bit. results = run_neo4j_query(cypher, "KG2", "predicate triples") triples_dict = {"subject":[], "predicate":[], "object":[]} for result in results: subject_type = result.get('node1') object_type = result.get('node2') predicate = result.get('relationship') triples_dict['subject'].append(subject_type) triples_dict['object'].append(object_type) triples_dict['predicate'].append(predicate) return pd.DataFrame(triples_dict) def get_kg2c_predicate_triples(): cypher = 'match (n)-[r]->(m) with distinct labels(n) as n1s, type(r) as rel, '+\ 'labels(m) as n2s unwind n1s as n1 unwind n2s as n2 with distinct n1 as '+\ 'node1, rel as relationship, n2 as node2 where node1 <> "Base" and '+\ 'node2 <> "Base" return node1, relationship, node2' # Changed this from using n.category so that it can handle node with multiple labels # Unfortunetly this makes the cypher a little more unweildly and likely slows a query a bit. results = run_neo4j_query(cypher, "KG2c", "predicate triples") triples_dict = {"subject":[], "predicate":[], "object":[]} for result in results: subject_type = result.get('node1') object_type = result.get('node2') predicate = result.get('relationship') triples_dict['subject'].append(subject_type) triples_dict['object'].append(object_type) triples_dict['predicate'].append(predicate) return pd.DataFrame(triples_dict) def get_kg1_node_labels(): cypher = 'call db.labels()' results = run_neo4j_query(cypher, "KG1", "node labels") labels_dict = {"label":[]} for result in results: label = result.get('label') labels_dict["label"].append(label) return pd.DataFrame(labels_dict) def get_kg2_node_labels(): cypher = 'call db.labels()' results = run_neo4j_query(cypher, "KG2", "node labels") labels_dict = {"label":[]} for result in results: label = result.get('label') labels_dict["label"].append(label) return pd.DataFrame(labels_dict) def get_kg2c_node_labels(): cypher = 'call db.labels()' results = run_neo4j_query(cypher, "KG2c", "node labels") labels_dict = {"label":[]} for result in results: label = result.get('label') labels_dict["label"].append(label) return pd.DataFrame(labels_dict) def get_kg1_relationship_types(): cypher = 'call db.relationshipTypes()' results = run_neo4j_query(cypher, "KG1", "relationship types") predicate_dict = {"predicate":[]} for result in results: predicate = result.get('relationshipType') predicate_dict["predicate"].append(predicate) return
pd.DataFrame(predicate_dict)
pandas.DataFrame
from . import constants as c import numpy as np import json class Struct(object): """ Struct-like container object """ def __init__(self, **kwds): # keyword args define attribute names and values self.__dict__.update(**kwds) def __repr__(self): #s = "\n" s = "\nCCParser Struct keys:\n" for key in self.__dict__.keys(): s += f"'{key}'\n" return s class ParseContainer(object): """ Generic container object which keeps track of the parsed quantities. It allows to parse the same quantity several times. There should be one instance/parsed quantity. """ def __init__(self): self.nversion = 0 self.data = [] self.lines = [] self.serializable = False @classmethod def from_obj(cls, line, parsed_obj): """Alternative constructor. Initialize directly with line and parsed object. Parameters ---------- line : int line number parsed_obj : any parsed object """ pc = cls() pc.add(line, parsed_obj) return pc def add(self, hook_line, new_obj): #self.data[hook_line] = new_pvalue self.data.append(new_obj) self.lines.append(hook_line) self.nversion += 1 def get_first(self): idx = self.lines.index(min(self.lines))#not needed if assuming ordered parsing (line by line) #return self.data[0] return self.data[idx] def get_last(self): idx = self.lines.index(max(self.lines))#not needed if assuming ordered parsing (line by line) # return self.data[-1] return self.data[idx] def get_data(self): return self.data def get_lines(self): return self.lines def make_serializable(self): """Turn fancy data types into sth that json.dump can recognize. """ try: dt = type(self.data[0]) except IndexError: raise ParserDataError(("ParseContainer not serializable (data list" " empty).")) # take care of numpy data types if dt.__module__ == "numpy" or "numpy." in dt.__module__: encoder = NumpyEncoder() self.data = [encoder.default(obj) for obj in self.data] # CCParser data types elif dt == MolecularOrbitals or dt == Amplitudes: self.data = [obj.encode() for obj in self.data] # assume other datatypes are serializable self.serializable = True def to_tuple(self): if self.serializable: return tuple(zip(self.data, self.lines)) else: self.make_serializable() return tuple(zip(self.data, self.lines)) def to_list(self): if self.serializable: return list(zip(self.data, self.lines)) else: self.make_serializable() return list(zip(self.data, self.lines)) def __len__(self): assert len(self.data) == len(self.lines) return len(self.data) def __getitem__(self, idx): if isinstance(idx, slice): return self.data[idx.start : idx.stop : idx.step] else: if idx >= len(self.data) or abs(idx) > len(self.data): raise IndexError("ParseContainer: Index out of range") return self.data[idx] def __setitem__(self, idx, value): """ Setter method which expects value tuple (line, parsed_obj) """ self.lines[idx] = value[0] self.data[idx] = value[1] def __delitem__(self, idx): self.data.remove(idx) self.lines.remove(idx) def __iter__(self): return iter(self.data) # def __next__(self): # if self.n <= self.nversion: # return self.data[self.n] # else: # raise StopIteration def __contains__(self, line): if type(line) == str: line = int(line) return True if line in self.lines else False def __str__(self): s = "\n" s+= "Line" + 3*" " + "Parsed Value\n" for i in range(self.nversion): s+= str(self.lines[i]) + 3*" " + str(self.data[i]) + "\n" return s def __repr__(self): s = "\n" s+= "Line" + 3*" " + "Parsed Value\n" for i in range(self.nversion): s+= str(self.lines[i]) + 3*" " + str(self.data[i]) + "\n" return s class ParserDataError(Exception): """Raise for ParserData related errors. """ class StructEncoder(json.JSONEncoder): def default(self, struct): if isinstance(struct, Struct): results = {} for label, pc in struct.__dict__.items(): results[label] = pc.to_list() return results else: super().default(self, struct) class NumpyEncoder(json.JSONEncoder): """ Special json encoder for numpy types """ def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.ndarray,)): #### This is the fix return obj.tolist() else: super().default(self, obj) class MolecularOrbitals(object): # TODO: change name? "OrbitalEnergies" # TODO: add symmetries """ General molecular orbital class, which has more functionality than simple arrays. """ N_ORB_PER_LINE = 10 def __init__(self, o, v): self.occ = list(map(float, o)) self.virt = list(map(float, v)) self.n_occ = len(o) self.n_virt = len(v) self.n_mo = self.n_occ + self.n_virt self.homo = max(self.occ ) if self.n_occ > 0 else 0 self.lumo = min(self.virt) if self.n_virt > 0 else 0 @classmethod def from_dict(cls, d): try: return cls(d["occ"], d["virt"]) except (KeyError, TypeError) as e: raise ParserDataError(("Dictionary not suitable to create " "MolecularOrbitals object.")) #TODO: from_string method as implicit list conversion is not great @classmethod def from_tuples(cls, t): # find first occurrence of virt idx = next(t.index(i) for i in t if i[1] == "virt" or i[1] == "v") # create lists using the index o, dummy = zip(*t[:idx]) v, dummy = zip(*t[idx:]) return cls(o, v) def __str__(self): n1 = [i for i in range(1, self.n_occ+1)] n2 = [i for i in range(self.n_occ +1, self.n_mo+1)] s = "\n" for i in range(0, len(self.occ), self.N_ORB_PER_LINE): s += 4*" " + " ".join("{:>8}".format(j) for j in n1[i:i+self.N_ORB_PER_LINE])+"\n" if i == 0: s += " occ: " +' '.join("{:8.3f}".format(j) for j in self.occ[i:i+self.N_ORB_PER_LINE])+"\n" else: s += 6*" "+' '.join("{:8.3f}".format(j) for j in self.occ[i:i+self.N_ORB_PER_LINE])+"\n" s += 7*" "+88*"-"+"\n" for i in range(0, len(self.virt), self.N_ORB_PER_LINE): s += 4*" " + " ".join("{:>8}".format(j) for j in n2[i:i+self.N_ORB_PER_LINE])+"\n" if i == 0: s += " virt:" +' '.join("{:8.3f}".format(j) for j in self.virt[i:i+self.N_ORB_PER_LINE])+"\n" else: s += 6*" "+' '.join("{:8.3f}".format(j) for j in self.virt[i:i+self.N_ORB_PER_LINE])+"\n" return s def RVS(self, gap): """ Determine amount of virtual orbitals to freeze based on energy gap (in eV) """ if gap <= 0: raise ValueError("Negative or Zero energy gap not allowed for restriction of virtual space.") else: thr = gap/c.Hartree2eV + self.homo # print("THR: ",thr) # print("N_VIRT: ", self.n_virt) idx = min(range(len(self.virt)), key=lambda i: abs(self.virt[i]-thr)) freeze = self.n_virt - (idx +1) part_of_v = float(freeze)/float(self.n_virt) s = "Index: {0:3d}, Number of frozen virtuals: {1:3d}, ({2:.1%})".format(idx, freeze, part_of_v) print(s) def to_dict(self): return {"occ" : self.occ, "virt" : self.virt} def to_tuples(self): return list(zip(self.occ, ["occ" for i in range(self.n_occ )])) \ + list(zip(self.virt, ["virt" for i in range(self.n_virt)])) def encode(self, fmt=tuple): if fmt == tuple: return self.to_tuples() elif fmt == dict: return self.to_dict() else: raise ValueError("Export format not recognized.") class Amplitudes(object): """ General container for amplitudes of one state for easier access to and export of amplitude data """ def __init__(self, occ, virt, v, factor=1.0): self.occ = occ # list of lists, even if only single int in sublist self.virt= virt self.v = v self.factor = factor self.weights = list(map(lambda x: self.factor * x**2, self.v)) self.print_thr = 0.05 def __str__(self): s = "Amplitudes: Weights > {0:.0%}\n".format(self.print_thr) for i in range(len(self.occ)): if self.weights[i] > self.print_thr: if len(self.occ[i]) == 1: s += "{0:>4} -> {1:>4} : {2:.1f}\n".format(self.occ[i][0], self.virt[i][0], 100*self.weights[i]) elif len(self.occ[i]) == 2: s += "{0:>4}, {1:>4} -> {2:>4}, {3:>4} : {4:.1f}\n".format( self.occ[i][0], self.occ[i][1], self.virt[i][0], self.virt[i][1], 100*self.weights[i]) return s @classmethod def from_list(cls, allinone, factor=1.0): """ Alternative constructor which expects single list. Format: [[occ_i, occ_j,..., virt_a, virt_b,..., ampl], ...] """ occ, virt, v = [], [], [] for transition in allinone: assert(len(transition) % 2 != 0) n_mo = int((len(transition)-1)/2) occ.append(transition[0:n_mo])# slices yield list, even if only one element virt.append(transition[n_mo:-1]) v.append(transition[-1])# index yields float return cls(occ, virt, v, factor) def to_dataframe(self, thresh=0.05): """ Converts the amplitude data to handy pandas.DataFrame object """ try: import pandas as pd except ImportError: raise ImportError("Module 'pandas' needed for 'Amplitudes.to_dataframe()' ") # TODO: improve this clunky part max_exc = max(list(map(len,self.occ))) occ, virt = [], [] for i in range(len(self.occ)): occ.append(self.occ[i] + [0]*(max_exc - len(self.occ[i]))) virt.append(self.virt[i] + [0]*(max_exc - len(self.virt[i]))) idx_o = list(map(lambda x: "occ_"+str(x), [n for n in range(1,max_exc+1)])) idx_v = list(map(lambda x: "virt_"+str(x), [n for n in range(1,max_exc+1)])) df = pd.concat([pd.DataFrame(occ, columns=idx_o),
pd.DataFrame(virt, columns=idx_v)
pandas.DataFrame
from datetime import datetime, timedelta import unittest from pandas.core.datetools import ( bday, BDay, BQuarterEnd, BMonthEnd, BYearEnd, MonthEnd, DateOffset, Week, YearBegin, YearEnd, Hour, Minute, Second, format, ole2datetime, to_datetime, normalize_date, getOffset, getOffsetName, inferTimeRule, hasOffsetName) from nose.tools import assert_raises #### ## Misc function tests #### def test_format(): actual = format(datetime(2008, 1, 15)) assert actual == '20080115' def test_ole2datetime(): actual = ole2datetime(60000) assert actual == datetime(2064, 4, 8) assert_raises(Exception, ole2datetime, 60) def test_to_datetime1(): actual = to_datetime(datetime(2008, 1, 15)) assert actual == datetime(2008, 1, 15) actual = to_datetime('20080115') assert actual == datetime(2008, 1, 15) # unparseable s = 'Month 1, 1999' assert to_datetime(s) == s def test_normalize_date(): actual = normalize_date(datetime(2007, 10, 1, 1, 12, 5, 10)) assert actual == datetime(2007, 10, 1) ##### ### DateOffset Tests ##### class TestDateOffset(object): def setUp(self): self.d = datetime(2008, 1, 2) def test_repr(self): repr(DateOffset()) repr(DateOffset(2)) repr(2 * DateOffset()) repr(2 * DateOffset(months=2)) def test_mul(self): assert DateOffset(2) == 2 * DateOffset(1) assert DateOffset(2) == DateOffset(1) * 2 def test_constructor(self): assert((self.d + DateOffset(months=2)) == datetime(2008, 3, 2)) assert((self.d - DateOffset(months=2)) == datetime(2007, 11, 2)) assert((self.d + DateOffset(2)) == datetime(2008, 1, 4)) assert not DateOffset(2).isAnchored() assert DateOffset(1).isAnchored() d = datetime(2008, 1, 31) assert((d + DateOffset(months=1)) == datetime(2008, 2, 29)) def test_copy(self): assert(DateOffset(months=2).copy() == DateOffset(months=2)) class TestBusinessDay(unittest.TestCase): def setUp(self): self.d = datetime(2008, 1, 1) self.offset = BDay() self.offset2 = BDay(2) def test_repr(self): assert repr(self.offset) == '<1 BusinessDay>' assert repr(self.offset2) == '<2 BusinessDays>' expected = '<1 BusinessDay: offset=datetime.timedelta(1)>' assert repr(self.offset + timedelta(1)) == expected def test_with_offset(self): offset = self.offset + timedelta(hours=2) assert (self.d + offset) == datetime(2008, 1, 2, 2) def testEQ(self): self.assertEqual(self.offset2, self.offset2) def test_mul(self): pass def test_hash(self): self.assertEqual(hash(self.offset2), hash(self.offset2)) def testCall(self): self.assertEqual(self.offset2(self.d), datetime(2008, 1, 3)) def testRAdd(self): self.assertEqual(self.d + self.offset2, self.offset2 + self.d) def testSub(self): off = self.offset2 self.assertRaises(Exception, off.__sub__, self.d) self.assertEqual(2 * off - off, off) self.assertEqual(self.d - self.offset2, self.d + BDay(-2)) def testRSub(self): self.assertEqual(self.d - self.offset2, (-self.offset2).apply(self.d)) def testMult1(self): self.assertEqual(self.d + 10*self.offset, self.d + BDay(10)) def testMult2(self): self.assertEqual(self.d + (-5*BDay(-10)), self.d + BDay(50)) def testRollback1(self): self.assertEqual(BDay(10).rollback(self.d), self.d) def testRollback2(self): self.assertEqual(BDay(10).rollback(datetime(2008, 1, 5)), datetime(2008, 1, 4)) def testRollforward1(self): self.assertEqual(BDay(10).rollforward(self.d), self.d) def testRollforward2(self): self.assertEqual(BDay(10).rollforward(datetime(2008, 1, 5)), datetime(2008, 1, 7)) def test_onOffset(self): tests = [(BDay(), datetime(2008, 1, 1), True), (BDay(), datetime(2008, 1, 5), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def test_apply(self): tests = [] tests.append((bday, {datetime(2008, 1, 1): datetime(2008, 1, 2), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 8)})) tests.append((2*bday, {datetime(2008, 1, 1): datetime(2008, 1, 3), datetime(2008, 1, 4): datetime(2008, 1, 8), datetime(2008, 1, 5): datetime(2008, 1, 8), datetime(2008, 1, 6): datetime(2008, 1, 8), datetime(2008, 1, 7): datetime(2008, 1, 9)})) tests.append((-bday, {datetime(2008, 1, 1): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 3), datetime(2008, 1, 5): datetime(2008, 1, 4), datetime(2008, 1, 6): datetime(2008, 1, 4), datetime(2008, 1, 7): datetime(2008, 1, 4), datetime(2008, 1, 8): datetime(2008, 1, 7)})) tests.append((-2*bday, {datetime(2008, 1, 1): datetime(2007, 12, 28), datetime(2008, 1, 4): datetime(2008, 1, 2), datetime(2008, 1, 5): datetime(2008, 1, 3), datetime(2008, 1, 6): datetime(2008, 1, 3), datetime(2008, 1, 7): datetime(2008, 1, 3), datetime(2008, 1, 8): datetime(2008, 1, 4), datetime(2008, 1, 9): datetime(2008, 1, 7)})) tests.append((BDay(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 1, 4): datetime(2008, 1, 4), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_apply_corner(self): self.assertRaises(Exception, BDay().apply, BMonthEnd()) def assertOnOffset(offset, date, expected): actual = offset.onOffset(date) assert actual == expected class TestWeek(unittest.TestCase): def test_corner(self): self.assertRaises(Exception, Week, weekday=7) self.assertRaises(Exception, Week, weekday=-1) def test_isAnchored(self): self.assert_(Week(weekday=0).isAnchored()) self.assert_(not Week().isAnchored()) self.assert_(not Week(2, weekday=2).isAnchored()) self.assert_(not Week(2).isAnchored()) def test_offset(self): tests = [] tests.append((Week(), # not business week {datetime(2008, 1, 1): datetime(2008, 1, 8), datetime(2008, 1, 4): datetime(2008, 1, 11), datetime(2008, 1, 5): datetime(2008, 1, 12), datetime(2008, 1, 6): datetime(2008, 1, 13), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(weekday=0), # Mon {datetime(2007, 12, 31): datetime(2008, 1, 7), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 14)})) tests.append((Week(0, weekday=0), # n=0 -> roll forward. Mon {datetime(2007, 12, 31): datetime(2007, 12, 31), datetime(2008, 1, 4): datetime(2008, 1, 7), datetime(2008, 1, 5): datetime(2008, 1, 7), datetime(2008, 1, 6): datetime(2008, 1, 7), datetime(2008, 1, 7): datetime(2008, 1, 7)})) tests.append((Week(-2, weekday=1), # n=0 -> roll forward. Mon {datetime(2010, 4, 6): datetime(2010, 3, 23), datetime(2010, 4, 8): datetime(2010, 3, 30), datetime(2010, 4, 5): datetime(2010, 3, 23)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(Week(weekday=0), datetime(2008, 1, 1), False), (Week(weekday=0), datetime(2008, 1, 2), False), (Week(weekday=0), datetime(2008, 1, 3), False), (Week(weekday=0), datetime(2008, 1, 4), False), (Week(weekday=0), datetime(2008, 1, 5), False), (Week(weekday=0), datetime(2008, 1, 6), False), (Week(weekday=0), datetime(2008, 1, 7), True), (Week(weekday=1), datetime(2008, 1, 1), True), (Week(weekday=1), datetime(2008, 1, 2), False), (Week(weekday=1), datetime(2008, 1, 3), False), (Week(weekday=1), datetime(2008, 1, 4), False), (Week(weekday=1), datetime(2008, 1, 5), False), (Week(weekday=1), datetime(2008, 1, 6), False), (Week(weekday=1), datetime(2008, 1, 7), False), (Week(weekday=2), datetime(2008, 1, 1), False), (Week(weekday=2), datetime(2008, 1, 2), True), (Week(weekday=2), datetime(2008, 1, 3), False), (Week(weekday=2), datetime(2008, 1, 4), False), (Week(weekday=2), datetime(2008, 1, 5), False), (Week(weekday=2), datetime(2008, 1, 6), False), (Week(weekday=2), datetime(2008, 1, 7), False), (Week(weekday=3), datetime(2008, 1, 1), False), (Week(weekday=3), datetime(2008, 1, 2), False), (Week(weekday=3), datetime(2008, 1, 3), True), (Week(weekday=3), datetime(2008, 1, 4), False), (Week(weekday=3), datetime(2008, 1, 5), False), (Week(weekday=3), datetime(2008, 1, 6), False), (Week(weekday=3), datetime(2008, 1, 7), False), (Week(weekday=4), datetime(2008, 1, 1), False), (Week(weekday=4), datetime(2008, 1, 2), False), (Week(weekday=4), datetime(2008, 1, 3), False), (Week(weekday=4), datetime(2008, 1, 4), True), (Week(weekday=4), datetime(2008, 1, 5), False), (Week(weekday=4), datetime(2008, 1, 6), False), (Week(weekday=4), datetime(2008, 1, 7), False), (Week(weekday=5), datetime(2008, 1, 1), False), (Week(weekday=5), datetime(2008, 1, 2), False), (Week(weekday=5), datetime(2008, 1, 3), False), (Week(weekday=5), datetime(2008, 1, 4), False), (Week(weekday=5), datetime(2008, 1, 5), True), (Week(weekday=5), datetime(2008, 1, 6), False), (Week(weekday=5), datetime(2008, 1, 7), False), (Week(weekday=6), datetime(2008, 1, 1), False), (Week(weekday=6), datetime(2008, 1, 2), False), (Week(weekday=6), datetime(2008, 1, 3), False), (Week(weekday=6), datetime(2008, 1, 4), False), (Week(weekday=6), datetime(2008, 1, 5), False), (Week(weekday=6), datetime(2008, 1, 6), True), (Week(weekday=6), datetime(2008, 1, 7), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBMonthEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((BMonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 29), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((BMonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 2, 28), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 29)})) tests.append((BMonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 29), datetime(2008, 6, 30): datetime(2008, 5, 30), datetime(2008, 12, 31): datetime(2008, 11, 28), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 12, 29), datetime(2007, 1, 1): datetime(2006, 12, 29)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(BMonthEnd(), datetime(2007, 12, 31), True), (BMonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestMonthEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((MonthEnd(), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2007, 1, 31), datetime(2007, 1, 1): datetime(2007, 1, 31), datetime(2006, 12, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2006, 12, 29): datetime(2006, 12, 31), datetime(2006, 12, 31): datetime(2006, 12, 31), datetime(2007, 1, 1): datetime(2007, 1, 31)})) tests.append((MonthEnd(2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 3, 31), datetime(2006, 12, 29): datetime(2007, 1, 31), datetime(2006, 12, 31): datetime(2007, 2, 28), datetime(2007, 1, 1): datetime(2007, 2, 28), datetime(2006, 11, 1): datetime(2006, 12, 31)})) tests.append((MonthEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2008, 5, 31), datetime(2008, 12, 31): datetime(2008, 11, 30), datetime(2006, 12, 29): datetime(2006, 11, 30), datetime(2006, 12, 30): datetime(2006, 11, 30), datetime(2007, 1, 1): datetime(2006, 12, 31)})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [(MonthEnd(), datetime(2007, 12, 31), True), (MonthEnd(), datetime(2008, 1, 1), False)] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBQuarterEnd(unittest.TestCase): def test_corner(self): self.assertRaises(Exception, BQuarterEnd, startingMonth=4) self.assertRaises(Exception, BQuarterEnd, startingMonth=-1) def test_isAnchored(self): self.assert_(BQuarterEnd(startingMonth=1).isAnchored()) self.assert_(BQuarterEnd().isAnchored()) self.assert_(not BQuarterEnd(2, startingMonth=1).isAnchored()) def test_offset(self): tests = [] tests.append((BQuarterEnd(startingMonth=1), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 4, 30), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 7, 31),})) tests.append((BQuarterEnd(startingMonth=2), {datetime(2008, 1, 1): datetime(2008, 2, 29), datetime(2008, 1, 31): datetime(2008, 2, 29), datetime(2008, 2, 15): datetime(2008, 2, 29), datetime(2008, 2, 29): datetime(2008, 5, 30), datetime(2008, 3, 15): datetime(2008, 5, 30), datetime(2008, 3, 31): datetime(2008, 5, 30), datetime(2008, 4, 15): datetime(2008, 5, 30), datetime(2008, 4, 30): datetime(2008, 5, 30),})) tests.append((BQuarterEnd(startingMonth=1, n=0), {datetime(2008, 1, 1): datetime(2008, 1, 31), datetime(2008, 1, 31): datetime(2008, 1, 31), datetime(2008, 2, 15): datetime(2008, 4, 30), datetime(2008, 2, 29): datetime(2008, 4, 30), datetime(2008, 3, 15): datetime(2008, 4, 30), datetime(2008, 3, 31): datetime(2008, 4, 30), datetime(2008, 4, 15): datetime(2008, 4, 30), datetime(2008, 4, 30): datetime(2008, 4, 30),})) tests.append((BQuarterEnd(startingMonth=1, n=-1), {datetime(2008, 1, 1): datetime(2007, 10, 31), datetime(2008, 1, 31): datetime(2007, 10, 31), datetime(2008, 2, 15): datetime(2008, 1, 31), datetime(2008, 2, 29): datetime(2008, 1, 31), datetime(2008, 3, 15): datetime(2008, 1, 31), datetime(2008, 3, 31): datetime(2008, 1, 31), datetime(2008, 4, 15): datetime(2008, 1, 31), datetime(2008, 4, 30): datetime(2008, 1, 31),})) tests.append((BQuarterEnd(startingMonth=1, n=2), {datetime(2008, 1, 31): datetime(2008, 7, 31), datetime(2008, 2, 15): datetime(2008, 7, 31), datetime(2008, 2, 29): datetime(2008, 7, 31), datetime(2008, 3, 15): datetime(2008, 7, 31), datetime(2008, 3, 31): datetime(2008, 7, 31), datetime(2008, 4, 15): datetime(2008, 7, 31), datetime(2008, 4, 30): datetime(2008, 10, 31),})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) # corner offset = BQuarterEnd(n=-1, startingMonth=1) self.assertEqual(datetime(2010, 1, 31) + offset, datetime(2010, 1, 29)) def test_onOffset(self): tests = [(BQuarterEnd(1, startingMonth=1), datetime(2008, 1, 31), True), (BQuarterEnd(1, startingMonth=1), datetime(2007, 12, 31), False), (BQuarterEnd(1, startingMonth=1), datetime(2008, 2, 29), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 3, 30), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 3, 31), False), (BQuarterEnd(1, startingMonth=1), datetime(2008, 4, 30), True), (BQuarterEnd(1, startingMonth=1), datetime(2008, 5, 30), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 6, 29), False), (BQuarterEnd(1, startingMonth=1), datetime(2007, 6, 30), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 1, 31), False), (BQuarterEnd(1, startingMonth=2), datetime(2007, 12, 31), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 2, 29), True), (BQuarterEnd(1, startingMonth=2), datetime(2007, 3, 30), False), (BQuarterEnd(1, startingMonth=2), datetime(2007, 3, 31), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 4, 30), False), (BQuarterEnd(1, startingMonth=2), datetime(2008, 5, 30), True), (BQuarterEnd(1, startingMonth=2), datetime(2007, 6, 29), False), (BQuarterEnd(1, startingMonth=2), datetime(2007, 6, 30), False), (BQuarterEnd(1, startingMonth=3), datetime(2008, 1, 31), False), (BQuarterEnd(1, startingMonth=3), datetime(2007, 12, 31), True), (BQuarterEnd(1, startingMonth=3), datetime(2008, 2, 29), False), (BQuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), True), (BQuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), False), (BQuarterEnd(1, startingMonth=3), datetime(2008, 4, 30), False), (BQuarterEnd(1, startingMonth=3), datetime(2008, 5, 30), False), (BQuarterEnd(1, startingMonth=3), datetime(2007, 6, 29), True), (BQuarterEnd(1, startingMonth=3), datetime(2007, 6, 30), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestYearBegin(unittest.TestCase): def test_offset(self): tests = [] tests.append((YearBegin(), {datetime(2008, 1, 1): datetime(2009, 1, 1), datetime(2008, 6, 30): datetime(2009, 1, 1), datetime(2008, 12, 31): datetime(2009, 1, 1), datetime(2005, 12, 30): datetime(2006, 1, 1), datetime(2005, 12, 31): datetime(2006, 1, 1),})) tests.append((YearBegin(0), {datetime(2008, 1, 1): datetime(2008, 1, 1), datetime(2008, 6, 30): datetime(2009, 1, 1), datetime(2008, 12, 31): datetime(2009, 1, 1), datetime(2005, 12, 30): datetime(2006, 1, 1), datetime(2005, 12, 31): datetime(2006, 1, 1),})) tests.append((YearBegin(-1), {datetime(2007, 1, 1): datetime(2006, 1, 1), datetime(2008, 6, 30): datetime(2008, 1, 1), datetime(2008, 12, 31): datetime(2008, 1, 1), datetime(2006, 12, 29): datetime(2006, 1, 1), datetime(2006, 12, 30): datetime(2006, 1, 1), datetime(2007, 1, 1): datetime(2006, 1, 1),})) tests.append((YearBegin(-2), {datetime(2007, 1, 1): datetime(2005, 1, 1), datetime(2008, 6, 30): datetime(2007, 1, 1), datetime(2008, 12, 31): datetime(2007, 1, 1),})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [ (YearBegin(), datetime(2007, 1, 3), False), (YearBegin(), datetime(2008, 1, 1), True), (YearBegin(), datetime(2006, 12, 31), False), (YearBegin(), datetime(2006, 1, 2), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBYearEndLagged(unittest.TestCase): def test_bad_month_fail(self): self.assertRaises(Exception, BYearEnd, month=13) self.assertRaises(Exception, BYearEnd, month=0) def test_offset(self): tests = [] tests.append((BYearEnd(month=6), {datetime(2008, 1, 1): datetime(2008, 6, 30), datetime(2007, 6, 30): datetime(2008, 6, 30)}, )) tests.append((BYearEnd(n=-1, month=6), {datetime(2008, 1, 1): datetime(2007, 6, 29), datetime(2007, 6, 30): datetime(2007, 6, 29)}, )) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): self.assertEqual(baseDate + dateOffset, expected) def test_roll(self): offset = BYearEnd(month=6) date = datetime(2009, 11, 30) self.assertEqual(offset.rollforward(date), datetime(2010, 6, 30)) self.assertEqual(offset.rollback(date), datetime(2009, 6, 30)) def test_onOffset(self): tests = [ (BYearEnd(month=2), datetime(2007, 2, 28), True), (BYearEnd(month=6), datetime(2007, 6, 30), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestBYearEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((BYearEnd(), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2009, 12, 31), datetime(2005, 12, 30): datetime(2006, 12, 29), datetime(2005, 12, 31): datetime(2006, 12, 29),})) tests.append((BYearEnd(0), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2008, 12, 31), datetime(2005, 12, 31): datetime(2006, 12, 29),})) tests.append((BYearEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 29), datetime(2008, 6, 30): datetime(2007, 12, 31), datetime(2008, 12, 31): datetime(2007, 12, 31), datetime(2006, 12, 29): datetime(2005, 12, 30), datetime(2006, 12, 30): datetime(2006, 12, 29), datetime(2007, 1, 1): datetime(2006, 12, 29),})) tests.append((BYearEnd(-2), {datetime(2007, 1, 1): datetime(2005, 12, 30), datetime(2008, 6, 30): datetime(2006, 12, 29), datetime(2008, 12, 31): datetime(2006, 12, 29),})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [ (BYearEnd(), datetime(2007, 12, 31), True), (BYearEnd(), datetime(2008, 1, 1), False), (BYearEnd(), datetime(2006, 12, 31), False), (BYearEnd(), datetime(2006, 12, 29), True), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) class TestYearEnd(unittest.TestCase): def test_offset(self): tests = [] tests.append((YearEnd(), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2009, 12, 31), datetime(2005, 12, 30): datetime(2005, 12, 31), datetime(2005, 12, 31): datetime(2006, 12, 31),})) tests.append((YearEnd(0), {datetime(2008, 1, 1): datetime(2008, 12, 31), datetime(2008, 6, 30): datetime(2008, 12, 31), datetime(2008, 12, 31): datetime(2008, 12, 31), datetime(2005, 12, 30): datetime(2005, 12, 31),})) tests.append((YearEnd(-1), {datetime(2007, 1, 1): datetime(2006, 12, 31), datetime(2008, 6, 30): datetime(2007, 12, 31), datetime(2008, 12, 31): datetime(2007, 12, 31), datetime(2006, 12, 29): datetime(2005, 12, 31), datetime(2006, 12, 30): datetime(2005, 12, 31), datetime(2007, 1, 1): datetime(2006, 12, 31),})) tests.append((YearEnd(-2), {datetime(2007, 1, 1): datetime(2005, 12, 31), datetime(2008, 6, 30): datetime(2006, 12, 31), datetime(2008, 12, 31): datetime(2006, 12, 31),})) for dateOffset, cases in tests: for baseDate, expected in cases.iteritems(): assertEq(dateOffset, baseDate, expected) def test_onOffset(self): tests = [ (YearEnd(), datetime(2007, 12, 31), True), (YearEnd(), datetime(2008, 1, 1), False), (YearEnd(), datetime(2006, 12, 31), True), (YearEnd(), datetime(2006, 12, 29), False), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def testOnOffset(): tests = [#(QuarterEnd(1, startingMonth=1), datetime(2008, 1, 31), True), #(QuarterEnd(1, startingMonth=1), datetime(2007, 12, 31), False), #(QuarterEnd(1, startingMonth=1), datetime(2008, 2, 29), False), #(QuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), False), #(QuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), False), #(QuarterEnd(1, startingMonth=1), datetime(2008, 4, 30), True), #(QuarterEnd(1, startingMonth=2), datetime(2008, 5, 30), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 6, 29), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 6, 30), False), #(QuarterEnd(1, startingMonth=2), datetime(2008, 1, 31), False), #(QuarterEnd(1, startingMonth=2), datetime(2007, 12, 31), False), #(QuarterEnd(1, startingMonth=2), datetime(2008, 2, 29), True), #(QuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), False), #(QuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), False), #(QuarterEnd(1, startingMonth=2), datetime(2008, 4, 30), False), #(QuarterEnd(1, startingMonth=2), datetime(2008, 5, 30), True), #(QuarterEnd(1, startingMonth=3), datetime(2008, 6, 29), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 6, 30), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 1, 31), False), #(QuarterEnd(1, startingMonth=3), datetime(2007, 12, 31), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 2, 29), False), #(QuarterEnd(1, startingMonth=3), datetime(2007, 3, 30), False), #(QuarterEnd(1, startingMonth=3), datetime(2007, 3, 31), True), #(QuarterEnd(1, startingMonth=3), datetime(2008, 4, 30), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 5, 30), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 6, 29), False), #(QuarterEnd(1, startingMonth=3), datetime(2008, 6, 30), True), ] for offset, date, expected in tests: assertOnOffset(offset, date, expected) def assertEq(dateOffset, baseDate, expected): actual = dateOffset + baseDate assert actual == expected def test_Hour(): assertEq(Hour(), datetime(2010, 1, 1), datetime(2010, 1, 1, 1)) assertEq(Hour(-1), datetime(2010, 1, 1, 1), datetime(2010, 1, 1)) assertEq(2 * Hour(), datetime(2010, 1, 1), datetime(2010, 1, 1, 2)) assertEq(-1 * Hour(), datetime(2010, 1, 1, 1), datetime(2010, 1, 1)) assert (Hour(3) + Hour(2)) == Hour(5) assert (Hour(3) - Hour(2)) == Hour() def test_Minute(): assertEq(Minute(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 1)) assertEq(Minute(-1), datetime(2010, 1, 1, 0, 1), datetime(2010, 1, 1)) assertEq(2 * Minute(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 2)) assertEq(-1 * Minute(), datetime(2010, 1, 1, 0, 1), datetime(2010, 1, 1)) assert (Minute(3) + Minute(2)) == Minute(5) assert (Minute(3) - Minute(2)) == Minute() def test_Second(): assertEq(Second(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 1)) assertEq(Second(-1), datetime(2010, 1, 1, 0, 0, 1), datetime(2010, 1, 1)) assertEq(2 * Second(), datetime(2010, 1, 1), datetime(2010, 1, 1, 0, 0, 2)) assertEq(-1 * Second(), datetime(2010, 1, 1, 0, 0, 1), datetime(2010, 1, 1)) assert (Second(3) +
Second(2)
pandas.core.datetools.Second
import os import sys import argparse import pandas as pd from scipy import stats sys.path.append(os.path.abspath("..")) from survey._app import CODE_DIR, app from core.models.metrics import gain_mean, rejection_ratio, gain from utils import get_con_and_dfs, get_all_con_and_dfs import metrics STATS_FUNCTIONS = {} # overwritten by a command line flag. If true, percentage will be generated instead of frequency USE_PERCENTAGE = None USE_LABELS = None SELECTION = None AI_FEEDBACK_ACCURACY_SCALAS = { "ai_much_worse": "AI much worse than PROPOSER", "ai_worse": "AI worse", "ai_sligthly_worse": "AI slighly worse", "ai_equal_to_proposer": "AI equal to PROPOSER", "ai_slighly_better": "AI slighly better", "ai_better": "AI better", "ai_much_better": "AI much better than the PROPOSER", } AI_FEEDBACK_SCALAS = { 1: "strongly_disagree", 2: "disagree", 3: "slightly_disagree", 4: "neutral", 5: "slightly_agree", 6: "agree", 7: "strongly_agree" } def get_parser(): parser = argparse.ArgumentParser(description='Generate statistics for a given treatment') parser.add_argument('--use-percentage', help='Generate percentages instead of frequencies', action='store_true') parser.add_argument('--use-latex', help='Print results as latex table', action='store_true') parser.add_argument('--use-labels', help='Print results using description labels', action='store_true') parser.add_argument('--output-dir', help='Output directory where csv files were exported') parser.add_argument('--selection', help='Whether to restrict the stats to responder or proposers', choices=['prop', 'resp']) parser.add_argument('treatments', help='Comma separated treatments') return parser ALL_CONS, ALL_DFS = get_all_con_and_dfs() def mark_for_stats(label=None): def _mark_for_stats(function, label=label): if label is None: label = function.__name__[4:] STATS_FUNCTIONS[label] = function return function return _mark_for_stats def get_count_participants(treatment, con, dfs=None, use_percentage=None, use_labels=None): sql = f""" select * from result__{treatment}_survey where worker_id not in ( select worker_id from main__txx where worker_code == 'dropped' ) """ if SELECTION == "resp": sql = f""" select worker_id from result__{treatment}_resp """ elif SELECTION == "prop": sql = f""" select worker_id from result__{treatment}_prop """ else: sql = f""" select * from ( select worker_id from result__{treatment}_resp union select worker_id from result__{treatment}_prop ) """ df =
pd.read_sql(sql, con)
pandas.read_sql
import numpy as np import pandas as pd from scripts.utils import remove_outliers, linear_regression import seaborn as sns import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.preprocessing import normalize #from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split import torch lan = "all" if lan == "es": language = "Spanish" elif lan == "fr": language = "French" elif lan == "all": language = "French & Spanish" # Load time taken to translate and calculate sentence length if lan == "all": es =
pd.read_csv("data/un-timed-sentences/en-es.processed", sep='\t')
pandas.read_csv
#!/usr/bin/env python import datetime import pandas as pd from pathlib import Path new_tutorial_name = { '16S Microbial Analysis with Mothur': '16S Microbial Analysis with mothur (extended)', '16S Microbial Analysis with mothur': '16S Microbial Analysis with mothur (extended)', 'Quality Control ': 'Quality Control', 'RNA-Seq reads to counts': '1: RNA-Seq reads to counts', 'RNA-seq counts to genes': '2: RNA-seq counts to genes', 'RNA-seq genes to pathways': '3: RNA-seq genes to pathways', 'Introduction to Genome Assembly': 'An Introduction to Genome Assembly', 'EWAS data analysis of 450k data': 'Infinium Human Methylation BeadChip', 'Creating a new tutorial - Defining the technical infrastructure': 'Tools, Data, and Workflows for tutorials', 'Creating a new tutorial - Writing content in Markdown': 'Creating content in Markdown', 'Running the Galaxy Training material website locally': 'Running the GTN website locally', 'Visualizations: JavaScript plugins': 'JavaScript plugins', 'Compute and analyze Essential Biodiversity Variables with PAMPA toolsuite': 'Compute and analyze biodiversity metrics with PAMPA toolsuite', 'Ephemeris for Galaxy Tool Management': 'Galaxy Tool Management with Ephemeris', 'Collections: Rule Based Uploader': 'Rule Based Uploader', 'Collections: Using dataset collection': 'Using dataset collections', 'Data: Downloading and Deleting Data in Galaxy': 'Downloading and Deleting Data in Galaxy', 'Histories: Understanding Galaxy history system': 'Understanding Galaxy history system', 'Jupyter: Use Jupyter notebooks in Galaxy': 'Use Jupyter notebooks in Galaxy', 'Using dataset collection': 'Using dataset collections', 'Workflows: Extracting Workflows from Histories': 'Extracting Workflows from Histories', 'Workflows: Using Workflow Parameters': 'Using Workflow Parameters', 'Exome sequencing data analysis': 'Exome sequencing data analysis for diagnosing a genetic disease', 'Galaxy Tool Management': 'Galaxy Tool Management with Ephemeris', 'Virtual screening of the SARS-CoV-2 main protease with rDock and pose scoring': 'Virtual screening of the SARS-CoV-2 main protease with rxDock and pose scoring' } new_topic_for_tuto = { 'Formation of the Super-Structures on the Inactive X': 'Epigenetics', 'Identification of the binding sites of the Estrogen receptor': 'Epigenetics', 'Identification of the binding sites of the T-cell acute lymphocytic leukemia protein 1 (TAL1)': 'Epigenetics', 'RAD-Seq Reference-based data analysis': 'Ecology', 'RAD-Seq de-novo data analysis': 'Ecology', 'RAD-Seq to construct genetic maps': 'Ecology' } new_topics = { 'User Interface and Features': 'Using Galaxy and Managing your Data', 'Data Manipulation': 'Using Galaxy and Managing your Data', 'User Interface and Data Manipulation': 'Using Galaxy and Managing your Data', 'Assembly) is not working I can do up to multiQC and after unicycler not working': 'Assembly' } acceptable_topics = [ "Assembly", "Climate", "Computational chemistry", "Contributing to the Galaxy Training Material", "Development in Galaxy", "Ecology", "Epigenetics", "Galaxy Server administration", "Genome Annotation", "Imaging", "Introduction to Galaxy Analyses", "Metabolomics", "Metagenomics", "Proteomics", "Sequence analysis", "Statistics and machine learning", "Teaching and Hosting Galaxy training", "Transcriptomics", "Using Galaxy and Managing your Data", "Variant Analysis", "Visualisation" ] def extract_tutorial_feedbacks(topic_df, topic_name): '''Extract pro/con per tutorial for a topic and write them in a file :topic_df: dataframe object for the topic :topic_name: name for the topic, name for the file ''' grouped_by_tuto = topic_df.groupby(by="tutorial") with open('../results/%s.md' % topic_name, 'w') as f: for tuto, group in grouped_by_tuto: # get groups tuto_df = grouped_by_tuto.get_group(tuto) pros = [] cons = [] # get pros/cons for index, row in tuto_df.iterrows(): if row['pro'] != 'nan': pros.append("%s (*%s*)" % (row['pro'], row['timestamp'])) if row['con'] != 'nan': cons.append("%s (*%s*)" % (row['con'], row['timestamp'])) # write in report file f.write("- **%s**\n" % tuto) if len(pros) > 0: f.write(" - Pro:\n - ") f.write("\n - ".join(pros)) if len(cons) > 0: f.write("\n - Con:\n - ") f.write("\n - ".join(cons)) f.write("\n\n") def fix_tutorial_info(df): '''Change tutorial topic or title :param df: dataframe ''' df = df.copy() # change topic for some tutorials for tuto in new_topic_for_tuto: df.loc[df.tutorial == tuto, 'topic'] = new_topic_for_tuto[tuto] # rename topic for all tutorials in a topic for topic in new_topics: df.topic = (df .topic .replace(to_replace=topic, value=new_topics[topic])) # rename some tutorials for tuto in new_tutorial_name: df.loc[df.tutorial == tuto, 'tutorial'] = new_tutorial_name[tuto] return df def extract_topic_tutorial_name(df): '''Extract topic from tutorial name :param df: dataframe ''' df = df.copy() new = df['tutorial_topic'].str[::-1].str.split('(', n = 1, expand = True) df["tutorial"]= new[1].str[::-1].str[:-1] df["topic"]= new[0].str[::-1].str[:-1] return df def prepare_feedback(url, out_file): '''Get and prepare feedback CSV file :param url: URL to Google sheet with feedback answers :param out_file: Path to output file ''' df = (pd.read_csv(url, sep='\t') # rename column .rename(columns = {'Timestamp': 'timestamp', 'How much did you like this tutorial?': 'note', 'What did you like?': 'pro', 'What could be improved?': 'con', 'Tutorial': 'tutorial_topic', 'Your feedback is always anonymous. Also make it confidential (only visible to admins)?': 'anonymous'}) # extract topic from tutorial name .pipe(extract_topic_tutorial_name) # remove rows with NaN on note, pro and con .dropna(subset=['note', 'pro', 'con'], how='all') # replace NaN in note by 0 .fillna(value={'note': 0}) # fill other NaN by empty string .fillna('') # format .assign( #note to integer note=lambda x: x['note'].astype(int), # format pro and con to string pro=lambda x: x['pro'].astype(str), con=lambda x: x['con'].astype(str), # extract month and date timestamp=lambda x:
pd.to_datetime(x['timestamp'], dayfirst=True)
pandas.to_datetime
import pandas as pd import pytest import dask.dataframe as dd pytestmark = pytest.mark.skipif( not dd._compat.PANDAS_GT_100, reason="BooleanArray added in 1.0.0" ) def test_meta(): values = pd.array([True, False, None], dtype="boolean") ds = dd.from_pandas(pd.Series(values), 2) assert ds.dtype ==
pd.BooleanDtype()
pandas.BooleanDtype
"""Autograding process internals for Otter-Grader""" import os import json import pandas as pd import pickle import zipfile from glob import glob from .runners import create_runner from .utils import OtterRuntimeError from ...version import LOGO_WITH_VERSION from ...utils import chdir def main(autograder_dir, **kwargs): """ Run the autograding process. Args: autograder_dir (``str``): the absolute path of the directory in which autograding is occurring (e.g. on Gradescope, this is ``/autograder``) **kwargs: keyword arguments for updating configurations in the default configurations ``otter.run.run_autograder.constants.DEFAULT_OPTIONS``; these values override anything present in ``otter_config.json`` """ config_fp = os.path.join(autograder_dir, "source", "otter_config.json") if os.path.isfile(config_fp): with open(config_fp, encoding="utf-8") as f: config = json.load(f) else: config = {} config["autograder_dir"] = autograder_dir runner = create_runner(config, **kwargs) if runner.get_option("logo"): # ASCII 8207 is an invisible non-whitespace character; this should prevent gradescope from # incorrectly left-stripping the whitespace at the beginning of the logo print(f"{chr(8207)}\n", LOGO_WITH_VERSION, "\n", sep="") abs_ag_path = os.path.abspath(runner.get_option("autograder_dir")) with chdir(abs_ag_path): try: if runner.get_option("zips"): with chdir("./submission"): zips = glob("*.zip") if len(zips) > 1: raise OtterRuntimeError("More than one zip file found in submission and 'zips' config is true") with zipfile.ZipFile(zips[0]) as zf: zf.extractall() runner.prepare_files() scores = runner.run() with open("results/results.pkl", "wb+") as f: pickle.dump(scores, f) output = scores.to_gradescope_dict(runner.get_options()) except OtterRuntimeError as e: output = { "score": 0, "stdout_visibility": "hidden", "tests": [ { "name": "Autograder Error", "output": f"Otter encountered an error when grading this submission:\n\n{e}", }, ], } raise e finally: if "output" in vars(): with open("./results/results.json", "w+") as f: json.dump(output, f, indent=4) print("\n\n", end="") df =
pd.DataFrame(output["tests"])
pandas.DataFrame
