prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python3 import pandas as pd import sys import json with open("data/TALB_2018.geojson") as f: geojson = json.load(f) for i in range(len(geojson["features"])): geojson["features"][i]["properties"]["cancer"] = {} def find_talb(name): if pd.isna(name): return for i,f in enumerate(geojson["features"]): if f["properties"]["TALB2018_1"].startswith(name.replace(".", "")): return i print(name + " not found") year_bands = ["2010-2012", "2013-2015", "2016-2018"] cancer_types = ["breast", "prostate", "lung"] maori = ["maori", "non-maori", "total"] keys = ["TALB"] for c in cancer_types: for m in maori: for y in year_bands: keys.append(c + m + y) numerator =
pd.read_excel("misc/annual_counts_OUTPUT - Checked.xlsx", sheet_name="TALB", skiprows=10, nrows=88, names = keys)
pandas.read_excel
import argparse import collections import numpy as np import pandas as pd import matplotlib.pyplot as plt import re import scipy.cluster import scipy.spatial.distance import sklearn.cluster import sklearn.feature_extraction import sklearn.manifold import sklearn.metrics.pairwise if True: p = argparse.ArgumentParser() p.add_argument("--tag", required=True) args = p.parse_args() tag = args.tag else: tag = "Hemoglobin_CTEP Trials_072018" #tag = "Platelets_CTEP Trials_072018" #tag = "WBC_CTEP Trials_072018" #tag = "HIV_CTEPTrials_072018" input_tsv = "../nci_data/dataset1-trials/" + tag + ".tsv" output_pdf = "./" + tag + ".clustering.pdf" features_csv = "./" + tag + ".features.csv" linkage_matrix_csv = "./" + tag + ".linkage_matrix.csv" # Load data. tb = pd.read_table(input_tsv) num_rows_excluded = sum(pd.isnull(tb["Boolean"])) num_rows_orig = tb.shape[0] tb = tb.loc[~pd.isnull(tb["Boolean"]),:] tb = tb.reset_index(drop=True) num_rows = tb.shape[0] print("Excluding %d of %d rows" % (num_rows_excluded, num_rows_orig)) print("After exclusion, %d rows remain" % num_rows) # Parse boolean. def f(b): b = re.sub(r"[()]", "", b) operators = [w for w in b.split() if w in ("OR", "AND")] as_ops = b.replace("OR", "OP").replace("AND", "OP") triples = [tuple(re.split(r'(>=|<=|>|<|==|=)', t.strip(), maxsplit=1)) for t in as_ops.split("OP")] triples = [tuple(ti.strip() for ti in t) for t in triples] for i, t in enumerate(triples): print(t) if len(t) == 2: new_triple = (t[0], t[1], "?") print("Warning: {} is not of length 3, replacing with {}".format(t, new_triple)) triples[i] = new_triple if len(t) == 1: new_triple = (t[0], "?", "?") print("Warning: {} is not of length 3, replacing with {}".format(t, new_triple)) triples[i] = new_triple return {"triples": triples, "operators": operators} def g(b): if pd.isnull(b): return b else: return f(b) tb["parsed"] = [g(b) for b in tb["Boolean"]] triples = [x["triples"] for x in tb["parsed"] if x] operators = [x["operators"] for x in tb["parsed"]] # Make features. feat = [collections.defaultdict(float) for i in range(tb.shape[0])] for i, triple_list in enumerate(triples): for l, c, r in triple_list: # Add count of each element alone within each triple. feat[i]["l_count_%s" % l] += 1 feat[i]["c_count_%s" % c] += 1 feat[i]["r_count_%s" % r] += 1 # Add count of each pair of elements within each triple. feat[i]["lc_count_(%s, %s)" % (l, c)] += 1 feat[i]["lr_count_(%s, %s)" % (l, r)] += 1 feat[i]["cr_count_(%s, %s)" % (c, r)] += 1 # Add count of each triple. t1 = (l, c, r) feat[i]["triple_count_%s" % str(t1)] += 1 # Add count of each pair of triples. for t2 in triple_list: feat[i]["triple_pair_count_%s_%s" % (str(t1), str(t2))] += 1 for i, operator_list in enumerate(operators): for o1 in operator_list: # Add count for each operator. feat[i]["operator_count_%s" % o1] += 1 # Add count for each pair of operators. for o2 in operator_list: feat[i]["operator_pair_count_%s_%s" % (o1, o2)] += 1 # Make feature matrix. feature_vectorizer = sklearn.feature_extraction.DictVectorizer(sparse=False) X = feature_vectorizer.fit_transform(feat) # Carry out hierarchical clustering. #hc_linkage = scipy.cluster.hierarchy.linkage(X, method="ward", metric="euclidean") hc_linkage = scipy.cluster.hierarchy.linkage(X, method="complete", metric="cosine") #hc_linkage = scipy.cluster.hierarchy.linkage(X, method="average", metric="cosine") # Plot clustering. h = 25.0 * tb.shape[0] / 174 fig = plt.figure(figsize=(25, h)) leaf_labels = [x for x in tb["Boolean"]] dn = scipy.cluster.hierarchy.dendrogram(hc_linkage, labels=leaf_labels, orientation="left") plt.title("Hierarchical clustering of %s " % tag) plt.axis('tight') plt.subplots_adjust(right=0.45) plt.savefig(output_pdf) plt.close(fig) # Save features used for clustering. feature_colnames = ["feature_%s" % x for x in feature_vectorizer.get_feature_names()] feature_tb = pd.DataFrame(X, index=tb.index, columns=feature_colnames) feature_with_orig_tb =
pd.concat((tb, feature_tb), axis=1)
pandas.concat
import os import pandas as pd import numpy as np from itertools import chain from codifyComplexes.CodifyComplexException import CodifyComplexException from .DataLoaderClass import DataLoader #TODO: REWRITE PROTOCOLs CLASSES TO REDUCE COUPLING. E.G. Pairwise agregation should be generic for both seq and struct, just neigs different FEATURES_MISMATH_TOLERANCE=0.1 #Fraction of missing residues between different features that will trigger error class AbstractProtocol(DataLoader): ''' This class is a template for codification protocols ''' DESIRED_ORDER=["L", "R", "P"] def __init__(self, dataRootPath, cMapPath, prevStepPaths, singleChainfeatsToInclude, pairfeatsToInclude=None, verbose=False): ''' :param dataRootPath: str. A path to computedFeatures directory that contains needed features. Example: computedFeatures/ common/ contactMaps/ seqStep/ conservation/ ... structStep/ PSAIA/ VORONOI/ ... :param cMapPath: str. A path to a dir that contains the contact map of the protein complex :param prevStepPaths: str or str[]. A path to previous results files directory. If it is None, contactMaps files will be used to define which residue pairs are in contact. Can also be a str[] if multiple feedback_path's wanted :param singleChainfeatsToInclude: List that contains the paths where single chain features needed for complex codification are located. Must have the following format: ["featName":(relativePath_from_dataRootPath, listOfColumnNumbers)] :param pairfeatsToInclude: List that contains the paths where pair features needed for complex codification are located. Must have the following format: ["featName":(relativePath_from_dataRootPath, listOfColumnNumbers)] :param verbose: bool. ''' if not hasattr(self, "dataRootPath"): DataLoader.__init__(self, dataRootPath, verbose) self.cMapPath= cMapPath self.singleChainfeatsToInclude= singleChainfeatsToInclude self.pairfeatsToInclude= pairfeatsToInclude if prevStepPaths is None: self.prevFnamesList=None else: self.prevFnamesList= prevStepPaths if isinstance(prevStepPaths,list) else [prevStepPaths] self.prevFnamesList= [os.path.join(onePath, fname) for onePath in self.prevFnamesList for fname in os.listdir(onePath) if fname.endswith(".res.tab.gz")] if self.pairfeatsToInclude and not self.useCorrMut: self.pairfeatsToInclude = [ elem for elem in self.pairfeatsToInclude if elem[0]!="corrMut"] if len(self.pairfeatsToInclude)==0: self.pairfeatsToInclude = None def applyProtocol( self, prefixComplex): ''' This method is the basic skeleton for applyProtocol of subclasses Given a prefix that identifies the complex and prefixes that identifies the ligand and the receptor, this method integrates the information that is contained in self.dataRootPath and is described in self.singleChainfeatsToInclude :param prefixComplex: str. A prefix that identifies a complex :return df: pandas.DataFrame. A pandas.Dataframe in which each row represents a pair of amino acids in direct form (L to R). Column names are: 'chainIdL', 'resIdL', 'resNameL', 'chainIdR', 'resIdR', 'resNameR', 'categ' [propertiesP .... propertiesL .... propertiesR] ''' #load contact maps or previous results to define pairs of residues ligand to receptor raw_prefix= prefixComplex.split("@")[0].split("#")[0] if self.prevFnamesList is None: cmapNameList= list(self.getFullNamesIterInPath( raw_prefix, self.cMapPath)) if len(cmapNameList)>1: raise ValueError("There are more than 1 Contact map for %s in %s path"%(prefixComplex,self.cMapPath)) allPairsCodified= self.loadDataFile(cmapNameList) else: allPairsCodified= self.loadPreviousResults(prefixComplex) if not self.pairfeatsToInclude is None: #add pairwise features if there are available allPairsCodified= self.addPairFeatures(raw_prefix, allPairsCodified) lFeats= self.loadSingleChainFeatures( raw_prefix, chainType="l") rFeats= self.loadSingleChainFeatures( raw_prefix, chainType="r") #add single chain features to contact map (or pairwise features) allPairsCodified= self.combinePairwiseAndSingleChainFeats(allPairsCodified,lFeats, rFeats) assert allPairsCodified.shape[0]>1, "Error, %s dataset is empty"%prefixComplex #Reorder columns to DESIRED_ORDER order allPairsCodified= self.reorderColumns(allPairsCodified) return allPairsCodified def reorderColumns(self, allPairsCodified): colNames= list(allPairsCodified.columns) categIndex= colNames.index("categ")# categ is the last non-feature column. All previous columns are ids lFeatNames= [elem for elem in colNames[(categIndex+1):] if elem[-1]=="L"] rFeatNames= [elem for elem in colNames[(categIndex+1):] if elem[-1]=="R"] pairwiseFeatNames= [elem for elem in colNames[(categIndex+1):] if elem.endswith("_P")] colOrder= list(colNames[:(categIndex+1)]) #first columns are pair ids and label for featType in AbstractProtocol.DESIRED_ORDER: if featType=="L": colOrder+=lFeatNames elif featType=="R": colOrder+=rFeatNames elif featType=="P": colOrder+=pairwiseFeatNames else: raise ValueError("just L, R or P allowed in AbstractProtocol.DESIRED_ORDER") allPairsCodified= allPairsCodified[ colOrder ] allPairsCodified.columns= colOrder return allPairsCodified def loadPreviousResults(self, prefixComplex): ''' Loads previous results. Returns a pandas.DataFrame that contains in each row the scores of previous steps for a given pair of amino acids. :param prefixComplex: str. A prefix (a complex id) that identifies the receptor or ligand :return df: pandas.DataFrame. A pandas.Dataframe in which each row represents one amino acid Column names are: 'chainIdL', 'resIdL', 'resNameL', 'chainIdR', 'resIdR', 'resNameR', 'categ', [prev_step_scores] ''' previousResultsList= [fname for fname in self.prevFnamesList if fname.endswith(prefixComplex+".res.tab.gz")] assert len(previousResultsList)>0, "No previous results" for fname in previousResultsList: if self.verbose: print("loading previous resuls for %s"%(prefixComplex)) prevResults= self.loadDataFile( iter([fname]) ) prevResults.loc[:,"prediction_norm"]= (prevResults["prediction"] - np.mean(prevResults["prediction"])) / np.std(prevResults["prediction"]) break # break to add just one type of previous predictions if len(previousResultsList)>1: for fname in previousResultsList[1:]: #Load the remaining previous predictions if self.verbose: print("loading previous resuls for %s"%(prefixComplex)) prevNrow= prevResults.shape[0] newData= self.loadDataFile( iter([fname] )) newData.loc[:,"prediction_norm"]= (newData["prediction"] - np.mean(newData["prediction"])) / np.std(newData["prediction"]) merge_on_cols= ["chainIdL", "resIdL","resNameL","chainIdR", "resIdR","resNameR", "categ"] prevResults= pd.merge(prevResults, newData, how='inner', on=merge_on_cols) curNrow= prevResults.shape[0] if prevNrow<1: raise CodifyComplexException(("Error merging previous results in %s. There are 0 rows "+ "in previous features")%(prefixComplex )) elif (abs(float(prevNrow- curNrow)) / prevNrow) > FEATURES_MISMATH_TOLERANCE: raise CodifyComplexException(("Error merging previous results in %s. There are a different number of residues "+ "compared to previous file\nNrows previously/now %d/%d %s")%(prefixComplex, prevNrow, curNrow,fname)) return prevResults def loadSingleChainFeatures(self, prefix, chainType): ''' Loads all features files computed for ligand or receptor chains. Returns a pandas.DataFrame that contains in each row all features from all files for each amino acid. Just amino acids that appears in each file will be included. Others will be ruled out (intersection) :param prefix: str. A prefixOneChainType that identifies the receptor or ligand. e.g. 1A2K :param chainType: str. "l" for ligand and "r" for receptor :return df: pandas.DataFrame. A pandas.Dataframe in which each row represents one amino acid Column names are: 'chainId%s', 'resId%s', 'resName%s', [properties] %s is L if chainType=="l" and R if chainType=="r" ''' assert chainType=="l" or chainType=="r" prefixOneChainType= prefix+"_"+chainType # print(prefixOneChainType); raw_input("enter") oneChainTypeFeats= None featName, params= self.getParamsForLoadingFile(prefixOneChainType, self.singleChainfeatsToInclude[0]) #Load just first single chain feature if self.verbose: print("loading %s for %s"%(featName,prefixOneChainType)) oneChainTypeFeats= self.loadDataFile(*params) if len(self.singleChainfeatsToInclude)>1: for featTuple in self.singleChainfeatsToInclude[1:]: #Load the remaining single chain features featName, params= self.getParamsForLoadingFile( prefixOneChainType, featTuple) if self.verbose: print("loading %s for %s"%(featName, prefixOneChainType)) prevNrow= oneChainTypeFeats.shape[0] # params= ( list(params[0]), params[1] ) # print(featTuple, list(params[0])) newData= self.loadDataFile(*params) oneChainTypeFeats_prev= oneChainTypeFeats oneChainTypeFeats= pd.merge(oneChainTypeFeats, newData, how='inner', on=["chainId", "resId","resName"]) curNrow= oneChainTypeFeats.shape[0] if prevNrow<1: raise CodifyComplexException(("Error merging previous single chain feature %s in %s. There are 0 rows "+ "in previous feature to %s")%(featName, prefixOneChainType, featName)) elif (abs(float(prevNrow- curNrow)) / prevNrow) > FEATURES_MISMATH_TOLERANCE: if prevNrow>curNrow: df_diff= getDifRows_pd(oneChainTypeFeats_prev, oneChainTypeFeats, isSingleChain=True) else: df_diff= getDifRows_pd(oneChainTypeFeats, oneChainTypeFeats_prev, isSingleChain=True) # print(df_diff);raw_input() # print(oneChainTypeFeats_prev);raw_input() # print(oneChainTypeFeats);raw_input() errorMsg= str(df_diff)+"\n%s Nrows previously/now %d/%d %s"%(prefixOneChainType, prevNrow, curNrow,featName) raise CodifyComplexException((errorMsg+"\nError merging single chain feature %s in %s. There are a different number of residues "+ "in %s compared to previous features")%(featName, prefixOneChainType, featName)) chainType= chainType.upper() oneChainTypeFeats.rename(columns={elem:elem+chainType for elem in list(oneChainTypeFeats.columns.values)}, inplace=True) return oneChainTypeFeats def addPairFeatures(self, prefix, allPairs): ''' Loads all pairwise features files and adds them to the pairs of residues contained in allPairs df Returns a pandas.DataFrame that contains in each row all pairwise features from all files for each pair of amino acids. Just amino acid pairs that appears in each file will be included. Others will be ruled out (intersection) :param prefix: str. A prefix that identifies the complex :param allPairs: pandas.DataFrame. A pandas.Dataframe in which each row represents one amino acid pair Column names are: "chainIdL", "resIdL","resNameL","chainIdR", "resIdR","resNameR", "categ", [previousScores] :return df: pandas.DataFrame. A pandas.Dataframe in which each row represents one amino acid pair Column names are: "chainIdL", "resIdL","resNameL","chainIdR", "resIdR","resNameR", "categ", [previousScores] [pairFeats] ''' pairTypeFeats= None featName, params= self.getParamsForLoadingFile( prefix, self.pairfeatsToInclude[0]) if self.verbose: print("loading %s for %s"%(featName,prefix)) pairTypeFeats= self.loadDataFile(*params) if len(self.pairfeatsToInclude)>1: for featTuple in self.pairfeatsToInclude[1:]: #Load the remaining single chain feature featName, params= self.getParamsForLoadingFile( prefix, featTuple) if self.verbose: print("loading %s for %s"%(featName, prefix)) prevNrow= pairTypeFeats.shape[0] pairTypeFeats_prev= pairTypeFeats newData= self.loadDataFile(*params) pairTypeFeats= pd.merge(pairTypeFeats, newData, how='inner', on=["chainIdL", "resIdL","resNameL", "chainIdR", "resIdR","resNameR"]) curNrow= pairTypeFeats.shape[0] if prevNrow<1: raise CodifyComplexException(("Error merging previous pair feature %s in %s. There are 0 rows "+ "in previous feature to %s")%(featName, prefix, featName)) elif (abs(float(prevNrow- curNrow)) / prevNrow) > FEATURES_MISMATH_TOLERANCE**2: df_diff= getDifRows_pd(pairTypeFeats_prev, pairTypeFeats, isSingleChain=False) errorMsg= str(df_diff)+"\n%s Nrows previously/now %d/%d %s"%(prefixOneChainType, prevNrow, curNrow,featName) raise CodifyComplexException((errorMsg+"\nError merging pair feature %s in %s. There are a different number of residues "+ "in %s compared to previous features")%(featName, prefixOneChainType, featName)) #check if _P has already been assigned as mark to allPairs pairwise features nPs= sum( (1 for elem in pairTypeFeats.columns.values if elem.endswith("_P"))) if nPs>0: #if so add _P to pairwise features pairTypeFeats.rename(columns={elem:elem+"_P" for elem in set(pairTypeFeats.columns.values ).difference(AbstractProtocol.ARE_STR_TYPE_COLUMNS)}, inplace=True) prevNrow= allPairs.shape[0] allPairs_prev= allPairs allPairs= pd.merge(allPairs, pairTypeFeats, how='inner', on=["chainIdL", "resIdL","resNameL", "chainIdR", "resIdR","resNameR"]) curNrow= allPairs.shape[0] if prevNrow<1: raise CodifyComplexException(("Error merging previous pair feature %s in %s. There are 0 rows "+ "in previous feature to %s")%(featName, prefix, "allPairs")) elif (abs(float(prevNrow- curNrow)) / prevNrow) > FEATURES_MISMATH_TOLERANCE**2: df_diff= getDifRows_pd(allPairs_prev, allPairs, isSingleChain=False) errorMsg= str(df_diff)+"\n%s Nrows previously/now %d/%d %s"%(prefixOneChainType, prevNrow, curNrow, "allPairs") raise CodifyComplexException((errorMsg+"\nError merging pair feature %s in %s. There are a different number of residues "+ "in %s compared to previous features")%(featName, prefixOneChainType, "allPairs")) return allPairs def combinePairwiseAndSingleChainFeats(self, pairFeats, singleFeatsL, singleFeatsR): ''' Merges pairFeats pandas.DataFrame with singleFeatsL and singleFeatsR dataFrames. singleFeatsL has n rows (as many as ligand residues) and singleFeatsR has m rows (as many as ligand residues), and pairsFeats has ~ n*m rows (some amino acids pairs might not be considered due to several reasons). :param pairFeats: pandas.DataFrame. A pandas.Dataframe in which each row represents the properties of a residue of the receptor Column names are: 'chainIdL', 'resIdL', 'resNameL', 'chainIdR', 'resIdR', 'resNameR', 'categ' [propertiesP] :param singleFeatsL: pandas.DataFrame. A pandas.Dataframe in which each row represents the properties of a residue of the ligand Column names are: 'chainIdL', 'resIdL', 'resNameL',[propertiesL] :param singleFeatsR: pandas.DataFrame. A pandas.Dataframe in which each row represents the properties of a residue of the receptor Column names are: 'chainIdR', 'resIdR', 'resNameR',[propertiesR] :return directPairs: pandas.DataFrame. A pandas.Dataframe in which each row represents a pair of amino acids in direct form (L to R). Column names are: 'chainIdL', 'resIdL', 'resNameL', 'chainIdR', 'resIdR', 'resNameR', 'categ' [ propertiesL .... propertiesR .... properties_P] ''' if singleFeatsL.shape[1]!= singleFeatsR.shape[1]: print( "singleFeatsL and singleFeatsR have different number of variables") featsLNo_chain= set( (elem[:-1] for elem in singleFeatsL.columns)) featsRNo_chain= set( (elem[:-1] for elem in singleFeatsR.columns)) errorMsg= "\n".join(["L %d R %d"%(len(singleFeatsL.columns),len(singleFeatsR.columns)) ,"L dif R", str(sorted(featsLNo_chain.difference(featsRNo_chain))), "R diff L", str(sorted(featsRNo_chain.difference(featsLNo_chain))) ]) raise ValueError( errorMsg+"\nsingleFeatsL and singleFeatsR have different number of variables") otherPairColumns= set(pairFeats.columns.values).difference(set(AbstractProtocol.ARE_STR_TYPE_COLUMNS+["categ"])) if len(otherPairColumns)>0: #add _P suffix to all pairwise features pairFeats.rename(columns={elem:elem+"_P" for elem in otherPairColumns}, inplace=True) directPairs= pd.merge(pairFeats, singleFeatsL, how='inner', on=None) directPairs= pd.merge(directPairs, singleFeatsR, how='inner', on=None) return directPairs def prepareDataForPairwiseAggregat(self, df): ''' abstract method :param df: the Pandas.DataFrame of features before aggregation :return pairwiseDf, ids2RowL, ids2RowR, neigsids2rowL, neigsids2rowR pairwiseDf: the Pandas.DataFrame of features after aggregation ids2RowL: a dict that maps from resIdL to all rows of df that contain resIdL ids2RowL: a dict that maps from resIdR to all rows of df that contain resIdR neigsids2rowL: a dict that maps from resIdL to all rows of df that contain a neighbour of resIdL neigsids2rowR: a dict that maps from resIdR to all rows of df that contain a neighbour of resIdR ''' raise ValueError("Not implemented") def computeNumericAggr(self, df, selectedRows): return computeNumericAggr( df, selectedRows) def addPairwiseAggregation(self, df): ''' Adds environment pairwise features to a df that contains pairwise features (named featName_P) :param df: pandas.DataFrame. A pandas.Dataframe in which each row represents a pair of amino acids in direct form (ligand, receptor) Column names are: 'chainIdL', 'resIdL', 'resNameL', 'chainIdR', 'resIdR', 'resNameR', 'categ' [ propertiesL .... propertiesR .... properties_P] #no defined order for properties :return newDf: pandas.DataFrame. A pandas.Dataframe in which each row represents a pair of amino acids in direct form (L to R). New columns will have been added, all then named %sAggr%d%s(numAggr/factorAggr, numberOfNewFeature, ligand/receptor) Column names are: 'chainIdL', 'resIdL', 'resNameL', 'chainIdR', 'resIdR', 'resNameR', 'categ' [ propertiesL propertiesR properties_P ] #no defined order for properties ''' pairwiseDf, ids2RowL, ids2RowR, neigsids2rowL, neigsids2rowR = self.prepareDataForPairwiseAggregat(df) nElems= df.shape[0] l_2_r_neigs= [[] for i in range(df.shape[0])] r_2_l_neigs= [[] for i in range(df.shape[0])] l_neigs_2_r_neigs= [[] for i in range(df.shape[0])] for idL in ids2RowL: rowsInvolvingL= ids2RowL[idL] rowsNeigsL= neigsids2rowL[idL] for idR in ids2RowR: rowsInvolvingR= ids2RowR[idR] rowsNeigsR= neigsids2rowR[idR] row_Index= tuple(rowsInvolvingL.intersection(rowsInvolvingR))[0] l_2_r_neigs[row_Index]= tuple(rowsInvolvingL.intersection(rowsNeigsR)) r_2_l_neigs[row_Index]= tuple(rowsInvolvingR.intersection(rowsNeigsL)) l_neigs_2_r_neigs[row_Index]= tuple(rowsNeigsR.intersection(rowsNeigsL)) numericAggreL2r= self.computeNumericAggr(pairwiseDf, l_2_r_neigs) numericAggreR2l= self.computeNumericAggr(pairwiseDf, r_2_l_neigs) numericAggreN2N= self.computeNumericAggr(pairwiseDf, l_neigs_2_r_neigs) numericAggreL2r.columns= [ "l2r-pair"+elem for elem in numericAggreL2r.columns] numericAggreR2l.columns= [ "r2l-pair"+elem for elem in numericAggreR2l.columns] numericAggreN2N.columns= [ "n2n-pair"+elem for elem in numericAggreN2N.columns] df= pd.concat([df, numericAggreL2r, numericAggreR2l, numericAggreN2N ], axis=1) return df def computeNumericAggr(df, selectedRows): ''' Compute aggregation functions (min, max, mean and sum) for the rows of data. Each row is aggregated over the rows included in selectedRows :param data: pandas.DataFrame(nrow, nfeatures). The numeric data to aggregate. Each row i is averaged, sum... with the rows such that selectedRows[i,:]==True :param selectedRows: [[]]: int (nrow, variableLength)): Each row i is averaged, with the rows included in selectedRows[i] :return np.array (nrow, 4*nfeatures) ''' data= df.values nVars= data.shape[1] aggregatedResults= -(2**10)* np.ones( (data.shape[0], nVars* 4)) splitPoint2= 2*nVars splitPoint3= 3*nVars splitPoint4= 4*nVars for i in range(data.shape[0]): dataToAggregate= data[selectedRows[i], :] if dataToAggregate.shape[0]>0: aggregatedResults[i, 0:nVars]= np.mean( dataToAggregate, axis=0) aggregatedResults[i, nVars:splitPoint2]= np.max( dataToAggregate, axis=0) aggregatedResults[i, splitPoint2:splitPoint3]= np.min( dataToAggregate, axis=0) aggregatedResults[i, splitPoint3:splitPoint4]= np.sum( dataToAggregate, axis=0) aggregatedResults= pd.DataFrame(aggregatedResults) aggregatedResults.columns= list(chain.from_iterable([[ "numAggr-"+oper+"-"+name for name in df.columns] for oper in ["mean", "max", "min", "sum"] ])) return aggregatedResults def computeFactorAggr(df, selectedRows): ''' Compute aggregation function (sum) for the rows of data. Each row is aggregated over the rows included in selectedRows. This is equivalent to count the number of neighbours of each category :param data: pandas.DataFrame(nrow, nfeatures). The numeric data to aggregate. Each row i is averaged, with the rows such that selectedRows[i,:]==True :param selectedRows: [[]]: int (nrow, variableLength)): Each row i is added with the rows included in selectedRows[i] :return np.array (nrow, nfeatures) ''' data= df.values aggregatedResults= -(2**10)* np.ones( (data.shape[0], data.shape[1])) for i in range(data.shape[0]): dataToAggregate= data[selectedRows[i],:] if dataToAggregate.shape[0]>0: aggregatedResults[i, :]= np.sum( dataToAggregate, axis=0) aggregatedResults=
pd.DataFrame(aggregatedResults)
pandas.DataFrame
#!/usr/bin/env python from __future__ import division, print_function import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from numpy import log import pandas as pd import seaborn as sns from itertools import groupby def load_result(fn, label): '''fn is a file name, label is an arbitrary string, results a tuple (union_cardinality, error) ''' with open(fn, 'r') as f: x, y, z, je = np.loadtxt(f, usecols=(0, 1, 2, 4), unpack=True) u = x + y - z # union cardinality j = z / u # true jaccard err = abs(je - j) / j ulabel_int = log(u) / log(2) ulabel_int = ulabel_int.astype(int) ulabel_str = [r"$\mathregular{2}^{\mathregular{" + str(x) + "}}$" for x in ulabel_int] d = {'union': pd.Series(u), 'err': pd.Series(err), 'Method': pd.Series(label, index=range(len(u))), 'ulabel': pd.Series(ulabel_str, index=range(len(u))), 'jaccard': pd.Series(j), 'constant': pd.Series(1, index=range(len(u)))} return pd.DataFrame(d) if __name__ == "__main__": file1 = load_result('full_results-6-4-4-false.txt', "HyperMinHash: 64 buckets of 4+4 bits") file2 = load_result('full_results-6-0-8-false.txt', "MinHash: 64 buckets of 8 bits") file3 = load_result('full_results-5-0-16-false.txt', "MinHash: 32 buckets of 16 bits") fig = plt.figure() for jaccard, subplot in [(0.1, 221), (1 / 3, 222), (0.5, 223), (0.9, 224)]: err1 = file1.loc[file1['jaccard'] == jaccard] err2 = file2.loc[file2['jaccard'] == jaccard] err3 = file3.loc[file3['jaccard'] == jaccard] data =
pd.concat([err1, err2, err3])
pandas.concat
import nose import unittest import os import sys import warnings from datetime import datetime import numpy as np from pandas import (Series, DataFrame, Panel, MultiIndex, bdate_range, date_range, Index) from pandas.io.pytables import HDFStore, get_store, Term, IncompatibilityWarning import pandas.util.testing as tm from pandas.tests.test_series import assert_series_equal from pandas.tests.test_frame import assert_frame_equal from pandas import concat, Timestamp try: import tables except ImportError: raise nose.SkipTest('no pytables') from distutils.version import LooseVersion _default_compressor = LooseVersion(tables.__version__) >= '2.2' \ and 'blosc' or 'zlib' _multiprocess_can_split_ = False class TestHDFStore(unittest.TestCase): path = '__test__.h5' scratchpath = '__scratch__.h5' def setUp(self): self.store = HDFStore(self.path) def tearDown(self): self.store.close() os.remove(self.path) def test_factory_fun(self): try: with get_store(self.scratchpath) as tbl: raise ValueError('blah') except ValueError: pass with get_store(self.scratchpath) as tbl: tbl['a'] = tm.makeDataFrame() with get_store(self.scratchpath) as tbl: self.assertEquals(len(tbl), 1) self.assertEquals(type(tbl['a']), DataFrame) os.remove(self.scratchpath) def test_keys(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.assertEquals(len(self.store), 5) self.assert_(set(self.store.keys()) == set(['/a', '/b', '/c', '/d', '/foo/bar'])) def test_repr(self): repr(self.store) self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeStringSeries() self.store['c'] = tm.makeDataFrame() self.store['d'] = tm.makePanel() self.store['foo/bar'] = tm.makePanel() self.store.append('e', tm.makePanel()) repr(self.store) str(self.store) def test_contains(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() self.store['foo/bar'] = tm.makeDataFrame() self.assert_('a' in self.store) self.assert_('b' in self.store) self.assert_('c' not in self.store) self.assert_('foo/bar' in self.store) self.assert_('/foo/bar' in self.store) self.assert_('/foo/b' not in self.store) self.assert_('bar' not in self.store) def test_versioning(self): self.store['a'] = tm.makeTimeSeries() self.store['b'] = tm.makeDataFrame() df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) self.assert_(self.store.root.a._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.b._v_attrs.pandas_version == '0.10') self.assert_(self.store.root.df1._v_attrs.pandas_version == '0.10') # write a file and wipe its versioning self.store.remove('df2') self.store.append('df2', df) self.store.get_node('df2')._v_attrs.pandas_version = None self.store.select('df2') self.store.select('df2', [ Term('index','>',df.index[2]) ]) def test_meta(self): raise nose.SkipTest('no meta') meta = { 'foo' : [ 'I love pandas ' ] } s = tm.makeTimeSeries() s.meta = meta self.store['a'] = s self.assert_(self.store['a'].meta == meta) df = tm.makeDataFrame() df.meta = meta self.store['b'] = df self.assert_(self.store['b'].meta == meta) # this should work, but because slicing doesn't propgate meta it doesn self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) results = self.store['df1'] #self.assert_(getattr(results,'meta',None) == meta) # no meta df = tm.makeDataFrame() self.store['b'] = df self.assert_(hasattr(self.store['b'],'meta') == False) def test_reopen_handle(self): self.store['a'] = tm.makeTimeSeries() self.store.open('w', warn=False) self.assert_(self.store.handle.isopen) self.assertEquals(len(self.store), 0) def test_flush(self): self.store['a'] = tm.makeTimeSeries() self.store.flush() def test_get(self): self.store['a'] = tm.makeTimeSeries() left = self.store.get('a') right = self.store['a'] tm.assert_series_equal(left, right) left = self.store.get('/a') right = self.store['/a'] tm.assert_series_equal(left, right) self.assertRaises(KeyError, self.store.get, 'b') def test_put(self): ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() self.store['a'] = ts self.store['b'] = df[:10] self.store['foo/bar/bah'] = df[:10] self.store['foo'] = df[:10] self.store['/foo'] = df[:10] self.store.put('c', df[:10], table=True) # not OK, not a table self.assertRaises(ValueError, self.store.put, 'b', df[10:], append=True) # node does not currently exist, test _is_table_type returns False in # this case self.assertRaises(ValueError, self.store.put, 'f', df[10:], append=True) # OK self.store.put('c', df[10:], append=True) # overwrite table self.store.put('c', df[:10], table=True, append=False) tm.assert_frame_equal(df[:10], self.store['c']) def test_put_string_index(self): index = Index([ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(20), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) # mixed length index = Index(['abcdefghijklmnopqrstuvwxyz1234567890'] + [ "I am a very long string index: %s" % i for i in range(20) ]) s = Series(np.arange(21), index = index) df = DataFrame({ 'A' : s, 'B' : s }) self.store['a'] = s tm.assert_series_equal(self.store['a'], s) self.store['b'] = df tm.assert_frame_equal(self.store['b'], df) def test_put_compression(self): df = tm.makeTimeDataFrame() self.store.put('c', df, table=True, compression='zlib') tm.assert_frame_equal(self.store['c'], df) # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='zlib') def test_put_compression_blosc(self): tm.skip_if_no_package('tables', '2.2', app='blosc support') df = tm.makeTimeDataFrame() # can't compress if table=False self.assertRaises(ValueError, self.store.put, 'b', df, table=False, compression='blosc') self.store.put('c', df, table=True, compression='blosc') tm.assert_frame_equal(self.store['c'], df) def test_put_integer(self): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal) def test_append(self): df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df[:10]) self.store.append('df1', df[10:]) tm.assert_frame_equal(self.store['df1'], df) self.store.remove('df2') self.store.put('df2', df[:10], table=True) self.store.append('df2', df[10:]) tm.assert_frame_equal(self.store['df2'], df) self.store.remove('df3') self.store.append('/df3', df[:10]) self.store.append('/df3', df[10:]) tm.assert_frame_equal(self.store['df3'], df) # this is allowed by almost always don't want to do it warnings.filterwarnings('ignore', category=tables.NaturalNameWarning) self.store.remove('/df3 foo') self.store.append('/df3 foo', df[:10]) self.store.append('/df3 foo', df[10:]) tm.assert_frame_equal(self.store['df3 foo'], df) warnings.filterwarnings('always', category=tables.NaturalNameWarning) # panel wp = tm.makePanel() self.store.remove('wp1') self.store.append('wp1', wp.ix[:,:10,:]) self.store.append('wp1', wp.ix[:,10:,:]) tm.assert_panel_equal(self.store['wp1'], wp) # ndim p4d = tm.makePanel4D() self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:]) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using axis labels self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=['items','major_axis','minor_axis']) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d'], p4d) # test using differnt number of items on each axis p4d2 = p4d.copy() p4d2['l4'] = p4d['l1'] p4d2['l5'] = p4d['l1'] self.store.remove('p4d2') self.store.append('p4d2', p4d2, axes=['items','major_axis','minor_axis']) tm.assert_panel4d_equal(self.store['p4d2'], p4d2) # test using differt order of items on the non-index axes self.store.remove('wp1') wp_append1 = wp.ix[:,:10,:] self.store.append('wp1', wp_append1) wp_append2 = wp.ix[:,10:,:].reindex(items = wp.items[::-1]) self.store.append('wp1', wp_append2) tm.assert_panel_equal(self.store['wp1'], wp) def test_append_frame_column_oriented(self): # column oriented df = tm.makeTimeDataFrame() self.store.remove('df1') self.store.append('df1', df.ix[:,:2], axes = ['columns']) self.store.append('df1', df.ix[:,2:]) tm.assert_frame_equal(self.store['df1'], df) result = self.store.select('df1', 'columns=A') expected = df.reindex(columns=['A']) tm.assert_frame_equal(expected, result) # this isn't supported self.assertRaises(Exception, self.store.select, 'df1', ('columns=A', Term('index','>',df.index[4]))) # selection on the non-indexable result = self.store.select('df1', ('columns=A', Term('index','=',df.index[0:4]))) expected = df.reindex(columns=['A'],index=df.index[0:4]) tm.assert_frame_equal(expected, result) def test_ndim_indexables(self): """ test using ndim tables in new ways""" p4d = tm.makePanel4D() def check_indexers(key, indexers): for i,idx in enumerate(indexers): self.assert_(getattr(getattr(self.store.root,key).table.description,idx)._v_pos == i) # append then change (will take existing schema) indexers = ['items','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # same as above, but try to append with differnt axes self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:], axes=['labels','items','major_axis']) tm.assert_panel4d_equal(self.store.select('p4d'),p4d) check_indexers('p4d',indexers) # pass incorrect number of axes self.store.remove('p4d') self.assertRaises(Exception, self.store.append, 'p4d', p4d.ix[:,:,:10,:], axes=['major_axis','minor_axis']) # different than default indexables #1 indexers = ['labels','major_axis','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # different than default indexables #2 indexers = ['major_axis','labels','minor_axis'] self.store.remove('p4d') self.store.append('p4d', p4d.ix[:,:,:10,:], axes=indexers) self.store.append('p4d', p4d.ix[:,:,10:,:]) tm.assert_panel4d_equal(self.store['p4d'], p4d) check_indexers('p4d',indexers) # partial selection result = self.store.select('p4d',['labels=l1']) expected = p4d.reindex(labels = ['l1']) tm.assert_panel4d_equal(result, expected) # partial selection2 result = self.store.select('p4d',[Term('labels=l1'), Term('items=ItemA'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = ['ItemA'], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) # non-existant partial selection result = self.store.select('p4d',[Term('labels=l1'), Term('items=Item1'), Term('minor_axis=B')]) expected = p4d.reindex(labels = ['l1'], items = [], minor_axis = ['B']) tm.assert_panel4d_equal(result, expected) def test_append_with_strings(self): wp = tm.makePanel() wp2 = wp.rename_axis(dict([ (x,"%s_extra" % x) for x in wp.minor_axis ]), axis = 2) self.store.append('s1', wp, min_itemsize = 20) self.store.append('s1', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s1'], expected) # test dict format self.store.append('s2', wp, min_itemsize = { 'minor_axis' : 20 }) self.store.append('s2', wp2) expected = concat([ wp, wp2], axis = 2) expected = expected.reindex(minor_axis = sorted(expected.minor_axis)) tm.assert_panel_equal(self.store['s2'], expected) # apply the wrong field (similar to #1) self.store.append('s3', wp, min_itemsize = { 'major_axis' : 20 }) self.assertRaises(Exception, self.store.append, 's3') # test truncation of bigger strings self.store.append('s4', wp) self.assertRaises(Exception, self.store.append, 's4', wp2) # avoid truncation on elements df = DataFrame([[123,'asdqwerty'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big',df, min_itemsize = { 'values' : 1024 }) tm.assert_frame_equal(self.store.select('df_big'), df) # appending smaller string ok df2 = DataFrame([[124,'asdqy'], [346,'dggnhefbdfb']]) self.store.append('df_big',df2) expected = concat([ df, df2 ]) tm.assert_frame_equal(self.store.select('df_big'), expected) # avoid truncation on elements df = DataFrame([[123,'as<PASSWORD>'], [345,'dggnhebbsdfbdfb']]) self.store.append('df_big2',df, min_itemsize = { 'values' : 10 }) tm.assert_frame_equal(self.store.select('df_big2'), df) # bigger string on next append self.store.append('df_new',df, min_itemsize = { 'values' : 16 }) df_new = DataFrame([[124,'abcdefqhij'], [346, 'abcdefghijklmnopqrtsuvwxyz']]) self.assertRaises(Exception, self.store.append, 'df_new',df_new) def test_create_table_index(self): wp = tm.makePanel() self.store.append('p5', wp) self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.is_indexed == True) assert(self.store.handle.root.p5.table.cols.minor_axis.is_indexed == False) # default optlevels assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') # let's change the indexing scheme self.store.create_table_index('p5') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 6) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', optlevel=9) assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'medium') self.store.create_table_index('p5', kind='full') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 9) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'full') self.store.create_table_index('p5', optlevel=1, kind='light') assert(self.store.handle.root.p5.table.cols.major_axis.index.optlevel == 1) assert(self.store.handle.root.p5.table.cols.major_axis.index.kind == 'light') df = tm.makeTimeDataFrame() self.store.append('f', df[:10]) self.store.append('f', df[10:]) self.store.create_table_index('f') # try to index a non-table self.store.put('f2', df) self.assertRaises(Exception, self.store.create_table_index, 'f2') # try to change the version supports flag from pandas.io import pytables pytables._table_supports_index = False self.assertRaises(Exception, self.store.create_table_index, 'f') # test out some versions original = tables.__version__ for v in ['2.2','2.2b']: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.assertRaises(Exception, self.store.create_table_index, 'f') for v in ['2.3.1','2.3.1b','2.4dev','2.4',original]: pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = v self.store.create_table_index('f') pytables._table_mod = None pytables._table_supports_index = False tables.__version__ = original def test_big_table(self): raise nose.SkipTest('no big table') # create and write a big table wp = Panel(np.random.randn(20, 1000, 1000), items= [ 'Item%s' % i for i in xrange(20) ], major_axis=date_range('1/1/2000', periods=1000), minor_axis = [ 'E%s' % i for i in xrange(1000) ]) wp.ix[:,100:200,300:400] = np.nan try: store = HDFStore(self.scratchpath) store._debug_memory = True store.append('wp',wp) recons = store.select('wp') finally: store.close() os.remove(self.scratchpath) def test_append_diff_item_order(self): raise nose.SkipTest('append diff item order') wp = tm.makePanel() wp1 = wp.ix[:, :10, :] wp2 = wp.ix[['ItemC', 'ItemB', 'ItemA'], 10:, :] self.store.put('panel', wp1, table=True) self.assertRaises(Exception, self.store.put, 'panel', wp2, append=True) def test_table_index_incompatible_dtypes(self): df1 = DataFrame({'a': [1, 2, 3]}) df2 = DataFrame({'a': [4, 5, 6]}, index=date_range('1/1/2000', periods=3)) self.store.put('frame', df1, table=True) self.assertRaises(Exception, self.store.put, 'frame', df2, table=True, append=True) def test_table_values_dtypes_roundtrip(self): df1 = DataFrame({'a': [1, 2, 3]}, dtype = 'f8') self.store.append('df1', df1) assert df1.dtypes == self.store['df1'].dtypes df2 = DataFrame({'a': [1, 2, 3]}, dtype = 'i8') self.store.append('df2', df2) assert df2.dtypes == self.store['df2'].dtypes # incompatible dtype self.assertRaises(Exception, self.store.append, 'df2', df1) def test_table_mixed_dtypes(self): # frame def _make_one_df(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['bool3'] = True df['int1'] = 1 df['int2'] = 2 return df.consolidate() df1 = _make_one_df() self.store.append('df1_mixed', df1) tm.assert_frame_equal(self.store.select('df1_mixed'), df1) # panel def _make_one_panel(): wp = tm.makePanel() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['ItemA'] > 0 wp['bool2'] = wp['ItemB'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p1 = _make_one_panel() self.store.append('p1_mixed', p1) tm.assert_panel_equal(self.store.select('p1_mixed'), p1) # ndim def _make_one_p4d(): wp = tm.makePanel4D() wp['obj1'] = 'foo' wp['obj2'] = 'bar' wp['bool1'] = wp['l1'] > 0 wp['bool2'] = wp['l2'] > 0 wp['int1'] = 1 wp['int2'] = 2 return wp.consolidate() p4d = _make_one_p4d() self.store.append('p4d_mixed', p4d) tm.assert_panel4d_equal(self.store.select('p4d_mixed'), p4d) def test_remove(self): ts = tm.makeTimeSeries() df = tm.makeDataFrame() self.store['a'] = ts self.store['b'] = df self.store.remove('a') self.assertEquals(len(self.store), 1) tm.assert_frame_equal(df, self.store['b']) self.store.remove('b') self.assertEquals(len(self.store), 0) # pathing self.store['a'] = ts self.store['b/foo'] = df self.store.remove('foo') self.store.remove('b/foo') self.assertEquals(len(self.store), 1) self.store['a'] = ts self.store['b/foo'] = df self.store.remove('b') self.assertEquals(len(self.store), 1) # __delitem__ self.store['a'] = ts self.store['b'] = df del self.store['a'] del self.store['b'] self.assertEquals(len(self.store), 0) def test_remove_where(self): # non-existance crit1 = Term('index','>','foo') self.store.remove('a', where=[crit1]) # try to remove non-table (with crit) # non-table ok (where = None) wp = tm.makePanel() self.store.put('wp', wp, table=True) self.store.remove('wp', [('minor_axis', ['A', 'D'])]) rs = self.store.select('wp') expected = wp.reindex(minor_axis = ['B','C']) tm.assert_panel_equal(rs,expected) # empty where self.store.remove('wp') self.store.put('wp', wp, table=True) # deleted number (entire table) n = self.store.remove('wp', []) assert(n == 120) # non - empty where self.store.remove('wp') self.store.put('wp', wp, table=True) self.assertRaises(Exception, self.store.remove, 'wp', ['foo']) # selectin non-table with a where #self.store.put('wp2', wp, table=False) #self.assertRaises(Exception, self.store.remove, # 'wp2', [('column', ['A', 'D'])]) def test_remove_crit(self): wp = tm.makePanel() # group row removal date4 = wp.major_axis.take([ 0,1,2,4,5,6,8,9,10 ]) crit4 = Term('major_axis',date4) self.store.put('wp3', wp, table=True) n = self.store.remove('wp3', where=[crit4]) assert(n == 36) result = self.store.select('wp3') expected = wp.reindex(major_axis = wp.major_axis-date4) tm.assert_panel_equal(result, expected) # upper half self.store.put('wp', wp, table=True) date = wp.major_axis[len(wp.major_axis) // 2] crit1 = Term('major_axis','>',date) crit2 = Term('minor_axis',['A', 'D']) n = self.store.remove('wp', where=[crit1]) assert(n == 56) n = self.store.remove('wp', where=[crit2]) assert(n == 32) result = self.store['wp'] expected = wp.truncate(after=date).reindex(minor=['B', 'C']) tm.assert_panel_equal(result, expected) # individual row elements self.store.put('wp2', wp, table=True) date1 = wp.major_axis[1:3] crit1 = Term('major_axis',date1) self.store.remove('wp2', where=[crit1]) result = self.store.select('wp2') expected = wp.reindex(major_axis=wp.major_axis-date1) tm.assert_panel_equal(result, expected) date2 = wp.major_axis[5] crit2 = Term('major_axis',date2) self.store.remove('wp2', where=[crit2]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])) tm.assert_panel_equal(result, expected) date3 = [wp.major_axis[7],wp.major_axis[9]] crit3 = Term('major_axis',date3) self.store.remove('wp2', where=[crit3]) result = self.store['wp2'] expected = wp.reindex(major_axis=wp.major_axis-date1-Index([date2])-Index(date3)) tm.assert_panel_equal(result, expected) # corners self.store.put('wp4', wp, table=True) n = self.store.remove('wp4', where=[Term('major_axis','>',wp.major_axis[-1])]) result = self.store.select('wp4') tm.assert_panel_equal(result, wp) def test_terms(self): wp = tm.makePanel() p4d = tm.makePanel4D() self.store.put('wp', wp, table=True) self.store.put('p4d', p4d, table=True) # some invalid terms terms = [ [ 'minor', ['A','B'] ], [ 'index', ['20121114'] ], [ 'index', ['20121114', '20121114'] ], ] for t in terms: self.assertRaises(Exception, self.store.select, 'wp', t) self.assertRaises(Exception, Term.__init__) self.assertRaises(Exception, Term.__init__, 'blah') self.assertRaises(Exception, Term.__init__, 'index') self.assertRaises(Exception, Term.__init__, 'index', '==') self.assertRaises(Exception, Term.__init__, 'index', '>', 5) # panel result = self.store.select('wp',[ Term('major_axis<20000108'), Term('minor_axis', '=', ['A','B']) ]) expected = wp.truncate(after='20000108').reindex(minor=['A', 'B']) tm.assert_panel_equal(result, expected) # p4d result = self.store.select('p4d',[ Term('major_axis<20000108'), Term('minor_axis', '=', ['A','B']), Term('items', '=', ['ItemA','ItemB']) ]) expected = p4d.truncate(after='20000108').reindex(minor=['A', 'B'],items=['ItemA','ItemB']) tm.assert_panel4d_equal(result, expected) # valid terms terms = [ dict(field = 'major_axis', op = '>', value = '20121114'), ('major_axis', '20121114'), ('major_axis', '>', '20121114'), (('major_axis', ['20121114','20121114']),), ('major_axis', datetime(2012,11,14)), 'major_axis>20121114', 'major_axis>20121114', 'major_axis>20121114', (('minor_axis', ['A','B']),), (('minor_axis', ['A','B']),), ((('minor_axis', ['A','B']),),), (('items', ['ItemA','ItemB']),), ('items=ItemA'), ] for t in terms: self.store.select('wp', t) self.store.select('p4d', t) # valid for p4d only terms = [ (('labels', '=', ['l1','l2']),), Term('labels', '=', ['l1','l2']), ] for t in terms: self.store.select('p4d', t) def test_series(self): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip(ts3, tm.assert_series_equal) def test_sparse_series(self): s = tm.makeStringSeries() s[3:5] = np.nan ss = s.to_sparse() self._check_roundtrip(ss, tm.assert_series_equal, check_series_type=True) ss2 = s.to_sparse(kind='integer') self._check_roundtrip(ss2, tm.assert_series_equal, check_series_type=True) ss3 = s.to_sparse(fill_value=0) self._check_roundtrip(ss3, tm.assert_series_equal, check_series_type=True) def test_sparse_frame(self): s = tm.makeDataFrame() s.ix[3:5, 1:3] = np.nan s.ix[8:10, -2] = np.nan ss = s.to_sparse() self._check_double_roundtrip(ss, tm.assert_frame_equal, check_frame_type=True) ss2 = s.to_sparse(kind='integer') self._check_double_roundtrip(ss2, tm.assert_frame_equal, check_frame_type=True) ss3 = s.to_sparse(fill_value=0) self._check_double_roundtrip(ss3, tm.assert_frame_equal, check_frame_type=True) def test_sparse_panel(self): items = ['x', 'y', 'z'] p = Panel(dict((i, tm.makeDataFrame().ix[:2, :2]) for i in items)) sp = p.to_sparse() self._check_double_roundtrip(sp, tm.assert_panel_equal, check_panel_type=True) sp2 = p.to_sparse(kind='integer') self._check_double_roundtrip(sp2, tm.assert_panel_equal, check_panel_type=True) sp3 = p.to_sparse(fill_value=0) self._check_double_roundtrip(sp3, tm.assert_panel_equal, check_panel_type=True) def test_float_index(self): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal) def test_tuple_index(self): # GH #492 col = np.arange(10) idx = [(0.,1.), (2., 3.), (4., 5.)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) self._check_roundtrip(DF, tm.assert_frame_equal) def test_index_types(self): values = np.random.randn(2) func = lambda l, r : tm.assert_series_equal(l, r, True, True, True) ser = Series(values, [0, 'y']) self._check_roundtrip(ser, func) ser = Series(values, [datetime.today(), 0]) self._check_roundtrip(ser, func) ser = Series(values, ['y', 0]) self._check_roundtrip(ser, func) from datetime import date ser = Series(values, [date.today(), 'a']) self._check_roundtrip(ser, func) ser = Series(values, [1.23, 'b']) self._check_roundtrip(ser, func) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func) ser = Series(values, [datetime(2012, 1, 1), datetime(2012, 1, 2)]) self._check_roundtrip(ser, func) def test_timeseries_preepoch(self): if sys.version_info[0] == 2 and sys.version_info[1] < 7: raise nose.SkipTest dr = bdate_range('1/1/1940', '1/1/1960') ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal) except OverflowError: raise nose.SkipTest('known failer on some windows platforms') def test_frame(self): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table(df, tm.assert_frame_equal) self._check_roundtrip(df, tm.assert_frame_equal) self._check_roundtrip_table(df, tm.assert_frame_equal, compression=True) self._check_roundtrip(df, tm.assert_frame_equal, compression=True) tdf = tm.makeTimeDataFrame() self._check_roundtrip(tdf, tm.assert_frame_equal) self._check_roundtrip(tdf, tm.assert_frame_equal, compression=True) # not consolidated df['foo'] = np.random.randn(len(df)) self.store['df'] = df recons = self.store['df'] self.assert_(recons._data.is_consolidated()) # empty self._check_roundtrip(df[:0], tm.assert_frame_equal) def test_empty_series_frame(self): s0 = Series() s1 = Series(name='myseries') df0 = DataFrame() df1 = DataFrame(index=['a', 'b', 'c']) df2 = DataFrame(columns=['d', 'e', 'f']) self._check_roundtrip(s0, tm.assert_series_equal) self._check_roundtrip(s1, tm.assert_series_equal) self._check_roundtrip(df0, tm.assert_frame_equal) self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) def test_can_serialize_dates(self): rng = [x.date() for x in bdate_range('1/1/2000', '1/30/2000')] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal) def test_timezones(self): rng = date_range('1/1/2000', '1/30/2000', tz='US/Eastern') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) try: store = HDFStore(self.scratchpath) store['frame'] = frame recons = store['frame'] self.assert_(recons.index.equals(rng)) self.assertEquals(rng.tz, recons.index.tz) finally: store.close() os.remove(self.scratchpath) def test_fixed_offset_tz(self): rng = date_range('1/1/2000 00:00:00-07:00', '1/30/2000 00:00:00-07:00') frame = DataFrame(np.random.randn(len(rng), 4), index=rng) try: store = HDFStore(self.scratchpath) store['frame'] = frame recons = store['frame'] self.assert_(recons.index.equals(rng)) self.assertEquals(rng.tz, recons.index.tz) finally: store.close() os.remove(self.scratchpath) def test_store_hierarchical(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['foo', 'bar']) frame = DataFrame(np.random.randn(10, 3), index=index, columns=['A', 'B', 'C']) self._check_roundtrip(frame, tm.assert_frame_equal) self._check_roundtrip(frame.T, tm.assert_frame_equal) self._check_roundtrip(frame['A'], tm.assert_series_equal) # check that the names are stored try: store = HDFStore(self.scratchpath) store['frame'] = frame recons = store['frame'] assert(recons.index.names == ['foo', 'bar']) finally: store.close() os.remove(self.scratchpath) def test_store_index_name(self): df = tm.makeDataFrame() df.index.name = 'foo' try: store = HDFStore(self.scratchpath) store['frame'] = df recons = store['frame'] assert(recons.index.name == 'foo') finally: store.close() os.remove(self.scratchpath) def test_store_series_name(self): df = tm.makeDataFrame() series = df['A'] try: store = HDFStore(self.scratchpath) store['series'] = series recons = store['series'] assert(recons.name == 'A') finally: store.close() os.remove(self.scratchpath) def test_store_mixed(self): def _make_one(): df = tm.makeDataFrame() df['obj1'] = 'foo' df['obj2'] = 'bar' df['bool1'] = df['A'] > 0 df['bool2'] = df['B'] > 0 df['int1'] = 1 df['int2'] = 2 return df.consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal) self._check_roundtrip(df2, tm.assert_frame_equal) self.store['obj'] = df1 tm.assert_frame_equal(self.store['obj'], df1) self.store['obj'] = df2 tm.assert_frame_equal(self.store['obj'], df2) # check that can store Series of all of these types self._check_roundtrip(df1['obj1'], tm.assert_series_equal) self._check_roundtrip(df1['bool1'], tm.assert_series_equal) self._check_roundtrip(df1['int1'], tm.assert_series_equal) # try with compression self._check_roundtrip(df1['obj1'], tm.assert_series_equal, compression=True) self._check_roundtrip(df1['bool1'], tm.assert_series_equal, compression=True) self._check_roundtrip(df1['int1'], tm.assert_series_equal, compression=True) self._check_roundtrip(df1, tm.assert_frame_equal, compression=True) def test_wide(self): wp = tm.makePanel() self._check_roundtrip(wp, tm.assert_panel_equal) def test_wide_table(self): wp = tm.makePanel() self._check_roundtrip_table(wp, tm.assert_panel_equal) def test_wide_table_dups(self): wp = tm.makePanel() try: store = HDFStore(self.scratchpath) store._quiet = True store.put('panel', wp, table=True) store.put('panel', wp, table=True, append=True) recons = store['panel'] tm.assert_panel_equal(recons, wp) finally: store.close() os.remove(self.scratchpath) def test_long(self): def _check(left, right): tm.assert_panel_equal(left.to_panel(), right.to_panel()) wp = tm.makePanel() self._check_roundtrip(wp.to_frame(), _check) # empty # self._check_roundtrip(wp.to_frame()[:0], _check) def test_longpanel(self): pass def test_overwrite_node(self): self.store['a'] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() self.store['a'] = ts tm.assert_series_equal(self.store['a'], ts) def test_select(self): wp = tm.makePanel() # put/select ok self.store.remove('wp') self.store.put('wp', wp, table=True) self.store.select('wp') # non-table ok (where = None) self.store.remove('wp') self.store.put('wp2', wp, table=False) self.store.select('wp2') # selection on the non-indexable with a large number of columns wp = Panel(np.random.randn(100, 100, 100), items = [ 'Item%03d' % i for i in xrange(100) ], major_axis=date_range('1/1/2000', periods=100), minor_axis = [ 'E%03d' % i for i in xrange(100) ]) self.store.remove('wp') self.store.append('wp', wp) items = [ 'Item%03d' % i for i in xrange(80) ] result = self.store.select('wp', Term('items', items)) expected = wp.reindex(items = items)
tm.assert_panel_equal(expected, result)
pandas.util.testing.assert_panel_equal
# Author: <NAME> (http://falexwolf.de) # T. Callies """Rank genes according to differential expression. """ import numpy as np import pandas as pd from math import sqrt, floor from scipy.sparse import issparse from .. import utils from .. import settings from .. import logging as logg from ..preprocessing import simple def rank_genes_groups( adata, group_by, use_raw=True, groups='all', reference='rest', n_genes=100, compute_distribution=False, only_positive=True, copy=False, test_type='t-test_overestim_var', correction_factors=None): """Rank genes according to differential expression [Wolf17]_. Rank genes by differential expression. By default, a t-test-like ranking is used, in which means are normalized with variances. Parameters ---------- adata : :class:`~scanpy.api.AnnData` Annotated data matrix. group_by : `str` The key of the sample grouping to consider. use_raw : `bool`, optional (default: `True`) Use `raw` attribute of `adata` if present. groups : `str`, `list`, optional (default: `'all'`) Subset of groups, e.g. `['g1', 'g2', 'g3']`, to which comparison shall be restricted. If not passed, a ranking will be generated for all groups. reference : `str`, optional (default: `'rest'`) If `'rest'`, compare each group to the union of the rest of the group. If a group identifier, compare with respect to this group. n_genes : `int`, optional (default: 100) The number of genes that appear in the returned tables. test_type : {'t-test_overestim_var', 't-test', 'wilcoxon', , 't-test_double_overestim_var', 't-test_correction_factors'}, optional (default: 't-test_overestim_var') If 't-test', use t-test to calculate test statistics. If 'wilcoxon', use Wilcoxon-Rank-Sum to calculate test statistic. If 't-test_overestim_var', overestimate variance. 't-test_double_overestim_var', additionally, underestimate variance of the rest 't-test_correction_factors', define correction factors manually only_positive : bool, optional (default: `True`) Only consider positive differences. correction_factors: [a,b], optional (default: None) Only for the test-type 't-test_correction_factors'. Then, a determines correction factor for group variance, b determines correction factor for variance of the comparison group Returns ------- rank_genes_groups_gene_scores : structured `np.ndarray` (adata.uns) Structured array to be indexed by group id of shape storing the zscore for each gene for each group. rank_genes_groups_gene_names : structured `np.ndarray` (adata.uns) Structured array to be indexed by group id for storing the gene names. """ logg.info('rank differentially expressed genes', r=True) adata = adata.copy() if copy else adata utils.sanitize_anndata(adata) if compute_distribution: logg.warn('`compute_distribution` is deprecated, as it requires storing' 'a shifted and rescaled disribution for each gene' 'You can now run `sc.pl.rank_genes_groups_violin` without it, ' 'which will show the original distribution of the gene.') # for clarity, rename variable groups_order = groups if isinstance(groups_order, list) and isinstance(groups_order[0], int): groups_order = [str(n) for n in groups_order] if reference != 'rest' and reference not in set(groups_order): groups_order += [reference] if (reference != 'rest' and reference not in set(adata.obs[group_by].cat.categories)): raise ValueError('reference = {} needs to be one of group_by = {}.' .format(reference, adata.obs[group_by].cat.categories.tolist())) groups_order, groups_masks = utils.select_groups( adata, groups_order, group_by) adata.uns['rank_genes_groups_params'] = np.array( (group_by, reference, test_type, use_raw), dtype=[('group_by', 'U50'), ('reference', 'U50'), ('test_type', 'U50'), ('use_raw', np.bool_)]) # adata_comp mocks an AnnData object if use_raw is True # otherwise it's just the AnnData object adata_comp = adata if adata.raw is not None and use_raw: adata_comp = adata.raw X = adata_comp.X # for clarity, rename variable n_genes_user = n_genes # make sure indices are not OoB in case there are less genes than n_genes if n_genes_user > X.shape[1]: n_genes_user = X.shape[1] # in the following, n_genes is simply another name for the total number of genes n_genes = X.shape[1] rankings_gene_zscores = [] rankings_gene_names = [] n_groups = groups_masks.shape[0] ns = np.zeros(n_groups, dtype=int) for imask, mask in enumerate(groups_masks): ns[imask] = np.where(mask)[0].size logg.info(' consider \'{}\':'.format(group_by), groups_order, 'with sample numbers', ns) if reference != 'rest': ireference = np.where(groups_order == reference)[0][0] reference_indices = np.arange(adata_comp.n_vars, dtype=int) avail_tests = {'t-test', 't-test_overestim_var', 'wilcoxon', 't-test_double_overestim_var', 't-test_correction_factors'} if test_type not in avail_tests: raise ValueError('test_type should be one of {}.' '"t-test_overestim_var" is being used as default.' .format(avail_tests)) if test_type is 't-test_correction_factors': if correction_factors is None: raise ValueError('For this test type, you need to enter correction factors manually.') if len(correction_factors) != 2: raise ValueError('We need exactly 2 correction factors, accessible via correction_factors[i], i=0,1') if correction_factors[0]<0 or correction_factors[1]<0: raise ValueError('Correction factors need to be positive numbers!') if test_type in {'t-test', 't-test_overestim_var', 't-test_double_overestim_var', 't-test_correction_factors'}: # loop over all masks and compute means, variances and sample numbers means = np.zeros((n_groups, n_genes)) vars = np.zeros((n_groups, n_genes)) for imask, mask in enumerate(groups_masks): means[imask], vars[imask] = simple._get_mean_var(X[mask]) # test each either against the union of all other groups or against a # specific group for igroup in range(n_groups): if reference == 'rest': mask_rest = ~groups_masks[igroup] else: if igroup == ireference: continue else: mask_rest = groups_masks[ireference] mean_rest, var_rest = simple._get_mean_var(X[mask_rest]) if test_type == 't-test': ns_rest = np.where(mask_rest)[0].size elif test_type == 't-test_correction_factors': # The tendency is as follows: For the comparison group (rest), overesimate variance --> smaller ns_rest ns_rest = np.where(mask_rest)[0].size/correction_factors[1] else: # hack for overestimating the variance ns_rest = ns[igroup] if test_type in {'t-test', 't-test_overestim_var'}: ns_group=ns[igroup] elif test_type == 't-test_correction_factors': # We underestimate group variance by increasing denominator, i.e. ns_group ns_group=ns[igroup]*correction_factors[0] else : # We do the opposite of t-test_overestim_var ns_group=np.where(mask_rest)[0].size denominator = np.sqrt(vars[igroup]/ns_group + var_rest/ns_rest) denominator[np.flatnonzero(denominator == 0)] = np.nan zscores = (means[igroup] - mean_rest) / denominator zscores[np.isnan(zscores)] = 0 zscores = zscores if only_positive else np.abs(zscores) partition = np.argpartition(zscores, -n_genes_user)[-n_genes_user:] partial_indices = np.argsort(zscores[partition])[::-1] global_indices = reference_indices[partition][partial_indices] rankings_gene_zscores.append(zscores[global_indices]) rankings_gene_names.append(adata_comp.var_names[global_indices]) if compute_distribution: mask = groups_masks[igroup] for gene_counter in range(n_genes_user): gene_idx = global_indices[gene_counter] X_col = X[mask, gene_idx] if issparse(X): X_col = X_col.toarray()[:, 0] identifier = _build_identifier(group_by, groups_order[igroup], gene_counter, adata_comp.var_names[gene_idx]) full_col = np.empty(adata.n_obs) full_col[:] = np.nan full_col[mask] = (X_col - mean_rest[gene_idx]) / denominator[gene_idx] adata.obs[identifier] = full_col elif test_type == 'wilcoxon': # Wilcoxon-rank-sum test is usually more powerful in detecting marker genes # Limit maximal RAM that is required by the calculation. Currently set fixed to roughly 100 MByte CONST_MAX_SIZE = 10000000 ns_rest = np.zeros(n_groups, dtype=int) # initialize space for z-scores zscores = np.zeros(n_genes) # First loop: Loop over all genes if reference != 'rest': for imask, mask in enumerate(groups_masks): if imask == ireference: continue else: mask_rest = groups_masks[ireference] ns_rest[imask] = np.where(mask_rest)[0].size if ns_rest[imask] <= 25 or ns[imask] <= 25: logg.hint('Few observations in a group for ' 'normal approximation (<=25). Lower test accuracy.') n_active = ns[imask] m_active = ns_rest[imask] # Now calculate gene expression ranking in chunkes: chunk = [] # Calculate chunk frames n_genes_max_chunk = floor(CONST_MAX_SIZE / (n_active + m_active)) if n_genes_max_chunk < n_genes - 1: chunk_index = n_genes_max_chunk while chunk_index < n_genes - 1: chunk.append(chunk_index) chunk_index = chunk_index + n_genes_max_chunk chunk.append(n_genes - 1) else: chunk.append(n_genes - 1) left = 0 # Calculate rank sums for each chunk for the current mask for chunk_index, right in enumerate(chunk): # Check if issparse is true: AnnData objects are currently sparse.csr or ndarray. if issparse(X): df1 = pd.DataFrame(data=X[mask, left:right].todense()) df2 = pd.DataFrame(data=X[mask_rest, left:right].todense(), index=np.arange(start=n_active, stop=n_active + m_active)) else: df1 =
pd.DataFrame(data=X[mask, left:right])
pandas.DataFrame
from json import load from matplotlib.pyplot import title from database.database import DbClient from discord import Embed import pandas as pd from util.data import load_data class Analytics: def __init__(self, server_id: str, db): self.server_id = server_id self.db = db @staticmethod def no_data_embed(topic: str) -> Embed: """CREATE AN EMBED IF NO DATA WAS COLLECTED""" embed = Embed(title="SORRY", description=f"Sorry, but there were no `{topic}` data collected on this server!") return embed async def analyze_message(self): """ANALYZE THE MESSAGE DATA""" data = await load_data(self.db, self.server_id) data = data["message"] if len(data) == 0: return self.no_data_embed("message") # ANALYZE THE DATA: df = pd.DataFrame(data) channelid_counts = pd.value_counts(df["channelid"]) role_counts = pd.value_counts(df["roles"]) df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embed_title = "Message ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed message data"), Embed(title=embed_title, description="Message counted in channels:\n"f"```{channelid_counts}```"), Embed(title=embed_title, description="Message send from roles:\n"f"```{role_counts}```"), Embed(title=embed_title, description="Message counted in which hours:\n"f"```{hours_count}```"), Embed(title=embed_title, description="Message counted on which weekday:\n"f"```{weekday_count}```") ] return embeds async def analyze_message_delete(self): """ANALYZE MESSAGE DELETE""" data = await load_data(self.db, self.server_id) data = data["message_delete"] if len(data) == 0: return self.no_data_embed("message delete") # ANALYZE THE DATA df = pd.DataFrame(data) role_counts = pd.value_counts(df["roles"]) channelid_counts = pd.value_counts(df["channelid"]) df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embed_title = "Message delete ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed message edit data"), Embed(title=embed_title, description="Message delete counted in channels:\n"f"```{channelid_counts}```"), Embed(title=embed_title, description="Message delete from roles:\n"f"```{role_counts}```"), Embed(title=embed_title, description="Message delete counted in which hours:\n"f"```{hours_count}```"), Embed(title=embed_title, description="Message delete counted on which weekday:\n"f"```{weekday_count}```") ] return embeds async def analyze_message_edit(self): """ANALYZE MESSAGE EDIT""" data = await load_data(self.db, self.server_id) data = data["message_edit"] if len(data) == 0: return self.no_data_embed("message edit") # ANALYZE THE DATA df = pd.DataFrame(data) role_counts = pd.value_counts(df["roles"]) channelid_counts = pd.value_counts(df["channelid"]) df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embed_title = "Message edit ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed message edit data"), Embed(title=embed_title, description="Message edits counted in channels:\n"f"```{channelid_counts}```"), Embed(title=embed_title, description="Message edits from roles:\n"f"```{role_counts}```"), Embed(title=embed_title, description="Message edits counted in which hours:\n"f"```{hours_count}```"), Embed(title=embed_title, description="Message edits counted on which weekday:\n"f"```{weekday_count}```") ] return embeds async def analyze_reaction(self): """ANALYZE THE REACTION DATA""" data = await load_data(self.db, self.server_id) data = data["reaction"] if len(data) == 0: return self.no_data_embed("reaction") # ANALYZE THE DATA: df = pd.DataFrame(data) name_count = pd.value_counts(df["reactionname"]) role_counts = pd.value_counts(df["roles"]) channelid_counts = pd.value_counts(df["channelid"]) df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embed_title = "Reaction ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed reaction data"), Embed(title=embed_title, description="Reaction counted by name:\n"f"```{name_count}```"), Embed(title=embed_title, description="Reaction counted in channels:\n"f"```{channelid_counts}```"), Embed(title=embed_title, description="Reaction send from roles:\n"f"```{role_counts}```"), Embed(title=embed_title, description="Reaction counted in which hours:\n"f"```{hours_count}```"), Embed(title=embed_title, description="Reaction counted on which weekday:\n"f"```{weekday_count}```") ] return embeds async def analyze_botrequests(self): """ANALYZE THE BOT-REQUESTS DATA""" data = await load_data(self.db, self.server_id) data = data["bot_requests"] if len(data) == 0: return self.no_data_embed("bot-requests") # ANALYZE THE DATA: df = pd.DataFrame(data) name_count = pd.value_counts(df["cmdname"]) role_counts = pd.value_counts(df["roles"]) channelid_counts = pd.value_counts(df["channelid"]) embed_title = "Bot-Requests ~ Analytics" df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embeds = [ Embed(title=embed_title, description="Here you can see the analyzed bot-requests data"), Embed(title=embed_title, description="Executed CMD-names counted:\n"f"```{name_count}```"), Embed(title=embed_title, description="Bot-Requests messages counted in channels:\n"f"```{channelid_counts}```"), Embed(title=embed_title, description="Bot-Requests messages send from roles:\n"f"```{role_counts}```"), Embed(title=embed_title, description="Bot-Requests counted in which hours:\n"f"```{hours_count}```"), Embed(title=embed_title, description="Bot-Requests counted on which weekday:\n"f"```{weekday_count}```") ] return embeds async def analyze_botmsg(self): """ANALYZE THE BOT MSG DATA""" data = await load_data(self.db, self.server_id) data = data["bot_msg"] if len(data) == 0: return self.no_data_embed("bot-message") # ANALYZE THE DATA: df = pd.DataFrame(data) channelid_counts = pd.value_counts(df["channelid"]) role_counts = pd.value_counts(df["roles"]) df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embed_title = "Bot-Message ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed bot-message data"), Embed(title=embed_title, description=f"Total bot messages: {len(data)}"), Embed(title=embed_title, description="BotMessages counted in channels:\n"f"```{channelid_counts}```"), Embed(title=embed_title, description="BotMessages send from roles:\n"f"```{role_counts}```"), Embed(title=embed_title, description="BotMessages send in which hours:\n"f"```{hours_count}```"), Embed(title=embed_title, description="BotMessages send on which day:\n"f"```{weekday_count}```") ] return embeds async def analyze_users(self): # TODO show last 10 users at timestamp data = await load_data(self.db, self.server_id) data = data["users"] if len(data) == 0: return self.no_data_embed("users") # ANALYZE THE DATA: df = pd.DataFrame(data) result = df.head(10) #df["timestamp"] = pd.to_datetime(df["timestamp"]) #df["hours"] = df["timestamp"].dt.hour #df["weekday"] = df["timestamp"].dt.day_name() #hours_count = pd.value_counts(df["hours"]) #weekday_count = pd.value_counts(df["weekday"]) embed_title = "Users ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed users data"), Embed(title=embed_title, description=f"```{result}```") #Embed(title=embed_title, description="Users counted in which hours:\n"f"```{hours_count}```"), #Embed(title=embed_title, description="Users counted in which hours:\n"f"```{hours_count}```"), #Embed(title=embed_title, description="Users counted on which weekdays:\n"f"```{weekday_count}```") ] return embeds async def analyze_userjoin(self): data = await load_data(self.db, self.server_id) data = data["userjoins"] if len(data) == 0: return self.no_data_embed("userjoins") # ANALYZE THE DATA: df = pd.DataFrame(data) df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embed_title = "Userjoin ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed message data"), Embed(title=embed_title, description="Userjoins counted in which hours:\n"f"```{hours_count}```"), Embed(title=embed_title, description="Userjoins counted on which weekdays:\n"f"```{weekday_count}```") ] return embeds async def analyze_userleave(self): data = await load_data(self.db, self.server_id) data = data["userleave"] if len(data) == 0: return self.no_data_embed("userleave") # ANALYZE THE DATA: df = pd.DataFrame(data) df["timestamp"] = pd.to_datetime(df["timestamp"]) df["hours"] = df["timestamp"].dt.hour df["weekday"] = df["timestamp"].dt.day_name() hours_count = pd.value_counts(df["hours"]) weekday_count = pd.value_counts(df["weekday"]) embed_title = "Userleave ~ Analytics" embeds = [ Embed(title=embed_title, description="Here you can see the analyzed message data"), Embed(title=embed_title, description="Userleaves counted in which hour:\n"f"```{hours_count}```"), Embed(title=embed_title, description="Userleaves counted on which weekday:\n"f"```{weekday_count}```") ] return embeds async def analyze_mentions(self): data = await load_data(self.db, self.server_id) data = data["mentions"] if len(data) == 0: return self.no_data_embed("mentions") # ANALYZE THE DATA: df =
pd.DataFrame(data)
pandas.DataFrame
""" Construct dataset """ import math import pandas as pd import numpy as np import keras import csv def one_hot_encode_object_array(arr, nr_classes): '''One hot encode a numpy array of objects (e.g. strings)''' _, ids = np.unique(arr, return_inverse=True) return keras.utils.to_categorical(ids, nr_classes) def produce_diff(model, result_dir, down_station, input_list, include_time, sample_size, network_type, denormalise, roundit): # include_diff always false, we don't need to prodice a diff for models that include a diff in the input (y_train, x_train, y_cv, x_cv, y_test, x_test, _, _, train_y_max, train_y_min, train_idx, test_idx, cv_idx, _, _) = construct(down_station, input_list, include_time, sample_size, network_type) y_train_pred = model.predict(x_train) y_train_pred = y_train_pred.ravel() y_cv_pred = model.predict(x_cv) y_cv_pred = y_cv_pred.ravel() y_test_pred = model.predict(x_test) y_test_pred = y_test_pred.ravel() pred = np.concatenate((y_train_pred, y_test_pred, y_cv_pred)) real = np.concatenate((y_train, y_test, y_cv)) idx = np.concatenate((train_idx, test_idx, cv_idx)) if denormalise: pred = pred * (train_y_max - train_y_min) + train_y_min real = real * (train_y_max - train_y_min) + train_y_min if roundit: pred = np.rint(pred) real = np.rint(real) pred_file = '{0}/{1}-pred-{2}.txt'.format(result_dir, down_station, network_type) np.savetxt(pred_file, np.transpose((idx, pred)), delimiter=',', fmt="%s") real_file = '{0}/{1}-real-{2}.txt'.format(result_dir, down_station, network_type) np.savetxt(real_file, np.transpose((idx, real)), delimiter=',', fmt="%s") diff_file = open('{0}/{1}-diff-{2}.txt'.format(result_dir, down_station, network_type), 'w+') np.savetxt(diff_file, np.transpose((idx, np.subtract(real, pred))), delimiter=',', fmt="%s") # input_list is a tuple (input_name, interpolation_method, shift_offset, trim_nan) def construct(down_station, input_list, include_time, sample_size, network_type): """Construct training dataset""" time_resolution = '1H' print('Constructing training data with resolution {0}'.format(time_resolution)) ################################################################################################ # downstream station target = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(down_station), parse_dates=['Date']) target = target.set_index(['Date']) target.index = pd.to_datetime(target.index) target_mean = target.resample(time_resolution).mean() first_date = target_mean.index.values[0] last_date = target_mean.index.values[-1] target_mean = target_mean.interpolate(method='linear') target_count = target.resample(time_resolution).count() target_count = target_count.values.astype(int)[:, 0] target_count = np.convolve(target_count, np.ones(24, dtype=int), 'full') # ignore training sample if more than day's worth of data is missing print('Downstream data for {0} downsampled'.format(down_station)) ################################################################################################ # input stations inputs_mean = [] inputs_count = [] for input_idx in range(0, len(input_list)): input_name = input_list[input_idx][0] input_interpolation_method = input_list[input_idx][1] input_shift_offset = input_list[input_idx][2] input_data = pd.read_csv('../data/all_clean/{0}-clean.txt'.format(input_name), parse_dates=['Date']) input_data = input_data.set_index(['Date']) input_data.index = pd.to_datetime(input_data.index) if input_interpolation_method == 'linear': input_data_mean = input_data.resample(time_resolution).mean() else: input_data_mean = input_data.resample(time_resolution).pad() if input_shift_offset > 0: input_data_mean = input_data_mean.shift(sample_size) input_data_first_date = input_data_mean.index.values[0] if input_data_first_date > first_date: first_date = input_data_first_date input_data_last_date = input_data_mean.index.values[-1] if input_data_last_date < last_date: last_date = input_data_last_date input_data_mean = input_data_mean.interpolate(method=input_interpolation_method) input_data_count = input_data.resample(time_resolution).count() input_data_count = input_data_count.values.astype(int)[:, 0] input_data_count = np.convolve(input_data_count, np.ones(24, dtype=int), 'full') # ignore training sample if more than day's worth of data is missing inputs_mean.append(input_data_mean) inputs_count.append(input_data_count) print('Input for {0} downsampled using {1} interpolation and shift of {2} timesteps'.format(input_name, input_interpolation_method, input_shift_offset)) ################################################################################################ # trim input and output arrays to equal lengths print('Data before {0} ignored'.format(first_date)) print('Data after {0} ignored'.format(last_date)) lower_idx = 0 upper_idx = 0 for input_idx in range(0, len(inputs_mean)): lower_idx = inputs_mean[input_idx].index.get_loc(first_date) upper_idx = inputs_mean[input_idx].index.get_loc(last_date) inputs_mean[input_idx] = inputs_mean[input_idx].head(upper_idx).tail(upper_idx - lower_idx) inputs_count[input_idx] = inputs_count[input_idx][sample_size+lower_idx:upper_idx] print('{0} training samples before trimming dates'.format(target_mean.index.size)) lower_idx = target_mean.index.get_loc(first_date) upper_idx = target_mean.index.get_loc(last_date) target_mean = target_mean.head(upper_idx).tail(upper_idx - lower_idx - sample_size) print('{0} training samples after trimming dates'.format(target_mean.index.size)) target_count = target_count[sample_size+lower_idx:upper_idx] train = target_mean.copy(deep=True) ################################################################################################ # Add time sine and cosine values time_inputs = 0 if include_time: print('Including time of year as input') day_of_year = target_mean.index.to_series().apply(lambda x: x.timetuple().tm_yday/365.25 * 2 * math.pi) # day_of_year = target_mean.index.to_series().apply(lambda x: (x.timetuple().tm_yday - 1)/365.25 * 2 * math.pi) # this is more correct time_sin = day_of_year.apply(np.sin) time_cos = day_of_year.apply(np.cos) if (network_type == 'bnn') or (network_type == 'cnn') or (network_type == 'multi_cnn') or (network_type == 'multi_cnn_custom') or (network_type == 'rnn_lstm') or (network_type == 'rnn_gru'): for i in range(0, sample_size): train['TimeSin{0}'.format(i)] = time_sin train['TimeCos{0}'.format(i)] = time_cos else: train['TimeSin'] = time_sin train['TimeCos'] = time_cos time_inputs = 2 ################################################################################################ # Add inputs to training dataset for input_idx in range(0, len(input_list)): input_name = input_list[input_idx][0] for i in range(0, sample_size): shifted = inputs_mean[input_idx].shift(sample_size-i) train['Inflow_{0}_{1}'.format(input_name, i)] = shifted # Last column should be target values train = train.assign(Target=target_mean.values.astype(float)) ############################################################################################################# # Nuke samples where too much data is missing mask = target_count.astype(float) mask[mask == 0] = 'nan' # uncomment if you want to trim based on high/low flow regime # mask_y = train.values[:, -1] # mask[mask_y > 200] = 'nan' for input_idx in range(0, len(input_list)): input_name = input_list[input_idx][0] trim_nan = input_list[input_idx][3] if trim_nan: mask_input = inputs_count[input_idx] mask[mask_input == 0] = 'nan' print('Removing nan values for {0}'.format(input_name)) else: print('Not removing nan values for {0}'.format(input_name)) # creating copy for running full prediction on traincopy = train.copy() print('{0} training samples before trimming missing values'.format(train.index.size)) train = train.assign(Mask=mask) train = train.dropna(axis=0, subset=train.columns[:]) print('{0} training samples after trimming missing values'.format(train.index.size)) ############################################################################################################# # Clean up unused columns train = train.drop('Value', 1) train = train.drop('Mask', 1) traincopy = traincopy.drop('Value', 1) ############################################################################################################# # Split training, CV and test datasets idx_test = int(0.6 * len(train)) idx_cv = int(0.8 * len(train)) cv = train.tail(len(train) - idx_cv) test = train.head(idx_cv).tail(idx_cv - idx_test) train = train.head(idx_test) ############################################################################################################# # Split input and output full_first_date =
pd.to_datetime("2011-08-01 00:00:00")
pandas.to_datetime
import argparse import pandas as pd from shapely import geometry import helpers import json from polygon_geohasher import polygon_geohasher from tqdm import tqdm CELL_SIZE_X = 360.0 / 4320.0 CELL_SIZE_Y = 180.0 / 2160.0 def parse_args(): parser = argparse.ArgumentParser( description="Converts SPAM2017 crop information into a geohashed CSV." ) parser.add_argument("--input_file", type=str, required=True) parser.add_argument("--output_file", type=str, default="./output.csv") parser.add_argument("--country_iso", type=str) parser.add_argument("--coverage_file", type=str) parser.add_argument("--crop_columns", nargs="+", type=str, required=True) parser.add_argument("--geohash_level", type=int, default=5) return parser.parse_args() def main(): args = parse_args() # load the csv file into pandas for cleanup print('Loading...') df = pd.read_csv(args.input_file) # filter down to area of interest records print('Finding AoI...') geohashes_aoi = set() if args.coverage_file is not None: # loading coverage polygon from geo json file coverage_geojson = json.load(open(args.coverage_file)) # generate geohashes covered by the AoI geohashes_aoi = helpers.geohashes_from_geojson_poly( coverage_geojson, precision=args.geohash_level ) # filter down to country of interest records elif args.country_iso is not None: df = df.loc[df["iso3"] == args.country_iso] # extract x, y locations and crop of interest df = df[(["x", "y"] + args.crop_columns)] df = df.reset_index() # loop over the x, y which are the cell centroids, and generate a bounding box based on # the cell size (taken from the associated geotiff resolution) print('Converting points to bounds...') centroids = zip(df["x"], df["y"]) bounds = [ geometry.box( c[0] - CELL_SIZE_X / 2, c[1] - CELL_SIZE_Y / 2, c[0] + CELL_SIZE_X / 2, c[1] + CELL_SIZE_Y / 2, ) for c in tqdm(centroids) ] # loop through the bounds we've created and intersect each with the intended geohash grid print('Converting bounds to geohashes...') geohashes = [ polygon_geohasher.polygon_to_geohashes( b, precision=args.geohash_level, inner=False ) for b in tqdm(bounds) ] # flatten gh set for each cell preserving index - no clean way to do this in pandas flattened_gh = [] print('Clipping geohashes to AoI...') for idx, gh_set in tqdm(enumerate(geohashes)): for gh in gh_set: if (len(geohashes_aoi) > 0 and gh in geohashes_aoi) or len( geohashes_aoi ) is 0: bounds_str = helpers.geohash_to_array_str(gh) flattened_gh.append((idx, gh, bounds_str)) # store as a dataframe with any geohashes that were part of 2 cells reduced to 1 # a better implementation of this would take the value of both cells into account and # compute a final adjusted value for the given geohash print('Genering output csv...') geohash_df =
pd.DataFrame(flattened_gh, columns=["cell", "geohash", "bounds"])
pandas.DataFrame
import sys from pathlib import Path from itertools import chain from typing import List import numpy as np import pandas as pd import pandas_flavor as pf from janitor import clean_names sys.path.append(str(Path.cwd())) from config import root_dir # noqa E402 from utils import ( # noqa: E402 get_module_purpose, read_args, read_ff_csv, retrieve_team_abbreviation, ) def clean_game_date(season_year: int, date: str) -> str: """Creates a date string from a season year and date string. Args: season_year (int): The season year. date (str): The date string. Returns: str: The date string if the date is part of the regular season, otherwise returns 'non-regular-season'. """ if len(date) == 3 and date[0] == "9": return f"{season_year}-09-{date[1:]}" elif len(date) == 4 and int(date[:2]) > 9: return f"{season_year}-{date[:2]}-{date[2:]}" elif len(date) == 3 and date[0] in ["1", "2"]: season_year += 1 return f"{season_year}-0{date[0]}-{date[1:]}" else: return "non-regular-season" @pf.register_dataframe_method def clean_games_date( df: pd.DataFrame, season_year: int, date_column: str = "date" ) -> pd.DataFrame: df[date_column] = ( df[date_column].astype(str).apply(lambda x: clean_game_date(season_year, x)) ) return df # create game id @pf.register_dataframe_method def create_game_id(df: pd.DataFrame) -> pd.DataFrame: """Create a unique id for each game. Assumes every two rows are a single game. Args: df (pd.DataFrame): Dataframe with betting lines data. Returns: pd.DataFrame: Dataframe with unique id for each game that links to the betting lines data. Raises: ValueError: Occurs when the dataframe has an odd number of rows. An odd row count indicates that there is an incomplete game. """ if divmod(df.shape[0], 2)[1] != 0: raise ValueError("Dataframe must have an even number of rows.") _id = list(range(1, (len(df) // 2) + 1)) df["game_id"] = list(chain(*zip(_id, _id))) return df @pf.register_dataframe_method def add_team_abbreviation(df: pd.DataFrame, team_column: str = "team") -> pd.DataFrame: """Convert team name to team abbreviation. Args: df (pd.DataFrame): Dataframe with betting lines data and team column. team_column (str, optional): Column with full team name. Defaults to "team". Returns: pd.DataFrame: Dataframe with team abbreviation column. """ df[team_column] = df[team_column].apply(lambda x: retrieve_team_abbreviation(x)) return df @pf.register_dataframe_method def create_point_spread_df(df: pd.DataFrame): """Convert over-under (O/U) and line to projected points for each team. For example, if the O/U is 49 and Team 1 is favored by -7 over Team 2, the point projection for Team 1 is 28 and 21 for Team 2. Args: df (pd.DataFrame): Dataframe with betting lines data. Returns: pd.DataFrame: Dataframe with point spread data. """ is_even_moneyline = df[df["ml"] < 0].shape[0] > 1 is_pick = any(df["open"].str.contains("pk")) if any([is_even_moneyline, is_pick]): fav_team, underdog_team = df["team"] fav_pts, underdog_pts = [ float(max([x for x in df["open"] if x != "pk"])) / 2 ] * 2 else: fav_team_index = [index for index, value in enumerate(df["ml"]) if value < 0][0] underdog_team_index = int(not fav_team_index) fav_team = df["team"].iloc[fav_team_index] underdog_team = df["team"].iloc[underdog_team_index] pt_spread = df["open"].astype(float).min() over_under = df["open"].astype(float).max() fav_pts = (over_under / 2) + pt_spread * 0.5 underdog_pts = (over_under / 2) - pt_spread * 0.5 spread_df = pd.DataFrame( [[fav_team, underdog_team, fav_pts], [underdog_team, fav_team, underdog_pts]], columns=["team", "opp", "projected_off_pts"], ) spread_df["projected_off_pts"] = spread_df["projected_off_pts"].apply( lambda x: round(x) ) return spread_df @pf.register_dataframe_method def process_betting(df: pd.DataFrame, season_year: int) -> pd.DataFrame: """Converts raw betting lines data to include point projections for each team in each game. Point projections can be used to inform how much scoring is expected to occur in each game. Args: df (pd.DataFrame): Raw betting lines data. season_year (int): The season year. Returns: pd.DataFrame: Dataframe with point projections for each team in each game. """ process_betting_df = pd.DataFrame() game_ids = df["game_id"].unique() for game_id in game_ids: game_df = df[df["game_id"] == game_id] point_spread_df = game_df.create_point_spread_df() point_spread_df["date"] = game_df["date"].iloc[0] point_spread_df["season_year"] = season_year process_betting_df = pd.concat([process_betting_df, point_spread_df]) return process_betting_df def impute_missing_projections( df: pd.DataFrame, calendar_df: pd.DataFrame, keys: List[str] = ["date", "season_year", "team", "opp"], default_point_projection: int = 25, ) -> pd.DataFrame: """Impute missing point projections for each team in each game. Some dates for betting are incorrect. In these instances, the point projections are imputed with the average point projection for all previous games played in the same season. Args: df (pd.DataFrame): Dataframe with point projections for each team in each game. calendar_df (pd.DataFrame): Dataframe with dates for each game. keys (List[str], optional): Columns to join the point projections and calendar. Defaults to ["date", "season_year", "team", "opp"]. default_point_projection (int, optional): If a team has no previous games (i.e., it's the first game of the season), the point projection is imputed with this value. Defaults to 25. Returns: pd.DataFrame: Dataframe with imputed point projections for each team in each game. There should be no NA values for the point projections. """ # identify games without a projection value missing_projection_df = pd.merge(calendar_df, df, on=keys, how="left") if not missing_projection_df["projected_off_pts"].isnull().sum(): return pd.DataFrame() missing_projection_df = missing_projection_df[
pd.isna(missing_projection_df["projected_off_pts"])
pandas.isna
#! python3 import random import math import pandas as pd from pandas import DataFrame as df from anytree import Node, RenderTree, NodeMixin, AsciiStyle from anytree.exporter import DotExporter, JsonExporter from anytree.importer import JsonImporter import os import copy import time import json import queue import csv import sqlite3 import statistics import matplotlib.pyplot as plt import random # Final four pairings final_four_pairings = { "mens" : { 2021 : [['West', 'East'], ['South', 'Midwest']] , 2019 : [['East', 'West'], ['South', 'Midwest']] , 2018 : { # TBD } }, "womens" : { 2021 : [['Alamo, Hemisfair'], ['River Walk', 'Mercado']] , 2019 : [["Greensboro", "Portland"], ["Chicago", "Albany"]] , 2018 : { # TBD } } } # different scoring systems for different brackets so expected points can be # calculated scoring_systems = { "ESPN" : { "round" : { 0 : 0, 1 : 0, 2 : 10, 3 : 20, 4 : 40, 5 : 80, 6 : 160, 7 : 320, }, "cumulative" : { 0 : 0, 1 : 0, 2 : 10, 3 : 30, 4 : 70, 5 : 150, 6 : 310, 7 : 630, }, }, "wins_only" : { "round" : { 0 : 0, 1 : 0, 2 : 1, 3 : 1, 4 : 1, 5 : 1, 6 : 1, 7 : 1, }, "cumulative" : { 0 : 0, 1 : 0, 2 : 1, 3 : 2, 4 : 3, 5 : 4, 6 : 5, 7 : 6, }, }, "degen_bracket" : { "round" : { 0 : 0, 1 : 0, 2 : 2, 3 : 3, 4 : 5, 5 : 8, 6 : 13, 7 : 21, }, "cumulative" : { 0 : 0, 1 : 0, 2 : 2, 3 : 5, 4 : 10, 5 : 18, 6 : 31, 7 : 52, }, }, "pick_six" : { "round" : { 0 : 0, 1 : 0, 2 : 1, 3 : 1, 4 : 1, 5 : 1, 6 : 1, 7 : 7, }, "cumulative" : { 0 : 0, 1 : 0, 2 : 1, 3 : 2, 4 : 3, 5 : 4, 6 : 5, 7 : 12, }, } } # seed pairings used to build the initial bracket seed_pairings = [[1,16], [8,9], [5,12], [4,13], [6,11], [3,14], [7,10], [2,15]] class Model: def __init__(self, gender='mens', year=2021, number_simulations=1, scoring_sys="degen_bracket"): self.gender = gender self.year = year self.all_teams = self.create_teams() self.start_bracket = Bracket(model=self) self.sim_bracket = Bracket(model=self) self.bracket_pairings = final_four_pairings[gender][year] self.game_pairing = 0 self.number_simulations = number_simulations self.completed_simulations = 0 self.scoring_system = scoring_systems[scoring_sys] self.actual_results = None self.simulation_results = [] self.special_entries = { "most_valuable_teams": None, "most_popular_teams": None, "chalk": None, } self.simulations_won_by_special_entries = { "most_valuable_teams": 0, "most_popular_teams": 0, "chalk": 0, } self.entries = { "imported_entries": [], "most_valuable_teams": None, "most_popular_teams": None, "chalk": None, } self.simulations_won_by_imported_entries = [] self.winning_scores_of_simulations = [] pass def raw_print(self): for region in self.all_teams: for seed in self.all_teams[region]: for team in self.all_teams[region][seed]: # print(team.name+", "+team.region+", "+team.seed+", "+str(team.total_expected_points)+", "+str(team.total_picked_expected_points)+", "+str(team.total_points_diff)) print(team.name+", "+team.region+", "+team.seed+", "+str(team.total_expected_points)+", "+str(team.total_picked_expected_points)+", "+str(team.total_points_diff)+", "+str(team.wins)) def create_teams(self): current_path = os.path.dirname(__file__) team_data = "../team_data/"+str(self.year)+"_all_prepped_data.csv" path = os.path.join(current_path, team_data) all_teams = {} if os.path.exists(path): print(" found data") else: print(" couldn't find data") # In original iterations of this I would've attached scraping natively to # this but now I don't think that that really makes sense raise Exception("There is no data for this combination of team and year") team_data = pd.read_csv(path) gender_specific = team_data[team_data.gender == self.gender] earliest_date = gender_specific.forecast_date[-1:].values[-1] # data subset is the teams from the earliest date shown. This is the data # from all of the teams are still in the tournament df = gender_specific[gender_specific.forecast_date == earliest_date] for ind in df.index: picks = { 1:'100.0%', 2:df["R64_picked"][ind], 3:df["R32_picked"][ind], 4:df["S16_picked"][ind], 5:df["E8_picked"][ind], 6:df["F4_picked"][ind], 7:df["NCG_picked"][ind], } team_name = df["team_name"][ind] team_seed = str(df["team_seed"][ind]) # team seeds in the imported file have an a or B suffix for playin games, # this strips that # todo uncomment this and repull all data once playins are played # if len(team_seed) > 2: # team_seed = team_seed[0:2] team_region = df["team_region"][ind] team_rating = df["team_rating"][ind] team = Team(team_name, team_seed, team_region, team_rating, picks) if team_region not in all_teams: all_teams[team_region] = {} if team_seed not in all_teams[team_region]: all_teams[team_region][team_seed] = [team] else: all_teams[team_region][team_seed].append(team) return all_teams def team_look_up(self, team): teams = self.all_teams[team.region][team.seed] if len(teams) == 1: return teams[0] else: if teams[0].name == team.name: return teams[0] elif teams[1].name == team.name: return teams[1] else: assert False, "couldn't find team" def reset_bracket(self): self.sim_bracket.reset_bracket() pass # simulation methods def batch_simulate(self): for i in range(0, self.number_simulations): self.sim_bracket.simulate_bracket() self.update_scores() self.reset_bracket() self.completed_simulations += 1 self.calculate_expected_points() def update_scores(self): for region in self.all_teams: for seed in self.all_teams[region]: for team in self.all_teams[region][seed]: team.simulation_results.append(team.temp_result) if team.simulation_results[-1] == 0 and len(self.all_teams[region][seed]) == 1: team.simulation_results[-1] = 1 team.temp_result = 0 pass def calculate_expected_points(self): for region in self.all_teams: for seed in self.all_teams[region]: for team in self.all_teams[region][seed]: total_expected_points = 0 total_picked_expected_points = 0 total_points_diff = 0 for ep in team.expected_points: round_expected_points = float(team.wins[ep]) / float(self.number_simulations) * float(self.scoring_system["round"][ep]) picked_round_expected_points = float(team.picked_frequency[ep].strip('%'))/100 * float(self.scoring_system["round"][ep]) round_points_diff = round_expected_points - picked_round_expected_points team.expected_points[ep] = round_expected_points team.picked_expected_points[ep] = picked_round_expected_points team.points_diff[ep] = round_points_diff total_expected_points += round_expected_points total_picked_expected_points += picked_round_expected_points total_points_diff += round_points_diff team.total_expected_points = total_expected_points team.total_picked_expected_points = total_picked_expected_points team.total_points_diff = total_points_diff pass def output_most_valuable_bracket(self): # TODO this can be exported into JSON format without going into the intermediate bracket step self.calculate_expected_points() most_valuable_bracket = Bracket(self) self.postprocess_bracket(most_valuable_bracket, "expected_points") return most_valuable_bracket def output_random_bracket(self): # TODO this can be exported into JSON format without going into the intermediate bracket step # self.calculate_expected_points() random_bracket = Bracket(self) self.postprocess_bracket(random_bracket, "randomized") return random_bracket def output_most_popular_bracket(self): # TODO this can be exported into JSON format without going into the intermediate bracket step most_popular_bracket = Bracket(self) self.postprocess_bracket(most_popular_bracket, "picked_frequency") return most_popular_bracket def update_entry_picks(self): team_data = r'../web_scraper/'+self.gender+str(self.year)+r'/actual.json' # chalk_data = r'../web_scraper/'+model.gender+str(model.year)+r'/chalk.json' current_path = os.path.dirname(__file__) new_team_data = os.path.join(current_path, team_data) # chalk_team_data = os.path.join(current_path, chalk_data) actual_results = json.load(open(new_team_data, "r")) # chalk_results = json.load(open(chalk_team_data, "r")) for region in actual_results: for seed in actual_results[region]: for team in actual_results[region][seed]: if self.all_teams[region][seed][0].name == team: self.all_teams[region][seed][0].entry_picks["actual_results"] = actual_results[region][seed][team] else: self.all_teams[region][seed][1].entry_picks["actual_results"] = actual_results[region][seed][team] entry = { "team_picks" : actual_results, "name" : "Actual results", "entryID" : -1, "method" : "Actual results", "source" : "Actual results" } self.entries["actual_results"] = Entry(model=self, source=json.dumps(entry), method="json") def initialize_special_entries(self): # Initialize the special entries including: # Most valuable bracket, most popular bracket, chalk bracket most_valuable_bracket = self.output_most_valuable_bracket() most_popular_bracket = self.output_most_popular_bracket() # random_bracket = self.output_random_bracket() current_path = os.path.dirname(__file__) chalk_data = r'../web_scraper/'+self.gender+str(self.year)+r'/chalk.json' chalk_team_data = os.path.join(current_path, chalk_data) chalk_results = json.load(open(chalk_team_data, "r")) chalk_entry = { "team_picks" : chalk_results, "name" : "Ch<NAME>", "entryID" : -4, "method" : "Chalk entry", "source" : "Chalk entry" } mvb_source = self.sim_bracket.export_bracket_to_json(most_valuable_bracket.bracket.root, "most valuable bracket") mpb_source = self.sim_bracket.export_bracket_to_json(most_popular_bracket.bracket.root, "most popular bracket") # random_bracket = self.sim_bracket.export_bracket_to_json(random_bracket.bracket.root, "random bracket") self.special_entries["most_valuable_teams"] = Entry(model=self, source=mvb_source, method="json") self.special_entries["most_popular_teams"] = Entry(model=self, source=mpb_source, method="json") self.special_entries["chalk"] = Entry(model=self, source=json.dumps(chalk_entry), method="json") def analyze_special_entries(self): # Add in the results for special brackets including: # Most valuable bracket, most popular bracket, chalk bracket for entry in self.special_entries: self.update_special_entry_score(self.special_entries[entry], entry) def postprocess_via_popularity_and_value(self): # Add most valuable and most picked brackets most_valuable_bracket = self.output_most_valuable_bracket() most_popular_bracket = self.output_most_popular_bracket() mvb_source = self.sim_bracket.export_bracket_to_json(most_valuable_bracket.bracket.root, "most valuable bracket") mpb_source = self.sim_bracket.export_bracket_to_json(most_popular_bracket.bracket.root, "most popular bracket") self.entries["most_valuable_teams"] = Entry(source=mvb_source, method="json") self.update_special_entry_score(self.entries["most_valuable_teams"]) self.entries["most_popular_teams"] = Entry(source=mpb_source, method="json") pass def add_simulation_results_postprocessing(self): self.actual_results = Simulation_results(self, actual=True) if len(self.simulation_results) == 0: for i in range(0, self.number_simulations): self.simulation_results.append(Simulation_results(self, index=i)) pass def refresh_scoring_list(self): for simulation in self.simulation_results: simulation.import_scoring_list() def prep_data(self, path): # Probably never going to use this return None # my intuition is that I should be able to to both this and the other # recursive bracket manipulation functions using callbacks I'm not familiar # enough with Python to know how to. May come back to this def postprocess_bracket(self, bracket, criteria): self.postprocess_recursion(bracket.bracket, criteria) pass def postprocess_recursion(self, node, criteria): # sorted DFS post order for child in node.children: # go through until there are no children if not hasattr(child.winner, 'name'): self.postprocess_recursion(child, criteria) # then sim game node.postprocess_pick_team(criteria) pass def export_teams_to_json(self, expanded=True, empty=False, array=True): if expanded: return json.dumps(self.all_teams, default=lambda o: o.toJSON(array), sort_keys=True, ensure_ascii=False) else: return json.dumps(self.all_teams, default=lambda o: o.toJSON(expanded=False, empty=empty), sort_keys=True, ensure_ascii=False) def add_entry(self, entry): entry.index = len(self.entries["imported_entries"]) self.entries["imported_entries"].append(entry) self.update_imported_entry_score(entry) # self. def add_fake_entries(self, number_entries): for i in range(number_entries): random_bracket = self.output_random_bracket() random_bracket = self.sim_bracket.export_bracket_to_json(random_bracket.bracket.root, "random bracket no."+str(i+1),entryID=i+1) self.add_entry(Entry(model=self, source=random_bracket, method="json")) pass # TODO Make this incremental potentially def add_bulk_entries_from_database(self, number_entries): current_path = os.path.dirname(__file__) database = r"../db/"+self.gender+str(self.year)+".db" database_path = os.path.join(current_path, database) db = sqlite3.connect(database_path) current = db.cursor() pull_query = '''SELECT * FROM entries WHERE id IN (SELECT id FROM entries WHERE name <> 'NULL' ORDER BY RANDOM() LIMIT ?) ''' data = tuple([number_entries]) bulk_entries = current.execute(pull_query, data).fetchall() for entry in bulk_entries: # I don't feel great about the formatting used to add entries, Seems like # I should be passing in just the data instead of initializing an object # here. trying to think of a better structure self.add_entry(Entry(model=self, method="database", source=entry)) self.refresh_scoring_list() def update_special_entry_score(self, entry, entry_name): for region in self.all_teams: for seed in self.all_teams[region]: for team in self.all_teams[region][seed]: team.special_entries[entry_name] = entry.team_picks[team.region][team.seed][team.name] for i in range(0, len(team.simulation_results)): if len(entry.scores["simulations"]) <= i: entry.scores["simulations"].append(0) entry.scores["simulations"][i] += self.scoring_system["cumulative"][min(team.simulation_results[i], team.special_entries[entry_name])] entry.scores["actual_results"] += self.scoring_system["cumulative"][min(team.entry_picks["actual_results"], team.special_entries[entry_name])] def update_imported_entry_score(self, entry): # update the scoring list for the passed in entry. for region in self.all_teams: for seed in self.all_teams[region]: for team in self.all_teams[region][seed]: while len(team.entry_picks["imported_entries"]) < entry.index+1: team.entry_picks["imported_entries"].append(-1) team.entry_picks["imported_entries"][entry.index] = entry.team_picks[team.region][team.seed][team.name] for i in range(0, len(team.simulation_results)): if len(entry.scores["simulations"]) <= i: entry.scores["simulations"].append(0) entry.scores["simulations"][i] += self.scoring_system["cumulative"][min(team.simulation_results[i], team.entry_picks["imported_entries"][entry.index])] entry.scores["actual_results"] += self.scoring_system["cumulative"][min(team.entry_picks["actual_results"], team.entry_picks["imported_entries"][entry.index])] # Output is a data frame which has the simulation results for each entry as well # as the special entries # Todo The general structuring of outputting of results, especially the sorting # of ranks is pretty inefficient. This would be a potential place to really # improve the efficiency of the program. def output_results(self, entries=None, sims=None): # output_results is used both For initial rankings and also for further # postprocessing of subsets. Initial rankings are already ranked and so I # don't want to go through the trouble of doing that again. # The initial_ranking variables a boolean to check whether this is the # first time things are ranked. initial_ranking=True if not entries: entry_list = self.entries['imported_entries'] entry_index_list = [i for i in range(len(entry_list))] else: entry_list = random.sample(self.entries['imported_entries'], entries) entry_index_list = [entry.index for entry in entry_list] initial_ranking = False if not sims: simulation_list = self.simulation_results sim_index_list = [i for i in range(len(simulation_list))] else: simulation_list = random.sample(self.simulation_results, sims) sim_index_list = [sim.simulation_index for sim in simulation_list] initial_ranking = False def add_data_frame_entry(entryID, name, array_name, sim_index_list): all_team_data['entryID'].append(entryID) all_team_data['name'].append(name) simulation_results = [] for sim in sim_index_list: simulation_results.append(array_name[sim]) all_team_data['simulations'].append(simulation_results) def add_rankings(): all_team_data['ranks'] = [[] for i in range(len(all_team_data['simulations']))] all_team_data['placings'] = [[] for i in range(len(all_team_data['simulations']))] if entries and sims: print(" subset ") else: for simulation in simulation_list: for i in entry_index_list: all_team_data['ranks'][i].append(simulation.ranking_list['entries'][i]) all_team_data['placings'][i].append(simulation.placing_list['entries'][i]) all_team_data['ranks'][len(entry_list)].append(1.0) all_team_data['ranks'][len(entry_list)+1].append(simulation.ranking_list['most_valuable_teams']) all_team_data['ranks'][len(entry_list)+2].append(simulation.ranking_list['most_popular_teams']) all_team_data['ranks'][len(entry_list)+3].append(simulation.ranking_list['chalk']) all_team_data['placings'][len(entry_list)].append(1) all_team_data['placings'][len(entry_list)+1].append(simulation.placing_list['most_valuable_teams']) all_team_data['placings'][len(entry_list)+2].append(simulation.placing_list['most_popular_teams']) all_team_data['placings'][len(entry_list)+3].append(simulation.placing_list['chalk']) def rerank(entry_list): # Use ranking algorithm for limited scoring data set all_team_data['ranks'] = [[] for i in range(len(entry_list)+4)] all_team_data['placings'] = [[] for i in range(len(entry_list)+4)] winning_score_list = [] winning_index_list = [] winning_score = 0 winning_index = [-1] for simulation in simulation_list: array = [entry.scores['simulations'][simulation.simulation_index] for entry in entry_list] special_scores = { 'scores' : { 'most_valuable_teams' : simulation.scoring_list['most_valuable_teams'], 'most_popular_teams' : simulation.scoring_list['most_popular_teams'], 'chalk' : simulation.scoring_list['chalk'], }, 'ranks' : { 'most_valuable_teams' : -1.0, 'most_popular_teams' : -1.0, 'chalk' : -1.0, }, 'placings' : { 'most_valuable_teams' : -1, 'most_popular_teams' : -1, 'chalk' : -1, } } rank_vector = [0 for i in range(len(array))] placing_vector = [0 for i in range(len(array))] tuple_array = [(array[i], i) for i in range(len(array))] tuple_array.sort(reverse=True) winning_score = tuple_array[0][0] # all_team_data['simulations'][len(entry_list)] = winning_score winning_index = [entry_list[tuple_array[0][1]].index] (rank, n, i) = (1, 1, 0) for special in special_scores['scores'].keys(): if special_scores['scores'][special] > winning_score: special_scores['ranks'][special] = 1.0 special_scores['placings'][special] = 1 elif special_scores['scores'][special] < tuple_array[-1][0]: special_scores['ranks'][special] = float(len(tuple_array)) special_scores['placings'][special] = len(tuple_array) while i < len(array): j = i while j < len(array) - 1 and tuple_array[j][0] == tuple_array[j+1][0]: j += 1 if tuple_array[j][0] == winning_score: winning_index.append(entry_list[tuple_array[j][1]].index) n = j - i + 1 for j in range(n): shared_index = tuple_array[i+j][1] rank_vector[shared_index] = rank + (n - 1) * 0.5 placing_vector[shared_index] = rank for special in special_scores['scores'].keys(): if special_scores['scores'][special] == tuple_array[i+j][0]: special_scores['ranks'][special] = rank_vector[shared_index] special_scores['placings'][special] = rank elif special_scores['scores'][special] < tuple_array[i][0] and special_scores['scores'][special] > tuple_array[i-1][0]: assert tuple_array[i][0]>=tuple_array[i-1][0] special_scores['ranks'][special] = rank_vector[shared_index] special_scores['placings'][special] = rank rank += n i += n for special in special_scores['scores'].keys(): if special_scores['scores'][special] > winning_score: special_scores['ranks'][special] = 1.0 special_scores['placings'][special] = 1 # print("a",special, special_scores['ranks'][special], special_scores['scores'][special]) elif special_scores['scores'][special] < tuple_array[-1][0]: special_scores['ranks'][special] = float(len(tuple_array)) special_scores['placings'][special] = len(tuple_array) # print("b",special, special_scores['ranks'][special], special_scores['scores'][special]) elif special_scores['scores'][special] == winning_score: special_scores['ranks'][special] = rank_vector[tuple_array[0][1]] special_scores['placings'][special] = placing_vector[tuple_array[0][1]] # print("c",special, special_scores['ranks'][special], special_scores['scores'][special]) else: i = 1 while i < len(tuple_array): if tuple_array[i-1][0] > special_scores['scores'][special] > tuple_array[i][0]: multiples = 0 while tuple_array[i+multiples][0] == tuple_array[i][0] and i < len(tuple_array): multiples +=1 if i+multiples == len(tuple_array): break special_scores['ranks'][special] = i+(multiples-1)*0.5+1 special_scores['placings'][special] = i+1 # print("d",i,special, special_scores['ranks'][special], special_scores['scores'][special]) i = len(tuple_array) elif special_scores['scores'][special] == tuple_array[i][0]: special_scores['ranks'][special] = rank_vector[tuple_array[i][1]] special_scores['placings'][special] = placing_vector[tuple_array[i][1]] # print("e",i,special, special_scores['ranks'][special], special_scores['scores'][special]) i = len(tuple_array) else: i += 1 for special in special_scores['scores'].keys(): assert special_scores['ranks'][special] > 0 assert not (special_scores['ranks'][special] == 1 and special_scores['scores'][special] < winning_score and len(array)>1) for i in range(len(entry_list)): all_team_data['ranks'][i].append(rank_vector[i]) all_team_data['placings'][i].append(placing_vector[i]) winning_score_list.append(winning_score) winning_index_list.append(winning_index) all_team_data['simulations'][len(entry_list)] = winning_score_list all_team_data['ranks'][len(entry_list)].append(1.0) all_team_data['placings'][len(entry_list)].append(1) all_team_data['ranks'][len(entry_list)+1].append(special_scores['ranks']['most_valuable_teams']) all_team_data['placings'][len(entry_list)+1].append(special_scores['placings']['most_valuable_teams']) all_team_data['ranks'][len(entry_list)+2].append(special_scores['ranks']['most_popular_teams']) all_team_data['placings'][len(entry_list)+2].append(special_scores['placings']['most_popular_teams']) all_team_data['ranks'][len(entry_list)+3].append(special_scores['ranks']['chalk']) all_team_data['placings'][len(entry_list)+3].append(special_scores['placings']['chalk']) # Update winning scores all_team_data = { 'entryID' : [], 'name' : [], 'simulations' : [], # 'ranks' : [], # 'placings' : [] } for entry in entry_list: add_data_frame_entry(entry.entryID, entry.name, entry.scores['simulations'], sim_index_list) add_data_frame_entry(-1, 'winning_score', self.winning_scores_of_simulations, sim_index_list) add_data_frame_entry(-2, 'most_valuable_teams', self.special_entries['most_valuable_teams'].scores['simulations'], sim_index_list) add_data_frame_entry(-3, 'most_popular_teams', self.special_entries['most_popular_teams'].scores['simulations'], sim_index_list) add_data_frame_entry(-4, 'chalk', self.special_entries['chalk'].scores['simulations'], sim_index_list) if initial_ranking: add_rankings() else: rerank(entry_list) output_data =
df(data=all_team_data)
pandas.DataFrame
"""ADDS FUNCTIONALITY TO APPLY FUNCTION ON PANDAS OBJECTS IN PARALLEL This script add functionality to Pandas so that you can do parallel processing in multiple cores when you use apply method on dataframes, series or groupby objects. This file must be imported as a module and it attached following functions to pandas: * group_apply_parallel - adds apply_parallel method to groupby objects * series_apply_parallel - adds apply_parallel method to series objects * df_apply_parallel - adds apply_parallel method to dataframe objects """ import pandas as pd from multiprocess import Pool import functools from os import cpu_count def attachpandas(): pd.core.groupby.generic.DataFrameGroupBy.apply_parallel = group_apply_parallel pd.core.series.Series.apply_parallel = series_apply_parallel pd.core.frame.DataFrame.apply_parallel = df_apply_parallel def group_apply_parallel(self, func, static_data=None, num_processes = cpu_count()): """ Add functionality to pandas so that you can do processing on groups on multiple cores at same time. - This method will pass each group dataframe to the passed func (including key columns on which the group is formed). - If there is some external data that needs to be used by the function, pass it as a list in static_data, and then accept that list in your func. You must have a named argument with name 'static_data' if you need to accept static data. Individual items in static_data list needs to be accessed using indexing. """ func = func if static_data is None else functools.partial(func, static_data=static_data) with Pool(num_processes) as p: ret_list = p.map(func, [df.copy() for idx, df in self]) if isinstance(ret_list[0], pd.DataFrame) or isinstance(ret_list[0], pd.DataFrame): return pd.concat(ret_list, keys=[idx for idx, df in self],names=self.keys, axis=0) out =
pd.DataFrame([idx for idx, df in self], columns=self.keys)
pandas.DataFrame