"""This module implements two solution for artificial dataset generation. Both of them use multiple datasets of reference and a given mixing coefficient profile to generate artificially contaminated dataset by spiking the sources together. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from itertools import count, cycle from pathlib import Path from FlowCytometryTools import PolyGate, FCMeasurement from bactoml.fcdataset import FCDataSet from bactoml.df_pipeline import DFLambdaFunction from bactoml.decision_tree_classifier import HistogramTransform from bactoml.fcdataset import MissingPathError class SpikingPoissonModel(): """ Generate artificial dataset by spiking multiple datasets together. The sum of independent Poisson variables with rate l1 and l2 follows a Poisson law with rate l1 + l2. A random Poisson variable following a Poisson law with rate l over an inteval T can be rescaled to an interval T' by adjusting the rate to l * T' / T. Here we assume that the distribution of event over the bins of a same histogram are independent (*). We also assume that the datasets used as reference are independent. The number of events on a histogram bin for a mixture of water A and B such that V = V_A + V_B = 0.9 mL, the standard volume of a measurement, follows a Poisson law of rate V_A/V l_A + V_B/V l_B. (*) we loose whole histogram pattern variations seen in some periodic sources. """ def __init__(self, datasets, histogram_pipeline, random_state=None): """ Parameters: ----------- datasets : list of strings, Path of the directories containing all the FCS files used as reference. histogram_pipeline : sklearn Pipeline. Pipeline applying preprocessing and histogram transform to a FCDataset. The histogram transform step should be called 'histogram' in the sklearn Pipeline. random_state : int or None, Seed for the random number generator. Can also be interpreted as the ID of the artificial dataset generated. """ #initialize the random number generator. if random_state: self.random_state = random_state self.random = np.random.RandomState(seed=self.random_state) else: self.random_state = None self.random = np.random.RandomState() #histogram dimensions: try: hist_step = histogram_pipeline.named_steps['histogram'].edges self.dct_dimensions = {channel : len(edges)-1 for channel, edges in hist_step.items()} except KeyError: print('The preprocessing pipeline must implement an HistogramTransform step named "histogram".') #estimate Poisson distribution parameter for all the histogram bins """The Poisson rate is given by the mean count per bin scaled to the same volume for each FCS file (here 0.9 mL). The scaling step is already implemented in the HistogramTransform. """ self.poisson_lambdas = [] for data in datasets: lambdas = np.zeros(np.prod(list(self.dct_dimensions.values()))) for n, fcs in enumerate(FCDataSet(data)): h = histogram_pipeline.fit_transform(fcs) lambdas += (np.round(h['counts'].values) - lambdas) / (n + 1) self.poisson_lambdas.append(lambdas) def spike_single_concentration(self, mixing_coeff): """Given mixing coefficients, generate artificial histograms for a mix of different sources. Parameters: ----------- mixing_coeff : 1D array containing the mixing coefficients. Returns: -------- (i, sample) : generator returning artificial samples and their index i. """ #mixing coefficients shouls sum to 1 mixing_coeff = np.array(mixing_coeff) / np.sum(mixing_coeff) mix_lambdas = np.zeros(np.prod(list(self.dct_dimensions.values()))) for coeff, lambdas in zip(mixing_coeff, self.poisson_lambdas): mix_lambdas += lambdas * coeff #sample the Poisson distribution of the mixed samples for i in count(): sample = np.array([self.random.poisson(lambdas) for lambdas in mix_lambdas]).reshape(list(self.dct_dimensions.values())) yield (i, sample) def spike_single_profile(self, profile): """Given a sequence of mixing coefficients, generate a sequence of artificial histograms for mixes of sources with different composition. Parameters: ----------- profile : 2D array, (N_steps, N_sources). For each step of the profile contains the mixing coefficient. Returns: -------- (i, sample) : generator returning artificial samples and their index i. """ for i, step in enumerate(profile): mixing_coeff = np.array(step) / np.sum(step) mix_lambdas = np.zeros(np.prod(list(self.dct_dimensions.values()))) for coeff, lambdas in zip(mixing_coeff, self.poisson_lambdas): mix_lambdas += lambdas * coeff sample = np.array([self.random.poisson(lambdas) for lambdas in mix_lambdas]).reshape(list(self.dct_dimensions.values())) yield (i, sample) def spike_periodic_profile(self, profile): """Given a squence of mixing coefficients, generate a periodic infinite sequence of artificial historgrams for mixes of sources with different compositions. Parameters: ----------- profile : 2D array, (N_steps, N_sources). For each step of the profile contains the mixing coefficient. Returns: -------- (i, sample) : generator returning artificial samples and their index i. """ for i, step in enumerate(cycle(profile)): mixing_coeff = np.array(step) / np.sum(step) mix_lambdas = np.zeros(np.prod(list(self.dct_dimensions.values()))) for coeff, lambdas in zip(mixing_coeff, self.poisson_lambdas): mix_lambdas += lambdas * coeff sample = np.array([self.random.poisson(lambdas) for lambdas in mix_lambdas]).reshape(list(self.dct_dimensions.values())) yield (i, sample) class SpikingEventModel(): """Generate artificial dataset by spiking multiple datasets together. Select a random number of FCS files in the dataset and for each select a subset of events. The number of events selected for each dataset is deteminded by the mixing coefficients. """ def __init__(self, directories, columns, random_state=None): """ Parameters: ----------- directories : list of strings, Path of the directories containing all the FCS files used as reference. columns : list of strings, List of the FCS column names to use when building the artificial datasets, e.g. ['SSC', 'FL1', 'FL2'] random_state : int or None, Seed for the random number generator. Can also be interpreted as the ID of the artificial dataset generated. """ #initialize the random number generator. if random_state: self.random_state = random_state self.random = np.random.RandomState(seed=self.random_state) else: self.random_state = None self.random = np.random.RandomState() self.dir_paths = [] #1D list containing the path of the directories containing the FCS files self.fcs_paths = [] #2D list containing the FCS file paths for dir_path in directories: if Path(dir_path).exists(): path = Path(dir_path).resolve() self.dir_paths.append(path) self.fcs_paths.append(list(path.glob('**/*.fcs'))) else: raise MissingPathError(dir_path) self.columns = columns def spike_single_concentration(self, mixing_coeff): """Given mixing coefficients, generate artificial histograms for a mix of different sources. Parameters: ----------- mixing_coeff : 1D array containing the mixing coefficients. Returns: -------- (i, sample) : generator returning artificial samples and their index i. """ #mixing coefficients should sum to 1 mixing_coeff = np.array(mixing_coeff) / np.sum(mixing_coeff) for i in count(): sample = pd.DataFrame() for paths, coeff in zip(self.fcs_paths, mixing_coeff): #number of FCS files to sample from n_fcs = self.random.randint(0, len(paths)) #fraction of each FCS file event to subsample fraction = self.random.rand(n_fcs) fraction *= coeff / np.sum(fraction) #FCS file indices indices = self.random.randint(0, len(paths), n_fcs) #build the artificial FCS file by sampling the reference datasets for idx, f in zip(indices, fraction): data = FCMeasurement(ID='', datafile=paths[idx]) sample = sample.append(data.get_data().sample(frac=f, random_state=self.random)[self.columns], ignore_index=True) yield (i, sample) def spike_single_profile(self, profile): """Given mixing coefficients, generate artificial histograms for a mix of different sources. Parameters: ----------- profile : 2D array, (N_steps, N_sources). For each step of the profile contains the mixing coefficient. Returns: -------- (i, sample) : generator returning artificial samples and their index i. """ for i, step in enumerate(profile): #mixing coefficients should sum to 1 mixing_coeff = np.array(step) / np.sum(step) sample = pd.DataFrame() for paths, coeff in zip(self.fcs_paths, mixing_coeff): #number of FCS files to sample from n_fcs = self.random.randint(0, len(paths)) #fraction of each FCS file event to subsample fraction = self.random.rand(n_fcs) fraction *= coeff / np.sum(fraction) #FCS file indices indices = self.random.randint(0, len(paths), n_fcs) #build the artificial FCS file by sampling the reference datasets for idx, f in zip(indices, fraction): data = FCMeasurement(ID='', datafile=paths[idx]) sample = sample.append(data.get_data().sample(frac=f, random_state=self.random)[self.columns], ignore_index=True) yield (i, sample) def spike_periodic_profile(self, profile): """Given a squence of mixing coefficients, generate a periodic infinite sequence of artificial historgrams for mixes of sources with different compositions. Parameters: ----------- profile : 2D array, (N_steps, N_sources). For each step of the profile contains the mixing coefficient. Returns: -------- (i, sample) : generator returning artificial samples and their index i. """ for i, step in enumerate(cycle(profile)): #mixing coefficients should sum to 1 mixing_coeff = np.array(step) / np.sum(step) sample =
pd.DataFrame()
pandas.DataFrame
import os import gc import re import json import random import numpy as np import pandas as pd import scipy.io as sio from tqdm import tqdm import matplotlib.pyplot as plt from daisy.utils.data import incorporate_in_ml100k from scipy.sparse import csr_matrix from collections import defaultdict from IPython import embed def convert_unique_idx(df, col): column_dict = {x: i for i, x in enumerate(df[col].unique())} df[col] = df[col].apply(column_dict.get) assert df[col].min() == 0 assert df[col].max() == len(column_dict) - 1 return df def cut_down_data_half(df): cut_df = pd.DataFrame([]) for u in np.unique(df.user): aux = df[df['user'] == u].copy() cut_df = cut_df.append(df.sample(int(len(aux) / 2))) return cut_df def filter_users_and_items(df, num_users=None, freq_items=None, top_items=None, keys=['user', 'item']): ''' Reduces the dataframe to a number of users = num_users and it filters the items by frequency ''' if num_users is not None: # df = df[df['user_id'].isin(np.unique(df.user_id)[:num_users])] df = df[df[keys[0]].isin(np.unique(df[keys[0]])[:num_users])] # Get top5k books if top_items is not None: top5k_books = df[keys[1]].value_counts()[:top_items].index df = df[df[keys[1]].isin(top5k_books)] if freq_items is not None: frequent_items = df['item'].value_counts()[df['item'].value_counts() > freq_items].index df = df[df[keys[1]].isin(frequent_items)] return df def run_statistics(df, src): path = f'histograms/{src}' bins = 30 os.makedirs(path, exist_ok=True) f = open(os.path.join(path, "information.txt"), "w+") f.write("Information:\n") f.write("==========================\n") f.write(f"Interactions: {len(df)}\n") f.write(f"#users = {df['user'].nunique()}\n") f.write(f"#items = {df['item'].nunique()}\n") f.close() for key in ['user', 'item']: # OPCIÓ A: HISTOGRAMA a = pd.DataFrame(df.groupby([key])[key].count()) a.columns = ['value_counts'] a.reset_index(level=[0], inplace=True) dims = (15, 5) fig, ax = plt.subplots(figsize=dims) a["value_counts"].hist(bins=200) # fig.savefig('hist.jpg') fig.savefig(os.path.join(path, f'{src}_histogram_{key}_bins={bins}.png')) fig.clf() # OPCIÓ : BARPLOT # a = pd.DataFrame(df_year.groupby(['user'])['user'].count()) # a.columns = ['value_counts'] # a.reset_index(level=[0], inplace=True) # dims = (15, 5) # fig, ax = plt.subplots(figsize=dims) # sns.set_style("darkgrid") # sns.barplot(ax=ax, x="user", y="value_counts", data=a, palette="Blues_d") # ax.set(xlabel="User", ylabel="Value Counts") # plt.xticks(rotation=45) # plt.show() # fig.savefig('data.jpg') def load_rate(src='ml-100k', prepro='origin', binary=True, pos_threshold=None, level='ui', context=False, gce_flag=False, cut_down_data=False, side_info=False, context_type='', context_as_userfeat=False, flag_run_statistics=False, remove_top_users=0, remove_on='item'): """ Method of loading certain raw data Parameters ---------- src : str, the name of dataset prepro : str, way to pre-process raw data input, expect 'origin', f'{N}core', f'{N}filter', N is integer value binary : boolean, whether to transform rating to binary label as CTR or not as Regression pos_threshold : float, if not None, treat rating larger than this threshold as positive sample level : str, which level to do with f'{N}core' or f'{N}filter' operation (it only works when prepro contains 'core' or 'filter') Returns ------- df : pd.DataFrame, rating information with columns: user, item, rating, (options: timestamp) user_num : int, the number of users item_num : int, the number of items """ df = pd.DataFrame() # import mat73 # a = mat73.loadmat('data/gen-disease/genes_phenes.mat') # which dataset will use if src == 'ml-100k': df = pd.read_csv(f'./data/{src}/u.data', sep='\t', header=None, names=['user', 'item', 'rating', 'timestamp'], engine='python') if cut_down_data: df = cut_down_data_half(df) # from 100k to 49.760 interactions elif src == 'drugs': union = False if union == True: df =
pd.read_csv(f'./data/{src}/train_data_contextUNION_sideeffect.csv', engine='python', index_col=0)
pandas.read_csv
# generate stats for each processing steps import pandas as pd from collections import Counter from functools import reduce import gzip import re import os, sys def count_reads(in_fq, n=4): # support either text or gzip file try: f = gzip.open(in_fq, "rt") except: f = open(in_fq, "rt") # count reads count = 0 # fastq line fastq_n = 0 for line in f: fastq_n += 1 if fastq_n == n: count += 1 fastq_n = 0 # close file f.close() return count def reads_length(in_fq, min_read_len, max_read_len, seq_n=2, n=4): # support either text or gzip file try: f = gzip.open(in_fq, "rt") except: f = open(in_fq, "rt") # read lengths reads_len = [] # fastq line fastq_n = 0 for line in f: fastq_n += 1 if fastq_n == seq_n: # sequence line read_len = len(line.rstrip()) if fastq_n == n: reads_len.append(read_len) fastq_n = 0 # read length count reads_len_count = [] counter = dict(Counter(reads_len)) for i in range(min_read_len, max_read_len + 1): if i in counter: reads_len_count.append([i, counter[i]]) else: reads_len_count.append([i, 0]) f.close() return reads_len_count def reads_length_null(min_read_len, max_read_len): reads_len_count = [] for i in range(min_read_len, max_read_len + 1): reads_len_count.append([i, None]) return reads_len_count # simple parser for single-end star log file def star_se_parser(star_log): input_reads = -1 unique_reads = -1 multi_reads = -1 with open(star_log, "rt") as f: for line in f: if "Number of input reads" in line: # input reads m = re.search("^Number of input reads \|(.*)$", line.strip()) if m: input_reads = int(m.group(1).strip()) if "Uniquely mapped reads number" in line: # unique reads m = re.search("^Uniquely mapped reads number \|(.*)$", line.strip()) if m: unique_reads = int(m.group(1).strip()) if "Number of reads mapped to multiple loci" in line: # multi reads m = re.search("^Number of reads mapped to multiple loci \|(.*)$", line.strip()) if m: multi_reads = int(m.group(1).strip()) if any(count == -1 for count in [input_reads, unique_reads, multi_reads]): return [None, None, None] else: return [input_reads, unique_reads, multi_reads] if __name__ == "__main__": # sample sheet samples =
pd.read_table(snakemake.config["samples"])
pandas.read_table
import os import matplotlib.pyplot as plt import numpy as np import pandas as pd import pydub import librosa import multiprocessing from joblib import Parallel, delayed DATA_ROOT = '../data' CPU_COUNT = multiprocessing.cpu_count() def load_audio(path, duration): # duration (ms) audio = pydub.AudioSegment.silent(duration=duration) try: audio = audio.overlay(pydub.AudioSegment.from_file(path).set_frame_rate(22050).set_channels(1))[:duration] except: return None # -32768 - 32767 raw = np.fromstring(audio._data, dtype='int16') # -1 - +1 raw = (raw + 0.5) / (32767 + 0.5) return raw def load_urbansound(): """Load raw audio and metadata from the UrbanSound8K dataset.""" if os.path.isfile(os.path.join(DATA_ROOT, 'urban_meta.pkl')) and os.path.isfile(os.path.join(DATA_ROOT, 'urban_audio.npy')): rows_meta = pd.read_pickle(os.path.join(DATA_ROOT, 'urban_meta.pkl')) rows_audio = np.load(os.path.join(DATA_ROOT, 'urban_audio.npy')) return rows_meta, rows_audio metadata = pd.read_csv(os.path.join(DATA_ROOT, 'UrbanSound8K', 'metadata', 'UrbanSound8K.csv')) b = 0 batch_size = 1000 rows_meta = [] rows_audio = [] while len(metadata[b * batch_size:(b + 1) * batch_size]): for key, row in metadata[b * batch_size:(b + 1) * batch_size].iterrows(): filename = row['slice_file_name'] fold = row['fold'] category = row['classID'] category_name = row['class'] rows_meta.append(pd.DataFrame({'filename':filename, 'fold':fold, 'category':category, 'category_name':category_name}, index=[0])) audio_path = os.path.join(DATA_ROOT, 'UrbanSound8K', 'audio', 'fold%d' % fold, filename) audio = load_audio(audio_path, 4000) if audio is not None: rows_audio.append(load_audio(audio_path, 4000)) b = b + 1 # この2行必要?最後に1回だけやればよいのでは? rows_meta = [
pd.concat(rows_meta, ignore_index=True)
pandas.concat
# <NAME>, 16 different variants # 0: None # Ligands, 4 different variations # 0: XPhos # 1: t-BuXPhos # 2: t-BuBrettPhos # 3: AdBrettPhosV # Bases, 3 different variations # 0: P2Et # 1: BTMG # 2: MTBD # Additives, 24 different variations # 0: None import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder ##################################################### ############### REACTION VARIABLES ################## ##################################################### additivePlate1 = np.array( [ 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 0, 2, 4, 6, 1, 3, 5, 7, 1, 3, 5, 7, 1, 3, 5, 7, 1, 3, 5, 7, ] ) additivePlate2 = np.array( [ 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 8, 10, 12, 14, 9, 11, 13, 15, 9, 11, 13, 15, 9, 11, 13, 15, 9, 11, 13, 15, ] ) additivePlate3 = np.array( [ 23, 17, 19, 21, 23, 17, 19, 21, 23, 17, 19, 21, 23, 17, 19, 21, 16, 18, 20, 22, 16, 18, 20, 22, 16, 18, 20, 22, 16, 18, 20, 22, ] ) ligand = np.array( [ 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, ] ) base = np.array( [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ] ) arylHalide = np.array( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, ] ) ############################################### ############### CREATE DATA ################### ############################################### df_plate =
pd.read_csv("./data_table.csv")
pandas.read_csv
import os import pandas as pd from unittest import TestCase, main from metapool.metapool import parse_sample_sheet from metapool.prep import (preparations_for_run, remove_qiita_id, get_run_prefix, is_nonempty_gz_file, get_machine_code, get_model_and_center, sample_sheet_to_dataframe, parse_illumina_run_id, _check_invalid_names, agp_transform) class Tests(TestCase): def setUp(self): data_dir = os.path.join(os.path.dirname(__file__), 'data') self.good_run = os.path.join(data_dir, 'runs', '191103_D32611_0365_G00DHB5YXX') self.good_run_new_version = os.path.join( data_dir, 'runs', '191104_D32611_0365_G00DHB5YXZ') self.OKish_run_new_version = os.path.join( data_dir, 'runs', '191104_D32611_0365_OK15HB5YXZ') self.ss = os.path.join(self.good_run, 'sample-sheet.csv') def _check_run_191103_D32611_0365_G00DHB5YXX(self, obs): "Convenience method to check the output of a whole run" exp = {'191103_D32611_0365_G00DHB5YXX.Baz.1', '191103_D32611_0365_G00DHB5YXX.Baz.3', '191103_D32611_0365_G00DHB5YXX.FooBar_666.3'} self.assertEqual(set(obs.keys()), exp) columns = ['sample_name', 'experiment_design_description', 'library_construction_protocol', 'platform', 'run_center', 'run_date', 'run_prefix', 'sequencing_meth', 'center_name', 'center_project_name', 'instrument_model', 'runid', 'sample_plate', 'sample_well', 'i7_index_id', 'index', 'i5_index_id', 'index2', 'lane', 'sample_project', 'well_description'] data = [['importantsample1', 'EXPERIMENT_DESC', 'LIBRARY_PROTOCOL', 'Illumina', 'UCSDMI', '2019-11-03', 'sample1_S11_L003', 'sequencing by synthesis', 'CENTER_NAME', 'Baz', 'Illumina HiSeq 2500', '191103_D32611_0365_G00DHB5YXX', 'FooBar_666_p1', 'A3', 'iTru7_107_09', 'GCCTTGTT', 'iTru5_01_A', 'AACACCAC', '3', 'Baz', 'FooBar_666_p1.sample1.A3'], ['importantsample44', 'EXPERIMENT_DESC', 'LIBRARY_PROTOCOL', 'Illumina', 'UCSDMI', '2019-11-03', 'sample44_S14_L003', 'sequencing by synthesis', 'CENTER_NAME', 'Baz', 'Illumina HiSeq 2500', '191103_D32611_0365_G00DHB5YXX', 'Baz_p3', 'B99', 'iTru7_107_14', 'GTCCTAAG', 'iTru5_01_A', 'CATCTGCT', '3', 'Baz', 'Baz_p3.sample44.B99']] exp = pd.DataFrame(data=data, columns=columns) obs_df = obs['191103_D32611_0365_G00DHB5YXX.Baz.3'] # make sure the columns are in the same order before comparing obs_df = obs_df[exp.columns].copy() pd.testing.assert_frame_equal(obs_df, exp) data = [['importantsample1', 'EXPERIMENT_DESC', 'LIBRARY_PROTOCOL', 'Illumina', 'UCSDMI', '2019-11-03', 'sample1_S11_L001', 'sequencing by synthesis', 'CENTER_NAME', 'Baz', 'Illumina HiSeq 2500', '191103_D32611_0365_G00DHB5YXX', 'FooBar_666_p1', 'A1', 'iTru7_107_07', 'CCGACTAT', 'iTru5_01_A', 'ACCGACAA', '1', 'Baz', 'FooBar_666_p1.sample1.A1'], ['importantsample2', 'EXPERIMENT_DESC', 'LIBRARY_PROTOCOL', 'Illumina', 'UCSDMI', '2019-11-03', 'sample2_S10_L001', 'sequencing by synthesis', 'CENTER_NAME', 'Baz', 'Illumina HiSeq 2500', '191103_D32611_0365_G00DHB5YXX', 'FooBar_666_p1', 'A2', 'iTru7_107_08', 'CCGACTAT', 'iTru5_01_A', 'CTTCGCAA', '1', 'Baz', 'FooBar_666_p1.sample2.A2']] exp =
pd.DataFrame(columns=columns, data=data)
pandas.DataFrame
#---------------------------------------------------------------------------------------------- #################### # IMPORT LIBRARIES # #################### import streamlit as st import pandas as pd import numpy as np import plotly as dd import plotly.express as px import seaborn as sns import matplotlib.pyplot as plt import matplotlib.font_manager import plotly.graph_objects as go import functions as fc import os import altair as alt import statsmodels.api as sm from scipy import stats from sklearn.metrics import make_scorer, mean_squared_error, r2_score, mean_absolute_error, explained_variance_score, roc_auc_score, max_error, log_loss, average_precision_score, precision_recall_curve, auc, roc_curve, confusion_matrix, recall_score, precision_score, f1_score, accuracy_score, balanced_accuracy_score, cohen_kappa_score from sklearn.model_selection import train_test_split import scipy import sys import platform import base64 from io import BytesIO from linearmodels import PanelOLS from linearmodels import RandomEffects from linearmodels import PooledOLS #---------------------------------------------------------------------------------------------- def app(): # Clear cache st.legacy_caching.clear_cache() # Hide traceback in error messages (comment out for de-bugging) sys.tracebacklimit = 0 # Show altair tooltip when full screen st.markdown('<style>#vg-tooltip-element{z-index: 1000051}</style>',unsafe_allow_html=True) # workaround for Firefox bug- hide the scrollbar while keeping the scrolling functionality st.markdown(""" <style> .ReactVirtualized__Grid::-webkit-scrollbar { display: none; } .ReactVirtualized__Grid { -ms-overflow-style: none; /* IE and Edge */ scrollbar-width: none; /* Firefox */ } </style> """, unsafe_allow_html=True) #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # RESET INPUT #Session state if 'key' not in st.session_state: st.session_state['key'] = 0 reset_clicked = st.sidebar.button("Reset all your input") if reset_clicked: st.session_state['key'] = st.session_state['key'] + 1 st.sidebar.markdown("") #++++++++++++++++++++++++++++++++++++++++++++ # DATA IMPORT # File upload section df_dec = st.sidebar.radio("Get data", ["Use example dataset", "Upload data"], key = st.session_state['key']) uploaded_data=None if df_dec == "Upload data": #st.subheader("Upload your data") #uploaded_data = st.sidebar.file_uploader("Make sure that dot (.) is a decimal separator!", type=["csv", "txt"]) separator_expander=st.sidebar.expander('Upload settings') with separator_expander: a4,a5=st.columns(2) with a4: dec_sep=a4.selectbox("Decimal sep.",['.',','], key = st.session_state['key']) with a5: col_sep=a5.selectbox("Column sep.",[';', ',' , '|', '\s+', '\t','other'], key = st.session_state['key']) if col_sep=='other': col_sep=st.text_input('Specify your column separator', key = st.session_state['key']) a4,a5=st.columns(2) with a4: thousands_sep=a4.selectbox("Thousands x sep.",[None,'.', ' ','\s+', 'other'], key = st.session_state['key']) if thousands_sep=='other': thousands_sep=st.text_input('Specify your thousands separator', key = st.session_state['key']) with a5: encoding_val=a5.selectbox("Encoding",[None,'utf_8','utf_8_sig','utf_16_le','cp1140','cp1250','cp1251','cp1252','cp1253','cp1254','other'], key = st.session_state['key']) if encoding_val=='other': encoding_val=st.text_input('Specify your encoding', key = st.session_state['key']) # Error handling for separator selection: if dec_sep==col_sep: st.sidebar.error("Decimal and column separators cannot be identical!") elif dec_sep==thousands_sep: st.sidebar.error("Decimal and thousands separators cannot be identical!") elif col_sep==thousands_sep: st.sidebar.error("Column and thousands separators cannot be identical!") uploaded_data = st.sidebar.file_uploader("Default separators: decimal '.' | column ';'", type=["csv", "txt"]) if uploaded_data is not None: df = pd.read_csv(uploaded_data, decimal=dec_sep, sep = col_sep,thousands=thousands_sep,encoding=encoding_val, engine='python') df_name=os.path.splitext(uploaded_data.name)[0] st.sidebar.success('Loading data... done!') elif uploaded_data is None: df = pd.read_csv("default data/Grunfeld.csv", sep = ";|,|\t",engine='python') df_name="Grunfeld" else: df = pd.read_csv("default data/Grunfeld.csv", sep = ";|,|\t",engine='python') df_name="Grunfeld" st.sidebar.markdown("") #Basic data info n_rows = df.shape[0] n_cols = df.shape[1] #++++++++++++++++++++++++++++++++++++++++++++ # SETTINGS settings_expander=st.sidebar.expander('Settings') with settings_expander: st.caption("**Precision**") user_precision=int(st.number_input('Number of digits after the decimal point',min_value=0,max_value=10,step=1,value=4, key = st.session_state['key'])) st.caption("**Help**") sett_hints = st.checkbox('Show learning hints', value=False, key = st.session_state['key']) st.caption("**Appearance**") sett_wide_mode = st.checkbox('Wide mode', value=False, key = st.session_state['key']) sett_theme = st.selectbox('Theme', ["Light", "Dark"], key = st.session_state['key']) #sett_info = st.checkbox('Show methods info', value=False) #sett_prec = st.number_input('Set the number of diggits for the output', min_value=0, max_value=8, value=2) st.sidebar.markdown("") # Check if wide mode if sett_wide_mode: fc.wide_mode_func() # Check theme if sett_theme == "Dark": fc.theme_func_dark() if sett_theme == "Light": fc.theme_func_light() fc.theme_func_dl_button() #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # DATA PREPROCESSING & VISUALIZATION st.header("**Panel data**") st.markdown("Get your data ready for powerfull methods! Let STATY do data cleaning, variable transformations, visualizations and deliver you the stats you need. Specify your data processing preferences and start exploring your data stories right below... ") # Check if enough data is available if n_cols >= 2 and n_rows > 0: st.empty() else: st.error("ERROR: Not enough data!") return # Specify entity and time st.markdown("**Panel data specification**") col1, col2 = st.columns(2) with col1: entity_na_warn = False entity_options = df.columns entity = st.selectbox("Select variable for entity", entity_options, key = st.session_state['key']) with col2: time_na_warn = False time_options = df.columns time_options = list(time_options[time_options.isin(df.drop(entity, axis = 1).columns)]) time = st.selectbox("Select variable for time", time_options, key = st.session_state['key']) if np.where(df[entity].isnull())[0].size > 0: entity_na_warn = "ERROR: The variable selected for entity has NAs!" st.error(entity_na_warn) if np.where(df[time].isnull())[0].size > 0: time_na_warn = "ERROR: The variable selected for time has NAs!" st.error(time_na_warn) if df[time].dtypes != "float64" and df[time].dtypes != "float32" and df[time].dtypes != "int64" and df[time].dtypes != "int32": time_na_warn = "ERROR: Time variable must be numeric!" st.error(time_na_warn) run_models = False if time_na_warn == False and entity_na_warn == False: data_empty_container = st.container() with data_empty_container: st.empty() st.empty() st.empty() st.empty() st.empty() st.empty() st.empty() st.empty() # Make sure time is numeric df[time] = pd.to_numeric(df[time]) data_exploration_container2 = st.container() with data_exploration_container2: st.header("**Data screening and processing**") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # DATA SUMMARY # Main panel for data summary (pre) #---------------------------------- dev_expander_dsPre = st.expander("Explore raw panel data info and stats", expanded = False) st.empty() with dev_expander_dsPre: # Default data description: if uploaded_data == None: if st.checkbox("Show data description", value = False, key = st.session_state['key']): st.markdown("**Data source:**") st.markdown("This is the original 11-firm data set from Grunfeld’s Ph.D. thesis (*Grunfeld, 1958, The Determinants of Corporate Investment, Department of Economics, University of Chicago*). For more details see online complements for the article [The Grunfeld Data at 50] (https://www.zeileis.org/grunfeld/).") st.markdown("**Citation:**") st.markdown("<NAME>, <NAME> (2010). “The Grunfeld Data at 50,” German Economic Review, 11(4), 404-417. [doi:10.1111/j.1468-0475.2010.00513.x] (https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0475.2010.00513.x)") st.markdown("**Variables in the dataset:**") col1,col2=st.columns(2) col1.write("invest") col2.write("Gross investment, defined as additions to plant and equipment plus maintenance and repairs in millions of dollars deflated by the implicit price deflator of producers’ durable equipment (base 1947)") col1,col2=st.columns(2) col1.write("value") col2.write("Market value of the firm, defined as the price of common shares at December 31 (or, for WH, IBM and CH, the average price of December 31 and January 31 of the following year) times the number of common shares outstanding plus price of preferred shares at December 31 (or average price of December 31 and January 31 of the following year) times number of preferred shares plus total book value of debt at December 31 in millions of dollars deflated by the implicit GNP price deflator (base 1947)") col1,col2=st.columns(2) col1.write("capital") col2.write("Stock of plant and equipment, defined as the accumulated sum of net additions to plant and equipment deflated by the implicit price deflator for producers’ durable equipment (base 1947) minus depreciation allowance deflated by depreciation expense deflator (10 years moving average of wholesale price index of metals and metal products, base1947)") col1,col2=st.columns(2) col1.write("firm") col2.write("General Motors (GM), US Steel (US), General Electric (GE), Chrysler (CH), Atlantic Refining (AR), IBM, Union Oil (UO), Westinghouse (WH), Goodyear (GY), Diamond Match (DM), American Steel (AS)") col1,col2=st.columns(2) col1.write("year") col2.write("Year ranging from 1935 to 1954") st.markdown("") # Show raw data & data info df_summary = fc.data_summary(df) if st.checkbox("Show raw data", value = False, key = st.session_state['key']): st.write(df) #st.info("Data shape: "+ str(n_rows) + " rows and " + str(n_cols) + " columns") st.write("Data shape: ", n_rows, " rows and ", n_cols, " columns") if df[df.duplicated()].shape[0] > 0 or df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: check_nasAnddupl=st.checkbox("Show duplicates and NAs info", value = False, key = st.session_state['key']) if check_nasAnddupl: if df[df.duplicated()].shape[0] > 0: st.write("Number of duplicates: ", df[df.duplicated()].shape[0]) st.write("Duplicate row index: ", ', '.join(map(str,list(df.index[df.duplicated()])))) if df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: st.write("Number of rows with NAs: ", df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0]) st.write("Rows with NAs: ", ', '.join(map(str,list(pd.unique(np.where(df.isnull())[0]))))) # Show variable info if st.checkbox('Show variable info', value = False, key = st.session_state['key']): st.write(df_summary["Variable types"]) # Show summary statistics (raw data) if st.checkbox('Show summary statistics (raw data)', value = False, key = st.session_state['key']): st.write(df_summary["ALL"].style.set_precision(user_precision)) # Download link for summary statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_summary["Variable types"].to_excel(excel_file, sheet_name="variable_info") df_summary["ALL"].to_excel(excel_file, sheet_name="summary_statistics") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Summary statistics__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download summary statistics</a> """, unsafe_allow_html=True) st.write("") if fc.get_mode(df).loc["n_unique"].any(): st.caption("** Mode is not unique.") if sett_hints: st.info(str(fc.learning_hints("de_summary_statistics"))) dev_expander_anovPre = st.expander("ANOVA for raw panel data", expanded = False) with dev_expander_anovPre: if df.shape[1] > 2: # Target variable target_var = st.selectbox('Select target variable ', df.drop([entity, time], axis = 1).columns, key = st.session_state['key']) if df[target_var].dtypes == "int64" or df[target_var].dtypes == "float64": class_var_options = df.columns class_var_options = class_var_options[class_var_options.isin(df.drop(target_var, axis = 1).columns)] clas_var = st.selectbox('Select classifier variable ', [entity, time], key = st.session_state['key']) # Means and sd by entity col1, col2 = st.columns(2) with col1: df_anova_woTime = df.drop([time], axis = 1) df_grouped_ent = df_anova_woTime.groupby(entity) st.write("Mean based on entity:") st.write(df_grouped_ent.mean()[target_var]) st.write("") with col2: st.write("SD based on entity:") st.write(df_grouped_ent.std()[target_var]) st.write("") # Means and sd by time col3, col4 = st.columns(2) with col3: df_anova_woEnt= df.drop([entity], axis = 1) df_grouped_time = df_anova_woEnt.groupby(time) counts_time = pd.DataFrame(df_grouped_time.count()[target_var]) counts_time.columns = ["count"] st.write("Mean based on time:") st.write(df_grouped_time.mean()[target_var]) st.write("") with col4: st.write("SD based on time:") st.write(df_grouped_time.std()[target_var]) st.write("") col9, col10 = st.columns(2) with col9: st.write("Boxplot grouped by entity:") box_size1 = st.slider("Select box size", 1, 50, 5, key = st.session_state['key']) # Grouped boxplot by entity grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data[time] = df[time] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var] = df[target_var] grouped_boxchart_ent = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size1, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(entity, scale = alt.Scale(zero = False)), y = alt.Y(target_var, scale = alt.Scale(zero = False)), tooltip = [target_var, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_ent, use_container_width=True) with col10: st.write("Boxplot grouped by time:") box_size2 = st.slider("Select box size ", 1, 50, 5, key = st.session_state['key']) # Grouped boxplot by time grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data[time] = df[time] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var] = df[target_var] grouped_boxchart_time = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size2, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(time, scale = alt.Scale(domain = [min(df[time]), max(df[time])])), y = alt.Y(target_var, scale = alt.Scale(zero = False)), tooltip = [target_var, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_time, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_boxplot"))) st.write("") # Count for entity and time col5, col6 = st.columns(2) with col5: st.write("Number of observations per entity:") counts_ent = pd.DataFrame(df_grouped_ent.count()[target_var]) counts_ent.columns = ["count"] st.write(counts_ent.transpose()) with col6: st.write("Number of observations per time:") counts_time = pd.DataFrame(df_grouped_time.count()[target_var]) counts_time.columns = ["count"] st.write(counts_time.transpose()) if sett_hints: st.info(str(fc.learning_hints("de_anova_count"))) st.write("") # ANOVA calculation df_grouped = df[[target_var,clas_var]].groupby(clas_var) overall_mean = (df_grouped.mean()*df_grouped.count()).sum()/df_grouped.count().sum() dof_between = len(df_grouped.count())-1 dof_within = df_grouped.count().sum()-len(df_grouped.count()) dof_tot = dof_between + dof_within SS_between = (((df_grouped.mean()-overall_mean)**2)*df_grouped.count()).sum() SS_within = (df_grouped.var()*(df_grouped.count()-1)).sum() SS_total = SS_between + SS_within MS_between = SS_between/dof_between MS_within = SS_within/dof_within F_stat = MS_between/MS_within p_value = scipy.stats.f.sf(F_stat, dof_between, dof_within) anova_table=pd.DataFrame({ "DF": [dof_between, dof_within.values[0], dof_tot.values[0]], "SS": [SS_between.values[0], SS_within.values[0], SS_total.values[0]], "MS": [MS_between.values[0], MS_within.values[0], ""], "F-statistic": [F_stat.values[0], "", ""], "p-value": [p_value[0], "", ""]}, index = ["Between", "Within", "Total"],) st.write("ANOVA:") st.write(anova_table) if sett_hints: st.info(str(fc.learning_hints("de_anova_table"))) st.write("") #Anova (OLS) codes = pd.factorize(df[clas_var])[0] ano_ols = sm.OLS(df[target_var], sm.add_constant(codes)) ano_ols_output = ano_ols.fit() residuals = ano_ols_output.resid col7, col8 = st.columns(2) with col7: # QQ-plot st.write("Normal QQ-plot:") st.write("") st.write("") st.write("") st.write("") st.write("") st.write("") qq_plot_data = pd.DataFrame() qq_plot_data["StandResiduals"] = (residuals - residuals.mean())/residuals.std() qq_plot_data["Index"] = df.index qq_plot_data[entity] = df[entity] qq_plot_data[time] = df[time] qq_plot_data = qq_plot_data.sort_values(by = ["StandResiduals"]) qq_plot_data["Theoretical quantiles"] = stats.probplot(residuals, dist="norm")[0][0] qq_plot = alt.Chart(qq_plot_data, height = 300).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("StandResiduals", title = "stand. residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["StandResiduals", "Theoretical quantiles", entity, time, "Index"] ) line = alt.Chart( pd.DataFrame({"Theoretical quantiles": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])], "StandResiduals": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]})).mark_line(size = 2, color = "darkred").encode( alt.X("Theoretical quantiles"), alt.Y("StandResiduals"), ) st.altair_chart(qq_plot + line, use_container_width = True) with col8: # Residuals histogram st.write("Residuals histogram:") residuals_hist = pd.DataFrame(residuals) residuals_hist.columns = ["residuals"] binNo_res = st.slider("Select maximum number of bins ", 5, 100, 25, key = st.session_state['key']) hist_plot_res = alt.Chart(residuals_hist, height = 300).mark_bar().encode( x = alt.X("residuals", title = "residuals", bin = alt.BinParams(maxbins = binNo_res), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("count()", title = "count of records", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["count()", alt.Tooltip("residuals", bin = alt.BinParams(maxbins = binNo_res))] ) st.altair_chart(hist_plot_res, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_residuals"))) # Download link for ANOVA statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_grouped_ent.mean()[target_var].to_excel(excel_file, sheet_name="entity_mean") df_grouped_ent.std()[target_var].to_excel(excel_file, sheet_name="entity_sd") df_grouped_time.mean()[target_var].to_excel(excel_file, sheet_name="time_mean") df_grouped_time.std()[target_var].to_excel(excel_file, sheet_name="time_sd") counts_ent.transpose().to_excel(excel_file, sheet_name="entity_obs") counts_time.transpose().to_excel(excel_file, sheet_name="time_obs") anova_table.to_excel(excel_file, sheet_name="ANOVA table") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "ANOVA statistics__" + target_var + "__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download ANOVA statistics</a> """, unsafe_allow_html=True) st.write("") else: st.error("ERROR: The target variable must be a numerical one!") else: st.error("ERROR: No variables available for ANOVA!") #++++++++++++++++++++++ # DATA PROCESSING # Settings for data processing #------------------------------------- dev_expander_dm_sb = st.expander("Specify data processing preferences", expanded = False) with dev_expander_dm_sb: n_rows_wNAs = df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] n_rows_wNAs_pre_processing = "No" if n_rows_wNAs > 0: n_rows_wNAs_pre_processing = "Yes" a1, a2, a3 = st.columns(3) else: a1, a3 = st.columns(2) sb_DM_dImp_num = None sb_DM_dImp_other = None sb_DM_delRows=None sb_DM_keepRows=None group_by_num = None group_by_other = None with a1: #-------------------------------------------------------------------------------------- # DATA CLEANING st.markdown("**Data cleaning**") # Delete rows delRows =st.selectbox('Delete rows with index ...', options=['-', 'greater', 'greater or equal', 'smaller', 'smaller or equal', 'equal', 'between'], key = st.session_state['key']) if delRows!='-': if delRows=='between': row_1=st.number_input('Lower limit is', value=0, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) row_2=st.number_input('Upper limit is', value=2, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) if (row_1 + 1) < row_2 : sb_DM_delRows=df.index[(df.index > row_1) & (df.index < row_2)] elif (row_1 + 1) == row_2 : st.warning("WARNING: No row is deleted!") elif row_1 == row_2 : st.warning("WARNING: No row is deleted!") elif row_1 > row_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif delRows=='equal': sb_DM_delRows = st.multiselect("to...", df.index, key = st.session_state['key']) else: row_1=st.number_input('than...', step=1, value=1, min_value = 0, max_value=len(df)-1, key = st.session_state['key']) if delRows=='greater': sb_DM_delRows=df.index[df.index > row_1] if row_1 == len(df)-1: st.warning("WARNING: No row is deleted!") elif delRows=='greater or equal': sb_DM_delRows=df.index[df.index >= row_1] if row_1 == 0: st.error("ERROR: All rows are deleted!") return elif delRows=='smaller': sb_DM_delRows=df.index[df.index < row_1] if row_1 == 0: st.warning("WARNING: No row is deleted!") elif delRows=='smaller or equal': sb_DM_delRows=df.index[df.index <= row_1] if row_1 == len(df)-1: st.error("ERROR: All rows are deleted!") return if sb_DM_delRows is not None: df = df.loc[~df.index.isin(sb_DM_delRows)] no_delRows=n_rows-df.shape[0] # Keep rows keepRows =st.selectbox('Keep rows with index ...', options=['-', 'greater', 'greater or equal', 'smaller', 'smaller or equal', 'equal', 'between'], key = st.session_state['key']) if keepRows!='-': if keepRows=='between': row_1=st.number_input('Lower limit is', value=0, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) row_2=st.number_input('Upper limit is', value=2, step=1, min_value= 0, max_value=len(df)-1, key = st.session_state['key']) if (row_1 + 1) < row_2 : sb_DM_keepRows=df.index[(df.index > row_1) & (df.index < row_2)] elif (row_1 + 1) == row_2 : st.error("ERROR: No row is kept!") return elif row_1 == row_2 : st.error("ERROR: No row is kept!") return elif row_1 > row_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif keepRows=='equal': sb_DM_keepRows = st.multiselect("to...", df.index, key = st.session_state['key']) else: row_1=st.number_input('than...', step=1, value=1, min_value = 0, max_value=len(df)-1, key = st.session_state['key']) if keepRows=='greater': sb_DM_keepRows=df.index[df.index > row_1] if row_1 == len(df)-1: st.error("ERROR: No row is kept!") return elif keepRows=='greater or equal': sb_DM_keepRows=df.index[df.index >= row_1] if row_1 == 0: st.warning("WARNING: All rows are kept!") elif keepRows=='smaller': sb_DM_keepRows=df.index[df.index < row_1] if row_1 == 0: st.error("ERROR: No row is kept!") return elif keepRows=='smaller or equal': sb_DM_keepRows=df.index[df.index <= row_1] if sb_DM_keepRows is not None: df = df.loc[df.index.isin(sb_DM_keepRows)] no_keptRows=df.shape[0] # Delete columns sb_DM_delCols = st.multiselect("Select columns to delete", df.drop([entity, time], axis = 1).columns, key = st.session_state['key']) df = df.loc[:,~df.columns.isin(sb_DM_delCols)] # Keep columns sb_DM_keepCols = st.multiselect("Select columns to keep", df.drop([entity, time], axis = 1).columns, key = st.session_state['key']) if len(sb_DM_keepCols) > 0: df = df.loc[:,df.columns.isin([entity, time] + sb_DM_keepCols)] # Delete duplicates if any exist if df[df.duplicated()].shape[0] > 0: sb_DM_delDup = st.selectbox("Delete duplicate rows", ["No", "Yes"], key = st.session_state['key']) if sb_DM_delDup == "Yes": n_rows_dup = df[df.duplicated()].shape[0] df = df.drop_duplicates() elif df[df.duplicated()].shape[0] == 0: sb_DM_delDup = "No" # Delete rows with NA if any exist n_rows_wNAs = df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] if n_rows_wNAs > 0: sb_DM_delRows_wNA = st.selectbox("Delete rows with NAs", ["No", "Yes"], key = st.session_state['key']) if sb_DM_delRows_wNA == "Yes": df = df.dropna() elif n_rows_wNAs == 0: sb_DM_delRows_wNA = "No" # Filter data st.markdown("**Data filtering**") filter_var = st.selectbox('Filter your data by a variable...', list('-')+ list(df.columns), key = st.session_state['key']) if filter_var !='-': if df[filter_var].dtypes=="int64" or df[filter_var].dtypes=="float64": if df[filter_var].dtypes=="float64": filter_format="%.8f" else: filter_format=None user_filter=st.selectbox('Select values that are ...', options=['greater','greater or equal','smaller','smaller or equal', 'equal','between'], key = st.session_state['key']) if user_filter=='between': filter_1=st.number_input('Lower limit is', format=filter_format, value=df[filter_var].min(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = st.session_state['key']) filter_2=st.number_input('Upper limit is', format=filter_format, value=df[filter_var].max(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = st.session_state['key']) #reclassify values: if filter_1 < filter_2 : df = df[(df[filter_var] > filter_1) & (df[filter_var] < filter_2)] if len(df) == 0: st.error("ERROR: No data available for the selected limits!") return elif filter_1 >= filter_2 : st.error("ERROR: Lower limit must be smaller than upper limit!") return elif user_filter=='equal': filter_1=st.multiselect('to... ', options=df[filter_var].values, key = st.session_state['key']) if len(filter_1)>0: df = df.loc[df[filter_var].isin(filter_1)] else: filter_1=st.number_input('than... ',format=filter_format, value=df[filter_var].min(), min_value=df[filter_var].min(), max_value=df[filter_var].max(), key = st.session_state['key']) #reclassify values: if user_filter=='greater': df = df[df[filter_var] > filter_1] elif user_filter=='greater or equal': df = df[df[filter_var] >= filter_1] elif user_filter=='smaller': df= df[df[filter_var]< filter_1] elif user_filter=='smaller or equal': df = df[df[filter_var] <= filter_1] if len(df) == 0: st.error("ERROR: No data available for the selected value!") return elif len(df) == n_rows: st.warning("WARNING: Data are not filtered for this value!") else: filter_1=st.multiselect('Filter your data by a value...', (df[filter_var]).unique(), key = st.session_state['key']) if len(filter_1)>0: df = df.loc[df[filter_var].isin(filter_1)] if n_rows_wNAs_pre_processing == "Yes": with a2: #-------------------------------------------------------------------------------------- # DATA IMPUTATION # Select data imputation method (only if rows with NA not deleted) if sb_DM_delRows_wNA == "No" and n_rows_wNAs > 0: st.markdown("**Data imputation**") sb_DM_dImp_choice = st.selectbox("Replace entries with NA", ["No", "Yes"], key = st.session_state['key']) if sb_DM_dImp_choice == "Yes": # Numeric variables sb_DM_dImp_num = st.selectbox("Imputation method for numeric variables", ["Mean", "Median", "Random value"], key = st.session_state['key']) # Other variables sb_DM_dImp_other = st.selectbox("Imputation method for other variables", ["Mode", "Random value"], key = st.session_state['key']) group_by_num = st.selectbox("Group imputation by", ["None", "Entity", "Time"], key = st.session_state['key']) group_by_other = group_by_num df = fc.data_impute_panel(df, sb_DM_dImp_num, sb_DM_dImp_other, group_by_num, group_by_other, entity, time) else: st.markdown("**Data imputation**") st.write("") st.info("No NAs in data set!") with a3: #-------------------------------------------------------------------------------------- # DATA TRANSFORMATION st.markdown("**Data transformation**") # Select columns for different transformation types transform_options = df.drop([entity, time], axis = 1).select_dtypes([np.number]).columns numCat_options = df.drop([entity, time], axis = 1).columns sb_DM_dTrans_log = st.multiselect("Select columns to transform with log", transform_options, key = st.session_state['key']) if sb_DM_dTrans_log is not None: df = fc.var_transform_log(df, sb_DM_dTrans_log) sb_DM_dTrans_sqrt = st.multiselect("Select columns to transform with sqrt", transform_options, key = st.session_state['key']) if sb_DM_dTrans_sqrt is not None: df = fc.var_transform_sqrt(df, sb_DM_dTrans_sqrt) sb_DM_dTrans_square = st.multiselect("Select columns for squaring", transform_options, key = st.session_state['key']) if sb_DM_dTrans_square is not None: df = fc.var_transform_square(df, sb_DM_dTrans_square) sb_DM_dTrans_cent = st.multiselect("Select columns for centering ", transform_options, key = st.session_state['key']) if sb_DM_dTrans_cent is not None: df = fc.var_transform_cent(df, sb_DM_dTrans_cent) sb_DM_dTrans_stand = st.multiselect("Select columns for standardization", transform_options, key = st.session_state['key']) if sb_DM_dTrans_stand is not None: df = fc.var_transform_stand(df, sb_DM_dTrans_stand) sb_DM_dTrans_norm = st.multiselect("Select columns for normalization", transform_options, key = st.session_state['key']) if sb_DM_dTrans_norm is not None: df = fc.var_transform_norm(df, sb_DM_dTrans_norm) sb_DM_dTrans_numCat = st.multiselect("Select columns for numeric categorization ", numCat_options, key = st.session_state['key']) if sb_DM_dTrans_numCat: if not df[sb_DM_dTrans_numCat].columns[df[sb_DM_dTrans_numCat].isna().any()].tolist(): sb_DM_dTrans_numCat_sel = st.multiselect("Select variables for manual categorization ", sb_DM_dTrans_numCat, key = st.session_state['key']) if sb_DM_dTrans_numCat_sel: for var in sb_DM_dTrans_numCat_sel: if df[var].unique().size > 5: st.error("ERROR: Selected variable has too many categories (>5): " + str(var)) return else: manual_cats = pd.DataFrame(index = range(0, df[var].unique().size), columns=["Value", "Cat"]) text = "Category for " # Save manually selected categories for i in range(0, df[var].unique().size): text1 = text + str(var) + ": " + str(sorted(df[var].unique())[i]) man_cat = st.number_input(text1, value = 0, min_value=0, key = st.session_state['key']) manual_cats.loc[i]["Value"] = sorted(df[var].unique())[i] manual_cats.loc[i]["Cat"] = man_cat new_var_name = "numCat_" + var new_var = pd.DataFrame(index = df.index, columns = [new_var_name]) for c in df[var].index: if pd.isnull(df[var][c]) == True: new_var.loc[c, new_var_name] = np.nan elif pd.isnull(df[var][c]) == False: new_var.loc[c, new_var_name] = int(manual_cats[manual_cats["Value"] == df[var][c]]["Cat"]) df[new_var_name] = new_var.astype('int64') # Exclude columns with manual categorization from standard categorization numCat_wo_manCat = [var for var in sb_DM_dTrans_numCat if var not in sb_DM_dTrans_numCat_sel] df = fc.var_transform_numCat(df, numCat_wo_manCat) else: df = fc.var_transform_numCat(df, sb_DM_dTrans_numCat) else: col_with_na = df[sb_DM_dTrans_numCat].columns[df[sb_DM_dTrans_numCat].isna().any()].tolist() st.error("ERROR: Please select columns without NAs: " + ', '.join(map(str,col_with_na))) return else: sb_DM_dTrans_numCat = None sb_DM_dTrans_mult = st.number_input("Number of variable multiplications ", value = 0, min_value=0, key = st.session_state['key']) if sb_DM_dTrans_mult != 0: multiplication_pairs = pd.DataFrame(index = range(0, sb_DM_dTrans_mult), columns=["Var1", "Var2"]) text = "Multiplication pair" for i in range(0, sb_DM_dTrans_mult): text1 = text + " " + str(i+1) text2 = text + " " + str(i+1) + " " mult_var1 = st.selectbox(text1, transform_options, key = st.session_state['key']) mult_var2 = st.selectbox(text2, transform_options, key = st.session_state['key']) multiplication_pairs.loc[i]["Var1"] = mult_var1 multiplication_pairs.loc[i]["Var2"] = mult_var2 fc.var_transform_mult(df, mult_var1, mult_var2) sb_DM_dTrans_div = st.number_input("Number of variable divisions ", value = 0, min_value=0, key = st.session_state['key']) if sb_DM_dTrans_div != 0: division_pairs = pd.DataFrame(index = range(0, sb_DM_dTrans_div), columns=["Var1", "Var2"]) text = "Division pair" for i in range(0, sb_DM_dTrans_div): text1 = text + " " + str(i+1) + " (numerator)" text2 = text + " " + str(i+1) + " (denominator)" div_var1 = st.selectbox(text1, transform_options, key = st.session_state['key']) div_var2 = st.selectbox(text2, transform_options, key = st.session_state['key']) division_pairs.loc[i]["Var1"] = div_var1 division_pairs.loc[i]["Var2"] = div_var2 fc.var_transform_div(df, div_var1, div_var2) data_transform=st.checkbox("Transform data in Excel?", value=False) if data_transform==True: st.info("Press the button to open your data in Excel. Don't forget to save your result as a csv or a txt file!") # Download link output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="data",index=False) excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Data_transformation__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Transform your data in Excel</a> """, unsafe_allow_html=True) st.write("") #-------------------------------------------------------------------------------------- # PROCESSING SUMMARY if st.checkbox('Show a summary of my data processing preferences', value = False, key = st.session_state['key']): st.markdown("Summary of data changes:") #-------------------------------------------------------------------------------------- # DATA CLEANING # Rows if sb_DM_delRows is not None and delRows!='-' : if no_delRows > 1: st.write("-", no_delRows, " rows were deleted!") elif no_delRows == 1: st.write("-",no_delRows, " row was deleted!") elif no_delRows == 0: st.write("- No row was deleted!") else: st.write("- No row was deleted!") if sb_DM_keepRows is not None and keepRows!='-' : if no_keptRows > 1: st.write("-", no_keptRows, " rows are kept!") elif no_keptRows == 1: st.write("-",no_keptRows, " row is kept!") elif no_keptRows == 0: st.write("- All rows are kept!") else: st.write("- All rows are kept!") # Columns if len(sb_DM_delCols) > 1: st.write("-", len(sb_DM_delCols), " columns were manually deleted:", ', '.join(sb_DM_delCols)) elif len(sb_DM_delCols) == 1: st.write("-",len(sb_DM_delCols), " column was manually deleted:", str(sb_DM_delCols[0])) elif len(sb_DM_delCols) == 0: st.write("- No column was manually deleted!") if len(sb_DM_keepCols) > 1: st.write("-", len(sb_DM_keepCols), " columns are kept:", ', '.join(sb_DM_keepCols)) elif len(sb_DM_keepCols) == 1: st.write("-",len(sb_DM_keepCols), " column is kept:", str(sb_DM_keepCols[0])) elif len(sb_DM_keepCols) == 0: st.write("- All columns are kept!") # Duplicates if sb_DM_delDup == "Yes": if n_rows_dup > 1: st.write("-", n_rows_dup, " duplicate rows were deleted!") elif n_rows_dup == 1: st.write("-", n_rows_dup, "duplicate row was deleted!") else: st.write("- No duplicate row was deleted!") # NAs if sb_DM_delRows_wNA == "Yes": if n_rows_wNAs > 1: st.write("-", n_rows_wNAs, "rows with NAs were deleted!") elif n_rows_wNAs == 1: st.write("-", n_rows - n_rows_wNAs, "row with NAs was deleted!") else: st.write("- No row with NAs was deleted!") # Filter if filter_var != "-": if df[filter_var].dtypes=="int64" or df[filter_var].dtypes=="float64": if isinstance(filter_1, list): if len(filter_1) == 0: st.write("-", " Data was not filtered!") elif len(filter_1) > 0: st.write("-", " Data filtered by:", str(filter_var)) elif filter_1 is not None: st.write("-", " Data filtered by:", str(filter_var)) else: st.write("-", " Data was not filtered!") elif len(filter_1)>0: st.write("-", " Data filtered by:", str(filter_var)) elif len(filter_1) == 0: st.write("-", " Data was not filtered!") else: st.write("-", " Data was not filtered!") #-------------------------------------------------------------------------------------- # DATA IMPUTATION if sb_DM_delRows_wNA == "No" and n_rows_wNAs > 0: st.write("- Data imputation method for numeric variables:", sb_DM_dImp_num) st.write("- Data imputation method for other variable types:", sb_DM_dImp_other) st.write("- Imputation grouped by:", group_by_num) #-------------------------------------------------------------------------------------- # DATA TRANSFORMATION # log if len(sb_DM_dTrans_log) > 1: st.write("-", len(sb_DM_dTrans_log), " columns were log-transformed:", ', '.join(sb_DM_dTrans_log)) elif len(sb_DM_dTrans_log) == 1: st.write("-",len(sb_DM_dTrans_log), " column was log-transformed:", sb_DM_dTrans_log[0]) elif len(sb_DM_dTrans_log) == 0: st.write("- No column was log-transformed!") # sqrt if len(sb_DM_dTrans_sqrt) > 1: st.write("-", len(sb_DM_dTrans_sqrt), " columns were sqrt-transformed:", ', '.join(sb_DM_dTrans_sqrt)) elif len(sb_DM_dTrans_sqrt) == 1: st.write("-",len(sb_DM_dTrans_sqrt), " column was sqrt-transformed:", sb_DM_dTrans_sqrt[0]) elif len(sb_DM_dTrans_sqrt) == 0: st.write("- No column was sqrt-transformed!") # square if len(sb_DM_dTrans_square) > 1: st.write("-", len(sb_DM_dTrans_square), " columns were squared:", ', '.join(sb_DM_dTrans_square)) elif len(sb_DM_dTrans_square) == 1: st.write("-",len(sb_DM_dTrans_square), " column was squared:", sb_DM_dTrans_square[0]) elif len(sb_DM_dTrans_square) == 0: st.write("- No column was squared!") # centering if len(sb_DM_dTrans_cent) > 1: st.write("-", len(sb_DM_dTrans_cent), " columns were centered:", ', '.join(sb_DM_dTrans_cent)) elif len(sb_DM_dTrans_cent) == 1: st.write("-",len(sb_DM_dTrans_cent), " column was centered:", sb_DM_dTrans_cent[0]) elif len(sb_DM_dTrans_cent) == 0: st.write("- No column was centered!") # standardize if len(sb_DM_dTrans_stand) > 1: st.write("-", len(sb_DM_dTrans_stand), " columns were standardized:", ', '.join(sb_DM_dTrans_stand)) elif len(sb_DM_dTrans_stand) == 1: st.write("-",len(sb_DM_dTrans_stand), " column was standardized:", sb_DM_dTrans_stand[0]) elif len(sb_DM_dTrans_stand) == 0: st.write("- No column was standardized!") # normalize if len(sb_DM_dTrans_norm) > 1: st.write("-", len(sb_DM_dTrans_norm), " columns were normalized:", ', '.join(sb_DM_dTrans_norm)) elif len(sb_DM_dTrans_norm) == 1: st.write("-",len(sb_DM_dTrans_norm), " column was normalized:", sb_DM_dTrans_norm[0]) elif len(sb_DM_dTrans_norm) == 0: st.write("- No column was normalized!") # numeric category if sb_DM_dTrans_numCat is not None: if len(sb_DM_dTrans_numCat) > 1: st.write("-", len(sb_DM_dTrans_numCat), " columns were transformed to numeric categories:", ', '.join(sb_DM_dTrans_numCat)) elif len(sb_DM_dTrans_numCat) == 1: st.write("-",len(sb_DM_dTrans_numCat), " column was transformed to numeric categories:", sb_DM_dTrans_numCat[0]) elif sb_DM_dTrans_numCat is None: st.write("- No column was transformed to numeric categories!") # multiplication if sb_DM_dTrans_mult != 0: st.write("-", "Number of variable multiplications: ", sb_DM_dTrans_mult) elif sb_DM_dTrans_mult == 0: st.write("- No variables were multiplied!") # division if sb_DM_dTrans_div != 0: st.write("-", "Number of variable divisions: ", sb_DM_dTrans_div) elif sb_DM_dTrans_div == 0: st.write("- No variables were divided!") st.write("") st.write("") #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # UPDATED DATA SUMMARY # Show only if changes were made if any(v for v in [sb_DM_delCols, sb_DM_dImp_num, sb_DM_dImp_other, sb_DM_dTrans_log, sb_DM_dTrans_sqrt, sb_DM_dTrans_square, sb_DM_dTrans_cent, sb_DM_dTrans_stand, sb_DM_dTrans_norm, sb_DM_dTrans_numCat ] if v is not None) or sb_DM_delDup == "Yes" or sb_DM_delRows_wNA == "Yes" or sb_DM_dTrans_mult != 0 or sb_DM_dTrans_div != 0 or filter_var != "-" or delRows!='-' or keepRows!='-' or len(sb_DM_keepCols) > 0: dev_expander_dsPost = st.expander("Explore cleaned and transformed panel data info and stats", expanded = False) with dev_expander_dsPost: if df.shape[1] > 2 and df.shape[0] > 0: # Show cleaned and transformed data & data info df_summary_post = fc.data_summary(df) if st.checkbox("Show cleaned and transformed data", value = False): n_rows_post = df.shape[0] n_cols_post = df.shape[1] st.dataframe(df) st.write("Data shape: ", n_rows_post, "rows and ", n_cols_post, "columns") # Download transformed data: output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="Clean. and transf. data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "CleanedTransfData__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned and transformed data</a> """, unsafe_allow_html=True) st.write("") if df[df.duplicated()].shape[0] > 0 or df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: check_nasAnddupl2 = st.checkbox("Show duplicates and NAs info (processed)", value = False) if check_nasAnddupl2: index_c = [] for c in df.columns: for r in df.index: if pd.isnull(df[c][r]): index_c.append(r) if df[df.duplicated()].shape[0] > 0: st.write("Number of duplicates: ", df[df.duplicated()].shape[0]) st.write("Duplicate row index: ", ', '.join(map(str,list(df.index[df.duplicated()])))) if df.iloc[list(pd.unique(np.where(df.isnull())[0]))].shape[0] > 0: st.write("Number of rows with NAs: ", len(pd.unique(sorted(index_c)))) st.write("Rows with NAs: ", ', '.join(map(str,list(pd.unique(sorted(index_c)))))) # Show cleaned and transformed variable info if st.checkbox("Show cleaned and transformed variable info", value = False): st.write(df_summary_post["Variable types"]) # Show summary statistics (cleaned and transformed data) if st.checkbox('Show summary statistics (cleaned and transformed data)', value = False): st.write(df_summary_post["ALL"].style.set_precision(user_precision)) # Download link for cleaned data statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="cleaned_data") df_summary_post["Variable types"].to_excel(excel_file, sheet_name="cleaned_variable_info") df_summary_post["ALL"].to_excel(excel_file, sheet_name="cleaned_summary_statistics") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Cleaned data summary statistics_panel_" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned data summary statistics</a> """, unsafe_allow_html=True) st.write("") if fc.get_mode(df).loc["n_unique"].any(): st.caption("** Mode is not unique.") if sett_hints: st.info(str(fc.learning_hints("de_summary_statistics"))) else: st.error("ERROR: No data available for preprocessing!") return dev_expander_anovPost = st.expander("ANOVA for cleaned and transformed panel data", expanded = False) with dev_expander_anovPost: if df.shape[1] > 2 and df.shape[0] > 0: # Target variable target_var2 = st.selectbox('Select target variable', df.drop([entity, time], axis = 1).columns) if df[target_var2].dtypes == "int64" or df[target_var2].dtypes == "float64": class_var_options = df.columns class_var_options = class_var_options[class_var_options.isin(df.drop(target_var2, axis = 1).columns)] clas_var2 = st.selectbox('Select classifier variable', [entity, time],) # Means and sd by entity col1, col2 = st.columns(2) with col1: df_anova_woTime = df.drop([time], axis = 1) df_grouped_ent = df_anova_woTime.groupby(entity) st.write("Mean based on entity:") st.write(df_grouped_ent.mean()[target_var2]) st.write("") with col2: st.write("SD based on entity:") st.write(df_grouped_ent.std()[target_var2]) st.write("") # Means and sd by time col3, col4 = st.columns(2) with col3: df_anova_woEnt= df.drop([entity], axis = 1) df_grouped_time = df_anova_woEnt.groupby(time) counts_time = pd.DataFrame(df_grouped_time.count()[target_var2]) counts_time.columns = ["count"] st.write("Mean based on time:") st.write(df_grouped_time.mean()[target_var2]) st.write("") with col4: st.write("SD based on time:") st.write(df_grouped_time.std()[target_var2]) st.write("") col9, col10 = st.columns(2) with col9: st.write("Boxplot grouped by entity:") box_size1 = st.slider("Select box size ", 1, 50, 5) # Grouped boxplot by entity grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data[time] = df[time] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var2] = df[target_var2] grouped_boxchart_ent = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size1, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(entity, scale = alt.Scale(zero = False)), y = alt.Y(target_var2, scale = alt.Scale(zero = False)), tooltip = [target_var2, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_ent, use_container_width=True) with col10: st.write("Boxplot grouped by time:") box_size2 = st.slider("Select box size ", 1, 50, 5) # Grouped boxplot by time grouped_boxplot_data = pd.DataFrame() grouped_boxplot_data[time] = df[time] grouped_boxplot_data[entity] = df[entity] grouped_boxplot_data["Index"] = df.index grouped_boxplot_data[target_var2] = df[target_var2] grouped_boxchart_time = alt.Chart(grouped_boxplot_data, height = 300).mark_boxplot(size = box_size2, color = "#1f77b4", median = dict(color = "darkred")).encode( x = alt.X(time, scale = alt.Scale(domain = [min(df[time]), max(df[time])])), y = alt.Y(target_var2, scale = alt.Scale(zero = False)), tooltip = [target_var2, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(grouped_boxchart_time, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_boxplot"))) st.write("") # Count for entity and time col5, col6 = st.columns(2) with col5: st.write("Number of observations per entity:") counts_ent = pd.DataFrame(df_grouped_ent.count()[target_var2]) counts_ent.columns = ["count"] st.write(counts_ent.transpose()) with col6: st.write("Number of observations per time:") counts_time = pd.DataFrame(df_grouped_time.count()[target_var2]) counts_time.columns = ["count"] st.write(counts_time.transpose()) if sett_hints: st.info(str(fc.learning_hints("de_anova_count"))) st.write("") # ANOVA calculation df_grouped = df[[target_var2,clas_var2]].groupby(clas_var2) overall_mean = (df_grouped.mean()*df_grouped.count()).sum()/df_grouped.count().sum() dof_between = len(df_grouped.count())-1 dof_within = df_grouped.count().sum()-len(df_grouped.count()) dof_tot = dof_between + dof_within SS_between = (((df_grouped.mean()-overall_mean)**2)*df_grouped.count()).sum() SS_within = (df_grouped.var()*(df_grouped.count()-1)).sum() SS_total = SS_between + SS_within MS_between = SS_between/dof_between MS_within = SS_within/dof_within F_stat = MS_between/MS_within p_value = scipy.stats.f.sf(F_stat, dof_between, dof_within) anova_table=pd.DataFrame({ "DF": [dof_between, dof_within.values[0], dof_tot.values[0]], "SS": [SS_between.values[0], SS_within.values[0], SS_total.values[0]], "MS": [MS_between.values[0], MS_within.values[0], ""], "F-statistic": [F_stat.values[0], "", ""], "p-value": [p_value[0], "", ""]}, index = ["Between", "Within", "Total"],) st.write("ANOVA:") st.write(anova_table) if sett_hints: st.info(str(fc.learning_hints("de_anova_table"))) st.write("") #Anova (OLS) codes = pd.factorize(df[clas_var2])[0] ano_ols = sm.OLS(df[target_var2], sm.add_constant(codes)) ano_ols_output = ano_ols.fit() residuals = ano_ols_output.resid col7, col8 = st.columns(2) with col7: # QQ-plot st.write("Normal QQ-plot:") st.write("") st.write("") st.write("") st.write("") st.write("") st.write("") qq_plot_data = pd.DataFrame() qq_plot_data["StandResiduals"] = (residuals - residuals.mean())/residuals.std() qq_plot_data["Index"] = df.index qq_plot_data[entity] = df[entity] qq_plot_data[time] = df[time] qq_plot_data = qq_plot_data.sort_values(by = ["StandResiduals"]) qq_plot_data["Theoretical quantiles"] = stats.probplot(residuals, dist="norm")[0][0] qq_plot = alt.Chart(qq_plot_data, height = 300).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("StandResiduals", title = "stand. residuals", scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["StandResiduals", "Theoretical quantiles", entity, time, "Index"] ) line = alt.Chart( pd.DataFrame({"Theoretical quantiles": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])], "StandResiduals": [min(qq_plot_data["Theoretical quantiles"]), max(qq_plot_data["Theoretical quantiles"])]})).mark_line(size = 2, color = "darkred").encode( alt.X("Theoretical quantiles"), alt.Y("StandResiduals"), ) st.altair_chart(qq_plot + line, use_container_width = True) with col8: # Residuals histogram st.write("Residuals histogram:") residuals_hist = pd.DataFrame(residuals) residuals_hist.columns = ["residuals"] binNo_res2 = st.slider("Select maximum number of bins ", 5, 100, 25) hist_plot = alt.Chart(residuals_hist, height = 300).mark_bar().encode( x = alt.X("residuals", title = "residuals", bin = alt.BinParams(maxbins = binNo_res2), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("count()", title = "count of records", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["count()", alt.Tooltip("residuals", bin = alt.BinParams(maxbins = binNo_res2))] ) st.altair_chart(hist_plot, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("de_anova_residuals"))) # Download link for ANOVA statistics output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_grouped_ent.mean()[target_var2].to_excel(excel_file, sheet_name="entity_mean") df_grouped_ent.std()[target_var2].to_excel(excel_file, sheet_name="entity_sd") df_grouped_time.mean()[target_var2].to_excel(excel_file, sheet_name="time_mean") df_grouped_time.std()[target_var2].to_excel(excel_file, sheet_name="time_sd") counts_ent.transpose().to_excel(excel_file, sheet_name="entity_obs") counts_time.transpose().to_excel(excel_file, sheet_name="time_obs") anova_table.to_excel(excel_file, sheet_name="ANOVA table") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name = "Cleaned ANOVA statistics__" + target_var2 + "__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download cleaned ANOVA statistics</a> """, unsafe_allow_html=True) st.write("") else: st.error("ERROR: The target variable must be a numerical one!") else: st.error("ERROR: No data available for ANOVA!") return #------------------------------------------------------------------------------------------ #++++++++++++++++++++++ # DATA VISUALIZATION data_visualization_container = st.container() with data_visualization_container: #st.write("") st.write("") st.write("") st.header("**Data visualization**") dev_expander_dv = st.expander("Explore visualization types", expanded = False) with dev_expander_dv: if df.shape[1] > 2 and df.shape[0] > 0: st.write('**Variable selection**') varl_sel_options = df.columns varl_sel_options = varl_sel_options[varl_sel_options.isin(df.drop([entity, time], axis = 1).columns)] var_sel = st.selectbox('Select variable for visualizations', varl_sel_options, key = st.session_state['key']) if df[var_sel].dtypes == "float64" or df[var_sel].dtypes == "float32" or df[var_sel].dtypes == "int64" or df[var_sel].dtypes == "int32": a4, a5 = st.columns(2) with a4: st.write('**Scatterplot with LOESS line**') yy_options = df.columns yy_options = yy_options[yy_options.isin(df.drop([entity, time], axis = 1).columns)] yy = st.selectbox('Select variable for y-axis', yy_options, key = st.session_state['key']) if df[yy].dtypes == "float64" or df[yy].dtypes == "float32" or df[yy].dtypes == "int64" or df[yy].dtypes == "int32": fig_data = pd.DataFrame() fig_data[yy] = df[yy] fig_data[var_sel] = df[var_sel] fig_data["Index"] = df.index fig_data[entity] = df[entity] fig_data[time] = df[time] fig = alt.Chart(fig_data).mark_circle().encode( x = alt.X(var_sel, scale = alt.Scale(domain = [min(fig_data[var_sel]), max(fig_data[var_sel])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y(yy, scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [yy, var_sel, entity, time, "Index"] ) st.altair_chart(fig + fig.transform_loess(var_sel, yy).mark_line(size = 2, color = "darkred"), use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_scatterplot"))) else: st.error("ERROR: Please select a numeric variable for the y-axis!") with a5: st.write('**Histogram**') binNo = st.slider("Select maximum number of bins", 5, 100, 25, key = st.session_state['key']) fig2 = alt.Chart(df).mark_bar().encode( x = alt.X(var_sel, title = var_sel + " (binned)", bin = alt.BinParams(maxbins = binNo), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y("count()", title = "count of records", axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = ["count()", alt.Tooltip(var_sel, bin = alt.BinParams(maxbins = binNo))] ) st.altair_chart(fig2, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_histogram"))) a6, a7 = st.columns(2) with a6: st.write('**Boxplot**') # Boxplot boxplot_data = pd.DataFrame() boxplot_data[var_sel] = df[var_sel] boxplot_data["Index"] = df.index boxplot_data[entity] = df[entity] boxplot_data[time] = df[time] boxplot = alt.Chart(boxplot_data).mark_boxplot(size = 100, color = "#1f77b4", median = dict(color = "darkred")).encode( y = alt.Y(var_sel, scale = alt.Scale(zero = False)), tooltip = [var_sel, entity, time, "Index"] ).configure_axis( labelFontSize = 11, titleFontSize = 12 ) st.altair_chart(boxplot, use_container_width=True) if sett_hints: st.info(str(fc.learning_hints("dv_boxplot"))) with a7: st.write("**QQ-plot**") var_values = df[var_sel] qqplot_data = pd.DataFrame() qqplot_data[var_sel] = var_values qqplot_data["Index"] = df.index qqplot_data[entity] = df[entity] qqplot_data[time] = df[time] qqplot_data = qqplot_data.sort_values(by = [var_sel]) qqplot_data["Theoretical quantiles"] = stats.probplot(var_values, dist="norm")[0][0] qqplot = alt.Chart(qqplot_data).mark_circle(size=20).encode( x = alt.X("Theoretical quantiles", title = "theoretical quantiles", scale = alt.Scale(domain = [min(qqplot_data["Theoretical quantiles"]), max(qqplot_data["Theoretical quantiles"])]), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), y = alt.Y(var_sel, title = str(var_sel), scale = alt.Scale(zero = False), axis = alt.Axis(titleFontSize = 12, labelFontSize = 11)), tooltip = [var_sel, "Theoretical quantiles", entity, time, "Index"] ) st.altair_chart(qqplot + qqplot.transform_regression('Theoretical quantiles', var_sel).mark_line(size = 2, color = "darkred"), use_container_width = True) if sett_hints: st.info(str(fc.learning_hints("dv_qqplot"))) else: st.error("ERROR: Please select a numeric variable!") else: st.error("ERROR: No data available for Data Visualization!") # Check again after processing if np.where(df[entity].isnull())[0].size > 0: entity_na_warn = "WARNING: The variable selected for entity has NAs!" else:entity_na_warn = False if np.where(df[time].isnull())[0].size > 0: time_na_warn = "WARNING: The variable selected for time has NAs!" else:time_na_warn = False #------------------------------------------------------------------------------------------ #++++++++++++++++++++++++++++++++++++++++++++ # PANEL DATA MODELLING data_modelling_container = st.container() with data_modelling_container: #st.write("") #st.write("") #st.write("") st.write("") st.write("") st.header("**Panel data modelling**") st.markdown("Go for creating predictive models of your panel data using panel data modelling! STATY will take care of the modelling for you, so you can put your focus on results interpretation and communication! ") PDM_settings = st.expander("Specify model", expanded = False) with PDM_settings: if time_na_warn == False and entity_na_warn == False: # Initial status for running models model_full_results = None do_modval = "No" model_val_results = None model_full_results = None panel_model_fit = None if df.shape[1] > 2 and df.shape[0] > 0: #-------------------------------------------------------------------------------------- # GENERAL SETTINGS st.markdown("**Variable selection**") # Variable categories df_summary_model = fc.data_summary(df) var_cat = df_summary_model["Variable types"].loc["category"] # Response variable response_var_options = df.columns response_var_options = response_var_options[response_var_options.isin(df.drop(entity, axis = 1).columns)] if time != "NA": response_var_options = response_var_options[response_var_options.isin(df.drop(time, axis = 1).columns)] response_var = st.selectbox("Select response variable", response_var_options, key = st.session_state['key']) # Check if response variable is numeric and has no NAs response_var_message_num = False response_var_message_na = False response_var_message_cat = False if var_cat.loc[response_var] == "string/binary" or var_cat.loc[response_var] == "bool/binary": response_var_message_num = "ERROR: Please select a numeric response variable!" elif var_cat.loc[response_var] == "string/categorical" or var_cat.loc[response_var] == "other" or var_cat.loc[response_var] == "string/single": response_var_message_num = "ERROR: Please select a numeric response variable!" elif var_cat.loc[response_var] == "categorical": response_var_message_cat = "WARNING: Categorical variable is treated as continuous variable!" if response_var_message_num != False: st.error(response_var_message_num) if response_var_message_na != False: st.error(response_var_message_na) if response_var_message_cat != False: st.warning(response_var_message_cat) # Continue if everything is clean for response variable if response_var_message_num == False and response_var_message_na == False: # Select explanatory variables expl_var_options = response_var_options[response_var_options.isin(df.drop(response_var, axis = 1).columns)] expl_var = st.multiselect("Select explanatory variables", expl_var_options, key = st.session_state['key']) var_list = list([entity]) + list([time]) + list([response_var]) + list(expl_var) # Check if explanatory variables are numeric expl_var_message_num = False expl_var_message_na = False if any(a for a in df[expl_var].dtypes if a != "float64" and a != "float32" and a != "int64" and a != "int64"): expl_var_not_num = df[expl_var].select_dtypes(exclude=["int64", "int32", "float64", "float32"]).columns expl_var_message_num = "ERROR: Please exclude non-numeric variables: " + ', '.join(map(str,list(expl_var_not_num))) # Check if NAs are present and delete them automatically (delete before run models button) if np.where(df[var_list].isnull())[0].size > 0: st.warning("WARNING: Your modelling data set includes NAs. Rows with NAs are automatically deleted!") if expl_var_message_num != False: st.error(expl_var_message_num) elif expl_var_message_na != False: st.error(expl_var_message_na) # Continue if everything is clean for explanatory variables and at least one was selected elif expl_var_message_num == False and expl_var_message_na == False and len(expl_var) > 0: #-------------------------------------------------------------------------------------- # ALGORITHMS st.markdown("**Specify modelling algorithm**") # Algorithms selection col1, col2 = st.columns(2) algorithms = ["Entity Fixed Effects", "Time Fixed Effects", "Two-ways Fixed Effects", "Random Effects", "Pooled"] with col1: PDM_alg = st.selectbox("Select modelling technique", algorithms) # Covariance type with col2: PDM_cov_type = st.selectbox("Select covariance type", ["homoskedastic", "heteroskedastic", "clustered"]) PDM_cov_type2 = None if PDM_cov_type == "clustered": PDM_cov_type2 = st.selectbox("Select cluster type", ["entity", "time", "both"]) #-------------------------------------------------------------------------------------- # VALIDATION SETTINGS st.markdown("**Validation settings**") do_modval= st.selectbox("Use model validation", ["No", "Yes"]) if do_modval == "Yes": col1, col2 = st.columns(2) # Select training/ test ratio with col1: train_frac = st.slider("Select training data size", 0.5, 0.95, 0.8) # Select number for validation runs with col2: val_runs = st.slider("Select number for validation runs", 5, 100, 10) #-------------------------------------------------------------------------------------- # PREDICTION SETTINGS st.markdown("**Model predictions**") do_modprednew = st.selectbox("Use model prediction for new data", ["No", "Yes"]) if do_modprednew == "No": df_new = pd.DataFrame() if do_modprednew == "Yes": # Upload new data new_data_pred = st.file_uploader(" ", type=["csv", "txt"]) if new_data_pred is not None: # Read data if uploaded_data is not None: df_new = pd.read_csv(new_data_pred, decimal=dec_sep, sep = col_sep,thousands=thousands_sep,encoding=encoding_val, engine='python') else: df_new = pd.read_csv(new_data_pred, sep = ";|,|\t",engine='python') st.success('Loading data... done!') # Transform columns if any were transformed # Log-transformation if sb_DM_dTrans_log is not None: # List of log-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_log: if "log_"+tv in expl_var: tv_list.append(tv) # Check if log-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for log-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_log(df_new, tv_list) # Sqrt-transformation if sb_DM_dTrans_sqrt is not None: # List of sqrt-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_sqrt: if "sqrt_"+tv in expl_var: tv_list.append(tv) # Check if sqrt-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for sqrt-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_sqrt(df_new, tv_list) # Square-transformation if sb_DM_dTrans_square is not None: # List of square-transformed variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_square: if "square_"+tv in expl_var: tv_list.append(tv) # Check if square-transformed explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for square-transformation in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data df_new = fc.var_transform_square(df_new, tv_list) # Standardization if sb_DM_dTrans_stand is not None: # List of standardized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_stand: if "stand_"+tv in expl_var: tv_list.append(tv) # Check if standardized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for standardization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use mean and standard deviation of original data for standardization for tv in tv_list: if df_new[tv].dtypes == "float64" or df_new[tv].dtypes == "int64" or df_new[tv].dtypes == "float32" or df_new[tv].dtypes == "int32": if df[tv].std() != 0: new_var_name = "stand_" + tv new_var = (df_new[tv] - df[tv].mean())/df[tv].std() df_new[new_var_name] = new_var else: st.error("ERROR: " + str(tv) + " is not numerical and cannot be standardized!") return # Normalization if sb_DM_dTrans_norm is not None: # List of normalized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_norm: if "norm_"+tv in expl_var: tv_list.append(tv) # Check if normalized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for normalization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use min and max of original data for normalization for tv in tv_list: if df_new[tv].dtypes == "float64" or df_new[tv].dtypes == "int64" or df_new[tv].dtypes == "float32" or df_new[tv].dtypes == "int32": if (df[tv].max()-df[tv].min()) != 0: new_var_name = "norm_" + tv new_var = (df_new[tv] - df[tv].min())/(df[tv].max()-df[tv].min()) df_new[new_var_name] = new_var else: st.error("ERROR: " + str(tv) + " is not numerical and cannot be normalized!") return # Categorization if sb_DM_dTrans_numCat is not None: # List of categorized variables that are included as explanatory variables tv_list = [] for tv in sb_DM_dTrans_numCat: if "numCat_"+tv in expl_var: tv_list.append(tv) # Check if categorized explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for categorization in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data # Use same categories as for original data for tv in tv_list: new_var_name = "numCat_" + tv new_var = pd.DataFrame(index = df_new.index, columns = [new_var_name]) for r in df_new.index: if df.loc[df[tv] == df_new[tv][r]].empty == False: new_var.loc[r, new_var_name] = df["numCat_" + tv][df.loc[df[tv] == df_new[tv][r]].index[0]] else: st.error("ERROR: Category is missing for the value in row: "+ str(r) + ", variable: " + str(tv)) return df_new[new_var_name] = new_var.astype('int64') # Multiplication if sb_DM_dTrans_mult != 0: # List of multiplied variables that are included as explanatory variables tv_list = [] for tv in range(0, sb_DM_dTrans_mult): mult_name = "mult_" + str(multiplication_pairs.loc[tv]["Var1"]) + "_" + str(multiplication_pairs.loc[tv]["Var2"]) if mult_name in expl_var: tv_list.append(str(multiplication_pairs.loc[tv]["Var1"])) tv_list.append(str(multiplication_pairs.loc[tv]["Var2"])) # Check if multiplied explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for multiplication in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data for var in range(0, sb_DM_dTrans_mult): df_new = fc.var_transform_mult(df_new, multiplication_pairs.loc[var]["Var1"], multiplication_pairs.loc[var]["Var2"]) # Division if sb_DM_dTrans_div != 0: # List of divided variables that are included as explanatory variables tv_list = [] for tv in range(0, sb_DM_dTrans_div): mult_name = "div_" + str(division_pairs.loc[tv]["Var1"]) + "_" + str(division_pairs.loc[tv]["Var2"]) if mult_name in expl_var: tv_list.append(str(division_pairs.loc[tv]["Var1"])) tv_list.append(str(division_pairs.loc[tv]["Var2"])) # Check if multiplied explanatory variables are available for transformation in new data columns tv_list_not_avail = [] if tv_list: for tv in tv_list: if tv not in df_new.columns: tv_list_not_avail.append(tv) if tv_list_not_avail: st.error("ERROR: Some variables are not available for division in new data: "+ ', '.join(tv_list_not_avail)) return else: # Transform data if variables for transformation are all available in new data for var in range(0, sb_DM_dTrans_div): df_new = fc.var_transform_div(df_new, division_pairs.loc[var]["Var1"], division_pairs.loc[var]["Var2"]) # Check if explanatory variables are available as columns as well as entity and time expl_list = [] for expl_incl in expl_var: if expl_incl not in df_new.columns: expl_list.append(expl_incl) if expl_list: st.error("ERROR: Some variables are missing in new data: "+ ', '.join(expl_list)) return if any(a for a in df_new.columns if a == entity) and any(a for a in df_new.columns if a == time): st.info("All variables are available for predictions!") elif any(a for a in df_new.columns if a == entity) == False: st.error("ERROR: Entity variable is missing!") return elif any(a for a in df_new.columns if a == time) == False: st.error("ERROR: Time variable is missing!") return # Check if NAs are present if df_new.iloc[list(pd.unique(np.where(df_new.isnull())[0]))].shape[0] == 0: st.empty() else: df_new = df_new[list([entity]) + list([time]) + expl_var].dropna() st.warning("WARNING: Your new data set includes NAs. Rows with NAs are automatically deleted!") df_new = df_new[list([entity]) + list([time]) + expl_var] # Modelling data set df = df[var_list] # Check if NAs are present and delete them automatically if np.where(df[var_list].isnull())[0].size > 0: df = df.dropna() #-------------------------------------------------------------------------------------- # SETTINGS SUMMARY st.write("") # Show modelling data if st.checkbox("Show modelling data"): st.write(df) st.write("Data shape: ", df.shape[0], " rows and ", df.shape[1], " columns") # Download link for modelling data output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df.to_excel(excel_file, sheet_name="modelling_data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name= "Modelling data__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download modelling data</a> """, unsafe_allow_html=True) st.write("") # Show prediction data if do_modprednew == "Yes": if new_data_pred is not None: if st.checkbox("Show new data for predictions"): st.write(df_new) st.write("Data shape: ", df_new.shape[0], " rows and ", df_new.shape[1], " columns") # Download link for forecast data output = BytesIO() excel_file = pd.ExcelWriter(output, engine="xlsxwriter") df_new.to_excel(excel_file, sheet_name="new_data") excel_file.save() excel_file = output.getvalue() b64 = base64.b64encode(excel_file) dl_file_name= "New data for predictions__" + df_name + ".xlsx" st.markdown( f""" <a href="data:file/excel_file;base64,{b64.decode()}" id="button_dl" download="{dl_file_name}">Download new data for predictions</a> """, unsafe_allow_html=True) st.write("") # Show modelling settings if st.checkbox('Show a summary of modelling settings', value = False): #-------------------------------------------------------------------------------------- # ALOGRITHMS st.write("Algorithms summary:") st.write("- ",PDM_alg) st.write("- Covariance type: ", PDM_cov_type) if PDM_cov_type2 is not None: st.write("- Cluster type: ", PDM_cov_type2) st.write("") #-------------------------------------------------------------------------------------- # SETTINGS # General settings summary st.write("General settings summary:") # Modelling formula if expl_var != False: st.write("- Modelling formula:", response_var, "~", ' + '.join(expl_var)) st.write("- Entity:", entity) st.write("- Time:", time) if do_modval == "Yes": # Train/ test ratio if train_frac != False: st.write("- Train/ test ratio:", str(round(train_frac*100)), "% / ", str(round(100-train_frac*100)), "%") # Validation runs if val_runs != False: st.write("- Validation runs:", str(val_runs)) st.write("") st.write("") #-------------------------------------------------------------------------------------- # RUN MODELS # Models are run on button click st.write("") run_models = st.button("Run model") st.write("") # Run everything on button click if run_models: # Check if new data available if do_modprednew == "Yes": if new_data_pred is None: st.error("ERROR: Please upload new data for additional model predictions or select 'No'!") return # Define clustered cov matrix "entity", "time", "both" cluster_entity = True cluster_time = False if PDM_cov_type == "clustered": if PDM_cov_type2 == "entity": cluster_entity = True cluster_time = False if PDM_cov_type2 == "time": cluster_entity = False cluster_time = True if PDM_cov_type2 == "both": cluster_entity = True cluster_time = True # Prepare data data = df.set_index([entity, time]) Y_data = data[response_var] X_data1 = data[expl_var] # for efe, tfe, twfe X_data2 = sm.add_constant(data[expl_var]) # for re, pool # Model validation if do_modval == "Yes": # Progress bar st.info("Validation progress") my_bar = st.progress(0.0) progress1 = 0 # Model validation # R² model_eval_r2 = pd.DataFrame(index = range(val_runs), columns = [response_var]) # MSE model_eval_mse = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # RMSE model_eval_rmse = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # MAE model_eval_mae = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # MaxERR model_eval_maxerr = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # EVRS model_eval_evrs = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # SSR model_eval_ssr = pd.DataFrame(index = range(val_runs), columns = ["Value"]) # Model validation summary model_eval_mean = pd.DataFrame(index = ["% VE", "MSE", "RMSE", "MAE", "MaxErr", "EVRS", "SSR"], columns = ["Value"]) model_eval_sd = pd.DataFrame(index = ["% VE", "MSE", "RMSE", "MAE", "MaxErr", "EVRS", "SSR"], columns = ["Value"]) # Collect all residuals in test runs resdiuals_allruns = {} for val in range(val_runs): # Split data into train/ test data if PDM_alg != "Pooled" and PDM_alg != "Random Effects": X_data = X_data1.copy() if PDM_alg == "Pooled" or PDM_alg == "Random Effects": X_data = X_data2.copy() X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, train_size = train_frac, random_state = val) # Train selected panel model # efe if PDM_alg == "Entity Fixed Effects": panel_model_efe_val = PanelOLS(Y_train, X_train, entity_effects = True, time_effects = False) panel_model_fit_efe_val = panel_model_efe_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # tfe if PDM_alg == "Time Fixed Effects": panel_model_tfe_val = PanelOLS(Y_train, X_train, entity_effects = False, time_effects = True) panel_model_fit_tfe_val = panel_model_tfe_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # twfe if PDM_alg == "Two-ways Fixed Effects": panel_model_twfe_val = PanelOLS(Y_train, X_train, entity_effects = True, time_effects = True) panel_model_fit_twfe_val = panel_model_twfe_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # re if PDM_alg == "Random Effects": panel_model_re_val = RandomEffects(Y_train, X_train) panel_model_fit_re_val = panel_model_re_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # pool if PDM_alg == "Pooled": panel_model_pool_val = PooledOLS(Y_train, X_train) panel_model_fit_pool_val = panel_model_pool_val.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # save selected model if PDM_alg == "Entity Fixed Effects": panel_model_fit_val = panel_model_fit_efe_val if PDM_alg == "Time Fixed Effects": panel_model_fit_val = panel_model_fit_tfe_val if PDM_alg == "Two-ways Fixed Effects": panel_model_fit_val = panel_model_fit_twfe_val if PDM_alg == "Random Effects": panel_model_fit_val = panel_model_fit_re_val if PDM_alg == "Pooled": panel_model_fit_val = panel_model_fit_pool_val # Extract effects if PDM_alg != "Pooled": comb_effects = panel_model_fit_val.estimated_effects ent_effects = pd.DataFrame(index = X_train.reset_index()[entity].drop_duplicates(), columns = ["Value"]) time_effects = pd.DataFrame(index = sorted(list(X_train.reset_index()[time].drop_duplicates())), columns = ["Value"]) # Use LSDV for estimating effects if PDM_alg == "Entity Fixed Effects": X_train_mlr = pd.concat([X_train.reset_index(drop = True), pd.get_dummies(X_train.reset_index()[entity])], axis = 1) Y_train_mlr = Y_train.reset_index(drop = True) model_mlr_val = sm.OLS(Y_train_mlr, X_train_mlr) model_mlr_fit_val = model_mlr_val.fit() for e in ent_effects.index: ent_effects.loc[e]["Value"] = model_mlr_fit_val.params[e] for t in time_effects.index: time_effects.loc[t]["Value"] = 0 if PDM_alg == "Time Fixed Effects": X_train_mlr = pd.concat([X_train.reset_index(drop = True), pd.get_dummies(X_train.reset_index()[time])], axis = 1) Y_train_mlr = Y_train.reset_index(drop = True) model_mlr_val = sm.OLS(Y_train_mlr, X_train_mlr) model_mlr_fit_val = model_mlr_val.fit() for e in ent_effects.index: ent_effects.loc[e]["Value"] = 0 for t in time_effects.index: time_effects.loc[t]["Value"] = model_mlr_fit_val.params[t] if PDM_alg == "Two-ways Fixed Effects": X_train_mlr = pd.concat([X_train.reset_index(drop = True), pd.get_dummies(X_train.reset_index()[entity]), pd.get_dummies(X_train.reset_index()[time])], axis = 1) Y_train_mlr = Y_train.reset_index(drop = True) model_mlr_val = sm.OLS(Y_train_mlr, X_train_mlr) model_mlr_fit_val = model_mlr_val.fit() for e in ent_effects.index: ent_effects.loc[e]["Value"] = model_mlr_fit_val.params[e] for t in time_effects.index: time_effects.loc[t]["Value"] = model_mlr_fit_val.params[t] if PDM_alg == "Random Effects": for e in ent_effects.index: ent_effects.loc[e]["Value"] = comb_effects.loc[e,].reset_index(drop = True).iloc[0][0] # Prediction for Y_test (without including effects) Y_test_pred = panel_model_fit_val.predict(X_test) # Add effects for predictions for p in range(Y_test_pred.size): entity_ind = Y_test_pred.index[p][0] time_ind = Y_test_pred.index[p][1] # if effects are available, add effect if PDM_alg == "Entity Fixed Effects": if any(a for a in ent_effects.index if a == entity_ind): effect = ent_effects.loc[entity_ind][0] Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect if PDM_alg == "Time Fixed Effects": if any(a for a in time_effects.index if a == time_ind): effect = time_effects.loc[time_ind][0] Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect if PDM_alg == "Two-ways Fixed Effects": if any(a for a in time_effects.index if a == time_ind): effect_time = time_effects.loc[time_ind][0] else: effect_time = 0 if any(a for a in ent_effects.index if a == entity_ind): effect_entity = ent_effects.loc[entity_ind][0] else: effect_entity = 0 Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect_entity + effect_time if PDM_alg == "Random Effects": if any(a for a in ent_effects.index if a == entity_ind): effect = ent_effects.loc[entity_ind][0] Y_test_pred["predictions"].loc[entity_ind, time_ind] = Y_test_pred["predictions"].loc[entity_ind, time_ind] + effect # Adjust format Y_test_pred = Y_test_pred.reset_index()["predictions"] Y_test = Y_test.reset_index()[response_var] # Save R² for test data model_eval_r2.iloc[val][response_var] = r2_score(Y_test, Y_test_pred) # Save MSE for test data model_eval_mse.iloc[val]["Value"] = mean_squared_error(Y_test, Y_test_pred, squared = True) # Save RMSE for test data model_eval_rmse.iloc[val]["Value"] = mean_squared_error(Y_test, Y_test_pred, squared = False) # Save MAE for test data model_eval_mae.iloc[val]["Value"] = mean_absolute_error(Y_test, Y_test_pred) # Save MaxERR for test data model_eval_maxerr.iloc[val]["Value"] = max_error(Y_test, Y_test_pred) # Save explained variance regression score for test data model_eval_evrs.iloc[val]["Value"] = explained_variance_score(Y_test, Y_test_pred) # Save sum of squared residuals for test data model_eval_ssr.iloc[val]["Value"] = ((Y_test-Y_test_pred)**2).sum() # Save residual values for test data res = Y_test-Y_test_pred resdiuals_allruns[val] = res progress1 += 1 my_bar.progress(progress1/(val_runs)) # Calculate mean performance statistics # Mean model_eval_mean.loc["% VE"]["Value"] = model_eval_r2[response_var].mean() model_eval_mean.loc["MSE"]["Value"] = model_eval_mse["Value"].mean() model_eval_mean.loc["RMSE"]["Value"] = model_eval_rmse["Value"].mean() model_eval_mean.loc["MAE"]["Value"] = model_eval_mae["Value"].mean() model_eval_mean.loc["MaxErr"]["Value"] = model_eval_maxerr["Value"].mean() model_eval_mean.loc["EVRS"]["Value"] = model_eval_evrs["Value"].mean() model_eval_mean.loc["SSR"]["Value"] = model_eval_ssr["Value"].mean() # Sd model_eval_sd.loc["% VE"]["Value"] = model_eval_r2[response_var].std() model_eval_sd.loc["MSE"]["Value"] = model_eval_mse["Value"].std() model_eval_sd.loc["RMSE"]["Value"] = model_eval_rmse["Value"].std() model_eval_sd.loc["MAE"]["Value"] = model_eval_mae["Value"].std() model_eval_sd.loc["MaxErr"]["Value"] = model_eval_maxerr["Value"].std() model_eval_sd.loc["EVRS"]["Value"] = model_eval_evrs["Value"].std() model_eval_sd.loc["SSR"]["Value"] = model_eval_ssr["Value"].std() # Residuals residuals_collection = pd.DataFrame() for x in resdiuals_allruns: residuals_collection = residuals_collection.append(pd.DataFrame(resdiuals_allruns[x]), ignore_index = True) residuals_collection.columns = [response_var] # Collect validation results model_val_results = {} model_val_results["mean"] = model_eval_mean model_val_results["sd"] = model_eval_sd model_val_results["residuals"] = residuals_collection model_val_results["variance explained"] = model_eval_r2 # Full model # Progress bar st.info("Full model progress") my_bar_fm = st.progress(0.0) progress2 = 0 # efe panel_model_efe = PanelOLS(Y_data, X_data1, entity_effects = True, time_effects = False) panel_model_fit_efe = panel_model_efe.