from collections import OrderedDict import contextlib from datetime import datetime, time from functools import partial import os from urllib.error import URLError import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas.util.testing as tm @contextlib.contextmanager def ignore_xlrd_time_clock_warning(): """ Context manager to ignore warnings raised by the xlrd library, regarding the deprecation of `time.clock` in Python 3.7. """ with warnings.catch_warnings(): warnings.filterwarnings( action="ignore", message="time.clock has been deprecated", category=DeprecationWarning, ) yield read_ext_params = [".xls", ".xlsx", ".xlsm", ".ods"] engine_params = [ # Add any engines to test here # When defusedxml is installed it triggers deprecation warnings for # xlrd and openpyxl, so catch those here pytest.param( "xlrd", marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param( "openpyxl", marks=[ td.skip_if_no("openpyxl"), pytest.mark.filterwarnings("ignore:.*html argument"), ], ), pytest.param( None, marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param("odf", marks=td.skip_if_no("odf")), ] def _is_valid_engine_ext_pair(engine, read_ext: str) -> bool: """ Filter out invalid (engine, ext) pairs instead of skipping, as that produces 500+ pytest.skips. """ engine = engine.values[0] if engine == "openpyxl" and read_ext == ".xls": return False if engine == "odf" and read_ext != ".ods": return False if read_ext == ".ods" and engine != "odf": return False return True def _transfer_marks(engine, read_ext): """ engine gives us a pytest.param objec with some marks, read_ext is just a string. We need to generate a new pytest.param inheriting the marks. """ values = engine.values + (read_ext,) new_param = pytest.param(values, marks=engine.marks) return new_param @pytest.fixture( autouse=True, params=[ _transfer_marks(eng, ext) for eng in engine_params for ext in read_ext_params if _is_valid_engine_ext_pair(eng, ext) ], ) def engine_and_read_ext(request): """ Fixture for Excel reader engine and read_ext, only including valid pairs. """ return request.param @pytest.fixture def engine(engine_and_read_ext): engine, read_ext = engine_and_read_ext return engine @pytest.fixture def read_ext(engine_and_read_ext): engine, read_ext = engine_and_read_ext return read_ext class TestReaders: @pytest.fixture(autouse=True) def cd_and_set_engine(self, engine, datapath, monkeypatch): """ Change directory and set engine for read_excel calls. """ func = partial(pd.read_excel, engine=engine) monkeypatch.chdir(datapath("io", "data", "excel")) monkeypatch.setattr(pd, "read_excel", func) def test_usecols_int(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["A", "B", "C"]) # usecols as int msg = "Passing an integer for `usecols`" with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols=3) # usecols as int with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=3 ) def test_usecols_list(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["B", "C"]) df1 = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=[0, 2, 3] ) df2 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=[0, 2, 3] ) # TODO add index to xls file) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) def test_usecols_str(self, read_ext, df_ref): df1 = df_ref.reindex(columns=["A", "B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A:D" ) # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C,D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C,D" ) # TODO add index to xls file tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C:D" ) tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) @pytest.mark.parametrize( "usecols", [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]] ) def test_usecols_diff_positional_int_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["A", "C"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=usecols ) tm.assert_frame_equal(result, expected, check_names=False) @pytest.mark.parametrize("usecols", [["B", "D"], ["D", "B"]]) def test_usecols_diff_positional_str_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["B", "D"]] expected.index = range(len(expected)) result = pd.read_excel("test1" + read_ext, "Sheet1", usecols=usecols) tm.assert_frame_equal(result, expected, check_names=False) def test_read_excel_without_slicing(self, read_ext, df_ref): expected = df_ref result = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str(self, read_ext, df_ref): expected = df_ref[["C", "D"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols="A,D:E" ) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str_invalid(self, read_ext): msg = "Invalid column name: E1" with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, "Sheet1", usecols="D:E1") def test_index_col_label_error(self, read_ext): msg = "list indices must be integers.*, not str" with pytest.raises(TypeError, match=msg): pd.read_excel( "test1" + read_ext, "Sheet1", index_col=["A"], usecols=["A", "C"] ) def test_index_col_empty(self, read_ext): # see gh-9208 result = pd.read_excel("test1" + read_ext, "Sheet3", index_col=["A", "B", "C"]) expected = DataFrame( columns=["D", "E", "F"], index=MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"]), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index_col", [None, 2]) def test_index_col_with_unnamed(self, read_ext, index_col): # see gh-18792 result = pd.read_excel("test1" + read_ext, "Sheet4", index_col=index_col) expected = DataFrame( [["i1", "a", "x"], ["i2", "b", "y"]], columns=["Unnamed: 0", "col1", "col2"] ) if index_col: expected = expected.set_index(expected.columns[index_col]) tm.assert_frame_equal(result, expected) def test_usecols_pass_non_existent_column(self, read_ext): msg = ( "Usecols do not match columns, " "columns expected but not found: " + r"\['E'\]" ) with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, usecols=["E"]) def test_usecols_wrong_type(self, read_ext): msg = ( "'usecols' must either be list-like of " "all strings, all unicode, all integers or a callable." ) with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, usecols=["E1", 0]) def test_excel_stop_iterator(self, read_ext): parsed = pd.read_excel("test2" + read_ext, "Sheet1") expected = DataFrame([["aaaa", "bbbbb"]], columns=["Test", "Test1"]) tm.assert_frame_equal(parsed, expected) def test_excel_cell_error_na(self, read_ext): parsed = pd.read_excel("test3" + read_ext, "Sheet1") expected = DataFrame([[np.nan]], columns=["Test"]) tm.assert_frame_equal(parsed, expected) def test_excel_table(self, read_ext, df_ref): df1 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0) df2 = pd.read_excel("test1" + read_ext, "Sheet2", skiprows=[1], index_col=0) # TODO add index to file tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) df3 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, skipfooter=1) tm.assert_frame_equal(df3, df1.iloc[:-1]) def test_reader_special_dtypes(self, read_ext): expected = DataFrame.from_dict( OrderedDict( [ ("IntCol", [1, 2, -3, 4, 0]), ("FloatCol", [1.25, 2.25, 1.83, 1.92, 0.0000000005]), ("BoolCol", [True, False, True, True, False]), ("StrCol", [1, 2, 3, 4, 5]), # GH5394 - this is why convert_float isn't vectorized ("Str2Col", ["a", 3, "c", "d", "e"]), ( "DateCol", [ datetime(2013, 10, 30), datetime(2013, 10, 31), datetime(1905, 1, 1), datetime(2013, 12, 14), datetime(2015, 3, 14), ], ), ] ) ) basename = "test_types" # should read in correctly and infer types actual = pd.read_excel(basename + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) # if not coercing number, then int comes in as float float_expected = expected.copy() float_expected["IntCol"] = float_expected["IntCol"].astype(float) float_expected.loc[float_expected.index[1], "Str2Col"] = 3.0 actual = pd.read_excel(basename + read_ext, "Sheet1", convert_float=False) tm.assert_frame_equal(actual, float_expected) # check setting Index (assuming xls and xlsx are the same here) for icol, name in enumerate(expected.columns): actual = pd.read_excel(basename + read_ext, "Sheet1", index_col=icol) exp = expected.set_index(name) tm.assert_frame_equal(actual, exp) # convert_float and converters should be different but both accepted expected["StrCol"] = expected["StrCol"].apply(str) actual = pd.read_excel( basename + read_ext, "Sheet1", converters={"StrCol": str} ) tm.assert_frame_equal(actual, expected) no_convert_float = float_expected.copy() no_convert_float["StrCol"] = no_convert_float["StrCol"].apply(str) actual = pd.read_excel( basename + read_ext, "Sheet1", convert_float=False, converters={"StrCol": str}, ) tm.assert_frame_equal(actual, no_convert_float) # GH8212 - support for converters and missing values def test_reader_converters(self, read_ext): basename = "test_converters" expected = DataFrame.from_dict( OrderedDict( [ ("IntCol", [1, 2, -3, -1000, 0]), ("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]), ("BoolCol", ["Found", "Found", "Found", "Not found", "Found"]), ("StrCol", ["1", np.nan, "3", "4", "5"]), ] ) ) converters = { "IntCol": lambda x: int(x) if x != "" else -1000, "FloatCol": lambda x: 10 * x if x else np.nan, 2: lambda x: "Found" if x != "" else "Not found", 3: lambda x: str(x) if x else "", } # should read in correctly and set types of single cells (not array # dtypes) actual = pd.read_excel(basename + read_ext, "Sheet1", converters=converters) tm.assert_frame_equal(actual, expected) def test_reader_dtype(self, read_ext): # GH 8212 basename = "testdtype" actual = pd.read_excel(basename + read_ext) expected = DataFrame( { "a": [1, 2, 3, 4], "b": [2.5, 3.5, 4.5, 5.5], "c": [1, 2, 3, 4], "d": [1.0, 2.0, np.nan, 4.0], } ).reindex(columns=["a", "b", "c", "d"]) tm.assert_frame_equal(actual, expected) actual = pd.read_excel( basename + read_ext, dtype={"a": "float64", "b": "float32", "c": str} ) expected["a"] = expected["a"].astype("float64") expected["b"] = expected["b"].astype("float32") expected["c"] = ["001", "002", "003", "004"] tm.assert_frame_equal(actual, expected) with pytest.raises(ValueError): pd.read_excel(basename + read_ext, dtype={"d": "int64"}) @pytest.mark.parametrize( "dtype,expected", [ ( None, DataFrame( { "a": [1, 2, 3, 4], "b": [2.5, 3.5, 4.5, 5.5], "c": [1, 2, 3, 4], "d": [1.0, 2.0, np.nan, 4.0], } ), ), ( {"a": "float64", "b": "float32", "c": str, "d": str}, DataFrame( { "a": Series([1, 2, 3, 4], dtype="float64"), "b": Series([2.5, 3.5, 4.5, 5.5], dtype="float32"), "c": ["001", "002", "003", "004"], "d": ["1", "2", np.nan, "4"], } ), ), ], ) def test_reader_dtype_str(self, read_ext, dtype, expected): # see gh-20377 basename = "testdtype" actual = pd.read_excel(basename + read_ext, dtype=dtype) tm.assert_frame_equal(actual, expected) def test_reading_all_sheets(self, read_ext): # Test reading all sheetnames by setting sheetname to None, # Ensure a dict is returned. # See PR #9450 basename = "test_multisheet" dfs = pd.read_excel(basename + read_ext, sheet_name=None) # ensure this is not alphabetical to test order preservation expected_keys = ["Charlie", "Alpha", "Beta"] tm.assert_contains_all(expected_keys, dfs.keys()) # Issue 9930 # Ensure sheet order is preserved assert expected_keys == list(dfs.keys()) def test_reading_multiple_specific_sheets(self, read_ext): # Test reading specific sheetnames by specifying a mixed list # of integers and strings, and confirm that duplicated sheet # references (positions/names) are removed properly. # Ensure a dict is returned # See PR #9450 basename = "test_multisheet" # Explicitly request duplicates. Only the set should be returned. expected_keys = [2, "Charlie", "Charlie"] dfs = pd.read_excel(basename + read_ext, sheet_name=expected_keys) expected_keys = list(set(expected_keys)) tm.assert_contains_all(expected_keys, dfs.keys()) assert len(expected_keys) == len(dfs.keys()) def test_reading_all_sheets_with_blank(self, read_ext): # Test reading all sheetnames by setting sheetname to None, # In the case where some sheets are blank. # Issue #11711 basename = "blank_with_header" dfs = pd.read_excel(basename + read_ext, sheet_name=None) expected_keys = ["Sheet1", "Sheet2", "Sheet3"] tm.assert_contains_all(expected_keys, dfs.keys()) # GH6403 def test_read_excel_blank(self, read_ext): actual = pd.read_excel("blank" + read_ext, "Sheet1") tm.assert_frame_equal(actual, DataFrame()) def test_read_excel_blank_with_header(self, read_ext): expected = DataFrame(columns=["col_1", "col_2"]) actual = pd.read_excel("blank_with_header" + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) def test_date_conversion_overflow(self, read_ext): # GH 10001 : pandas.ExcelFile ignore parse_dates=False expected = pd.DataFrame( [ [pd.Timestamp("2016-03-12"), "<NAME>"], [pd.Timestamp("2016-03-16"), "<NAME>"], [1e20, "<NAME>"], ], columns=["DateColWithBigInt", "StringCol"], ) if pd.read_excel.keywords["engine"] == "openpyxl": pytest.xfail("Maybe not supported by openpyxl") result = pd.read_excel("testdateoverflow" + read_ext) tm.assert_frame_equal(result, expected) def test_sheet_name(self, read_ext, df_ref): filename = "test1" sheet_name = "Sheet1" df1 = pd.read_excel( filename + read_ext, sheet_name=sheet_name, index_col=0 ) # doc with ignore_xlrd_time_clock_warning(): df2 = pd.read_excel(filename + read_ext, index_col=0, sheet_name=sheet_name) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) def test_excel_read_buffer(self, read_ext): pth = "test1" + read_ext expected = pd.read_excel(pth, "Sheet1", index_col=0) with open(pth, "rb") as f: actual = pd.read_excel(f, "Sheet1", index_col=0) tm.assert_frame_equal(expected, actual) def test_bad_engine_raises(self, read_ext): bad_engine = "foo" with pytest.raises(ValueError, match="Unknown engine: foo"): pd.read_excel("", engine=bad_engine) @tm.network def test_read_from_http_url(self, read_ext): url = ( "https://raw.githubusercontent.com/pandas-dev/pandas/master/" "pandas/tests/io/data/excel/test1" + read_ext ) url_table = pd.read_excel(url) local_table = pd.read_excel("test1" + read_ext) tm.assert_frame_equal(url_table, local_table) @td.skip_if_not_us_locale def test_read_from_s3_url(self, read_ext, s3_resource): # Bucket "pandas-test" created in tests/io/conftest.py with open("test1" + read_ext, "rb") as f: s3_resource.Bucket("pandas-test").put_object(Key="test1" + read_ext, Body=f) url = "s3://pandas-test/test1" + read_ext url_table = pd.read_excel(url) local_table = pd.read_excel("test1" + read_ext) tm.assert_frame_equal(url_table, local_table) @pytest.mark.slow # ignore warning from old xlrd @pytest.mark.filterwarnings("ignore:This metho:PendingDeprecationWarning") def test_read_from_file_url(self, read_ext, datapath): # FILE localtable = os.path.join(datapath("io", "data", "excel"), "test1" + read_ext) local_table = pd.read_excel(localtable) try: url_table = pd.read_excel("file://localhost/" + localtable) except URLError: # fails on some systems import platform pytest.skip("failing on {}".format(" ".join(platform.uname()).strip())) tm.assert_frame_equal(url_table, local_table) def test_read_from_pathlib_path(self, read_ext): # GH12655 from pathlib import Path str_path = "test1" + read_ext expected = pd.read_excel(str_path, "Sheet1", index_col=0) path_obj = Path("test1" + read_ext) actual = pd.read_excel(path_obj, "Sheet1", index_col=0) tm.assert_frame_equal(expected, actual) @td.skip_if_no("py.path") @td.check_file_leaks def test_read_from_py_localpath(self, read_ext): # GH12655 from py.path import local as LocalPath str_path = os.path.join("test1" + read_ext) expected = pd.read_excel(str_path, "Sheet1", index_col=0) path_obj = LocalPath().join("test1" + read_ext) actual = pd.read_excel(path_obj, "Sheet1", index_col=0) tm.assert_frame_equal(expected, actual) def test_reader_seconds(self, read_ext): # Test reading times with and without milliseconds. GH5945. expected = DataFrame.from_dict( { "Time": [ time(1, 2, 3), time(2, 45, 56, 100000), time(4, 29, 49, 200000), time(6, 13, 42, 300000), time(7, 57, 35, 400000), time(9, 41, 28, 500000), time(11, 25, 21, 600000), time(13, 9, 14, 700000), time(14, 53, 7, 800000), time(16, 37, 0, 900000), time(18, 20, 54), ] } ) actual = pd.read_excel("times_1900" + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) actual = pd.read_excel("times_1904" + read_ext, "Sheet1") tm.assert_frame_equal(actual, expected) def test_read_excel_multiindex(self, read_ext): # see gh-4679 mi = MultiIndex.from_product([["foo", "bar"], ["a", "b"]]) mi_file = "testmultiindex" + read_ext # "mi_column" sheet expected = DataFrame( [ [1, 2.5, pd.Timestamp("2015-01-01"), True], [2, 3.5, pd.Timestamp("2015-01-02"), False], [3, 4.5, pd.Timestamp("2015-01-03"), False], [4, 5.5, pd.Timestamp("2015-01-04"), True], ], columns=mi, ) actual = pd.read_excel(mi_file, "mi_column", header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) # "mi_index" sheet expected.index = mi expected.columns = ["a", "b", "c", "d"] actual = pd.read_excel(mi_file, "mi_index", index_col=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) # "both" sheet expected.columns = mi actual = pd.read_excel(mi_file, "both", index_col=[0, 1], header=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) # "mi_index_name" sheet expected.columns = ["a", "b", "c", "d"] expected.index = mi.set_names(["ilvl1", "ilvl2"]) actual = pd.read_excel(mi_file, "mi_index_name", index_col=[0, 1]) tm.assert_frame_equal(actual, expected) # "mi_column_name" sheet expected.index = list(range(4)) expected.columns = mi.set_names(["c1", "c2"]) actual = pd.read_excel(mi_file, "mi_column_name", header=[0, 1], index_col=0) tm.assert_frame_equal(actual, expected) # see gh-11317 # "name_with_int" sheet expected.columns = mi.set_levels([1, 2], level=1).set_names(["c1", "c2"]) actual = pd.read_excel(mi_file, "name_with_int", index_col=0, header=[0, 1]) tm.assert_frame_equal(actual, expected) # "both_name" sheet expected.columns = mi.set_names(["c1", "c2"]) expected.index = mi.set_names(["ilvl1", "ilvl2"]) actual = pd.read_excel(mi_file, "both_name", index_col=[0, 1], header=[0, 1]) tm.assert_frame_equal(actual, expected) # "both_skiprows" sheet actual = pd.read_excel( mi_file, "both_name_skiprows", index_col=[0, 1], header=[0, 1], skiprows=2 ) tm.assert_frame_equal(actual, expected) def test_read_excel_multiindex_header_only(self, read_ext): # see gh-11733. # # Don't try to parse a header name if there isn't one. mi_file = "testmultiindex" + read_ext result = pd.read_excel(mi_file, "index_col_none", header=[0, 1]) exp_columns = MultiIndex.from_product([("A", "B"), ("key", "val")]) expected = DataFrame([[1, 2, 3, 4]] * 2, columns=exp_columns) tm.assert_frame_equal(result, expected) def test_excel_old_index_format(self, read_ext): # see gh-4679 filename = "test_index_name_pre17" + read_ext # We detect headers to determine if index names exist, so # that "index" name in the "names" version of the data will # now be interpreted as rows that include null data. data = np.array( [ [None, None, None, None, None], ["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"], ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"], ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"], ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"], ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"], ] ) columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"] mi = MultiIndex( levels=[ ["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], ["R1", "R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"], ], codes=[[0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5]], names=[None, None], ) si = Index( ["R0", "R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None ) expected = pd.DataFrame(data, index=si, columns=columns) actual = pd.read_excel(filename, "single_names", index_col=0) tm.assert_frame_equal(actual, expected) expected.index = mi actual = pd.read_excel(filename, "multi_names", index_col=[0, 1]) tm.assert_frame_equal(actual, expected) # The analogous versions of the "names" version data # where there are explicitly no names for the indices. data = np.array( [ ["R0C0", "R0C1", "R0C2", "R0C3", "R0C4"], ["R1C0", "R1C1", "R1C2", "R1C3", "R1C4"], ["R2C0", "R2C1", "R2C2", "R2C3", "R2C4"], ["R3C0", "R3C1", "R3C2", "R3C3", "R3C4"], ["R4C0", "R4C1", "R4C2", "R4C3", "R4C4"], ] ) columns = ["C_l0_g0", "C_l0_g1", "C_l0_g2", "C_l0_g3", "C_l0_g4"] mi = MultiIndex( levels=[ ["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], ["R_l1_g0", "R_l1_g1", "R_l1_g2", "R_l1_g3", "R_l1_g4"], ], codes=[[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], names=[None, None], ) si = Index(["R_l0_g0", "R_l0_g1", "R_l0_g2", "R_l0_g3", "R_l0_g4"], name=None) expected = pd.DataFrame(data, index=si, columns=columns) actual = pd.read_excel(filename, "single_no_names", index_col=0) tm.assert_frame_equal(actual, expected) expected.index = mi actual = pd.read_excel(filename, "multi_no_names", index_col=[0, 1]) tm.assert_frame_equal(actual, expected, check_names=False) def test_read_excel_bool_header_arg(self, read_ext): # GH 6114 for arg in [True, False]: with pytest.raises(TypeError): pd.read_excel("test1" + read_ext, header=arg) def test_read_excel_chunksize(self, read_ext): # GH 8011 with pytest.raises(NotImplementedError): pd.read_excel("test1" + read_ext, chunksize=100) def test_read_excel_skiprows_list(self, read_ext): # GH 4903 actual = pd.read_excel( "testskiprows" + read_ext, "skiprows_list", skiprows=[0, 2] ) expected = DataFrame( [ [1, 2.5, pd.Timestamp("2015-01-01"), True], [2, 3.5, pd.Timestamp("2015-01-02"), False], [3, 4.5, pd.Timestamp("2015-01-03"), False], [4, 5.5, pd.Timestamp("2015-01-04"), True], ], columns=["a", "b", "c", "d"], ) tm.assert_frame_equal(actual, expected) actual = pd.read_excel( "testskiprows" + read_ext, "skiprows_list", skiprows=np.array([0, 2]) ) tm.assert_frame_equal(actual, expected) def test_read_excel_nrows(self, read_ext): # GH 16645 num_rows_to_pull = 5 actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull) expected = pd.read_excel("test1" + read_ext) expected = expected[:num_rows_to_pull] tm.assert_frame_equal(actual, expected) def test_read_excel_nrows_greater_than_nrows_in_file(self, read_ext): # GH 16645 expected = pd.read_excel("test1" + read_ext) num_records_in_file = len(expected) num_rows_to_pull = num_records_in_file + 10 actual = pd.read_excel("test1" + read_ext, nrows=num_rows_to_pull) tm.assert_frame_equal(actual, expected) def test_read_excel_nrows_non_integer_parameter(self, read_ext): # GH 16645 msg = "'nrows' must be an integer >=0" with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, nrows="5") def test_read_excel_squeeze(self, read_ext): # GH 12157 f = "test_squeeze" + read_ext actual = pd.read_excel(f, "two_columns", index_col=0, squeeze=True) expected = pd.Series([2, 3, 4], [4, 5, 6], name="b") expected.index.name = "a" tm.assert_series_equal(actual, expected) actual = pd.read_excel(f, "two_columns", squeeze=True) expected = pd.DataFrame({"a": [4, 5, 6], "b": [2, 3, 4]}) tm.assert_frame_equal(actual, expected) actual = pd.read_excel(f, "one_column", squeeze=True) expected = pd.Series([1, 2, 3], name="a") tm.assert_series_equal(actual, expected) class TestExcelFileRead: @pytest.fixture(autouse=True) def cd_and_set_engine(self, engine, datapath, monkeypatch): """ Change directory and set engine for ExcelFile objects. """ func = partial(pd.ExcelFile, engine=engine) monkeypatch.chdir(datapath("io", "data", "excel")) monkeypatch.setattr(pd, "ExcelFile", func) def test_excel_passes_na(self, read_ext): with pd.ExcelFile("test4" + read_ext) as excel: parsed = pd.read_excel( excel, "Sheet1", keep_default_na=False, na_values=["apple"] ) expected = DataFrame( [["NA"], [1], ["NA"], [np.nan], ["rabbit"]], columns=["Test"] ) tm.assert_frame_equal(parsed, expected) with pd.ExcelFile("test4" + read_ext) as excel: parsed = pd.read_excel( excel, "Sheet1", keep_default_na=True, na_values=["apple"] ) expected = DataFrame( [[np.nan], [1], [np.nan], [np.nan], ["rabbit"]], columns=["Test"] ) tm.assert_frame_equal(parsed, expected) # 13967 with
pd.ExcelFile("test5" + read_ext)
pandas.ExcelFile
# -*- coding: utf-8 -*- """ Created on Wed Mar 3 12:51:57 2021 @author: Administrator """ import pandas as pd import numpy as np from pandas import DataFrame, Series def apply(decorator): def decorate(cls): for attr in cls.__dict__: if callable(getattr(cls, attr)): setattr(cls, attr, decorator(getattr(cls, attr))) return cls return decorate class TA: __version__ = "1.2" @classmethod def SMA(cls, ohlc: DataFrame, period: int = 41, column: str = "close") -> Series: """ Simple moving average - rolling mean in pandas lingo. Also known as 'MA'. The simple moving average (SMA) is the most basic of the moving averages used for trading. """ return pd.Series( ohlc[column].rolling(window=period).mean(), name="{0} period SMA".format(period), ) @classmethod def SMM(cls, ohlc: DataFrame, period: int = 9, column: str = "close") -> Series: """ Simple moving median, an alternative to moving average. SMA, when used to estimate the underlying trend in a time series, is susceptible to rare events such as rapid shocks or other anomalies. A more robust estimate of the trend is the simple moving median over n time periods. """ return pd.Series( ohlc[column].rolling(window=period).median(), name="{0} period SMM".format(period), ) @classmethod def SSMA( cls, ohlc: DataFrame, period: int = 9, column: str = "close", adjust: bool = True, ) -> Series: """ Smoothed simple moving average. :param ohlc: data :param period: range :param column: open/close/high/low column of the DataFrame :return: result Series """ return pd.Series( ohlc[column] .ewm(ignore_na=False, alpha=1.0 / period, min_periods=0, adjust=adjust) .mean(), name="{0} period SSMA".format(period), ) @classmethod def EMA( cls, ohlc: DataFrame, period: int = 9, column: str = "close", adjust: bool = True, ) -> Series: """ Exponential Weighted Moving Average - Like all moving average indicators, they are much better suited for trending markets. When the market is in a strong and sustained uptrend, the EMA indicator line will also show an uptrend and vice-versa for a down trend. EMAs are commonly used in conjunction with other indicators to confirm significant market moves and to gauge their validity. """ return pd.Series( ohlc[column].ewm(span=period, adjust=adjust).mean(), name="{0} period EMA".format(period), ) @classmethod def DEMA( cls, ohlc: DataFrame, period: int = 9, column: str = "close", adjust: bool = True, ) -> Series: """ Double Exponential Moving Average - attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values. The name suggests this is achieved by applying a double exponential smoothing which is not the case. The name double comes from the fact that the value of an EMA (Exponential Moving Average) is doubled. To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted from the previously doubled EMA. Because EMA(EMA) is used in the calculation, DEMA needs 2 * period -1 samples to start producing values in contrast to the period samples needed by a regular EMA """ DEMA = ( 2 * cls.EMA(ohlc, period) - cls.EMA(ohlc, period).ewm(span=period, adjust=adjust).mean() ) return pd.Series(DEMA, name="{0} period DEMA".format(period)) @classmethod def TEMA(cls, ohlc: DataFrame, period: int = 9, adjust: bool = True) -> Series: """ Triple exponential moving average - attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values. The name suggests this is achieved by applying a triple exponential smoothing which is not the case. The name triple comes from the fact that the value of an EMA (Exponential Moving Average) is triple. To keep it in line with the actual data and to remove the lag the value 'EMA of EMA' is subtracted 3 times from the previously tripled EMA. Finally 'EMA of EMA of EMA' is added. Because EMA(EMA(EMA)) is used in the calculation, TEMA needs 3 * period - 2 samples to start producing values in contrast to the period samples needed by a regular EMA. """ triple_ema = 3 * cls.EMA(ohlc, period) ema_ema_ema = ( cls.EMA(ohlc, period) .ewm(ignore_na=False, span=period, adjust=adjust) .mean() .ewm(ignore_na=False, span=period, adjust=adjust) .mean() ) TEMA = ( triple_ema - 3 * cls.EMA(ohlc, period).ewm(span=period, adjust=adjust).mean() + ema_ema_ema ) return pd.Series(TEMA, name="{0} period TEMA".format(period)) @classmethod def TRIMA(cls, ohlc: DataFrame, period: int = 18) -> Series: """ The Triangular Moving Average (TRIMA) [also known as TMA] represents an average of prices, but places weight on the middle prices of the time period. The calculations double-smooth the data using a window width that is one-half the length of the series. source: https://www.thebalance.com/triangular-moving-average-tma-description-and-uses-1031203 """ SMA = cls.SMA(ohlc, period).rolling(window=period).sum() return pd.Series(SMA / period, name="{0} period TRIMA".format(period)) @classmethod def TRIX( cls, ohlc: DataFrame, period: int = 20, column: str = "close", adjust: bool = True, ) -> Series: """ The TRIX indicator calculates the rate of change of a triple exponential moving average. The values oscillate around zero. Buy/sell signals are generated when the TRIX crosses above/below zero. A (typically) 9 period exponential moving average of the TRIX can be used as a signal line. A buy/sell signals are generated when the TRIX crosses above/below the signal line and is also above/below zero. The TRIX was developed by <NAME>, publisher of Technical Analysis of Stocks & Commodities magazine, and was introduced in Volume 1, Number 5 of that magazine. """ data = ohlc[column] def _ema(data, period, adjust): return pd.Series(data.ewm(span=period, adjust=adjust).mean()) m = _ema(_ema(_ema(data, period, adjust), period, adjust), period, adjust) return pd.Series(100 * (m.diff() / m), name="{0} period TRIX".format(period)) @classmethod def LWMA(cls, ohlc: DataFrame, period: int, column: str = "close") -> Series: """ Linear Weighted Moving Average """ raise NotImplementedError @classmethod def VAMA(cls, ohlcv: DataFrame, period: int = 8, column: str = "close") -> Series: """ Volume Adjusted Moving Average """ vp = ohlcv["volume"] * ohlcv[column] volsum = ohlcv["volume"].rolling(window=period).mean() volRatio = pd.Series(vp / volsum, name="VAMA") cumSum = (volRatio * ohlcv[column]).rolling(window=period).sum() cumDiv = volRatio.rolling(window=period).sum() return pd.Series(cumSum / cumDiv, name="{0} period VAMA".format(period)) @classmethod def VIDYA( cls, ohlcv: DataFrame, period: int = 9, smoothing_period: int = 12, column: str = "close", ) -> Series: """ Vidya (variable index dynamic average) indicator is a modification of the traditional Exponential Moving Average (EMA) indicator. The main difference between EMA and Vidya is in the way the smoothing factor F is calculated. In EMA the smoothing factor is a constant value F=2/(period+1); in Vidya the smoothing factor is variable and depends on bar-to-bar price movements.""" raise NotImplementedError @classmethod def ER(cls, ohlc: DataFrame, period: int = 10, column: str = "close") -> Series: """The Kaufman Efficiency indicator is an oscillator indicator that oscillates between +100 and -100, where zero is the center point. +100 is upward forex trending market and -100 is downwards trending markets.""" change = ohlc[column].diff(period).abs() volatility = ohlc[column].diff().abs().rolling(window=period).sum() return pd.Series(change / volatility, name="{0} period ER".format(period)) @classmethod def KAMA( cls, ohlc: DataFrame, er: int = 10, ema_fast: int = 2, ema_slow: int = 30, period: int = 20, column: str = "close", ) -> Series: """Developed by <NAME>, Kaufman's Adaptive Moving Average (KAMA) is a moving average designed to account for market noise or volatility. Its main advantage is that it takes into consideration not just the direction, but the market volatility as well.""" er = cls.ER(ohlc, er) fast_alpha = 2 / (ema_fast + 1) slow_alpha = 2 / (ema_slow + 1) sc = pd.Series( (er * (fast_alpha - slow_alpha) + slow_alpha) ** 2, name="smoothing_constant", ) ## smoothing constant sma = pd.Series( ohlc[column].rolling(period).mean(), name="SMA" ) ## first KAMA is SMA kama = [] # Current KAMA = Prior KAMA + smoothing_constant * (Price - Prior KAMA) for s, ma, price in zip( sc.iteritems(), sma.shift().iteritems(), ohlc[column].iteritems() ): try: kama.append(kama[-1] + s[1] * (price[1] - kama[-1])) except (IndexError, TypeError): if pd.notnull(ma[1]): kama.append(ma[1] + s[1] * (price[1] - ma[1])) else: kama.append(None) sma["KAMA"] = pd.Series( kama, index=sma.index, name="{0} period KAMA.".format(period) ) ## apply the kama list to existing index return sma["KAMA"] @classmethod def ZLEMA( cls, ohlc: DataFrame, period: int = 26, adjust: bool = True, column: str = "close", ) -> Series: """ZLEMA is an abbreviation of Zero Lag Exponential Moving Average. It was developed by <NAME> and <NAME>. ZLEMA is a kind of Exponential moving average but its main idea is to eliminate the lag arising from the very nature of the moving averages and other trend following indicators. As it follows price closer, it also provides better price averaging and responds better to price swings.""" lag = (period - 1) / 2 ema = pd.Series( (ohlc[column] + (ohlc[column].diff(lag))), name="{0} period ZLEMA.".format(period), ) zlema = pd.Series( ema.ewm(span=period, adjust=adjust).mean(), name="{0} period ZLEMA".format(period), ) return zlema @classmethod def WMA(cls, ohlc: DataFrame, period: int = 9, column: str = "close") -> Series: """ WMA stands for weighted moving average. It helps to smooth the price curve for better trend identification. It places even greater importance on recent data than the EMA does. :period: Specifies the number of Periods used for WMA calculation """ d = (period * (period + 1)) / 2 # denominator weights = np.arange(1, period + 1) def linear(w): def _compute(x): return (w * x).sum() / d return _compute _close = ohlc[column].rolling(period, min_periods=period) wma = _close.apply(linear(weights), raw=True) return pd.Series(wma, name="{0} period WMA.".format(period)) @classmethod def HMA(cls, ohlc: DataFrame, period: int = 16) -> Series: """ HMA indicator is a common abbreviation of Hull Moving Average. The average was developed by <NAME> and is used mainly to identify the current market trend. Unlike SMA (simple moving average) the curve of Hull moving average is considerably smoother. Moreover, because its aim is to minimize the lag between HMA and price it does follow the price activity much closer. It is used especially for middle-term and long-term trading. :period: Specifies the number of Periods used for WMA calculation """ import math half_length = int(period / 2) sqrt_length = int(math.sqrt(period)) wmaf = cls.WMA(ohlc, period=half_length) wmas = cls.WMA(ohlc, period=period) ohlc["deltawma"] = 2 * wmaf - wmas hma = cls.WMA(ohlc, column="deltawma", period=sqrt_length) return pd.Series(hma, name="{0} period HMA.".format(period)) @classmethod def EVWMA(cls, ohlcv: DataFrame, period: int = 20) -> Series: """ The eVWMA can be looked at as an approximation to the average price paid per share in the last n periods. :period: Specifies the number of Periods used for eVWMA calculation """ vol_sum = ( ohlcv["volume"].rolling(window=period).sum() ) # floating shares in last N periods x = (vol_sum - ohlcv["volume"]) / vol_sum y = (ohlcv["volume"] * ohlcv["close"]) / vol_sum evwma = [0] # evwma = (evma[-1] * (vol_sum - volume)/vol_sum) + (volume * price / vol_sum) for x, y in zip(x.fillna(0).iteritems(), y.iteritems()): if x[1] == 0 or y[1] == 0: evwma.append(0) else: evwma.append(evwma[-1] * x[1] + y[1]) return pd.Series( evwma[1:], index=ohlcv.index, name="{0} period EVWMA.".format(period), ) @classmethod def VWAP(cls, ohlcv: DataFrame) -> Series: """ The volume weighted average price (VWAP) is a trading benchmark used especially in pension plans. VWAP is calculated by adding up the dollars traded for every transaction (price multiplied by number of shares traded) and then dividing by the total shares traded for the day. """ return pd.Series( ((ohlcv["volume"] * cls.TP(ohlcv)).cumsum()) / ohlcv["volume"].cumsum(), name="VWAP.", ) @classmethod def SMMA( cls, ohlc: DataFrame, period: int = 42, column: str = "close", adjust: bool = True, ) -> Series: """The SMMA (Smoothed Moving Average) gives recent prices an equal weighting to historic prices.""" return pd.Series( ohlc[column].ewm(alpha=1 / period, adjust=adjust).mean(), name="SMMA" ) @classmethod def ALMA( cls, ohlc: DataFrame, period: int = 9, sigma: int = 6, offset: int = 0.85 ) -> Series: """Arnaud Legoux Moving Average.""" """dataWindow = _.last(data, period) size = _.size(dataWindow) m = offset * (size - 1) s = size / sigma sum = 0 norm = 0 for i in [size-1..0] by -1 coeff = Math.exp(-1 * (i - m) * (i - m) / 2 * s * s) sum = sum + dataWindow[i] * coeff norm = norm + coeff return sum / norm""" raise NotImplementedError @classmethod def MAMA(cls, ohlc: DataFrame, period: int = 16) -> Series: """MESA Adaptive Moving Average""" raise NotImplementedError @classmethod def FRAMA(cls, ohlc: DataFrame, period: int = 16, batch: int=10) -> Series: """Fractal Adaptive Moving Average Source: http://www.stockspotter.com/Files/frama.pdf Adopted from: https://www.quantopian.com/posts/frama-fractal-adaptive-moving-average-in-python :period: Specifies the number of periods used for FRANA calculation :batch: Specifies the size of batches used for FRAMA calculation """ assert period % 2 == 0, print("FRAMA period must be even") c = ohlc.close.copy() window = batch * 2 hh = c.rolling(batch).max() ll = c.rolling(batch).min() n1 = (hh - ll) / batch n2 = n1.shift(batch) hh2 = c.rolling(window).max() ll2 = c.rolling(window).min() n3 = (hh2 - ll2) / window # calculate fractal dimension D = (np.log(n1 + n2) - np.log(n3)) / np.log(2) alp = np.exp(-4.6 * (D - 1)) alp = np.clip(alp, .01, 1).values filt = c.values for i, x in enumerate(alp): cl = c.values[i] if i < window: continue filt[i] = cl * x + (1 - x) * filt[i - 1] return pd.Series(filt, index=ohlc.index, name="{0} period FRAMA.".format(period)) @classmethod def MACD( cls, ohlc: DataFrame, period_fast: int = 12, period_slow: int = 26, signal: int = 9, column: str = "close", adjust: bool = True, ) -> DataFrame: """ MACD, MACD Signal and MACD difference. The MACD Line oscillates above and below the zero line, which is also known as the centerline. These crossovers signal that the 12-day EMA has crossed the 26-day EMA. The direction, of course, depends on the direction of the moving average cross. Positive MACD indicates that the 12-day EMA is above the 26-day EMA. Positive values increase as the shorter EMA diverges further from the longer EMA. This means upside momentum is increasing. Negative MACD values indicates that the 12-day EMA is below the 26-day EMA. Negative values increase as the shorter EMA diverges further below the longer EMA. This means downside momentum is increasing. Signal line crossovers are the most common MACD signals. The signal line is a 9-day EMA of the MACD Line. As a moving average of the indicator, it trails the MACD and makes it easier to spot MACD turns. A bullish crossover occurs when the MACD turns up and crosses above the signal line. A bearish crossover occurs when the MACD turns down and crosses below the signal line. """ EMA_fast = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_fast, adjust=adjust).mean(), name="EMA_fast", ) EMA_slow = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_slow, adjust=adjust).mean(), name="EMA_slow", ) MACD = pd.Series(EMA_fast - EMA_slow, name="MACD") MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) return pd.concat([MACD, MACD_signal], axis=1) @classmethod def PPO( cls, ohlc: DataFrame, period_fast: int = 12, period_slow: int = 26, signal: int = 9, column: str = "close", adjust: bool = True, ) -> DataFrame: """ Percentage Price Oscillator PPO, PPO Signal and PPO difference. As with MACD, the PPO reflects the convergence and divergence of two moving averages. While MACD measures the absolute difference between two moving averages, PPO makes this a relative value by dividing the difference by the slower moving average """ EMA_fast = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_fast, adjust=adjust).mean(), name="EMA_fast", ) EMA_slow = pd.Series( ohlc[column].ewm(ignore_na=False, span=period_slow, adjust=adjust).mean(), name="EMA_slow", ) PPO = pd.Series(((EMA_fast - EMA_slow) / EMA_slow) * 100, name="PPO") PPO_signal = pd.Series( PPO.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) PPO_histo = pd.Series(PPO - PPO_signal, name="HISTO") return pd.concat([PPO, PPO_signal, PPO_histo], axis=1) @classmethod def VW_MACD( cls, ohlcv: DataFrame, period_fast: int = 12, period_slow: int = 26, signal: int = 9, column: str = "close", adjust: bool = True, ) -> DataFrame: """"Volume-Weighted MACD" is an indicator that shows how a volume-weighted moving average can be used to calculate moving average convergence/divergence (MACD). This technique was first used by <NAME>, CMT, and has been written about since at least 2002.""" vp = ohlcv["volume"] * ohlcv[column] _fast = pd.Series( (vp.ewm(ignore_na=False, span=period_fast, adjust=adjust).mean()) / ( ohlcv["volume"] .ewm(ignore_na=False, span=period_fast, adjust=adjust) .mean() ), name="_fast", ) _slow = pd.Series( (vp.ewm(ignore_na=False, span=period_slow, adjust=adjust).mean()) / ( ohlcv["volume"] .ewm(ignore_na=False, span=period_slow, adjust=adjust) .mean() ), name="_slow", ) MACD = pd.Series(_fast - _slow, name="MACD") MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) return pd.concat([MACD, MACD_signal], axis=1) @classmethod def EV_MACD( cls, ohlcv: DataFrame, period_fast: int = 20, period_slow: int = 40, signal: int = 9, adjust: bool = True, ) -> DataFrame: """ Elastic Volume Weighted MACD is a variation of standard MACD, calculated using two EVWMA's. :period_slow: Specifies the number of Periods used for the slow EVWMA calculation :period_fast: Specifies the number of Periods used for the fast EVWMA calculation :signal: Specifies the number of Periods used for the signal calculation """ evwma_slow = cls.EVWMA(ohlcv, period_slow) evwma_fast = cls.EVWMA(ohlcv, period_fast) MACD = pd.Series(evwma_fast - evwma_slow, name="MACD") MACD_signal = pd.Series( MACD.ewm(ignore_na=False, span=signal, adjust=adjust).mean(), name="SIGNAL" ) return pd.concat([MACD, MACD_signal], axis=1) @classmethod def MOM(cls, ohlc: DataFrame, period: int = 10, column: str = "close") -> Series: """Market momentum is measured by continually taking price differences for a fixed time interval. To construct a 10-day momentum line, simply subtract the closing price 10 days ago from the last closing price. This positive or negative value is then plotted around a zero line.""" return pd.Series(ohlc[column].diff(period), name="MOM".format(period)) @classmethod def ROC(cls, ohlc: DataFrame, period: int = 12, column: str = "close") -> Series: """The Rate-of-Change (ROC) indicator, which is also referred to as simply Momentum, is a pure momentum oscillator that measures the percent change in price from one period to the next. The ROC calculation compares the current price with the price “n” periods ago.""" return pd.Series( (ohlc[column].diff(period) / ohlc[column].shift(period)) * 100, name="ROC" ) @classmethod def VBM( cls, ohlc: DataFrame, roc_period: int = 12, atr_period: int = 26, column: str = "close", ) -> Series: """The Volatility-Based-Momentum (VBM) indicator, The calculation for a volatility based momentum (VBM) indicator is very similar to ROC, but divides by the security’s historical volatility instead. The average true range indicator (ATR) is used to compute historical volatility. VBM(n,v) = (Close — Close n periods ago) / ATR(v periods) """ return pd.Series( ( (ohlc[column].diff(roc_period) - ohlc[column].shift(roc_period)) / cls.ATR(ohlc, atr_period) ), name="VBM", ) @classmethod def RSI( cls, ohlc: DataFrame, period: int = 14, column: str = "close", adjust: bool = True, ) -> Series: """Relative Strength Index (RSI) is a momentum oscillator that measures the speed and change of price movements. RSI oscillates between zero and 100. Traditionally, and according to Wilder, RSI is considered overbought when above 70 and oversold when below 30. Signals can also be generated by looking for divergences, failure swings and centerline crossovers. RSI can also be used to identify the general trend.""" ## get the price diff delta = ohlc[column].diff() ## positive gains (up) and negative gains (down) Series up, down = delta.copy(), delta.copy() up[up < 0] = 0 down[down > 0] = 0 # EMAs of ups and downs _gain = up.ewm(alpha=1.0 / period, adjust=adjust).mean() _loss = down.abs().ewm(alpha=1.0 / period, adjust=adjust).mean() RS = _gain / _loss return pd.Series(100 - (100 / (1 + RS)), name="{0} period RSI".format(period)) @classmethod def IFT_RSI( cls, ohlc: DataFrame, column: str = "close", rsi_period: int = 5, wma_period: int = 9, ) -> Series: """Modified Inverse Fisher Transform applied on RSI. Suggested method to use any IFT indicator is to buy when the indicator crosses over –0.5 or crosses over +0.5 if it has not previously crossed over –0.5 and to sell short when the indicators crosses under +0.5 or crosses under –0.5 if it has not previously crossed under +0.5.""" # v1 = .1 * (rsi - 50) v1 = pd.Series(0.1 * (cls.RSI(ohlc, rsi_period) - 50), name="v1") # v2 = WMA(wma_period) of v1 d = (wma_period * (wma_period + 1)) / 2 # denominator weights = np.arange(1, wma_period + 1) def linear(w): def _compute(x): return (w * x).sum() / d return _compute _wma = v1.rolling(wma_period, min_periods=wma_period) v2 = _wma.apply(linear(weights), raw=True) ift = pd.Series(((v2 ** 2 - 1) / (v2 ** 2 + 1)), name="IFT_RSI") return ift @classmethod def SWI(cls, ohlc: DataFrame, period: int = 16) -> Series: """Sine Wave indicator""" raise NotImplementedError @classmethod def DYMI( cls, ohlc: DataFrame, column: str = "close", adjust: bool = True ) -> Series: """ The Dynamic Momentum Index is a variable term RSI. The RSI term varies from 3 to 30. The variable time period makes the RSI more responsive to short-term moves. The more volatile the price is, the shorter the time period is. It is interpreted in the same way as the RSI, but provides signals earlier. Readings below 30 are considered oversold, and levels over 70 are considered overbought. The indicator oscillates between 0 and 100. https://www.investopedia.com/terms/d/dynamicmomentumindex.asp """ def _get_time(close): # Value available from 14th period sd = close.rolling(5).std() asd = sd.rolling(10).mean() v = sd / asd t = 14 / v.round() t[t.isna()] = 0 t = t.map(lambda x: int(min(max(x, 5), 30))) return t def _dmi(index): time = t.iloc[index] if (index - time) < 0: subset = ohlc.iloc[0:index] else: subset = ohlc.iloc[(index - time) : index] return cls.RSI(subset, period=time, adjust=adjust).values[-1] dates = Series(ohlc.index) periods = Series(range(14, len(dates)), index=ohlc.index[14:].values) t = _get_time(ohlc[column]) return periods.map(lambda x: _dmi(x)) @classmethod def TR(cls, ohlc: DataFrame) -> Series: """True Range is the maximum of three price ranges. Most recent period's high minus the most recent period's low. Absolute value of the most recent period's high minus the previous close. Absolute value of the most recent period's low minus the previous close.""" TR1 = pd.Series(ohlc["high"] - ohlc["low"]).abs() # True Range = High less Low TR2 = pd.Series( ohlc["high"] - ohlc["close"].shift() ).abs() # True Range = High less Previous Close TR3 = pd.Series( ohlc["close"].shift() - ohlc["low"] ).abs() # True Range = Previous Close less Low _TR = pd.concat([TR1, TR2, TR3], axis=1) _TR["TR"] = _TR.max(axis=1) return pd.Series(_TR["TR"], name="TR") @classmethod def ATR(cls, ohlc: DataFrame, period: int = 14) -> Series: """Average True Range is moving average of True Range.""" TR = cls.TR(ohlc) return pd.Series( TR.rolling(center=False, window=period).mean(), name="{0} period ATR".format(period), ) @classmethod def SAR(cls, ohlc: DataFrame, af: int = 0.02, amax: int = 0.2) -> Series: """SAR stands for “stop and reverse,” which is the actual indicator used in the system. SAR trails price as the trend extends over time. The indicator is below prices when prices are rising and above prices when prices are falling. In this regard, the indicator stops and reverses when the price trend reverses and breaks above or below the indicator.""" high, low = ohlc.high, ohlc.low # Starting values sig0, xpt0, af0 = True, high[0], af _sar = [low[0] - (high - low).std()] for i in range(1, len(ohlc)): sig1, xpt1, af1 = sig0, xpt0, af0 lmin = min(low[i - 1], low[i]) lmax = max(high[i - 1], high[i]) if sig1: sig0 = low[i] > _sar[-1] xpt0 = max(lmax, xpt1) else: sig0 = high[i] >= _sar[-1] xpt0 = min(lmin, xpt1) if sig0 == sig1: sari = _sar[-1] + (xpt1 - _sar[-1]) * af1 af0 = min(amax, af1 + af) if sig0: af0 = af0 if xpt0 > xpt1 else af1 sari = min(sari, lmin) else: af0 = af0 if xpt0 < xpt1 else af1 sari = max(sari, lmax) else: af0 = af sari = xpt0 _sar.append(sari) return pd.Series(_sar, index=ohlc.index) @classmethod def PSAR(cls, ohlc: DataFrame, iaf: int = 0.02, maxaf: int = 0.2) -> DataFrame: """ The parabolic SAR indicator, developed by <NAME>, is used by traders to determine trend direction and potential reversals in price. The indicator uses a trailing stop and reverse method called "SAR," or stop and reverse, to identify suitable exit and entry points. Traders also refer to the indicator as the parabolic stop and reverse, parabolic SAR, or PSAR. https://www.investopedia.com/terms/p/parabolicindicator.asp https://virtualizedfrog.wordpress.com/2014/12/09/parabolic-sar-implementation-in-python/ """ length = len(ohlc) high, low, close = ohlc.high, ohlc.low, ohlc.close psar = close[0 : len(close)] psarbull = [None] * length psarbear = [None] * length bull = True af = iaf hp = high[0] lp = low[0] for i in range(2, length): if bull: psar[i] = psar[i - 1] + af * (hp - psar[i - 1]) else: psar[i] = psar[i - 1] + af * (lp - psar[i - 1]) reverse = False if bull: if low[i] < psar[i]: bull = False reverse = True psar[i] = hp lp = low[i] af = iaf else: if high[i] > psar[i]: bull = True reverse = True psar[i] = lp hp = high[i] af = iaf if not reverse: if bull: if high[i] > hp: hp = high[i] af = min(af + iaf, maxaf) if low[i - 1] < psar[i]: psar[i] = low[i - 1] if low[i - 2] < psar[i]: psar[i] = low[i - 2] else: if low[i] < lp: lp = low[i] af = min(af + iaf, maxaf) if high[i - 1] > psar[i]: psar[i] = high[i - 1] if high[i - 2] > psar[i]: psar[i] = high[i - 2] if bull: psarbull[i] = psar[i] else: psarbear[i] = psar[i] psar = pd.Series(psar, name="psar", index=ohlc.index) psarbear = pd.Series(psarbull, name="psarbull", index=ohlc.index) psarbull = pd.Series(psarbear, name="psarbear", index=ohlc.index) return pd.concat([psar, psarbull, psarbear], axis=1) @classmethod def BBANDS( cls, ohlc: DataFrame, period: int = 20, MA: Series = None, column: str = "close", std_multiplier: float = 2, ) -> DataFrame: """ Developed by <NAME>, Bollinger Bands® are volatility bands placed above and below a moving average. Volatility is based on the standard deviation, which changes as volatility increases and decreases. The bands automatically widen when volatility increases and narrow when volatility decreases. This method allows input of some other form of moving average like EMA or KAMA around which BBAND will be formed. Pass desired moving average as <MA> argument. For example BBANDS(MA=TA.KAMA(20)). """ std = ohlc[column].rolling(window=period).std() if not isinstance(MA, pd.core.series.Series): middle_band = pd.Series(cls.SMA(ohlc, period), name="BB_MIDDLE") else: middle_band = pd.Series(MA, name="BB_MIDDLE") upper_bb = pd.Series(middle_band + (std_multiplier * std), name="BB_UPPER") lower_bb = pd.Series(middle_band - (std_multiplier * std), name="BB_LOWER") return pd.concat([upper_bb, middle_band, lower_bb], axis=1) @classmethod def MOBO( cls, ohlc: DataFrame, period: int = 10, std_multiplier: float = 0.8, column: str = "close", ) -> DataFrame: """ "MOBO bands are based on a zone of 0.80 standard deviation with a 10 period look-back" If the price breaks out of the MOBO band it can signify a trend move or price spike Contains 42% of price movements(noise) within bands. """ BB = TA.BBANDS(ohlc, period=10, std_multiplier=0.8, column=column) return BB @classmethod def BBWIDTH( cls, ohlc: DataFrame, period: int = 20, MA: Series = None, column: str = "close" ) -> Series: """Bandwidth tells how wide the Bollinger Bands are on a normalized basis.""" BB = TA.BBANDS(ohlc, period, MA, column) return pd.Series( (BB["BB_UPPER"] - BB["BB_LOWER"]) / BB["BB_MIDDLE"], name="{0} period BBWITH".format(period), ) @classmethod def PERCENT_B( cls, ohlc: DataFrame, period: int = 20, MA: Series = None, column: str = "close" ) -> Series: """ %b (pronounced 'percent b') is derived from the formula for Stochastics and shows where price is in relation to the bands. %b equals 1 at the upper band and 0 at the lower band. """ BB = TA.BBANDS(ohlc, period, MA, column) percent_b = pd.Series( (ohlc["close"] - BB["BB_LOWER"]) / (BB["BB_UPPER"] - BB["BB_LOWER"]), name="%b", ) return percent_b @classmethod def KC( cls, ohlc: DataFrame, period: int = 20, atr_period: int = 10, MA: Series = None, kc_mult: float = 2, ) -> DataFrame: """Keltner Channels [KC] are volatility-based envelopes set above and below an exponential moving average. This indicator is similar to Bollinger Bands, which use the standard deviation to set the bands. Instead of using the standard deviation, Keltner Channels use the Average True Range (ATR) to set channel distance. The channels are typically set two Average True Range values above and below the 20-day EMA. The exponential moving average dictates direction and the Average True Range sets channel width. Keltner Channels are a trend following indicator used to identify reversals with channel breakouts and channel direction. Channels can also be used to identify overbought and oversold levels when the trend is flat.""" if not isinstance(MA, pd.core.series.Series): middle = pd.Series(cls.EMA(ohlc, period), name="KC_MIDDLE") else: middle = pd.Series(MA, name="KC_MIDDLE") up = pd.Series(middle + (kc_mult * cls.ATR(ohlc, atr_period)), name="KC_UPPER") down = pd.Series( middle - (kc_mult * cls.ATR(ohlc, atr_period)), name="KC_LOWER" ) return pd.concat([up, down], axis=1) @classmethod def DO( cls, ohlc: DataFrame, upper_period: int = 20, lower_period: int = 5 ) -> DataFrame: """Donchian Channel, a moving average indicator developed by <NAME>. It plots the highest high and lowest low over the last period time intervals.""" upper = pd.Series( ohlc["high"].rolling(center=False, window=upper_period).max(), name="UPPER" ) lower = pd.Series( ohlc["low"].rolling(center=False, window=lower_period).min(), name="LOWER" ) middle = pd.Series((upper + lower) / 2, name="MIDDLE") return pd.concat([lower, middle, upper], axis=1) @classmethod def DMI(cls, ohlc: DataFrame, period: int = 14, adjust: bool = True) -> DataFrame: """The directional movement indicator (also known as the directional movement index - DMI) is a valuable tool for assessing price direction and strength. This indicator was created in 1978 by <NAME>, who also created the popular relative strength index. DMI tells you when to be long or short. It is especially useful for trend trading strategies because it differentiates between strong and weak trends, allowing the trader to enter only the strongest trends. source: https://www.tradingview.com/wiki/Directional_Movement_(DMI)#CALCULATION :period: Specifies the number of Periods used for DMI calculation """ ohlc["up_move"] = ohlc["high"].diff() ohlc["down_move"] = -ohlc["low"].diff() # positive Dmi def _dmp(row): if row["up_move"] > row["down_move"] and row["up_move"] > 0: return row["up_move"] else: return 0 # negative Dmi def _dmn(row): if row["down_move"] > row["up_move"] and row["down_move"] > 0: return row["down_move"] else: return 0 ohlc["plus"] = ohlc.apply(_dmp, axis=1) ohlc["minus"] = ohlc.apply(_dmn, axis=1) diplus = pd.Series( 100 * (ohlc["plus"] / cls.ATR(ohlc, period)) .ewm(alpha=1 / period, adjust=adjust) .mean(), name="DI+", ) diminus = pd.Series( 100 * (ohlc["minus"] / cls.ATR(ohlc, period)) .ewm(alpha=1 / period, adjust=adjust) .mean(), name="DI-", ) return pd.concat([diplus, diminus], axis=1) @classmethod def ADX(cls, ohlc: DataFrame, period: int = 14, adjust: bool = True) -> Series: """The A.D.X. is 100 * smoothed moving average of absolute value (DMI +/-) divided by (DMI+ + DMI-). ADX does not indicate trend direction or momentum, only trend strength. Generally, A.D.X. readings below 20 indicate trend weakness, and readings above 40 indicate trend strength. An extremely strong trend is indicated by readings above 50""" dmi = cls.DMI(ohlc, period) return pd.Series( 100 * (abs(dmi["DI+"] - dmi["DI-"]) / (dmi["DI+"] + dmi["DI-"])) .ewm(alpha=1 / period, adjust=adjust) .mean(), name="{0} period ADX.".format(period), ) @classmethod def PIVOT(cls, ohlc: DataFrame) -> DataFrame: """ Pivot Points are significant support and resistance levels that can be used to determine potential trades. The pivot points come as a technical analysis indicator calculated using a financial instrument’s high, low, and close value. The pivot point’s parameters are usually taken from the previous day’s trading range. This means you’ll have to use the previous day’s range for today’s pivot points. Or, last week’s range if you want to calculate weekly pivot points or, last month’s range for monthly pivot points and so on. """ df = ohlc.shift() # pivot is calculated of the previous trading session pivot = pd.Series(cls.TP(df), name="pivot") # pivot is basically a lagging TP s1 = (pivot * 2) - df["high"] s2 = pivot - (df["high"] - df["low"]) s3 = df["low"] - (2 * (df["high"] - pivot)) s4 = df["low"] - (3 * (df["high"] - pivot)) r1 = (pivot * 2) - df["low"] r2 = pivot + (df["high"] - df["low"]) r3 = df["high"] + (2 * (pivot - df["low"])) r4 = df["high"] + (3 * (pivot - df["low"])) return pd.concat( [ pivot, pd.Series(s1, name="s1"), pd.Series(s2, name="s2"), pd.Series(s3, name="s3"), pd.Series(s4, name="s4"), pd.Series(r1, name="r1"), pd.Series(r2, name="r2"), pd.Series(r3, name="r3"), pd.Series(r4, name="r4"), ], axis=1, ) @classmethod def PIVOT_FIB(cls, ohlc: DataFrame) -> DataFrame: """ Fibonacci pivot point levels are determined by first calculating the classic pivot point, then multiply the previous day’s range with its corresponding Fibonacci level. Most traders use the 38.2%, 61.8% and 100% retracements in their calculations. """ df = ohlc.shift() pp = pd.Series(cls.TP(df), name="pivot") # classic pivot r4 = pp + ((df["high"] - df["low"]) * 1.382) r3 = pp + ((df["high"] - df["low"]) * 1) r2 = pp + ((df["high"] - df["low"]) * 0.618) r1 = pp + ((df["high"] - df["low"]) * 0.382) s1 = pp - ((df["high"] - df["low"]) * 0.382) s2 = pp - ((df["high"] - df["low"]) * 0.618) s3 = pp - ((df["high"] - df["low"]) * 1) s4 = pp - ((df["high"] - df["low"]) * 1.382) return pd.concat( [ pp, pd.Series(s1, name="s1"), pd.Series(s2, name="s2"), pd.Series(s3, name="s3"), pd.Series(s4, name="s4"), pd.Series(r1, name="r1"), pd.Series(r2, name="r2"), pd.Series(r3, name="r3"), pd.Series(r4, name="r4"), ], axis=1, ) @classmethod def STOCH(cls, ohlc: DataFrame, period: int = 14) -> Series: """Stochastic oscillator %K The stochastic oscillator is a momentum indicator comparing the closing price of a security to the range of its prices over a certain period of time. The sensitivity of the oscillator to market movements is reducible by adjusting that time period or by taking a moving average of the result. """ highest_high = ohlc["high"].rolling(center=False, window=period).max() lowest_low = ohlc["low"].rolling(center=False, window=period).min() STOCH = pd.Series( (ohlc["close"] - lowest_low) / (highest_high - lowest_low) * 100, name="{0} period STOCH %K".format(period), ) return STOCH @classmethod def STOCHD(cls, ohlc: DataFrame, period: int = 3, stoch_period: int = 14) -> Series: """Stochastic oscillator %D STOCH%D is a 3 period simple moving average of %K. """ return pd.Series( cls.STOCH(ohlc, stoch_period).rolling(center=False, window=period).mean(), name="{0} period STOCH %D.".format(period), ) @classmethod def STOCHRSI( cls, ohlc: DataFrame, rsi_period: int = 14, stoch_period: int = 14 ) -> Series: """StochRSI is an oscillator that measures the level of RSI relative to its high-low range over a set time period. StochRSI applies the Stochastics formula to RSI values, instead of price values. This makes it an indicator of an indicator. The result is an oscillator that fluctuates between 0 and 1.""" rsi = cls.RSI(ohlc, rsi_period) return pd.Series( ((rsi - rsi.min()) / (rsi.max() - rsi.min())) .rolling(window=stoch_period) .mean(), name="{0} period stochastic RSI.".format(rsi_period), ) @classmethod def WILLIAMS(cls, ohlc: DataFrame, period: int = 14) -> Series: """Williams %R, or just %R, is a technical analysis oscillator showing the current closing price in relation to the high and low of the past N days (for a given N). It was developed by a publisher and promoter of trading materials, <NAME>. Its purpose is to tell whether a stock or commodity market is trading near the high or the low, or somewhere in between, of its recent trading range. The oscillator is on a negative scale, from −100 (lowest) up to 0 (highest). """ highest_high = ohlc["high"].rolling(center=False, window=period).max() lowest_low = ohlc["low"].rolling(center=False, window=period).min() WR = pd.Series( (highest_high - ohlc["close"]) / (highest_high - lowest_low), name="{0} Williams %R".format(period), ) return WR * -100 @classmethod def UO(cls, ohlc: DataFrame, column: str = "close") -> Series: """Ultimate Oscillator is a momentum oscillator designed to capture momentum across three different time frames. The multiple time frame objective seeks to avoid the pitfalls of other oscillators. Many momentum oscillators surge at the beginning of a strong advance and then form bearish divergence as the advance continues. This is because they are stuck with one time frame. The Ultimate Oscillator attempts to correct this fault by incorporating longer time frames into the basic formula.""" k = [] # current low or past close for row, _row in zip(ohlc.itertuples(), ohlc.shift(1).itertuples()): k.append(min(row.low, _row.close)) bp = pd.Series(ohlc[column] - k, name="bp") # Buying pressure Average7 = bp.rolling(window=7).sum() / cls.TR(ohlc).rolling(window=7).sum() Average14 = bp.rolling(window=14).sum() / cls.TR(ohlc).rolling(window=14).sum() Average28 = bp.rolling(window=28).sum() / cls.TR(ohlc).rolling(window=28).sum() return pd.Series( (100 * ((4 * Average7) + (2 * Average14) + Average28)) / (4 + 2 + 1) ) @classmethod def AO(cls, ohlc: DataFrame, slow_period: int = 34, fast_period: int = 5) -> Series: """'EMA', Awesome Oscillator is an indicator used to measure market momentum. AO calculates the difference of a 34 Period and 5 Period Simple Moving Averages. The Simple Moving Averages that are used are not calculated using closing price but rather each bar's midpoints. AO is generally used to affirm trends or to anticipate possible reversals. """ slow = pd.Series( ((ohlc["high"] + ohlc["low"]) / 2).rolling(window=slow_period).mean(), name="slow_AO", ) fast = pd.Series( ((ohlc["high"] + ohlc["low"]) / 2).rolling(window=fast_period).mean(), name="fast_AO", ) return pd.Series(fast - slow, name="AO") @classmethod def MI(cls, ohlc: DataFrame, period: int = 9, adjust: bool = True) -> Series: """Developed by <NAME>, the Mass Index uses the high-low range to identify trend reversals based on range expansions. In this sense, the Mass Index is a volatility indicator that does not have a directional bias. Instead, the Mass Index identifies range bulges that can foreshadow a reversal of the current trend.""" _range = pd.Series(ohlc["high"] - ohlc["low"], name="range") EMA9 = _range.ewm(span=period, ignore_na=False, adjust=adjust).mean() DEMA9 = EMA9.ewm(span=period, ignore_na=False, adjust=adjust).mean() mass = EMA9 / DEMA9 return pd.Series(mass.rolling(window=25).sum(), name="Mass Index") @classmethod def BOP(cls, ohlc: DataFrame) -> Series: """Balance Of Power indicator""" return pd.Series( (ohlc.close - ohlc.open) / (ohlc.high - ohlc.low), name="Balance Of Power" ) @classmethod def VORTEX(cls, ohlc: DataFrame, period: int = 14) -> DataFrame: """The Vortex indicator plots two oscillating lines, one to identify positive trend movement and the other to identify negative price movement. Indicator construction revolves around the highs and lows of the last two days or periods. The distance from the current high to the prior low designates positive trend movement while the distance between the current low and the prior high designates negative trend movement. Strongly positive or negative trend movements will show a longer length between the two numbers while weaker positive or negative trend movement will show a shorter length.""" VMP = pd.Series((ohlc["high"] - ohlc["low"].shift()).abs()) VMM = pd.Series((ohlc["low"] - ohlc["high"].shift()).abs()) VMPx = VMP.rolling(window=period).sum() VMMx = VMM.rolling(window=period).sum() TR = cls.TR(ohlc).rolling(window=period).sum() VIp = pd.Series(VMPx / TR, name="VIp").interpolate(method="index") VIm = pd.Series(VMMx / TR, name="VIm").interpolate(method="index") return pd.concat([VIm, VIp], axis=1) @classmethod def KST( cls, ohlc: DataFrame, r1: int = 10, r2: int = 15, r3: int = 20, r4: int = 30 ) -> DataFrame: """Know Sure Thing (KST) is a momentum oscillator based on the smoothed rate-of-change for four different time frames. KST measures price momentum for four different price cycles. It can be used just like any momentum oscillator. Chartists can look for divergences, overbought/oversold readings, signal line crossovers and centerline crossovers.""" r1 = cls.ROC(ohlc, r1).rolling(window=10).mean() r2 = cls.ROC(ohlc, r2).rolling(window=10).mean() r3 = cls.ROC(ohlc, r3).rolling(window=10).mean() r4 = cls.ROC(ohlc, r4).rolling(window=15).mean() k = pd.Series((r1 * 1) + (r2 * 2) + (r3 * 3) + (r4 * 4), name="KST") signal = pd.Series(k.rolling(window=10).mean(), name="signal") return pd.concat([k, signal], axis=1) @classmethod def TSI( cls, ohlc: DataFrame, long: int = 25, short: int = 13, signal: int = 13, column: str = "close", adjust: bool = True, ) -> DataFrame: """True Strength Index (TSI) is a momentum oscillator based on a double smoothing of price changes.""" ## Double smoother price change momentum = pd.Series(ohlc[column].diff()) ## 1 period momentum _EMA25 = pd.Series( momentum.ewm(span=long, min_periods=long - 1, adjust=adjust).mean(), name="_price change EMA25", ) _DEMA13 = pd.Series( _EMA25.ewm(span=short, min_periods=short - 1, adjust=adjust).mean(), name="_price change double smoothed DEMA13", ) ## Double smoothed absolute price change absmomentum = pd.Series(ohlc[column].diff().abs()) _aEMA25 = pd.Series( absmomentum.ewm(span=long, min_periods=long - 1, adjust=adjust).mean(), name="_abs_price_change EMA25", ) _aDEMA13 = pd.Series( _aEMA25.ewm(span=short, min_periods=short - 1, adjust=adjust).mean(), name="_abs_price_change double smoothed DEMA13", ) TSI = pd.Series((_DEMA13 / _aDEMA13) * 100, name="TSI") signal = pd.Series( TSI.ewm(span=signal, min_periods=signal - 1, adjust=adjust).mean(), name="signal", ) return pd.concat([TSI, signal], axis=1) @classmethod def TP(cls, ohlc: DataFrame) -> Series: """Typical Price refers to the arithmetic average of the high, low, and closing prices for a given period.""" return pd.Series((ohlc["high"] + ohlc["low"] + ohlc["close"]) / 3, name="TP") @classmethod def ADL(cls, ohlcv: DataFrame) -> Series: """The accumulation/distribution line was created by <NAME> to determine the flow of money into or out of a security. It should not be confused with the advance/decline line. While their initials might be the same, these are entirely different indicators, and their uses are different as well. Whereas the advance/decline line can provide insight into market movements, the accumulation/distribution line is of use to traders looking to measure buy/sell pressure on a security or confirm the strength of a trend.""" MFM = pd.Series( ((ohlcv["close"] - ohlcv["low"]) - (ohlcv["high"] - ohlcv["close"])) / (ohlcv["high"] - ohlcv["low"]), name="MFM", ) # Money flow multiplier MFV = pd.Series(MFM * ohlcv["volume"], name="MFV") return MFV.cumsum() @classmethod def CHAIKIN(cls, ohlcv: DataFrame, adjust: bool = True) -> Series: """Chaikin Oscillator, named after its creator, <NAME>, the Chaikin oscillator is an oscillator that measures the accumulation/distribution line of the moving average convergence divergence (MACD). The Chaikin oscillator is calculated by subtracting a 10-day exponential moving average (EMA) of the accumulation/distribution line from a three-day EMA of the accumulation/distribution line, and highlights the momentum implied by the accumulation/distribution line.""" return pd.Series( cls.ADL(ohlcv).ewm(span=3, min_periods=2, adjust=adjust).mean() - cls.ADL(ohlcv).ewm(span=10, min_periods=9, adjust=adjust).mean() ) @classmethod def MFI(cls, ohlc: DataFrame, period: int = 14) -> Series: """The money flow index (MFI) is a momentum indicator that measures the inflow and outflow of money into a security over a specific period of time. MFI can be understood as RSI adjusted for volume. The money flow indicator is one of the more reliable indicators of overbought and oversold conditions, perhaps partly because it uses the higher readings of 80 and 20 as compared to the RSI's overbought/oversold readings of 70 and 30""" tp = cls.TP(ohlc) rmf = pd.Series(tp * ohlc["volume"], name="rmf") ## Real Money Flow _mf = pd.concat([tp, rmf], axis=1) _mf["delta"] = _mf["TP"].diff() def pos(row): if row["delta"] > 0: return row["rmf"] else: return 0 def neg(row): if row["delta"] < 0: return row["rmf"] else: return 0 _mf["neg"] = _mf.apply(neg, axis=1) _mf["pos"] = _mf.apply(pos, axis=1) mfratio = pd.Series( _mf["pos"].rolling(window=period).sum() / _mf["neg"].rolling(window=period).sum() ) return pd.Series( 100 - (100 / (1 + mfratio)), name="{0} period MFI".format(period) ) @classmethod def OBV(cls, ohlcv: DataFrame, column: str = "close") -> Series: """ On Balance Volume (OBV) measures buying and selling pressure as a cumulative indicator that adds volume on up days and subtracts volume on down days. OBV was developed by <NAME> and introduced in his 1963 book, Granville's New Key to Stock Market Profits. It was one of the first indicators to measure positive and negative volume flow. Chartists can look for divergences between OBV and price to predict price movements or use OBV to confirm price trends. source: https://en.wikipedia.org/wiki/On-balance_volume#The_formula :param pd.DataFrame ohlc: 'open, high, low, close' pandas DataFrame :return pd.Series: result is pandas.Series """ ohlcv["OBV"] = np.nan neg_change = ohlcv[column] < ohlcv[column].shift(1) pos_change = ohlcv[column] > ohlcv[column].shift(1) if pos_change.any(): ohlcv.loc[pos_change, "OBV"] = ohlcv["volume"] if neg_change.any(): ohlcv.loc[neg_change, "OBV"] = -ohlcv["volume"] return pd.Series(ohlcv["OBV"].cumsum(), name="OBV") @classmethod def WOBV(cls, ohlcv: DataFrame, column: str = "close") -> Series: """ Weighted OBV Can also be seen as an OBV indicator that takes the price differences into account. In a regular OBV, a high volume bar can make a huge difference, even if the price went up only 0.01, and it it goes down 0.01 instead, that huge volume makes the OBV go down, even though hardly anything really happened. """ wobv = pd.Series(ohlcv["volume"] * ohlcv[column].diff(), name="WOBV") return wobv.cumsum() @classmethod def VZO( cls, ohlc: DataFrame, period: int = 14, column: str = "close", adjust: bool = True, ) -> Series: """VZO uses price, previous price and moving averages to compute its oscillating value. It is a leading indicator that calculates buy and sell signals based on oversold / overbought conditions. Oscillations between the 5% and 40% levels mark a bullish trend zone, while oscillations between -40% and 5% mark a bearish trend zone. Meanwhile, readings above 40% signal an overbought condition, while readings above 60% signal an extremely overbought condition. Alternatively, readings below -40% indicate an oversold condition, which becomes extremely oversold below -60%.""" sign = lambda a: (a > 0) - (a < 0) r = ohlc[column].diff().apply(sign) * ohlc["volume"] dvma = r.ewm(span=period, adjust=adjust).mean() vma = ohlc["volume"].ewm(span=period, adjust=adjust).mean() return pd.Series(100 * (dvma / vma), name="VZO") @classmethod def PZO( cls, ohlc: DataFrame, period: int = 14, column: str = "close", adjust: bool = True, ) -> Series: """ The formula for PZO depends on only one condition: if today's closing price is higher than yesterday's closing price, then the closing price will have a positive value (bullish); otherwise it will have a negative value (bearish). source: http://traders.com/Documentation/FEEDbk_docs/2011/06/Khalil.html :period: Specifies the number of Periods used for PZO calculation """ sign = lambda a: (a > 0) - (a < 0) r = ohlc[column].diff().apply(sign) * ohlc[column] cp = pd.Series(r.ewm(span=period, adjust=adjust).mean()) tc = cls.EMA(ohlc, period) return pd.Series(100 * (cp / tc), name="{} period PZO".format(period)) @classmethod def EFI( cls, ohlcv: DataFrame, period: int = 13, column: str = "close", adjust: bool = True, ) -> Series: """Elder's Force Index is an indicator that uses price and volume to assess the power behind a move or identify possible turning points.""" # https://tradingsim.com/blog/elders-force-index/ fi = pd.Series(ohlcv[column].diff() * ohlcv["volume"]) return pd.Series( fi.ewm(ignore_na=False, span=period, adjust=adjust).mean(), name="{0} period Force Index".format(period), ) @classmethod def CFI( cls, ohlcv: DataFrame, column: str = "close", adjust: bool = True ) -> Series: """ Cummulative Force Index. Adopted from Elder's Force Index. """ fi1 = pd.Series(ohlcv["volume"] * ohlcv[column].diff()) cfi = pd.Series( fi1.ewm(ignore_na=False, min_periods=9, span=10, adjust=adjust).mean(), name="CFI", ) return cfi.cumsum() @classmethod def EBBP(cls, ohlc: DataFrame) -> DataFrame: """Bull power and bear power by Dr. <NAME> show where today’s high and low lie relative to the a 13-day EMA""" bull_power = pd.Series(ohlc["high"] - cls.EMA(ohlc, 13), name="Bull.") bear_power = pd.Series(ohlc["low"] - cls.EMA(ohlc, 13), name="Bear.") return pd.concat([bull_power, bear_power], axis=1) @classmethod def EMV(cls, ohlcv: Series, period: int = 14) -> Series: """Ease of Movement (EMV) is a volume-based oscillator that fluctuates above and below the zero line. As its name implies, it is designed to measure the 'ease' of price movement. prices are advancing with relative ease when the oscillator is in positive territory. Conversely, prices are declining with relative ease when the oscillator is in negative territory.""" distance = pd.Series( ((ohlcv["high"] + ohlcv["low"]) / 2) - (ohlcv["high"].shift() + ohlcv["low"].shift()) / 2 ) box_ratio = pd.Series( (ohlcv["volume"] / 1000000) / (ohlcv["high"] - ohlcv["low"]) ) _emv = pd.Series(distance / box_ratio) return pd.Series( _emv.rolling(window=period).mean(), name="{0} period EMV.".format(period) ) @classmethod def CCI(cls, ohlc: DataFrame, period: int = 20, constant: float = 0.015) -> Series: """Commodity Channel Index (CCI) is a versatile indicator that can be used to identify a new trend or warn of extreme conditions. CCI measures the current price level relative to an average price level over a given period of time. The CCI typically oscillates above and below a zero line. Normal oscillations will occur within the range of +100 and −100. Readings above +100 imply an overbought condition, while readings below −100 imply an oversold condition. As with other overbought/oversold indicators, this means that there is a large probability that the price will correct to more representative levels. source: https://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:commodity_channel_index_cci :param pd.DataFrame ohlc: 'open, high, low, close' pandas DataFrame :period: int - number of periods to take into consideration :factor float: the constant at .015 to ensure that approximately 70 to 80 percent of CCI values would fall between -100 and +100. :return pd.Series: result is pandas.Series """ tp = cls.TP(ohlc) tp_rolling = tp.rolling(window=period, min_periods=0) # calculate MAD (Mean Deviation) # https://www.khanacademy.org/math/statistics-probability/summarizing-quantitative-data/other-measures-of-spread/a/mean-absolute-deviation-mad-review mad = tp_rolling.apply(lambda s: abs(s - s.mean()).mean(), raw=True) return pd.Series( (tp - tp_rolling.mean()) / (constant * mad), name="{0} period CCI".format(period), ) @classmethod def COPP(cls, ohlc: DataFrame, adjust: bool = True) -> Series: """The Coppock Curve is a momentum indicator, it signals buying opportunities when the indicator moved from negative territory to positive territory.""" roc1 = cls.ROC(ohlc, 14) roc2 = cls.ROC(ohlc, 11) return pd.Series( (roc1 + roc2).ewm(span=10, min_periods=9, adjust=adjust).mean(), name="Coppock Curve", ) @classmethod def BASP(cls, ohlc: DataFrame, period: int = 40, adjust: bool = True) -> DataFrame: """BASP indicator serves to identify buying and selling pressure.""" sp = ohlc["high"] - ohlc["close"] bp = ohlc["close"] - ohlc["low"] spavg = sp.ewm(span=period, adjust=adjust).mean() bpavg = bp.ewm(span=period, adjust=adjust).mean() nbp = bp / bpavg nsp = sp / spavg varg = ohlc["volume"].ewm(span=period, adjust=adjust).mean() nv = ohlc["volume"] / varg nbfraw = pd.Series(nbp * nv, name="Buy.") nsfraw = pd.Series(nsp * nv, name="Sell.") return pd.concat([nbfraw, nsfraw], axis=1) @classmethod def BASPN(cls, ohlc: DataFrame, period: int = 40, adjust: bool = True) -> DataFrame: """ Normalized BASP indicator """ sp = ohlc["high"] - ohlc["close"] bp = ohlc["close"] - ohlc["low"] spavg = sp.ewm(span=period, adjust=adjust).mean() bpavg = bp.ewm(span=period, adjust=adjust).mean() nbp = bp / bpavg nsp = sp / spavg varg = ohlc["volume"].ewm(span=period, adjust=adjust).mean() nv = ohlc["volume"] / varg nbf = pd.Series((nbp * nv).ewm(span=20, adjust=adjust).mean(), name="Buy.") nsf = pd.Series((nsp * nv).ewm(span=20, adjust=adjust).mean(), name="Sell.") return pd.concat([nbf, nsf], axis=1) @classmethod def CMO( cls, ohlc: DataFrame, period: int = 9, factor: int = 100, column: str = "close", adjust: bool = True, ) -> DataFrame: """ Chande Momentum Oscillator (CMO) - technical momentum indicator invented by the technical analyst <NAME>. It is created by calculating the difference between the sum of all recent gains and the sum of all recent losses and then dividing the result by the sum of all price movement over the period. This oscillator is similar to other momentum indicators such as the Relative Strength Index and the Stochastic Oscillator because it is range bounded (+100 and -100).""" # get the price diff delta = ohlc[column].diff() # positive gains (up) and negative gains (down) Series up, down = delta.copy(), delta.copy() up[up < 0] = 0 down[down > 0] = 0 # EMAs of ups and downs _gain = up.ewm(com=period, adjust=adjust).mean() _loss = down.ewm(com=period, adjust=adjust).mean().abs() return pd.Series(factor * ((_gain - _loss) / (_gain + _loss)), name="CMO") @classmethod def CHANDELIER( cls, ohlc: DataFrame, short_period: int = 22, long_period: int = 22, k: int = 3, ) -> DataFrame: """ Chandelier Exit sets a trailing stop-loss based on the Average True Range (ATR). The indicator is designed to keep traders in a trend and prevent an early exit as long as the trend extends. Typically, the Chandelier Exit will be above prices during a downtrend and below prices during an uptrend. """ l = pd.Series( ohlc["high"].rolling(window=long_period).max() - cls.ATR(ohlc, 22) * k, name="Long.", ) s = pd.Series( ohlc["low"].rolling(window=short_period).min() + cls.ATR(ohlc, 22) * k, name="Short.", ) return pd.concat([s, l], axis=1) @classmethod def QSTICK(cls, ohlc: DataFrame, period: int = 14) -> Series: """ QStick indicator shows the dominance of black (down) or white (up) candlesticks, which are red and green in Chart, as represented by the average open to close change for each of past N days.""" _close = ohlc["close"].tail(period) _open = ohlc["open"].tail(period) return pd.Series( (_close - _open) / period, name="{0} period QSTICK.".format(period) ) @classmethod def TMF(cls, ohlcv: DataFrame, period: int = 21) -> Series: """Indicator by <NAME> which improves upon CMF. source: https://user42.tuxfamily.org/chart/manual/Twiggs-Money-Flow.html""" ohlcv["ll"] = [min(l, c) for l, c in zip(ohlcv["low"], ohlcv["close"].shift(1))] ohlcv["hh"] = [ max(h, c) for h, c in zip(ohlcv["high"], ohlcv["close"].shift(1)) ] ohlcv["range"] = ( 2 * ((ohlcv["close"] - ohlcv["ll"]) / (ohlcv["hh"] - ohlcv["ll"])) - 1 ) ohlcv["rangev"] = None # TMF Signal Line = EMA(TMF) # return TMF raise NotImplementedError @classmethod def WTO( cls, ohlc: DataFrame, channel_lenght: int = 10, average_lenght: int = 21, adjust: bool = True, ) -> DataFrame: """ Wave Trend Oscillator source: http://www.fxcoaching.com/WaveTrend/ """ ap = cls.TP(ohlc) esa = ap.ewm(span=channel_lenght, adjust=adjust).mean() d = pd.Series( (ap - esa).abs().ewm(span=channel_lenght, adjust=adjust).mean(), name="d" ) ci = (ap - esa) / (0.015 * d) wt1 = pd.Series(ci.ewm(span=average_lenght, adjust=adjust).mean(), name="WT1.") wt2 = pd.Series(wt1.rolling(window=4).mean(), name="WT2.") return pd.concat([wt1, wt2], axis=1) @classmethod def FISH(cls, ohlc: DataFrame, period: int = 10, adjust: bool = True) -> Series: """ Fisher Transform was presented by <NAME>. It assumes that price distributions behave like square waves. """ from numpy import log, seterr seterr(divide="ignore") med = (ohlc["high"] + ohlc["low"]) / 2 ndaylow = med.rolling(window=period).min() ndayhigh = med.rolling(window=period).max() raw = (2 * ((med - ndaylow) / (ndayhigh - ndaylow))) - 1 smooth = raw.ewm(span=5, adjust=adjust).mean() _smooth = smooth.fillna(0) return pd.Series( (log((1 + _smooth) / (1 - _smooth))).ewm(span=3, adjust=adjust).mean(), name="{0} period FISH.".format(period), ) @classmethod def ICHIMOKU( cls, ohlc: DataFrame, tenkan_period: int = 9, kijun_period: int = 26, senkou_period: int = 52, chikou_period: int = 26, ) -> DataFrame: """ The Ichimoku Cloud, also known as Ichimoku Kinko Hyo, is a versatile indicator that defines support and resistance, identifies trend direction, gauges momentum and provides trading signals. Ichimoku Kinko Hyo translates into “one look equilibrium chart”. """ tenkan_sen = pd.Series( ( ohlc["high"].rolling(window=tenkan_period).mean() + ohlc["low"].rolling(window=tenkan_period).mean() ) / 2, name="TENKAN", ) ## conversion line kijun_sen = pd.Series( ( ohlc["high"].rolling(window=kijun_period).mean() + ohlc["low"].rolling(window=kijun_period).mean() ) / 2, name="KIJUN", ) ## base line senkou_span_a = pd.Series( ((tenkan_sen + kijun_sen) / 2), name="senkou_span_a" ) ## Leading span senkou_span_b = pd.Series( ( ( ohlc["high"].rolling(window=senkou_period).mean() + ohlc["low"].rolling(window=senkou_period).mean() ) / 2 ), name="SENKOU", ) chikou_span = pd.Series( ohlc["close"].shift(chikou_period).rolling(window=chikou_period).mean(), name="CHIKOU", ) return pd.concat( [tenkan_sen, kijun_sen, senkou_span_a, senkou_span_b, chikou_span], axis=1 ) @classmethod def APZ( cls, ohlc: DataFrame, period: int = 21, dev_factor: int = 2, MA: Series = None, adjust: bool = True, ) -> DataFrame: """ The adaptive price zone (APZ) is a technical indicator developed by <NAME>. The APZ is a volatility based indicator that appears as a set of bands placed over a price chart. Especially useful in non-trending, choppy markets, the APZ was created to help traders find potential turning points in the markets. """ if not isinstance(MA, pd.Series): MA = cls.DEMA(ohlc, period) price_range = pd.Series( (ohlc["high"] - ohlc["low"]).ewm(span=period, adjust=adjust).mean() ) volatility_value = pd.Series( price_range.ewm(span=period, adjust=adjust).mean(), name="vol_val" ) # upper_band = dev_factor * volatility_value + dema upper_band = pd.Series((volatility_value * dev_factor) + MA, name="UPPER") lower_band = pd.Series(MA - (volatility_value * dev_factor), name="LOWER") return pd.concat([upper_band, lower_band], axis=1) @classmethod def SQZMI(cls, ohlc: DataFrame, period: int = 20, MA: Series = None) -> DataFrame: """ Squeeze Momentum Indicator The Squeeze indicator attempts to identify periods of consolidation in a market. In general the market is either in a period of quiet consolidation or vertical price discovery. By identifying these calm periods, we have a better opportunity of getting into trades with the potential for larger moves. Once a market enters into a “squeeze”, we watch the overall market momentum to help forecast the market direction and await a release of market energy. :param pd.DataFrame ohlc: 'open, high, low, close' pandas DataFrame :period: int - number of periods to take into consideration :MA pd.Series: override internal calculation which uses SMA with moving average of your choice :return pd.Series: indicator calcs as pandas Series SQZMI['SQZ'] is bool True/False, if True squeeze is on. If false, squeeeze has fired. """ if not isinstance(MA, pd.core.series.Series): ma = pd.Series(cls.SMA(ohlc, period)) else: ma = None bb = cls.BBANDS(ohlc, period=period, MA=ma) kc = cls.KC(ohlc, period=period, kc_mult=1.5) comb = pd.concat([bb, kc], axis=1) def sqz_on(row): if row["BB_LOWER"] > row["KC_LOWER"] and row["BB_UPPER"] < row["KC_UPPER"]: return True else: return False comb["SQZ"] = comb.apply(sqz_on, axis=1) return pd.Series(comb["SQZ"], name="{0} period SQZMI".format(period)) @classmethod def VPT(cls, ohlc: DataFrame) -> Series: """ Volume Price Trend The Volume Price Trend uses the difference of price and previous price with volume and feedback to arrive at its final form. If there appears to be a bullish divergence of price and the VPT (upward slope of the VPT and downward slope of the price) a buy opportunity exists. Conversely, a bearish divergence (downward slope of the VPT and upward slope of the price) implies a sell opportunity. """ hilow = (ohlc["high"] - ohlc["low"]) * 100 openclose = (ohlc["close"] - ohlc["open"]) * 100 vol = ohlc["volume"] / hilow spreadvol = (openclose * vol).cumsum() vpt = spreadvol + spreadvol return pd.Series(vpt, name="VPT") @classmethod def FVE(cls, ohlc: DataFrame, period: int = 22, factor: int = 0.3) -> Series: """ FVE is a money flow indicator, but it has two important innovations: first, the F VE takes into account both intra and interday price action, and second, minimal price changes are taken into account by introducing a price threshold. """ hl2 = (ohlc["high"] + ohlc["low"]) / 2 tp = TA.TP(ohlc) smav = ohlc["volume"].rolling(window=period).mean() mf = pd.Series((ohlc["close"] - hl2 + tp.diff()), name="mf") _mf =
pd.concat([ohlc["close"], ohlc["volume"], mf], axis=1)
pandas.concat
import os import pandas as pd from scripts.common.configuration import Configuration from scripts.common.db import DataBase from scripts.common import periods as taxes_periods def generate_report_periods(): configuration = Configuration() db = DataBase(configuration.get_db_directory()) expenses = db.retrieve_expenses() incomes = db.retrieve_incomes() periods = taxes_periods.generate_periods(configuration.get_year()) summary = [] for d in periods: start_date =
pd.to_datetime(d[0])
pandas.to_datetime
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'),
pd.Timedelta('5 hours')
pandas.Timedelta
import glob import math import os import sys import warnings from decimal import Decimal import numpy as np import pandas as pd import pytest from packaging.version import parse as parse_version import dask import dask.dataframe as dd import dask.multiprocessing from dask.blockwise import Blockwise, optimize_blockwise from dask.dataframe._compat import PANDAS_GT_110, PANDAS_GT_121, PANDAS_GT_130 from dask.dataframe.io.parquet.utils import _parse_pandas_metadata from dask.dataframe.optimize import optimize_dataframe_getitem from dask.dataframe.utils import assert_eq from dask.layers import DataFrameIOLayer from dask.utils import natural_sort_key from dask.utils_test import hlg_layer try: import fastparquet except ImportError: fastparquet = False fastparquet_version = parse_version("0") else: fastparquet_version = parse_version(fastparquet.__version__) try: import pyarrow as pa except ImportError: pa = False pa_version = parse_version("0") else: pa_version = parse_version(pa.__version__) try: import pyarrow.parquet as pq except ImportError: pq = False SKIP_FASTPARQUET = not fastparquet FASTPARQUET_MARK = pytest.mark.skipif(SKIP_FASTPARQUET, reason="fastparquet not found") if sys.platform == "win32" and pa and pa_version == parse_version("2.0.0"): SKIP_PYARROW = True SKIP_PYARROW_REASON = ( "skipping pyarrow 2.0.0 on windows: " "https://github.com/dask/dask/issues/6093" "|https://github.com/dask/dask/issues/6754" ) else: SKIP_PYARROW = not pq SKIP_PYARROW_REASON = "pyarrow not found" PYARROW_MARK = pytest.mark.skipif(SKIP_PYARROW, reason=SKIP_PYARROW_REASON) # "Legacy" and "Dataset"-specific MARK definitions SKIP_PYARROW_LE = SKIP_PYARROW SKIP_PYARROW_LE_REASON = "pyarrow not found" SKIP_PYARROW_DS = SKIP_PYARROW SKIP_PYARROW_DS_REASON = "pyarrow not found" if not SKIP_PYARROW_LE: # NOTE: We should use PYARROW_LE_MARK to skip # pyarrow-legacy tests once pyarrow officially # removes ParquetDataset support in the future. PYARROW_LE_MARK = pytest.mark.filterwarnings( "ignore::DeprecationWarning", "ignore::FutureWarning", ) else: PYARROW_LE_MARK = pytest.mark.skipif(SKIP_PYARROW_LE, reason=SKIP_PYARROW_LE_REASON) PYARROW_DS_MARK = pytest.mark.skipif(SKIP_PYARROW_DS, reason=SKIP_PYARROW_DS_REASON) ANY_ENGINE_MARK = pytest.mark.skipif( SKIP_FASTPARQUET and SKIP_PYARROW, reason="No parquet engine (fastparquet or pyarrow) found", ) nrows = 40 npartitions = 15 df = pd.DataFrame( { "x": [i * 7 % 5 for i in range(nrows)], # Not sorted "y": [i * 2.5 for i in range(nrows)], # Sorted }, index=pd.Index([10 * i for i in range(nrows)], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=npartitions) @pytest.fixture( params=[ pytest.param("fastparquet", marks=FASTPARQUET_MARK), pytest.param("pyarrow-legacy", marks=PYARROW_LE_MARK), pytest.param("pyarrow-dataset", marks=PYARROW_DS_MARK), ] ) def engine(request): return request.param def write_read_engines(**kwargs): """Product of both engines for write/read: To add custom marks, pass keyword of the form: `mark_writer_reader=reason`, or `mark_engine=reason` to apply to all parameters with that engine.""" backends = {"pyarrow-dataset", "pyarrow-legacy", "fastparquet"} # Skip if uninstalled skip_marks = { "fastparquet": FASTPARQUET_MARK, "pyarrow-legacy": PYARROW_LE_MARK, "pyarrow-dataset": PYARROW_DS_MARK, } marks = {(w, r): [skip_marks[w], skip_marks[r]] for w in backends for r in backends} # Custom marks for kw, val in kwargs.items(): kind, rest = kw.split("_", 1) key = tuple(rest.split("_")) if kind not in ("xfail", "skip") or len(key) > 2 or set(key) - backends: raise ValueError("unknown keyword %r" % kw) val = getattr(pytest.mark, kind)(reason=val) if len(key) == 2: marks[key].append(val) else: for k in marks: if key in k: marks[k].append(val) return pytest.mark.parametrize( ("write_engine", "read_engine"), [pytest.param(*k, marks=tuple(v)) for (k, v) in sorted(marks.items())], ) pyarrow_fastparquet_msg = "pyarrow schema and pandas metadata may disagree" write_read_engines_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, } ) if ( fastparquet and fastparquet_version < parse_version("0.5") and PANDAS_GT_110 and not PANDAS_GT_121 ): # a regression in pandas 1.1.x / 1.2.0 caused a failure in writing partitioned # categorical columns when using fastparquet 0.4.x, but this was (accidentally) # fixed in fastparquet 0.5.0 fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, "xfail_fastparquet_fastparquet": fp_pandas_msg, "xfail_fastparquet_pyarrow-dataset": fp_pandas_msg, "xfail_fastparquet_pyarrow-legacy": fp_pandas_msg, } ) else: fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines() @PYARROW_MARK def test_pyarrow_getengine(): from dask.dataframe.io.parquet.arrow import ArrowDatasetEngine from dask.dataframe.io.parquet.core import get_engine # Check that the default engine for "pyarrow"/"arrow" # is the `pyarrow.dataset`-based engine assert get_engine("pyarrow") == ArrowDatasetEngine assert get_engine("arrow") == ArrowDatasetEngine if SKIP_PYARROW_LE: with pytest.warns(FutureWarning): get_engine("pyarrow-legacy") @write_read_engines() def test_local(tmpdir, write_engine, read_engine): tmp = str(tmpdir) data = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df = dd.from_pandas(data, chunksize=500) df.to_parquet(tmp, write_index=False, engine=write_engine) files = os.listdir(tmp) assert "_common_metadata" in files assert "_metadata" in files assert "part.0.parquet" in files df2 = dd.read_parquet(tmp, index=False, engine=read_engine) assert len(df2.divisions) > 1 out = df2.compute(scheduler="sync").reset_index() for column in df.columns: assert (data[column] == out[column]).all() @pytest.mark.parametrize("index", [False, True]) @write_read_engines_xfail def test_empty(tmpdir, write_engine, read_engine, index): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]})[:0] if index: df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, write_index=index, engine=write_engine) read_df = dd.read_parquet(fn, engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_simple(tmpdir, write_engine, read_engine): fn = str(tmpdir) if write_engine != "fastparquet": df = pd.DataFrame({"a": [b"a", b"b", b"b"], "b": [4, 5, 6]}) else: df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) read_df = dd.read_parquet(fn, index=["a"], engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_delayed_no_metadata(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet( fn, engine=write_engine, compute=False, write_metadata_file=False ).compute() files = os.listdir(fn) assert "_metadata" not in files # Fastparquet doesn't currently handle a directory without "_metadata" read_df = dd.read_parquet( os.path.join(fn, "*.parquet"), index=["a"], engine=read_engine, gather_statistics=True, ) assert_eq(ddf, read_df) @write_read_engines() def test_read_glob(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) if os.path.exists(os.path.join(tmp_path, "_metadata")): os.unlink(os.path.join(tmp_path, "_metadata")) files = os.listdir(tmp_path) assert "_metadata" not in files ddf2 = dd.read_parquet( os.path.join(tmp_path, "*.parquet"), engine=read_engine, index="myindex", # Must specify index without _metadata gather_statistics=True, ) assert_eq(ddf, ddf2) @write_read_engines() def test_gather_statistics_false(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, write_index=False, engine=write_engine) ddf2 = dd.read_parquet( tmp_path, engine=read_engine, index=False, gather_statistics=False, ) assert_eq(ddf, ddf2, check_index=False, check_divisions=False) @write_read_engines() def test_read_list(tmpdir, write_engine, read_engine): if write_engine == read_engine == "fastparquet" and os.name == "nt": # fastparquet or dask is not normalizing filepaths correctly on # windows. pytest.skip("filepath bug.") tmpdir = str(tmpdir) ddf.to_parquet(tmpdir, engine=write_engine) files = sorted( ( os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if not f.endswith("_metadata") ), key=natural_sort_key, ) ddf2 = dd.read_parquet( files, engine=read_engine, index="myindex", gather_statistics=True ) assert_eq(ddf, ddf2) @write_read_engines() def test_columns_auto_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # XFAIL, auto index selection no longer supported (for simplicity) # ### Empty columns ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=[], engine=read_engine), ddf[[]]) # No divisions assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, gather_statistics=False), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, auto select index ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=["x"], engine=read_engine), ddf[["x"]]) # No divisions assert_eq( dd.read_parquet(fn, columns=["x"], engine=read_engine, gather_statistics=False), ddf[["x"]].clear_divisions(), check_divisions=True, ) @write_read_engines() def test_columns_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # With Index # ---------- # ### Empty columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, index="myindex"), ddf[[]] ) # No divisions assert_eq( dd.read_parquet( fn, columns=[], engine=read_engine, index="myindex", gather_statistics=False ), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x"], engine=read_engine), ddf[["x"]], ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x"], engine=read_engine, gather_statistics=False, ), ddf[["x"]].clear_divisions(), check_divisions=True, ) # ### Two columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x", "y"], engine=read_engine), ddf, ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x", "y"], engine=read_engine, gather_statistics=False, ), ddf.clear_divisions(), check_divisions=True, ) def test_nonsense_column(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) with pytest.raises((ValueError, KeyError)): dd.read_parquet(fn, columns=["nonesense"], engine=engine) with pytest.raises((Exception, KeyError)): dd.read_parquet(fn, columns=["nonesense"] + list(ddf.columns), engine=engine) @write_read_engines() def test_columns_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) ddf2 = ddf.reset_index() # No Index # -------- # All columns, none as index assert_eq( dd.read_parquet(fn, index=False, engine=read_engine, gather_statistics=True), ddf2, check_index=False, check_divisions=True, ) # Two columns, none as index assert_eq( dd.read_parquet( fn, index=False, columns=["x", "y"], engine=read_engine, gather_statistics=True, ), ddf2[["x", "y"]], check_index=False, check_divisions=True, ) # One column and one index, all as columns assert_eq( dd.read_parquet( fn, index=False, columns=["myindex", "x"], engine=read_engine, gather_statistics=True, ), ddf2[["myindex", "x"]], check_index=False, check_divisions=True, ) @write_read_engines() def test_gather_statistics_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine, write_index=False) df = dd.read_parquet(fn, engine=read_engine, index=False) assert df.index.name is None assert not df.known_divisions def test_columns_index_with_multi_index(tmpdir, engine): fn = os.path.join(str(tmpdir), "test.parquet") index = pd.MultiIndex.from_arrays( [np.arange(10), np.arange(10) + 1], names=["x0", "x1"] ) df = pd.DataFrame(np.random.randn(10, 2), columns=["a", "b"], index=index) df2 = df.reset_index(drop=False) if engine == "fastparquet": fastparquet.write(fn, df.reset_index(), write_index=False) else: pq.write_table(pa.Table.from_pandas(df.reset_index(), preserve_index=False), fn) ddf = dd.read_parquet(fn, engine=engine, index=index.names) assert_eq(ddf, df) d = dd.read_parquet(fn, columns="a", engine=engine, index=index.names) assert_eq(d, df["a"]) d = dd.read_parquet(fn, index=["a", "b"], columns=["x0", "x1"], engine=engine) assert_eq(d, df2.set_index(["a", "b"])[["x0", "x1"]]) # Just index d = dd.read_parquet(fn, index=False, engine=engine) assert_eq(d, df2) d = dd.read_parquet(fn, columns=["b"], index=["a"], engine=engine) assert_eq(d, df2.set_index("a")[["b"]]) d = dd.read_parquet(fn, columns=["a", "b"], index=["x0"], engine=engine) assert_eq(d, df2.set_index("x0")[["a", "b"]]) # Just columns d = dd.read_parquet(fn, columns=["x0", "a"], index=["x1"], engine=engine) assert_eq(d, df2.set_index("x1")[["x0", "a"]]) # Both index and columns d = dd.read_parquet(fn, index=False, columns=["x0", "b"], engine=engine) assert_eq(d, df2[["x0", "b"]]) for index in ["x1", "b"]: d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) assert_eq(d, df2.set_index(index)[["x0", "a"]]) # Columns and index intersect for index in ["a", "x0"]: with pytest.raises(ValueError): d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) # Series output for ind, col, sol_df in [ ("x1", "x0", df2.set_index("x1")), (False, "b", df2), (False, "x0", df2[["x0"]]), ("a", "x0", df2.set_index("a")[["x0"]]), ("a", "b", df2.set_index("a")), ]: d = dd.read_parquet(fn, index=ind, columns=col, engine=engine) assert_eq(d, sol_df[col]) @write_read_engines() def test_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine) assert_eq(df, ddf2, check_index=False) def test_read_series(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, columns=["x"], index="myindex", engine=engine) assert_eq(ddf[["x"]], ddf2) ddf2 = dd.read_parquet(fn, columns="x", index="myindex", engine=engine) assert_eq(ddf.x, ddf2) def test_names(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) def read(fn, **kwargs): return dd.read_parquet(fn, engine=engine, **kwargs) assert set(read(fn).dask) == set(read(fn).dask) assert set(read(fn).dask) != set(read(fn, columns=["x"]).dask) assert set(read(fn, columns=("x",)).dask) == set(read(fn, columns=["x"]).dask) @write_read_engines() def test_roundtrip_from_pandas(tmpdir, write_engine, read_engine): fn = str(tmpdir.join("test.parquet")) dfp = df.copy() dfp.index.name = "index" dfp.to_parquet( fn, engine="pyarrow" if write_engine.startswith("pyarrow") else "fastparquet" ) ddf = dd.read_parquet(fn, index="index", engine=read_engine) assert_eq(dfp, ddf) @write_read_engines() def test_categorical(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame({"x": ["a", "b", "c"] * 100}, dtype="category") ddf = dd.from_pandas(df, npartitions=3) dd.to_parquet(ddf, tmp, engine=write_engine) ddf2 = dd.read_parquet(tmp, categories="x", engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2 = dd.read_parquet(tmp, categories=["x"], engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] # autocat if read_engine == "fastparquet": ddf2 = dd.read_parquet(tmp, engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2.loc[:1000].compute() assert assert_eq(df, ddf2) # dereference cats ddf2 = dd.read_parquet(tmp, categories=[], engine=read_engine) ddf2.loc[:1000].compute() assert (df.x == ddf2.x.compute()).all() def test_append(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) ddf2.to_parquet(tmp, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, engine=engine) assert_eq(df, ddf3) def test_append_create(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp_path = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp_path, append=True, engine=engine) ddf2.to_parquet(tmp_path, append=True, engine=engine) ddf3 = dd.read_parquet(tmp_path, engine=engine) assert_eq(df, ddf3) def test_append_with_partition(tmpdir, engine): tmp = str(tmpdir) df0 = pd.DataFrame( { "lat": np.arange(0, 10, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(100, 110, dtype="int64"), } ) df0.index.name = "index" df1 = pd.DataFrame( { "lat": np.arange(10, 20, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(120, 130, dtype="int64"), } ) df1.index.name = "index" # Check that nullable dtypes work # (see: https://github.com/dask/dask/issues/8373) df0["lat"] = df0["lat"].astype("Int64") df1["lat"].iloc[0] = np.nan df1["lat"] = df1["lat"].astype("Int64") dd_df0 = dd.from_pandas(df0, npartitions=1) dd_df1 = dd.from_pandas(df1, npartitions=1) dd.to_parquet(dd_df0, tmp, partition_on=["lon"], engine=engine) dd.to_parquet( dd_df1, tmp, partition_on=["lon"], append=True, ignore_divisions=True, engine=engine, ) out = dd.read_parquet( tmp, engine=engine, index="index", gather_statistics=True ).compute() # convert categorical to plain int just to pass assert out["lon"] = out.lon.astype("int64") # sort required since partitioning breaks index order assert_eq( out.sort_values("value"), pd.concat([df0, df1])[out.columns], check_index=False ) def test_partition_on_cats(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} @PYARROW_MARK @pytest.mark.parametrize("meta", [False, True]) @pytest.mark.parametrize("stats", [False, True]) def test_partition_on_cats_pyarrow(tmpdir, stats, meta): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine="pyarrow", write_metadata_file=meta) df = dd.read_parquet(tmp, engine="pyarrow", gather_statistics=stats) assert set(df.b.cat.categories) == {"x", "y", "z"} def test_partition_on_cats_2(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b", "c"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} assert set(df.c.cat.categories) == {"x", "y", "z"} df = dd.read_parquet(tmp, columns=["a", "c"], engine=engine) assert set(df.c.cat.categories) == {"x", "y", "z"} assert "b" not in df.columns assert_eq(df, df.compute()) df = dd.read_parquet(tmp, index="c", engine=engine) assert set(df.index.categories) == {"x", "y", "z"} assert "c" not in df.columns # series df = dd.read_parquet(tmp, columns="b", engine=engine) assert set(df.cat.categories) == {"x", "y", "z"} def test_append_wo_index(tmpdir, engine): """Test append with write_index=False.""" tmp = str(tmpdir.join("tmp1.parquet")) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) assert "Appended columns" in str(excinfo.value) tmp = str(tmpdir.join("tmp2.parquet")) ddf1.to_parquet(tmp, write_index=False, engine=engine) ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, index="f", engine=engine) assert_eq(df.set_index("f"), ddf3) def test_append_overlapping_divisions(tmpdir, engine): """Test raising of error when divisions overlapping.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half - 10 :], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended divisions" in str(excinfo.value) ddf2.to_parquet(tmp, engine=engine, append=True, ignore_divisions=True) def test_append_different_columns(tmpdir, engine): """Test raising of error when non equal columns.""" tmp = str(tmpdir) df1 = pd.DataFrame({"i32": np.arange(100, dtype=np.int32)}) df2 = pd.DataFrame({"i64": np.arange(100, dtype=np.int64)}) df3 = pd.DataFrame({"i32": np.arange(100, dtype=np.int64)}) ddf1 = dd.from_pandas(df1, chunksize=2) ddf2 = dd.from_pandas(df2, chunksize=2) ddf3 = dd.from_pandas(df3, chunksize=2) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended columns" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: ddf3.to_parquet(tmp, engine=engine, append=True) assert "Appended dtypes" in str(excinfo.value) def test_append_dict_column(tmpdir, engine): # See: https://github.com/dask/dask/issues/7492 if engine == "fastparquet": pytest.xfail("Fastparquet engine is missing dict-column support") elif pa_version < parse_version("1.0.1"): pytest.skip("PyArrow 1.0.1+ required for dict-column support.") tmp = str(tmpdir) dts = pd.date_range("2020-01-01", "2021-01-01") df = pd.DataFrame( {"value": [{"x": x} for x in range(len(dts))]}, index=dts, ) ddf1 = dd.from_pandas(df, npartitions=1) # Write ddf1 to tmp, and then append it again ddf1.to_parquet(tmp, append=True, engine=engine) ddf1.to_parquet(tmp, append=True, engine=engine, ignore_divisions=True) # Read back all data (ddf1 + ddf1) ddf2 = dd.read_parquet(tmp, engine=engine) # Check computed result expect = pd.concat([df, df]) result = ddf2.compute() assert_eq(expect, result) @write_read_engines_xfail def test_ordering(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame( {"a": [1, 2, 3], "b": [10, 20, 30], "c": [100, 200, 300]}, index=pd.Index([-1, -2, -3], name="myindex"), columns=["c", "a", "b"], ) ddf = dd.from_pandas(df, npartitions=2) dd.to_parquet(ddf, tmp, engine=write_engine) if read_engine == "fastparquet": pf = fastparquet.ParquetFile(tmp) assert pf.columns == ["myindex", "c", "a", "b"] ddf2 = dd.read_parquet(tmp, index="myindex", engine=read_engine) assert_eq(ddf, ddf2, check_divisions=False) def test_read_parquet_custom_columns(tmpdir, engine): tmp = str(tmpdir) data = pd.DataFrame( {"i32": np.arange(1000, dtype=np.int32), "f": np.arange(1000, dtype=np.float64)} ) df = dd.from_pandas(data, chunksize=50) df.to_parquet(tmp, engine=engine) df2 = dd.read_parquet(tmp, columns=["i32", "f"], engine=engine) assert_eq(df[["i32", "f"]], df2, check_index=False) fns = glob.glob(os.path.join(tmp, "*.parquet")) df2 = dd.read_parquet(fns, columns=["i32"], engine=engine).compute() df2.sort_values("i32", inplace=True) assert_eq(df[["i32"]], df2, check_index=False, check_divisions=False) df3 = dd.read_parquet(tmp, columns=["f", "i32"], engine=engine) assert_eq(df[["f", "i32"]], df3, check_index=False) @pytest.mark.parametrize( "df,write_kwargs,read_kwargs", [ (pd.DataFrame({"x": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": ["c", "a", "b"]}), {}, {}), (pd.DataFrame({"x": ["cc", "a", "bbb"]}), {}, {}), (pd.DataFrame({"x": [b"a", b"b", b"c"]}), {"object_encoding": "bytes"}, {}), ( pd.DataFrame({"x": pd.Categorical(["a", "b", "a"])}), {}, {"categories": ["x"]}, ), (pd.DataFrame({"x": pd.Categorical([1, 2, 1])}), {}, {"categories": ["x"]}), (pd.DataFrame({"x": list(map(pd.Timestamp, [3000, 2000, 1000]))}), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("M8[ns]"), {}, {}), pytest.param( pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ns]"), {}, {}, ), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[us]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ms]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, UTC]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, CET]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("uint16"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("float32"), {}, {}), (pd.DataFrame({"x": [3, 1, 2]}, index=[3, 2, 1]), {}, {}), (pd.DataFrame({"x": [3, 1, 5]}, index=pd.Index([1, 2, 3], name="foo")), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}, columns=["y", "x"]), {}, {}), (pd.DataFrame({"0": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [3, 2, None]}), {}, {}), (pd.DataFrame({"-": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({".": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({" ": [3.0, 2.0, None]}), {}, {}), ], ) def test_roundtrip(tmpdir, df, write_kwargs, read_kwargs, engine): if "x" in df and df.x.dtype == "M8[ns]" and "arrow" in engine: pytest.xfail(reason="Parquet pyarrow v1 doesn't support nanosecond precision") if ( "x" in df and df.x.dtype == "M8[ns]" and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail(reason="fastparquet doesn't support nanosecond precision yet") if ( PANDAS_GT_130 and read_kwargs.get("categories", None) and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail("https://github.com/dask/fastparquet/issues/577") tmp = str(tmpdir) if df.index.name is None: df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) oe = write_kwargs.pop("object_encoding", None) if oe and engine == "fastparquet": dd.to_parquet(ddf, tmp, engine=engine, object_encoding=oe, **write_kwargs) else: dd.to_parquet(ddf, tmp, engine=engine, **write_kwargs) ddf2 = dd.read_parquet(tmp, index=df.index.name, engine=engine, **read_kwargs) if str(ddf2.dtypes.get("x")) == "UInt16" and engine == "fastparquet": # fastparquet choooses to use masked type to be able to get true repr of # 16-bit int assert_eq(ddf.astype("UInt16"), ddf2) else: assert_eq(ddf, ddf2) def test_categories(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": list("caaab")}) ddf = dd.from_pandas(df, npartitions=2) ddf["y"] = ddf.y.astype("category") ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, categories=["y"], engine=engine) # Shouldn't need to specify categories explicitly ddf3 = dd.read_parquet(fn, engine=engine) assert_eq(ddf3, ddf2) with pytest.raises(NotImplementedError): ddf2.y.cat.categories assert set(ddf2.y.compute().cat.categories) == {"a", "b", "c"} cats_set = ddf2.map_partitions(lambda x: x.y.cat.categories.sort_values()).compute() assert cats_set.tolist() == ["a", "c", "a", "b"] if engine == "fastparquet": assert_eq(ddf.y, ddf2.y, check_names=False) with pytest.raises(TypeError): # attempt to load as category that which is not so encoded ddf2 = dd.read_parquet(fn, categories=["x"], engine=engine).compute() with pytest.raises((ValueError, FutureWarning)): # attempt to load as category unknown column ddf2 = dd.read_parquet(fn, categories=["foo"], engine=engine) def test_categories_unnamed_index(tmpdir, engine): # Check that we can handle an unnamed categorical index # https://github.com/dask/dask/issues/6885 tmpdir = str(tmpdir) df = pd.DataFrame( data={"A": [1, 2, 3], "B": ["a", "a", "b"]}, index=["x", "y", "y"] ) ddf = dd.from_pandas(df, npartitions=1) ddf = ddf.categorize(columns=["B"]) ddf.to_parquet(tmpdir, engine=engine) ddf2 = dd.read_parquet(tmpdir, engine=engine) assert_eq(ddf.index, ddf2.index, check_divisions=False) def test_empty_partition(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"a": range(10), "b": range(10)}) ddf = dd.from_pandas(df, npartitions=5) ddf2 = ddf[ddf.a <= 5] ddf2.to_parquet(fn, engine=engine) ddf3 = dd.read_parquet(fn, engine=engine) assert ddf3.npartitions < 5 sol = ddf2.compute() assert_eq(sol, ddf3, check_names=False, check_index=False) def test_timestamp_index(tmpdir, engine): fn = str(tmpdir) df = dd._compat.makeTimeDataFrame() df.index.name = "foo" ddf = dd.from_pandas(df, npartitions=5) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, engine=engine) assert_eq(ddf, ddf2) @FASTPARQUET_MARK @PYARROW_MARK def test_to_parquet_default_writes_nulls(tmpdir): fn = str(tmpdir.join("test.parquet")) df = pd.DataFrame({"c1": [1.0, np.nan, 2, np.nan, 3]}) ddf = dd.from_pandas(df, npartitions=1) ddf.to_parquet(fn) table = pq.read_table(fn) assert table[1].null_count == 2 @PYARROW_LE_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_fails_by_default(tmpdir): df = pd.DataFrame( {"partition_column": [0, 0, 1, 1], "strings": ["a", "b", None, None]} ) ddf = dd.from_pandas(df, npartitions=2) # In order to allow pyarrow to write an inconsistent schema, # we need to avoid writing the _metadata file (will fail >0.17.1) # and need to avoid schema inference (i.e. use `schema=None`) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on=["partition_column"], write_metadata_file=False, schema=None, ) # Test that schema is not validated by default # (shouldn't raise error with legacy dataset) dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, ).compute() # Test that read fails when validate_schema=True # Note: This fails differently for pyarrow.dataset api with pytest.raises(ValueError) as e_info: dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, dataset={"validate_schema": True}, ).compute() assert e_info.message.contains("ValueError: Schema in partition") assert e_info.message.contains("was different") @PYARROW_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_succeeds_w_manual_schema( tmpdir, ): # Data types to test: strings, arrays, ints, timezone aware timestamps in_arrays = [[0, 1, 2], [3, 4], np.nan, np.nan] out_arrays = [[0, 1, 2], [3, 4], None, None] in_strings = ["a", "b", np.nan, np.nan] out_strings = ["a", "b", None, None] tstamp = pd.Timestamp(1513393355, unit="s") in_tstamps = [tstamp, tstamp, pd.NaT, pd.NaT] out_tstamps = [ # Timestamps come out in numpy.datetime64 format tstamp.to_datetime64(), tstamp.to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] timezone = "US/Eastern" tz_tstamp = pd.Timestamp(1513393355, unit="s", tz=timezone) in_tz_tstamps = [tz_tstamp, tz_tstamp, pd.NaT, pd.NaT] out_tz_tstamps = [ # Timezones do not make it through a write-read cycle. tz_tstamp.tz_convert(None).to_datetime64(), tz_tstamp.tz_convert(None).to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] df = pd.DataFrame( { "partition_column": [0, 0, 1, 1], "arrays": in_arrays, "strings": in_strings, "tstamps": in_tstamps, "tz_tstamps": in_tz_tstamps, } ) ddf = dd.from_pandas(df, npartitions=2) schema = pa.schema( [ ("arrays", pa.list_(pa.int64())), ("strings", pa.string()), ("tstamps", pa.timestamp("ns")), ("tz_tstamps", pa.timestamp("ns", timezone)), ("partition_column", pa.int64()), ] ) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on="partition_column", schema=schema ) ddf_after_write = ( dd.read_parquet(str(tmpdir), engine="pyarrow", gather_statistics=False) .compute() .reset_index(drop=True) ) # Check array support arrays_after_write = ddf_after_write.arrays.values for i in range(len(df)): assert np.array_equal(arrays_after_write[i], out_arrays[i]), type(out_arrays[i]) # Check datetime support tstamps_after_write = ddf_after_write.tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tstamps_after_write[i]): assert np.isnat(out_tstamps[i]) else: assert tstamps_after_write[i] == out_tstamps[i] # Check timezone aware datetime support tz_tstamps_after_write = ddf_after_write.tz_tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tz_tstamps_after_write[i]): assert np.isnat(out_tz_tstamps[i]) else: assert tz_tstamps_after_write[i] == out_tz_tstamps[i] # Check string support assert np.array_equal(ddf_after_write.strings.values, out_strings) # Check partition column assert np.array_equal(ddf_after_write.partition_column, df.partition_column) @PYARROW_MARK @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("schema", ["infer", "complex"]) def test_pyarrow_schema_inference(tmpdir, index, engine, schema): if schema == "complex": schema = {"index": pa.string(), "amount": pa.int64()} tmpdir = str(tmpdir) df = pd.DataFrame( { "index": ["1", "2", "3", "2", "3", "1", "4"], "date": pd.to_datetime( [ "2017-01-01", "2017-01-01", "2017-01-01", "2017-01-02", "2017-01-02", "2017-01-06", "2017-01-09", ] ), "amount": [100, 200, 300, 400, 500, 600, 700], }, index=range(7, 14), ) if index: df = dd.from_pandas(df, npartitions=2).set_index("index") else: df = dd.from_pandas(df, npartitions=2) df.to_parquet(tmpdir, engine="pyarrow", schema=schema) df_out = dd.read_parquet(tmpdir, engine=engine) df_out.compute() if index and engine == "fastparquet": # Fastparquet fails to detect int64 from _metadata df_out["amount"] = df_out["amount"].astype("int64") # Fastparquet not handling divisions for # pyarrow-written dataset with string index assert_eq(df, df_out, check_divisions=False) else: assert_eq(df, df_out) def test_partition_on(tmpdir, engine): tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), "d": np.arange(0, 100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) # Note #1: Cross-engine functionality is missing # Note #2: The index is not preserved in pyarrow when partition_on is used out = dd.read_parquet( tmpdir, engine=engine, index=False, gather_statistics=False ).compute() for val in df.a1.unique(): assert set(df.d[df.a1 == val]) == set(out.d[out.a1 == val]) # Now specify the columns and allow auto-index detection out = dd.read_parquet(tmpdir, engine=engine, columns=["d", "a2"]).compute() for val in df.a2.unique(): assert set(df.d[df.a2 == val]) == set(out.d[out.a2 == val]) def test_partition_on_duplicates(tmpdir, engine): # https://github.com/dask/dask/issues/6445 tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "data": np.random.random(size=100), } ) d = dd.from_pandas(df, npartitions=2) for _ in range(2): d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) out = dd.read_parquet(tmpdir, engine=engine).compute() assert len(df) == len(out) for root, dirs, files in os.walk(tmpdir): for file in files: assert file in ( "part.0.parquet", "part.1.parquet", "_common_metadata", "_metadata", ) @PYARROW_MARK @pytest.mark.parametrize("partition_on", ["aa", ["aa"]]) def test_partition_on_string(tmpdir, partition_on): tmpdir = str(tmpdir) with dask.config.set(scheduler="single-threaded"): tmpdir = str(tmpdir) df = pd.DataFrame( { "aa": np.random.choice(["A", "B", "C"], size=100), "bb": np.random.random(size=100), "cc": np.random.randint(1, 5, size=100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet( tmpdir, partition_on=partition_on, write_index=False, engine="pyarrow" ) out = dd.read_parquet( tmpdir, index=False, gather_statistics=False, engine="pyarrow" ) out = out.compute() for val in df.aa.unique(): assert set(df.bb[df.aa == val]) == set(out.bb[out.aa == val]) @write_read_engines() def test_filters_categorical(tmpdir, write_engine, read_engine): tmpdir = str(tmpdir) cats = ["2018-01-01", "2018-01-02", "2018-01-03", "2018-01-04"] dftest = pd.DataFrame( { "dummy": [1, 1, 1, 1], "DatePart": pd.Categorical(cats, categories=cats, ordered=True), } ) ddftest = dd.from_pandas(dftest, npartitions=4).set_index("dummy") ddftest.to_parquet(tmpdir, partition_on="DatePart", engine=write_engine) ddftest_read = dd.read_parquet( tmpdir, index="dummy", engine=read_engine, filters=[(("DatePart", "<=", "2018-01-02"))], ) assert len(ddftest_read) == 2 @write_read_engines() def test_filters(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) assert ddf.npartitions == 5 ddf.to_parquet(tmp_path, engine=write_engine) a = dd.read_parquet(tmp_path, engine=read_engine, filters=[("x", ">", 4)]) assert a.npartitions == 3 assert (a.x > 3).all().compute() b = dd.read_parquet(tmp_path, engine=read_engine, filters=[("y", "==", "c")]) assert b.npartitions == 1 assert (b.y == "c").all().compute() c = dd.read_parquet( tmp_path, engine=read_engine, filters=[("y", "==", "c"), ("x", ">", 6)] ) assert c.npartitions <= 1 assert not len(c) assert_eq(c, c) d = dd.read_parquet( tmp_path, engine=read_engine, filters=[ # Select two overlapping ranges [("x", ">", 1), ("x", "<", 6)], [("x", ">", 3), ("x", "<", 8)], ], ) assert d.npartitions == 3 assert ((d.x > 1) & (d.x < 8)).all().compute() e = dd.read_parquet(tmp_path, engine=read_engine, filters=[("x", "in", (0, 9))]) assert e.npartitions == 2 assert ((e.x < 2) | (e.x > 7)).all().compute() f = dd.read_parquet(tmp_path, engine=read_engine, filters=[("y", "=", "c")]) assert f.npartitions == 1 assert len(f) assert (f.y == "c").all().compute() @write_read_engines() def test_filters_v0(tmpdir, write_engine, read_engine): if write_engine == "fastparquet" or read_engine == "fastparquet": pytest.importorskip("fastparquet", minversion="0.3.1") # Recent versions of pyarrow support full row-wise filtering # (fastparquet and older pyarrow versions do not) pyarrow_row_filtering = read_engine == "pyarrow-dataset" fn = str(tmpdir) df = pd.DataFrame({"at": ["ab", "aa", "ba", "da", "bb"]}) ddf = dd.from_pandas(df, npartitions=1) # Ok with 1 partition and filters ddf.repartition(npartitions=1, force=True).to_parquet( fn, write_index=False, engine=write_engine ) ddf2 = dd.read_parquet( fn, index=False, engine=read_engine, filters=[("at", "==", "aa")] ).compute() ddf3 = dd.read_parquet( fn, index=False, engine=read_engine, filters=[("at", "=", "aa")] ).compute() if pyarrow_row_filtering: assert_eq(ddf2, ddf[ddf["at"] == "aa"], check_index=False) assert_eq(ddf3, ddf[ddf["at"] == "aa"], check_index=False) else: assert_eq(ddf2, ddf) assert_eq(ddf3, ddf) # with >1 partition and no filters ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine).compute() assert_eq(ddf2, ddf) # with >1 partition and filters using base fastparquet if read_engine == "fastparquet": ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) df2 = fastparquet.ParquetFile(fn).to_pandas(filters=[("at", "==", "aa")]) df3 = fastparquet.ParquetFile(fn).to_pandas(filters=[("at", "=", "aa")]) assert len(df2) > 0 assert len(df3) > 0 # with >1 partition and filters ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet( fn, engine=read_engine, filters=[("at", "==", "aa")] ).compute() ddf3 = dd.read_parquet( fn, engine=read_engine, filters=[("at", "=", "aa")] ).compute() assert len(ddf2) > 0 assert len(ddf3) > 0 assert_eq(ddf2, ddf3) def test_filtering_pyarrow_dataset(tmpdir, engine): pytest.importorskip("pyarrow", minversion="1.0.0") fn = str(tmpdir) df = pd.DataFrame({"aa": range(100), "bb": ["cat", "dog"] * 50}) ddf = dd.from_pandas(df, npartitions=10) ddf.to_parquet(fn, write_index=False, engine=engine) # Filtered read aa_lim = 40 bb_val = "dog" filters = [[("aa", "<", aa_lim), ("bb", "==", bb_val)]] ddf2 = dd.read_parquet(fn, index=False, engine="pyarrow-dataset", filters=filters) # Check that partitions are filetered for "aa" filter nonempty = 0 for part in ddf[ddf["aa"] < aa_lim].partitions: nonempty += int(len(part.compute()) > 0) assert ddf2.npartitions == nonempty # Check that rows are filtered for "aa" and "bb" filters df = df[df["aa"] < aa_lim] df = df[df["bb"] == bb_val] assert_eq(df, ddf2.compute(), check_index=False) def test_fiters_file_list(tmpdir, engine): df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) ddf.to_parquet(str(tmpdir), engine=engine) fils = str(tmpdir.join("*.parquet")) ddf_out = dd.read_parquet( fils, gather_statistics=True, engine=engine, filters=[("x", ">", 3)] ) assert ddf_out.npartitions == 3 assert_eq(df[df["x"] > 3], ddf_out.compute(), check_index=False) # Check that first parition gets filtered for single-path input ddf2 = dd.read_parquet( str(tmpdir.join("part.0.parquet")), gather_statistics=True, engine=engine, filters=[("x", ">", 3)], ) assert len(ddf2) == 0 def test_pyarrow_filter_divisions(tmpdir): pytest.importorskip("pyarrow") # Write simple dataset with an index that will only # have a sorted index if certain row-groups are filtered out. # In this case, we filter "a" <= 3 to get a sorted # index. Otherwise, "a" is NOT monotonically increasing. df = pd.DataFrame({"a": [0, 1, 10, 12, 2, 3, 8, 9], "b": range(8)}).set_index("a") df.iloc[:4].to_parquet( str(tmpdir.join("file.0.parquet")), engine="pyarrow", row_group_size=2 ) df.iloc[4:].to_parquet( str(tmpdir.join("file.1.parquet")), engine="pyarrow", row_group_size=2 ) # Only works for ArrowDatasetEngine. # Legacy code will not apply filters on individual row-groups # when `split_row_groups=False`. ddf = dd.read_parquet( str(tmpdir), engine="pyarrow-dataset", split_row_groups=False, gather_statistics=True, filters=[("a", "<=", 3)], ) assert ddf.divisions == (0, 2, 3) ddf = dd.read_parquet( str(tmpdir), engine="pyarrow-dataset", split_row_groups=True, gather_statistics=True, filters=[("a", "<=", 3)], ) assert ddf.divisions == (0, 2, 3) def test_divisions_read_with_filters(tmpdir): pytest.importorskip("fastparquet", minversion="0.3.1") tmpdir = str(tmpdir) # generate dataframe size = 100 categoricals = [] for value in ["a", "b", "c", "d"]: categoricals += [value] * int(size / 4) df = pd.DataFrame( { "a": categoricals, "b": np.random.random(size=size), "c": np.random.randint(1, 5, size=size), } ) d = dd.from_pandas(df, npartitions=4) # save it d.to_parquet(tmpdir, write_index=True, partition_on=["a"], engine="fastparquet") # read it out = dd.read_parquet(tmpdir, engine="fastparquet", filters=[("a", "==", "b")]) # test it expected_divisions = (25, 49) assert out.divisions == expected_divisions def test_divisions_are_known_read_with_filters(tmpdir): pytest.importorskip("fastparquet", minversion="0.3.1") tmpdir = str(tmpdir) # generate dataframe df = pd.DataFrame( { "unique": [0, 0, 1, 1, 2, 2, 3, 3], "id": ["id1", "id2", "id1", "id2", "id1", "id2", "id1", "id2"], }, index=[0, 0, 1, 1, 2, 2, 3, 3], ) d = dd.from_pandas(df, npartitions=2) # save it d.to_parquet(tmpdir, partition_on=["id"], engine="fastparquet") # read it out = dd.read_parquet(tmpdir, engine="fastparquet", filters=[("id", "==", "id1")]) # test it assert out.known_divisions expected_divisions = (0, 2, 3) assert out.divisions == expected_divisions @FASTPARQUET_MARK @pytest.mark.xfail(reason="No longer accept ParquetFile objects") def test_read_from_fastparquet_parquetfile(tmpdir): fn = str(tmpdir) df = pd.DataFrame( { "a": np.random.choice(["A", "B", "C"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet(fn, partition_on=["a"], engine="fastparquet") pq_f = fastparquet.ParquetFile(fn) # OK with no filters out = dd.read_parquet(pq_f).compute() for val in df.a.unique(): assert set(df.b[df.a == val]) == set(out.b[out.a == val]) # OK with filters out = dd.read_parquet(pq_f, filters=[("a", "==", "B")]).compute() assert set(df.b[df.a == "B"]) == set(out.b) # Engine should not be set to 'pyarrow' with pytest.raises(AssertionError): out = dd.read_parquet(pq_f, engine="pyarrow") @pytest.mark.parametrize("scheduler", ["threads", "processes"]) def test_to_parquet_lazy(tmpdir, scheduler, engine): tmpdir = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [1.0, 2.0, 3.0, 4.0]}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) value = ddf.to_parquet(tmpdir, compute=False, engine=engine) assert hasattr(value, "dask") value.compute(scheduler=scheduler) assert os.path.exists(tmpdir) ddf2 = dd.read_parquet(tmpdir, engine=engine) assert_eq(ddf, ddf2) @FASTPARQUET_MARK def test_timestamp96(tmpdir): fn = str(tmpdir) df = pd.DataFrame({"a": [pd.to_datetime("now", utc=True)]}) ddf = dd.from_pandas(df, 1) ddf.to_parquet(fn, write_index=False, times="int96") pf = fastparquet.ParquetFile(fn) assert pf._schema[1].type == fastparquet.parquet_thrift.Type.INT96 out = dd.read_parquet(fn, index=False).compute() assert_eq(out, df) @FASTPARQUET_MARK def test_drill_scheme(tmpdir): fn = str(tmpdir) N = 5 df1 = pd.DataFrame({c: np.random.random(N) for i, c in enumerate(["a", "b", "c"])}) df2 = pd.DataFrame({c: np.random.random(N) for i, c in enumerate(["a", "b", "c"])}) files = [] for d in ["test_data1", "test_data2"]: dn = os.path.join(fn, d) if not os.path.exists(dn): os.mkdir(dn) files.append(os.path.join(dn, "data1.parq")) fastparquet.write(files[0], df1) fastparquet.write(files[1], df2) df = dd.read_parquet(files) assert "dir0" in df.columns out = df.compute() assert "dir0" in out assert (np.unique(out.dir0) == ["test_data1", "test_data2"]).all() def test_parquet_select_cats(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame( { "categories": pd.Series( np.random.choice(["a", "b", "c", "d", "e", "f"], size=100), dtype="category", ), "ints": pd.Series(list(range(0, 100)), dtype="int"), "floats": pd.Series(list(range(0, 100)), dtype="float"), } ) ddf = dd.from_pandas(df, 1) ddf.to_parquet(fn, engine=engine) rddf = dd.read_parquet(fn, columns=["ints"], engine=engine) assert list(rddf.columns) == ["ints"] rddf = dd.read_parquet(fn, engine=engine) assert list(rddf.columns) == list(df) def test_columns_name(tmpdir, engine): if engine == "fastparquet" and fastparquet_version <= parse_version("0.3.1"): pytest.skip("Fastparquet does not write column_indexes up to 0.3.1") tmp_path = str(tmpdir) df = pd.DataFrame({"A": [1, 2]}, index=pd.Index(["a", "b"], name="idx")) df.columns.name = "cols" ddf = dd.from_pandas(df, 2) ddf.to_parquet(tmp_path, engine=engine) result = dd.read_parquet(tmp_path, engine=engine, index=["idx"]) assert_eq(result, df) def check_compression(engine, filename, compression): if engine == "fastparquet": pf = fastparquet.ParquetFile(filename) md = pf.fmd.row_groups[0].columns[0].meta_data if compression is None: assert md.total_compressed_size == md.total_uncompressed_size else: assert md.total_compressed_size != md.total_uncompressed_size else: metadata = pa.parquet.ParquetDataset(filename).metadata names = metadata.schema.names for i in range(metadata.num_row_groups): row_group = metadata.row_group(i) for j in range(len(names)): column = row_group.column(j) if compression is None: assert ( column.total_compressed_size == column.total_uncompressed_size ) else: compress_expect = compression if compression == "default": compress_expect = "snappy" assert compress_expect.lower() == column.compression.lower() assert ( column.total_compressed_size != column.total_uncompressed_size ) @pytest.mark.parametrize("compression,", ["default", None, "gzip", "snappy"]) def test_writing_parquet_with_compression(tmpdir, compression, engine): fn = str(tmpdir) if compression in ["snappy", "default"]: pytest.importorskip("snappy") df = pd.DataFrame({"x": ["a", "b", "c"] * 10, "y": [1, 2, 3] * 10}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=3) ddf.to_parquet(fn, compression=compression, engine=engine) out = dd.read_parquet(fn, engine=engine) assert_eq(out, ddf) check_compression(engine, fn, compression) @pytest.mark.parametrize("compression,", ["default", None, "gzip", "snappy"]) def test_writing_parquet_with_partition_on_and_compression(tmpdir, compression, engine): fn = str(tmpdir) if compression in ["snappy", "default"]: pytest.importorskip("snappy") df = pd.DataFrame({"x": ["a", "b", "c"] * 10, "y": [1, 2, 3] * 10}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=3) ddf.to_parquet(fn, compression=compression, engine=engine, partition_on=["x"]) check_compression(engine, fn, compression) @pytest.fixture( params=[ # fastparquet 0.1.3 { "columns": [ { "metadata": None, "name": "idx", "numpy_type": "int64", "pandas_type": "int64", }, { "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["idx"], "pandas_version": "0.21.0", }, # pyarrow 0.7.1 { "columns": [ { "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "metadata": None, "name": "idx", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["idx"], "pandas_version": "0.21.0", }, # pyarrow 0.8.0 { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "A", "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": "idx", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", }, # TODO: fastparquet update ] ) def pandas_metadata(request): return request.param def test_parse_pandas_metadata(pandas_metadata): index_names, column_names, mapping, column_index_names = _parse_pandas_metadata( pandas_metadata ) assert index_names == ["idx"] assert column_names == ["A"] assert column_index_names == [None] # for new pyarrow if pandas_metadata["index_columns"] == ["__index_level_0__"]: assert mapping == {"__index_level_0__": "idx", "A": "A"} else: assert mapping == {"idx": "idx", "A": "A"} assert isinstance(mapping, dict) def test_parse_pandas_metadata_null_index(): # pyarrow 0.7.1 None for index e_index_names = [None] e_column_names = ["x"] e_mapping = {"__index_level_0__": None, "x": "x"} e_column_index_names = [None] md = { "columns": [ { "metadata": None, "name": "x", "numpy_type": "int64", "pandas_type": "int64", }, { "metadata": None, "name": "__index_level_0__", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } index_names, column_names, mapping, column_index_names = _parse_pandas_metadata(md) assert index_names == e_index_names assert column_names == e_column_names assert mapping == e_mapping assert column_index_names == e_column_index_names # pyarrow 0.8.0 None for index md = { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "x", "metadata": None, "name": "x", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": None, "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } index_names, column_names, mapping, column_index_names = _parse_pandas_metadata(md) assert index_names == e_index_names assert column_names == e_column_names assert mapping == e_mapping assert column_index_names == e_column_index_names @PYARROW_MARK def test_read_no_metadata(tmpdir, engine): # use pyarrow.parquet to create a parquet file without # pandas metadata tmp = str(tmpdir) + "table.parq" table = pa.Table.from_arrays( [pa.array([1, 2, 3]), pa.array([3, 4, 5])], names=["A", "B"] ) pq.write_table(table, tmp) result = dd.read_parquet(tmp, engine=engine) expected = pd.DataFrame({"A": [1, 2, 3], "B": [3, 4, 5]}) assert_eq(result, expected) def test_parse_pandas_metadata_duplicate_index_columns(): md = { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "A", "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": "A", "numpy_type": "object", "pandas_type": "unicode", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } ( index_names, column_names, storage_name_mapping, column_index_names, ) = _parse_pandas_metadata(md) assert index_names == ["A"] assert column_names == ["A"] assert storage_name_mapping == {"__index_level_0__": "A", "A": "A"} assert column_index_names == [None] def test_parse_pandas_metadata_column_with_index_name(): md = { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "A", "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": "A", "numpy_type": "object", "pandas_type": "unicode", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } ( index_names, column_names, storage_name_mapping, column_index_names, ) = _parse_pandas_metadata(md) assert index_names == ["A"] assert column_names == ["A"] assert storage_name_mapping == {"__index_level_0__": "A", "A": "A"} assert column_index_names == [None] def test_writing_parquet_with_kwargs(tmpdir, engine): fn = str(tmpdir) path1 = os.path.join(fn, "normal") path2 = os.path.join(fn, "partitioned") pytest.importorskip("snappy") df = pd.DataFrame( { "a": np.random.choice(["A", "B", "C"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), } ) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=3) engine_kwargs = { "pyarrow-dataset": { "compression": "snappy", "coerce_timestamps": None, "use_dictionary": True, }, "fastparquet": {"compression": "snappy", "times": "int64", "fixed_text": None}, } engine_kwargs["pyarrow-legacy"] = engine_kwargs["pyarrow-dataset"] ddf.to_parquet(path1, engine=engine, **engine_kwargs[engine]) out = dd.read_parquet(path1, engine=engine) assert_eq(out, ddf, check_index=(engine != "fastparquet")) # Avoid race condition in pyarrow 0.8.0 on writing partitioned datasets with dask.config.set(scheduler="sync"): ddf.to_parquet( path2, engine=engine, partition_on=["a"], **engine_kwargs[engine] ) out = dd.read_parquet(path2, engine=engine).compute() for val in df.a.unique(): assert set(df.b[df.a == val]) == set(out.b[out.a == val]) def test_writing_parquet_with_unknown_kwargs(tmpdir, engine): fn = str(tmpdir) with pytest.raises(TypeError): ddf.to_parquet(fn, engine=engine, unknown_key="unknown_value") @ANY_ENGINE_MARK def test_to_parquet_with_get(tmpdir): from dask.multiprocessing import get as mp_get tmpdir = str(tmpdir) flag = [False] def my_get(*args, **kwargs): flag[0] = True return mp_get(*args, **kwargs) df = pd.DataFrame({"x": ["a", "b", "c", "d"], "y": [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(tmpdir, compute_kwargs={"scheduler": my_get}) assert flag[0] result = dd.read_parquet(os.path.join(tmpdir, "*")) assert_eq(result, df, check_index=False) def test_select_partitioned_column(tmpdir, engine): pytest.importorskip("snappy") fn = str(tmpdir) size = 20 d = { "signal1": np.random.normal(0, 0.3, size=size).cumsum() + 50, "fake_categorical1": np.random.choice(["A", "B", "C"], size=size), "fake_categorical2": np.random.choice(["D", "E", "F"], size=size), } df = dd.from_pandas(pd.DataFrame(d), 2) df.to_parquet( fn, compression="snappy", write_index=False, engine=engine, partition_on=["fake_categorical1", "fake_categorical2"], ) df_partitioned = dd.read_parquet(fn, engine=engine) df_partitioned[df_partitioned.fake_categorical1 == "A"].compute() def test_with_tz(tmpdir, engine): if engine == "fastparquet" and fastparquet_version < parse_version("0.3.0"): pytest.skip("fastparquet<0.3.0 did not support this") with warnings.catch_warnings(): if engine == "fastparquet": # fastparquet-442 warnings.simplefilter("ignore", FutureWarning) # pandas 0.25 fn = str(tmpdir) df = pd.DataFrame([[0]], columns=["a"], dtype="datetime64[ns, UTC]") df = dd.from_pandas(df, 1) df.to_parquet(fn, engine=engine) df2 = dd.read_parquet(fn, engine=engine) assert_eq(df, df2, check_divisions=False, check_index=False) @PYARROW_MARK def test_arrow_partitioning(tmpdir): # Issue #3518 path = str(tmpdir) data = { "p": np.repeat(np.arange(3), 2).astype(np.int8), "b": np.repeat(-1, 6).astype(np.int16), "c": np.repeat(-2, 6).astype(np.float32), "d": np.repeat(-3, 6).astype(np.float64), } pdf = pd.DataFrame(data) ddf = dd.from_pandas(pdf, npartitions=2) ddf.to_parquet(path, engine="pyarrow", write_index=False, partition_on="p") ddf = dd.read_parquet(path, index=False, engine="pyarrow") ddf.astype({"b": np.float32}).compute() def test_informative_error_messages(): with pytest.raises(ValueError) as info: dd.read_parquet("foo", engine="foo") assert "foo" in str(info.value) assert "arrow" in str(info.value) assert "fastparquet" in str(info.value) def test_append_cat_fp(tmpdir, engine): path = str(tmpdir) # https://github.com/dask/dask/issues/4120 df = pd.DataFrame({"x": ["a", "a", "b", "a", "b"]}) df["x"] = df["x"].astype("category") ddf = dd.from_pandas(df, npartitions=1) dd.to_parquet(ddf, path, engine=engine) dd.to_parquet(ddf, path, append=True, ignore_divisions=True, engine=engine) d = dd.read_parquet(path, engine=engine).compute() assert d["x"].tolist() == ["a", "a", "b", "a", "b"] * 2 @PYARROW_MARK @pytest.mark.parametrize( "df", [ pd.DataFrame({"x": [4, 5, 6, 1, 2, 3]}), pd.DataFrame({"x": ["c", "a", "b"]}), pd.DataFrame({"x": ["cc", "a", "bbb"]}), pd.DataFrame({"x": [b"a", b"b", b"c"]}), pytest.param(pd.DataFrame({"x": pd.Categorical(["a", "b", "a"])})), pytest.param(pd.DataFrame({"x": pd.Categorical([1, 2, 1])})), pd.DataFrame({"x": list(map(pd.Timestamp, [3000000, 2000000, 1000000]))}), # ms pd.DataFrame({"x": list(map(pd.Timestamp, [3000, 2000, 1000]))}), # us pd.DataFrame({"x": [3000, 2000, 1000]}).astype("M8[ns]"), # pd.DataFrame({'x': [3, 2, 1]}).astype('M8[ns]'), # Casting errors pd.DataFrame({"x": [3, 2, 1]}).astype("M8[us]"), pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ms]"), pd.DataFrame({"x": [3, 2, 1]}).astype("uint16"), pd.DataFrame({"x": [3, 2, 1]}).astype("float32"), pd.DataFrame({"x": [3, 1, 2]}, index=[3, 2, 1]), pd.DataFrame( {"x": [4, 5, 6, 1, 2, 3]}, index=pd.Index([1, 2, 3, 4, 5, 6], name="foo") ), pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}), pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}, columns=["y", "x"]), pd.DataFrame({"0": [3, 2, 1]}), pd.DataFrame({"x": [3, 2, None]}), pd.DataFrame({"-": [3.0, 2.0, None]}), pd.DataFrame({".": [3.0, 2.0, None]}), pd.DataFrame({" ": [3.0, 2.0, None]}), ], ) def test_roundtrip_arrow(tmpdir, df): # Index will be given a name when preserved as index tmp_path = str(tmpdir) if not df.index.name: df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) dd.to_parquet(ddf, tmp_path, engine="pyarrow", write_index=True) ddf2 = dd.read_parquet(tmp_path, engine="pyarrow", gather_statistics=True) assert_eq(ddf, ddf2) def test_datasets_timeseries(tmpdir, engine): tmp_path = str(tmpdir) df = dask.datasets.timeseries( start="2000-01-01", end="2000-01-10", freq="1d" ).persist() df.to_parquet(tmp_path, engine=engine) df2 = dd.read_parquet(tmp_path, engine=engine) assert_eq(df, df2) def test_pathlib_path(tmpdir, engine): import pathlib df = pd.DataFrame({"x": [4, 5, 6, 1, 2, 3]}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) path = pathlib.Path(str(tmpdir)) ddf.to_parquet(path, engine=engine) ddf2 = dd.read_parquet(path, engine=engine) assert_eq(ddf, ddf2) @PYARROW_LE_MARK def test_pyarrow_metadata_nthreads(tmpdir): tmp_path = str(tmpdir) df = pd.DataFrame({"x": [4, 5, 6, 1, 2, 3]}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(tmp_path, engine="pyarrow") ops = {"dataset": {"metadata_nthreads": 2}} ddf2 = dd.read_parquet(tmp_path, engine="pyarrow-legacy", **ops) assert_eq(ddf, ddf2) @FASTPARQUET_MARK def test_categories_large(tmpdir, engine): # Issue #5112 fn = str(tmpdir.join("parquet_int16.parq")) numbers = np.random.randint(0, 800000, size=1000000) df = pd.DataFrame(numbers.T, columns=["name"]) df.name = df.name.astype("category") df.to_parquet(fn, engine="fastparquet", compression="uncompressed") ddf = dd.read_parquet(fn, engine=engine, categories={"name": 80000}) assert_eq(sorted(df.name.cat.categories), sorted(ddf.compute().name.cat.categories)) @write_read_engines() def test_read_glob_no_meta(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) ddf2 = dd.read_parquet( os.path.join(tmp_path, "*.parquet"), engine=read_engine, gather_statistics=False ) assert_eq(ddf, ddf2, check_divisions=False) @write_read_engines() def test_read_glob_yes_meta(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) paths = glob.glob(os.path.join(tmp_path, "*.parquet")) paths.append(os.path.join(tmp_path, "_metadata")) ddf2 = dd.read_parquet(paths, engine=read_engine, gather_statistics=False) assert_eq(ddf, ddf2, check_divisions=False) @pytest.mark.parametrize("statistics", [True, False, None]) @pytest.mark.parametrize("remove_common", [True, False]) @write_read_engines() def test_read_dir_nometa(tmpdir, write_engine, read_engine, statistics, remove_common): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) if os.path.exists(os.path.join(tmp_path, "_metadata")): os.unlink(os.path.join(tmp_path, "_metadata")) files = os.listdir(tmp_path) assert "_metadata" not in files if remove_common and os.path.exists(os.path.join(tmp_path, "_common_metadata")): os.unlink(os.path.join(tmp_path, "_common_metadata")) ddf2 = dd.read_parquet(tmp_path, engine=read_engine, gather_statistics=statistics) assert_eq(ddf, ddf2, check_divisions=False) assert ddf.divisions == tuple(range(0, 420, 30)) if statistics is False or statistics is None and read_engine.startswith("pyarrow"): assert ddf2.divisions == (None,) * 14 else: assert ddf2.divisions == tuple(range(0, 420, 30)) @write_read_engines() def test_statistics_nometa(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine, write_metadata_file=False) ddf2 = dd.read_parquet(tmp_path, engine=read_engine, gather_statistics=True) assert_eq(ddf, ddf2) assert ddf.divisions == tuple(range(0, 420, 30)) assert ddf2.divisions == tuple(range(0, 420, 30)) @pytest.mark.parametrize("schema", ["infer", None]) def test_timeseries_nulls_in_schema(tmpdir, engine, schema): # GH#5608: relative path failing _metadata/_common_metadata detection. tmp_path = str(tmpdir.mkdir("files")) tmp_path = os.path.join(tmp_path, "../", "files") ddf2 = ( dask.datasets.timeseries(start="2000-01-01", end="2000-01-03", freq="1h") .reset_index() .map_partitions(lambda x: x.loc[:5]) ) ddf2 = ddf2.set_index("x").reset_index().persist() ddf2.name = ddf2.name.where(ddf2.timestamp == "2000-01-01", None) # Note: `append_row_groups` will fail with pyarrow>0.17.1 for _metadata write dataset = {"validate_schema": False} if engine == "pyarrow-legacy" else {} ddf2.to_parquet(tmp_path, engine=engine, write_metadata_file=False, schema=schema) ddf_read = dd.read_parquet(tmp_path, engine=engine, dataset=dataset) assert_eq(ddf_read, ddf2, check_divisions=False, check_index=False) @PYARROW_LE_MARK @pytest.mark.parametrize("numerical", [True, False]) @pytest.mark.parametrize( "timestamp", ["2000-01-01", "2000-01-02", "2000-01-03", "2000-01-04"] ) def test_timeseries_nulls_in_schema_pyarrow(tmpdir, timestamp, numerical): tmp_path = str(tmpdir) ddf2 = dd.from_pandas( pd.DataFrame( { "timestamp": [ pd.Timestamp("2000-01-01"), pd.Timestamp("2000-01-02"), pd.Timestamp("2000-01-03"), pd.Timestamp("2000-01-04"), ], "id": np.arange(4, dtype="float64"), "name": ["cat", "dog", "bird", "cow"], } ), npartitions=2, ).persist() if numerical: ddf2.id = ddf2.id.where(ddf2.timestamp == timestamp, None) ddf2.id = ddf2.id.astype("float64") else: ddf2.name = ddf2.name.where(ddf2.timestamp == timestamp, None) # There should be no schema error if you specify a schema on write schema = pa.schema( [("timestamp", pa.timestamp("ns")), ("id", pa.float64()), ("name", pa.string())] ) ddf2.to_parquet(tmp_path, schema=schema, write_index=False, engine="pyarrow") assert_eq( dd.read_parquet( tmp_path, dataset={"validate_schema": True}, index=False, engine="pyarrow-legacy", ), ddf2, check_divisions=False, check_index=False, ) @PYARROW_LE_MARK def test_read_inconsistent_schema_pyarrow(tmpdir): # Note: This is a proxy test for a cudf-related issue fix # (see cudf#5062 github issue). The cause of that issue is # schema inconsistencies that do not actually correspond to # different types, but whether or not the file/column contains # null values. df1 = pd.DataFrame({"id": [0, 1], "val": [10, 20]}) df2 = pd.DataFrame({"id": [2, 3], "val": [30, 40]}) desired_type = "int64" other_type = "int32" df1.val = df1.val.astype(desired_type) df2.val = df2.val.astype(other_type) df_expect = pd.concat([df1, df2], ignore_index=True) df_expect["val"] = df_expect.val.astype(desired_type) df1.to_parquet(os.path.join(tmpdir, "0.parquet"), engine="pyarrow") df2.to_parquet(os.path.join(tmpdir, "1.parquet"), engine="pyarrow") # Read Directory check = dd.read_parquet( str(tmpdir), dataset={"validate_schema": False}, engine="pyarrow-legacy" ) assert_eq(check.compute(), df_expect, check_index=False) # Read List check = dd.read_parquet( os.path.join(tmpdir, "*.parquet"), dataset={"validate_schema": False}, engine="pyarrow-legacy", ) assert_eq(check.compute(), df_expect, check_index=False) def test_graph_size_pyarrow(tmpdir, engine): import pickle fn = str(tmpdir) ddf1 = dask.