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # tfe panel_model_tfe = PanelOLS(Y_data, X_data1, entity_effects = False, time_effects = True) panel_model_fit_tfe = panel_model_tfe.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # twfe panel_model_twfe = PanelOLS(Y_data, X_data1, entity_effects = True, time_effects = True) panel_model_fit_twfe = panel_model_twfe.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # re panel_model_re = RandomEffects(Y_data, X_data2) panel_model_fit_re = panel_model_re.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # pool panel_model_pool = PooledOLS(Y_data, X_data2) panel_model_fit_pool = panel_model_pool.fit(cov_type = PDM_cov_type, cluster_entity = cluster_entity, cluster_time = cluster_time, debiased = True, auto_df = True) # save selected model if PDM_alg == "Entity Fixed Effects": panel_model_fit = panel_model_fit_efe if PDM_alg == "Time Fixed Effects": panel_model_fit = panel_model_fit_tfe if PDM_alg == "Two-ways Fixed Effects": panel_model_fit = panel_model_fit_twfe if PDM_alg == "Random Effects": panel_model_fit = panel_model_fit_re if PDM_alg == "Pooled": panel_model_fit = panel_model_fit_pool # Entity information ent_inf = pd.DataFrame(index = ["No. entities", "Avg observations", "Median observations", "Min observations", "Max observations"], columns = ["Value"]) ent_inf.loc["No. entities"] = panel_model_fit.entity_info["total"] ent_inf.loc["Avg observations"] = panel_model_fit.entity_info["mean"] ent_inf.loc["Median observations"] = panel_model_fit.entity_info["median"] ent_inf.loc["Min observations"] = panel_model_fit.entity_info["min"] ent_inf.loc["Max observations"] = panel_model_fit.entity_info["max"] # Time information time_inf = pd.DataFrame(index = ["No. time periods", "Avg observations", "Median observations", "Min observations", "Max observations"], columns = ["Value"]) time_inf.loc["No. time periods"] = panel_model_fit.time_info["total"] time_inf.loc["Avg observations"] = panel_model_fit.time_info["mean"] time_inf.loc["Median observations"] = panel_model_fit.time_info["median"] time_inf.loc["Min observations"] = panel_model_fit.time_info["min"] time_inf.loc["Max observations"] = panel_model_fit.time_info["max"] # Regression information reg_inf = pd.DataFrame(index = ["Dep. variable", "Estimator", "Method", "No. observations", "DF residuals", "DF model", "Covariance type"], columns = ["Value"]) reg_inf.loc["Dep. variable"] = response_var reg_inf.loc["Estimator"] = panel_model_fit.name if PDM_alg == "Entity Fixed Effects" or PDM_alg == "Time Fixed Effects" or "Two-ways Fixed": reg_inf.loc["Method"] = "Within" if PDM_alg == "Random Effects": reg_inf.loc["Method"] = "Quasi-demeaned" if PDM_alg == "Pooled": reg_inf.loc["Method"] = "Least squares" reg_inf.loc["No. observations"] = panel_model_fit.nobs reg_inf.loc["DF residuals"] = panel_model_fit.df_resid reg_inf.loc["DF model"] = panel_model_fit.df_model reg_inf.loc["Covariance type"] = panel_model_fit._cov_type # Regression statistics fitted = df[response_var]-panel_model_fit.resids.values obs = df[response_var] reg_stats = pd.DataFrame(index = ["R²", "R² (between)", "R² (within)", "R² (overall)", "Log-likelihood", "SST", "SST (overall)"], columns = ["Value"]) reg_stats.loc["R²"] = panel_model_fit._r2 reg_stats.loc["R² (between)"] = panel_model_fit._c2b**2 reg_stats.loc["R² (within)"] = panel_model_fit._c2w**2 reg_stats.loc["R² (overall)"] = panel_model_fit._c2o**2 reg_stats.loc["Log-likelihood"] = panel_model_fit._loglik reg_stats.loc["SST"] = panel_model_fit.total_ss reg_stats.loc["SST (overall)"] = ((obs-obs.mean())**2).sum() # Overall performance metrics (with effects) reg_overall = pd.DataFrame(index = ["% VE", "MSE", "RMSE", "MAE", "MaxErr", "EVRS", "SSR"], columns = ["Value"]) reg_overall.loc["% VE"] = r2_score(obs, fitted) reg_overall.loc["MSE"] = mean_squared_error(obs, fitted, squared = True) reg_overall.loc["RMSE"] = mean_squared_error(obs, fitted, squared = False) reg_overall.loc["MAE"] = mean_absolute_error(obs, fitted) reg_overall.loc["MaxErr"] = max_error(obs, fitted) reg_overall.loc["EVRS"] = explained_variance_score(obs, fitted) reg_overall.loc["SSR"] = ((obs-fitted)**2).sum() # ANOVA if PDM_alg == "Pooled": Y_data_mlr = df[response_var] X_data_mlr = sm.add_constant(df[expl_var]) full_model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) full_model_fit = full_model_mlr.fit() reg_anova = pd.DataFrame(index = ["Regression", "Residual", "Total"], columns = ["DF", "SS", "MS", "F-statistic"]) reg_anova.loc["Regression"]["DF"] = full_model_fit.df_model reg_anova.loc["Regression"]["SS"] = full_model_fit.ess reg_anova.loc["Regression"]["MS"] = full_model_fit.ess/full_model_fit.df_model reg_anova.loc["Regression"]["F-statistic"] = full_model_fit.fvalue reg_anova.loc["Residual"]["DF"] = full_model_fit.df_resid reg_anova.loc["Residual"]["SS"] = full_model_fit.ssr reg_anova.loc["Residual"]["MS"] = full_model_fit.ssr/full_model_fit.df_resid reg_anova.loc["Residual"]["F-statistic"] = "" reg_anova.loc["Total"]["DF"] = full_model_fit.df_resid + full_model_fit.df_model reg_anova.loc["Total"]["SS"] = full_model_fit.ssr + full_model_fit.ess reg_anova.loc["Total"]["MS"] = "" reg_anova.loc["Total"]["F-statistic"] = "" # Coefficients if PDM_alg == "Entity Fixed Effects" or PDM_alg == "Time Fixed Effects" or "Two-ways Fixed Effects": reg_coef = pd.DataFrame(index = expl_var, columns = ["coeff", "std err", "t-statistic", "p-value", "lower 95%", "upper 95%"]) for c in expl_var: reg_coef.loc[c]["coeff"] = panel_model_fit.params[expl_var.index(c)] reg_coef.loc[c]["std err"] = panel_model_fit.std_errors.loc[c] reg_coef.loc[c]["t-statistic"] = panel_model_fit.tstats.loc[c] reg_coef.loc[c]["p-value"] = panel_model_fit.pvalues.loc[c] reg_coef.loc[c]["lower 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["lower"] reg_coef.loc[c]["upper 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["upper"] if PDM_alg == "Random Effects" or PDM_alg == "Pooled": reg_coef = pd.DataFrame(index = ["const"]+ expl_var, columns = ["coeff", "std err", "t-statistic", "p-value", "lower 95%", "upper 95%"]) for c in ["const"] + expl_var: reg_coef.loc[c]["coeff"] = panel_model_fit.params[(["const"]+ expl_var).index(c)] reg_coef.loc[c]["std err"] = panel_model_fit.std_errors.loc[c] reg_coef.loc[c]["t-statistic"] = panel_model_fit.tstats.loc[c] reg_coef.loc[c]["p-value"] = panel_model_fit.pvalues.loc[c] reg_coef.loc[c]["lower 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["lower"] reg_coef.loc[c]["upper 95%"] = panel_model_fit.conf_int(level = 0.95).loc[c]["upper"] # Effects reg_ent_effects = pd.DataFrame(index = df[entity].drop_duplicates(), columns = ["Value"]) reg_time_effects = pd.DataFrame(index = sorted(list(df[time].drop_duplicates())), columns = ["Value"]) reg_comb_effects = panel_model_fit.estimated_effects reg_comb_effects.columns = ["Value"] # Use LSDV for estimating effects Y_data_mlr = df[response_var] if PDM_alg == "Pooled" or PDM_alg == "Random Effects": X_data_mlr = sm.add_constant(df[expl_var]) else: X_data_mlr = df[expl_var] if PDM_alg == "Entity Fixed Effects": X_data_mlr = pd.concat([X_data_mlr, pd.get_dummies(df[entity])], axis = 1) model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) model_mlr_fit = model_mlr.fit() for e in reg_ent_effects.index: reg_ent_effects.loc[e]["Value"] = model_mlr_fit.params[e] for t in reg_time_effects.index: reg_time_effects.loc[t]["Value"] = 0 if PDM_alg == "Time Fixed Effects": X_data_mlr = pd.concat([X_data_mlr, pd.get_dummies(df[time])], axis = 1) model_mlr = sm.OLS(Y_data_mlr, X_data_mlr) model_mlr_fit = model_mlr.fit() for e in reg_ent_effects.index: reg_ent_effects.loc[e]["Value"] = 0 for t in reg_time_effects.index: reg_time_effects.loc[t]["Value"] = model_mlr_fit.params[t] if PDM_alg == "Two-ways Fixed Effects": X_data_mlr = pd.concat([X_data_mlr, pd.get_dummies(df[entity]),
pd.get_dummies(df[time])
pandas.get_dummies
# data import pandas as pd import numpy as np from pandas_datareader import data as web from datetime import datetime as dt import functools import config as cfg def get_stockP_raw(l_of_stocks, start = dt(2020, 1, 1), end = dt.now()): # data preparation df = web.DataReader(l_of_stocks, 'yahoo', start, end) df = df.loc[:, df.columns.get_level_values(0).isin({'Close'})].round(4) df.columns =df.columns.droplevel() return df def get_stockP_return(df_stockP): df_stock_return = df_stockP.pct_change().round(4) df_merged = df_stockP.merge(df_stock_return, left_index = True, right_index = True, how = 'left', suffixes=('_price', '_return')) return df_merged def add_moving_features(df_raw): """ feature engineering """ cols = df_raw.columns.tolist() # make statistical features l_new_features = [] for col in cols: new_features = df_raw[col].rolling(5, min_periods=2).aggregate([np.min, np.max, np.mean]) #, np.std new_features = new_features.add_suffix('_{colname}'.format(colname = col)) l_new_features.append(new_features) # add statistical features df_new_features = functools.reduce(lambda x, y:
pd.merge(x, y, left_index=True, right_index=True, how='left')
pandas.merge
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E': Categorical([np.nan], categories=['a']), 'F': [pd.NaT], 'G': to_timedelta([pd.NaT])}), (True, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical(['a', np.nan, np.nan, np.nan], categories=['a']), 'L': to_datetime(['2000-1-2', 'NaT', 'NaT', 'NaT']), 'M': to_timedelta(['1 days', 'nan', 'nan', 'nan']), 'N': [0, 1, 2, 3]}), (False, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical([np.nan, 'a', np.nan, np.nan], categories=['a']), 'L': to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), 'M': to_timedelta(['nan', '1 days', 'nan', 'nan']), 'N': [0, 1, 2, 3]}) ]) def test_mode_dropna(self, dropna, expected): df = DataFrame({"A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, 'a', np.nan], "E": Categorical([np.nan, np.nan, 'a', np.nan]), "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(['a', np.nan, 'a', np.nan]), "L": to_datetime(['2000-1-2', '2000-1-2', 'NaT', 'NaT']), "M": to_timedelta(['1 days', 'nan', '1 days', 'nan']), "N": np.arange(4, dtype='int64')}) result = df[sorted(list(expected.keys()))].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df =
DataFrame({"A": [np.nan, np.nan, 'a', 'a']})
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Read hwm data diff -> 'Add this differential if going from NAVD88 to MSL assuming a positive upwards z coordinate system' navd88 + diff = msl # Delta or convert2msl is always for going from vertical datum to msl by an addition to that datum # MSL = Vert_datam + convert2msl """ __author__ = "<NAME>" __copyright__ = "Copyright 2017, UCAR/NOAA" __license__ = "GPL" __version__ = "1.0" __email__ = "<EMAIL>" #import netCDF4 as n4 #from collections import defaultdict import os,sys #sys.path.append('/home/moghimis/linux_working/00-working/04-test-adc_plot/') #sys.path.append('/home/moghimis/linux_working/00-working/04-test-adc_plot/csdlpy') from pynmd.plotting.vars_param import * from pynmd.plotting import plot_routines as pr from pynmd.plotting import plot_settings as ps from pynmd.plotting import colormaps as cmaps from pynmd.models.adcirc.post import adcirc_post as adcp from pynmd.tools.compute_statistics import find_nearest1d,statatistics import time from scipy import stats from geo_regions import get_region_extent #import cPickle as pickle import matplotlib.pyplot as plt import matplotlib.tri as Tri import numpy as np import datetime import string import glob #import time import string import pandas as pd import netCDF4 as n4 import seaborn as sns #sys.path.append('/scratch2/COASTAL/coastal/save/Saeed.Moghimi/opt/pycodes/csdlpy') #import adcirc #sns.set_style(style='dark') sns.set_style(style='ticks') try: os.system('rm base_info.pyc' ) except: pass if 'base_info' in sys.modules: del(sys.modules["base_info"]) import base_info pandas_plots = True include_bias = False curr_time = time.strftime("%Y%m%d_h%H_m%M_s%S") #====== subplot adjustments =============== left1 = 0.1 # the left side of the subplots of the figure right1 = 0.9 # the right side of the subplots of the figure bottom1= 0.15 # the bottom of the subplots of the figure (ntr==16 bottom=0.05) top1 = 0.9 # the top of the subplots of the figure wspace1= 0.1 # the amount of width reserved for blank space between subplots hspace1= 0.15 # the amount of height reserved for white space between subplots ########################################################################## dpi = 600 ftype = '.png' #ftype = '.pdf' for x in base_info.cases[base_info.key]['dir'].split('/'): if 'rt_' in x: prefix = x else: prefix = ''.join(base_info.cases[base_info.key0]['dir'].split('/')[-3:]) prefix = 'hwm_' + prefix out_dir = base_info.out_dir + prefix + curr_time+ '/' # out dir and scr back up scr_dir = out_dir + '/scr/' os.system('mkdir -p ' + scr_dir) args=sys.argv scr_name = args[0] os.system('cp -fr '+scr_name +' '+scr_dir) os.system('cp -fr *.py '+scr_dir) print (' > Output folder: \n > ',out_dir) #################### def find_hwm_v01(xgrd,ygrd,maxe,xhwm,yhwm,elev_hwm,convert2msl=None,bias_cor=None ,flag='pos'): from pynmd.tools.compute_statistics import find_nearest1d """ In: xgrd,ygrd,maxele: model infos xhwm,yhwm,elev_hwm:data infos flag: how to treat data model comparison flag = all : find nearset grid point = valid: find nearset grid point with non-nan value = pos: find nearset grid point with positive value = neg: find nearset grid point with negative value Retun: model and data vector # Delta or convert2msl is always for going from vertical datum to msl by an addition to that datum # MSL = Vert_datam + convert2msl """ if flag == 'valid': maxe = np.ma.masked_where(maxe==elev_max.fill_value, maxe) mask = maxe.mask elif flag == 'pos': mask = [maxe < 0.0] elif flag == 'neg': mask = [maxe > 0.0] elif flag == 'all': mask = np.isnan(xgrd) #mask = [maxe < -900.0] else: print ('Choose a valid flag > ') print ('flag = all : find nearset grid point ') print (' = valid: find nearset grid point with non-nan value') print (' = pos: find nearset grid point with positive value') print (' = neg: find nearset grid point with negative valueChoose a valid flag > ') sys.exit('ERROR') mask = np.array(mask).squeeze() xgrd = xgrd[~mask] ygrd = ygrd[~mask] maxe = maxe[~mask] # if convert2msl is not None: convert2msl = convert2msl[~mask] else: convert2msl = np.zeros_like(xgrd) # if bias_cor is not None: bias_cor = bias_cor[~mask] else: bias_cor = np.zeros_like(xgrd) data = [] model = [] prox = [] xmodel = [] ymodel = [] for ip in range(len(xhwm)): i,pr = find_nearest1d(xvec = xgrd,yvec = ygrd,xp = xhwm[ip],yp = yhwm[ip]) data.append (elev_hwm [ip] + convert2msl[i]) model.append(maxe[i]+bias_cor[i]) xmodel.append(xgrd[i].item()) ymodel.append(ygrd[i].item()) prox.append(pr) data = np.array(data ).squeeze() model = np.array(model).squeeze() prox = np.array(prox ).squeeze() xmodel = np.array(xmodel).squeeze() ymodel = np.array(ymodel).squeeze() # #maskf = [model < 0.0] #maskf = np.array(maskf).squeeze() #return data[~maskf],model[~maskf],prox[~maskf],xhwm[~maskf],yhwm[~maskf] return data,xhwm,yhwm,model,xmodel,ymodel,prox def find_hwm(tri,maxe,xhwm,yhwm,elev_hwm,bias_cor=None,flag='all'): from pynmd.tools.compute_statistics import find_nearest1d """ In: xgrd,ygrd,maxele: model infos xhwm,yhwm,elev_hwm:data infos flag: how to treat data model comparison flag = all : find nearset grid point = valid: find nearset grid point with non-nan value = pos: find nearset grid point with positive value = neg: find nearset grid point with negative value Retun: model and data vector # Delta or convert2msl is always for going from vertical datum to msl by an addition to that datum # MSL = Vert_datam + convert2msl """ # if flag == 'valid': # mask = np.isnan(xgrd) # elif flag == 'pos': # mask = [maxe < 0.0] # elif flag == 'neg': # mask = [maxe > 0.0] # elif flag == 'all': # mask = maxe.mask # #mask = [maxe < -900.0] # # else: # print ('Choose a valid flag > ' # print ('flag = all : find nearset grid point ' # print (' = valid: find nearset grid point with non-nan value' # print (' = pos: find nearset grid point with positive value' # print (' = neg: find nearset grid point with negative valueChoose a valid flag > ' # sys.exit('ERROR') # # mask = np.array(mask).squeeze() #maxe = elev_max #xhwm = lon_hwm #yhwm = lat_hwm #elev_hwm = hwm # xgrd = tri.x ygrd = tri.y # if bias_cor is None: bias_cor = np.zeros_like(xgrd) # data = [] model = [] model_x = [] model_y = [] prox = [] prox_coef = [] # for ip in range(len(xhwm)): i, pr = find_nearest1d(xvec = xgrd [~maxe.mask],yvec = ygrd[~maxe.mask],xp = xhwm[ip],yp = yhwm[ip]) #valid mesh ir,prr = find_nearest1d(xvec = xgrd ,yvec = ygrd ,xp = xhwm[ip],yp = yhwm[ip]) #all mesh #if pr > 1.2 * prr: # print pr, prr, pr/prr data.append (elev_hwm [ip]) model.append (maxe[~maxe.mask][i]+bias_cor[~maxe.mask][i]) model_x.append(xgrd[~maxe.mask][i]) model_y.append(ygrd[~maxe.mask][i]) prox.append(pr) prox_coef.append(pr/prr) # data = np.array(data ).squeeze() model = np.array(model).squeeze() prox = np.array(prox ).squeeze() # maskf = (np.array(prox_coef) > 10) | (data < 1) maskf = np.array(maskf).squeeze() return data[~maskf],model[~maskf],prox[~maskf], xhwm[~maskf], yhwm[~maskf] def datetime64todatetime(dt): tmp = [] for it in range(len(dt)): tmp.append(pd.Timestamp(dt[it]).to_pydatetime()) return np.array(tmp) def plot_track(ax,track,date=None,color = 'r'): if date is not None: dates = np.array(track['dates']) #ind = np.array(np.where((dates==date))).squeeze().item() ind = find_nearest_time(dates,date) ax.plot(track['lon'][ind],track['lat'][ind],'ro',alpha=1,ms=8) ax.plot(track['lon'],track['lat'],lw=3,color=color,ls='dashed',alpha=1) #sys.path.append('/home/Saeed.Moghimi/opt/pycodes/csdlpy/') #import adcirc from atcf import readTrack def read_track(fname=None): if fname is None: fname = '/scratch4/COASTAL/coastal/save/Saeed.Moghimi/models/NEMS/NEMS_inps/01_data/tracks/ike_bal092008.dat' track = readTrack(fname) keys = ['dates', 'lon', 'vmax', 'lat'] for key in keys: tmp = pd.DataFrame(track[key],columns=[key]) #dfh = df if 'trc' not in locals(): trc = tmp else: trc =
pd.concat([trc,tmp],axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[9]: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # In[20]: fig_dir = "~/Dropbox/Conferences_and_Meetings/PI meetings/PI meeting 2020/figures/" # In[2]: # data = pd.read_csv("~/Dropbox/Conferences_and_Meetings/PI meetings/PI meeting 2020/data/USGS_12510500_NO3.csv") # In[32]: data = pd.read_csv("./USGS-12505450_NO3.csv") # In[33]: data # In[14]: data['startDateTime'] = pd.to_datetime(data['startDateTime']) # In[19]: fig, ax = plt.subplots(1,1, figsize = (8, 6)) sns.lineplot(x = "startDateTime", y = "result_va", marker = "o", data = data) ax.set_ylabel('Nitrate (mg/L)', fontsize = 18) ax.set_xlabel('') ax.set_title('USGS-12510500 (Yakima River at Kiona, WA)', fontsize = 24) ax.tick_params(axis='both', which='major', labelsize=16) # In[30]: # fig.savefig(fig_dir + "USGS-12510500.png", dpi=300) fig.savefig("./USGS-12510500.png", dpi=300) plt.close(fig) # ## from WQP station # In[34]: data = pd.read_csv("./USGS-12505450_NO3.csv") # In[35]: data # In[37]: data.columns # In[36]: data['ActivityStartDateTime'] =
pd.to_datetime(data['ActivityStartDateTime'])
pandas.to_datetime
from xgboost import XGBRegressor import pandas as pd import argparse from sklearn import metrics import scipy import pickle from pathlib import Path import numpy as np ''' python3 XGBoostRegressor.py --dataset_type raw_c > raw_c_results.txt python3 XGBoostRegressor.py --dataset_type raw_d > raw_d_results.txt python3 XGBoostRegressor.py --dataset_type raw > raw_results.txt ''' # extract type of feature data from arguments parser = argparse.ArgumentParser() parser.add_argument('--dataset_type', type=str, required=True, help='type of data') args = parser.parse_args() # read base data X_train, y_train, X_test, y_test = None, None, None, None Xc_train, Xc_test = None, None Xd_train, Xd_test = None, None # Get labels (same across all datasets) test_diff_df = pd.read_csv("diff_expr/C12TestDiff.tsv", delimiter='\t', header=None) train_diff_df = pd.read_csv( "diff_expr/C12TrainDiff.tsv", delimiter='\t', header=None) valid_diff_df = pd.read_csv( "diff_expr/C12ValidDiff.tsv", delimiter='\t', header=None) y_test = test_diff_df y_train = pd.concat([train_diff_df, valid_diff_df]) # Get features if args.dataset_type == "raw_c" or args.dataset_type == "raw": c1_test_df = pd.read_csv("embeddings/C1TestEmbeddings.csv", header=None) c1_train_df = pd.read_csv("embeddings/C1TrainEmbeddings.csv", header=None) c1_valid_df = pd.read_csv("embeddings/C1ValidEmbeddings.csv", header=None) c2_test_df = pd.read_csv("embeddings/C2TestEmbeddings.csv", header=None) c2_train_df = pd.read_csv("embeddings/C2TrainEmbeddings.csv", header=None) c2_valid_df = pd.read_csv("embeddings/C2ValidEmbeddings.csv", header=None) c12_train_df = pd.concat([c1_train_df, c2_train_df], axis=1) c12_valid_df =
pd.concat([c1_valid_df, c2_valid_df], axis=1)
pandas.concat
from __future__ import print_function import numpy as np import pandas as pd import scipy.stats from parallelm.mlops import StatCategory as st from parallelm.mlops import mlops as pm from parallelm.mlops.examples import utils from parallelm.mlops.examples.utils import RunModes from parallelm.mlops.stats.graph import MultiGraph from parallelm.mlops.stats.multi_line_graph import MultiLineGraph from parallelm.mlops.stats.table import Table """ This code calculates the A/B test statistics. - Points for two distributions - Vertical line values on x-axis - Conversion rate control - Conversion rate B - Relative uplift in conversion rate - p-value - z-score - Standard error A - Standard error B - Standard error of difference """ class statsCalculator: def __init__(self): self._distControl = [] self._distB = [] self._conversionControl = [] self._conversionB = [] self._uplift = [] self._pValue = [] self._zScore = [] self._errorControl = [] self._errorB = [] self._errorDifference = [] self._verticalLine = [] """ This function calculates all the statistics for A/B testing after the experiment is complete Input: samples_control: Number of samples in control group conv_samples: Number of samples converted (could be from any metric), strictly less than samples_control samples_B: Number of samples in group B conv_samples_B: Number of samples converted (could be from any metric), strictly less than samples_B """ def exptOutcome(self, samples_control, conv_samples_control, samples_B, conv_samples_B, confidence): self._conversionControl = conv_samples_control * 100.0 / samples_control self._conversionB = conv_samples_B * 100.0 / samples_B if self._conversionControl != 0.0: self._uplift = (self._conversionB - self._conversionControl) * 100.0 /\ self._conversionControl else: self._uplift = self._conversionB * 100.0 self._errorControl = np.sqrt(self._conversionControl / 100.0 * ( 1 - (self._conversionControl / 100.0)) / samples_control) self._errorB = np.sqrt( self._conversionB / 100.0 * (1 - (self._conversionB / 100.0)) / samples_B) self._errorDifference = np.sqrt(self._errorControl ** 2 + self._errorB ** 2) self._zScore = (self._conversionB - self._conversionControl) / (100.0 * self._errorDifference) if np.sign(self._zScore) == -1: self._pValue = 1 - scipy.stats.norm.sf(abs(self._zScore)) else: self._pValue = scipy.stats.norm.sf(abs(self._zScore)) self._distControl = self.calDist(samples_control, conv_samples_control) self._distB = self.calDist(samples_B, conv_samples_B) sigma = np.sqrt(samples_control * self._conversionControl / 100.0 * ( 1 - self._conversionControl / 100.0)) if (confidence == 90): self._verticalLine = conv_samples_control + 1.645 * sigma elif (confidence == 95): self._verticalLine = conv_samples_control + 1.96 * sigma elif (confidence == 99): self._verticalLine = conv_samples_control + 2.575 * sigma else: raise ValueError("confidence value should either be 90, 95 or 99") """ This function calculated the (x,y) values for a line plot of the binomial distribution Input: samples: Number of samples in the binomial experiment conv_samples: Number of samples converted (could be from any metric), strictly less than conv_samples return: distribution_x_axis: X axis points where probability mass is calculated distribution_y_axis: Y axis points which represents the probability mass """ def calDist(self, samples, conv_samples): probability = conv_samples / samples sigma = np.sqrt(samples * probability * (1 - probability)) # Lets capture 3sigma variation with n=20 points to plot n = 21 distribution_points = 8 * sigma / n distribution_x_axis = (conv_samples - 4 * sigma + 8 * sigma / n) + distribution_points * \ np.arange(n) distribution_x_axis = distribution_x_axis.astype(int) distribution_y_axis = scipy.stats.binom.pmf(distribution_x_axis, samples, probability) return distribution_x_axis, distribution_y_axis """ This function returns the confidence """ def calConfidence(self): return (1 - self._pValue) * 100 """ This function returns true if the confidence is more than the given value, false otherwise. This is same as the top banner you see on the screen in: https://abtestguide.com/calc/ Input: value: Confidence value usually one of these three values: 90, 95, 99 Output: True or False """ def calSuccess(self, value): if self.calConfidence() > value and self._uplift > 0: return True else: return False def ab_test(options, start_time, end_time, mode): sc = None if mode == RunModes.PYSPARK: from pyspark import SparkContext sc = SparkContext(appName="pm-ab-testing") pm.init(sc) elif mode == RunModes.PYTHON: pm.init() else: raise Exception("Invalid mode " + mode) not_enough_data = False # Following are a and b component names a_prediction_component_name = options.nodeA b_prediction_component_name = options.nodeB conv_a_stat_name = options.conversionsA conv_b_stat_name = options.conversionsB samples_a_stat_name = options.samplesA samples_b_stat_name = options.samplesB a_agent = utils._get_agent_id(a_prediction_component_name, options.agentA) b_agent = utils._get_agent_id(b_prediction_component_name, options.agentB) if a_agent is None or b_agent is None: print("Invalid agent provided {} or {}".format(options.agentA, options.agentB)) pm.system_alert("PyException", "Invalid Agent {} or {}".format(options.agentA, options.agentB)) return try: a_samples = pm.get_stats(name=samples_a_stat_name, mlapp_node=a_prediction_component_name, agent=a_agent, start_time=start_time, end_time=end_time) b_samples = pm.get_stats(name=samples_b_stat_name, mlapp_node=b_prediction_component_name, agent=b_agent, start_time=start_time, end_time=end_time) a_samples_pdf =
pd.DataFrame(a_samples)
pandas.DataFrame
from .microfaune_package.microfaune.detection import RNNDetector from .microfaune_package.microfaune import audio import pandas as pd import scipy.signal as scipy_signal import numpy as np import math import os def build_isolation_parameters( technique, threshold_type, threshold_const, threshold_min=0, window_size=1.0, chunk_size=2.0): """ Wrapper function for all of the audio isolation techniques (Steinberg, Simple, Stack, Chunk). Will call the respective function of each technique based on isolation_parameters "technique" key. Args: technique (string) - Chooses which of the four isolation techniques to deploy - options: "steinberg", "chunk", "stack", "simple" threshold_type (string) - Chooses how to derive a threshold from local score arrays - options: "mean", "median", "standard deviation", "pure" threshold_const (float) - Multiplier for "mean", "median", and "standard deviation". Acts as threshold for "pure" threshold_min (float) - Serves as a minimum barrier of entry for a local score to be considered a positive ID of a class. - default: 0 window_size (float) - determines how many seconds around a positive ID local score to build an annotation. chunk_size (float) - determines the length of annotation when using "chunk" isolation technique Returns: isolation_parameters (dict) - Python dictionary that controls how to go about isolating automated labels from audio. """ isolation_parameters = { "technique": technique, "treshold_type": threshold_type, "threshold_const": threshold_const, "threshold_min": threshold_min, "window_size": window_size, "chunk_size": chunk_size } if window_size != 1.0 and technique != "steinberg": print('''Warning: window_size is dedicated to the steinberg isolation technique. Won't affect current technique.''') if chunk_size != 2.0 and technique != "chunk": print('''Warning: chunk_size is dedicated to the chunk technique. Won't affect current technique.''') return isolation_parameters def isolate( local_scores, SIGNAL, SAMPLE_RATE, audio_dir, filename, isolation_parameters, manual_id="bird", normalize_local_scores=False): """ Wrapper function for all of the audio isolation techniques (Steinberg, Simple, Stack, Chunk). Will call the respective function of each technique based on isolation_parameters "technique" key. Args: local_scores (list of floats) - Local scores of the audio clip as determined by Microfaune Recurrent Neural Network. SIGNAL (list of ints) - Samples that make up the audio signal. SAMPLE_RATE (int) - Sampling rate of the audio clip, usually 44100. audio_dir (string) - Directory of the audio clip. filename (string) - Name of the audio clip file. isolation_parameters (dict) - Python Dictionary that controls the various label creation techniques. Returns: Dataframe of automated labels for the audio clip based on passed in isolation technique. """ # normalize the local scores so that the max value is 1. if normalize_local_scores: local_scores_max = max(local_scores) for ndx in range(len(local_scores)): local_scores[ndx] = local_scores[ndx] / local_scores_max # initializing the output dataframe that will contain labels across a # single clip isolation_df =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime, timedelta import time import pandas as pd import sklearn.linear_model from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor from pytz import timezone import tweepy import sys import os from pyowm.owm import OWM from textblob import TextBlob from nltk.sentiment.vader import SentimentIntensityAnalyzer as SIA import pickle import csv # The DAG object; we'll need this to instantiate a DAG from airflow import DAG # Operators; we need this to operate! from airflow.operators.bash import BashOperator from airflow.operators.python import PythonOperator TWITTER_ACCESS_TOKEN = '<KEY>' TWITTER_ACCESS_TOKEN_SECRET = '<KEY>' TWITTER_CONSUMER_KEY = 'OxzmAILFV6CYdWLuVBBFZTk4n' TWITTER_CONSUMER_SECRET = '<KEY>' APIKEY = '3a7810c48a0c9f7c3c38754e4415f7d7' auth = tweepy.OAuthHandler(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET) auth.set_access_token(TWITTER_ACCESS_TOKEN, TWITTER_ACCESS_TOKEN_SECRET) api = tweepy.API(auth) RUNTIME = 780 # Seconds to collect tweets res = [] pathTweetStorage = 'airflow/project/tweet_storage.csv' pathWeatherStorage = 'airflow/project/weather_storage.csv' pathClassifier = 'airflow/project/classifier.csv' pathLinearRegression = 'airflow/project/LinearRegression.sav' pathRidgeRegression = 'airflow/project/RidgeRegression.sav' pathGradientBoosting = 'airflow/project/GradientBoosting.sav' pathSVR = 'airflow/project/SVR.sav' pathRandomForest = 'airflow/project/RandomForest.sav' pathAdaBoost = 'airflow/project/AdaBoost.sav' pathColumns = 'airflow/project/columns.txt' # These args will get passed on to each operator # You can override them on a per-task basis during operator initialization default_args = { 'owner': 'fred', 'depends_on_past': False, 'email': ['<EMAIL>'], 'email_on_failure': False, 'email_on_retry': False, 'retries': 1, 'retry_delay': timedelta(seconds=30), # 'queue': 'bash_queue', # 'pool': 'backfill', # 'priority_weight': 10, # 'end_date': datetime(2016, 1, 1), # 'wait_for_downstream': False, # 'dag': dag, # 'sla': timedelta(hours=2), # 'execution_timeout': timedelta(seconds=300), # 'on_failure_callback': some_function, # 'on_success_callback': some_other_function, # 'on_retry_callback': another_function, # 'sla_miss_callback': yet_another_function, # 'trigger_rule': 'all_success' } class StdOutListener(tweepy.Stream): def on_status(self, status): global res try: now = datetime.now(timezone('EST')) tweetTime = f'{now.year}-{now.month}-{now.day}-{now.hour}-{now.minute}' box = [v for v in status.place.bounding_box.coordinates[0]] if status.lang == 'en': res.append({'Date': tweetTime, 'Text': status.text, 'Box': box}) return True except BaseException as e: print("Error on _data: %s" % str(e)) return False def on_error(self, status): print(status) def countdown(t): for i in range(t, -1, -1): sys.stdout.write("\r") sys.stdout.write("{:2d} seconds remaining...".format(i)) sys.stdout.flush() time.sleep(1) def atRemover(text): words = text.split() while words[0][0] == '@': words.pop(0) return ' '.join(words) def analyzeSentiment(text): sentimentAnalyzerVader = SIA().polarity_scores(text)['compound'] sentimentAnalyzerTextBlob = TextBlob(text).sentiment[0] if sentimentAnalyzerTextBlob > 0 and sentimentAnalyzerVader > 0: return 'Positive' elif sentimentAnalyzerTextBlob < 0 and sentimentAnalyzerVader < 0: return 'Negative' return 'Cannot analyze' def sumTuples(t1, t2): a, b = t1 c, d = t2 return (a + c, b + d) def collectTweets(): stream = StdOutListener(TWITTER_CONSUMER_KEY, TWITTER_CONSUMER_SECRET, TWITTER_ACCESS_TOKEN, TWITTER_ACCESS_TOKEN_SECRET) stream.filter(locations=[-74, 40, -73, 41], threaded=True) countdown(RUNTIME) stream.disconnect() with open(pathTweetStorage, 'w', encoding='utf-8') as storage: writer = csv.DictWriter(storage, fieldnames=['Date','Text','Box'], lineterminator = '\n') writer.writeheader() for data in res: writer.writerow(data) def processTweets(): drops = [] tweets = pd.read_csv(pathTweetStorage) for tweet in range(tweets.shape[0]): text = tweets.iloc[tweet, 1] tweets.iloc[tweet, 1] = atRemover(text) if len(text) < 4: drops.append(tweet) tweets = tweets.drop(drops) tweets.to_csv(pathTweetStorage, encoding='UTF-8', index=False) def collectWeather(): weatherList = [] owm = OWM(APIKEY) mgr = owm.weather_manager() for i in range(13): now = datetime.now(timezone('EST')) weatherTime = f'{now.year}-{now.month}-{now.day}-{now.hour}-{now.minute}' weather = mgr.weather_at_place('New York').weather weather_status = weather.status temperature = weather.temperature('celsius')['temp'] weatherList.append({'Time': weatherTime, 'Status': weather_status, 'Temperature': temperature}) time.sleep(60) with open(pathWeatherStorage, 'w', encoding='utf-8') as storage: writer = csv.DictWriter(storage, fieldnames=['Time', 'Status', 'Temperature'], lineterminator = '\n') writer.writeheader() for data in weatherList: writer.writerow(data) def combineAndClassify(): tweets = pd.read_csv(pathTweetStorage) weather = pd.read_csv(pathWeatherStorage) weatherDate = [date for date in weather.iloc[:, 0]] combined = [] for tweetInd in range(tweets.shape[0]): tweetDate = tweets.iloc[tweetInd, 0] try: weatherInd = weatherDate.index(tweetDate) sentiment = analyzeSentiment(tweets.iloc[tweetInd, 1]) if sentiment != 'Cannot analyze': combined.append({'Date': tweetDate, 'Text': tweets.iloc[tweetInd, 1], 'Box': tweets.iloc[tweetInd, 2], 'Status': weather.iloc[weatherInd, 1], 'Temperature': weather.iloc[weatherInd, 2], 'Sentiment': sentiment}) except ValueError: pass combinedDF = pd.DataFrame.from_dict(combined) if os.path.exists(pathClassifier): combinedDF.to_csv(pathClassifier, mode='a', index=False, header=False) else: combinedDF.to_csv(pathClassifier, mode='a', index=False, header=True) def regression(): data =
pd.read_csv(pathClassifier)
pandas.read_csv
''' ver 0.1, namera@ , initial-release, Oct26'17 ver 0.2, namera@ , included execution id for traceability, Nov3'17 ver 0.3, shawo@ , Corrected typos in variable names, Apr23'18 Hedge Your Own Funds: Running Monte Carlo Simulations on EC2 Spot ================================================================= This worker script launches the Monte-Carlo simulations as described in the session's Jupiter Notebook. All input parameters have defaults, please see 'parser.add_argument' for details or simply append -h at the end of the execution line to see input parameter details. e.g. python worker.py -h Output: ------- This script writes simualted results into CSV files, the files are: <exec_id>_<Stock_Name>_MonteCarloSimResult.csv - for example, AMZN_MonteCarloSimResult.csv , this file holds the last Monte-Carlo simulated value for each iteration and the expected cache value given the trading strategy specified in the notebook. Initial investment is $100,000 portfolioRiskAssessment.csv - returns the risk value of multiple-socks portfolio. see --portfolio_stocks_list input paramter for more detai$ Sample executions: ------------------ Run simulation with default parameters: python worker.py Specify a list of stocks for Portfolio Risk Assessment: python worker.py --stocks-list IBM AMZN MSFT Specify 1,000,000 simulations to execute: python worker.py --iterations 1000000 ''' import pandas as pd from pandas_datareader import data as pdr import numpy as np import datetime , time from math import sqrt from scipy.stats import norm import fix_yahoo_finance as yf import argparse parser = argparse.ArgumentParser(description='Process some integers.') parser.add_argument('--iterations', dest='iterations',default=2000, type=int, help='Number of simulated iterations default=2000') parser.add_argument('--stock', dest='stock',default="AMZN", help='Stock Name') parser.add_argument('--short_window_days', dest='short_window_days',default=10, type=int, help='Short moving avearge in days default=10') parser.add_argument('--long_window_days', dest='long_window_days',default=40, type=int, help='Long moving avearge in days (default=40)') parser.add_argument('--trading_days', dest='trading_days',default=252, type=int, help='Number of trading days (default=252)') parser.add_argument('-n', '--stocks-list', default=['AAPL','AMZN','MSFT','INTC'], nargs='+') parser.add_argument('--id', dest='exec_id',default="None", help='Unique execution id') args = parser.parse_args() STOCK=args.stock short_window = args.short_window_days long_window = args.long_window_days trading_days = args.trading_days sim_num = args.iterations portfolio_stocks_list = args.stocks_list file_prepend_str = args.exec_id # create output files (CSV) unique string to preapend if (file_prepend_str == 'None'): t = time.localtime() file_prepend_str = time.strftime('%b-%d-%Y_%H%M', t) # Import stock information to dataframe. ADDED 04/2018 - Fix for yahoo finance yf.pdr_override() stock_df = pdr.get_data_yahoo(STOCK,start=datetime.datetime(2006, 10, 1), end=datetime.datetime(2017, 10, 1)) # Calculate the compound annual growth rate (CAGR) which # will give us our mean return input (mu) days = (stock_df.index[-1] - stock_df.index[0]).days cagr = ((((stock_df['Adj Close'][-1]) / stock_df['Adj Close'][1])) ** (365.0/days)) - 1 mu = cagr # create a series of percentage returns and calculate # the annual volatility of returns. Generally, the higher the volatility, # the riskier the investment in that stock, which results in investing in one over another. stock_df['Returns'] = stock_df['Adj Close'].pct_change() vol = stock_df['Returns'].std()*sqrt(252) # Set the initial capital initial_capital= float(100000.0) # Set up empty list to hold our ending values for each simulated price series sim_result = [] # Set up empty list to hold portfolio value for each simulated price serries, this is the value of position['total'] portfolio_total = [] # Define Variables start_price = stock_df['Adj Close'][-1] #starting stock price (i.e. last available real stock price) # Initialize the `signals` DataFrame signals = pd.DataFrame() # Initialize by setting the value for all rows in this column to 0.0. signals['signal'] = 0.0 signals['short_mavg'] = 0.0 # Create a DataFrame `positions` positions = pd.DataFrame(index=signals.index).fillna(0.0) # Choose number of runs to simulate - I have chosen 1,000 for i in range(sim_num): # create list of daily returns using random normal distribution daily_returns=np.random.normal(mu/trading_days,vol/sqrt(trading_days),trading_days)+1 # Set starting price and create price series generated by above random daily returns price_list = [start_price] for x in daily_returns: price_list.append(price_list[-1]*x) # Convert list to Pandas DataFrame price_list_df = pd.DataFrame(price_list) # Append the ending value of each simulated run to the empty list we created at the beginning sim_result.append(price_list[-1]) # Create short simple moving average over the short & long window signals['short_mavg'] = price_list_df[0].rolling(short_window).mean() signals['long_mavg'] = price_list_df[0].rolling(long_window).mean() # Create a signal when the short moving average crosses the long moving average, # but only for the period greater than the shortest moving average window. signals['signal'][short_window:] = np.where(signals['short_mavg'][short_window:] > signals['long_mavg'][short_window:], 1.0, 0.0) # Generate trading orders signals['positions'] = signals['signal'].diff() # Buy 100 shares positions[STOCK] = 100*signals['signal'] # Initialize the portfolio with value owned portfolio = positions.multiply(price_list_df[0], axis=0) # Store the difference in shares owned pos_diff = positions.diff() # Add `holdings` to portfolio portfolio['holdings'] = (positions.multiply(price_list_df[0], axis=0)).sum(axis=1) # Add `cash` to portfolio portfolio['cash'] = initial_capital - (pos_diff.multiply(price_list_df[0], axis=0)).sum(axis=1).cumsum() # Add `total` to portfolio portfolio['total'] = portfolio['cash'] + portfolio['holdings'] # Append the ending value of each simulated run to the empty list we created at the beginning portfolio_total.append(portfolio['total'].iloc[-1]) # Simulation Results # print sim_result df1 = pd.DataFrame(sim_result, columns=["MonteCarloResults"]) df1.to_csv(file_prepend_str + "_" + STOCK + "_sim_results.csv") # Portfolio Total # Print portfolio_total df2 = pd.DataFrame(portfolio_total, columns=["portfolioTotal"]) df2.to_csv(file_prepend_str + "_" + STOCK + "_portfolio_total.csv") # Create one data frame and write to file. result = pd.concat([df1, df2], axis=1, join_axes=[df1.index]) result.to_csv(file_prepend_str + "_" + STOCK + "_MonteCarloSimResult.csv") ## portfolio Risk Assessment Section #list of stocks in portfolio #defaults are: STOCKS = ['AAPL','AMZN','MSFT','INTC'] portfolio_data = pdr.get_data_yahoo(portfolio_stocks_list, start=datetime.datetime(2015, 1, 1), end=datetime.datetime(2017, 1, 1))['Adj Close'] #convert daily stock prices into daily returns returns = portfolio_data.pct_change() #calculate mean daily return and covariance of daily returns mean_daily_returns = returns.mean() cov_matrix = returns.cov() #set up array to hold results results = np.zeros((3,sim_num)) # run the sumulator for i in range(sim_num): #select random weights for portfolio holdings weights = np.random.random(len(portfolio_stocks_list)) #rebalance weights to sum to 1 weights /= np.sum(weights) #calculate portfolio return and volatility portfolio_return = np.sum(mean_daily_returns * weights) * 252 portfolio_std_dev = np.sqrt(np.dot(weights.T,np.dot(cov_matrix, weights))) * np.sqrt(252) #store results in results array results[0,i] = portfolio_return results[1,i] = portfolio_std_dev #store Sharpe Ratio (return / volatility) - risk free rate element excluded for simplicity results[2,i] = results[0,i] / results[1,i] #convert results array to Pandas DataFrame results_frame =
pd.DataFrame(results.T,columns=['ret','stdev','sharpe'])
pandas.DataFrame
""" Dash callbacks """ # Third party imports from boto3.dynamodb.conditions import Key from dash.dependencies import Input, Output, State from dash_table.Format import Format import plotly.graph_objs as go from flask import current_app import pandas as pd import numpy as np from scipy import stats from scipy.stats import t # Local application imports # from app.users import User from app.extensions import dynamo from app.sal.utils.colors import chart_colors from app.sal.utils.styling import axes from app.sal.layouts.filters import ALL_DEPT_DROPDOWN_OPTIONS def adjust_for_sal_cutoff_column(columns, mode='remove'): """Adjusts list of column definitions based on the mode argument Args: columns (list[dict]): list of column definitions mode (str 'remove'|'add'): what to do with the salary cutoff column Returns: list[dict]: Modified list of column definitions """ salary_cutoff_column = {'name': 'Salary Cutoff, $', 'id': 'salary_cutoff', 'type': 'numeric', 'format': Format().group(True)} is_present = False index = 0 for col in columns: if col['id'] == 'salary_cutoff': is_present = True break else: index += 1 if mode == 'add': if is_present: return columns else: columns.append(salary_cutoff_column) return columns if mode == 'remove': if is_present: columns.pop(index) return columns else: return columns CUTOFF_VALUES = { 'quartile': 0.25, 'quintile': 0.20, 'third': 0.33, } def register_sal_callbacks(dashapp): table = dynamo.tables[current_app.config['DB_SAL']] # Compression toggle button @dashapp.callback(Output('compression-options-container', 'style'), [Input('compression-analysis-toggle', 'value')]) def toggle_compression_options_display(value): """Controls whether or not compression analysis options are displayed Args: value (bool): Value of the compression-analysis-toggle element (True if checked) Returns: dict: Dictionary describing the style of the compression-options-container element. Contains a value for `display` """ if value: return {'display': 'flex'} else: return {'display': 'none'} # TABLE @dashapp.callback([Output('sal-table', 'data'), Output('sal-table', 'columns')], [Input('timestamp-dropdown', 'value'), Input('dept-dropdown', 'value'), Input('compression-analysis-toggle', 'value'), Input('rank-option', 'value'), Input('salary-cutoff-option', 'value'), Input('ten-stat-filter', 'value')], State('sal-table', 'columns')) def update_table(timestamp, dept, compression_analysis_enabled, rank_option, salary_cutoff_option, tenure_status_selection, table_columns): """Callback that controls table rendering The line below is needed in order to get data for only one timestamp Key('SK').between(f'DATA#SALARY#{timestamp}', f'DATA#SALARY#{timestamp}@' Args: timestamp (str): Selected timestamp dept (str): Selected department compression_analysis_enabled (bool): Value of the compression-analysis-toggle element (True if checked) rank_option (str): Selected rank option salary_cutoff_option (str): Selected salary cutoff option tenure_status_selection (list[str]): Selected tenure statuses table_columns (list[dict]): List of column definitions of Dash's DataTable Returns: list[dict]: Data to render list[dict]: Definition of table's columns """ if dept == 'AS': # If all A&S is selected, load every department (not efficient) data = [] for item in ALL_DEPT_DROPDOWN_OPTIONS: resp = table.query( KeyConditionExpression=Key('PK').eq(f"DEPT#{item['value']}") & Key('SK').between(f'DATA#SALARY#{timestamp}', f'DATA#SALARY#{timestamp}@'), ) data.extend(resp['Items']) if compression_analysis_enabled: # If compression analysis is enabled, then only display people who match the conditions df =