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="60S", partition_freq="1H" ) ddf1.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, engine=engine) assert len(pickle.dumps(ddf2.__dask_graph__())) < 25000 @pytest.mark.parametrize("preserve_index", [True, False]) @pytest.mark.parametrize("index", [None, np.random.permutation(2000)]) def test_getitem_optimization(tmpdir, engine, preserve_index, index): tmp_path_rd = str(tmpdir.mkdir("read")) tmp_path_wt = str(tmpdir.mkdir("write")) df = pd.DataFrame( {"A": [1, 2] * 1000, "B": [3, 4] * 1000, "C": [5, 6] * 1000}, index=index ) df.index.name = "my_index" ddf = dd.from_pandas(df, 2, sort=False) ddf.to_parquet(tmp_path_rd, engine=engine, write_index=preserve_index) ddf = dd.read_parquet(tmp_path_rd, engine=engine)["B"] # Write ddf back to disk to check that the round trip # preserves the getitem optimization out = ddf.to_frame().to_parquet(tmp_path_wt, engine=engine, compute=False) dsk = optimize_dataframe_getitem(out.dask, keys=[out.key]) subgraph_rd = hlg_layer(dsk, "read-parquet") assert isinstance(subgraph_rd, DataFrameIOLayer) assert subgraph_rd.columns == ["B"] assert next(iter(subgraph_rd.dsk.values()))[0].columns == ["B"] subgraph_wt = hlg_layer(dsk, "to-parquet") assert isinstance(subgraph_wt, Blockwise) assert_eq(ddf.compute(optimize_graph=False), ddf.compute()) def test_getitem_optimization_empty(tmpdir, engine): df = pd.DataFrame({"A": [1] * 100, "B": [2] * 100, "C": [3] * 100, "D": [4] * 100}) ddf = dd.from_pandas(df, 2) fn = os.path.join(str(tmpdir)) ddf.to_parquet(fn, engine=engine) df2 = dd.read_parquet(fn, columns=[], engine=engine) dsk = optimize_dataframe_getitem(df2.dask, keys=[df2._name]) subgraph = next(iter(dsk.layers.values())) assert isinstance(subgraph, DataFrameIOLayer) assert subgraph.columns == [] def test_getitem_optimization_multi(tmpdir, engine): df = pd.DataFrame({"A": [1] * 100, "B": [2] * 100, "C": [3] * 100, "D": [4] * 100}) ddf = dd.from_pandas(df, 2) fn = os.path.join(str(tmpdir)) ddf.to_parquet(fn, engine=engine) a = dd.read_parquet(fn, engine=engine)["B"] b = dd.read_parquet(fn, engine=engine)[["C"]] c = dd.read_parquet(fn, engine=engine)[["C", "A"]] a1, a2, a3 = dask.compute(a, b, c) b1, b2, b3 = dask.compute(a, b, c, optimize_graph=False) assert_eq(a1, b1) assert_eq(a2, b2) assert_eq(a3, b3) def test_getitem_optimization_after_filter(tmpdir, engine): df = pd.DataFrame({"a": [1, 2, 3] * 5, "b": range(15), "c": range(15)}) dd.from_pandas(df, npartitions=3).to_parquet(tmpdir, engine=engine) ddf = dd.read_parquet(tmpdir, engine=engine) df2 = df[df["b"] > 10][["a"]] ddf2 = ddf[ddf["b"] > 10][["a"]] dsk = optimize_dataframe_getitem(ddf2.dask, keys=[ddf2._name]) subgraph_rd = hlg_layer(dsk, "read-parquet") assert isinstance(subgraph_rd, DataFrameIOLayer) assert set(subgraph_rd.columns) == {"a", "b"} assert_eq(df2, ddf2) def test_getitem_optimization_after_filter_complex(tmpdir, engine): df = pd.DataFrame({"a": [1, 2, 3] * 5, "b": range(15), "c": range(15)}) dd.from_pandas(df, npartitions=3).to_parquet(tmpdir, engine=engine) ddf = dd.read_parquet(tmpdir, engine=engine) df2 = df[["b"]] df2 = df2.assign(d=1) df2 = df[df2["d"] == 1][["b"]] ddf2 = ddf[["b"]] ddf2 = ddf2.assign(d=1) ddf2 = ddf[ddf2["d"] == 1][["b"]] dsk = optimize_dataframe_getitem(ddf2.dask, keys=[ddf2._name]) subgraph_rd = hlg_layer(dsk, "read-parquet") assert isinstance(subgraph_rd, DataFrameIOLayer) assert set(subgraph_rd.columns) == {"b"} assert_eq(df2, ddf2) def test_layer_creation_info(tmpdir, engine): df = pd.DataFrame({"a": range(10), "b": ["cat", "dog"] * 5}) dd.from_pandas(df, npartitions=1).to_parquet( tmpdir, engine=engine, partition_on=["b"] ) # Apply filters directly in dd.read_parquet filters = [("b", "==", "cat")] ddf1 = dd.read_parquet(tmpdir, engine=engine, filters=filters) assert "dog" not in ddf1["b"].compute() # Results will not match if we use dd.read_parquet # without filters ddf2 = dd.read_parquet(tmpdir, engine=engine) with pytest.raises(AssertionError): assert_eq(ddf1, ddf2) # However, we can use `creation_info` to regenerate # the same collection with `filters` defined info = ddf2.dask.layers[ddf2._name].creation_info kwargs = info.get("kwargs", {}) kwargs["filters"] = filters ddf3 = info["func"](*info.get("args", []), **kwargs) assert_eq(ddf1, ddf3) @ANY_ENGINE_MARK def test_blockwise_parquet_annotations(tmpdir): df = pd.DataFrame({"a": np.arange(40, dtype=np.int32)}) expect = dd.from_pandas(df, npartitions=2) expect.to_parquet(str(tmpdir)) with dask.annotate(foo="bar"): ddf = dd.read_parquet(str(tmpdir)) # `ddf` should now have ONE Blockwise layer layers = ddf.__dask_graph__().layers assert len(layers) == 1 layer = next(iter(layers.values())) assert isinstance(layer, DataFrameIOLayer) assert layer.annotations == {"foo": "bar"} @ANY_ENGINE_MARK def test_optimize_blockwise_parquet(tmpdir): size = 40 npartitions = 2 tmp = str(tmpdir) df = pd.DataFrame({"a": np.arange(size, dtype=np.int32)}) expect = dd.from_pandas(df, npartitions=npartitions) expect.to_parquet(tmp) ddf = dd.read_parquet(tmp) # `ddf` should now have ONE Blockwise layer layers = ddf.__dask_graph__().layers assert len(layers) == 1 assert isinstance(list(layers.values())[0], Blockwise) # Check single-layer result assert_eq(ddf, expect) # Increment by 1 ddf += 1 expect += 1 # Increment by 10 ddf += 10 expect += 10 # `ddf` should now have THREE Blockwise layers layers = ddf.__dask_graph__().layers assert len(layers) == 3 assert all(isinstance(layer, Blockwise) for layer in layers.values()) # Check that `optimize_blockwise` fuses all three # `Blockwise` layers together into a singe `Blockwise` layer keys = [(ddf._name, i) for i in range(npartitions)] graph = optimize_blockwise(ddf.__dask_graph__(), keys) layers = graph.layers name = list(layers.keys())[0] assert len(layers) == 1 assert isinstance(layers[name], Blockwise) # Check final result assert_eq(ddf, expect) @PYARROW_MARK def test_split_row_groups(tmpdir, engine): """Test split_row_groups read_parquet kwarg""" tmp = str(tmpdir) df = pd.DataFrame( {"i32": np.arange(800, dtype=np.int32), "f": np.arange(800, dtype=np.float64)} ) df.index.name = "index" half = len(df) // 2 dd.from_pandas(df.iloc[:half], npartitions=2).to_parquet( tmp, engine="pyarrow", row_group_size=100 ) ddf3 = dd.read_parquet(tmp, engine=engine, split_row_groups=True, chunksize=1) assert ddf3.npartitions == 4 ddf3 = dd.read_parquet( tmp, engine=engine, gather_statistics=True, split_row_groups=False ) assert ddf3.npartitions == 2 dd.from_pandas(df.iloc[half:], npartitions=2).to_parquet( tmp, append=True, engine="pyarrow", row_group_size=50 ) ddf3 = dd.read_parquet( tmp, engine=engine, gather_statistics=True, split_row_groups=True, chunksize=1, ) assert ddf3.npartitions == 12 ddf3 = dd.read_parquet( tmp, engine=engine, gather_statistics=True, split_row_groups=False ) assert ddf3.npartitions == 4 @PYARROW_MARK @pytest.mark.parametrize("split_row_groups", [1, 12]) @pytest.mark.parametrize("gather_statistics", [True, False]) def test_split_row_groups_int(tmpdir, split_row_groups, gather_statistics, engine): tmp = str(tmpdir) row_group_size = 10 npartitions = 4 half_size = 400 df = pd.DataFrame( { "i32": np.arange(2 * half_size, dtype=np.int32), "f": np.arange(2 * half_size, dtype=np.float64), } ) half = len(df) // 2 dd.from_pandas(df.iloc[:half], npartitions=npartitions).to_parquet( tmp, engine="pyarrow", row_group_size=row_group_size ) dd.from_pandas(df.iloc[half:], npartitions=npartitions).to_parquet( tmp, append=True, engine="pyarrow", row_group_size=row_group_size ) ddf2 = dd.read_parquet( tmp, engine=engine, split_row_groups=split_row_groups, gather_statistics=gather_statistics, ) expected_rg_cout = int(half_size / row_group_size) assert ddf2.npartitions == 2 * math.ceil(expected_rg_cout / split_row_groups) @PYARROW_MARK @pytest.mark.parametrize("split_row_groups", [8, 25]) def test_split_row_groups_int_aggregate_files(tmpdir, engine, split_row_groups): # Use pyarrow to write a multi-file dataset with # multiple row-groups per file row_group_size = 10 size = 800 df = pd.DataFrame( { "i32": np.arange(size, dtype=np.int32), "f": np.arange(size, dtype=np.float64), } ) dd.from_pandas(df, npartitions=4).to_parquet( str(tmpdir), engine="pyarrow", row_group_size=row_group_size, write_index=False ) # Read back with both `split_row_groups>1` and # `aggregate_files=True` ddf2 = dd.read_parquet( str(tmpdir), engine=engine, split_row_groups=split_row_groups, aggregate_files=True, ) # Check that we are aggregating files as expected npartitions_expected = math.ceil((size / row_group_size) / split_row_groups) assert ddf2.npartitions == npartitions_expected assert len(ddf2) == size assert_eq(df, ddf2, check_index=False) @PYARROW_MARK def test_split_row_groups_filter(tmpdir, engine): tmp = str(tmpdir) df = pd.DataFrame( {"i32": np.arange(800, dtype=np.int32), "f": np.arange(800, dtype=np.float64)} ) df.index.name = "index" search_val = 600 filters = [("f", "==", search_val)] dd.from_pandas(df, npartitions=4).to_parquet( tmp, append=True, engine="pyarrow", row_group_size=50 ) ddf2 = dd.read_parquet(tmp, engine=engine) ddf3 = dd.read_parquet( tmp, engine=engine, gather_statistics=True, split_row_groups=True, filters=filters, ) assert (ddf3["i32"] == search_val).any().compute() assert_eq( ddf2[ddf2["i32"] == search_val].compute(), ddf3[ddf3["i32"] == search_val].compute(), ) @ANY_ENGINE_MARK def test_optimize_getitem_and_nonblockwise(tmpdir): path = os.path.join(tmpdir, "path.parquet") df = pd.DataFrame( {"a": [3, 4, 2], "b": [1, 2, 4], "c": [5, 4, 2], "d": [1, 2, 3]}, index=["a", "b", "c"], ) df.to_parquet(path) df2 = dd.read_parquet(path) df2[["a", "b"]].rolling(3).max().compute() @ANY_ENGINE_MARK def test_optimize_and_not(tmpdir): path = os.path.join(tmpdir, "path.parquet") df = pd.DataFrame( {"a": [3, 4, 2], "b": [1, 2, 4], "c": [5, 4, 2], "d": [1, 2, 3]}, index=["a", "b", "c"], ) df.to_parquet(path) df2 = dd.read_parquet(path) df2a = df2["a"].groupby(df2["c"]).first().to_delayed() df2b = df2["b"].groupby(df2["c"]).first().to_delayed() df2c = df2[["a", "b"]].rolling(2).max().to_delayed() df2d = df2.rolling(2).max().to_delayed() (result,) = dask.compute(df2a + df2b + df2c + df2d) expected = [ dask.compute(df2a)[0][0], dask.compute(df2b)[0][0], dask.compute(df2c)[0][0], dask.compute(df2d)[0][0], ] for a, b in zip(result, expected): assert_eq(a, b) @write_read_engines() def test_chunksize_empty(tmpdir, write_engine, read_engine): df = pd.DataFrame({"a": pd.Series(dtype="int"), "b": pd.Series(dtype="float")}) ddf1 = dd.from_pandas(df, npartitions=1) ddf1.to_parquet(tmpdir, engine=write_engine) ddf2 = dd.read_parquet(tmpdir, engine=read_engine, chunksize="1MiB") assert_eq(ddf1, ddf2, check_index=False) @PYARROW_MARK @pytest.mark.parametrize("metadata", [True, False]) @pytest.mark.parametrize("partition_on", [None, "a"]) @pytest.mark.parametrize("chunksize", [4096, "1MiB"]) @write_read_engines() def test_chunksize_files( tmpdir, chunksize, partition_on, write_engine, read_engine, metadata ): if partition_on and read_engine == "fastparquet" and not metadata: pytest.skip("Fastparquet requires _metadata for partitioned data.") df_size = 100 df1 = pd.DataFrame( { "a": np.random.choice(["apple", "banana", "carrot"], size=df_size), "b": np.random.random(size=df_size), "c": np.random.randint(1, 5, size=df_size), } ) ddf1 = dd.from_pandas(df1, npartitions=9) ddf1.to_parquet( str(tmpdir), engine=write_engine, partition_on=partition_on, write_metadata_file=metadata, write_index=False, ) ddf2 = dd.read_parquet( str(tmpdir), engine=read_engine, chunksize=chunksize, aggregate_files=partition_on if partition_on else True, ) # Check that files where aggregated as expected if chunksize == 4096: assert ddf2.npartitions < ddf1.npartitions elif chunksize == "1MiB": if partition_on: assert ddf2.npartitions == 3 else: assert ddf2.npartitions == 1 # Check that the final data is correct if partition_on: df2 = ddf2.compute().sort_values(["b", "c"]) df1 = df1.sort_values(["b", "c"]) assert_eq(df1[["b", "c"]], df2[["b", "c"]], check_index=False) else: assert_eq(ddf1, ddf2, check_divisions=False, check_index=False) @write_read_engines() @pytest.mark.parametrize("aggregate_files", ["a", "b"]) def test_chunksize_aggregate_files(tmpdir, write_engine, read_engine, aggregate_files): chunksize = "1MiB" partition_on = ["a", "b"] df_size = 100 df1 = pd.DataFrame( { "a": np.random.choice(["apple", "banana", "carrot"], size=df_size), "b": np.random.choice(["small", "large"], size=df_size), "c": np.random.random(size=df_size), "d": np.random.randint(1, 100, size=df_size), } ) ddf1 = dd.from_pandas(df1, npartitions=9) ddf1.to_parquet( str(tmpdir), engine=write_engine, partition_on=partition_on, write_index=False, ) ddf2 = dd.read_parquet( str(tmpdir), engine=read_engine, chunksize=chunksize, aggregate_files=aggregate_files, ) # Check that files where aggregated as expected if aggregate_files == "a": assert ddf2.npartitions == 3 elif aggregate_files == "b": assert ddf2.npartitions == 6 # Check that the final data is correct df2 = ddf2.compute().sort_values(["c", "d"]) df1 = df1.sort_values(["c", "d"]) assert_eq(df1[["c", "d"]], df2[["c", "d"]], check_index=False) @pytest.mark.parametrize("metadata", [True, False]) @pytest.mark.parametrize("chunksize", [None, 1024, 4096, "1MiB"]) def test_chunksize(tmpdir, chunksize, engine, metadata): nparts = 2 df_size = 100 row_group_size = 5 df = pd.DataFrame( { "a": np.random.choice(["apple", "banana", "carrot"], size=df_size), "b": np.random.random(size=df_size), "c": np.random.randint(1, 5, size=df_size), "index": np.arange(0, df_size), } ).set_index("index") ddf1 = dd.from_pandas(df, npartitions=nparts) ddf1.to_parquet( str(tmpdir), engine="pyarrow", row_group_size=row_group_size, write_metadata_file=metadata, ) if metadata: path = str(tmpdir) else: dirname = str(tmpdir) files = os.listdir(dirname) assert "_metadata" not in files path = os.path.join(dirname, "*.parquet") ddf2 = dd.read_parquet( path, engine=engine, chunksize=chunksize, split_row_groups=True, gather_statistics=True, index="index", aggregate_files=True, ) assert_eq(ddf1, ddf2, check_divisions=False) num_row_groups = df_size // row_group_size if not chunksize: assert ddf2.npartitions == num_row_groups else: # Check that we are really aggregating assert ddf2.npartitions < num_row_groups if chunksize == "1MiB": # Largest chunksize will result in # a single output partition assert ddf2.npartitions == 1 @write_read_engines() def test_roundtrip_pandas_chunksize(tmpdir, write_engine, read_engine): path = str(tmpdir.join("test.parquet")) pdf = df.copy() pdf.index.name = "index" pdf.to_parquet( path, engine="pyarrow" if write_engine.startswith("pyarrow") else "fastparquet" ) ddf_read = dd.read_parquet( path, engine=read_engine, chunksize="10 kiB", gather_statistics=True, split_row_groups=True, index="index", ) assert_eq(pdf, ddf_read) @FASTPARQUET_MARK def test_read_pandas_fastparquet_partitioned(tmpdir, engine): pdf = pd.DataFrame( [{"str": str(i), "int": i, "group": "ABC"[i % 3]} for i in range(6)] ) path = str(tmpdir) pdf.to_parquet(path, partition_cols=["group"], engine="fastparquet") ddf_read = dd.read_parquet(path, engine=engine) assert len(ddf_read["group"].compute()) == 6 assert len(ddf_read.compute().group) == 6 def test_read_parquet_getitem_skip_when_getting_read_parquet(tmpdir, engine): # https://github.com/dask/dask/issues/5893 pdf = pd.DataFrame({"A": [1, 2, 3, 4, 5, 6], "B": ["a", "b", "c", "d", "e", "f"]}) path = os.path.join(str(tmpdir), "data.parquet") pd_engine = "pyarrow" if engine.startswith("pyarrow") else "fastparquet" pdf.to_parquet(path, engine=pd_engine) ddf = dd.read_parquet(path, engine=engine) a, b = dask.optimize(ddf["A"], ddf) # Make sure we are still allowing the getitem optimization ddf = ddf["A"] dsk = optimize_dataframe_getitem(ddf.dask, keys=[(ddf._name, 0)]) read = [key for key in dsk.layers if key.startswith("read-parquet")][0] subgraph = dsk.layers[read] assert isinstance(subgraph, DataFrameIOLayer) assert subgraph.columns == ["A"] @pytest.mark.parametrize("gather_statistics", [None, True]) @write_read_engines() def test_filter_nonpartition_columns( tmpdir, write_engine, read_engine, gather_statistics ): tmpdir = str(tmpdir) df_write = pd.DataFrame( { "id": [1, 2, 3, 4] * 4, "time": np.arange(16), "random": np.random.choice(["cat", "dog"], size=16), } ) ddf_write = dd.from_pandas(df_write, npartitions=4) ddf_write.to_parquet( tmpdir, write_index=False, partition_on=["id"], engine=write_engine ) ddf_read = dd.read_parquet( tmpdir, index=False, engine=read_engine, gather_statistics=gather_statistics, filters=[(("time", "<", 5))], ) df_read = ddf_read.compute() assert len(df_read) == len(df_read[df_read["time"] < 5]) assert df_read["time"].max() < 5 @PYARROW_MARK def test_pandas_metadata_nullable_pyarrow(tmpdir): tmpdir = str(tmpdir) ddf1 = dd.from_pandas( pd.DataFrame( { "A":
pd.array([1, None, 2], dtype="Int64")
pandas.array
# # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # import bz2 import copy import gzip import os import shutil from pathlib import Path from typing import Any, List, Mapping import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import pytest from source_s3.source_files_abstract.formats.parquet_parser import PARQUET_TYPES, ParquetParser from .abstract_test_parser import AbstractTestParser from .conftest import TMP_FOLDER SAMPLE_DIRECTORY = Path(__file__).resolve().parent.joinpath("sample_files/") def compress(archive_name: str, filename: str) -> str: compress_filename = f"{filename}.{archive_name}" with open(filename, "rb") as f_in: if archive_name == "gz": with gzip.open(compress_filename, "wb") as f_out: shutil.copyfileobj(f_in, f_out) elif archive_name == "bz2": with bz2.open(compress_filename, "wb") as f_out: # type: ignore[assignment] shutil.copyfileobj(f_in, f_out) return compress_filename class TestParquetParser(AbstractTestParser): filetype = "parquet" record_types = PARQUET_TYPES @classmethod def generate_parquet_file( cls, name: str, columns: Mapping[str, str], num_rows: int, custom_rows: Mapping[int, List[str]] = None ) -> str: """Generates a random data and save it to a tmp file""" filename = os.path.join(TMP_FOLDER, name + "." + cls.filetype) pq_writer = None types = list(columns.values()) if num_rows else [] custom_rows = custom_rows or {} column_names = list(columns.keys()) buffer = [] for i in range(num_rows): buffer.append(custom_rows.get(i) or cls._generate_row(types)) if i != (num_rows - 1) and len(buffer) < 100: continue data = {col_values[0]: list(col_values[1:]) for col_values in zip(column_names, *buffer)} buffer = [] df =
pd.DataFrame(data)
pandas.DataFrame
import collections import itertools import multiprocessing import os import random import re import signal import sys import threading import time import traceback import click import numpy import pandas as pd from tqdm import tqdm from estee.common import imode from estee.schedulers import WorkStealingScheduler from estee.schedulers.basic import AllOnOneScheduler, RandomAssignScheduler from estee.schedulers.camp import Camp2Scheduler from estee.schedulers.clustering import LcScheduler from estee.schedulers.genetic import GeneticScheduler from estee.schedulers.others import BlevelScheduler, DLSScheduler, ETFScheduler, MCPGTScheduler, \ MCPScheduler, TlevelScheduler from estee.schedulers.queue import BlevelGtScheduler, RandomGtScheduler, TlevelGtScheduler from estee.serialization.dask_json import json_deserialize, json_serialize from estee.simulator import MaxMinFlowNetModel, SimpleNetModel from estee.simulator import Simulator, Worker from estee.simulator.trace import FetchEndTraceEvent def generate_seed(): seed = os.getpid() * time.time() for b in os.urandom(4): seed *= b seed = int(seed) % 2**32 random.seed(seed) numpy.random.seed(seed) generate_seed() SCHEDULERS = { "single": AllOnOneScheduler, "blevel": BlevelScheduler, "blevel-gt": BlevelGtScheduler, "tlevel": TlevelScheduler, "tlevel-gt": TlevelGtScheduler, "random": RandomAssignScheduler, "random-gt": RandomGtScheduler, "dls": DLSScheduler, "etf": ETFScheduler, "mcp": MCPScheduler, "mcp-gt": MCPGTScheduler, "genetic": GeneticScheduler, "camp2": lambda: Camp2Scheduler(5000), "lc": LcScheduler, "ws": WorkStealingScheduler } NETMODELS = { "simple": SimpleNetModel, "maxmin": MaxMinFlowNetModel } CLUSTERS = { "2x8": [{"cpus": 8}] * 2, "4x4": [{"cpus": 4}] * 4, "8x4": [{"cpus": 4}] * 8, "16x4": [{"cpus": 4}] * 16, "32x4": [{"cpus": 4}] * 32, "8x8": [{"cpus": 8}] * 8, "16x8": [{"cpus": 8}] * 16, "stairs16": [{"cpus": i} for i in range(1, 6)] + [{"cpus": 1}], "32x16": [{"cpus": 16}] * 32, "64x16": [{"cpus": 16}] * 64, "128x16": [{"cpus": 16}] * 128, "256x16": [{"cpus": 16}] * 256, } BANDWIDTHS = { "8G": 8192, "2G": 2048, "512M": 512, "128M": 128, "32M": 32 } IMODES = { "exact": imode.process_imode_exact, "blind": imode.process_imode_blind, "mean": imode.process_imode_mean, "user": imode.process_imode_user, } SCHED_TIMINGS = { # min_sched_interval, sched_time "0/0": (0, 0), "0.1/0.05": (0.1, 0.05), "0.4/0.05": (0.4, 0.05), "1.6/0.05": (1.6, 0.05), "6.4/0.05": (6.4, 0.05) } COLUMNS = ["graph_set", "graph_name", "graph_id", "cluster_name", "bandwidth", "netmodel", "scheduler_name", "imode", "min_sched_interval", "sched_time", "time", "execution_time", "total_transfer"] Instance = collections.namedtuple("Instance", ("graph_set", "graph_name", "graph_id", "graph", "cluster_name", "bandwidth", "netmodel", "scheduler_name", "imode", "min_sched_interval", "sched_time", "count")) class BenchmarkConfig: graph_cache = {} def __init__(self, graph_frame, schedulers, clusters, netmodels, bandwidths, imodes, sched_timings, count): self.graph_frame = graph_frame self.schedulers = schedulers self.clusters = clusters self.netmodels = netmodels self.bandwidths = bandwidths self.imodes = imodes self.sched_timings = sched_timings self.count = count def generate_instances(self): def calculate_imodes(graph, graph_id): if graph_id not in BenchmarkConfig.graph_cache: BenchmarkConfig.graph_cache[graph_id] = {} for mode in IMODES: g = json_deserialize(graph) IMODES[mode](g) BenchmarkConfig.graph_cache[graph_id][mode] = json_serialize(g) for graph_def, cluster_name, bandwidth, netmodel, scheduler_name, mode, sched_timing \ in itertools.product(self.graph_frame.iterrows(), self.clusters, self.bandwidths, self.netmodels, self.schedulers, self.imodes, self.sched_timings): g = graph_def[1] calculate_imodes(g["graph"], g["graph_id"]) graph = BenchmarkConfig.graph_cache[g["graph_id"]][mode] (min_sched_interval, sched_time) = SCHED_TIMINGS[sched_timing] instance = Instance( g["graph_set"], g["graph_name"], g["graph_id"], graph, cluster_name, BANDWIDTHS[bandwidth], netmodel, scheduler_name, mode, min_sched_interval, sched_time, self.count) yield instance def __repr__(self): return """ ============ Config ======================== scheduler : {schedulers} cluster : {clusters} netmodel : {netmodels} bandwidths: {bandwidths} imode : {imodes} timings : {timings} REPEAT : {repeat} ============================================ """.format( schedulers=", ".join(self.schedulers), clusters=", ".join(self.clusters), netmodels=", ".join(self.netmodels), bandwidths=", ".join(self.bandwidths), imodes=", ".join(self.imodes), timings=", ".join(self.sched_timings), repeat=self.count ) def run_single_instance(instance): time.sleep(1) inf = 2**32 def create_worker(wargs): if instance.netmodel == "simple": return Worker(**wargs, max_downloads=inf, max_downloads_per_worker=inf) return Worker(**wargs) begin_time = time.monotonic() workers = [create_worker(wargs) for wargs in CLUSTERS[instance.cluster_name]] netmodel = NETMODELS[instance.netmodel](instance.bandwidth) scheduler = SCHEDULERS[instance.scheduler_name]() simulator = Simulator(instance.graph, workers, scheduler, netmodel, trace=True) try: sim_time = simulator.run() runtime = time.monotonic() - begin_time transfer = 0 for e in simulator.trace_events: if isinstance(e, FetchEndTraceEvent): transfer += e.output.size return sim_time, runtime, transfer except Exception: traceback.print_exc() print("ERROR INSTANCE: {}".format(instance), file=sys.stderr) return None, None, None def benchmark_scheduler(instance): return [run_single_instance(instance) for _ in range(instance.count)] def process_multiprocessing(instance): instance = instance._replace(graph=json_deserialize(instance.graph)) return benchmark_scheduler(instance) def run_multiprocessing(pool, instances): return pool.imap(process_multiprocessing, instances) def process_dask(conf): (graph, instance) = conf instance = instance._replace(graph=json_deserialize(graph)) return benchmark_scheduler(instance) def run_dask(instances, cluster): from dask.distributed import Client client = Client(cluster) graphs = {} instance_to_graph = {} instances = list(instances) for (i, instance) in enumerate(instances): if instance.graph not in graphs: graphs[instance.graph] = client.scatter([instance.graph], broadcast=True)[0] inst = instance._replace(graph=None) instance_to_graph[inst] = graphs[instance.graph] instances[i] = inst results = client.map(process_dask, ((instance_to_graph[i], i) for i in instances)) return client.gather(results) def init_worker(): signal.signal(signal.SIGINT, signal.SIG_IGN) def compute(instances, timeout=0, dask_cluster=None): rows = [] if not instances: return rows if dask_cluster: iterator = run_dask(instances, dask_cluster) else: pool = multiprocessing.Pool(initializer=init_worker) iterator = run_multiprocessing(pool, instances) if timeout: print("Timeout set to {} seconds".format(timeout)) def run(): counter = 0 try: for instance, result in tqdm(zip(instances, iterator), total=len(instances)): counter += 1 for r_time, r_runtime, r_transfer in result: if r_time is not None: rows.append(( instance.graph_set, instance.graph_name, instance.graph_id, instance.cluster_name, instance.bandwidth, instance.netmodel, instance.scheduler_name, instance.imode, instance.min_sched_interval, instance.sched_time, r_time, r_runtime, r_transfer )) except: print("Benchmark interrupted, iterated {} instances. Writing intermediate results" .format(counter)) if timeout: thread = threading.Thread(target=run) thread.daemon = True thread.start() thread.join(timeout) if thread.is_alive(): print("Timeout reached") else: run() return rows def run_benchmark(configs, oldframe, resultfile, skip_completed, timeout=0, dask_cluster=None): for config in configs: print(config) instances = create_instances(configs, oldframe, skip_completed, 5) rows = compute(instances, timeout, dask_cluster) if not rows: print("No results were computed") return frame = pd.DataFrame(rows, columns=COLUMNS) print(frame.groupby(["graph_name", "graph_id", "cluster_name", "bandwidth", "netmodel", "imode", "min_sched_interval", "sched_time", "scheduler_name"]).mean()) if len(frame) > 0: base, ext = os.path.splitext(resultfile) path = "{}.backup{}".format(base, ext) print("Creating backup of old results to '{}'".format(path)) write_resultfile(oldframe, path) newframe = pd.concat([oldframe, frame], ignore_index=True) write_resultfile(newframe, resultfile) print("{} entries in new '{}'".format(newframe["time"].count(), resultfile)) def skip_completed_instances(instances, frame, repeat, columns, batch): skipped_output = 0 skipped_batch = 0 counts = frame.groupby(columns).size() result = [] for instance in instances: hashed = tuple(getattr(instance, col) for col in columns) existing_count = 0 if hashed in counts: count = counts.loc[hashed] skipped_output += count existing_count += count if hashed in batch: count = batch[hashed] skipped_batch += count existing_count += count if existing_count == 0: result.append(instance) elif existing_count < repeat: result.append(instance._replace(count=repeat - existing_count)) if skipped_output or skipped_batch: print("Skipping {} instances from output, {} from batch, {} left".format(skipped_output, skipped_batch, len(result))) return result def limit_max_count(instances, max_count): result = [] for instance in instances: if instance.count > max_count: remaining = instance.count while remaining > 0: count = min(max_count, remaining) remaining -= count result.append(instance._replace(count=count)) else: result.append(instance) return result def create_instances(configs, frame, skip_completed, max_count): total_instances = [] columns = ["graph_id", "cluster_name", "bandwidth", "netmodel", "scheduler_name", "imode", "min_sched_interval", "sched_time"] batch = {} for config in configs: instances = list(config.generate_instances()) if skip_completed: instances = skip_completed_instances(instances, frame, config.count, columns, batch) instances = limit_max_count(instances, max_count) for instance in instances: hashed = tuple(getattr(instance, col) for col in columns) batch[hashed] = instance.count + batch.get(hashed, 0) total_instances += instances return total_instances def load_resultfile(resultfile, append): if os.path.isfile(resultfile): if not append: print("Result file '{}' already exists\n" "Remove --no-append to append results to it".format(resultfile), file=sys.stderr) exit(1) print("Appending to result file '{}'".format(resultfile)) oldframe = pd.read_csv(resultfile) assert list(oldframe.columns) == COLUMNS else: print("Creating result file '{}'".format(resultfile)) oldframe =
pd.DataFrame([], columns=COLUMNS)
pandas.DataFrame
import pandas as pd import numpy as np import re import openpyxl from openpyxl import load_workbook class DataFrameFeature(): _NaN = "NaN" # represent the NaN value in df # filter column values by remove string behind "sep", and r-strip space @staticmethod def filter_column_value(df, *, column_name, sep): col = df.columns.get_loc(column_name) # get col_idx by col_name for row in range(df.shape[0]): value = df.iloc[row, col] # if the country value is Nan, do nothing if pd.isna(value): continue sep_idx = value.find(sep) # find character "sep" in given string # if not found the target sep, right strip space only, else cut the string behind sep if sep_idx == -1: df.iloc[row, col] = value.rstrip(" ") else: df.iloc[row, col] = value[:sep_idx].rstrip(" ") # get country list and counts according by Category @staticmethod def get_country_set(df, *, category): list_ctry = [] total_ctry = 0 col_ctry = df.columns.get_loc("Country") col_ctgy = df.columns.get_loc("Category") col_cert = df.columns.get_loc("Certificate") for row in range(df.shape[0]): ctry = df.iloc[row, col_ctry] ctgy = df.iloc[row, col_ctgy] cert = df.iloc[row, col_cert] if pd.isna(ctgy): continue if category in ctgy: if pd.isna(ctry): continue if ctry in list_ctry: continue elif ctry.find("/") != -1: list_ctry.append(ctry + "(" + cert + ")") total_ctry += len(ctry.split("/")) else: list_ctry.append(ctry + "(" + cert + ")") total_ctry += 1 return total_ctry, list_ctry # truncate df according to the value in given column @staticmethod def truncate(df, *, column, first_value, last_value): first_row = last_row = -1 n_col = column b_first = False # make sure we found the first_value as flag row = df.shape[0] # return df row number for i in range(row): if df.iloc[i, n_col] == first_value: b_first = True first_row = i + 1 # we don't need the row we found # check if last_value is NaN or not if last_value == DataFrameFeature.NaN and
pd.isna(df.iloc[i, n_col])
pandas.isna
# Load the necessary libraries # Set the seed to 123 import pandas as pd import numpy as np # load the dataset into the memory data = pd.read_csv('Logistic_regression.csv') # Pre-processing steps '''You may need to clean the variables, impute the missing values and convert the categorical variables to one-hot encoded following variables need to be converted to one_hot encoded cat_vars=['job','marital','education','default','housing','loan','contact','month','day_of_week','poutcome'] your final table should be like the following array(['age', 'duration', 'campaign', 'pdays', 'previous', 'emp_var_rate', 'cons_price_idx', 'cons_conf_idx', 'euribor3m', 'nr_employed', 'y', 'job_admin.', 'job_blue-collar', 'job_entrepreneur', 'job_housemaid', 'job_management', 'job_retired', 'job_self-employed', 'job_services', 'job_student', 'job_technician', 'job_unemployed', 'job_unknown', 'marital_divorced', 'marital_married', 'marital_single', 'marital_unknown', 'education_Basic', 'education_high.school', 'education_illiterate', 'education_professional.course', 'education_university.degree', 'education_unknown', 'default_no', 'default_unknown', 'default_yes', 'housing_no', 'housing_unknown', 'housing_yes', 'loan_no', 'loan_unknown', 'loan_yes', 'contact_cellular', 'contact_telephone', 'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 'day_of_week_fri', 'day_of_week_mon', 'day_of_week_thu', 'day_of_week_tue', 'day_of_week_wed', 'poutcome_failure', 'poutcome_nonexistent', 'poutcome_success'], dtype=object) ''' cat_vars=['job','marital','education','default','housing','loan','contact','month','day_of_week','poutcome'] for var in cat_vars: cat_list = 'var' + '_' + var cat_list = pd.get_dummies(data[var], prefix=var) data1 = data.join(cat_list) data = data1 cat_vars = ['job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'poutcome'] data_vars = data.columns.values.tolist() to_keep = [i for i in data_vars if i not in cat_vars] data=data[to_keep] ''' separate the features and the target variable ''' x = data.loc[:, data.columns != 'y'] y = data.loc[:, data.columns == 'y'] # x = Your code goes here # y = Your code goes here ''' as your target class is imbalanced you need to use SMOTE function to balance it, first separate your data into training and testing set. then use SMOTE function on the Training set.remember to not touch the testing set. ''' from imblearn.over_sampling import SMOTE s=SMOTE(random_state=0) x_train=x.sample(frac=0.7,random_state=0) x_test=x.loc[~data.index.isin(x_train.index)] y_train=y.sample(frac=0.7,random_state=0) y_test=y.loc[~data.index.isin(x_train.index)] columns=x_train.columns s_data_x,s_data_y=s.fit_sample(x_train,y_train) s_data_x=
pd.DataFrame(data=s_data_x,columns=columns)
pandas.DataFrame
import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.core.dtypes.dtypes import PeriodDtype import pandas as pd from pandas import Index, Period, PeriodIndex, Series, date_range, offsets, period_range import pandas.core.indexes.period as period import pandas.util.testing as tm class TestPeriodIndex: def setup_method(self, method): pass def test_construction_base_constructor(self): # GH 13664 arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [np.nan, pd.NaT, pd.Period("2011-03", freq="M")] tm.assert_index_equal(pd.Index(arr), pd.PeriodIndex(arr)) tm.assert_index_equal(pd.Index(np.array(arr)), pd.PeriodIndex(np.array(arr))) arr = [pd.Period("2011-01", freq="M"), pd.NaT, pd.Period("2011-03", freq="D")] tm.assert_index_equal(pd.Index(arr), pd.Index(arr, dtype=object)) tm.assert_index_equal( pd.Index(np.array(arr)), pd.Index(np.array(arr), dtype=object) ) def test_constructor_use_start_freq(self): # GH #1118 p = Period("4/2/2012", freq="B") with tm.assert_produces_warning(FutureWarning): index = PeriodIndex(start=p, periods=10) expected = period_range(start="4/2/2012", periods=10, freq="B") tm.assert_index_equal(index, expected) index = period_range(start=p, periods=10) tm.assert_index_equal(index, expected) def test_constructor_field_arrays(self): # GH #1264 years = np.arange(1990, 2010).repeat(4)[2:-2] quarters = np.tile(np.arange(1, 5), 20)[2:-2] index = PeriodIndex(year=years, quarter=quarters, freq="Q-DEC") expected = period_range("1990Q3", "2009Q2", freq="Q-DEC") tm.assert_index_equal(index, expected) index2 = PeriodIndex(year=years, quarter=quarters, freq="2Q-DEC") tm.assert_numpy_array_equal(index.asi8, index2.asi8) index = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(index, expected) years = [2007, 2007, 2007] months = [1, 2] msg = "Mismatched Period array lengths" with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="M") with pytest.raises(ValueError, match=msg): PeriodIndex(year=years, month=months, freq="2M") msg = "Can either instantiate from fields or endpoints, but not both" with pytest.raises(ValueError, match=msg): PeriodIndex( year=years, month=months, freq="M", start=Period("2007-01", freq="M") ) years = [2007, 2007, 2007] months = [1, 2, 3] idx = PeriodIndex(year=years, month=months, freq="M") exp = period_range("2007-01", periods=3, freq="M") tm.assert_index_equal(idx, exp) def test_constructor_U(self): # U was used as undefined period with pytest.raises(ValueError, match="Invalid frequency: X"): period_range("2007-1-1", periods=500, freq="X") def test_constructor_nano(self): idx = period_range( start=Period(ordinal=1, freq="N"), end=Period(ordinal=4, freq="N"), freq="N" ) exp = PeriodIndex( [ Period(ordinal=1, freq="N"), Period(ordinal=2, freq="N"), Period(ordinal=3, freq="N"), Period(ordinal=4, freq="N"), ], freq="N", ) tm.assert_index_equal(idx, exp) def test_constructor_arrays_negative_year(self): years = np.arange(1960, 2000, dtype=np.int64).repeat(4) quarters = np.tile(np.array([1, 2, 3, 4], dtype=np.int64), 40) pindex = PeriodIndex(year=years, quarter=quarters) tm.assert_index_equal(pindex.year, pd.Index(years)) tm.assert_index_equal(pindex.quarter, pd.Index(quarters)) def test_constructor_invalid_quarters(self): msg = "Quarter must be 1 <= q <= 4" with pytest.raises(ValueError, match=msg): PeriodIndex(year=range(2000, 2004), quarter=list(range(4)), freq="Q-DEC") def test_constructor_corner(self): msg = "Not enough parameters to construct Period range" with pytest.raises(ValueError, match=msg): PeriodIndex(periods=10, freq="A") start = Period("2007", freq="A-JUN") end = Period("2010", freq="A-DEC") msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end) msg = ( "Of the three parameters: start, end, and periods, exactly two" " must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) with pytest.raises(ValueError, match=msg): PeriodIndex(end=end) result = period_range("2007-01", periods=10.5, freq="M") exp = period_range("2007-01", periods=10, freq="M") tm.assert_index_equal(result, exp) def test_constructor_fromarraylike(self): idx = period_range("2007-01", periods=20, freq="M") # values is an array of Period, thus can retrieve freq tm.assert_index_equal(PeriodIndex(idx.values), idx) tm.assert_index_equal(PeriodIndex(list(idx.values)), idx) msg = "freq not specified and cannot be inferred" with pytest.raises(ValueError, match=msg): PeriodIndex(idx._ndarray_values) with pytest.raises(ValueError, match=msg): PeriodIndex(list(idx._ndarray_values)) msg = "'Period' object is not iterable" with pytest.raises(TypeError, match=msg): PeriodIndex(data=Period("2007", freq="A")) result = PeriodIndex(iter(idx)) tm.assert_index_equal(result, idx) result = PeriodIndex(idx) tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq="M") tm.assert_index_equal(result, idx) result = PeriodIndex(idx, freq=offsets.MonthEnd()) tm.assert_index_equal(result, idx) assert result.freq == "M" result = PeriodIndex(idx, freq="2M") tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq=offsets.MonthEnd(2)) tm.assert_index_equal(result, idx.asfreq("2M")) assert result.freq == "2M" result = PeriodIndex(idx, freq="D") exp = idx.asfreq("D", "e") tm.assert_index_equal(result, exp) def test_constructor_datetime64arr(self): vals = np.arange(100000, 100000 + 10000, 100, dtype=np.int64) vals = vals.view(np.dtype("M8[us]")) msg = r"Wrong dtype: datetime64\[us\]" with pytest.raises(ValueError, match=msg): PeriodIndex(vals, freq="D") @pytest.mark.parametrize("box", [None, "series", "index"]) def test_constructor_datetime64arr_ok(self, box): # https://github.com/pandas-dev/pandas/issues/23438 data = pd.date_range("2017", periods=4, freq="M") if box is None: data = data._values elif box == "series": data = pd.Series(data) result = PeriodIndex(data, freq="D") expected = PeriodIndex( ["2017-01-31", "2017-02-28", "2017-03-31", "2017-04-30"], freq="D" ) tm.assert_index_equal(result, expected) def test_constructor_dtype(self): # passing a dtype with a tz should localize idx = PeriodIndex(["2013-01", "2013-03"], dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-03"], freq="M") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[M]" idx = PeriodIndex(["2013-01-05", "2013-03-05"], dtype="period[3D]") exp = PeriodIndex(["2013-01-05", "2013-03-05"], freq="3D") tm.assert_index_equal(idx, exp) assert idx.dtype == "period[3D]" # if we already have a freq and its not the same, then asfreq # (not changed) idx = PeriodIndex(["2013-01-01", "2013-01-02"], freq="D") res = PeriodIndex(idx, dtype="period[M]") exp = PeriodIndex(["2013-01", "2013-01"], freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" res = PeriodIndex(idx, freq="M") tm.assert_index_equal(res, exp) assert res.dtype == "period[M]" msg = "specified freq and dtype are different" with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex(["2011-01"], freq="M", dtype="period[D]") def test_constructor_empty(self): idx = pd.PeriodIndex([], freq="M") assert isinstance(idx, PeriodIndex) assert len(idx) == 0 assert idx.freq == "M" with pytest.raises(ValueError, match="freq not specified"): pd.PeriodIndex([]) def test_constructor_pi_nat(self): idx = PeriodIndex( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="M")] ) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array([Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="M")]) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex( [pd.NaT, pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M")] ) exp = PeriodIndex(["NaT", "NaT", "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex( np.array( [ pd.NaT, pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="M"), ] ) ) tm.assert_index_equal(idx, exp) idx = PeriodIndex([pd.NaT, pd.NaT, "2011-01", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex([pd.NaT, pd.NaT]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array([pd.NaT, pd.NaT])) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(["NaT", "NaT"]) with pytest.raises(ValueError, match="freq not specified"): PeriodIndex(np.array(["NaT", "NaT"])) def test_constructor_incompat_freq(self): msg = "Input has different freq=D from PeriodIndex\\(freq=M\\)" with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="D")] ) with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( np.array( [Period("2011-01", freq="M"), pd.NaT, Period("2011-01", freq="D")] ) ) # first element is pd.NaT with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( [pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")] ) with pytest.raises(period.IncompatibleFrequency, match=msg): PeriodIndex( np.array( [pd.NaT, Period("2011-01", freq="M"), Period("2011-01", freq="D")] ) ) def test_constructor_mixed(self): idx = PeriodIndex(["2011-01", pd.NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["2011-01", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex(["NaT", pd.NaT, Period("2011-01", freq="M")]) exp = PeriodIndex(["NaT", "NaT", "2011-01"], freq="M") tm.assert_index_equal(idx, exp) idx = PeriodIndex([Period("2011-01-01", freq="D"), pd.NaT, "2012-01-01"]) exp = PeriodIndex(["2011-01-01", "NaT", "2012-01-01"], freq="D") tm.assert_index_equal(idx, exp) def test_constructor_simple_new(self): idx = period_range("2007-01", name="p", periods=2, freq="M") result = idx._simple_new(idx, name="p", freq=idx.freq) tm.assert_index_equal(result, idx) result = idx._simple_new(idx.astype("i8"), name="p", freq=idx.freq) tm.assert_index_equal(result, idx) def test_constructor_simple_new_empty(self): # GH13079 idx = PeriodIndex([], freq="M", name="p") result = idx._simple_new(idx, name="p", freq="M") tm.assert_index_equal(result, idx) @pytest.mark.parametrize("floats", [[1.1, 2.1], np.array([1.1, 2.1])]) def test_constructor_floats(self, floats): msg = r"PeriodIndex\._simple_new does not accept floats" with pytest.raises(TypeError, match=msg): pd.PeriodIndex._simple_new(floats, freq="M") msg = "PeriodIndex does not allow floating point in construction" with pytest.raises(TypeError, match=msg): pd.PeriodIndex(floats, freq="M") def test_constructor_nat(self): msg = "start and end must not be NaT" with pytest.raises(ValueError, match=msg): period_range(start="NaT", end="2011-01-01", freq="M") with pytest.raises(ValueError, match=msg): period_range(start="2011-01-01", end="NaT", freq="M") def test_constructor_year_and_quarter(self): year = pd.Series([2001, 2002, 2003]) quarter = year - 2000 idx = PeriodIndex(year=year, quarter=quarter) strs = ["%dQ%d" % t for t in zip(quarter, year)] lops = list(map(Period, strs)) p = PeriodIndex(lops) tm.assert_index_equal(p, idx) @pytest.mark.parametrize( "func, warning", [(PeriodIndex, FutureWarning), (period_range, None)] ) def test_constructor_freq_mult(self, func, warning): # GH #7811 with tm.assert_produces_warning(warning): # must be the same, but for sure... pidx = func(start="2014-01", freq="2M", periods=4) expected = PeriodIndex(["2014-01", "2014-03", "2014-05", "2014-07"], freq="2M") tm.assert_index_equal(pidx, expected) with tm.assert_produces_warning(warning): pidx = func(start="2014-01-02", end="2014-01-15", freq="3D") expected = PeriodIndex( ["2014-01-02", "2014-01-05", "2014-01-08", "2014-01-11", "2014-01-14"], freq="3D", ) tm.assert_index_equal(pidx, expected) with tm.assert_produces_warning(warning): pidx = func(end="2014-01-01 17:00", freq="4H", periods=3) expected = PeriodIndex( ["2014-01-01 09:00", "2014-01-01 13:00", "2014-01-01 17:00"], freq="4H" ) tm.assert_index_equal(pidx, expected) msg = "Frequency must be positive, because it" " represents span: -1M" with pytest.raises(ValueError, match=msg): PeriodIndex(["2011-01"], freq="-1M") msg = "Frequency must be positive, because it" " represents span: 0M" with pytest.raises(ValueError, match=msg): PeriodIndex(["2011-01"], freq="0M") msg = "Frequency must be positive, because it" " represents span: 0M" with pytest.raises(ValueError, match=msg): period_range("2011-01", periods=3, freq="0M") @pytest.mark.parametrize("freq", ["A", "M", "D", "T", "S"]) @pytest.mark.parametrize("mult", [1, 2, 3, 4, 5]) def test_constructor_freq_mult_dti_compat(self, mult, freq): freqstr = str(mult) + freq pidx = period_range(start="2014-04-01", freq=freqstr, periods=10) expected = date_range(start="2014-04-01", freq=freqstr, periods=10).to_period( freqstr ) tm.assert_index_equal(pidx, expected) def test_constructor_freq_combined(self): for freq in ["1D1H", "1H1D"]: pidx = PeriodIndex(["2016-01-01", "2016-01-02"], freq=freq) expected = PeriodIndex(["2016-01-01 00:00", "2016-01-02 00:00"], freq="25H") for freq in ["1D1H", "1H1D"]: pidx = period_range(start="2016-01-01", periods=2, freq=freq) expected = PeriodIndex(["2016-01-01 00:00", "2016-01-02 01:00"], freq="25H") tm.assert_index_equal(pidx, expected) def test_constructor_range_based_deprecated(self): with tm.assert_produces_warning(FutureWarning): pi = PeriodIndex(freq="A", start="1/1/2001", end="12/1/2009") assert len(pi) == 9 def test_constructor_range_based_deprecated_different_freq(self): with tm.assert_produces_warning(FutureWarning) as m: PeriodIndex(start="2000", periods=2) warning, = m assert 'freq="A-DEC"' in str(warning.message) def test_constructor(self): pi = period_range(freq="A", start="1/1/2001", end="12/1/2009") assert len(pi) == 9 pi = period_range(freq="Q", start="1/1/2001", end="12/1/2009") assert len(pi) == 4 * 9 pi = period_range(freq="M", start="1/1/2001", end="12/1/2009") assert len(pi) == 12 * 9 pi = period_range(freq="D", start="1/1/2001", end="12/31/2009") assert len(pi) == 365 * 9 + 2 pi = period_range(freq="B", start="1/1/2001", end="12/31/2009") assert len(pi) == 261 * 9 pi = period_range(freq="H", start="1/1/2001", end="12/31/2001 23:00") assert len(pi) == 365 * 24 pi = period_range(freq="Min", start="1/1/2001", end="1/1/2001 23:59") assert len(pi) == 24 * 60 pi = period_range(freq="S", start="1/1/2001", end="1/1/2001 23:59:59") assert len(pi) == 24 * 60 * 60 start = Period("02-Apr-2005", "B") i1 = period_range(start=start, periods=20) assert len(i1) == 20 assert i1.freq == start.freq assert i1[0] == start end_intv = Period("2006-12-31", "W") i1 = period_range(end=end_intv, periods=10) assert len(i1) == 10 assert i1.freq == end_intv.freq assert i1[-1] == end_intv end_intv = Period("2006-12-31", "1w") i2 = period_range(end=end_intv, periods=10) assert len(i1) == len(i2) assert (i1 == i2).all() assert i1.freq == i2.freq end_intv = Period("2006-12-31", ("w", 1)) i2 = period_range(end=end_intv, periods=10) assert len(i1) == len(i2) assert (i1 == i2).all() assert i1.freq == i2.freq end_intv = Period("2005-05-01", "B") i1 = period_range(start=start, end=end_intv) # infer freq from first element i2 = PeriodIndex([end_intv, Period("2005-05-05", "B")]) assert len(i2) == 2 assert i2[0] == end_intv i2 = PeriodIndex(np.array([end_intv, Period("2005-05-05", "B")])) assert len(i2) == 2 assert i2[0] == end_intv # Mixed freq should fail vals = [end_intv, Period("2006-12-31", "w")] msg = r"Input has different freq=W-SUN from PeriodIndex\(freq=B\)" with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex(vals) vals = np.array(vals) with pytest.raises(IncompatibleFrequency, match=msg): PeriodIndex(vals) def test_constructor_error(self): start = Period("02-Apr-2005", "B") end_intv = Period("2006-12-31", ("w", 1)) msg = "start and end must have same freq" with pytest.raises(ValueError, match=msg): PeriodIndex(start=start, end=end_intv) msg = ( "Of the three parameters: start, end, and periods, " "exactly two must be specified" ) with pytest.raises(ValueError, match=msg): PeriodIndex(start=start) @pytest.mark.parametrize( "freq", ["M", "Q", "A", "D", "B", "T", "S", "L", "U", "N", "H"] ) def test_recreate_from_data(self, freq): org = period_range(start="2001/04/01", freq=freq, periods=1) idx = PeriodIndex(org.values, freq=freq) tm.assert_index_equal(idx, org) def test_map_with_string_constructor(self): raw = [2005, 2007, 2009] index = PeriodIndex(raw, freq="A") expected = Index([str(num) for num in raw]) res = index.map(str) # should return an Index assert isinstance(res, Index) # preserve element types assert all(isinstance(resi, str) for resi in res) # lastly, values should compare equal tm.assert_index_equal(res, expected) class TestSeriesPeriod: def setup_method(self, method): self.series = Series(period_range("2000-01-01", periods=10, freq="D")) def test_constructor_cant_cast_period(self): msg = "Cannot cast PeriodArray to dtype float64" with pytest.raises(TypeError, match=msg): Series(period_range("2000-01-01", periods=10, freq="D"), dtype=float) def test_constructor_cast_object(self): s = Series(period_range("1/1/2000", periods=10), dtype=PeriodDtype("D")) exp = Series(period_range("1/1/2000", periods=10))
tm.assert_series_equal(s, exp)
pandas.util.testing.assert_series_equal
import collections import copy import ixmp import itertools import os import warnings import pandas as pd import numpy as np from message_ix import default_paths from ixmp.utils import pd_read, pd_write from message_ix.utils import isscalar, logger DEFAULT_SOLVE_OPTIONS = { 'advind': 0, 'lpmethod': 2, 'threads': 4, 'epopt': 1e-6, } def init_storage(scen, *args, **kwargs): # Initiating a set to specifiy storage level (no commodity balance needed) scen.init_set('level_storage') # Initiating a set to specifiy storage reservoir technology scen.init_set('storage_tec') # Initiating a set to map storage reservoir to its charger/discharger scen.init_set('map_tec_storage', idx_sets=['technology', 'storage_tec']) # Initiating a parameter to specify the order of sub-annual time steps scen.init_par('time_seq', idx_sets=['time']) # Initiating a parameter for relating the content f storage in two # different time steps (in even in two periods) together scen.init_par('relation_storage', idx_sets=['node', 'technology', 'level', 'year', 'year', 'time', 'time'], idx_names=['node', 'technology', 'level', 'year_first', 'year_last', 'time_first', 'time_last']) # Initiating two parameters for specifying lower and upper bounds of # storage reservoir, and storage losses all as % of installed capacity # (values should be between 0 and 1) par_stor = ['bound_storage_lo', 'bound_storage_up', 'storage_loss'] for parname in par_stor: scen.init_par(parname, idx_sets=['node', 'technology', 'level', 'year', 'time']) def _init_scenario(s, commit=False): """Initialize a MESSAGEix Scenario object with default values""" inits = ( { 'test': 'level_storage' not in s.set_list(), 'exec': [(init_storage, {'args': (s,)}), ], }, ) pass_idx = [i for i, init in enumerate(inits) if init['test']] if len(pass_idx) == 0: return # leave early, all init tests pass if commit: s.check_out() for idx in pass_idx: for exec_info in inits[idx]['exec']: func = exec_info[0] args = exec_info[1].pop('args', tuple()) kwargs = exec_info[1].pop('kwargs', dict()) func(*args, **kwargs) if commit: s.commit('Initialized wtih standard sets and params') class Scenario(ixmp.Scenario): """|MESSAGEix| Scenario. This class extends :class:`ixmp.Scenario` and inherits all its methods. It defines additional methods specific to |MESSAGEix|. """ def __init__(self, mp, model, scenario=None, version=None, annotation=None, cache=False, clone=None, **kwargs): """Initialize a new message_ix.Scenario (structured input data and solution) or get an existing scenario from the ixmp database instance Parameters ---------- mp : ixmp.Platform model : string model name scenario : string scenario name version : string or integer initialize a new scenario (if version == 'new'), or load a specific version from the database (if version is integer) annotation : string a short annotation/comment (when initializing a new scenario) cache : boolean keep all dataframes in memory after first query (default: False) clone : Scenario, optional make a clone of an existing scenario """ if 'scen' in kwargs: warnings.warn( '`scen` is deprecated and will be removed in the next' + ' release, please use `scenario`') scenario = kwargs.pop('scen') if version is not None and clone is not None: raise ValueError( 'Can not provide both version and clone as arguments') if clone is not None: jscen = clone._jobj.clone(model, scenario, annotation, clone._keep_sol, clone._first_model_year) elif version == 'new': scheme = 'MESSAGE' jscen = mp._jobj.newScenario(model, scenario, scheme, annotation) elif isinstance(version, int): jscen = mp._jobj.getScenario(model, scenario, version) else: jscen = mp._jobj.getScenario(model, scenario) self.is_message_scheme = True super(Scenario, self).__init__(mp, model, scenario, jscen, cache=cache) if not self.has_solution(): _init_scenario(self, commit=version != 'new') def cat_list(self, name): """return a list of all categories for a set Parameters ---------- name : string name of the set """ return ixmp.to_pylist(self._jobj.getTypeList(name)) def add_cat(self, name, cat, keys, is_unique=False): """Map elements from *keys* to category *cat* within set *name*. Parameters ---------- name : str Name of the set. cat : str Name of the category. keys : str or list of str Element keys to be added to the category mapping. is_unique: bool, optional If `True`, then *cat* must have only one element. An exception is raised if *cat* already has an element, or if ``len(keys) > 1``. """ self._jobj.addCatEle(name, str(cat), ixmp.to_jlist(keys), is_unique) def cat(self, name, cat): """return a list of all set elements mapped to a category Parameters ---------- name : string name of the set cat : string name of the category """ return ixmp.to_pylist(self._jobj.getCatEle(name, cat)) def has_solution(self): """Returns True if scenario currently has a solution""" try: return not np.isnan(self.var('OBJ')['lvl']) except Exception: return False def add_spatial_sets(self, data): """Add sets related to spatial dimensions of the model. Parameters ---------- data : dict Mapping of `level` → `member`. Each member may be: - A single label for elements. - An iterable of labels for elements. - A recursive :class:`dict` following the same convention, defining sub-levels and their members. Examples -------- >>> s = message_ix.Scenario() >>> s.add_spatial_sets({'country': 'Austria'}) >>> s.add_spatial_sets({'country': ['Austria', 'Germany']}) >>> s.add_spatial_sets({'country': { ... 'Austria': {'state': ['Vienna', 'Lower Austria']}}}) """ # TODO test whether unbalanced data or multiply-defined levels are # handled correctly. How to define 'Germany' as a country *only* but # two states within 'Austria'? # >>> s.add_spatial_sets({'country': { # ... 'Austria': {'country': 'Vienna'}}}) # >>> s.add_spatial_sets({'country': { # ... 'Austria': {'state': 'Vienna'}, # ... 'Canada': {'province': 'Ontario'}, # ... }}) nodes = [] levels = [] hierarchy = [] def recurse(k, v, parent='World'): if isinstance(v, collections.Mapping): for _parent, _data in v.items(): for _k, _v in _data.items(): recurse(_k, _v, parent=_parent) level = k children = [v] if isscalar(v) else v for child in children: hierarchy.append([level, child, parent]) nodes.append(child) levels.append(level) for k, v in data.items(): recurse(k, v) self.add_set("node", nodes) self.add_set("lvl_spatial", levels) self.add_set("map_spatial_hierarchy", hierarchy) def add_horizon(self, data): """Add sets related to temporal dimensions of the model. Parameters ---------- data : dict-like Year sets. "year" is a required key. "firstmodelyear" is optional; if not provided, the first element of "year" is used. Examples -------- >>> s = message_ix.Scenario() >>> s.add_horizon({'year': [2010, 2020]}) >>> s.add_horizon({'year': [2010, 2020], 'firstmodelyear': 2020}) """ if 'year' not in data: raise ValueError('"year" must be in temporal sets') horizon = data['year'] self.add_set("year", horizon) first = data['firstmodelyear'] if 'firstmodelyear'\ in data else horizon[0] self.add_cat("year", "firstmodelyear", first, is_unique=True) def vintage_and_active_years(self, ya_args=None, in_horizon=True): """Return sets of vintage and active years for use in data input. For a valid pair `(year_vtg, year_act)`, the following conditions are satisfied: 1. Both the vintage year (`year_vtg`) and active year (`year_act`) are in the model's ``year`` set. 2. `year_vtg` <= `year_act`. 3. `year_act` <= the model's first year **or** `year_act` is in the smaller subset :meth:`ixmp.Scenario.years_active` for the given `ya_args`. Parameters ---------- ya_args : tuple of (node, technology, year_vtg), optional Arguments to :meth:`ixmp.Scenario.years_active`. in_horizon : bool, optional Restrict years returned to be within the current model horizon. Returns ------- pandas.DataFrame with columns, "year_vtg" and "year_act", in which each row is a valid pair. """ horizon = self.set('year') first = self.cat('year', 'firstmodelyear')[0] or horizon[0] if ya_args: if len(ya_args) != 3: raise ValueError('3 arguments are required if using `ya_args`') years_active = self.years_active(*ya_args) combos = itertools.product([ya_args[2]], years_active) else: combos = itertools.product(horizon, horizon) # TODO: casting to int here is probably bad, but necessary for now first = int(first) combos = [(int(y1), int(y2)) for y1, y2 in combos] def valid(y_v, y_a): # TODO: casting to int here is probably bad ret = y_v <= y_a if in_horizon: ret &= y_a >= first return ret year_pairs = [(y_v, y_a) for y_v, y_a in combos if valid(y_v, y_a)] v_years, a_years = zip(*year_pairs) return pd.DataFrame({'year_vtg': v_years, 'year_act': a_years}) def solve(self, model='MESSAGE', solve_options={}, **kwargs): """Solve the Scenario. Parameters ---------- model : string the type of model to solve (e.g., MESSAGE or MESSAGE-MACRO) solve_options : dict name, value pairs to use for GAMS solver optfile, see `message_ix.DEFAULT_SOLVE_OPTIONS` for defaults and see https://www.gams.com/latest/docs/S_CPLEX.html for possible arguments By default, :meth:`ixmp.Scenario.solve` is called with "MESSAGE" as the *model* argument; see the documentation of that method for other arguments. *model* may also be overwritten, e.g.: >>> s.solve(model='MESSAGE-MACRO') """ # TODO: we generate the cplex.opt file on the fly. this is *not* safe # agaisnt race conditions. It is possible to generate opt files with # random names (see # https://www.gams.com/latest/docs/UG_GamsCall.html#GAMSAOoptfile); # however, we need to clean up the code in ixmp that passes arguments # to gams to do so. fname = os.path.join(default_paths.model_path(), 'cplex.opt') opts = copy.deepcopy(DEFAULT_SOLVE_OPTIONS) opts.update(solve_options) lines = '\n'.join('{} = {}'.format(k, v) for k, v in opts.items()) with open(fname, 'w') as f: f.writelines(lines) ret = super(Scenario, self).solve(model=model, **kwargs) os.remove(fname) return ret def rename(self, name, mapping, keep=False): """Rename an element in a set Parameters ---------- name : str name of the set to change (e.g., 'technology') mapping : str mapping of old (current) to new set element names keep : bool, optional, default: False keep the old values in the model """ try: self.check_out() commit = True except: commit = False keys = list(mapping.keys()) values = list(mapping.values()) # search for from_tech in sets and replace for item in self.set_list(): ix_set = self.set(item) if isinstance(ix_set, pd.DataFrame): if name in ix_set.columns and not ix_set.empty: for key, value in mapping.items(): df = ix_set[ix_set[name] == key] if not df.empty: df[name] = value self.add_set(item, df) elif ix_set.isin(keys).any(): # ix_set is pd.Series for key, value in mapping.items(): if ix_set.isin([key]).any(): self.add_set(item, value) # search for from_tech in pars and replace for item in self.par_list(): if name not in self.idx_names(item): continue for key, value in mapping.items(): df = self.par(item, filters={name: [key]}) if not df.empty: df[name] = value self.add_par(item, df) # this removes all instances of from_tech in the model if not keep: for key in keys: self.remove_set(name, key) # commit if commit: self.commit('Renamed {} using mapping {}'.format(name, mapping)) def to_excel(self, fname): """Save a scenario as an Excel file. NOTE: Cannot export solution currently (only model data) due to limitations in excel sheet names (cannot have multiple sheet names which are identical except for upper/lower case). Parameters ---------- fname : string path to file """ funcs = { 'set': (self.set_list, self.set), 'par': (self.par_list, self.par), } ix_name_map = {} dfs = {} for ix_type, (list_func, get_func) in funcs.items(): for item in list_func(): df = get_func(item) df =
pd.Series(df)
pandas.Series
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import datetime, timedelta import numpy as np import pytest from pandas.errors import ( NullFrequencyError, OutOfBoundsDatetime, PerformanceWarning) import pandas as pd from pandas import ( DataFrame, DatetimeIndex, NaT, Series, Timedelta, TimedeltaIndex, Timestamp, timedelta_range) import pandas.util.testing as tm def get_upcast_box(box, vector): """ Given two box-types, find the one that takes priority """ if box is DataFrame or isinstance(vector, DataFrame): return DataFrame if box is Series or isinstance(vector, Series): return Series if box is pd.Index or isinstance(vector, pd.Index): return pd.Index return box # ------------------------------------------------------------------ # Timedelta64[ns] dtype Comparisons class TestTimedelta64ArrayLikeComparisons: # Comparison tests for timedelta64[ns] vectors fully parametrized over # DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison # tests will eventually end up here. def test_compare_timedelta64_zerodim(self, box_with_array): # GH#26689 should unbox when comparing with zerodim array box = box_with_array xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = pd.timedelta_range('2H', periods=4) other = np.array(tdi.to_numpy()[0]) tdi = tm.box_expected(tdi, box) res = tdi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(res, expected) with pytest.raises(TypeError): # zero-dim of wrong dtype should still raise tdi >= np.array(4) class TestTimedelta64ArrayComparisons: # TODO: All of these need to be parametrized over box def test_compare_timedelta_series(self): # regression test for GH#5963 s = pd.Series([timedelta(days=1), timedelta(days=2)]) actual = s > timedelta(days=1) expected = pd.Series([False, True]) tm.assert_series_equal(actual, expected) def test_tdi_cmp_str_invalid(self, box_with_array): # GH#13624 xbox = box_with_array if box_with_array is not pd.Index else np.ndarray tdi = TimedeltaIndex(['1 day', '2 days']) tdarr = tm.box_expected(tdi, box_with_array) for left, right in [(tdarr, 'a'), ('a', tdarr)]: with pytest.raises(TypeError): left > right with pytest.raises(TypeError): left >= right with pytest.raises(TypeError): left < right with pytest.raises(TypeError): left <= right result = left == right expected = np.array([False, False], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = left != right expected = np.array([True, True], dtype=bool) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize('dtype', [None, object]) def test_comp_nat(self, dtype): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = rhs != lhs expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == rhs, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(lhs != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != lhs, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(lhs < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > lhs, expected) def test_comparisons_nat(self): tdidx1 = pd.TimedeltaIndex(['1 day', pd.NaT, '1 day 00:00:01', pd.NaT, '1 day 00:00:01', '5 day 00:00:03']) tdidx2 = pd.TimedeltaIndex(['2 day', '2 day', pd.NaT, pd.NaT, '1 day 00:00:02', '5 days 00:00:03']) tdarr = np.array([np.timedelta64(2, 'D'), np.timedelta64(2, 'D'), np.timedelta64('nat'), np.timedelta64('nat'), np.timedelta64(1, 'D') + np.timedelta64(2, 's'), np.timedelta64(5, 'D') + np.timedelta64(3, 's')]) cases = [(tdidx1, tdidx2), (tdidx1, tdarr)] # Check pd.NaT is handles as the same as np.nan for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) # TODO: better name def test_comparisons_coverage(self): rng = timedelta_range('1 days', periods=10) result = rng < rng[3] expected = np.array([True, True, True] + [False] * 7) tm.assert_numpy_array_equal(result, expected) # raise TypeError for now with pytest.raises(TypeError): rng < rng[3].value result = rng == list(rng) exp = rng == rng tm.assert_numpy_array_equal(result, exp) # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedelta64ArithmeticUnsorted: # Tests moved from type-specific test files but not # yet sorted/parametrized/de-duplicated def test_ufunc_coercions(self): # normal ops are also tested in tseries/test_timedeltas.py idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [idx * 2, np.multiply(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['4H', '8H', '12H', '16H', '20H'], freq='4H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '4H' for result in [idx / 2, np.divide(idx, 2)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['1H', '2H', '3H', '4H', '5H'], freq='H', name='x') tm.assert_index_equal(result, exp) assert result.freq == 'H' idx = TimedeltaIndex(['2H', '4H', '6H', '8H', '10H'], freq='2H', name='x') for result in [-idx, np.negative(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['-2H', '-4H', '-6H', '-8H', '-10H'], freq='-2H', name='x') tm.assert_index_equal(result, exp) assert result.freq == '-2H' idx = TimedeltaIndex(['-2H', '-1H', '0H', '1H', '2H'], freq='H', name='x') for result in [abs(idx), np.absolute(idx)]: assert isinstance(result, TimedeltaIndex) exp = TimedeltaIndex(['2H', '1H', '0H', '1H', '2H'], freq=None, name='x') tm.assert_index_equal(result, exp) assert result.freq is None def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dt with pytest.raises(TypeError, match=msg): tdi - dti msg = (r"descriptor '__sub__' requires a 'datetime\.datetime' object" " but received a 'Timedelta'") with pytest.raises(TypeError, match=msg): td - dt msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): td - dti result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = pd.date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = pd.date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): assert result == expected assert isinstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt_tz - dt msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): dt_tz - ts_tz2 msg = "can't subtract offset-naive and offset-aware datetimes" with pytest.raises(TypeError, match=msg): dt - dt_tz msg = ("Timestamp subtraction must have the same timezones or no" " timezones") with pytest.raises(TypeError, match=msg): ts - dt_tz with pytest.raises(TypeError, match=msg): ts_tz2 - ts with pytest.raises(TypeError, match=msg): ts_tz2 - dt with pytest.raises(TypeError, match=msg): ts_tz - ts_tz2 # with dti with pytest.raises(TypeError, match=msg): dti - ts_tz with pytest.raises(TypeError, match=msg): dti_tz - ts with pytest.raises(TypeError, match=msg): dti_tz - ts_tz2 result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = pd.date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length msg = "cannot add indices of unequal length" with pytest.raises(ValueError, match=msg): tdi + dti[0:1] with pytest.raises(ValueError, match=msg): tdi[0:1] + dti # random indexes with pytest.raises(NullFrequencyError): tdi + pd.Int64Index([1, 2, 3]) # this is a union! # pytest.raises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') assert result == expected result = td + dt expected = Timestamp('20130102') assert result == expected # TODO: Needs more informative name, probably split up into # more targeted tests @pytest.mark.parametrize('freq', ['D', 'B']) def test_timedelta(self, freq): index = pd.date_range('1/1/2000', periods=50, freq=freq) shifted = index + timedelta(1) back = shifted + timedelta(-1) tm.assert_index_equal(index, back) if freq == 'D': expected = pd.tseries.offsets.Day(1) assert index.freq == expected assert shifted.freq == expected assert back.freq == expected else: # freq == 'B' assert index.freq == pd.tseries.offsets.BusinessDay(1) assert shifted.freq is None assert back.freq == pd.tseries.offsets.BusinessDay(1) result = index - timedelta(1) expected = index + timedelta(-1) tm.assert_index_equal(result, expected) # GH#4134, buggy with timedeltas rng = pd.date_range('2013', '2014') s = Series(rng) result1 = rng - pd.offsets.Hour(1) result2 = DatetimeIndex(s - np.timedelta64(100000000)) result3 = rng - np.timedelta64(100000000) result4 = DatetimeIndex(s - pd.offsets.Hour(1)) tm.assert_index_equal(result1, result4) tm.assert_index_equal(result2, result3) class TestAddSubNaTMasking: # TODO: parametrize over boxes def test_tdi_add_timestamp_nat_masking(self): # GH#17991 checking for overflow-masking with NaT tdinat = pd.to_timedelta(['24658 days 11:15:00', 'NaT']) tsneg = Timestamp('1950-01-01') ts_neg_variants = [tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype('datetime64[ns]'), tsneg.to_datetime64().astype('datetime64[D]')] tspos = Timestamp('1980-01-01') ts_pos_variants = [tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype('datetime64[ns]'), tspos.to_datetime64().astype('datetime64[D]')] for variant in ts_neg_variants + ts_pos_variants: res = tdinat + variant assert res[1] is pd.NaT def test_tdi_add_overflow(self): # See GH#14068 # preliminary test scalar analogue of vectorized tests below with pytest.raises(OutOfBoundsDatetime): pd.to_timedelta(106580, 'D') + Timestamp('2000') with pytest.raises(OutOfBoundsDatetime): Timestamp('2000') + pd.to_timedelta(106580, 'D') _NaT = int(pd.NaT) + 1 msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): pd.to_timedelta([106580], 'D') + Timestamp('2000') with pytest.raises(OverflowError, match=msg): Timestamp('2000') + pd.to_timedelta([106580], 'D') with pytest.raises(OverflowError, match=msg): pd.to_timedelta([_NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): pd.to_timedelta(['5 days', _NaT]) - Timedelta('1 days') with pytest.raises(OverflowError, match=msg): (pd.to_timedelta([_NaT, '5 days', '1 hours']) - pd.to_timedelta(['7 seconds', _NaT, '4 hours'])) # These should not overflow! exp = TimedeltaIndex([pd.NaT]) result = pd.to_timedelta([pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex(['4 days', pd.NaT]) result = pd.to_timedelta(['5 days', pd.NaT]) - Timedelta('1 days') tm.assert_index_equal(result, exp) exp = TimedeltaIndex([pd.NaT, pd.NaT, '5 hours']) result = (pd.to_timedelta([pd.NaT, '5 days', '1 hours']) + pd.to_timedelta(['7 seconds', pd.NaT, '4 hours'])) tm.assert_index_equal(result, exp) class TestTimedeltaArraylikeAddSubOps: # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # TODO: moved from frame tests; needs parametrization/de-duplication def test_td64_df_add_int_frame(self): # GH#22696 Check that we don't dispatch to numpy implementation, # which treats int64 as m8[ns] tdi = pd.timedelta_range('1', periods=3) df = tdi.to_frame() other = pd.DataFrame([1, 2, 3], index=tdi) # indexed like `df` with pytest.raises(TypeError): df + other with pytest.raises(TypeError): other + df with pytest.raises(TypeError): df - other with pytest.raises(TypeError): other - df # TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs # parametrization+de-duplication def test_timedelta_ops_with_missing_values(self): # setup s1 = pd.to_timedelta(Series(['00:00:01'])) s2 = pd.to_timedelta(Series(['00:00:02'])) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated sn = pd.to_timedelta(Series([pd.NaT])) df1 = pd.DataFrame(['00:00:01']).apply(pd.to_timedelta) df2 = pd.DataFrame(['00:00:02']).apply(pd.to_timedelta) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): # Passing datetime64-dtype data to TimedeltaIndex is deprecated dfn = pd.DataFrame([pd.NaT]).apply(pd.to_timedelta) scalar1 = pd.to_timedelta('00:00:01') scalar2 = pd.to_timedelta('00:00:02') timedelta_NaT = pd.to_timedelta('NaT') actual = scalar1 + scalar1 assert actual == scalar2 actual = scalar2 - scalar1 assert actual == scalar1 actual = s1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - s1 tm.assert_series_equal(actual, s1) actual = s1 + scalar1 tm.assert_series_equal(actual, s2) actual = scalar1 + s1 tm.assert_series_equal(actual, s2) actual = s2 - scalar1 tm.assert_series_equal(actual, s1) actual = -scalar1 + s2 tm.assert_series_equal(actual, s1) actual = s1 + timedelta_NaT tm.assert_series_equal(actual, sn) actual = timedelta_NaT + s1 tm.assert_series_equal(actual, sn) actual = s1 - timedelta_NaT tm.assert_series_equal(actual, sn) actual = -timedelta_NaT + s1 tm.assert_series_equal(actual, sn) with pytest.raises(TypeError): s1 + np.nan with pytest.raises(TypeError): np.nan + s1 with pytest.raises(TypeError): s1 - np.nan with pytest.raises(TypeError): -np.nan + s1 actual = s1 + pd.NaT tm.assert_series_equal(actual, sn) actual = s2 - pd.NaT tm.assert_series_equal(actual, sn) actual = s1 + df1 tm.assert_frame_equal(actual, df2) actual = s2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + s1 tm.assert_frame_equal(actual, df2) actual = df2 - s1 tm.assert_frame_equal(actual, df1) actual = df1 + df1 tm.assert_frame_equal(actual, df2) actual = df2 - df1 tm.assert_frame_equal(actual, df1) actual = df1 + scalar1 tm.assert_frame_equal(actual, df2) actual = df2 - scalar1 tm.assert_frame_equal(actual, df1) actual = df1 + timedelta_NaT tm.assert_frame_equal(actual, dfn) actual = df1 - timedelta_NaT tm.assert_frame_equal(actual, dfn) with pytest.raises(TypeError): df1 + np.nan with pytest.raises(TypeError): df1 - np.nan actual = df1 + pd.NaT # NaT is datetime, not timedelta tm.assert_frame_equal(actual, dfn) actual = df1 - pd.NaT tm.assert_frame_equal(actual, dfn) # TODO: moved from tests.series.test_operators, needs splitting, cleanup, # de-duplication, box-parametrization... def test_operators_timedelta64(self): # series ops v1 = pd.date_range('2012-1-1', periods=3, freq='D') v2 = pd.date_range('2012-1-2', periods=3, freq='D') rs = Series(v2) - Series(v1) xp = Series(1e9 * 3600 * 24, rs.index).astype('int64').astype('timedelta64[ns]') tm.assert_series_equal(rs, xp) assert rs.dtype == 'timedelta64[ns]' df = DataFrame(dict(A=v1)) td = Series([timedelta(days=i) for i in range(3)]) assert td.dtype == 'timedelta64[ns]' # series on the rhs result = df['A'] - df['A'].shift() assert result.dtype == 'timedelta64[ns]' result = df['A'] + td assert result.dtype == 'M8[ns]' # scalar Timestamp on rhs maxa = df['A'].max() assert isinstance(maxa, Timestamp) resultb = df['A'] - df['A'].max() assert resultb.dtype == 'timedelta64[ns]' # timestamp on lhs result = resultb + df['A'] values = [Timestamp('20111230'), Timestamp('20120101'), Timestamp('20120103')] expected = Series(values, name='A') tm.assert_series_equal(result, expected) # datetimes on rhs result = df['A'] - datetime(2001, 1, 1) expected = Series( [timedelta(days=4017 + i) for i in range(3)], name='A') tm.assert_series_equal(result, expected) assert result.dtype == 'm8[ns]' d = datetime(2001, 1, 1, 3, 4) resulta = df['A'] - d assert resulta.dtype == 'm8[ns]' # roundtrip resultb = resulta + d tm.assert_series_equal(df['A'], resultb) # timedeltas on rhs td = timedelta(days=1) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(resultb, df['A']) assert resultb.dtype == 'M8[ns]' # roundtrip td = timedelta(minutes=5, seconds=3) resulta = df['A'] + td resultb = resulta - td tm.assert_series_equal(df['A'], resultb) assert resultb.dtype == 'M8[ns]' # inplace value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) assert rs[2] == value def test_timedelta64_ops_nat(self): # GH 11349 timedelta_series = Series([NaT, Timedelta('1s')]) nat_series_dtype_timedelta = Series([NaT, NaT], dtype='timedelta64[ns]') single_nat_dtype_timedelta = Series([NaT], dtype='timedelta64[ns]') # subtraction tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) # addition tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta) tm.assert_series_equal(NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(nat_series_dtype_timedelta + single_nat_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(single_nat_dtype_timedelta + nat_series_dtype_timedelta, nat_series_dtype_timedelta) # multiplication tm.assert_series_equal(nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta) tm.assert_series_equal(1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta) tm.assert_series_equal(timedelta_series * 1, timedelta_series) tm.assert_series_equal(1 * timedelta_series, timedelta_series) tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta('1.5s')])) tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) # division tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta('0.5s')])) tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box_with_array): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) def test_td64arr_add_sub_float(self, box_with_array, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdarr = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdarr + other with pytest.raises(TypeError): other + tdarr with pytest.raises(TypeError): tdarr - other with pytest.raises(TypeError): other - tdarr @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box_with_array, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box_with_array) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box_with_array, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box_with_array) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box_with_array): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box_with_array) msg = ("cannot subtract a datelike from|" "Could not operate|" "cannot perform operation") with pytest.raises(TypeError, match=msg): idx - Timestamp('2011-01-01') def test_td64arr_add_timestamp(self, box_with_array, tz_naive_fixture): # GH#23215 # TODO: parametrize over scalar datetime types? tz = tz_naive_fixture other = Timestamp('2011-01-01', tz=tz) idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03'], tz=tz) idx = tm.box_expected(idx, box_with_array) expected = tm.box_expected(expected, box_with_array) result = idx + other tm.assert_equal(result, expected) result = other + idx tm.assert_equal(result, expected) def test_td64arr_add_sub_timestamp(self, box_with_array): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdi = timedelta_range('1 day', periods=3) expected = pd.date_range('2012-01-02', periods=3) tdarr = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(ts + tdarr, expected) tm.assert_equal(tdarr + ts, expected) expected2 = pd.date_range('2011-12-31', periods=3, freq='-1D') expected2 = tm.box_expected(expected2, box_with_array) tm.assert_equal(ts - tdarr, expected2) tm.assert_equal(ts + (-tdarr), expected2) with pytest.raises(TypeError): tdarr - ts def test_tdi_sub_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_with_array): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) def test_td64arr_add_datetime64_nat(self, box_with_array): # GH#23215 other = np.datetime64('NaT') tdi = timedelta_range('1 day', periods=3) expected = pd.DatetimeIndex(["NaT", "NaT", "NaT"]) tdser = tm.box_expected(tdi, box_with_array) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(tdser + other, expected) tm.assert_equal(other + tdser, expected) # ------------------------------------------------------------------ # Operations with int-like others def test_td64arr_add_int_series_invalid(self, box): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError int_ser = Series([2, 3, 4]) with pytest.raises(err): tdser + int_ser with pytest.raises(err): int_ser + tdser with pytest.raises(err): tdser - int_ser with pytest.raises(err): int_ser - tdser def test_td64arr_add_intlike(self, box_with_array): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box_with_array) err = TypeError if box_with_array in [pd.Index, tm.to_array]: err = NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box_with_array, scalar): box = box_with_array tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box in [pd.Index, tm.to_array] and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype): tdser = pd.Series(['59 Days', '59 Days', 'NaT'], dtype='m8[ns]') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others # TODO: this was taken from tests.series.test_ops; de-duplicate @pytest.mark.parametrize('scalar_td', [timedelta(minutes=5, seconds=4), Timedelta(minutes=5, seconds=4), Timedelta('5m4s').to_timedelta64()]) def test_operators_timedelta64_with_timedelta(self, scalar_td): # smoke tests td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan td1 + scalar_td scalar_td + td1 td1 - scalar_td scalar_td - td1 td1 / scalar_td scalar_td / td1 # TODO: this was taken from tests.series.test_ops; de-duplicate def test_timedelta64_operations_with_timedeltas(self): # td operate with td td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td2 = timedelta(minutes=5, seconds=4) result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) # Now again, using pd.to_timedelta, which should build # a Series or a scalar, depending on input. td1 = Series(pd.to_timedelta(['00:05:03'] * 3)) td2 = pd.to_timedelta('00:05:04') result = td1 - td2 expected = (Series([timedelta(seconds=0)] * 3) - Series([timedelta(seconds=1)] * 3)) assert result.dtype == 'm8[ns]' tm.assert_series_equal(result, expected) result2 = td2 - td1 expected = (Series([timedelta(seconds=1)] * 3) - Series([timedelta(seconds=0)] * 3)) tm.assert_series_equal(result2, expected) # roundtrip tm.assert_series_equal(result + td2, td1) def test_td64arr_add_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi tm.assert_equal(result, expected) def test_td64arr_sub_td64_array(self, box): dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 0 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi - tdarr tm.assert_equal(result, expected) result = tdarr - tdi tm.assert_equal(result, expected) # TODO: parametrize over [add, sub, radd, rsub]? @pytest.mark.parametrize('names', [(None, None, None), ('Egon', 'Venkman', None), ('NCC1701D', 'NCC1701D', 'NCC1701D')]) def test_td64arr_add_sub_tdi(self, box, names): # GH#17250 make sure result dtype is correct # GH#19043 make sure names are propagated correctly if box is pd.DataFrame and names[1] == 'Venkman': pytest.skip("Name propagation for DataFrame does not behave like " "it does for Index/Series") tdi = TimedeltaIndex(['0 days', '1 day'], name=names[0]) ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[1]) expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=names[2]) ser = tm.box_expected(ser, box) expected = tm.box_expected(expected, box) result = tdi + ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser + tdi tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' expected = Series([Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=names[2]) expected = tm.box_expected(expected, box) result = tdi - ser tm.assert_equal(result, expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' result = ser - tdi tm.assert_equal(result, -expected) if box is not pd.DataFrame: assert result.dtype == 'timedelta64[ns]' else: assert result.dtypes[0] == 'timedelta64[ns]' def test_td64arr_add_sub_td64_nat(self, box): # GH#23320 special handling for timedelta64("NaT") tdi = pd.TimedeltaIndex([NaT, Timedelta('1s')]) other = np.timedelta64("NaT") expected = pd.TimedeltaIndex(["NaT"] * 2) obj = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) result = other - obj tm.assert_equal(result, expected) def test_td64arr_sub_NaT(self, box): # GH#18808 ser = Series([NaT,
Timedelta('1s')
pandas.Timedelta
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy import stats from sklearn.linear_model import Ridge, RidgeCV from sklearn.model_selection import cross_val_score, train_test_split from sklearn.metrics import mean_squared_error, make_scorer # In[2]: def calculate_pearson(df): correlations = {} numerical_features = df.select_dtypes(exclude = ["object"]).columns numerical_features = numerical_features.drop("cod_municipio") for i in numerical_features: corr = stats.pearsonr(df[i], df['ideb'])[0] correlations[i] = corr df_corr = pd.DataFrame(list(correlations.items()), columns=['feature', 'correlation_with_ideb']) df_corr = df_corr.dropna() return df_corr # In[3]: def calculate_categorical_correlation(df): categorical_features = df.select_dtypes(include = ["object"]).columns return categorical_features # # Puxa dados do CSV de cada integrante do grupo # ### Dados Alexandre # In[4]: path = '../../data/' # In[5]: #Dados iniciais alexandre_inicio_2015 = pd.read_csv(path + 'bases_ale/anos_iniciais/ideb_municipios_2015_ai.csv') alexandre_inicio_2017 =
pd.read_csv(path + 'bases_ale/anos_iniciais/ideb_municipios_2017_ai.csv')
pandas.read_csv
import urllib import pytest import pandas as pd from pandas import testing as pdt from anonympy import __version__ from anonympy.pandas import dfAnonymizer from anonympy.pandas.utils_pandas import load_dataset @pytest.fixture(scope="module") def anonym_small(): df = load_dataset('small') anonym = dfAnonymizer(df) return anonym @pytest.fixture(scope="module") def anonym_big(): try: df = load_dataset('big') anonym = dfAnonymizer(df) except urllib.error.HTTPError: anonym = None return anonym def test_anonym_obj(anonym_small, anonym_big): assert isinstance(anonym_small, dfAnonymizer), "should have\ returned `dfAnonymizer` object" if anonym_big is None: assert False, "Failed to fetch the DataFrame" assert isinstance(anonym_big, dfAnonymizer), "should have returned\ `dfAnonymizer` object" def test_numeric_noise(anonym_small): output = anonym_small.numeric_noise('age', seed=42, inplace=False) expected = pd.Series([38, 47], dtype='int64') pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_noise(['age', 'salary'], seed=42, inplace=False) expected = pd.DataFrame({'age': [38, 47], 'salary': [59239.79912097112, 49323.30756879504]}) pdt.assert_frame_equal(expected, output) def test_numeric_binning(anonym_small): output = anonym_small.numeric_binning('salary', bins=2, inplace=False) dtype = pd.CategoricalDtype([ pd.Interval(49315.0, 54279.0, closed='right'), pd.Interval(54279.0, 59234.0, closed='right')], ordered=True) expected = pd.Series([ pd.Interval(54279.0, 59234.0, closed='right'), pd.Interval(49315.0, 54279.0, closed='right')], dtype=dtype) pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_binning(['age', 'salary'], bins=2, inplace=False) dtype2 = pd.CategoricalDtype([ pd.Interval(33.0, 40.0, closed='right'), pd.Interval(40.0, 48.0, closed='right')], ordered=True) ser2 = pd.Series([ pd.Interval(33.0, 40.0, closed='right'), pd.Interval(40.0, 48.0, closed='right')], dtype=dtype2) expected = pd.DataFrame({'age': ser2, 'salary': expected}) pdt.assert_frame_equal(expected, output) def test_numeric_masking(anonym_small): output = anonym_small.numeric_masking('age', inplace=False) expected = pd.Series([7.5, -7.5], dtype='float64') pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_masking(['age', 'salary'], inplace=False) expected = pd.DataFrame({'age': [-4954.900676201789, 4954.900676201798], 'salary': [5.840670901327418e-15, 5.840670901327409e-15]}) pdt.assert_frame_equal(expected, output) def test_numeric_rounding(anonym_small): output = anonym_small.numeric_rounding('salary', inplace=False) expected = pd.Series([60000.0, 50000.0], dtype='float64') pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.numeric_rounding(['age', 'salary'], inplace=False) expected = pd.DataFrame({'age': {0: 30, 1: 50}, 'salary': {0: 60000.0, 1: 50000.0}}) pdt.assert_frame_equal(expected, output) @pytest.mark.skipif(__version__ == '0.2.4', reason="Requires anonympy >= 0.2.5") def test_categorical_fake(anonym_small): output = anonym_small.categorical_fake('name', locale=['en_US'], seed=42, inplace=False) expected = pd.Series(['<NAME>', '<NAME>']) pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.categorical_fake(['name', 'email'], locale=['en_GB'], seed=42, inplace=False) expected = pd.DataFrame({'name': {0: '<NAME>', 1: '<NAME>'}, 'email': {0: '<EMAIL>', 1: '<EMAIL>'}}) pdt.assert_frame_equal(expected, output) output = anonym_small.categorical_fake({'name': 'name_female'}, seed=42, inplace=False) expected = pd.Series(['<NAME>', '<NAME>']) pdt.assert_series_equal(expected, output, check_names=False) output = anonym_small.categorical_fake({'ssn': 'ssn', 'web': 'url'}, seed=42, inplace=False) expected = pd.DataFrame({'ssn': {0: '655-15-0410', 1: '760-36-4013'}, 'web': {0: 'http://www.hill.net/', 1: 'http://johnson.com/'}}) pdt.assert_frame_equal(expected, output) def test_categorical_fake_auto(anonym_small): output = anonym_small.categorical_fake_auto(seed=42, inplace=False) expected = pd.DataFrame({'name': {0: '<NAME>', 1: '<NAME>'}, 'email': {0: '<EMAIL>', 1: '<EMAIL>'}, 'ssn': {0: '655-15-0410', 1: '760-36-4013'}})
pdt.assert_frame_equal(expected, output)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.6.0 # kernelspec: # display_name: deep_ml_curriculum # language: python # name: deep_ml_curriculum # --- # # Time Series Forcasting # # In time series forcasting (TSF) the goal is to predict the future values using the behaviour of data in the past. We can use some of the tehniques we learned about in the last notebook. For instance, Holt-Winters methods can be used for forcasting as well as analysis. import pandas as pd import matplotlib.pyplot as plt import numpy as np import warnings plt.rcParams["figure.figsize"] = [12,5] warnings.simplefilter("ignore") # We will load a subset of London Smart meters dataset. This dataset shows electricity consumption of 5,567 houses in London. We will only use the data for a single block. # # The data shows daily consumption of each house and various statistics regarding their daily consumption. The original data is from [UK Power Networks](https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households) # Load data df = block0 = pd.read_csv("../../data/processed/smartmeter/block_0.csv", parse_dates=['day'], index_col=['day'])[['energy_sum']] # Get the mean over all houses, by day df = df.groupby('day').mean().iloc[:-1] # Rename energy to target df = df.rename(columns={'energy_sum':'target'}) df.plot() df # In forcasting we try to predict the next step, therefore it is essential that we specify the frequency of data so the model knows what we mean by next step. # # Pandas data frames have frequency property, which we need to set df.index # You can see at the bottom `freq` is set to `None`. We need to specify the the data is monthly and the dates are start of the month. So we use `freq = "MS"`. df.index.freq = "1D" # __Note:__ Most of the algorithms have ways of infering the frequency if it is not set. But it is always safer to set it ourselves rather than leave it for the algorithms to figure out. # To measure whether we are doing well in our prediction or not, commonly we split the data into two parts, one for training the model and the other for evaluating the forcasting quality. In time series we train on the past and predict on the future, so the validation set needs to be in the future. # # The part that is used for taining is called training set and for time series it usually is the data from the beginning up to a certain point in time. The part that is used for evaluation is may be called validation set, test set, or evaluation set. The validation set comes right after the training set, because we use the training set to understand the behaviour of data and then we want to know what is going to happen right after that. # # # Let's split our data into training and validation set. Let's split in a way so that last 30% is in validation set and the rest in training set. # + # We are forecasting, so split into past and future n_split = -int(len(df)*0.7) df_train = df[:-n_split] df_valid = df[-n_split:] ax = df_train['target'].plot(legend=True, label="Train") df_valid['target'].plot(ax=ax, legend=True, label="Validation") # - # ## Stationarity # # A time series is considered stationary when its properties (mean and standard deviation) does not change with time. Therefore, any time series with trend or seasonality is not stationary. An example of stationary data is white noise: plt.figure(figsize=(12, 8)) plt.plot(range(100), np.arange(100)/50, ls=':', c='b', label='line - not stationary') plt.plot(range(100),np.sin(np.arange(100)/5)-2, c='b', label='sin - not stationary') plt.plot(range(100), np.zeros(100), c='r', label='zeros - stationary') plt.plot(range(100), np.random.randn(100)+4, ls='--', c='r', label='random noise - stationary') plt.legend() plt.xlabel('time [days]') plt.title('examples of non/stationary series') # Why is random noise stationary? # The std and mean are constant np.random.seed(42) random_noise = pd.Series(np.random.randn(200)) plt.plot(random_noise, label='random noise') random_noise.rolling(30).mean().plot(label='mean') random_noise.rolling(30).std().plot(label='std') plt.legend() # Sin - this is not stationary # The std and mean are not constant np.random.seed(42) series_sin = pd.Series(np.sin(np.arange(200)/5)) plt.plot(series_sin, label='sin(x/5)') series_sin.rolling(50).mean().plot(label='mean') series_sin.rolling(50).std().plot(label='std') plt.legend() # While it is easy to tell if a time series is not stationary when there is a clear trend, in some cases it might be pretty difficult to decide whether a time series is stationary or not. Therefore, we use statistical tests to make a decision. # # __Why is it important if a time series is stationary or not?__<br> # We know that in a stationary time series the characteristics will remain constant. This makes it easier to predict their future behaviour as we expect them to behave similarly. But when the series is not stationary we don't know how it is going to behave in the future. In reality, most of the time series we are going to work with are not stationary. But using various techniques we might be able to transform them into a stationary time series. This is exactly what we just did. We use STL to remove the trend and seasonality to get a stationary time series. # #### Augmented Dickey-Fuller test # # [Augmented Dickey-Fuller test](https://en.wikipedia.org/wiki/Augmented_Dickey%E2%80%93Fuller_test) (ADF) is a statistical test for stationarity. We are not going to discuss the statistical details of this test, but what matters to us is the result. # # The null hpothesis of ADF is: `the series is stationary.` # # Let's test it on our data. # # + from statsmodels.tsa.stattools import adfuller def adf_p_value(data): p = adfuller(data)[1] # If p-value is lower than a threshold (commonly 0.05), if p<0.05: # it means the null hypothesis is rejected and therefore the time series is stationary. return 'stationary (p={:2.2g})'.format(p) else: return 'not stationary (p={:2.2g})'.format(p) # - adf_p_value(df["target"]) # The function returns many values, but the one that we are interested in is p-value, which the second value. If it is less than 0.05, it means time series is stationary. In this case it is far from 0.05 and that is what we expected as the data has clear trend.<br> # Now let's turn it into a function that only return the p-value and run the test on white noise. adf_p_value(random_noise) # The value is very small, which suggests we can reject the null hypothesis and therefore the series is stationary. # ## Decomposing # What if we remove trend and seasonality from the data using STL method? from statsmodels.tsa.seasonal import seasonal_decompose res = seasonal_decompose(df[:100], model="mul") res.plot() '' # If we remove the seasonal and trend component what is left is the residuals.<br> # The residuals might have `NaN` in it. If so, we need to remove them before performing the test. adf_p_value(res.resid.dropna().values[:, 0]) # The residual is stationary since the p value is lower than 0.05. df.plot() df.diff().plot() df.diff(2).plot() # Another technique to make a time series stationary is differencing. Differencing means that we calculate the difference between two consecutive points in time. Then we use the differences for forcasting.<br> # Let's see how differencing will affect our data. Pandas has a builtin method for differencing (`.diff()`): df.diff() # We need to get rid of `NaN` so we can run the test. adf_p_value(df.diff().dropna()["target"]) # As we can see p-value is below the 0.05 threshold, which means differencing helped to convert data into stationary time series. <br> # In some cases you might need to perform differencing multiple times to reach stationary results. adf_p_value(df.diff(2).dropna()["target"]) # ## Autocorrelation # Another characteristics of a time series is autocorrelation. Autocorrelation is simply the correlation between the points in the time series and the points before them (sometimes called lagged values). # # The shaded area is the confidence threshold on the correlation using Bartlett's formula $1/\sqrt{N}$ which assumes a guassian distribution. If a correlations is below this threshold is it's likely to be a coincidence. from statsmodels.graphics.tsaplots import plot_acf df.plot() plot_acf(df) plt.xlabel('Lag (day)') plt.ylabel('Correlation coeffecient') '' # The points closer together in time have higher correlation compared to the points further apart. This is an expected behaviour. However, how quickly does the correlation decreases is important. # ## Autoregressive models (AR) # An [autoregressive model](https://en.wikipedia.org/wiki/Autoregressive_model), is a time series model which assumes a linear relationship between each point in time and its past $p$ points. # # $$y_t=c+\sum_{i=1}^{p}\phi_iy_{t-i}$$ # For instance a first order AR (also shown as AR(1)) can be written as:<br> # $$y_t=c+\phi_1 y_{t-1}$$ # This model can be found in statsmodels in ar_model submodule. # This is to avoid some warning messages from statsmodels import warnings warnings.filterwarnings("ignore", category=FutureWarning) from statsmodels.tsa.ar_model import AR, ARResults # Let's try an AR model on our data. # + model = AR(df_train) # Then we train the model specifying the order of AR. Let's start by trying `1`. trained_model = model.fit( maxlag=2, trend='nc', ) # Now the model is trained. We can view model's values: print('params\n', trained_model.params) # - # More importantly, we can forecast using the trained model. # + # specify at which time-step in the training data the model should start and at which time-step it should stop start = len(df_train) end = len(df_train) + len(df_valid) - 1 forecast = trained_model.predict(start, end) fig = plt.figure() ax = fig.gca() df_train['target'].plot(ax=ax, legend=True, label="Train") df_valid['target'].plot(ax=ax, legend=True, label="Actual") forecast.plot(ax=ax, legend=True, label="Forecast") # - # ## Metrics # It's not very close. But how close? We need to put a value on the goodness of the result. To do this, we can use metrics. There are various metrics which can be used here, such as root of mean squared error (RMSE), mean squered error (MSE), mean absolute error (MAE), $R^2$, and many more. Sometimes for a certain application you might need to use particular metric.<br> # # We will use Mean Absolute Percentage Error. # # $$MAPE=\frac{\lvert y_{true}-y_{pred}\rvert}{y_{true}}$$ # # There is a package called Scikit Learn which is a commonly used for machine learning and data science. This package contains many useful functions and algorithms. One of them is the metrics submodule where various types of metrics are available. # # # + from sklearn.metrics.regression import _check_reg_targets def mape(y_true, y_pred, epsilon=1e-3): """ Mean absolute percentage error This function already exists in newer versions of sklearn. https://scikit-learn.org/dev/modules/generated/sklearn.metrics.mean_absolute_percentage_error.html """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, 'uniform_average') # This is the important line mape = np.abs(y_pred - y_true) / np.maximum(np.abs(y_true), epsilon) return np.average(mape) # - # That's not so good! Let's calculate mean absolute error: mape(df_valid, forecast) # Now let's try larger models by increasing order of AR. It looks at a longer term trend now. model = AR(df_train) model = model.fit(maxlag=7, trend='nc') start = len(df_train) end = len(df_train) + len(df_valid) - 1 forecast = model.predict(start, end) fig = plt.figure() ax = fig.gca() df_train['target'].plot(ax=ax, legend=True, label="Train") df_valid['target'].plot(ax=ax, legend=True, label="Actual") forecast.plot(ax=ax, legend=True, label="Forecast") mape(df_valid, forecast) # Note that the MAPE is lower, meaning it is a better fit # <div class="alert alert-success"> # <h2>Exercise</h2> # # Try a few other values yourself and see if you get a better/lower result than mape=0.4 # # - try trend='nc', which makes it return to the mean. # - try a great lag, which gives it more parameters # # # Does it *look* better as well? Is MAPE capturing your intuition about a good fit? # # # <details> # <summary><b>→ Hints</b></summary> # # * try `model.fit(maxlag=30, trend='c')` # # </details> # # <br/> # <br/> # <details> # <summary> # <b>→ Solution</b> # </summary> # # ```python # model = AR(df_train) # model = model.fit(maxlag=30, trend='nc') # start = len(df_train) # end = len(df_train) + len(df_valid) - 1 # forecast = model.predict(start, end) # fig = plt.figure() # ax = fig.gca() # df_train['target'].plot(ax=ax, legend=True, label="Train") # df_valid['target'].plot(ax=ax, legend=True, label="Actual") # forecast.plot(ax=ax, legend=True, label="Forecast") # mape(df_valid, forecast) # ``` # # </details> # # </div> # # # # Prophet # Prophet is a time series analysis and forecasting package developed by Facebook. Prophet allows you to train forecasting models with minimal need to adjust the models parameters. Prophet is particularly useful when you are dealing with data that has multiple levels of seasonality. # # Let's start by importing the library. The name of the package is `fbprophet`. from fbprophet import Prophet # + # Load data df = block0 = pd.read_csv("../../data/processed/smartmeter/block_0.csv", parse_dates=['day'], index_col=['day'])[['energy_sum']] # Get the mean over all houses, by day df = df.groupby('day').mean() # Rename energy to target df = df.rename(columns={'energy_sum':'target'}).iloc[:-1] n_split = -int(len(df)*0.85) df_train = df[:-n_split] df_valid = df[-n_split:] ax = df_train['target'].plot(legend=True, label="Train") df_valid['target'].plot(ax=ax, legend=True, label="Validation") # df.plot() # - # Prophet needs the input data to be in a very specific format. The data needs to have a column containing daily dates called `"ds"`, and a column containing values named `"y"`. So we create a new data frame and use the required column names. # + df_trainp = pd.DataFrame({"ds": df_train.index, "y": df_train["target"]}).reset_index(drop=True) df_trainp df_validp = pd.DataFrame({"ds": df_valid.index, "y": df_valid["target"]}).reset_index(drop=True) df_validp # - # Now the data is ready. We need to create a Prophet model and train it on the data. # %%time model = Prophet(holidays_prior_scale=0.01) model.fit(df_trainp) # And that's it! The model is trained and ready to be used.<br> # Let's forecast the next year using the model. To forecast using Prophet we need to first create an empty dataframe for future values. This data frame contains the future dates. Then we feed this dataframe to `.predict()` and will get the forecasted values. future = model.make_future_dataframe(periods=365) future.head() # __Note:__ as you can see this data frame has only future dates. forecast = model.predict(future) forecast.head() # The result contains various components of the time series. The forecasted values can be found on `yhat` column. It is difficult to see how model has performed, so let's plot the results. We can do that using Prophets built-in plot function. fig = model.plot(forecast) fig.gca().plot(df_validp.ds, df_validp['y'], 'k.', c='r', label='validation') plt.legend() '' # As you can see at some periods the predictions are poor and at some points they are pretty close. Let's have a closer look at the future. fig = model.plot(forecast) fig.gca().plot(df_validp.ds, df_validp['y'], 'k.', c='r', label='validation') plt.xlim(pd.to_datetime(["2013-06-15", "2013-08-15"])) plt.ylim([10, 24]) # The model has found annual and weekly seasonalities. We can have closer look at these components using `.plot_components()` model.plot_components(forecast) 1 # Now we can see which days of the week are associated with more energy consumption (it's not suprising to see Saturday and Sunday) and also how time of the year affects the energy consumption. # ## Cross_validation # We created a model and forecasted the future. But we still don't know how good the model is. # # So like before we need a training and a validation set. We train a model on a training set, and then measure the accuracy of its prediction on validation set using metrics. # # # One issue with this approach is that even when we get a value for prediction accuracy of a model, how do we know this value is reliable. Let's say we are comparing two models and mean absolute error for model A is 0.5 and for model B is 0.45. How do we know that B is better than A and it didn't just get lucky over this data set? # # One way to ensure which one is better is by comparing them over multiple sections of data sets. This approach is called `cross validation`. In Prophet, we start by training the model over the data from the beginning up to a certain point (cut-off point) and then predict for a few time steps (Horizon). Then we move the cut-off point by a certain period and repeat the process. We can then calculate the metrics for each model over multiple sections of the data and have a better comparison at the end. # # <img src="https://upload.wikimedia.org/wikipedia/commons/b/b5/K-fold_cross_validation_EN.svg"/> # You need to specify the following inputs: # - initial: The initial length of training set. # - period: How much the cut-off point is moved after each training process. # - horizon: Length of forecasting period for which the metrics are calculcated. # # + from fbprophet.diagnostics import cross_validation # Cross validation cv = cross_validation(model, initial="365 days", period="90 days", horizon="30 days") cv.head() # - # The cross validation data frame shows the forecasted value (yhat) and its confidence range (yhat_upper and yhat_lower). We can use `performance_metrics` function to calculate the metrics. # + from fbprophet.diagnostics import performance_metrics perf = performance_metrics(cv) perf.index = pd.Index(perf.horizon.dt.days, name='days') perf # - # The dataframe above has multiple metrics for model's predictions. # # <font color = red>__Note:__ In some versions of Prophet all the result is aggregated based on how far forecasted point is from cut-off point. If this is not the case, then you will see horizon column has repeated values (for instance multiple "10 days" entries) and you will need to use groupby.</font> # + # uncomment and run if performance metrics are not aggregated based on horizon days # perf = perf.groupby('horizon').mean() # perf # - # Before running the next cell look at the performance data frame and find the first and last horizon days and enter it in the next cell as `start` and `end`. perf[['mape']][:-1].plot(ylim=[0, 0.3]) plt.title("Mean Absolute Percent Error of forecasts") # This plot shows the further we are from the cut-off point the larger the error is, which is what we expect. Now, let's compare this model with another one.<br> # # ## Holidays # # Prophet has the ability to include the effect of holidays on the time series as well. Let's see whether adding public holidays to the model will make it any better. holiday_df = pd.read_csv( "../../data/processed/smartmeter/uk_bank_holidays.csv", names=("ds", "holiday"), header=0, ) holiday_df.head() # + model2 = Prophet(holidays=holiday_df) model2.fit(df_trainp) # Cross validation cv2 = cross_validation(model2, initial="365 days", period="90 days", horizon="30 days") perf2 = performance_metrics(cv2) perf2.index = pd.Index(perf2.horizon.dt.days, name='days') perf2 # + # uncomment and run if performance metrics are not aggregated based on horizon days # perf2 = perf2.groupby('horizon').mean() # perf2 # - # Now let's compare the models. ax=plt.gca() perf['mape'][:-1].plot(ax=ax, label="+ holidays") perf2['mape'][:-1].plot(ax=ax, label="- holidays") plt.title("Mean Absolute Percent Error of forecasts") plt.ylabel("mape") plt.legend() # It seems adding holidays slightly lowered the error for the first couple of weeks. # We can separately plot the models including the errors for all the horizons. # + from fbprophet.plot import plot_cross_validation_metric fig = plot_cross_validation_metric(cv, metric="mape") plt.ylim(0, 1) plt.xlim(0, 27) # - # ## Trends # One interesting feature of Prophet is that it can identify when the trend of the data is changing. We can add these change points to the plot as well. # + from fbprophet.plot import add_changepoints_to_plot model = Prophet() model.fit(df_trainp) future = model.make_future_dataframe(periods=len(df_validp)) forecast = model.predict(future) fig = model.plot(forecast) ax = fig.gca() a = add_changepoints_to_plot(ax, model, forecast) ax.plot(df_validp.ds, df_validp['y'], 'k.', c='r', label='validation') # - # We can change the sensitivity of the model to the changes by setting `changepoint_prior_scale`. model = Prophet( changepoint_range=0.90, changepoint_prior_scale=0.2, ) model.fit(df_trainp) future = model.make_future_dataframe(periods=len(df_validp)) forecast = model.predict(future) fig = model.plot(forecast) ax = fig.gca() a = add_changepoints_to_plot(ax, model, forecast) ax.plot(df_validp.ds, df_validp['y'], 'k.', c='r', label='validation') # Prophet has many other parameters you can set to improve your model, including seasonality, growth type, etc. You can find more information about Facebook Prophet [here](https://facebook.github.io/prophet/docs/diagnostics.html). # # Exercise # Now that we have learned about various time series forecasting techniques, try to apply some of these techniques to another block of houses from electricity usage. # <div class="alert alert-success"> # <h2>Exercise</h2> # # Now that we have learned about various time series forecasting techniques, try to apply some of these techniques to another block of houses from electricity usage. # # ```python # # Load data # df = block1 = pd.read_csv("../../data/processed/smartmeter/block_1.csv", parse_dates=['day'], index_col=['day'])[['energy_sum']] # # Get the mean over all houses, by day # df = df.groupby('day').mean() # # Rename energy to target # df = df.rename(columns={'energy_sum':'target'}).iloc[:-1] # # n_split = -int(len(df)*0.85) # df_train = df[:-n_split] # df_valid = df[-n_split:] # # df_trainp = pd.DataFrame({"ds": df_train.index, "y": df_train["target"]}).reset_index(drop=True) # df_validp = pd.DataFrame({"ds": df_valid.index, "y": df_valid["target"]}).reset_index(drop=True) # # # COPY PREVIOUS CELL HERE (And change parameters) # ``` # # # <details> # <summary><b>→ Hints</b></summary> # # * Copy the cell above, and enter the new dataframe # * Perhaps try `Prophet( changepoint_range=0.90, changepoint_prior_scale=0.2, holidays=holiday_df,)` # # </details> # # <br/> # <br/> # <details> # <summary> # <b>→ Solution</b> # </summary> # # ```python # # Load data # df = block1 = pd.read_csv("../../data/processed/smartmeter/block_1.csv", parse_dates=['day'], index_col=['day'])[['energy_sum']] # # Get the mean over all houses, by day # df = df.groupby('day').mean() # # Rename energy to target # df = df.rename(columns={'energy_sum':'target'}).iloc[:-1] # # n_split = -int(len(df)*0.85) # df_train = df[:-n_split] # df_valid = df[-n_split:] # # df_trainp = pd.DataFrame({"ds": df_train.index, "y": df_train["target"]}).reset_index(drop=True) # df_validp = pd.DataFrame({"ds": df_valid.index, "y": df_valid["target"]}).reset_index(drop=True) # # # help(Prophet) # model = Prophet( # changepoint_range=0.90, # changepoint_prior_scale=0.2, # holidays=holiday_df, # ) # model.fit(df_trainp) # future = model.make_future_dataframe(periods=len(df_validp)) # forecast = model.predict(future) # fig = model.plot(forecast) # ax = fig.gca() # a = add_changepoints_to_plot(ax, model, forecast) # ax.plot(df_validp.ds, df_validp['y'], 'k.', c='r', label='validation') # ``` # # </details> # # </div> # + # Load data df = block1 = pd.read_csv("../../data/processed/smartmeter/block_1.csv", parse_dates=['day'], index_col=['day'])[['energy_sum']] # Get the mean over all houses, by day df = df.groupby('day').mean() # Rename energy to target df = df.rename(columns={'energy_sum':'target'}).iloc[:-1] n_split = -int(len(df)*0.85) df_train = df[:-n_split] df_valid = df[-n_split:] df_trainp = pd.DataFrame({"ds": df_train.index, "y": df_train["target"]}).reset_index(drop=True) df_validp = pd.DataFrame({"ds": df_valid.index, "y": df_valid["target"]}).reset_index(drop=True) # COPY PREVIOUS CELL HERE (And change parameters) # - # # (Advanced) Custom Seasonality # # This library is made by facebook for tracking user trends. That means it is set up for growing tends to do with humans, with holidays and weekly seasonality. What if we have data that has a differen't seasonality? # # Here we use current speed from the [IMOS - Australian National Mooring Network (ANMN) Facility - Current velocity time-series](https://catalogue-imos.aodn.org.au/geonetwork/srv/api/records/ae86e2f5-eaaf-459e-a405-e654d85adb9c). We will use tidal periods related to the Sun and Moon instead of human calender periods related to Weeks and Holidays. # + # from https://catalogue-imos.aodn.org.au/geonetwork/srv/api/records/ae86e2f5-eaaf-459e-a405-e654d85adb9c import xarray as xr xd = xr.open_dataset("../../data/processed/IMOS_ANMN/IMOS_ANMN-WA_AETVZ_20111221T060300Z_WATR20_FV01_WATR20-1112-Continental-194_END-20120704T050500Z_C-20200916T043212Z.nc") name='CSPD' df = xd.isel(HEIGHT_ABOVE_SENSOR=0)['CSPD'].isel(TIME=slice(0, -1000)).to_dataframe()[['CSPD']] # Take the log, and smooth it by resampling to 4 hours df['CSPD'] = np.log(df['CSPD']) df = df.resample('4H').mean() # Format for prophet df = pd.DataFrame({"ds": df.index, "y": df['CSPD']}) # Split n_split = -int(len(df)*0.7) df_trainp = df[:-n_split] df_validp = df[-n_split:] ax = df_trainp['y'].plot(legend=True, label="Train") df_validp['y'].plot(ax=ax, legend=True, label="Validation") plt.ylabel('Current Speed') # + # %%time # First let's try it with the default calender/holiday seasonalities model = Prophet() model.fit(df_trainp) forecast = model.predict(df_validp) forecast.index = forecast.ds fig = model.plot(forecast) a = add_changepoints_to_plot(plt.gca(), model, forecast) fig.gca().plot(df_validp.index, df_validp['y'], 'k.', c='r', label='validation') plt.show() '' # - # %%time # Cross validation cv = cross_validation(model, horizon="7 days", period="4 days", initial="60 days", parallel='threads') perf = performance_metrics(cv) perf.index = pd.Index(perf.horizon.dt.days, name='days') print('mape', perf.mape.mean()) # perf.mape.plot() # perf model.plot_components(forecast) 1 # This is tidal data, and the default (daily, weeklly, yearly) seasonalities don't capture the dominant monthly seasonality in the tides. Lets add tidal frequencies and see if it does better. # # Also not that we have made growth flat, since tides tend to return to the mean. # + # %%time model = Prophet( growth='flat', # Recent addition https://github.com/facebook/prophet/pull/1466 # Disable default seasons yearly_seasonality=False, holidays=None, daily_seasonality=False, weekly_seasonality=False, holidays_prior_scale=0.001, ) # Add periods from the theory of tides https://en.wikipedia.org/wiki/Theory_of_tides (additive) # Period is in days # Fourier order is how many fourier functions can be used, higher is more complex and unstable # Short # model.add_seasonality(name='M4', period=6.21/24, fourier_order=1) # model.add_seasonality(name='M6', period=4.14/24, fourier_order=1) # model.add_seasonality(name='M6', period=8.17/24, fourier_order=1) # Semi-diurnal model.add_seasonality(name='M2', period=12.4206012/24, fourier_order=1) model.add_seasonality(name='S2', period=12/24, fourier_order=1) # model.add_seasonality(name='K2', period=12.65834751/24, fourier_order=1) # diurnal model.add_seasonality(name='K1', period=23.93447213/24, fourier_order=2) # model.add_seasonality(name='O1', period=25.81933871/24, fourier_order=2) # Monthly and higher model.add_seasonality(name='Mm', period=27.554631896, fourier_order=2) # model.add_seasonality(name='quarterly', period=91.25, fourier_order=5) # model.add_seasonality(name='Ssa', period=182.628180208, fourier_order=1) # model.add_seasonality(name='Sa', period=365.256360417, fourier_order=1) model.fit(df_trainp) forecast = model.predict(df_validp) forecast.index = forecast.ds fig = model.plot(forecast) fig.gca().plot(df_validp.index, df_validp['y'], 'k.', c='r', label='validation') a = add_changepoints_to_plot(plt.gca(), model, forecast) plt.show() '' # - # Cross validation cv = cross_validation(model, horizon="7 days", period="4 days", initial="60 days", parallel='threads') perf = performance_metrics(cv) perf.index =