pd.DataFrame(data)
pandas.DataFrame
from datetime import datetime, timedelta import operator import pickle import unittest import numpy as np from pandas.core.index import Index, Factor, MultiIndex, NULL_INDEX from pandas.util.testing import assert_almost_equal import pandas.util.testing as tm import pandas._tseries as tseries class TestIndex(unittest.TestCase): def setUp(self): self.strIndex = tm.makeStringIndex(100) self.dateIndex = tm.makeDateIndex(100) self.intIndex = tm.makeIntIndex(100) self.empty = Index([]) self.tuples = Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])) def test_hash_error(self): self.assertRaises(TypeError, hash, self.strIndex) def test_deepcopy(self): from copy import deepcopy copy = deepcopy(self.strIndex) self.assert_(copy is self.strIndex) def test_duplicates(self): idx = Index([0, 0, 0]) self.assertRaises(Exception, idx._verify_integrity) def test_sort(self): self.assertRaises(Exception, self.strIndex.sort) def test_mutability(self): self.assertRaises(Exception, self.strIndex.__setitem__, 5, 0) self.assertRaises(Exception, self.strIndex.__setitem__, slice(1,5), 0) def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = arr.view(Index) tm.assert_contains_all(arr, index) self.assert_(np.array_equal(self.strIndex, index)) # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(Exception, Index, 0) def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assert_(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(
Index(['a', 'b'])
pandas.core.index.Index
from backtester.executionSystem.base_execution_system import BaseExecutionSystem, InstrumentExection from backtester.logger import * import numpy as np import pandas as pd class SimpleExecutionSystem(BaseExecutionSystem): def __init__(self, enter_threshold=0.7, exit_threshold=0.55, longLimit=10, shortLimit=10, capitalUsageLimit=0, enterlotSize=1, exitlotSize = 1, limitType='L', price='close'): self.enter_threshold = enter_threshold self.exit_threshold = exit_threshold self.longLimit = longLimit self.shortLimit = shortLimit self.capitalUsageLimit = capitalUsageLimit self.enterlotSize = enterlotSize self.exitlotSize = exitlotSize self.limitType = limitType self.priceFeature = price def getPriceSeries(self, instrumentsManager): instrumentLookbackData = instrumentsManager.getLookbackInstrumentFeatures() try: price = instrumentLookbackData.getFeatureDf(self.priceFeature).iloc[-1] return price except KeyError: logError('You have specified Dollar Limit but Price Feature Key %s does not exist'%self.priceFeature) def getLongLimit(self, instrumentIds, price): if isinstance(self.longLimit, pd.DataFrame): return self.convertLimit(self.longLimit, price) if isinstance(self.longLimit, dict): longLimitDf = pd.Series(self.longLimit) return self.convertLimit(longLimitDf, price) else: return self.convertLimit(pd.Series(self.longLimit, index=instrumentIds), price) def getShortLimit(self, instrumentIds, price): if isinstance(self.shortLimit, pd.DataFrame): return self.convertLimit(self.shortLimit, price) if isinstance(self.shortLimit, dict): shortLimitDf = pd.Series(self.shortLimit) return self.convertLimit(shortLimitDf, price) else: return self.convertLimit(pd.Series(self.shortLimit, index=instrumentIds), price) def getEnterLotSize(self, instrumentIds, price): if isinstance(self.enterlotSize, pd.DataFrame): return self.convertLimit(self.lotSize, price) if isinstance(self.enterlotSize, dict): lotSizeDf = pd.Series(self.enterlotSize) return self.convertLimit(lotSizeDf, price) else: return self.convertLimit(pd.Series(self.enterlotSize, index=instrumentIds), price) def getExitLotSize(self, instrumentIds, price): if isinstance(self.exitlotSize, pd.DataFrame): return self.convertLimit(self.lotSize, price) if isinstance(self.exitlotSize, dict): lotSizeDf = pd.Series(self.exitlotSize) return self.convertLimit(lotSizeDf, price) else: return self.convertLimit(pd.Series(self.exitlotSize, index=instrumentIds), price) def convertLimit(self, df, price): if self.limitType == 'L': return df else: try: return np.floor(df / price) except KeyError: logError('You have specified Dollar Limit but Price Feature Key does not exist') def getInstrumentExecutionsFromExecutions(self, time, executions): instrumentExecutions = [] for (instrumentId, position) in executions.iteritems(): if position == 0: continue instExecution = InstrumentExection(time=time, instrumentId=instrumentId, volume=np.abs(position), executionType=np.sign(position)) instrumentExecutions.append(instExecution) return instrumentExecutions def getExecutions(self, time, instrumentsManager, capital): instrumentLookbackData = instrumentsManager.getLookbackInstrumentFeatures() currentPredictions = instrumentLookbackData.getFeatureDf('prediction').iloc[-1] executions = self.exitPosition(time, instrumentsManager, currentPredictions) executions += self.enterPosition(time, instrumentsManager, currentPredictions, capital) # executions is a series with stocknames as index and positions to execute as column (-10 means sell 10) return self.getInstrumentExecutionsFromExecutions(time, executions) def getExecutionsAtClose(self, time, instrumentsManager): instrumentExecutions = [] instruments = instrumentsManager.getAllInstrumentsByInstrumentId().values() for instrument in instruments: position = instrument.getCurrentPosition() if position == 0: continue instrumentExec = InstrumentExection(time=time, instrumentId=instrument.getInstrumentId(), volume=np.abs(position), executionType=-np.sign(position)) instrumentExecutions.append(instrumentExec) return instrumentExecutions def exitPosition(self, time, instrumentsManager, currentPredictions, closeAllPositions=False): instrumentLookbackData = instrumentsManager.getLookbackInstrumentFeatures() positionData = instrumentLookbackData.getFeatureDf('position') position = positionData.iloc[-1] price = self.getPriceSeries(instrumentsManager) executions = pd.Series([0] * len(positionData.columns), index=positionData.columns) if closeAllPositions: executions = -position return executions executions[self.exitCondition(currentPredictions, instrumentsManager)] = -np.sign(position)*\ np.minimum(self.getExitLotSize(positionData.columns, price) , np.abs(position)) executions[self.hackCondition(currentPredictions, instrumentsManager)] = -np.sign(position)*\ np.minimum(self.getExitLotSize(positionData.columns, price) , np.abs(position)) return executions def enterPosition(self, time, instrumentsManager, currentPredictions, capital): instrumentLookbackData = instrumentsManager.getLookbackInstrumentFeatures() positionData = instrumentLookbackData.getFeatureDf('position') position = positionData.iloc[-1] price = self.getPriceSeries(instrumentsManager) executions = pd.Series([0] * len(positionData.columns), index=positionData.columns) executions[self.enterCondition(currentPredictions, instrumentsManager)] = \ self.getEnterLotSize(positionData.columns, price) * self.getBuySell(currentPredictions, instrumentsManager) # No executions if at position limit executions[self.atPositionLimit(capital, positionData, price)] = 0 return executions def getBuySell(self, currentPredictions, instrumentsManager): return np.sign(currentPredictions - 0.5) def enterCondition(self, currentPredictions, instrumentsManager): return (currentPredictions - 0.5).abs() > (self.enter_threshold - 0.5) def atPositionLimit(self, capital, positionData, price): if capital <= self.capitalUsageLimit: logWarn('Not Enough Capital') return
pd.Series(True, index=positionData.columns)
pandas.Series
# Copyright (C) 2020 University of Oxford # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import requests import pandas as pd import numpy as np from utils.fetcher.base_government_response import BaseGovernmentResponseFetcher from .utils import parser, to_int from datetime import datetime, timedelta __all__ = ('StringencyFetcher',) logger = logging.getLogger(__name__) class StringencyFetcher(BaseGovernmentResponseFetcher): LOAD_PLUGIN = True SOURCE = 'GOVTRACK' def fetch(self): # First intensive care hospitalisation on 2020-01-01 if self.sliding_window_days: date_from = (datetime.now() - timedelta(days=self.sliding_window_days)).strftime('%Y-%m-%d') else: date_from = '2020-01-01' date_to = datetime.today().strftime('%Y-%m-%d') api_data = requests.get( f'https://covidtrackerapi.bsg.ox.ac.uk/api/v2/stringency/date-range/{date_from}/{date_to}').json() return parser(api_data, self.country_codes_translator) def fetch_details(self, country_code, date_value): api_details = requests.get( f'https://covidtrackerapi.bsg.ox.ac.uk/api/v2/stringency/actions/{country_code}/{date_value}' ).json() if "stringencyData" in api_details: api_details.pop("stringencyData") return api_details def fetch_csv(self): df = pd.read_csv( f'https://raw.githubusercontent.com/OxCGRT/covid-policy-tracker/master/data/OxCGRT_latest.csv') df = df.replace({np.nan: None}) df = df.merge(self.country_codes_translator.translation_pd, right_on='Alpha-3 code', left_on='CountryCode', how='left') return df def run(self): # RAW Govtrack data raw_govtrack_data = self.fetch_csv() for index, record in raw_govtrack_data.iterrows(): if
pd.isna(record['English short name lower case'])
pandas.isna
# !/usr/bin/env python # -*- coding: utf-8 -*- """ Classes & functions related to postgreSQL databases """ from contextlib import contextmanager from functools import partial from operator import itemgetter from typing import Optional, Union, Tuple, List, Any, Sequence import numpy as np import pandas as pd import pandas.io.sql import psycopg2 from psycopg2 import sql from psycopg2.extras import execute_values from psycopg2.extensions import register_adapter, AsIs from ..utils.log_utl import monitor, create_logger from ..utils.os_utl import check_types, check_options, NoneType from ._core import BaseActorSQL, join_schema_to_table_name, parse_schema_table register_adapter(np.int64, AsIs) FLAVOR = 'PostGreSQL' LOGGER = create_logger(__name__, on_conflict='ignore', fmt=f'[%(asctime)s | {FLAVOR} | %(levelname)s] %(message)s', logger_level=20) MONITOR_LOGGER = LOGGER.getChild('monitor') MONITOR_LOGGER.setLevel(30) # ========================================================================================================= # ================================ 1. OTHER # To retrieve data types in PostgreSQL """SELECT typname, typelem FROM pg_type WHERE typname LIKE '_int%';""" # PostgreSQL type equivalent with pandas TYPE_ALIASES = { 'object': 'text', 'string': 'text', 'int64': 'bigint', 'int32': 'integer', 'int16': 'integer', 'int8': 'smallint', 'float': 'float', 'float64': 'real', 'float32': 'real', 'float16': 'real', 'float8': 'real', 'bool': 'boolean', 'datetime64[ns]': 'timestamp', } # GLOBAL VARIABLES BELOW MAYBE CAN BE DELETED TYPE_ALIASES_REVERSED = { 16: 'bool', 21: 'float32', # int16 but do not support NA so then pd.to_numeric 20: 'float64', # int64 but do not support NA so then pd.to_numeric 23: 'float32', # int32 but do not support NA so then pd.to_numeric 25: 'object', 700: 'float32', 701: 'float32', 1043: 'object', 1114: 'object', # datetime64 so then parse by pd.read_csv 1700: 'float64' } DATES_OID = [1114] DATE_PARSER = pd.to_datetime # ========================================================================================================= # ================================ 2. CLASSES # noinspection PyUnusedLocal,PyTypeChecker class PostgreSQLManager(BaseActorSQL): """This class provides methods to interact with a PostgreSQL Database Args: user: User identification in the database password: <PASSWORD> db_name: Name of the database to connect to host: Address to the database port: Port to connect through kwargs: Additional keyword arguments to pass to BaseActor class ("schema") Examples: >>> db = PostgreSQLManager('user', 'password', '<PASSWORD>', 'localhost', '5432', 'some_schema') [2021-05-20 12:59:11 | PostGreSQL | INFO] Connection opened to test [2021-05-20 12:59:12 | PostGreSQL | INFO] Active schema changed to some_schema. """ _flavor = FLAVOR _unsafe_symbols = (';', '--') # define symbols to be checked on arguments that can't be parsed by sql components. _cursor_manager_exceptions = (Exception, KeyboardInterrupt, psycopg2.Error) def __init__(self, user: str, password: str, host: str, port: Union[str, int] = '5432', database: Optional[str] = None, **kwargs) -> None: self.host, self.port = host, port super().__init__(database, user, password, logger=LOGGER, **kwargs) self.refresh() @parse_schema_table def analyse(self, table_name: str, schema: Optional[str] = None) -> None: """Performs an analysis of a table. This computes statistics such as approximate count of rows Args: table_name: Table to be analysed schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None """ stmt = "ANALYZE {schema}.{table_name}" params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name)) self.execute(sql.SQL(stmt).format(**params), log=f'Table {schema}.{table_name} analysed.') def execute(self, stmt: str, params: Optional[Tuple[Any]] = None, *, return_cursor_metadata: bool = False, log: Optional[str] = None) -> Optional[Union[bool, str, psycopg2.extensions.cursor]]: return super().execute(stmt, params, return_cursor_metadata=return_cursor_metadata, log=log) def get_sql(self, stmt: str, params: Optional[Tuple[Any]] = None, **kwargs) -> str: """Generates the sql statement with the params passed. This can be used to simulate the statements before sending them. Args: stmt: Sql statement to apply params to params: Params to insert in the sql statement kwargs: For compatibility Returns: String: Sql statement with params applied to """ with self.cursor_manager() as cur: return cur.mogrify(stmt, params).decode() @check_types(pid=(int, list, tuple)) def kill_process(self, pid: Union[int, List[int], Tuple[int]], *, force: bool = False) -> bool: """Terminate a process in the database. Args: pid: Id of the process to terminate force: whether to "cancel" the process softly or "terminate" forcefully. Returns: Boolean: True if successful """ if isinstance(pid, (list, tuple)): for pid_ in pid: self.kill_process(pid_, force=force) elif isinstance(pid, int): return self.execute(f"SELECT pg_{'terminate' if force else 'cancel'}_backend({pid});", log=f'Process {pid} was terminated successfully.') @check_options(state=('active', 'idle', None)) def get_transactions(self, state: Optional[str] = None) -> pd.DataFrame: """List transactions in the database. Args: state: Filter transactions listed by their "state". Allowed: ('active', 'idle', None). Returns: pd.DataFrame: Table with contents of pg_stat_activity according to the filter applied. """ stmt = "SELECT * FROM pg_stat_activity" params = dict() if state is not None: stmt += " WHERE state = {state}" params['state'] = sql.Literal(state) return self.query(sql.SQL(stmt).format(**params)) def refresh(self) -> None: """Refresh the names of the existing tables. Returns: None """ stmt = "SELECT DISTINCT table_schema, table_name FROM information_schema.tables " \ "WHERE table_schema !~ 'pg_catalog|information_schema'" schemas_and_tables = self.query(stmt) self._tables = list(schemas_and_tables['table_schema'].str.cat(schemas_and_tables['table_name'], sep='.')) @check_types(columns=(str, list, dict), not_null=(bool, list)) @parse_schema_table def add_columns(self, table_name: str, columns: Union[str, list, dict], not_null: Union[bool, List[bool]] = False, schema: Optional[str] = None) -> None: """Add columns to a table Args: table_name: Table to add columns to columns: column_name or list of column_names or dict of {column_name: column_type} to be created not_null: Whether the created columns can have Null values or not. If a single boolean passed it will be applied to all columns. Alternatively it can be passed a list of booleans with specification per column. schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None """ # Preparation of inputs and sanity checks if isinstance(columns, str): columns = [columns] if isinstance(columns, list): self.logger.warning('Adding columns without specifying their type.\nThe "text" format will be applied ' 'which can lead to low performance.') columns = dict(zip(columns, ['text']*len(columns))) if isinstance(not_null, bool): not_null = [not_null]*len(columns) elif isinstance(not_null, list): assert len(not_null) == len(columns), "If explicitly passing 'NOT NULL' entries for each column, then " \ "'not null' list needs to be the same size of columns." # Preparation of statement and parameters stmt = "ALTER TABLE {schema}.{table_name}" params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name)) for i, ((c, t), nn) in enumerate(zip(columns.items(), not_null)): self._check_safety(t, 'types') stmt += f" ADD COLUMN {{c{i}}} {TYPE_ALIASES.get(t.lower(), t)}" params[f'c{i}'] = sql.Identifier(c) if nn: stmt += " NOT NULL" stmt += ',' else: stmt = stmt[:-1] self.execute(sql.SQL(stmt).format(**params), log=f'Columns {tuple(columns)} added successfully to {schema}.{table_name}.') @monitor(mode='time', logger=MONITOR_LOGGER) @check_types(columns=dict) @parse_schema_table def alter_columns(self, table_name: str, columns: dict, using: Optional[Union[str, List[str]]] = None, schema: Optional[str] = None) -> None: """Alter column types in a table Args: table_name: Table to alter columns on columns: dictionary of format {column_name: column_type}. using: Optional. expression or list of expressions to use to convert. If list, needs to be the same size as "columns". Expressions cannot contain "unsafe_symbols" such as ";" or "--" to avoid injection. schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None """ # Preparation of inputs and sanity checks if isinstance(using, str) or using is None: using = [using]*len(columns) assert len(using) == len(columns), 'Size of "using" needs to be the same as "columns".' # Preparation of statement and parameters stmt = "ALTER TABLE {schema}.{table_name}" params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name)) for i, ((c, t), u) in enumerate(zip(columns.items(), using)): self._check_safety(t, 'types') stmt += f" ALTER COLUMN {{c{i}}} TYPE {t}" params[f'c{i}'] = sql.Identifier(c) if u is not None: self._check_safety(u, 'using') stmt += f" USING {{c{i}}}::{u}" stmt += ',' else: stmt = stmt[:-1] self.execute(sql.SQL(stmt).format(**params), log=f'Columns {columns} of table {schema}.{table_name} changed successfully.') @check_types(columns=(str, list, tuple), cascade=(bool, list)) @parse_schema_table def drop_columns(self, table_name: str, columns: Union[str, list, tuple], cascade: Union[bool, List[bool]] = False, if_exists: bool = True, schema: Optional[str] = None) -> None: """Drops columns from table Args: table_name: Table to drop columns from columns: column_name or list of column_names to drop cascade: boolean or list of booleans to control whether dependent objects are dropped or an error is raised. If a list is passed it needs to be of the same length of "columns". If a single boolean is passed it will be applied to all columns if_exists: Whether to raise an error or not if the column doesn't exist schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None """ if isinstance(columns, str): columns = [columns] if isinstance(cascade, bool): cascade = [cascade]*len(columns) elif isinstance(cascade, list): assert len(cascade) == len(columns), "If explicitly passing 'cascade' entries for each column, then " \ "'cascade' list needs to be the same size of columns." stmt = "ALTER TABLE {schema}.{table_name}" params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name)) for i, (col, cas) in enumerate(zip(columns, cascade)): stmt += " DROP COLUMN" + " IF EXISTS"*if_exists + f" {{c{i}}}" + " CASCADE"*cas + ',' params[f'c{i}'] = sql.Identifier(col) else: stmt = stmt[:-1] self.execute(sql.SQL(stmt).format(**params), log=f'Dropped columns {tuple(columns)} from "{schema}.{table_name}" successfully.') @parse_schema_table def rename_column(self, table_name: str, old_column_name: str, new_column_name: str, schema: Optional[str] = None) -> None: """Rename a column in a table Args: table_name: Table that contains the column to be renamed old_column_name: Original column name new_column_name: New column name schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None """ stmt = "ALTER TABLE {schema}.{table_name} RENAME {old_column_name} TO {new_column_name};" params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name), old_column_name=sql.Identifier(old_column_name), new_column_name=sql.Identifier(new_column_name)) self.execute(sql.SQL(stmt).format(**params), log=f'Column "{old_column_name}" of table "{schema}.{table_name}" ' f'renamed to "{new_column_name}" successfully.') @monitor(mode='time', logger=MONITOR_LOGGER) @check_types(columns=(str, list), unique=bool) @check_options(on_conflict=('raise', 'drop')) @parse_schema_table def create_index(self, table_name: str, columns: Union[str, list], index_name: Optional[str] = None, unique: bool = False, on_conflict: str = 'raise', schema: Optional[str] = None) -> None: """Creates an index on a table on the given columns Args: table_name: table to create the index one columns: which columns to use for the index index_name: Optional. name to use for index. If none is passed the name will be generated automatically unique: whether the index should have unique entries on_conflict: Whether to raise an error or drop the index if an index with the same name exists in the schema schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None Examples: >>> db = PostgreSQLManager(...) >>> db.create_index('test_table', columns=['a', 'b'], unique=True) [2021-05-20 12:59:11 | PostGreSQL | INFO] Index idx_public_test_table_a_b successfully created. """ if isinstance(columns, str): columns = [columns] # Sorting to ensure consistency in the index whatever the order of given columns # define index name columns = sorted([c.replace(' ', '_') for c in columns]) index_name = index_name or f"{schema}_{table_name}_{'_'.join(columns)}_idx" # check whether the index exists and if should be dropped or not if not self.get_index(index_name, schema).empty and on_conflict == 'raise': raise IndexError(f'Index with name {schema}.{index_name} already exists. Check if you need to create ' f'this index.\nIf you wish to drop it and recreate pass on_conflict=="drop".') # Drop if already exists with same name and creates self.drop_index(f'{schema}.{index_name}') stmt = "CREATE" + " UNIQUE"*unique + " INDEX {index_name} ON {schema}.{table_name} ({columns});" params = dict(index_name=sql.Identifier(index_name), table_name=sql.Identifier(table_name), schema=sql.Identifier(schema), columns=sql.SQL(",").join(map(sql.Identifier, columns))) self.execute(sql.SQL(stmt).format(**params), log=f'Index {index_name} successfully created.') def drop_index(self, index_name: str, *, cascade: bool = False, return_query: bool = False) -> Optional[str]: """Drops an existing index by its name. Args: index_name: index name to drop cascade: Automatically drop objects that depend on the index. return_query: whether to return the original query used to create the index being dropped. Returns: Optional[String]: Query used to create index being dropped or empty string Examples: >>> db = PostgreSQLManager(...) >>> db.drop_index('idx_public_test_index_col_a', return_query=True) 'CREATE INDEX idx_public_test_index_col_a ON public.test_index (col_a)' """ # parse idx_name (can be passed with schema) schema = None if '.' in index_name: schema, index_name = index_name.split('.', 1) # check if the idx_exists idx = self.get_index(index_name, schema) if idx.empty: return # if there is no schema passed get it from the table if schema is None: if idx.shape[0] > 1: raise IndexError(f'There are multiple indexes with name {index_name}. Please pass explicitly the ' f'schema in the index_name as "<schema>.<index_name>".') schema = idx.iloc[0]['schemaname'] stmt = "DROP INDEX IF EXISTS {schema}.{index_name}" + " CASCADE" * cascade self.execute(sql.SQL(stmt).format(index_name=sql.SQL(index_name), schema=sql.Identifier(schema)), log=f'Index {index_name} successfully dropped.') if return_query: return idx[idx['schemaname'] == schema]['indexdef'].iloc[0] def get_index(self, idx_name: str, schema: Optional[str] = None) -> pd.DataFrame: """Retrieve information for a specific index Args: idx_name: Name of the index to retrieve info for schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: pd.DataFrame: Table with information. Typically it should have a single row """ idxs = self.get_indexes(schema=schema) return idxs[idxs.indexname == idx_name] def get_indexes(self, table_name: Optional[str] = None, schema: Optional[str] = None) -> pd.DataFrame: """List all indexes. Might be filtered by schema/table Args: table_name: name of the table if filtering by table schema: name of the schema if filtering by schema Returns: pd.DataFrame: table with the indexes information filtered according to the parameters passed """ if table_name is not None and '.' in table_name: if schema is not None: self.logger.warning('Schema passed in "table_name". The "schema" argument will be ignored.') schema, table_name = table_name.split('.') stmt = "SELECT * FROM pg_indexes WHERE schemaname != 'pg_catalog'" params = dict() if schema is not None: stmt += " AND schemaname = {schema}" params['schema'] = sql.Literal(schema) if table_name is not None: stmt += " AND tablename = {table_name}" params['table_name'] = sql.Literal(table_name) return self.query(sql.SQL(stmt).format(**params)) def get_indexes_columns(self, index_name: Optional[Union[str, list]] = None, table_name: Optional[str] = None, schema: Optional[str] = None) -> pd.Series: """Get columns for indexes in a table, schema or specific index_name Args: index_name: Specific index_name string or list of index_names table_name: Tables to search the indexes on schema: Schema to search the indexes on Returns: pd.Series: index=index_name, values=lists of columns """ idxs = self.get_indexes(table_name, schema=schema) if index_name is not None: if isinstance(index_name, str): index_name = [index_name] idxs = idxs[idxs['indexname'].isin(index_name)] idxs['cols'] = idxs['indexdef'].str.extract(r'.*\((.*)\)') idxs['cols'] = idxs['cols'].str.split(', ').apply(sorted) idxs.set_index('indexname', inplace=True) return idxs['cols'] def create_schema(self, schema_name: str, if_not_exists: bool = True) -> None: """Creates a new schema in the database Args: schema_name: Name for the new schema if_not_exists: If False will raise an error if the a schema with the same name already exists. Returns: None Examples: >>> db = PostgreSQLManager(...) >>> db.create_schema('test_schema') [2021-05-20 12:59:11 | PostGreSQL | INFO] Schema test_schema successfully created in <name> database. """ stmt = "CREATE SCHEMA" + " IF NOT EXISTS"*if_not_exists + " {schema_name}" self.execute(sql.SQL(stmt).format(schema_name=sql.Identifier(schema_name)), log=f'Schema {schema_name} successfully created in {self.name} database.') def drop_schema(self, schema_name: Union[str, list], cascade: bool = False, if_exists: bool = True) -> None: """Drops an entire schema. If "cascade" is True it will drop any table inside of that schema. Allows multiple schemas to be dropped at same time by passing a list of schema names. If the active_schema is dropped it will reset the instance "active_schema" to "public". Args: schema_name: name of the schema to drop cascade: Whether to drop everything inside of the schema or to raise an error if any table is still in the schema. if_exists: Whether to ignore or raise an error if the schema doesn't exist. Returns: None """ if isinstance(schema_name, (tuple, list, set)): drop_schema = self.active_schema in schema_name _schema_name = sql.SQL(",").join(map(sql.Identifier, schema_name)) else: drop_schema = self.active_schema == schema_name _schema_name = sql.Identifier(schema_name) stmt = "DROP SCHEMA" + " IF EXISTS"*if_exists + " {schema_name}" + " CASCADE"*cascade if self.execute(sql.SQL(stmt).format(schema_name=_schema_name), log=f'Schema(s) {schema_name} dropped successfully.'): if drop_schema: self.set_active_schema(None) def get_schemas(self) -> list: """Finds available schemas in the database Returns: list: list of schemas in database """ stmt = "SELECT schema_name FROM information_schema.schemata " \ "WHERE schema_name !~ 'pg_catalog|information_schema|pg_toast'" return list(self.query(stmt)['schema_name']) def set_active_schema(self, schema: Optional[str] = None) -> None: """Sets the active schema in the database. Any query will be done within the active schema without need to specifically identify the schema on the query Args: schema: If None is passed it will set the active_schema to "public" Returns: None """ schemas = self.get_schemas() if (schema is not None) and (schema not in schemas): self.logger.warning(f'Passed schema "{schema}" does not exist in database "{self.name}" or current user ' f'might not have access privileges to it.' f'\nSchema was not changed. Current schema: {self.active_schema}') else: super().set_active_schema(schema) self.refresh() if schema in schemas: stmt = 'ALTER USER {user} SET search_path TO {active_schema}' params = dict(user=sql.Identifier(self.user), active_schema=sql.Identifier(self.active_schema)) self.execute(sql.SQL(stmt).format(**params)) @parse_schema_table def drop_primary_key(self, table_name: str, schema: Optional[str] = None) -> None: """Drops current primary key Args: table_name: table name to drop primary key from schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None """ constraints = self.get_constraints(table_name, contype='p', schema=schema)['conname'] if not constraints.empty: stmt = "ALTER TABLE {schema}.{table_name} DROP CONSTRAINT IF EXISTS {constraint}" params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name), constraint=sql.SQL(constraints[0])) self.execute(sql.SQL(stmt).format(**params), log=f'Primary key {constraints[0]} dropped.') @parse_schema_table def get_primary_key(self, table_name: str, schema: Optional[str] = None) -> pd.Series: """Retrieve all info about the primary key of a table Args: table_name: Table to get the primary key from schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: """ return self.get_constraints(table_name, 'p', schema=schema) @parse_schema_table def get_primary_key_columns(self, table_name: str, idx: bool = False, schema: Optional[str] = None) -> list: """Find the columns of the primary_key constraint for a given table Args: table_name: Name to get primary key from idx: Whether to return the columns as names or indexes. Default: False (returns names). schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: List: list of columns that are the primary keys """ key = self.get_primary_key(table_name, schema=schema)['conkey'] if key.empty: return [] key = key.iloc[0] if not idx: cols = self.get_columns(table_name, schema) cols.insert(0, '_') key = itemgetter(*key)(cols) key = [key] if not isinstance(key, tuple) else list(key) return sorted(key) @monitor(mode='time', logger=MONITOR_LOGGER, log_level='debug') @check_options(on_conflict=('raise', 'drop')) @parse_schema_table def set_primary_key(self, table_name: str, id_column: Union[str, list, tuple], on_conflict='raise', schema: Optional[str] = None) -> Optional[bool]: """Adds a primary key to the table. Args: table_name: table to add the primary key to id_column: column(s) to be defined as primary key. Column must exist in table, otherwise it will raise an error on_conflict: What to do if already exists a primary key set for this table. Options: 'raise', 'drop'. Default: 'raise' schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: If True the set of the key was completed successfully """ # if more than one column is passed join them as a single string if not isinstance(id_column, (list, tuple, set)): id_column = [id_column] stmt = "ALTER TABLE {schema}.{table_name} ADD PRIMARY KEY ({id_column})" params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name), id_column=sql.SQL(',').join(map(sql.Identifier, id_column))) if on_conflict == 'drop': self.drop_primary_key(table_name, schema) return self.execute(sql.SQL(stmt).format(**params), log=f'Primary key set on {tuple(id_column)} successfully.') @monitor(logger=MONITOR_LOGGER) @parse_schema_table def append_to_table(self, table_name: str, values: Union[pd.DataFrame, Sequence], columns: Optional[Union[list, dict]] = None, on_new_columns: str = 'raise', schema: Optional[str] = None) -> None: """Uploads a table with the name passed to the DataBase. If the table doesn't exist yet, will create a new one else it will append any missing columns to the dataframe passed (to ensure consistency) with null values and add it. New columns that don't exist on the destination table will raise a error. Args: table_name: table name to upload to in DataBase values: table to upload columns: list, dict or None. Definition of new columns (or new table) requires a dictionary of format {<col_name>: <col_type>} except if 'values' is a DataFrame. on_new_columns: What to do if new columns are in the DataFrame passed. Options: ('raise', 'ignore', 'add'). "raise": raises an error "ignore": drop the additional columns from the dataframe before uploading it. If values is not a DataFrame it will raise an error instead. "add": create columns in the database table with inferred type before uploading the data. schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None Examples: >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) >>> db = PostgreSQLManager(...) >>> db.append_to_table('test_table', df) """ self.refresh() full_tablename = f'{schema}.{table_name}' if full_tablename not in self._tables: if not isinstance(values, pd.DataFrame) and isinstance(columns, (list, NoneType)): raise TypeError(f'Table {full_tablename} does not exist. To create the table with "append_to_table" ' f'method, "columns" must be a dictionary defining the types of each column.') self.upload_table(table_name, values, columns, schema=schema) else: # if the table already exists, update its schema and add any missing columns before appending the new table values, columns = self._update_table_schema(full_tablename, values, columns, on_new_columns) if self._commit_table(table_name, values, columns, update_table_names=False, schema=schema): self.logger.info(f'Data appended successfully to table {full_tablename}.') @monitor(logger=MONITOR_LOGGER) @parse_schema_table def copy_table(self, table_name: str, new_table_name: str, columns: Optional[list] = None, where: Optional[str] = None, structure_only: bool = False, schema: Optional[str] = None, destination_schema: Optional[str] = None) -> None: """Copies one table to another. The copy can include all of the data, just a selection of the data or structure only. Args: table_name: Name of the table to copy new_table_name: Name of the new table columns: Which columns to include on the copy where: Sql statement to select specific rows to be copied. This statement cannot use any "unsafe_symbol" such as ";" or "--". structure_only: Whether to copy only the structure of the table (without any data) schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema destination_schema: Optional. Schema to copy the table to. If 'None' uses the instance active_schema Returns: None """ params = dict(schema=sql.Identifier(schema), table_name=sql.Identifier(table_name)) stmt = "CREATE TABLE {new_schema}.{new_table_name} AS" # parse and add new schema and table name destination_schema = destination_schema or self.active_schema new_schema, new_table_name = join_schema_to_table_name(new_table_name, destination_schema).split('.', 1) params['new_schema'], params['new_table_name'] = map(sql.Identifier, (new_schema, new_table_name)) if (columns is None) and (where is None): stmt += " TABLE {schema}.{table_name}" else: stmt += " SELECT {columns} FROM {schema}.{table_name}" params['columns'] = sql.SQL('*') if columns is None else sql.SQL(",").join(map(sql.Identifier, columns)) if where is not None: self._check_safety(where, 'where') stmt += f" WHERE {where}" if structure_only: stmt += " WITH NO DATA" log = f'Table {schema}.{table_name} copied successfully to {new_schema}.{new_table_name}' if self.execute(sql.SQL(stmt).format(**params), log=log): self.refresh() @check_types(table_name=str, types=(NoneType, dict)) @parse_schema_table def create_empty_table(self, table_name: str, types: Optional[dict] = None, from_df: Optional[pd.DataFrame] = None, if_not_exists: bool = False, schema: Optional[str] = None) -> None: """Creates a new empty table in the selected (or active if None passed) schema. Args: table_name: Name for the table types: dictionary of format {column_name: column_type}. If a DataFrame is passed in "from_df", "types" is used to override any inferred type from pandas from_df: A DataFrame to use to infer the structure of the table from if_not_exists: Boolean flag to raise or not an error if a table with the same name already exists schema: Optional. Schema to look for the table in. If None provide will use the instance active_schema Returns: None Examples: >>> db = PostgreSQLManager(...) >>> db.create_empty_table('test_table', ['a', 'b'], ['int32', 'string']) [2021-05-20 12:59:11 | PostGreSQL | INFO] Table test_table successfully created. """ # get known types from global dict if types is not None: types = {col: TYPE_ALIASES.get(str(t).lower(), str(t)) for col, t in types.items()} # if a df was passed extract missing types from it if from_df is not None: types = _get_col_types_from_df_schema(
pd.io.sql.get_schema(from_df, '_', dtype=types)
pandas.io.sql.get_schema
# coding: utf-8 # # Content # __1. Exploratory Visualization__ # __2. Data Cleaning__ # __3. Feature Engineering__ # __4. Modeling & Evaluation__ # __5. Ensemble Methods__ # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') get_ipython().run_line_magic('matplotlib', 'inline') plt.style.use('ggplot') # In[2]: from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import RobustScaler, StandardScaler from sklearn.metrics import mean_squared_error from sklearn.pipeline import Pipeline, make_pipeline from scipy.stats import skew from sklearn.decomposition import PCA, KernelPCA from sklearn.preprocessing import Imputer # In[3]: from sklearn.model_selection import cross_val_score, GridSearchCV, KFold from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, ExtraTreesRegressor from sklearn.svm import SVR, LinearSVR from sklearn.linear_model import ElasticNet, SGDRegressor, BayesianRidge from sklearn.kernel_ridge import KernelRidge from xgboost import XGBRegressor # In[4]: pd.set_option('max_colwidth',200) pd.set_option('display.width',200) pd.set_option('display.max_columns',500) pd.set_option('display.max_rows',1000) # In[7]: train=pd.read_csv('E:/Workspace/HousePrices/train.csv') test=pd.read_csv('E:/Workspace/HousePrices/test.csv') # In[8]: # train = pd.read_csv('../input/train.csv') # test = pd.read_csv('../input/test.csv') # # Exploratory Visualization # + __It seems that the price of recent-built houses are higher. So later I 'll use labelencoder for three "Year" feature.__ # In[9]: plt.figure(figsize=(15,8)) sns.boxplot(train.YearBuilt, train.SalePrice) # + __As is discussed in other kernels, the bottom right two two points with extremely large GrLivArea are likely to be outliers. So we delete them.__ # In[10]: plt.figure(figsize=(12,6)) plt.scatter(x=train.GrLivArea, y=train.SalePrice) plt.xlabel("GrLivArea", fontsize=13) plt.ylabel("SalePrice", fontsize=13) plt.ylim(0,800000) # In[11]: train.drop(train[(train["GrLivArea"]>4000)&(train["SalePrice"]<300000)].index,inplace=True) # In[12]: full=pd.concat([train,test], ignore_index=True) # In[13]: full.drop(['Id'],axis=1, inplace=True) full.shape # # Data Cleaning # ### Missing Data # In[14]: aa = full.isnull().sum() aa[aa>0].sort_values(ascending=False) # + __Let's first imput the missing values of LotFrontage based on the median of LotArea and Neighborhood. Since LotArea is a continuous feature, We use qcut to divide it into 10 parts.__ # In[15]: full.groupby(['Neighborhood'])[['LotFrontage']].agg(['mean','median','count']) # In[16]: full["LotAreaCut"] =
pd.qcut(full.LotArea,10)
pandas.qcut
import numpy as np import pandas as pd class Result(): # structure of the result def __init__(self): self.ranks = None self.scores = None self.features = None self.ranked_features = None def PasiLuukka(in_data, target, measure = 'luca', p = 1): d = pd.DataFrame(in_data) t = pd.DataFrame(target) data = pd.concat([d,t],axis=1) # Feature selection method using similarity measure and fuzzy entropy # measures based on the article: # <NAME>, (2011) Feature Selection Using Fuzzy Entropy Measures with # Similarity Classifier, Expert Systems with Applications, 38, pp. 4600-4607 l = int(max(data.iloc[:,-1])) m = data.shape[0] t = data.shape[1]-1 dataold = data.copy() idealvec_s = np.zeros((l,t)) for k in range(l): idx = data.iloc[:,-1] == k+1 idealvec_s[k,:] = data[idx].iloc[:,:-1].mean(axis = 0) # scaling data between [0,1] data_v = data.iloc[:,:-1] data_c = data.iloc[:,-1] # labels mins_v = data_v.min(axis = 0) Ones = np.ones((data_v.shape)) data_v = data_v + np.dot(Ones,np.diag(abs(mins_v))) tmp =[] for k in range(l): tmp.append(abs(mins_v)) idealvec_s = idealvec_s+tmp maxs_v = data_v.max(axis = 0) data_v = np.dot(data_v,np.diag(maxs_v**(-1))) tmp2 =[]; for k in range(l): tmp2.append(abs(maxs_v)) idealvec_s = idealvec_s/tmp2 data_vv = pd.DataFrame(data_v) # Convert the array of feature to a dataframe data =
pd.concat([data_vv, data_c], axis=1, ignore_index=False)
pandas.concat
import os import audiofile import audiofile as af import numpy as np import pandas as pd import pytest import audinterface import audformat def signal_duration(signal, sampling_rate): return signal.shape[1] / sampling_rate def signal_max(signal, sampling_rate): return np.max(signal) SEGMENT = audinterface.Segment( process_func=lambda x, sr: audinterface.utils.signal_index( pd.to_timedelta(0), pd.to_timedelta(x.shape[1] / sr, unit='s') / 2, ) ) def signal_modification(signal, sampling_rate, subtract=False): if subtract: signal -= 0.1 * signal else: signal += 0.1 * signal return signal @pytest.mark.parametrize( 'process_func, segment, signal, sampling_rate, start, end, keep_nat, ' 'channels, mixdown, expected_output', [ ( signal_max, None, np.ones((1, 3)), 8000, None, None, False, None, False, 1, ), ( signal_max, SEGMENT, np.ones((1, 8000)), 8000, None, None, False, None, False, 1, ), ( signal_max, None, np.ones(3), 8000, None, None, False, 0, False, 1, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 0, False, 0, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 0, False, 0, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 1, False, 1, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, None, True, 0.5, ), ( signal_max, None, np.array([[-1., -1., -1.], [0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, [1, 2], True, 0.5, ), # invalid channel selection pytest.param( signal_max, None, np.ones((1, 3)), 8000, None, None, False, 1, False, 1, marks=pytest.mark.xfail(raises=ValueError), ), ( signal_duration, None, np.zeros((1, 24000)), 8000, None, None, False, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.NaT, False, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.NaT, True, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), None, False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), pd.NaT, False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, None, pd.to_timedelta('2s'), False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.to_timedelta('2s'), False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), pd.to_timedelta('2s'), False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, '1s', '2s', False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, '1000ms', '2000ms', False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, 1, 2, False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, 1.0, 2.0, False, None, False, 1.0, ), ], ) def test_process_file( tmpdir, process_func, segment, signal, sampling_rate, start, end, keep_nat, channels, mixdown, expected_output, ): process = audinterface.Process( process_func=process_func, sampling_rate=sampling_rate, resample=False, channels=channels, mixdown=mixdown, segment=segment, keep_nat=keep_nat, verbose=False, ) # create test file root = str(tmpdir.mkdir('wav')) file = 'file.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) # test absolute path y = process.process_file( path, start=start, end=end, ) np.testing.assert_almost_equal( y.values, expected_output, decimal=4, ) # test relative path y = process.process_file( file, start=start, end=end, root=root, ) np.testing.assert_almost_equal( y.values, expected_output, decimal=4, ) @pytest.mark.parametrize( 'process_func, num_files, signal, sampling_rate, starts, ends, ' 'expected_output', [ ( signal_duration, 2, np.zeros((1, 24000)), 8000, None, None, [3.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, '1s', '2s', [1.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, 1, 2, [1.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, [None, 1], [None, 2], [3.0, 1.0], ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, [None, '1s'], [None, '2s'], [3.0, 1.0], ), ( signal_duration, 3, np.zeros((1, 24000)), 8000, [None, '1s'], [None, '2s', None], [3.0, 1.0], ), ( signal_duration, 1, np.zeros((1, 24000)), 8000, [None], [None, '2s'], [3.0], ), ], ) def test_process_files( tmpdir, process_func, num_files, signal, sampling_rate, starts, ends, expected_output, ): process = audinterface.Process( process_func=process_func, sampling_rate=sampling_rate, resample=False, verbose=False, ) # create files files = [] paths = [] root = tmpdir for idx in range(num_files): file = f'file{idx}.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) files.append(file) paths.append(path) # test absolute paths output = process.process_files( paths, starts=starts, ends=ends, ) np.testing.assert_almost_equal( output.values, expected_output, decimal=4, ) # test relative paths output = process.process_files( files, starts=starts, ends=ends, root=root, ) np.testing.assert_almost_equal( output.values, expected_output, decimal=4, ) @pytest.mark.parametrize( 'num_files, segment, num_workers, multiprocessing', [ (3, None, 1, False, ), (3, None, 2, False, ), (3, None, None, False, ), (3, SEGMENT, 1, False, ), ] ) def test_process_folder( tmpdir, num_files, segment, num_workers, multiprocessing, ): process = audinterface.Process( process_func=None, sampling_rate=None, resample=False, segment=segment, num_workers=num_workers, multiprocessing=multiprocessing, verbose=False, ) sampling_rate = 8000 path = str(tmpdir.mkdir('wav')) files = [ os.path.join(path, f'file{n}.wav') for n in range(num_files) ] for file in files: signal = np.random.uniform(-1.0, 1.0, (1, sampling_rate)) af.write(file, signal, sampling_rate) y = process.process_folder(path) pd.testing.assert_series_equal( y, process.process_files(files), ) def test_process_func_args(): def process_func(s, sr, arg1, arg2): assert arg1 == 'foo' assert arg2 == 'bar' audinterface.Process( process_func=process_func, process_func_args={ 'arg1': 'foo', 'arg2': 'bar', } ) with pytest.warns(UserWarning): audinterface.Process( feature_names=('o1', 'o2', 'o3'), process_func=process_func, arg1='foo', arg2='bar', ) @pytest.mark.parametrize( 'num_workers, multiprocessing', [ (1, False, ), (2, False, ), (None, False, ), ] ) def test_process_index(tmpdir, num_workers, multiprocessing): process = audinterface.Process( process_func=None, sampling_rate=None, resample=False, num_workers=num_workers, multiprocessing=multiprocessing, verbose=False, ) sampling_rate = 8000 signal = np.random.uniform(-1.0, 1.0, (1, 3 * sampling_rate)) # create file root = str(tmpdir.mkdir('wav')) file = 'file.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) # empty index index = audformat.segmented_index() y = process.process_index(index) assert y.empty # segmented index with absolute paths index = audformat.segmented_index( [path] * 3, pd.timedelta_range('0s', '2s', 3), pd.timedelta_range('1s', '3s', 3), ) y = process.process_index(index) for (path, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( path, start=start, end=end ) np.testing.assert_equal(signal, value) # filewise index with absolute paths index = audformat.filewise_index(path) y = process.process_index(index) for (path, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( path, start=start, end=end ) np.testing.assert_equal(signal, value) # segmented index with relative paths index = audformat.segmented_index( [file] * 3, pd.timedelta_range('0s', '2s', 3), pd.timedelta_range('1s', '3s', 3), ) y = process.process_index(index, root=root) for (file, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( file, start=start, end=end, root=root ) np.testing.assert_equal(signal, value) # filewise index with relative paths index = audformat.filewise_index(path) y = process.process_index(index, root=root) for (file, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( file, start=start, end=end, root=root ) np.testing.assert_equal(signal, value) @pytest.mark.parametrize( 'process_func, process_func_args, segment, signal, ' 'sampling_rate, file, start, end, keep_nat, expected_signal', [ ( None, {}, None, np.array([1., 2., 3.]), 44100, None, None, None, False, np.array([1., 2., 3.]), ), ( None, {}, None, np.array([1., 2., 3.]), 44100, 'file', None, None, False, np.array([1., 2., 3.]), ), ( None, {}, SEGMENT, np.array([1., 2., 3., 4.]), 44100, None, None, None, False, np.array([1., 2.]), ), ( None, {}, SEGMENT, np.array([1., 2., 3., 4.]), 44100, 'file', None, None, False, np.array([1., 2.]), ), ( signal_max, {}, None, np.array([1., 2., 3.]), 44100, None, None, None, False, 3.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 3, None, None, None, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, pd.to_timedelta('2s'), None, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, None, pd.to_timedelta('1s'), False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, None, pd.NaT, False, 3.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, None, pd.NaT, True, 3.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, pd.to_timedelta('1s'), pd.to_timedelta('2s'), False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, 1, 2, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, 1.0, 2.0, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, '1s', '2s', False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, 'file', pd.to_timedelta('1s'), pd.to_timedelta('2s'), False, 1.0, ), ( signal_modification, {}, None, np.array([1., 1., 1.]), 44100, None, None, None, False, np.array([[1.1, 1.1, 1.1]]), ), ( signal_modification, {'subtract': False}, None, np.array([1., 1., 1.]), 44100, None, None, None, False, np.array([[1.1, 1.1, 1.1]]), ), ( signal_modification, {'subtract': True}, None, np.array([1., 1., 1.]), 44100, None, None, None, False, np.array([[0.9, 0.9, 0.9]]), ), ], ) def test_process_signal( process_func, process_func_args, segment, signal, sampling_rate, file, start, end, keep_nat, expected_signal, ): process = audinterface.Process( process_func=process_func, sampling_rate=None, resample=False, segment=segment, keep_nat=keep_nat, verbose=False, process_func_args=process_func_args, ) x = process.process_signal( signal, sampling_rate, file=file, start=start, end=end, ) signal = np.atleast_2d(signal) if start is None or pd.isna(start): start = pd.to_timedelta(0) elif isinstance(start, (int, float)): start = pd.to_timedelta(start, 's') elif isinstance(start, str): start = pd.to_timedelta(start) if end is None or (pd.isna(end) and not keep_nat): end = pd.to_timedelta( signal.shape[1] / sampling_rate, unit='s', ) elif isinstance(end, (int, float)): end = pd.to_timedelta(end, 's') elif isinstance(end, str): end = pd.to_timedelta(end) if segment is not None: index = segment.process_signal( signal, sampling_rate, start=start, end=end, ) start = index[0][0] end = index[0][1] if file is None: y = pd.Series( [expected_signal], index=audinterface.utils.signal_index(start, end), ) else: y = pd.Series( [expected_signal], index=audformat.segmented_index(file, start, end), ) pd.testing.assert_series_equal(x, y) @pytest.mark.parametrize( 'num_workers, multiprocessing', [ (1, False, ), (2, False, ), (None, False, ), ] ) @pytest.mark.parametrize( 'process_func, signal, sampling_rate, index', [ ( None, np.random.random(5 * 44100), 44100, audinterface.utils.signal_index(), ), ( None, np.random.random(5 * 44100), 44100, audinterface.utils.signal_index( pd.timedelta_range('0s', '3s', 3), pd.timedelta_range('1s', '4s', 3) ), ), ( signal_max, np.random.random(5 * 44100), 44100, audinterface.utils.signal_index( pd.timedelta_range('0s', '3s', 3), pd.timedelta_range('1s', '4s', 3), ), ), ( signal_max, np.random.random(5 * 44100), 44100, audinterface.utils.signal_index(), ), pytest.param( signal_max, np.random.random(5 * 44100), 44100, pd.MultiIndex.from_arrays( [ pd.timedelta_range('0s', '3s', 3), ], ), marks=pytest.mark.xfail(raises=ValueError) ), pytest.param( signal_max, np.random.random(5 * 44100), 44100, pd.MultiIndex.from_arrays( [ ['wrong', 'data', 'type'], pd.timedelta_range('1s', '4s', 3), ], ), marks=pytest.mark.xfail(raises=ValueError) ), pytest.param( signal_max, np.random.random(5 * 44100), 44100, pd.MultiIndex.from_arrays( [ pd.timedelta_range('0s', '3s', 3), ['wrong', 'data', 'type'], ], ), marks=pytest.mark.xfail(raises=ValueError) ), ], ) def test_process_signal_from_index( num_workers, multiprocessing, process_func, signal, sampling_rate, index, ): process = audinterface.Process( process_func=process_func, sampling_rate=None, resample=False, num_workers=num_workers, multiprocessing=multiprocessing, verbose=False, ) result = process.process_signal_from_index(signal, sampling_rate, index) expected = [] for start, end in index: expected.append( process.process_signal(signal, sampling_rate, start=start, end=end) ) if not expected: pd.testing.assert_series_equal( result, pd.Series([], index, dtype=float), ) else: pd.testing.assert_series_equal( result, pd.concat(expected, names=['start', 'end']), ) @pytest.mark.parametrize( 'segment', [ audinterface.Segment( process_func=lambda x, sr: audinterface.utils.signal_index() ), audinterface.Segment( process_func=lambda x, sr: audinterface.utils.signal_index( pd.to_timedelta(0), pd.to_timedelta(x.shape[1] / sr, unit='s') / 2, ) ), audinterface.Segment( process_func=lambda x, sr: audinterface.utils.signal_index( pd.to_timedelta(x.shape[1] / sr, unit='s') / 2, pd.to_timedelta(x.shape[1] / sr, unit='s'), ) ), audinterface.Segment( process_func=lambda x, sr: audinterface.utils.signal_index( [ pd.to_timedelta(0), pd.to_timedelta(x.shape[1] / sr, unit='s') / 2, ], [ pd.to_timedelta(x.shape[1] / sr, unit='s') / 2,
pd.to_timedelta(x.shape[1] / sr)
pandas.to_timedelta
# 数据分析的五个步骤: # 提出问题,数据处理,探索数据,得出结论,结果报告 # 探索数据的常用分析方法:对比分析,相关分析,因子分析,交叉分析,回归分析,分组分析等 # 项目实战,房屋售价数据分析 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns price = pd.read_csv('kc_house_data.csv') print(type(price)) # 查看price的行数和列数 print('price的行列数分别为:{}'.format(price.shape)) ''' variables: price : 每个房子的售价 date : 房子售出的日期 bedrooms : 卧室的数量 bathrooms : 洗手间的数量,小数点表示有卫生间无浴室 sqft_living : 公寓内部居住空间(平方英尺) sqft_lot : 土地面积(平方英尺) floors : 楼层数 waterfront : 是否可以俯瞰海滨(虚拟变量) view : 视野优良评分(0到4) condition : 公寓条件评分(1到5) grade : 建筑施工设计评分(1到13) 1-3 建筑施工设计不足 7 建筑施工设计的平均水平 11-13 建筑施工设计高质量水平 sqft_above : 地面以上的室内居住空间(平方英尺) sqft_basement : 地面以下的室内居住空间(平方英尺) yr_built : 房子最初建成年份 yr_renovated : 房子最近一次更新的年份 zipcode : 邮编 lat : 纬度 long : 经度 sqft_living15 : 最近的15个邻居的室内居住空间 sqft_lot15 : 最近的15个邻居的土地面积 ''' # ####### 数据清洗 # # 处理重复值 # price_dup = price.duplicated() # print(price[price_dup]) # price = price.drop_duplicates() # # # 处理缺失值 # isNA_price = price.isnull() # print(price[isNA_price.any(axis = 1)]) # # plt.scatter(x= list(range(1,len(price['bedrooms'])+1)), y = price['bedrooms']) # plt.title('Scatter plot for numbers of bedrooms') # plt.xlabel('samples') # plt.ylabel('bedrooms') # plt.show() # 去除异常值 outlier = [i for i in range(len(price['bedrooms'])) if price['bedrooms'][i] > 10] print(outlier) price.drop(outlier, inplace=True) # outlier = [i for i in range(len(price['bedrooms'])) if price['bedrooms'][i] > 10] outlier1 = [i for i in price['bedrooms'] if i > 10] print(outlier) # 变量处理 ## grade price['grade'] = [1 if i <= 3 else 2 if i< 7 else 3 if i== 7 else 4 if i <11 else 5 for i in price['grade']] print(price['grade'].head(10)) # # col_name = price.columns.tolist() # # price.insert(loc = col_name.index('grade')+1, column='grade_category', value = grade_category) # ## price per_price = price['price']/price['sqft_living'] price.insert(loc = 1, column='per_price', value = per_price) print(price.iloc[:2,:3]) print('#############') print(price[price['grade']==1]['per_price']) print('#############') ## age print(price[['yr_built', 'date']][:3]) year = [eval(i[:4]) for i in price['date']] price['age'] = year - price['yr_built'] print(price['age'][:3]) print(min(price['age']), max(price['age'])) bins = [min(price['age'])-1, 10, 20, 30,40, 50, 60, 70, 80, 90,100, max(price['age'])+1] cut = pd.cut(price['age'], bins, right=False) col_name = price.columns.tolist() price.insert(loc = col_name.index('age')+1, column = 'age_category', value = cut) print(price.iloc[:5, [col_name.index('age'), col_name.index('age')+1]]) # sale_month price['sale_month'] = [eval(i[4:6]) if i[4]!= '0' else eval(i[5:6]) for i in price['date']] print(price['sale_month'].head()) ## yr_renovated # 1 if the house has been renovated price['yr_renovated'] = price['yr_renovated'].apply(lambda x: 1 if x>0 else 0) ## sqft_basement price['if_basement'] = price['sqft_basement'].apply(lambda x: 1 if x>0 else 0) print(price[['yr_renovated', 'if_basement']].head()) # print(price.head()) ####### 房屋单位居住面积价格与房屋得分关系分析 # 视野优良得分 # data = pd.concat([price['per_price'],price['view'],price['condition'],price['grade']],axis=1) # sns.boxplot(x = 'view', y = 'per_price', data = price, palette = 'hls') # plt.show() # sns.boxplot(x = 'condition', y = 'per_price', data = price , palette = 'hls') # plt.show() # sns.boxplot(x = 'grade', y = 'per_price', data = price, palette = 'hls') # plt.show() # print(price[price['grade']==1]['per_price']) ### 相关性分析 # 房屋价格与房屋面积及配置关系分析 # 各变量相关系数热力图 # corrmat = price.corr() # f, ax = plt.subplots(figsize=(9, 8)) # sns.heatmap(corrmat, square= True, annot= True,center = None, fmt='.2f', robust = True, # linewidths=0.05, annot_kws={'size':6}) # plt.xticks(rotation=90) # plt.yticks(rotation=360) # plt.show() # 相关性较大的变量 # 多变量散点图 # sns.set() # col = ['price','bedrooms','bathrooms','sqft_living','grade','sqft_above','sqft_living15'] # sns.pairplot(price[col], size = 1.5) # plt.show() # # sqft_living居住面积与房价 # sns.jointplot(x='sqft_living', y = 'price', data = price, kind='reg', size = 5) # plt.show() # # sqft_above地上居住面积与房价 # sns.jointplot(x='sqft_above', y = 'price', data = price, kind='reg', size = 5) # plt.show() # # 周围15个邻居居住面积与房价 # sns.jointplot(x='sqft_living15', y = 'price', data = price, kind='reg', size = 5) # plt.show() # # # bedroom卧室个数与房价 # data = pd.concat([price['price'],price['bedrooms']],axis=1) # fig = sns.boxplot(x = 'bedrooms', y = 'price', data = data) # fig.axis(ymin = 0, ymax = 4000000) # plt.show() # # # bathroom浴室个数与房价 # data = pd.concat([price['price'],price['bathrooms']],axis=1) # fig = sns.boxplot(x = 'bathrooms', y = 'price', data = data) # fig.axis(ymin = 0, ymax = 4000000) # plt.show() # 房屋面积单价与成交年份及房屋建成年限分析 # sns.distplot(price['age'], bins, hist_kws=dict(edgecolor='k')) # plt.ylabel('Percentage') # plt.show() # 销售时间段统计 month_count = [list(price['sale_month']).count(i) for i in range(1,13)] dic = {'month': range(1,13), 'count': month_count} df =
pd.DataFrame(dic)
pandas.DataFrame
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.generic import nb as generic_nb from vectorbt.generic.enums import range_dt from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) mask = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]), columns=['a', 'b', 'c']) ts = pd.Series([1., 2., 3., 2., 1.], index=mask.index) price = pd.DataFrame({ 'open': [10, 11, 12, 11, 10], 'high': [11, 12, 13, 12, 11], 'low': [9, 10, 11, 10, 9], 'close': [11, 12, 11, 10, 9] }) group_by = pd.Index(['g1', 'g1', 'g2']) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# accessors.py ############# # class TestAccessors: def test_indexing(self): assert mask.vbt.signals['a'].total() == mask['a'].vbt.signals.total() def test_freq(self): assert mask.vbt.signals.wrapper.freq == day_dt assert mask['a'].vbt.signals.wrapper.freq == day_dt assert mask.vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert mask['a'].vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.wrapper.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(mask['a'].vbt.signals.fshift(test_n), mask['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.fshift(test_n).values, generic_nb.fshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.fshift(test_n), mask.shift(test_n, fill_value=False)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal( mask['a'].vbt.signals.bshift(test_n), mask['a'].shift(-test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.bshift(test_n).values, generic_nb.bshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.bshift(test_n), mask.shift(-test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(mask['a']), pd.Series(np.full(mask['a'].shape, False), index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(mask), pd.DataFrame(np.full(mask.shape, False), index=mask.index, columns=mask.columns) ) def test_generate(self): @njit def choice_func_nb(from_i, to_i, col, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i - n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [True, False, False], [True, False, False], [True, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, pick_first=True, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [False, False, False], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_generate_both(self): @njit def entry_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] @njit def exit_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) en, ex = pd.Series.vbt.signals.generate_both( 5, entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, True, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, True], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=1, exit_wait=0) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=0, exit_wait=1) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) @njit def entry_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] @njit def exit_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func2_nb, (temp_int,), exit_func2_nb, (temp_int,), entry_pick_first=False, exit_pick_first=False, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_exits(self): @njit def choice_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_exits(choice_func_nb, temp_int), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) @njit def choice_func2_nb(from_i, to_i, col, temp_int): for i in range(from_i, to_i): temp_int[i - from_i] = i return temp_int[:to_i - from_i] pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func2_nb, temp_int, until_next=False, pick_first=False), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [True, True, False], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) mask2 = pd.Series([True, True, True, True, True], index=mask.index) pd.testing.assert_series_equal( mask2.vbt.signals.generate_exits(choice_func_nb, temp_int, until_next=False, skip_until_exit=True), pd.Series( np.array([False, True, False, True, False]), index=mask.index ) ) def test_clean(self): entries = pd.DataFrame([ [True, False, True], [True, False, False], [True, True, True], [False, True, False], [False, True, True] ], index=mask.index, columns=mask.columns) exits = pd.Series([True, False, True, False, True], index=mask.index) pd.testing.assert_frame_equal( entries.vbt.signals.clean(), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[1], pd.DataFrame( np.array([ [False, True, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.clean(entries, entries, entries) def test_generate_random(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, n=3, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([False, True, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), n=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=3, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [True, True, True], [True, True, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [False, False, True], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, prob=0.5, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), prob=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=0.5, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, True], [False, True, False], [False, False, False], [False, False, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, True, True], [False, False, True], [False, False, True], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], pick_first=True, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_random_both(self): # n en, ex = pd.Series.vbt.signals.generate_random_both( 5, n=2, seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, False]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=2, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, True, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, False, True], [False, True, False], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, True], [False, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((2, 3), n=2, seed=seed, entry_wait=1, exit_wait=0) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True] ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((3, 3), n=2, seed=seed, entry_wait=0, exit_wait=1) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((7, 3), n=2, seed=seed, entry_wait=2, exit_wait=2) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True] ]) ) ) n = 10 a = np.full(n * 2, 0.) for i in range(10000): en, ex = pd.Series.vbt.signals.generate_random_both(1000, n, entry_wait=2, exit_wait=2) _a = np.empty((n * 2,), dtype=np.int_) _a[0::2] = np.flatnonzero(en) _a[1::2] = np.flatnonzero(ex) a += _a greater = a > 10000000 / (2 * n + 1) * np.arange(0, 2 * n) less = a < 10000000 / (2 * n + 1) * np.arange(2, 2 * n + 2) assert np.all(greater & less) # probs en, ex = pd.Series.vbt.signals.generate_random_both( 5, entry_prob=0.5, exit_prob=1., seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=0.5, exit_prob=1., seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=[0., 0.5, 1.], exit_prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, True, True], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., exit_wait=0, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=False, exit_pick_first=True, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=True, exit_pick_first=False, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) # none with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_random_exits(self): pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(seed=seed), pd.Series( np.array([False, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, False], [False, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(prob=1., seed=seed), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=[0., 0.5, 1.], seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., wait=0, seed=seed), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., until_next=False, seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_stop_exits(self): e =
pd.Series([True, False, False, False, False, False])
pandas.Series
import os import sys import inspect from copy import deepcopy import numpy as np import pandas as pd from ucimlr.helpers import (download_file, download_unzip, one_hot_encode_df_, xy_split, normalize_df_, split_normalize_sequence, split_df, get_split, split_df_on_column) from ucimlr.dataset import Dataset from ucimlr.constants import TRAIN from ucimlr.constants import REGRESSION def all_datasets(): """ Returns a list of all RegressionDataset classes. """ return [cls for _, cls in inspect.getmembers(sys.modules[__name__]) if inspect.isclass(cls) and issubclass(cls, RegressionDataset) and cls != RegressionDataset] class RegressionDataset(Dataset): type_ = REGRESSION # Is this necessary? @property def num_targets(self): return self.y.shape[1] class Abalone(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Abalone). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'data.csv' file_path = os.path.join(dataset_path, filename) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data' download_file(url, dataset_path, filename) df = pd.read_csv(file_path, header=None) y_columns = df.columns[-1:] one_hot_encode_df_(df) df_test, df_train, df_valid = split_df(df, [0.2, 0.8 - 0.8 * validation_size, 0.8 * validation_size]) normalize_df_(df_train, other_dfs=[df_valid, df_test]) df_res = get_split(df_train, df_valid, df_test, split) self.x, self.y = xy_split(df_res, y_columns) class AirFoil(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'airfoil_self_noise.dat' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00291/airfoil_self_noise.dat' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, sep='\t', names =["Frequency(Hz)", "Angle of attacks(Deg)", "Chord length(m)", "Free-stream velocity(m/s)", "Suction side displacement thickness(m)", " Scaled sound pressure level(Db)"]) y_columns = ['Scaled sound pressure level(Db)'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) class AirQuality(RegressionDataset): """ # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'AirQualityUCI.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00360/AirQualityUCI.zip' download_unzip(url, dataset_path) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, sep=';', parse_dates=[0, 1]) df.dropna(axis=0, how='all', inplace=True) df.dropna(axis=1, how='all', inplace=True) df.Date = (df.Date - df.Date.min()).astype('timedelta64[D]') # Days as int df.Time = df.Time.apply(lambda x: int(x.split('.')[0])) # Hours as int df['C6H6(GT)'] = df['C6H6(GT)'].apply(lambda x: float(x.replace(',', '.'))) # Target as float # Some floats are given with ',' instead of '.' df = df.applymap(lambda x: float(x.replace(',', '.')) if type(x) is str else x) # Target as float df = df[df['C6H6(GT)'] != -200] # Drop all rows with missing target values df.loc[df['CO(GT)'] == -200, 'CO(GT)'] = -10 # -200 means missing value, shifting this to be closer to # the other values for this column y_columns = ['C6H6(GT)'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) class Appliances_energy_prediction(RegressionDataset): """ Link to the dataset [description](https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'energydata_complete.csv' url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00374/energydata_complete.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, parse_dates=[0, 1]) df.date = (df.date - df.date.min()).astype('timedelta64[D]') y_columns = ['Appliances'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) self.problem_type = REGRESSION class AutoMPG(RegressionDataset): """ Link to the dataset [description](https://archive.ics.uci.edu/ml/datasets/Automobile). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'auto-mpg.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, sep='\s+', names =["mpg", "cylinders", "displacements", "horsepower", "weight", "acceleration", "model year", "origin", "car name"]) y_columns = ['mpg'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) sel.problem_type=REGRESSION class Automobile(RegressionDataset): """ Link to the dataset [description](https://archive.ics.uci.edu/ml/datasets/Automobile). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'imports-85.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, names = ["symboling", "normalized-losses", "make", "fuel-type", " aspiration", "num-of-doors", "body-style", "drive-wheels", "engine-location", "wheel-base", " length", "width", " height", "curb-weight", "engine-type", "num-of-cylinders", "engine-size", " fuel-system", " bore", "stroke", " compression-ratio", "horsepower", "peak-rpm", "city-mpg", "highway-mpg", "price"]) y_columns = [''] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type_) class BeijingAirQuality(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00501/PRSA2017_Data_20130301-20170228.zip' download_unzip(url, dataset_path) df = [] for fn in os.listdir(dataset_path): if 'PRSA_Data' not in fn: continue file_path = os.path.join(dataset_path, fn) df.append(pd.read_csv(file_path)) class BeijingPM(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'PRSA_data_2010.1.1-2014.12.31.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00381/PRSA_data_2010.1.1-2014.12.31.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path) y_columns=['pm2.5'] self.x, self.y = split_normalize_sequence(df, y_columns, validation_size, split, self.type) self.problem_type = REGRESSION class BiasCorrection(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Bias+correction+of+numerical+prediction+model+temperature+forecast). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'Bias_correction_ucl.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00514/Bias_correction_ucl.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, index_col = 'Date', parse_dates= True) class BikeSharing(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00275/Bike-Sharing-Dataset.zip' download_unzip(url, dataset_path) df = [] for fn in os.listdir(dataset_path): file_path = os.path.join(dataset_path, fn) df.append(pd.read_csv(file_path)) class CarbonNanotubes(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Carbon+Nanotubes). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'carbon_nanotubes.csv' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00448/carbon_nanotubes.csv' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,sep=';') class ChallengerShuttleORing(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Challenger+USA+Space+Shuttle+O-Ring). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'o-ring-erosion-only.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/space-shuttle/o-ring-erosion-only.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,sep='\s+') class BlogFeedback(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/BlogFeedback). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): file_name = 'blogData_train.csv' dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00304/BlogFeedback.zip' download_unzip(url, dataset_path) # Iterate all test csv and concatenate to one DataFrame test_dfs = [] for fn in os.listdir(dataset_path): if 'blogData_test' not in fn: continue file_path = os.path.join(dataset_path, fn) test_dfs.append(pd.read_csv(file_path, header=None)) df_test = pd.concat(test_dfs) file_path = os.path.join(dataset_path, file_name) df_train_valid = pd.read_csv(file_path, header=None) y_columns = [280] df_train_valid[y_columns[0]] = np.log(df_train_valid[y_columns[0]] + 0.01) df_test[y_columns[0]] = np.log(df_test[y_columns[0]] + 0.01) page_columns = list(range(50)) for i, (_, df_group) in enumerate(df_train_valid.groupby(page_columns)): df_train_valid.loc[df_group.index, 'page_id'] = i df_train, df_valid = split_df_on_column(df_train_valid, [1 - validation_size, validation_size], 'page_id') df_train.drop(columns='page_id', inplace=True) df_valid.drop(columns='page_id', inplace=True) normalize_df_(df_train, other_dfs=[df_valid, df_test]) df_res = get_split(df_train, df_valid, df_test, split) self.x, self.y = xy_split(df_res, y_columns) class CommunitiesCrime(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'communities.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/communities/communities.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,header=None) class ConcreteSlumpTest(RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'slump_test.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/slump/slump_test.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path,sep='\s+') class PropulsionPlants (RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Condition+Based+Maintenance+of+Naval+Propulsion+Plants). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00316/UCI CBM Dataset.zip' download_unzip(url, dataset_path) filename = 'data.txt' file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, index_col='dteday', parse_dates=True) class ConcreteCompressiveStrength (RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'Concrete_Data.xls' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/concrete/compressive/Concrete_Data.xls' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_excel(file_path) class ComputerHardware (RegressionDataset): """ Link to the dataset [description](http://archive.ics.uci.edu/ml/datasets/Computer+Hardware). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'machine.data' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/cpu-performance/machine.data' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, names=["vendor name", "Model Name", "MYCT", "MMIN", "MMAX", "CACH", "CHMIN", "CHMAX", "PRP", "ERP"]) class CommunitiesCrimeUnnormalized (RegressionDataset): """ Link to the dataset [description]http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized). # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) filename = 'CommViolPredUnnormalizedData.txt' url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00211/CommViolPredUnnormalizedData.txt' download_file(url, dataset_path, filename) file_path = os.path.join(dataset_path, filename) df = pd.read_csv(file_path, keep_default_na=False, header=None) class CTSlices(RegressionDataset): """ # Parameters root (str): Local path for storing/reading dataset files. split (str): One of {'train', 'validation', 'test'} validation_size (float): How large fraction in (0, 1) of the training partition to use for validation. """ def __init__(self, root, split=TRAIN, validation_size=0.2): dataset_path = os.path.join(root, self.name) url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00206/slice_localization_data.zip' download_unzip(url, dataset_path) file_name = 'slice_localization_data.csv' file_path = os.path.join(dataset_path, file_name) df =
pd.read_csv(file_path)
pandas.read_csv
""" data Created by: <NAME> On: 19-11-19, 9:57 """ from abc import ABC, abstractmethod import pandas as pd from drugex.core import util class EnvironData(ABC): def __init__(self, is_regression=False, subsample_size=None): self.is_regression = is_regression self.subsample_size = subsample_size @abstractmethod def update(self): pass @abstractmethod def getX(self): pass @abstractmethod def gety(self): pass @abstractmethod def getGroundTruthData(self): pass class ChEMBLCSV(EnvironData): def __init__(self, input_file : str, activity_threshold=None, subsample_size=None, id_col='CMPD_CHEMBLID', is_regression=False): super().__init__(subsample_size=subsample_size, is_regression=is_regression) self.PAIR = [id_col, 'CANONICAL_SMILES', 'PCHEMBL_VALUE', 'ACTIVITY_COMMENT'] self.activity_threshold = activity_threshold if self.activity_threshold is not None: self.is_regression = False else: self.is_regression = True self.input_file = input_file self.df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import tilemapbase from math import log import os.path as path from os import listdir from progress.bar import Bar import imageio # get dataset from source print("Getting data set...") raw_data = pd.read_csv("https://raw.githubusercontent.com/datadesk/california-coronavirus-data/master/latimes-place-totals.csv") # convert date column to a time series raw_data["date"] =
pd.to_datetime(raw_data["date"])
pandas.to_datetime
#!/usr/bin/env python3 """ Created on Tue Jun 16 15:19:24 2020 @author: Barney """ import os import geopandas as gpd import pandas as pd from numpy import linspace, zeros, diff, where, NaN from shapely.geometry import Point, LineString from shutil import copyfile import sys from glob import glob def aggregate(root: str, partition_root: str, partition: str, catchment: str = "cranbrook", dt_sim = 5, demo = False): """ Aggregates partitions into compartments. Paremeters: catchment can be "cranbrook" or "norwich" Returns a file """ E = 2.71828 DT_ARC = pd.Timedelta('1s') #i.e. assumes arc flows are given in average m3/s over timestep DT_RAW =
pd.Timedelta('1m')
pandas.Timedelta
import pandas as pd from utils.helpers import run_check_by_row from sql.query_templates import (QUERY_SUPPRESSED_NULLABLE_FIELD_NOT_NULL, QUERY_SUPPRESSED_REQUIRED_FIELD_NOT_EMPTY, QUERY_SUPPRESSED_NUMERIC_NOT_ZERO, QUERY_VEHICLE_ACCIDENT_SUPPRESSION_ICD9, QUERY_VEHICLE_ACCIDENT_SUPPRESSION_ICD10, QUERY_CANCER_CONCEPT_SUPPRESSION, QUERY_SUPPRESSED_FREE_TEXT_RESPONSE, QUERY_GEOLOCATION_SUPPRESSION) def check_field_suppression(check_df, project_id, post_dataset_id, pre_deid_dataset=None, mapping_dataset=None): """Run field suppression check Parameters ---------- check_df: pd.DataFrame Dataframe containing the checks that need to be done project_id: str Google Bigquery project_id post_dataset_id: str Bigquery dataset after de-id rules were run pre_deid_dataset: str Bigquery dataset before de-id rules were run Returns ------- pd.DataFrame """ nullable_field = check_df[check_df['is_nullable'] == 'YES'] required_numeric_field = check_df[(check_df['is_nullable'] == 'NO') & (check_df['data_type'] == 'INT64')] required_other_field = check_df[(check_df['is_nullable'] == 'NO') & (check_df['data_type'] != 'INT64')] nullable_field_check = run_check_by_row(nullable_field, QUERY_SUPPRESSED_NULLABLE_FIELD_NOT_NULL, project_id, post_dataset_id) required_numeric_field_check = run_check_by_row(required_numeric_field, QUERY_SUPPRESSED_NUMERIC_NOT_ZERO, project_id, post_dataset_id) required_other_field_check = run_check_by_row(required_other_field, QUERY_SUPPRESSED_REQUIRED_FIELD_NOT_EMPTY, project_id, post_dataset_id) return
pd.concat([nullable_field_check, required_numeric_field_check, required_other_field_check], sort=True)
pandas.concat
#Compare painted data with observed data - for three different sets of ages #Works but could do with some tidying up of the code import numpy as np import h5py import pandas as pd import math from astropy.io import fits from astropy.table import Table, join import matplotlib.pyplot as plt from matplotlib.colors import PowerNorm import matplotlib.colors as colors import sys sys.path.append('./scripts/') from chemevo import * #fl = chem_evo_data('./comparison.hdf5') #fl = chem_evo_data('./output.hdf5') fl = chem_evo_data('./KSsfr.hdf5') hdf5_file = '/data/ktfm2/apogee_data/gaia_spectro.hdf5' data_file_1 = '/data/ktfm2/apogee_data/apogee_astroNN_DR16.fits' data_file_2 = '/data/jls/apokasc_astroNN.fits' hdf = h5py.File(hdf5_file, "r") dataset = hdf['data'] log_age_data = dataset["log10_age"] ID_data = dataset["APOGEE_ID"] SD_table = Table([ID_data, log_age_data], names=('apogee_id','log_age_data')) hdu_list_1 = fits.open(data_file_1, memmap=True) apogee_data = Table(hdu_list_1[1].data) hdu_list_1.close() hdu_list_2 = fits.open(data_file_2, memmap=True) apokasc_data = Table(hdu_list_2[1].data) hdu_list_2.close() #print(apokasc_data.colnames) def betw(x,l,u): return (x>l)&(x<u) def outs(x,l,u): return (x<l)|(x>u) #Join the APOGEE data table and table from Sanders & Das - will have less rows #Comment out if not using S&D ages #full_table = join(apogee_data, SD_table) #apogee_data = full_table #Use APOKASC data, comment out if not using #apogee_data = apokasc_data #=================================================================================================================== #Radial Migration filter #fltr = (~pd.isna(apogee_data['rl']))&(~pd.isna(apogee_data['LogAge']))&(~pd.isna(apogee_data['FE_H']))&(~pd.isna(apogee_data['MG_H']))&(~pd.isna(apogee_data['LOGG']))&(~pd.isna(apogee_data['FE_H_ERR']))&(~pd.isna(apogee_data['MG_H_ERR']))&(apogee_data['LOGG']<3.5)&(betw(apogee_data['GALZ'],-5.0,5.0))&(apogee_data['FE_H_ERR']<0.2)&(betw(apogee_data['rl'],7.6,8.6)) #fltr = (~pd.isna(apogee_data['rl']))&(~pd.isna(apogee_data['log_age_data']))&(~pd.isna(apogee_data['FE_H']))&(~pd.isna(apogee_data['MG_H']))&(~pd.isna(apogee_data['LOGG']))&(~pd.isna(apogee_data['FE_H_ERR']))&(apogee_data['LOGG']<3.5)&(outs(apogee_data['GALZ'],-1.0,1.0))&(betw(apogee_data['GALZ'],-5.0,5.0))&(apogee_data['FE_H_ERR']<0.2)&(betw(apogee_data['rl'],7.6,8.6)) fltr = (~pd.isna(apogee_data['rl']))&(~pd.isna(apogee_data['age_lowess_correct']))&(apogee_data['age_lowess_correct']>0.0)&(~pd.isna(apogee_data['FE_H']))&(~pd.isna(apogee_data['MG_H']))&(~pd.isna(apogee_data['LOGG']))&(~pd.isna(apogee_data['FE_H_ERR']))&(apogee_data['LOGG']<3.5)&(outs(apogee_data['GALZ'],-1.0,1.0))&(betw(apogee_data['GALZ'],-5.0,5.0))&(apogee_data['FE_H_ERR']<0.2)&(betw(apogee_data['rl'],7.6,8.6)) lower_fltr = (~pd.isna(apogee_data['rl']))&(~pd.isna(apogee_data['age_lowess_correct']))&(apogee_data['age_lowess_correct']>0.0)&(~pd.isna(apogee_data['FE_H']))&(~pd.isna(apogee_data['MG_H']))&(~pd.isna(apogee_data['LOGG']))&(~pd.isna(apogee_data['FE_H_ERR']))&(apogee_data['LOGG']<3.5)&(outs(apogee_data['GALZ'],-1.0,1.0))&(betw(apogee_data['GALZ'],-5.0,5.0))&(apogee_data['FE_H_ERR']<0.2)&(betw(apogee_data['rl'],4.6,5.6)) upper_fltr = (~pd.isna(apogee_data['rl']))&(~pd.isna(apogee_data['age_lowess_correct']))&(apogee_data['age_lowess_correct']>0.0)&(~pd.isna(apogee_data['FE_H']))&(~pd.isna(apogee_data['MG_H']))&(~pd.isna(apogee_data['LOGG']))&(~
pd.isna(apogee_data['FE_H_ERR'])
pandas.isna
# Need to be able to process batch and single results # Need to load in data with near_id import pandas as pd import os import argparse import yaml from datetime import datetime import sys import pickle CURR_FP = os.path.dirname(os.path.abspath(__file__)) sys.path.append(CURR_FP) from model_utils import format_crash_data from model_classes import Indata, Tuner, Tester from train_model import process_features, get_features import sklearn.linear_model as skl BASE_DIR = os.path.dirname( os.path.dirname( os.path.dirname( os.path.abspath(__file__)))) def predict(trained_model, predict_data, features, data_model_features, DATA_DIR): """ Returns nothing, writes prediction segments to file """ # Ensure predict_data has the same columns and column ordering as required by trained_model predict_data_reduced = predict_data[data_model_features] preds = trained_model.predict_proba(predict_data_reduced)[::, 1] predict_data['predictions'] = preds predict_data.to_csv(os.path.join(DATA_DIR, 'predictions.csv'), index=False) predict_data.to_json(os.path.join(DATA_DIR, 'predictions.json'), orient='index') def get_accident_count_recent(predict_data, data): data['DATE_TIME'] = pd.to_datetime(data['DATE_TIME']) current_date = datetime.now() past_7_days = current_date - pd.to_timedelta("7day") past_30_days = current_date - pd.to_timedelta("30day") past_365_days = current_date - pd.to_timedelta("365day") past_1825_days = current_date - pd.to_timedelta("1825day") past_3650_days = current_date - pd.to_timedelta("3650day") recent_crash_7 = data.loc[data['DATE_TIME'] > past_7_days] recent_crash_30 = data.loc[data['DATE_TIME'] > past_30_days] recent_crash_365 = data.loc[data['DATE_TIME'] > past_365_days] recent_crash_1825 = data.loc[data['DATE_TIME'] > past_1825_days] recent_crash_3650 = data.loc[data['DATE_TIME'] > past_3650_days] column_names = ['LAST_7_DAYS', 'LAST_30_DAYS', 'LAST_365_DAYS', 'LAST_1825_DAYS', 'LAST_3650_DAYS'] recent_crashes = [recent_crash_7, recent_crash_30, recent_crash_365, recent_crash_1825, recent_crash_3650] for col_name in column_names: predict_data[col_name] = "" i = 0 print('About to append recent accident counts. This will take some time.') for i in range(len(predict_data)): current_segment_id = predict_data.loc[i].segment_id for j in range(len(recent_crashes)): # Find number of crashes at same segment that have occured in appropriate time period recent_crash = recent_crashes[j] num_crashes = len(recent_crash.loc[recent_crash['segment_id'] == current_segment_id]) # Assign this number to predict_data col_name = column_names[j] predict_data.at[i, col_name] = num_crashes if i % 5000 == 0: print("Got through {}% of results".format(100 * i / len(predict_data))) return predict_data def add_empty_features(predict_data, features): # Read in the features from our modelling dataset features_path = os.path.join(PROCESSED_DIR, 'features.pk') with open(features_path, 'rb') as fp: data_model_features = pickle.load(fp) # Get the difference of features between our modelling dataset and predicting dataset # Recast as a list to allow for looping over feature_difference = list(set(data_model_features) - set(features)) # Add features in a loop as python doens't like adding all at one time for feat in feature_difference: predict_data[feat] = 0 return predict_data, feature_difference, data_model_features if __name__ == '__main__': print('Within train_model.py') parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, help="yml file for model config, default is a base config with open street map data and crashes only") parser.add_argument('-d', '--DATA_DIR', type=str, help="data directory") parser.add_argument('-f', '--forceupdate', type=str, help="force update our data model or not", default=False) args = parser.parse_args() config = {} if args.config: config_file = args.config with open(config_file) as f: config = yaml.safe_load(f) # Create required data paths DATA_DIR = os.path.join(BASE_DIR, 'data', config['name']) PROCESSED_DIR = os.path.join(BASE_DIR, 'data', config['name'], 'processed/') crash_data_path = os.path.join(PROCESSED_DIR, 'crash.csv.gz') road_data_path = os.path.join(PROCESSED_DIR, 'roads.csv.gz') # Read in road data. We shall generate a prediction for each segment. # predict_data = pd.read_csv(road_data_path) # Use pk rather than csv to keep datatypes correct with open(os.path.join(PROCESSED_DIR, 'roads.pk'), 'rb') as fp: predict_data = pickle.load(fp) # Reset the index so that it can be properly looped over in the attach accident count phase # Drop because there should already be a correlate_id within the DF, was a duplicate predict_data.reset_index(inplace=True, drop=True) # Read in crash data. We shall use this to attach historic accident counts to road data. data =
pd.read_csv(crash_data_path)
pandas.read_csv
import numpy as np from numpy import where from flask import Flask, request, jsonify, render_template import pandas as pd from sklearn.ensemble import IsolationForest from pyod.models.knn import KNN import json from flask import send_from_directory from flask import current_app app = Flask(__name__) class Detect: def __init__(self, file, non_num): self.file = file self.non_num = non_num def IQR(self): # anomaly=pd.DataFrame() data = pd.DataFrame(self.file) non_num=pd.DataFrame(self.non_num) data.dropna(axis=0,inplace=True) # data=data.select_dtypes(include=['float64','int64']) Q1 = data.quantile(0.25) Q3 = data.quantile(0.75) IQR = Q3 - Q1 IQR_Out = data[((data < (Q1 - 1.5 * IQR)) |(data > (Q3 + 1.5 * IQR))).any(axis=1)] IQR_Out = non_num.join(IQR_Out, how='inner') IQR_Out.to_csv(r'IQR_Outlier.csv') # IQR Method def isolation(self): anomaly=pd.DataFrame() data_n=
pd.DataFrame(self.file)
pandas.DataFrame
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sortlevel(2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort(axis=1, ascending=False) restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).ix[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sortlevel(1, axis=1) stacked = df.stack() assert_series_equal(stacked['foo'], df['foo'].stack()) self.assertEqual(stacked['bar'].dtype, np.float_) def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() self.assertEquals(unstacked.index.name, 'first') self.assertEquals(unstacked.columns.names, ['exp', 'second']) restacked = unstacked.stack() self.assertEquals(restacked.index.names, self.frame.index.names) def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') assert_frame_equal(unstacked, expected) self.assertEquals(unstacked.columns.names, expected.columns.names) # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sortlevel(0) assert_frame_equal(restacked, self.ymd) self.assertEquals(restacked.index.names, self.ymd.index.names) # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected.ix[:, unstacked.columns]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU') rs = down.stack('ID') xp = unst.ix[:, ['VAR1']].resample('W-THU').stack('ID') xp.columns.name = 'Params' assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = pd.DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) self.assertTrue(len(stacked) > len(stacked.dropna())) stacked = df.unstack().stack(dropna=True) assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) assert_series_equal(applied.reindex(expected.index), expected) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() self.assertEquals(len(result.columns), 4) recons = result.stack() assert_frame_equal(recons, df) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ('f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.select(lambda u: u[0] in ['f2', 'f3'], axis=1) grouped = df1.groupby(axis=1, level=0) result = grouped.sum() self.assert_((result.columns == ['f2', 'f3']).all()) def test_join(self): a = self.frame.ix[:5, ['A']] b = self.frame.ix[2:, ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan self.assert_(not np.isnan(joined.values).all()) assert_frame_equal(joined, expected, check_names=False) # TODO what should join do with names ? def test_swaplevel(self): swapped = self.frame['A'].swaplevel(0, 1) swapped2 = self.frame['A'].swaplevel('first', 'second') self.assert_(not swapped.index.equals(self.frame.index)) assert_series_equal(swapped, swapped2) back = swapped.swaplevel(0, 1) back2 = swapped.swaplevel('second', 'first') self.assert_(back.index.equals(self.frame.index)) assert_series_equal(back, back2) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) result = panel.swaplevel(0, 1, axis='major') expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) assert_frame_equal(result, expected) with assertRaisesRegexp(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with assertRaisesRegexp(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] tm.assert_isinstance(df.columns, MultiIndex) self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all()) def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) self.assert_(index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) self.assert_(not index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) self.assert_(not index.is_lexsorted()) self.assertEqual(index.lexsort_depth, 0) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 self.assert_((df['foo'].values == 0).all()) # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sortlevel(0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df self.assertRaises(com.SettingWithCopyError, f) try: df = f() except: pass self.assert_((df['foo', 'one'] == 0).all()) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns._tuple_index)] result = df['foo'] result2 = df.ix[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.ix['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) arrays = [np.array(x) for x in zip(*index._tuple_index)] result = s['qux'] result2 = s.ix['qux'] expected = s[arrays[0] == 'qux'] expected.index = expected.index.droplevel(0) assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_count(self): frame = self.frame.copy() frame.index.names = ['a', 'b'] result = frame.count(level='b') expect = self.frame.count(level=1) assert_frame_equal(result, expect, check_names=False) result = frame.count(level='a') expect = self.frame.count(level=0) assert_frame_equal(result, expect, check_names=False) series = self.series.copy() series.index.names = ['a', 'b'] result = series.count(level='b') expect = self.series.count(level=1) assert_series_equal(result, expect) result = series.count(level='a') expect = self.series.count(level=0) assert_series_equal(result, expect) self.assertRaises(KeyError, series.count, 'x') self.assertRaises(KeyError, frame.count, level='x') AGG_FUNCTIONS = ['sum', 'prod', 'min', 'max', 'median', 'mean', 'skew', 'mad', 'std', 'var'] def test_series_group_min_max(self): for op, level, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), [False, True]): grouped = self.series.groupby(level=level) aggf = lambda x: getattr(x, op)(skipna=skipna) # skipna=True leftside = grouped.agg(aggf) rightside = getattr(self.series, op)(level=level, skipna=skipna) assert_series_equal(leftside, rightside) def test_frame_group_ops(self): self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan for op, level, axis, skipna in cart_product(self.AGG_FUNCTIONS, lrange(2), lrange(2), [False, True]): if axis == 0: frame = self.frame else: frame = self.frame.T grouped = frame.groupby(level=level, axis=axis) pieces = [] def aggf(x): pieces.append(x) return getattr(x, op)(skipna=skipna, axis=axis) leftside = grouped.agg(aggf) rightside = getattr(frame, op)(level=level, axis=axis, skipna=skipna) # for good measure, groupby detail level_index = frame._get_axis(axis).levels[level] self.assert_(leftside._get_axis(axis).equals(level_index)) self.assert_(rightside._get_axis(axis).equals(level_index)) assert_frame_equal(leftside, rightside) def test_stat_op_corner(self): obj = Series([10.0], index=MultiIndex.from_tuples([(2, 3)])) result = obj.sum(level=0) expected = Series([10.0], index=[2]) assert_series_equal(result, expected) def test_frame_any_all_group(self): df = DataFrame( {'data': [False, False, True, False, True, False, True]}, index=[ ['one', 'one', 'two', 'one', 'two', 'two', 'two'], [0, 1, 0, 2, 1, 2, 3]]) result = df.any(level=0) ex = DataFrame({'data': [False, True]}, index=['one', 'two']) assert_frame_equal(result, ex) result = df.all(level=0) ex = DataFrame({'data': [False, False]}, index=['one', 'two']) assert_frame_equal(result, ex) def test_std_var_pass_ddof(self): index = MultiIndex.from_arrays([np.arange(5).repeat(10), np.tile(np.arange(10), 5)]) df = DataFrame(np.random.randn(len(index), 5), index=index) for meth in ['var', 'std']: ddof = 4 alt = lambda x: getattr(x, meth)(ddof=ddof) result = getattr(df[0], meth)(level=0, ddof=ddof) expected = df[0].groupby(level=0).agg(alt) assert_series_equal(result, expected) result = getattr(df, meth)(level=0, ddof=ddof) expected = df.groupby(level=0).agg(alt) assert_frame_equal(result, expected) def test_frame_series_agg_multiple_levels(self): result = self.ymd.sum(level=['year', 'month']) expected = self.ymd.groupby(level=['year', 'month']).sum() assert_frame_equal(result, expected) result = self.ymd['A'].sum(level=['year', 'month']) expected = self.ymd['A'].groupby(level=['year', 'month']).sum()