pd.Index(perf.horizon.dt.days, name='days')
pandas.Index
#!/usr/bin/env python3 import os import json import h5py import argparse import pandas as pd import numpy as np import tinydb as db from tinydb.storages import MemoryStorage from pprint import pprint import matplotlib.pyplot as plt plt.style.use('../clint.mpl') from matplotlib.colors import LogNorm from pygama import DataGroup import pygama.io.lh5 as lh5 import pygama.analysis.histograms as pgh import pygama.analysis.peak_fitting as pgf def main(): doc=""" analysis of Aug 2020 OPPI+CAGE commissioning runs (138-141) tasks: - load calibration from energy_cal - show 1460 peak stability - show removal of low-e retrigger noise - look at waveforms near 5 MeV, confirm they're muon-related - look at low-e waveforms, examine noise - determine pz correction value """ rthf = argparse.RawTextHelpFormatter par = argparse.ArgumentParser(description=doc, formatter_class=rthf) arg, st, sf = par.add_argument, 'store_true', 'store_false' arg('-q', '--query', nargs=1, type=str, help="select file group to calibrate: -q 'run==1' ") args = par.parse_args() # load main DataGroup, select files from cmd line dg = DataGroup('cage.json', load=True) if args.query: que = args.query[0] dg.fileDB.query(que, inplace=True) else: dg.fileDB = dg.fileDB[-1:] view_cols = ['runtype', 'run', 'cycle', 'startTime', 'runtime', 'threshold'] print(dg.fileDB[view_cols]) # -- run routines -- # show_raw_spectrum(dg) # show_cal_spectrum(dg) # show_wfs(dg) # data_cleaning(dg) # peak_drift(dg) # pole_zero(dg) label_alpha_runs(dg) def show_raw_spectrum(dg): """ show spectrum w/ onbd energy and trapE - get calibration constants for onbd energy and 'trapE' energy - TODO: fit each expected peak and get resolution vs energy """ # get file list and load energy data (numpy array) lh5_dir = os.path.expandvars(dg.config['lh5_dir']) dsp_list = lh5_dir + dg.fileDB['dsp_path'] + '/' + dg.fileDB['dsp_file'] edata = lh5.load_nda(dsp_list, ['trapEmax'], 'ORSIS3302DecoderForEnergy/dsp') rt_min = dg.fileDB['runtime'].sum() u_start = dg.fileDB.iloc[0]['startTime'] t_start = pd.to_datetime(u_start, unit='s') # str print('Found energy data:', [(et, len(ev)) for et, ev in edata.items()]) print(f'Runtime (min): {rt_min:.2f}') elo, ehi, epb, etype = 0, 25000, 10, 'trapEmax' ene_uncal = edata[etype] hist, bins, _ = pgh.get_hist(ene_uncal, range=(elo, ehi), dx=epb) # normalize by runtime hist_rt = np.divide(hist, rt_min * 60) plt.plot(np.nan, np.nan, '-w', lw=1, label=t_start) plt.semilogy(bins[1:], hist_rt, ds='steps', c='b', lw=1, label=f'{etype}, {rt_min:.2f} mins') plt.xlabel(etype, ha='right', x=1) plt.ylabel('cts / sec', ha='right', y=1) plt.legend() plt.tight_layout() plt.show() def show_cal_spectrum(dg): """ apply calibration to dsp file """ # get file list and load energy data (numpy array) lh5_dir = os.path.expandvars(dg.config['lh5_dir']) dsp_list = lh5_dir + dg.fileDB['dsp_path'] + '/' + dg.fileDB['dsp_file'] edata = lh5.load_nda(dsp_list, ['trapEmax'], 'ORSIS3302DecoderForEnergy/dsp') rt_min = dg.fileDB['runtime'].sum() u_start = dg.fileDB.iloc[0]['startTime'] t_start =
pd.to_datetime(u_start, unit='s')
pandas.to_datetime
import time import datetime import numpy as np import pandas as pd import random import re from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import FeatureUnion from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import mean_squared_error, make_scorer from sklearn.ensemble import RandomForestRegressor, BaggingRegressor from nltk.stem.snowball import SnowballStemmer random.seed(1729) start_time = time.time() date = str(datetime.datetime.now().strftime(format='%m%d')) print("::Start time- ", datetime.datetime.now()) snowball = SnowballStemmer('english') print('### Importing...%s minutes ###' % (round((time.time() - start_time) / 60, 2))) train = pd.read_csv('input/train.csv', encoding="ISO-8859-1")#[:1000] test =
pd.read_csv('input/test.csv', encoding="ISO-8859-1")
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Dec 17 19:51:21 2018 @author: Bob """ from sklearn.preprocessing import StandardScaler from sklearn.cluster import DBSCAN from nltk.tokenize import word_tokenize from nltk.stem import PorterStemmer from nltk.corpus import stopwords from sqlalchemy import create_engine from config import config import pandas as pd import numpy as np import unidecode import psycopg2 import re import click from tqdm import tqdm from mpproj.routefinder.StyleInformation import * def MPAnalyzer(): '''Finishes cleaning routes using formulas that require information about the whole database. The Bayesian rating system, route clustering algorithm and calculation of TFIDF values require information about all routes, and not just one that is of interest. Therefore, this file must be run after all data collection has finished. This function is a handler for six functions: - bayesian_rating: Calculates the weighted quality rating for each route - route_clusters: Groups routes together based on geographic distance - idf: Calculates inverse-document-frequency for words in the route descriptions - tfidf: Calclates term-frequency-inverse-document-frequency for words in route descriptions - normalize: Normalizes vectors for TFIDF values - find_route_styles: Compares routes to the ideal to help categorize Returns: Updated SQL Database ''' print('Connecting to the PostgreSQL database...', end='') engine = create_engine( 'postgresql+psycopg2://postgres:postgres@localhost:5432/routes') params = config.config() conn = psycopg2.connect(**params) cursor = conn.cursor() print('Connected') tqdm.pandas() def tfidf(min_occur=0.001, max_occur=0.9): ''' Calculates Term-Frequency-Inverse-Document-Frequency for a body of documents. Term-Frequency-Inverse-Document-Frequency(TFIDF) is a measure of the importance of words in a body of work measured by how well they help to distinguish documents. Words that appear frequently in documents score high on the Term-Frequency metric, but if they are common across the corpus, they will have low Inverse-Document-Frequency scores. TFIDF can then be used to compare documents to each other, or, in this case, to documents with known topics. TFIDF = TF * IDF TF = Term Frequency IDF = Inverse Document Frequency Args: min_occur(int): The minimum number of documents that a word has to appear in to be counted. Included to ignore words that only appear in a few documents, and are therefore not very useful for categorization. max_occur(int): The maximum number of documents that a word can appear in to be counted. This is included to ignore highly common words that don't help with categorization. Returns: routes(pandas Dataframe): Holds route-document information, including term-frequency, inverse-document-frequency, TFIDF, and normalized TFIDF values Updated SQL Database: Updates the TFIDF table on main DB with the routes dataframe ''' print('Getting number of routes', end=' ', flush=True) cursor.execute('SELECT COUNT(route_id) FROM Routes') num_docs = cursor.fetchone()[0] print(num_docs) print('Getting route text data', flush=True) min_occur *= num_docs max_occur *= num_docs query = 'SELECT route_id, word, tf FROM Words' routes = pd.read_sql(query, con=conn, index_col='route_id') print('Removing non-essential words.', flush=True) routes = routes.groupby('word', group_keys=False) routes = routes.progress_apply( weed_out, min_occur=min_occur, max_occur=max_occur)\ .set_index('route_id') print('Getting IDF', flush=True) routes = routes.groupby('word', group_keys=False) routes = routes.progress_apply( idf, num_docs=num_docs).set_index('route_id') print('Calculating TFIDF', flush=True) routes['tfidf'] = routes['tf'] * routes['idf'] print('Normalizing TFIDF values', flush=True) routes = routes.groupby(routes.index, group_keys=False) routes = routes.progress_apply(lambda x: normalize('tfidf', table=x)) print('Writing TFIDF scores to SQL', flush=True) routes = routes.set_index('route_id') routes = routes[['word', 'idf', 'tfidfn']] # This will take a long time routes.to_sql('TFIDF', con=engine, if_exists='replace', chunksize=1000) def weed_out(table, min_occur, max_occur): '''Removes words that are too common or too rare Args: table(Series): Instances of a word min_occur: Fewest number acceptable max_occur: Greatest number acceptable Returns: table: updated series''' if min_occur < len(table) < max_occur: return table.reset_index() def idf(word, num_docs): ''' Finds inverse document frequency for each word in the selected corpus. Inverse document frequency(IDF) is a measure of how often a word appears in a body of documents. The value is calculated by: IDF = 1 + log(N / dfj) N = Total number of documents in the corpus dfj = Document frequency of a certain word, i.e., the number of documents that the word appears in. Args: word(pandas dataframe): A dataframe composed of all instances of a word in a corpus. num_docs(int): The total number of documents in the corpus Returns: word(pandas dataframe): The same document with the calculated IDF score appended. ''' word['idf'] = 1 + np.log(num_docs / len(word)) return word.reset_index() def normalize(*columns, table, inplace=False): ''' Normalizes vector length. Vector values must be normalized to a unit vector to control for differences in length. This process is done by calculating the length of a vector and dividing each term by that value. The resulting 'unit-vector' will have a length of 1. Args: table(pandas dataframe): Table hosting vector to be normalized *columns(str): Names of columns to be normalized inplace(Boolean, default = False): If inplace=False, adds new columns with normalized values. If inplace=True, replaces the columns. Returns: table(pandas dataframe): Updated dataframe with normalized values. ''' for column in columns: if not inplace: column_name = column + 'n' elif inplace: column_name = column length = np.sqrt(np.sum(table[column] ** 2)) table[column_name] = table[column] / length return table.reset_index() def fill_null_loc(): """Fills empty route location data. Not all routes have latitude and longitude coordinates, so we must use the coordinates of their parent area instead as a rough estimate. This function first grabs all routes with no data, then fills in the data with the lowest level area it can, going up as many areas as needed until it finds one with proper coordinates. Returns: Updated SQL Database """ print('Filling in empty locations', flush=True) # Select a route without location data cursor.execute(''' SELECT route_id, area_id, name FROM Routes WHERE latitude is Null OR longitude is Null LIMIT 1''') route = cursor.fetchone() while route is not None: # Route ID rid = route[0] # From ID fid = route[1] name = route[2] print(f'Finding location information for {name}') # Loops until it finds proper data lat, long = None, None while lat == None or long == None: # Gets latitude and longitude from parent area cursor.execute(f''' SELECT latitude, longitude, from_id FROM Areas WHERE id = {fid} LIMIT 1''') loc = cursor.fetchone() lat, long = loc[0], loc[1] fid = loc[2] # Updates DB cursor.execute(f''' UPDATE Routes SET latitude = {lat}, longitude = {long} WHERE route_id = {rid}''') conn.commit() cursor.execute(''' SELECT route_id, area_id, name FROM Routes WHERE latitude is Null OR longitude is Null LIMIT 1''') route = cursor.fetchone() def route_clusters(routes): ''' Clusters routes into area groups that are close enough to travel between when finding climbing areas. Routes can be sorted into any number of sub-areas below the 'region' parent. By clustering the routes based on latitude and longitude instead of the name of the areas and parent areas, the sorting algorithm will be able to more accurately determine which routes are close together. This function uses SciKit's Density Based Scan clustering algorithm. The algorithm works by grouping points together in space based on upper-limits of distance and minimum numbers of members of a cluster. More generally, the algorithm first finds the epsilon neighborhood of a point. This is the set of all points whose distance from a given point is less than a specified value epsilon. Then, it finds the connected core-points, which are the points that have at least the minimum number of connected points in its neighborhood. Non-core points are ignored here. Finally, the algorithm assigns each non-core point to a nearby cluster if is within epsilon, or assigns it to noise if it is not. The advantages of this is that the scan clusters data of any shape, has a robust response to outliers and noise, and that the epsilon and min points variables can be adjusted. This function returns the label/name for the cluster that a route appears in, as well as the number of other routes in that same cluster. This will allow the sorting algorithm to more heavily weight routes that are clustered near others. Args: routes(pandas df): Pulled from cleaned route SQL DB with columns: - route_id (int, unique): Unique route identifies - latitude (float) - longitude (float) Returns: routes(pandas df): Updated with clustered area group number: - route_id (int, unique): Unique route identifies - area_group (int): Cluster id ''' # Route location lats = routes['latitude'] longs = routes['longitude'] locs = [] for x in range(len(lats)): locs.append((lats.iloc[x], longs.iloc[x])) # Converted into df locs = StandardScaler().fit_transform(locs) # Max distance in latitude epsilon = 0.0007 # Min number of routes in a cluster min_routes = 3 # Distance baced scan db = DBSCAN(eps=epsilon, min_samples=min_routes).fit(locs) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True # Cluster names labels = db.labels_ unique, counts = np.unique(labels, return_counts=True) counts = dict(zip(unique, counts)) # Number of routes in the same cluster as a given route area_counts = [] for label in labels: if label >= 0: # Counts number of routes area_counts.append(counts[label]) # Areas are given a cluster id of -1 if the are not part of a # cluster elif label == -1: # If so, there is only 1 route in their 'cluster' area_counts.append(1) routes['area_group'] = labels routes['area_counts'] = area_counts routes = routes[['area_group', 'area_counts']] return routes def bayesian_rating(routes): ''' Updates route quality with weighted average. The Bayesian average rating system helps to mitigate the effects of user ratings for routes that only have a few reviews. The weighted rating works by first finding the average rating for all routes, and using that to bring low-rated routes up and high-rated routes down. The result - the Bayes rating - is an updated rating weighted by the average number of stars across all routes. The weight decreases according to the number of votes cast. Bayesian rating = (r * v) + (a * 10) / (v + 10) r = Route rating v = Number of votes a = Average rating across all routes Essentially, the function gives each route phantom-users who all give the route the average score. For routes with a high number of ratings the effect of the additional phantom users is minimal, but for routes with only one or two actual user ratings, the effect is large. This keeps 4-star rated routes from dominating the sorting algorithm if they only have a few votes, and helps promote unrated routes that may be of high quality. Args: routes(pandas df): Pulled from cleaned route SQL DB with columns: - route_id (int, unique): Unique route identifiers - stars (float): Raw average rating - votes (int): Number of user ratings Returns: routes(pandas df): Updated dataframe with Bayes rating and columns: - route_id (int, unique): Unique route identifies - bayes (float): Weighted average rating ''' # Average rating of all routes stars = pd.read_sql('SELECT stars FROM Routes', con=conn) avg_stars = np.mean(stars)['stars'] # Weighted Bayesian rating routes['bayes'] = round((((routes['votes'] * routes['stars']) + avg_stars * 10) / (routes['votes'] + 10)), 1) return routes['bayes'].to_frame() def find_route_styles(*styles, path='Descriptions/'): ''' Returns weighted scores that represent a route's likelihood of containing any of a series of features, e.g., a roof, arete, or crack. Route names, descriptions, and user comments can indicate the presence of rock and route features. Term-Frequency-Inverse-Document-Frequency (TFIDF) values for the blocks of text gathered for each route can be compared to 'archetypal' routes to glean insight into these features. This comparison is further clarified using Bayesian statistics to measure the credibility of the comparision, and is then adjusted to reflect that. At present, each route is compared against archetypal routes with the following features: Aretes - A sharp vertical edge of a block, cliff or boulder Chimney - A large vertical crack that a climber can fit in and climb using opposing pressure Crack - Smaller cracks ranging from finger-sized to a few inches wide (off-width) Slab - Low-angle rock faces (less than vertical) Overhang - Roofs, caves or more-than-vertical rock faces More styles or archetypes can be added in the future by creating .txt files and adding them to the 'Descriptions' sub-folder, then adding the style to the *styles argument. Args: *styles(str): The name of the files that each route will be compared against. path(str): Folder location of the Database Returns: Updated SQL Database with weighted route scores ''' def text_splitter(text): '''Splits text into words and removes punctuation. Once the text has been scraped it must be split into individual words for further processing. The text is all put in lowercase, then stripped of punctuation and accented letters. Tokenizing helps to further standardize the text, then converts it to a list of words. Each word is then stemmed using a Porter stemmer. This removes suffixes that make similar words look different, turning, for example, 'walking' or 'walked' into 'walk'. Stop words are also filtered out at this stage. Args: text(str): Single string of text to be handled Returns: text(list): List of processed words.''' # Converts to lowercase text = text.lower() # Strips punctuation and converts accented characters to unaccented text = re.sub(r"[^\w\s]", '', text) text = unidecode.unidecode(text) # Tokenizes words and returns a list text = word_tokenize(text) # Remove stopwords stop_words = set(stopwords.words('english')) # Stems each word in the list ps = PorterStemmer() text = [ps.stem(word) for word in text if word not in stop_words] return text def archetypal_tf(*styles, path): ''' Returns term-frequency data for descriptions of archetypal climbing routes and styles. This will be used later to categorize routes. Term-Frequency = t / L t = Number of appearances for a word in a document L = Number of total words in the document Args: *styles(str): Name of .txt file to parse. Can either be the plain name or have the .txt suffix path(str): Path to folder with route descriptions Returns: tf.csv(CSV File): CSV File of term frequency for each style. This will help determine if TF values are what is expected when adding new styles. archetypes(Pandas Dataframe): Holds words term-frequency values for words in the files.''' # Initializes Dataframe archetypes = pd.DataFrame() for style in styles: # Formats suffix if style.endswith('.txt'): # Opens .txt file try: file = open(path + style) style = style[:-4] # Returns errors except OSError as e: return e else: try: file = open(path + style + '.txt') except OSError as e: return e # Creates single block of text text = '' for line in file: text += line # Splits and processes text text = text_splitter(text) # Length of document in words length = len(text) # Counts appearances of each word text = pd.DataFrame({'word': text})['word']\ .value_counts()\ .rename('counts')\ .to_frame() # Calculates Term-Frequency text[style] = text['counts'].values / length text = text[style] # Creates master Dataframe of Termfrequency data for each style archetypes = pd.concat([archetypes, text], axis=1, sort=True) archetypes.to_csv(path + 'TF.csv') return archetypes def archetypal_idf(words): ''' Findes inverse document frequency (IDF) for each word in the archetypal style documents. The archetypal documents should not be included in the calculation of IDF values, so this function just pulls the IDF values from the database after they are calculated. IDF is a measure of how often a word appears in a body of documents. The value is calculated by: IDF = 1 + log(N / dfj) N = Total number of documents in the corpus dfj = Document frequency of a certain word, i.e., the number of documents that the word appears in. Args: word(list): All unique words in all the archetype documents Returns: archetypes(pandas dataframe): IDF values for each word pulled from the Database.''' # Formats query to include list of unique words query = f''' SELECT DISTINCT(word), idf FROM "TFIDF" WHERE word IN {words}''' # Pulls SQL data into Pandas dataframe archetypes = pd.read_sql(query, con=conn, index_col='word') return archetypes def get_routes(route_ids=None): '''Creates Pandas Dataframe of normalized TFIDF values for each word in each route description. Args: route_ids: Optional. Allows for a slice to be parsed. Returns: routes(Pandas Series): MultiIndex series with indexes 'route_id' and 'word' and column 'tfidfn' - Normalized TFIDF''' # Pulls route_id, word, and normalized TFIDF value if route_ids is None: query = ''' SELECT route_id, word, tfidfn FROM "TFIDF"''' else: route_ids = tuple(route_ids) query = f''' SELECT route_id, word, tfidfn FROM "TFIDF" WHERE route_id in {route_ids}''' # Creates Pandas Dataframe routes = pd.read_sql( query, con=engine, index_col=['route_id', 'word']) routes = routes.squeeze() return routes def get_word_count(route_ids=None): '''Finds length of route description in words. Args: route_ids: Optional. Allows for a slice to be parsed Returns: word_count(Pandas dataframe): Dataframe with index route_id and column 'word_count' - length of a route description in words''' # Pulls route_id and word_count for each route if route_ids is None: query = 'SELECT route_id, word_count FROM Words' else: route_ids = tuple(route_ids) query = f''' SELECT route_id, word_count FROM Words WHERE route_id in {route_ids}''' # Calculates document length word_count = pd.read_sql(query, con=conn, index_col='route_id').groupby(level=0) # We will take the log of the word count later, so we cannot leave # zeroes in the series word_count = word_count.progress_apply(lambda x: np.sum(x) + 0.01) word_count.fillna(0.01, inplace=True) return word_count def cosine_similarity(route, archetypes): '''Compares routes to archetypes to help categorize route style. Cosine similarity is the angle between two vectors. Here, the normalized TFIDF values for each word in the route description and archetype documents serve as the coordinates of the vector. Finding the cosine similarity is therefore simply their dot-product. Cosine Similarity = Σ(ai * bi) ai = TFIDF for a word in the route description bi = TFIDF for the same word in the archetype document. The similarity will range between 0 and 1, 1 being identical and 0 having no similarity. Args: route(Pandas dataframe): MultiIndex frame with indexes route_id and word and columns normalized TFDIF values archetypes(Pandas dataframe): Frame with index word and columns normalized TFIDF values. Returns: terrain(Pandas dataframe): Frame with columns for each style, holding cosine simlarity values.''' try: rid = route.index[0][0] except: return route = archetypes.multiply(route, axis=0) terrain = pd.DataFrame(index=[rid]) for column in route: cosine_sim = np.sum(route[column]) terrain[column] = cosine_sim return terrain def score_routes(*styles, word_count, path, routes): '''Gets TF, IDF data for archetypes, then finds TFIDF and cosine similarity for each route/style combination. Finding the raw cosine similarity scores requires the functions archetypal_tf, archetypal_idf, and normalize. This function helps organize the retrieval and processing of the data for those functions. Args: word_count(Pandas dataframe): Dataframe with index route_id and column 'word_count' - length of a route description in words Returns: TFIDF.csv(CSV file): TFIDF for each word in each style. This helps users determine if the TFIDF values are what they would expect when adding new styles. routes(Pandas dataframe): Holds cosine similarity for each route/style combination''' if click.confirm('Rescore archetypes?'): # Gets Term-Frequency data for words in archetype documents archetypes = archetypal_tf(*styles, path=path) # Gets list of unique words in archetype documents words = tuple(archetypes.index.tolist()) # Gets IDF Values for those words from the Database idf = archetypal_idf(words) # Selects words for archetype documents that have a correpsonding # IDF value in the database archetypes = archetypes[archetypes.index.isin(idf.index)] # Multiplies TF by IDF values to get TFIDF score archetypes = archetypes.mul(idf['idf'], axis=0) # Normalizes TFIDF scores archetypes = normalize( table=archetypes, inplace=True, *styles) archetypes = archetypes.rename( columns={'index': 'word'} ).set_index('word') # Writes to CSV archetypes.to_csv(path + 'TFIDF.csv') archetypes = pd.read_csv(path + 'TFIDF.csv', index_col='word') # Groups words by route_id, then finds cosine similarity for each # route-style combination routes = routes.groupby('route_id').progress_apply( cosine_similarity, archetypes=archetypes) # Reformats routes dataframe routes.index = routes.index.droplevel(1) routes = pd.concat([routes, word_count], axis=1, sort=False) routes.fillna(0, inplace=True) return routes def weighted_scores(*styles, table, inplace=False): '''Weights cosine similarity based on credibility. The cosine similarity between a route and a style archetype measures how close the two documents are. Depending on the score and the word count of the route, however, this score can be more or less believable. Using Bayesian statistics helps weight the scores based on the credibility. We can plot word count and cosine similarity in two dimensions. Normalizing each so that the maximum value is one results in a plane with four edge cases: cosine similarity | word count 0 0 1 0 0 1 1 1 When both word count and cosine similarity is high, the believability of the cosine score is at its highest. This is analagous to a route that scores well with the 'overhang' document, therefore mentioning words like 'overhang' or 'roof' frequently, that also has a lot of words. If the word count is high and the cosine similarity is low the believability of the score is high, but not as high as before. This is analagous to a route that never mentions words associated with 'overhang' despite a high word count. We can be reasonably sure in this case that the route does not have an overhang. If the word count of a route is low but the cosine score is high, we can be reasonably sure that the score is somewhat accurate. This is a result of a route called, for instance, 'Overhang Route'. Despite the low word count, it is highly likely that the route has an overhang on it. Finally, for routes that have both low word count and cosine score, we have no way to be sure of the presence (or absence) of a feature. In this case, our best guess is that the route is at chance of featuring a given style of climbing. If we chart word count, cosine similarity, and the credibility of the cosine score, we are left with a cone with a point at the origin, reaching up at a 45 degree angle along the credibility (z) axis. Each route will exist somewhere on the surface of the cone. To make use of this, we need to calculate this position. The height to the cone gives us the credibility, and can be calculated with: Credibility = sqrt(W ** 2 + C ** 2) * tan(45 degrees) Since tan(45 degrees) is 1, this simplifies to: Credibility = sqrt(W ** 2 + C ** 2) W = Word count C = Cosine similarity The credibility of a route's score can be fed back into the score to find a weighted route score. As the word count and cosine score get close to zero, the average score should play more of a role in the outcome. Therefore: Score = C * sqrt(W ** 2 + C ** 2) + (1 - C)(1 - W) * Cm W = word count C = cosine Similarity Cm = Average cosine similarity across routes Finally, the scores are processed with a Sigmoid function, specifically the logistic function. f(x) = L / 1 + e^(-k(x-x')) L = upper bound e = Euler's constant k = logistic growth rate x' = Sigmoid midpoint By manipulating the constants in this function, we can find a continuous threshold-like set of values that are bounded by 0 and 1. The midpoint of the threshold is the mean value of the scores plus one standard devaition. Therefore, the function used here is: f(x) = 1 / (1 + e^(-100(x - x')) x' = mean + sigma e = Euler's constant Args: *styles(str): Names of the style archetypes table(Pandas dataframe): Master dataframe of cosine scores for each route inplace(Boolean, default = False): If inplace=False, adds new columns with weighted values. If inplace=True, replaces the columns. Returns: Updated SQL Database''' # Gets name for the columns to write data if inplace: count = 'word_count' else: count = 'word_count_norm' # As the word count increases, the credibility increases as a # logarithmic function table[count] = np.log10(table['word_count']) table_min = table[count].min() table_max = table[count].max() table_diff = table_max - table_min table[count] = (table[count].values - table_min) / table_diff # Gets weighted scores for each style for style in styles: # Stores name to write data on if inplace: column_name = style else: column_name = style + '_weighted' # Find average cosine similarity across routes style_avg = table[style].mean() # Calculate weighted rating table[column_name] = ( table[style].values * np.sqrt( table[style].values ** 2 + table[count].values ** 2) + (1 - table[count].values) * (1 - table[style].values) * style_avg) threshold = table[column_name].mean() + table[column_name].std() # Calculates final score using Sigmoid function table[column_name] = ( 1 / (1 + np.e ** (-100 * (table[column_name] - threshold)))) return table # Run functions print('Getting route information') routes = get_routes() print('Getting word count') word_count = get_word_count() print('Scoring routes') routes = score_routes( *styles, word_count=word_count, path=path, routes=routes) print('Getting weighted scores') routes = weighted_scores(*styles, table=routes, inplace=True) # Collects the full database query = 'SELECT * FROM Routes' all_routes =
pd.read_sql(query, conn, index_col='route_id')
pandas.read_sql
# -*- coding: utf-8 -*- # import logging logger = logging.getLogger(__name__) import sys, os, time from datetime import datetime from timeit import default_timer as timer try: from humanfriendly import format_timespan except ImportError: def format_timespan(seconds): return "{:.2f} seconds".format(seconds) from .config import Config from .util import load_random_state, prepare_directory, load_spark_dataframe, save_pandas_dataframe_to_pickle, remove_seed_papers_from_test_set, remove_missing_titles, year_lowpass_filter, predict_ranks_from_data, load_pandas_dataframe import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression, SGDClassifier from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer from sklearn.metrics import classification_report from .transformers import ItemSelector, DataFrameColumnTransformer, ClusterTransformer, AverageTfidfCosSimTransformer from .pipeline_autoreview import PipelineExperiment class Autoreview(object): """Toplevel Autoreview object""" def __init__(self, outdir, id_list=None, citations=None, papers=None, sample_size=None, random_seed=None, id_colname='UID', citing_colname=None, cited_colname='cited_UID', title_colname='title', use_spark=True, config=None, citations_data_preloaded=None, paper_data_preloaded=None): """ :outdir: output directory. :random_seed: integer The following are needed for collecting the paper sets. They can either be set on initialization, or using prepare_for_collection() :id_list: list of strings: IDs for the seed set :citations: path to citations data :papers: path to papers data :sample_size: integer: size of the seed set to split off from the initial. the rest will be used as target papers :id_colname: default is 'UID' :citing_colname: default is 'UID' :cited_colname: default is 'cited_UID' :use_spark: whether to use spark to get seed and candidate paper sets :citations_data_preloaded: use this to supply citations data already in memory, instead of having to load it within the Autoreview object. Should be a pandas dataframe. Only do this if not using Spark. :paper_data_preloaded: use this to supply papers data already in memory, instead of having to load it within the Autoreview object. Should be a pandas dataframe. Only do this if not using Spark. """ self.outdir = outdir self.random_state = load_random_state(random_seed) self.prepare_for_collection(id_list, citations, papers, sample_size, id_colname, citing_colname, cited_colname, citations_data_preloaded, paper_data_preloaded) # if these are unspecified, the user will have to overwrite them later by calling prepare_for_collection() manually self.title_colname = title_colname if config is not None: # TODO: be less strict when checking that the config is valid (currently only supports config objects from autoreview module) assert isinstance(config, Config) self._config = config else: self._config = Config() self.use_spark = use_spark if self.use_spark is True: self.spark = self._config.spark self.best_model_pipeline_experiment = None def prepare_for_collection(self, id_list, citations, papers, sample_size, id_colname='UID', citing_colname=None, cited_colname='cited_UID', citations_data_preloaded=None, paper_data_preloaded=None): """Provide arguments for paper collection (use this if these arguments were not already provided at initialization) :id_list: list of strings: IDs for the seed set :citations: path to citations data :papers: path to papers data :sample_size: integer: size of the seed set to split off from the initial. the rest will be used as target papers :id_colname: default is 'UID' :citing_colname: default is 'UID' :cited_colname: default is 'cited_UID' :citations_data_preloaded: use this to supply citations data already in memory, instead of having to load it within the Autoreview object. Should be a pandas dataframe. :paper_data_preloaded: use this to supply papers data already in memory, instead of having to load it within the Autoreview object. Should be a pandas dataframe. """ self.id_list = id_list self.citations = citations self.papers = papers self.sample_size = sample_size self.id_colname = id_colname if citing_colname is not None: self.citing_colname = citing_colname else: self.citing_colname = id_colname self.cited_colname = cited_colname self.df_citations = citations_data_preloaded self.df_papers = paper_data_preloaded def follow_citations(self, df, df_citations, use_spark=True): """follow in- and out-citations :df: a dataframe with one column `ID` that contains the ids to follow in- and out-citations :df_citations: dataframe with citation data. columns are `ID` and `cited_ID` :returns: dataframe with one column `ID` that contains deduplicated IDs for in- and out-citations """ if use_spark is True: return self._follow_citations_spark(df, df_citations) df_outcitations = df_citations.merge(df, on='ID', how='inner') df_incitations = df_citations.merge(df.rename(columns={'ID': 'cited_ID'}, errors='raise'), on='cited_ID', how='inner') combined = np.append(df_outcitations.values.flatten(), df_incitations.values.flatten()) combined = np.unique(combined) return pd.DataFrame(combined, columns=['ID']) def _follow_citations_spark(self, sdf, sdf_citations): sdf_outcitations = sdf_citations.join(sdf, on='ID', how='inner') _sdf_renamed = sdf.withColumnRenamed('ID', 'cited_ID') sdf_incitations = sdf_citations.join(_sdf_renamed, on='cited_ID') sdf_combined = self.combine_ids([sdf_incitations, sdf_outcitations]) return sdf_combined def combine_ids(self, sdfs): """Given a list of spark dataframes with columns ['UID', 'cited_UID'] return a dataframe with one column 'UID' containing all of the UIDs in both columns of the input dataframes """ sdf_combined = self.spark.createDataFrame([], schema='ID string') for sdf in sdfs: # add 'UID' column sdf_combined = sdf_combined.union(sdf.select(['ID'])) # add 'cited_UID' column (need to rename) sdf_combined = sdf_combined.union(sdf.select(['cited_ID']).withColumnRenamed('cited_ID', 'ID')) return sdf_combined.drop_duplicates() def get_papers_2_degrees_out(self, use_spark=True): """For a list of paper IDs (in `self.id_list`), get all papers citing or cited by those, then repeat for all these new papers. For the three sets of papers---seed, target, and test (candidate) papers--- save a pickled pandas dataframe. :returns: pandas dataframes for seed, target, and test papers """ df_id_list =
pd.DataFrame(self.id_list, columns=['ID'], dtype=str)
pandas.DataFrame
import pandas as pd import pickle import json import seaborn as sns import pprint import numpy as np import math def get_builds_from_commits(_commits): _build_ids = jobs[jobs.commitsha.isin(_commits)].buildid return builds[(builds.id.isin(_build_ids))] def get_builds_from_ids(_builds, _build_ids): return _builds[(_builds.id.isin(_build_ids))] def get_commits_from_comparison_row(row, commitsDf): _x = commitsDf return _x[(_x.from_tag == row.from_tag) & (_x.to_tag == row.to_tag)].commitsha def detect_build_bursts(_builds, gap_size, burst_size, states): print(len(_builds)) positive_count = 0 negative_count = 0 n_bursts = 0 burst_sizes = [] i = 0 for index, row in _builds.sort_values(by="started_at").iterrows(): i+=1 if((i == len(_builds)) | (not (row.state in states))): negative_count+=1 if(negative_count == gap_size): if(positive_count >= burst_size): n_bursts+=1 burst_sizes.append(positive_count) negative_count = 0 positive_count = 0 if(row.state in states): positive_count+=1 return n_bursts, burst_sizes def build_burst_metrics(row): gap_size = 1 burst_size = 2 states = ["errored","failed","canceled"] _commits = get_commits_from_comparison_row(row, tags_iterative_pr_commits) _builds = get_builds_from_commits(_commits) _builds = builds_commitref[builds_commitref.id.isin(_builds.id)] data=[] for commitref in _builds.commitref.unique(): _ref_builds = _builds[_builds.commitref==commitref] data.append(detect_build_bursts(_ref_builds, gap_size, burst_size, states)) bursts = np.array([]) bursts_size = np.array([]) for d in data: bursts = np.append(bursts,d[0]) for v in d[1]: bursts_size = np.append(bursts_size,v) return (bursts.mean(), bursts_size.mean()) if __name__ == "__main__": csv_folder = "csv" tags_comparison = pd.read_csv(f"{csv_folder}/tags_comparison_final_updated_no_rc_and_milestones.csv", index_col=0) tags_comparison.from_commit_date = pd.to_datetime(tags_comparison.from_commit_date) tags_comparison.to_commit_date = pd.to_datetime(tags_comparison.to_commit_date) tags_comparison.from_author_date = pd.to_datetime(tags_comparison.from_author_date) tags_comparison.to_author_date = pd.to_datetime(tags_comparison.to_author_date) tags_comparison = tags_comparison[2:] tags_iterative_pr_commits = pd.read_csv(f"{csv_folder}/commits_for_tags/tags_pairs_iterative_commits.csv", index_col=0) builds = pd.read_csv(f"{csv_folder}/builds_cleaned.csv", index_col=0) jobs =
pd.read_csv(f"{csv_folder}/allJobs.csv", index_col=0)
pandas.read_csv
import sys import time import numpy as np import pandas as pd from scipy.special import softmax train_path = sys.argv[1] test_path = sys.argv[2] def f(pred,Y_train): v = np.log(np.sum(Y_train*pred,axis=1)) #print(np.sum(v)) return abs(np.sum(v)/Y_train.shape[0]) def read_and_encode(train_path,test_path): train = pd.read_csv(train_path, index_col = 0) test = pd.read_csv(test_path, index_col = 0) Y_df = train['Length of Stay'] train = train.drop(columns = ['Length of Stay']) #Ensuring consistency of One-Hot Encoding data = pd.concat([train, test], ignore_index = True) cols = train.columns cols = cols[:-1] data =
pd.get_dummies(data, columns=cols, drop_first=True)
pandas.get_dummies
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Copyright 2014-2019 OpenEEmeter contributors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import json import numpy as np import pandas as pd import pytest from eemeter.caltrack.usage_per_day import ( CalTRACKUsagePerDayCandidateModel, CalTRACKUsagePerDayModelResults, DataSufficiency, _caltrack_predict_design_matrix, fit_caltrack_usage_per_day_model, caltrack_usage_per_day_predict, caltrack_sufficiency_criteria, get_intercept_only_candidate_models, get_too_few_non_zero_degree_day_warning, get_total_degree_day_too_low_warning, get_parameter_negative_warning, get_parameter_p_value_too_high_warning, get_cdd_only_candidate_models, get_hdd_only_candidate_models, get_cdd_hdd_candidate_models, select_best_candidate, ) from eemeter.exceptions import MissingModelParameterError, UnrecognizedModelTypeError from eemeter.features import ( compute_time_features, compute_temperature_features, compute_usage_per_day_feature, merge_features, ) from eemeter.metrics import ModelMetrics from eemeter.warnings import EEMeterWarning from eemeter.transform import day_counts, get_baseline_data def test_candidate_model_minimal(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula", status="status" ) assert candidate_model.model_type == "model_type" assert candidate_model.formula == "formula" assert candidate_model.status == "status" assert candidate_model.model_params == {} assert candidate_model.warnings == [] assert str(candidate_model).startswith("CalTRACKUsagePerDayCandidateModel") assert candidate_model.json() == { "formula": "formula", "model_params": {}, "model_type": "model_type", "r_squared_adj": None, "status": "status", "warnings": [], } def test_candidate_model_json_with_warning(): eemeter_warning = EEMeterWarning( qualified_name="qualified_name", description="description", data={} ) candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula", status="status", warnings=[eemeter_warning], ) assert candidate_model.json() == { "formula": "formula", "model_params": {}, "model_type": "model_type", "r_squared_adj": None, "status": "status", "warnings": [ { "data": {}, "description": "description", "qualified_name": "qualified_name", } ], } def test_candidate_model_json_none_and_nan_values(): eemeter_warning = EEMeterWarning( qualified_name="qualified_name", description="description", data={} ) candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula", status="status", warnings=[eemeter_warning], r_squared_adj=None, ) assert candidate_model.json()["r_squared_adj"] is None candidate_model.r_squared_adj = np.nan assert candidate_model.json()["r_squared_adj"] is None def test_data_sufficiency_minimal(): data_sufficiency = DataSufficiency(status="status", criteria_name="criteria_name") assert data_sufficiency.status == "status" assert data_sufficiency.criteria_name == "criteria_name" assert data_sufficiency.warnings == [] assert data_sufficiency.settings == {} assert str(data_sufficiency).startswith("DataSufficiency") assert data_sufficiency.json() == { "criteria_name": "criteria_name", "data": {}, "settings": {}, "status": "status", "warnings": [], } def test_data_sufficiency_json_with_warning(): eemeter_warning = EEMeterWarning( qualified_name="qualified_name", description="description", data={} ) data_sufficiency = DataSufficiency( status="status", criteria_name="criteria_name", warnings=[eemeter_warning] ) assert data_sufficiency.json() == { "criteria_name": "criteria_name", "settings": {}, "status": "status", "data": {}, "warnings": [ { "data": {}, "description": "description", "qualified_name": "qualified_name", } ], } def test_model_results_minimal(): model_results = CalTRACKUsagePerDayModelResults( status="status", method_name="method_name" ) assert model_results.status == "status" assert model_results.method_name == "method_name" assert model_results.model is None assert model_results.r_squared_adj is None assert model_results.candidates == [] assert model_results.warnings == [] assert model_results.metadata == {} assert model_results.settings == {} assert str(model_results).startswith("CalTRACKUsagePerDayModelResults") assert model_results.json() == { "candidates": None, "interval": None, "metadata": {}, "method_name": "method_name", "totals_metrics": None, "avgs_metrics": None, "model": None, "settings": {}, "status": "status", "r_squared_adj": None, "warnings": [], } def test_model_results_json_with_objects(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula", status="status" ) eemeter_warning = EEMeterWarning( qualified_name="qualified_name", description="description", data={} ) model_results = CalTRACKUsagePerDayModelResults( status="status", method_name="method_name", model=candidate_model, candidates=[candidate_model], warnings=[eemeter_warning], ) assert model_results.json(with_candidates=True) == { "candidates": [ { "formula": "formula", "model_params": {}, "model_type": "model_type", "r_squared_adj": None, "status": "status", "warnings": [], } ], "metadata": {}, "interval": None, "method_name": "method_name", "totals_metrics": None, "avgs_metrics": None, "model": { "formula": "formula", "model_params": {}, "model_type": "model_type", "r_squared_adj": None, "status": "status", "warnings": [], }, "settings": {}, "status": "status", "r_squared_adj": None, "warnings": [ { "data": {}, "description": "description", "qualified_name": "qualified_name", } ], } def test_model_results_json_with_nan_r_squared_adj(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula", status="status", r_squared_adj=np.nan, ) model_results = CalTRACKUsagePerDayModelResults( status="status", method_name="method_name", model=candidate_model, r_squared_adj=np.nan, ) assert model_results.json() == { "candidates": None, "interval": None, "metadata": {}, "method_name": "method_name", "totals_metrics": None, "avgs_metrics": None, "model": { "formula": "formula", "model_params": {}, "model_type": "model_type", "r_squared_adj": None, "status": "status", "warnings": [], }, "settings": {}, "status": "status", "r_squared_adj": None, "warnings": [], } def test_model_results_json_with_model_metrics(): candidate_model = CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula", status="status", r_squared_adj=0.5 ) model_results = CalTRACKUsagePerDayModelResults( status="status", method_name="method_name", model=candidate_model, r_squared_adj=np.nan, ) model_metrics = ModelMetrics( observed_input=pd.Series([0, 1, 2]), predicted_input=pd.Series([1, 0, 2]) ) json_result = model_results.json() json.dumps(json_result) # just make sure it's valid json assert "totals_metrics" in json_result assert "avgs_metrics" in json_result json_result["totals_metrics"] = {} # overwrite because of floats json_result["avgs_metrics"] = {} # overwrite because of floats assert json_result == { "candidates": None, "interval": None, "metadata": {}, "method_name": "method_name", "totals_metrics": {}, "avgs_metrics": {}, "model": { "formula": "formula", "model_params": {}, "model_type": "model_type", "r_squared_adj": 0.5, "status": "status", "warnings": [], }, "settings": {}, "status": "status", "r_squared_adj": None, "warnings": [], } @pytest.fixture def utc_index(): return pd.date_range("2011-01-01", freq="H", periods=365 * 24 + 1, tz="UTC") @pytest.fixture def temperature_data(utc_index): series = pd.Series( [ 30.0 * ((i % (365 * 24.0)) / (365 * 24.0)) # 30 * frac of way through year + 50.0 # range from 50 to 80 for i in range(len(utc_index)) ], index=utc_index, ) return series @pytest.fixture def prediction_index(temperature_data): return temperature_data.resample("D").mean().index @pytest.fixture def candidate_model_no_model_none(): return CalTRACKUsagePerDayCandidateModel( model_type=None, formula="formula", status="QUALIFIED", model_params={"intercept": 1}, ) def test_caltrack_predict_no_model_none( candidate_model_no_model_none, prediction_index, temperature_data ): with pytest.raises(ValueError): candidate_model_no_model_none.predict(prediction_index, temperature_data) @pytest.fixture def candidate_model_intercept_only(): return CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="QUALIFIED", model_params={"intercept": 1}, ) def test_caltrack_predict_intercept_only( candidate_model_intercept_only, prediction_index, temperature_data ): model_prediction = candidate_model_intercept_only.predict( prediction_index, temperature_data ) prediction = model_prediction.result assert prediction["predicted_usage"].sum() == 365 assert sorted(prediction.columns) == ["predicted_usage"] def test_caltrack_predict_intercept_only_with_disaggregated( candidate_model_intercept_only, prediction_index, temperature_data ): model_prediction = candidate_model_intercept_only.predict( prediction_index, temperature_data, with_disaggregated=True ) prediction = model_prediction.result assert prediction["base_load"].sum() == 365.0 assert prediction["cooling_load"].sum() == 0.0 assert prediction["heating_load"].sum() == 0.0 assert prediction["predicted_usage"].sum() == 365.0 assert sorted(prediction.columns) == [ "base_load", "cooling_load", "heating_load", "predicted_usage", ] def test_caltrack_predict_intercept_only_with_design_matrix( candidate_model_intercept_only, prediction_index, temperature_data ): model_prediction = candidate_model_intercept_only.predict( prediction_index, temperature_data, with_design_matrix=True ) prediction = model_prediction.result assert sorted(prediction.columns) == [ "n_days", "n_days_dropped", "n_days_kept", "predicted_usage", "temperature_mean", ] assert prediction.n_days.sum() == 365.0 assert prediction.n_days_dropped.sum() == 0.0 assert prediction.n_days_kept.sum() == 365 assert prediction.predicted_usage.sum() == 365.0 assert round(prediction.temperature_mean.mean()) == 65.0 @pytest.fixture def candidate_model_missing_params(): return CalTRACKUsagePerDayCandidateModel( model_type="intercept_only", formula="formula", status="QUALIFIED", model_params={}, ) def test_caltrack_predict_missing_params( candidate_model_missing_params, prediction_index, temperature_data ): with pytest.raises(MissingModelParameterError): candidate_model_missing_params.predict(prediction_index, temperature_data) @pytest.fixture def candidate_model_cdd_only(): return CalTRACKUsagePerDayCandidateModel( model_type="cdd_only", formula="formula", status="QUALIFIED", model_params={"intercept": 1, "beta_cdd": 1, "cooling_balance_point": 65}, ) def test_caltrack_predict_cdd_only( candidate_model_cdd_only, prediction_index, temperature_data ): model_prediction = candidate_model_cdd_only.predict( prediction_index, temperature_data ) prediction_df = model_prediction.result assert round(prediction_df.predicted_usage.sum()) == 1733 def test_caltrack_predict_cdd_only_with_disaggregated( candidate_model_cdd_only, prediction_index, temperature_data ): model_prediction = candidate_model_cdd_only.predict( prediction_index, temperature_data, with_disaggregated=True ) prediction = model_prediction.result assert round(prediction.predicted_usage.sum()) == 1733 assert round(prediction.base_load.sum()) == 365.0 assert round(prediction.heating_load.sum()) == 0.0 assert round(prediction.cooling_load.sum()) == 1368.0 def test_caltrack_predict_cdd_only_with_design_matrix( candidate_model_cdd_only, prediction_index, temperature_data ): model_prediction = candidate_model_cdd_only.predict( prediction_index, temperature_data, with_design_matrix=True ) prediction = model_prediction.result assert sorted(prediction.columns) == [ "cdd_65", "n_days", "n_days_dropped", "n_days_kept", "predicted_usage", "temperature_mean", ] assert round(prediction.cdd_65.sum()) == 1368.0 assert prediction.n_days.sum() == 365.0 assert prediction.n_days_dropped.sum() == 0 assert prediction.n_days_kept.sum() == 365.0 assert round(prediction.predicted_usage.sum()) == 1733 assert round(prediction.temperature_mean.mean()) == 65.0 @pytest.fixture def candidate_model_hdd_only(): return CalTRACKUsagePerDayCandidateModel( model_type="hdd_only", formula="formula", status="QUALIFIED", model_params={"intercept": 1, "beta_hdd": 1, "heating_balance_point": 65}, ) def test_caltrack_predict_hdd_only( candidate_model_hdd_only, prediction_index, temperature_data ): model_prediction = candidate_model_hdd_only.predict( prediction_index, temperature_data ) prediction = model_prediction.result assert round(prediction.predicted_usage.sum()) == 1734 def test_caltrack_predict_hdd_only_with_disaggregated( candidate_model_hdd_only, prediction_index, temperature_data ): model_prediction = candidate_model_hdd_only.predict( prediction_index, temperature_data, with_disaggregated=True ) prediction = model_prediction.result assert round(prediction.predicted_usage.sum()) == 1734 assert round(prediction.base_load.sum()) == 365.0 assert round(prediction.heating_load.sum()) == 1369.0 assert round(prediction.cooling_load.sum()) == 0.0 def test_caltrack_predict_hdd_only_with_design_matrix( candidate_model_hdd_only, prediction_index, temperature_data ): model_prediction = candidate_model_hdd_only.predict( prediction_index, temperature_data, with_design_matrix=True ) prediction = model_prediction.result assert sorted(prediction.columns) == [ "hdd_65", "n_days", "n_days_dropped", "n_days_kept", "predicted_usage", "temperature_mean", ] assert round(prediction.hdd_65.sum()) == 1369.0 assert prediction.n_days.sum() == 365.0 assert prediction.n_days_dropped.sum() == 0 assert prediction.n_days_kept.sum() == 365.0 assert round(prediction.predicted_usage.sum()) == 1734 assert round(prediction.temperature_mean.mean()) == 65.0 @pytest.fixture def candidate_model_cdd_hdd(): return CalTRACKUsagePerDayCandidateModel( model_type="cdd_hdd", formula="formula", status="QUALIFIED", model_params={ "intercept": 1, "beta_hdd": 1, "heating_balance_point": 60, "beta_cdd": 1, "cooling_balance_point": 70, }, ) def test_caltrack_predict_cdd_hdd( candidate_model_cdd_hdd, prediction_index, temperature_data ): model_prediction = candidate_model_cdd_hdd.predict( prediction_index, temperature_data ) prediction = model_prediction.result assert round(prediction.predicted_usage.sum()) == 1582.0 def test_caltrack_predict_cdd_hdd_disaggregated( candidate_model_cdd_hdd, prediction_index, temperature_data ): model_prediction = candidate_model_cdd_hdd.predict( prediction_index, temperature_data, with_disaggregated=True ) prediction = model_prediction.result assert round(prediction.predicted_usage.sum()) == 1582.0 assert round(prediction.base_load.sum()) == 365.0 assert round(prediction.heating_load.sum()) == 609.0 assert round(prediction.cooling_load.sum()) == 608.0 def test_caltrack_predict_cdd_hdd_with_design_matrix( candidate_model_cdd_hdd, prediction_index, temperature_data ): model_prediction = candidate_model_cdd_hdd.predict( prediction_index, temperature_data, with_design_matrix=True ) prediction = model_prediction.result assert sorted(prediction.columns) == [ "cdd_70", "hdd_60", "n_days", "n_days_dropped", "n_days_kept", "predicted_usage", "temperature_mean", ] assert round(prediction.cdd_70.sum()) == 608.0 assert round(prediction.hdd_60.sum()) == 609.0 assert prediction.n_days.sum() == 365.0 assert prediction.n_days_dropped.sum() == 0 assert prediction.n_days_kept.sum() == 365.0 assert round(prediction.predicted_usage.sum()) == 1582.0 assert round(prediction.temperature_mean.mean()) == 65.0 def test_caltrack_predict_cdd_hdd_with_design_matrix_missing_temp_data( candidate_model_cdd_hdd, il_electricity_cdd_hdd_billing_monthly ): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] prediction_index = meter_data.index[2:4] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] temp_data = temperature_data["2015-11":"2016-03"] temp_data_greater_90perc_missing = temp_data[ ~( (pd.Timestamp("2016-01-27T12:00:00", tz="utc") < temp_data.index) & (temp_data.index < pd.Timestamp("2016-01-31T12:00:00", tz="utc")) ) ].reindex(temp_data.index) model_prediction = candidate_model_cdd_hdd.predict( prediction_index, temp_data_greater_90perc_missing, with_design_matrix=True ) prediction = model_prediction.result assert sorted(prediction.columns) == [ "cdd_70", "hdd_60", "n_days", "n_days_dropped", "n_days_kept", "predicted_usage", "temperature_mean", ] assert prediction.shape == (0, 7) @pytest.fixture def candidate_model_bad_model_type(): return CalTRACKUsagePerDayCandidateModel( model_type="unknown", formula="formula", status="QUALIFIED", model_params={} ) def test_caltrack_predict_bad_model_type( candidate_model_bad_model_type, temperature_data, prediction_index ): with pytest.raises(UnrecognizedModelTypeError): candidate_model_bad_model_type.predict(prediction_index, temperature_data) def test_caltrack_predict_empty( candidate_model_bad_model_type, temperature_data, prediction_index ): model_prediction_obj = candidate_model_bad_model_type.predict( prediction_index[:0], temperature_data[:0] ) assert model_prediction_obj.result.empty is True @pytest.fixture def cdd_hdd_h54_c67_billing_monthly_totals(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] temperature_features = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[54], cooling_balance_points=[67], use_mean_daily_values=False, ) data = merge_features([meter_data, temperature_features]) return data def test_caltrack_predict_design_matrix_input_avg_false_output_avg_true( cdd_hdd_h54_c67_billing_monthly_totals ): data = cdd_hdd_h54_c67_billing_monthly_totals prediction = _caltrack_predict_design_matrix( "cdd_hdd", { "intercept": 13.420093629452852, "beta_cdd": 2.257868665412409, "beta_hdd": 1.0479347638717025, "cooling_balance_point": 67, "heating_balance_point": 54, }, data, input_averages=False, output_averages=True, ) assert round(prediction.mean(), 3) == 28.253 def test_caltrack_predict_design_matrix_input_avg_false_output_avg_false( cdd_hdd_h54_c67_billing_monthly_totals ): data = cdd_hdd_h54_c67_billing_monthly_totals prediction = _caltrack_predict_design_matrix( "cdd_hdd", { "intercept": 13.420093629452852, "beta_cdd": 2.257868665412409, "beta_hdd": 1.0479347638717025, "cooling_balance_point": 67, "heating_balance_point": 54, }, data, input_averages=False, output_averages=False, ) assert round(prediction.mean(), 3) == 855.832 @pytest.fixture def cdd_hdd_h54_c67_billing_monthly_avgs(il_electricity_cdd_hdd_billing_monthly): meter_data = il_electricity_cdd_hdd_billing_monthly["meter_data"] temperature_data = il_electricity_cdd_hdd_billing_monthly["temperature_data"] temperature_features = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[54], cooling_balance_points=[67], use_mean_daily_values=True, ) meter_data_feature = compute_usage_per_day_feature(meter_data) data = merge_features([meter_data_feature, temperature_features]) return data def test_caltrack_predict_design_matrix_input_avg_true_output_avg_false( cdd_hdd_h54_c67_billing_monthly_avgs ): data = cdd_hdd_h54_c67_billing_monthly_avgs prediction = _caltrack_predict_design_matrix( "cdd_hdd", { "intercept": 13.420093629452852, "beta_cdd": 2.257868665412409, "beta_hdd": 1.0479347638717025, "cooling_balance_point": 67, "heating_balance_point": 54, }, data, input_averages=True, output_averages=False, ) assert round(prediction.mean(), 3) == 855.832 def test_caltrack_predict_design_matrix_input_avg_true_output_avg_true( cdd_hdd_h54_c67_billing_monthly_avgs ): data = cdd_hdd_h54_c67_billing_monthly_avgs prediction = _caltrack_predict_design_matrix( "cdd_hdd", { "intercept": 13.420093629452852, "beta_cdd": 2.257868665412409, "beta_hdd": 1.0479347638717025, "cooling_balance_point": 67, "heating_balance_point": 54, }, data, input_averages=True, output_averages=True, ) assert round(prediction.mean(), 3) == 28.253 def test_caltrack_predict_design_matrix_n_days(cdd_hdd_h54_c67_billing_monthly_totals): # This makes sure that the method works with n_days when # DatetimeIndexes are not available. data = cdd_hdd_h54_c67_billing_monthly_totals data = data.reset_index(drop=True) data["n_days"] = 1 prediction = _caltrack_predict_design_matrix( "cdd_hdd", { "intercept": 13.420093629452852, "beta_cdd": 2.257868665412409, "beta_hdd": 1.0479347638717025, "cooling_balance_point": 67, "heating_balance_point": 54, }, data, input_averages=True, output_averages=True, ) assert prediction.mean() is not None def test_caltrack_predict_design_matrix_no_days_fails( cdd_hdd_h54_c67_billing_monthly_totals ): # This makes sure that the method fails if neither n_days nor # a DatetimeIndex is available. data = cdd_hdd_h54_c67_billing_monthly_totals data = data.reset_index(drop=True) with pytest.raises(ValueError): _caltrack_predict_design_matrix( "cdd_hdd", { "intercept": 13.420093629452852, "beta_cdd": 2.257868665412409, "beta_hdd": 1.0479347638717025, "cooling_balance_point": 67, "heating_balance_point": 54, }, data, input_averages=True, output_averages=True, ) def test_get_too_few_non_zero_degree_day_warning_ok(): warnings = get_too_few_non_zero_degree_day_warning( model_type="model_type", balance_point=65, degree_day_type="xdd", degree_days=pd.Series([1, 1, 1]), minimum_non_zero=2, ) assert warnings == [] def test_get_too_few_non_zero_degree_day_warning_fail(): warnings = get_too_few_non_zero_degree_day_warning( model_type="model_type", balance_point=65, degree_day_type="xdd", degree_days=pd.Series([0, 0, 3]), minimum_non_zero=2, ) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.model_type.too_few_non_zero_xdd" ) assert warning.description == ( "Number of non-zero daily XDD values below accepted minimum." " Candidate fit not attempted." ) assert warning.data == { "minimum_non_zero_xdd": 2, "n_non_zero_xdd": 1, "xdd_balance_point": 65, } def test_get_total_degree_day_too_low_warning_ok(): warnings = get_total_degree_day_too_low_warning( model_type="model_type", balance_point=65, degree_day_type="xdd", avg_degree_days=pd.Series([1, 1, 1]), period_days=pd.Series([3, 1, 2]), minimum_total=4, ) assert warnings == [] def test_get_total_degree_day_too_low_warning_fail(): warnings = get_total_degree_day_too_low_warning( model_type="model_type", balance_point=65, degree_day_type="xdd", avg_degree_days=pd.Series([0.5, 0.5, 0.5]), period_days=pd.Series([3, 1, 2]), minimum_total=4, ) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.model_type.total_xdd_too_low" ) assert warning.description == ( "Total XDD below accepted minimum. Candidate fit not attempted." ) assert warning.data == { "total_xdd": 3.0, "total_xdd_minimum": 4, "xdd_balance_point": 65, } def test_get_parameter_negative_warning_ok(): warnings = get_parameter_negative_warning( "intercept_only", {"intercept": 0}, "intercept" ) assert warnings == [] def test_get_parameter_negative_warning_fail(): warnings = get_parameter_negative_warning( "intercept_only", {"intercept": -1}, "intercept" ) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.intercept_only.intercept_negative" ) assert warning.description == ( "Model fit intercept parameter is negative. Candidate model rejected." ) assert warning.data == {"intercept": -1} def test_get_parameter_p_value_too_high_warning_ok(): warnings = get_parameter_p_value_too_high_warning( "intercept_only", {"intercept": 0}, "intercept", 0.1, 0.1 ) assert warnings == [] def test_get_parameter_p_value_too_high_warning_fail(): warnings = get_parameter_p_value_too_high_warning( "intercept_only", {"intercept": 0}, "intercept", 0.2, 0.1 ) assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.intercept_only.intercept_p_value_too_high" ) assert warning.description == ( "Model fit intercept p-value is too high. Candidate model rejected." ) assert warning.data == { "intercept": 0, "intercept_maximum_p_value": 0.1, "intercept_p_value": 0.2, } def test_get_intercept_only_candidate_models_fail(): # should be covered by ETL, but this ensures no negative values. data = pd.DataFrame({"meter_value": np.arange(10) * -1}) candidate_models = get_intercept_only_candidate_models(data, weights_col=None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "intercept_only" assert model.formula == "meter_value ~ 1" assert model.status == "DISQUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == ["intercept"] assert round(model.model_params["intercept"], 2) == -4.5 assert model.r_squared_adj == 0 assert len(model.warnings) == 1 warning = model.warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.intercept_only.intercept_negative" ) def test_get_intercept_only_candidate_models_qualified( prediction_index, temperature_data ): data = pd.DataFrame({"meter_value": np.arange(10)}) candidate_models = get_intercept_only_candidate_models(data, weights_col=None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "intercept_only" assert model.formula == "meter_value ~ 1" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == ["intercept"] assert round(model.model_params["intercept"], 2) == 4.5 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 1642.5 assert model.r_squared_adj == 0 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_intercept_only_candidate_models_qualified_with_weights( prediction_index, temperature_data ): data = pd.DataFrame({"meter_value": np.arange(10), "weights": np.arange(10)}) candidate_models = get_intercept_only_candidate_models(data, "weights") assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "intercept_only" assert model.formula == "meter_value ~ 1" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == ["intercept"] assert round(model.model_params["intercept"], 2) == 6.33 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 2311.67 assert model.r_squared_adj == 0 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_intercept_only_candidate_models_error(): data = pd.DataFrame({"meter_value": []}) candidate_models = get_intercept_only_candidate_models(data, weights_col=None) assert len(candidate_models) == 1 model = candidate_models[0] assert len(model.warnings) == 1 warning = model.warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.intercept_only.model_results" ) assert warning.description == ( "Error encountered in statsmodels.formula.api.ols method." " (Empty data?)" ) assert list(sorted(warning.data.keys())) == ["traceback"] assert warning.data["traceback"] is not None def test_get_cdd_only_candidate_models_qualified(prediction_index, temperature_data): data = pd.DataFrame({"meter_value": [1, 1, 1, 6], "cdd_65": [0, 0.1, 0, 5]}) candidate_models = get_cdd_only_candidate_models(data, 1, 1, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_only" assert model.formula == "meter_value ~ cdd_65" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_cdd", "cooling_balance_point", "intercept", ] assert round(model.model_params["beta_cdd"], 2) == 1.01 assert round(model.model_params["cooling_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 0.97 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 1730.04 assert round(model.r_squared_adj, 2) == 1.00 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_cdd_only_candidate_models_qualified_with_weights( prediction_index, temperature_data ): data = pd.DataFrame( { "meter_value": [1, 1, 1, 6], "cdd_65": [0, 0.1, 0, 5], "weights": [1, 100, 1, 1], } ) candidate_models = get_cdd_only_candidate_models(data, 1, 1, 0.1, "weights") assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_only" assert model.formula == "meter_value ~ cdd_65" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_cdd", "cooling_balance_point", "intercept", ] assert round(model.model_params["beta_cdd"], 2) == 1.02 assert round(model.model_params["cooling_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 0.9 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 1723.19 assert round(model.r_squared_adj, 2) == 1.00 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_cdd_only_candidate_models_not_attempted(): data = pd.DataFrame({"meter_value": [1, 1, 1, 6], "cdd_65": [0, 0.1, 0, 5]}) candidate_models = get_cdd_only_candidate_models(data, 10, 10, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_only" assert model.formula == "meter_value ~ cdd_65" assert model.status == "NOT ATTEMPTED" assert model.model is None assert model.result is None assert model.model_params == {} assert model.r_squared_adj is None assert len(model.warnings) == 2 assert json.dumps(model.json()) is not None def test_get_cdd_only_candidate_models_disqualified(prediction_index, temperature_data): data = pd.DataFrame({"meter_value": [1, 1, 1, -4], "cdd_65": [0, 0.1, 0, 5]}) candidate_models = get_cdd_only_candidate_models(data, 1, 1, 0.0, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_only" assert model.formula == "meter_value ~ cdd_65" assert model.status == "DISQUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_cdd", "cooling_balance_point", "intercept", ] assert round(model.model_params["beta_cdd"], 2) == -1.01 assert round(model.model_params["cooling_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 1.03 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == -1000.04 assert round(model.r_squared_adj, 2) == 1.00 assert len(model.warnings) == 2 assert json.dumps(model.json()) is not None def test_get_cdd_only_candidate_models_error(): data = pd.DataFrame({"meter_value": [], "cdd_65": []}) candidate_models = get_cdd_only_candidate_models(data, 0, 0, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert len(model.warnings) == 1 warning = model.warnings[0] assert warning.qualified_name == ("eemeter.caltrack_daily.cdd_only.model_results") assert warning.description == ( "Error encountered in statsmodels.formula.api.ols method." " (Empty data?)" ) assert list(sorted(warning.data.keys())) == ["traceback"] assert warning.data["traceback"] is not None def test_get_hdd_only_candidate_models_qualified(prediction_index, temperature_data): data = pd.DataFrame({"meter_value": [1, 1, 1, 6], "hdd_65": [0, 0.1, 0, 5]}) candidate_models = get_hdd_only_candidate_models(data, 1, 1, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "hdd_only" assert model.formula == "meter_value ~ hdd_65" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_hdd", "heating_balance_point", "intercept", ] assert round(model.model_params["beta_hdd"], 2) == 1.01 assert round(model.model_params["heating_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 0.97 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 1730.67 assert round(model.r_squared_adj, 2) == 1.00 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_hdd_only_candidate_models_qualified_with_weights( prediction_index, temperature_data ): data = pd.DataFrame( { "meter_value": [1, 1, 1, 6], "hdd_65": [0, 0.1, 0, 5], "weights": [1, 100, 1, 1], } ) candidate_models = get_hdd_only_candidate_models(data, 1, 1, 0.1, "weights") assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "hdd_only" assert model.formula == "meter_value ~ hdd_65" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_hdd", "heating_balance_point", "intercept", ] assert round(model.model_params["beta_hdd"], 2) == 1.02 assert round(model.model_params["heating_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 0.9 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 1723.83 assert round(model.r_squared_adj, 2) == 1.00 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_hdd_only_candidate_models_not_attempted(): data = pd.DataFrame({"meter_value": [1, 1, 1, 6], "hdd_65": [0, 0.1, 0, 5]}) candidate_models = get_hdd_only_candidate_models(data, 10, 10, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "hdd_only" assert model.formula == "meter_value ~ hdd_65" assert model.status == "NOT ATTEMPTED" assert model.model is None assert model.result is None assert model.model_params == {} assert model.r_squared_adj is None assert len(model.warnings) == 2 assert json.dumps(model.json()) is not None def test_get_hdd_only_candidate_models_disqualified(prediction_index, temperature_data): data = pd.DataFrame({"meter_value": [1, 1, 1, -4], "hdd_65": [0, 0.1, 0, 5]}) candidate_models = get_hdd_only_candidate_models(data, 1, 1, 0.0, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "hdd_only" assert model.formula == "meter_value ~ hdd_65" assert model.status == "DISQUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_hdd", "heating_balance_point", "intercept", ] assert round(model.model_params["beta_hdd"], 2) == -1.01 assert round(model.model_params["heating_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 1.03 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == -1000.67 assert round(model.r_squared_adj, 2) == 1.00 assert len(model.warnings) == 2 assert json.dumps(model.json()) is not None def test_get_hdd_only_candidate_models_error(): data = pd.DataFrame({"meter_value": [], "hdd_65": []}) candidate_models = get_hdd_only_candidate_models(data, 0, 0, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert len(model.warnings) == 1 warning = model.warnings[0] assert warning.qualified_name == ("eemeter.caltrack_daily.hdd_only.model_results") assert warning.description == ( "Error encountered in statsmodels.formula.api.ols method." " (Empty data?)" ) assert list(sorted(warning.data.keys())) == ["traceback"] assert warning.data["traceback"] is not None def test_get_cdd_hdd_candidate_models_qualified(prediction_index, temperature_data): data = pd.DataFrame( { "meter_value": [6, 1, 1, 6], "cdd_65": [5, 0, 0.1, 0], "hdd_65": [0, 0.1, 0.1, 5], } ) candidate_models = get_cdd_hdd_candidate_models(data, 1, 1, 1, 1, 0.1, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_hdd" assert model.formula == "meter_value ~ cdd_65 + hdd_65" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_cdd", "beta_hdd", "cooling_balance_point", "heating_balance_point", "intercept", ] assert round(model.model_params["beta_cdd"], 2) == 1.03 assert round(model.model_params["beta_hdd"], 2) == 1.03 assert round(model.model_params["cooling_balance_point"], 2) == 65 assert round(model.model_params["heating_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 0.85 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 3130.31 assert round(model.r_squared_adj, 2) == 1.00 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_cdd_hdd_candidate_models_qualified_with_weights( prediction_index, temperature_data ): data = pd.DataFrame( { "meter_value": [6, 1, 1, 6], "cdd_65": [5, 0, 0.1, 0], "hdd_65": [0, 0.1, 0.1, 5], "weights": [1, 1, 100, 1], } ) candidate_models = get_cdd_hdd_candidate_models( data, 1, 1, 1, 1, 0.1, 0.1, "weights" ) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_hdd" assert model.formula == "meter_value ~ cdd_65 + hdd_65" assert model.status == "QUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_cdd", "beta_hdd", "cooling_balance_point", "heating_balance_point", "intercept", ] assert round(model.model_params["beta_cdd"], 2) == 1.04 assert round(model.model_params["beta_hdd"], 2) == 1.04 assert round(model.model_params["cooling_balance_point"], 2) == 65 assert round(model.model_params["heating_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 0.79 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 3139.71 assert round(model.r_squared_adj, 2) == 1.00 assert model.warnings == [] assert json.dumps(model.json()) is not None def test_get_cdd_hdd_candidate_models_not_attempted(): data = pd.DataFrame( { "meter_value": [6, 1, 1, 6], "cdd_65": [5, 0, 0.1, 0], "hdd_65": [0, 0.1, 0, 5], } ) candidate_models = get_cdd_hdd_candidate_models( data, 10, 10, 10, 10, 0.1, 0.1, None ) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_hdd" assert model.formula == "meter_value ~ cdd_65 + hdd_65" assert model.status == "NOT ATTEMPTED" assert model.model is None assert model.result is None assert model.model_params == {} assert model.r_squared_adj is None assert len(model.warnings) == 4 assert json.dumps(model.json()) is not None def test_get_cdd_hdd_candidate_models_disqualified(prediction_index, temperature_data): data = pd.DataFrame( { "meter_value": [-4, 1, 1, -4], "cdd_65": [5, 0, 0.1, 0], "hdd_65": [0, 0.1, 0, 5], } ) candidate_models = get_cdd_hdd_candidate_models(data, 1, 1, 1, 1, 0.0, 0.0, None) assert len(candidate_models) == 1 model = candidate_models[0] assert model.model_type == "cdd_hdd" assert model.formula == "meter_value ~ cdd_65 + hdd_65" assert model.status == "DISQUALIFIED" assert model.model is not None assert model.result is not None assert list(sorted(model.model_params.keys())) == [ "beta_cdd", "beta_hdd", "cooling_balance_point", "heating_balance_point", "intercept", ] assert round(model.model_params["beta_cdd"], 2) == -1.02 assert round(model.model_params["beta_hdd"], 2) == -1.02 assert round(model.model_params["cooling_balance_point"], 2) == 65 assert round(model.model_params["heating_balance_point"], 2) == 65 assert round(model.model_params["intercept"], 2) == 1.1 model_prediction = model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == -2391.1 assert round(model.r_squared_adj, 2) == 1.00 assert len(model.warnings) == 4 assert json.dumps(model.json()) is not None def test_get_cdd_hdd_candidate_models_error(): data = pd.DataFrame({"meter_value": [], "hdd_65": [], "cdd_65": []}) candidate_models = get_cdd_hdd_candidate_models(data, 0, 0, 0, 0, 0.1, 0.1, None) assert len(candidate_models) == 1 model = candidate_models[0] assert len(model.warnings) == 1 warning = model.warnings[0] assert warning.qualified_name == ("eemeter.caltrack_daily.cdd_hdd.model_results") assert warning.description == ( "Error encountered in statsmodels.formula.api.ols method." " (Empty data?)" ) assert list(sorted(warning.data.keys())) == ["traceback"] assert warning.data["traceback"] is not None @pytest.fixture def candidate_model_qualified_high_r2(): return CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula1", status="QUALIFIED", r_squared_adj=1 ) @pytest.fixture def candidate_model_qualified_low_r2(): return CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula2", status="QUALIFIED", r_squared_adj=0 ) @pytest.fixture def candidate_model_disqualified(): return CalTRACKUsagePerDayCandidateModel( model_type="model_type", formula="formula3", status="DISQUALIFIED", r_squared_adj=0.5, ) def test_select_best_candidate_ok( candidate_model_qualified_high_r2, candidate_model_qualified_low_r2, candidate_model_disqualified, ): candidates = [ candidate_model_qualified_high_r2, candidate_model_qualified_low_r2, candidate_model_disqualified, ] best_candidate, warnings = select_best_candidate(candidates) assert warnings == [] assert best_candidate.status == "QUALIFIED" assert best_candidate.formula == "formula1" assert best_candidate.r_squared_adj == 1 def test_select_best_candidate_none(candidate_model_disqualified,): candidates = [candidate_model_disqualified] best_candidate, warnings = select_best_candidate(candidates) assert best_candidate is None assert len(warnings) == 1 warning = warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.select_best_candidate.no_candidates" ) assert warning.description == ("No qualified model candidates available.") assert warning.data == {"status_count:DISQUALIFIED": 1} def test_fit_caltrack_usage_per_day_model_empty(): data = pd.DataFrame({"meter_value": [], "hdd_65": [], "cdd_65": []}) model_results = fit_caltrack_usage_per_day_model(data) assert model_results.method_name == "caltrack_usage_per_day" assert model_results.status == "NO DATA" assert len(model_results.warnings) == 1 warning = model_results.warnings[0] assert warning.qualified_name == ("eemeter.caltrack_usage_per_day.no_data") assert warning.description == ("No data available. Cannot fit model.") assert warning.data == {} @pytest.fixture def cdd_hdd_h60_c65(il_electricity_cdd_hdd_daily): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] blackout_start_date = il_electricity_cdd_hdd_daily["blackout_start_date"] temperature_features = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[60], cooling_balance_points=[65], use_mean_daily_values=True, ) meter_data_feature = compute_usage_per_day_feature(meter_data, "meter_value") data = merge_features([meter_data_feature, temperature_features]) baseline_data, warnings = get_baseline_data(data, end=blackout_start_date) return baseline_data def test_fit_caltrack_usage_per_day_model_cdd_hdd( cdd_hdd_h60_c65, prediction_index, temperature_data ): model_results = fit_caltrack_usage_per_day_model(cdd_hdd_h60_c65) assert len(model_results.candidates) == 4 assert model_results.candidates[0].model_type == "intercept_only" assert model_results.candidates[1].model_type == "hdd_only" assert model_results.candidates[2].model_type == "cdd_only" assert model_results.candidates[3].model_type == "cdd_hdd" assert model_results.model.status == "QUALIFIED" assert model_results.model.model_type == "cdd_hdd" model_prediction = model_results.model.predict(prediction_index, temperature_data) prediction_df = model_prediction.result assert round(prediction_df.predicted_usage.sum(), 2) == 7059.48 @pytest.fixture def cdd_hdd_c65(il_electricity_cdd_hdd_daily): meter_data = il_electricity_cdd_hdd_daily["meter_data"] temperature_data = il_electricity_cdd_hdd_daily["temperature_data"] blackout_start_date = il_electricity_cdd_hdd_daily["blackout_start_date"] temperature_features = compute_temperature_features( meter_data.index, temperature_data, heating_balance_points=[], cooling_balance_points=[65], use_mean_daily_values=True, ) meter_data_feature = compute_usage_per_day_feature(meter_data, "meter_value") data = merge_features([meter_data_feature, temperature_features]) baseline_data, warnings = get_baseline_data(data, end=blackout_start_date) return baseline_data def test_fit_caltrack_usage_per_day_model_cdd_only( cdd_hdd_c65, prediction_index, temperature_data ): model_results = fit_caltrack_usage_per_day_model(cdd_hdd_c65) assert len(model_results.candidates) == 2 assert model_results.candidates[0].model_type == "intercept_only" assert model_results.candidates[1].model_type == "cdd_only" assert model_results.model.status == "QUALIFIED" assert model_results.model.model_type == "cdd_only" model_prediction = model_results.model.predict(prediction_index, temperature_data) prediction_df = model_prediction.result assert round(prediction_df.predicted_usage.sum(), 2) == 10192.0 def test_fit_caltrack_usage_per_day_model_cdd_hdd_use_billing_presets( cdd_hdd_h60_c65, prediction_index, temperature_data ): model_results = fit_caltrack_usage_per_day_model( cdd_hdd_h60_c65, use_billing_presets=True, weights_col="n_days_kept" ) assert len(model_results.candidates) == 4 assert model_results.candidates[0].model_type == "intercept_only" assert model_results.candidates[1].model_type == "hdd_only" assert model_results.candidates[2].model_type == "cdd_only" assert model_results.candidates[3].model_type == "cdd_hdd" assert model_results.model.status == "QUALIFIED" assert model_results.model.model_type == "cdd_hdd" model_prediction = model_results.model.predict(prediction_index, temperature_data) prediction = model_prediction.result assert round(prediction.predicted_usage.sum(), 2) == 7059.48 def test_fit_caltrack_usage_per_day_model_cdd_hdd_use_billing_presets_no_weights( cdd_hdd_h60_c65, prediction_index, temperature_data ): with pytest.raises(ValueError) as exc_info: fit_caltrack_usage_per_day_model(cdd_hdd_h60_c65, use_billing_presets=True) assert "weights_col" in str(exc_info.value) # When model is intercept-only, num_parameters should = 0 with cvrmse = cvrmse_adj def test_fit_caltrack_usage_per_day_model_num_parameters_equals_zero(): data = pd.DataFrame( { "meter_value": [6, 1, 1, 6], "cdd_65": [5, 0, 0.1, 0], "hdd_65": [0, 0.1, 0.1, 5], "start": pd.date_range(start="2016-01-02", periods=4, freq="D", tz="UTC"), } ).set_index("start") model_results = fit_caltrack_usage_per_day_model(data, fit_intercept_only=True) assert ( model_results.totals_metrics.num_parameters == model_results.totals_metrics.num_parameters ) assert ( model_results.avgs_metrics.num_parameters == model_results.avgs_metrics.num_parameters ) assert ( model_results.totals_metrics.cvrmse == model_results.totals_metrics.cvrmse_adj ) assert model_results.avgs_metrics.cvrmse == model_results.avgs_metrics.cvrmse_adj def test_fit_caltrack_usage_per_day_model_no_model(): data = pd.DataFrame( { "meter_value": [4, 1, 1, 4], "cdd_65": [5, 0, 0.1, 0], "hdd_65": [0, 0.1, 0, 5], } ) model_results = fit_caltrack_usage_per_day_model( data, fit_hdd_only=False, fit_cdd_hdd=False, fit_cdd_only=False, fit_intercept_only=False, ) assert model_results.method_name == "caltrack_usage_per_day" assert model_results.status == "NO MODEL" assert len(model_results.warnings) == 1 warning = model_results.warnings[0] assert warning.qualified_name == ( "eemeter.caltrack_daily.select_best_candidate.no_candidates" ) assert warning.description == ("No qualified model candidates available.") assert warning.data == {} @pytest.fixture def baseline_meter_data_billing(): index = pd.date_range("2011-01-01", freq="30D", periods=12, tz="UTC") df = pd.DataFrame({"value": 1}, index=index) df.iloc[-1] = np.nan return df @pytest.fixture def baseline_temperature_data(): index = pd.date_range("2011-01-01", freq="H", periods=1095 * 24, tz="UTC") series = pd.Series(np.random.normal(60, 5, len(index)), index=index) return series # CalTrack 2.2.3.2 def test_caltrack_merge_temperatures_insufficient_temperature_per_period( baseline_meter_data_billing, baseline_temperature_data ): baseline_temperature_data_missing = baseline_temperature_data.copy(deep=True) baseline_temperature_data_missing.iloc[: (8 * 24)] = np.nan # test without percent_hourly_coverage_per_billing_period constraint temperature_features_no_constraint = compute_temperature_features( baseline_meter_data_billing.index, baseline_temperature_data_missing, heating_balance_points=range(40, 81), cooling_balance_points=range(50, 91), data_quality=True, keep_partial_nan_rows=False, percent_hourly_coverage_per_billing_period=0, ) assert temperature_features_no_constraint["n_days_kept"].isnull().sum() == 1 # test with default percent_hourly_coverage_per_billing_period=0.9 constraint temperature_features_with_constraint = compute_temperature_features( baseline_meter_data_billing.index, baseline_temperature_data_missing, heating_balance_points=range(40, 81), cooling_balance_points=range(50, 91), data_quality=True, keep_partial_nan_rows=False, ) assert temperature_features_with_constraint["n_days_kept"].isnull().sum() == 2 def test_caltrack_sufficiency_criteria_no_data(): data_quality = pd.DataFrame( {"meter_value": [], "temperature_not_null": [], "temperature_null": []} ) data_sufficiency = caltrack_sufficiency_criteria(data_quality, None, None) assert data_sufficiency.status == "NO DATA" assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria") assert len(data_sufficiency.warnings) == 1 warning = data_sufficiency.warnings[0] assert warning.qualified_name == ("eemeter.caltrack_sufficiency_criteria.no_data") assert warning.description == "No data available." assert warning.data == {} def test_caltrack_sufficiency_criteria_pass(): data_quality = pd.DataFrame( { "meter_value": [1, np.nan], "temperature_not_null": [1, 1], "temperature_null": [0, 0], "start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"), } ).set_index("start") requested_start = pd.Timestamp("2016-01-02").tz_localize("UTC").to_pydatetime() requested_end = pd.Timestamp("2016-01-03").tz_localize("UTC") data_sufficiency = caltrack_sufficiency_criteria( data_quality, requested_start, requested_end, num_days=1, min_fraction_daily_coverage=0.9, min_fraction_hourly_temperature_coverage_per_period=0.9, ) assert data_sufficiency.status == "PASS" assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria") assert data_sufficiency.warnings == [] assert data_sufficiency.settings == { "num_days": 1, "min_fraction_daily_coverage": 0.9, "min_fraction_hourly_temperature_coverage_per_period": 0.9, } def test_caltrack_sufficiency_criteria_pass_extreme_value_warning(): data_quality = pd.DataFrame( { "meter_value": [1, 1, 99999, 1, np.nan], "temperature_not_null": np.ones(5), "temperature_null": np.zeros(5), "start": pd.date_range(start="2016-01-02", periods=5, freq="D", tz="UTC"), } ).set_index("start") requested_start = pd.Timestamp("2016-01-02").tz_localize("UTC").to_pydatetime() requested_end = pd.Timestamp("2016-01-06").tz_localize("UTC") data_sufficiency = caltrack_sufficiency_criteria( data_quality, requested_start, requested_end, num_days=4, min_fraction_daily_coverage=0.9, min_fraction_hourly_temperature_coverage_per_period=0.9, ) assert data_sufficiency.status == "PASS" assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria") assert len(data_sufficiency.warnings) == 1 warning0 = data_sufficiency.warnings[0] assert warning0.qualified_name == ( "eemeter.caltrack_sufficiency_criteria.extreme_values_detected" ) assert warning0.data["n_extreme_values"] == 1 assert data_sufficiency.settings == { "num_days": 4, "min_fraction_daily_coverage": 0.9, "min_fraction_hourly_temperature_coverage_per_period": 0.9, } def test_caltrack_sufficiency_criteria_fail_no_data(): data_quality = pd.DataFrame( { "meter_value": [np.nan, np.nan], "temperature_not_null": [1, 5], "temperature_null": [0, 5], "start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"), } ).set_index("start") requested_start = pd.Timestamp("2016-01-02").tz_localize("UTC") requested_end = pd.Timestamp("2016-01-04").tz_localize("UTC") data_sufficiency = caltrack_sufficiency_criteria( data_quality, requested_start, requested_end, num_days=3, min_fraction_daily_coverage=0.9, min_fraction_hourly_temperature_coverage_per_period=0.9, ) assert data_sufficiency.status == "NO DATA" assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria") def test_caltrack_sufficiency_criteria_fail_no_gap(): data_quality = pd.DataFrame( { "meter_value": [1, 1], "temperature_not_null": [1, 5], "temperature_null": [0, 5], "start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"), } ).set_index("start") requested_start = pd.Timestamp("2016-01-02").tz_localize("UTC") requested_end = pd.Timestamp("2016-01-04").tz_localize("UTC") data_sufficiency = caltrack_sufficiency_criteria( data_quality, requested_start, requested_end, num_days=3, min_fraction_daily_coverage=0.9, min_fraction_hourly_temperature_coverage_per_period=0.9, ) assert data_sufficiency.status == "FAIL" assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria") assert len(data_sufficiency.warnings) == 4 warning0 = data_sufficiency.warnings[0] assert warning0.qualified_name == ( "eemeter.caltrack_sufficiency_criteria.incorrect_number_of_total_days" ) assert warning0.description == ( "Total data span does not match the required value." ) assert warning0.data == {"num_days": 3, "n_days_total": 2} warning1 = data_sufficiency.warnings[1] assert warning1.qualified_name == ( "eemeter.caltrack_sufficiency_criteria." "too_many_days_with_missing_data" ) assert warning1.description == ( "Too many days in data have missing meter data or temperature data." ) assert warning1.data == {"n_days_total": 2, "n_valid_days": 1} warning2 = data_sufficiency.warnings[2] assert warning2.qualified_name == ( "eemeter.caltrack_sufficiency_criteria." "too_many_days_with_missing_meter_data" ) assert warning2.description == ("Too many days in data have missing meter data.") # zero because nan value and last point dropped assert warning2.data == {"n_days_total": 2, "n_valid_meter_data_days": 1} warning3 = data_sufficiency.warnings[3] assert warning3.qualified_name == ( "eemeter.caltrack_sufficiency_criteria." "too_many_days_with_missing_temperature_data" ) assert warning3.description == ( "Too many days in data have missing temperature data." ) assert warning3.data == {"n_days_total": 2, "n_valid_temperature_data_days": 1} def test_caltrack_sufficiency_criteria_pass_no_requested_start_end(): data_quality = pd.DataFrame( { "meter_value": [1, np.nan], "temperature_not_null": [1, 1], "temperature_null": [0, 0], "start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"), } ).set_index("start") data_sufficiency = caltrack_sufficiency_criteria( data_quality, None, None, num_days=1, min_fraction_daily_coverage=0.9, min_fraction_hourly_temperature_coverage_per_period=0.9, ) assert data_sufficiency.status == "PASS" assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria") assert len(data_sufficiency.warnings) == 0 def test_caltrack_sufficiency_criteria_fail_with_requested_start_end(): data_quality = pd.DataFrame( { "meter_value": [1, np.nan], "temperature_not_null": [1, 1], "temperature_null": [0, 0], "start": pd.date_range(start="2016-01-02", periods=2, freq="D", tz="UTC"), } ).set_index("start") requested_start = pd.Timestamp("2016-01-01").tz_localize("UTC") requested_end = pd.Timestamp("2016-01-04").tz_localize("UTC") data_sufficiency = caltrack_sufficiency_criteria( data_quality, requested_start, requested_end, num_days=3, min_fraction_daily_coverage=0.9, min_fraction_hourly_temperature_coverage_per_period=0.9, ) assert data_sufficiency.status == "FAIL" assert data_sufficiency.criteria_name == ("caltrack_sufficiency_criteria") assert len(data_sufficiency.warnings) == 3 warning0 = data_sufficiency.warnings[0] assert warning0.qualified_name == ( "eemeter.caltrack_sufficiency_criteria." "too_many_days_with_missing_data" ) assert warning0.description == ( "Too many days in data have missing meter data or temperature data." ) assert warning0.data == {"n_days_total": 3, "n_valid_days": 1} warning1 = data_sufficiency.warnings[1] assert warning1.qualified_name == ( "eemeter.caltrack_sufficiency_criteria." "too_many_days_with_missing_meter_data" ) assert warning1.description == ("Too many days in data have missing meter data.") assert warning1.data == {"n_days_total": 3, "n_valid_meter_data_days": 1} warning2 = data_sufficiency.warnings[2] assert warning2.qualified_name == ( "eemeter.caltrack_sufficiency_criteria." "too_many_days_with_missing_temperature_data" ) assert warning2.description == ( "Too many days in data have missing temperature data." ) assert warning2.data == {"n_days_total": 3, "n_valid_temperature_data_days": 1} # CalTrack 2.2.4 def test_caltrack_sufficiency_criteria_too_much_data(): data_quality = pd.DataFrame( { "meter_value": [1, 1, np.nan], "temperature_not_null": [1, 1, 1], "temperature_null": [0, 0, 0], "start": pd.date_range(start="2016-01-02", periods=3, freq="D", tz="UTC"), } ).set_index("start") requested_start = pd.Timestamp("2016-01-03").tz_localize("UTC") requested_end =
pd.Timestamp("2016-01-03")
pandas.Timestamp
import streamlit as st import altair as alt from os import listdir from os.path import isfile, join from pydantic import BaseModel import boto3 import json import time import pandas as pd import numpy as np import yfinance as yf import datetime as dt import plotly.graph_objects as go from plotly.subplots import make_subplots import random import string from datetime import datetime from datetime import date import requests as requests import pandas as pd import matplotlib.pyplot as plt import streamlit as st from fbprophet import Prophet from fbprophet.plot import plot_plotly from pytrends.request import TrendReq import tweepy import json from tweepy import OAuthHandler import re import textblob from textblob import TextBlob from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import openpyxl import time import tqdm import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') import seaborn as sns #To Hide Warnings from urllib.request import urlopen, Request import bs4 from bs4 import BeautifulSoup from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import plotly.express as px from gensim.summarization import summarize st.set_option('deprecation.showfileUploaderEncoding', False) st.set_option('deprecation.showPyplotGlobalUse', False) # data_dir = '/root/Assignment4/Assignment-Trial/Assignment-Trial/inference-data/' # data_dir2 = '/root/Assignment4/Assignment-Trial/Assignment-Trial/fastAPIandStreamlit/awsdownload/' data_dir3 = './awsdownloadstar/' #companies = [f for f in listdir(data_dir) if isfile(join(data_dir, f))] @st.cache def load_data(): #df = data.cars() return 0 def get_data(keyword): keyword = [keyword] pytrend = TrendReq() pytrend.build_payload(kw_list=keyword) df = pytrend.interest_over_time() df.drop(columns=['isPartial'], inplace=True) df.reset_index(inplace=True) df.columns = ["ds", "y"] return df # make forecasts for a new period def make_pred(df, periods): prophet_basic = Prophet() prophet_basic.fit(df) future = prophet_basic.make_future_dataframe(periods=periods) forecast = prophet_basic.predict(future) fig1 = prophet_basic.plot(forecast, xlabel="date", ylabel="trend", figsize=(10, 6)) fig2 = prophet_basic.plot_components(forecast) forecast = forecast[["ds", "yhat"]] return forecast, fig1, fig2 def main(): df = load_data() page = st.sidebar.selectbox('Choose a page',('Homepage', 'SignUp','Logout')) #page = st.sidebar.radio("Choose a page", ["Homepage", "SignUp"]) if page == "Homepage": ACCESS_KEY_ID = 'xx' ACCESS_SECRET_KEY = 'xx' st.title('** Welcome to Team 3 CSYE !!!**') st.header('User Authentication') st.subheader('Please enter valid username password and Acess Token') usrName = st.text_input('Username') usrPassword = st.text_input('Password') acesstoken = st.text_input('Enter your Token') OTP = usrName + usrPassword dynamodb = boto3.resource('dynamodb', aws_access_key_id=ACCESS_KEY_ID, aws_secret_access_key=ACCESS_SECRET_KEY, region_name='us-east-1') table = dynamodb.Table('users') response = table.scan() OTPD = response['Items'] userlist = [] toklist = [] i = 0 while i < len(OTPD): #print(OTP[i]) x = OTPD[i]['login'] y = OTPD[i]['acesstoken'] #print(x) userlist.append(x) toklist.append(y) i=i+1 if OTP in userlist and acesstoken in toklist : verified = "True" result = "Congratulations User Verified!!" page = st.sidebar.radio("Choose a page", ["Star Masked Data","Live News","Company Profile","Technical","Google Trends","Twitter Trends","Stock Future Prediction", "Meeting Summarization"]) st.title(result) if page == "Star Masked Data": st.title("Star Data Using AWS Comprehend") user_input = st.text_input("Enter the name of the Company") user_input = user_input+".out" time.sleep(1.4) try: with open(data_dir3 + user_input) as f: st.text(f.read()) except: st.text("Company Does not Exist") elif page == "Google Trends": st.sidebar.write(""" ## Choose a keyword and a prediction period """) keyword = st.sidebar.text_input("Keyword", "Amazon") periods = st.sidebar.slider('Prediction time in days:', 7, 365, 90) details = st.sidebar.checkbox("Show details") # main section st.write(""" # Welcome to Trend Predictor App ### This app predicts the **Google Trend** you want! """) st.image('https://s3.eu-west-2.amazonaws.com/cdn.howtomakemoneyfromhomeuk.com/wp-content/uploads/2020/10/Google-Trends.jpg',width=350, use_column_width=200) st.write("Evolution of interest:", keyword) df = get_data(keyword) forecast, fig1, fig2 = make_pred(df, periods) st.pyplot(fig1) if details: st.write("### Details :mag_right:") st.pyplot(fig2) elif page == "Meeting Summarization": symbols = ['./Audio Files/Meeting 1.mp3','./Audio Files/Meeting 2.mp3', './Audio Files/Meeting 3.mp3', './Audio Files/Meeting 4.mp3'] track = st.selectbox('Choose a the Meeting Audio',symbols) st.audio(track) data_dir = './inference-data/' ratiodata = st.text_input("Please Enter a Ratio you want summary by: ") if st.button("Generate a Summarized Version of the Meeting"): time.sleep(2.4) #st.success("This is the Summarized text of the Meeting Audio Files xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxgeeeeeeeeeeeeeee eeeeeeeeeeeeeehjjjjjjjjjjjjjjjsdbjhvsdk vjbsdkvjbsdvkb skbdv") if track == "./Audio Files/Meeting 2.mp3": user_input = "NKE" time.sleep(1.4) try: with open(data_dir + user_input) as f: st.success(summarize(f.read(), ratio=float(ratiodata))) #print() st.warning("Sentiment: Negative") except: st.text("Company Does not Exist") else: user_input = "AGEN" time.sleep(1.4) try: with open(data_dir + user_input) as f: st.success(summarize(f.read(), ratio=float(ratiodata))) #print() st.success("Sentiment: Positive") except: st.text("Company Does not Exist") elif page == "Twitter Trends": st.write(""" # Welcome to Twitter Sentiment App ### This app predicts the **Twitter Sentiments** you want! """) st.image('https://assets.teenvogue.com/photos/56b4f21327a088e24b967bb6/3:2/w_531,h_354,c_limit/twitter-gifs.gif',width=250, use_column_width=200) #st.subheader("Select a topic which you'd like to get the sentiment analysis on :") ################# Twitter API Connection ####################### consumer_key = "xx" consumer_secret = "xx" access_token = "xx" access_token_secret = "xx" # Use the above credentials to authenticate the API. auth = tweepy.OAuthHandler( consumer_key , consumer_secret ) auth.set_access_token( access_token , access_token_secret ) api = tweepy.API(auth) ################################################################ df = pd.DataFrame(columns=["Date","User","IsVerified","Tweet","Likes","RT",'User_location']) # Write a Function to extract tweets: def get_tweets(Topic,Count): i=0 #my_bar = st.progress(100) # To track progress of Extracted tweets for tweet in tweepy.Cursor(api.search, q=Topic,count=100, lang="en",exclude='retweets').items(): #time.sleep(0.1) #my_bar.progress(i) df.loc[i,"Date"] = tweet.created_at df.loc[i,"User"] = tweet.user.name df.loc[i,"IsVerified"] = tweet.user.verified df.loc[i,"Tweet"] = tweet.text df.loc[i,"Likes"] = tweet.favorite_count df.loc[i,"RT"] = tweet.retweet_count df.loc[i,"User_location"] = tweet.user.location #df.to_csv("TweetDataset.csv",index=False) #df.to_excel('{}.xlsx'.format("TweetDataset"),index=False) ## Save as Excel i=i+1 if i>Count: break else: pass # Function to Clean the Tweet. def clean_tweet(tweet): return ' '.join(re.sub('(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)|([RT])', ' ', tweet.lower()).split()) # Funciton to analyze Sentiment def analyze_sentiment(tweet): analysis = TextBlob(tweet) if analysis.sentiment.polarity > 0: return 'Positive' elif analysis.sentiment.polarity == 0: return 'Neutral' else: return 'Negative' #Function to Pre-process data for Worlcloud def prepCloud(Topic_text,Topic): Topic = str(Topic).lower() Topic=' '.join(re.sub('([^0-9A-Za-z \t])', ' ', Topic).split()) Topic = re.split("\s+",str(Topic)) stopwords = set(STOPWORDS) stopwords.update(Topic) ### Add our topic in Stopwords, so it doesnt appear in wordClous ### text_new = " ".join([txt for txt in Topic_text.split() if txt not in stopwords]) return text_new # Collect Input from user : Topic = str() Topic = str(st.sidebar.text_input("Enter the topic you are interested in (Press Enter once done)")) if len(Topic) > 0 : # Call the function to extract the data. pass the topic and filename you want the data to be stored in. with st.spinner("Please wait, Tweets are being extracted"): get_tweets(Topic , Count=200) st.success('Tweets have been Extracted !!!!') # Call function to get Clean tweets df['clean_tweet'] = df['Tweet'].apply(lambda x : clean_tweet(x)) # Call function to get the Sentiments df["Sentiment"] = df["Tweet"].apply(lambda x : analyze_sentiment(x)) # Write Summary of the Tweets st.write("Total Tweets Extracted for Topic '{}' are : {}".format(Topic,len(df.Tweet))) st.write("Total Positive Tweets are : {}".format(len(df[df["Sentiment"]=="Positive"]))) st.write("Total Negative Tweets are : {}".format(len(df[df["Sentiment"]=="Negative"]))) st.write("Total Neutral Tweets are : {}".format(len(df[df["Sentiment"]=="Neutral"]))) # See the Extracted Data : if st.button("See the Extracted Data"): #st.markdown(html_temp, unsafe_allow_html=True) st.success("Below is the Extracted Data :") st.write(df.head(50)) # get the countPlot if st.button("Get Count Plot for Different Sentiments"): st.success("Generating A Count Plot") st.subheader(" Count Plot for Different Sentiments") st.write(sns.countplot(df["Sentiment"], palette="Blues")) st.pyplot() # Piechart if st.button("Get Pie Chart for Different Sentiments"): st.success("Generating A Pie Chart") a=len(df[df["Sentiment"]=="Positive"]) b=len(df[df["Sentiment"]=="Negative"]) c=len(df[df["Sentiment"]=="Neutral"]) d=np.array([a,b,c]) explode = (0.1, 0.0, 0.1) st.write(plt.pie(d,shadow=True,explode=explode,labels=["Positive","Negative","Neutral"],autopct='%1.2f%%')) st.pyplot() # get the countPlot Based on Verified and unverified Users if st.button("Get Count Plot Based on Verified and unverified Users"): st.success("Generating A Count Plot (Verified and unverified Users)") st.subheader(" Count Plot for Different Sentiments for Verified and unverified Users") st.write(sns.countplot(df["Sentiment"],hue=df.IsVerified)) st.pyplot() ## Points to add 1. Make Backgroud Clear for Wordcloud 2. Remove keywords from Wordcloud # Create a Worlcloud if st.button("Get WordCloud for all things said about {}".format(Topic)): st.success("Generating A WordCloud for all things said about {}".format(Topic)) text = " ".join(review for review in df.clean_tweet) stopwords = set(STOPWORDS) text_newALL = prepCloud(text,Topic) wordcloud = WordCloud(stopwords=stopwords,max_words=800,max_font_size=75, colormap="Blues", background_color="black").generate(text_newALL) st.write(plt.imshow(wordcloud, interpolation='bilinear')) st.pyplot() #Wordcloud for Positive tweets only if st.button("Get WordCloud for all Positive Tweets about {}".format(Topic)): st.success("Generating A WordCloud for all Positive Tweets about {}".format(Topic)) text_positive = " ".join(review for review in df[df["Sentiment"]=="Positive"].clean_tweet) stopwords = set(STOPWORDS) text_new_positive = prepCloud(text_positive,Topic) #text_positive=" ".join([word for word in text_positive.split() if word not in stopwords]) wordcloud = WordCloud(stopwords=stopwords,max_words=800,max_font_size=75, colormap="Greens", background_color="black").generate(text_new_positive) st.write(plt.imshow(wordcloud, interpolation='bilinear')) st.pyplot() #Wordcloud for Negative tweets only if st.button("Get WordCloud for all Negative Tweets about {}".format(Topic)): st.success("Generating A WordCloud for all Positive Tweets about {}".format(Topic)) text_negative = " ".join(review for review in df[df["Sentiment"]=="Negative"].clean_tweet) stopwords = set(STOPWORDS) text_new_negative = prepCloud(text_negative,Topic) #text_negative=" ".join([word for word in text_negative.split() if word not in stopwords]) wordcloud = WordCloud(stopwords=stopwords,max_words=800,max_font_size=75, colormap="Reds", background_color="black").generate(text_new_negative) st.write(plt.imshow(wordcloud, interpolation='bilinear')) st.pyplot() #st.sidebar.subheader("Scatter-plot setup") #box1 = st.sidebar.selectbox(label= "X axis", options = numeric_columns) #box2 = st.sidebar.selectbox(label="Y axis", options=numeric_columns) #sns.jointplot(x=box1, y= box2, data=df, kind = "reg", color= "red") #st.pyplot() elif page == "Stock Future Prediction": snp500 = pd.read_csv("./Datasets/SP500.csv") symbols = snp500['Symbol'].sort_values().tolist() ticker = st.sidebar.selectbox( 'Choose a S&P 500 Stock', symbols) START = "2015-01-01" TODAY = date.today().strftime("%Y-%m-%d") st.title('Stock Forecast App') st.image('https://media2.giphy.com/media/JtBZm3Getg3dqxK0zP/giphy-downsized-large.gif',width=250, use_column_width=200) # stocks = ('GOOG', 'AAPL', 'MSFT', 'GME', 'W', 'TSLA') # selected_stock = st.selectbox('Select dataset for prediction', stocks) n_years = st.slider('Years of prediction:', 1, 4) period = n_years * 365 st.title('Stock Forecast App To Do part in stockapp.py') data_load_state = st.text('Loading data...') data = yf.download(ticker, START, TODAY) data.reset_index(inplace=True) data_load_state.text('Loading data... done!') st.subheader('Raw data') st.write(data.tail()) # Plot raw data def plot_raw_data(): fig = go.Figure() fig.add_trace(go.Scatter(x=data['Date'], y=data['Open'], name="stock_open")) fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="stock_close")) fig.layout.update(title_text='Time Series data with Rangeslider', xaxis_rangeslider_visible=True) st.plotly_chart(fig) plot_raw_data() # Predict forecast with Prophet. df_train = data[['Date','Close']] df_train = df_train.rename(columns={"Date": "ds", "Close": "y"}) m = Prophet() m.fit(df_train) future = m.make_future_dataframe(periods=period) forecast = m.predict(future) # Show and plot forecast st.subheader('Forecast data') st.write(forecast.tail()) st.write(f'Forecast plot for {n_years} years') fig1 = plot_plotly(m, forecast) st.plotly_chart(fig1) st.write("Forecast components") fig2 = m.plot_components(forecast) st.write(fig2) elif page == "Technical": snp500 = pd.read_csv("./Datasets/SP500.csv") symbols = snp500['Symbol'].sort_values().tolist() ticker = st.sidebar.selectbox( 'Choose a S&P 500 Stock', symbols) stock = yf.Ticker(ticker) def calcMovingAverage(data, size): df = data.copy() df['sma'] = df['Adj Close'].rolling(size).mean() df['ema'] = df['Adj Close'].ewm(span=size, min_periods=size).mean() df.dropna(inplace=True) return df def calc_macd(data): df = data.copy() df['ema12'] = df['Adj Close'].ewm(span=12, min_periods=12).mean() df['ema26'] = df['Adj Close'].ewm(span=26, min_periods=26).mean() df['macd'] = df['ema12'] - df['ema26'] df['signal'] = df['macd'].ewm(span=9, min_periods=9).mean() df.dropna(inplace=True) return df def calcBollinger(data, size): df = data.copy() df["sma"] = df['Adj Close'].rolling(size).mean() df["bolu"] = df["sma"] + 2*df['Adj Close'].rolling(size).std(ddof=0) df["bold"] = df["sma"] - 2*df['Adj Close'].rolling(size).std(ddof=0) df["width"] = df["bolu"] - df["bold"] df.dropna(inplace=True) return df st.title('Technical Indicators') st.subheader('Moving Average') coMA1, coMA2 = st.beta_columns(2) with coMA1: numYearMA = st.number_input('Insert period (Year): ', min_value=1, max_value=10, value=2, key=0) with coMA2: windowSizeMA = st.number_input('Window Size (Day): ', min_value=5, max_value=500, value=20, key=1) start = dt.datetime.today()-dt.timedelta(numYearMA * 365) end = dt.datetime.today() dataMA = yf.download(ticker,start,end) df_ma = calcMovingAverage(dataMA, windowSizeMA) df_ma = df_ma.reset_index() figMA = go.Figure() figMA.add_trace( go.Scatter( x = df_ma['Date'], y = df_ma['Adj Close'], name = "Prices Over Last " + str(numYearMA) + " Year(s)" ) ) figMA.add_trace( go.Scatter( x = df_ma['Date'], y = df_ma['sma'], name = "SMA" + str(windowSizeMA) + " Over Last " + str(numYearMA) + " Year(s)" ) ) figMA.add_trace( go.Scatter( x = df_ma['Date'], y = df_ma['ema'], name = "EMA" + str(windowSizeMA) + " Over Last " + str(numYearMA) + " Year(s)" ) ) figMA.update_layout(legend=dict( yanchor="top", y=0.99, xanchor="left", x=0.01 )) figMA.update_layout(legend_title_text='Trend') figMA.update_yaxes(tickprefix="$") st.plotly_chart(figMA, use_container_width=True) st.subheader('Moving Average Convergence Divergence (MACD)') numYearMACD = st.number_input('Insert period (Year): ', min_value=1, max_value=10, value=2, key=2) startMACD = dt.datetime.today()-dt.timedelta(numYearMACD * 365) endMACD = dt.datetime.today() dataMACD = yf.download(ticker,startMACD,endMACD) df_macd = calc_macd(dataMACD) df_macd = df_macd.reset_index() figMACD = make_subplots(rows=2, cols=1, shared_xaxes=True, vertical_spacing=0.01) figMACD.add_trace( go.Scatter( x = df_macd['Date'], y = df_macd['Adj Close'], name = "Prices Over Last " + str(numYearMACD) + " Year(s)" ), row=1, col=1 ) figMACD.add_trace( go.Scatter( x = df_macd['Date'], y = df_macd['ema12'], name = "EMA 12 Over Last " + str(numYearMACD) + " Year(s)" ), row=1, col=1 ) figMACD.add_trace( go.Scatter( x = df_macd['Date'], y = df_macd['ema26'], name = "EMA 26 Over Last " + str(numYearMACD) + " Year(s)" ), row=1, col=1 ) figMACD.add_trace( go.Scatter( x = df_macd['Date'], y = df_macd['macd'], name = "MACD Line" ), row=2, col=1 ) figMACD.add_trace( go.Scatter( x = df_macd['Date'], y = df_macd['signal'], name = "Signal Line" ), row=2, col=1 ) figMACD.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1, xanchor="left", x=0 )) figMACD.update_yaxes(tickprefix="$") st.plotly_chart(figMACD, use_container_width=True) st.subheader('Bollinger Band') coBoll1, coBoll2 = st.beta_columns(2) with coBoll1: numYearBoll = st.number_input('Insert period (Year): ', min_value=1, max_value=10, value=2, key=6) with coBoll2: windowSizeBoll = st.number_input('Window Size (Day): ', min_value=5, max_value=500, value=20, key=7) startBoll= dt.datetime.today()-dt.timedelta(numYearBoll * 365) endBoll = dt.datetime.today() dataBoll = yf.download(ticker,startBoll,endBoll) df_boll = calcBollinger(dataBoll, windowSizeBoll) df_boll = df_boll.reset_index() figBoll = go.Figure() figBoll.add_trace( go.Scatter( x = df_boll['Date'], y = df_boll['bolu'], name = "Upper Band" ) ) figBoll.add_trace( go.Scatter( x = df_boll['Date'], y = df_boll['sma'], name = "SMA" + str(windowSizeBoll) + " Over Last " + str(numYearBoll) + " Year(s)" ) ) figBoll.add_trace( go.Scatter( x = df_boll['Date'], y = df_boll['bold'], name = "Lower Band" ) ) figBoll.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1, xanchor="left", x=0 )) figBoll.update_yaxes(tickprefix="$") st.plotly_chart(figBoll, use_container_width=True) elif page == "Live News": st.image('https://www.visitashland.com/files/latestnews.jpg',width=250, use_column_width=200) snp500 = pd.read_csv("./Datasets/SP500.csv") symbols = snp500['Symbol'].sort_values().tolist() ticker = st.sidebar.selectbox( 'Choose a S&P 500 Stock', symbols) if st.button("See Latest News about "+ticker+""): st.header('Latest News') def newsfromfizviz(temp): # time.sleep(5) finwiz_url = 'https://finviz.com/quote.ashx?t=' news_tables = {} tickers = [temp] for ticker in tickers: url = finwiz_url + ticker req = Request(url=url,headers={'user-agent': 'my-app/0.0.1'}) response = urlopen(req) # Read the contents of the file into 'html' html = BeautifulSoup(response) # Find 'news-table' in the Soup and load it into 'news_table' news_table = html.find(id='news-table') # Add the table to our dictionary news_tables[ticker] = news_table parsed_news = [] # Iterate through the news for file_name, news_table in news_tables.items(): # Iterate through all tr tags in 'news_table' for x in news_table.findAll('tr'): # read the text from each tr tag into text # get text from a only text = x.a.get_text() # splite text in the td tag into a list date_scrape = x.td.text.split() # if the length of 'date_scrape' is 1, load 'time' as the only element if len(date_scrape) == 1: time = date_scrape[0] # else load 'date' as the 1st element and 'time' as the second else: date = date_scrape[0] time = date_scrape[1] # Extract the ticker from the file name, get the string up to the 1st '_' ticker = file_name.split('_')[0] # Append ticker, date, time and headline as a list to the 'parsed_news' list parsed_news.append([ticker, date, time, text]) # Instantiate the sentiment intensity analyzer vader = SentimentIntensityAnalyzer() # Set column names columns = ['ticker', 'date', 'time', 'headline'] # Convert the parsed_news list into a DataFrame called 'parsed_and_scored_news' parsed_and_scored_news = pd.DataFrame(parsed_news, columns=columns) # Iterate through the headlines and get the polarity scores using vader scores = parsed_and_scored_news['headline'].apply(vader.polarity_scores).tolist() # Convert the 'scores' list of dicts into a DataFrame scores_df = pd.DataFrame(scores) # Join the DataFrames of the news and the list of dicts parsed_and_scored_news = parsed_and_scored_news.join(scores_df, rsuffix='_right') # Convert the date column from string to datetime parsed_and_scored_news['date'] = pd.to_datetime(parsed_and_scored_news.date).dt.date parsed_and_scored_news['Sentiment'] = np.where(parsed_and_scored_news['compound'] > 0, 'Positive', (np.where(parsed_and_scored_news['compound'] == 0, 'Neutral', 'Negative'))) return parsed_and_scored_news df = newsfromfizviz(ticker) df_pie = df[['Sentiment','headline']].groupby('Sentiment').count() fig = px.pie(df_pie, values=df_pie['headline'], names=df_pie.index, color=df_pie.index, color_discrete_map={'Positive':'green', 'Neutral':'darkblue', 'Negative':'red'}) st.subheader('Dataframe with Latest News') st.dataframe(df) st.subheader('Latest News Sentiment Distribution using Pie Chart') st.plotly_chart(fig) plt.rcParams['figure.figsize'] = [11, 5] # Group by date and ticker columns from scored_news and calculate the mean mean_scores = df.groupby(['ticker','date']).mean() # Unstack the column ticker mean_scores = mean_scores.unstack() # Get the cross-section of compound in the 'columns' axis mean_scores = mean_scores.xs('compound', axis="columns").transpose() # Plot a bar chart with pandas mean_scores.plot(kind = 'bar') plt.grid() st.set_option('deprecation.showPyplotGlobalUse', False) st.subheader('Sentiments over Time') st.pyplot() elif page == "Company Profile": snp500 = pd.read_csv("./Datasets/SP500.csv") symbols = snp500['Symbol'].sort_values().tolist() ticker = st.sidebar.selectbox( 'Choose a S&P 500 Stock', symbols) stock = yf.Ticker(ticker) stock = yf.Ticker(ticker) info = stock.info st.title('Company Profile') st.subheader(info['longName']) st.markdown('** Sector **: ' + info['sector']) st.markdown('** Industry **: ' + info['industry']) st.markdown('** Phone **: ' + info['phone']) st.markdown('** Address **: ' + info['address1'] + ', ' + info['city'] + ', ' + info['zip'] + ', ' + info['country']) st.markdown('** Website **: ' + info['website']) st.markdown('** Business Summary **') st.info(info['longBusinessSummary']) fundInfo = { 'Enterprise Value (USD)': info['enterpriseValue'], 'Enterprise To Revenue Ratio': info['enterpriseToRevenue'], 'Enterprise To Ebitda Ratio': info['enterpriseToEbitda'], 'Net Income (USD)': info['netIncomeToCommon'], 'Profit Margin Ratio': info['profitMargins'], 'Forward PE Ratio': info['forwardPE'], 'PEG Ratio': info['pegRatio'], 'Price to Book Ratio': info['priceToBook'], 'Forward EPS (USD)': info['forwardEps'], 'Beta ': info['beta'], 'Book Value (USD)': info['bookValue'], 'Dividend Rate (%)': info['dividendRate'], 'Dividend Yield (%)': info['dividendYield'], 'Five year Avg Dividend Yield (%)': info['fiveYearAvgDividendYield'], 'Payout Ratio': info['payoutRatio'] } fundDF =