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import sys import gzip import logging import tempfile import itertools import numpy as np import pandas as pd from GetConfig import getConfig from collections import Counter config = getConfig() class ReadFilterData(object): ''' This class is mainly used to: 1. read VCF and BAM file 2. get individuals in sample list 3. filter female individual by missing rate or K-means 4. filter sites to get region for time estimation 5. genotype Y-STRs after read BAMs 6. map ISOGG reference to BAMs, and get a list for subsequent analysis ''' def __init__(self, input_file, samples): self.logger = logging.getLogger() self.samples = samples self.input_file = input_file # get overlaped male individuals from sample list def _get_male_inds(self, inds): males_not_in_data = [i for i in inds if i not in self.samples] if males_not_in_data: if males_not_in_data == self.samples: self.logger.error('[Y-LineageTracker] [Error] No samples in input data, please check sample file') used_males = inds else: self.logger.warning('[Y-LineageTracker] [Warning] %s not in input data' % (', '.join(males_not_in_data))) used_males = [i for i in inds if i in self.samples] else: used_males = self.samples return used_males # get motif number of Y-STR def _count_motif_num(self, bam, contig, start, end, base_motif_num, motif, motif_length, end_motif): add_end = end+motif_length pos_info = bam.fetch(contig, start-1, add_end) add_ref_length = add_end-start+1 # get all possible sequence of specific region seqs = [] for i in pos_info: num = start-i.pos-1 num2 = add_end-i.pos if num > 0: if num2 < i.qlen: seq = i.seq[num:num2] else: seq_tmp = i.seq[num: i.qlen] seq = seq_tmp+(add_ref_length-len(seq_tmp))*'.' else: seq_tmp = i.seq[:num2] seq = (add_ref_length-len(seq_tmp))*'.'+seq_tmp seqs.append(seq) # convert seq region to block block = [''.join(s) for s in zip(*seqs)] # get final sequence from block final_seq = ''.join([Counter(i.strip('.')).most_common()[0][0] if i.count('.') != len(i) else '.' for i in block]) if len(final_seq) == 0 or '.' in final_seq: sample_motif_count = '.' else: if len(motif) == 1: sample_motif_count = final_seq.count(motif[0]) else: sample_motif_count = sum([final_seq.count(m) for m in motif]) # recursion if motif+1 if sample_motif_count > base_motif_num: if pd.isna(end_motif) or (not pd.isna(end_motif) and final_seq.endswith(end_motif)): base_motif_num = sample_motif_count end += motif_length sample_motif_count = self._count_motif_num(bam, contig, start, end, base_motif_num, motif, motif_length, end_motif) return sample_motif_count def _get_specific_sites(self, build, sub_ref_info, id_info_dict): data_info_array = [] for n, pos_num in enumerate(sub_ref_info['Build'+str(build)]): line = [] int_pos = int(pos_num) for bam, contig in id_info_dict.values(): pos_info = bam.fetch(contig, int_pos-1, int_pos) pos_list = [i.seq[int_pos-i.pos-1].upper() for i in pos_info if int_pos-i.pos < i.qlen] if len(set(pos_list)) == 1: pos = pos_list[0] elif len(set(pos_list)) > 1: pos = Counter(pos_list).most_common()[0][0] else: pos = '.' line.append(pos) data_info_array.append([pos_num] + line) data_info = pd.DataFrame(columns=['POS']+list(id_info_dict.keys()), data=np.array(data_info_array)) return data_info def _match_sites(self, data_info, ref_info, build, matched_marker, header_cut, header_end): matched_info = pd.merge(data_info, ref_info, left_on='POS', right_on='Build'+str(build), how='inner', sort=False) matched_info_array = np.array(matched_info) hap_function = (lambda x: matched_marker+matched_info_array[i, -10] if x == match_marker else x) for i in range(len(matched_info)): match_marker = matched_info_array[i, -6] matched_info_array[i, header_cut: header_end] = list(map(hap_function, matched_info_array[i, header_cut: header_end])) final_matched_info = pd.DataFrame(columns=matched_info.columns.tolist(), data=matched_info_array) return final_matched_info def _get_female_by_KMeans(self, missing_rate_data, samples): from sklearn.cluster import KMeans missing_rate_data.extend([0, 1]) missing_rate_data = np.array(missing_rate_data).reshape(-1, 1) estimator = KMeans(n_clusters=2) res = estimator.fit_predict(missing_rate_data)[: -2] centroids = estimator.cluster_centers_ if centroids[0][0] > centroids[1][0]: del_list = [samples[j] for i, j in zip(res, range(len(res))) if i == 0] female_num = len(list(filter(lambda x: x == 0, res))) else: del_list = [samples[j] for i, j in zip(res, range(len(res))) if i == 1] female_num = len(list(filter(lambda x: x == 1, res))) return del_list, female_num # read BAM and do matching analysis def read_bam(self, ref_info, build, extract_type, format): import os import pysam from collections import Counter if format == 'bam': open_method = 'rb' else: open_method = 'rc' # get bam list input_file_list = self.input_file.split(', ') if len(input_file_list) == 1: file = input_file_list[0] try: pysam.AlignmentFile(file, open_method) bam_list = input_file_list except ValueError: bam_list = open(self.input_file).read().splitlines() else: bam_list = self.input_file.split(', ') for i in bam_list: file_exists = os.path.isfile(i) if not file_exists: raise FileNotFoundError('No such file or directory: %s' % i) id_info_dict = {} format_contigs = config.get('DataInfo', 'Contigs').split(',') for f in bam_list: file_name = os.path.basename(f) bam = pysam.AlignmentFile(f, open_method) bam_with_index = bam.has_index() if not bam_with_index: self.logger.error('[Y-LineageTracker] bam/cram file %s has no index' % f) sys.exit() ind = bam.header.get('RG')[0]['ID'] if ind in self.samples: continue sample_contigs = [i.contig for i in bam.get_index_statistics()] overlaped_contigs = list(set(sample_contigs) & set(format_contigs)) if len(overlaped_contigs) == 1: contig = overlaped_contigs[0] else: if len(overlaped_contigs) > 1: self.logger.error('[Y-LineageTracker] More than one contigs for Y chromosome (Y, chrY, 24, chr24), please check input data') sys.exit() if len(overlaped_contigs) == 0: self.logger.error('[Y-LineageTracker] No contig for Y chromosome (Y, chrY, 24, chr24), please check input data') sys.exit() id = ind+'('+file_name+')' id_info_dict[id] = [bam, contig] # for NRY haplogroup classification # match ISOGG sites to BAM files if extract_type == 'snp': # match sites of main trunk matched_marker = config.get('HaplogroupMarker', 'MatchMarker') # used to mark matched haplogroups header_cut = config.getint('DataInfo', 'BamHeaderCut') header_end = -config.getint('DataInfo', 'ISOGGInfoCut') common_trunk = config.get('HaplogroupTree', 'CommonTrunk').split(',') special_haps = config.get('HaplogroupTree', 'SpecialTrunk').split(',') # get allele of haplogroup on main trunks main_trunk_ref_info = ref_info[ref_info['MainInfo']=='Main'] self.logger.info('[Y-LineageTracker] Extrating mian trunks from BAMs/CRAMs...') main_trunk_info = self._get_specific_sites(build, main_trunk_ref_info, id_info_dict) # filter females main_marker_num = main_trunk_info.index.size f_samples = main_trunk_info.columns.tolist()[1:] missing_rate_data = [main_trunk_info[col].tolist().count('.')/main_marker_num for col in f_samples] del_list, female_num = self._get_female_by_KMeans(missing_rate_data, f_samples) if del_list: if female_num == len(f_samples): self.logger.error('[Y-LineageTracker] Program stopped since no male sample left for subsequent analysis') sys.exit() else: main_trunk_info.drop(del_list, inplace=True, axis=1) for female in del_list: del id_info_dict[female] # match main haplogroups main_matched_info = self._match_sites(main_trunk_info, main_trunk_ref_info, build, matched_marker, header_cut, header_end) self.logger.info('[Y-LineageTracker] Extrating mian trunks from BAMs/CRAMs finifhsed') # find which main haplogroup with higher matching rate main_sub_info = main_matched_info[main_matched_info['Haplogroup'].map(lambda x: x not in common_trunk)] all_haps = main_sub_info['Haplogroup'].tolist() main_sub_info = np.array(main_sub_info) id_hap_dict = {} for id_num, id in enumerate(id_info_dict.keys()): col_info = main_sub_info[:, id_num+header_cut] id_haps = sorted(list(map(lambda x: x[1:], list(filter(lambda x: x[0]==matched_marker, col_info))))) ratio = 0 for hap in set(id_haps): ratio2 = id_haps.count(hap) / all_haps.count(hap) if ratio2 > ratio: ratio = ratio2 main_hap = hap if ratio < 0.25: main_hap = None id_hap_dict[id] = main_hap # extract sub-haplogroups of each main trunk self.logger.info('[Y-LineageTracker] Extrating sub-trunks from BAMs/CRAMs...') sub_trunk_ref_info = ref_info[ref_info['MainInfo']!='Main'] info_list = [] NA_ids = [] for hap in sorted(set(id_hap_dict.values())): hap_ids = list({k: v for k, v in id_hap_dict.items() if v==hap}.keys()) sub_id_info_dict = {k: v for k, v in id_info_dict.items() if k in hap_ids} if main_hap: hap_ref_info = sub_trunk_ref_info[sub_trunk_ref_info['Haplogroup'].map(lambda x: x.startswith(hap))] hap_info = self._get_specific_sites(build, hap_ref_info, sub_id_info_dict) info_list.append(hap_info) else: hap_ref_info = sub_trunk_ref_info[sub_trunk_ref_info['Haplogroup'].map(lambda x: x.startswith('A') and x in special_haps)] hap_info = self._get_specific_sites(build, hap_ref_info, sub_id_info_dict) sub_hap_info = pd.concat(info_list, axis=0, sort=False).fillna('.') self.logger.info('[Y-LineageTracker] Extrating sub-trunks from BAMs/CRAMs finifhsed') sub_trunk_info = sub_hap_info[['POS']+list(id_info_dict.keys())] sub_matched_info = self._match_sites(sub_trunk_info, sub_trunk_ref_info, build, matched_marker, header_cut, header_end) data_info = np.array(pd.concat([main_matched_info, sub_matched_info]).drop_duplicates()) inds = list(id_info_dict.keys()) self.logger.info('[Y-LineageTracker] Extrating information from BAMs/CRAMs finifhsed') # for Y-STR genotyping # genotype Y-STRs from BAMs else: from FilesIO import get_str_from_panel str_info = get_str_from_panel(ref_info) data_info = pd.DataFrame(columns=list(id_info_dict.keys())) for num, STR_idx in enumerate(str_info.index): # read basic information start = str_info.at[STR_idx, 'Start'+str(build)] end = str_info.at[STR_idx, 'End'+str(build)] motif = str_info.at[STR_idx, 'RefMotif'].split(', ') str_name = str_info.at[STR_idx, 'Name'+str(build)] motif_length = str_info.at[STR_idx, 'MotifLength'] end_motif = str_info.at[STR_idx, 'End'] motif_count = [] # matching for bam, contig in id_info_dict.values(): base_motif_num = str_info.at[STR_idx, 'Ref'+str(build)] sample_motif_count = self._count_motif_num(bam, contig, start, end, base_motif_num, motif, motif_length, end_motif) motif_count.append(sample_motif_count) data_info.loc[str_name] = motif_count percent = float(num + 1) * 100 / float(str_info.index.size) sys.stdout.write('[Y-LineageTracker] Genotyping Y-STR…… %.2f' % percent) sys.stdout.write('%\r') sys.stdout.flush() data_info = data_info.T inds = list(id_info_dict.keys()) print() self.logger.info('[Y-LineageTracker] Genotyping Y-STR finished') return data_info, inds # open input file of variant calling def _read_variant(self, file_format): # open VCF if file_format == 'gzvcf': opened_file = gzip.open(self.input_file, 'rt') else: opened_file = open(self.input_file, 'r') # get row number of header config = getConfig() if 'vcf' in file_format: header_cut = config.getint('DataInfo', 'VcfHeaderCut') start_symbol = '#CHROM' chr_symbol = start_symbol for i in itertools.count(start=0, step=1): vcf_line = opened_file.readline() if vcf_line.startswith(start_symbol): head_num = i break else: header_cut = config.getint('DataInfo', 'InpHeaderCut') start_symbol = 'dbSNP' blank_num = 0 for i in itertools.count(start=0, step=1): inp_line = opened_file.readline() if inp_line == '\n': blank_num += 1 if inp_line.startswith(start_symbol): head_num = i - blank_num start_symbol = inp_line.split('\t')[0] chr_symbol = inp_line.split('\t')[1] pos_symbol = inp_line.split('\t')[2] break opened_file.close() # open input file in pandas self.logger.info('[Y-LineageTracker] Reading input file...') data = pd.read_csv(self.input_file, header=head_num, sep='\t', encoding='utf-8', dtype='object') self.logger.info('[Y-LineageTracker] Input file Read') # change header name of site vcf if input is INP if file_format == 'inp': data.rename(columns={pos_symbol: 'POS'}, inplace=True) # chr column keeps only Y/24 chr_type = len(set(data[chr_symbol].tolist())) if chr_type > 1: print('[Y-LineageTracker] [Warning] Other chromosomes are detected in inputfile, only the Y chromosome is reserved for analysis') data = data[data[chr_symbol].map(lambda x: 'Y' in x or '24' in x or 'chrY' in x or 'chr24' in x)] return data, header_cut # filter individuals def _filter_variant(self, data, cutoff, file_format, header_cut): # list of indivisuals and number inds = data.columns.tolist()[header_cut:] ind_num_before = len(inds) self.logger.info('[Y-LineageTracker] There are %d individuals in input file' % (ind_num_before)) # filter according to sample list if self.samples: used_males = self._get_male_inds(inds) header = data.columns.tolist()[:header_cut] data = data[header+used_males] female_num = ind_num_before-len(used_males) # filter female individuals according to missing rate or K-means cluster if no sample information else: if cutoff is None: female_num = 0 else: del_list = [] site_num = data.index.size missing_count = (lambda x: 'missing' if '.' in x or './.' in x else x) try: # count misisng rate of each individual if 'vcf' in file_format: missing_rate_data = [data[i].map(missing_count).tolist().count('missing') / site_num for i in inds] else: missing_rate_data = [data[i].tolist().count('U') / site_num for i in inds] # if set cutoff of missing rate, filter according to misisng rate if cutoff: del_list = [j for i, j in zip(missing_rate_data, inds) if i > cutoff] female_num = len([i for i in inds if i not in del_list]) # if not set cutoff, will use K-means to cluster missing rate to identify samples and females else: del_list, female_num = self._get_female_by_KMeans(missing_rate_data, inds) # if all individual filtered if len(del_list) == ind_num_before: self.logger.error('[Y-LineageTracker] Program stopped since no male sample left for subsequent analysis') sys.exit() # remove filtered indivisuals from data data.drop(del_list, inplace=True, axis=1) except TypeError: self.logger.error('[Y-LineageTracker] [Error] VCF file format error, please check your file') sys.exit() inds_after = data.columns.tolist()[header_cut:] left_num = len(inds_after) if not cutoff is None: self.logger.info('[Y-LineageTracker] %d female individuals filtered and %d individuals left' % (female_num, left_num)) return data, inds_after # main function for reading and filtering variant calling def read_filter_variant(self, cutoff, file_format): data_read, header_cut = self._read_variant(file_format) data_info, inds = self._filter_variant(data_read, cutoff, file_format, header_cut) return data_info, inds # filter sites and keep only SNPs for time estimation def restrict_time_region(self, data): # read data of region for time calculation from FilesIO import CommonData common_data = CommonData() region_info = common_data.read_region_info() time_data_info = pd.DataFrame(columns=data.columns.tolist()) # function used to filter indels def remove_indels(x): alt = x.split(',') flag_num = sum([0 if len(i) == 1 else 1 for i in alt]) if flag_num == 0: return True else: return False # restrict sites in regions for i in region_info.index: start_pos = int(region_info.at[i, 'start']) end_pos = int(region_info.at[i, 'end']) time_region_data = data[pd.to_numeric(data['POS']).map(lambda x: x >= start_pos and x <= end_pos)] time_data_info =
pd.concat([time_data_info, time_region_data])
pandas.concat
#!/usr/bin/env python3 """ The bioscreen module analyzes and graphs growth curves from Bioscreen C data See example folder on GitHub for a step-by-step example and more in-depth documentation. ## Basic example # create new Experiment object import bioscreen expt = bioscreen.Experiment() # configure the Experiment, i.e. define what each well is. # there are 3 options. See documentation for each for more information expt.set_config_from_file(config_file_path) expt.set_config([groups], [samples]) expt.configuration = [{'group': 'group1', 'blank': [1,2,3,4], 'sample1': [5,6,7,8]}, {'group': 'group2', ...}, ...] # summarize/analyze the experiment # in this step, the readings for each set of wells is averaged at each time point # the blank well readings, if available, are subtracted from the sample readings expt.summarize() # output the summary data if desired expt.write_summary(summary_file) # graph the data expt.graph(figure_file) ## It is also possible to create graphs from previously-made summary files expt = bioscreen.Experiment() expt.load_summary(summary_file) expt.graph(figure_file) ## Instead of graphing everything at once, selected data can be graphed # graphing data just for "group1" and "group2" expt.graph(figure_file, groups_to_graph=['group1', 'group1']) # graphing just "sample1" in "group1" expt.graph(figure_file, samples_go_graph=['group1__sample1']) # or creating a graph for each group expt.graph_groups('figure_base_name') """ import re import pandas as pd import numpy as np import matplotlib.pyplot as plt class Experiment: def __init__(self): """ Experiment objects are used to analyze and graph bioscreen data. The basic workflow is: (1) use Experiment.set_config() or .set_config_from_file() to define the experiment configuration (2) summarize data with Experiment.summarize() (3) graph data with Experiment.graph() See documentation for the bioscreen module and for each method for more information """ self.configuration = None self.summary_data = None self.data_path = None self.summary_path = None def status(self): report = 'An Experiment object in the bioscreen module\n' if self.configuration is not None: report = report + '\nExperimental configuration: ' + str(self.configuration) + '\n' else: report = report + '\nExperimental configuration is not set.\n' if self.summary_data is not None: report = report + '\nData has been summarized.\n\tData File: {}\n\tSummary File: {}'.format(self.data_path, self.summary_path) else: report = report + '\nData has not been summarized yet.' return report def __str__(self): return self.status() def __repr__(self): return self.status() def load_summary(self, summary_path): """ Load summary data that was previously created by Experiment.write_summary() Arguments: (1) path to summary file. """ self.summary_data =
pd.read_table(summary_path)
pandas.read_table
# -*- coding: utf-8 -*- """Moving Data Processing.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1LttfL6PKbT1DdG9dye8AyFT0yMes9X4X """ from google.colab import drive drive.mount('/content/drive') import pandas as pd import seaborn as sns import numpy as np data =
pd.read_csv("/content/drive/My Drive/covid project/Data/13-Dec.csv",index_col=0)
pandas.read_csv
# Question: Please concatenate this file with this one to a single text file. # The content of the output file should look like below. # http://www.pythonhow.com/data/sampledata.txt # http://pythonhow.com/data/sampledata_x_2.txt # Expected output: # x,y # 3,5 # 4,9 # 6,10 # 7,11 # 8,12 # 6,10 # 8,18 # 12,20 # 14,22 # 16,24 # Answer: import pandas as pd df1 = pd.read_csv('http://www.pythonhow.com/data/sampledata.txt') df2 = pd.read_csv('http://pythonhow.com/data/sampledata_x_2.txt') frames = [df1,df2] df_result =
pd.concat(frames)
pandas.concat
import numpy as np import pandas as pd round_1_sp = pd.read_stata('data/NHATS_Round_1_SP_File.dta') # Exclusions # dementia # (hc1disescn9) - 1 - YES, 2 - NO, -1 Inapplicable, -8 DK, -9 Missing # filter hc1disescn9 == 2 # n post filter = 7146 round_1_cohort = round_1_sp[round_1_sp.hc1disescn9 == ' 2 NO'] # missing grip strength # n post filter = 5969 # 2 measures, gr1grp1rdng and gr1grp2rdng # remove those with na in both measurements both_grip_na = [pd.isna(g1) and pd.isna(g2) for g1, g2 in zip( round_1_cohort.gr1grp1rdng, round_1_cohort.gr1grp2rdng)] round_1_cohort = round_1_cohort[[not x for x in both_grip_na]] # missing height or weight data # weight in pounds (hw1currweigh), height in feet (hw1howtallft), height in inches (hw1howtallin) # n post filter = 5822 missing_height_or_weight = [any([pd.isna(weight), pd.isna(height_f), pd.isna(height_in)]) for weight, height_f, height_in in zip( round_1_cohort.hw1currweigh, round_1_cohort.hw1howtallft, round_1_cohort.hw1howtallin)] round_1_cohort = round_1_cohort[[not x for x in missing_height_or_weight]] # Derived measures # max grip_strength # max of both grip readings (if applicable) # appended as max_grip round_1_cohort['max_grip'] = round_1_cohort.apply( lambda x: np.nanmax([x.gr1grp1rdng, x.gr1grp2rdng]), axis=1) # BMI # defined as self-reported baseline weight in kg divided by height in meters-squared # appended as weight_kg, height_m, and BMI respectively round_1_cohort['weight_kg'] = round_1_cohort.hw1currweigh.astype( 'float') / 2.2046 round_1_cohort['height_m'] = (round_1_cohort.hw1howtallft.astype( 'int') * 12 + round_1_cohort.hw1howtallin.astype('int')) * 0.0254 round_1_cohort['bmi'] = round_1_cohort.weight_kg / round_1_cohort.height_m**2 # High waist circumference # waist measure in inches (wc1wstmsrinc) # indicator for high waist circumference, >= 102 cm in males, >= 88 cm in females # appended as high_wc # 104 missing wc measure def high_wc(x): if pd.isna(x.r1dgender) or pd.isna(x.wc1wstmsrinc): return np.nan wc = x.wc1wstmsrinc * 2.54 if x.r1dgender == '1 MALE': return True if wc >= 102 else False elif x.r1dgender == '2 FEMALE': return True if wc >= 88 else False else: raise Exception round_1_cohort['high_wc'] = round_1_cohort.apply(high_wc, axis=1) # Sarcopenia (defined by grip strength) # grip strength < 35.5 kg in males, <20 kg in females # appended as sarcopenia # no na due to exclusion criteria def sarcopenia(x): if pd.isna(x.max_grip) or pd.isna(x.r1dgender): return np.nan if x.r1dgender == '1 MALE': return True if x.max_grip < 35.5 else False elif x.r1dgender == '2 FEMALE': return True if x.max_grip < 20 else False else: raise Exception round_1_cohort['sarcopenia'] = round_1_cohort.apply(sarcopenia, axis=1) def sarcopenia_cutoff2(x): if pd.isna(x.max_grip) or pd.isna(x.r1dgender): return np.nan if x.r1dgender == '1 MALE': return True if x.max_grip < 26 else False elif x.r1dgender == '2 FEMALE': return True if x.max_grip < 16 else False else: raise Exception round_1_cohort['sarcopenia_cutoff2'] = round_1_cohort.apply( sarcopenia_cutoff2, axis=1) # SDOC Sarcopenia (defined by grip strength/BMI ratio) # grip strength/BMI < 1.05 in males, < 0.79 in females # appended as sdoc_sarcopenia # no na due to exclusion criteria def sdoc_sarcopenia(x): if any([pd.isna(m) for m in [x.max_grip, x.bmi, x.r1dgender]]): return np.nan ratio = x.max_grip / x.bmi if x.r1dgender == '1 MALE': return True if ratio < 1.05 else False elif x.r1dgender == '2 FEMALE': return True if ratio < 0.79 else False else: raise Exception round_1_cohort['sdoc_sarcopenia'] = round_1_cohort.apply( sdoc_sarcopenia, axis=1) # Gender # r1dgender round_1_cohort['gender'] = round_1_cohort.r1dgender # Race # rl1dracehisp, recode values below in dictionary # no na # appended as race def race(x): d = {' 1 White, non-hispanic': 'White', ' 2 Black, non-hispanic': 'Black', ' 3 Other (Am Indian/Asian/Native Hawaiian/Pacific Islander/other specify), non-Hispanic': 'Other', ' 4 Hispanic': 'Hispanic', ' 5 more than one DKRF primary': 'Other', ' 6 DKRF': 'DKRF'} return d.get(x.rl1dracehisp, np.nan) round_1_cohort['race'] = round_1_cohort.apply(race, axis=1) # Smoking status # Current - sd1smokedreg == 1 (smoked regularly) & sd1smokesnow == 1 (smokes now) # Former smoker - sd1smokedreg == 1 & sd1smokesnow == 2 or sd1smokesnow is na # Never - sd1smokedreg == 2 & sd1smokesnow == 2 # appended as smoking_status # 1 overall na def smoking_status(x): if pd.isna(x.sd1smokedreg) and pd.isna(x.sd1smokesnow): # only 1 return np.nan elif pd.isna(x.sd1smokedreg) and pd.notna(x.sd1smokesnow): # never raise Exception elif pd.notna(x.sd1smokedreg) and pd.isna(x.sd1smokesnow): # 2818 if x.sd1smokedreg == ' 1 YES': return 'Former, maybe current' elif x.sd1smokedreg == ' 2 NO': return 'Never' else: # both exist if x.sd1smokedreg == ' 1 YES' and x.sd1smokesnow == ' 1 YES': return 'Current' elif x.sd1smokedreg == ' 1 YES' and x.sd1smokesnow == ' 2 NO': return 'Former' else: return 'Never' round_1_cohort['smoking_status'] = round_1_cohort.apply(smoking_status, axis=1) # Education # el1higstschl # Less than high school: 1 - no schooling, # 2 - 1st to 8th grade, # 3 - 9th to 12th grade, no diploma # High school to some college: 4 - high school graduate (diploma or equivalent) # 5 - vocational, technical, business or trade school certificate # beyond high school # 6 - some college but no degree # College degree: 7 - associate's degree # 8 - bachelor's degree # Graduate degree: 9 - master's, professional, or doctoral # appended as education # 4 na def education(x): d = {' 1 NO SCHOOLING COMPLETED': 'Less than high school', ' 2 1ST-8TH GRADE': 'Less than high school', ' 3 9TH-12TH GRADE (NO DIPLOMA)': 'Less than high school', ' 4 HIGH SCHOOL GRADUATE (HIGH SCHOOL DIPLOMA OR EQUIVALENT)': 'High school to some college', ' 6 SOME COLLEGE BUT NO DEGREE': 'High school to some college', " 8 BACHELOR'S DEGREE": 'College degree', " 9 MASTER'S, PROFESSIONAL, OR DOCTORAL DEGREE": 'Graduate degree', ' 5 VOCATIONAL, TECHNICAL, BUSINESS, OR TRADE SCHOOL CERTIFICATE OR DIPLOMA (BEYOND HIGH SCHOOL LEVEL)': 'High school to some college', " 7 ASSOCIATE'S DEGREE": 'College degree' } return d.get(x.el1higstschl, np.nan) round_1_cohort['education'] = round_1_cohort.apply(education, axis=1) # Physical activity proxy # pa1evrgowalk # appended as ever_walk # no na round_1_cohort['ever_walk'] = round_1_cohort.apply( lambda x: True if x.pa1evrgowalk == ' 1 YES' else False, axis=1) # Comorbidities # heart_disease # hc1disescn1 - had heart attack # hc1disescn2 - has heart disease # no na def heart_disease(x): if x.hc1disescn1 == ' 1 YES' or x.hc1disescn2 == ' 1 YES': return True elif x.hc1disescn1 == ' 2 NO' or x.hc1disescn2 == ' 2 NO': return False else: return np.nan round_1_cohort['heart_disease'] = round_1_cohort.apply(heart_disease, axis=1) # hypertension # hc1disescn3 # 7 na round_1_cohort['hypertension'] = round_1_cohort.apply( lambda x: True if x.hc1disescn3 == ' 1 YES' else False if x.hc1disescn3 == ' 2 NO' else np.nan, axis=1) # arthritis # hc1disescn4 # 12 na round_1_cohort['arthritis'] = round_1_cohort.apply( lambda x: True if x.hc1disescn4 == ' 1 YES' else False if x.hc1disescn4 == ' 2 NO' else np.nan, axis=1) # diabetes # hc1disescn6 # 2 na round_1_cohort['diabetes'] = round_1_cohort.apply( lambda x: True if x.hc1disescn6 == ' 1 YES' else False if x.hc1disescn6 == ' 2 NO' else np.nan, axis=1) # lung_disease # hc1disescn7 # 4 na round_1_cohort['lung_disease'] = round_1_cohort.apply( lambda x: True if x.hc1disescn7 == ' 1 YES' else False if x.hc1disescn7 == ' 2 NO' else np.nan, axis=1) # stroke # hc1disescn8 # 5 na round_1_cohort['stroke'] = round_1_cohort.apply( lambda x: True if x.hc1disescn8 == ' 1 YES' else False if x.hc1disescn8 == ' 2 NO' else np.nan, axis=1) # cancer # hc1disescn10 # 2 na round_1_cohort['cancer'] = round_1_cohort.apply( lambda x: True if x.hc1disescn10 == ' 1 YES' else False if x.hc1disescn10 == ' 2 NO' else np.nan, axis=1) # Age category # r1d2intvrage # no na # appended as age_category def age_category(x): d = { '1 - 65-69': '65-69', '2 - 70-74': '70-74', '3 - 75-79': '75-79', '4 - 80-84': '80-84', '5 - 85-89': '85+', '6 - 90 +': '85+' } return d.get(x.r1d2intvrage, np.nan) round_1_cohort['age_category'] = round_1_cohort.apply(age_category, axis=1) # Obesity (defined by BMI) # BMI >= 30 kg/m^2 # appended as Obesity # no na due to exclusion criteria round_1_cohort['obesity'] = round_1_cohort.apply( lambda x: True if x.bmi >= 30 else False, axis=1) # Sarcopenic obesity definitions # Grouping 1: sarcopenia, obesity, sarcopenic obesity, neither # obesity derived from BMI (variable obesity) # appended as grouping_1_so_status def grouping_1_so_status(x): if pd.isna(x.sarcopenia) or pd.isna(x.obesity): # shouldn't happen return np.nan if x.sarcopenia and not x.obesity: return 'Sarcopenia' elif not x.sarcopenia and x.obesity: return 'Obesity' elif x.sarcopenia and x.obesity: return 'Sarcopenic Obesity' elif not x.sarcopenia and not x.obesity: return 'Neither' round_1_cohort['grouping_1_so_status'] = round_1_cohort.apply( grouping_1_so_status, axis=1) def grouping_1_so_status_cutoff2(x): if pd.isna(x.sarcopenia_cutoff2) or pd.isna(x.obesity): # shouldn't happen return np.nan if x.sarcopenia_cutoff2 and not x.obesity: return 'Sarcopenia' elif not x.sarcopenia_cutoff2 and x.obesity: return 'Obesity' elif x.sarcopenia_cutoff2 and x.obesity: return 'Sarcopenic Obesity' elif not x.sarcopenia_cutoff2 and not x.obesity: return 'Neither' round_1_cohort['grouping_1_so_status_cutoff2'] = round_1_cohort.apply( grouping_1_so_status_cutoff2, axis=1) # Grouping 2: sarcopenia, obesity, sarcopenic obesity, neither # obesity derived from waist circumference (variable name high_wc) # appended as grouping_2_so_status # 104 na (due to missing wc) def grouping_2_so_status(x): if pd.isna(x.sarcopenia) or
pd.isna(x.high_wc)
pandas.isna
from typing import List, Sequence import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.axes import Axes from matplotlib.figure import Figure from sklearn.metrics import roc_auc_score, roc_curve from dfds_ds_toolbox.analysis.plotting_utils import ( _get_equally_grouped_data, _get_trend_changes, _get_trend_correlation, _univariate_plotter, ) def plot_classification_proba_histogram(y_true: Sequence[int], y_pred: Sequence[float]) -> Figure: """Plot histogram of predictions for binary classifiers. Args: y_true: 1D array of binary target values, 0 or 1. y_pred: 1D array of predicted target values, probability of class 1. """ fig, ax = plt.subplots() bins = np.linspace(0, 1, 11) df = pd.DataFrame() df["Actual class"] = y_true df["Probability of class 1"] = y_pred df_actual_1 = df[df["Actual class"] == 1] df_actual_0 = df[df["Actual class"] == 0] ax.hist( x=df_actual_0["Probability of class 1"], bins=bins, label="Actual class 0", histtype="step" ) ax.hist( x=df_actual_1["Probability of class 1"], bins=bins, label="Actual class 1", histtype="step" ) ax.set_xlabel("Probability of class 1") ax.set_ylabel("Counts") ax.legend() return fig def plot_univariate_dependencies( data: pd.DataFrame, target_col: str, features_list: List[str] = None, bins: int = 10, data_test: pd.DataFrame = None, ): """Creates univariate dependence plots for features in the dataset Args: data: dataframe containing features and target columns target_col: target column name features_list: by default creates plots for all features. If list passed, creates plots of only those features. bins: number of bins to be created from continuous feature data_test: test data which has to be compared with input data for correlation Returns: Draws univariate plots for all columns in data """ if features_list is None: features_list = list(data.columns) features_list.remove(target_col) for cols in features_list: if cols != target_col and data[cols].dtype == "O": print(cols + " is categorical. Categorical features not supported yet.") elif cols != target_col and data[cols].dtype != "O": _univariate_plotter( feature=cols, data=data, target_col=target_col, bins=bins, data_test=data_test ) def get_trend_stats( data: pd.DataFrame, target_col: str, features_list: List[str] = None, bins: int = 10, data_test: pd.DataFrame = None, ) -> pd.DataFrame: """Calculates trend changes and correlation between train/test for list of features. Args: data: dataframe containing features and target columns target_col: target column name features_list: by default creates plots for all features. If list passed, creates plots of only those features. bins: number of bins to be created from continuous feature data_test: test data which has to be compared with input data for correlation Returns: dataframe with trend changes and trend correlation (if test data passed) """ if features_list is None: features_list = list(data.columns) features_list.remove(target_col) stats_all = [] has_test = type(data_test) == pd.core.frame.DataFrame ignored = [] for feature in features_list: if data[feature].dtype == "O" or feature == target_col: ignored.append(feature) else: cuts, grouped = _get_equally_grouped_data( input_data=data, feature=feature, target_col=target_col, bins=bins ) trend_changes = _get_trend_changes( grouped_data=grouped, feature=feature, target_col=target_col ) if has_test: grouped_test = _get_equally_grouped_data( input_data=data_test.reset_index(drop=True), # type: ignore[union-attr] feature=feature, target_col=target_col, bins=bins, cuts=cuts, ) trend_corr = _get_trend_correlation(grouped, grouped_test, feature, target_col) trend_changes_test = _get_trend_changes( grouped_data=grouped_test, feature=feature, target_col=target_col ) stats = [feature, trend_changes, trend_changes_test, trend_corr] else: stats = [feature, trend_changes] stats_all.append(stats) stats_all_df =
pd.DataFrame(stats_all)
pandas.DataFrame
import pandas as pd import pytest from dku_timeseries import ExtremaExtractor from recipe_config_loading import get_extrema_extraction_params @pytest.fixture def columns(): class COLUMNS: date = "Date" category = "categorical" data = "value1" return COLUMNS @pytest.fixture def monthly_df(): co2 = [4, 9, 4, 2, 5, 1] time_index = pd.date_range("1-1-2015", periods=6, freq="M") df = pd.DataFrame.from_dict( {"value1": co2, "value2": co2, "Date": time_index}) return df @pytest.fixture def recipe_config(columns): config = {u'window_type': u'none', u'groupby_columns': [], u'closed_option': u'left', u'window_unit': u'months', u'window_width': 2, u'causal_window': False, u'datetime_column': columns.date, u'advanced_activated': False, u'extrema_column': columns.data, u'extrema_type': u'max', u'aggregation_types': [u'average'], u'gaussian_std': 1} return config class TestExtremaFrequencies: def test_month(self, recipe_config, columns): params = get_extrema_extraction_params(recipe_config) extrema_extractor = ExtremaExtractor(params) df = get_df_DST("M", columns) output_df = extrema_extractor.compute(df, columns.date, columns.data) assert output_df.shape == (1, 5) assert output_df.loc[0, columns.date] == pd.Timestamp("2019-06-30 01:59:00+02:00") def test_year(self, recipe_config, columns): recipe_config["window_unit"] = "years" params = get_extrema_extraction_params(recipe_config) extrema_extractor = ExtremaExtractor(params) df = get_df_DST("Y", columns) output_df = extrema_extractor.compute(df, columns.date, columns.data) assert output_df.shape == (1, 5) assert output_df.loc[0, columns.date] == pd.Timestamp("2024-12-31 01:59:00+01:00") def test_weeks(self, recipe_config, columns): recipe_config["window_unit"] = "weeks" params = get_extrema_extraction_params(recipe_config) extrema_extractor = ExtremaExtractor(params) df = get_df_DST("W", columns) output_df = extrema_extractor.compute(df, columns.date, columns.data) assert output_df.shape == (1, 5) assert output_df.loc[0, columns.date] == pd.Timestamp("2019-03-10 01:59:00+01:00") def test_days(self, recipe_config, columns): recipe_config["window_unit"] = "days" params = get_extrema_extraction_params(recipe_config) extrema_extractor = ExtremaExtractor(params) df = get_df_DST("D", columns) output_df = extrema_extractor.compute(df, columns.date, columns.data) assert output_df.shape == (1, 5) assert output_df.loc[0, columns.date] == pd.Timestamp("2019-02-05 01:59:00+01:00") def test_hours(self, recipe_config, columns): recipe_config["window_unit"] = "hours" params = get_extrema_extraction_params(recipe_config) extrema_extractor = ExtremaExtractor(params) df = get_df_DST("H", columns) output_df = extrema_extractor.compute(df, columns.date, columns.data) assert output_df.shape == (1, 5) assert output_df.loc[0, columns.date] == pd.Timestamp("2019-01-31 06:59:00+0100") def test_minutes(self, recipe_config, columns): recipe_config["window_unit"] = "minutes" params = get_extrema_extraction_params(recipe_config) extrema_extractor = ExtremaExtractor(params) df = get_df_DST("T", columns) output_df = extrema_extractor.compute(df, columns.date, columns.data) assert output_df.shape == (1, 5) assert output_df.loc[0, columns.date] ==
pd.Timestamp("2019-01-31 02:04:00+0100")
pandas.Timestamp
# -*- coding: utf-8 -*- """ Created on Wed Aug 12 18:24:12 2020 @author: omar.elfarouk """ import pandas import numpy import seaborn import scipy import matplotlib.pyplot as plt data = pandas.read_csv('gapminder.csv', low_memory=False) #setting variables you will be working with to numeric data['internetuserate'] =
pandas.to_numeric(data['internetuserate'], errors='coerce')
pandas.to_numeric
# -*- coding: UTF-8 -*- import os import numpy as np import pandas as pd from stock.globalvar import FINANCE_DIR, BASIC_DIR, LRB_CH2EN, XJLLB_CH2EN, ZCFZB_CH2EN from stock.utils.symbol_util import symbol_to_exsymbol def _set_quarter(df): for i in range(len(df)): dt = df.index[i] if dt.month == 3: df.loc[df.index[i], "quarter"] = "Q1" elif dt.month == 6: df.loc[df.index[i], "quarter"] = "Q2" elif dt.month == 9: df.loc[df.index[i], "quarter"] = "Q3" elif dt.month == 12: df.loc[df.index[i], "quarter"] = "Q4" def _parse_cell(string, parser=None): string = string.strip() if string == "": return np.nan if string == "--": return np.nan if parser == None: return string return parser(string) def get_lrb_data(exsymbol): filename = "%s_lrb" % exsymbol path = os.path.join(FINANCE_DIR["stock"], filename) if not os.path.isfile(path): msg = "%s has no lrb data" % exsymbol raise Exception(msg) content = None with open(path, "r") as f: content = f.read() lines = content.splitlines() data = {} index = [] for line in lines: if line.strip() == "": continue cells = line.split(",") col = cells[0].strip() if col == "报告日期": index = map(lambda x: _parse_cell(x, str), cells[1:]) else: en = LRB_CH2EN.get(col) if en == "": raise Exception("en for %s not defined" % cells[0]) array = data.setdefault(en, []) parsed = map(lambda x: _parse_cell(x, float), cells[1:]) array.extend(parsed) df = pd.DataFrame(data=data, index=index).fillna(0.0) df = df[
pd.notnull(df.index)
pandas.notnull
from datetime import datetime from typing import List import pandas as pd import pytest from hyperwave import ( HyperwaveWeekLenghtGrouping, HyperwavePhaseGrouper, HyperwaveGroupingPhasePercent, HyperwaveGroupingPhaseAggregator, HyperwaveGroupingToPhase4, HyperwaveGrouperByMedianSlopeIncrease, HyperwaveGrouping, HyperwaveGrouperSmallWeek, ) def get_path_row( x1: int = 0, x1_date: datetime = datetime(2000, 1, 1), x1_normalize: float = 0.0, x2: int = 0, x2_date: datetime = datetime(2000, 1, 1), x2_normalize: float = 0.0, y1: float = 0.0, y1_normalize: float = 0.0, y2: float = 0.0, y2_normalize: float = 0.0, m: float = 0.0, b: float = 0.0, m_normalize: float = 0.0, b_normalize: float = 0.0, angle: float = 0.0, angle_normalize: float = 0.0, weeks: int = 0, mean_error: float = 0.0, nb_is_lower: int = 0, ratio_error_cut: float = 0.0, ratio_slope_y1_normalize: float = 0.0, ratio_slope_y2_normalize: float = 0.0, ): return { "x1": x1, "x1_date": x1_date, "x1_normalize": x1_normalize, "x2": x2, "x2_date": x2_date, "x2_normalize": x2_normalize, "y1": y1, "y1_normalize": y1_normalize, "y2": y2, "y2_normalize": y2_normalize, "m": m, "b": b, "m_normalize": m_normalize, "b_normalize": b_normalize, "angle": angle, "angle_normalize": angle_normalize, "weeks": weeks, "mean_error": mean_error, "nb_is_lower": nb_is_lower, "ratio_error_cut": ratio_error_cut, "ratio_slope_y1_normalize": ratio_slope_y1_normalize, "ratio_slope_y2_normalize": ratio_slope_y2_normalize, } @pytest.mark.parametrize( "raw_path, expected_phases, increase_factor, test_conment", [ ([get_path_row()], [[0]], 2.0, "one row return the row if greater than zero"), ( [get_path_row(), get_path_row()], [[0, 1]], 2.0, "Two path with m_normalize equal zero should return an array with both element", ), ( [get_path_row(m_normalize=-0.5), get_path_row(m_normalize=-1.0)], [], 2.0, "Path with only negative elements should return empty array", ), ( [get_path_row(m_normalize=-0.5), get_path_row(m_normalize=1.0)], [[1]], 2.0, "Path with only one positive m_normalize should retunr an array with one element", ), ( [get_path_row(m_normalize=0.5), get_path_row(m_normalize=0.7)], [[0, 1]], 2.0, "Path with two positive m_normalize without increase factor should return an array with both elements id", ), ( [get_path_row(m_normalize=0.5), get_path_row(m_normalize=1.1)], [[0], [1]], 2.0, "Path with two positive m_normalize with increase factor greated should return an array with two array", ), ( [ get_path_row(m_normalize=0.5), get_path_row(m_normalize=1.1), get_path_row(m_normalize=1.5), ], [[0], [1, 2]], 2.0, "Path m_normalize [0.5, 1.1, 1.5] should return [[0],[1, 2]]", ), ( [ get_path_row(m_normalize=0.5), get_path_row(m_normalize=1.1), get_path_row(m_normalize=1.5), ], [[0], [1, 2]], 2.0, "Path m_normalize [0.5, 1.1, 1.5] should return [[0],[1, 2]]", ), ( [ get_path_row(m_normalize=0.5), get_path_row(m_normalize=1.1), get_path_row(m_normalize=1.5), get_path_row(m_normalize=2.2), ], [[0], [1, 2, 3]], 2.0, "Path m_normalize [0.5, 1.1, 1.5, 2.2] should return [[0],[1, 2, 3]]", ), ( [ get_path_row(m_normalize=0.5), get_path_row(m_normalize=1.1), get_path_row(m_normalize=1.5), get_path_row(m_normalize=2.4), ], [[0], [1, 2], [3]], 2.0, "Path m_normalize [0.5, 1.1, 1.5, 2.4] should return [[0],[1, 2], [3]]", ), ( [ get_path_row(m_normalize=0.5), get_path_row(m_normalize=1.1), get_path_row(m_normalize=1.5), get_path_row(m_normalize=2.4), get_path_row(m_normalize=10), ], [[0], [1, 2], [3], [4]], 2.0, "Path m_normalize [0.5, 1.1, 1.5, 2.4, 10] should return [[0],[1, 2], [3], [4]", ), ], ) def test_that_grouping_return_expected_value( raw_path, expected_phases, increase_factor, test_conment ): df_path = pd.DataFrame(raw_path) hw_phase_grouper = HyperwavePhaseGrouper(increase_factor) phases = hw_phase_grouper.group(df_path) assert expected_phases == phases, test_conment @pytest.mark.parametrize( "raw_path, input_group, expected_result, group_min_week, only_group_last_phase, test_comment", [ ( [get_path_row(weeks=4)], [[0]], [[0]], 10, True, "one path with weeks lower than should return same input", ), ( [get_path_row(weeks=4), get_path_row(weeks=4)], [[1]], [[1]], 10, True, "path with two input path but one group should return one group", ), ( [get_path_row(weeks=10), get_path_row(weeks=4)], [[0], [1]], [[0, 1]], 10, True, "path with two input path and two groups should return one group", ), ( [get_path_row(weeks=10), get_path_row(weeks=4), get_path_row(weeks=3)], [[0], [1], [2]], [[0, 1, 2]], 10, True, "initial group [[0], [1], [2]] with weeks [10, 4, 3] shoud return group [[0, 1, 2]]", ), ( [ get_path_row(weeks=10), get_path_row(weeks=4), get_path_row(weeks=3), get_path_row(weeks=4), ], [[0], [1], [2, 3]], [[0], [1, 2, 3]], 10, True, "initial group [[0], [1], [2, 3]] with weeks [10, 4, 3, 4] shoud return group [[0], [1, 2, 3]]", ), ( [ get_path_row(weeks=10), get_path_row(weeks=4), get_path_row(weeks=7), get_path_row(weeks=4), ], [[0], [1], [2], [3]], [[0, 1], [2, 3]], 10, False, "initial group [[0], [1], [2, 3]] with weeks [10, 4, 3, 4] shoud return group [[0], [1, 2, 3]]", ), ( [ get_path_row(weeks=10), get_path_row(weeks=4), get_path_row(weeks=7), get_path_row(weeks=4), ], [[0], [1], [2], [3]], [[0], [1], [2, 3]], 10, True, "initial group [[0], [1], [2, 3]] with weeks [10, 4, 3, 4] shoud return group [[0], [1, 2, 3]]", ), ], ) def test_grouping_second_step_week_base_when_all_weeks_are_enough_long( raw_path, input_group, expected_result, group_min_week, only_group_last_phase, test_comment, ): df_path =
pd.DataFrame(raw_path)
pandas.DataFrame
import gc import itertools import multiprocessing import time from collections import Counter import numpy as np import pandas as pd def create_customer_feature_set(train): customer_feats = pd.DataFrame() customer_feats['customer_id'] = train.customer_id customer_feats['customer_max_ratio'] = train.customer_id / \ np.max(train.customer_id) customer_feats['index_max_ratio'] = train.customer_id / \ (train.index + 1e-14) customer_feats['customer_count'] = train.customer_id.map( train.customer_id.value_counts()) customer_feats['cust_first'] = train.customer_id.apply( lambda x: int(str(x)[:1])) customer_feats['cust_2first'] = train.customer_id.apply( lambda x: int(str(x)[:2])) customer_feats['cust_3first'] = train.customer_id.apply( lambda x: int(str(x)[:3])) customer_feats['cust_4first'] = train.customer_id.apply( lambda x: int(str(x)[:4])) customer_feats['cust_6first'] = train.customer_id.apply( lambda x: int(str(x)[:6])) # customer_feats.cust_3first = pd.factorize(customer_feats.cust_3first)[0] customer_feats.drop(['customer_id'], axis=1, inplace=True) return customer_feats def create_groupings_feature_set(data, features, transform=True): df_features =