pd.DataFrame.from_dict(fundInfo, orient='index')
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- """ Created on Sun Apr 2 17:13:01 2017 @author: kcarnold """ import hashlib import random import pickle import numpy as np import pandas as pd #%% #data_file = 'data/analysis_study4_2017-04-02T17:14:44.194603.pkl' #data_file = 'data/analysis_study4_2017-04-02T20:37:11.374099.pkl' #data_file = 'data/analysis_study4_2017-04-02T21:09:39.528242.pkl' #data_file = 'data/analysis_study4_2017-04-04T13:11:10.932814.pkl' data_file = 'data/analysis_funny_2017-04-07T09:58:07.316857.pkl' log_data, survey_data = pickle.load(open(data_file, 'rb')) participants = sorted(log_data.keys()) #%% def split_randomly_without_overlap(remaining_views, chunk_size, rs): chunks = [] while sum(remaining_views) >= chunk_size: chunk = [] for i in range(chunk_size): mrv = max(remaining_views) opts = [i for i, rv in enumerate(remaining_views) if rv == mrv and i not in chunk] # item = np.argmax(remaining_views) item = rs.choice(opts) assert item not in chunk chunk.append(item) remaining_views[item] -= 1 chunks.append(chunk) return chunks #split_randomly_without_overlap([1]*10, 4, rs=random.Random(0)) if False: CHUNK_SIZE = 4 VIEWS_PER_ITEM = 3 splits = split_randomly_without_overlap(len(participants), CHUNK_SIZE, VIEWS_PER_ITEM, rs=random.Random(0)) data = [{ "pages": [[ dict(participant_id=participants[idx], cond=block['condition'], text=block['finalText']) for block in all_log_analyses[participants[idx]]['blocks']] for idx in chunk], "attrs": ["food", "drinks", "atmosphere", "service", "value"], } for chunk in splits] pd.DataFrame(dict(data=[json.dumps(d) for d in data])).to_csv(f'analyzed_{"_".join(participants)}.csv', index=False) #%% # to_rate = [['852f7a', '88d3ad', '0cb74f', 'f31d92'], ['4edc26', '885dae', 'a997ed', '8c01ef'], ['773fa0', '43cd2c', '706d74', '7d5d97']] to_rate = [participants]#list(cytoolz.partition(4, non_excluded_participants)) data = [{ "pages": [[ dict(participant_id=participant_id, cond=block['condition'], text=block['finalText']) for block in all_log_analyses[participant_id]['blocks']] for participant_id in chunk], "attrs": ["food", "drinks", "atmosphere", "service", "value"], } for chunk in to_rate] #%% pd.DataFrame(dict(data=[json.dumps(d) for d in data])).to_csv(f'to_rate_{run_id}.csv', index=False) #%% # Dump for spreadsheet raters def should_flip(participant_id): return np.random.RandomState( np.frombuffer(hashlib.sha256(participant_id.encode('utf8')).digest(), dtype=np.uint32) ).rand() < .5 def make_participant_hash(participant_id): return hashlib.sha256(participant_id.encode('utf8')).hexdigest()[:4] #%% rate_round_1 = ['8ddf8b', '6a8a4c', '8e4d93', 'a178d3'] rate_round_2 =['10317e', '3822a7', '42a2d1', '51aa50', '60577e', '72b6f6', '83ada3', '993876', 'aae8e4', 'ec0620'] rate_round_3 = ['10f0dc', 'ac1341', 'b2d633', 'c8963d'] rate_round_4 = ['7939c9', '8a8a64', 'bb9486', 'c7ffcb'] rate_round_5 = ['ab938b'] all_rated = set(rate_round_1 + rate_round_2 + rate_round_3 + rate_round_4 + rate_round_5) #%% sorted(set(participants) - set(all_rated)) #%% texts = {pid: [block['finalText'] for block in data['blocks']] for pid, data in log_data.items()} #texts = {pid: [block['condition'] for block in data['blocks']] for pid, data in log_data.items()} #%% import contextlib def dump_rating_task(basename, participants, texts_by_participant_id): participant_hashes = [] with open(f'{basename}-reviews.txt', 'w') as f, contextlib.redirect_stdout(f): for participant_id in participants: texts = texts_by_participant_id[participant_id] if should_flip(participant_id): texts = texts[::-1] participant_hash = make_participant_hash(participant_id) participant_hashes.append(participant_hash) print() print(participant_hash) print('----') for i, text in enumerate(texts): # text_hash = hashlib.sha256(text.encode('utf8')).hexdigest()[:2] name_str = 'AB'[i] print(f"{participant_hash}-{name_str}") print(text.replace('\n',' ')) print() with open(f'{basename}-results.csv', 'w') as f, contextlib.redirect_stdout(f): for participant_hash in participant_hashes: for attr in ["food", "drinks", "atmosphere", "service", "value", "detailed", "written", "quality"]: print(f"{participant_hash},{attr},,") #%% dump_rating_task('data/detail_ratings/input batches/funny1', list(participants), texts) #%% participants = sorted(list(log_data.keys())) conditions = [] for author_id in participants: author_conds = log_data[author_id]['conditions'] if should_flip(author_id): rating_conds = author_conds[::-1] else: rating_conds = author_conds conditions.append([author_id, rating_conds[0], rating_conds[1], ','.join(author_conds)]) conditions_as_rated =
pd.DataFrame(conditions, columns=['author_id', 'cond_A', 'cond_B', 'author_conds'])
pandas.DataFrame
import requests from model.parsers import model as m import pandas as pd import datetime dataset = m.initialize() unique_dates = list() raw_data = requests.get('https://api.covid19india.org/states_daily.json') raw_json = raw_data.json() for item in raw_json['states_daily']: if item['date'] not in unique_dates: unique_dates.append(item['date']) for date in unique_dates: for item in raw_json['states_daily']: if date == item['date']: for state in dataset: if date not in state: state[date] = dict() state[date][item['status']] = item[state['code']] def date_validate(date_text): try: datetime.datetime.strptime(date_text, '%d-%b-%y') except ValueError: print("Incorrect date format, should be dd-Mmm-yy") return 0 def state_code_validate(state_code): unique_states = list() for item in dataset: unique_states.append(item['code']) if state_code in unique_states: return 1 else: print('Please enter a valid state code') return 0 def needs_patch(date_to_fetch, state_code): if (date_to_fetch == '26-Mar-20' and state_code == 'ap') or (date_to_fetch == '16-Mar-20' and state_code == 'mp'): return True return False def apply_patch(date_to_fetch, state_code): if date_to_fetch == '26-Mar-20' and state_code == 'ap': return {'Confirmed': '1', 'Recovered': '0', 'Deceased': '0'} if date_to_fetch == '16-Mar-20' and state_code == 'mp': return {'Confirmed': '0', 'Recovered': '0', 'Deceased': '0'} def fetch_by_date_and_code(date_to_fetch, state_code): if(needs_patch(date_to_fetch, state_code)): return apply_patch(date_to_fetch, state_code) if date_to_fetch == '26-Mar-20' and state_code == 'ap': return {'Confirmed': '1', 'Recovered': '0', 'Deceased': '0'} if date_to_fetch == '16-Mar-20' and state_code == 'mp': return {'Confirmed': '0', 'Recovered': '0', 'Deceased': '0'} if date_to_fetch in unique_dates: for state in dataset: if state['code'] == state_code: if date_to_fetch in state: return state[date_to_fetch] else : print('date does not exist') def cumulative_datewise_data(date_to_fetch, state_code): should_stop = False for unique_date in unique_dates: if unique_date == date_to_fetch: should_stop = True print(unique_date, fetch_by_date_and_code(unique_date, state_code)) if should_stop: break def cumulative_data(date_to_fetch, state_code): should_stop = False cumulative_dict = dict() if date_to_fetch in unique_dates: for unique_date in unique_dates: if unique_date == date_to_fetch: should_stop = True returned_dict = fetch_by_date_and_code(unique_date, state_code) for key in returned_dict: if key in cumulative_dict: cumulative_dict[key] += int(returned_dict[key]) else: cumulative_dict[key] = int(returned_dict[key]) if should_stop: break return cumulative_dict else: return 0 def cumulative_series_datewise_data(date_to_fetch, state_code): should_stop = False cumulative_series_datewise_dict = dict() if date_to_fetch in unique_dates: for unique_date in unique_dates: if unique_date == date_to_fetch: should_stop = True cumulative_series_datewise_dict[unique_date] = cumulative_data(unique_date, state_code) if should_stop: break return cumulative_series_datewise_dict else: print('date does not exist') def cumulative_last_3_days(state_code, should_print = False): resultset = dict() for unique_date in unique_dates[-3:]: resultset[unique_date] = cumulative_data(unique_date, state_code) if should_print: print(unique_date, cumulative_data(unique_date, state_code)) return resultset def cumulative_last_3_days_all_states(choice): resultset = dict() for state in dataset: resultset[state['name']] = cumulative_last_3_days(state['code'], False) return resultset def total_count(state_code): cumulative_dict = dict() for unique_date in unique_dates: returned_dict = fetch_by_date_and_code(unique_date, state_code) for key in returned_dict: if key in cumulative_dict: cumulative_dict[key] += int(returned_dict[key]) else: cumulative_dict[key] = int(returned_dict[key]) return cumulative_dict def make_data_frame(): unique_states = list() confirmed_list = list() recovery_list = list() deceased_list = list() for state in dataset[:-1]: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset[:-1]: status = total_count(state['code']) confirmed_list.append(status['Confirmed']) recovery_list.append(status['Recovered']) deceased_list.append(status['Deceased']) data = {'STATE/UT':unique_states, 'Confirmed':confirmed_list, 'Recovered':recovery_list, 'Deceased':deceased_list} df = pd.DataFrame(data, columns = ['STATE/UT', 'Confirmed', 'Recovered', 'Deceased']) return df def cumulative_last_3_days_confirmed_dataframe(choice): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) resultset = cumulative_last_3_days_all_states(choice) for state in resultset: for date in resultset[state]: if date not in date_dict: date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in resultset: for date in resultset[state]: dates[date].append(resultset[state][date]['Confirmed']) data = {'STATE/UT':unique_states, unique_dates[0]:dates[unique_dates[0]], unique_dates[1]:dates[unique_dates[1]], unique_dates[2]:dates[unique_dates[2]]} df = pd.DataFrame(data) return df def cumulative_last_3_days_recovered_dataframe(choice): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) resultset = cumulative_last_3_days_all_states(choice) for state in resultset: for date in resultset[state]: if date not in date_dict: date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in resultset: for date in resultset[state]: dates[date].append(resultset[state][date]['Recovered']) data = {'STATE/UT':unique_states, unique_dates[0]:dates[unique_dates[0]], unique_dates[1]:dates[unique_dates[1]], unique_dates[2]:dates[unique_dates[2]]} df = pd.DataFrame(data) return df def cumulative_last_3_days_deceased_dataframe(choice): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) resultset = cumulative_last_3_days_all_states(choice) for state in resultset: for date in resultset[state]: if date not in date_dict: date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in resultset: for date in resultset[state]: dates[date].append(resultset[state][date]['Deceased']) data = {'STATE/UT':unique_states, unique_dates[0]:dates[unique_dates[0]], unique_dates[1]:dates[unique_dates[1]], unique_dates[2]:dates[unique_dates[2]]} df = pd.DataFrame(data) return df def all_data_confirmed(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': dates[date].append(state[date]['Confirmed']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df = pd.DataFrame(data) return df def all_data_recovered(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': dates[date].append(state[date]['Recovered']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df = pd.DataFrame(data) return df def all_data_deceased(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': dates[date].append(state[date]['Deceased']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df = pd.DataFrame(data) return df def cumulative_all_data_confirmed(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': cumulative_dict = cumulative_data(date, state['code']) dates[date].append(cumulative_dict['Confirmed']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df = pd.DataFrame(data) return df def cumulative_all_data_recovered(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': cumulative_dict = cumulative_data(date, state['code']) dates[date].append(cumulative_dict['Recovered']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df = pd.DataFrame(data) return df def cumulative_all_data_deceased(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': cumulative_dict = cumulative_data(date, state['code']) dates[date].append(cumulative_dict['Deceased']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df =
pd.DataFrame(data)
pandas.DataFrame
import os import pytest import pandas as pd import numpy as np from collections import OrderedDict from ..catalog_matching import (crossmatch, select_min_dist, post_k2_clean, find_campaigns, match_k2_epic_campaign, extract_extensions, assign_PMem_mean, merge_k2_info_and_protocol, crossmatch_multiple_catalogs, pick_members_and_produce_k2_search_input, ) ra = 'RAJ2000' dec = 'DEJ2000' def test_pick_members_and_produce_k2_search_input(): #--------------------------------------------------------- # Produce fake data cross = pd.DataFrame(dict(zip(["RAJ2000_1", "DEJ2000_1", "somecolumn", "PMem_1", "PMem_2", "PMem_3"], [[20, 20, 20], [20, 20, 20], ["rolf", "hagen", "busch"], [.1, .8, .9], [.1, .8, .9], [.9, np.nan, .9]], ))) sname, name = "test", "Test" coords = "1" series = cross.loc[2,:] #this row should be preserved in result outfile = ('catalog_matching/matched_catalogs/' 'membership_matches/radec/{}_radec.csv' .format(sname)) #--------------------------------------------------------- # Call function res = pick_members_and_produce_k2_search_input(cross, sname, name, coords=coords) df = pd.read_csv(outfile, header=None) #--------------------------------------------------------- # Check if the RA/Dec file is correct: assert df.loc[0,0] == 20 assert df.loc[0,1] == 20 assert df.shape[0] == 1 assert df.shape[1] == 2 # Remove output file os.remove(outfile) # Check if the DataFrame was processed correctly assert res.shape[0] == 1 # only one member is left assert (res.loc[2,series.index] == series).all() # input columns are preserved def test_crossmatch_multiple_catalogs(): #----------------------------------------------------------- # Create a fake data set diff = 1.49/3600 # 1.5 arcsec distance c1 = pd.DataFrame(dict(zip(["RAJ2000_1","DEJ2000_1","PMem_1"], [[21,20,19],[10,10,10],[.9,.8,.7]]))) c2 = pd.DataFrame(dict(zip(["RAJ2000_2","DEJ2000_2","PMem_2","binary_2"], [[21,20+diff,19+3*diff],[10,10,10], [.75,.85,.3],[.1,.02,.11]]))) c3 = pd.DataFrame(dict(zip(["RAJ2000_3","DEJ2000_3","PMem_3"], [[np.nan,20-diff,19],[10,10,10],[.9,.9,.9]]))) d = {"1":c1, "2":c2, "3":c3} renamed_catalogs = OrderedDict(sorted(d.items(), key=lambda t: t[0])) # order the dicts, not necessary for performance but helpful for testing name = "Test" sname = "test" #----------------------------------------------------------- # Call the function res = crossmatch_multiple_catalogs(renamed_catalogs, name, sname, arcsec=3., plot=True, union=True, bijective=True) #----------------------------------------------------------- # Do some checks # Check that the table size is correct assert res.shape[0] == 5 assert res.shape[1] == 16 # Check that relevant columns are created with the right names/values assert "DEJ2000_1_2_3" in res.columns.tolist() assert set(c1.columns.values).issubset(set(res.columns.values)) assert set(c2.columns.values).issubset(set(res.columns.values)) assert set(c3.columns.values).issubset(set(res.columns.values)) # Check that the distance calculation was done correctly assert res.loc[1, "dist_1_2_3"] == pytest.approx(2.235, rel=.1) assert res.loc[2, "dist_1_2_3"] == 0. # Check that NaNs stay NaNs: assert np.isnan(res.loc[4, "RAJ2000_3"]) # Check individual values and NaNs: assert res.loc[2, "RAJ2000_1_2_3"] == 19. assert (res.DEJ2000_1_2_3.values == 10.).all() assert res.dist_1_2.dropna().shape[0] == 2 assert res.dist_1_2_3.dropna().shape[0] == 2 def test_merge_k2_info_and_protocol(): # Fake data folder = "catalog_matching/tests/exfiles/" sname = "tiny" df = pd.read_csv('catalog_matching/tests/exfiles/select_min_dist_union_k2.csv') racols = list(filter(lambda k: ra in k, df.columns.values)) deccols = list(filter(lambda k: dec in k, df.columns.values)) df["{}_mean".format(ra)] = df[racols].mean(axis=1) df["{}_mean".format(dec)] = df[deccols].mean(axis=1) # Call function merge_k2_info_and_protocol(df, "tiny", "mean", folder=folder) data = pd.read_csv("{}members.txt".format(folder)) assert data.shape[1] == 6 assert data.shape[0] == 1 assert data.nlikelymembers[0] == 7 assert data.LCs[0] == 5 assert data.cluster[0] == "tiny" # Remove the test file, as it would get longer and longer over time. os.remove("{}members.txt".format(folder)) def test_assign_PMem_mean(): # Test a working example: df = pd.DataFrame(index=np.arange(10), columns=["RAJ2000_1","DEJ2000_1","PMem_1", "RAJ2000","DEJ2000_holla","PMem_holla", "RAJ2000_2","DEJ2000_BRm2","PMem_dd",]) df["PMem_dd"] = np.arange(0,1.0,.1) df["PMem_holla"] = np.arange(0,1.0,.1) df["PMem_1"] = [.1] * 5 + [np.nan] * 5 df = assign_PMem_mean(df) assert (df.PMem_mean.tolist() == pytest.approx([.1/3, .1, .5/3, .7/3, .3, .5, .6, .7, .8, .9])) def test_extract_extensions(): #--------------------------- # Create fake data df = pd.DataFrame(columns=["RAJ2000_1","DEJ2000_1","PMem_1", "RAJ2000","DEJ2000_holla","PMem_holla", "RAJ2000_2","DEJ2000_BRm2","PMem_dd",]) # Test output as extensions assert extract_extensions(df, prefix="RAJ2000") == ["1","2"] assert extract_extensions(df, prefix="DEJ2000") == ["1","holla","BRm2"] assert extract_extensions(df, prefix="PMem") == ["1","holla","dd"] # Test output as column names assert extract_extensions(df, prefix="PMem", retcolnames=True) == ['PMem_1', 'PMem_holla', 'PMem_dd'] assert extract_extensions(df, prefix="RAJ2000", retcolnames=True) == ["RAJ2000_1","RAJ2000_2"] assert extract_extensions(df, prefix="DEJ2000", retcolnames=True) == ["DEJ2000_1","DEJ2000_holla","DEJ2000_BRm2"] # Must pass a string-convertible prefix with pytest.raises(TypeError): extract_extensions(df, prefix=None) with pytest.raises(TypeError): extract_extensions(df, prefix=1.44) assert set(extract_extensions(df, prefix="", retcolnames=True)) == set(df.columns.tolist()) - {"RAJ2000"} def test_match_k2_epic_campaign(): # set up fake data testdf = pd.DataFrame({"RAJ2000":[57.13268195367, 132.8329500, 59.], "DEJ2000":[24.03288651412, 11.7834400, -25.], "smh":["blo","blo","blo"]}) # run function resdf = match_k2_epic_campaign(testdf) # test some values from the results assert resdf.Campaign[0] == 4. assert resdf.Campaign[1] == 5. assert resdf.Campaign[2] == 16. assert resdf.Campaign[3] == 18. assert np.isnan(resdf.Campaign[4]) assert (resdf.smh.values == "blo").all() assert resdf.loc[4,:].DEJ2000 == -25. assert resdf.loc[4,:].RAJ2000 == 59. assert resdf.loc[0,:].EPIC == '211066477' assert resdf.loc[1,:].EPIC == '211409345' assert resdf.loc[2,:].EPIC == '211409345' assert resdf.loc[3,:].EPIC == '211409345' def test_find_campaigns(): # success modes are tested in match_k2_epic_campaign # test failure modes for t1 in [find_campaigns("blo ddd"), find_campaigns("67777 9888"), find_campaigns("0 nan")]: assert np.isnan(t1[0][0]) assert np.isnan(t1[1]) def test_crossmatch(): name = 'Tiny Cluster' sname ='tiny' a = pd.read_csv('catalog_matching/tests/exfiles/tiny_a.csv') b = pd.read_csv('catalog_matching/tests/exfiles/tiny_b.csv') d = pd.read_csv('catalog_matching/tests/exfiles/tiny_d.csv')#modified b keys = ['a','b'] df = crossmatch(a, b, keys, name, sname, arcsec=5., plot=False) t = pd.read_csv('catalog_matching/tests/exfiles/crossmatch_result.csv') assert t.equals(df) df = crossmatch(a, b, keys, name, sname, arcsec=5., plot=False, union=True) t = pd.read_csv('catalog_matching/tests/exfiles/crossmatch_result_union.csv') assert t.equals(df) df = crossmatch(b, a, keys[::-1], name, sname, arcsec=5., plot=False, union=True) t = pd.read_csv('catalog_matching/tests/exfiles/crossmatch_result_union_reverse.csv') assert t.equals(df) df = crossmatch(a, d, ['a','d'], name, sname, arcsec=5., plot=False, union=True, bijective=True) t =
pd.read_csv('catalog_matching/tests/exfiles/select_min_dist_union.csv')
pandas.read_csv
import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt import seaborn as sns from pathlib import Path import numpy as np def compareCounts(fileList, column): df = pd.DataFrame() for i in fileList: path =Path(i) name = path.stem src = gpd.read_file(i) #print(src) src = src.loc[src['BU_CODE'].str.contains('BU0363')] if 'BU_CODE' not in df.columns: df['BU_CODE'] = src['BU_CODE'] df['{}'.format(name)] = src['{}'.format(column)] #df = df.join(src.set_index('BU_CODE'), lsuffix='_l') else: df['{}'.format(name)] = src['{}'.format(column)] print(df.head(3)) for col in df.columns: if col!="ams_l1_totalpop_2018" and col!= "BU_CODE": print(col) df['{}'.format(col)] = df['{}'.format(col)].fillna(0).astype(np.int64) df["dif_{}".format(col)] = df[col] - df["ams_l1_totalpop_2018"] df["Error_{}".format(col)] = (df[col] - df["ams_l1_totalpop_2018"]) / df["ams_l1_totalpop_2018"].sum() * 100 df["Accuracy_{}".format(col)] = (df[col] / df["ams_l1_totalpop_2018"]) * 100 df["PrE_{}".format(col)] = (df[col] - df["ams_l1_totalpop_2018"]) * (df["ams_l1_totalpop_2018"] / df["ams_l1_totalpop_2018"].sum()) * 100# #frame['dif_sum_2018_l1_totalpop'][frame.sum_2018_l1_totalpop == 0] = 0 #frame['Error_sum_2018_l1_totalpop'][frame.sum_2018_l1_totalpop == 0] = 0 return df def BoxPlotCBS(directory, df, xLegend): sns.boxplot(x=xLegend, y="Type", data=pd.melt(df, var_name='Type', value_name=xLegend), linewidth=1.0) #plt.show() plt.savefig(directory, dpi=300, bbox_inches='tight',) plt.cla() plt.close() def BoxPlotCBS_NO(directory, df, xLegend): for column in df.columns: Q1 = df['{}'.format(column)].quantile(0.25) Q3 = df['{}'.format(column)].quantile(0.75) IQR = Q3 - Q1 #IQR is interquartile range. filter = (df['{}'.format(column)] >= Q1 - 1.5 * IQR) & (df['{}'.format(column)] <= Q3 + 1.5 *IQR) df =df.loc[filter] sns.boxplot(x=xLegend, y="Type", data=pd.melt(df, var_name='Type', value_name=xLegend), linewidth=1.0) #sns.swarmplot(x="Accuracy", y="Type", data=pd.melt(df, var_name='Type', value_name='Accuracy'), color=".15") #plt.show() plt.savefig(directory, dpi=300, bbox_inches='tight',) plt.cla() plt.close() def BoxPlot(directory, fileList, column): df = pd.DataFrame() for i in fileList: path =Path(i) name = path.stem src = gpd.read_file(i) df['{}'.format(name)] = src['{}'.format(column)] print(df.head(3)) sns.boxplot(x="Accuracy", y="Type", data=
pd.melt(df, var_name='Type', value_name='Accuracy')
pandas.melt
import streamlit as st import pandas as pd import joblib from PIL import Image model = open("Knn_Classifier.pkl","rb") model = joblib.load(model) st.title("Iris flower species Classification App") setosa= Image.open("setosa.jpg") versicolor= Image.open('versiclor.jpg') virginica = Image.open('virginia.jpg') virginica = virginica.resize((500,500)) setosa = setosa.resize((500,500)) versicolor = versicolor.resize((500,500)) st.sidebar.title("Features") parameter_list=['Sepal length (cm)','Sepal Width (cm)','Petal length (cm)','Petal Width (cm)'] parameter_input_values=[] parameter_default_values=['5.2','3.2','4.2','1.2'] values=[] #Display for parameter, parameter_df in zip(parameter_list, parameter_default_values): values= st.sidebar.slider(label=parameter, key=parameter,value=float(parameter_df), min_value=0.0, max_value=8.0, step=0.1) parameter_input_values.append(values) input_variables=
pd.DataFrame([parameter_input_values],columns=parameter_list,dtype=float)
pandas.DataFrame
from __future__ import annotations from collections.abc import MutableMapping from typing import ( Any, Callable, ItemsView, Iterable, Iterator, KeysView, List, Mapping, Optional, Protocol, Sequence, Tuple, TypeVar, Union, ValuesView, ) import numpy as np from pandas import DataFrame, Index, MultiIndex, Series from linearmodels.typing import AnyArray, Label _KT = TypeVar("_KT") _VT = TypeVar("_VT") _VT_co = TypeVar("_VT_co", covariant=True) class SupportsKeysAndGetItem(Protocol[_KT, _VT_co]): def keys(self) -> Iterable[_KT]: ... def __getitem__(self, __k: _KT) -> _VT_co: ... def _new_attr_dict_(*args: Iterable[Tuple[Any, Any]]) -> AttrDict: attr_dict = AttrDict() for k, v in args: attr_dict[k] = v return attr_dict class AttrDict(MutableMapping): """ Ordered dictionary-like object that exposes keys as attributes """ def update( self, *args: Union[SupportsKeysAndGetItem[Any, Any], Iterable[Tuple[Any, Any]]], **kwargs: Any, ) -> None: """ Update AD from dictionary or iterable E and F. If E is present and has a .keys() method, then does: for k in E: AD[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: AD[k] = v In either case, this is followed by: for k in F: AD[k] = F[k] """ self.__private_dict__.update(*args, **kwargs) def clear(self) -> None: """Remove all items from AD.""" self.__private_dict__.clear() def copy(self) -> AttrDict: """Create a shallow copy of AD""" ad = AttrDict() for key in self.__private_dict__.keys(): ad[key] = self.__private_dict__[key] return ad def keys(self) -> KeysView[Any]: """Return an ordered list-like object providing a view on AD's keys""" return self.__private_dict__.keys() def items(self) -> ItemsView[Any, Any]: """Return an ordered list-like object providing a view on AD's items""" return self.__private_dict__.items() def values(self) -> ValuesView[Any]: """Return an ordered list-like object object providing a view on AD's values""" return self.__private_dict__.values() def pop(self, key: Label, default: Any = None) -> Any: """ Remove specified key and return the corresponding value. If key is not found, default is returned if given, otherwise KeyError is raised """ return self.__private_dict__.pop(key, default) def __reduce__( self, ) -> Tuple[ Callable[[Iterable[Tuple[Any, Any]]], "AttrDict"], Tuple[Tuple[Any, Any], ...] ]: return _new_attr_dict_, tuple((k, v) for k, v in self.items()) def __len__(self) -> int: return self.__private_dict__.__len__() def __repr__(self) -> str: out = self.__private_dict__.__str__() return "AttrDict" + out def __str__(self) -> str: return self.__repr__() def __init__( self, *args: Union[Mapping[Any, Any], Sequence[Tuple[Any, Any]]], **kwargs: Any ) -> None: self.__dict__["__private_dict__"] = dict(*args, **kwargs) def __contains__(self, item: Label) -> bool: return self.__private_dict__.__contains__(item) def __getitem__(self, item: Label) -> Any: return self.__private_dict__[item] def __setitem__(self, key: Label, value: Any) -> None: if key == "__private_dict__": raise KeyError("__private_dict__ is reserved and cannot be set.") self.__private_dict__[key] = value def __delitem__(self, key: Label) -> None: del self.__private_dict__[key] def __getattr__(self, key: Label) -> Any: if key not in self.__private_dict__: raise AttributeError return self.__private_dict__[key] def __setattr__(self, key: Label, value: Any) -> None: if key == "__private_dict__": raise AttributeError("__private_dict__ is invalid") self.__private_dict__[key] = value def __delattr__(self, key: Label) -> None: del self.__private_dict__[key] def __dir__(self) -> Iterable[str]: out = [str(key) for key in self.__private_dict__.keys()] out += list(super(AttrDict, self).__dir__()) filtered = [key for key in out if key.isidentifier()] return sorted(set(filtered)) def __iter__(self) -> Iterator[Label]: return self.__private_dict__.__iter__() def ensure_unique_column(col_name: str, df: DataFrame, addition: str = "_") -> str: while col_name in df: col_name = addition + col_name + addition return col_name def panel_to_frame( x: Optional[AnyArray], items: Sequence[Label], major_axis: Sequence[Label], minor_axis: Sequence[Label], swap: bool = False, ) -> DataFrame: """ Construct a multiindex DataFrame using Panel-like arguments Parameters ---------- x : ndarray 3-d array with size nite, nmajor, nminor items : list-like List like object with item labels major_axis : list-like List like object with major_axis labels minor_axis : list-like List like object with minor_axis labels swap : bool Swap is major and minor axes Notes ----- This function is equivalent to Panel(x, items, major_axis, minor_axis).to_frame() if `swap` is True, it is equivalent to Panel(x, items, major_axis, minor_axis).swapaxes(1,2).to_frame() """ nmajor = np.arange(len(major_axis)) nminor = np.arange(len(minor_axis)) final_levels = [major_axis, minor_axis] mi =
MultiIndex.from_product([nmajor, nminor])
pandas.MultiIndex.from_product
import pandas as pd from flask import Flask, redirect, request, url_for,render_template, Response, jsonify from application import app import requests import hashlib import json @app.route('/') @app.route('/home') def home(): return render_template('homepage.html')+('<br><br> <a href="/signup_home" type="button">Create an account</a> </br>') @app.route('/login', methods=['GET','POST']) def login(): return render_template('login.html') @app.route('/signup_home', methods=['GET','POST']) def signup_home(): return '<h1>Create a new BChain account</h1><br>'+ render_template('signup.html')#,title='add_item')#+('<br><br> <a href="/products" type="button">Return to Products home</a> </br>') @app.route('/signup', methods=['GET','POST']) def signup(): if request.method == 'POST': keypair = requests.get('http://keypair-generator:5001/keys_generator').json() creds = requests.get('http://credentials:5002/accounts_database').json() current_data =
pd.DataFrame.from_dict(creds,orient='index')
pandas.DataFrame.from_dict
import numpy as np import pandas as pd import utils class Indicators: def __init__(self, stock, start_date, end_date): self.stock = stock self.start_date = start_date self.end_date = end_date self.data = utils.read_stock_data(stock) def calculate_all_indicators(self): indicators = [ self.adj_close_price(), self.bollinger_bands(), self.cci(4), self.cci(12), self.cci(20), self.ema(2), self.ema(6), self.ema(10), self.ema(12), self.macd(), self.mfi(14), self.mfi(16), self.mfi(18), self.obv(), self.px_volume(), self.rsi(6), self.rsi(12), self.sma(3), self.sma(10), self.trix(), self.volatility(2), self.volatility(4), self.volatility(6), self.volatility(8), self.volatility(10), self.volatility(12), self.volatility(14), self.volatility(16), self.volatility(18), self.volatility(20), self.willr() ] dates = utils.include_n_days_before(self.data, 1, self.start_date, self.end_date)['Date'] df = pd.concat(indicators, axis=1) return df.set_index(dates) def adj_close_price(self): df = utils.include_n_days_before(self.data, 1, self.start_date, self.end_date) return pd.DataFrame(df['Close'].values, columns=['Adj Close Price']) def bollinger_bands(self): window_len = 20 def Bollinger_Bands(stock_price, window_size, num_of_std): rolling_mean = stock_price['Close'].rolling(window=window_size).mean()[window_size-1:] rolling_std = stock_price['Close'].rolling(window=window_size).std()[window_size-1:] upper_band = np.add(rolling_mean, rolling_std * num_of_std) lower_band = np.subtract(rolling_mean, rolling_std * num_of_std) return rolling_mean, upper_band, lower_band prices = utils.include_n_days_before(self.data, window_len, self.start_date, self.end_date) middle, upper, lower = Bollinger_Bands(prices, window_len, 2) result_df = pd.DataFrame({'BB_Middle': middle.values, \ 'BB_Upper': upper.values, 'BB_Lower': lower.values}) return result_df def cci(self, num_days): df = utils.include_n_days_before(self.data, num_days, self.start_date, self.end_date) df_after_start_date = df[num_days-1:] def calculate_tp(t): return(t['High']+t['Low']+t['Close'])/3 tp_df = df_after_start_date.apply(calculate_tp, 1) # calculate TpAvg(t) where TpAvg(t,n)=Avg(Tp(t)) over [t, t-1, . . . , t-n+1]; tp_avg_df = df.apply(calculate_tp, 1) tp_avg_df = tp_avg_df.rolling(window=num_days).mean() tp_avg_df = tp_avg_df[(num_days-1):] # calculate MD(t) where MD(t)=Avg(Abs(Tp(t)-TpAvg(t,n))); md = np.mean(np.absolute(np.subtract(tp_df, tp_avg_df))) # calculate CCI(t) where CCI(t) = Tp(t)-TpAvg(t,n)/(0.15*MD(t)); cci = np.subtract(tp_df, tp_avg_df)/(0.15*md) return pd.DataFrame(cci.values, columns=['CCI_{0}'.format(num_days)]) def ema(self, num_days): df = utils.include_n_days_before(self.data, num_days, self.start_date, self.end_date) ema = df['Close'].ewm(span=num_days).mean() ema = ema[num_days-1:] return pd.DataFrame(ema.values, columns=['EMA_{0}'.format(num_days)]) def macd(self): n_slow = 26 n_fast = 12 n_signal = 9 df = utils.include_n_days_before(self.data, 1, self.start_date, self.end_date) # Calculate MACD ema_slow = df['Close'].ewm(span=n_slow, min_periods=1).mean() ema_fast = df['Close'].ewm(span=n_fast, min_periods=1).mean() macd = np.subtract(ema_fast, ema_slow) # Calculate MACD signal macd_signal = macd.ewm(span=n_signal, min_periods=1).mean() # Calculate MACD histogram macd_hist = np.subtract(macd, macd_signal) result_df = pd.DataFrame({'MACD': macd.values, \ 'MACD_Sig': macd_signal.values, \ 'MACD_Hist': macd_hist.values}) return result_df def mfi(self, num_days): df = utils.include_n_days_before(self.data, num_days, self.start_date, self.end_date) def Money_Flow_Index(window_df, tp_df, mf_df): pos_mf = 0.0 neg_mf = 0.0 for i in range(len(window_df)): tp = tp_df.iloc[i].item() mf = mf_df.iloc[i].item() if i == 0: pos_mf += mf else: tp_before = tp_df.iloc[i-1].item() if tp > tp_before: pos_mf += mf elif tp < tp_before: neg_mf += mf mfi = (pos_mf / (pos_mf + neg_mf)) * 100 return mfi tp_df = (df['High']+df['Low']+df['Close'])/3 mf_df = tp_df * df['Volume'] col_name = 'MFI_{0}'.format(num_days) mfi_df = pd.DataFrame(columns=[col_name]) for i in range(len(df)-num_days+1): temp_df = df.iloc[i:i+num_days, :] temp_tp_df = tp_df.iloc[i:i+num_days] temp_mf_df = mf_df.iloc[i:i+num_days] mfi = Money_Flow_Index(temp_df, temp_tp_df, temp_mf_df) mfi_df = mfi_df.append(pd.DataFrame([mfi], columns=[col_name]), ignore_index=True) return mfi_df def momentum(self, num_days): df = utils.include_n_days_before(self.data, num_days+1, self.start_date, self.end_date) momentum = df['Close'].rolling(window=num_days+1)\ .apply(lambda t: t[num_days]-t[0]) momentum = momentum[num_days:] return pd.DataFrame(momentum.values, columns=['MOM_{0}'.format(num_days)]) def obv(self): df = utils.include_n_days_before(self.data, 1, self.start_date, self.end_date) obv_df = pd.DataFrame([0.0], columns=['OBV']) obv = 0.0 for i in range(len(df)-1): row_i = df.iloc[i] row_i_1 = df.iloc[i+1] volume = 0.0 if row_i_1['Close'] > row_i['Close']: volume = row_i_1['Volume'] elif row_i_1['Close'] < row_i['Close']: volume = row_i_1['Volume'] * -1 obv += volume obv_df = obv_df.append(pd.DataFrame([obv], columns=['OBV']), ignore_index=True) return obv_df def px_volume(self): df = utils.include_n_days_before(self.data, 1, self.start_date, self.end_date) df = df['Volume'] return pd.DataFrame(df.values, columns=['PX Volume']) def rsi(self, num_days): df = utils.include_n_days_before(self.data, num_days+1, self.start_date, self.end_date) diff_df = df['Close'].diff() diff_df = diff_df[1:] avg_up = diff_df.where(lambda x: x > 0, other=0.0)\ .rolling(window=num_days, min_periods=num_days).mean() avg_down = diff_df.where(lambda x: x < 0, other=0.0).abs()\ .rolling(window=num_days, min_periods=num_days).mean() rsi = (avg_up / (avg_up + avg_down)) * 100 rsi = rsi[num_days-1:] return pd.DataFrame(rsi.values, columns=['RSI_{0}'.format(num_days)]) def sma(self, num_days): df = utils.include_n_days_before(self.data, num_days, self.start_date, self.end_date) sma = df['Close'].rolling(window=num_days).mean() sma = sma[num_days-1:] return pd.DataFrame(sma.values, columns=['SMA_{0}'.format(num_days)]) def trix(self): current_df = utils.include_n_days_before(self.data, 1, self.start_date, self.end_date) one_day_before_df = utils.include_n_days_before(self.data, 2, self.start_date, self.end_date) def calculate_triple_ema(df): i = 0 while i < 3: df = df.ewm(span=12, min_periods=1).mean() i += 1 return df # TRIX(t) = TR(t)/TR(t-1) where TR(t)=EMA(EMA(EMA(Price(t)))) over n days period tr_t = calculate_triple_ema(current_df['Close']) tr_t_1 = calculate_triple_ema(one_day_before_df[0:-1]['Close']) trix = np.divide(tr_t, tr_t_1) return
pd.DataFrame(trix.values, columns=['TRIX'])
pandas.DataFrame
import pandas as pd import numpy as np # Lendo do data frame df = pd.read_csv("https://pycourse.s3.amazonaws.com/bike-sharing.csv") print(df.head()) print('\n************************************************************************************\n') print(df.info()) print('\n************************************************************************************\n') print(df.dtypes) print('\n************************************************************************************\n') df['datetime'] =
pd.to_datetime(df['datetime'])
pandas.to_datetime
import os import shutil import zipfile import torch import torch.utils.data from dataset import * import pickle from sklearn.manifold import TSNE import matplotlib.pyplot as plt import matplotlib.ticker as tck import numpy as np import csv from collections import Counter, defaultdict import pandas as pd from utils import check_and_mkdir from scipy import stats import re import itertools import functools import random import seaborn as sns print = functools.partial(print, flush=True) MAX_NO_UNBALANCED_FEATURE = 0 MIN_SUCCESS_RATE = 0.5 # 0.1 MIN_SUPPORT = MIN_SUCCESS_RATE * 100 # 5 # 5 print('Global MAX_NO_UNBALANCED_FEATURE: ', MAX_NO_UNBALANCED_FEATURE) np.random.seed(0) random.seed(0) def IQR(s): return [np.quantile(s, .5), np.quantile(s, .25), np.quantile(s, .75)] def stringlist_2_list(s): r = s.strip('][').replace(',', ' ').split() r = list(map(float, r)) return r def stringlist_2_str(s, percent=False, digit=-1): r = s.strip('][').replace(',', ' ').split() r = list(map(float, r)) if percent: r = [x * 100 for x in r] if digit == 0: rr = ','.join(['{:.0f}'.format(x) for x in r]) elif digit == 1: rr = ','.join(['{:.1f}'.format(x) for x in r]) elif digit == 2: rr = ','.join(['{:.2f}'.format(x) for x in r]) elif digit == 3: rr = ','.join(['{:.1f}'.format(x) for x in r]) else: rr = ','.join(['{}'.format(x) for x in r]) return rr def boot_matrix(z, B): """Bootstrap sample Returns all bootstrap samples in a matrix""" z = np.array(z).flatten() n = len(z) # sample size idz = np.random.randint(0, n, size=(B, n)) # indices to pick for all boostrap samples return z[idz] def bootstrap_mean_ci(x, B=1000, alpha=0.05): n = len(x) # Generate boostrap distribution of sample mean xboot = boot_matrix(x, B=B) sampling_distribution = xboot.mean(axis=1) quantile_confidence_interval = np.percentile(sampling_distribution, q=(100 * alpha / 2, 100 * (1 - alpha / 2))) std = sampling_distribution.std() # if plot: # plt.hist(sampling_distribution, bins="fd") return quantile_confidence_interval, std def bootstrap_mean_pvalue(x, expected_mean=0., B=1000): """ Ref: 1. https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#cite_note-:0-1 2. https://www.tau.ac.il/~saharon/StatisticsSeminar_files/Hypothesis.pdf 3. https://github.com/mayer79/Bootstrap-p-values/blob/master/Bootstrap%20p%20values.ipynb 4. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html?highlight=one%20sample%20ttest Bootstrap p values for one-sample t test Returns boostrap p value, test statistics and parametric p value""" n = len(x) orig = stats.ttest_1samp(x, expected_mean) # Generate boostrap distribution of sample mean x_boots = boot_matrix(x - x.mean() + expected_mean, B=B) x_boots_mean = x_boots.mean(axis=1) t_boots = (x_boots_mean - expected_mean) / (x_boots.std(axis=1, ddof=1) / np.sqrt(n)) p = np.mean(t_boots >= orig[0]) p_final = 2 * min(p, 1 - p) # Plot bootstrap distribution # if plot: # plt.figure() # plt.hist(x_boots_mean, bins="fd") return p_final, orig def bootstrap_mean_pvalue_2samples(x, y, equal_var=False, B=1000): """ Bootstrap hypothesis testing for comparing the means of two independent samples Ref: 1. https://en.wikipedia.org/wiki/Bootstrapping_(statistics)#cite_note-:0-1 2. https://www.tau.ac.il/~saharon/StatisticsSeminar_files/Hypothesis.pdf 3. https://github.com/mayer79/Bootstrap-p-values/blob/master/Bootstrap%20p%20values.ipynb 4. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html?highlight=one%20sample%20ttest Bootstrap p values for one-sample t test Returns boostrap p value, test statistics and parametric p value""" n = len(x) orig = stats.ttest_ind(x, y, equal_var=equal_var) pooled_mean = np.concatenate((x, y), axis=None).mean() xboot = boot_matrix(x - x.mean() + pooled_mean, B=B) # important centering step to get sampling distribution under the null yboot = boot_matrix(y - y.mean() + pooled_mean, B=B) sampling_distribution = stats.ttest_ind(xboot, yboot, axis=1, equal_var=equal_var)[0] if np.isnan(orig[1]): p_final = np.nan else: # Calculate proportion of bootstrap samples with at least as strong evidence against null p = np.mean(sampling_distribution >= orig[0]) # RESULTS # print("p value for null hypothesis of equal population means:") # print("Parametric:", orig[1]) # print("Bootstrap:", 2 * min(p, 1 - p)) p_final = 2 * min(p, 1 - p) return p_final, orig def shell_for_ml(cohort_dir_name, model, niter=50, min_patients=500, stats=True, more_para=''): cohort_size = pickle.load(open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) fo = open('shell_{}_{}.sh'.format(model, cohort_dir_name), 'w') # 'a' name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) # load others: df = pd.read_excel(r'../data/repurposed_AD_under_trials_20200227.xlsx', dtype=str) added_drug = [] for index, row in df.iterrows(): rx = row['rxcui'] gpi = row['gpi'] if pd.notna(rx): rx = [x + '.pkl' for x in re.split('[,;+]', rx)] added_drug.extend(rx) if pd.notna(gpi): gpi = [x + '.pkl' for x in re.split('[,;+]', gpi)] added_drug.extend(gpi) print('len(added_drug): ', len(added_drug)) print(added_drug) fo.write('mkdir -p output_marketscan/{}/{}/log\n'.format(cohort_dir_name, model)) n = 0 for x in name_cnt: k, v = x if (v >= min_patients) or (k in added_drug): drug = k.split('.')[0] for ctrl_type in ['random', 'atc']: for seed in range(0, niter): cmd = "python main.py --data_dir ../ipreprocess/output_marketscan/{}/ --treated_drug {} " \ "--controlled_drug {} --run_model {} --output_marketscan_dir output_marketscan/{}/{}/ --random_seed {} " \ "--drug_coding rxnorm --med_code_topk 200 {} {} " \ "2>&1 | tee output_marketscan/{}/{}/log/{}_S{}D200C{}_{}.log\n".format( cohort_dir_name, drug, ctrl_type, model, cohort_dir_name, model, seed, '--stats' if stats else '', more_para, cohort_dir_name, model, drug, seed, ctrl_type, model) fo.write(cmd) n += 1 fo.close() print('In total ', n, ' commands') def shell_for_ml_marketscan(cohort_dir_name, model, niter=50, min_patients=500, stats=True, more_para='', selected=False): if not selected: cohort_size = pickle.load( open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) else: d = pd.read_excel(r'../iptw/output_marketscan/{}/selected_drug_list.xlsx'.format(cohort_dir_name), dtype={'drug':str}) name_cnt = [] for index, row in d.iterrows(): drug = row['drug'] n = row['n_treat'] name_cnt.append([drug, n]) fo = open('shell_{}_{}_marketscan.sh'.format(model, cohort_dir_name), 'w') # 'a' fo.write('mkdir -p output_marketscan/{}/{}/log\n'.format(cohort_dir_name, model)) n_cmd = n_drug = 0 for x in name_cnt: k, v = x if (v >= min_patients): drug = k.split('.')[0] n_drug += 1 for ctrl_type in ['random', 'atc']: for seed in range(0, niter): cmd = "python main.py --data_dir ../ipreprocess/output_marketscan/{}/ --treated_drug {} " \ "--controlled_drug {} --run_model {} --output_dir output_marketscan/{}/{}/ --random_seed {} " \ "--drug_coding gpi --med_code_topk 200 {} {} " \ "2>&1 | tee output_marketscan/{}/{}/log/{}_S{}D200C{}_{}.log\n".format( cohort_dir_name, drug, ctrl_type, model, cohort_dir_name, model, seed, '--stats' if stats else '', more_para, cohort_dir_name, model, drug, seed, ctrl_type, model) fo.write(cmd) n_cmd += 1 fo.close() print('In total ', n_drug, 'dugs ', n_cmd, ' commands') def shell_for_ml_marketscan_stats_exist(cohort_dir_name, model, niter=10, min_patients=500): cohort_size = pickle.load( open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) fo = open('shell_{}_{}_marketscan_stats_exist.sh'.format(model, cohort_dir_name), 'w') # 'a' name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) # load others: df = pd.read_excel(r'../data/repurposed_AD_under_trials_20200227.xlsx', dtype=str) added_drug = [] for index, row in df.iterrows(): rx = row['rxcui'] gpi = row['gpi'] if pd.notna(rx): rx = [x + '.pkl' for x in re.split('[,;+]', rx)] added_drug.extend(rx) if pd.notna(gpi): gpi = [x + '.pkl' for x in re.split('[,;+]', gpi)] added_drug.extend(gpi) print('len(added_drug): ', len(added_drug)) print(added_drug) fo.write('mkdir -p output_marketscan/{}/{}/log_stats_exit\n'.format(cohort_dir_name, model)) n = 0 for x in name_cnt: k, v = x if (v >= min_patients) or (k in added_drug): drug = k.split('.')[0] for ctrl_type in ['random', 'atc']: for seed in range(0, niter): cmd = "python main.py --data_dir ../ipreprocess/output_marketscan/{}/ --treated_drug {} " \ "--controlled_drug {} --run_model {} --output_dir output_marketscan/{}/{}/ --random_seed {} " \ "--drug_coding gpi --med_code_topk 200 --stats --stats_exit " \ "2>&1 | tee output_marketscan/{}/{}/log_stats_exit/{}_S{}D200C{}_{}.log\n".format( cohort_dir_name, drug, ctrl_type, model, cohort_dir_name, model, seed, cohort_dir_name, model, drug, seed, ctrl_type, model) fo.write(cmd) n += 1 fo.close() print('In total ', n, ' commands') def split_shell_file(fname, divide=2, skip_first=1): f = open(fname, 'r') content_list = f.readlines() n = len(content_list) n_d = np.ceil((n - skip_first) / divide) seg = [0, ] + [int(i * n_d + skip_first) for i in range(1, divide)] + [n] for i in range(divide): fout_name = fname.split('.') fout_name = ''.join(fout_name[:-1]) + '-' + str(i) + '.' + fout_name[-1] fout = open(fout_name, 'w') for l in content_list[seg[i]:seg[i + 1]]: fout.write(l) fout.close() print('dump done') def results_model_selection_for_ml(cohort_dir_name, model, drug_name, niter=50): cohort_size = pickle.load(open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) drug_list_all = [drug.split('.')[0] for drug, cnt in name_cnt] dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) drug_in_dir = set([x for x in os.listdir(dirname) if x.isdigit()]) drug_list = [x for x in drug_list_all if x in drug_in_dir] # in order check_and_mkdir(dirname + 'results/') for drug in drug_list: results = [] for ctrl_type in ['random', 'atc']: for seed in range(0, niter): fname = dirname + drug + "/{}_S{}D200C{}_{}".format(drug, seed, ctrl_type, model) try: df = pd.read_csv(fname + '_ALL-model-select.csv') except: print('No file exisits: ', fname + '_ALL-model-select.csv') # 1. selected by AUC dftmp = df.sort_values(by=['val_auc', 'i'], ascending=[False, True]) val_auc = dftmp.iloc[0, dftmp.columns.get_loc('val_auc')] val_auc_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] val_auc_testauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] # 2. selected by val_max_smd_iptw dftmp = df.sort_values(by=['val_max_smd_iptw', 'i'], ascending=[True, True]) val_maxsmd = dftmp.iloc[0, dftmp.columns.get_loc('val_max_smd_iptw')] val_maxsmd_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] val_maxsmd_testauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] # 3. selected by val_n_unbalanced_feat_iptw dftmp = df.sort_values(by=['val_n_unbalanced_feat_iptw', 'i'], ascending=[True, False]) # [True, True] val_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('val_n_unbalanced_feat_iptw')] val_nsmd_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] val_nsmd_testauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] # 4. selected by train_max_smd_iptw dftmp = df.sort_values(by=['train_max_smd_iptw', 'i'], ascending=[True, True]) train_maxsmd = dftmp.iloc[0, dftmp.columns.get_loc('train_max_smd_iptw')] train_maxsmd_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] train_maxsmd_testauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] # 5. selected by train_n_unbalanced_feat_iptw dftmp = df.sort_values(by=['train_n_unbalanced_feat_iptw', 'i'], ascending=[True, False]) # [True, True] train_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('train_n_unbalanced_feat_iptw')] train_nsmd_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] train_nsmd_testauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] # 6. selected by trainval_max_smd_iptw dftmp = df.sort_values(by=['trainval_max_smd_iptw', 'i'], ascending=[True, True]) trainval_maxsmd = dftmp.iloc[0, dftmp.columns.get_loc('trainval_max_smd_iptw')] trainval_maxsmd_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] trainval_maxsmd_testauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] # 7. selected by trainval_n_unbalanced_feat_iptw dftmp = df.sort_values(by=['trainval_n_unbalanced_feat_iptw', 'i'], ascending=[True, False]) # [True, True] trainval_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('trainval_n_unbalanced_feat_iptw')] trainval_nsmd_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] trainval_nsmd_testauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] # 8. FINAL: selected by trainval_n_unbalanced_feat_iptw + val AUC dftmp = df.sort_values(by=['trainval_n_unbalanced_feat_iptw', 'val_auc'], ascending=[True, False]) trainval_final_nsmd = dftmp.iloc[0, dftmp.columns.get_loc('trainval_n_unbalanced_feat_iptw')] trainval_final_valauc = dftmp.iloc[0, dftmp.columns.get_loc('val_auc')] trainval_final_finalnsmd = dftmp.iloc[0, dftmp.columns.get_loc('all_n_unbalanced_feat_iptw')] trainval_final_testnauc = dftmp.iloc[0, dftmp.columns.get_loc('test_auc')] results.append(["{}_S{}D200C{}_{}".format(drug, seed, ctrl_type, model), ctrl_type, val_auc, val_auc_nsmd, val_auc_testauc, val_maxsmd, val_maxsmd_nsmd, val_maxsmd_testauc, val_nsmd, val_nsmd_nsmd, val_nsmd_testauc, train_maxsmd, train_maxsmd_nsmd, train_maxsmd_testauc, train_nsmd, train_nsmd_nsmd, train_nsmd_testauc, trainval_maxsmd, trainval_maxsmd_nsmd, trainval_maxsmd_testauc, trainval_nsmd, trainval_nsmd_nsmd, trainval_nsmd_testauc, trainval_final_nsmd, trainval_final_valauc, trainval_final_finalnsmd, trainval_final_testnauc, ]) rdf = pd.DataFrame(results, columns=['fname', 'ctrl_type', "val_auc", "val_auc_nsmd", "val_auc_testauc", "val_maxsmd", "val_maxsmd_nsmd", "val_maxsmd_testauc", "val_nsmd", "val_nsmd_nsmd", "val_nsmd_testauc", "train_maxsmd", "train_maxsmd_nsmd", "train_maxsmd_testauc", "train_nsmd", "train_nsmd_nsmd", "train_nsmd_testauc", "trainval_maxsmd", "trainval_maxsmd_nsmd", "trainval_maxsmd_testauc", "trainval_nsmd", "trainval_nsmd_nsmd", "trainval_nsmd_testauc", "trainval_final_nsmd", "trainval_final_valauc", "trainval_final_finalnsmd", "trainval_final_testnauc", ]) rdf.to_csv(dirname + 'results/' + drug + '_model_selection.csv') for t in ['random', 'atc', 'all']: # fig = plt.figure(figsize=(20, 15)) fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(20, 18)) if t != 'all': idx = rdf['ctrl_type'] == t else: idx = rdf['ctrl_type'].notna() boxplot = rdf[idx].boxplot(column=["val_auc_nsmd", "val_maxsmd_nsmd", "val_nsmd_nsmd", "train_maxsmd_nsmd", "train_nsmd_nsmd", "trainval_maxsmd_nsmd", "trainval_nsmd_nsmd", "trainval_final_finalnsmd"], rot=25, fontsize=15, ax=ax1) ax1.axhline(y=5, color='r', linestyle='-') boxplot.set_title("{}-{}_S{}D200C{}_{}".format(drug, drug_name.get(drug)[:30], '0-19', t, model), fontsize=25) # plt.xlabel("Model selection methods", fontsize=15) ax1.set_ylabel("#unbalanced_feat_iptw of boostrap experiments", fontsize=20) # fig.savefig(dirname + 'results/' + drug + '_model_selection_boxplot-{}-allnsmd.png'.format(t)) # plt.show() # fig = plt.figure(figsize=(20, 15)) boxplot = rdf[idx].boxplot(column=["val_auc_testauc", "val_maxsmd_testauc", "val_nsmd_testauc", "train_maxsmd_testauc", "train_nsmd_testauc", "trainval_maxsmd_testauc", "trainval_nsmd_testauc", 'trainval_final_testnauc'], rot=25, fontsize=15, ax=ax2) # plt.axhline(y=0.5, color='r', linestyle='-') # boxplot.set_title("{}-{}_S{}D200C{}_{}".format(drug, drug_name.get(drug), '0-19', t, model), fontsize=25) ax2.set_xlabel("Model selection methods", fontsize=20) ax2.set_ylabel("test_auc of boostrap experiments", fontsize=20) plt.tight_layout() fig.savefig(dirname + 'results/' + drug + '_model_selection_boxplot-{}.png'.format(t)) # plt.clf() plt.close() print() def results_model_selection_for_ml_step2(cohort_dir_name, model, drug_name): cohort_size = pickle.load(open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) drug_list_all = [drug.split('.')[0] for drug, cnt in name_cnt] dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) drug_in_dir = set([x for x in os.listdir(dirname) if x.isdigit()]) drug_list = [x for x in drug_list_all if x in drug_in_dir] # in order check_and_mkdir(dirname + 'results/') writer = pd.ExcelWriter(dirname + 'results/summarized_model_selection_{}.xlsx'.format(model), engine='xlsxwriter') for t in ['random', 'atc', 'all']: results = [] for drug in drug_list: rdf = pd.read_csv(dirname + 'results/' + drug + '_model_selection.csv') if t != 'all': idx = rdf['ctrl_type'] == t else: idx = rdf['ctrl_type'].notna() r = [drug, drug_name.get(drug, '')] col_name = ['drug', 'drug_name'] # zip(["val_auc_nsmd", "val_maxsmd_nsmd", "val_nsmd_nsmd", "train_maxsmd_nsmd", # "train_nsmd_nsmd", "trainval_maxsmd_nsmd", "trainval_nsmd_nsmd", # "trainval_final_finalnsmd"], # ["val_auc_testauc", "val_maxsmd_testauc", "val_nsmd_testauc", # "train_maxsmd_testauc", "train_nsmd_testauc", "trainval_maxsmd_testauc", # "trainval_nsmd_testauc", 'trainval_final_testnauc']) for c1, c2 in zip(["val_auc_nsmd", "val_maxsmd_nsmd", "trainval_final_finalnsmd"], ["val_auc_testauc", "val_maxsmd_testauc", 'trainval_final_testnauc']): nsmd = rdf.loc[idx, c1] auc = rdf.loc[idx, c2] nsmd_med = IQR(nsmd)[0] nsmd_iqr = IQR(nsmd)[1:] nsmd_mean = nsmd.mean() nsmd_mean_ci, nsmd_mean_std = bootstrap_mean_ci(nsmd, alpha=0.05) success_rate = (nsmd <= MAX_NO_UNBALANCED_FEATURE).mean() success_rate_ci, success_rate_std = bootstrap_mean_ci(nsmd <= MAX_NO_UNBALANCED_FEATURE, alpha=0.05) auc_med = IQR(auc)[0] auc_iqr = IQR(auc)[1:] auc_mean = auc.mean() auc_mean_ci, auc_mean_std = bootstrap_mean_ci(auc, alpha=0.05) r.extend([nsmd_med, nsmd_iqr, nsmd_mean, nsmd_mean_ci, nsmd_mean_std, success_rate, success_rate_ci, success_rate_std, auc_med, auc_iqr, auc_mean, auc_mean_ci, auc_mean_std]) col_name.extend( ["nsmd_med-" + c1, "nsmd_iqr-" + c1, "nsmd_mean-" + c1, "nsmd_mean_ci-" + c1, "nsmd_mean_std-" + c1, "success_rate-" + c1, "success_rate_ci-" + c1, "success_rate_std-" + c1, "auc_med-" + c2, "auc_iqr-" + c2, "auc_mean-" + c2, "auc_mean_ci-" + c2, "auc_mean_std-" + c2]) x = np.array(rdf.loc[idx, "trainval_final_finalnsmd"] <= MAX_NO_UNBALANCED_FEATURE, dtype=np.float) y1 = np.array(rdf.loc[idx, "val_auc_nsmd"] <= MAX_NO_UNBALANCED_FEATURE, dtype=np.float) y2 = np.array(rdf.loc[idx, "val_maxsmd_nsmd"] <= MAX_NO_UNBALANCED_FEATURE, dtype=np.float) p1, test_orig1 = bootstrap_mean_pvalue_2samples(x, y1) p2, test_orig2 = bootstrap_mean_pvalue_2samples(x, y2) p3, test_orig3 = bootstrap_mean_pvalue_2samples(y1, y2) r.extend([p1, test_orig1[1], p2, test_orig2[1], p3, test_orig3[1]]) col_name.extend( ['pboot-succes-final-vs-auc', 'p-succes-final-vs-auc', 'pboot-succes-final-vs-maxsmd', 'p-succes-final-vs-maxsmd', 'pboot-succes-auc-vs-maxsmd', 'p-succes-auc-vs-maxsmd']) results.append(r) df = pd.DataFrame(results, columns=col_name) df.to_excel(writer, sheet_name=t) writer.save() print() def results_model_selection_for_ml_step2More(cohort_dir_name, model, drug_name): cohort_size = pickle.load(open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) drug_list_all = [drug.split('.')[0] for drug, cnt in name_cnt] dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) drug_in_dir = set([x for x in os.listdir(dirname) if x.isdigit()]) drug_list = [x for x in drug_list_all if x in drug_in_dir] # in order check_and_mkdir(dirname + 'results/') writer = pd.ExcelWriter(dirname + 'results/summarized_model_selection_{}-More.xlsx'.format(model), engine='xlsxwriter') for t in ['random', 'atc', 'all']: results = [] for drug in drug_list: rdf = pd.read_csv(dirname + 'results/' + drug + '_model_selection.csv') if t != 'all': idx = rdf['ctrl_type'] == t else: idx = rdf['ctrl_type'].notna() r = [drug, drug_name.get(drug, '')] col_name = ['drug', 'drug_name'] for c1, c2 in zip( ["val_auc_nsmd", "val_maxsmd_nsmd", "val_nsmd_nsmd", "train_maxsmd_nsmd", "train_nsmd_nsmd", "trainval_maxsmd_nsmd", "trainval_nsmd_nsmd", "trainval_final_finalnsmd"], ["val_auc_testauc", "val_maxsmd_testauc", "val_nsmd_testauc", "train_maxsmd_testauc", "train_nsmd_testauc", "trainval_maxsmd_testauc", "trainval_nsmd_testauc", 'trainval_final_testnauc']): # for c1, c2 in zip(["val_auc_nsmd", "val_maxsmd_nsmd", "val_nsmd_nsmd", "train_maxsmd_nsmd", "train_nsmd_nsmd", "trainval_final_finalnsmd"], # ["val_auc_testauc", "val_maxsmd_testauc", 'trainval_final_testnauc']): nsmd = rdf.loc[idx, c1] auc = rdf.loc[idx, c2] nsmd_med = IQR(nsmd)[0] nsmd_iqr = IQR(nsmd)[1:] nsmd_mean = nsmd.mean() nsmd_mean_ci, nsmd_mean_std = bootstrap_mean_ci(nsmd, alpha=0.05) success_rate = (nsmd <= MAX_NO_UNBALANCED_FEATURE).mean() success_rate_ci, success_rate_std = bootstrap_mean_ci(nsmd <= MAX_NO_UNBALANCED_FEATURE, alpha=0.05) auc_med = IQR(auc)[0] auc_iqr = IQR(auc)[1:] auc_mean = auc.mean() auc_mean_ci, auc_mean_std = bootstrap_mean_ci(auc, alpha=0.05) r.extend([nsmd_med, nsmd_iqr, nsmd_mean, nsmd_mean_ci, nsmd_mean_std, success_rate, success_rate_ci, success_rate_std, auc_med, auc_iqr, auc_mean, auc_mean_ci, auc_mean_std]) col_name.extend( ["nsmd_med-" + c1, "nsmd_iqr-" + c1, "nsmd_mean-" + c1, "nsmd_mean_ci-" + c1, "nsmd_mean_std-" + c1, "success_rate-" + c1, "success_rate_ci-" + c1, "success_rate_std-" + c1, "auc_med-" + c2, "auc_iqr-" + c2, "auc_mean-" + c2, "auc_mean_ci-" + c2, "auc_mean_std-" + c2]) x = np.array(rdf.loc[idx, "trainval_final_finalnsmd"] <= MAX_NO_UNBALANCED_FEATURE, dtype=np.float) y1 = np.array(rdf.loc[idx, "val_auc_nsmd"] <= MAX_NO_UNBALANCED_FEATURE, dtype=np.float) y2 = np.array(rdf.loc[idx, "val_maxsmd_nsmd"] <= MAX_NO_UNBALANCED_FEATURE, dtype=np.float) p1, test_orig1 = bootstrap_mean_pvalue_2samples(x, y1) p2, test_orig2 = bootstrap_mean_pvalue_2samples(x, y2) p3, test_orig3 = bootstrap_mean_pvalue_2samples(y1, y2) r.extend([p1, test_orig1[1], p2, test_orig2[1], p3, test_orig3[1]]) col_name.extend( ['pboot-succes-final-vs-auc', 'p-succes-final-vs-auc', 'pboot-succes-final-vs-maxsmd', 'p-succes-final-vs-maxsmd', 'pboot-succes-auc-vs-maxsmd', 'p-succes-auc-vs-maxsmd']) col = ['val_auc_nsmd', 'val_maxsmd_nsmd', 'val_nsmd_nsmd', 'train_maxsmd_nsmd', 'train_nsmd_nsmd', 'trainval_maxsmd_nsmd', 'trainval_nsmd_nsmd'] # ,'success_rate-trainval_final_finalnsmd'] for c in col: y = np.array(rdf.loc[idx, c] <= MAX_NO_UNBALANCED_FEATURE, dtype=np.float) p, test_orig = bootstrap_mean_pvalue_2samples(x, y) r.append(test_orig[1]) col_name.append('p-succes-fvs-' + c) results.append(r) df = pd.DataFrame(results, columns=col_name) df.to_excel(writer, sheet_name=t) writer.save() print() def results_ATE_for_ml(cohort_dir_name, model, niter=50): cohort_size = pickle.load(open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) drug_list_all = [drug.split('.')[0] for drug, cnt in name_cnt] dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) drug_in_dir = set([x for x in os.listdir(dirname) if x.isdigit()]) drug_list = [x for x in drug_list_all if x in drug_in_dir] # in order check_and_mkdir(dirname + 'results/') for drug in drug_list: results = [] for ctrl_type in ['random', 'atc']: for seed in range(0, niter): fname = dirname + drug + "/{}_S{}D200C{}_{}".format(drug, seed, ctrl_type, model) try: df = pd.read_csv(fname + '_results.csv') except: print('No file exisits: ', fname + '_results.csv') r = df.loc[3, :] for c in ["KM_time_points", "KM1_original", "KM0_original", "KM1-0_original", "KM1_IPTW", "KM0_IPTW", "KM1-0_IPTW"]: r.loc[c] = stringlist_2_list(r.loc[c])[-1] r = pd.Series(["{}_S{}D200C{}_{}".format(drug, seed, ctrl_type, model), ctrl_type], index=['fname', 'ctrl_type']).append(r) results.append(r) rdf = pd.DataFrame(results) rdf.to_excel(dirname + 'results/' + drug + '_results.xlsx') print('Done') def results_ATE_for_ml_step2(cohort_dir_name, model, drug_name): cohort_size = pickle.load(open(r'../ipreprocess/output_marketscan/{}/cohorts_size.pkl'.format(cohort_dir_name), 'rb')) name_cnt = sorted(cohort_size.items(), key=lambda x: x[1], reverse=True) drug_list_all = [drug.split('.')[0] for drug, cnt in name_cnt] dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) drug_in_dir = set([x for x in os.listdir(dirname) if x.isdigit()]) drug_list = [x for x in drug_list_all if x in drug_in_dir] # in order check_and_mkdir(dirname + 'results/') writer = pd.ExcelWriter(dirname + 'results/summarized_IPTW_ATE_{}.xlsx'.format(model), engine='xlsxwriter') for t in ['random', 'atc', 'all']: results = [] for drug in drug_list: rdf = pd.read_excel(dirname + 'results/' + drug + '_results.xlsx') if t != 'all': idx_all = (rdf['ctrl_type'] == t) else: idx_all = (rdf['ctrl_type'].notna()) # Only select balanced trial idx = idx_all & (rdf['n_unbalanced_feature_IPTW'] <= MAX_NO_UNBALANCED_FEATURE) print('drug: ', drug, drug_name.get(drug, ''), t, 'support:', idx.sum()) r = [drug, drug_name.get(drug, ''), idx_all.sum(), idx.sum()] col_name = ['drug', 'drug_name', 'niters', 'support'] for c in ["n_treat", "n_ctrl", "n_feature"]: # , 'HR_IPTW', 'HR_IPTW_CI' nv = rdf.loc[idx, c] nv_mean = nv.mean() r.append(nv_mean) col_name.append(c) nv = rdf.loc[idx_all, c] nv_mean = nv.mean() r.append(nv_mean) col_name.append(c + '-uab') for c in ["n_unbalanced_feature", "n_unbalanced_feature_IPTW"]: # , 'HR_IPTW', 'HR_IPTW_CI' nv = rdf.loc[idx, c] if len(nv) > 0: med = IQR(nv)[0] iqr = IQR(nv)[1:] mean = nv.mean() mean_ci, _ = bootstrap_mean_ci(nv, alpha=0.05) r.extend([med, iqr, mean, mean_ci]) else: r.extend([np.nan, np.nan, np.nan, np.nan]) col_name.extend(["med-" + c, "iqr-" + c, "mean-" + c, "mean_ci-" + c]) nv = rdf.loc[idx_all, c] if len(nv) > 0: med = IQR(nv)[0] iqr = IQR(nv)[1:] mean = nv.mean() mean_ci, _ = bootstrap_mean_ci(nv, alpha=0.05) r.extend([med, iqr, mean, mean_ci]) else: r.extend([np.nan, np.nan, np.nan, np.nan]) col_name.extend( ["med-" + c + '-uab', "iqr-" + c + '-uab', "mean-" + c + '-uab', "mean_ci-" + c + '-uab']) for c in ["ATE_original", "ATE_IPTW", "KM1-0_original", "KM1-0_IPTW", 'HR_ori', 'HR_IPTW']: if c not in rdf.columns: continue nv = rdf.loc[idx, c] if len(nv) > 0: med = IQR(nv)[0] iqr = IQR(nv)[1:] mean = nv.mean() mean_ci, _ = bootstrap_mean_ci(nv, alpha=0.05) if 'HR' in c: p, _ = bootstrap_mean_pvalue(nv, expected_mean=1) else: p, _ = bootstrap_mean_pvalue(nv, expected_mean=0) r.extend([med, iqr, mean, mean_ci, p]) else: r.extend([np.nan, np.nan, np.nan, np.nan, np.nan]) col_name.extend(["med-" + c, "iqr-" + c, "mean-" + c, "mean_ci-" + c, 'pvalue-' + c]) if 'HR_ori_CI' in rdf.columns: r.append(';'.join(rdf.loc[idx, 'HR_ori_CI'])) col_name.append('HR_ori_CI') r.append(';'.join(rdf.loc[idx, 'HR_IPTW_CI'])) col_name.append('HR_IPTW_CI') results.append(r) df = pd.DataFrame(results, columns=col_name) df.to_excel(writer, sheet_name=t) writer.save() print() def results_ATE_for_ml_step3_finalInfo(cohort_dir_name, model): dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) df_all = pd.read_excel(dirname + 'results/summarized_IPTW_ATE_{}.xlsx'.format(model), sheet_name=None, dtype={'drug':str}) writer = pd.ExcelWriter(dirname + 'results/summarized_IPTW_ATE_{}_finalInfo.xlsx'.format(model), engine='xlsxwriter') for sheet in ['random', 'atc', 'all']: df = df_all[sheet] # Only select drugs with selection criteria trial # 1. minimum support set 10, may choose 20 later # 2. p value < 0.05 idx = (df['support'] >= 10) & (df['pvalue-KM1-0_IPTW'] <= 0.05) df_sort = df.loc[idx, :].sort_values(by=['mean-KM1-0_IPTW'], ascending=[False]) df_final = df_sort[ ['drug', 'drug_name', 'niters', 'support', 'n_treat', 'n_ctrl', 'n_feature', 'mean-n_unbalanced_feature', 'mean_ci-n_unbalanced_feature', 'mean-n_unbalanced_feature_IPTW', 'mean_ci-n_unbalanced_feature_IPTW', # 'mean-ATE_original', 'mean_ci-ATE_original', 'pvalue-ATE_original', # 'mean-ATE_IPTW', 'mean_ci-ATE_IPTW', 'pvalue-ATE_IPTW', # 'mean-KM1-0_original', 'mean_ci-KM1-0_original', 'pvalue-KM1-0_original', 'mean-KM1-0_IPTW', 'mean_ci-KM1-0_IPTW', 'pvalue-KM1-0_IPTW', 'mean-HR_IPTW', 'mean_ci-HR_IPTW', 'pvalue-HR_IPTW']] df_final['n_ctrl'] = df_final['n_ctrl'].apply( lambda x: '{:.1f}'.format(x)) df_final['mean-n_unbalanced_feature'] = df_final['mean-n_unbalanced_feature'].apply( lambda x: '{:.1f}'.format(x)) df_final['mean_ci-n_unbalanced_feature'] = df_final['mean_ci-n_unbalanced_feature'].apply( lambda x: stringlist_2_str(x, False, 1)) df_final['mean-n_unbalanced_feature_IPTW'] = df_final['mean-n_unbalanced_feature_IPTW'].apply( lambda x: '{:.1f}'.format(x)) df_final['mean_ci-n_unbalanced_feature_IPTW'] = df_final['mean_ci-n_unbalanced_feature_IPTW'].apply( lambda x: stringlist_2_str(x, False, 1)) df_final['mean-KM1-0_IPTW'] = df_final['mean-KM1-0_IPTW'].apply( lambda x: '{:.1f}'.format(x * 100)) df_final['mean_ci-KM1-0_IPTW'] = df_final['mean_ci-KM1-0_IPTW'].apply( lambda x: stringlist_2_str(x, True, 1)) df_final['mean-HR_IPTW'] = df_final['mean-HR_IPTW'].apply( lambda x: '{:.2f}'.format(x)) df_final['mean_ci-HR_IPTW'] = df_final['mean_ci-HR_IPTW'].apply( lambda x: stringlist_2_str(x, False, 2)) df_final.to_excel(writer, sheet_name=sheet) writer.save() print('Done results_ATE_for_ml_step3_finalInfo') def combine_ate_final_LR_with(cohort_dir_name, model): dirname = r'output_marketscan/{}/LR/'.format(cohort_dir_name) df_lr = pd.read_excel(dirname + 'results/summarized_IPTW_ATE_{}_finalInfo.xlsx'.format('LR'), sheet_name=None, dtype=str) df_other = pd.read_excel(r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) + 'results/summarized_IPTW_ATE_{}_finalInfo.xlsx'.format(model), sheet_name=None, dtype=str) writer = pd.ExcelWriter(dirname + 'results/summarized_IPTW_ATE_LR_finalInfo_cat_{}.xlsx'.format(model), engine='xlsxwriter') writer2 = pd.ExcelWriter(dirname + 'results/summarized_IPTW_ATE_LR_finalInfo_outerjoin_{}.xlsx'.format(model), engine='xlsxwriter') col_name = ['drug', 'Drug', 'Model', 'niters', 'Support', 'Treat', 'Ctrl', 'n_feature', ' Unbalanced', 'Unbalanced IPTW', 'KM', 'HR'] def return_select_content(key, row, null_model=''): data = [key, ] col1 = ['drug_name', 'Model', 'niters', 'support', 'n_treat', 'n_ctrl', 'n_feature', 'mean-n_unbalanced_feature', 'mean-n_unbalanced_feature_IPTW'] if null_model: for c in col1: data.append(row[c]) data[2] = null_model.upper() data[4] = 0 data[5] = data[6] = data[7] = data[8] = data[9] = np.nan data.append(np.nan) data.append(np.nan) else: for c in col1: data.append(row[c]) data.append(row['mean-KM1-0_IPTW'] + ' (' + row['mean_ci-KM1-0_IPTW'] + ')') data.append(row['mean-HR_IPTW'] + ' (' + row['mean_ci-HR_IPTW'] + ')') return data for sheet in ['random', 'atc', 'all']: df1 = df_lr[sheet] df1['Model'] = 'lr' df2 = df_other[sheet] df2['Model'] = 'lstm' df_outer = df1.join(df2.set_index('drug'), lsuffix='', rsuffix='_{}'.format(model), on='drug', how='outer') df_outer.to_excel(writer2, sheet_name=sheet) df1 = df1.set_index('drug') df2 = df2.set_index('drug') data = [] for key, row in df1.iterrows(): data.append(return_select_content(key, row)) if key in df2.index: data.append(return_select_content(key, df2.loc[key, :])) else: data.append(return_select_content(key, row, null_model=model)) df_final = pd.DataFrame(data=data, columns=col_name) df_final.to_excel(writer, sheet_name=sheet) writer.save() writer2.save() print('Done results_ATE_for_ml_step3_finalInfo') def check_drug_name_code(): df = pd.read_excel(r'../data/repurposed_AD_under_trials_20200227.xlsx', dtype=str) rx_df = pd.read_csv(r'../ipreprocess/output/save_cohort_all_loose/cohort_all_name_size_positive_loose.csv', index_col='cohort_name', dtype=str) gpi_df = pd.read_csv(r'../ipreprocess/output_marketscan/save_cohort_all_loose/cohort_all_name_size_positive.csv', index_col='cohort_name', dtype=str) df['rx_drug_name'] = '' df['rx_n_patients'] = '' df['rx_n_pos'] = '' df['rx_pos_ratio'] = '' df['gpi_drug_name'] = '' df['gpi_n_patients'] = '' df['gpi_n_pos'] = '' df['gpi_pos_ratio'] = '' for index, row in df.iterrows(): rx = row['rxcui'] gpi = row['gpi'] # print(index, row) if pd.notna(rx): rx = [x + '.pkl' for x in re.split('[,;+]', rx)] else: rx = [] if pd.notna(gpi): gpi = [x + '.pkl' for x in re.split('[,;+]', gpi)] else: gpi = [] for r in rx: if r in rx_df.index: df.loc[index, 'rx_drug_name'] += ('+' + rx_df.loc[r, 'drug_name']) df.loc[index, 'rx_n_patients'] += ('+' + rx_df.loc[r, 'n_patients']) df.loc[index, 'rx_n_pos'] += ('+' + rx_df.loc[r, 'n_pos']) df.loc[index, 'rx_pos_ratio'] += ('+' + rx_df.loc[r, 'pos_ratio']) for r in gpi: if r in gpi_df.index: df.loc[index, 'gpi_drug_name'] += ('+' + gpi_df.loc[r, 'drug_name']) df.loc[index, 'gpi_n_patients'] += ('+' + gpi_df.loc[r, 'n_patients']) df.loc[index, 'gpi_n_pos'] += ('+' + gpi_df.loc[r, 'n_pos']) df.loc[index, 'gpi_pos_ratio'] += ('+' + gpi_df.loc[r, 'pos_ratio']) df.to_excel(r'../data/repurposed_AD_under_trials_20200227-CHECK.xlsx') return df def bar_plot_model_selection(cohort_dir_name, model, contrl_type='random', dump=True, colorful=True): dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) dfall = pd.read_excel(dirname + 'results/summarized_model_selection_{}.xlsx'.format(model), sheet_name=contrl_type) idx = dfall['success_rate-trainval_final_finalnsmd'] >= MIN_SUCCESS_RATE # 0.1 idx_auc = dfall['success_rate-val_auc_nsmd'] >= MIN_SUCCESS_RATE # 0.1 idx_smd = dfall['success_rate-val_maxsmd_nsmd'] >= MIN_SUCCESS_RATE # 0.1 print('Total drug trials: ', len(idx)) print(r"#df['success_rate-trainval_final_finalnsmd'] > 0: ", idx.sum(), '({:.2f}%)'.format(idx.mean() * 100)) print(r"#df['success_rate-val_auc_nsmd'] > 0: ", idx_auc.sum(), '({:.2f}%)'.format(idx_auc.mean() * 100)) print(r"#df['success_rate-val_maxsmd_nsmd'] > 0: ", idx_smd.sum(), '({:.2f}%)'.format(idx_smd.mean() * 100)) df = dfall.loc[idx, :].sort_values(by=['success_rate-trainval_final_finalnsmd'], ascending=[False]) # df['nsmd_mean_ci-val_auc_nsmd'] N = len(df) top_1 = df.loc[:, 'success_rate-val_auc_nsmd'] # * 100 top_1_ci = np.array( df.loc[:, 'success_rate_ci-val_auc_nsmd'].apply(lambda x: stringlist_2_list(x)).to_list()) # *100 # top_1_ci = df.loc[:, 'success_rate_std-val_auc_nsmd'] top_2 = df.loc[:, 'success_rate-val_maxsmd_nsmd'] # * 100 top_2_ci = np.array( df.loc[:, 'success_rate_ci-val_maxsmd_nsmd'].apply(lambda x: stringlist_2_list(x)).to_list()) # *100 # top_2_ci = df.loc[:, 'success_rate_std-val_maxsmd_nsmd'] top_3 = df.loc[:, 'success_rate-trainval_final_finalnsmd'] # * 100 top_3_ci = np.array( df.loc[:, 'success_rate_ci-trainval_final_finalnsmd'].apply(lambda x: stringlist_2_list(x)).to_list()) # *100 # top_3_ci = df.loc[:, 'success_rate_std-trainval_final_finalnsmd'] pauc = np.array(df.loc[:, "p-succes-final-vs-auc"]) psmd = np.array(df.loc[:, "p-succes-final-vs-maxsmd"]) paucsmd = np.array(df.loc[:, "p-succes-auc-vs-maxsmd"]) xlabels = df.loc[:, 'drug_name'] # xlabels = df.loc[:, 'drug_name'].apply(lambda x : min(x.split('/'), key=str)) xlabels = [s[:18] for s in xlabels] width = 0.3 # 0.45 # the width of the bars ind = np.arange(N) * width * 4 # the x locations for the groups colors = ['#FAC200', '#82A2D3', '#F65453'] fig, ax = plt.subplots(figsize=(40, 8)) error_kw = {'capsize': 3, 'capthick': 1, 'ecolor': 'black'} # plt.ylim([0, 1.05]) rects1 = ax.bar(ind, top_1, width, yerr=[top_1 - top_1_ci[:, 0], top_1_ci[:, 1] - top_1], error_kw=error_kw, color=colors[0], edgecolor=None) # , edgecolor='b' "black" rects2 = ax.bar(ind + width, top_2, width, yerr=[top_2 - top_2_ci[:, 0], top_2_ci[:, 1] - top_2], error_kw=error_kw, color=colors[1], edgecolor=None) rects3 = ax.bar(ind + 2 * width, top_3, width, yerr=[top_3 - top_3_ci[:, 0], top_3_ci[:, 1] - top_3], error_kw=error_kw, color=colors[2], edgecolor=None) # , hatch='.') # rects1 = ax.bar(ind, top_1, width, yerr=[top_1_ci, top_1_ci], error_kw=error_kw, # color='#FAC200', edgecolor="black") # , edgecolor='b' # rects2 = ax.bar(ind + width, top_2, width, yerr=[top_2_ci, top_2_ci], error_kw=error_kw, # color='#82A2D3', edgecolor="black") # rects3 = ax.bar(ind + 2 * width, top_3, width, yerr=[top_3_ci, top_3_ci], # error_kw=error_kw, color='#F65453', edgecolor="black") # , hatch='.') ax.set_xticks(ind + width) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) # ax.spines['bottom'].set_color('#DDDDDD') ax.set_axisbelow(True) ax.yaxis.set_minor_locator(tck.AutoMinorLocator()) ax.yaxis.grid(True, color='#EEEEEE', which='both') ax.xaxis.grid(False) ax.set_xticklabels(xlabels, fontsize=20, rotation=45, ha='right') ax.tick_params(axis='both', which='major', labelsize=20) ax.set_xlabel("Drug Trials", fontsize=25) ax.set_ylabel("Prop. of success balancing", fontsize=25) # Success Rate of Balancing # ax.set_title(model, fontsize=25) #fontweight="bold") # plt.axhline(y=0.5, color='#888888', linestyle='-') def significance(val): if val < 0.001: return '***' elif val < 0.01: return '**' elif val < 0.05: return '*' else: return 'ns' # def labelvalue(rects, val, height=None): # for i, rect in enumerate(rects): # if height is None: # h = rect.get_height() * 1.03 # else: # h = height[i] * 1.03 # ax.text(rect.get_x() + rect.get_width() / 2., h, # significance(val[i]), # ha='center', va='bottom', fontsize=11) # # labelvalue(rects1, pauc, top_1_ci[:,1]) # labelvalue(rects2, psmd, top_2_ci[:,1]) for i, rect in enumerate(rects3): d = 0.02 y = top_3_ci[i, 1] * 1.03 # rect.get_height() w = rect.get_width() x = rect.get_x() x1 = x - 2 * w x2 = x - 1 * w y1 = top_1_ci[i, 1] * 1.03 y2 = top_2_ci[i, 1] * 1.03 # auc v.s. final l, r = x1, x + w ax.plot([l, l, (l + r) / 2], [y + 2 * d, y + 3 * d, y + 3 * d], lw=1.2, c=colors[0] if colorful else 'black') ax.plot([(l + r) / 2, r, r], [y + 3 * d, y + 3 * d, y + 2 * d], lw=1.2, c=colors[2] if colorful else 'black') # ax.plot([x1, x1, x, x], [y+2*d, y+3*d, y+3*d, y+2*d], c='#FAC200') #c="black") ax.text((l + r) / 2, y + 2.6 * d, significance(pauc[i]), ha='center', va='bottom', fontsize=13) # smd v.s. final l, r = x2 + 0.6 * w, x + w ax.plot([l, l, (l + r) / 2], [y, y + d, y + d], lw=1.2, c=colors[1] if colorful else 'black') ax.plot([(l + r) / 2, r, r], [y + d, y + d, y], lw=1.2, c=colors[2] if colorful else 'black') # ax.plot([x2, x2, x, x], [y, y + d, y + d, y], c='#82A2D3') #c="black") ax.text((l + r) / 2, y + 0.6 * d, significance(psmd[i]), ha='center', va='bottom', fontsize=13) # auc v.s. smd l, r = x1, x2 + 0.4 * w ax.plot([l, l, (l + r) / 2], [y, y + d, y + d], lw=1.2, c=colors[0] if colorful else 'black') ax.plot([(l + r) / 2, r, r], [y + d, y + d, y], lw=1.2, c=colors[1] if colorful else 'black') # ax.plot([x1, x1, x, x], [y+2*d, y+3*d, y+3*d, y+2*d], c='#FAC200') #c="black") ax.text((l + r) / 2, y + .6 * d, significance(paucsmd[i]), ha='center', va='bottom', fontsize=13) # ax.set_title('Success Rate of Balancing by Different PS Model Selection Methods') ax.legend((rects1[0], rects2[0], rects3[0]), ('Val-AUC Select', 'Val-SMD Select', 'Our Strategy'), fontsize=25) # , bbox_to_anchor=(1.13, 1.01)) # ax.autoscale(enable=True, axis='x', tight=True) ax.set_xmargin(0.01) plt.tight_layout() if dump: check_and_mkdir(dirname + 'results/fig/') fig.savefig(dirname + 'results/fig/balance_rate_barplot-{}-{}.png'.format(model, contrl_type)) fig.savefig(dirname + 'results/fig/balance_rate_barplot-{}-{}.pdf'.format(model, contrl_type)) plt.show() # plt.clf() plt.close() def bar_plot_model_selectionV2(cohort_dir_name, model, contrl_type='random', dump=True, colorful=True): dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) dfall = pd.read_excel(dirname + 'results/summarized_model_selection_{}-More.xlsx'.format(model), sheet_name=contrl_type) idx = dfall['success_rate-trainval_final_finalnsmd'] >= MIN_SUCCESS_RATE idx_auc = dfall['success_rate-val_auc_nsmd'] >= MIN_SUCCESS_RATE idx_smd = dfall['success_rate-val_maxsmd_nsmd'] >= MIN_SUCCESS_RATE print('Total drug trials: ', len(idx)) print(r"#df['success_rate-trainval_final_finalnsmd'] > 0: ", idx.sum(), '({:.2f}%)'.format(idx.mean() * 100)) print(r"#df['success_rate-val_auc_nsmd'] > 0: ", idx_auc.sum(), '({:.2f}%)'.format(idx_auc.mean() * 100)) print(r"#df['success_rate-val_maxsmd_nsmd'] > 0: ", idx_smd.sum(), '({:.2f}%)'.format(idx_smd.mean() * 100)) df = dfall.loc[idx, :].sort_values(by=['success_rate-trainval_final_finalnsmd'], ascending=[False]) # df['nsmd_mean_ci-val_auc_nsmd'] N = len(df) col = ['success_rate-val_auc_nsmd', 'success_rate-val_maxsmd_nsmd', 'success_rate-val_nsmd_nsmd', 'success_rate-train_maxsmd_nsmd', 'success_rate-train_nsmd_nsmd', 'success_rate-trainval_maxsmd_nsmd', 'success_rate-trainval_nsmd_nsmd', 'success_rate-trainval_final_finalnsmd'] legs = ['_'.join(x.split('-')[1].split('_')[:-1]) for x in col] # col_ci = [x.replace('rate', 'rate_ci') for x in col] top = [] top_ci = [] for c in col: top.append(df.loc[:, c]) top_ci.append(np.array(df.loc[:, c.replace('rate', 'rate_ci')].apply(lambda x: stringlist_2_list(x)).to_list())) pauc = np.array(df.loc[:, "p-succes-final-vs-auc"]) psmd = np.array(df.loc[:, "p-succes-final-vs-maxsmd"]) paucsmd = np.array(df.loc[:, "p-succes-auc-vs-maxsmd"]) xlabels = df.loc[:, 'drug_name'] width = 0.45 # the width of the bars ind = np.arange(N) * width * (len(col) + 1) # the x locations for the groups colors = ['#FAC200', '#82A2D3', '#F65453'] fig, ax = plt.subplots(figsize=(24, 8)) error_kw = {'capsize': 3, 'capthick': 1, 'ecolor': 'black'} # plt.ylim([0, 1.05]) rects = [] for i in range(len(top)): top_1 = top[i] top_1_ci = top_ci[i] if i <= 1 or i == len(top) - 1: rect = ax.bar(ind + width * i, top_1, width, yerr=[top_1 - top_1_ci[:, 0], top_1_ci[:, 1] - top_1], error_kw=error_kw, color=colors[min(i, len(colors) - 1)], edgecolor=None) # "black") else: rect = ax.bar(ind + width * i, top_1, width, yerr=[top_1 - top_1_ci[:, 0], top_1_ci[:, 1] - top_1], error_kw=error_kw, edgecolor="black") rects.append(rect) ax.set_xticks(ind + int(len(top) / 2) * width) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) # ax.spines['bottom'].set_color('#DDDDDD') ax.set_axisbelow(True) ax.yaxis.set_minor_locator(tck.AutoMinorLocator()) ax.yaxis.grid(True, color='#EEEEEE', which='both') ax.xaxis.grid(False) ax.set_xticklabels(xlabels, fontsize=20, rotation=45, ha='right') ax.tick_params(axis='both', which='major', labelsize=20) ax.set_xlabel("Drug Trials", fontsize=25) ax.set_ylabel("Prop. of success balancing", fontsize=25) # Success Rate of Balancing def significance(val): if val < 0.001: return '***' elif val < 0.01: return '**' elif val < 0.05: return '*' else: return 'ns' def labelvalue(rects, val, height=None): for i, rect in enumerate(rects): if height is None: h = rect.get_height() * 1.02 else: h = height[i] * 1.02 ax.text(rect.get_x() + rect.get_width() / 2., h, significance(val[i]), ha='center', va='bottom', fontsize=11) for i in range(len(rects) - 1): pv = np.array(df.loc[:, "p-succes-fvs-" + col[i].split('-')[-1]]) labelvalue((rects[i]), pv, top_ci[i][:, 1]) # labelvalue(rects1, pauc, top_1_ci[:,1]) # labelvalue(rects2, psmd, top_2_ci[:,1]) # for i, rect in enumerate(rects3): # d = 0.02 # y = top_3_ci[i, 1] * 1.03 # rect.get_height() # w = rect.get_width() # x = rect.get_x() # x1 = x - 2 * w # x2 = x - 1 * w # # y1 = top_1_ci[i, 1] * 1.03 # y2 = top_2_ci[i, 1] * 1.03 # # # auc v.s. final # l, r = x1, x + w # ax.plot([l, l, (l+r) / 2], [y + 2 * d, y + 3 * d, y + 3 * d], lw=1.2, c=colors[0] if colorful else 'black') # ax.plot([(l+r) / 2, r, r], [y + 3 * d, y + 3 * d, y + 2 * d], lw=1.2, c=colors[2] if colorful else 'black') # # ax.plot([x1, x1, x, x], [y+2*d, y+3*d, y+3*d, y+2*d], c='#FAC200') #c="black") # ax.text((l+r) / 2, y + 2.6 * d, significance(pauc[i]), ha='center', va='bottom', fontsize=13) # # # smd v.s. final # l, r = x2 + 0.6*w, x + w # ax.plot([l, l, (l + r) / 2], [y, y + d, y + d], lw=1.2, c=colors[1] if colorful else 'black') # ax.plot([(l + r) / 2, r, r], [y + d, y + d, y], lw=1.2, c=colors[2] if colorful else 'black') # # ax.plot([x2, x2, x, x], [y, y + d, y + d, y], c='#82A2D3') #c="black") # ax.text((l + r) / 2, y + 0.6 * d, significance(psmd[i]), ha='center', va='bottom', fontsize=13) # # # auc v.s. smd # l, r = x1, x2 + 0.4*w # ax.plot([l, l, (l + r) / 2], [y, y + d, y + d], lw=1.2, c=colors[0] if colorful else 'black') # ax.plot([(l + r) / 2, r, r], [y + d, y + d, y], lw=1.2, c=colors[1] if colorful else 'black') # # ax.plot([x1, x1, x, x], [y+2*d, y+3*d, y+3*d, y+2*d], c='#FAC200') #c="black") # ax.text((l + r) / 2, y + .6 * d, significance(paucsmd[i]), ha='center', va='bottom', fontsize=13) # ax.set_title('Success Rate of Balancing by Different PS Model Selection Methods') ax.legend((rect[0] for rect in rects), (x for x in legs), fontsize=18) # , bbox_to_anchor=(1.13, 1.01)) # ax.autoscale(enable=True, axis='x', tight=True) ax.set_xmargin(0.01) plt.tight_layout() if dump: check_and_mkdir(dirname + 'results/fig/') fig.savefig(dirname + 'results/fig/balance_rate_barplot-{}-{}-all.png'.format(model, contrl_type)) fig.savefig(dirname + 'results/fig/balance_rate_barplot-{}-{}-all.pdf'.format(model, contrl_type)) plt.show() plt.clf() def box_plot_model_selection(cohort_dir_name, model, contrl_type='random', dump=True, colorful=True): dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) dfall = pd.read_excel(dirname + 'results/summarized_model_selection_{}.xlsx'.format(model), sheet_name=contrl_type, converters={'drug': str}) idx = dfall['success_rate-trainval_final_finalnsmd'] >= MIN_SUCCESS_RATE # 0.1 idx_auc = dfall['success_rate-val_auc_nsmd'] >= MIN_SUCCESS_RATE # 0.1 idx_smd = dfall['success_rate-val_maxsmd_nsmd'] >= MIN_SUCCESS_RATE # 0.1 print('Total drug trials: ', len(idx)) print(r"#df['success_rate-trainval_final_finalnsmd'] > 0: ", idx.sum(), '({:.2f}%)'.format(idx.mean() * 100)) print(r"#df['success_rate-val_auc_nsmd'] > 0: ", idx_auc.sum(), '({:.2f}%)'.format(idx_auc.mean() * 100)) print(r"#df['success_rate-val_maxsmd_nsmd'] > 0: ", idx_smd.sum(), '({:.2f}%)'.format(idx_smd.mean() * 100)) df = dfall.loc[idx, :].sort_values(by=['success_rate-trainval_final_finalnsmd'], ascending=[False]) # df['nsmd_mean_ci-val_auc_nsmd'] N = len(df) drug_list = df.loc[idx, 'drug'] drug_name_list = df.loc[idx, 'drug_name'] drug_name_list = [s[:18] for s in drug_name_list] data_1 = [] data_2 = [] data_3 = [] data_pvalue = [] for drug in drug_list: rdf = pd.read_csv(dirname + 'results/' + drug + '_model_selection.csv') if contrl_type != 'all': idx = rdf['ctrl_type'] == contrl_type else: idx = rdf['ctrl_type'].notna() data_1.append(np.array(rdf.loc[idx, "val_auc_testauc"])) data_2.append(np.array(rdf.loc[idx, "val_maxsmd_testauc"])) data_3.append(np.array(rdf.loc[idx, "trainval_final_testnauc"])) p1, test_orig1 = bootstrap_mean_pvalue_2samples(data_3[-1], data_1[-1]) p2, test_orig2 = bootstrap_mean_pvalue_2samples(data_3[-1], data_2[-1]) p3, test_orig3 = bootstrap_mean_pvalue_2samples(data_1[-1], data_2[-1]) # test_orig1_man = stats.mannwhitneyu(data_3[-1], data_1[-1]) # test_orig2_man = stats.mannwhitneyu(data_3[-1], data_2[-1]) data_pvalue.append([test_orig1[1], test_orig2[1], test_orig3[1]]) colors = ['#FAC200', '#82A2D3', '#F65453'] fig, ax = plt.subplots(figsize=(45, 8)) #(18, 8) width = 0.3 # 0.5 # the width of the bars ind = np.arange(N) * width * 4 # the x locations for the groups sym = 'o' # 'meanline':True, box_kw = {"sym": sym, "widths": width, "patch_artist": True, "notch": True, 'showmeans': True, # 'meanline':True, "meanprops": dict(linestyle='--', linewidth=1, markeredgecolor='purple', marker='^', markerfacecolor="None")} rects1 = plt.boxplot(data_1, positions=ind - 0.08, **box_kw) rects2 = plt.boxplot(data_2, positions=ind + width, **box_kw) rects3 = plt.boxplot(data_3, positions=ind + 2 * width + 0.08, **box_kw) def plot_strip(ind, data, color): w = width - 0.15 swarm1 = pd.DataFrame([(ind[i], data[i][j]) for i in range(len(ind)) for j in range(len(data[i]))], columns=['x', 'y']) strip_rx = stats.uniform(-w / 2., w).rvs(len(swarm1)) # sns.stripplot(x='x', y='y', data=swarm1, color=".25", alpha=0.2, ax=ax) plt.scatter(swarm1['x'] + strip_rx, swarm1['y'], alpha=0.2, c=color) # ticks = list(drug_name_list) for i, bplot in enumerate([rects1, rects2, rects3]): for patch in bplot['boxes']: patch.set_facecolor(colors[i]) r, g, b, a = patch.get_facecolor() patch.set_facecolor((r, g, b, .7)) # plt.setp(bplot['boxes'], color=color) # plt.setp(bplot['whiskers'], color=color) # plt.setp(bplot['caps'], color=color) plt.setp(bplot['medians'], color='black') plot_strip(ind - 0.08, data_1, colors[0]) plot_strip(ind + width, data_2, colors[1]) plot_strip(ind + 2 * width + 0.08, data_3, colors[2]) # plt.ylim([0.5, 0.85]) ax.set_xticks(ind + width) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) # ax.spines['bottom'].set_color('#DDDDDD') ax.set_axisbelow(True) ax.yaxis.set_minor_locator(tck.AutoMinorLocator()) ax.yaxis.grid(True, color='#EEEEEE', which='both') ax.xaxis.grid(False) ax.set_xticklabels(drug_name_list, fontsize=20, rotation=45, ha='right') ax.tick_params(axis='both', which='major', labelsize=20) ax.set_xlabel("Drug Trials", fontsize=25) ax.set_ylabel("Test AUC", fontsize=25) def significance(val): if val < 0.001: return '***' elif val < 0.01: return '**' elif val < 0.05: return '*' else: return 'ns' # def labelvalue(rects, x, y, p): # for i, rect in enumerate(rects): # ax.text(x[i], y[i], # significance(p[i]), # ha='center', va='bottom', fontsize=11) # # labelvalue(rects1["boxes"], ind - 0.08, np.max(data_1, axis=1)*1.01, np.array(data_pvalue)[:,0]) # labelvalue(rects2["boxes"], ind + width, np.max(data_2, axis=1)*1.01, np.array(data_pvalue)[:,1]) p_v = np.array(data_pvalue) for i in range(N): d = 0.008 y = np.max([data_1[i].max(), data_2[i].max(), data_3[i].max()]) * 1.01 # rect.get_height() x = ind[i] + 2 * width + 0.08 # + width/2 x1 = ind[i] - 0.08 # - width/2 x2 = ind[i] + width # - width/2 # auc v.s. smd l, r = x - 0.5 * width, x2 - 0.08 ax.plot([x1, x1, (x2 + x1) / 2], [y, y + d, y + d], lw=1.2, c=colors[0] if colorful else 'black') ax.plot([(x2 + x1) / 2, x2 - 0.08, x2 - 0.08], [y + d, y + d, y], lw=1.2, c=colors[1] if colorful else 'black') ax.text((x2 + x1) / 2, y + d, significance(p_v[i, 2]), ha='center', va='bottom', fontsize=12) # auc v.s. final ax.plot([x1, x1, (x + x1) / 2], [y + 2 * d, y + 3 * d, y + 3 * d], lw=1.2, c=colors[0] if colorful else 'black') ax.plot([(x + x1) / 2, x, x], [y + 3 * d, y + 3 * d, y + 2 * d], lw=1.2, c=colors[2] if colorful else 'black') # ax.plot([x1, x1, x, x], [y+2*d, y+3*d, y+3*d, y+2*d], c="black") ax.text((x + x1) / 2, y + 3 * d, significance(p_v[i, 0]), ha='center', va='bottom', fontsize=12) # smd v.s. final ax.plot([x2 + 0.08, x2 + 0.08, (x + x2) / 2], [y, y + d, y + d], lw=1.2, c=colors[1] if colorful else 'black') ax.plot([(x + x2) / 2, x, x], [y + d, y + d, y], lw=1.2, c=colors[2] if colorful else 'black') # ax.plot([x2, x2, x, x], [y, y + d, y + d, y], c="black") ax.text((x + x2) / 2, y + 1 * d, significance(p_v[i, 1]), ha='center', va='bottom', fontsize=12) ax.legend((rects1["boxes"][0], rects2["boxes"][0], rects3["boxes"][0]), ('Val-AUC Select', 'Val-SMD Select', 'Our Strategy'), fontsize=20) ax.set_xmargin(0.01) plt.tight_layout() if dump: check_and_mkdir(dirname + 'results/fig/') fig.savefig(dirname + 'results/fig/test_auc_boxplot-{}-{}.png'.format(model, contrl_type)) fig.savefig(dirname + 'results/fig/test_auc_boxplot-{}-{}.pdf'.format(model, contrl_type)) plt.show() plt.clf() def box_plot_model_selectionV2(cohort_dir_name, model, contrl_type='random', dump=True, colorful=True): dirname = r'output_marketscan/{}/{}/'.format(cohort_dir_name, model) dfall = pd.read_excel(dirname + 'results/summarized_model_selection_{}-More.xlsx'.format(model), sheet_name=contrl_type, converters={'drug': str}) idx = dfall['success_rate-trainval_final_finalnsmd'] >= MIN_SUCCESS_RATE idx_auc = dfall['success_rate-val_auc_nsmd'] >= MIN_SUCCESS_RATE idx_smd = dfall['success_rate-val_maxsmd_nsmd'] >= MIN_SUCCESS_RATE print('Total drug trials: ', len(idx)) print(r"#df['success_rate-trainval_final_finalnsmd'] > 0: ", idx.sum(), '({:.2f}%)'.format(idx.mean() * 100)) print(r"#df['success_rate-val_auc_nsmd'] > 0: ", idx_auc.sum(), '({:.2f}%)'.format(idx_auc.mean() * 100)) print(r"#df['success_rate-val_maxsmd_nsmd'] > 0: ", idx_smd.sum(), '({:.2f}%)'.format(idx_smd.mean() * 100)) df = dfall.loc[idx, :].sort_values(by=['success_rate-trainval_final_finalnsmd'], ascending=[False]) # df['nsmd_mean_ci-val_auc_nsmd'] N = len(df) drug_list = df.loc[idx, 'drug'] drug_name_list = df.loc[idx, 'drug_name'] col = ['val_auc_testauc', 'val_maxsmd_testauc', 'val_nsmd_testauc', 'train_maxsmd_testauc', 'train_nsmd_testauc', 'trainval_maxsmd_testauc', 'trainval_nsmd_testauc', 'trainval_final_testnauc'] legs = ['_'.join(x.split('_')[:-1]) for x in col] data_list = [[] for i in range(len(col))] data_1 = [] data_2 = [] data_3 = [] data_pvalue = [] for drug in drug_list: rdf =
pd.read_csv(dirname + 'results/' + drug + '_model_selection.csv')
pandas.read_csv
#!/usr/bin/env/python # -*- coding: utf-8 -*- """ This script defines some useful functions to use in data analysis and visualization @ <NAME> (<EMAIL>) """ def dl_ia_utils_change_directory(path): """ path ='path/to/app/' """ import os new_path = os.path.dirname(os.path.dirname(__file__)) new_path = os.chdir(path) import sys sys.path.insert(1, path) def dl_ia_utils_set_up_logger(path): """ Set up logger :arg path: path where to store logs example: 'logs\\dl-ia-cla-predictive' """ import logging logger = logging.getLogger(path) logger.setLevel(logging.DEBUG) fh = logging.FileHandler('{}.log'.format(path)) fh.setLevel(logging.DEBUG) logger.addHandler(fh) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) logger.addHandler(fh) logging.getLogger().addHandler(logging.StreamHandler()) # to display in console message # logger.debug('mensaje debug') # logger.info('mensaje info') # logger.warning('mensaje warning') # logger.error('mensaje error') # logger.critical('mensaje critical') def dl_ia_utils_systems_info(): """ Function that shows the system properties """ import sys from platform import python_version print('Python version:{}'.format(python_version())) print('Python system version:{}'.format(sys.version)) print('Path:{}'.format(sys.executable)) print('Python version info:{}'.format(sys.version_info)) def dl_ia_utils_config_plotly(): """ this function configures the plotly visualization :return: """ import plotly.io as pio import plotly.graph_objects as go import plotly.express as px pio.renderers.default = "browser" def dl_ia_utils_config_matplotlib(): """ this function configures the matplotlib style :return: """ from matplotlib import rc rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}) rc('font', **{'family': 'serif', 'serif': ['Times']}) rc('text', usetex=True) def dl_ia_utils_config_pandas(): """ Allows to show all the columns of a dataframe in the console Limit pandas warnings """ import pandas as pd import numpy as np pd.options.mode.chained_assignment = None # default='warn' desired_width = 350 np.set_printoptions(linewidth=desired_width) # show dataframes in console
pd.set_option('display.max_columns', 10)
pandas.set_option
#coding:utf-8 from scipy import stats import numpy as np from pandas import Series,DataFrame from openpyxl import load_workbook import math import uuid class AnovaTestFile: def __init__(self, data_file): self.data_file = data_file self.wb = load_workbook(data_file) self.sheetnames = [s for s in self.wb.get_sheet_names()\ if 'result' not in s] self.sheets = [self.wb.get_sheet_by_name(s) for s in self.sheetnames] self.resultsheets = [] def create_result_sheet(self): self.resultsheets = [self.wb.create_sheet(title='result_'+name)\ for name in self.sheetnames] def save(self,filepath): self.wb.save(filepath) class AnovaTestSheet: def __init__(self,sheet): self.sheet = sheet self.sheetname = self.sheet.title self.max_row = self.sheet.max_row self.df = self._get_whole_dataframe() self.ptable = {} self.pheader = self._get_pheader() self.tags = {} @staticmethod def _product_random_value(mean,stdrange): b = np.random.uniform(*stdrange) a = b/math.sqrt(2) x1,x2 = mean-a, mean+a return x1,x2,b def _get_mean_value(self,row): if row % 2 == 1: return self.sheet['G'+str(row)].value else: return self.sheet['G'+str(row-1)].value def _set_od_value(self,row,x1,x2): if row % 2 == 1: self.sheet['F'+str(row)]=x1 self.sheet['F'+str(row+1)]=x2 def _get_stdev_value(self,row): if row % 2 == 1: return self.sheet['H'+str(row)].value else: return self.sheet['H'+str(row-1)].value def _set_stdev_value(self,row,stdev): if row % 2 == 1: self.sheet['H'+str(row)] = stdev def _get_one_row(self,row): time = self.sheet['A'+str(row)].value organ = self.sheet['B'+str(row)].value sp = self.sheet['C'+str(row)].value c = self.sheet['D'+str(row)].value rep = self.sheet['E'+str(row)].value od = self.sheet['F'+str(row)].value mean = self._get_mean_value(row) stdev = self._get_stdev_value(row) return Series([time,organ,sp,c,rep,od,mean,stdev],\ index=['time','organ','sp','c','rep','od','mean','stdev']) def _get_whole_dataframe(self): data={} for i in range(3,self.max_row+1): data[i]=self._get_one_row(i) return
DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This script performs reverse geocoding for post coordinates, fetching the name of the administrative region to which the post is geotagged. Usage: Execute the script from the command line using the following command: python3 reverse_geocode.py -i input.pkl -o output.pkl Arguments: -i/--input: Path to the pandas DataFrame containing user location history. -o/--output: Path to the output pandas DataFrame containing reverse geocoded location histories. Output: A pandas DataFrame containing the reverse geocoded location histories. """ import argparse import geopandas as gpd import pandas as pd from shapely.geometry import Point # Set up the argument parser ap = argparse.ArgumentParser() # Define arguments ap.add_argument("-i", "--input", required=True, help="Path to the DataFrame containing user location history.") ap.add_argument("-o", "--output", required=True, help="Path to the output dataframe containing reverse geocoded " "location histories for the users.") # Parse arguments args = vars(ap.parse_args()) # Assign arguments to variables input_df =
pd.read_pickle(args['input'])
pandas.read_pickle
from itertools import product import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.validation import quality_mapping def test_ok_user_flagged(): assert quality_mapping.DESCRIPTION_MASK_MAPPING['OK'] == 0 assert quality_mapping.DESCRIPTION_MASK_MAPPING['USER FLAGGED'] == 1 def test_description_dict_version_compatibility(): for dict_ in quality_mapping.BITMASK_DESCRIPTION_DICT.values(): assert dict_['VERSION IDENTIFIER 0'] == 1 << 1 assert dict_['VERSION IDENTIFIER 1'] == 1 << 2 assert dict_['VERSION IDENTIFIER 2'] == 1 << 3 def test_latest_version_flag(): # test valid while only identifiers 0 - 2 present last_identifier = max( int(vi.split(' ')[-1]) for vi in quality_mapping.DESCRIPTION_MASK_MAPPING.keys() if vi.startswith('VERSION IDENTIFIER')) assert last_identifier == 2 assert (quality_mapping.LATEST_VERSION_FLAG == quality_mapping.LATEST_VERSION << 1) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask(flag_val): flag, mask = flag_val mask |= quality_mapping.LATEST_VERSION_FLAG ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([ mask, mask, quality_mapping.LATEST_VERSION_FLAG, mask, quality_mapping.LATEST_VERSION_FLAG])) @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_none(flag_invert): assert quality_mapping.convert_bool_flags_to_flag_mask( None, *flag_invert) is None @pytest.mark.parametrize('flag_invert', product( quality_mapping.DESCRIPTION_MASK_MAPPING.keys(), [True, False])) def test_convert_bool_flags_to_flag_mask_adds_latest_version(flag_invert): ser = pd.Series([0, 0, 0, 1, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask( ser, *flag_invert) assert (flags & quality_mapping.LATEST_VERSION_FLAG).all() @pytest.fixture() def ignore_latest_version(mocker): mocker.patch( 'solarforecastarbiter.validation.quality_mapping.LATEST_VERSION_FLAG', 0) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, True) assert_series_equal(flags, pd.Series([mask, mask, 0, mask, 0])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_convert_bool_flags_to_flag_mask_no_invert(flag_val, ignore_latest_version): flag, mask = flag_val ser = pd.Series([0, 0, 1, 0, 1]) flags = quality_mapping.convert_bool_flags_to_flag_mask(ser, flag, False) assert_series_equal(flags, pd.Series([0, 0, mask, 0, mask])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest @quality_mapping.mask_flags(flag) def f(): return pd.Series([True, True, False, False]) out = f(_return_mask=True) assert_series_equal(out, pd.Series([latest, latest, mask, mask])) @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags_tuple(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest @quality_mapping.mask_flags(flag) def f(): return pd.Series([True, True, False, False]), None out = f(_return_mask=True) assert_series_equal(out[0], pd.Series([latest, latest, mask, mask])) assert out[1] is None @pytest.mark.parametrize( 'flag_val', quality_mapping.DESCRIPTION_MASK_MAPPING.items()) def test_mask_flags_noop(flag_val): flag, mask = flag_val latest = quality_mapping.LATEST_VERSION_FLAG mask |= latest inp = pd.Series([True, True, False, False]) @quality_mapping.mask_flags(flag) def f(): return inp out = f() assert_series_equal(out, inp) @pytest.mark.parametrize('flag,expected', [ (0b10, 1), (0b11, 1), (0b10010, 1), (0b10010010, 1), (0b100, 2), (0b110, 3), (0b1110001011111, 7) ]) def test_get_version(flag, expected): assert quality_mapping.get_version(flag) == expected def test_has_data_been_validated(): flags = pd.Series([0, 1, 2, 7]) out = quality_mapping.has_data_been_validated(flags) assert_series_equal(out, pd.Series([False, False, True, True])) @pytest.mark.parametrize('flag,desc,result', [ (0, 'OK', True), (1, 'OK', False), (2, 'OK', True), (3, 'OK', False), (0, 'USER FLAGGED', False), (3, 'USER FLAGGED', True), (0, 'CLEARSKY', False), (16, 'OK', False), (1, 'USER FLAGGED', True), (16, 'NIGHTTIME', True), (33, 'CLEARSKY', True), (33, 'NIGHTTIME', False), (33, ['OK', 'NIGHTTIME'], False), (33, ('OK', 'CLEARSKY', 'USER FLAGGED'), True), (2, ('OK', 'NIGHTTIME'), True), (9297, 'USER FLAGGED', True) ]) def test_check_if_single_value_flagged(flag, desc, result): flag |= quality_mapping.LATEST_VERSION_FLAG out = quality_mapping.check_if_single_value_flagged(flag, desc) assert out == result @pytest.mark.parametrize('flag', [0, 1]) def test_check_if_single_value_flagged_validation_error(flag): with pytest.raises(ValueError): quality_mapping.check_if_single_value_flagged(flag, 'OK') @pytest.mark.parametrize('desc', [33, b'OK', [1, 2], []]) def test_check_if_single_value_flagged_type_error(desc): with pytest.raises(TypeError): quality_mapping.check_if_single_value_flagged(2, desc) @pytest.mark.parametrize('desc', ['NOPE', 'MAYBE', ['YES', 'NO']]) def test_check_if_single_value_flagged_key_error(desc): with pytest.raises(KeyError): quality_mapping.check_if_single_value_flagged(2, desc) @pytest.mark.parametrize('flags,expected', [ (pd.Series([0, 1, 0]), pd.Series([False, False, False])), (pd.Series([2, 2, 2]), pd.Series([True, True, True])), (pd.Series([3, 2, 2]), pd.Series([False, True, True])), (pd.Series([3, 34, 130]), pd.Series([False, False, False])) ]) def test_which_data_is_ok(flags, expected): out = quality_mapping.which_data_is_ok(flags) assert_series_equal(out, expected) DESCRIPTIONS = ['USER FLAGGED', 'NIGHTTIME', 'CLEARSKY', 'SHADED', 'UNEVEN FREQUENCY', 'LIMITS EXCEEDED', 'CLEARSKY EXCEEDED', 'STALE VALUES', 'INTERPOLATED VALUES', 'CLIPPED VALUES', 'INCONSISTENT IRRADIANCE COMPONENTS', 'DAILY VALIDATION APPLIED'] DERIVED_DESCRIPTIONS = ['DAYTIME', 'DAYTIME STALE VALUES', 'DAYTIME INTERPOLATED VALUES'] @pytest.mark.parametrize('flag,expected', [ (2, pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], index=DESCRIPTIONS, dtype=bool)), (3, pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], index=DESCRIPTIONS, dtype=bool)), (35, pd.Series([1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], index=DESCRIPTIONS, dtype=bool)), (2 | 1 << 13 | 1 << 12 | 1 << 10, pd.Series([0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0], index=DESCRIPTIONS, dtype=bool)) ]) def test_check_for_all_descriptions(flag, expected): out = quality_mapping.check_for_all_descriptions(flag) assert_series_equal(out, expected) @pytest.mark.parametrize('flag', [0, 1]) def test_check_for_all_validation_fail(flag): with pytest.raises(ValueError): quality_mapping.check_for_all_descriptions(flag) def test_convert_mask_into_dataframe(): flags = (pd.Series([0, 0, 1, 1 << 12, 1 << 9 | 1 << 7 | 1 << 5]) | quality_mapping.LATEST_VERSION_FLAG) columns = DESCRIPTIONS + ['NOT VALIDATED'] + DERIVED_DESCRIPTIONS expected = pd.DataFrame([[0] * 13 + [1, 0, 0], [0] * 13 + [1, 0, 0], [1] + [0] * 12 + [1, 0, 0], [0] * 9 + [1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]], columns=columns, dtype=bool) out = quality_mapping.convert_mask_into_dataframe(flags) assert_frame_equal(out, expected) def test_convert_mask_into_dataframe_w_unvalidated(): flags = (pd.Series([0, 0, 1, 1 << 12, 1 << 9 | 1 << 7 | 1 << 5]) | quality_mapping.LATEST_VERSION_FLAG) flags.iloc[0] = 0 columns = DESCRIPTIONS + ['NOT VALIDATED'] + DERIVED_DESCRIPTIONS expected = pd.DataFrame([[0] * 12 + [1, 0, 0, 0], [0] * 13 + [1, 0, 0], [1] + [0] * 12 + [1, 0, 0], [0] * 9 + [1, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]], columns=columns, dtype=bool) out = quality_mapping.convert_mask_into_dataframe(flags) assert_frame_equal(out, expected, check_like=True) def test_convert_mask_into_dataframe_all_unvalidated(): flags = pd.Series([0, 0, 1, 1, 0]) columns = ['NOT VALIDATED'] expected = pd.DataFrame([[1]] * 5, columns=columns, dtype=bool) out = quality_mapping.convert_mask_into_dataframe(flags) assert_frame_equal(out, expected, check_like=True) def test_convert_flag_frame_to_strings(): frame = pd.DataFrame({'FIRST': [True, False, False], 'SECOND': [False, False, True], 'THIRD': [True, False, True]}) expected = pd.Series(['FIRST, THIRD', 'OK', 'SECOND, THIRD']) out = quality_mapping.convert_flag_frame_to_strings(frame) assert_series_equal(expected, out) @pytest.mark.parametrize('expected,desc', [ (pd.Series([1, 0, 0, 0], dtype=bool), 'OK'), (pd.Series([0, 1, 0, 1], dtype=bool), 'USER FLAGGED'), (pd.Series([0, 0, 1, 0], dtype=bool), 'CLEARSKY EXCEEDED'), (pd.Series([0, 0, 0, 1], dtype=bool), 'CLEARSKY'), (pd.Series([0, 0, 0, 1], dtype=bool), 'CLIPPED VALUES'), (pd.Series([0, 0, 0, 0], dtype=bool), 'STALE VALUES'), ]) def test_check_if_series_flagged(expected, desc): flags = pd.Series([2, 3, 2 | 1 << 9, 2 | 1 << 5 | 1 << 12 | 1]) out = quality_mapping.check_if_series_flagged(flags, desc) assert_series_equal(out, expected) def test_check_if_series_flagged_validated_fail(): with pytest.raises(ValueError): quality_mapping.check_if_series_flagged(pd.Series([0, 1, 0]), 'OK') def test_check_if_series_flagged_type_fail(): with pytest.raises(TypeError): quality_mapping.check_if_series_flagged(
pd.Series([2, 3, 35])
pandas.Series
from datetime import datetime, timedelta from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, Series, Timedelta, Timestamp, date_range, ) import pandas._testing as tm class TestSeriesDtypes: def test_dt64_series_astype_object(self): dt64ser = Series(date_range("20130101", periods=3)) result = dt64ser.astype(object) assert isinstance(result.iloc[0], datetime) assert result.dtype == np.object_ def test_td64_series_astype_object(self): tdser = Series(["59 Days", "59 Days", "NaT"], dtype="timedelta64[ns]") result = tdser.astype(object) assert isinstance(result.iloc[0], timedelta) assert result.dtype == np.object_ @pytest.mark.parametrize("dtype", ["float32", "float64", "int64", "int32"]) def test_astype(self, dtype): s = Series(np.random.randn(5), name="foo") as_typed = s.astype(dtype) assert as_typed.dtype == dtype assert as_typed.name == s.name def test_dtype(self, datetime_series): assert datetime_series.dtype == np.dtype("float64") assert datetime_series.dtypes == np.dtype("float64") @pytest.mark.parametrize("value", [np.nan, np.inf]) @pytest.mark.parametrize("dtype", [np.int32, np.int64]) def test_astype_cast_nan_inf_int(self, dtype, value): # gh-14265: check NaN and inf raise error when converting to int msg = "Cannot convert non-finite values \\(NA or inf\\) to integer" s = Series([value]) with pytest.raises(ValueError, match=msg): s.astype(dtype) @pytest.mark.parametrize("dtype", [int, np.int8, np.int64]) def test_astype_cast_object_int_fail(self, dtype): arr = Series(["car", "house", "tree", "1"]) msg = r"invalid literal for int\(\) with base 10: 'car'" with pytest.raises(ValueError, match=msg): arr.astype(dtype) def test_astype_cast_object_int(self): arr = Series(["1", "2", "3", "4"], dtype=object) result = arr.astype(int) tm.assert_series_equal(result, Series(np.arange(1, 5))) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result = Series(s.values).dt.tz_localize("UTC").dt.tz_convert(s.dt.tz) tm.assert_series_equal(result, s) # astype - object, preserves on construction result = Series(s.astype(object)) expected = s.astype(object) tm.assert_series_equal(result, expected) # astype - datetime64[ns, tz] result = Series(s.values).astype("datetime64[ns, US/Eastern]") tm.assert_series_equal(result, s) result = Series(s.values).astype(s.dtype) tm.assert_series_equal(result, s) result = s.astype("datetime64[ns, CET]") expected = Series(date_range("20130101 06:00:00", periods=3, tz="CET")) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see gh-4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_str_cast_dt64(self): # see gh-9757 ts = Series([Timestamp("2010-01-04 00:00:00")]) s = ts.astype(str) expected = Series([str("2010-01-04")]) tm.assert_series_equal(s, expected) ts = Series([Timestamp("2010-01-04 00:00:00", tz="US/Eastern")]) s = ts.astype(str) expected = Series([str("2010-01-04 00:00:00-05:00")]) tm.assert_series_equal(s, expected) def test_astype_str_cast_td64(self): # see gh-9757 td = Series([Timedelta(1, unit="d")]) ser = td.astype(str) expected = Series([str("1 days")]) tm.assert_series_equal(ser, expected) def test_astype_unicode(self): # see gh-7758: A bit of magic is required to set # default encoding to utf-8 digits = string.digits test_series = [ Series([digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series(["データーサイエンス、お前はもう死んでいる"]), ] former_encoding = None if sys.getdefaultencoding() == "utf-8": test_series.append(Series(["野菜食べないとやばい".encode("utf-8")])) for s in test_series: res = s.astype("unicode") expec = s.map(str) tm.assert_series_equal(res, expec) # Restore the former encoding if former_encoding is not None and former_encoding != "utf-8": reload(sys) sys.setdefaultencoding(former_encoding) @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see gh-7271 s = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = s.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = s.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): s.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): s.astype(dt4) # GH16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): s.astype(dt5) def test_astype_categories_raises(self): # deprecated 17636, removed in GH-27141 s = Series(["a", "b", "a"]) with pytest.raises(TypeError, match="got an unexpected"): s.astype("category", categories=["a", "b"], ordered=True) def test_astype_from_categorical(self): items = ["a", "b", "c", "a"] s = Series(items) exp = Series(Categorical(items)) res = s.astype("category") tm.assert_series_equal(res, exp) items = [1, 2, 3, 1] s = Series(items) exp = Series(Categorical(items)) res = s.astype("category") tm.assert_series_equal(res, exp) df = DataFrame({"cats": [1, 2, 3, 4, 5, 6], "vals": [1, 2, 3, 4, 5, 6]}) cats = Categorical([1, 2, 3, 4, 5, 6]) exp_df = DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) df = DataFrame( {"cats": ["a", "b", "b", "a", "a", "d"], "vals": [1, 2, 3, 4, 5, 6]} ) cats = Categorical(["a", "b", "b", "a", "a", "d"]) exp_df = DataFrame({"cats": cats, "vals": [1, 2, 3, 4, 5, 6]}) df["cats"] = df["cats"].astype("category") tm.assert_frame_equal(exp_df, df) # with keywords lst = ["a", "b", "c", "a"] s = Series(lst) exp = Series(Categorical(lst, ordered=True)) res = s.astype(CategoricalDtype(None, ordered=True)) tm.assert_series_equal(res, exp) exp = Series(Categorical(lst, categories=list("abcdef"), ordered=True)) res = s.astype(CategoricalDtype(list("abcdef"), ordered=True)) tm.assert_series_equal(res, exp) def test_astype_categorical_to_other(self): value = np.random.RandomState(0).randint(0, 10000, 100) df = DataFrame({"value": value}) labels = [f"{i} - {i + 499}" for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=["value"], ascending=True) df["value_group"] = pd.cut( df.value, range(0, 10500, 500), right=False, labels=cat_labels ) s = df["value_group"] expected = s tm.assert_series_equal(s.astype("category"), expected) tm.assert_series_equal(s.astype(CategoricalDtype()), expected) msg = r"could not convert string to float|invalid literal for float\(\)" with pytest.raises(ValueError, match=msg): s.astype("float64") cat = Series(Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) exp = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) tm.assert_series_equal(cat.astype("str"), exp) s2 = Series(Categorical(["1", "2", "3", "4"])) exp2 = Series([1, 2, 3, 4]).astype(int) tm.assert_series_equal(s2.astype("int"), exp2) # object don't sort correctly, so just compare that we have the same # values def cmp(a, b): tm.assert_almost_equal(np.sort(np.unique(a)), np.sort(np.unique(b))) expected = Series(np.array(s.values), name="value_group") cmp(s.astype("object"), expected) cmp(s.astype(np.object_), expected) # array conversion tm.assert_almost_equal(np.array(s), np.array(s.values)) tm.assert_series_equal(s.astype("category"), s) tm.assert_series_equal(s.astype(CategoricalDtype()), s) roundtrip_expected = s.cat.set_categories( s.cat.categories.sort_values() ).cat.remove_unused_categories() tm.assert_series_equal( s.astype("object").astype("category"), roundtrip_expected ) tm.assert_series_equal( s.astype("object").astype(CategoricalDtype()), roundtrip_expected ) # invalid conversion (these are NOT a dtype) msg = ( "dtype '<class 'pandas.core.arrays.categorical.Categorical'>' " "not understood" ) for invalid in [ lambda x: x.astype(Categorical), lambda x: x.astype("object").astype(Categorical), ]: with pytest.raises(TypeError, match=msg): invalid(s) @pytest.mark.parametrize("name", [None, "foo"]) @pytest.mark.parametrize("dtype_ordered", [True, False]) @pytest.mark.parametrize("series_ordered", [True, False]) def test_astype_categorical_to_categorical( self, name, dtype_ordered, series_ordered ): # GH 10696/18593 s_data = list("abcaacbab") s_dtype = CategoricalDtype(list("bac"), ordered=series_ordered) s = Series(s_data, dtype=s_dtype, name=name) # unspecified categories dtype = CategoricalDtype(ordered=dtype_ordered) result = s.astype(dtype) exp_dtype = CategoricalDtype(s_dtype.categories, dtype_ordered) expected =
Series(s_data, name=name, dtype=exp_dtype)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Mon Nov 14 22:43:13 2016 @author: zhouyu for kaggle challenge - allstate """ import pandas as pd import numpy as np import seaborn as sns dataset =
pd.read_csv('/Users/zhouyu/Documents/Zhou_Yu/DS/kaggle_challenge/train.csv')
pandas.read_csv
#varianta cu pachetul CSV import csv import pandas as pd with open('test.csv', 'r') as f: r = csv.reader(f, delimiter=',') for row in r: #loop for i in range(0, len(row)): if len(row) == 19: #vreau toate randurile de pe toate coloanele - 19 coloane print(row[i]+ ",") # varianta cu pachetul Pandas data = pd.read_csv('test.csv', delimiter=',', header=None, nrows=120) print(data.head()) #head() - doar primele 5 randuri #tuppples cuts = ("slim", "regular", "large") cuts = cuts + ('extraslim','extralarge', 'traditional') #concatenarea tuplului cu mai multe elemente print(cuts) print(cuts.count('slim')) print(cuts.index('regular')) #lists listaMea = list(cuts) print(listaMea) element = listaMea.pop() print(element) print(listaMea) lista2 = listaMea.copy() print(lista2) lista2.reverse() print(lista2) lista2.append('firisor de aur') print(lista2) lista3 = (2, 8, 9, 3, 3, 2) lista3=list(lista3) print(lista3) lista3.sort() print(lista3) lista_sortata =sorted(lista3) print(lista_sortata) c1=5.63 c2=6.88 c3=4.8 c4=1.09 c5=108 c6=31.5 c7=43.41 c8=23.95 c9=36.33 c10=150 from math import * # print(round(c1)) # print(round(c2)) # print(round(c3)) # print(round(c4)) # print(round(c5)) print(sqrt(c1)) print(sqrt(c2)) print(sqrt(c3)) def func1(): #definire for i in range(0,5): print(lista2[i]) func1() import pandas as pd # pd.set_option('display.width', 120) # setare char width # # df = pd.read_csv('test.csv') # print(df.iloc[12], '\n', type(df.iloc[12])) # print row #13 ==> obiect de tipul Series # print('-' * 50) # despartire - beautifier # print(df.iloc[[1, 3, 5]], '\n', type(df.iloc[[1, 3, 5]])) #lista de intregi # prints rows (tipul lista), # # ==> obiect de tipul DataFrame #Exemplul 10.a import pandas as pd df = pd.read_csv('test.csv') # print(df.loc[(df['type']==3),['name']]) # materialele de tipul auxiliare (3) # def func2(): # for i in range(0,5): # while len(lista3)!=0: # lista3.pop() # print(lista3) # func2() lista2.clear() print(lista2) lista2.insert(2,'bro<NAME>') print(lista2) import math df = pd.read_csv('suppliers.csv', index_col="name") # print('Valoarea medie a lunilor in care am vandut este', df['month'].mean()) # print('Valoarea maxima a zilelor inregistrate este', df['day'].max()) # print('Primul an inregistrat al iesirilor este', df['year'].min()) print(df) df.dropna(inplace=True) print(df) print(df.loc[0, 'id']) df.loc[0,'id'] = 1255 print(df.loc[0, 'id']) #Dicts dict = {"laptop":"Dell", "software":"Windows", "periferice":"kit mouse-tastatura RGB"} print(dict) dict["laptop"] = "Lenovo" print(dict) dict.popitem() #sterge de la coada print(dict) x=dict.items() #returneaza o lista de tupluri - pereche cheie-valoare import matplotlib.pyplot as plt print(x) df1 = pd.DataFrame( { "1": "InterSport", "2": "Taco", "3": "0CCC", "4": "PPP", }, index=[0, 1, 2, 3], ) df2 = pd.DataFrame( { "5": "eMAG", "6": "AboutYou", "7": "InterSport", "8": "Taco", }, index=[4, 5, 6, 7], ) result = pd.concat([df1, df2], axis=1, join="inner") print(result) print(df['Price']) df['Price'].plot(kind='hist') plt.ylabel('Price') plt.xlabel('Price min-qty') plt.show() from sklearn.preprocessing import MinMaxScaler import seaborn as sns import pandas as pd import numpy as np from sklearn.cluster import KMeans from sklearn.preprocessing import LabelEncoder pd.options.display.max_columns = 11 test =
pd.read_csv('test.csv')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jul 18 13:15:21 2020 @author: jm """ #%% required libraries import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates #%% read data #df_original = pd.read_csv('https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv?cachebust=5805f0ab2859cf87', encoding = 'utf-8') df_original = pd.read_csv('data/google_mobility_report_2020-07-25.csv', encoding = 'utf-8') df = df_original.copy() # check columns df.columns # see head of data frame df.head() #%% filter data for Argentina only df = df[df['country_region'] == 'Argentina'] # check resulting data df.info() # check NA df.isna().any() df.isna().sum().plot(kind = 'bar') # drop columns with many NA df = df.drop(columns = ['country_region_code', 'sub_region_2', 'iso_3166_2_code', 'census_fips_code']) # rename columns df.rename(columns = {'country_region': 'pais', 'sub_region_1': 'provincia', 'date': 'fecha', 'retail_and_recreation_percent_change_from_baseline': 'retail_and_recreation', 'grocery_and_pharmacy_percent_change_from_baseline': 'grocery_and_pharmacy', 'parks_percent_change_from_baseline': 'parks', 'transit_stations_percent_change_from_baseline': 'transit_stations', 'workplaces_percent_change_from_baseline': 'workplaces', 'residential_percent_change_from_baseline': 'residential'}, inplace = True) # drop row where 'provincia' is NA df = df.dropna(subset = ['provincia']) # check NA df.isna().sum().plot(kind = 'bar') #%% set index to plot the data df['fecha'] = pd.to_datetime(df['fecha']) df.set_index('fecha', inplace = True) # check index print(df.index) #%% subsets bsas = df[df['provincia'] == 'Buenos Aires Province'] caba = df[df['provincia'] == 'Buenos Aires'] #%% plot for CABA plt.rcParams["figure.dpi"] = 1200 plt.figure(figsize = (10, 10)) fig, ax = plt.subplots() # plot data ax.plot(caba.index, caba['workplaces'], color = 'darkred', label = 'Workplaces') ax.plot(caba.index, caba['retail_and_recreation'], color = 'darkblue', label = 'Retail and recreation') # color the area of lockdown phase 1 p1 = caba['2020-07-01':'2020-07-17'].index ax.fill_between(p1, -90, -30, facecolor = 'lightsteelblue', alpha = 0.3, label = 'Fase 1') # annotate carnaval ax.annotate('Carnaval', xy = [pd.Timestamp('2020-02-24'), -71], xytext = [pd.Timestamp('2020-03-25'), 10], arrowprops = {'arrowstyle' : '->', 'color' : 'gray'}, fontsize = 8) # annotate dia del trabajador ax.annotate('Día del \ntrabajador', xy = [pd.Timestamp('2020-05-01'), -87], xytext = [pd.Timestamp('2020-03-28'), -50], arrowprops = {'arrowstyle' : '->', 'color' : 'gray'}, fontsize = 8) # annotate dia de la Revolucion de Mayo ax.annotate('Día de la \nRevolución de Mayo', xy = [pd.Timestamp('2020-05-25'), -84], xytext = [pd.Timestamp('2020-04-01'), -30], arrowprops = {'arrowstyle' : '->', 'color' : 'gray'}, fontsize = 8) # annotate paso a la inmortalidad <NAME> ax.annotate('Paso a la inmortalidad \nGral. Güemes', xy = [pd.Timestamp('2020-06-15'), -80], xytext = [pd.Timestamp('2020-04-15'), -15], arrowprops = {'arrowstyle' : '->', 'color' : 'gray'}, fontsize = 8) # annotate paso a la inmortalidad Gral. Belgrano ax.annotate('Paso a la \ninmortalidad \nGral. Belgrano', xy = [pd.Timestamp('2020-06-20'), -55], xytext = [
pd.Timestamp('2020-05-23')
pandas.Timestamp
""" Functions for loading models and generating predictions: - `load_model` downloads and returns a Simple Transformers model from HuggingFace. - `predict_domains` generates a multi-label which indicates which of the 9 ICF domains are discussed in a given sentence; the order is ['ADM', 'ATT', 'BER', 'ENR', 'ETN', 'FAC', 'INS', 'MBW', 'STM'], i.e. if the sentence is labeled as [1, 0, 0, 0, 0, 1, 0, 0, 0], it means it contains the ADM and FAC domains - `predict_levels` generates a float that indicates the level of functioning (for a specific domain) discussed in the sentence """ import numpy as np import pandas as pd import torch import warnings from simpletransformers.classification import MultiLabelClassificationModel, ClassificationModel from src import timer @timer def load_model( model_type, model_name, task, ): """ Download and return a Simple Transformers model from HuggingFace. Parameters ---------- model_type: str type of the pre-trained model, e.g. bert, roberta, electra model_name: {str, Path} path to a local directory with model file or model name on Hugging Face task: str simpletransformers class: 'multi' loads MultiLabelClassificationModel, 'clf' loads ClassificationModel Returns ------- model: MultiLabelClassificationModel or ClassificationModel """ # check task msg = f'task should be either "multi" or "clf"; "{task}" is not valid.' assert task in ['multi', 'clf'], msg # check CUDA cuda_available = torch.cuda.is_available() if not cuda_available: def custom_formatwarning(msg, *args, **kwargs): return str(msg) + '\n' warnings.formatwarning = custom_formatwarning warnings.warn('CUDA device not available; running on a CPU!') # load model print(f'Downloading the model from https://huggingface.co/{model_name}') if task == 'multi': Model = MultiLabelClassificationModel else: Model = ClassificationModel return Model( model_type, model_name, use_cuda=cuda_available, ) @timer def predict_domains( text, model, ): """ Apply a fine-tuned multi-label classification model to generate predictions. Parameters ---------- text: pd Series a series of strings model: MultiLabelClassificationModel fine-tuned multi-label classification model (simpletransformers) Returns ------- df: pd Series a series of lists; each list is a multi-label prediction """ print('Generating domains predictions. This might take a while.', flush=True) predictions, _ = model.predict(text.to_list()) return pd.Series(predictions, index=text.index) @timer def predict_levels( text, model, ): """ Apply a fine-tuned regression model to generate predictions. Parameters ---------- text: pd Series a series of strings model: ClassificationModel fine-tuned regression model (simpletransformers) Returns ------- predictions: pd Series a series of floats or an empty series (if text is empty) """ to_predict = text.to_list() if not len(to_predict): return
pd.Series()
pandas.Series
import json import warnings from collections import Counter, defaultdict from glob import glob import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd import seaborn as sns from scipy.optimize import minimize from scipy.stats import norm from tqdm import tqdm plt.style.use('fivethirtyeight') # %matplotlib qt # %% class TransferEntropy: """ Class to compute asset graphs using transfer entropy. Parameters ---------- assets: list[str], default=None List of assets to use from loaded data. data: pd.DataFrame, default=None DataFrame of asset log returns with datetime index and no missing data. If None, price datafiles are loaded from data directory. Attributes ---------- data: pd.DataFrame DataFrame of asset log returns with datetime index. assets: list(str) List of asset names. corr: pd.DataFrame Spearman correlation between assets. Methods ------- set_timeperiod(start, end): Set starting and ending dates for analysis. subset_assets(assets): Subset assets used. build_asset_graph(solver): Find graph coordinates. compute_transfer_entorpy(bins): Return transfer entropy. compute_effective_transfer_entropy: Return effective transfer entropy. plot_asset_graph(threshold): Plot asset graph edges that meet threshold. plot_corr(method): Plot correlations between assets. plot_te(te): Plot transfer entropy heatmap. """ def __init__(self, assets=None, data=None): self.assets = assets self._prices = data if data is not None else self._load_data() self.set_timeperiod('1/3/2011', '12/31/2018') def _read_file(self, fid): """Read data file as DataFrame.""" df = pd.read_csv( fid, index_col=0, parse_dates=True, infer_datetime_format=True, ) return df def _load_data(self): """Load data from data directory into single into DataFrame.""" fids = glob('../data/*.csv') df = pd.DataFrame().join( [self._read_file(fid) for fid in fids], how='outer') return df def set_timeperiod(self, start=None, end=None): """ Updata self.data with start and end dates for analysis. Parameters ---------- start: str or datetime object, default=None Starting date for analysis. end: str or datetime object, default=None Ending date for analysis. """ data = self._prices.copy() # Ignore warnings for missing data. warnings.filterwarnings('ignore') # Subset data by time period. if start is not None: data = data[data.index >= pd.to_datetime(start)].copy() if end is not None: data = data[data.index <= pd.to_datetime(end)].copy() # Drop Weekends and forward fill Holidays. keep_ix = [ix.weekday() < 5 for ix in list(data.index)] data = data[keep_ix].copy() data.fillna(method='ffill', inplace=True) self.prices = data.copy() # Calculate Log Returns. self.data = np.log(data[1:] / data[:-1].values) # log returns self.data.dropna(axis=1, inplace=True) # Drop assets with missing data. # Map asset names to DataFrame. # with open('../data/asset_mapping.json', 'r') as fid: # asset_map = json.load(fid) # self.assets = [asset_map.get(a, a) for a in list(self.data)] # self._n = len(self.assets) # Subset data to specified assets. if self.assets is not None: self.subset_assets(self.assets) else: self.assets = list(self.data) self._n = len(self.assets) # Rename DataFrame with asset names and init data matrix. # self.data.columns = self.assets self._data_mat = self.data.values def subset_assets(self, assets): """ Subset data to specified assets. Parameters ---------- assets: list[str] List of assets to use. """ self.prices = self.prices[assets].copy() self.data = self.data[assets].copy() self.assets = assets self._n = len(self.assets) def _euclidean_distance(self, x, i, j): """Euclidean distance between points in x-coordinates.""" m = x.shape[1] return sum((x[i, a] - x[j, a])**2 for a in range(m))**0.5 def _stress_function(self, x): """Stress function for Classical Multidimensional Scaling.""" # Map 1-D input coordinates to 2-D x = np.reshape(x, (-1, 2)) n = x.shape[0] num, denom = 0, 0 for i in range(n): for j in range(i, n): delta = int(i == j) euc_d = self._euclidean_distance(x, i, j) # Build numerator and denominator sums. num += (delta - euc_d)**2 denom += self._distance[i, j]**2 return (num / denom)**0.5 def build_asset_graph(self, solver, distance=None, verbose=False): """ Build asset graph of transfer entropy with specified threshold. Parameters ---------- solver: str, default='SLSQP' Scipy mimiziation solving technique. """ # Find correlations and distance metric. self.corr = self.data.corr('spearman') self._distance = distance if distance is not None \ else np.sqrt(2 * (1-self.corr.values)) # Solve 2-D coordinate positions. def exit_opt(Xi): if np.sum(np.isnan(Xi)) > 1: raise RuntimeError('Minimize convergence failed.') def printx(Xi): print(Xi) exit_opt(Xi) opt = minimize( self._stress_function, x0=np.random.rand(2*self._n), method=solver, tol=1e-3, options={'disp': False, 'maxiter': 10000}, callback=printx if verbose else exit_opt, ) if opt.status != 0: raise RuntimeError(opt.message) self._coordinates = np.reshape(opt.x, (-1, 2)) def plot_asset_graph(self, threshold, all_thresholds=None, ax=None, figsize=(6, 6), fontsize=6): """ Plot asset graph network. Parameters ---------- threshold: float Maximum threshold distance for edges in network. all_thresholds: list[float], default=None If provided, the colorbar maximum value will be set as the maximum threshold, otherwise the given threshold is used. This is convenient for keeping a standard scale when plotting multiple thresholds. ax: matplotlib axis, default=None Matplotlib axis to plot figure, if None one is created. figsize: list or tuple, default=(6, 6) Figure size. fontsize: int, default=6 Fontsize for asset labels. """ # Find edges and nodes. edges = {} nodes = [] for i in range(self._n - 1): d_i = self._distance[i, :] edges_i = np.argwhere(d_i < threshold).reshape(-1) edges_i = list(edges_i[edges_i > i]) edges[i] = edges_i if len(edges_i) > 0: nodes.append(i) nodes.extend(edges_i) nodes = list(set(nodes)) edges = {key: val for key, val in edges.items() if len(val) > 0} # Store values of edges. edge_vals = {} for node0, node0_edges in edges.items(): for node1 in node0_edges: edge_vals[(node0, node1)] = self._distance[node0, node1] if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) x = self._coordinates[:, 0] y = self._coordinates[:, 1] # Get sequential colors for edges based on distance. cmap = sns.color_palette('magma', 101).as_hex() emin = min(self._distance[self._distance > 0]) emax = threshold if all_thresholds is None else max(all_thresholds) emax += 1e-3 edge_color = {key: cmap[int(100 * (val-emin) / (emax-emin))] for key, val in edge_vals.items()} # Plot edges. for node0, node0_edges in edges.items(): for node1 in node0_edges: ix = [node0, node1] ax.plot(x[ix], y[ix], c=edge_color[tuple(ix)], lw=2, alpha=0.7) # Plot asset names over edges. box = {'fill': 'white', 'facecolor': 'white', 'edgecolor': 'k'} for node in nodes: ax.text(x[node], y[node], self.assets[node], fontsize=fontsize, horizontalalignment='center', verticalalignment='center', bbox=box) def plot_corr(self, method='pearson', ax=None, figsize=(6, 6), fontsize=8, cbar=True, labels=True): """ Plot correlation of assets. Parameters ---------- method: {'spearman', 'pearson', 'kendall'}, default='pearson' Correlation method. - 'spearman': Spearman rank correlation - 'pearson': standard correlation coefficient - 'kendall': Kendall Tau correlation coefficient ax: matplotlib axis, default=None Matplotlib axis to plot figure, if None one is created. figsize: list or tuple, default=(6, 6) Figure size. fontsize: int, default=8 Fontsize for asset labels. cbar: bool, default=True If True include color bar. labels: bool, default=False If True include tick labels for x & y axis. If False do not inlclude labels. """ if ax is None: fig, ax = plt.subplots(1, 1, figsize=figsize) self._corr = self.data.corr(method) sns.heatmap(self._corr, ax=ax, vmin=-1, vmax=1, cbar=cbar, xticklabels=labels, yticklabels=labels, cmap='coolwarm') if labels: plt.setp(ax.get_xticklabels(), fontsize=fontsize) plt.setp(ax.get_yticklabels(), fontsize=fontsize) if cbar: cbar_ax = ax.collections[0].colorbar ticks = np.linspace(-1, 1, 5) cbar_ax.set_ticks(ticks) cbar_ax.set_ticklabels(ticks) def _transfer_entropy_function(self, data, X, Y, bins, shuffle): """ Compute transfer entropy for asset x on lagged x and lagged y log returns. Parameters ---------- X: int Index location of asset x, asset to be predicted. Y: int Index location of asset y, asset which influences asset x. bins: int Number of bins to place log returns in. shuffle: bool If True, shuffle all time series for randomized transfer entropy. Returns ------- te: float Transfer entropy of y --> x. """ x = data[1:, X] x_lag = data[:-1, X] y_lag = data[:-1, Y] n = len(x) # Find respective historgram bin for each time series value. data_matrix = np.concatenate([x, x_lag, y_lag]) bin_edges = np.concatenate([ np.linspace(np.min(data_matrix), 0, int(bins/2)+1), np.linspace(0, np.max(data_matrix), int(bins/2)+1)[1:], ]) bin_vals = np.reshape(pd.cut( data_matrix, bins=bin_edges, labels=False), (3, -1)).T if shuffle: # Shuffle y_lag for randomized transfer entropy. np.random.shuffle(bin_vals[:, 2]) # Find frequency of occurce for each set of joint vectors. p_ilag = Counter(bin_vals[:, 1]) p_i_ilag = Counter(list(zip(bin_vals[:, 0], bin_vals[:, 1]))) p_ilag_jlag = Counter(list(zip(bin_vals[:, 1], bin_vals[:, 2]))) p_i_ilag_jlag = Counter( list(zip(bin_vals[:, 0], bin_vals[:, 1], bin_vals[:, 2]))) # Catch warnings as errors for np.log2(0). warnings.filterwarnings('error') # Compute transfer entropy. te = 0 for i in range(bins): for ilag in range(bins): for jlag in range(bins): try: te_i = (p_i_ilag_jlag.get((i, ilag, jlag), 0) / n * np.log2(p_i_ilag_jlag.get((i, ilag, jlag), 0) * p_ilag.get(ilag, 0) / p_i_ilag.get((i, ilag), 0) / p_ilag_jlag.get((ilag, jlag), 0) )) except (ZeroDivisionError, RuntimeWarning): te_i = 0 te += te_i # Reset warnings to default. warnings.filterwarnings('ignore') return te def compute_transfer_entropy(self, bins=6, shuffle=False, save=True): """ Compute transfer entropy matrix. Returned matrix is directional such that asset on X-axis inluences next day transfer entropy of asset on the Y-axis. Parameters ---------- bins: int, default=6 Number of bins to place log returns in. shuffle: bool, default=False If True, shuffle all time series for randomized transfer entropy. save: bool, default=True If True save result Returns ------- te: [n x n] nd.array Transfer entropy matrix. """ n = self._n te = np.zeros([n, n]) data = self._data_mat.copy() for i in range(n): for j in range(n): te[i, j] = self._transfer_entropy_function( data, i, j, bins, shuffle=shuffle) if save: self._te = te.copy() # store te matrix. self._te_min = np.min(te) self._te_max = np.max(te) self.te =
pd.DataFrame(te, columns=self.assets, index=self.assets)
pandas.DataFrame
import argparse import datetime import glob import os import re from tqdm import tqdm import pandas as pd from textwrap import dedent def combineDelayFiles(outName, loc=os.getcwd(), ext='.csv'): files = glob.glob(os.path.join(loc, '*' + ext)) print('Ensuring that "Datetime" column exists in files') addDateTimeToFiles(files) print('Combining weather model delay files') concatDelayFiles( files, sort_list=['ID', 'Datetime'], outName=outName ) def addDateTimeToFiles(fileList, force=False): ''' Run through a list of files and add the datetime of each file as a column ''' print('Adding Datetime to delay files') for f in tqdm(fileList): data = pd.read_csv(f) if 'Datetime' in data.columns and not force: print( 'File {} already has a "Datetime" column, pass' '"force = True" if you want to override and ' 're-process'.format(f) ) else: try: dt = getDateTime(f) data['Datetime'] = dt data.to_csv(f, index=False) except (AttributeError, ValueError): print( 'File {} does not contain datetime info, skipping' .format(f) ) del data def getDateTime(filename): ''' Parse a datetime from a RAiDER delay filename ''' filename = os.path.basename(filename) dtr = re.compile(r'\d{8}T\d{6}') dt = dtr.search(filename) return datetime.datetime.strptime( dt.group(), '%Y%m%dT%H%M%S' ) def concatDelayFiles( fileList, sort_list=['ID', 'Datetime'], return_df=False, outName=None ): ''' Read a list of .csv files containing the same columns and append them together, sorting by specified columns ''' dfList = [] print('Concatenating delay files') for f in tqdm(fileList): dfList.append(pd.read_csv(f)) df_c = pd.concat( dfList, ignore_index=True ).drop_duplicates().reset_index(drop=True) df_c.sort_values(by=sort_list, inplace=True) print('Total number of rows in the concatenated file: {}'.format(df_c.shape[0])) print('Total number of rows containing NaNs: {}'.format( df_c[df_c.isna().any(axis=1)].shape[0] ) ) if return_df or outName is None: return df_c else: df_c.to_csv(outName, index=False) def mergeDelayFiles( raiderFile, ztdFile, col_name='ZTD', raider_delay='totalDelay', outName=None ): ''' Merge a combined RAiDER delays file with a GPS ZTD delay file ''' print('Merging delay files {} and {}'.format(raiderFile, ztdFile)) dfr = pd.read_csv(raiderFile, parse_dates=['Datetime']) dfz = readZTDFile(ztdFile, col_name=col_name) print('Beginning merge') dfc = dfr.merge( dfz[['ID', 'Datetime', 'ZTD']], how='left', left_on=['Datetime', 'ID'], right_on=['Datetime', 'ID'], sort=True ) dfc['ZTD_minus_RAiDER'] = dfc['ZTD'] - dfc[raider_delay] print('Total number of rows in the concatenated file: {}'.format(dfc.shape[0])) print('Total number of rows containing NaNs: {}'.format( dfc[dfc.isna().any(axis=1)].shape[0] ) ) print('Merge finished') if outName is None: return dfc else: dfc.to_csv(outName, index=False) def readZTDFile(filename, col_name='ZTD'): ''' Read and parse a GPS zenith delay file ''' try: data = pd.read_csv(filename, parse_dates=['Date']) times = data['times'].apply(lambda x: datetime.timedelta(seconds=x)) data['Datetime'] = data['Date'] + times except KeyError: data =
pd.read_csv(filename, parse_dates=['Datetime'])
pandas.read_csv
#!/usr/bin/env python from settings import settings import numpy as np import pandas as pd import os import rospy # ros library for publishing and subscribing from std_msgs.msg import Int16MultiArray # ros library for string type of msgs def detection(K, fps, v, Xi, lcr, W, ww): time_factor = 1 dt = 1./fps time_waiting = dt/time_factor ''' the reference to get each tested value is tk, which is the absolute time elapsed 1. Create a matrix to store the values first column, time second column, right most hill third column, with weeds or without weeds fourth column, if with weeds, calculate the frame coordinate 2. -1 value means none ''' my_data = np.full((int(K),5),"",object) my_data =
pd.DataFrame(data=my_data)
pandas.DataFrame
#!/usr/bin/python3 import os import pickle import seaborn as sns import matplotlib.pyplot as plt from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score, classification_report, confusion_matrix from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, ShuffleSplit from pprint import pprint import numpy as np import pandas as pd from scipy import sparse def main(): """ Using the Logistic Regression model here to predict licenses using Random and Grid Search for cross-validation and hyperparameter tuning """ os.chdir('../../../all_files_generated') current_dir = os.getcwd() data_pickles_dir = os.path.join(current_dir, 'data_pickles') model_pickles_dir = os.path.join(current_dir, 'model_pickles') model_confusion_matrix_dir = os.path.join(current_dir, 'model_confusion_matrix_files') x_train_path = os.path.join(data_pickles_dir, 'x_train.pickle') x_validation_path = os.path.join(data_pickles_dir, 'x_validation.pickle') x_test_path = os.path.join(data_pickles_dir, 'x_test.pickle') y_train_path = os.path.join(data_pickles_dir, 'y_train.pickle') y_validation_path = os.path.join(data_pickles_dir, 'y_validation.pickle') y_test_path = os.path.join(data_pickles_dir, 'y_test.pickle') model_path = os.path.join(model_pickles_dir, 'logistic_regression.pickle') confusion_matrix_path = os.path.join(model_confusion_matrix_dir, 'logistic_regression_confusion_matrix.png') # read in all pickle files that may be required with open(x_train_path, 'rb') as data: x_train = pickle.load(data) with open(x_validation_path, 'rb') as data: x_validation = pickle.load(data) with open(x_test_path, 'rb') as data: x_test = pickle.load(data) with open(y_train_path, 'rb') as data: y_train = pickle.load(data) with open(y_validation_path, 'rb') as data: y_validation = pickle.load(data) with open(y_test_path, 'rb') as data: y_test = pickle.load(data) # combine training and validation datasets x_train = sparse.vstack((x_train, x_validation)) # scipy.sparse.csr matrix y_train = y_train.append(
pd.Series(y_validation)
pandas.Series
#!/usr/bin/env python3 # ---------------------------------------------------------------------------- # Copyright (c) 2018--, Qurro development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE.txt, distributed with this software. # ---------------------------------------------------------------------------- import logging import skbio import pandas as pd from qurro._df_utils import escape_columns from qurro._metadata_utils import get_q2_comment_lines def read_rank_file(file_loc): """Converts an input file of ranks to a DataFrame. Also returns a human-readable "rank type" -- either "Differential" or "Feature Loading". """ if file_loc.endswith(".tsv"): rank_df = differentials_to_df(file_loc) rank_type = "Differential" else: # ordination_to_df() will raise an appropriate error if it can't # process this file. rank_df = ordination_to_df(file_loc) rank_type = "Feature Loading" return escape_columns(rank_df, "feature ranks"), rank_type def rename_loadings(loadings_df): """Renames a DataFrame of loadings to say "Axis 1", "Axis 2", etc. This should match what Emperor does in its visualizations. """ loadings_df_copy = loadings_df.copy() new_column_names = [] for n in range(1, len(loadings_df_copy.columns) + 1): new_column_names.append("Axis {}".format(n)) loadings_df_copy.columns = new_column_names return loadings_df_copy def ordination_to_df(ordination_file_loc): """Returns a DataFrame of feature loadings from a skbio ordination file.""" # If this fails, it raises an skbio.io.UnrecognizedFormatError. ordination = skbio.OrdinationResults.read(ordination_file_loc) return rename_loadings(ordination.features) def differentials_to_df(differentials_loc): """Converts a differential rank TSV file to a DataFrame.""" # As of QIIME 2 2019.7, differentials exported from QIIME 2 can have q2 # comments! So we need to detect these. q2_lines = get_q2_comment_lines(differentials_loc) differentials = pd.read_csv( differentials_loc, sep="\t", na_filter=False, dtype=object, skiprows=q2_lines, ) # Delay setting index column so we can first load it as an object (this # saves us from situations where the index col would otherwise be read as a # number or something that would mess things up -- read_metadata_file() # does the same sorta thing) differentials.set_index(differentials.columns[0], inplace=True) # Also, we don't bother naming the differentials index (yet). This is # actually needed to make some of the tests pass (which is dumb, I know, # but if I pass check_names=False to assert_frame_equal then the test # doesn't check column names, and I want it to do that...) differentials.index.rename(None, inplace=True) # This is slow but it should at least *work as intended.* # If there are any non-numeric differentials, or any NaN differentials, or # any infinity/-infinity differentials (???), then we should raise an # error. This code should do that. for feature_row in differentials.itertuples(): for differential in feature_row[1:]: try: fd = float(differential) if
pd.isna(fd)
pandas.isna
import pandas as pd import statsmodels.api as sm import numpy as np from pathlib import Path outdir = Path('data') def download_rivm_r(): df_rivm =
pd.read_json('https://data.rivm.nl/covid-19/COVID-19_reproductiegetal.json')
pandas.read_json
import ipywidgets as widgets # import bql # import bqviz as bqv from bqplot import Figure, Pie, pyplot as plt import pandas as pd import plotly.express as px import plotly.graph_objects as go from components.efficient_frontier import EfficientFrontier # bq = bql.Service() class ETFViewer: def __init__(self, etf_fields, drivers): """Creates an empty component with the label requiring to select an ETF. """ label = widgets.Label("Selecione um ETF.") self.component = widgets.VBox([label]) self.component.layout.width = "40%" self.etf_fields = etf_fields self.drivers = drivers def set_etf(self, ids): """Set an ETF to the component and creates all tabs of visualizations. :param ids: List of BQL ids of the selected ETFs. :type ids: list """ self.ids = ids self.component.children = [widgets.Label("Carregando...")] self.hist_returns = self.get_etf_historical_returns() out_error = widgets.Output() with out_error: titles = ['Performance', 'Volatilidade', 'Volume', 'Tracking', 'Holdings', 'Macro Factors', 'Infos'] tab = widgets.Tab() tab.children = [ self.create_performance_view(), self.create_volatility_view(), self.create_volume_view(), self.create_delta_benchmark_view(), self.create_holdings_view(), self.create_drivers_view(), self.create_infos_view(), ] for i, title in enumerate(titles): tab.set_title(i, title) tab.add_class('custom-tabs') self.component.children = [self.get_tabs_styles(), tab] return self.component.children = [out_error] def ids_as_string(self): return ','.join(["'%s'"%id for id in self.ids]) def get_etf_historical_returns(self): """Gets a pandas DataFrame with the historical monthly returns of \ the ETFs from a period of 3 years. :return: The monthly historical returns. :rtype: pd.DataFrame """ # bql_response = bq.execute(""" # get(PCT_DIFF(PX_LAST(M, dates=range(-3y, 0d)))) for([%s]) # """%self.ids_as_string()) # df = bql_response[0].df() # df.to_csv('./data/etfs/%s_returns.csv'%(self.ids[0])) df = pd.DataFrame() for id in self.ids: _df = pd.read_csv('./data/etfs/%s_returns.csv'%(id), index_col=0, parse_dates=['DATE']) _df.columns = ['DATE', 'RETURN'] _df = _df.reset_index().pivot(index='DATE', columns='ID', values='RETURN') df =
pd.concat([df, _df])
pandas.concat
from __future__ import absolute_import, division, print_function import pytest from datetime import datetime, timedelta import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series from string import ascii_lowercase from blaze.compute.core import compute from blaze import dshape, discover, transform from blaze.expr import symbol, join, by, summary, distinct, shape from blaze.expr import (merge, exp, mean, count, nunique, sum, min, max, any, var, std, concat) from blaze.compatibility import builtins, xfail, assert_series_equal t = symbol('t', 'var * {name: string, amount: int, id: int}') nt = symbol('t', 'var * {name: ?string, amount: float64, id: int}') df = DataFrame([['Alice', 100, 1], ['Bob', 200, 2], ['Alice', 50, 3]], columns=['name', 'amount', 'id']) ndf = DataFrame([['Alice', 100.0, 1], ['Bob', np.nan, 2], [np.nan, 50.0, 3]], columns=['name', 'amount', 'id']) tbig = symbol('tbig', 'var * {name: string, sex: string[1], amount: int, id: int}') dfbig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) def test_series_columnwise(): s = Series([1, 2, 3], name='a') t = symbol('t', 'var * {a: int64}') result = compute(t.a + 1, s) assert_series_equal(s + 1, result) def test_symbol(): tm.assert_frame_equal(compute(t, df), df) def test_projection(): tm.assert_frame_equal(compute(t[['name', 'id']], df), df[['name', 'id']]) def test_eq(): assert_series_equal(compute(t['amount'] == 100, df), df['amount'] == 100) def test_selection(): tm.assert_frame_equal(compute(t[t['amount'] == 0], df), df[df['amount'] == 0]) tm.assert_frame_equal(compute(t[t['amount'] > 150], df), df[df['amount'] > 150]) def test_arithmetic(): assert_series_equal(compute(t['amount'] + t['id'], df), df.amount + df.id) assert_series_equal(compute(t['amount'] * t['id'], df), df.amount * df.id) assert_series_equal(compute(t['amount'] % t['id'], df), df.amount % df.id) def test_join(): left = DataFrame( [['Alice', 100], ['Bob', 200]], columns=['name', 'amount']) right = DataFrame([['Alice', 1], ['Bob', 2]], columns=['name', 'id']) lsym = symbol('L', 'var * {name: string, amount: int}') rsym = symbol('R', 'var * {name: string, id: int}') joined = join(lsym, rsym, 'name') assert (dshape(joined.schema) == dshape('{name: string, amount: int, id: int}')) result = compute(joined, {lsym: left, rsym: right}) expected = DataFrame([['Alice', 100, 1], ['Bob', 200, 2]], columns=['name', 'amount', 'id']) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(joined.fields) def test_multi_column_join(): left = [(1, 2, 3), (2, 3, 4), (1, 3, 5)] left = DataFrame(left, columns=['x', 'y', 'z']) right = [(1, 2, 30), (1, 3, 50), (1, 3, 150)] right = DataFrame(right, columns=['x', 'y', 'w']) lsym = symbol('lsym', 'var * {x: int, y: int, z: int}') rsym = symbol('rsym', 'var * {x: int, y: int, w: int}') j = join(lsym, rsym, ['x', 'y']) expected = [(1, 2, 3, 30), (1, 3, 5, 50), (1, 3, 5, 150)] expected = DataFrame(expected, columns=['x', 'y', 'z', 'w']) result = compute(j, {lsym: left, rsym: right}) print(result) tm.assert_frame_equal(result, expected) assert list(result.columns) == list(j.fields) def test_unary_op(): assert (compute(exp(t['amount']), df) == np.exp(df['amount'])).all() def test_abs(): assert (compute(abs(t['amount']), df) == abs(df['amount'])).all() def test_neg(): assert_series_equal(compute(-t['amount'], df), -df['amount']) @xfail(reason='Projection does not support arithmetic') def test_neg_projection(): assert_series_equal(compute(-t[['amount', 'id']], df), -df[['amount', 'id']]) def test_columns_series(): assert isinstance(compute(t['amount'], df), Series) assert isinstance(compute(t['amount'] > 150, df), Series) def test_reductions(): assert compute(mean(t['amount']), df) == 350 / 3 assert compute(count(t['amount']), df) == 3 assert compute(sum(t['amount']), df) == 100 + 200 + 50 assert compute(min(t['amount']), df) == 50 assert compute(max(t['amount']), df) == 200 assert compute(nunique(t['amount']), df) == 3 assert compute(nunique(t['name']), df) == 2 assert compute(any(t['amount'] > 150), df) is True assert compute(any(t['amount'] > 250), df) is False assert compute(var(t['amount']), df) == df.amount.var(ddof=0) assert compute(var(t['amount'], unbiased=True), df) == df.amount.var() assert compute(std(t['amount']), df) == df.amount.std(ddof=0) assert compute(std(t['amount'], unbiased=True), df) == df.amount.std() assert compute(t.amount[0], df) == df.amount.iloc[0] assert compute(t.amount[-1], df) == df.amount.iloc[-1] def test_reductions_on_dataframes(): assert compute(count(t), df) == 3 assert shape(compute(count(t, keepdims=True), df)) == (1,) def test_1d_reductions_keepdims(): series = df['amount'] for r in [sum, min, max, nunique, count, std, var]: result = compute(r(t.amount, keepdims=True), {t.amount: series}) assert type(result) == type(series) def test_distinct(): dftoobig = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5], ['Drew', 'M', 200, 5]], columns=['name', 'sex', 'amount', 'id']) d_t = distinct(tbig) d_df = compute(d_t, dftoobig) tm.assert_frame_equal(d_df, dfbig) # Test idempotence tm.assert_frame_equal(compute(d_t, d_df), d_df) def test_distinct_on(): cols = ['name', 'sex', 'amount', 'id'] df = DataFrame([['Alice', 'F', 100, 1], ['Alice', 'F', 100, 3], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'F', 100, 4], ['Drew', 'M', 100, 5], ['Drew', 'M', 200, 5]], columns=cols) s = symbol('s', discover(df)) computed = compute(s.distinct('sex'), df) tm.assert_frame_equal( computed, pd.DataFrame([['Alice', 'F', 100, 1], ['Drew', 'M', 100, 5]], columns=cols), ) def test_by_one(): result = compute(by(t['name'], total=t['amount'].sum()), df) expected = df.groupby('name')['amount'].sum().reset_index() expected.columns = ['name', 'total'] tm.assert_frame_equal(result, expected) def test_by_two(): result = compute(by(tbig[['name', 'sex']], total=sum(tbig['amount'])), dfbig) expected = DataFrame([['Alice', 'F', 200], ['Drew', 'F', 100], ['Drew', 'M', 300]], columns=['name', 'sex', 'total']) tm.assert_frame_equal(result, expected) def test_by_three(): expr = by(tbig[['name', 'sex']], total=(tbig['id'] + tbig['amount']).sum()) result = compute(expr, dfbig) expected = DataFrame([['Alice', 'F', 204], ['Drew', 'F', 104], ['Drew', 'M', 310]], columns=['name', 'sex', 'total']) expected.columns = expr.fields tm.assert_frame_equal(result, expected) def test_by_four(): t = tbig[['sex', 'amount']] expr = by(t['sex'], max=t['amount'].max()) result = compute(expr, dfbig) expected = DataFrame([['F', 100], ['M', 200]], columns=['sex', 'max']) tm.assert_frame_equal(result, expected) def test_join_by_arcs(): df_idx = DataFrame([['A', 1], ['B', 2], ['C', 3]], columns=['name', 'node_id']) df_arc = DataFrame([[1, 3], [2, 3], [3, 1]], columns=['node_out', 'node_id']) t_idx = symbol('t_idx', 'var * {name: string, node_id: int32}') t_arc = symbol('t_arc', 'var * {node_out: int32, node_id: int32}') joined = join(t_arc, t_idx, "node_id") want = by(joined['name'], count=joined['node_id'].count()) result = compute(want, {t_arc: df_arc, t_idx: df_idx}) result_pandas = pd.merge(df_arc, df_idx, on='node_id') gb = result_pandas.groupby('name') expected = gb.node_id.count().reset_index().rename(columns={ 'node_id': 'count' }) tm.assert_frame_equal(result, expected) assert list(result.columns) == ['name', 'count'] def test_join_suffixes(): df = pd.DataFrame( list(dict((k, n) for k in ascii_lowercase[:5]) for n in range(5)), ) a = symbol('a', discover(df)) b = symbol('b', discover(df)) suffixes = '_x', '_y' joined = join(a, b, 'a', suffixes=suffixes) expected = pd.merge(df, df, on='a', suffixes=suffixes) result = compute(joined, {a: df, b: df}) tm.assert_frame_equal(result, expected) def test_join_promotion(): a_data = pd.DataFrame([[0.0, 1.5], [1.0, 2.5]], columns=list('ab')) b_data = pd.DataFrame([[0, 1], [1, 2]], columns=list('ac')) a = symbol('a', discover(a_data)) b = symbol('b', discover(b_data)) joined = join(a, b, 'a') assert joined.dshape == dshape('var * {a: float64, b: ?float64, c: int64}') expected = pd.merge(a_data, b_data, on='a') result = compute(joined, {a: a_data, b: b_data}) tm.assert_frame_equal(result, expected) def test_sort(): tm.assert_frame_equal(compute(t.sort('amount'), df), df.sort('amount')) tm.assert_frame_equal(compute(t.sort('amount', ascending=True), df), df.sort('amount', ascending=True)) tm.assert_frame_equal(compute(t.sort(['amount', 'id']), df), df.sort(['amount', 'id'])) def test_sort_on_series_no_warning(recwarn): expected = df.amount.order() recwarn.clear() assert_series_equal(compute(t['amount'].sort('amount'), df), expected) # raises as assertion error if no warning occurs, same thing for below with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) assert_series_equal(compute(t['amount'].sort(), df), expected) with pytest.raises(AssertionError): assert recwarn.pop(FutureWarning) def test_field_on_series(): expr = symbol('s', 'var * int') data = Series([1, 2, 3, 4], name='s') assert_series_equal(compute(expr.s, data), data) def test_head(): tm.assert_frame_equal(compute(t.head(1), df), df.head(1)) def test_tail(): tm.assert_frame_equal(compute(t.tail(1), df), df.tail(1)) def test_label(): expected = df['amount'] * 10 expected.name = 'foo' assert_series_equal(compute((t['amount'] * 10).label('foo'), df), expected) def test_relabel(): result = compute(t.relabel({'name': 'NAME', 'id': 'ID'}), df) expected = df.rename(columns={'name': 'NAME', 'id': 'ID'}) tm.assert_frame_equal(result, expected) def test_relabel_series(): result = compute(t.relabel({'name': 'NAME'}), df.name) assert result.name == 'NAME' ts = pd.date_range('now', periods=10).to_series().reset_index(drop=True) tframe = DataFrame({'timestamp': ts}) def test_map_column(): inc = lambda x: x + 1 result = compute(t['amount'].map(inc, 'int'), df) expected = df['amount'] + 1 assert_series_equal(result, expected) def test_map(): f = lambda _, amt, id: amt + id result = compute(t.map(f, 'real'), df) expected = df['amount'] + df['id'] assert_series_equal(result, expected) def test_apply_column(): result = compute(t.amount.apply(np.sum, 'real'), df) expected = np.sum(df['amount']) assert result == expected result = compute(t.amount.apply(builtins.sum, 'real'), df) expected = builtins.sum(df['amount']) assert result == expected def test_apply(): result = compute(t.apply(str, 'string'), df) expected = str(df) assert result == expected def test_merge(): col = (t['amount'] * 2).label('new') expr = merge(t['name'], col) expected = DataFrame([['Alice', 200], ['Bob', 400], ['Alice', 100]], columns=['name', 'new']) result = compute(expr, df) tm.assert_frame_equal(result, expected) def test_by_nunique(): result = compute(by(t['name'], count=t['id'].nunique()), df) expected = DataFrame([['Alice', 2], ['Bob', 1]], columns=['name', 'count']) tm.assert_frame_equal(result, expected) def test_selection_out_of_order(): expr = t['name'][t['amount'] < 100] expected = df.loc[df.amount < 100, 'name'] result = compute(expr, df) assert_series_equal(result, expected) def test_outer_join(): left = [(1, 'Alice', 100), (2, 'Bob', 200), (4, 'Dennis', 400)] left = DataFrame(left, columns=['id', 'name', 'amount']) right = [('NYC', 1), ('Boston', 1), ('LA', 3), ('Moscow', 4)] right = DataFrame(right, columns=['city', 'id']) lsym = symbol('lsym', 'var * {id: int, name: string, amount: real}') rsym = symbol('rsym', 'var * {city: string, id: int}') convert = lambda df: set(df.to_records(index=False).tolist()) assert (convert(compute(join(lsym, rsym), {lsym: left, rsym: right})) == set([(1, 'Alice', 100, 'NYC'), (1, 'Alice', 100, 'Boston'), (4, 'Dennis', 400, 'Moscow')])) assert (convert(compute(join(lsym, rsym, how='left'), {lsym: left, rsym: right})) == set([(1, 'Alice', 100, 'NYC'), (1, 'Alice', 100, 'Boston'), (2, 'Bob', 200, np.nan), (4, 'Dennis', 400, 'Moscow')])) df = compute(join(lsym, rsym, how='right'), {lsym: left, rsym: right}) expected = DataFrame([(1., 'Alice', 100., 'NYC'), (1., 'Alice', 100., 'Boston'), (3., np.nan, np.nan, 'lsymA'), (4., 'Dennis', 400., 'Moscow')], columns=['id', 'name', 'amount', 'city']) result = df.sort('id').to_records(index=False) expected = expected.sort('id').to_records(index=False) np.array_equal(result, expected) df = compute(join(lsym, rsym, how='outer'), {lsym: left, rsym: right}) expected = DataFrame([(1., 'Alice', 100., 'NYC'), (1., 'Alice', 100., 'Boston'), (2., 'Bob', 200., np.nan), (3., np.nan, np.nan, 'LA'), (4., 'Dennis', 400., 'Moscow')], columns=['id', 'name', 'amount', 'city']) result = df.sort('id').to_records(index=False) expected = expected.sort('id').to_records(index=False) np.array_equal(result, expected) def test_by_on_same_column(): df = pd.DataFrame([[1, 2], [1, 4], [2, 9]], columns=['id', 'value']) t = symbol('data', 'var * {id: int, value: int}') gby = by(t['id'], count=t['id'].count()) expected = DataFrame([[1, 2], [2, 1]], columns=['id', 'count']) result = compute(gby, {t: df}) tm.assert_frame_equal(result, expected) def test_summary_by(): expr = by(t.name, summary(count=t.id.count(), sum=t.amount.sum())) result = compute(expr, df) expected = DataFrame([['Alice', 2, 150], ['Bob', 1, 200]], columns=['name', 'count', 'sum']) expr = by(t.name, summary(count=t.id.count(), sum=(t.amount + 1).sum())) result = compute(expr, df) expected = DataFrame([['Alice', 2, 152], ['Bob', 1, 201]], columns=['name', 'count', 'sum']) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(raises=TypeError, reason=('pandas backend cannot support non Reduction ' 'subclasses')) def test_summary_by_first(): expr = by(t.name, fst=t.amount[0]) result = compute(expr, df) assert result == df.amount.iloc[0] def test_summary_by_reduction_arithmetic(): expr = by(t.name, summary(count=t.id.count(), sum=t.amount.sum() + 1)) result = compute(expr, df) expected = DataFrame([['Alice', 2, 151], ['Bob', 1, 201]], columns=['name', 'count', 'sum']) tm.assert_frame_equal(result, expected) def test_summary(): expr = summary(count=t.id.count(), sum=t.amount.sum()) assert_series_equal(compute(expr, df), Series({'count': 3, 'sum': 350})) def test_summary_on_series(): ser = Series([1, 2, 3]) s = symbol('s', '3 * int') expr = summary(max=s.max(), min=s.min()) assert compute(expr, ser) == (3, 1) expr = summary(max=s.max(), min=s.min(), keepdims=True) assert compute(expr, ser) == [(3, 1)] def test_summary_keepdims(): expr = summary(count=t.id.count(), sum=t.amount.sum(), keepdims=True) expected =
DataFrame([[3, 350]], columns=['count', 'sum'])
pandas.DataFrame
""" Classes for analyzing RSMTool predictions, metrics, etc. :author: <NAME> (<EMAIL>) :author: <NAME> (<EMAIL>) :author: <NAME> (<EMAIL>) :organization: ETS """ import warnings from functools import partial import numpy as np import pandas as pd from scipy.stats import kurtosis, pearsonr from sklearn.decomposition import PCA from sklearn.metrics import confusion_matrix, mean_squared_error, r2_score from skll.metrics import kappa from .container import DataContainer from .utils.metrics import (agreement, difference_of_standardized_means, partial_correlations, quadratic_weighted_kappa, standardized_mean_difference) from .utils.prmse import get_true_score_evaluations class Analyzer: """Class to perform analysis on all metrics, predictions, etc.""" @staticmethod def check_frame_names(data_container, dataframe_names): """ Check that all specified dataframes are available. This method checks to make sure all specified DataFrames are in the given data container object. Parameters ---------- data_container : container.DataContainer A DataContainer object dataframe_names : list of str The names of the DataFrames expected in the DataContainer object. Raises ------ KeyError If a given dataframe_name is not in the DataContainer object. """ for dataframe_name in dataframe_names: if dataframe_name not in data_container: raise KeyError('The DataFrame `{}` does not exist in the ' 'DataContainer object.'.format(dataframe_name)) @staticmethod def check_param_names(configuration_obj, parameter_names): """ Check that all specified parameters are available. This method checks to make sure all specified parameters are in the given configuration object. Parameters ---------- configuration_obj : configuration_parser.Configuration A configuration object parameter_names : list of str The names of the parameters (keys) expected in the Configuration object. Raises ------ KeyError If a given parameter_name is not in the Configuration object. """ for parameter_name in parameter_names: if parameter_name not in configuration_obj: raise KeyError('The parameter `{}` does not exist in the ' 'Configuration object.'.format(parameter_name)) @staticmethod def analyze_excluded_responses(df, features, header, exclude_zero_scores=True, exclude_listwise=False): """ Compute statistics for responses excluded from analyses. This method computes various statistics for the responses that were excluded from analyses, either in the training set or in the test set. Parameters ---------- df : pandas DataFrame Data frame containing the excluded responses features : list of str List of column names containing the features to which we want to restrict the analyses. header : str String to be used as the table header for the output data frame. exclude_zero_scores : bool, optional Whether or not the zero-score responses should be counted in the exclusion statistics. Defaults to ``True``. exclude_listwise : bool, optional Whether or not the candidates were excluded based on minimal number of responses. Defaults to ``False``. Returns ------- df_full_crosstab : pandas DataFrame Two-dimensional data frame containing the exclusion statistics. """ # create an empty output data frame df_full_crosstab = pd.DataFrame({'all features numeric': [0, 0, 0], 'non-numeric feature values': [0, 0, 0]}, index=['numeric non-zero human score', 'zero human score', 'non-numeric human score']) if not df.empty: # re-code human scores into numeric, missing or zero df['score_category'] = 'numeric non-zero human score' df.loc[df['sc1'].isnull(), 'score_category'] = 'non-numeric human score' df.loc[df['sc1'].astype(float) == 0, 'score_category'] = 'zero human score' # recode feature values: a response with at least one # missing feature is assigned 'non-numeric feature values' df_features_only = df[features + ['spkitemid']] null_feature_rows = df_features_only.isnull().any(axis=1) df_null_features = df_features_only[null_feature_rows] df['feat_category'] = 'all features numeric' df.loc[df['spkitemid'].isin(df_null_features['spkitemid']), 'feat_category'] = 'non-numeric feature values' # crosstabulate df_crosstab = pd.crosstab(df['score_category'], df['feat_category']) df_full_crosstab.update(df_crosstab) # convert back to integers as these are all counts df_full_crosstab = df_full_crosstab.astype(int) df_full_crosstab.insert(0, header, df_full_crosstab.index) if not exclude_listwise: # if we are not excluding listwise, rename the first cell so # that it is not set to zero assert(df_full_crosstab.loc['numeric non-zero human score', 'all features numeric'] == 0) df_full_crosstab.loc['numeric non-zero human score', 'all features numeric'] = '-' # if we are not excluding the zeros, rename the corresponding cells # so that they are not set to zero. We do not do this for listwise exclusion if not exclude_zero_scores: assert(df_full_crosstab.loc['zero human score', 'all features numeric'] == 0) df_full_crosstab.loc['zero human score', 'all features numeric'] = '-' return df_full_crosstab @staticmethod def analyze_used_responses(df_train, df_test, subgroups, candidate_column): """ Compute statistics for responses used in analyses. This method computes various statistics on the responses that were used in analyses, either in the training set or in the test set. Parameters ---------- df_train : pandas DataFrame Data frame containing the response information for the training set. df_test : pandas DataFrame Data frame containing the response information for the test set. subgroups : list of str List of column names that contain grouping information. candidate_column : str Column name that contains candidate identification information. Returns ------- df_analysis : pandas DataFrame Data frame containing information about the used responses. """ # create a basic data frame for responses only train_responses = set(df_train['spkitemid']) test_responses = set(df_test['spkitemid']) rows = [{'partition': 'Training', 'responses': len(train_responses)}, {'partition': 'Evaluation', 'responses': len(test_responses)}, {'partition': 'Overlapping', 'responses': len(train_responses & test_responses)}, {'partition': 'Total', 'responses': len(train_responses | test_responses)}] df_analysis = pd.DataFrame.from_dict(rows) columns = ['partition', 'responses'] + subgroups if candidate_column: train_candidates = set(df_train['candidate']) test_candidates = set(df_test['candidate']) df_analysis['candidates'] = [len(train_candidates), len(test_candidates), len(train_candidates & test_candidates), len(train_candidates | test_candidates)] columns = ['partition', 'responses', 'candidates'] + subgroups for group in subgroups: train_group = set(df_train[group]) test_group = set(df_test[group]) df_analysis[group] = [len(train_group), len(test_group), len(train_group & test_group), len(train_group | test_group)] df_analysis = df_analysis[columns] return df_analysis @staticmethod def analyze_used_predictions(df_test, subgroups, candidate_column): """ Compute various statistics for predictions used in analyses. Parameters ---------- df_test : pandas DataFrame Data frame containing the test set predictions. subgroups : list of str List of column names that contain grouping information. candidate_column : str Column name that contains candidate identification information. Returns ------- df_analysis : pandas DataFrame Data frame containing information about the used predictions. """ rows = [{'partition': 'Evaluation', 'responses': df_test['spkitemid'].size}] df_analysis = pd.DataFrame.from_dict(rows) df_columns = ['partition', 'responses'] + subgroups if candidate_column: df_analysis['candidates'] = [df_test['candidate'].unique().size] df_columns = ['partition', 'responses', 'candidates'] + subgroups for group in subgroups: df_analysis[group] = [df_test[group].unique().size] df_analysis = df_analysis[df_columns] return df_analysis @staticmethod def compute_basic_descriptives(df, selected_features): """ Compute basic descriptive statistics for columns in the given data frame. Parameters ---------- df : pandas DataFrame Input data frame containing the feature values. selected_features : list of str List of feature names for which to compute the descriptives. Returns ------- df_desc : pandas DataFrame DataFrame containing the descriptives for each of the features. """ # select only feature columns df_desc = df[selected_features] # get the H1 scores scores = df['sc1'] # compute correlations and p-values separately for efficiency cor_series = df_desc.apply(lambda s: pearsonr(s, scores)) cors = cor_series.apply(lambda t: t[0]) pvalues = cor_series.apply(lambda t: t[1]) # create a data frame with all the descriptives df_output = pd.DataFrame({'mean': df_desc.mean(), 'min': df_desc.min(), 'max': df_desc.max(), 'std. dev.': df_desc.std(), 'skewness': df_desc.skew(), 'kurtosis': df_desc.apply(lambda s: kurtosis(s, fisher=False)), 'Correlation': cors, 'p': pvalues, 'N': len(df_desc)}) # reorder the columns to make it look better df_output = df_output[['mean', 'std. dev.', 'min', 'max', 'skewness', 'kurtosis', 'Correlation', 'p', 'N']] return df_output @staticmethod def compute_percentiles(df, selected_features, percentiles=None): """ Compute percentiles and outliers for columns in the given data frame. Parameters ---------- df : pandas DataFrame Input data frame containing the feature values. selected_features : list of str List of feature names for which to compute the percentile descriptives. percentiles : list of ints, optional The percentiles to calculate. If ``None``, use the percentiles {1, 5, 25, 50, 75, 95, 99}. Defaults to ``None``. Returns ------- df_output : pandas DataFrame Data frame containing the percentile information for each of the features. """ # select only feature columns df_desc = df[selected_features] # compute the various percentile levels if percentiles is None: percentiles = [1, 5, 25, 50, 75, 95, 99] df_output = df_desc.apply(lambda series: pd.Series(np.percentile(series, percentiles, interpolation='lower'))) df_output = df_output.transpose() # change the column names to be more readable df_output.columns = ['{}%'.format(p) for p in percentiles] # add the inter-quartile range column df_output['IQR'] = df_output['75%'] - df_output['25%'] # compute the various outlier statistics mild_upper = df_output['75%'] + 1.5 * df_output['IQR'] mild_bottom = df_output['25%'] - 1.5 * df_output['IQR'] extreme_upper = df_output['75%'] + 3 * df_output['IQR'] extreme_bottom = df_output['25%'] - 3 * df_output['IQR'] # compute the mild and extreme outliers num_mild_outliers = {} num_extreme_outliers = {} for c in df_desc.columns: is_extreme = (df_desc[c] <= extreme_bottom[c]) | (df_desc[c] >= extreme_upper[c]) is_mild = ((df_desc[c] > extreme_bottom[c]) & (df_desc[c] <= mild_bottom[c])) is_mild = is_mild | ((df_desc[c] >= mild_upper[c]) & (df_desc[c] < extreme_upper[c])) num_mild_outliers[c] = len(df_desc[is_mild]) num_extreme_outliers[c] = len(df_desc[is_extreme]) # add those to the output data frame df_output['Mild outliers'] = pd.Series(num_mild_outliers) df_output['Extreme outliers'] = pd.Series(num_extreme_outliers) return df_output @staticmethod def compute_outliers(df, selected_features): """ Compute number and percentage of outliers for given columns. This method computes the number and percentage of outliers that lie outside the range mean +/- 4 SD for each of the given columns in the given data frame. Parameters ---------- df : pandas DataFrame Input data frame containing the feature values. selected_features : list of str List of feature names for which to compute outlier information. Returns ------- df_output : pandas DataFrame Data frame containing outlier information for each of the features. """ # select only feature columns df_desc = df[selected_features] # compute the means and standard deviations means = df_desc.mean() stds = df_desc.std() # compute the number of upper and lower outliers lower_outliers = {} upper_outliers = {} for c in df_desc.columns: lower_outliers[c] = len(df_desc[df_desc[c] < means[c] - 4 * stds[c]]) upper_outliers[c] = len(df_desc[df_desc[c] > means[c] + 4 * stds[c]]) # generate the output data frame lower_s = pd.Series(lower_outliers) upper_s = pd.Series(upper_outliers) both_s = lower_s + upper_s df_output = pd.DataFrame({'lower': lower_s, 'upper': upper_s, 'both': both_s, 'lowerperc': round(lower_s / len(df_desc) * 100, 2), 'upperperc': round(upper_s / len(df_desc) * 100, 2), 'bothperc': round(both_s / len(df_desc) * 100, 2)}) return df_output @staticmethod def compute_pca(df, selected_features): """ Compute PCA decomposition of the given features. This method computes the PCA decomposition of features in the data frame, restricted to the given columns. The number of components is set to be min(n_features, n_samples). Parameters ---------- df : pandas DataFrame Input data frame containing feature values. selected_features : list of str List of feature names to be used in the PCA decomposition. Returns ------- df_components : pandas DataFrame Data frame containing the PCA components. df_variance : pandas DataFrame Data frame containing the variance information. """ # restrict to the given features df_pca = df[selected_features] # fit the PCA n_components = min(len(selected_features), len(df_pca)) pca = PCA(n_components=n_components) pca.fit(df_pca) df_components = pd.DataFrame(pca.components_) n_components = len(df_components) df_components.columns = selected_features df_components.index = ['PC{}'.format(i) for i in range(1, n_components + 1)] df_components = df_components.transpose() # compute the variance data frame df_variance = {'Eigenvalues': pca.explained_variance_, 'Percentage of variance': pca.explained_variance_ratio_, 'Cumulative percentage of ' 'variance': np.cumsum(pca.explained_variance_ratio_) } df_variance = pd.DataFrame(df_variance) # reorder the columns df_variance = df_variance[['Eigenvalues', 'Percentage of variance', 'Cumulative percentage of variance']] # set the row names and take the transpose df_variance.index = ['PC{}'.format(i) for i in range(1, n_components + 1)] df_variance = df_variance.transpose() return df_components, df_variance @staticmethod def correlation_helper(df, target_variable, grouping_variable, include_length=False): """ Compute marginal and partial correlations for all columns. This helper method computes marginal and partial correlations of all the columns in the given data frame against the target variable separately for each level in the the grouping variable. If ``include_length`` is ``True``, it additionally computes partial correlations of each column in the data frame against the target variable after controlling for the "length" column. Parameters ---------- df : pandas DataFrame Input data frame containing numeric feature values, the numeric `target variable` and the `grouping variable`. target_variable: str The name of the column used as a reference for computing correlations. grouping_variable: str The name of the column defining groups in the data include_length: bool, optional If True compute additional partial correlations of each column in the data frame against `target variable` only partialling out "length" column. Returns ------- df_target_cors : pandas DataFrame Data frame containing Pearson's correlation coefficients for marginal correlations between features and `target_variable`. df_target_partcors : pandas DataFrame Data frame containing Pearson's correlation coefficients for partial correlations between each feature and `target_variable` after controlling for all other features. If ``include_length`` is set to ``True``, the "length" column will not be included in the partial correlation computation. df_target_partcors_no_length: pandas DataFrame If ``include_length`` is set to ``True``: Data frame containing Pearson's correlation coefficients for partial correlations between each feature and ``target_variable`` after controlling for "length". Otherwise, it will be an empty data frame. """ # group by the group columns grouped = df.groupby(grouping_variable) df_target_cors = pd.DataFrame() df_target_pcorr = pd.DataFrame() df_target_pcorr_no_length = pd.DataFrame() for group, df_group in grouped: df_group = df_group.drop(grouping_variable, axis=1) # first check if we have at least 2 cases and return np.nan otherwise if len(df_group) == 1: df_target_cors[group] = pd.Series(data=np.nan, index=df_group.columns) df_target_pcorr[group] = pd.Series(data=np.nan, index=df_group.columns) df_target_pcorr_no_length[group] = pd.Series(data=np.nan, index=df_group.columns) else: # if we are asked to include length, that means 'length' is # in the data frame which means that we want to exclude that # before computing the regular marginal and partial correlations if not include_length: df_target_cors[group] = df_group.apply(lambda s: pearsonr(s, df_group[target_variable])[0]) df_target_pcorr[group] = partial_correlations(df_group)[target_variable] else: df_group_no_length = df_group.drop('length', axis=1) partial_pearsonr = partial(pearsonr, y=df_group_no_length[target_variable]) df_target_cors[group] = df_group_no_length.apply(lambda s: partial_pearsonr(s)[0]) df_target_pcorr[group] = partial_correlations(df_group_no_length)[target_variable] pcor_dict = {} columns = [c for c in df_group.columns if c not in ['sc1', 'length']] for c in columns: pcor_dict[c] = partial_correlations(df_group[[c, 'sc1', 'length']])['sc1'][c] df_target_pcorr_no_length[group] = pd.Series(pcor_dict) # remove the row containing the correlation of the target variable # with itself and take the transpose df_target_cors = df_target_cors.drop(target_variable).transpose() df_target_pcorr = df_target_pcorr.drop(target_variable).transpose() df_target_pcorr_no_length = df_target_pcorr_no_length.transpose() return (df_target_cors, df_target_pcorr, df_target_pcorr_no_length) @staticmethod def metrics_helper(human_scores, system_scores, population_human_score_sd=None, population_system_score_sd=None, population_human_score_mn=None, population_system_score_mn=None, smd_method='unpooled', use_diff_std_means=False): """ Compute basic association metrics between system and human scores. Parameters ---------- human_scores : pandas Series Series containing numeric human (reference) scores. system_scores: pandas Series Series containing numeric scores predicted by the model. population_human_score_sd : float, optional Reference standard deviation for human scores. This must be specified when the function is used to compute association metrics for a subset of responses, for example, responses from a particular demographic subgroup. If ``smd_method`` is set to "williamson" or "johnson", this should be the standard deviation for the whole population (in most cases, the standard deviation for the whole test set). If ``use_diff_std_means`` is ``True``, this must be the standard deviation for the whole population and ``population_human_score_mn`` must also be specified. Otherwise, it is ignored. Defaults to ``None``. population_system_score_sd : float, optional Reference standard deviation for system scores. This must be specified when the function is used to compute association metrics for a subset of responses, for example, responses from a particular demographic subgroup. If ``smd_method`` is set to "williamson", this should be the standard deviation for the whole population (in most cases, the standard deviation for the whole test set). If ``use_diff_std_means`` is ``True``, this must be the standard deviation for the whole population and ``population_system_score_mn`` must also be specified. Otherwise, it is ignored. Defaults to ``None``. population_human_score_mn : float, optional Reference mean for human scores. This must be specified when the function is used to compute association metrics for a subset of responses, for example, responses from a particular demographic subgroup. If ``use_diff_std_means`` is ``True``, this must be the mean for the whole population (in most cases, the full test set) and ``population_human_score_sd`` must also be specified. Otherwise, it is ignored. Defaults to ``None``. population_system_score_mn : float, optional Reference mean for system scores. This must be specified when the function is used to compute association metrics for a subset of responses, for example, responses from a particular demographic subgroup. If ``use_diff_std_means`` is ``True``, this must be the mean for the whole population (in most cases, the full test set) and ``population_system_score_sd`` must also be specified. Otherwise, it is ignored. Defaults to ``None``. smd_method : {"williamson", "johnson", "pooled", "unpooled"}, optional The SMD method to use, only used if ``use_diff_std_means`` is ``False``. All methods have the same numerator mean(`y_pred`) - mean(`y_true_observed`) and the following denominators : - "williamson": pooled population standard deviation of `y_true_observed` and `y_pred` computed using ``population_human_score_sd`` and ``population_system_score_sd``. - "johnson": ``population_human_score_sd``. - "pooled": pooled standard deviation of `y_true_observed` and `y_pred` for this group. - "unpooled": standard deviation of `y_true_observed` for this group. Defaults to "unpooled". use_diff_std_means : bool, optional Whether to use the difference of standardized means, rather than the standardized mean difference. This is most useful with subgroup analysis. Defaults to ``False``. Returns ------- metrics: pandas Series Series containing different evaluation metrics comparing human and system scores. The following metrics are included: - `kappa`: unweighted Cohen's kappa - `wtkappa`: quadratic weighted kappa - `exact_agr`: exact agreement - `adj_agr`: adjacent agreement with tolerance set to 1 - One of the following : * `SMD`: standardized mean difference, if ``use_diff_std_means`` is ``False``. * `DSM`: difference of standardized means, if ``use_diff_std_means`` is ``True``. - `corr`: Pearson's r - `R2`: r squared - `RMSE`: root mean square error - `sys_min`: min system score - `sys_max`: max system score - `sys_mean`: mean system score (ddof=1) - `sys_sd`: standard deviation of system scores (ddof=1) - `h_min`: min human score - `h_max`: max human score - `h_mean`: mean human score (ddof=1) - `h_sd`: standard deviation of human scores (ddof=1) - `N`: total number of responses """ # compute the kappas unweighted_kappa = kappa(human_scores, system_scores) weighted_kappa = quadratic_weighted_kappa(human_scores, system_scores) # compute the agreement statistics human_system_agreement = agreement(human_scores, system_scores) human_system_adjacent_agreement = agreement(human_scores, system_scores, tolerance=1) # compute the Pearson correlation after removing # any cases where either of the scores are NaNs. df = pd.DataFrame({'human': human_scores, 'system': system_scores}).dropna(how='any') if (len(df) == 1 or len(df['human'].unique()) == 1 or len(df['system'].unique()) == 1): # set correlations to 1 if we have a single instance or zero variance correlations = np.nan else: correlations = pearsonr(df['human'], df['system'])[0] # compute the min/max/mean/std. dev. for the system and human scores min_system_score = np.min(system_scores) min_human_score = np.min(human_scores) max_system_score = np.max(system_scores) max_human_score = np.max(human_scores) mean_system_score = np.mean(system_scores) mean_human_score = np.mean(human_scores) system_score_sd = np.std(system_scores, ddof=1) human_score_sd = np.std(human_scores, ddof=1) if use_diff_std_means: # calculate the difference of standardized means smd_name = 'DSM' smd = difference_of_standardized_means(human_scores, system_scores, population_human_score_mn, population_system_score_mn, population_human_score_sd, population_system_score_sd) else: # calculate the standardized mean difference smd_name = 'SMD' smd = standardized_mean_difference(human_scores, system_scores, population_human_score_sd, population_system_score_sd, method=smd_method) # compute r2 if len(df) == 1: r2 = np.nan else: r2 = r2_score(human_scores, system_scores) # compute MSE mse = mean_squared_error(human_scores, system_scores) rmse = np.sqrt(mse) # return everything as a series metrics = pd.Series({'kappa': unweighted_kappa, 'wtkappa': weighted_kappa, 'exact_agr': human_system_agreement, 'adj_agr': human_system_adjacent_agreement, smd_name: smd, 'corr': correlations, 'R2': r2, 'RMSE': rmse, 'sys_min': min_system_score, 'sys_max': max_system_score, 'sys_mean': mean_system_score, 'sys_sd': system_score_sd, 'h_min': min_human_score, 'h_max': max_human_score, 'h_mean': mean_human_score, 'h_sd': human_score_sd, 'N': len(system_scores)}) return metrics @staticmethod def compute_disattenuated_correlations(human_system_corr, human_human_corr): """ Compute disattenuated correlations between human and system scores. These are computed as the Pearson's correlation between the human score and the system score divided by the square root of correlation between two human raters. Parameters ---------- human_system_corr : pandas Series Series containing of pearson's correlation coefficients human-system correlations. human_human_corr : pandas Series Series containing of pearson's correlation coefficients for human-human correlations. This can contain a single value or have the index matching that of human-system correlations. Returns ------- df_correlations: pandas DataFrame Data frame containing the human-system correlations, human-human correlations, and disattenuated correlations. """ # if we only have a single value for human correlation and the index # is not in human-system values, we use the same HH value in all cases if (len(human_human_corr) == 1 and not human_human_corr.index[0] in human_system_corr.index): human_human_corr = pd.Series(human_human_corr.values.repeat(len(human_system_corr)), index=human_system_corr.index) # we now concatenate the two series on index df_correlations = pd.concat([human_system_corr, human_human_corr], axis=1, sort=True, keys=['corr_HM', 'corr_HH']) # if any of the HH correlations are negative, we will ignore these # and treat them as Nones with np.errstate(invalid='ignore'): df_correlations['sqrt_HH'] = np.sqrt(df_correlations['corr_HH']) df_correlations['corr_disattenuated'] = (df_correlations['corr_HM'] / df_correlations['sqrt_HH']) return df_correlations def compute_correlations_by_group(self, df, selected_features, target_variable, grouping_variable, include_length=False): """ Compute marginal and partial correlations against target variable. This method computes various marginal and partial correlations of the given columns in the given data frame against the target variable for all data and for each level of the grouping variable. Parameters ---------- df : pandas DataFrame Input data frame. selected_features : list of str List of feature names for which to compute the correlations. target_variable : str Feature name indicating the target variable i.e., the dependent variable grouping_variable : str Feature name that contain the grouping information include_length : bool, optional Whether or not to include the length when computing the partial correlations. Defaults to ``False``. Returns ------- df_output : pandas DataFrame Data frame containing the correlations. """ df_desc = df.copy() columns = selected_features + [target_variable, grouping_variable] if include_length: columns.append('length') df_desc = df_desc[columns] # create a duplicate data frame to compute correlations # over the whole data, i.e., across all grouping variables df_desc_all = df_desc.copy() df_desc_all[grouping_variable] = 'All data' # combine the two data frames df_desc_combined = pd.concat([df_desc, df_desc_all], sort=True) df_desc_combined.reset_index(drop=True, inplace=True) # compute the various (marginal and partial) correlations with score ret = self.correlation_helper(df_desc_combined, target_variable, grouping_variable, include_length=include_length) return ret def filter_metrics(self, df_metrics, use_scaled_predictions=False, chosen_metric_dict=None): """ Filter data frame to retain only the given metrics. This method filters the data frame ``df_metrics`` -- containing all of the metric values by all score types (raw, raw_trim etc.) -- to retain only the metrics as defined in the given dictionary ``chosen_metric_dict``. This dictionary maps score types ("raw", "scale", "raw_trim" etc.) to metric names. The available metric names are: - "corr" - "kappa" - "wtkappa" - "exact_agr" - "adj_agr" - "SMD" or "DSM", depending on what is in ``df_metrics``. - "RMSE" - "R2" - "sys_min" - "sys_max" - "sys_mean" - "sys_sd" - "h_min" - "h_max" - "h_mean" - "h_sd" - "N" Parameters ---------- df_metrics : pd.DataFrame The DataFrame to filter. use_scaled_predictions : bool, optional Whether to use scaled predictions. Defaults to ``False``. chosen_metric_dict : dict, optional The dictionary to map score types to metrics that should be computer for them. Defaults to ``None``. Note ---- The last five metrics will be the `same` for all score types. If ``chosen_metric_dict`` is not specified then, the following default dictionary, containing the recommended metrics, is used:: {"X_trim": ["N", "h_mean", "h_sd", "sys_mean", "sys_sd", "wtkappa", "corr", "RMSE", "R2", "SMD"], "X_trim_round": ["sys_mean", "sys_sd", "kappa", "exact_agr", "adj_agr", "SMD"]} where X = "raw" or "scale" depending on whether ``use_scaled_predictions`` is ``False`` or ``True``, respectively. """ # do we want the raw or the scaled metrics score_prefix = 'scale' if use_scaled_predictions else 'raw' # what metrics are we choosing to include? if chosen_metric_dict: chosen_metrics = chosen_metric_dict else: smd_name = 'DSM' if 'DSM' in df_metrics else 'SMD' chosen_metrics = {'{}_trim'.format(score_prefix): ['N', 'h_mean', 'h_sd', 'sys_mean', 'sys_sd', 'wtkappa', 'corr', smd_name, 'RMSE', 'R2'], '{}_trim_round'.format(score_prefix): ['sys_mean', 'sys_sd', 'kappa', 'exact_agr', 'adj_agr', smd_name]} # extract the metrics we need from the given metrics frame metricdict = {} for score_type in chosen_metrics: for metric in chosen_metrics[score_type]: colname = (metric if metric in ['h_mean', 'h_sd', 'N'] else '{}.{}'.format(metric, score_type)) values = df_metrics[metric][score_type] metricdict[colname] = values df_filtered_metrics = pd.DataFrame([metricdict]) return df_filtered_metrics def compute_metrics(self, df, compute_shortened=False, use_scaled_predictions=False, include_second_score=False, population_sd_dict=None, population_mn_dict=None, smd_method='unpooled', use_diff_std_means=False): """ Compute association metrics for scores in the given data frame. This function compute association metrics for all score types. If ``include_second_score`` is ``True``, then it is assumed that a column called `sc2` containing a second human score is available and it should be used to compute the human-human evaluation stats and the performance degradation statistics. If ``compute_shortened`` is ``True``, then this function also computes a shortened version of the full human-system metrics data frame. See ``filter_metrics()`` for the description of the default columns included in the shortened data frame. Parameters ---------- df : pandas DataFrame Input data frame compute_shortened : bool, optional Also compute a shortened version of the full metrics data frame. Defaults to ``False``. use_scaled_predictions : bool, optional Use evaluations based on scaled predictions in the shortened version of the metrics data frame. Defaults to ``False``. include_second_score : bool, optional Second human score available. Defaults to ``False``. population_sd_dict : dict, optional Dictionary containing population standard deviation for each column containing human or system scores. This is used to compute SMD for subgroups. Defaults to ``None``. population_mn_dict : dict, optional Dictionary containing population mean for each column containing human or system scores. This is used to compute SMD for subgroups. Defaults to ``None``. smd_method : {"williamson", "johnson", pooled", "unpooled"}, optional The SMD method to use, only used if ``use_diff_std_means`` is ``False``. All methods have the same numerator mean(`y_pred`) - mean(`y_true_observed`) and the following denominators: - "williamson": pooled population standard deviation of human and system scores computed based on values in ``population_sd_dict``. - "johnson": population standard deviation of human scores computed based on values in ``population_sd_dict``. - "pooled": pooled standard deviation of `y_true_observed` and `y_pred` for this group. - "unpooled": standard deviation of `y_true_observed` for this group. Defaults to "unpooled". use_diff_std_means : bool, optional Whether to use the difference of standardized means, rather than the standardized mean difference. This is most useful with subgroup analysis. Defaults to ``False``. Returns ------- df_human_system_eval : pandas DataFrame Data frame containing the full set of evaluation metrics. df_human_system_eval_filtered : pandas DataFrame Data frame containing the human-human statistics but is empty if ``include_second_score`` is ``False``. df_human_human_eval : pandas DataFrame A shortened version of the first data frame but is empty if ``compute_shortened`` is ``False``. """ # shorter variable name is easier to work with use_scaled = use_scaled_predictions # are we using DSM or SMD? smd_name = 'DSM' if use_diff_std_means else 'SMD' # get the population standard deviations for SMD if none were supplied if not population_sd_dict: population_sd_dict = {col: None for col in df.columns} # get the population standard deviations for SMD if none were supplied if not population_mn_dict: population_mn_dict = {col: None for col in df.columns} # if the second human score column is available, the values are # probably not available for all of the responses in the test # set and so we want to exclude 'sc2' from human-system metrics # computation. In addition, we also want to compute the human-human # metrics only on the data that is double scored. df_human_human = pd.DataFrame() if include_second_score: df_single = df.drop('sc2', axis=1) df_human_system = df_single.apply(lambda s: self.metrics_helper(df_single['sc1'], s, population_sd_dict['sc1'], population_sd_dict[s.name], population_mn_dict['sc1'], population_mn_dict[s.name], smd_method, use_diff_std_means)) df_double = df[df['sc2'].notnull()][['sc1', 'sc2']] df_human_human = df_double.apply(lambda s: self.metrics_helper(df_double['sc1'], s, population_sd_dict['sc1'], population_sd_dict[s.name], population_mn_dict['sc1'], population_mn_dict[s.name], 'pooled', use_diff_std_means)) # drop the sc1 column from the human-human agreement frame df_human_human = df_human_human.drop('sc1', axis=1) # sort the rows in the correct order df_human_human = df_human_human.reindex(['N', 'h_mean', 'h_sd', 'h_min', 'h_max', 'sys_mean', 'sys_sd', 'sys_min', 'sys_max', 'corr', 'wtkappa', 'R2', 'kappa', 'exact_agr', 'adj_agr', smd_name, 'RMSE']) # rename `h_*` -> `h1_*` and `sys_*` -> `h2_*` df_human_human.rename(lambda c: c.replace('h_', 'h1_').replace('sys_', 'h2_'), inplace=True) # drop RMSE and R2 because they are not meaningful for human raters df_human_human.drop(['R2', 'RMSE'], inplace=True) df_human_human = df_human_human.transpose() # convert N to integer if it's not empty else set to 0 try: df_human_human['N'] = df_human_human['N'].astype(int) except ValueError: df_human_human['N'] = 0 df_human_human.index = [''] else: df_human_system = df.apply(lambda s: self.metrics_helper(df['sc1'], s, population_sd_dict['sc1'], population_sd_dict[s.name], population_mn_dict['sc1'], population_mn_dict[s.name], smd_method, use_diff_std_means)) # drop 'sc1' column from the human-system frame and transpose df_human_system = df_human_system.drop('sc1', axis=1) df_human_system = df_human_system.transpose() # sort the columns and rows in the correct order df_human_system = df_human_system[['N', 'h_mean', 'h_sd', 'h_min', 'h_max', 'sys_mean', 'sys_sd', 'sys_min', 'sys_max', 'corr', 'wtkappa', 'R2', 'kappa', 'exact_agr', 'adj_agr', smd_name, 'RMSE']] # make N column an integer if it's not NaN else set it to 0 df_human_system['N'] = df_human_system['N'].astype(int) all_rows_order = ['raw', 'raw_trim', 'raw_trim_round', 'scale', 'scale_trim', 'scale_trim_round'] existing_rows_index = [row for row in all_rows_order if row in df_human_system.index] df_human_system = df_human_system.reindex(existing_rows_index) # extract some default metrics for a shorter version of this data frame # if we were asked to do so if compute_shortened: df_human_system_filtered = self.filter_metrics(df_human_system, use_scaled_predictions=use_scaled) else: df_human_system_filtered = pd.DataFrame() # return all data frames return (df_human_system, df_human_system_filtered, df_human_human) def compute_metrics_by_group(self, df_test, grouping_variable, use_scaled_predictions=False, include_second_score=False): """ Compute a subset of evaluation metrics by subgroups. This method computes a subset of evalution metrics for the scores in the given data frame by group specified in ``grouping_variable``. See ``filter_metrics()`` above for a description of the subset that is selected. Parameters ---------- df_test : pandas DataFrame Input data frame. grouping_variable : str Feature name indicating the column that contains grouping information. use_scaled_predictions : bool, optional Include scaled predictions when computing the evaluation metrics. Defaults to ``False``. include_second_score : bool, optional Include human-human association statistics. Defaults to ``False``. Returns ------- df_human_system_by_group : pandas DataFrame Data frame containing the correlation human-system association statistics. df_human_human_by_group : pandas DataFrame Data frame that either contains the human-human statistics or is an empty data frame, depending on whether ``include_second_score`` is `True``. """ # get the population standard deviation that we will need to compute SMD for all columns # other than id and subgroup population_sd_dict = {col: df_test[col].std(ddof=1) for col in df_test.columns if col not in ['spkitemid', grouping_variable]} population_mn_dict = {col: df_test[col].mean() for col in df_test.columns if col not in ['spkitemid', grouping_variable]} # check if any of the standard deviations is zero and # tell user to expect to see many warnings. zero_sd_scores = [score for (score, sd) in population_sd_dict.items() if np.isclose(sd, 0, atol=1e-07)] if len(zero_sd_scores) > 0: warnings.warn("The standard deviation for {} scores " "is zero (all values are the same). You " "will see multiple warnings about DSM computation " "since this metric is computed separately for " "each subgroup.".format(', '.join(zero_sd_scores))) # create a duplicate data frame to compute evaluations # over the whole data, i.e., across groups df_preds_all = df_test.copy() df_preds_all[grouping_variable] = 'All data' # combine the two data frames df_preds_combined = pd.concat([df_test, df_preds_all], sort=True) df_preds_combined.reset_index(drop=True, inplace=True) # group by the grouping_variable columns grouped = df_preds_combined.groupby(grouping_variable) df_human_system_by_group = pd.DataFrame() df_human_human_by_group = pd.DataFrame() for group, df_group in grouped: df_group = df_group.drop(grouping_variable, axis=1) (df_human_system_metrics, df_human_system_metrics_short, df_human_human_metrics ) = self.compute_metrics(df_group, compute_shortened=True, use_scaled_predictions=use_scaled_predictions, include_second_score=include_second_score, population_sd_dict=population_sd_dict, population_mn_dict=population_mn_dict, use_diff_std_means=True) # we need to convert the shortened data frame to a series here df_human_system_by_group[group] = df_human_system_metrics_short.iloc[0] # update the by group human-human metrics frame if # we have the second score column available if include_second_score: df_human_human_metrics.index = [group] df_human_human_by_group = df_human_human_by_group.append(df_human_human_metrics) # transpose the by group human-system metrics frame df_human_system_by_group = df_human_system_by_group.transpose() return (df_human_system_by_group, df_human_human_by_group) def compute_degradation_and_disattenuated_correlations(self, df, use_all_responses=True): """ Compute the degradation in performance when using system score. This method computes the degradation in performance when using the system to predict the score instead of a second human and also the disattenuated correlations between human and system scores. These are computed as the Pearson's correlation between the human score and the system score divided by the square root of correlation between two human raters. For this, we can compute the system performance either only on the double scored data or on the full dataset. Both options have their pros and cons. The default is to use the full dataset. This function also assumes that the `sc2` column exists in the given data frame, in addition to `sc1` and the various types of predictions. Parameters ---------- df : pandas DataFrame Input data frame. use_all_responses : bool, optional Use the full data set instead of only using the double-scored subset. Defaults to ``True``. Returns ------- df_degradation : pandas DataFrame Data frame containing the degradation statistics. df_correlations : pandas DataFrame Data frame containing the human-system correlations, human-human correlations and disattenuated correlation. """ if use_all_responses: df_responses = df else: # use only double scored data df_responses = df[df['sc2'].notnull()] # compute the human-system and human-human metrics (df_human_system_eval, _, df_human_human_eval) = self.compute_metrics(df_responses, include_second_score=True) # compute disattenuated correlations df_correlations = self.compute_disattenuated_correlations(df_human_system_eval['corr'], df_human_human_eval['corr']) # Compute degradation. we only care about the degradation in these metrics degradation_metrics = ['corr', 'kappa', 'wtkappa', 'exact_agr', 'adj_agr', 'SMD'] df_human_system_eval = df_human_system_eval[degradation_metrics] df_human_human_eval = df_human_human_eval[degradation_metrics] df_degradation = df_human_system_eval.apply(lambda row: row - df_human_human_eval.loc[''], axis=1) return (df_degradation, df_correlations) def run_training_analyses(self, data_container, configuration): """ Run all analyses on the training data. Parameters ---------- data_container : container.DataContainer The DataContainer object. This container must include the following DataFrames: {"train_features", "train_metadata", "train_preprocessed_features", "train_length", "train_features"}. configuration : configuration_parser.Configuration The Configuration object. This configuration object must include the following parameters (keys): {"length_column", "subgroups", "selected_features"}. Returns ------- data_container : container.DataContainer A new DataContainer object with the following DataFrames: - feature_descriptives - feature_descriptivesExtra - feature_outliers - cors_orig - cors_processed - margcor_score_all_data - pcor_score_all_data - pcor_score_no_length_all_data - margcor_length_all_data - pcor_length_all_data - pca - pcavar - margcor_length_by_* - pcor_length_by_* - margcor_score_by_* - pcor_score_by_* - pcor_score_no_length_by_* configuration : configuration_parser.Configuration A new Configuration object. """ frame_names = ['train_features', 'train_metadata', 'train_preprocessed_features', 'train_length', 'train_features'] param_names = ['length_column', 'subgroups', 'selected_features'] self.check_frame_names(data_container, frame_names) self.check_param_names(configuration, param_names) # only use the features selected by the model but keep their order the same # as in the original file as ordering may affect the sign in pca df_train = data_container.train_features.copy() df_train_length = data_container.train_length.copy() df_train_metadata = data_container.train_metadata.copy() df_train_preprocessed_features = data_container.train_preprocessed_features.copy() subgroups = configuration['subgroups'] selected_features = configuration['selected_features'] df_train_preprocessed = pd.merge(df_train_preprocessed_features, df_train_metadata, on='spkitemid') assert (len(df_train_preprocessed.index) == len(df_train_preprocessed_features.index) == len(df_train_metadata.index)) # get descriptives, percentiles and outliers for the original feature values df_descriptives = self.compute_basic_descriptives(df_train, selected_features) df_percentiles = self.compute_percentiles(df_train, selected_features) df_outliers = self.compute_outliers(df_train, selected_features) # set a general boolean flag indicating if we should include length include_length = not df_train_length.empty # include length if available if include_length: columns = selected_features + ['sc1', 'length'] df_train_with_length = df_train.merge(df_train_length, on='spkitemid') df_train_preprocess_length = df_train_preprocessed.merge(df_train_length, on='spkitemid') else: columns = selected_features + ['sc1'] df_train_with_length = df_train df_train_preprocess_length = df_train_preprocessed # get pairwise correlations against the original training features # as well as the pre-processed training features df_pairwise_cors_orig = df_train_with_length[columns].corr(method='pearson') df_pairwise_cors_preprocess = df_train_preprocess_length[columns].corr(method='pearson') # get marginal and partial correlations against sc1 for all data # for partial correlations, we partial out all other features df_train_with_group_for_all = df_train_preprocess_length.copy() df_train_with_group_for_all = df_train_with_group_for_all[columns] df_train_with_group_for_all['all_data'] = 'All data' (df_margcor_sc1, df_pcor_sc1, df_pcor_sc1_no_length) = self.correlation_helper(df_train_with_group_for_all, 'sc1', 'all_data', include_length=include_length) # get marginal and partial correlations against length for all data # if the length column is available df_margcor_length = pd.DataFrame() df_pcor_length = pd.DataFrame() if include_length: df_train_with_group_for_all = df_train_preprocess_length.copy() columns = selected_features + ['length'] df_train_with_group_for_all = df_train_with_group_for_all[columns] df_train_with_group_for_all['all_data'] = 'All data' (df_margcor_length, df_pcor_length, _) = self.correlation_helper(df_train_with_group_for_all, 'length', 'all_data') # get marginal and partial correlations against sc1 by group (preprocessed features) # also include partial correlations with length if length is available score_corr_by_group_dict = {} include_length = 'length' in df_train_preprocess_length for grouping_variable in subgroups: corr_by_group = self.compute_correlations_by_group(df_train_preprocess_length, selected_features, 'sc1', grouping_variable, include_length=include_length) score_corr_by_group_dict[grouping_variable] = corr_by_group # get marginal and partial correlations against sc1 by group (preprocessed features) length_corr_by_group_dict = {} if include_length: for grouping_variable in subgroups: corr_by_group = self.compute_correlations_by_group(df_train_preprocess_length, selected_features, 'length', grouping_variable) length_corr_by_group_dict[grouping_variable] = corr_by_group # get PCA information df_pca_components, df_pca_variance = self.compute_pca(df_train_preprocessed, selected_features) # Datasets to add datasets = [{'name': 'feature_descriptives', 'frame': df_descriptives}, {'name': 'feature_descriptivesExtra', 'frame': df_percentiles}, {'name': 'feature_outliers', 'frame': df_outliers}, {'name': 'cors_orig', 'frame': df_pairwise_cors_orig}, {'name': 'cors_processed', 'frame': df_pairwise_cors_preprocess}, {'name': 'margcor_score_all_data', 'frame': df_margcor_sc1}, {'name': 'pcor_score_all_data', 'frame': df_pcor_sc1}, {'name': 'pcor_score_no_length_all_data', 'frame': df_pcor_sc1_no_length}, {'name': 'margcor_length_all_data', 'frame': df_margcor_length}, {'name': 'pcor_length_all_data', 'frame': df_pcor_length}, {'name': 'pca', 'frame': df_pca_components}, {'name': 'pcavar', 'frame': df_pca_variance}] # Add length correlation by group datasets for group in length_corr_by_group_dict: (length_marg_cors, length_part_cors, _) = length_corr_by_group_dict.get(group, (pd.DataFrame(), pd.DataFrame(), pd.DataFrame())) datasets.extend([{'name': 'margcor_length_by_{}'.format(group), 'frame': length_marg_cors}, {'name': 'pcor_length_by_{}'.format(group), 'frame': length_part_cors}]) # Add score correlations by group datasets for group in score_corr_by_group_dict: (sc1_marg_cors, sc1_part_cors, sc1_part_cors_no_length) = score_corr_by_group_dict[group] datasets.extend([{'name': 'margcor_score_by_{}'.format(group), 'frame': sc1_marg_cors}, {'name': 'pcor_score_by_{}'.format(group), 'frame': sc1_part_cors}, {'name': 'pcor_score_no_length_by_{}'.format(group), 'frame': sc1_part_cors_no_length}]) return configuration, DataContainer(datasets=datasets) def run_prediction_analyses(self, data_container, configuration): """ Run all analyses on the system scores (predictions). Parameters ---------- data_container : container.DataContainer The DataContainer object. This container must include the following DataFrames: {"train_features", "train_metadata", "train_preprocessed_features", "train_length", "train_features"}. configuration : configuration_parser.Configuration The Configuration object. This configuration object must include the following parameters (keys): {"subgroups", "second_human_score_column", "use_scaled_predictions"}. Returns ------- data_container : container.DataContainer A new DataContainer object with the following DataFrames: - eval - eval_short - consistency - degradation - disattenudated_correlations - confMatrix - score_dist - eval_by_* - consistency_by_* - disattenduated_correlations_by_* - true_score_eval configuration : configuration_parser.Configuration A new Configuration object. """ frame_names = ['pred_test', 'test_metadata', 'test_human_scores'] param_names = ['subgroups', 'second_human_score_column', 'use_scaled_predictions'] self.check_frame_names(data_container, frame_names) self.check_param_names(configuration, param_names) df_test = data_container.pred_test.copy() df_test_metadata = data_container.test_metadata.copy() df_test_human_scores = data_container.test_human_scores.copy() subgroups = configuration['subgroups'] use_scaled_predictions = configuration['use_scaled_predictions'] df_preds =
pd.merge(df_test, df_test_metadata, on='spkitemid')
pandas.merge
# -*- coding: utf-8 -*- import re import os import shutil import pandas as pd import zipfile from Classifylib import Extraction from chardet.universaldetector import UniversalDetector from io import StringIO import configparser import tarfile import subprocess ############################################################################### class Initialize: def __init__(self, basedir): self.basedir = basedir config = configparser.ConfigParser() config.read('conf/config.ini') self.edit = int(config['logbeats']['edit']) self.dataPath = {} if self.edit: self.conf = config['logbeats']['conf'] self.input = config['logbeats']['input'] self.output = config['logbeats']['output'] self.project = config['logbeats']['project'] else: self.conf = os.path.join(self.basedir, 'conf') self.workspace = os.path.join(self.basedir, 'workspace') self.input = os.path.join(self.basedir, 'workspace', 'input') self.output = os.path.join(self.basedir, 'workspace', 'output') self.project = os.path.join(self.basedir, 'workspace', 'project') def run(self): self.dataPath['conf'] = self.conf self.dataPath['input'] = self.input self.dataPath['output'] = self.output self.dataPath['project'] = self.project return self.dataPath def dirCheck(self): if not os.path.isdir(self.workspace): try: os.mkdir(self.workspace) except FileExistsError: pass if not os.path.isdir(self.input): try: os.mkdir(self.input) except FileExistsError: pass if not os.path.isdir(self.output): try: os.mkdir(self.output) except FileExistsError: pass if not os.path.isdir(self.project): try: os.mkdir(self.project) except FileExistsError: pass ############################################################################### def FindDataFiles(Path, ext): filefind = DirFiles(Path, ext) zipName = filefind.FileNames() return zipName ############################################################################### def get_encoding_type(pathname): # 인코딩을 확인한다. detector = UniversalDetector() detector.reset() try: with open(pathname, 'rb') as fp: for line in fp: detector.feed(line) if detector.done: break except FileNotFoundError: return str('FileNotFoundError') detector.close() return detector.result['encoding'] ############################################################################### def convert_encoding_type(pathname): # utf-8로 변환한다. encode_type = get_encoding_type(pathname) with open(pathname, 'r', encoding=encode_type) as fp: content = fp.read() with open(pathname, 'w', encoding='utf-8', newline='\n') as fp: fp.write(content) return content ############################################################################### class DataToZipfile: # 패스워드로 압축된 파일의 내용을 읽어온다. def __init__(self, zName, password=None): self._pItem = False self._zName = zName self._password = password self.NameDict = {} if password is not None: self._pItem = True self._archive = zipfile.ZipFile(zName, 'r') ############################################################################### def Get_InfoList(self): # 아직 필수적인 함수 아님 return self._archive.infolist() ############################################################################### def Get_PrintDir(self): # 아직 필수적인 함수 아님 return self._archive.printdir() # 필요시 커스텀 작업 필요함 ############################################################################### def Get_InfoFile(self, fName): return self._archive.getinfo(fName) ############################################################################### def Get_FileList(self, reverse=True): # 확장자 제거 : True 앞, False 뒤 files = self._archive.namelist() for file in files: fileName = file.split('.') if reverse: self.NameDict[fileName[0]] = file else: self.NameDict[file] = fileName[0] return self.NameDict ############################################################################### def FileToPd(self, fName): # 인코딩 UTF-8로 pandas형식으로 불러온다. if self._pItem: self._archive.setpassword(self._password.encode()) try: data = self._archive.read(fName) data = str(data, 'utf-8') data = StringIO(data) except IOError: return str('암호가 다름 & 다른문제???') return pd.read_csv(data) ############################################################################### class strToInt: def __init__(self): self.lDiv = {'d': 'Dir', '-': 'File', 's': 'Socket', 'b': 'Block', 'l': 'Link', 'c': 'IO'} self.lChmod = {'r': 4, 'w': 2, 'x': 1, '-': 0, 's': 1, 't': 1} self.lClass = {'r': 'Read', 'w': 'Write', 'x': 'Execute', '-': 'None', 's': 'Set', 't': 'Bit', 'S': 'NoBit', 'T': 'NoBit'} def div(self, data): if data is None: raise Exception("Need to data") return self.lDiv[data[0:1]] def special(self, data): if data is None: raise Exception("Need to data") temp = [] temp.append(self.lClass[data[3]]) temp.append(self.lClass[data[6]]) temp.append(self.lClass[data[9]]) return temp def permission(self, data): if data is None: raise Exception("Need to data") temp = [] temp.append(self.chmodToInt(data[1:4])) temp.append(self.chmodToInt(data[4:7])) temp.append(self.chmodToInt(data[7:10])) return int(''.join(temp)) def chmodToInt(self, data): if data is None: raise Exception("Need to data") result = 0 for key in data: result += self.lChmod[key.lower()] # 대소문자 구분 X return str(result) ############################################################################### class DirFiles: # 특정 디렉터리에서 파일 이름만 추출함 def __init__(self, path, ext=None): if ext is None: ext = 'zip' self._ext = ext.lower() self.path = path self.NameDict = {} ############################################################################### def FileNames(self, reverse=True): # 확장자 제거 : True 앞, False 뒤 for root, dirs, files in os.walk(self.path): for file in files: if file[-len(self._ext):].lower() == self._ext: fileName = file[:file.rfind('.')] if reverse: self.NameDict[fileName] = file else: self.NameDict[file] = fileName return self.NameDict ############################################################################### def DirNames(self, reverse=True): # 특정 디렉터리에서 디렉터리 이름만 추출함 for root, dirs, files in os.walk(self.path): for Dir in dirs: DirPath = os.path.join(self.path, Dir) if reverse: self.NameDict[Dir] = DirPath else: self.NameDict[DirPath] = Dir return self.NameDict ############################################################################### class DataToProcess: def __init__(self, location): self.location = location self.dPath = location['input'] self.dirFind = DirFiles(self.dPath) ############################################################################### def DataMining(self, name): if os.path.splitext(name)[1] == '.tar': self.tarToZip(self.location['input']+'/'+name) if os.path.isfile(self.location['input']+'/'+name): os.remove(self.location['input']+'/'+name) if os.path.splitext(name)[1] == '.zip': self.read_input(self.location['input']+'/'+name, self.location['input']+'/'+os.path.splitext(name)[0], None) name = os.path.splitext(name)[0] csvfind = DirFiles(self.location['input']+'/'+name, '.csv') csvName = csvfind.FileNames() for cName in csvName: self.dataArrange(self.location['input']+'/'+name, csvName[cName]) f = zipfile.ZipFile(self.location['input']+'/'+name+'.zip', 'w') for file in os.listdir(self.location['input']+'/'+name): f.write(self.location['input']+'/'+name+'/'+file, file, compress_type=zipfile.ZIP_DEFLATED) f.close() shutil.rmtree(self.location['input']+'/'+name) EaN = os.path.exists(self.location['project']+'/'+name+'.zip') if EaN: os.remove(self.location['project']+'/'+name+'.zip') shutil.move(self.location['input']+'/'+name+'.zip', self.location['project']) else: shutil.move(self.location['input']+'/'+name+'.zip', self.location['project']) ############################################################################### def DataExtract(self, pw=None): zipName = self.dirFind.FileNames() for name in zipName: # 특정폴더에서 압축파일을 찾고 해제한다. self.read_input(self.dPath+zipName[name], self.dPath+name, pw) ############################################################################### def DataConvert(self): dirName = self.dirFind.DirNames() for dName in dirName: # 특정폴더에서 압축파일을 찾고 해제한다. csvfind = DirFiles(dirName[dName], '.csv') csvName = csvfind.FileNames() for cName in csvName: self.dataArrange(dirName[dName], csvName[cName]) ############################################################################### def DataUnite(self): dirName = self.dirFind.DirNames() for name in dirName: f = zipfile.ZipFile(dirName[name]+'.zip', 'w') for file in os.listdir(dirName[name]): f.write(dirName[name]+'/'+file, file, compress_type=zipfile.ZIP_DEFLATED) f.close() ############################################################################### def DelandMove(self, ProjectPath): dirName = self.dirFind.DirNames() for name in dirName: shutil.rmtree(dirName[name]) moveName = self.dirFind.FileNames() for name in moveName: EaN = os.path.exists(ProjectPath+moveName[name]) if EaN: os.remove(ProjectPath+moveName[name]) shutil.move(self.dPath+moveName[name], ProjectPath) else: shutil.move(self.dPath+moveName[name], ProjectPath) ############################################################################### def read_input(self, zDataName, unzipName, password): zf = zipfile.ZipFile(zDataName) if password is not None: zf.setpassword(password.encode()) try: for name in zf.namelist(): zf.extract(name, unzipName) zf.close() except Exception: pass ############################################################################### def tarToZip(self, fname): if tarfile.is_tarfile(fname): dpath = os.path.split(fname)[0] dname = os.path.split(fname)[1].split('.tar') zipdir = os.path.join(dpath, dname[0]) if not os.path.isdir(zipdir): try: os.mkdir(zipdir) except FileExistsError: pass tar = tarfile.open(fname) # 전체 압축 해제 tar.extractall(zipdir) filelist = tar.getnames() tar.close() basedir = os.path.abspath(os.path.dirname(__file__)) cli = os.path.join(basedir, 'conf', 'cli', 'Linux', 'Linux.cli') df = self.ResultDATA(zipdir, cli) df.to_csv(os.path.join(zipdir, 'ResultData.csv'), mode='w', index=False) for dName in filelist: if dName.split('.')[1] == 'csv': df = self.EtcToFile(os.path.join(zipdir, dName)) df.to_csv(os.path.join(zipdir, dName), mode='w', index=False) self.PdFileDir(os.path.join(zipdir, dName)) else: pass ############################################################################### def ResultDATA(self, dirname, filename): encode_type = get_encoding_type(filename) ProcessState = os.path.join(dirname, 'ProcessState.csv') ExtractResult = os.path.join(dirname, 'ExtractResult.txt') DataResult = [] with open(filename, 'r', encoding=encode_type) as file: contents = file.readlines() contents = [x.strip() for x in contents] for line in contents: DataLine = line.split(',') Data = DataLine[0] DataLine[1] = DataLine[1].replace('ProcessState.csv', ProcessState) DataLine[1] = DataLine[1].replace('ExtractResult.txt', ExtractResult) sysMsg = subprocess.getstatusoutput(DataLine[1]) if sysMsg[1]: # 데이터 있음 Resul = Data, sysMsg[1].strip() DataResult.append(Resul) else: # 데이터 없음 Resul = Data, 'NoData' DataResult.append(Resul) return pd.DataFrame(DataResult, columns=('Name', 'Data')) ############################################################################### def dataArrange(self, PathDir, PathFile): # 선택된 파일 추출 PathDirFile = os.path.join(PathDir, PathFile) try: if PathFile == 'SecurityPolicy.csv': df = self.SeceditFile(PathDirFile) df.to_csv(PathDirFile, mode='w', index=False) elif PathFile == 'RegistryData.csv': df = self.RegistryFile(PathDirFile) df.to_csv(PathDirFile, mode='w', index=False) elif PathFile == 'UserResult.csv': df = self.UserResult(PathDirFile) df.to_csv(PathDirFile, mode='w', index=False) else: self.PdFileDir(PathDirFile) except Exception: self.PdFileDir(PathDirFile) ############################################################################### def EtcToFile(self, file): filename = os.path.split(os.path.splitext(file)[0]) encode_type = get_encoding_type(file) try: ToData = [] pattern = re.compile(r'\s+') with open(file, 'r', encoding=encode_type) as file: contents = file.readlines() contents = [x.strip() for x in contents] for line in contents: if filename[1] == 'passwd' or filename[1] == 'shadow': line = re.sub(pattern, '', line) # 공백 제거 splitLine = line.split(':') elif filename[1] == 'Permission': if not line.startswith('ls:'): splitLine = line.split() psn = strToInt().permission(splitLine[0]) splitLine.append(int(psn)) elif (filename[1] == 'WorldWritable' or filename[1] == 'StickBit' or filename[1] == 'RootOrUser'): splitLine = line.split() elif filename[1] == 'ProcessState': splitLine = line.split(',') ToData.append(splitLine) except FileNotFoundError: return str('FileNotFoundError') if filename[1] == 'passwd': return pd.DataFrame(ToData, columns=('Name', 'Pwd', 'Uid', 'Gid', 'Info', 'Home', 'Login')) elif filename[1] == 'shadow': return pd.DataFrame(ToData, columns=('Name', 'Pwd', 'Last', 'Min', 'Max', 'Expiration', 'Destruction', 'Expiration', 'reserved')) elif filename[1] == 'Permission': return pd.DataFrame(ToData, columns=('Permission', 'Link', 'Owner', 'Group', 'Size', 'Month', 'Day', 'Year', 'Name', 'Data')) elif filename[1] == 'StickBit' or filename[1] == 'RootOrUser': return pd.DataFrame(ToData, columns=('Permission', 'Link', 'Owner', 'Group', 'Size', 'Month', 'Day', 'Year', 'Name')) elif filename[1] == 'WorldWritable': return pd.DataFrame(ToData, columns=('Inode', 'BlockCount', 'Permission', 'Link', 'Owner', 'Group', 'Size', 'Month', 'Day', 'Year', 'Name')) elif filename[1] == 'ProcessState': return pd.DataFrame(ToData, columns=('Name', 'Started', 'Cmd')).drop([0]) else: return pd.DataFrame(ToData) ############################################################################### def SeceditFile(self, filename): # SeceditFile를 pandas형식으로 불러온다. encode_type = get_encoding_type(filename) try: ToData = [] pattern = re.compile(r'\s+') with open(filename, 'r', encoding=encode_type) as file: contents = file.readlines() contents = [x.strip() for x in contents] for line in contents: line = line.replace('"', '') line = line.replace(',', '') line = re.sub(pattern, '', line) # 공백 제거 splitLine = line.split('=') ToData.append(splitLine) except FileNotFoundError: return str('FileNotFoundError') return pd.DataFrame(ToData, columns=('Name', 'Data')).dropna() ############################################################################### def RegistryFile(self, filename): encode_type = get_encoding_type(filename) try: ToData = [] pattern = re.compile(r'\s+') with open(filename, 'r', encoding=encode_type) as file: contents = file.readlines() contents = [x.strip() for x in contents] for line in contents: line = re.sub(pattern, '', line) # 공백 제거 line = line.replace('0x', '') line = line.replace('REG_SZ', '=') line = line.replace('REG_DWORD', '=') line = line.replace('REG_BINARY', '=') splitLine = line.split('=') ToData.append(splitLine) except FileNotFoundError: return str('FileNotFoundError') return pd.DataFrame(ToData, columns=('Name', 'Data')) ############################################################################### def EtcInfoFile(self, filename): # EtcInfoFile를 pandas형식으로 불러온다. encode_type = get_encoding_type(filename) try: ToData = [] pattern = re.compile(r'\s+') with open(filename, 'r', encoding=encode_type) as file: contents = file.readlines() contents = [x.strip() for x in contents] for line in contents: line = re.sub(pattern, '', line) # 공백 제거 splitLine = line.split(':') ToData.append(splitLine) except FileNotFoundError: return str('FileNotFoundError') return pd.DataFrame(ToData, columns=('Name', 'Data')) ############################################################################### def UserResult(self, filename): # NetStatFile pandas형식으로 불러온다. NameInfo = [] UserInfo = {'User name': [], 'Account active': [], 'Account expires': [], 'Last logon': [], 'Password expires': [], 'Password changeable': [], 'Password required': [], 'Password last set': [], 'Local Group Memberships': []} encode_type = get_encoding_type(filename) try: with open(filename, 'r', encoding=encode_type) as file: contents = file.readlines() contents = [x.strip() for x in contents] for line in UserInfo.keys(): NameInfo.append(line) for line in contents: line = line.rstrip() if line.startswith(NameInfo[0]): Product = line.split() result = ' '.join(Product[2:]) UserInfo[NameInfo[0]].append(result) if line.startswith(NameInfo[1]): Product = line.split() result = ' '.join(Product[2:]) UserInfo[NameInfo[1]].append(result) if line.startswith(NameInfo[2]): Product = line.split() result = ' '.join(Product[2:]) UserInfo[NameInfo[2]].append(result) if line.startswith(NameInfo[3]): Product = line.split() result = ' '.join(Product[2:]) UserInfo[NameInfo[3]].append(result) if line.startswith(NameInfo[4]): Product = line.split() result = ' '.join(Product[2:]) UserInfo[NameInfo[4]].append(result) if line.startswith(NameInfo[5]): Product = line.split() result = ' '.join(Product[2:]) UserInfo[NameInfo[5]].append(result) if line.startswith(NameInfo[6]): Product = line.split() result = ' '.join(Product[2:]) UserInfo[NameInfo[6]].append(result) if line.startswith(NameInfo[7]): Product = line.split() result = ' '.join(Product[3:]) UserInfo[NameInfo[7]].append(result) if line.startswith(NameInfo[8]): Product = line.split() result = ' '.join(Product[3:]) UserInfo[NameInfo[8]].append(result) except FileNotFoundError: return str('FileNotFoundError') return pd.DataFrame(UserInfo) ############################################################################### def PdFileDir(self, filename): # 인코딩 UTF-8로 pandas형식으로 불러온다. encode_type = get_encoding_type(filename) try: with open(filename, 'r', encoding=encode_type) as file: contents = file.readlines() contents = [x.strip(', ') for x in contents] ToData = [] for line in contents: text = re.sub(', ', ' ', line) ToData.append(text) with open(filename, 'w', encoding='utf-8', newline='\n') as file: for line in ToData: file.write(line) except FileNotFoundError: return str('FileNotFoundError') return filename ############################################################################### def NetStatFile(self, filename): # NetStatFile pandas형식으로 불러온다. encode_type = get_encoding_type(filename) try: ToData = [] with open(filename, 'r', encoding=encode_type) as file: for i, line in enumerate(file): if i >= 4: splitLine = line.split() ToData.append(splitLine) except FileNotFoundError: return str('FileNotFoundError') return pd.DataFrame(ToData, columns=('Proto', 'LocalAddress', 'ForeignAddress', 'State', 'PID')) ############################################################################### class DataUnpack: def __init__(self, ProjectPath): self.ProjectPath = ProjectPath self.zipName = FindDataFiles(self.ProjectPath, 'zip') ############################################################################### def UnpackExtract(self, zID): archive = DataToZipfile(self.ProjectPath+'/'+self.zipName.get(zID)) csvName = archive.Get_FileList() try: RegistryData = archive.FileToPd( csvName['RegistryData']).dropna(axis=1, how='all') RegistryData = Extraction('RegistryData').Analysis(RegistryData) except Exception: ToData = {'Name': ['RegistryData'], 'Data': [str(0)]} RegistryData = pd.DataFrame(ToData) try: result = archive.FileToPd( csvName['ExtractResult']).dropna(axis=1, how='all') result = Extraction(zID).Analysis(result) result = result.replace(' ', '', regex=True) except Exception: ToData = {'Name': ['result'], 'Data': [str(0)]} result =
pd.DataFrame(ToData)
pandas.DataFrame