pd.DataFrame()
pandas.DataFrame
from functools import partial from unittest import TestCase, main as unittest_main import numpy as np import pandas as pd from scipy.special import digamma from scipy.stats import beta, norm from gbstats.bayesian.dists import Beta, Norm DECIMALS = 5 round_ = partial(np.round, decimals=DECIMALS) def roundsum(x, decimals=DECIMALS): return np.round(np.sum(x), decimals=decimals) class TestBeta(TestCase): def test_posterior(self): prior = 1, 1 data = 1, 2 result = Beta.posterior(prior, data) outcome = (2, 2) for res, out in zip(result, outcome): self.assertEqual(res, out) prior = 1, 1 data =
pd.Series([1, 10])
pandas.Series
""" Module containing walk-forward functions """ #* Walk-Forward Modeling from sklearn.linear_model import LinearRegression from scipy import stats from sklearn.metrics import make_scorer, mean_squared_error, r2_score from sklearn.model_selection import GridSearchCV from src.transform_cv import TimeSeriesSplitMod from src.transform_cv import DisabledCV, ToConstantTransformer, ToNumpyTransformer import pandas as pd from sklearn.preprocessing import PolynomialFeatures def calculate_r2_wf(y_true, y_pred, y_moving_mean): """ Calculate out-of-sample R^2 for the walk-forward procedure """ mse_urestricted = ((y_true - y_pred)**2).sum() mse_restricted = ((y_true - y_moving_mean)**2).sum() return 1 - mse_urestricted/mse_restricted def calculate_msfe_adjusted(y_true, y_pred, y_moving_mean): """ Calculate t-statistic for the test on significant imporvement in predictions """ f = (y_true - y_moving_mean)**2 - ((y_true - y_pred)**2 - (y_moving_mean - y_pred)**2) t_stat,pval_two_sided = stats.ttest_1samp(f, 0, axis=0) pval_one_sided = stats.t.sf(t_stat, f.count() - 1) return t_stat, pval_one_sided def r2_adj_score(y_true,y_pred,N,K): """ Calculate in-sample R^2 that is adjusted for the number of predictors (ols model only) """ r2 = r2_score(y_true,y_pred) return 1-(1-r2)*(N-1)/(N-K-1) def estimate_walk_forward(config, X, y, start_idx, rolling = False, tr_win = None, val_win = None, verbose = True): """ Function that esimates walk-forward using expanding or rolling window. Cross-validation procedure, and the type of grid-search are determined in the config file. Please see "model_configs.py" for the model config structure. Yields --------- Outputs are pandas dataseries: - models_estimated - best model estimated for given month using past info - scores_estimated - scores of the best models - predictions - predictions of the best models """ if verbose == True: print(config['param_grid']) max_idx = y.shape[0] # Generate Interaction Terms if 'interactions' in config: if config['interactions'] == True: X = pd.DataFrame(PolynomialFeatures(degree = 2, interaction_only=False,include_bias = False).fit_transform(X),index = X.index) # Generate Lags if 'addlags' in config: LAGS = config['addlags'] if (type(LAGS) == int) & (LAGS > 0): temp = X for lag in range(1,LAGS+1,1): temp = pd.concat([temp, X.shift(lag).add_suffix('_L{}'.format(lag))], axis = 1) temp.iloc[0,(X.shape[1]):] = X.iloc[0,:].values X = temp # Define outputs models_estimated = pd.Series(index=X.index[start_idx:]) scores_estimated = pd.Series(index=X.index[start_idx:]) predictions =
pd.Series(index=X.index[start_idx:])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Thu Jun 4 19:22:40 2020 @author: adria.bove Llibreria per fer dibuixos de """ # importing libraries import pickle import pandas as pd import matplotlib.pyplot as plt import datetime as dt from BBDD import BBDD import numpy as np from sklearn.metrics import mean_squared_error, mean_absolute_error from math import sqrt import scores_metrics_diagnosis_tools as scores class plotter: def lines(self, BBDDs, Columns, frequencies, y_label, title, legend, signs, days_from_today:int=-1, ndays:int=1, save:str='', input_df:list=[]): colors=['hotpink','cornflowerblue','green','purple','slateblue','firebrick'] # defining color schemes plt.style.use('seaborn-whitegrid') if len(input_df)==0: dfs=[BBDD(i).extract(days_from_today,ndays) for i in BBDDs] for i in range(len(dfs)): dfs[i].index=dfs[i]['dt'] else: dfs=input_df # data visualization # defininig figure size a=plt.figure(figsize=(15,10)) k=0 curves=[] for i in range(len(dfs)): for j in Columns: try: ys=
pd.to_numeric(dfs[i][j])
pandas.to_numeric
import pandas as pd import numpy as np from tkinter import * from tkintertable import TableCanvas import matplotlib.pyplot as plt k_factor = 10 def update_elo(w_elo, l_elo): exp_win = expected_result(w_elo, l_elo) change = k_factor * (1-exp_win) w_elo = w_elo + change l_elo = l_elo - change return w_elo, l_elo def expected_result(elo_a, elo_b): expect = 1.0/(1+10**((elo_b - elo_a)/400)) return expect df_lists = pd.DataFrame() start_year = 2018 end_year = 2020 # scrapes data from hockeyreference.com for year in range(start_year, end_year + 1): k = 1 # 2005 was the lockout so there is no data to be scraped if year == 2005: print("2005 was the lockout") else: url = r'https://www.hockey-reference.com/leagues/NHL_' + str(year) + r'_games.html' df_temp_reg = pd.DataFrame(pd.read_html(url)[0]) df_temp_reg['season'] = year # use commented out code if playoff data is desired try: df_temp_post = pd.DataFrame(pd.read_html(url)[1]) df_temp_post['season'] = year except IndexError as e: k = 0 print('no playoffs available yet') print(str(year) + " scraped") df_lists = df_lists.append(df_temp_reg) if k == 1: df_lists.append(df_temp_post) df_lists.rename(columns={'G': 'VisitingGoals', 'G.1': 'HomeGoals', 'Unnamed: 5': 'OTSO', 'season': 'Season'}, inplace=True) df_lists.drop(['Att.', 'LOG', 'Notes'], axis=1, inplace=True) df_lists.loc[:, 'Date'] = pd.to_datetime(df_lists['Date']) replace_dict = {'Home': {'Atlanta Thrashers': 'Winnipeg Jets', 'Mighty Ducks of Anaheim': 'Anaheim Ducks', 'Phoenix Coyotes': 'Arizona Coyotes'}, 'Visitor': {'At<NAME>': 'Winnipeg Jets', 'Mighty Ducks of Anaheim': 'Anaheim Ducks', 'Phoenix Coyotes': 'Arizona Coyotes'}} df_lists.replace(replace_dict, inplace=True) ind = df_lists['OTSO'].isna() df_lists.loc[ind, 'OTSO'] = 'REG' # how come this doesnt work??? teams = df_lists['Home'].unique().sort() teams = df_lists['Home'].unique() teams.sort() games = df_lists.reset_index() games.drop('index', axis=1, inplace=True) class TeamElos(dict): def __init__(self, teams): super().__init__(self) for team in teams: self[team] = 1500 self.history = HistoryList(teams) def plot_history(self, *args): fig = plt.figure() ax = fig.add_subplot(111) ax.set_ylim([1350,1700]) plt.xticks(rotation=45) for team in args: cax = plt.plot( self.history[team]['Date'], self.history[team]['Elo Rating'], label = team) plt.title(f'{args} Elo History') plt.legend() plt.show() def update(self, game_tuple): if game_tuple.VisitingGoals > game_tuple.HomeGoals: winning_team = game_tuple.Visitor losing_team = game_tuple.Home else: winning_team = game_tuple.Home losing_team = game_tuple.Visitor self[winning_team], self[losing_team] = update_elo( self[winning_team], self[losing_team]) self.history.update( winning_team = winning_team, losing_team = losing_team, win_elo = self[winning_team], lose_elo = self[losing_team], date = game_tuple.Date ) class HistoryList(dict): def __init__(self, teams): super().__init__(self) for team in teams: self[team] = pd.DataFrame(columns = ['Date', 'Elo Rating']) def update(self, winning_team, losing_team, win_elo, lose_elo, date): self[winning_team] = self[winning_team].append( {'Date': date,'Elo Rating': win_elo}, ignore_index = True) self[losing_team]= self[losing_team].append( {'Date': date,'Elo Rating': lose_elo}, ignore_index = True) elos = TeamElos(teams) for row in games.itertuples(): if row.Date.date() < pd.Timestamp.today().date(): elos.update(row) elos.plot_history('Toronto Maple Leafs', 'Montreal Canadiens') elos = pd.DataFrame( elos, index=['Elo Rating']).T.sort_values(by='Elo Rating', ascending=False) ind = games['Date'] >
pd.Timestamp('today')
pandas.Timestamp
import numpy as np import pandas as pd def sample_SynthA(treat_prob=0.5, sample_no=1000): """ Generate synthetic data from Athey and Imbens """ noise1 = np.random.normal(0, 0.01, sample_no) noise0 = np.random.normal(0, 0.01, sample_no) w = np.random.uniform(0, 1, sample_no) w = w <= treat_prob y = np.zeros(sample_no) model_treatment = lambda eta, x, kappa, noise: eta(x) + 1 / 2 * (kappa(x)) + noise model_control = lambda eta, x, kappa, noise: eta(x) - 1 / 2 * (kappa(x)) + noise x = np.random.normal(0, 1, [sample_no, 2]) eta = lambda x: 1 / 2 * x[:, 0] + x[:, 1] kappa = lambda x: 1 / 2 * x[:, 0] y1 = model_treatment(eta, x, kappa, noise1) y0 = model_control(eta, x, kappa, noise0) y1 = y1.squeeze() y0 = y0.squeeze() y[w == 1] = y1[w == 1] y[w == 0] = y0[w == 0] tau = y1 - y0 return x, w, y, y1, y0, tau def sample_SynthB(train_sample_no=300, test_sample_no=1000): sample_no = train_sample_no + test_sample_no X = np.round(np.random.normal(size=(sample_no, 1), loc=66.0, scale=4.1)) # age X = np.block([X, np.round( np.random.normal(size=(sample_no, 1), loc=6.2, scale=1.0) * 10.0) / 10.0]) # white blood cell count X = np.block( [X, np.round(np.random.normal(size=(sample_no, 1), loc=0.8, scale=0.1) * 10.0) / 10.0]) # Lymphocyte count X = np.block([X, np.round(np.random.normal(size=(sample_no, 1), loc=183.0, scale=20.4))]) # Platelet count X = np.block([X, np.round(np.random.normal(size=(sample_no, 1), loc=68.0, scale=6.6))]) # Serum creatinine X = np.block( [X, np.round(np.random.normal(size=(sample_no, 1), loc=31.0, scale=5.1))]) # Aspartete aminotransferase X = np.block([X, np.round(np.random.normal(size=(sample_no, 1), loc=26.0, scale=5.1))]) # Alanine aminotransferase X = np.block([X, np.round(np.random.normal(size=(sample_no, 1), loc=339.0, scale=51))]) # Lactate dehydrogenase X = np.block([X, np.round(np.random.normal(size=(sample_no, 1), loc=76.0, scale=21))]) # Creatine kinase X = np.block([X, np.floor(np.random.uniform(size=(sample_no, 1)) * 11) + 4]) # Time from study 4~14 TIME = X[:, 9] X_ =
pd.DataFrame(X)
pandas.DataFrame
# House Prices EDA import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.stats as stats import sklearn.linear_model as linear_model import seaborn as sns import xgboost as xgb import scipy.stats as st import patsy from sklearn.model_selection import KFold from sklearn.manifold import TSNE from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler pd.options.display.max_rows = 1000 pd.options.display.max_columns = 20 train = pd.read_csv('train.csv') test = pd.read_csv('train.csv') quantitative = [f for f in train.columns if train.dtypes[f] != 'object'] quantitative.remove('SalePrice') quantitative.remove('Id') qualitative = [f for f in train.columns if train.dtypes[f] == 'object'] missing = train.isnull().sum() missing = missing[missing > 0] missing.sort_values(inplace=True) missing.plot.bar() plt.show() y = train['SalePrice'] plt.figure(1) plt.title('<NAME>') sns.distplot(y, kde=False, fit=st.johnsonsu) plt.figure(2) plt.title('Normal') sns.distplot(y, kde=False, fit=st.norm) plt.figure(3) plt.title('Log Normal') sns.distplot(y, kde=False, fit=st.lognorm) plt.show() def test_normality(x): return stats.shapiro(x.fillna(0))[1] < 0.01 normal = pd.DataFrame(train[quantitative]) normal = normal.apply(test_normality) print(not normal.any()) f = pd.melt(train, value_vars=quantitative) g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False) g = g.map(sns.distplot, "value") plt.show() for c in qualitative: train[c] = train[c].astype('category') if train[c].isnull().any(): train[c] = train[c].cat.add_categories(['MISSING']) train[c] = train[c].fillna('MISSING') def boxplot(x, y, **kwargs): sns.boxplot(x=x, y=y) x = plt.xticks(rotation=90) f = pd.melt(train, id_vars=['SalePrice'], value_vars=qualitative) g = sns.FacetGrid( f, col="variable", col_wrap=2, sharex=False, sharey=False, size=5) g = g.map(boxplot, "value", "SalePrice") plt.show() def anova(frame): anv =
pd.DataFrame()
pandas.DataFrame
""" Created on Mon Jul 30 20:39:24 2018 @author: <NAME> """ import pandas as pd import time import datetime as datetime #from sklearn.model_selection import train_test_split #from sklearn.ensemble import RandomForestRegressor #import numpy as np from db import get_db begin = time.time() ############################################################################### ############################################################################### # Ingest all data up to end of 2018 season, clean up, and get required fields ############################################################################### ############################################################################### # rsgc = regular season games compact, rsgd = regular season games detailed rsgc = pd.read_csv('/Users/Ryan/Google Drive/ncaa-basketball-data/2018-kaggle-update/RegularSeasonCompactResults.csv') rsgd = pd.read_csv('/Users/Ryan/Google Drive/ncaa-basketball-data/2018-kaggle-update/RegularSeasonDetailedResults.csv') seasons = pd.read_csv(filepath_or_buffer = '/Users/Ryan/Desktop/DataFiles/Seasons.csv') teams = pd.read_csv(filepath_or_buffer = '/Users/Ryan/Desktop/DataFiles/Teams.csv') # Merge in day 0 to rsgc & rsgd, add days to day 0 to get date of game, delete extra columns rsgc = pd.merge(rsgc,seasons[['Season','DayZero']],on='Season') rsgc['DayZero'] = pd.to_datetime(rsgc['DayZero'],format='%m/%d/%Y') rsgc['DayNum'] = pd.to_timedelta(rsgc['DayNum'],unit='d') rsgc['GameDate'] = rsgc['DayZero'] + rsgc['DayNum'] del rsgc['DayNum'], rsgc['DayZero'] rsgd = pd.merge(rsgd,seasons[['Season','DayZero']],on='Season') rsgd['DayZero'] = pd.to_datetime(rsgd['DayZero'],format='%m/%d/%Y') rsgd['DayNum'] = pd.to_timedelta(rsgd['DayNum'],unit='d') rsgd['GameDate'] = rsgd['DayZero'] + rsgd['DayNum'] del rsgd['DayNum'], rsgd['DayZero'] # Merge together compact and detailed results when possible, delete old dataframes rsg = pd.merge(left = rsgc, right = rsgd, how = 'left', on = ['GameDate','Season','WTeamID','LTeamID', 'WScore','LScore','WLoc','NumOT']) del rsgc, rsgd # Create detailedgame field in rsg to indicate if the game has details or not rsg['DetailedGame'] = 0 rsg.loc[(rsg['WFGM'] > 0),'DetailedGame'] = 1 # Create high-level counts of games, detailed games, and a count missing details rsg_summary1 = rsg[['Season','GameDate']].groupby(['Season']).agg('count').reset_index() rsg_summary2 = rsg[['Season','DetailedGame']].groupby(['Season']).agg('sum').reset_index() rsg_summary = pd.merge(rsg_summary1,rsg_summary2,how = 'inner', on = ['Season']) rsg_summary = rsg_summary.rename(columns={'GameDate':'GameCount','DetailedGame':'DetailedGameCount'}) rsg_summary['MissingDetails'] = rsg_summary['GameCount'] - rsg_summary['DetailedGameCount'] del rsg_summary1, rsg_summary2, rsg['DetailedGame'] # Duplicate rsg into loser rsg lrsg = rsg.copy() # Rename columns for rsg rsg = rsg.rename(columns = {'WTeamID':'TmID','WScore':'TmPF','LTeamID':'OppID','LScore':'OppPF','WLoc':'TmLoc'}) rsg = rsg.rename(columns = {'WFGM':'TmFGM','WFGA':'TmFGA','WFGM3':'TmFGM3','WFGA3':'TmFGA3','WFTM':'TmFTM','WFTA':'TmFTA'}) rsg = rsg.rename(columns = {'WOR':'TmOR','WDR':'TmDR','WAst':'TmAst'}) rsg = rsg.rename(columns = {'WTO':'TmTO','WStl':'TmStl','WBlk':'TmBlk','WPF':'TmFoul'}) rsg = rsg.rename(columns = {'LFGM':'OppFGM','LFGA':'OppFGA','LFGM3':'OppFGM3','LFGA3':'OppFGA3','LFTM':'OppFTM','LFTA':'OppFTA'}) rsg = rsg.rename(columns = {'LOR':'OppOR','LDR':'OppDR','LAst':'OppAst'}) rsg = rsg.rename(columns = {'LTO':'OppTO','LStl':'OppStl','LBlk':'OppBlk','LPF':'OppFoul'}) rsg['TmWin'] = 1 # Rename columns for lrsg lrsg = lrsg.rename(columns = {'WTeamID':'OppID','WScore':'OppPF','LTeamID':'TmID','LScore':'TmPF'}) lrsg = lrsg.rename(columns = {'WFGM':'OppFGM','WFGA':'OppFGA','WFGM3':'OppFGM3','WFGA3':'OppFGA3','WFTM':'OppFTM','WFTA':'OppFTA'}) lrsg = lrsg.rename(columns = {'WOR':'OppOR','WDR':'OppDR','WAst':'OppAst'}) lrsg = lrsg.rename(columns = {'WTO':'OppTO','WStl':'OppStl','WBlk':'OppBlk','WPF':'OppFoul'}) lrsg = lrsg.rename(columns = {'LFGM':'TmFGM','LFGA':'TmFGA','LFGM3':'TmFGM3','LFGA3':'TmFGA3','LFTM':'TmFTM','LFTA':'TmFTA'}) lrsg = lrsg.rename(columns = {'LOR':'TmOR','LDR':'TmDR','LAst':'TmAst'}) lrsg = lrsg.rename(columns = {'LTO':'TmTO','LStl':'TmStl','LBlk':'TmBlk','LPF':'TmFoul'}) lrsg['TmWin'] = 0 # Adjust locations in loser rsg lrsg.loc[(lrsg['WLoc'] == 'H'),'TmLoc'] = 'A' lrsg.loc[(lrsg['WLoc'] == 'A'),'TmLoc'] = 'H' lrsg.loc[(lrsg['WLoc'] == 'N'),'TmLoc'] = 'N' del lrsg['WLoc'] # Append lrsg to rsg, delete lrsg, rsg = rsg.append(lrsg) del lrsg # Bring in team names for both Tm and Opp rsg = pd.merge(rsg,teams[['TeamID','TeamName']],left_on='TmID',right_on='TeamID') del rsg['TeamID'] rsg = rsg.rename(columns = {'TeamName':'TmName'}) rsg = pd.merge(rsg,teams[['TeamID','TeamName']],left_on='OppID',right_on='TeamID') del rsg['TeamID'] rsg = rsg.rename(columns = {'TeamName':'OppName'}) # Add countable field for number of games rsg['TmGame'] = 1 # Add field for number of minutes rsg['GameMins'] = 40 + rsg['NumOT']*5 # Add field for Total Rebounds rsg['TmTR'] = rsg['TmOR'] + rsg['TmDR'] rsg['OppTR'] = rsg['OppOR'] + rsg['OppDR'] # Count number of FGA2/FGM2 rsg['TmFGM2'] = rsg['TmFGM'] - rsg['TmFGM3'] rsg['TmFGA2'] = rsg['TmFGA'] - rsg['TmFGA3'] rsg['OppFGM2'] = rsg['OppFGM'] - rsg['OppFGM3'] rsg['OppFGA2'] = rsg['OppFGA'] - rsg['OppFGA3'] # Calculate field goal percentages in each game rsg['TmFGPct'] = rsg['TmFGM'] / rsg['TmFGA'] rsg['TmFG3Pct'] = rsg['TmFGM3'] / rsg['TmFGA3'] rsg['TmFG2Pct'] = rsg['TmFGM2'] / rsg['TmFGA2'] rsg['TmFTPct'] = rsg['TmFTM'] / rsg['TmFTA'] rsg['OppFGPct'] = rsg['OppFGM'] / rsg['OppFGA'] rsg['OppFG3Pct'] = rsg['OppFGM3'] / rsg['OppFGA3'] rsg['OppFG2Pct'] = rsg['OppFGM2'] / rsg['OppFGA2'] rsg['OppFTPct'] = rsg['OppFTM'] / rsg['OppFTA'] # Calculate game margin rsg['TmMargin'] = rsg['TmPF'] - rsg['OppPF'] rsg['OppMargin'] = -rsg['TmMargin'] # Two prefixes: Tm (Team) and Opp (Opponent) # Core metrics: PF (points for); Margin; FGM (field goals made); FGA (field goals attempted); FGPct (Field goal percent) # cont...FGM3 (3pt field goals made); FGA3 (3pt field goals attempted); FG3Pct (3pt field goal percent) # cont...FGM2 (2pt field goals made); FGA2 (2pt field goals attempted); FG2Pct (2pt field goal percent) # cont...Ast (assists); OR (offensive rebounds); DR (devensive rebounds); TR (total rebounds) # cont...FTA (free throws attempted); FTM (free throws made); FTPct (Free throw percent) # cont...TO (turn overs); Stl (steals); Blk (blocks); Foul (foul) metrics = ['PF','Margin','FGM','FGA', 'FGM3','FGA3','FGM2','FGA2','Ast','OR','DR','TR', 'FTA','FTM','TO','Stl','Blk','Foul'] # Getting in game per-40 for latter opponent adjusting for x in {'Opp','Tm'}: for column in metrics: rsg[x + column + 'per40'] = rsg[x + column] / rsg['GameMins'] * 40 del column, x # Create summable fields summables = ['GameMins','TmWin','TmGame'] for x in {'Opp','Tm'}: for column in metrics: summables.append(x + column) del column, x # Create seasonteams dataframe, getting in season stats seasonteams = rsg.groupby(['TmID','TmName','Season'])[summables].sum().reset_index() # Per-40 adjust the season stats, for later compare to in-game stats for x in {'Opp','Tm'}: for column in metrics: seasonteams[x + column + 'per40'] = seasonteams[x + column] / seasonteams['GameMins'] * 40 del column, x # Calculate season-long percentages seasonteams['TmFGPct'] = seasonteams['TmFGM'] / seasonteams['TmFGA'] seasonteams['TmFG3Pct'] = seasonteams['TmFGM3'] / seasonteams['TmFGA3'] seasonteams['TmFG2Pct'] = seasonteams['TmFGM2'] / seasonteams['TmFGA2'] seasonteams['TmFTPct'] = seasonteams['TmFTM'] / seasonteams['TmFTA'] seasonteams['OppFGPct'] = seasonteams['OppFGM'] / seasonteams['OppFGA'] seasonteams['OppFG3Pct'] = seasonteams['OppFGM3'] / seasonteams['OppFGA3'] seasonteams['OppFG2Pct'] = seasonteams['OppFGM2'] / seasonteams['OppFGA2'] seasonteams['OppFTPct'] = seasonteams['OppFTM'] / seasonteams['OppFTA'] # Double Check for columns showing up in both #rsg_cols = pd.DataFrame(list(rsg)).reset_index() #seasonteams_cols = pd.DataFrame(list(seasonteams)).reset_index() #col_diffs = pd.merge(rsg_cols, seasonteams_cols, on=[0],how='outer') # Benchmark time poatime = time.time()-begin if poatime < 60: print('Pre-Opponent-Adjust Time: ' + str(round((poatime),2)) + ' sec') else: print('Pre-Opponent-Adjust Time: ' + str(round((poatime)/60,2)) + ' min') ############################################################################### ############################################################################### # Define opponentadjust UDF (for ease of opponent-adjusting metrics) ############################################################################### ############################################################################### def opponentadjust(OAmetric): global rsg, seasonteams # Figure out the prefix, core metric, for use later if OAmetric[:2] == 'Tm': prefix = OAmetric[:2] otherprefix = 'Opp' coremetric = OAmetric[2:] if OAmetric[:3] == 'Opp': prefix = OAmetric[:3] otherprefix = 'Tm' coremetric = OAmetric[3:] # print (coremetric + prefix) # From iteams put average PF into opponent side of irsg # Example, Opp_AvgPF_Against, Opp_AvgPA_Against # If I am OAing TmPFper40 (my offense proficiency), I want to get OppPFper40 for my opponent # So, for a TmName, get their OppPFper40, aka their PAper40 tempseasonteams = seasonteams[['TmName','Season',otherprefix+coremetric]] # Rename my opponent's metric to say it's *their* average <insert metric> # Rename to OppAvg_OppScoreper40 (it's my opponent's average opponents (me) score per 40) tempseasonteams = tempseasonteams.rename(columns = {otherprefix+coremetric:'OppAvg_'+otherprefix+coremetric}) # Merge in this info into irsg, for the opponent in irsg rsg =
pd.merge(rsg,tempseasonteams,left_on=['OppName','Season'],right_on=['TmName','Season'],how='left',suffixes=('','_y'))
pandas.merge
from copy import deepcopy import os import pandas as pd import re import string data_columns = {"id": int, "text": str, "source": str, "user_id": str, "truncated": str, "in_reply_to_status_id": str, "in_reply_to_user_id": str, "in_reply_to_screen_name": str, "retweeted_status_id": str, "geo": str, "place": str, "contributors": str, "retweet_count": int, "reply_count": str, "favorite_count": str, "favorited": str, "retweeted": str, "possibly_sensitive": str, "num_hashtags": int, "num_urls": str, "num_mentions": str, "created_at": str, "timestamp": str, "crawled_at": str, "updated": str} def remove_url(tweet): """ Regex based URL removed. Removes all nonwhitespace characters after http until a whitespace is reached :param tweet: Tweet to be checked :return: Tweet that is substituted with URL in the place of the actual URL """ return re.sub(r"http\S+", "URL", tweet) def clean_and_write_tweets(path, category): """ Cleans and writes the tweets to a file :param path: Path to file :param category: Category of the tweet :return: None """ table = str.maketrans({key: None for key in string.punctuation}) test_csv =
pd.read_csv(path, dtype=data_columns)
pandas.read_csv
""" This module contains all functions that help to clean raw data, genreating feature engineering, general helpers functions, plotting functions, etc. """ import warnings import datetime as dt import pandas as pd from pandas import concat import numpy as np import matplotlib.pyplot as plt warnings.filterwarnings('ignore') ######### DATA CLEANING + FEATURE ENGINEERING ############### def read_raw_data(path, list_year): """ This function is used to read all *.csv files and concatinate them into one single dataframe @param path: path directory contains raw data @param list_year: list containing all years that we are interested in to build model @return data_raw: a dataframe containing raw data of all years (concatinate all *.csv file) """ try: assert path != " " assert list_year != [] except AssertionError as exp: exp.args += ('Path and list_year must not be empty', "check read_raw_data function") raise all_files = [path + str(year) + ".csv" for year in list_year] current_dataframe = [] for filename in all_files: temp = pd.read_csv(filename, index_col=None, header=0) current_dataframe.append(temp) data_raw = pd.concat(current_dataframe, axis=0, ignore_index=True) return data_raw def concat_name_county(name): """ This function is used to concat a string of words by putting underscore between words example: "new york steuben" --> "new_york_steuben" @param name: string of raw name @return concat_name: concated words of string by underscore """ try: assert name != "" except AssertionError as exp: exp.args += ('input must not be a empty string', "check concat_name_county function") raise name_vector = str(name).split(" ") concat_name = "" for i in name_vector: if i in [" ", ""]: continue else: concat_name = concat_name + "_" + str(i) return concat_name[1:].strip() def compute_lag_time_series_features(df_feature, lag_time=30): """ This function is used to compute lag features i.e we look at Air Quality Index in previous days (look back 30 days), and take the historical AQIs as our features to input to model @param df_features: dataframe contains basic features such as date, AIQ of one day, state, county name, etc. @param lag_time: how many days we want to look back @return lag_features: dataframe contains all lag features, which are historical AQI. """ assert df_feature.shape[0] >= 1 try: temps = df_feature.sort_values(by=["date"])["AQI"] dataframe = temps col_name = ['AQI'] for lag_index in range(1, lag_time): dataframe = concat([temps.shift(lag_index), dataframe], axis=1) col_name.append('lag_' + str(lag_index)) dataframe.columns = col_name if dataframe.shape[0] < lag_time: lag_features = dataframe.iloc[-1:, :] lag_features = lag_features.fillna(0) else: lag_features = dataframe.iloc[lag_time-1:, :] except: raise AttributeError("FEATURE DATAFRAME IS EMPTY !!!!!") return lag_features def data_cleaning(data_raw): """ This function is used to take raw air pollution data each year and clean it before feature engineering @param data_raw: raw data read in from .csv file @return data_raw: return cleaned dataframe """ try: assert data_raw.shape != (0, 0) assert "State Name" in data_raw.columns assert "county Name" in data_raw.columns assert "Date" in data_raw.columns except AssertionError as exp: exp.args += ('data_raw must not be empty or missing columns', "check data_cleaning function") raise data_raw["State Name"] = data_raw["State Name"].apply(lambda x: x.lower().strip()) data_raw["State Name"] = data_raw["State Name"].apply(concat_name_county) data_raw["county Name"] = data_raw["county Name"].apply(lambda x: x.lower().strip()) data_raw["county Name"] = data_raw["county Name"].apply(concat_name_county) data_raw["state_county"] = data_raw["State Name"] + "_" + data_raw["county Name"] data_raw["state_county"] = data_raw["state_county"].apply(lambda x: x.lower()) data_raw["date"] = data_raw["Date"].apply(lambda x: dt.datetime.strptime(x, '%Y-%m-%d').date()) data_raw = data_raw.rename(columns={"State Name": "State", "county Name": "County"}) return data_raw def feature_engineering_for_aqi(data, lag_time=30, county_name="", save_path=""): """ This function is used to generate features for train dataset @param data: raw data from 2016 to 2018 @param lag_time: how many days we want to look back to see the AQI pattern in history. @param county_name: the county that is of our interest @param save_path: where to save our features @return dict: contains all info of outputed data such as columns name, save path, etc. """ try: df_state = data[data["state_county"] == county_name] except: raise AttributeError("DATAFRAME IS EMPTY !!!!!") try: df_state["date"] = df_state["Date"].apply(pd.to_datetime) df_state["current_date"] = df_state["date"].dt.day df_state["current_month"] = df_state["date"].apply(lambda x: x.month) df_state['day_of_week'] = df_state['date'].dt.weekday_name day_df = pd.get_dummies(df_state["day_of_week"], prefix="day") df_temp = pd.concat([df_state, day_df], axis=1) df_feature = df_temp[list(day_df.columns) + ["AQI", "current_date", "current_month", "date"] ] df_feature = df_feature.sort_values(by=["date"]) df_lag_features = compute_lag_time_series_features(df_feature) row = np.min([df_feature.shape[0]-1, lag_time-1]) df_data = ( pd.concat([df_lag_features.drop(["AQI"], axis=1), df_feature.drop(["date"], axis=1).iloc[row:, :]], axis=1)) if save_path: path = save_path + county_name + "_feature.csv" print("---> Saving features to {}".format(path)) df_data.to_csv(path, index=False) except: raise AttributeError("DATAFRAME IS EMPTY !!!!!") return {"successive code": 1, "save_path": save_path, "feature_names": df_data.columns, "data": df_data} def data_feature_engineering_for_test(data2019, county, predicted_date): """ This function is used to generate feature engineering for test data. @param data2019: dataframe loaded from .csv file of 2019, since we use data from 2019 as our test data @param county: the county that we are interested in @param predicted_data: day that we are concerned @return data_feature_temp: return features that are ready to input to model. """ ## prepare data for specific county and specific date try: data_state = data2019[data2019["state_county"] == county] except: raise AttributeError( "DATAFRAME IS EMPTY!!! check data_feature_engineering_for_test function" ) data_state["predicted_date"] =
pd.to_datetime(predicted_date)
pandas.to_datetime
import databricks.koalas as ks import pandas as pd import pytest from pandas.testing import assert_frame_equal from gators.data_cleaning.drop_datatype_columns import DropDatatypeColumns @pytest.fixture def data(): X =
pd.DataFrame({"A": [1, 2], "B": [1.0, 2.0], "C": ["q", "w"]})
pandas.DataFrame
import torch from torch import nn from torch import optim from torch.utils.data import TensorDataset,DataLoader from sklearn.preprocessing import StandardScaler,MinMaxScaler import matplotlib.pyplot as plt import pandas as pd import numpy as np import random from tqdm import tqdm import warnings warnings.simplefilter('ignore') class WADDA(nn.Module): def __init__(self,src_x,src_y,tgt_x,tgt_y, normalize_idx_list = None, limit_y_range = False, train_stage_1_epochs = 3000, train_stage_2_epochs = 10000, ): super().__init__() ''' src_x : 模擬數據的x type:pd.DataFrame() src_y : 模擬數據的y type:pd.DataFrame() tgt_x : 真實數據的x type:pd.DataFrame() tgt_y : 真實數據的y type:pd.DataFrame() normalize_idx_list : 告訴模型那些輸出欄位加總必須等於1 limit_y_range : 限制輸出範圍 ''' # config self.device = 'cpu' self.x_col = src_x.columns.tolist() self.y_col = src_y.columns.tolist() self.α = 0.00005 self.c = 0.01 self.m = 64 self.ncritic = 5 self.input_dim = src_x.shape[1] self.output_dim = src_y.shape[1] self.normalize_idx_list = normalize_idx_list self.limit_y_range = limit_y_range self.train_stage_1_epochs = train_stage_1_epochs self.train_stage_2_epochs = train_stage_2_epochs # scaled feature self.scaler_x = StandardScaler().fit(src_x.loc[:]) src_x.loc[:] = self.scaler_x.transform(src_x.loc[:]) tgt_x.loc[:] = self.scaler_x.transform(tgt_x.loc[:]) # scaled output if you need if self.limit_y_range == True: self.scaler_y = MinMaxScaler().fit(src_y.loc[:]) src_y.loc[:] = self.scaler_y.transform(src_y.loc[:]) src_y.loc[:] = self.scaler_y.transform(src_y.loc[:]) # pd.DataFrame -> torch.FloatTensor src_x,src_y = torch.FloatTensor(src_x.values),torch.FloatTensor(src_y.values) tgt_x,tgt_y = torch.FloatTensor(tgt_x.values),torch.FloatTensor(tgt_y.values) # make two dataset self.src_dataset = TensorDataset(src_x,src_y) self.tgt_dataset = TensorDataset(tgt_x,tgt_y) # src data encoder self.SRC_F = nn.Sequential( nn.Linear(self.input_dim,128), nn.ReLU(), nn.Linear(128,128), nn.ReLU(), ) # target data encoder self.TGT_F = nn.Sequential( nn.Linear(self.input_dim,128), nn.ReLU(), nn.Linear(128,128), nn.ReLU(), ) # regression head self.regression = nn.Sequential( nn.Linear(128,128), nn.Dropout(0.25),# more robust nn.ReLU(), nn.Linear(128,self.output_dim), ) if limit_y_range == True: self.regression = nn.Sequential(self.regression,nn.Sigmoid()) # regression loss function self.reg_loss = nn.SmoothL1Loss() # 判别器最后一层去掉sigmoid reference Wasserstein GAN(reference Wasserstein GAN) self.discriminator = nn.Sequential(nn.Linear(128,1)) # 線性分類器 # optimizer train_stage_1(回歸訓練) self.S_optimizer = optim.Adam(self.SRC_F.parameters(),lr=1e-4) self.R_optimizer = optim.Adam(self.regression.parameters(),lr=1e-4) # optimizer train_stage_2(GAN訓練)不要用基于动量的优化算法(包括momentum和Adam),推荐RMSProp,SGD也行(reference Wasserstein GAN) self.T_optimizer = optim.RMSprop(self.TGT_F.parameters(),lr=self.α) self.D_optimizer = optim.RMSprop(self.discriminator.parameters(),lr=self.α) def forward(self,src_x,tgt_x): src_feat,tgt_feat = self.SRC_F(src_x),self.TGT_F(tgt_x) #特徵抽取 src_reg,tgt_reg = self.regression(src_feat),self.regression(tgt_feat) #regression預測 src_domain,tgt_domain = self.discriminator(src_feat),self.discriminator(tgt_feat) #discriminator區分domain return src_reg,src_domain,tgt_reg,tgt_domain def train_S_R(self,src_x,src_y): ''' input : src_x(FloatTensor),src_y(FloatTensor) output : loss(Scalar) update_method : 一般監督學習 ''' self.SRC_F.train() self.regression.train() # forward src_feat = self.SRC_F(src_x) y_hat = self.regression(src_feat) # compute loss loss = self.reg_loss(y_hat,src_y).mean() loss.backward() # update weight self.S_optimizer.step() self.R_optimizer.step() self.S_optimizer.zero_grad() self.R_optimizer.zero_grad() return loss.item() def train_T_D(self,src_x,tgt_x,tgt_y): ''' input: src_x(FloatTensor),tgt_x(FloatTensor),tgt_y(FloatTensor) return :d_loss(Scalar),t_loss(Scalar),r_loss(Scalar) ''' # 生成器和判别器的loss不取log(reference Wasserstein GAN) # train discriminator ncritic times for i in range(self.ncritic): src_feat = self.SRC_F(src_x).detach() tgt_feat = self.TGT_F(tgt_x).detach() d_loss = -torch.mean(self.discriminator(src_feat)) + torch.mean(self.discriminator(tgt_feat)) d_loss.backward() self.D_optimizer.step() self.D_optimizer.zero_grad() # 每次更新判别器的参数之后把它们的绝对值截断到不超过一个固定常数c for p in self.discriminator.parameters(): p.data.clamp_(-self.c,self.c) # train TGT_F tgt_feat = self.TGT_F(tgt_x) t_loss = -torch.mean(self.discriminator(tgt_feat)) t_loss.backward() self.T_optimizer.step() self.T_optimizer.zero_grad() # train regression tgt_reg = self.regression(tgt_feat.detach()) r_loss = self.reg_loss(tgt_reg,tgt_y).mean() r_loss.backward() self.R_optimizer.step() self.R_optimizer.zero_grad() return d_loss.item(),t_loss.item(),r_loss.item() def train_stage_1(self,num_epoch=3000,log_interval=100): history = [] for ep in tqdm(range(num_epoch)): idx = random.sample([*range(len(self.src_dataset))],self.m) src_x,src_y = self.src_dataset[idx] loss = self.train_S_R(src_x,src_y) history.append(loss) if ep % log_interval == 0: print("ep:{} loss:{}".format(ep,loss)) plt.plot(history,label='train_loss') plt.legend() plt.show() def train_stage_2(self,num_epoch=10000,log_interval=100): d_history = [] t_history = [] r_history = [] for ep in tqdm(range(num_epoch)): tgt_idx = random.sample([*range(len(self.tgt_dataset))],self.m) src_idx = random.sample([*range(len(self.src_dataset))],self.m) tgt_x,tgt_y = self.tgt_dataset[tgt_idx] src_x,src_y = self.src_dataset[src_idx] d_loss,t_loss,r_loss = self.train_T_D(src_x,tgt_x,tgt_y) d_history.append(d_loss) t_history.append(t_loss) r_history.append(r_loss) if ep % log_interval == 0: print("ep:{} d_loss:{} t_loss:{} r_loss:{}".format(ep,d_loss,t_loss,r_loss)) plt.plot(d_history,label='d_loss') plt.plot(t_history,label='t_loss') plt.plot(r_history,label='r_loss') plt.legend() plt.show() def train(self,log_interval=100): print('start train') self.train_stage_1(self.train_stage_1_epochs,log_interval) self.train_stage_2(self.train_stage_2_epochs,log_interval) print('end train') @staticmethod def normalize(x): ''' x : pandas.DataFrame() return : normalize x ''' x_idx,x_col = x.index,x.columns x = x.values x = x / x.sum(axis=1).reshape(-1,1) return pd.DataFrame(x,index=x_idx,columns=x_col) def predict(self,tgt_x): ''' input: pd.DataFrame() output: pd.DataFrame() ''' self.TGT_F.eval() self.regression.eval() tgt_x = self.scaler_x.transform(tgt_x) tgt_x = torch.FloatTensor(tgt_x) tgt_feat = self.TGT_F(tgt_x) tgt_reg = self.regression(tgt_feat).detach().cpu().numpy() tgt_reg =
pd.DataFrame(tgt_reg,columns=self.y_col)
pandas.DataFrame
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.4.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- from google.cloud import bigquery # %reload_ext google.cloud.bigquery client = bigquery.Client() # %load_ext google.cloud.bigquery # + from notebooks import parameters DATASET = parameters.LATEST_DATASET LOOKUP_TABLES = parameters.LOOKUP_TABLES print(f"Dataset to use: {DATASET}") print(f"Lookup tables: {LOOKUP_TABLES}") # + import warnings warnings.filterwarnings('ignore') import pandas as pd import matplotlib.pyplot as plt import os plt.style.use('ggplot') pd.options.display.max_rows = 999 pd.options.display.max_columns = 999 pd.options.display.max_colwidth = 999 def cstr(s, color='black'): return "<text style=color:{}>{}</text>".format(color, s) # - cwd = os.getcwd() cwd = str(cwd) print("Current working directory is: {cwd}".format(cwd=cwd)) # ### Get the list of HPO IDs # # ### NOTE: This assumes that all of the relevant HPOs have a person table. hpo_id_query = f""" SELECT REPLACE(table_id, '_person', '') AS src_hpo_id FROM `{DATASET}.__TABLES__` WHERE table_id LIKE '%person' AND table_id NOT LIKE '%unioned_ehr_%' AND table_id NOT LIKE '\\\_%' """ site_df = pd.io.gbq.read_gbq(hpo_id_query, dialect='standard') get_full_names = f""" select * from {LOOKUP_TABLES}.hpo_site_id_mappings """ full_names_df = pd.io.gbq.read_gbq(get_full_names, dialect='standard') # + full_names_df.columns = ['org_id', 'src_hpo_id', 'site_name', 'display_order'] columns_to_use = ['src_hpo_id', 'site_name'] full_names_df = full_names_df[columns_to_use] full_names_df['src_hpo_id'] = full_names_df['src_hpo_id'].str.lower() # + cols_to_join = ['src_hpo_id'] site_df = pd.merge(site_df, full_names_df, on=['src_hpo_id'], how='left') # - # # There should not be duplicate rows. # ## visit_occurrence table # + ###################################### print('Getting the data from the database...') ###################################### foreign_key_df = pd.io.gbq.read_gbq(''' SELECT src_hpo_id, person_id, visit_concept_id, visit_start_date, visit_start_datetime, visit_end_date, visit_end_datetime, visit_type_concept_id, provider_id, care_site_id, visit_source_value, visit_source_concept_id, admitting_source_concept_id, admitting_source_value, discharge_to_concept_id, discharge_to_source_value, preceding_visit_occurrence_id, COUNT(*) as cnt FROM `{DATASET}.unioned_ehr_visit_occurrence` AS t1 INNER JOIN (SELECT DISTINCT * FROM `{DATASET}._mapping_visit_occurrence`) AS t2 ON t1.visit_occurrence_id=t2.visit_occurrence_id WHERE t1.visit_concept_id!=0 AND t1.visit_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9 '''.format(DATASET=DATASET), dialect='standard') print(foreign_key_df.shape[0], 'records received.') # - foreign_key_df.head() visit_occurrence = foreign_key_df.groupby( ['src_hpo_id']).size().reset_index().rename(columns={ 0: 'visit_occurrence' }).sort_values(["visit_occurrence"]).set_index("src_hpo_id") visit_occurrence = visit_occurrence.reset_index() visit_occurrence # ## condition_occurrence table # # #### NOTE: have to cast as date for the datetime objects to avoid a runtime error - temporary fix for a larger issue # + condition_query = f""" SELECT src_hpo_id, person_id, condition_concept_id, condition_start_date, CAST(condition_start_datetime AS DATE) as condition_start_datetime, condition_end_date, CAST(condition_end_datetime AS DATE) as condition_end_datetime, condition_type_concept_id, stop_reason, provider_id, visit_occurrence_id, condition_source_value, condition_source_concept_id, condition_status_source_value, condition_status_concept_id, COUNT(*) as cnt FROM `{DATASET}.unioned_ehr_condition_occurrence` AS t1 JOIN `{DATASET}._mapping_condition_occurrence` AS t2 ON t1.condition_occurrence_id = t2.condition_occurrence_id WHERE t1.condition_concept_id!=0 AND t1.condition_concept_id IS NOT NULL AND t1.person_id!=0 and t1.person_id IS NOT NULL GROUP BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 HAVING COUNT(*) > 1 ORDER BY 1,2,3,4,5,6,7,8,9,10,11,12,13,14 """ foreign_key_df =
pd.io.gbq.read_gbq(condition_query, dialect='standard')
pandas.io.gbq.read_gbq
""" :mod:`orion.algo.pbt.pb2 ======================== """ import copy import logging import time import numpy as np import pandas from orion.algo.pbt.pb2_utils import select_config from orion.algo.pbt.pbt import PBT from orion.core.utils.flatten import flatten from orion.core.worker.trial import Trial logger = logging.getLogger(__name__) class PB2(PBT): """Population Based Bandits Warning: PB2 is broken in current version v0.2.4. We are working on a fix to be released in v0.2.5, ETA July 2022. Population Based Bandits is a variant of Population Based Training using probabilistic model to guide the search instead of relying on purely random perturbations. PB2 implementation uses a time-varying Gaussian process to model the optimization curves during training. This implementation is based on ray-tune implementation. Oríon's version supports discrete and categorical dimensions, and offers better resiliency to broken trials by using back-tracking. See PBT documentation for more information on how to use PBT algorithms. For more information on the algorithm, see original paper at https://arxiv.org/abs/2002.02518. Parker-Holder, Jack, <NAME>, and <NAME>. "Provably efficient online hyperparameter optimization with population-based bandits." Advances in Neural Information Processing Systems 33 (2020): 17200-17211. Parameters ---------- space: `orion.algo.space.Space` Optimisation space with priors for each dimension. seed: None, int or sequence of int Seed for the random number generator used to sample new trials. Default: ``None`` population_size: int, optional Size of the population. No trial will be continued until there are `population_size` trials executed until lowest fidelity. If a trial is broken during execution at lowest fidelity, the algorithm will sample a new trial, keeping the population of *non-broken* trials at `population_size`. For efficiency it is better to have less workers running than population_size. Default: 50. generations: int, optional Number of generations, from lowest fidelity to highest one. This will determine how many branchings occur during the execution of PBT. Default: 10 exploit: dict or None, optional Configuration for a ``pbt.exploit.BaseExploit`` object that determines when if a trial should be exploited or not. If None, default configuration is a ``PipelineExploit`` with ``BacktrackExploit`` and ``TruncateExploit``. fork_timeout: int, optional Maximum amount of time in seconds that an attempt to mutate a trial should take, otherwise algorithm.suggest() will raise ``SuggestionTimeout``. Default: 60 """ requires_type = "real" requires_dist = "linear" requires_shape = "flattened" def __init__( self, space, seed=None, population_size=50, generations=10, exploit=None, fork_timeout=60, ): super().__init__( space, seed=seed, population_size=population_size, generations=generations, exploit=exploit, fork_timeout=fork_timeout, ) @property def configuration(self): """Return tunable elements of this algorithm in a dictionary form appropriate for saving. """ config = copy.deepcopy(super().configuration) config["pb2"].pop("explore", None) return config def _generate_offspring(self, trial): """Try to promote or fork a given trial.""" new_trial = trial if not self.has_suggested(new_trial): raise RuntimeError( "Trying to fork a trial that was not registered yet. This should never happen" ) attempts = 0 start = time.perf_counter() while ( self.has_suggested(new_trial) and time.perf_counter() - start <= self.fork_timeout ): trial_to_explore = self.exploit_func( self.rng, trial, self.lineages, ) if trial_to_explore is None: return None, None elif trial_to_explore is trial: new_params = {} trial_to_branch = trial logger.debug("Promoting trial %s, parameters stay the same.", trial) else: new_params = flatten(self._explore(self.space, trial_to_explore)) trial_to_branch = trial_to_explore logger.debug( "Forking trial %s with new parameters %s", trial_to_branch, new_params, ) # Set next level of fidelity new_params[self.fidelity_index] = self.fidelity_upgrades[ trial_to_branch.params[self.fidelity_index] ] new_trial = trial_to_branch.branch(params=new_params) new_trial = self.space.transform(self.space.reverse(new_trial)) logger.debug("Attempt %s - Creating new trial %s", attempts, new_trial) attempts += 1 if ( self.has_suggested(new_trial) and time.perf_counter() - start > self.fork_timeout ): raise RuntimeError( f"Could not generate unique new parameters for trial {trial.id} in " f"less than {self.fork_timeout} seconds. Attempted {attempts} times." ) return trial_to_branch, new_trial def _explore(self, space, base: Trial): """Generate new hyperparameters for given trial. Derived from PB2 explore implementation in Ray (2022/02/18): https://github.com/ray-project/ray/blob/master/python/ray/tune/schedulers/pb2.py#L131 """ data, current = self._get_data_and_current() bounds = {dim.name: dim.interval() for dim in space.values()} df = data.copy() # Group by trial ID and hyperparams. # Compute change in timesteps and reward. diff_reward = ( df.groupby(["Trial"] + list(bounds.keys()))["Reward"] .mean() .diff() .reset_index(drop=True) ) df["y"] = diff_reward df["R_before"] = df.Reward - df.y df = df[~df.y.isna()].reset_index(drop=True) # Only use the last 1k datapoints, so the GP is not too slow. df = df.iloc[-1000:, :].reset_index(drop=True) # We need this to know the T and Reward for the weights. if not df[df["Trial"] == self.get_id(base)].empty: # N ow specify the dataset for the GP. y_raw = np.array(df.y.values) # Meta data we keep -> episodes and reward. t_r = df[["Budget", "R_before"]] hparams = df[bounds.keys()] x_raw = pandas.concat([t_r, hparams], axis=1).values newpoint = ( df[df["Trial"] == self.get_id(base)] .iloc[-1, :][["Budget", "R_before"]] .values ) new = select_config( x_raw, y_raw, current, newpoint, bounds, num_f=len(t_r.columns) ) new_config = base.params.copy() for i, col in enumerate(hparams.columns): if isinstance(base.params[col], int): new_config[col] = int(new[i]) else: new_config[col] = new[i] else: new_config = base.params return new_config def _get_data_and_current(self): """Generate data and current objects used in _explore function. data is a pandas DataFrame combining data from all completed trials. current is a numpy array with hyperparameters from uncompleted trials. """ data_trials = [] current_trials = [] for trial in self.registry: if trial.status == "completed": data_trials.append(trial) else: current_trials.append(trial) data = self._trials_to_data(data_trials) if current_trials: current = np.asarray( [ [trial.params[key] for key in self.space.keys()] for trial in current_trials ] ) else: current = None return data, current def _trials_to_data(self, trials): """Generate data frame to use in _explore method.""" rows = [] cols = ["Trial", "Budget"] + list(self.space.keys()) + ["Reward"] for trial in trials: values = [trial.params[key] for key in self.space.keys()] lst = ( [self.get_id(trial), trial.params[self.fidelity_index]] + values + [trial.objective.value] ) rows.append(lst) data =
pandas.DataFrame(rows, columns=cols)
pandas.DataFrame