import json from logging import getLogger import numpy as np import pandas as pd import pytest from whylogs.app.config import load_config from whylogs.app.session import session_from_config from whylogs.core.statistics.constraints import ( MAX_SET_DISPLAY_MESSAGE_LENGTH, DatasetConstraints, MultiColumnValueConstraint, MultiColumnValueConstraints, Op, SummaryConstraint, SummaryConstraints, ValueConstraint, ValueConstraints, _matches_json_schema, _summary_funcs1, _value_funcs, approximateEntropyBetweenConstraint, columnChiSquaredTestPValueGreaterThanConstraint, columnExistsConstraint, columnKLDivergenceLessThanConstraint, columnMostCommonValueInSetConstraint, columnPairValuesInSetConstraint, columnsMatchSetConstraint, columnUniqueValueCountBetweenConstraint, columnUniqueValueProportionBetweenConstraint, columnValuesAGreaterThanBConstraint, columnValuesInSetConstraint, columnValuesNotNullConstraint, columnValuesTypeEqualsConstraint, columnValuesTypeInSetConstraint, columnValuesUniqueWithinRow, containsCreditCardConstraint, containsEmailConstraint, containsSSNConstraint, containsURLConstraint, dateUtilParseableConstraint, distinctValuesContainSetConstraint, distinctValuesEqualSetConstraint, distinctValuesInSetConstraint, jsonParseableConstraint, matchesJsonSchemaConstraint, maxBetweenConstraint, meanBetweenConstraint, minBetweenConstraint, missingValuesProportionBetweenConstraint, numberOfRowsConstraint, parametrizedKSTestPValueGreaterThanConstraint, quantileBetweenConstraint, stddevBetweenConstraint, strftimeFormatConstraint, stringLengthBetweenConstraint, stringLengthEqualConstraint, sumOfRowValuesOfMultipleColumnsEqualsConstraint, ) from whylogs.proto import InferredType, Op from whylogs.util.protobuf import message_to_json TEST_LOGGER = getLogger(__name__) def test_value_summary_serialization(): for each_op, _ in _value_funcs.items(): if each_op == Op.APPLY_FUNC: continue if each_op == Op.IN: value = ValueConstraint(each_op, {3.6}) else: value = ValueConstraint(each_op, 3.6) msg_value = value.to_protobuf() json_value = json.loads(message_to_json(msg_value)) if each_op == Op.IN: assert json_value["name"] == "value " + Op.Name(each_op) + " {3.6}" assert json_value["valueSet"][0] == [3.6] else: assert json_value["name"] == "value " + Op.Name(each_op) + " 3.6" assert pytest.approx(json_value["value"], 0.001) == 3.6 assert json_value["op"] == Op.Name(each_op) assert json_value["verbose"] is False for each_op, _ in _summary_funcs1.items(): if each_op in (Op.BTWN, Op.IN_SET, Op.CONTAIN_SET, Op.EQ_SET, Op.CONTAIN, Op.IN): continue # constraints may have an optional name sum_constraint = SummaryConstraint("min", each_op, 300000, name="< 30K") msg_sum_const = sum_constraint.to_protobuf() json_summary = json.loads(message_to_json(msg_sum_const)) assert json_summary["name"] == "< 30K" assert pytest.approx(json_summary["value"], 0.1) == 300000 assert json_summary["firstField"] == "min" assert json_summary["op"] == str(Op.Name(each_op)) assert json_summary["verbose"] is False def test_value_constraints(df_lending_club, local_config_path): conforming_loan = ValueConstraint(Op.LT, 548250) smallest_loan = ValueConstraint(Op.GT, 2500.0, verbose=True) high_fico = ValueConstraint(Op.GT, 4000) dc = DatasetConstraints(None, value_constraints={"loan_amnt": [conforming_loan, smallest_loan], "fico_range_high": [high_fico]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = dc.report() assert len(report) == 2 # make sure it checked every value for each_feat in report: for each_constraint in each_feat[1]: assert each_constraint[1] == 50 assert report[1][1][0][2] == 50 def test_value_constraints_pattern_match(df_lending_club, local_config_path): regex_state_abbreviation = r"^[a-zA-Z]{2}$" contains_state = ValueConstraint(Op.MATCH, regex_pattern=regex_state_abbreviation) regex_date = r"^[a-zA-Z]{3}-[0-9]{4}$" not_contains_date = ValueConstraint(Op.NOMATCH, regex_pattern=regex_date) # just to test applying regex patterns on non-string values contains_state_loan_amnt = ValueConstraint(Op.MATCH, regex_pattern=regex_state_abbreviation) dc = DatasetConstraints( None, value_constraints={"addr_state": [contains_state], "earliest_cr_line": [not_contains_date], "loan_amnt": [contains_state_loan_amnt]} ) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = dc.report() # checks there are constraints for 3 features assert len(report) == 3 # make sure it checked every value for each_feat in report: for each_constraint in each_feat[1]: assert each_constraint[1] == 50 # Every row should match a state abbreviation assert report[0][1][0][2] == 0 # At least 1 should be a match w/ the given pattern (# of failures of NOMATCH = # Matches) assert report[1][1][0][2] > 0 # Every row should be a failure, because "loan_amnt" is not a string type assert report[2][1][0][2] == 50 def test_summary_constraints(df_lending_club, local_config_path): non_negative = SummaryConstraint("min", Op.GE, 0) dc = DatasetConstraints(None, summary_constraints={"annual_inc": [non_negative]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = r = profile.apply_summary_constraints() assert len(report) == 1 # make sure it checked every value for each_feat in report: for each_constraint in each_feat[1]: assert each_constraint[1] == 1 def test_value_constraints_no_merge_different_names(): constraint1 = ValueConstraint(Op.LT, 1, name="c1") constraint2 = ValueConstraint(Op.LT, 1, name="c2") with pytest.raises(AssertionError): constraint1.merge(constraint2) def test_value_constraints_no_merge_different_values(): constraint1 = ValueConstraint(Op.LT, 1) constraint2 = ValueConstraint(Op.LT, 2) with pytest.raises(AssertionError): constraint1.merge(constraint2) def test_summary_constraints_no_merge_different_names(): constraint1 = SummaryConstraint("min", Op.GE, 0, name="non-negative") constraint2 = SummaryConstraint("min", Op.GE, 0, name="positive-number") with pytest.raises(AssertionError): constraint1.merge(constraint2) def test_summary_constraints_no_merge_different_values(): constraint1 = SummaryConstraint("min", Op.GE, 1, name="GreaterThanThreshold") constraint2 = SummaryConstraint("min", Op.GE, 2, name="GreaterThanThreshold") with pytest.raises(AssertionError): constraint1.merge(constraint2) def test_value_constraints_merge(): constraint1 = ValueConstraint(Op.LT, 1) constraint2 = ValueConstraint(Op.LT, 1) merged = constraint1.merge(constraint2) assert merged.report() == ("value LT 1", 0, 0), "merging unlogged constraints should not change them from initiat state" def test_value_constraints_merge_empty(): constraint1 = ValueConstraint(Op.LT, 1) constraint2 = None merged = constraint1.merge(constraint2) assert merged == constraint1, "merging empty constraints should preserve left hand side" def test_value_constraints_with_zero_as_value(): c1 = ValueConstraint(Op.LT, 0) json_value = json.loads(message_to_json(c1.to_protobuf())) assert json_value["name"] == f"value {Op.Name(Op.LT)} 0" assert pytest.approx(json_value["value"], 0.01) == 0.0 assert json_value["op"] == Op.Name(Op.LT) assert json_value["verbose"] is False def test_value_constraints_raw_and_coerced_types_serialize_deserialize(): pattern = r"\S+@\S+" c1 = ValueConstraint(Op.GE, 0) c2 = ValueConstraint(Op.MATCH, regex_pattern=pattern) constraints = ValueConstraints([c1, c2]) constraints.update("abc") constraints.update_typed(1) constraints.from_protobuf(constraints.to_protobuf()) msg_const = constraints.to_protobuf() json_val = json.loads(message_to_json(msg_const)) first_val_constraint = json_val["constraints"][0] second_val_constraint = json_val["constraints"][1] assert first_val_constraint["name"] == f"value {Op.Name(Op.MATCH)} {pattern}" assert first_val_constraint["op"] == Op.Name(Op.MATCH) assert first_val_constraint["regexPattern"] == pattern assert first_val_constraint["verbose"] is False assert second_val_constraint["name"] == f"value {Op.Name(Op.GE)} 0" assert second_val_constraint["op"] == Op.Name(Op.GE) assert pytest.approx(second_val_constraint["value"], 0.01) == 0 assert second_val_constraint["verbose"] is False def test_value_constraints_raw_and_coerced_types_merge(): pattern = r"\S+@\S+" c1 = ValueConstraint(Op.GE, 0) c2 = ValueConstraint(Op.MATCH, regex_pattern=pattern) constraints = ValueConstraints([c1, c2]) c3 = ValueConstraint(Op.GE, 0) c4 = ValueConstraint(Op.MATCH, regex_pattern=pattern) constraints2 = ValueConstraints([c3, c4]) merged = constraints.merge(constraints2) json_val = json.loads(message_to_json(merged.to_protobuf())) first_val_constraint = json_val["constraints"][0] second_val_constraint = json_val["constraints"][1] assert first_val_constraint["name"] == f"value {Op.Name(Op.MATCH)} {pattern}" assert first_val_constraint["op"] == Op.Name(Op.MATCH) assert first_val_constraint["regexPattern"] == pattern assert first_val_constraint["verbose"] is False assert second_val_constraint["name"] == f"value {Op.Name(Op.GE)} 0" assert second_val_constraint["op"] == Op.Name(Op.GE) assert pytest.approx(second_val_constraint["value"], 0.01) == 0 assert second_val_constraint["verbose"] is False def test_value_constraints_raw_and_coerced_types_report(): pattern = r"\S+@\S+" c1 = ValueConstraint(Op.GE, 0) c2 = ValueConstraint(Op.MATCH, regex_pattern=pattern) constraints = ValueConstraints({c1.name: c1, c2.name: c2}) report = constraints.report() assert report[0][0] == f"value {Op.Name(Op.MATCH)} {pattern}" assert report[0][1] == 0 assert report[0][2] == 0 assert report[1][0] == f"value {Op.Name(Op.GE)} 0" assert report[1][1] == 0 assert report[1][2] == 0 def test_summary_between_serialization_deserialization(): # constraints may have an optional name sum_constraint = SummaryConstraint("min", Op.BTWN, 0.1, 2.4) msg_sum_const = sum_constraint.to_protobuf() json_summary = json.loads(message_to_json(msg_sum_const)) assert json_summary["name"] == "summary min BTWN 0.1 and 2.4" assert pytest.approx(json_summary["between"]["lowerValue"], 0.1) == 0.1 assert pytest.approx(json_summary["between"]["upperValue"], 0.1) == 2.4 assert json_summary["firstField"] == "min" assert json_summary["op"] == str(Op.Name(Op.BTWN)) assert json_summary["verbose"] == False sum_deser_constraint = SummaryConstraint.from_protobuf(sum_constraint.to_protobuf()) json_deser_summary = json.loads(message_to_json(sum_deser_constraint.to_protobuf())) assert json_summary["name"] == json_deser_summary["name"] assert pytest.approx(json_summary["between"]["lowerValue"], 0.001) == pytest.approx(json_deser_summary["between"]["lowerValue"], 0.001) assert pytest.approx(json_summary["between"]["upperValue"], 0.001) == pytest.approx(json_deser_summary["between"]["upperValue"], 0.001) assert json_summary["firstField"] == json_deser_summary["firstField"] assert json_summary["op"] == json_deser_summary["op"] assert json_summary["verbose"] == json_deser_summary["verbose"] def test_summary_between_constraint_incompatible_parameters(): with pytest.raises(TypeError): SummaryConstraint("min", Op.BTWN, 0.1, "stddev") with pytest.raises(ValueError): SummaryConstraint("min", Op.BTWN, 0.1, second_field="stddev") with pytest.raises(ValueError): SummaryConstraint("min", Op.BTWN, 0.1, 2.4, "stddev") with pytest.raises(ValueError): SummaryConstraint("min", Op.BTWN, 0.1, 2.4, third_field="stddev") with pytest.raises(TypeError): SummaryConstraint("stddev", Op.BTWN, second_field=2, third_field="max") with pytest.raises(TypeError): SummaryConstraint("stddev", Op.BTWN, 2, "max") def _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, between_constraint): min_gt_constraint = SummaryConstraint("min", Op.GT, value=100) max_le_constraint = SummaryConstraint("max", Op.LE, value=5) dc = DatasetConstraints(None, summary_constraints={"annual_inc": [between_constraint, max_le_constraint], "loan_amnt": [min_gt_constraint]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() assert len(report) == 2 # make sure it checked every value for each_feat in report: for each_constraint in each_feat[1]: assert each_constraint[1] == 1 def test_summary_between_constraints_values(df_lending_club, local_config_path): std_dev_between = SummaryConstraint("stddev", Op.BTWN, value=100, upper_value=200) _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, std_dev_between) def test_summary_between_constraints_fields(df_lending_club, local_config_path): std_dev_between = SummaryConstraint("stddev", Op.BTWN, second_field="mean", third_field="max") _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, std_dev_between) def test_summary_between_constraints_no_merge_different_values_fields(): std_dev_between1 = SummaryConstraint("stddev", Op.BTWN, value=0.1, upper_value=200) std_dev_between2 = SummaryConstraint("stddev", Op.BTWN, value=0.2, upper_value=200) with pytest.raises(AssertionError): std_dev_between1.merge(std_dev_between2) std_dev_between1 = SummaryConstraint("stddev", Op.BTWN, value=0.1, upper_value=200) std_dev_between2 = SummaryConstraint("stddev", Op.BTWN, value=0.1, upper_value=300) with pytest.raises(AssertionError): std_dev_between1.merge(std_dev_between2) std_dev_between1 = SummaryConstraint("stddev", Op.BTWN, second_field="min", third_field="max") std_dev_between2 = SummaryConstraint("stddev", Op.BTWN, second_field="mean", third_field="max") with pytest.raises(AssertionError): std_dev_between1.merge(std_dev_between2) std_dev_between1 = SummaryConstraint("stddev", Op.BTWN, second_field="min", third_field="mean") std_dev_between2 = SummaryConstraint("stddev", Op.BTWN, second_field="min", third_field="max") with pytest.raises(AssertionError): std_dev_between1.merge(std_dev_between2) def test_summary_between_constraints_no_merge_different_names(): std_dev_between1 = SummaryConstraint("stddev", Op.BTWN, value=0.1, upper_value=200, name="std dev between 1") std_dev_between2 = SummaryConstraint("stddev", Op.BTWN, value=0.1, upper_value=200, name="std dev between 2") with pytest.raises(AssertionError): std_dev_between1.merge(std_dev_between2) def test_summary_between_constraints_merge(): std_dev_between1 = SummaryConstraint("stddev", Op.BTWN, value=0.1, upper_value=200) std_dev_between2 = SummaryConstraint("stddev", Op.BTWN, value=0.1, upper_value=200) merged = std_dev_between1.merge(std_dev_between2) pre_merge_json = json.loads(message_to_json(std_dev_between1.to_protobuf())) merge_json = json.loads(message_to_json(merged.to_protobuf())) assert pre_merge_json["name"] == merge_json["name"] assert pytest.approx(pre_merge_json["between"]["lowerValue"], 0.001) == pytest.approx(merge_json["between"]["lowerValue"], 0.001) assert pytest.approx(pre_merge_json["between"]["upperValue"], 0.001) == pytest.approx(merge_json["between"]["upperValue"], 0.001) assert pre_merge_json["firstField"] == merge_json["firstField"] assert pre_merge_json["op"] == merge_json["op"] assert pre_merge_json["verbose"] == merge_json["verbose"] def test_stddev_between_constraint_value(df_lending_club, local_config_path): lower = 2.3 upper = 5.4 stddev_between_values = stddevBetweenConstraint(lower_value=lower, upper_value=upper) # check if all constraints are applied _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_values) def test_stddev_between_constraint_field(df_lending_club, local_config_path): lower = "min" upper = "max" stddev_between_fields = stddevBetweenConstraint(lower_field=lower, upper_field=upper) _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_fields) def test_stddev_between_constraint_invalid(): with pytest.raises(ValueError): stddevBetweenConstraint(lower_value=2) with pytest.raises(ValueError): stddevBetweenConstraint(lower_field="min") with pytest.raises(TypeError): stddevBetweenConstraint(lower_value="2", upper_value=2) with pytest.raises(TypeError): stddevBetweenConstraint(lower_field="max", upper_field=2) def test_mean_between_constraint_value(df_lending_club, local_config_path): lower = 2.3 upper = 5.4 stddev_between_values = meanBetweenConstraint(lower_value=lower, upper_value=upper) # check if all constraints are applied _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_values) def test_mean_between_constraint_field(df_lending_club, local_config_path): lower = "min" upper = "max" stddev_between_fields = meanBetweenConstraint(lower_field=lower, upper_field=upper) _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_fields) def test_mean_between_constraint_invalid(): with pytest.raises(ValueError): meanBetweenConstraint(lower_value=2) with pytest.raises(ValueError): meanBetweenConstraint(lower_field="min") with pytest.raises(TypeError): meanBetweenConstraint(lower_value="2", upper_value=2) with pytest.raises(TypeError): meanBetweenConstraint(lower_field="max", upper_field=2) def test_min_between_constraint_value(df_lending_club, local_config_path): lower = 2.3 upper = 5.4 stddev_between_values = minBetweenConstraint(lower_value=lower, upper_value=upper) # check if all constraints are applied _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_values) def test_min_between_constraint_field(df_lending_club, local_config_path): lower = "stddev" upper = "max" stddev_between_fields = minBetweenConstraint(lower_field=lower, upper_field=upper) _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_fields) def test_min_between_constraint_invalid(): with pytest.raises(ValueError): minBetweenConstraint(lower_value=2) with pytest.raises(ValueError): minBetweenConstraint(lower_field="min") with pytest.raises(TypeError): minBetweenConstraint(lower_value="2", upper_value=2) with pytest.raises(TypeError): minBetweenConstraint(lower_field="max", upper_field=2) def test_max_between_constraint_value(df_lending_club, local_config_path): lower = 2.3 upper = 5.4 stddev_between_values = maxBetweenConstraint(lower_value=lower, upper_value=upper) # check if all constraints are applied _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_values) def test_max_between_constraint_field(df_lending_club, local_config_path): lower = "stddev" upper = "mean" stddev_between_fields = maxBetweenConstraint(lower_field=lower, upper_field=upper) _apply_between_summary_constraint_on_dataset(df_lending_club, local_config_path, stddev_between_fields) def test_max_between_constraint_invalid(): with pytest.raises(ValueError): maxBetweenConstraint(lower_value=2) with pytest.raises(ValueError): maxBetweenConstraint(lower_field="min") with pytest.raises(TypeError): maxBetweenConstraint(lower_value="2", upper_value=2) with pytest.raises(TypeError): maxBetweenConstraint(lower_field="max", upper_field=2) def _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints): dc = DatasetConstraints(None, summary_constraints=summary_constraints) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() return report def test_set_summary_constraints(df_lending_club, local_config_path): org_list = list(df_lending_club["annual_inc"]) org_list2 = list(df_lending_club["annual_inc"]) org_list2.extend([1, 4, 5555, "gfsdgs", 0.00333, 245.32]) in_set = distinctValuesInSetConstraint(reference_set=org_list2, name="True") in_set2 = distinctValuesInSetConstraint(reference_set=org_list, name="True2") in_set3 = distinctValuesInSetConstraint(reference_set=org_list[:-1], name="False") eq_set = distinctValuesEqualSetConstraint(reference_set=org_list, name="True3") eq_set2 = distinctValuesEqualSetConstraint(reference_set=org_list2, name="False2") eq_set3 = distinctValuesEqualSetConstraint(reference_set=org_list[:-1], name="False3") contains_set = distinctValuesContainSetConstraint(reference_set=[org_list[2]], name="True4") contains_set2 = distinctValuesContainSetConstraint(reference_set=org_list, name="True5") contains_set3 = distinctValuesContainSetConstraint(reference_set=org_list[:-1], name="True6") contains_set4 = distinctValuesContainSetConstraint(reference_set=[str(org_list[2])], name="False4") contains_set5 = distinctValuesContainSetConstraint(reference_set=[2.3456], name="False5") contains_set6 = distinctValuesContainSetConstraint(reference_set=org_list2, name="False6") list(df_lending_club["annual_inc"]) constraints = [in_set, in_set2, in_set3, eq_set, eq_set2, eq_set3, contains_set, contains_set2, contains_set3, contains_set4, contains_set5, contains_set6] report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, {"annual_inc": constraints}) for r in report[0][1]: if "True" in r[0]: assert r[2] == 0 else: assert r[2] == 1 def test_set_summary_constraint_invalid_init(): with pytest.raises(TypeError): SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, reference_set=1) with pytest.raises(ValueError): SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, 1) with pytest.raises(ValueError): SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, second_field="aaa") with pytest.raises(ValueError): SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, third_field="aaa") with pytest.raises(ValueError): SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, upper_value=2) def test_set_summary_no_merge_different_set(): set_c_1 = SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, reference_set=[1, 2, 3]) set_c_2 = SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, reference_set=[2, 3, 4, 5]) with pytest.raises(AssertionError): set_c_1.merge(set_c_2) def test_set_summary_merge(): set_c_1 = SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, reference_set=[1, 2, 3]) set_c_2 = SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, reference_set=[1, 2, 3]) merged = set_c_1.merge(set_c_2) pre_merge_json = json.loads(message_to_json(set_c_1.to_protobuf())) merge_json = json.loads(message_to_json(merged.to_protobuf())) assert pre_merge_json["name"] == merge_json["name"] assert pre_merge_json["referenceSet"] == merge_json["referenceSet"] assert pre_merge_json["firstField"] == merge_json["firstField"] assert pre_merge_json["op"] == merge_json["op"] assert pre_merge_json["verbose"] == merge_json["verbose"] def test_set_summary_serialization(): set1 = SummaryConstraint("distinct_column_values", Op.CONTAIN_SET, reference_set=[1, 2, 3]) set2 = SummaryConstraint.from_protobuf(set1.to_protobuf()) set1_json = json.loads(message_to_json(set1.to_protobuf())) set2_json = json.loads(message_to_json(set2.to_protobuf())) assert set1_json["name"] == set2_json["name"] assert set1_json["referenceSet"] == set2_json["referenceSet"] assert set1_json["firstField"] == set2_json["firstField"] assert set1_json["op"] == set2_json["op"] assert set1_json["verbose"] == set2_json["verbose"] def test_column_values_in_set_constraint(df_lending_club, local_config_path): cvisc = columnValuesInSetConstraint(value_set={2, 5, 8, 90671227}) ltc = ValueConstraint(Op.LT, 1) dc = DatasetConstraints(None, value_constraints={"id": [cvisc, ltc]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = dc.report() # check if all of the rows have been reported assert report[0][1][0][1] == len(df_lending_club) # the number of fails should equal the number of rows - 1 since the column id only has the value 90671227 in set assert report[0][1][0][2] == len(df_lending_club) - 1 def test_merge_values_in_set_constraint_different_value_set(): cvisc1 = columnValuesInSetConstraint(value_set={1, 2, 3}) cvisc2 = columnValuesInSetConstraint(value_set={3, 4, 5}) with pytest.raises(AssertionError): cvisc1.merge(cvisc2) def test_merge_values_in_set_constraint_same_value_set(): val_set = {"abc", "b", "c"} cvisc1 = columnValuesInSetConstraint(value_set=val_set) cvisc2 = columnValuesInSetConstraint(value_set=val_set) merged = cvisc1.merge(cvisc2) TEST_LOGGER.info(f"Serialize the merged columnValuesInSetConstraint:\n {merged.to_protobuf()}") json_value = json.loads(message_to_json(merged.to_protobuf())) assert json_value["name"] == f"values are in {val_set}" assert json_value["op"] == Op.Name(Op.IN) assert json_value["valueSet"][0] == list(val_set) def test_serialization_deserialization_values_in_set_constraint(): val_set = {"abc", 1, 2} cvisc = columnValuesInSetConstraint(value_set=val_set) cvisc.from_protobuf(cvisc.to_protobuf()) json_value = json.loads(message_to_json(cvisc.to_protobuf())) TEST_LOGGER.info(f"Serialize columnValuesInSetConstraint from deserialized representation:\n {cvisc.to_protobuf()}") assert json_value["name"] == f"values are in {val_set}" assert json_value["op"] == Op.Name(Op.IN) assert json_value["valueSet"][0] == list(val_set) def test_column_values_in_set_wrong_datatype(): with pytest.raises(TypeError): cvisc = columnValuesInSetConstraint(value_set=1) def _report_email_value_constraint_on_data_set(local_config_path, pattern=None): df = pd.DataFrame( [ {"email": r"<EMAIL>"}, # valid {"email": r'"aVrrR Test \@"<EMAIL>'}, # valid {"email": r"abc..<EMAIL>"}, # invalid {"email": r'"sdsss\d"@gmail.<EMAIL>'}, # valid {"email": r"customer/[email protected]"}, # valid {"email": r".<EMAIL>"}, # invalid {"email": r"<EMAIL>"}, # invalid {"email": r"abs@yahoo."}, # invalid ] ) email_constraint = containsEmailConstraint(regex_pattern=pattern) dc = DatasetConstraints(None, value_constraints={"email": [email_constraint]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df, "test.data", constraints=dc) session.close() report = dc.report() return report def _apply_string_length_constraints(local_config_path, length_constraints): df = pd.DataFrame( [ {"str1": "length7"}, {"str1": "length_8"}, {"str1": "length__9"}, {"str1": "a 10"}, {"str1": "11 b"}, {"str1": '(*&^%^&*(24!@_+>:|}?><"\\'}, {"str1": "1b34567"}, ] ) dc = DatasetConstraints(None, value_constraints={"str1": length_constraints}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df, "test.data", constraints=dc) session.close() report = dc.report() return report def test_string_length_constraints(local_config_path): length_constraint7 = stringLengthEqualConstraint(length=7) length_constraint24 = stringLengthEqualConstraint(length=24) length_constraint7to10 = stringLengthBetweenConstraint(lower_value=7, upper_value=10) length_constraints = [length_constraint7, length_constraint24, length_constraint7to10] report = _apply_string_length_constraints(local_config_path, length_constraints) # report[column_n][report_list][report][name total or failure] assert report[0][1][0][1] == 7 and report[0][1][0][2] == 5 and report[0][1][0][0] == f"length of the string values is equal to 7" assert report[0][1][1][1] == 7 and report[0][1][1][2] == 6 and report[0][1][1][0] == f"length of the string values is equal to 24" assert report[0][1][2][1] == 7 and report[0][1][2][2] == 2 and report[0][1][2][0] == f"length of the string values is between 7 and 10" def test_email_constraint(local_config_path): report = _report_email_value_constraint_on_data_set(local_config_path) assert report[0][1][0][1] == 8 assert report[0][1][0][2] == 4 def test_email_constraint_supply_regex_pattern(local_config_path): report = _report_email_value_constraint_on_data_set(local_config_path, r"\S+@\S+") assert report[0][1][0][0] == "column values match the email regex pattern" assert report[0][1][0][1] == 8 assert report[0][1][0][2] == 1 def test_email_constraint_merge_valid(): ec1 = containsEmailConstraint(regex_pattern=r"\S+@\S+", verbose=True) ec2 = containsEmailConstraint(regex_pattern=r"\S+@\S+") merged = ec1.merge(ec2) json_value = json.loads(message_to_json(merged.to_protobuf())) assert json_value["name"] == "column values match the email regex pattern" assert json_value["op"] == Op.Name(Op.MATCH) assert json_value["regexPattern"] == r"\S+@\S+" assert json_value["verbose"] is True def test_email_constraint_merge_invalid(): ec1 = containsEmailConstraint(regex_pattern=r"\S+@\S+", verbose=True) ec2 = containsEmailConstraint(regex_pattern=r"\W+@\W+") with pytest.raises(AssertionError): ec1.merge(ec2) def _report_credit_card_value_constraint_on_data_set(local_config_path, regex_pattern=None): df = pd.DataFrame( [ {"credit_card": "3714-496353-98431"}, # amex {"credit_card": "3787 344936 71000"}, # amex {"credit_card": "3056 930902 5904"}, # diners club {"credit_card": "3065 133242 2899"}, # invalid {"credit_card": "3852-000002-3237"}, # diners club {"credit_card": "6011 1111 1111 1117"}, # discover {"credit_card": "6011-0009-9013-9424"}, # discover {"credit_card": "3530 1113 3330 0000"}, # jcb {"credit_card": "3566-0020-2036-0505"}, # jcb {"credit_card": "5555 5555 5555 4444"}, # master card {"credit_card": "5105 1051 0510 5100"}, # master card {"credit_card": "4111 1111 1111 1111"}, # visa {"credit_card": "4012 8888 8888 1881"}, # visa {"credit_card": "4222-2222-2222-2222"}, # visa {"credit_card": "1111-1111-1111-1111"}, # invalid {"credit_card": "a4111 1111 1111 1111b"}, # invalid {"credit_card": "4111111111111111"}, # visa {"credit_card": 12345}, # invalid {"credit_card": "absfcvs"}, # invalid ] ) credit_card_constraint = containsCreditCardConstraint(regex_pattern=regex_pattern) dc = DatasetConstraints(None, value_constraints={"credit_card": [credit_card_constraint]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df, "test.data", constraints=dc) session.close() return dc.report() def test_credit_card_constraint(local_config_path): report = _report_credit_card_value_constraint_on_data_set(local_config_path) assert report[0][1][0][1] == 19 assert report[0][1][0][2] == 5 def test_credit_card_constraint_supply_regex_pattern(local_config_path): report = _report_credit_card_value_constraint_on_data_set(local_config_path, r"^(?:[0-9]{4}[\s-]?){3,4}$") assert report[0][1][0][0] == "column values match the credit card regex pattern" assert report[0][1][0][1] == 19 assert report[0][1][0][2] == 8 def test_credit_card_constraint_merge_valid(): pattern = r"[0-9]{13,16}" ccc1 = containsCreditCardConstraint(regex_pattern=pattern, verbose=True) ccc2 = containsCreditCardConstraint(regex_pattern=pattern) merged = ccc1.merge(ccc2) json_value = json.loads(message_to_json(merged.to_protobuf())) assert json_value["name"] == "column values match the credit card regex pattern" assert json_value["op"] == Op.Name(Op.MATCH) assert json_value["regexPattern"] == pattern assert json_value["verbose"] is True def test_credit_card_constraint_merge_invalid(): ccc1 = containsCreditCardConstraint() ccc2 = containsCreditCardConstraint(regex_pattern=r"[0-9]{13,16}", verbose=False) with pytest.raises(AssertionError): ccc1.merge(ccc2) def test_credit_card_invalid_pattern(): with pytest.raises(TypeError): containsCreditCardConstraint(123) def _apply_apply_func_constraints(local_config_path, apply_func_constraints): df = pd.DataFrame( [ {"str1": "1990-12-1"}, # dateutil valid; strftime valid {"str1": "1990/12/1"}, {"str1": "2005/3"}, {"str1": "2005.3.5"}, {"str1": "Jan 19, 1990"}, {"str1": "today is 2019-03-27"}, # dateutil invalid {"str1": "Monday at 12:01am"}, {"str1": "xyz_not_a_date"}, # dateutil invalid {"str1": "yesterday"}, # dateutil invalid {"str1": {"name": "s", "w2w2": "dgsg", "years": 232, "abc": 1}}, # schema valid {"str1": {"name": "s", "w2w2": 12.38, "years": 232, "abc": 1}}, # schema valid {"str1": {"name": "s", "years": 232, "abc": 1}}, # schema valid {"str1": {"name": "s", "abc": 1}}, # schema valid {"str1": {"name": "s", "w2w2": "dgsg", "years": 232}}, # schema invalid {"str1": {"name": "s", "w2w2": "dgsg", "years": "232", "abc": 1}}, # schema invalid {"str1": {"name": 14, "w2w2": "dgsg", "years": "232", "abc": 1}}, # schema invalid {"str1": {"name": "14", "w2w2": "dgsg", "years": 232.44, "abc": 1}}, # schema invalid {"str1": {"w2w2": "dgsg", "years": 232, "abc": 1}}, # schema invalid {"str1": {"years": 232}}, # schema invalid {"str1": json.dumps({"name": "s", "w2w2": "dgsg", "years": 232, "abc": 1})}, # json valid, schema valid {"str1": json.dumps({"name": "s", "w2w2": 12.38, "years": 232, "abc": 1})}, # json valid, schema valid {"str1": json.dumps({"name": "s", "years": 232, "abc": 1})}, # json valid, schema valid {"str1": json.dumps({"name": "s", "abc": 1})}, # json valid, schema valid {"str1": json.dumps({"name": "s", "w2w2": "dgsg", "years": "232", "abc": 1})}, # json valid {"str1": "random str : fail everything"}, {"str1": "2003-12-23"}, # strftime valid {"str1": "2010-10-18"}, # strftime valid {"str1": "2003-15-23"}, # strftime invalid {"str1": "2003-12-32"}, # strftime invalid {"str1": "10-12-32"}, # strftime invalid, dateutil valid ] ) dc = DatasetConstraints(None, value_constraints={"str1": apply_func_constraints}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df, "test.data", constraints=dc) session.close() report = dc.report() return report def test_apply_func_value_constraints(local_config_path): dateutil_parseable = dateUtilParseableConstraint() json_parseable = jsonParseableConstraint() json_schema = { "type": "object", "properties": { "name": {"type": "string"}, "years": {"type": "integer"}, }, "required": ["name", "abc"], } matches_json_schema = matchesJsonSchemaConstraint(json_schema=json_schema) is_strftime = strftimeFormatConstraint(format="%Y-%m-%d") apply_constraints = [dateutil_parseable, json_parseable, matches_json_schema, is_strftime] report = _apply_apply_func_constraints(local_config_path, apply_constraints) # report[column_n][report_list][report][name total or failure] assert report[0][1][0][1] == 30 and report[0][1][0][2] == 21 and report[0][1][0][0] == "column values are dateutil parseable" assert report[0][1][1][1] == 30 and report[0][1][1][2] == 25 and report[0][1][1][0] == "column values are JSON parseable" assert report[0][1][2][1] == 30 and report[0][1][2][2] == 22 and report[0][1][2][0] == f"column values match the provided JSON schema {json_schema}" assert report[0][1][3][1] == 30 and report[0][1][3][2] == 27 and report[0][1][3][0] == "column values are strftime parseable" def test_apply_func_invalid_init(): with pytest.raises(ValueError): apply2 = ValueConstraint(Op.APPLY_FUNC, apply_function=lambda x: x) with pytest.raises(ValueError): apply2 = ValueConstraint(Op.APPLY_FUNC, apply_function="".startswith) with pytest.raises(ValueError): apply2 = ValueConstraint(Op.APPLY_FUNC, apply_function=any) def test_apply_func_merge(): apply1 = dateUtilParseableConstraint() apply2 = ValueConstraint(Op.APPLY_FUNC, apply_function=_matches_json_schema) with pytest.raises(AssertionError): apply1.merge(apply2) apply3 = dateUtilParseableConstraint() merged = apply1.merge(apply3) pre_merge_json = json.loads(message_to_json(apply1.to_protobuf())) merge_json = json.loads(message_to_json(merged.to_protobuf())) assert pre_merge_json["name"] == merge_json["name"] assert pre_merge_json["function"] == merge_json["function"] assert pre_merge_json["op"] == merge_json["op"] assert pre_merge_json["verbose"] == merge_json["verbose"] def test_apply_func_serialization(): apply1 = dateUtilParseableConstraint() apply2 = ValueConstraint.from_protobuf(apply1.to_protobuf()) apply1_json = json.loads(message_to_json(apply1.to_protobuf())) apply2_json = json.loads(message_to_json(apply2.to_protobuf())) apply1.merge(apply2) apply2.merge(apply1) assert apply1_json["name"] == apply2_json["name"] assert apply1_json["function"] == apply2_json["function"] assert apply1_json["op"] == apply2_json["op"] assert apply1_json["verbose"] == apply2_json["verbose"] json_schema = { "type": "object", "properties": { "name": {"type": "string"}, "years": {"type": "integer"}, }, "required": ["name", "abc"], } apply1 = matchesJsonSchemaConstraint(json_schema) apply2 = ValueConstraint.from_protobuf(apply1.to_protobuf()) apply1_json = json.loads(message_to_json(apply1.to_protobuf())) apply2_json = json.loads(message_to_json(apply2.to_protobuf())) assert apply1_json["name"] == apply2_json["name"] assert apply1_json["function"] == apply2_json["function"] assert apply1_json["op"] == apply2_json["op"] assert apply1_json["verbose"] == apply2_json["verbose"] def _report_ssn_value_constraint_on_data_set(local_config_path, regex_pattern=None): df = pd.DataFrame( [ {"ssn": "123-01-2335"}, # valid {"ssn": "039780012"}, # valid {"ssn": "000231324"}, # invalid {"ssn": "666781132"}, # invalid {"ssn": "926-89-1234"}, # invalid {"ssn": "001-01-0001"}, # valid {"ssn": "122 23 0001"}, # valid {"ssn": "1234-12-123"}, # invalid ] ) ssn_constraint = containsSSNConstraint(regex_pattern=regex_pattern) dc = DatasetConstraints(None, value_constraints={"ssn": [ssn_constraint]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df, "test.data", constraints=dc) session.close() return dc.report() def test_contains_ssn_constraint(local_config_path): report = _report_ssn_value_constraint_on_data_set(local_config_path) assert report[0][1][0][1] == 8 assert report[0][1][0][2] == 4 def test_ssn_constraint_supply_regex_pattern(local_config_path): pattern = r"^[0-9]{3}-[0-9]{2}-[0-9]{4}$" report = _report_ssn_value_constraint_on_data_set(local_config_path, pattern) assert report[0][1][0][0] == "column values match the SSN regex pattern" assert report[0][1][0][1] == 8 assert report[0][1][0][2] == 5 def test_ssn_constraint_merge_valid(): pattern = r"^[0-9]{3}-[0-9]{2}-[0-9]{4}$" ccc1 = containsSSNConstraint(regex_pattern=pattern, verbose=True) ccc2 = containsSSNConstraint(regex_pattern=pattern) merged = ccc1.merge(ccc2) json_value = json.loads(message_to_json(merged.to_protobuf())) assert json_value["name"] == "column values match the SSN regex pattern" assert json_value["op"] == Op.Name(Op.MATCH) assert json_value["regexPattern"] == pattern assert json_value["verbose"] is True def test_ssn_constraint_merge_invalid(): ccc1 = containsSSNConstraint() ccc2 = containsSSNConstraint(regex_pattern=r"[0-9]{13,16}", verbose=False) with pytest.raises(AssertionError): ccc1.merge(ccc2) def test_ssn_invalid_pattern(): with pytest.raises(TypeError): containsSSNConstraint(123) def _report_url_value_constraint_on_data_set(local_config_path, regex_pattern=None): df = pd.DataFrame( [ {"url": "http://www.example.com"}, # valid {"url": "abc.test.com"}, # valid (without protocol) {"url": "abc.w23w.asb#abc?a=2"}, # valid (without protocol) {"url": "https://ab.abc.bc"}, # valid {"url": "a.b.c"}, # valid {"url": "abcd"}, # invalid {"url": "123.w23.235"}, # valid {"url": "asf://saf.we.12"}, # invalid {"url": "12345"}, # invalid {"url": "1.2"}, # invalid ] ) url_constraint = containsURLConstraint(regex_pattern=regex_pattern) dc = DatasetConstraints(None, value_constraints={"url": [url_constraint]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df, "test.data", constraints=dc) session.close() return dc.report() def test_contains_url_constraint(local_config_path): report = _report_url_value_constraint_on_data_set(local_config_path) assert report[0][1][0][1] == 10 assert report[0][1][0][2] == 4 def test_url_constraint_supply_regex_pattern(local_config_path): pattern = r"^http(s)?:\/\/(www\.)?.+\..+$" report = _report_url_value_constraint_on_data_set(local_config_path, pattern) assert report[0][1][0][0] == "column values match the URL regex pattern" assert report[0][1][0][1] == 10 assert report[0][1][0][2] == 8 def test_url_constraint_merge_valid(): pattern = r"^http(s)?://(www)?\..*\..*$" ccc1 = containsURLConstraint(regex_pattern=pattern, verbose=False) ccc2 = containsURLConstraint(regex_pattern=pattern) merged = ccc1.merge(ccc2) json_value = json.loads(message_to_json(merged.to_protobuf())) assert json_value["name"] == "column values match the URL regex pattern" assert json_value["op"] == Op.Name(Op.MATCH) assert json_value["regexPattern"] == pattern assert json_value["verbose"] is False def test_url_constraint_merge_invalid(): ccc1 = containsURLConstraint() ccc2 = containsURLConstraint(regex_pattern=r"http(s)?://.+", verbose=False) with pytest.raises(AssertionError): ccc1.merge(ccc2) def test_url_invalid_pattern(): with pytest.raises(TypeError): containsURLConstraint(2124) def test_summary_constraint_quantile_invalid(): with pytest.raises(ValueError): SummaryConstraint("stddev", op=Op.LT, value=2, quantile_value=0.2) with pytest.raises(ValueError): SummaryConstraint("quantile", op=Op.GT, value=2) def test_quantile_between_constraint_apply(local_config_path, df_lending_club): qc = quantileBetweenConstraint(quantile_value=0.25, lower_value=13308, upper_value=241001) summary_constraint = {"annual_inc": [qc]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraint) assert report[0][1][0][0] == f"0.25-th quantile value is between 13308 and 241001" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 def test_merge_quantile_between_constraint_different_values(): qc1 = quantileBetweenConstraint(quantile_value=0.25, lower_value=0, upper_value=2) qc2 = quantileBetweenConstraint(quantile_value=0.25, lower_value=1, upper_value=2) with pytest.raises(AssertionError): qc1.merge(qc2) def test_merge_quantile_between_constraint_same_values(): qc1 = quantileBetweenConstraint(quantile_value=0.5, lower_value=0, upper_value=5) qc2 = quantileBetweenConstraint(quantile_value=0.5, lower_value=0, upper_value=5) merged = qc1.merge(qc2) message = json.loads(message_to_json(merged.to_protobuf())) assert message["name"] == f"0.5-th quantile value is between 0 and 5" assert message["firstField"] == "quantile" assert message["op"] == Op.Name(Op.BTWN) assert pytest.approx(message["between"]["lowerValue"], 0.001) == 0.0 assert pytest.approx(message["between"]["upperValue"], 0.001) == 5.0 assert message["verbose"] is False def test_serialization_deserialization_quantile_between_constraint(): qc1 = quantileBetweenConstraint(quantile_value=0.5, lower_value=1.24, upper_value=6.63, verbose=True) qc1.from_protobuf(qc1.to_protobuf()) json_value = json.loads(message_to_json(qc1.to_protobuf())) assert json_value["name"] == f"0.5-th quantile value is between 1.24 and 6.63" assert json_value["firstField"] == "quantile" assert json_value["op"] == Op.Name(Op.BTWN) assert pytest.approx(json_value["between"]["lowerValue"], 0.001) == 1.24 assert pytest.approx(json_value["between"]["upperValue"], 0.001) == 6.63 assert json_value["verbose"] is True def test_quantile_between_wrong_datatype(): with pytest.raises(TypeError): quantileBetweenConstraint(quantile_value=[0.5], lower_value=1.24, upper_value=6.63, verbose=True) with pytest.raises(TypeError): quantileBetweenConstraint(quantile_value=0.5, lower_value="1.24", upper_value=6.63, verbose=True) with pytest.raises(TypeError): quantileBetweenConstraint(quantile_value=0.3, lower_value=1.24, upper_value=[6.63], verbose=True) with pytest.raises(ValueError): quantileBetweenConstraint(quantile_value=0.3, lower_value=2.3, upper_value=1.5, verbose=True) def test_unique_value_count_between_constraint_apply(local_config_path, df_lending_club): uc = columnUniqueValueCountBetweenConstraint(lower_value=5, upper_value=50) summary_constraint = {"annual_inc": [uc]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraint) assert report[0][1][0][0] == f"number of unique values is between 5 and 50" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 def test_merge_unique_value_count_between_constraint_different_values(): u1 = columnUniqueValueCountBetweenConstraint(lower_value=0, upper_value=2) u2 = columnUniqueValueCountBetweenConstraint(lower_value=1, upper_value=2) with pytest.raises(AssertionError): u1.merge(u2) def test_merge_unique_value_count_between_constraint_same_values(): u1 = columnUniqueValueCountBetweenConstraint(lower_value=0, upper_value=5) u2 = columnUniqueValueCountBetweenConstraint(lower_value=0, upper_value=5) merged = u1.merge(u2) message = json.loads(message_to_json(merged.to_protobuf())) assert message["name"] == f"number of unique values is between 0 and 5" assert message["firstField"] == "unique_count" assert message["op"] == Op.Name(Op.BTWN) assert pytest.approx(message["between"]["lowerValue"], 0.001) == 0.0 assert pytest.approx(message["between"]["upperValue"], 0.001) == 5.0 assert message["verbose"] is False def test_serialization_deserialization_unique_value_count_between_constraint(): u1 = columnUniqueValueCountBetweenConstraint(lower_value=15, upper_value=50, verbose=True) u1.from_protobuf(u1.to_protobuf()) json_value = json.loads(message_to_json(u1.to_protobuf())) assert json_value["name"] == f"number of unique values is between 15 and 50" assert json_value["firstField"] == "unique_count" assert json_value["op"] == Op.Name(Op.BTWN) assert pytest.approx(json_value["between"]["lowerValue"], 0.001) == 15 assert pytest.approx(json_value["between"]["upperValue"], 0.001) == 50 assert json_value["verbose"] is True def test_unique_count_between_constraint_wrong_datatype(): with pytest.raises(ValueError): columnUniqueValueCountBetweenConstraint(lower_value="0", upper_value=1, verbose=True) with pytest.raises(ValueError): columnUniqueValueCountBetweenConstraint(lower_value=5, upper_value=6.63, verbose=True) with pytest.raises(ValueError): columnUniqueValueCountBetweenConstraint(lower_value=1, upper_value=0) def test_unique_value_proportion_between_constraint_apply(local_config_path, df_lending_club): uc = columnUniqueValueProportionBetweenConstraint(lower_fraction=0.6, upper_fraction=0.9) summary_constraint = {"annual_inc": [uc]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraint) assert report[0][1][0][0] == f"proportion of unique values is between 0.6 and 0.9" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 def test_merge_unique_value_proportion_between_constraint_different_values(): u1 = columnUniqueValueProportionBetweenConstraint(lower_fraction=0.2, upper_fraction=0.3) u2 = columnUniqueValueProportionBetweenConstraint(lower_fraction=0.1, upper_fraction=0.3) with pytest.raises(AssertionError): u1.merge(u2) def test_merge_unique_value_proportion_between_constraint_same_values(): u1 = columnUniqueValueProportionBetweenConstraint(lower_fraction=0.1, upper_fraction=0.5) u2 = columnUniqueValueProportionBetweenConstraint(lower_fraction=0.1, upper_fraction=0.5) merged = u1.merge(u2) message = json.loads(message_to_json(merged.to_protobuf())) assert message["name"] == f"proportion of unique values is between 0.1 and 0.5" assert message["firstField"] == "unique_proportion" assert message["op"] == Op.Name(Op.BTWN) assert pytest.approx(message["between"]["lowerValue"], 0.001) == 0.1 assert pytest.approx(message["between"]["upperValue"], 0.001) == 0.5 assert message["verbose"] is False def test_serialization_deserialization_unique_value_proportion_between_constraint(): u1 = columnUniqueValueProportionBetweenConstraint(lower_fraction=0.6, upper_fraction=0.7, verbose=True) u1.from_protobuf(u1.to_protobuf()) json_value = json.loads(message_to_json(u1.to_protobuf())) assert json_value["name"] == f"proportion of unique values is between 0.6 and 0.7" assert json_value["firstField"] == "unique_proportion" assert json_value["op"] == Op.Name(Op.BTWN) assert pytest.approx(json_value["between"]["lowerValue"], 0.001) == 0.6 assert pytest.approx(json_value["between"]["upperValue"], 0.001) == 0.7 assert json_value["verbose"] is True def test_unique_proportion_between_constraint_wrong_datatype(): with pytest.raises(ValueError): columnUniqueValueProportionBetweenConstraint(lower_fraction=0, upper_fraction=1.0, verbose=True) with pytest.raises(ValueError): columnUniqueValueProportionBetweenConstraint(lower_fraction=0.2, upper_fraction=0.1, verbose=True) with pytest.raises(ValueError): columnUniqueValueProportionBetweenConstraint(lower_fraction=0.4, upper_fraction=2) def test_table_shape_constraints(df_lending_club, local_config_path): rows = numberOfRowsConstraint(n_rows=10) rows_2 = numberOfRowsConstraint(n_rows=len(df_lending_club.index)) column_exist = columnExistsConstraint("no_WAY") column_exist2 = columnExistsConstraint("loan_amnt") set1 = set(["col1", "col2"]) set2 = set(df_lending_club.columns) columns_match = columnsMatchSetConstraint(set1) columns_match2 = columnsMatchSetConstraint(set2) table_shape_constraints = [rows, rows_2, column_exist, column_exist2, columns_match, columns_match2] dc = DatasetConstraints(None, table_shape_constraints=table_shape_constraints) config = load_config(local_config_path) session = session_from_config(config) report = None logger = session.logger(dataset_name="test.data", constraints=dc) logger.log_dataframe(df_lending_club) report = logger.profile.apply_table_shape_constraints() assert len(report) == 6 # table shape {self.value} {Op.Name(self.op)} {self.first_field} assert report[0][0] == f"The number of rows in the table equals 10" assert report[0][1] == 1 assert report[0][2] == 1 assert report[1][0] == f"The number of rows in the table equals {len(df_lending_club.index)}" assert report[1][1] == 1 assert report[1][2] == 0 assert report[2][0] == f"The column no_WAY exists in the table" assert report[2][1] == 1 assert report[2][2] == 1 assert report[3][0] == f"The column loan_amnt exists in the table" assert report[3][1] == 1 assert report[3][2] == 0 assert report[4][0] == f"The columns of the table are equal to the set {set1}" assert report[4][1] == 1 assert report[4][2] == 1 reference_set_str = "" if len(set2) > MAX_SET_DISPLAY_MESSAGE_LENGTH: tmp_set = set(list(set2)[:MAX_SET_DISPLAY_MESSAGE_LENGTH]) reference_set_str = f"{str(tmp_set)[:-1]}, ...}}" else: reference_set_str = str(set2) assert report[5][0] == f"The columns of the table are equal to the set {reference_set_str}" assert report[5][1] == 1 assert report[5][2] == 0 logger.log({"no_WAY": 1}) # logging a new non existent column report2 = logger.profile.apply_table_shape_constraints() assert report2[1][0] == f"The number of rows in the table equals {len(df_lending_club.index)}" assert report2[1][1] == 2 assert report2[1][2] == 0 # applying the table shape constraints the second time, after adding a new column the constraint passes since # the total row number stays the same assert report2[2][0] == f"The column no_WAY exists in the table" assert report2[2][1] == 2 assert report2[2][2] == 1 # after logging the new column 'no_WAY', this constraint DOES NOT fail the second time because the column 'no_way' # is now present assert report2[5][0] == f"The columns of the table are equal to the set {reference_set_str}" assert report2[5][1] == 2 assert report2[5][2] == 1 # after logging the new column 'no_WAY', this constraint fails the second time because the reference set # does not contain the new column 'no_WAY' set3 = set(set2) set3.add("no_WAY") columns_match3 = columnsMatchSetConstraint(set3) report3 = logger.profile.apply_table_shape_constraints(SummaryConstraints([columns_match3])) reference_set_str2 = "" if len(set3) > MAX_SET_DISPLAY_MESSAGE_LENGTH: tmp_set = set(list(set3)[:MAX_SET_DISPLAY_MESSAGE_LENGTH]) reference_set_str2 = f"{str(tmp_set)[:-1]}, ...}}" else: reference_set_str2 = str(set3) assert report3[0][0] == f"The columns of the table are equal to the set {reference_set_str2}" assert report3[0][1] == 1 assert report3[0][2] == 0 # adding the new column to 'set3' and creating a constraint with it, now it doesn't fail log_dict = dict() # logging a new value for every column (one more row) for column in df_lending_club.columns: value = df_lending_club[column][10] # sample from the column log_dict[column] = value logger.log(log_dict) report4 = logger.profile.apply_table_shape_constraints() assert report4[1][0] == f"The number of rows in the table equals {len(df_lending_club.index)}" assert report4[1][1] == 3 assert report4[1][2] == 1 # applying the table shape constraints the third time, and only this time it fails as the new row was logged rows_3 = numberOfRowsConstraint(n_rows=len(df_lending_club.index) + 1) # 1 new row report5 = logger.profile.apply_table_shape_constraints(SummaryConstraints([rows_3])) assert report5[0][0] == f"The number of rows in the table equals {len(df_lending_club.index)+1}" assert report5[0][1] == 1 assert report5[0][2] == 0 # the new numberOfRowsConstraint with n_rows=previous_n_rows+1 passes profile = logger.close() # closing the logger and getting the DatasetProfile assert profile.total_row_number == rows_3.value def test_table_shape_constraint_invalid_init(): with pytest.raises(TypeError): SummaryConstraint("columns", Op.EQ, reference_set=1) with pytest.raises(ValueError): SummaryConstraint("columns", Op.CONTAIN, reference_set=1) with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.EQ, reference_set=1) with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.CONTAIN, reference_set=1) with pytest.raises(ValueError): SummaryConstraint("columns", Op.CONTAIN, 1) with pytest.raises(ValueError): SummaryConstraint("columns", Op.CONTAIN, second_field="aaa") with pytest.raises(ValueError): SummaryConstraint("columns", Op.EQ, 1) with pytest.raises(ValueError): SummaryConstraint("columns", Op.EQ, second_field="aaa") with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.CONTAIN, 1) with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.CONTAIN, second_field="aaa") with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.EQ, second_field="aaa") with pytest.raises(ValueError): SummaryConstraint("columns", Op.CONTAIN, third_field="aaa") with pytest.raises(ValueError): SummaryConstraint("columns", Op.EQ, third_field="aaa") with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.CONTAIN, third_field="aaa") with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.EQ, third_field="aaa") with pytest.raises(ValueError): SummaryConstraint("columns", Op.CONTAIN, upper_value=2) with pytest.raises(ValueError): SummaryConstraint("columns", Op.EQ, upper_value=2) with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.CONTAIN, upper_value=2) with pytest.raises(ValueError): SummaryConstraint("total_row_number", Op.EQ, upper_value=2) def test_table_shape_no_merge_different_set(): set_c_1 = SummaryConstraint("columns", Op.EQ, reference_set=[1, 2, 3]) set_c_2 = SummaryConstraint("columns", Op.EQ, reference_set=[2, 3, 4, 5]) with pytest.raises(AssertionError): set_c_1.merge(set_c_2) def test_table_shape_merge(): set_c_1 = SummaryConstraint("columns", Op.EQ, reference_set=[1, 2, 3]) set_c_2 = columnsMatchSetConstraint(reference_set=[1, 2, 3]) set_c_1._name = set_c_2.name merged = set_c_1.merge(set_c_2) pre_merge_json = json.loads(message_to_json(set_c_1.to_protobuf())) merge_json = json.loads(message_to_json(merged.to_protobuf())) assert pre_merge_json["name"] == merge_json["name"] assert pre_merge_json["referenceSet"] == merge_json["referenceSet"] assert pre_merge_json["firstField"] == merge_json["firstField"] assert pre_merge_json["op"] == merge_json["op"] assert pre_merge_json["verbose"] == merge_json["verbose"] set_c_1 = SummaryConstraint("columns", Op.CONTAIN, "c1") set_c_2 = columnExistsConstraint(column="c1") set_c_1._name = set_c_2.name merged = set_c_1.merge(set_c_2) pre_merge_json = json.loads(message_to_json(set_c_1.to_protobuf())) merge_json = json.loads(message_to_json(merged.to_protobuf())) assert pre_merge_json["name"] == merge_json["name"] assert pre_merge_json["valueStr"] == merge_json["valueStr"] assert pre_merge_json["firstField"] == merge_json["firstField"] assert pre_merge_json["op"] == merge_json["op"] assert pre_merge_json["verbose"] == merge_json["verbose"] set_c_1 = SummaryConstraint("total_row_number", Op.EQ, 2) set_c_2 = numberOfRowsConstraint(n_rows=2) set_c_1._name = set_c_2.name merged = set_c_1.merge(set_c_2) pre_merge_json = json.loads(message_to_json(set_c_1.to_protobuf())) merge_json = json.loads(message_to_json(merged.to_protobuf())) assert pre_merge_json["name"] == merge_json["name"] assert pre_merge_json["value"] == merge_json["value"] assert pre_merge_json["firstField"] == merge_json["firstField"] assert pre_merge_json["op"] == merge_json["op"] assert pre_merge_json["verbose"] == merge_json["verbose"] def test_table_shape_serialization(): ts1 = columnsMatchSetConstraint([1, 2, 3]) ts2 = SummaryConstraint.from_protobuf(ts1.to_protobuf()) ts1_json = json.loads(message_to_json(ts1.to_protobuf())) ts2_json = json.loads(message_to_json(ts2.to_protobuf())) ts1.merge(ts2) ts2.merge(ts1) assert ts1_json["name"] == ts2_json["name"] assert ts1_json["referenceSet"] == ts2_json["referenceSet"] assert ts1_json["firstField"] == ts2_json["firstField"] assert ts1_json["op"] == ts2_json["op"] assert ts1_json["verbose"] == ts2_json["verbose"] ts1 = columnExistsConstraint("c1") ts1.to_protobuf() ts2 = SummaryConstraint.from_protobuf(ts1.to_protobuf()) ts1_json = json.loads(message_to_json(ts1.to_protobuf())) ts2_json = json.loads(message_to_json(ts2.to_protobuf())) ts1.merge(ts2) ts2.merge(ts1) assert ts1_json["name"] == ts2_json["name"] assert ts1_json["valueStr"] == ts2_json["valueStr"] assert ts1_json["firstField"] == ts2_json["firstField"] assert ts1_json["op"] == ts2_json["op"] assert ts1_json["verbose"] == ts2_json["verbose"] ts1 = numberOfRowsConstraint(2) ts2 = SummaryConstraint.from_protobuf(ts1.to_protobuf()) ts1_json = json.loads(message_to_json(ts1.to_protobuf())) ts2_json = json.loads(message_to_json(ts2.to_protobuf())) ts1.merge(ts2) ts2.merge(ts1) assert ts1_json["name"] == ts2_json["name"] assert ts1_json["value"] == ts2_json["value"] assert ts1_json["firstField"] == ts2_json["firstField"] assert ts1_json["op"] == ts2_json["op"] assert ts1_json["verbose"] == ts2_json["verbose"] def _get_sample_dataset_constraints(): cvisc = columnValuesInSetConstraint(value_set={2, 5, 8}) ltc = ValueConstraint(Op.LT, 1) min_gt_constraint = SummaryConstraint("min", Op.GT, value=100) max_le_constraint = SummaryConstraint("max", Op.LE, value=5) set1 = set(["col1", "col2"]) columns_match_constraint = columnsMatchSetConstraint(set1) val_set = {(1, 2), (3, 5)} col_set = ["A", "B"] mcv_constraints = [ columnValuesUniqueWithinRow(column_A="A", verbose=True), columnPairValuesInSetConstraint(column_A="A", column_B="B", value_set=val_set), sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=col_set, value=100), ] return DatasetConstraints( None, value_constraints={"annual_inc": [cvisc, ltc]}, summary_constraints={"annual_inc": [max_le_constraint, min_gt_constraint]}, table_shape_constraints=[columns_match_constraint], multi_column_value_constraints=mcv_constraints, ) def _assert_dc_props_equal(dc, dc_deserialized): props = dc.dataset_properties deser_props = dc_deserialized.dataset_properties if all([props, deser_props]): pm_json = json.loads(message_to_json(props)) deser_pm_json = json.loads(message_to_json(deser_props)) for (k, v), (k_deser, v_deser) in zip(pm_json.items(), deser_pm_json.items()): assert k == k_deser if all([v, v_deser]): v = v.sort() if isinstance(v, list) else v v_deser = v_deser.sort() if isinstance(v_deser, list) else v_deser assert v == v_deser def _assert_constraints_equal(constraints, deserialized_constraints): for (name, c), (deser_name, deser_c) in zip(constraints.items(), deserialized_constraints.items()): assert name == deser_name a = json.loads(message_to_json(c.to_protobuf())) b = json.loads(message_to_json(deser_c.to_protobuf())) for (k, v), (k_deser, v_deser) in zip(a.items(), b.items()): assert k == k_deser if all([v, v_deser]): v = v.sort() if isinstance(v, list) else v v_deser = v_deser.sort() if isinstance(v_deser, list) else v_deser assert v == v_deser def _get_all_value_constraints(constraints): all_v_constraints = dict() all_v_constraints.update(constraints.raw_value_constraints) all_v_constraints.update(constraints.coerced_type_constraints) return all_v_constraints def test_dataset_constraints_serialization(): dc = _get_sample_dataset_constraints() dc_deser = DatasetConstraints.from_protobuf(dc.to_protobuf()) _assert_dc_props_equal(dc, dc_deser) value_constraints = dc.value_constraint_map summary_constraints = dc.summary_constraint_map table_shape_constraints = dc.table_shape_constraints multi_column_value_constraints = dc.multi_column_value_constraints deser_v_c = dc_deser.value_constraint_map deser_s_c = dc_deser.summary_constraint_map deser_ts_c = dc_deser.table_shape_constraints deser_mcv_c = dc_deser.multi_column_value_constraints for (column, constraints), (deser_column, deser_constraints) in zip(value_constraints.items(), deser_v_c.items()): assert column == deser_column all_v_constraints = _get_all_value_constraints(constraints) all_v_constraints_deser = _get_all_value_constraints(deser_constraints) _assert_constraints_equal(all_v_constraints, all_v_constraints_deser) for (column, constraints), (deser_column, deser_constraints) in zip(summary_constraints.items(), deser_s_c.items()): assert column == deser_column _assert_constraints_equal(constraints.constraints, deser_constraints.constraints) _assert_constraints_equal(table_shape_constraints.constraints, deser_ts_c.constraints) all_mc_constraints = _get_all_value_constraints(multi_column_value_constraints) all_mc_constraints_deser = _get_all_value_constraints(deser_mcv_c) _assert_constraints_equal(all_mc_constraints, all_mc_constraints_deser) report = dc.report() report_deser = dc_deser.report() assert report == report_deser def test_most_common_value_in_set_constraint_apply(local_config_path, df_lending_club): val_set1 = {2, 3.5, 5000, 52000.0} val_set2 = {1, 2.3, "abc"} mcvc1 = columnMostCommonValueInSetConstraint(value_set=val_set1) mcvc2 = columnMostCommonValueInSetConstraint(value_set=val_set2) summary_constraints = {"loan_amnt": [mcvc1], "funded_amnt": [mcvc2]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints) assert report[0][1][0][0] == f"most common value is in {val_set1}" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 assert report[1][1][0][0] == f"most common value is in {val_set2}" assert report[1][1][0][1] == 1 assert report[1][1][0][2] == 1 def test_merge_most_common_value_in_set_constraint_different_values(): c1 = columnMostCommonValueInSetConstraint(value_set={1, 3}) c2 = columnMostCommonValueInSetConstraint(value_set={1, 5.0}) with pytest.raises(AssertionError): c1.merge(c2) def test_merge_most_common_value_in_set_constraint_same_values(): val_set = {1, 2, 3} u1 = columnMostCommonValueInSetConstraint(value_set=val_set) u2 = columnMostCommonValueInSetConstraint(value_set=val_set) merged = u1.merge(u2) message = json.loads(message_to_json(merged.to_protobuf())) assert message["name"] == f"most common value is in {val_set}" assert message["firstField"] == "most_common_value" assert message["op"] == Op.Name(Op.IN) assert message["referenceSet"] == list(val_set) assert message["verbose"] is False def test_serialization_deserialization_most_common_value_in_set_constraint(): val_set = {1, "a", "abc"} u1 = columnMostCommonValueInSetConstraint(value_set=val_set, verbose=True) u1.from_protobuf(u1.to_protobuf()) json_value = json.loads(message_to_json(u1.to_protobuf())) assert json_value["name"] == f"most common value is in {val_set}" assert json_value["firstField"] == "most_common_value" assert json_value["op"] == Op.Name(Op.IN) assert json_value["referenceSet"] == list(val_set) assert json_value["verbose"] is True def test_most_common_value_in_set_constraint_wrong_datatype(): with pytest.raises(TypeError): columnMostCommonValueInSetConstraint(value_set=2.3, verbose=True) def test_column_values_not_null_constraint_apply_pass(local_config_path, df_lending_club): nnc1 = columnValuesNotNullConstraint() summary_constraints = {"annual_inc": [nnc1]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints) TEST_LOGGER.info(f"Apply columnValuesNotNullConstraint report:\n{report}") assert report[0][1][0][0] == f"does not contain missing values" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 def test_column_values_not_null_constraint_apply_fail(local_config_path): nnc2 = columnValuesNotNullConstraint() df = pd.DataFrame([{"value": 1}, {"value": 5.2}, {"value": None}, {"value": 2.3}, {"value": None}]) summary_constraints = {"value": [nnc2]} report = _apply_summary_constraints_on_dataset(df, local_config_path, summary_constraints) TEST_LOGGER.info(f"Apply columnValuesNotNullConstraint report:\n{report}") assert report[0][1][0][0] == f"does not contain missing values" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 1 def test_merge_column_values_not_null_constraint_different_values(local_config_path, df_lending_club): nnc1 = columnValuesNotNullConstraint() nnc2 = columnValuesNotNullConstraint() summary_constraints1 = {"annual_inc": [nnc1]} summary_constraints2 = {"annual_inc": [nnc2]} report1 = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints1) report2 = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints2) assert report1[0][1][0][0] == f"does not contain missing values" assert report1[0][1][0][1] == 1 assert report1[0][1][0][2] == 0 assert report2[0][1][0][0] == f"does not contain missing values" assert report2[0][1][0][1] == 1 assert report2[0][1][0][2] == 0 merged = nnc1.merge(nnc2) report_merged = merged.report() print(report_merged) TEST_LOGGER.info(f"Merged report of columnValuesNotNullConstraint: {report_merged}") assert merged.total == 2 assert merged.failures == 0 def test_serialization_deserialization_column_values_not_null_constraint(): nnc = columnValuesNotNullConstraint(verbose=True) nnc.from_protobuf(nnc.to_protobuf()) json_value = json.loads(message_to_json(nnc.to_protobuf())) assert json_value["name"] == f"does not contain missing values" assert json_value["firstField"] == "null_count" assert json_value["op"] == Op.Name(Op.EQ) assert pytest.approx(json_value["value"], 0.01) == 0 assert json_value["verbose"] is True def test_missing_values_proportion_between_constraint_apply_pass(local_config_path, df_lending_club): mvpbc = missingValuesProportionBetweenConstraint(lower_fraction=0.0, upper_fraction=0.3) summary_constraint = {"annual_inc": [mvpbc]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraint) assert report[0][1][0][0] == f"missing values proportion is between 0.0% and 30.0%" assert report[0][1][0][1] == 1 # number of executions assert report[0][1][0][2] == 0 # number of failures def test_missing_values_proportion_between_constraint_apply_fail(local_config_path, df_lending_club): mvpbc = missingValuesProportionBetweenConstraint(lower_fraction=0.3, upper_fraction=0.8) summary_constraint = {"annual_inc": [mvpbc]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraint) assert report[0][1][0][0] == f"missing values proportion is between 30.0% and 80.0%" assert report[0][1][0][1] == 1 # number of executions assert report[0][1][0][2] == 1 # number of failures def test_merge_missing_values_proportion_between_constraint_different_values(): m1 = missingValuesProportionBetweenConstraint(lower_fraction=0.2, upper_fraction=0.3) m2 = missingValuesProportionBetweenConstraint(lower_fraction=0.1, upper_fraction=0.3) with pytest.raises(AssertionError): m1.merge(m2) def test_merge_missing_values_proportion_between_constraint_same_values(): m1 = missingValuesProportionBetweenConstraint(lower_fraction=0.1, upper_fraction=0.5) m2 = missingValuesProportionBetweenConstraint(lower_fraction=0.1, upper_fraction=0.5) merged = m1.merge(m2) message = json.loads(message_to_json(merged.to_protobuf())) assert message["name"] == "missing values proportion is between 10.0% and 50.0%" assert message["firstField"] == "missing_values_proportion" assert message["op"] == Op.Name(Op.BTWN) assert pytest.approx(message["between"]["lowerValue"], 0.001) == 0.1 assert pytest.approx(message["between"]["upperValue"], 0.001) == 0.5 assert message["verbose"] is False def test_serialization_deserialization_missing_values_proportion_between_constraint(): u1 = missingValuesProportionBetweenConstraint(lower_fraction=0.4, upper_fraction=0.7, verbose=True) u1.from_protobuf(u1.to_protobuf()) json_value = json.loads(message_to_json(u1.to_protobuf())) assert json_value["name"] == "missing values proportion is between 40.0% and 70.0%" assert json_value["firstField"] == "missing_values_proportion" assert json_value["op"] == Op.Name(Op.BTWN) assert pytest.approx(json_value["between"]["lowerValue"], 0.001) == 0.4 assert pytest.approx(json_value["between"]["upperValue"], 0.001) == 0.7 assert json_value["verbose"] is True def test_serialization_deserialization_missing_values_proportion_between_constraint_with_provided_name(): u1 = missingValuesProportionBetweenConstraint(lower_fraction=0.05, upper_fraction=0.1, name="missing values constraint", verbose=True) u1.from_protobuf(u1.to_protobuf()) json_value = json.loads(message_to_json(u1.to_protobuf())) assert json_value["name"] == "missing values constraint" assert json_value["firstField"] == "missing_values_proportion" assert json_value["op"] == Op.Name(Op.BTWN) assert pytest.approx(json_value["between"]["lowerValue"], 0.001) == 0.05 assert pytest.approx(json_value["between"]["upperValue"], 0.001) == 0.1 assert json_value["verbose"] is True def test_missing_values_proportion_between_constraint_wrong_datatype(): with pytest.raises(ValueError): missingValuesProportionBetweenConstraint(lower_fraction=0, upper_fraction=1.0, verbose=True) with pytest.raises(ValueError): missingValuesProportionBetweenConstraint(lower_fraction=0.2, upper_fraction=0.1, verbose=True) with pytest.raises(ValueError): missingValuesProportionBetweenConstraint(lower_fraction=0.4, upper_fraction=2) with pytest.raises(ValueError): missingValuesProportionBetweenConstraint(lower_fraction="1", upper_fraction=2.0, verbose=False) def test_column_values_type_equals_constraint_apply(local_config_path, df_lending_club): cvtc = columnValuesTypeEqualsConstraint(expected_type=InferredType.Type.FRACTIONAL) summary_constraints = {"annual_inc": [cvtc]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints) assert report[0][1][0][0] == f"type of the column values is {InferredType.Type.Name(InferredType.Type.FRACTIONAL)}" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 def test_merge_column_values_type_equals_constraint_different_values(): c1 = columnValuesTypeEqualsConstraint(expected_type=InferredType.Type.FRACTIONAL) c2 = columnValuesTypeEqualsConstraint(expected_type=InferredType.Type.NULL) with pytest.raises(AssertionError): c1.merge(c2) def test_merge_column_values_type_equals_constraint_same_values(): u1 = columnValuesTypeEqualsConstraint(expected_type=1) u2 = columnValuesTypeEqualsConstraint(expected_type=1) merged = u1.merge(u2) message = json.loads(message_to_json(merged.to_protobuf())) assert message["name"] == f"type of the column values is {InferredType.Type.Name(1)}" assert message["firstField"] == "column_values_type" assert message["op"] == Op.Name(Op.EQ) assert message["value"] == 1 assert message["verbose"] is False def test_serialization_deserialization_column_values_type_equals_constraint(): u1 = columnValuesTypeEqualsConstraint(expected_type=InferredType.Type.STRING, verbose=True) u1.from_protobuf(u1.to_protobuf()) json_value = json.loads(message_to_json(u1.to_protobuf())) assert json_value["name"] == f"type of the column values is {InferredType.Type.Name(InferredType.Type.STRING)}" assert json_value["firstField"] == "column_values_type" assert json_value["op"] == Op.Name(Op.EQ) assert json_value["value"] == InferredType.Type.STRING assert json_value["verbose"] is True def test_column_values_type_equals_constraint_wrong_datatype(): with pytest.raises(ValueError): columnValuesTypeEqualsConstraint(expected_type=2.3, verbose=True) with pytest.raises(ValueError): columnValuesTypeEqualsConstraint(expected_type="FRACTIONAL", verbose=True) def test_column_values_type_in_set_constraint_apply(local_config_path, df_lending_club): type_set = {InferredType.Type.FRACTIONAL, InferredType.Type.INTEGRAL} cvtc = columnValuesTypeInSetConstraint(type_set=type_set) summary_constraint = {"annual_inc": [cvtc]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraint) type_names = {InferredType.Type.Name(t) for t in type_set} assert report[0][1][0][0] == f"type of the column values is in {type_names}" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 def test_merge_column_values_type_in_set_constraint_different_values(): c1 = columnValuesTypeInSetConstraint(type_set={InferredType.Type.INTEGRAL, InferredType.Type.STRING}) c2 = columnValuesTypeInSetConstraint(type_set={InferredType.Type.INTEGRAL, InferredType.Type.NULL}) with pytest.raises(AssertionError): c1.merge(c2) def test_merge_column_values_type_in_set_constraint_same_values(): type_set = {InferredType.Type.INTEGRAL, InferredType.Type.STRING} c1 = columnValuesTypeInSetConstraint(type_set=type_set) c2 = columnValuesTypeInSetConstraint(type_set=type_set) merged = c1.merge(c2) message = json.loads(message_to_json(merged.to_protobuf())) type_names = {InferredType.Type.Name(t) for t in type_set} assert message["name"] == f"type of the column values is in {type_names}" assert message["firstField"] == "column_values_type" assert message["op"] == Op.Name(Op.IN) assert message["referenceSet"] == list(type_set) assert message["verbose"] is False def test_serialization_deserialization_column_values_type_in_set_constraint(): type_set = {InferredType.Type.STRING, InferredType.Type.INTEGRAL} u1 = columnValuesTypeInSetConstraint(type_set=type_set, verbose=True) u1.from_protobuf(u1.to_protobuf()) json_value = json.loads(message_to_json(u1.to_protobuf())) type_names = {InferredType.Type.Name(t) if isinstance(t, int) else InferredType.Type.Name(t.type) for t in type_set} assert json_value["name"] == f"type of the column values is in {type_names}" assert json_value["firstField"] == "column_values_type" assert json_value["op"] == Op.Name(Op.IN) assert json_value["referenceSet"] == list(type_set) assert json_value["verbose"] is True def test_column_values_type_in_set_constraint_wrong_datatype(): with pytest.raises(TypeError): columnValuesTypeInSetConstraint(type_set={2.3, 1}, verbose=True) with pytest.raises(TypeError): columnValuesTypeInSetConstraint(type_set={"FRACTIONAL", 2}, verbose=True) with pytest.raises(TypeError): columnValuesTypeInSetConstraint(type_set="ABCD") def test_entropy_between_constraint_numeric_apply(local_config_path, df_lending_club): ec = approximateEntropyBetweenConstraint(lower_value=0.4, upper_value=0.5) summary_constraint = {"annual_inc": [ec]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints=summary_constraint) # numeric assert report[0][1][0][0] == f"approximate entropy is between 0.4 and 0.5" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 1 def test_entropy_between_constraint_categorical_apply(local_config_path, df_lending_club): ec = approximateEntropyBetweenConstraint(lower_value=0.6, upper_value=1.5) summary_constraint = {"grade": [ec]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints=summary_constraint) # categorical assert report[0][1][0][0] == f"approximate entropy is between 0.6 and 1.5" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 0 def test_entropy_between_constraint_null_apply(local_config_path, df_lending_club): ec = approximateEntropyBetweenConstraint(lower_value=0.6, upper_value=1.5) summary_constraint = {"member_id": [ec]} report = _apply_summary_constraints_on_dataset(df_lending_club, local_config_path, summary_constraints=summary_constraint) # categorical assert report[0][1][0][0] == f"approximate entropy is between 0.6 and 1.5" assert report[0][1][0][1] == 1 assert report[0][1][0][2] == 1 def test_merge_entropy_between_constraint_different_values(): e1 = approximateEntropyBetweenConstraint(lower_value=1, upper_value=2.4) e2 = approximateEntropyBetweenConstraint(lower_value=1, upper_value=2.6) with pytest.raises(AssertionError): e1.merge(e2) def test_merge_entropy_between_constraint_same_values(): e1 = approximateEntropyBetweenConstraint(lower_value=1, upper_value=3.2) e2 = approximateEntropyBetweenConstraint(lower_value=1, upper_value=3.2) merged = e1.merge(e2) message = json.loads(message_to_json(merged.to_protobuf())) assert message["name"] == f"approximate entropy is between 1 and 3.2" assert message["firstField"] == "entropy" assert message["op"] == Op.Name(Op.BTWN) assert pytest.approx(message["between"]["lowerValue"], 0.01) == 1 assert pytest.approx(message["between"]["upperValue"], 0.01) == 3.2 assert message["verbose"] is False def test_serialization_deserialization_entropy_between_constraint(): e1 = approximateEntropyBetweenConstraint(lower_value=0.3, upper_value=1.2, verbose=True) e1.from_protobuf(e1.to_protobuf()) json_value = json.loads(message_to_json(e1.to_protobuf())) assert json_value["name"] == f"approximate entropy is between 0.3 and 1.2" assert json_value["firstField"] == "entropy" assert json_value["op"] == Op.Name(Op.BTWN) assert pytest.approx(json_value["between"]["lowerValue"], 0.01) == 0.3 assert pytest.approx(json_value["between"]["upperValue"], 0.01) == 1.2 assert json_value["verbose"] is True def test_entropy_between_constraint_wrong_datatype(): with pytest.raises(TypeError): approximateEntropyBetweenConstraint(lower_value="2", upper_value=4, verbose=True) with pytest.raises(ValueError): approximateEntropyBetweenConstraint(lower_value=-2, upper_value=3, verbose=True) with pytest.raises(ValueError): approximateEntropyBetweenConstraint(lower_value=1, upper_value=0.9) def test_ks_test_p_value_greater_than_constraint_false(df_lending_club, local_config_path): norm_values = np.random.normal(loc=10000, scale=2.0, size=15000) kspval = parametrizedKSTestPValueGreaterThanConstraint(norm_values, p_value=0.1) dc = DatasetConstraints(None, summary_constraints={"loan_amnt": [kspval]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint failed once assert report[0][1][0][2] == 1 def test_ks_test_p_value_greater_than_constraint_true(df_lending_club, local_config_path): kspval = parametrizedKSTestPValueGreaterThanConstraint(df_lending_club["loan_amnt"].values, p_value=0.1) dc = DatasetConstraints(None, summary_constraints={"loan_amnt": [kspval]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint was successfully executed assert report[0][1][0][2] == 0 def test_ks_test_p_value_greater_than_constraint_merge_different_values(): ks1 = parametrizedKSTestPValueGreaterThanConstraint([1.0, 2.0, 3.0]) ks2 = parametrizedKSTestPValueGreaterThanConstraint([1.0, 2.0, 4.0]) with pytest.raises(AssertionError): ks1.merge(ks2) ks1 = parametrizedKSTestPValueGreaterThanConstraint([1.0, 2.0, 3.0], p_value=0.1) ks2 = parametrizedKSTestPValueGreaterThanConstraint([1.0, 2.0, 3.0], p_value=0.5) with pytest.raises(AssertionError): ks1.merge(ks2) def test_ks_test_p_value_greater_than_constraint_merge_same_values(): ks1 = parametrizedKSTestPValueGreaterThanConstraint([1.0, 2.0, 3.0]) ks2 = parametrizedKSTestPValueGreaterThanConstraint([1.0, 2.0, 3.0]) merged = ks1.merge(ks2) TEST_LOGGER.info(f"Serialize the merged parametrizedKSTestPValueGreaterThanConstraint:\n {merged.to_protobuf()}") json_value = json.loads(message_to_json(merged.to_protobuf())) assert json_value["name"] == f"parametrized KS test p-value is greater than 0.05" assert json_value["op"] == Op.Name(Op.GT) assert json_value["firstField"] == "ks_test" assert pytest.approx(json_value["value"], 0.01) == 0.05 assert len(json_value["continuousDistribution"]["sketch"]["sketch"]) > 0 assert json_value["verbose"] is False def test_serialization_deserialization_ks_test_p_value_greater_than_constraint(): ks1 = parametrizedKSTestPValueGreaterThanConstraint([1.0, 2.0, 3.0], p_value=0.15, verbose=True) ks1.from_protobuf(ks1.to_protobuf()) json_value = json.loads(message_to_json(ks1.to_protobuf())) TEST_LOGGER.info(f"Serialize parametrizedKSTestPValueGreaterThanConstraint from deserialized representation:\n {ks1.to_protobuf()}") assert json_value["name"] == f"parametrized KS test p-value is greater than 0.15" assert json_value["op"] == Op.Name(Op.GT) assert json_value["firstField"] == "ks_test" assert pytest.approx(json_value["value"], 0.01) == 0.15 assert len(json_value["continuousDistribution"]["sketch"]["sketch"]) > 0 assert json_value["verbose"] is True def test_ks_test_p_value_greater_than_constraint_wrong_datatype(): with pytest.raises(ValueError): parametrizedKSTestPValueGreaterThanConstraint([1, 2, 3], p_value=0.15, verbose=True) with pytest.raises(TypeError): parametrizedKSTestPValueGreaterThanConstraint("abc", p_value=0.15, verbose=True) with pytest.raises(ValueError): parametrizedKSTestPValueGreaterThanConstraint([1, 2, 3], p_value=1.2, verbose=True) def test_column_kl_divergence_less_than_constraint_continuous_false(df_lending_club, local_config_path): norm_values = np.random.normal(loc=10000, scale=2.0, size=15000) kld = columnKLDivergenceLessThanConstraint(norm_values, threshold=2.1) dc = DatasetConstraints(None, summary_constraints={"loan_amnt": [kld]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint failed once assert report[0][1][0][2] == 1 def test_column_kl_divergence_less_than_constraint_continuous_true(df_lending_club, local_config_path): kld = columnKLDivergenceLessThanConstraint(df_lending_club["loan_amnt"].values, threshold=0.1) dc = DatasetConstraints(None, summary_constraints={"loan_amnt": [kld]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint was successfully executed assert report[0][1][0][2] == 0 def test_column_kl_divergence_less_than_constraint_discrete_true(df_lending_club, local_config_path): np.random.seed(2) dist_data = np.random.choice(list(set(df_lending_club["grade"].values)), 100) kld = columnKLDivergenceLessThanConstraint(dist_data, threshold=1.3) dc = DatasetConstraints(None, summary_constraints={"grade": [kld]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint was successfully executed assert report[0][1][0][2] == 0 def test_column_kl_divergence_less_than_constraint_discrete_false(df_lending_club, local_config_path): np.random.seed(2) dist_data = np.random.choice(list(set(df_lending_club["grade"].values)), 1000, p=[0.005, 0.005, 0.005, 0.03, 0.19, 0.765]) kld = columnKLDivergenceLessThanConstraint(dist_data, threshold=0.4) dc = DatasetConstraints(None, summary_constraints={"grade": [kld]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint was not successfully executed assert report[0][1][0][2] == 1 def test_column_kl_divergence_less_than_constraint_merge_different_values(): ks1 = columnKLDivergenceLessThanConstraint([1.0, 2.0, 3.0]) ks2 = columnKLDivergenceLessThanConstraint([1.0, 2.0, 4.0]) with pytest.raises(AssertionError): ks1.merge(ks2) ks1 = columnKLDivergenceLessThanConstraint([1.0, 2.0, 3.0], threshold=0.1) ks2 = columnKLDivergenceLessThanConstraint([1.0, 2.0, 3.0], threshold=0.5) with pytest.raises(AssertionError): ks1.merge(ks2) def test_column_kl_divergence_less_than_constraint_merge_same_values(): ks1 = columnKLDivergenceLessThanConstraint([1.0, 2.0, 3.0]) ks2 = columnKLDivergenceLessThanConstraint([1.0, 2.0, 3.0]) merged = ks1.merge(ks2) TEST_LOGGER.info(f"Serialize the merged parametrizedKSTestPValueGreaterThanConstraint:\n {merged.to_protobuf()}") json_value = json.loads(message_to_json(merged.to_protobuf())) print(json_value) assert json_value["name"] == f"KL Divergence is less than 0.5" assert json_value["op"] == Op.Name(Op.LT) assert json_value["firstField"] == "kl_divergence" assert pytest.approx(json_value["value"], 0.01) == 0.5 assert len(json_value["continuousDistribution"]["sketch"]["sketch"]) > 0 assert json_value["verbose"] is False def test_serialization_deserialization_column_kl_divergence_less_than_constraint_discrete(): ks1 = columnKLDivergenceLessThanConstraint([1, 2, 3], threshold=0.15, verbose=True) ks1.from_protobuf(ks1.to_protobuf()) json_value = json.loads(message_to_json(ks1.to_protobuf())) TEST_LOGGER.info(f"Serialize columnKLDivergenceLessThanConstraint from deserialized representation:\n {ks1.to_protobuf()}") assert json_value["name"] == f"KL Divergence is less than 0.15" assert json_value["op"] == Op.Name(Op.LT) assert json_value["firstField"] == "kl_divergence" assert pytest.approx(json_value["value"], 0.01) == 0.15 assert len(json_value["discreteDistribution"]["frequentItems"]["items"]) == 3 assert json_value["discreteDistribution"]["totalCount"] == 3 assert json_value["verbose"] is True def test_serialization_deserialization_column_kl_divergence_less_than_constraint_continuous(): ks1 = columnKLDivergenceLessThanConstraint([2.0, 2.0, 3.0], threshold=0.15, verbose=True) ks1.from_protobuf(ks1.to_protobuf()) json_value = json.loads(message_to_json(ks1.to_protobuf())) TEST_LOGGER.info(f"Serialize columnKLDivergenceLessThanConstraint from deserialized representation:\n {ks1.to_protobuf()}") assert json_value["name"] == f"KL Divergence is less than 0.15" assert json_value["op"] == Op.Name(Op.LT) assert json_value["firstField"] == "kl_divergence" assert pytest.approx(json_value["value"], 0.01) == 0.15 assert len(json_value["continuousDistribution"]["sketch"]["sketch"]) > 0 assert json_value["verbose"] is True def test_column_kl_divergence_less_than_constraint_wrong_datatype(): with pytest.raises(TypeError): columnKLDivergenceLessThanConstraint([1.0, "abc", 3], threshold=0.15, verbose=True) with pytest.raises(TypeError): columnKLDivergenceLessThanConstraint("abc", threshold=0.5, verbose=True) with pytest.raises(TypeError): columnKLDivergenceLessThanConstraint([1, 2, 3], threshold="1.2", verbose=True) def test_chi_squared_test_p_value_greater_than_constraint_true(df_lending_club, local_config_path): test_values = ["A"] * 6 + ["B"] * 13 + ["C"] * 25 + ["D"] * 3 + ["E"] + ["F"] * 2 kspval = columnChiSquaredTestPValueGreaterThanConstraint(test_values, p_value=0.1) dc = DatasetConstraints(None, summary_constraints={"grade": [kspval]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint was successful assert report[0][1][0][2] == 0 def test_chi_squared_test_p_value_greater_than_constraint_false(df_lending_club, local_config_path): test_values = {"C": 1, "B": 5, "A": 2, "D": 18, "E": 32, "F": 1} chi = columnChiSquaredTestPValueGreaterThanConstraint(test_values, p_value=0.05) dc = DatasetConstraints(None, summary_constraints={"grade": [chi]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() report = profile.apply_summary_constraints() # check if all of the rows have been reported assert report[0][1][0][1] == 1 # check if the constraint failed assert report[0][1][0][2] == 1 def test_chi_squared_test_p_value_greater_than_constraint_merge_different_values(): ks1 = columnChiSquaredTestPValueGreaterThanConstraint([1, 2, 3]) ks2 = columnChiSquaredTestPValueGreaterThanConstraint([1, 2, 4]) with pytest.raises(AssertionError): ks1.merge(ks2) ks1 = columnChiSquaredTestPValueGreaterThanConstraint([1, 2, 3], p_value=0.1) ks2 = columnChiSquaredTestPValueGreaterThanConstraint([1, 2, 3], p_value=0.5) with pytest.raises(AssertionError): ks1.merge(ks2) def test_column_chi_squared_test_p_value_greater_than_constraint_merge_same_values(): ks1 = columnChiSquaredTestPValueGreaterThanConstraint([1, 3, "A"]) ks2 = columnChiSquaredTestPValueGreaterThanConstraint([1, "A", 3]) merged = ks1.merge(ks2) TEST_LOGGER.info(f"Serialize the merged columnChiSquaredTestPValueGreaterThanConstraint:\n {merged.to_protobuf()}") json_value = json.loads(message_to_json(merged.to_protobuf())) assert json_value["name"] == f"Chi-Squared test p-value is greater than 0.05" assert json_value["op"] == Op.Name(Op.GT) assert json_value["firstField"] == "chi_squared_test" assert pytest.approx(json_value["value"], 0.01) == 0.05 assert len(json_value["discreteDistribution"]["frequentItems"]["items"]) == 3 assert json_value["verbose"] is False def test_serialization_deserialization_chi_squared_test_p_value_greater_than_constraint(): ks1 = columnChiSquaredTestPValueGreaterThanConstraint([1, 2, "A", "B"], p_value=0.15, verbose=True) ks1.from_protobuf(ks1.to_protobuf()) json_value = json.loads(message_to_json(ks1.to_protobuf())) TEST_LOGGER.info(f"Serialize columnChiSquaredTestPValueGreaterThanConstraint from deserialized representation:\n {ks1.to_protobuf()}") assert json_value["name"] == f"Chi-Squared test p-value is greater than 0.15" assert json_value["op"] == Op.Name(Op.GT) assert json_value["firstField"] == "chi_squared_test" assert pytest.approx(json_value["value"], 0.01) == 0.15 assert len(json_value["discreteDistribution"]["frequentItems"]["items"]) == 4 assert json_value["verbose"] is True def test_chi_squared_test_p_value_greater_than_constraint_wrong_datatype(): with pytest.raises(ValueError): columnChiSquaredTestPValueGreaterThanConstraint([1.0, 2, 3], p_value=0.15, verbose=True) with pytest.raises(TypeError): columnChiSquaredTestPValueGreaterThanConstraint("abc", p_value=0.15, verbose=True) with pytest.raises(ValueError): columnChiSquaredTestPValueGreaterThanConstraint({"A": 0.3, "B": 1, "C": 12}, p_value=0.2, verbose=True) with pytest.raises(TypeError): columnChiSquaredTestPValueGreaterThanConstraint(["a", "b", "c"], p_value=1.2, verbose=True) def test_generate_default_constraints_categorical(local_config_path): usernames = ["jd123", "<EMAIL>", "bobsmith", "_anna_"] emails = ["<EMAIL>", "<EMAIL>", "<EMAIL>", "<EMAIL>"] data = pd.DataFrame( { "username": usernames, "email": emails, } ) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(data, "test.data") generated_constraints = profile.generate_constraints() json_summ = json.loads(message_to_json(generated_constraints.to_protobuf())) constraints_username = json_summ["summaryConstraints"]["username"]["constraints"] constraints_email = json_summ["summaryConstraints"]["email"]["constraints"] # username constraints assert len(constraints_username) == 3 # column value type equals, unique count between and most common value in set assert constraints_username[0]["name"] == "type of the column values is STRING" assert constraints_username[0]["firstField"] == "column_values_type" assert constraints_username[0]["value"] == InferredType.STRING assert constraints_username[0]["op"] == Op.Name(Op.EQ) assert constraints_username[0]["verbose"] is False # there are 4 unique values in the df for username, so the unique count between is in the range 4-1 and 4+1 assert constraints_username[1]["name"] == "number of unique values is between 3 and 5" assert constraints_username[1]["firstField"] == "unique_count" assert constraints_username[1]["op"] == Op.Name(Op.BTWN) assert pytest.approx(constraints_username[1]["between"]["lowerValue"], 0.001) == 3 assert pytest.approx(constraints_username[1]["between"]["upperValue"], 0.001) == 5 assert constraints_username[1]["verbose"] is False assert f"most common value is in" in constraints_username[2]["name"] # set has different order assert constraints_username[2]["firstField"] == "most_common_value" assert constraints_username[2]["op"] == Op.Name(Op.IN) assert set(constraints_username[2]["referenceSet"]) == set(usernames) assert constraints_username[2]["verbose"] is False # email constraints assert len(constraints_email) == 3 # column value type equals, unique count between and most common value in set assert constraints_email[0]["name"] == "type of the column values is STRING" assert constraints_email[0]["firstField"] == "column_values_type" assert constraints_email[0]["value"] == InferredType.STRING assert constraints_email[0]["op"] == Op.Name(Op.EQ) assert constraints_email[0]["verbose"] is False # there are 4 unique values in the df for username, so the unique count between is in the range 4-1 and 4+1 assert constraints_email[1]["name"] == "number of unique values is between 3 and 5" assert constraints_email[1]["firstField"] == "unique_count" assert constraints_email[1]["op"] == Op.Name(Op.BTWN) assert pytest.approx(constraints_email[1]["between"]["lowerValue"], 0.001) == 3 assert pytest.approx(constraints_email[1]["between"]["upperValue"], 0.001) == 5 assert constraints_email[1]["verbose"] is False assert f"most common value is in" in constraints_email[2]["name"] # set has different order assert constraints_email[2]["firstField"] == "most_common_value" assert constraints_email[2]["op"] == Op.Name(Op.IN) assert set(constraints_email[2]["referenceSet"]) == set(emails) assert constraints_email[2]["verbose"] is False def test_generate_default_constraints_numeric(local_config_path): data = pd.DataFrame( { "followers": [1525, 12268, 51343, 867, 567, 100265, 22113, 3412], "points": [23.4, 123.2, 432.22, 32.1, 44.1, 42.2, 344.2, 42.1], } ) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(data, "test.data") generated_constraints = profile.generate_constraints() json_summ = json.loads(message_to_json(generated_constraints.to_protobuf())) followers_constraints = json_summ["summaryConstraints"]["followers"]["constraints"] points_constraints = json_summ["summaryConstraints"]["points"]["constraints"] assert len(followers_constraints) == 5 # min greater than 0, mean between mean-stddev and mean+stddev, # column values type, most common value in set, unique count between followers_mean = data["followers"].mean() followers_stddev = data["followers"].std() lower_followers = followers_mean - followers_stddev upper_followers = followers_mean + followers_stddev assert followers_constraints[0]["name"] == "minimum is greater than or equal to 0" assert followers_constraints[1]["name"] == f"mean is between {lower_followers} and {upper_followers}" assert followers_constraints[2]["name"] == "type of the column values is INTEGRAL" assert followers_constraints[3]["name"] == "number of unique values is between 7 and 9" # we have 8 unique values in the df assert "most common value is in" in followers_constraints[4]["name"] assert len(points_constraints) == 4 # min greater than 0, mean between mean-stddev and mean+stddev, # column values type, most common value in set points_mean = data["points"].mean() points_stddev = data["points"].std() lower_points = points_mean - points_stddev upper_points = points_mean + points_stddev assert points_constraints[0]["name"] == "minimum is greater than or equal to 0" assert points_constraints[1]["name"] == f"mean is between {lower_points} and {upper_points}" assert points_constraints[2]["name"] == "type of the column values is FRACTIONAL" assert "most common value is in" in points_constraints[3]["name"] def test_generate_default_constraints_mixed(local_config_path): users = ["jd123", "<EMAIL>", "bobsmith", "_anna_"] followers = [1525, 12268, 51343, 867] data = pd.DataFrame({"username": users, "followers": followers, "null": [None, None, None, None]}) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(data, "test.data") generated_constraints = profile.generate_constraints() json_summ = json.loads(message_to_json(generated_constraints.to_protobuf())) username_constraints = json_summ["summaryConstraints"]["username"]["constraints"] followers_constraints = json_summ["summaryConstraints"]["followers"]["constraints"] # no constraints should be generated for the null column since all values are None assert "null" not in json_summ["summaryConstraints"] assert len(username_constraints) == 3 # column value type equals, unique count between and most common value in set assert username_constraints[0]["name"] == "type of the column values is STRING" assert username_constraints[1]["name"] == "number of unique values is between 3 and 5" # we have 4 unique values in df assert f"most common value is in" in username_constraints[2]["name"] assert len(followers_constraints) == 5 # min greater than 0, mean between mean-stddev and mean+stddev, # column values type, most common value in set, unique count between followers_mean = data["followers"].mean() followers_stddev = data["followers"].std() lower_followers = followers_mean - followers_stddev upper_followers = followers_mean + followers_stddev assert followers_constraints[0]["name"] == "minimum is greater than or equal to 0" assert followers_constraints[1]["name"] == f"mean is between {lower_followers} and {upper_followers}" assert followers_constraints[2]["name"] == "type of the column values is INTEGRAL" assert followers_constraints[3]["name"] == "number of unique values is between 3 and 5" # we have 4 unique values in the df assert f"most common value is in" in followers_constraints[4]["name"] def _apply_value_constraints_on_dataset(df_lending_club, local_config_path, value_constraints=None, multi_column_value_constraints=None): dc = DatasetConstraints(None, value_constraints=value_constraints, multi_column_value_constraints=multi_column_value_constraints) config = load_config(local_config_path) session = session_from_config(config) profile = session.log_dataframe(df_lending_club, "test.data", constraints=dc) session.close() return dc.report() def test_sum_of_row_values_of_multiple_columns_constraint_apply(local_config_path, df_lending_club): col_set = ["loan_amnt", "int_rate"] srveq = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=col_set, value="total_pymnt", verbose=False) multi_column_value_constraints = [srveq] report = _apply_value_constraints_on_dataset(df_lending_club, local_config_path, multi_column_value_constraints=multi_column_value_constraints) assert report[0][0] == f"The sum of the values of loan_amnt and int_rate is equal to the corresponding value of the column total_pymnt" assert report[0][1] == 50 assert report[0][2] == 50 def test_sum_of_row_values_of_multiple_columns_constraint_apply_true(local_config_path): colset = ["A", "B"] srveq = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=colset, value=100, verbose=False) dc = DatasetConstraints(None, multi_column_value_constraints=[srveq]) config = load_config(local_config_path) session = session_from_config(config) df = pd.DataFrame( [ {"A": 1, "B": 2}, # fail {"A": 99, "B": 1}, # pass {"A": 32, "B": 68}, # pass {"A": 100, "B": 2}, # fail {"A": 83, "B": 18}, # fail ] ) profile = session.log_dataframe(df, "test.data", constraints=dc) session.close() report = dc.report() assert report[0][0] == f"The sum of the values of A and B is equal to 100" assert report[0][1] == 5 assert report[0][2] == 3 def test_merge_sum_of_row_values_different_values(): cpvis1 = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=["annual_inc", "loan_amnt"], value="grade") cpvis2 = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=["annual_inc", "total_pymnt"], value="grade") cpvis3 = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=["annual_inc", "total_pymnt"], value="loan_amnt") with pytest.raises(AssertionError): cpvis1.merge(cpvis2) with pytest.raises(AssertionError): cpvis2.merge(cpvis3) def test_merge_sum_of_row_values_constraint_valid(): col_set = ["loan_amnt", "int_rate"] srveq1 = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=col_set, value="total_pymnt", verbose=False) srveq1.total = 5 srveq1.failures = 1 srveq2 = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=col_set, value="total_pymnt", verbose=False) srveq2.total = 3 srveq2.failures = 2 srveq_merged = srveq1.merge(srveq2) json_value = json.loads(message_to_json(srveq_merged.to_protobuf())) assert json_value["name"] == f"The sum of the values of loan_amnt and int_rate is equal to the corresponding value of the column total_pymnt" assert json_value["dependentColumns"] == col_set assert json_value["op"] == Op.Name(Op.EQ) assert json_value["referenceColumns"][0] == "total_pymnt" assert json_value["verbose"] is False report = srveq_merged.report() assert report[1] == 8 assert report[2] == 3 def test_serialization_deserialization_sum_of_row_values_constraint(): columns = ["A", "B", "C"] c = sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=columns, value=6, verbose=True) c.from_protobuf(c.to_protobuf()) json_value = json.loads(message_to_json(c.to_protobuf())) assert json_value["name"] == f"The sum of the values of A, B and C is equal to 6" assert json_value["dependentColumns"] == columns assert json_value["op"] == Op.Name(Op.EQ) assert pytest.approx(json_value["value"], 0.01) == 6 assert json_value["internalDependentColumnsOp"] == Op.Name(Op.SUM) assert json_value["verbose"] is True def test_sum_of_row_values_constraint_invalid_params(): with pytest.raises(TypeError): sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=1, value="B") with pytest.raises(TypeError): sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=[1, 2], value="B") with pytest.raises(TypeError): sumOfRowValuesOfMultipleColumnsEqualsConstraint(columns=1, value=["b"]) def test_multi_column_value_constraints_logical_operation(local_config_path): a_gt_b = columnValuesAGreaterThanBConstraint("col1", "col2") df =
pd.DataFrame({"col1": [4, 5, 6, 7], "col2": [0, 1, 2, 3]})
pandas.DataFrame
import os from warnings import warn import networkx as nx import numpy as np import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import StandardScaler, MinMaxScaler from recipe_similarities.utils.clean_data import prepare_data from recipe_similarities.config.defaults import raw_data_files BASE_DIR = os.path.dirname(os.path.realpath(__file__)) class SimilarityFactory: """ This class produces a hybrid similarity class. To enable it to use non-example data prodided as a part of the exercise, you must specify the full explcit file paths in recipes_info_file_path and similarity_score_file_path upon intiating the class. Basic Usage: from recipe_similarities.similarities import SimilarityFactory sf = SimilarityFactory() sf.load_data() hsims = sf.hybrid_similarities() :returns dict {'similarity_matrix': NxN matics as a numpy array , 'index': Pandas Index object highlightin recipe IDs to cross reference with the similarity matrix} """ def __init__(self, recipes_info_file_path=None, similarity_score_file_path=None): self.recipes_info_file_path = recipes_info_file_path self.similarity_score_file_path = similarity_score_file_path self.recipes_df = None self.sim_scores_df = None def load_data(self): """ This function loads example data or that specifed in the path specified on class instantiation """ if self.recipes_info_file_path is None or self.similarity_score_file_path is None: warn("You have not provided a recipes.csv AND a similarity_scores.csv. Default raw data will be used. ") raw_data = raw_data_files() self.recipes_info_file_path = os.path.join(BASE_DIR, 'data', 'raw_data', raw_data['recipes_info']) self.similarity_score_file_path = os.path.join(BASE_DIR, 'data', 'raw_data', raw_data['similarity_scores']) self.recipes_df, self.sim_scores_df = prepare_data(self.recipes_info_file_path, self.similarity_score_file_path) @staticmethod def _prep_time_class(field): """ This function converts preparation time to a class nb highly subjective, should ideally be validated by understanding customer perception """ if field <= 20: return 'fast' elif 20 < field <= 40: return 'medium' elif field > 40: return 'slow' def _recipes_prepare_data(self): """ This function transforms recipe data for content based methods """ df = self.recipes_df.copy() # enables simple indexing of recipes throughout processes df.index = df.recipe_id del df['recipe_id'] # removed as often duplicate info del df['country_secondary'] # treat missing content as information df.fillna('missing', inplace=True) # update lalling for consitency and to simplfy string vectoriations df['family_friendly'].replace(to_replace={'no': 'family unfriendly', 'yes': 'family friendly'}, inplace=True) df['dish_category'].replace(to_replace={'protein&veg': 'protein & veg'}, inplace=True) # simplfies prep time into a categry with lower cardinality df['prep_time'] = df['prep_time'].apply(self._prep_time_class) return df def recipes_jaccard_similarities(self): """ This function computes Jaccards similarity uses numpy's matrix operations for fast computation of jaccards similarity""" df = self._recipes_prepare_data() a = df.values.copy() b = df.values.copy() all_recipes_by_n_recipes = np.repeat(a[np.newaxis, :, :], a.shape[0], axis=0) all_recipes = b.reshape(b.shape[0], 1, b.shape[1]) intersect = np.sum(all_recipes_by_n_recipes == all_recipes, axis=2) union = np.sum(all_recipes_by_n_recipes != all_recipes, axis=2) * 2 + intersect jaccard_sim = intersect / union jaccard_sim_df =
pd.DataFrame(jaccard_sim, index=df.index, columns=df.index)
pandas.DataFrame
# -*- coding: utf-8 -*- import pre_deal,model from mxnet import autograd from mxnet import gluon from mxnet import image from mxnet import init from mxnet import nd from mxnet.gluon.data import vision import numpy as np from mxnet.gluon import nn from matplotlib import pyplot as plt from utils import Visualizer train_dir = 'train' test_dir = 'test' batch_size = 128 data_dir = '/media/yijie/娱乐/tmp/kaggle_cifar10' label_file = 'D:/dataset/gluon/train_valid_test/trainLabels.csv' input_dir = 'D:/dataset/gluon/train_valid_test' valid_ratio = 0.1 pre_deal_flag = True vis = Visualizer(env='CIFAR10') # sorting the dataset and transform if not pre_deal_flag: pre_deal.reorg_cifar10_data(data_dir, label_file, train_dir, test_dir, input_dir, valid_ratio) input_str = input_dir + '/' # 读取原始图像文件。flag=1说明输入图像有三个通道(彩色)。 train_ds = vision.ImageFolderDataset(input_str + 'train', flag=1, transform=pre_deal.transform_train) valid_ds = vision.ImageFolderDataset(input_str + 'valid', flag=1, transform=pre_deal.transform_test) train_valid_ds = vision.ImageFolderDataset(input_str + 'train_valid', flag=1, transform=pre_deal.transform_train) test_ds = vision.ImageFolderDataset(input_str + 'test', flag=1, transform=pre_deal.transform_test) loader = gluon.data.DataLoader train_data = loader(train_ds, batch_size, shuffle=True, last_batch='keep') valid_data = loader(valid_ds, batch_size, shuffle=True, last_batch='keep') train_valid_data = loader(train_valid_ds, batch_size, shuffle=True, last_batch='keep') test_data = loader(test_ds, batch_size, shuffle=False, last_batch='keep') # 交叉熵损失函数。 softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss() import datetime import sys sys.path.append('..') import utils def train(net, train_data, valid_data, num_epochs, lr, wd, ctx, lr_period, lr_decay): trainer = gluon.Trainer( net.collect_params(), 'sgd', {'learning_rate': lr, 'momentum': 0.9, 'wd': wd}) prev_time = datetime.datetime.now() plt_train_acc = [] plt_valid_acc = [] for epoch in range(num_epochs): train_loss = 0.0 train_acc = 0.0 if epoch > 0 and epoch % lr_period == 0: trainer.set_learning_rate(trainer.learning_rate * lr_decay) if epoch > 161 and epoch % 10 == 0: trainer.set_learning_rate(trainer.learning_rate * 0.4) for data, label in train_data: label = label.as_in_context(ctx) with autograd.record(): output = net(data.as_in_context(ctx)) loss = softmax_cross_entropy(output, label) loss.backward() trainer.step(batch_size) train_loss += nd.mean(loss).asscalar() train_acc += utils.accuracy(output, label) cur_time = datetime.datetime.now() h, remainder = divmod((cur_time - prev_time).seconds, 3600) m, s = divmod(remainder, 60) time_str = "Time %02d:%02d:%02d" % (h, m, s) if valid_data is not None: valid_acc = utils.evaluate_accuracy(valid_data, net, ctx) epoch_str = ("Epoch %d. Loss: %f, Train acc %f, Valid acc %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data), valid_acc)) plt_train_acc.append(train_acc / len(train_data)) plt_valid_acc.append(valid_acc) else: epoch_str = ("Epoch %d. Loss: %f, Train acc %f, " % (epoch, train_loss / len(train_data), train_acc / len(train_data))) prev_time = cur_time print(epoch_str + time_str + ', lr ' + str(trainer.learning_rate)) # plot if valid_data is not None: plt.plot(plt_train_acc) plt.plot(plt_valid_acc) plt.legend(['train_acc','test_acc']) plt.savefig("Loss.png") ctx = utils.try_gpu() num_epochs = 200 learning_rate = 0.1 weight_decay = 5e-4 lr_period = 80 lr_decay = 0.1 net = model.get_net(ctx) net.hybridize() train(net, train_data, valid_data, num_epochs, learning_rate, weight_decay, ctx, lr_period, lr_decay) import numpy as np import pandas as pd net = model.get_net(ctx) net.hybridize() train(net, train_valid_data, None, num_epochs, learning_rate, weight_decay, ctx, lr_period, lr_decay) preds = [] for data, label in test_data: output = net(data.as_in_context(ctx)) preds.extend(output.argmax(axis=1).astype(int).asnumpy()) sorted_ids = list(range(1, len(test_ds) + 1)) sorted_ids.sort(key = lambda x:str(x)) df =
pd.DataFrame({'id': sorted_ids, 'label': preds})
pandas.DataFrame
# -*- coding: utf-8 -*- import string from collections import OrderedDict from datetime import date, datetime import numpy as np import pandas as pd import pandas.util.testing as pdt import pytest from kartothek.core.common_metadata import make_meta, store_schema_metadata from kartothek.core.index import ExplicitSecondaryIndex from kartothek.core.naming import DEFAULT_METADATA_VERSION from kartothek.io_components.metapartition import ( MetaPartition, _unique_label, parse_input_to_metapartition, partition_labels_from_mps, ) from kartothek.serialization import DataFrameSerializer, ParquetSerializer def test_store_single_dataframe_as_partition( store, metadata_storage_format, metadata_version ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) mp = MetaPartition( label="test_label", data={"core": df}, metadata_version=metadata_version ) meta_partition = mp.store_dataframes( store=store, df_serializer=ParquetSerializer(), dataset_uuid="dataset_uuid", store_metadata=True, metadata_storage_format=metadata_storage_format, ) assert len(meta_partition.data) == 0 expected_key = "dataset_uuid/core/test_label.parquet" assert meta_partition.files == {"core": expected_key} assert meta_partition.label == "test_label" files_in_store = list(store.keys()) expected_num_files = 1 assert len(files_in_store) == expected_num_files stored_df = DataFrameSerializer.restore_dataframe(store=store, key=expected_key) pdt.assert_frame_equal(df, stored_df) files_in_store.remove(expected_key) assert len(files_in_store) == expected_num_files - 1 def test_store_single_dataframe_as_partition_no_metadata(store, metadata_version): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) mp = MetaPartition( label="test_label", data={"core": df}, metadata_version=metadata_version ) partition = mp.store_dataframes( store=store, df_serializer=ParquetSerializer(), dataset_uuid="dataset_uuid", store_metadata=False, ) assert len(partition.data) == 0 expected_file = "dataset_uuid/core/test_label.parquet" assert partition.files == {"core": expected_file} assert partition.label == "test_label" # One meta one actual file files_in_store = list(store.keys()) assert len(files_in_store) == 1 stored_df = DataFrameSerializer.restore_dataframe(store=store, key=expected_file) pdt.assert_frame_equal(df, stored_df) def test_load_dataframe_logical_conjunction( store, meta_partitions_files_only, metadata_version, metadata_storage_format ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) mp = MetaPartition( label="cluster_1", data={"core": df}, metadata_version=metadata_version, logical_conjunction=[("P", ">", 4)], ) meta_partition = mp.store_dataframes( store=store, df_serializer=None, dataset_uuid="dataset_uuid", store_metadata=True, metadata_storage_format=metadata_storage_format, ) predicates = None loaded_mp = meta_partition.load_dataframes(store=store, predicates=predicates) data = { "core": pd.DataFrame( {"P": [5, 6, 7, 8, 9], "L": [5, 6, 7, 8, 9], "TARGET": [15, 16, 17, 18, 19]} ).set_index(np.arange(5, 10)) } pdt.assert_frame_equal(loaded_mp.data["core"], data["core"]) predicates = [[("L", ">", 6), ("TARGET", "<", 18)]] loaded_mp = meta_partition.load_dataframes(store=store, predicates=predicates) data = { "core": pd.DataFrame({"P": [7], "L": [7], "TARGET": [17]}).set_index( np.array([7]) ) } pdt.assert_frame_equal(loaded_mp.data["core"], data["core"]) predicates = [[("L", ">", 2), ("TARGET", "<", 17)], [("TARGET", "==", 19)]] loaded_mp = meta_partition.load_dataframes(store=store, predicates=predicates) data = { "core": pd.DataFrame( {"P": [5, 6, 9], "L": [5, 6, 9], "TARGET": [15, 16, 19]} ).set_index(np.array([5, 6, 9])) } pdt.assert_frame_equal(loaded_mp.data["core"], data["core"]) def test_store_multiple_dataframes_as_partition( store, metadata_storage_format, metadata_version ): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) df_2 = pd.DataFrame({"P": np.arange(0, 10), "info": string.ascii_lowercase[:10]}) mp = MetaPartition( label="cluster_1", data={"core": df, "helper": df_2}, metadata_version=metadata_version, ) meta_partition = mp.store_dataframes( store=store, df_serializer=None, dataset_uuid="dataset_uuid", store_metadata=True, metadata_storage_format=metadata_storage_format, ) expected_file = "dataset_uuid/core/cluster_1.parquet" expected_file_helper = "dataset_uuid/helper/cluster_1.parquet" assert meta_partition.files == { "core": expected_file, "helper": expected_file_helper, } assert meta_partition.label == "cluster_1" files_in_store = list(store.keys()) assert len(files_in_store) == 2 stored_df = DataFrameSerializer.restore_dataframe(store=store, key=expected_file) pdt.assert_frame_equal(df, stored_df) files_in_store.remove(expected_file) stored_df = DataFrameSerializer.restore_dataframe( store=store, key=expected_file_helper ) pdt.assert_frame_equal(df_2, stored_df) files_in_store.remove(expected_file_helper) @pytest.mark.parametrize("predicate_pushdown_to_io", [True, False]) def test_load_dataframes( meta_partitions_files_only, store_session, predicate_pushdown_to_io ): expected_df = pd.DataFrame( OrderedDict( [ ("P", [1]), ("L", [1]), ("TARGET", [1]), ("DATE", pd.to_datetime([date(2010, 1, 1)])), ] ) ) expected_df_2 = pd.DataFrame(OrderedDict([("P", [1]), ("info", ["a"])])) mp = meta_partitions_files_only[0] assert len(mp.files) > 0 assert len(mp.data) == 0 mp = meta_partitions_files_only[0].load_dataframes( store=store_session, predicate_pushdown_to_io=predicate_pushdown_to_io ) assert len(mp.data) == 2 data = mp.data pdt.assert_frame_equal(data["core"], expected_df, check_dtype=False) pdt.assert_frame_equal(data["helper"], expected_df_2, check_dtype=False) empty_mp = MetaPartition("empty_mp", metadata_version=mp.metadata_version) empty_mp.load_dataframes( store_session, predicate_pushdown_to_io=predicate_pushdown_to_io ) assert empty_mp.data == {} def test_remove_dataframes(meta_partitions_files_only, store_session): mp = meta_partitions_files_only[0].load_dataframes(store=store_session) assert len(mp.data) == 2 mp = mp.remove_dataframes() assert mp.data == {} def test_load_dataframes_selective(meta_partitions_files_only, store_session): expected_df = pd.DataFrame( OrderedDict( [ ("P", [1]), ("L", [1]), ("TARGET", [1]), ("DATE", pd.to_datetime([date(2010, 1, 1)])), ] ) ) mp = meta_partitions_files_only[0] assert len(mp.files) > 0 assert len(mp.data) == 0 mp = meta_partitions_files_only[0].load_dataframes( store=store_session, tables=["core"] ) assert len(mp.data) == 1 data = mp.data pdt.assert_frame_equal(data["core"], expected_df, check_dtype=False) def test_load_dataframes_columns_projection( meta_partitions_evaluation_files_only, store_session ): expected_df = pd.DataFrame(OrderedDict([("P", [1]), ("L", [1]), ("HORIZON", [1])])) mp = meta_partitions_evaluation_files_only[0] assert len(mp.files) > 0 assert len(mp.data) == 0 mp = meta_partitions_evaluation_files_only[0].load_dataframes( store=store_session, tables=["PRED"], columns={"PRED": ["P", "L", "HORIZON"]} ) assert len(mp.data) == 1 data = mp.data pdt.assert_frame_equal(data["PRED"], expected_df, check_dtype=False) def test_load_dataframes_columns_raises_missing( meta_partitions_evaluation_files_only, store_session ): mp = meta_partitions_evaluation_files_only[0] assert len(mp.files) > 0 assert len(mp.data) == 0 with pytest.raises(ValueError) as e: meta_partitions_evaluation_files_only[0].load_dataframes( store=store_session, tables=["PRED"], columns={"PRED": ["P", "L", "HORIZON", "foo", "bar"]}, ) assert str(e.value) == "Columns cannot be found in stored dataframe: bar, foo" def test_load_dataframes_columns_table_missing( meta_partitions_evaluation_files_only, store_session ): # test behavior of load_dataframes for columns argument given # specifying table that doesn't exist mp = meta_partitions_evaluation_files_only[0] assert len(mp.files) > 0 assert len(mp.data) == 0 with pytest.raises( ValueError, match=r"You are trying to read columns from invalid table\(s\). .*PRED_typo.*", ): mp.load_dataframes( store=store_session, columns={"PRED_typo": ["P", "L", "HORIZON", "foo", "bar"]}, ) # ensure typo in tables argument doesn't raise, as specified in docstring dfs = mp.load_dataframes(store=store_session, tables=["PRED_typo"]) assert len(dfs) > 0 def test_from_dict(): df = pd.DataFrame({"a": [1]}) dct = {"data": {"core": df}, "label": "test_label"} meta_partition = MetaPartition.from_dict(dct) pdt.assert_frame_equal(meta_partition.data["core"], df) assert meta_partition.metadata_version == DEFAULT_METADATA_VERSION def test_eq(): df = pd.DataFrame({"a": [1]}) df_same = pd.DataFrame({"a": [1]}) df_other = pd.DataFrame({"a": [2]}) df_diff_col = pd.DataFrame({"b": [1]}) df_diff_type = pd.DataFrame({"b": [1.0]}) meta_partition = MetaPartition.from_dict( {"label": "test_label", "data": {"core": df}} ) assert meta_partition == meta_partition meta_partition_same = MetaPartition.from_dict( {"label": "test_label", "data": {"core": df_same}} ) assert meta_partition == meta_partition_same meta_partition_diff_label = MetaPartition.from_dict( {"label": "another_label", "data": {"core": df}} ) assert meta_partition != meta_partition_diff_label assert meta_partition_diff_label != meta_partition meta_partition_diff_files = MetaPartition.from_dict( {"label": "another_label", "data": {"core": df}, "files": {"core": "something"}} ) assert meta_partition != meta_partition_diff_files assert meta_partition_diff_files != meta_partition meta_partition_diff_col = MetaPartition.from_dict( {"label": "test_label", "data": {"core": df_diff_col}} ) assert meta_partition != meta_partition_diff_col assert meta_partition_diff_col != meta_partition meta_partition_diff_type = MetaPartition.from_dict( {"label": "test_label", "data": {"core": df_diff_type}} ) assert meta_partition != meta_partition_diff_type assert meta_partition_diff_type != meta_partition meta_partition_diff_metadata = MetaPartition.from_dict( { "label": "test_label", "data": {"core": df_diff_type}, "dataset_metadata": {"some": "metadata"}, } ) assert meta_partition != meta_partition_diff_metadata assert meta_partition_diff_metadata != meta_partition meta_partition_different_df = MetaPartition.from_dict( {"label": "test_label", "data": {"core": df_other}} ) assert not meta_partition == meta_partition_different_df meta_partition_different_label = MetaPartition.from_dict( {"label": "test_label", "data": {"not_core": df_same}} ) assert not meta_partition == meta_partition_different_label meta_partition_empty_data = MetaPartition.from_dict( {"label": "test_label", "data": {}} ) assert meta_partition_empty_data == meta_partition_empty_data meta_partition_more_data = MetaPartition.from_dict( {"label": "test_label", "data": {"core": df, "not_core": df}} ) assert not (meta_partition == meta_partition_more_data) assert not meta_partition == "abc" def test_add_nested_to_plain(): mp = MetaPartition( label="label_1", files={"core": "file"}, data={"core": pd.DataFrame({"test": [1, 2, 3]})}, indices={"test": [1, 2, 3]}, dataset_metadata={"dataset": "metadata"}, ) to_nest = [ MetaPartition( label="label_2", data={"core": pd.DataFrame({"test": [4, 5, 6]})}, indices={"test": [4, 5, 6]}, ), MetaPartition( label="label_22", data={"core": pd.DataFrame({"test": [4, 5, 6]})}, indices={"test": [4, 5, 6]}, ), ] mp_nested = to_nest[0].add_metapartition(to_nest[1]) mp_add_nested = mp.add_metapartition(mp_nested) mp_iter = mp.add_metapartition(to_nest[0]).add_metapartition(to_nest[1]) assert mp_add_nested == mp_iter def test_add_nested_to_nested(): mps1 = [ MetaPartition( label="label_1", files={"core": "file"}, data={"core": pd.DataFrame({"test": [1, 2, 3]})}, indices={"test": [1, 2, 3]}, dataset_metadata={"dataset": "metadata"}, ), MetaPartition( label="label_33", files={"core": "file"}, data={"core": pd.DataFrame({"test": [1, 2, 3]})}, indices={"test": [1, 2, 3]}, dataset_metadata={"dataset": "metadata"}, ), ] mpn_1 = mps1[0].add_metapartition(mps1[1]) mps2 = [ MetaPartition( label="label_2", data={"core": pd.DataFrame({"test": [4, 5, 6]})}, indices={"test": [4, 5, 6]}, ), MetaPartition( label="label_22", data={"core": pd.DataFrame({"test": [4, 5, 6]})}, indices={"test": [4, 5, 6]}, ), ] mpn_2 = mps2[0].add_metapartition(mps2[1]) mp_nested_merge = mpn_1.add_metapartition(mpn_2) mp_iter = mps1.pop() for mp_ in [*mps1, *mps2]: mp_iter = mp_iter.add_metapartition(mp_) assert mp_nested_merge == mp_iter def test_eq_nested(): mp_1 = MetaPartition( label="label_1", files={"core": "file"}, data={"core": pd.DataFrame({"test": [1, 2, 3]})}, indices={"test": [1, 2, 3]}, dataset_metadata={"dataset": "metadata"}, ) mp_2 = MetaPartition( label="label_2", data={"core": pd.DataFrame({"test": [4, 5, 6]})}, indices={"test": [4, 5, 6]}, ) mp = mp_1.add_metapartition(mp_2) assert mp == mp assert mp != mp_2 assert mp_2 != mp mp_other = MetaPartition( label="label_3", data={"core": pd.DataFrame({"test": [4, 5, 6]})} ) mp_other = mp_1.add_metapartition(mp_other) assert mp != mp_other assert mp_other != mp def test_nested_incompatible_meta(): mp = MetaPartition( label="label_1", data={"core": pd.DataFrame({"test": np.array([1, 2, 3], dtype=np.int8)})}, metadata_version=4, ) mp_2 = MetaPartition( label="label_2", data={"core": pd.DataFrame({"test": np.array([4, 5, 6], dtype=np.float64)})}, metadata_version=4, ) with pytest.raises(ValueError): mp.add_metapartition(mp_2) def test_concatenate_no_change(): input_dct = { "first_0": pd.DataFrame({"A": [1], "B": [1]}), "second": pd.DataFrame({"A": [3], "B": [3], "C": [3]}), } dct = {"label": "test_label", "data": input_dct} meta_partition = MetaPartition.from_dict(dct) result = meta_partition.concat_dataframes() assert result == meta_partition def test_concatenate_identical_col_df(): input_dct = { "first_0": pd.DataFrame({"A": [1], "B": [1]}), "first_1": pd.DataFrame({"A": [2], "B": [2]}), "second": pd.DataFrame({"A": [3], "B": [3], "C": [3]}), } dct = {"label": "test_label", "data": input_dct} meta_partition = MetaPartition.from_dict(dct) result = meta_partition.concat_dataframes().data assert len(result) == 2 assert "first" in result first_expected = pd.DataFrame({"A": [1, 2], "B": [1, 2]}) pdt.assert_frame_equal(result["first"], first_expected) assert "second" in result first_expected = pd.DataFrame({"A": [3], "B": [3], "C": [3]}) pdt.assert_frame_equal(result["second"], first_expected) def test_concatenate_identical_col_df_naming(): input_dct = { "some": pd.DataFrame({"A": [1], "B": [1]}), "name": pd.DataFrame({"A": [2], "B": [2]}), "second": pd.DataFrame({"A": [3], "B": [3], "C": [3]}), } dct = {"label": "test_label", "data": input_dct} meta_partition = MetaPartition.from_dict(dct) result = meta_partition.concat_dataframes().data assert len(result) == 2 assert "some_name" in result first_expected = pd.DataFrame({"A": [1, 2], "B": [1, 2]}) pdt.assert_frame_equal(result["some_name"], first_expected) assert "second" in result first_expected = pd.DataFrame({"A": [3], "B": [3], "C": [3]}) pdt.assert_frame_equal(result["second"], first_expected) def test_unique_label(): label_list = ["first_0", "first_1"] assert _unique_label(label_list) == "first" label_list = ["test_0", "test_1"] assert _unique_label(label_list) == "test" label_list = ["test_0", "test_1", "test_2"] assert _unique_label(label_list) == "test" label_list = ["something", "else"] assert _unique_label(label_list) == "something_else" def test_merge_dataframes(): df_core = pd.DataFrame( { "P": [1, 1, 1, 1, 3], "L": [1, 2, 1, 2, 3], "C": [1, 1, 2, 2, 3], "TARGET": [1, 2, 3, 4, -1], "info": ["a", "b", "c", "d", "e"], } ) df_preds = pd.DataFrame( { "P": [1, 1, 1, 1], "L": [1, 2, 1, 2], "C": [1, 1, 2, 2], "PRED": [11, 22, 33, 44], "HORIZONS": [1, 1, 2, 2], } ) mp = MetaPartition(label="part_label", data={"core": df_core, "pred": df_preds}) mp = mp.merge_dataframes(left="core", right="pred", output_label="merged") assert len(mp.data) == 1 df_result = mp.data["merged"] df_expected = pd.DataFrame( { "P": [1, 1, 1, 1], "L": [1, 2, 1, 2], "C": [1, 1, 2, 2], "PRED": [11, 22, 33, 44], "TARGET": [1, 2, 3, 4], "info": ["a", "b", "c", "d"], "HORIZONS": [1, 1, 2, 2], } ) pdt.assert_frame_equal(df_expected, df_result, check_like=True) def test_merge_dataframes_kwargs(): df_core = pd.DataFrame( { "P": [1, 1, 1, 1, 3], "L": [1, 2, 1, 2, 3], "C": [1, 1, 2, 2, 3], "TARGET": [1, 2, 3, 4, -1], "info": ["a", "b", "c", "d", "e"], } ) df_preds = pd.DataFrame( { "P": [1, 1, 1, 1], "L": [1, 2, 1, 2], "C": [1, 1, 2, 2], "PRED": [11, 22, 33, 44], "HORIZONS": [1, 1, 2, 2], } ) mp = MetaPartition(label="part_label", data={"core": df_core, "pred": df_preds}) mp = mp.merge_dataframes( left="core", right="pred", output_label="merged", merge_kwargs={"how": "left"} ) assert len(mp.data) == 1 df_result = mp.data["merged"] df_expected = pd.DataFrame( { "P": [1, 1, 1, 1, 3], "L": [1, 2, 1, 2, 3], "C": [1, 1, 2, 2, 3], "TARGET": [1, 2, 3, 4, -1], "info": ["a", "b", "c", "d", "e"], "PRED": [11, 22, 33, 44, np.NaN], "HORIZONS": [1, 1, 2, 2, np.NaN], } ) pdt.assert_frame_equal(df_expected, df_result, check_like=True) def test_merge_indices(): indices = [ MetaPartition( label="label1", indices={"location": {"Loc1": ["label1"], "Loc2": ["label1"]}}, ), MetaPartition( label="label2", indices={ "location": {"Loc3": ["label2"], "Loc2": ["label2"]}, "product": {"Product1": ["label2"], "Product2": ["label2"]}, }, ), ] result = MetaPartition.merge_indices(indices) expected = { "location": ExplicitSecondaryIndex( "location", {"Loc1": ["label1"], "Loc2": ["label1", "label2"], "Loc3": ["label2"]}, ), "product": ExplicitSecondaryIndex( "product", {"Product1": ["label2"], "Product2": ["label2"]} ), } assert result == expected def test_build_indices(): columns = ["location", "product"] df = pd.DataFrame( OrderedDict( [("location", ["Loc1", "Loc2"]), ("product", ["Product1", "Product2"])] ) ) mp = MetaPartition(label="partition_label", data={"core": df}) result_mp = mp.build_indices(columns) result = result_mp.indices loc_index = ExplicitSecondaryIndex( "location", {"Loc1": ["partition_label"], "Loc2": ["partition_label"]} ) prod_index = ExplicitSecondaryIndex( "product", {"Product1": ["partition_label"], "Product2": ["partition_label"]} ) assert result["location"] == loc_index assert result["product"] == prod_index def test_add_metapartition(): mp = MetaPartition( label="label_1", data={"core": pd.DataFrame({"test": [1, 2, 3]})}, indices={"test": [1, 2, 3]}, ) mp_2 = MetaPartition( label="label_2", data={"core": pd.DataFrame({"test": [4, 5, 6]})}, indices={"test": [4, 5, 6]}, ) new_mp = mp.add_metapartition(mp_2) # Cannot access single object attributes with pytest.raises(AttributeError): new_mp.indices with pytest.raises(AttributeError): new_mp.label with pytest.raises(AttributeError): new_mp.data with pytest.raises(AttributeError): new_mp.files with pytest.raises(AttributeError): new_mp.indices with pytest.raises(AttributeError): new_mp.indices partition_list = new_mp.metapartitions assert len(partition_list) == 2 first_mp = partition_list[0] assert first_mp["label"] == "label_1" assert first_mp["indices"] == {"test": [1, 2, 3]} first_mp = partition_list[1] assert first_mp["label"] == "label_2" assert first_mp["indices"] == {"test": [4, 5, 6]} # This tests whether it is possible to add to an already nested MetaPartition mp_3 = MetaPartition( label="label_3", data={"core":
pd.DataFrame({"test": [7, 8, 9]})
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import sys from sklearn.metrics import mean_squared_error from math import sqrt from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt # 1. 抽取2012年8月至2013年12月的数据,总共14个月 # Index 11856 marks the end of year 2013 df = pd.read_csv("./jetrail_train.csv", nrows=11856) print("===== df.head():\n", df.head()) print("===== df.tail():\n", df.tail()) # 2. 构建模型的训练数据和测试数据,前12个月(2012年8月到2013年10月)作为训练数据,后两个月的数据作为预测数据(2013-11 2013-12) #Index 10392 marks the end of October 2013 train=df[0:10392] #train data : 2012-08 ~ 2013-10 test=df[10392:] #test data : 2013-11 2013-12 print("===== train data:", train) print("===== test data:", test) # 3. 聚合数据到天级别 # 抽取的14个月的数据按天进行聚合(取平均) # D - day, 可选参数: 表示重采样频率,例如‘M’、‘5min’,Second(15) # mean() : 聚合函数 - 取平均 # df.Datetime : 01-11-2013 01:00 df['Timestamp'] = pd.to_datetime(df.Datetime,format='%d-%m-%Y %H:%M') print("===== df.Timestamp:\n", df['Timestamp']) df.index = df.Timestamp print("===== df.index:\n", df.index) df = df.resample('D').mean() print("===== df:", df) #output: 2012-08-25 11.5 3.166667 # 训练数据按天进行聚合 train['Timestamp'] = pd.to_datetime(train.Datetime,format='%d-%m-%Y %H:%M') train.index = train.Timestamp train = train.resample('D').mean() print("===== train.resample('D').mean():", train) # 测试数据按天进行聚合 test['Timestamp'] =
pd.to_datetime(test.Datetime,format='%d-%m-%Y %H:%M')
pandas.to_datetime
from pathlib import Path from pandas.core.frame import DataFrame import pytest import pandas as pd import datetime from data_check import DataCheck # noqa E402 from data_check.config import DataCheckConfig # noqa E402 # These tests should work on any database. # The tests are generic, but in integration tests each database uses specific SQL files. @pytest.fixture def dc() -> DataCheck: config = DataCheckConfig().load_config().set_connection("test") config.parallel_workers = 1 _dc = DataCheck(config) _dc.load_template() _dc.output.configure_output( verbose=True, traceback=True, print_failed=True, print_format="json", ) return _dc @pytest.fixture def data_types_check(dc: DataCheck): res = dc.get_check(Path("checks/basic/data_types.sql")).run_test(return_all=True) assert isinstance(res.result, DataFrame) assert not res.result.empty return res.result.iloc[0] def test_data_types_string(data_types_check): assert data_types_check.string_test == "string" def test_data_types_int(data_types_check): assert data_types_check.int_test == 42 def test_data_types_float(data_types_check): assert data_types_check.float_test == 42.1 def test_data_types_date(data_types_check): assert data_types_check.date_test == datetime.datetime(2020, 12, 20) def test_data_types_huge_date(data_types_check): assert data_types_check.inf_date_test == datetime.datetime(9999, 12, 31) def test_data_types_null(data_types_check): assert
pd.isna(data_types_check.null_test)
pandas.isna
import pandas as pd from calendar import monthrange from datetime import date, datetime from argparse import ArgumentParser PROJECT_TASK_CSVFILE = "project_task.csv" def main(): parser = ArgumentParser() parser.add_argument('year', type=int, help='year') parser.add_argument('month', type=int, help='month') args = parser.parse_args() year = args.year month = args.month df_project =
pd.read_csv(PROJECT_TASK_CSVFILE)
pandas.read_csv
# pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import os import operator import unittest import cStringIO as StringIO import nose from numpy import nan import numpy as np import numpy.ma as ma from pandas import Index, Series, TimeSeries, DataFrame, isnull, notnull from pandas.core.index import MultiIndex import pandas.core.datetools as datetools from pandas.util import py3compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm #------------------------------------------------------------------------------- # Series test cases JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class CheckNameIntegration(object): def test_scalarop_preserve_name(self): result = self.ts * 2 self.assertEquals(result.name, self.ts.name) def test_copy_name(self): result = self.ts.copy() self.assertEquals(result.name, self.ts.name) # def test_copy_index_name_checking(self): # # don't want to be able to modify the index stored elsewhere after # # making a copy # self.ts.index.name = None # cp = self.ts.copy() # cp.index.name = 'foo' # self.assert_(self.ts.index.name is None) def test_append_preserve_name(self): result = self.ts[:5].append(self.ts[5:]) self.assertEquals(result.name, self.ts.name) def test_binop_maybe_preserve_name(self): # names match, preserve result = self.ts * self.ts self.assertEquals(result.name, self.ts.name) result = self.ts * self.ts[:-2] self.assertEquals(result.name, self.ts.name) # names don't match, don't preserve cp = self.ts.copy() cp.name = 'something else' result = self.ts + cp self.assert_(result.name is None) def test_combine_first_name(self): result = self.ts.combine_first(self.ts[:5]) self.assertEquals(result.name, self.ts.name) def test_getitem_preserve_name(self): result = self.ts[self.ts > 0] self.assertEquals(result.name, self.ts.name) result = self.ts[[0, 2, 4]] self.assertEquals(result.name, self.ts.name) result = self.ts[5:10] self.assertEquals(result.name, self.ts.name) def test_multilevel_name_print(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(range(0,len(index)), index=index, name='sth') expected = ["first second", "foo one 0", " two 1", " three 2", "bar one 3", " two 4", "baz two 5", " three 6", "qux one 7", " two 8", " three 9", "Name: sth"] expected = "\n".join(expected) self.assertEquals(repr(s), expected) def test_multilevel_preserve_name(self): index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) s = Series(np.random.randn(len(index)), index=index, name='sth') result = s['foo'] result2 = s.ix['foo'] self.assertEquals(result.name, s.name) self.assertEquals(result2.name, s.name) def test_name_printing(self): # test small series s = Series([0, 1, 2]) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) # test big series (diff code path) s = Series(range(0,1000)) s.name = "test" self.assert_("Name: test" in repr(s)) s.name = None self.assert_(not "Name:" in repr(s)) def test_pickle_preserve_name(self): unpickled = self._pickle_roundtrip(self.ts) self.assertEquals(unpickled.name, self.ts.name) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_argsort_preserve_name(self): result = self.ts.argsort() self.assertEquals(result.name, self.ts.name) def test_sort_index_name(self): result = self.ts.sort_index(ascending=False) self.assertEquals(result.name, self.ts.name) def test_to_sparse_pass_name(self): result = self.ts.to_sparse() self.assertEquals(result.name, self.ts.name) class SafeForSparse(object): pass class TestSeries(unittest.TestCase, CheckNameIntegration): def setUp(self): self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.objSeries = tm.makeObjectSeries() self.objSeries.name = 'objects' self.empty = Series([], index=[]) def test_constructor(self): # Recognize TimeSeries self.assert_(isinstance(self.ts, TimeSeries)) # Pass in Series derived = Series(self.ts) self.assert_(isinstance(derived, TimeSeries)) self.assert_(tm.equalContents(derived.index, self.ts.index)) # Ensure new index is not created self.assertEquals(id(self.ts.index), id(derived.index)) # Pass in scalar scalar = Series(0.5) self.assert_(isinstance(scalar, float)) # Mixed type Series mixed = Series(['hello', np.NaN], index=[0, 1]) self.assert_(mixed.dtype == np.object_) self.assert_(mixed[1] is np.NaN) self.assert_(not isinstance(self.empty, TimeSeries)) self.assert_(not isinstance(Series({}), TimeSeries)) self.assertRaises(Exception, Series, np.random.randn(3, 3), index=np.arange(3)) def test_constructor_empty(self): empty = Series() empty2 = Series([]) assert_series_equal(empty, empty2) empty = Series(index=range(10)) empty2 = Series(np.nan, index=range(10)) assert_series_equal(empty, empty2) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([nan, nan, nan]) assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ['a', 'b', 'c'] result = Series(data, index=index) expected = Series([0.0, nan, 2.0], index=index) assert_series_equal(result, expected) def test_constructor_default_index(self): s = Series([0, 1, 2]) assert_almost_equal(s.index, np.arange(3)) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) self.assert_(isinstance(s, Series)) def test_constructor_cast(self): self.assertRaises(ValueError, Series, ['a', 'b', 'c'], dtype=float) def test_constructor_dict(self): d = {'a' : 0., 'b' : 1., 'c' : 2.} result = Series(d, index=['b', 'c', 'd', 'a']) expected = Series([1, 2, nan, 0], index=['b', 'c', 'd', 'a']) assert_series_equal(result, expected) def test_constructor_list_of_tuples(self): data = [(1, 1), (2, 2), (2, 3)] s = Series(data) self.assertEqual(list(s), data) def test_constructor_tuple_of_tuples(self): data = ((1, 1), (2, 2), (2, 3)) s = Series(data) self.assertEqual(tuple(s), data) def test_fromDict(self): data = {'a' : 0, 'b' : 1, 'c' : 2, 'd' : 3} series = Series(data) self.assert_(tm.is_sorted(series.index)) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : datetime.now()} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : 0, 'b' : '1', 'c' : '2', 'd' : '3'} series = Series(data) self.assert_(series.dtype == np.object_) data = {'a' : '0', 'b' : '1'} series = Series(data, dtype=float) self.assert_(series.dtype == np.float64) def test_setindex(self): # wrong type series = self.series.copy() self.assertRaises(TypeError, setattr, series, 'index', None) # wrong length series = self.series.copy() self.assertRaises(AssertionError, setattr, series, 'index', np.arange(len(series) - 1)) # works series = self.series.copy() series.index = np.arange(len(series)) self.assert_(isinstance(series.index, Index)) def test_array_finalize(self): pass def test_fromValue(self): nans = Series(np.NaN, index=self.ts.index) self.assert_(nans.dtype == np.float_) self.assertEqual(len(nans), len(self.ts)) strings = Series('foo', index=self.ts.index) self.assert_(strings.dtype == np.object_) self.assertEqual(len(strings), len(self.ts)) d = datetime.now() dates = Series(d, index=self.ts.index) self.assert_(dates.dtype == np.object_) self.assertEqual(len(dates), len(self.ts)) def test_contains(self): tm.assert_contains_all(self.ts.index, self.ts) def test_pickle(self): unp_series = self._pickle_roundtrip(self.series) unp_ts = self._pickle_roundtrip(self.ts) assert_series_equal(unp_series, self.series) assert_series_equal(unp_ts, self.ts) def _pickle_roundtrip(self, obj): obj.save('__tmp__') unpickled = Series.load('__tmp__') os.remove('__tmp__') return unpickled def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assert_(self.series.get(-1) is None) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - datetools.bday self.assertRaises(KeyError, self.ts.__getitem__, d) def test_iget(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) for i in range(len(s)): result = s.iget(i) exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iget(slice(1, 3)) expected = s.ix[2:4] assert_series_equal(result, expected) def test_getitem_regression(self): s = Series(range(5), index=range(5)) result = s[range(5)] assert_series_equal(result, s) def test_getitem_slice_bug(self): s = Series(range(10), range(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1,2,3]] slice2 = self.objSeries[[1,2,3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_(np.array_equal(result.index, s.index[mask])) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem cop = s.copy() cop[omask] = 5 s[mask] = 5 assert_series_equal(cop, s) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, offset=datetools.bday) > ts.median() self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assert_((s[:4] == 0).all()) self.assert_(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) def test_getitem_box_float64(self): value = self.ts[5] self.assert_(isinstance(value, np.float64)) def test_getitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_setitem_ambiguous_keyerror(self): s = Series(range(10), index=range(0, 20, 2)) self.assertRaises(KeyError, s.__setitem__, 1, 5) self.assertRaises(KeyError, s.ix.__setitem__, 1, 5) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assert_(self.series.index[9] not in numSlice.index) self.assert_(self.objSeries.index[9] not in objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assert_(tm.equalContents(numSliceEnd, np.array(self.series)[-10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assert_((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) result = s[::-1] # it works! def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1,2,17]] = np.NaN self.ts[6] = np.NaN self.assert_(np.isnan(self.ts[6])) self.assert_(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assert_(not np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assert_((series[::2] == 0).all()) # set item that's not contained self.assertRaises(Exception, self.series.__setitem__, 'foobar', 1) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assert_(res is self.ts) self.assertEqual(self.ts[idx], 0) res = self.series.set_value('foobar', 0) self.assert_(res is not self.series) self.assert_(res.index[-1] == 'foobar') self.assertEqual(res['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertEqual(len(sl.index.indexMap), len(sl.index)) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] self.assertRaises(Exception, self.ts.__getitem__, (slice(None, None), 2)) self.assertRaises(Exception, self.ts.__setitem__, (slice(None, None), 2), 2) # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=range(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) def test_ix_getitem(self): inds = self.series.index[[3,4,7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEquals(self.ts.ix[d1], self.ts[d1]) self.assertEquals(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][::-1] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=range(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assert_((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assert_((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s[::-1] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_ix_setitem(self): inds = self.series.index[[3,4,7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3,4,7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEquals(self.series[d1], 4) self.assertEquals(self.series[d2], 6) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.order() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_repr(self): str(self.ts) str(self.series) str(self.series.astype(int)) str(self.objSeries) str(Series(tm.randn(1000), index=np.arange(1000))) str(Series(tm.randn(1000), index=np.arange(1000, 0, step=-1))) # empty str(self.empty) # with NaNs self.series[5:7] = np.NaN str(self.series) # tuple name, e.g. from hierarchical index self.series.name = ('foo', 'bar', 'baz') repr(self.series) biggie = Series(tm.randn(1000), index=np.arange(1000), name=('foo', 'bar', 'baz')) repr(biggie) def test_to_string(self): from cStringIO import StringIO buf = StringIO() s = self.ts.to_string() retval = self.ts.to_string(buf=buf) self.assert_(retval is None) self.assertEqual(buf.getvalue().strip(), s) # pass float_format format = '%.4f'.__mod__ result = self.ts.to_string(float_format=format) result = [x.split()[1] for x in result.split('\n')] expected = [format(x) for x in self.ts] self.assertEqual(result, expected) # empty string result = self.ts[:0].to_string() self.assertEqual(result, '') result = self.ts[:0].to_string(length=0) self.assertEqual(result, '') # name and length cp = self.ts.copy() cp.name = 'foo' result = cp.to_string(length=True, name=True) last_line = result.split('\n')[-1].strip() self.assertEqual(last_line, "Name: foo, Length: %d" % len(cp)) def test_to_string_mixed(self): s = Series(['foo', np.nan, -1.23, 4.56]) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 -1.23\n' '3 4.56') self.assertEqual(result, expected) # but don't count NAs as floats s = Series(['foo', np.nan, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 NaN\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) s = Series(['foo', 5, 'bar', 'baz']) result = s.to_string() expected = ('0 foo\n' '1 5\n' '2 bar\n' '3 baz') self.assertEqual(result, expected) def test_to_string_float_na_spacing(self): s = Series([0., 1.5678, 2., -3., 4.]) s[::2] = np.nan result = s.to_string() expected = ('0 NaN\n' '1 1.568\n' '2 NaN\n' '3 -3.000\n' '4 NaN') self.assertEqual(result, expected) def test_iter(self): for i, val in enumerate(self.series): self.assertEqual(val, self.series[i]) for i, val in enumerate(self.ts): self.assertEqual(val, self.ts[i]) def test_keys(self): # HACK: By doing this in two stages, we avoid 2to3 wrapping the call # to .keys() in a list() getkeys = self.ts.keys self.assert_(getkeys() is self.ts.index) def test_values(self): self.assert_(np.array_equal(self.ts, self.ts.values)) def test_iteritems(self): for idx, val in self.series.iteritems(): self.assertEqual(val, self.series[idx]) for idx, val in self.ts.iteritems(): self.assertEqual(val, self.ts[idx]) def test_sum(self): self._check_stat_op('sum', np.sum) def test_sum_inf(self): s = Series(np.random.randn(10)) s2 = s.copy() s[5:8] = np.inf s2[5:8] = np.nan assert_almost_equal(s.sum(), s2.sum()) import pandas.core.nanops as nanops arr = np.random.randn(100, 100).astype('f4') arr[:, 2] = np.inf res = nanops.nansum(arr, axis=1) expected = nanops._nansum(arr, axis=1) assert_almost_equal(res, expected) def test_mean(self): self._check_stat_op('mean', np.mean) def test_median(self): self._check_stat_op('median', np.median) # test with integers, test failure int_ts = TimeSeries(np.ones(10, dtype=int), index=range(10)) self.assertAlmostEqual(np.median(int_ts), int_ts.median()) def test_prod(self): self._check_stat_op('prod', np.prod) def test_min(self): self._check_stat_op('min', np.min, check_objects=True) def test_max(self): self._check_stat_op('max', np.max, check_objects=True) def test_std(self): alt = lambda x: np.std(x, ddof=1) self._check_stat_op('std', alt) def test_var(self): alt = lambda x: np.var(x, ddof=1) self._check_stat_op('var', alt) def test_skew(self): from scipy.stats import skew alt =lambda x: skew(x, bias=False) self._check_stat_op('skew', alt) def test_argsort(self): self._check_accum_op('argsort') argsorted = self.ts.argsort() self.assert_(issubclass(argsorted.dtype.type, np.integer)) def test_cumsum(self): self._check_accum_op('cumsum') def test_cumprod(self): self._check_accum_op('cumprod') def _check_stat_op(self, name, alternate, check_objects=False): from pandas import DateRange import pandas.core.nanops as nanops def testit(): f = getattr(Series, name) # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assert_(notnull(f(self.series))) self.assert_(isnull(f(self.series, skipna=False))) # check the result is correct nona = self.series.dropna() assert_almost_equal(f(nona), alternate(nona)) allna = self.series * nan self.assert_(np.isnan(f(allna))) # dtype=object with None, it works! s = Series([1, 2, 3, None, 5]) f(s) # check DateRange if check_objects: s = Series(DateRange('1/1/2000', periods=10)) res = f(s) exp = alternate(s) self.assertEqual(res, exp) testit() try: import bottleneck as bn nanops._USE_BOTTLENECK = False testit() nanops._USE_BOTTLENECK = True except ImportError: pass def _check_accum_op(self, name): func = getattr(np, name) self.assert_(np.array_equal(func(self.ts), func(np.array(self.ts)))) # with missing values ts = self.ts.copy() ts[::2] = np.NaN result = func(ts)[1::2] expected = func(np.array(ts.valid())) self.assert_(np.array_equal(result, expected)) def test_round(self): # numpy.round doesn't preserve metadata, probably a numpy bug, # re: GH #314 result = np.round(self.ts, 2) expected = Series(np.round(self.ts.values, 2), index=self.ts.index) assert_series_equal(result, expected) self.assertEqual(result.name, self.ts.name) def test_prod_numpy16_bug(self): s = Series([1., 1., 1.] , index=range(3)) result = s.prod() self.assert_(not isinstance(result, Series)) def test_quantile(self): from scipy.stats import scoreatpercentile q = self.ts.quantile(0.1) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 10)) q = self.ts.quantile(0.9) self.assertEqual(q, scoreatpercentile(self.ts.valid(), 90)) def test_describe(self): _ = self.series.describe() _ = self.ts.describe() def test_describe_objects(self): s = Series(['a', 'b', 'b', np.nan, np.nan, np.nan, 'c', 'd', 'a', 'a']) result = s.describe() expected = Series({'count' : 7, 'unique' : 4, 'top' : 'a', 'freq' : 3}, index=result.index) assert_series_equal(result, expected) def test_append(self): appendedSeries = self.series.append(self.ts) for idx, value in appendedSeries.iteritems(): if idx in self.series.index: self.assertEqual(value, self.series[idx]) elif idx in self.ts.index: self.assertEqual(value, self.ts[idx]) else: self.fail("orphaned index!") self.assertRaises(Exception, self.ts.append, self.ts) def test_append_many(self): pieces = [self.ts[:5], self.ts[5:10], self.ts[10:]] result = pieces[0].append(pieces[1:]) assert_series_equal(result, self.ts) def test_all_any(self): np.random.seed(12345) ts = tm.makeTimeSeries() bool_series = ts > 0 self.assert_(not bool_series.all()) self.assert_(bool_series.any()) def test_operators(self): series = self.ts other = self.ts[::2] def _check_op(other, op, pos_only=False): left = np.abs(series) if pos_only else series right = np.abs(other) if pos_only else other cython_or_numpy = op(left, right) python = left.combine(right, op) tm.assert_almost_equal(cython_or_numpy, python) def check(other): simple_ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'gt', 'ge', 'lt', 'le'] for opname in simple_ops: _check_op(other, getattr(operator, opname)) _check_op(other, operator.pow, pos_only=True) _check_op(other, lambda x, y: operator.add(y, x)) _check_op(other, lambda x, y: operator.sub(y, x)) _check_op(other, lambda x, y: operator.truediv(y, x)) _check_op(other, lambda x, y: operator.floordiv(y, x)) _check_op(other, lambda x, y: operator.mul(y, x)) _check_op(other, lambda x, y: operator.pow(y, x), pos_only=True) check(self.ts * 2) check(self.ts * 0) check(self.ts[::2]) check(5) def check_comparators(other): _check_op(other, operator.gt) _check_op(other, operator.ge) _check_op(other, operator.eq) _check_op(other, operator.lt) _check_op(other, operator.le) check_comparators(5) check_comparators(self.ts + 1) def test_operators_empty_int_corner(self): s1 = Series([], [], dtype=np.int32) s2 = Series({'x' : 0.}) # it works! _ = s1 * s2 # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_idxmin(self): # test idxmin # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmin()], self.series.min()) self.assert_(isnull(self.series.idxmin(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmin()], nona.min()) self.assertEqual(nona.index.values.tolist().index(nona.idxmin()), nona.values.argmin()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmin())) def test_idxmax(self): # test idxmax # _check_stat_op approach can not be used here because of isnull check. # add some NaNs self.series[5:15] = np.NaN # skipna or no self.assertEqual(self.series[self.series.idxmax()], self.series.max()) self.assert_(isnull(self.series.idxmax(skipna=False))) # no NaNs nona = self.series.dropna() self.assertEqual(nona[nona.idxmax()], nona.max()) self.assertEqual(nona.index.values.tolist().index(nona.idxmax()), nona.values.argmax()) # all NaNs allna = self.series * nan self.assert_(isnull(allna.idxmax())) def test_operators_date(self): result = self.objSeries + timedelta(1) result = self.objSeries - timedelta(1) def test_operators_corner(self): series = self.ts empty = Series([], index=Index([])) result = series + empty self.assert_(np.isnan(result).all()) result = empty + Series([], index=Index([])) self.assert_(len(result) == 0) # TODO: this returned NotImplemented earlier, what to do? # deltas = Series([timedelta(1)] * 5, index=np.arange(5)) # sub_deltas = deltas[::2] # deltas5 = deltas * 5 # deltas = deltas + sub_deltas # float + int int_ts = self.ts.astype(int)[:-5] added = self.ts + int_ts expected = self.ts.values[:-5] + int_ts.values self.assert_(np.array_equal(added[:-5], expected)) def test_operators_reverse_object(self): # GH 56 arr = Series(np.random.randn(10), index=np.arange(10), dtype=object) def _check_op(arr, op): result = op(1., arr) expected = op(1., arr.astype(float)) assert_series_equal(result.astype(float), expected) _check_op(arr, operator.add) _check_op(arr, operator.sub) _check_op(arr, operator.mul) _check_op(arr, operator.truediv) _check_op(arr, operator.floordiv) def test_series_frame_radd_bug(self): from pandas.util.testing import rands import operator # GH 353 vals = Series([rands(5) for _ in xrange(10)]) result = 'foo_' + vals expected = vals.map(lambda x: 'foo_' + x) assert_series_equal(result, expected) frame = DataFrame({'vals' : vals}) result = 'foo_' + frame expected = DataFrame({'vals' : vals.map(lambda x: 'foo_' + x)}) tm.assert_frame_equal(result, expected) # really raise this time self.assertRaises(TypeError, operator.add, datetime.now(), self.ts) def test_operators_frame(self): # rpow does not work with DataFrame df = DataFrame({'A' : self.ts}) tm.assert_almost_equal(self.ts + self.ts, (self.ts + df)['A']) tm.assert_almost_equal(self.ts ** self.ts, (self.ts ** df)['A']) def test_operators_combine(self): def _check_fill(meth, op, a, b, fill_value=0): exp_index = a.index.union(b.index) a = a.reindex(exp_index) b = b.reindex(exp_index) amask = isnull(a) bmask = isnull(b) exp_values = [] for i in range(len(exp_index)): if amask[i]: if bmask[i]: exp_values.append(nan) continue exp_values.append(op(fill_value, b[i])) elif bmask[i]: if amask[i]: exp_values.append(nan) continue exp_values.append(op(a[i], fill_value)) else: exp_values.append(op(a[i], b[i])) result = meth(a, b, fill_value=fill_value) expected = Series(exp_values, exp_index) assert_series_equal(result, expected) a = Series([nan, 1., 2., 3., nan], index=np.arange(5)) b = Series([nan, 1, nan, 3, nan, 4.], index=np.arange(6)) ops = [Series.add, Series.sub, Series.mul, Series.div] equivs = [operator.add, operator.sub, operator.mul] if py3compat.PY3: equivs.append(operator.truediv) else: equivs.append(operator.div) fillvals = [0, 0, 1, 1] for op, equiv_op, fv in zip(ops, equivs, fillvals): result = op(a, b) exp = equiv_op(a, b) assert_series_equal(result, exp) _check_fill(op, equiv_op, a, b, fill_value=fv) def test_combine_first(self): values = tm.makeIntIndex(20).values.astype(float) series = Series(values, index=tm.makeIntIndex(20)) series_copy = series * 2 series_copy[::2] = np.NaN # nothing used from the input combined = series.combine_first(series_copy) self.assert_(np.array_equal(combined, series)) # Holes filled from input combined = series_copy.combine_first(series) self.assert_(np.isfinite(combined).all()) self.assert_(np.array_equal(combined[::2], series[::2])) self.assert_(np.array_equal(combined[1::2], series_copy[1::2])) # mixed types index = tm.makeStringIndex(20) floats = Series(tm.randn(20), index=index) strings = Series(tm.makeStringIndex(10), index=index[::2]) combined = strings.combine_first(floats) tm.assert_dict_equal(strings, combined, compare_keys=False) tm.assert_dict_equal(floats[1::2], combined, compare_keys=False) # corner case s = Series([1., 2, 3], index=[0, 1, 2]) result = s.combine_first(Series([], index=[])) assert_series_equal(s, result) def test_corr(self): import scipy.stats as stats # full overlap self.assertAlmostEqual(self.ts.corr(self.ts), 1) # partial overlap self.assertAlmostEqual(self.ts[:15].corr(self.ts[5:]), 1) # No overlap self.assert_(np.isnan(self.ts[::2].corr(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.corr(cp))) A = tm.makeTimeSeries() B = tm.makeTimeSeries() result = A.corr(B) expected, _ = stats.pearsonr(A, B) self.assertAlmostEqual(result, expected) def test_corr_rank(self): import scipy import scipy.stats as stats # kendall and spearman A = tm.makeTimeSeries() B = tm.makeTimeSeries() A[-5:] = A[:5] result = A.corr(B, method='kendall') expected = stats.kendalltau(A, B)[0] self.assertAlmostEqual(result, expected) result = A.corr(B, method='spearman') expected = stats.spearmanr(A, B)[0] self.assertAlmostEqual(result, expected) # these methods got rewritten in 0.8 if int(scipy.__version__.split('.')[1]) < 9: raise nose.SkipTest # results from R A = Series([-0.89926396, 0.94209606, -1.03289164, -0.95445587, 0.76910310, -0.06430576, -2.09704447, 0.40660407, -0.89926396, 0.94209606]) B = Series([-1.01270225, -0.62210117, -1.56895827, 0.59592943, -0.01680292, 1.17258718, -1.06009347, -0.10222060, -0.89076239, 0.89372375]) kexp = 0.4319297 sexp = 0.5853767 self.assertAlmostEqual(A.corr(B, method='kendall'), kexp) self.assertAlmostEqual(A.corr(B, method='spearman'), sexp) def test_cov(self): # full overlap self.assertAlmostEqual(self.ts.cov(self.ts), self.ts.std()**2) # partial overlap self.assertAlmostEqual(self.ts[:15].cov(self.ts[5:]), self.ts[5:15].std()**2) # No overlap self.assert_(np.isnan(self.ts[::2].cov(self.ts[1::2]))) # all NA cp = self.ts[:10].copy() cp[:] = np.nan self.assert_(isnull(cp.cov(cp))) def test_copy(self): ts = self.ts.copy() ts[::2] = np.NaN # Did not modify original Series self.assertFalse(np.isnan(self.ts[0])) def test_count(self): self.assertEqual(self.ts.count(), len(self.ts)) self.ts[::2] = np.NaN self.assertEqual(self.ts.count(), np.isfinite(self.ts).sum()) def test_value_counts_nunique(self): s = Series(['a', 'b', 'b', 'b', 'b', 'a', 'c', 'd', 'd', 'a']) hist = s.value_counts() expected = Series([4, 3, 2, 1], index=['b', 'a', 'd', 'c']) assert_series_equal(hist, expected) self.assertEquals(s.nunique(), 4) # handle NA's properly s[5:7] = np.nan hist = s.value_counts() expected = s.dropna().value_counts() assert_series_equal(hist, expected) s = Series({}) hist = s.value_counts() expected = Series([]) assert_series_equal(hist, expected) def test_sort(self): ts = self.ts.copy() ts.sort() self.assert_(np.array_equal(ts, self.ts.order())) self.assert_(np.array_equal(ts.index, self.ts.order().index)) def test_sort_index(self): import random rindex = list(self.ts.index) random.shuffle(rindex) random_order = self.ts.reindex(rindex) sorted_series = random_order.sort_index() assert_series_equal(sorted_series, self.ts) # descending sorted_series = random_order.sort_index(ascending=False) assert_series_equal(sorted_series, self.ts.reindex(self.ts.index[::-1])) def test_order(self): ts = self.ts.copy() ts[:5] = np.NaN vals = ts.values result = ts.order() self.assert_(np.isnan(result[-5:]).all()) self.assert_(np.array_equal(result[:-5], np.sort(vals[5:]))) result = ts.order(na_last=False) self.assert_(np.isnan(result[:5]).all()) self.assert_(np.array_equal(result[5:], np.sort(vals[5:]))) # something object-type ser = Series(['A', 'B'], [1, 2]) # no failure ser.order() # ascending=False ordered = ts.order(ascending=False) expected = np.sort(ts.valid().values)[::-1] assert_almost_equal(expected, ordered.valid().values) ordered = ts.order(ascending=False, na_last=False) assert_almost_equal(expected, ordered.valid().values) def test_rank(self): from scipy.stats import rankdata self.ts[::2] = np.nan self.ts[:10][::3] = 4. ranks = self.ts.rank() oranks = self.ts.astype('O').rank() assert_series_equal(ranks, oranks) mask = np.isnan(self.ts) filled = self.ts.fillna(np.inf) exp = rankdata(filled) exp[mask] = np.nan assert_almost_equal(ranks, exp) def test_from_csv(self): self.ts.to_csv('_foo') ts = Series.from_csv('_foo') assert_series_equal(self.ts, ts) self.series.to_csv('_foo') series = Series.from_csv('_foo') assert_series_equal(self.series, series) outfile = open('_foo', 'w') outfile.write('1998-01-01|1.0\n1999-01-01|2.0') outfile.close() series = Series.from_csv('_foo',sep='|') checkseries = Series({datetime(1998,1,1): 1.0, datetime(1999,1,1): 2.0}) assert_series_equal(checkseries, series) series = Series.from_csv('_foo',sep='|',parse_dates=False) checkseries = Series({'1998-01-01': 1.0, '1999-01-01': 2.0}) assert_series_equal(checkseries, series) os.remove('_foo') def test_to_csv(self): self.ts.to_csv('_foo') lines = open('_foo', 'U').readlines() assert(lines[1] != '\n') os.remove('_foo') def test_to_dict(self): self.assert_(np.array_equal(Series(self.ts.to_dict()), self.ts)) def test_clip(self): val = self.ts.median() self.assertEqual(self.ts.clip_lower(val).min(), val) self.assertEqual(self.ts.clip_upper(val).max(), val) self.assertEqual(self.ts.clip(lower=val).min(), val) self.assertEqual(self.ts.clip(upper=val).max(), val) result = self.ts.clip(-0.5, 0.5) expected = np.clip(self.ts, -0.5, 0.5) assert_series_equal(result, expected) self.assert_(isinstance(expected, Series)) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count())
tm.assert_dict_equal(result, ts, compare_keys=False)
pandas.util.testing.assert_dict_equal
import csv import re import string import math import warnings import pandas as pd import numpy as np import ipywidgets as wg import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.ticker as mtick from itertools import product from scipy.optimize import curve_fit from plate_mapping import plate_mapping as pm # define custom errors class DataError(Exception): pass class PlateSizeError(Exception): pass class DataTypeError(Exception): pass # define well plate dimensions plate_dim = {96:(8, 12), 384:(16, 24)} # define header names for platemapping module pm.header_names = {'Well ID': {'dtype':str, 'long':True, 'short_row': False, 'short_col':False}, 'Type': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Contents': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Protein Name': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Protein Concentration': {'dtype':float, 'long':True, 'short_row': True, 'short_col':True}, 'Tracer Name': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Tracer Concentration': {'dtype':float, 'long':True, 'short_row': True, 'short_col':True}, 'Competitor Name': {'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, 'Competitor Concentration': {'dtype':float, 'long':True, 'short_row': True, 'short_col':True}, 'Concentration Units':{'dtype':str, 'long':True, 'short_row': True, 'short_col':True}, } class FA: """Class used for the analysis of fluorescence anisotropy data. :param data_dict: A dictionary contaning data frames with pre-processed data and metadata :type data_dict: dict :param g_factor: G-factor :type g_factor: float :param plate_map: dataframe from a plate map csv file that defines each and every well :type plate_map: pandas df""" def __init__(self, data_dict, g_factor, plate_map): self.data_dict = data_dict self.g_factor = g_factor self.plate_map = plate_map # create list of all p and s data frames to run some stats frames = [] for repeat in self.data_dict.values(): metadata, data = repeat.values() p_channel, s_channel = data.values() frames.append(p_channel) frames.append(s_channel) new = pd.concat(frames, axis=1) # join all p and s data frames into one df nan = new.size - new.describe().loc['count'].sum() # find number of 'nan' cells # create a data frame to store the final fitting parameters p_names = self.plate_map['Protein Name'].dropna().unique() # get all protein names t_names = self.plate_map['Tracer Name'].dropna().unique() # get all trcaer names final_fit = pd.DataFrame(index=pd.MultiIndex.from_product([p_names, t_names]), columns=['rmin', 'rmin error', 'rmax', 'rmax error', 'lambda', 'Kd', 'Kd error']) final_fit["lambda"] = 1 # set the default lambda value as 1 FA.final_fit = final_fit # add the final_fit df as a class vriable print("Data has been uploaded!\n") print(f"Number of repeats: {len(self.data_dict)} \nValue of g-factor: {self.g_factor} \nOverall number of empty cells is {int(nan)} in {len(frames)} data frames.\nProteins: {p_names}\nTracers: {t_names}") @classmethod def read_in_envision(cls, data_csv, platemap_csv, data_type='plate', size=384): """Reads in the raw data from csv file along with a platemap and constructs the FA class boject. :param data_csv: File path of the raw data file in .csv format. :type data_csv: str :param platemap_csv: File path of the platemap file in .csv format. :type platemap_csv: str :param data_type: Format in which the raw data was exported (plate or list), defaults to plate. :type data_type: str :param size: Size of the well plate (384 or 96), defaults to 384. :type size: int :return: A dictionary contaning data frames with pre-processed data, g-factor, data frame containing platemap. :rtype: dict, float, pandas df """ # ensure the plate size is either 384 or 96 if size not in plate_dim: raise PlateSizeError('Invalid size of the well plate, should be 384 or 96.') # try to read in data in plate format if data_type == 'plate': try: data_dict, g_factor = FA._read_in_plate(data_csv, size=size) plate_map_df = pm.plate_map(platemap_csv, size=size) return cls(data_dict, g_factor, plate_map_df) except (UnboundLocalError, IndexError, ValueError): raise DataError(f"Error occured during data read in. Check your file contains data in the 'plate' format and plate size is {size}.") # try to read in data in list format if data_type == 'list': try: data_dict, g_factor = FA._read_in_list(data_csv, size=size) plate_map_df = pm.plate_map(platemap_csv, size=size) return cls(data_dict, g_factor, plate_map_df) except (UnboundLocalError, IndexError): raise DataError("Error occured during data read in. Check your file contains data in the 'list' format.") else: raise DataTypeError(f"'{data_type}' is not one of the two valid data types: plate or list.") def _read_in_plate(csv_file, size): """Reads the raw data file and finds the information needed to extract data. Passes those parameters to pre_process_plate function and executes it. Returns a tuple of two elemnts: dictionary of data frames and g-factor. :param csv_file: File path of the raw data file in .csv format :type csv_file: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A tuple of dictionary of data frames and the g-factor :rtype: tuple """ with open(csv_file) as file: all_data_lines = list(csv.reader(file, delimiter=',')) # read the csv file and cast it into a list containing all lines blank_indexes = list(index for index, item in enumerate(all_data_lines) if item == []) # list containing indices of all blank rows if blank_indexes == []: blank_indexes = list(index for index, item in enumerate(all_data_lines) if set(item) == {''}) blanks = np.array(blank_indexes) # convert the list of blank indices to a numpy array read_in_info = [] # list to store the tuples with parameters needed for pandas to read in the csv file for index, item in enumerate(all_data_lines): # iterate over all lines in the csv file if item != [] and re.findall(r"Plate information", item[0]) == ['Plate information'] and re.search(r'Results for', all_data_lines[index + 9][0]) == None and re.findall(r"Formula", all_data_lines[index+1][10]) != ['Formula']: skiprows = index + 9 # Set the skiprows parameter for raw data table skiprows_meta = index + 1 # Set the skiprows parameter for metadata table end_of_data = blanks[blanks > skiprows].min() # Calculate the end of data table by finding the smallest blank index after the beginning of data table read_in_info.append((skiprows, end_of_data - skiprows + 1, skiprows_meta)) # add the skiprows, caculated number of data lines and skiprows for metadata parameters to the list as a tuple data_format = 'plate1' if item != [] and re.findall(r"Plate information", item[0]) == ['Plate information'] and re.search(r'Results for', all_data_lines[index + 9][0]) != None: skiprows = index + 10 skiprows_meta = index + 1 end_of_data = blanks[blanks > skiprows].min() read_in_info.append((skiprows, end_of_data - skiprows - 1, skiprows_meta)) data_format = 'plate2' if item != [] and len(item) > 1 and re.fullmatch(r"G-factor", item[0]): g_factor = float(item[4]) return FA._pre_process_plate(csv_file, read_in_info, data_format, size), g_factor def _pre_process_plate(csv_file, read_in_info, data_format, size): """Extracts the data and metadata from the csv file, processes it and returns a nested dictionary containing data and metadata for each repeat and channel. :param csv_file: File path of the raw data file in .csv format :type csv_file: str :param read_in_info: Tuples with read in parameters for each channel. :type read_in_info: list :param data_format: Plate type (plate1 or plate2) :type data_format: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A dictionary containing data and metadata :rtype: dict """ data_frames = {} # dictionary to store data frames counter = 1 # counter incremented by 0.5 to enable alternating labelling of data frames as 'p' or 's' row_letters = list(string.ascii_uppercase)[0: plate_dim[size][0]] # generate a list of letters for well IDs col_numbers = list(np.arange(1, plate_dim[size][1] + 1).astype(str)) # generate a list of numbers for well IDs well_ids = ['%s%s' % (item[0], item[1]) for item in product(row_letters, col_numbers)] # generate a list of well IDs for the pre-processed data frames for index, item in enumerate(read_in_info): # iterate over all tuples in the list, each tuple contains skiprows, nrows and skiprows_meta for one channel if data_format == 'plate1': # raw data table does not have row and column names so 'names' parameter passed to omit the last column raw_data = pd.read_csv(csv_file, sep=',', names=col_numbers, index_col=False, engine='python', skiprows=item[0], nrows=item[1], encoding='utf-8') if data_format == 'plate2': # raw data table has row and column names, so index_col=0 to set the first column as row labels raw_data = pd.read_csv(csv_file, sep=',', index_col=0, engine='python', skiprows=item[0], nrows=item[1], encoding='utf-8') if len(raw_data.columns) in [13, 25]: raw_data.drop(raw_data.columns[-1], axis=1, inplace=True) # delete the last column because it is empty # generate df for metadata (number of rows of metadata table is always 1) and convert measurement time into datetime object metadata = pd.read_csv(csv_file, sep=',', engine='python', skiprows=item[2], nrows=1, encoding='utf-8').astype({'Measurement date': 'datetime64[ns]'}) # convert and reshape data frame into 1D array data_as_array = np.reshape(raw_data.to_numpy(), (int(size), 1)) if counter % 1 == 0: new_data = pd.DataFrame(data=data_as_array, index=well_ids, columns=['p']) # generate new 384 (or 96) by 1 data frame with p channel data data_frames[f'repeat_{int(counter)}'] = {'metadata':metadata, 'data': {'p': new_data, 's':''}} # add p channel data and metadata dfs to dictionary if counter % 1 != 0: new_data = pd.DataFrame(data=data_as_array, index=well_ids, columns=['s']) # generate new 384 (or 96) by 1 data frame with s channel data data_frames[f'repeat_{int(counter-0.5)}']['data']['s'] = new_data # add s channel data to dictionary counter = counter + 0.5 return data_frames def _read_in_list(csv_file, size): """Reads the raw data file and extracts the data and metadata. Passes the raw data to pre_process_list function and executes it. Returns a tuple of two elemnts: dictionary of data frames and g-factor. :param csv_file: File path of the raw data file in .csv format :type csv_file: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A tuple of dictionary of data frames and the g-factor :rtype: tuple """ with open(csv_file) as file: all_data_lines = list(csv.reader(file, delimiter=',')) # read the csv file and cast it into a list containing all lines blank_indexes = list(index for index, item in enumerate(all_data_lines) if item == [] or set(item) == {''}) # list containing indexes of all blank rows blanks = np.array(blank_indexes) # convert the list of blank indexes to a numpy array # iterate over all lines to find beggining of the data table ('skiprows') and determine the format of data (list A, B, or C) for index, item in enumerate(all_data_lines): if item != [] and len(item) == 1 and re.findall(r"Plate information", item[0]) == ["Plate information"]: skiprows_meta = index + 1 end_of_metadata = blanks[blanks > skiprows_meta].min() # find the end of metadata by finding the smallest blank index after the beginning of metadata if item != [] and len(item) >= 2 and re.findall(r"PlateNumber", item[0]) == ['PlateNumber'] and re.findall(r"PlateRepeat", item[1]) == ['PlateRepeat']: # find line number with the beggining of the data skiprows = index - 1 data_format = 'listA' end_of_data = blanks[blanks > skiprows].min() if item != [] and len(item) >= 2 and re.findall(r"Plate", item[0]) == ['Plate'] and re.findall(r"Barcode", item[1]) == ['Barcode']: # find line number with the beggining of the data skiprows = index data_format = 'listB' end_of_data = blanks[blanks > skiprows].min() if item != [] and len(item) >= 2 and re.findall(r"Plate", item[0]) == ['Plate'] and re.findall(r"Well", item[1]) == ['Well']: skiprows = index data_format = 'listC' end_of_data = blanks[blanks > skiprows].min() if item != [] and re.fullmatch(r"G-factor", item[0]): # find the g factor g_factor = float(item[4]) nrows = end_of_data - skiprows - 1 # calculate the length of data table nrows_meta = end_of_metadata - skiprows_meta - 1 # calucalte the length of metadata table (number of rows depends on the number of repeats) raw_data = pd.read_csv(csv_file, sep=',', engine='python', skiprows=skiprows, nrows=nrows, encoding='utf-8') raw_metadata = pd.read_csv(csv_file, sep=',', engine='python', skiprows=skiprows_meta, nrows=nrows_meta, encoding='utf-8') return FA._pre_process_list(raw_data, raw_metadata, data_format, size), g_factor def _pre_process_list(raw_data, raw_metadata, data_format, size): """Extracts the data and metadata for each channel and repeat from the raw data and raw metadata and returns a nested dictionary containing data and metadata for each repeat and channel. :param raw_data: Data frame containing raw data :type raw_data: pandas data frame :param raw_metadata: Data frame containing raw metadata :type raw_metadata: pandas data frame :param data_format: Type of list (listA, listB, or listC) :type data_format: str :param well_ids: A list of well IDs for the pre-processed data frames :type well_ids: list :return: A dictionary containing data and metadata :rtype: dict""" # remove the '0' from middle position of well numbers (A01 -> A1), done by reassigning the 'Well' column to a Series containing modified well numbers raw_data['Well'] = raw_data['Well'].apply(lambda x: x[0] + x[2] if x[1] == '0' else x) data_frames = {} # dictionary to store data frames repeats = list(raw_metadata['Repeat'].to_numpy()) # generate a list with repeats based on the metadata table, e.g. for 3 repeats -> [1,2,3] row_letters = list(string.ascii_uppercase)[0: plate_dim[size][0]] # generate a list of letters for well IDs col_numbers = list(np.arange(1, plate_dim[size][1] + 1).astype(str)) # generate a list of numbers for well IDs well_ids = ['%s%s' % (item[0], item[1]) for item in product(row_letters, col_numbers)] # generate a list of well IDs for the pre-processed data frames for index, repeat in enumerate(repeats): # iterate over the number of repeats if data_format == 'listA': groupped_data = raw_data.groupby(raw_data.PlateRepeat).get_group(repeat) # group and extract the data by the plate repeat column, i.e. in each iteration get data only for the current repeat p_groupped = groupped_data.iloc[::3, :] # extract data only for the p channel, i.e. each third row starting from the first row s_groupped = groupped_data.iloc[1::3, :] # extract data only for the s channel, i.e. each third row starting from the second row p_raw_data = p_groupped[['Well', 'Signal']] # extract only the two relevant columns s_raw_data = s_groupped[['Well', 'Signal']] # for each channel if data_format in ['listB', 'listC']: # the column naming is different for the first repeat ('Signal'), then it's 'Signal.1', 'Signal.2', etc. if repeat == 1: p_raw_data = raw_data[['Well', 'Signal']] s_raw_data = raw_data[['Well', f'Signal.{repeat}']] else: p_raw_data = raw_data[['Well', f'Signal.{repeat + index - 1}']] # the column cotntaining data to be extracted is calculated in each iteration s_raw_data = raw_data[['Well', f'Signal.{repeat + index}']] # create an empty df with no columns and indexes matching the plate size indexes = pd.DataFrame(well_ids, columns=['Wells']) empty_frame = indexes.set_index('Wells') p_raw_data.set_index('Well', inplace=True) # set the row indexes as the well numbers p_raw_data.set_axis(['p'], axis=1, inplace=True) # rename the 'Signal' column to 'p' p_data = empty_frame.join(p_raw_data) # join the raw data df to an empty frame based on the indexes, assigns 'NaN' to indexes not present in the raw data table s_raw_data.set_index('Well', inplace=True) s_raw_data.set_axis(['s'], axis=1, inplace=True) s_data = empty_frame.join(s_raw_data) metadata = raw_metadata.iloc[[repeat-1]].astype({'Measurement date': 'datetime64[ns]'}) # extract the row with metadata relevant for each repeat and covert date and time into a datetime object data_frames[f'repeat_{repeat}'] = {'metadata': metadata, 'data': {'p': p_data, 's': s_data}} # add data frames to the dictionary return data_frames def visualise(self, colorby='Type', labelby='Type', title="", cmap='Paired', dpi=250, export=False): """Returns a visual representation of the plate map. The label and colour for each well can be customised to be a platemap variable, for example 'Type', 'Protein Name', 'Protein Concentration', etc. It can also be the p or s channel value, calculated anisotropy or intensity, however in such cases the 'colorby' or 'labelby' parameters must be passed as tuple of two strings specifying the repeat number and variable to display, for example ('repeat_2', 'p_corrected'). :param colorby: Variable to color code by, for example 'Type', 'Contents', 'Protein Concentration', ('repeat_2', 'p'), defaults to 'Type'. :type colorby: str or tuple :param labelby: Variable to display on the wells, for example 'Type', 'Protein Name', ('repeat_1', 's_corrected'), defaults to 'Type'. :type labelby: str or tuple :param title: Sets the title of the figure, defaults to None. :type title: str :param cmap: Sets the colormap for the color-coding, defaults to 'Paired'. :type cmap: str :param dpi: Resolution of the exported figure in points per inches, defaults to 250. :type dpi: int :param export: If True, save the figure as .png file, defaults to False. :type export: bool :return: Visual representation of the plate map. :rtype: figure """ plate_map = self.plate_map size = plate_map.shape[0] scinot = False str_len = None if type(labelby) == tuple: # option for labelling by the p or s anisotropy values plate_map = self.plate_map.join(self.data_dict[labelby[0]]['data'][labelby[1]]) # data frame containing p or s values from specified repeat is added to the platemap labelby = labelby[1] if type(colorby) == tuple: # option for colouring by the p or s anisotropy values plate_map = plate_map.join(self.data_dict[colorby[0]]['data'][colorby[1]]) colorby = colorby[1] if labelby in ['Protein Concentration', 'Tracer Concentration', 'Competitor Concentration', 'p', 's', 'p_corrected', 's_corrected', 'r_raw', 'r_corrected', 'i_raw' , 'i_corrected']: if sum((plate_map[labelby] > 1000) | (plate_map[labelby] < 0)) > 0: # display in sci notation if the number is greater than 1000 or less than 0 scinot = True str_len = 8 return pm.visualise(platemap=plate_map, title=title, size=size, export=export, cmap=cmap, colorby=colorby, labelby=labelby, dpi=dpi, scinot=scinot, str_len=str_len) def invalidate(self, valid=False, **kwargs): """Invalidates wells, entire columns and/or rows. Any of the following keyword arguments, or their combination, can be passed: wells, rows, columns. For example, to invalidate well A1, rows C and D and columns 7 and 8 execute the following: invalidate(wells='A1', rows=['C','D'], columns=[7,8]). To validate previously invalidated wells, rows and/or columns, pass the additional 'valid' argument as True. :param valid: Sets the stipulated well, row or column invalid ('False') or valid ('True'), defaults to False. :type valid: bool :param wells: Wells to be invalidated passed as a string or list of strings. :type wells: str or list :param rows: Rows to be invalidated passed as a string or list of strings. :type rows: str or list :param columns: Columns to be invalidated passed as an integer or list of integers. :type columns: int or list """ # execute the corresponding invalidate functon from the platemapping package if 'wells' in kwargs: pm.invalidate_wells(platemap=self.plate_map, wells=kwargs['wells'], valid=valid) if 'rows' in kwargs: rows = tuple(kwargs['rows']) # convert the rows to tuple because invalidate_rows cannot take in a list pm.invalidate_rows(platemap=self.plate_map, rows=rows, valid=valid) if 'columns' in kwargs: pm.invalidate_cols(platemap=self.plate_map, cols=kwargs['columns'], valid=valid) if len(kwargs) == 0: # return error if neither of the keyword arguments is passed raise TypeError('No arguments were passed. Specify the wells, rows and/or columns to be invalidated!') def background_correct(self): """Calculates background corrected values for p and s channel in all repeats. The backgorund correction is done by subtracting the mean value of blank p (or s) channel intensity for a given protein (or tracer) concentration from each non-blank value of the p (or s) channel intensity for that concentration. """ if len(self.plate_map['Tracer Concentration'].dropna().unique()) == 1: # protein is titrated to a constant amount of tracer t_type = 'Protein' if len(self.plate_map['Protein Concentration'].dropna().unique()) == 1: # tracer is titrated to a constant amount of protein t_type = 'Tracer' for key, value in self.data_dict.items(): metadata, data = value.values() # calculate p and s corrected data frame using _background_correct func and add it to data dictionary self.data_dict[key]['data']['p_corrected'] = FA._background_correct(data['p'], self.plate_map, t_type) self.data_dict[key]['data']['s_corrected'] = FA._background_correct(data['s'], self.plate_map, t_type) print('Background correction has been successfully performed!') def _background_correct(data, platemap, t_type): """Calculate background corrected p or s channel values for protein or tracer titration. :param data: Data frame with raw p or s channel values :type data: pandas df :param platemap: Data frame with platemap :type platemap: pandas df :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :return: Data frame with background corrected values :rtype: pandas df """ df = platemap.join(data) # join p or s channel data to platemap df[df.columns[-1]] = df[df.columns[-1]][df['Valid'] == True] # replace 'p' or 's' values with NaN if the well is invalidated col_name = df.columns[-1] + '_corrected' no_index = df.reset_index() # move the 'well id' index to df column mindex = pd.MultiIndex.from_frame(no_index[['Type', f'{t_type} Name', f'{t_type} Concentration']]) # create multiindex reindexed = no_index.set_index(mindex).drop(['Type', f'{t_type} Name', f'{t_type} Concentration'], axis=1) # add multiindex to df and drop the columns from which multiindex was created mean = reindexed.groupby(level=[0,1,2]).mean().drop('Valid', axis=1) # calculate mean for each group of three wells and remove 'Valid' column mean.rename(columns={mean.columns[-1]: 'Mean'}, inplace=True) # rename the last column to 'Mean' to avoid errors during joining blank = mean.xs('blank', level=0, drop_level=True) # take a group with only blank wells joined = reindexed.join(blank, on=[f'{t_type} Name', f'{t_type} Concentration']) # join the mean data for blanks to the whole df joined[col_name] = joined[joined.columns[-2]] - joined[joined.columns[-1]] # calculate background corrected values jindexed = joined.set_index('index', append=True).reset_index(level=[0,1,2]).rename_axis(None) # set index to 'well id' and move multiindex to df columns return jindexed[[col_name]] # extract and return df with corrected values def calc_r_i(self, correct=True, plot_i=True, thr=80): """Calculates anisotropy and fluorescence intensity for each well in all repeats using the raw and background corrected p and s channel data. The fluorescence intensity (I) and anisotropy (r) are calculated using the follwing formulas: I = s + (2*g*p) for intensity and r = (s - (g*p)) / I for anisotropy. Results are stored in the following data frames: i_raw and r_raw (calculated using the uncorrected p and s channel values) and i_corrected and r_corrected (calculated using the background corrected p and s channel values). The function also calculates the percentage intesity of the non blank wells as comapred to the blank corrected wells using the formula: (raw intensity - corrected intensity) / raw intensity * 100%. If 'plot_i=True', the graph of percentage intenstiy against the well ids for all repeats is displayed along with a summary of wells above the threshold (defaults to 80%). :param correct: Calculate the anisotropy and intensity using the background corrected values of p and s channel data, defaults to True. :type correct: bool :param plot_i: Display plots of the percentage intensity against well ids for all repeats, defaults to True. :type plot_i: bool :param thr: Percentage intensity above which the wells are included in the summary if plot_i=True, defaults to 80. :type thr: int """ FA.th = thr # assign the threshold value to the class variable so that it can be accessed by functions that are not class methods for key, value in self.data_dict.items(): # iterate over all repeats metadata, data = value.values() # calculate raw intensity and anisotropy using _calc_r_i function and add them to data dictionary i, r = FA._calc_r_i(data['p'], data['s'], self.g_factor, 'raw') self.data_dict[key]['data']['i_raw'] = i self.data_dict[key]['data']['r_raw'] = r if correct: # calculate intensity and anisotropy using background corrected values of p and s if 'p_corrected' and 's_corrected' not in data: # check if background subtraction has been done raise AttributeError('The corrected anisotropy and intensity can only be calculated after background correction of the raw p and s channel data.') i_c, r_c = FA._calc_r_i(data['p_corrected'], data['s_corrected'], self.g_factor, 'corrected') self.data_dict[key]['data']['i_corrected'] = i_c self.data_dict[key]['data']['r_corrected'] = r_c # calculate intensity percentage data and add it to data dict self.data_dict[key]['data']['i_percent'] = FA._calc_i_percent(i, i_c, self.plate_map) if plot_i: # plot the percentage intensity against the well ids for all repeats FA._plot_i_percent(self.data_dict, self.plate_map) else: print('The fluorescence intensity and anisotropy have been successfully calculated!\n') def _calc_r_i(p, s, g, col_suffix): """Calculates either anisotropy or intensity and labels the resulting dfs according to the col_suffix parameter :param p: Data frame with p channel data (can be either raw or background corrected) :type p: pandas df :param s: Data frame with s channel data (can be either raw or background corrected) :type s: pandas df :param g: G-factor :type g: float :param col_suffix: Suffix to add to column name of the resulting intensity or anisotropy data frame, e.g. 'raw', 'corrected' :type col_suffix: str :return: Two data frames with calculated anisotropy and intensity values :rtype: tuple of pandas df""" p_rn = p.rename(columns={p.columns[0]: s.columns[0]}) # rename the col name in p data frame so that both p and s dfs have the same col names to enable calculation on dfs i = s + (2 * g * p_rn) # calculate intensity r = (s - (g * p_rn)) / i # and anisotropy i_rn = i.rename(columns={i.columns[0]: 'i_' + col_suffix}) # rename the col name using the column suffix argument r_rn = r.rename(columns={r.columns[0]: 'r_' + col_suffix}) return i_rn, r_rn def _calc_i_percent(ir, ic, platemap): """Calculate the percentage intensity of blank wells compared to non-blank wells. :param ir: Data frame with corrected intensity :type ir: pandas df :param ic: Data frame with raw intensity :type ic: pandas df :param platemap: Platemap :type platemap: pandas df :return: Data frame with percentage intensity data :rtype: pandas df""" ir_rn = ir.rename(columns={ir.columns[0]:ic.columns[0]}) # rename the col name in raw intensity df so that it's the same as in corrected intensity df percent = (ir_rn - ic) / ir_rn * 100 percent.rename(columns={'i_corrected':'i_percent'}, inplace=True) return percent def _plot_i_percent(data_d, platemap): """Plot the percentage intensity data against the well ids with a horizontal threshold bar and print a summary of wells above the threshold for all non-blank and non-empty cells in all repeats. A single figure with multiple subplots for each repeat is created. :param data_d: Data dictionary :type data_d: dict :param platemap: Platemap needed to subset only the non-blank and non-empty cells :type platemap: pandas df""" summary = '' # empty string to which lists of wells to be printed are appended after checking data from each repeat fig = plt.figure(figsize=(8*int((len(data_d) + 2 - abs(len(data_d) - 2))/2), 4*int( math.ceil((len(data_d))/2)) ), tight_layout=True) # plot a figure with variable size depending on the number subplots (i.e. repeats) for key, value in data_d.items(): # iterate over all repeats metadata, data = value.values() df = platemap.join(data['i_percent']) df_per = df[(df['Type'] != 'blank') & (df['Type'] != 'empty')] # subset only the non-blank and non-empty cells plt.subplot(int( math.ceil((len(data_d))/2) ), int( (len(data_d) + 2 - abs(len(data_d) - 2))/2 ), int(key[-1])) plt.bar(df_per.index, df_per['i_percent']) # plot a bar plot with intensity percentage data plt.axhline(FA.th, color='red') # plot horizontal line representing the threshold on the bar plot ax = plt.gca() # get the axis object ax.set_ylabel('') ax.set_xlabel('wells') ax.set_title(f'Repeat {key[-1]}') ax.yaxis.set_major_formatter(mtick.PercentFormatter()) # set formatting of the y axis as percentage xlabels = [i if len(i) == 2 and i[1] == '1' else '' for i in list(df_per.index)] # create a list of xtics and xticklabels consiting only of the first wells from a each row ax.set_xticks(xlabels) ax.set_xticklabels(xlabels) wells = list(df_per[df_per['i_percent'] > FA.th].index) # get a list of well ids above the threshold for this repeat if wells != []: # append wells above the threshold and the repective repeat number to the string with appropriate formatting summary = summary + f'\t{key}: {str(wells)}\n' plt.show() # ensure the figure is displayed before printing the summary message if summary != '': # display the summary of wells above the threshold print(f'In the following wells the percentage intensity value was above the {FA.th}% threshold:') print(summary) else: print(f'None of the wells has the percentage intensity value above the {FA.th}% threshold.') def plot_i_percent(self): """Disply the graph of percentage intesity of the non blank wells as comapred to the blank corrected wells against well ids for all repeats.""" return FA._plot_i_percent(self.data_dict, self.plate_map) def calc_mean_r_i(self): """Calculates data required for fitting a logistic curve to anisotropy and intensity data, i.e. the mean anisotropy and intensity over the number of replicates for each specific protein (or tracer) concentration along with standard deviation and standard error. """ if len(self.plate_map['Tracer Concentration'].dropna().unique()) == 1: # protein is titrated to a constant amount of tracer t_type = 'Protein' if len(self.plate_map['Protein Concentration'].dropna().unique()) == 1: # tracer is titrated to a constant amount of protein t_type = 'Tracer' for key, value in self.data_dict.items(): metadata, data = value.values() # create dictionaries 'r_mean'and 'i_mean' containing mean anisotropy and intensity data frames for each protein-tracer pair data['r_mean'] = FA._calc_mean_r_i(data['r_corrected'], self.plate_map, t_type) data['i_mean'] = FA._calc_mean_r_i(data['i_corrected'], self.plate_map, t_type) # create data frame for storing the fitting params and set lambda value to 1 cols = ['rmin','rmin error', 'rmax', f'rmax error', 'r_EC50', 'r_EC50 error', 'r_hill', 'r_hill error', 'Ifree', 'Ifree error', 'Ibound', 'Ibound error', 'I_EC50', 'I_EC50 error', 'I_hill', 'I_hill error', 'lambda'] data['fit_params'] = pd.DataFrame(index=FA.final_fit.index, columns=cols) data['fit_params']['lambda'] = 1 def _calc_mean_r_i(df, plate_map, t_type): """Calculates mean anisotropy for each protein (or tracer) concentration value, its standard deviation and standard error. Creates an empty data frame for storing the fitting parameters for each repeat and sets the lambda value as 1. :param df: Data frame with anisotropy or intensity values :type df: pandas df :param plate_map: Plate map data frame :type plate_map: pandas df :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :return: A dictionary with data frames for each unique protein-tracer pair and data frame for storing the fitting parameter :rtype: dict""" join = plate_map.join(df) # join anisotropy or intensity values to platemap subset = join[(join['Type'] != 'blank') & (join['Type'] != 'empty')] # use only the non-blank and non-empty cells noidx = subset.reset_index() group = noidx.groupby([f'{t_type} Concentration', 'Protein Name', 'Tracer Name']) mean = group.mean() std = group.std() sem = group.sem() meanr = mean.rename(columns={mean.columns[-1]: 'mean'}).drop('Valid', axis=1) stdr = std.rename(columns={std.columns[-1]: 'std'}).drop('Valid', axis=1) # rename the std column and remove the 'Valid' column semr = sem.rename(columns={sem.columns[-1]: 'sem'}).drop('Valid', axis=1) # rename the sem column and remove the 'Valid' column merge = pd.concat([meanr, stdr, semr], axis=1) tosplit = merge.reset_index() # remove multiindex split = dict(tuple(tosplit.groupby(['Protein Name', 'Tracer Name']))) # split df based on multiindex so that a new df is created for each unique combination of protein and tracer return split def calc_lambda(self, approve=True): """Calculates lambda value for each protein-tracer pair for all repeats and, if approve=True, displays them so that a single value can be saved for each protein-tracer pair which will be used in subsequent calculations. :param approve: Display lambda, rmin and rmax values for each protein-tracer pair and for all repeats, defaults to True. :type approve: bool """ w_info = [] # list of tuples with info (rep no, lambda value, etc) need to generate the widgets for key, value in self.data_dict.items(): # iterate over all repeats metadata, data = value.values() df = data['fit_params'].copy() # create a copy of the fitting params df df['lambda'] = df['Ibound']/df['Ifree'] # calculate the lambda value in a copied data frame if approve == False: #self.data_dict[key]['data']['fit_params']['lambda'] = df['lambda'] # add the lambda values to fitting params df print('The lambda values were calculated and saved.') else: for pt_pair in list(df.index): # iterate over each protein-tracer pair and create tuples with info needed for generation of widgets rating = 100 # place for the rating function info = (key, pt_pair, rating, df.loc[pt_pair, "lambda"], data['fit_params'].loc[pt_pair, "rmin"], data['fit_params'].loc[pt_pair, "rmax"]) # tuples conataining repeat no., calculated lambda, and protein-tracer names w_info.append(info) if approve == True: # execute the function for displying and handling the widgets return FA._widget(self.data_dict, w_info, df) def _widget(data_dict, w_info, df): """Function for generating and displaying the widgets with lambda values. It generates widgets for each tuple in the w_info list. :param data_dict: Data dictionary :type data_dict: dict :param w_info: A list of tuples containg information needed for the generation of widgets :type w_info: list :param df: Data frame with calculated lambda values :type df: pandas df """ w_info.sort(key=lambda x: x[1]) # sort the tuples by the protein name so that the widgets are displayed by protein-tracer name reps = [wg.HTML(f"Repeat {i[0][-1]}") for i in w_info] # list of text widgets with repeat numbres proteins = [wg.HTML(f"{i[1][0]}") for i in w_info] # list of text widgets with protein names tracers = [wg.HTML(f"{i[1][1]}") for i in w_info] # list of text widgets with tracer names #scores = [wg.HTML(f"Score: {i[2]}") for i in w_info] lambdas = [wg.Checkbox(value=False, description="$\lambda$ = %.4f" % (i[3])) for i in w_info] # list of checkbox widgets with lambda values rminmax = [wg.Checkbox(value=False, description="rmin = %.5f, rmax = %.5f" % (i[4], i[5])) for i in w_info] # list of checkbox widgets with rmin and rmax values v_lambdas = wg.VBox(lambdas) # group all lambda checkbox widgets into a vertical list layout v_proteins = wg.VBox(proteins) # group all protein name widgets into a vertical list layout v_tracers = wg.VBox(tracers) # group all tracer name widgets into a vertical list layout v_reps = wg.VBox(reps) # group all repeat number widgets into a vertical list layout #v_scores = wg.VBox(scores) v_rminmax = wg.VBox(rminmax) # group all rmin and rmax checkbox widgets into a vertical list layout hbox = wg.HBox([v_proteins, v_tracers, v_reps, v_lambdas, v_rminmax]) # arrange the six vertical boxes into one widget box' button = wg.Button(description='Save') # create a button for saving the selected values print("""Choose the lambda values that will be saved for each protein-tracer pair. \nIf you choose more than one lambda value for a given protein-tracer pair, only the first choice will be saved.\nIf you do not choose any lambda value for a given protein-tracer pair the default value of 1 will remain but you still need to select the rmin and rmax for this pair.""") display(hbox, button) # display the box with widgets and the button def btn_eventhandler(obj): """Function that is executed when the 'Save' button is clicked. It checks which checkboxes were ticked and updates the final fit df with the calcualted lambda values and/or rmin and rmax values. Only the first value of lambda for a given protein-tracer will be saved. """ added_lambda = [] # protein-tracer pairs for which lambda values were added added_rminmax = [] # protein-tracer pairs for which rmin and rmax values were added for i in range(0, len(lambdas)): # iterate over each checkbox widget index = (proteins[i].value, tracers[i].value) # get the tuple with protein-tracer names if lambdas[i].value == True: # if the lambda checkbox was ticked, the widget's 'value' attribute is True if index not in added_lambda: # if lambda for this protein-tracer pair has not yet been added FA.final_fit.loc[index, "lambda"] = df.loc[index, "lambda"] # add the calculated lambda to the final_fit d FA.final_fit.loc[index, ['rmin','rmin error','rmax','rmax error']] = data_dict[f'repeat_{reps[i].value[-1]}']['data']['fit_params'].loc[index, ['rmin','rmin error','rmax','rmax error']] #add rmin, rmax and their errors to the final_fit df added_lambda.append(index) if rminmax[i].value == True: if index not in added_lambda and index not in added_rminmax: # if neither lambda nor rmin/rmax for this protein-tracer pair have been added FA.final_fit.loc[index, ['rmin','rmin error','rmax','rmax error']] = data_dict[f'repeat_{reps[i].value[-1]}']['data']['fit_params'].loc[index, ['rmin','rmin error','rmax','rmax error']] added_rminmax.append(index) print('Selected values were saved.') button.on_click(btn_eventhandler) #link the button event handler function with actual clicking of the button using 'on_click' function def calc_amount_bound(self): """Calculates the amount of fluorescent tracer bound to the protein using the following formula: L_B =( ( (λ*(rmin-rmax⁡)) / (r-rmin ) +1) )^(-1) * L_T The amount bound is calculated as a mean for all replicates for each protein (or tracer) concentration along with its standard deviation and standard error. """ pt_pairs = list(FA.final_fit[FA.final_fit['rmin'].isna()].index) # list of indexes for which rmin and rmax are not defined if len(self.plate_map['Tracer Concentration'].dropna().unique()) == 1: # protein is titrated to a constant amount of tracer t_type = 'Protein' if len(self.plate_map['Protein Concentration'].dropna().unique()) == 1: # tracer is titrated to a constant amount of protein t_type = 'Tracer' if pt_pairs != []: raise DataError(f"The 'rmin' and 'rmax' values are not defined for the following protein-tracer pairs: {pt_pairs}.\nUse 'calc_lambda' function or 'set_fitparams' to choose 'rmin' and 'rmax' values.") for key, value in self.data_dict.items(): metadata, data = value.values() data['amount_bound'] = FA._calc_amount_bound(data['r_corrected'], self.plate_map, t_type) # create dictionary 'r_mean' with mean anisotropy data frames for each protein-tracer pair def _calc_amount_bound(df, platemap, t_type): """ :param df: Data frame with anisotropy or intensity values :type df: pandas df :param plate_map: Plate map data frame :type plate_map: pandas df :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :return: A dictionary with data frames for each unique protein-tracer pair :rtype: dict """ join_pm = platemap.join(df) # join df with corrected anisotropy to the platemap df subset = join_pm[(join_pm['Type'] != 'blank') & (join_pm['Type'] != 'empty')] # take only non-blank and non-empty wells re_idx = subset.set_index(pd.MultiIndex.from_frame(subset[['Protein Name', 'Tracer Name']])).rename_axis([None,None]) # replace the index with multiindex (protein-tracer name) and remove its names join_ff = re_idx.join(FA.final_fit) # join the final fitting parameters to the anisotropy df on multiindex (protein-tracer) # calcualte the amount bound (all parameters needed are already in the data frame) join_ff['mean'] = (((((join_ff["lambda"] * (join_ff['rmax']-join_ff['r_corrected'])) / (join_ff['r_corrected'] - join_ff['rmin']))) +1) **(-1)) * join_ff['Tracer Concentration'] # remove the redundant columns and set dtype of 'amount' column as float to avoid pandas DataError drop = join_ff.drop(['r_corrected','Valid', 'rmin', 'rmax', 'rmin error', 'rmax error', "lambda", 'Kd'], axis=1).astype({'mean': 'float64'}) group = drop.groupby([f'{t_type} Concentration', 'Protein Name', 'Tracer Name']) mean = group.mean() std = group.std() sem = group.sem() stdr = std.rename(columns={std.columns[-1]: 'std'}) # rename column to 'std' semr = sem.rename(columns={sem.columns[-1]: 'sem'}) # rename column to 'sem' merge = pd.concat([mean, stdr, semr], axis=1) # merge the amount, std and sem data frames into one df tosplit = merge.reset_index() # remove multiindex split = dict(tuple(tosplit.groupby(['Protein Name', 'Tracer Name']))) # dictionary a data frame for each protein-tracer pair return split ##### Curve fitting functions ##### def _r_func(pc, rmin, rmax, EC50, hill): """Function for fitting a curve to the plot of anisotropy (or intensity) against protein concentration, where pc is protein concentration, rmin is the lower asymptote, rmax is the upper asymptote, EC50 is midpoint of transition (pc at point of inflection), hill is the slope """ return (rmin - rmax) / (1 + (pc/EC50)**hill) + rmax def _init_params(df, t_type): """Estimates initial parameters for the r_func that are passed to the curve fitting function :param df: Data frame containing mean values of anisotropy or intensity :type df: pandas df :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :return: List with estiamted parameters of min, max and EC50, hill is assumed to be 1 :rtype: list """ rmin = df['mean'].min() rmax = df['mean'].max() mid = (rmax + rmin) / 2 mid_idx = df['mean'].sub(mid).abs().argmin() EC50 = df.iloc[mid_idx][f'{t_type} Concentration'] init_param = [rmin, rmax, EC50, 1] return init_param def _curve_fit(func, df, t_type, var, **kwargs): """Fits a curve to the plot of specified variable against protein (or tracer) concentration using pre-defined funcion. :param func: Funcion describing the curve :type func: func :param df: Data frame containing mean values of anisotropy, intensity or amount bound and their errors (std and sem). :type df: pandas df :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :param **kwargs: Keyword arguments that can be passed into the scipy curve_fit function :param var: Type of fitting perormetd, either logisitic ('log') or single site ('ssb'). :type var: str :return: A list of fitting parameters along with their error in proper order so that it can be added to the fitting params data frame :rtype: list """ drop = df[df[f'{t_type} Concentration'] != 0].dropna(subset=['mean']) # exclude the protein concentration = 0 point and any NaN mean values from data fitting if 'sigma' in kwargs: sigma = drop[kwargs.pop('sigma')] # take the column with std or sem error data else: sigma = None if 'p0' not in kwargs and var == 'log': # user did not pass their initial guess p0 = FA._init_params(drop, t_type) elif 'p0' in kwargs and var == 'log': p0 = kwargs.pop('p0') else: # user provided initial guess, remove p0 from kwargs and assign to p0 argument so that there is only one p0 arg passed to curve fit p0 = None popt, pcov = curve_fit(func, drop[f'{t_type} Concentration'], drop['mean'], p0=p0, sigma=sigma, **kwargs) perr = np.sqrt(np.diag(pcov)) # calculate the error of the fitting params if var == 'log': all_params = np.insert(popt, obj=[1,2,3,4], values=perr) # insert the errors after the respective fitting parameter value else: all_params = np.insert(popt[::-1], obj=[1,2], values=perr[::-1]) return list(all_params) def logistic_fit(self, prot=['all'], trac=['all'], rep=['all'], var='both', **kwargs): """Fits a logistic curve to the plot of anisotropy (or intensity) against protein concentration.Returns the fitting parameters with associated errors for each repeat that are stored in the fitting paramters data frame in data_dict. :param prot: List of protein names for which fitting is performed, defaults to ['all']. :type prot: list of str :param trac: List of tracer names for which fitting is performed, defaults to ['all']. :type trac: list of str :param rep: List of repeat numbers for which fitting is performed, defaults to ['all']. :type rep: list of ints :param var: A variable for which fitting is performed, (either 'r' for anisotropy or 'i' for inteensity), defaults to 'both'. :type var: str :param **kwargs: Keyword arguments that can be passed to the SciPy curve_fit function. """ # get data_dict and a list of protein-tracer names data_dict, pt_pairs = FA._get_items_to_plot(self.data_dict, self.plate_map, prot, trac, rep) errors = [] # list for storing the details of errors due to failed fitting if len(self.plate_map['Tracer Concentration'].dropna().unique()) == 1: # protein is titrated to a constant amount of tracer t_type = 'Protein' if len(self.plate_map['Protein Concentration'].dropna().unique()) == 1: # tracer is titrated to a constant amount of protein t_type = 'Tracer' for rep, value in data_dict.items(): # iterate over all repeats metadata, data = value.values() for pt_pair in pt_pairs: # iterate over all protein-tracer pairs if var == 'r' or var == 'both': try: # try fitting the curve to anisotropy data r_mean = data['r_mean'][pt_pair] # extract the df with mean anisotropy for a given protein-tracer pair params_r = FA._curve_fit(FA._r_func, r_mean, t_type, 'log', **kwargs) # fit the data to logistic curve using the initial parameteers data['fit_params'].loc[pt_pair, ['rmin','rmin error','rmax', 'rmax error', 'r_EC50', 'r_EC50 error', 'r_hill', 'r_hill error']] = params_r # add the fitting parameters to the respective df except RuntimeError as e: # if fitting fails, added details about the error to the errors list and proceed intensity data fitting r_error_info = (rep, 'r', pt_pair, e) errors.append(r_error_info) if var == 'i' or var == 'both': try: # try fitting the curve to intensity data i_mean = data['i_mean'][pt_pair] # extract the df with i mean for a given protein-tracer pair params_i = FA._curve_fit(FA._r_func, i_mean, t_type, 'log', **kwargs) data['fit_params'].loc[pt_pair, ['Ifree', 'Ifree error', 'Ibound','Ibound error', 'I_EC50', 'I_EC50 error', 'I_hill', 'I_hill error']] = params_i except RuntimeError as e: # if fitting fails, added details about the error to the errors list and proceed to to the next protein-tracer pair i_error_info = (rep, 'i', pt_pair, e) errors.append(i_error_info) if errors != []: # raise a warning if fitting failed for any protein-tracer pair warnings.warn(f"The curve fitting failed in the following cases:\n\n{errors}\n\nTry passing additional keyword arguments to the fitting function.", RuntimeWarning) def _LB(LT, PT, Kd): """Function for fitting a curve to the plot of concentration of fluorescent tracer bound to the target protein against protein (or tracer) concentration. LB is the concentration of fluorescent tracer bound to the target protein LT is total protein concentration PT is total tracer concentration Kd is dissociation constant """ return ( (LT+PT+Kd) - np.sqrt( ( ((LT+PT+Kd)**2) - (4*LT*PT) ) ) ) / 2 def single_site_fit(self, prot=['all'], trac=['all'], rep=['all'], **kwargs): """Fits a curve to the plot of concentration of fluorescent tracer bound to the target protein against the protein (or tracer) concentration. :param prot: List of protein names for which fitting is performed, defaults to ['all']. :type prot: list of str :param trac: List of tracer names for which fitting is performed, defaults to ['all']. :type trac: list of str :param rep: List of repeat numbers for which fitting is performed, defaults to ['all']. :type rep: list of ints :param **kwargs: Keyword arguments that can be passed to the SciPy curve_fit function. """ # get data_dict and a list of protein-tracer names data_dict, pt_pairs = FA._get_items_to_plot(self.data_dict, self.plate_map, prot, trac, rep) errors = [] # list for storing the details of errors due to failed fitting if len(self.plate_map['Tracer Concentration'].dropna().unique()) == 1: # protein is titrated to a constant amount of tracer t_type = 'Protein' if len(self.plate_map['Protein Concentration'].dropna().unique()) == 1: # tracer is titrated to a constant amount of protein t_type = 'Tracer' for rep, value in data_dict.items(): # iterate over all repeats metadata, data = value.values() for pt_pair in pt_pairs: # iterate over all protein-tracer pairs try: # try fitting the curve to anisotropy data amount_b = data['amount_bound'][pt_pair] # extract the df with mean amount bound for a given protein-tracer pair params = FA._curve_fit(FA._LB, amount_b, t_type, 'ssb', **kwargs) if t_type == 'Protein': FA.final_fit.loc[pt_pair, ['Kd', 'Kd error', 'LT', 'LT error']] = params else: FA.final_fit.loc[pt_pair, ['Kd', 'Kd error', 'PT', 'PT error']] = params except RuntimeError as e: error_info = (rep, pt_pair, e) errors.append(error_info) if errors != []: # raise a warning if fitting failed for any protein-tracer pair warnings.warn(f"The curve fitting failed in the following cases:\n\n{errors}\n\nTry passing additional keyword arguments to the fitting function", RuntimeWarning) ##### Anisotropy and biniding constant plotting functions ##### def _get_items_to_plot(data_d, platemap, prot, trac, rep): """Creates a list of tuples with protein-tracer names based on the 'prot' and 'trac' parameters and a subset of data_dict based on the 'rep' parameter. """ if prot[0] == 'all' and trac[0] == 'all': # all proteins and all tracers pt_pairs = list(data_d['repeat_1']['data']['r_mean'].keys()) # 'r_mean' dict contains all protein-tracer names as dict keys elif prot[0] != 'all' and trac[0] == 'all': # all tracers and some proteins trac = list(platemap['Tracer Name'].dropna().unique()) # take all tracer names from the platemap pt_pairs = [item for item in product(prot, trac)] elif prot[0] == 'all' and trac[0] != 'all': # all proteins and some tracers prot = list(platemap['Protein Name'].dropna().unique()) # take all protein names from the platemap pt_pairs = [item for item in product(prot, trac)] elif prot[0] != 'all' and trac[0] != 'all': # some proteins and some tracers pt_pairs = [item for item in product(prot, trac)] # define a data dictionary to iterate through based on the 'rep' parameter: if rep[0] == 'all': # for all repeats use the whole data_dict data_dict = data_d else: # for specific repeats use the subset of data_dict containg only the repeats specified in 'rep' parameter data_dict = {key: value for key, value in data_d.items() if int(key[-1]) in rep} return data_dict, pt_pairs def _plot_ani(data_df, params_df, pt_pair, t_type, fig, axs, err, var, rep, exp=False, disp=True, leg=True, dpi=250): """General function for plotting the anisotropy and intensity and saving the figures. :param data_df: Data frame with mean values of anisotropy or intensity and their associated errors :type data_df: pandas df :params_df: Data frame with fitting parameters :type params_df: pandas df :param pt_pair: protein-tracer pair for which the graph is to be generated :type pt_pair: tuple :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :param fig: Figure on which the data is plotted, needed for saving the figure as png file :type fig: matplotlib Figure :param axs: Indexed axis object on which the data is to be plotted, (e.g. axs[0, 1]) :type axs: matplotlib AxesSubplot :param err: Type of error data displayed as error bars, either standard deviation ('std') or standard error ('sem') :type err: str :param var: Variable for which the plot is to be generated ('r' or 'i') :type var: str :param repeat: Repeat number for labelling of the graph :type repeat: 'str' :param exp: Determines whether the figure will be saved, can be either bool or string with directory path :type exp: bool or 'str' :param disp: Determines whether the figure will be displayed after plotting, default True :type disp: bool :param leg: Determines whether the legend and box with fitting parameters will be displayed on the figure, default True :type leg: bool :param dpi: Resolution of the figure in points per inch :type dpi: int """ if var == 'r': # define the parameters, legend text and legend coordinates characteristic for anisotropy data params = [params_df.loc[pt_pair, 'rmin'], params_df.loc[pt_pair, 'rmax'], params_df.loc[pt_pair,'r_EC50'], params_df.loc[pt_pair,'r_hill']] text = "$r_{min}$ = %.4f \u00B1 %.4f\n$r_{max}$ = %.4f \u00B1 %.4f\n$EC_{50}$ = %.2f \u00B1 %.2f\n$hill$ = %.2f \u00B1 %.2f" % tuple(params_df.loc[pt_pair, ['rmin', 'rmin error','rmax','rmax error','r_EC50','r_EC50 error', 'r_hill', 'r_hill error']]) label_coords = (0.02, 0.68) ylabel = 'Anisotropy' else: # define the parameters, legend text and legend coordinates characteristic for intensity data params = [params_df.loc[pt_pair, 'Ifree'], params_df.loc[pt_pair, 'Ibound'], params_df.loc[pt_pair, 'I_EC50'], params_df.loc[pt_pair, 'I_hill']] text = "$I_{free}$ = %.0f \u00B1 %.0f\n$I_{bound}$ = %.0f \u00B1 %.0f\n$EC_{50}$ = %.0f \u00B1 %.0f\n$hill$ = %.2f \u00B1 %.2f" % tuple(params_df.loc[pt_pair, ['Ifree', 'Ifree error', 'Ibound', 'Ibound error', 'I_EC50', 'I_EC50 error', 'I_hill', 'I_hill error']]) label_coords = (0.02, 0.03) ylabel = 'Intensity' drop = data_df[data_df[f'{t_type[0]} Concentration'] != 0].dropna(subset=['mean']) # exclude the protein concentration = 0 point and any NaNs from plotting axs.errorbar(drop[f'{t_type[0]} Concentration'], drop['mean'], yerr=drop[err], color='black', fmt='o', capsize=3, marker='s') axs.set_xscale('log') axs.set_ylabel(ylabel) axs.set_xlabel(f'[{pt_pair[int(t_type[1])]}] (nM)') minc = drop[f'{t_type[0]} Concentration'].min() maxc = drop[f'{t_type[0]} Concentration'].max() vir_data = np.logspace(np.log10(minc), np.log10(maxc), 100) axs.plot(vir_data, FA._r_func(vir_data, *params), color='blue') if leg == True: # display legend and a box with fitting parameters on the graph axs.set_title(f'Protein: {pt_pair[0]}, Tracer: {pt_pair[1]}') axs.legend(['logistic fitted curve'], frameon=False, fontsize=11) axs.annotate(text, xy=label_coords, xycoords='axes fraction', fontsize=11) if exp == True: # save figures in the same directory as the notebook fig.savefig(f"rep_{rep[-1]}_{var}_{str(pt_pair[0])}_{str(pt_pair[1])}.png", dpi=dpi) if type(exp) == str: # save figures in the user defined directory fig.savefig(f"{exp}rep_{rep[-1]}_{var}_{str(pt_pair[0])}_{str(pt_pair[1])}.png", dpi=dpi) if disp == False: plt.close(fig) def plot_ani(self, prot=['all'], trac=['all'], rep=['all'], err='std'): """Plots anisotropy and intensity against protein concentration with a fitted logistic curve for specified repeats and protein-tracer pairs. A separate figure for each repeat is created with anisotropy and intensity graphs for all specified proteins and tracers side by side. :param prot: List of protein names for which the graphs are created, defaults to ['all']. :type prot: list of str :param trac: List of tracer names for which the graphs are created, defaults to ['all']. :type trac: list of str :param rep: List of repeat numbers for which the graphs are created, defaults to ['all']. :type rep: list of int :param err: Type of error data displayed as error bars, either standard deviation ('std') or standard error ('sem'), defaults to 'std'. :type err: str """ # get data_dict and a list of protein-tracer names data_dict, pt_pairs = FA._get_items_to_plot(self.data_dict, self.plate_map, prot, trac, rep) if len(self.plate_map['Tracer Concentration'].dropna().unique()) == 1: # protein is titrated to a constant amount of tracer t_type = ('Protein', 0) if len(self.plate_map['Protein Concentration'].dropna().unique()) == 1: # tracer is titrated to a constant amount of protein t_type = ('Tracer', 1) for key, value in data_dict.items(): # iterte over all repeats and create a sperate figure for each repeat metadata, data = value.values() fig, axs = plt.subplots(len(pt_pairs), 2, figsize=(2*6.4, len(pt_pairs)*4.8), tight_layout=True) # grid for subplots has two columns and a variable number of rows, figsize automatically scales up fig.suptitle(f"Repeat {key[-1]}", fontsize=16) fit_params = data['fit_params'] for idx, pt_pair in enumerate(pt_pairs): # for each portein-tracer pair plot two graphs: anisotropy and intensity r_data_df, i_data_df = data['r_mean'][pt_pair], data['i_mean'][pt_pair] # extract the df with anisotropy and intensity if len(pt_pairs) == 1: # for only one protein-tracer pair the subplot grid is 1-dimensional FA._plot_ani(r_data_df, fit_params, pt_pair, t_type, fig, axs[0], err, 'r', key) FA._plot_ani(i_data_df, fit_params, pt_pair, t_type, fig, axs[1], err, 'i', key) else: # for more than one protein-tracer pair the subplot grid is 2-dimensional FA._plot_ani(r_data_df, fit_params, pt_pair, t_type, fig, axs[idx,0], err, 'r', key) FA._plot_ani(i_data_df, fit_params, pt_pair, t_type, fig, axs[idx,1], err, 'i', key) def save_ani_figs(self, prot=['all'], trac=['all'], rep=['all'], var='both', path='', err='std', leg=False, dpi=250): """Saves single figures of anisotropy and intensity for for specified repeats and protein-tracer pairs in the same directory as this notebook or in user defined directory if the path is provided. :param prot: List of protein names for which the graphs are exported, defaults to ['all']. :type prot: list of str :param trac: List of tracer names for which the graphs are exported, defaults to ['all']. :type trac: list of str :param rep: List of repeat numbers for which the graphs are exported, defaults to ['all']. :type rep: list of ints :param var: A variable for which the graphs are exported, either 'r' for anisotropy or 'i' for inteensity, defaults to 'both'. :type var: str :param path: A path to directory in which the figures are saved, defaults to '' (the same directory as this Jupyter Notebook). :type path: str :param err: Type of error data displayed as error bars, either 'std' or 'sem', defaults to 'std'. :type err: str :param leg: Display legend on the figures, defaults to False. :type leg: bool :param dpi: Resolution of the figure in points per inch, defaults to 250. :type dpi: int """ # get data_dict and a list of protein-tracer names data_dict, pt_pairs = FA._get_items_to_plot(self.data_dict, self.plate_map, prot, trac, rep) for key, value in self.data_dict.items(): # iterate over all repeats metadata, data = value.values() fit_params = data['fit_params'] for pt_pair in pt_pairs: # iterate over each protein-tracer pair in r_data_df, i_data_df = data['r_mean'][pt_pair], data['i_mean'][pt_pair] # extract the df with anisotropy and intensity dfs if var == 'r' or var == 'both': fig, axs = plt.subplots(figsize=(6.4, 4.8), tight_layout=True) # create a figure with a single axis for anisotropy FA._plot_ani(r_data_df, fit_params, pt_pair, self.type, fig, axs, err, 'r', key, exp=path, disp=False, leg=leg, dpi=dpi) if var == 'i' or var == 'both': fig, axs = plt.subplots(figsize=(6.4, 4.8), tight_layout=True) FA._plot_ani(i_data_df, fit_params, pt_pair, self.type, fig, axs, err, 'i', key, exp=path, disp=False, leg=leg, dpi=dpi) print('The figures were successfully exported.') def _plot_kd(data_df, rep, pt_pair, t_type, err, leg, exp, dpi): """Plots amount bound against protein or tracer concentration with a fitted curve on a separate figure for a specific protein-tracer pair. :param data_df: Data frame with mean values of amount of tracer bound and their associated errors :type data_df: pandas df :param rep: Repeat number for labelling of the graph :type rep: 'str' :param pt_pair: Protein and tracer names for which data will be plotted :type pt_pair: list of tuples :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :param err: Type of error data displayed as error bars, either standard deviation ('std') or standard error ('sem') :type err: str :param leg: Determines whether the legend and box with fitting parameters will be displayed on the figure, default True :type leg: bool :param exp: Determines whether the figure will be saved, can be either bool or string with directory path :type exp: bool or 'str' :param dpi: Resolution of the figure in points per inch :type dpi: int """ drop = data_df[data_df[f'{t_type} Concentration'] != 0].dropna(subset=['mean']) # exclude the protein concentration = 0 point and any NaNs from data fitting fig, axs = plt.subplots(1, 1, figsize=(6.4, 4.8), tight_layout=True) # define the x axis data and labels for protein and tracer titration cases if t_type == 'Protein': text = '$L_{T}$ = %.2f\u00B1 %.2f\n$K_{d}$ = %.2f \u00B1 %.2f' % (FA.final_fit.loc[pt_pair, 'LT'], FA.final_fit.loc[pt_pair, 'LT error'], FA.final_fit.loc[pt_pair, 'Kd'], FA.final_fit.loc[pt_pair, 'Kd error']) xlabel = f'[{pt_pair[0]}] (nM)' params = [FA.final_fit.loc[pt_pair, 'LT'], FA.final_fit.loc[pt_pair, 'Kd']] else: text = '$P_{T}$ = %.2f\u00B1 %.2f\n$K_{d}$ = %.2f \u00B1 %.2f' % (FA.final_fit.loc[pt_pair, 'PT'], FA.final_fit.loc[pt_pair, 'PT error'], FA.final_fit.loc[pt_pair, 'Kd'], FA.final_fit.loc[pt_pair, 'Kd error']) xlabel = f'[{pt_pair[1]}] (nM)' params = [FA.final_fit.loc[pt_pair, 'PT'], FA.final_fit.loc[pt_pair, 'Kd']] axs.errorbar(drop[f'{t_type} Concentration'], drop['mean'], yerr=drop[err], color='black', fmt='o', capsize=3, marker='s') axs.set_xscale('log') axs.set_ylabel('[Fluorescent Tracer Bound] (nM)') axs.set_xlabel(xlabel) minc = drop[f'{t_type} Concentration'].min() maxc = drop[f'{t_type} Concentration'].max() vir_data = np.logspace(np.log10(minc),np.log10(maxc), 100) axs.plot(vir_data, FA._LB(vir_data, *params), color='blue') if leg == True: # display the figure title, legend and annotation with fitting params axs.set_title(f'Repeat {rep[-1]}, Protein: {pt_pair[0]}, Tracer: {pt_pair[1]}') axs.legend([f'single site fitted curve'], fontsize=11, frameon=False) axs.annotate(text, xy=(0.02, 0.80), xycoords='axes fraction', fontsize=11) plt.show() if exp == True: # save the figure to the same directory as the notebook fig.savefig(f"Kd_plot_{str(pt_pair[0])}_{str(pt_pair[1])}.png", dpi=dpi) if type(exp) == str: # save the figure to user defined directory fig.savefig(f"{exp}Kd_plot_{str(pt_pair[0])}_{str(pt_pair[1])}.png", dpi=dpi) def _overlay_kd_plots(plate_map, data_dict, pt_pairs, t_type, err, leg, exp, dpi): """Creates a figure with overlayed plots for specified protein-tracer pairs and repeats :param plate_map: Platemap :type plate_map: pandas df :param data_dict: Data dictionary containing the specific repeats for which data will be plotted :type data_dict: dict :param pt_pairs: List of protein-tracer names for which data will be plotted :type pt_pairs: list of tuples :param t_type: Type of titration ('Protein' or 'Tracer') :type t_type: str :param err: Type of error data displayed as error bars, either standard deviation ('std') or standard error ('sem') :type err: str :param leg: Determines whether the legend and box with fitting parameters will be displayed on the figure, default True :type leg: bool :param exp: Determines whether the figure will be saved, can be either bool or string with directory path :type exp: bool or 'str' :param dpi: Resolution of the figure in points per inch :type dpi: int """ fig, axs = plt.subplots(1, 1, figsize=(6.4, 4.8), tight_layout=True) leg_text = [] # list to store the legend text cmaps = ['Blues', 'Greens', 'Oranges', 'Purples', 'Reds', 'Greys', 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn'] iter_cmaps = iter(cmaps) for key, value in data_dict.items(): # iterte through all repeats of the defined data_dict metadata, data = value.values() for pt_pair in pt_pairs: # iterate through the list of protein-tracer names to plot its data on the same figure data_df = data['amount_bound'][pt_pair] # extract the correct df with amount bound for a given protein-tracer pair drop = data_df[ data_df[f'{t_type} Concentration'] != 0].dropna(subset=['mean']) # exclude the protein concentration = 0 point and any NaNs from data fitting if t_type == 'Protein': params = [FA.final_fit.loc[pt_pair, 'LT'], FA.final_fit.loc[pt_pair, 'Kd']] text = '$L_{T}$ = %.2f\u00B1 %.2f\n$K_{d}$ = %.2f \u00B1 %.2f' % tuple(FA.final_fit.loc[pt_pair, ['LT','LT error','Kd','Kd error']]) else: params = [FA.final_fit.loc[pt_pair, 'PT'], FA.final_fit.loc[pt_pair, 'Kd']] text = '$P_{T}$ = %.2f\u00B1 %.2f\n$K_{d}$ = %.2f \u00B1 %.2f' % tuple(FA.final_fit.loc[pt_pair, ['PT','PT error','Kd','Kd error']]) text_long = f"rep {key[-1]}, {pt_pair[0]}, {pt_pair[1]}\n{text}" leg_text.append(text_long) minc = drop[f'{t_type} Concentration'].min() maxc = drop[f'{t_type} Concentration'].max() vir_data = np.logspace(np.log10(minc),np.log10(maxc), 100) cmap = plt.cm.get_cmap(next(iter_cmaps)) # take the next color map from the list axs.errorbar(drop[f'{t_type} Concentration'], drop['mean'], yerr=drop[err], fmt='o', capsize=3, marker='s', color=cmap(0.95)) axs.plot(vir_data, FA._LB(vir_data, *params), color=cmap(0.50)) axs.set_xscale('log') axs.set_ylabel('[Fluorescent Tracer Bound] (nM)') axs.set_xlabel(f'[{t_type}] (nM)') if leg == True: # display the figure title, legend and annotation with fitting params axs.set_title(f'Overlayed plot') lbox = axs.legend(leg_text, fontsize=11, frameon=False, loc='upper left', bbox_to_anchor=(1.03, 0.95))#, bbox_transform=fig.transFigure)#, xycoords='axes fraction') fig.canvas.draw() # draw the canvas so that figure and legend size is defined # calculate length by which the figure will be widened to accomodate the legend w = (lbox.get_window_extent().width + (0.06 * axs.get_window_extent().width)) / fig.dpi fig.set_size_inches(6.4 + w, 4.8) # resize the figure plt.show() if exp == True: # save the figure to the same directory as the notebook fig.savefig(f"Overlayed_Kd_plot.png", dpi=dpi) # if type(exp) == str: # save the figure to user defined directory fig.savefig(f"{exp}Overlayed_Kd_plot.png",dpi=dpi) def plot_kd(self, prot=['all'], trac=['all'], rep=['all'], err='std', overlay=False, legend=True, export=False, dpi=250): """Plots the concentration of fluorescent tracer bound to target protein against the protein (or tracer) concentration. :param prot: List of protein names for which the graphs will be created, defaults to ['all']. :type prot: list of str :param trac: List of tracer names for which the graphs will be created, defaults to ['all']. :type trac: list of str :param rep: List of repeat numbers for which the graphs will be created, defaults to ['all']. :type rep: list of ints :param err: Type of error data displayed as error bars, either standard deviation ('std') or standard error ('sem'), defaults to 'std'. :type err: str :param overlay: Overlayes the data on a single figure, defaults to False. :type overlay: bool :param legend: Display the figure title and legend, defaults to True. :type legend: bool :param export: Saves the figures as png files in the same location as the Notebook or in a specified directory, defaults to False. :type export: bool or str :param dpi: Resolution of the exported figure in dots per inches, defaults to 250. :type dpi: int """ data_dict, pt_pairs = FA._get_items_to_plot(self.data_dict, self.plate_map, prot, trac, rep) if len(self.plate_map['Tracer Concentration'].dropna().unique()) == 1: # protein is titrated to a constant amount of tracer t_type = 'Protein' if len(self.plate_map['Protein Concentration'].dropna().unique()) == 1: # tracer is titrated to a constant amount of protein t_type = 'Tracer' if overlay == False: for key, value in data_dict.items(): # iterte through all repeats of the defined data_dict metadata, data = value.values() for pt_pair in pt_pairs: # iterate through the list of protein-tracer names to create a separate figure for each pair data_df = data['amount_bound'][pt_pair] # extract the correct df with amount bound for a given protein-tracer pair FA._plot_kd(data_df, key, pt_pair, t_type, err, legend, export, dpi) else: FA._overlay_kd_plots(self.plate_map, data_dict, pt_pairs, t_type, err, legend, export, dpi) ##### Fittig params set, export and import functions ##### def set_fitparams(self, pair, final=True, rep=None, **kwargs): """Allows to set a value of any parameter in the final fit data frame (by default) or in fit_params data frame for a specific protein-tracer pair. :param pair: A tuple wtih protein and tracer names for which the parameters are changed :type pair: tuple :param final: If True, the parameters will be changed in the final_fit data frame, otherwise in the fitting param data frame :type final: bool :param rep: Repeat number for which the fit_params data frame will be modified, passed only if the final=False, defaults to None :type rep: int :param **kwargs: Keyword arguments represeting the parameter and its value, e.g. lambda=1.5, rmin=0.30 """ if final == True: for key, value in kwargs.items(): # iterate over the kwargs dictionary FA.final_fit.loc[pair, key] = value # overwrite the parameters in fitting params df with all params passed as keyword arguments if final == False: for key, value in kwargs.items(): # iterate over the kwargs dictionary self.data_dict[f'repeat_{rep}']['data']['fit_params'].loc[pair, key] = value # overwrite the parameters in fitting params df with all params passed as keyword arguments def export_params(self, path='', file_type='csv'): """Export the final fit parameters and the fitting parameters for each repeat to csv or excel files. :param path: A path to directory in which the file is saved, defaults to '' (i.e. the same directory as this Jupyter Notebook) :type path: str :param file_type: Type of file generated, either 'csv' or 'excel' file, defaults to csv :type file_type: 'str' """ if file_type == 'csv': # export as csv file FA.final_fit.to_csv(path_or_buf=f"{path}final_fit_parameters.csv") if file_type == 'excel': # export as excel file FA.final_fit.to_excel(excel_writer=f"{path}all_fitting_parameters.xlsx") for key, value in self.data_dict.items(): #iterate over all repeats metadata, data = value.values() if file_type == 'csv': # export as csv file data['fit_params'].to_csv(path_or_buf=f"{path}{key}_fitting_parameters.csv") if file_type == 'excel': # export as excel file with pd.ExcelWriter(f"{path}all_fitting_parameters.xlsx", engine='openpyxl', mode='a') as writer: data['fit_params'].to_excel(writer, sheet_name=f"{key}_fit_params") print(f'The fitting parameters were exported to the {file_type} files.') def import_params(self, csv_file): """Allows to import a csv file with final_fit parameters (i.e. rmin, rmax, lamda, Kd and their errors). :param csv_file: A csv file path with parameters to be imported :type csv_file: str """ with open(csv_file) as file: # read the csv into pandas df df = pd.read_csv(file, sep=',', index_col=[0,1], engine='python', encoding='utf-8') # import with multiindex indexes = list(df.index) # create a list with protein-tracer names for col in df.columns: # iterate over the imported columns if col not in FA.final_fit.columns: # if there is no such column in final_fit df, raise a warning, otherwise column with wrong name will be added to final_fit warnings.warn(f"The final_fit data frame does not contain matching columns: '{col}'") else: # overwrite the existing values in the final_fit df with the ones from imported df FA.final_fit.loc[FA.final_fit.index.intersection(indexes), col] = df.loc[df.index.intersection(indexes), col] def export_data(self, path=''): """Saves the mean anisotropy, intensity and amount bound data along with their standard deviation and standard error in excel file. :param path: Path to the folder in wchich the excel file is saved. :type path: str """ c = 0 # count number of iterations for key, value in self.data_dict.items(): metadata, data = value.values() pt_pairs = list(data['r_mean'].keys()) # list of all protein-tracer names for pt_pair in pt_pairs: # remove redundant columns and rename the remaining ones for anisotropy, intensity and amount bound dfs r_df = data['r_mean'][pt_pair].drop(['Protein Name','Tracer Name'], axis=1) r_df2 = r_df.rename(columns={'mean': 'anisotropy mean', 'std': 'ani std', 'sem': 'ani sem'}).set_index('Protein Concentration') i_df = data['i_mean'][pt_pair].drop(['Protein Name','Tracer Name'], axis=1) i_df2 = i_df.rename(columns={'mean': 'intensity mean', 'std': 'int std', 'sem': 'int sem'}).set_index('Protein Concentration') ab_df = data['amount_bound'][pt_pair].drop(['Protein Name','Tracer Name'], axis=1) ab_df2 = ab_df.rename(columns={'mean': 'amount bound mean', 'std': 'ab std', 'sem': 'ab sem'}).set_index('Protein Concentration') # join the anisotropy, intensity and amount bound dfs together m =
pd.concat([r_df2, i_df2, ab_df2], axis=1)
pandas.concat
from argparse import Namespace import pandas from pandas import DataFrame, Series from ssl_metrics_git_bus_factor.args import mainArgs def buildBusFactor(df: DataFrame) -> DataFrame: daysSince0: Series = df["author_days_since_0"].unique() data: list = [] day: int for day in range(daysSince0.max() + 1): temp: dict = {} busFactor: int = len(df[df["author_days_since_0"] == day]["author_email"].unique()) temp["days_since_0"] = day temp["productivity"] = busFactor data.append(temp) return
DataFrame(data)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Retrieve bikeshare stations metadata.""" # pylint: disable=invalid-name from typing import Dict, List import pandas as pd import pandera as pa import requests stations_schema = pa.DataFrameSchema( columns={ "station_id": pa.Column(pa.Int), "name": pa.Column(pd.StringDtype()), "physical_configuration": pa.Column(pd.StringDtype()), "lat": pa.Column(pa.Float64), "lon": pa.Column(pa.Float64), "altitude": pa.Column(pa.Float64, nullable=True), "address": pa.Column(pd.StringDtype()), "capacity": pa.Column(pa.Int), "physicalkey": pa.Column(pa.Int), "transitcard": pa.Column(pa.Int), "creditcard": pa.Column(pa.Int), "phone": pa.Column(pa.Int), }, index=pa.Index(pa.Int), ) def get_stations_metadata( stations_url: str, stations_params: Dict ) -> pd.DataFrame: """Get bikeshare stations metadata from JSON feed.""" package = requests.get(stations_url, params=stations_params).json() resources = package["result"]["resources"] df_about = pd.DataFrame.from_records(resources) r = requests.get(df_about["url"].tolist()[0]).json() url_stations = r["data"]["en"]["feeds"][2]["url"] df_stations = pd.DataFrame.from_records( requests.get(url_stations).json()["data"]["stations"] ) df_stations = df_stations.astype( { "physical_configuration":
pd.StringDtype()
pandas.StringDtype
import requests import pandas import io import logging from scipy import stats import plotnine plotnine.options.figure_size = (12, 8) from plotnine import * from mizani.breaks import date_breaks from mizani.formatters import date_format # Setting up a logger logger = logging.getLogger('non_regression_tests') logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) def get(url): ''' Download a CSV file at the specified URL and load it into a dataframe. ''' data = requests.get(url) if data.status_code != 200: raise ValueError(f'Could not download the CSV file, got an error {data.status_code}') df = pandas.read_csv(io.BytesIO(data.content)) logger.info(f'Downloaded a dataframe with {len(df)} rows and {len(df.columns)} columns') return df def format(df): ''' Apply various formating on the given dataframe (e.g., datetime parsing). ''' df['timestamp'] =
pandas.to_datetime(df['start_time'], unit='s')
pandas.to_datetime
import datetime as dt import json import os import pandas as pd from loguru import logger class Analysis: CLASS_CONFIG = { 'AMO_CITY_FIELD_ID': 512318, 'DRUPAL_UTM_FIELD_ID': 632884, 'TILDA_UTM_SOURCE_FIELD_ID': 648158, 'TILDA_UTM_MEDIUM_FIELD_ID': 648160, 'TILDA_UTM_CAMPAIGN_FIELD_ID': 648310, 'TILDA_UTM_CONTENT_FIELD_ID': 648312, 'TILDA_UTM_TERM_FIELD_ID': 648314, 'CT_UTM_SOURCE_FIELD_ID': 648256, 'CT_UTM_MEDIUM_FIELD_ID': 648258, 'CT_UTM_CAMPAIGN_FIELD_ID': 648260, 'CT_UTM_CONTENT_FIELD_ID': 648262, 'CT_UTM_TERM_FIELD_ID': 648264, 'CT_TYPE_COMMUNICATION_FIELD_ID': 648220, 'CT_DEVICE_FIELD_ID': 648276, 'CT_OS_FIELD_ID': 648278, 'CT_BROWSER_FIELD_ID': 648280, 'AMO_ITEMS_2019_FIELD_ID': 562024, 'AMO_ITEMS_2020_FIELD_ID': 648028, } TIME_FORMAT = '%Y-%m-%d %H:%M:%S' WEEK_OFFSET = dt.timedelta(hours=24 + 24 + 6) LEAD_UTM_FIELDS = [ 'source', 'medium', 'campaign', 'content', 'term' ] def __init__(self, config=None): self.CLASS_CONFIG = dict() if config: self.CLASS_CONFIG = config self.CLASS_CONFIG.update(Analysis.CLASS_CONFIG) self.transform_data = [] def extract(self, file_name): with open(os.path.join(os.path.dirname(__file__), file_name), encoding='utf-8') as f: data = json.load(f) return data def transform(self): data = self.extract(file_name) for row in data: self.transform_data.append(self.transform_row(row)) self.logging_check(self.transform_data) return self.transform_data def transform_row(self, row): created_at_datetime = dt.datetime.fromtimestamp(row['created_at']) res = { 'id': row['id'], 'amo_updated_at': (None if 'updated_at' not in row else row['updated_at']), 'amo_trashed_at': (None if 'trashed_at' not in row else row['trashed_at']), 'amo_closed_at': (None if 'closed_at' not in row else row['closed_at']), 'amo_pipeline_id': row['pipeline_id'], 'amo_status_id': row['status_id'], 'created_at_bq_timestamp': created_at_datetime.strftime( self.TIME_FORMAT), 'created_at_year': created_at_datetime.strftime('%Y'), 'created_at_month': created_at_datetime.strftime('%m'), 'created_at_week': ((created_at_datetime + self.WEEK_OFFSET) .isocalendar()[1]), 'amo_city': self.get_custom_field( row, self.CLASS_CONFIG['AMO_CITY_FIELD_ID']), 'drupal_utm': self.get_custom_field( row, self.CLASS_CONFIG['DRUPAL_UTM_FIELD_ID']), 'tilda_utm_source': self.get_custom_field( row, self.CLASS_CONFIG['TILDA_UTM_SOURCE_FIELD_ID']), 'tilda_utm_medium': self.get_custom_field( row, self.CLASS_CONFIG['TILDA_UTM_MEDIUM_FIELD_ID']), 'tilda_utm_campaign': self.get_custom_field( row, self.CLASS_CONFIG['TILDA_UTM_CAMPAIGN_FIELD_ID']), 'tilda_utm_content': self.get_custom_field( row, self.CLASS_CONFIG['TILDA_UTM_CONTENT_FIELD_ID']), 'tilda_utm_term': self.get_custom_field( row, self.CLASS_CONFIG['TILDA_UTM_TERM_FIELD_ID']), 'ct_utm_source': self.get_custom_field( row, self.CLASS_CONFIG['CT_UTM_SOURCE_FIELD_ID']), 'ct_utm_medium': self.get_custom_field( row, self.CLASS_CONFIG['CT_UTM_MEDIUM_FIELD_ID']), 'ct_utm_campaign': self.get_custom_field( row, self.CLASS_CONFIG['CT_UTM_CAMPAIGN_FIELD_ID']), 'ct_utm_content': self.get_custom_field( row, self.CLASS_CONFIG['CT_UTM_CONTENT_FIELD_ID']), 'ct_utm_term': self.get_custom_field( row, self.CLASS_CONFIG['CT_UTM_TERM_FIELD_ID']), 'ct_type_communication': self.get_custom_field( row, self.CLASS_CONFIG['CT_TYPE_COMMUNICATION_FIELD_ID']), 'ct_device': self.get_custom_field( row, self.CLASS_CONFIG['CT_DEVICE_FIELD_ID']), 'ct_os': self.get_custom_field( row, self.CLASS_CONFIG['CT_OS_FIELD_ID']), 'ct_browser': self.get_custom_field( row, self.CLASS_CONFIG['CT_BROWSER_FIELD_ID']), 'amo_items_2019': self.get_custom_field( row, self.CLASS_CONFIG['AMO_ITEMS_2019_FIELD_ID']), 'amo_items_2020': self.get_custom_field( row, self.CLASS_CONFIG['AMO_ITEMS_2020_FIELD_ID']) } for field in self.LEAD_UTM_FIELDS: res[f'lead_utm_{field}'] = self.get_lead_utm(res, field) return res def get_custom_field(self, row, field_id): for custom_field in row['custom_fields_values']: if custom_field['field_id'] == field_id: items = [] for item in custom_field['values']: items.append(item.get('value', None)) return ','.join(items) return None def get_lead_utm(self, res, field): if res['drupal_utm']: drupal_utm_list = res['drupal_utm'].split(', ') drupal_utm_dict = dict([item.split('=') for item in drupal_utm_list]) if field in drupal_utm_dict: if (drupal_utm_dict['medium'] in ['yandex', 'google'] and field == 'source'): return drupal_utm_dict['medium'] if drupal_utm_dict['source'] in ['context', 'context-cpc', 'search'] and field == 'medium': return drupal_utm_dict['source'] return drupal_utm_dict[field] elif res[f'ct_utm_{field}']: return res[f'ct_utm_{field}'] return res[f'tilda_utm_{field}'] def logging_check(self, data): logger.add('info.log', mode='w') for res in data: for field in self.LEAD_UTM_FIELDS: if ((res[f'ct_utm_{field}'] and res[f'ct_utm_{field}'] != res[f'lead_utm_{field}']) or (res[f'tilda_utm_{field}'] and res[f'tilda_utm_{field}'] != res[f'lead_utm_{field}'])): logger.info(f'Конфликт utm_{field} в сделке {res["id"]}') def create_dataframe(self): self.transform() frame =
pd.DataFrame(self.transform_data)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import glob import numpy as np import matplotlib.pyplot as plt import os ''' This function filters out all the rows for which the label column does not match a given value (i.e GetDistribution). And saves "elapsed" value for rows that do match the specified label text(transaction name) into a csv. ''' LOCATION = os.getcwd() TRANSACTION_NAME = 'HTTP Request' #replace the transaction name with your transaction name def extract_latency_data(): FILE_TO_WRITE ="" for file in os.listdir(LOCATION): try: #extract latency data from csv files that begin with TestPlan_ if file.startswith("TestPlan_") and file.endswith(".csv"): FILE_TO_WRITE = "new_"+os.path.basename(file) df =
pd.read_csv(file)
pandas.read_csv
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Metrics.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from meterstick import metrics from meterstick import operations import mock import numpy as np import pandas as pd from pandas import testing import unittest class MetricTest(unittest.TestCase): """Tests general features of Metric.""" df = pd.DataFrame({'X': [0, 1, 2, 3], 'Y': [0, 1, 1, 2]}) def test_precompute(self): metric = metrics.Metric( 'foo', precompute=lambda df, split_by: df[split_by], compute=lambda x: x.sum().values[0]) output = metric.compute_on(self.df, 'Y') expected = pd.DataFrame({'foo': [0, 2, 2]}, index=range(3)) expected.index.name = 'Y' testing.assert_frame_equal(output, expected) def test_compute(self): metric = metrics.Metric('foo', compute=lambda x: x['X'].sum()) output = metric.compute_on(self.df) expected = metrics.Sum('X', 'foo').compute_on(self.df) testing.assert_frame_equal(output, expected) def test_postcompute(self): def postcompute(values, split_by): del split_by return values / values.sum() output = metrics.Sum('X', postcompute=postcompute).compute_on(self.df, 'Y') expected = operations.Distribution('Y', metrics.Sum('X')).compute_on(self.df) expected.columns = ['sum(X)'] testing.assert_frame_equal(output.astype(float), expected) def test_compute_slices(self): def _sum(df, split_by): if split_by: df = df.groupby(split_by) return df['X'].sum() metric = metrics.Metric('foo', compute_slices=_sum) output = metric.compute_on(self.df) expected = metrics.Sum('X', 'foo').compute_on(self.df) testing.assert_frame_equal(output, expected) def test_final_compute(self): metric = metrics.Metric( 'foo', compute=lambda x: x, final_compute=lambda *_: 2) output = metric.compute_on(None) self.assertEqual(output, 2) def test_pipeline_operator(self): m = metrics.Count('X') testing.assert_frame_equal( m.compute_on(self.df), m | metrics.compute_on(self.df)) class SimpleMetricTest(unittest.TestCase): df = pd.DataFrame({ 'X': [1, 1, 1, 2, 2, 3, 4], 'Y': [3, 1, 1, 4, 4, 3, 5], 'grp': ['A'] * 3 + ['B'] * 4 }) def test_list_where(self): metric = metrics.Mean('X', where=['grp == "A"']) output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].mean() self.assertEqual(output, expected) def test_single_list_where(self): metric = metrics.Mean('X', where=['grp == "A"', 'Y < 2']) output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A" and Y < 2')['X'].mean() self.assertEqual(output, expected) def test_count_not_df(self): metric = metrics.Count('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 7) def test_count_split_by_not_df(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].count() expected.name = 'count(X)' testing.assert_series_equal(output, expected) def test_count_where(self): metric = metrics.Count('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 3) def test_count_with_nan(self): df = pd.DataFrame({'X': [1, 1, np.nan, 2, 2, 3, 4]}) metric = metrics.Count('X') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 6) def test_count_unmelted(self): metric = metrics.Count('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'count(X)': [7]}) testing.assert_frame_equal(output, expected) def test_count_melted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [7]}, index=['count(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_count_split_by_unmelted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'count(X)': [3, 4]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_count_split_by_melted(self): metric = metrics.Count('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [3, 4], 'grp': ['A', 'B'] }, index=['count(X)', 'count(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_count_distinct(self): df = pd.DataFrame({'X': [1, 1, np.nan, 2, 2, 3]}) metric = metrics.Count('X', distinct=True) output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 3) def test_sum_not_df(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 14) def test_sum_split_by_not_df(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].sum() expected.name = 'sum(X)' testing.assert_series_equal(output, expected) def test_sum_where(self): metric = metrics.Sum('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].sum() self.assertEqual(output, expected) def test_sum_unmelted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'sum(X)': [14]}) testing.assert_frame_equal(output, expected) def test_sum_melted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [14]}, index=['sum(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_sum_split_by_unmelted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sum(X)': [3, 11]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_sum_split_by_melted(self): metric = metrics.Sum('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [3, 11], 'grp': ['A', 'B'] }, index=['sum(X)', 'sum(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_dot_not_df(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, sum(self.df.X * self.df.Y)) def test_dot_split_by_not_df(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp', return_dataframe=False) self.df['X * Y'] = self.df.X * self.df.Y expected = self.df.groupby('grp')['X * Y'].sum() expected.name = 'sum(X * Y)' testing.assert_series_equal(output, expected) def test_dot_where(self): metric = metrics.Dot('X', 'Y', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) d = self.df.query('grp == "A"') self.assertEqual(output, sum(d.X * d.Y)) def test_dot_unmelted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df) expected = pd.DataFrame({'sum(X * Y)': [sum(self.df.X * self.df.Y)]}) testing.assert_frame_equal(output, expected) def test_dot_normalized(self): metric = metrics.Dot('X', 'Y', True) output = metric.compute_on(self.df) expected = pd.DataFrame({'mean(X * Y)': [(self.df.X * self.df.Y).mean()]}) testing.assert_frame_equal(output, expected) def test_dot_melted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [sum(self.df.X * self.df.Y)]}, index=['sum(X * Y)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_dot_split_by_unmelted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sum(X * Y)': [5, 45]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_dot_split_by_melted(self): metric = metrics.Dot('X', 'Y') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [5, 45], 'grp': ['A', 'B'] }, index=['sum(X * Y)', 'sum(X * Y)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_mean_not_df(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) def test_mean_split_by_not_df(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].mean() expected.name = 'mean(X)' testing.assert_series_equal(output, expected) def test_mean_where(self): metric = metrics.Mean('X', where='grp == "A"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "A"')['X'].mean() self.assertEqual(output, expected) def test_mean_unmelted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'mean(X)': [2.]}) testing.assert_frame_equal(output, expected) def test_mean_melted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [2.]}, index=['mean(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_mean_split_by_unmelted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'mean(X)': [1, 2.75]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_mean_split_by_melted(self): metric = metrics.Mean('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [1, 2.75], 'grp': ['A', 'B'] }, index=['mean(X)', 'mean(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_max(self): metric = metrics.Max('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'max(X)': [4]}) testing.assert_frame_equal(output, expected) def test_min(self): metric = metrics.Min('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'min(X)': [1]}) testing.assert_frame_equal(output, expected) def test_weighted_mean_not_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1.25) def test_weighted_mean_split_by_not_df(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((1.25, 3.), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted mean(X)' testing.assert_series_equal(output, expected) def test_weighted_mean_unmelted(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted mean(X)': [1.25]}) testing.assert_frame_equal(output, expected) def test_weighted_mean_melted(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.25]}, index=['Y-weighted mean(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_mean_split_by_unmelted(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted mean(X)': [1.25, 3.]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_mean_split_by_melted(self): df = pd.DataFrame({ 'X': [1, 2, 1, 3], 'Y': [3, 1, 0, 1], 'grp': ['A', 'A', 'B', 'B'] }) metric = metrics.Mean('X', 'Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [1.25, 3.], 'grp': ['A', 'B'] }, index=['Y-weighted mean(X)', 'Y-weighted mean(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_quantile_raise(self): with self.assertRaises(ValueError) as cm: metrics.Quantile('X', 2) self.assertEqual(str(cm.exception), 'quantiles must be in [0, 1].') def test_quantile_multiple_quantiles_raise(self): with self.assertRaises(ValueError) as cm: metrics.Quantile('X', [0.1, 2]) self.assertEqual(str(cm.exception), 'quantiles must be in [0, 1].') def test_quantile_not_df(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2) def test_quantile_where(self): metric = metrics.Quantile('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, 2.5) def test_quantile_interpolation(self): metric = metrics.Quantile('X', 0.5, interpolation='lower') output = metric.compute_on( pd.DataFrame({'X': [1, 2]}), return_dataframe=False) self.assertEqual(output, 1) def test_quantile_split_by_not_df(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].quantile(0.5) expected.name = 'quantile(X, 0.5)' testing.assert_series_equal(output, expected) def test_quantile_unmelted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df) expected = pd.DataFrame({'quantile(X, 0.5)': [2.]}) testing.assert_frame_equal(output, expected) def test_quantile_melted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [2.]}, index=['quantile(X, 0.5)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_quantile_split_by_unmelted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'quantile(X, 0.5)': [1, 2.5]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_quantile_split_by_melted(self): metric = metrics.Quantile('X', 0.5) output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame({ 'Value': [1, 2.5], 'grp': ['A', 'B'] }, index=['quantile(X, 0.5)'] * 2) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_quantile_multiple_quantiles(self): df = pd.DataFrame({'X': [0, 1]}) metric = metrics.MetricList( [metrics.Quantile('X', [0.1, 0.5]), metrics.Count('X')]) output = metric.compute_on(df) expected = pd.DataFrame( [[0.1, 0.5, 2]], columns=['quantile(X, 0.1)', 'quantile(X, 0.5)', 'count(X)']) testing.assert_frame_equal(output, expected) def test_quantile_multiple_quantiles_melted(self): df = pd.DataFrame({'X': [0, 1]}) metric = metrics.MetricList( [metrics.Quantile('X', [0.1, 0.5]), metrics.Count('X')]) output = metric.compute_on(df, melted=True) expected = pd.DataFrame( {'Value': [0.1, 0.5, 2]}, index=['quantile(X, 0.1)', 'quantile(X, 0.5)', 'count(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_quantile_not_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Quantile('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1.25) def test_weighted_quantile_df(self): df = pd.DataFrame({'X': [1, 2], 'Y': [3, 1]}) metric = metrics.Quantile('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted quantile(X, 0.5)': [1.25]}) testing.assert_frame_equal(output, expected) def test_weighted_quantile_multiple_quantiles_split_by(self): df = pd.DataFrame({ 'X': [0, 1, 2, 1, 2, 3], 'Y': [1, 2, 2, 1, 1, 1], 'grp': ['B'] * 3 + ['A'] * 3 }) metric = metrics.MetricList( [metrics.Quantile('X', [0.25, 0.5], weight='Y'), metrics.Sum('X')]) output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame( { 'Y-weighted quantile(X, 0.25)': [1.25, 0.5], 'Y-weighted quantile(X, 0.5)': [2., 1.25], 'sum(X)': [6, 3] }, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_quantile_multiple_quantiles_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 1, 2, 1, 2, 3], 'Y': [1, 2, 2, 1, 1, 1], 'grp': ['B'] * 3 + ['A'] * 3 }) metric = metrics.MetricList( [metrics.Quantile('X', [0.25, 0.5], weight='Y'), metrics.Sum('X')]) output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level=['Metric', 'grp'], inplace=True) # For Py2 expected = pd.DataFrame({'Value': [1.25, 0.5, 2., 1.25, 6., 3.]}, index=pd.MultiIndex.from_product( ([ 'Y-weighted quantile(X, 0.25)', 'Y-weighted quantile(X, 0.5)', 'sum(X)' ], ['A', 'B']), names=['Metric', 'grp'])) testing.assert_frame_equal(output, expected) def test_variance_not_df(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.var()) def test_variance_biased(self): metric = metrics.Variance('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.var(ddof=0)) def test_variance_split_by_not_df(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].var() expected.name = 'var(X)' testing.assert_series_equal(output, expected) def test_variance_where(self): metric = metrics.Variance('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].var() self.assertEqual(output, expected) def test_variance_unmelted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'var(X)': [self.df.X.var()]}) testing.assert_frame_equal(output, expected) def test_variance_melted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [self.df.X.var()]}, index=['var(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_variance_split_by_unmelted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'var(X)': self.df.groupby('grp')['X'].var()}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_variance_split_by_melted(self): metric = metrics.Variance('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame( { 'Value': self.df.groupby('grp')['X'].var().values, 'grp': ['A', 'B'] }, index=['var(X)', 'var(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_weighted_variance_not_df(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1) def test_weighted_variance_not_df_biased(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', False, 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 0.75) def test_weighted_variance_split_by_not_df(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((2., 1), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted var(X)' testing.assert_series_equal(output, expected) def test_weighted_variance_unmelted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted var(X)': [1.]}) testing.assert_frame_equal(output, expected) def test_weighted_variance_melted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.]}, index=['Y-weighted var(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_variance_split_by_unmelted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted var(X)': [2., 1]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_variance_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.Variance('X', weight='Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [2., 1], 'grp': ['A', 'B'] }, index=['Y-weighted var(X)', 'Y-weighted var(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_standard_deviation_not_df(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std()) def test_standard_deviation_biased(self): metric = metrics.StandardDeviation('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std(ddof=0)) def test_standard_deviation_split_by_not_df(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].std() expected.name = 'sd(X)' testing.assert_series_equal(output, expected) def test_standard_deviation_where(self): metric = metrics.StandardDeviation('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].std() self.assertEqual(output, expected) def test_standard_deviation_unmelted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'sd(X)': [self.df.X.std()]}) testing.assert_frame_equal(output, expected) def test_standard_deviation_melted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [self.df.X.std()]}, index=['sd(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_standard_deviation_split_by_unmelted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'sd(X)': self.df.groupby('grp')['X'].std()}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_standard_deviation_split_by_melted(self): metric = metrics.StandardDeviation('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame( { 'Value': self.df.groupby('grp')['X'].std().values, 'grp': ['A', 'B'] }, index=['sd(X)', 'sd(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_not_df(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, 1) def test_weighted_standard_deviation_not_df_biased(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', False, 'Y') output = metric.compute_on(df, return_dataframe=False) self.assertEqual(output, np.sqrt(0.75)) def test_weighted_standard_deviation_split_by_not_df(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.Series((np.sqrt(2), 1), index=['A', 'B']) expected.index.name = 'grp' expected.name = 'Y-weighted sd(X)' testing.assert_series_equal(output, expected) def test_weighted_standard_deviation_unmelted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df) expected = pd.DataFrame({'Y-weighted sd(X)': [1.]}) testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_melted(self): df = pd.DataFrame({'X': [0, 2], 'Y': [1, 3]}) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, melted=True) expected = pd.DataFrame({'Value': [1.]}, index=['Y-weighted sd(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_split_by_unmelted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({'Y-weighted sd(X)': [np.sqrt(2), 1]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_weighted_standard_deviation_split_by_melted(self): df = pd.DataFrame({ 'X': [0, 2, 1, 3], 'Y': [1, 3, 1, 1], 'grp': ['B', 'B', 'A', 'A'] }) metric = metrics.StandardDeviation('X', weight='Y') output = metric.compute_on(df, 'grp', melted=True) output.sort_index(level='grp', inplace=True) # For Py2 expected = pd.DataFrame({ 'Value': [np.sqrt(2), 1], 'grp': ['A', 'B'] }, index=['Y-weighted sd(X)', 'Y-weighted sd(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_cv_not_df(self): metric = metrics.CV('X') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, np.sqrt(1 / 3.)) def test_cv_biased(self): metric = metrics.CV('X', False) output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.std(ddof=0) / np.mean(self.df.X)) def test_cv_split_by_not_df(self): metric = metrics.CV('X') output = metric.compute_on(self.df, 'grp', return_dataframe=False) expected = self.df.groupby('grp')['X'].std() / [1, 2.75] expected.name = 'cv(X)' testing.assert_series_equal(output, expected) def test_cv_where(self): metric = metrics.CV('X', where='grp == "B"') output = metric.compute_on(self.df, return_dataframe=False) expected = self.df.query('grp == "B"')['X'].std() / 2.75 self.assertEqual(output, expected) def test_cv_unmelted(self): metric = metrics.CV('X') output = metric.compute_on(self.df) expected = pd.DataFrame({'cv(X)': [np.sqrt(1 / 3.)]}) testing.assert_frame_equal(output, expected) def test_cv_melted(self): metric = metrics.CV('X') output = metric.compute_on(self.df, melted=True) expected = pd.DataFrame({'Value': [np.sqrt(1 / 3.)]}, index=['cv(X)']) expected.index.name = 'Metric' testing.assert_frame_equal(output, expected) def test_cv_split_by_unmelted(self): metric = metrics.CV('X') output = metric.compute_on(self.df, 'grp') expected = pd.DataFrame({'cv(X)': [0, np.sqrt(1 / 8.25)]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cv_split_by_melted(self): metric = metrics.CV('X') output = metric.compute_on(self.df, 'grp', melted=True) expected = pd.DataFrame( data={ 'Value': [0, np.sqrt(1 / 8.25)], 'grp': ['A', 'B'] }, index=['cv(X)', 'cv(X)']) expected.index.name = 'Metric' expected.set_index('grp', append=True, inplace=True) testing.assert_frame_equal(output, expected) def test_correlation(self): metric = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, np.corrcoef(self.df.X, self.df.Y)[0, 1]) self.assertEqual(output, self.df.X.corr(self.df.Y)) def test_weighted_correlation(self): metric = metrics.Correlation('X', 'Y', weight='Y') output = metric.compute_on(self.df) cov = np.cov(self.df.X, self.df.Y, aweights=self.df.Y) expected = pd.DataFrame( {'Y-weighted corr(X, Y)': [cov[0, 1] / np.sqrt(cov[0, 0] * cov[1, 1])]}) testing.assert_frame_equal(output, expected) def test_correlation_method(self): metric = metrics.Correlation('X', 'Y', method='kendall') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, self.df.X.corr(self.df.Y, method='kendall')) def test_correlation_kwargs(self): metric = metrics.Correlation('X', 'Y', min_periods=10) output = metric.compute_on(self.df, return_dataframe=False) self.assertTrue(pd.isnull(output)) def test_correlation_split_by_not_df(self): metric = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df, 'grp', return_dataframe=False) corr_a = metric.compute_on( self.df[self.df.grp == 'A'], return_dataframe=False) corr_b = metric.compute_on( self.df[self.df.grp == 'B'], return_dataframe=False) expected = pd.Series([corr_a, corr_b], index=['A', 'B']) expected.index.name = 'grp' expected.name = 'corr(X, Y)' testing.assert_series_equal(output, expected) def test_correlation_where(self): metric = metrics.Correlation('X', 'Y', where='grp == "B"') metric_no_filter = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.grp == 'B']) testing.assert_frame_equal(output, expected) def test_correlation_df(self): metric = metrics.Correlation('X', 'Y') output = metric.compute_on(self.df) expected = pd.DataFrame({'corr(X, Y)': [self.df.X.corr(self.df.Y)]}) testing.assert_frame_equal(output, expected) def test_correlation_split_by_df(self): df = pd.DataFrame({ 'X': [1, 1, 1, 2, 2, 2, 3, 4], 'Y': [3, 1, 1, 3, 4, 4, 3, 5], 'grp': ['A'] * 4 + ['B'] * 4 }) metric = metrics.Correlation('X', 'Y') output = metric.compute_on(df, 'grp') corr_a = metric.compute_on(df[df.grp == 'A'], return_dataframe=False) corr_b = metric.compute_on(df[df.grp == 'B'], return_dataframe=False) expected = pd.DataFrame({'corr(X, Y)': [corr_a, corr_b]}, index=['A', 'B']) expected.index.name = 'grp' testing.assert_frame_equal(output, expected) def test_cov(self): metric = metrics.Cov('X', 'Y') output = metric.compute_on(self.df, return_dataframe=False) self.assertEqual(output, np.cov(self.df.X, self.df.Y)[0, 1]) self.assertEqual(output, self.df.X.cov(self.df.Y)) def test_cov_bias(self): metric = metrics.Cov('X', 'Y', bias=True) output = metric.compute_on(self.df, return_dataframe=False) expected = np.mean( (self.df.X - self.df.X.mean()) * (self.df.Y - self.df.Y.mean())) self.assertEqual(output, expected) def test_cov_ddof(self): metric = metrics.Cov('X', 'Y', ddof=0) output = metric.compute_on(self.df, return_dataframe=False) expected = np.mean( (self.df.X - self.df.X.mean()) * (self.df.Y - self.df.Y.mean())) self.assertEqual(output, expected) def test_cov_kwargs(self): metric = metrics.Cov('X', 'Y', fweights=self.df.Y) output = metric.compute_on(self.df) expected = np.cov(self.df.X, self.df.Y, fweights=self.df.Y)[0, 1] expected = pd.DataFrame({'cov(X, Y)': [expected]}) testing.assert_frame_equal(output, expected) def test_weighted_cov(self): metric = metrics.Cov('X', 'Y', weight='Y') output = metric.compute_on(self.df) expected = np.cov(self.df.X, self.df.Y, aweights=self.df.Y)[0, 1] expected = pd.DataFrame({'Y-weighted cov(X, Y)': [expected]}) testing.assert_frame_equal(output, expected) def test_cov_split_by_not_df(self): metric = metrics.Cov('X', 'Y') output = metric.compute_on(self.df, 'grp', return_dataframe=False) output.sort_index(level='grp', inplace=True) # For Py2 cov_a = metric.compute_on( self.df[self.df.grp == 'A'], return_dataframe=False) cov_b = metric.compute_on( self.df[self.df.grp == 'B'], return_dataframe=False) expected = pd.Series([cov_a, cov_b], index=['A', 'B']) expected.index.name = 'grp' expected.name = 'cov(X, Y)' testing.assert_series_equal(output, expected) def test_cov_where(self): metric = metrics.Cov('X', 'Y', where='grp == "B"') metric_no_filter = metrics.Cov('X', 'Y') output = metric.compute_on(self.df) expected = metric_no_filter.compute_on(self.df[self.df.grp == 'B']) testing.assert_frame_equal(output, expected) def test_cov_df(self): metric = metrics.Cov('X', 'Y') output = metric.compute_on(self.df) expected = pd.DataFrame({'cov(X, Y)': [self.df.X.cov(self.df.Y)]}) testing.assert_frame_equal(output, expected) def test_cov_split_by_df(self): df = pd.DataFrame({ 'X': [1, 1, 1, 2, 2, 2, 3, 4], 'Y': [3, 1, 1, 3, 4, 4, 3, 5], 'grp': ['A'] * 4 + ['B'] * 4 }) metric = metrics.Cov('X', 'Y') output = metric.compute_on(df, 'grp') output.sort_index(level='grp', inplace=True) # For Py2 cov_a = metric.compute_on(df[df.grp == 'A'], return_dataframe=False) cov_b = metric.compute_on(df[df.grp == 'B'], return_dataframe=False) expected = pd.DataFrame({'cov(X, Y)': [cov_a, cov_b]}, index=['A', 'B']) expected.index.name = 'grp'
testing.assert_frame_equal(output, expected)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- import numpy as np from .utils import fast_OLS, fast_optimize, bootstrap_sampler, eval_expression, bias_corrected_ci, z_score, \ percentile_ci import scipy.stats as stats from numpy.linalg import inv, LinAlgError from numpy import dot from itertools import product, combinations import pandas as pd from functools import partial import warnings class BaseLogit(object): """ A convenience parent class for the methods used in Logistic models. """ def __init__(self, endog, exog, options): self._endog = endog self._exog = exog self._n_obs = exog.shape[0] self._n_vars = exog.shape[1] if not options: options = {} self._options = options @staticmethod def _cdf(X): """ The CDF of the logistic function. :param X: A scalar :return: A scalar """ idx = X > 0 out = np.empty(X.size, dtype=float) with warnings.catch_warnings(): warnings.filterwarnings('error') try: out[idx] = 1 / (1 + np.exp(-X[idx])) exp_X = np.exp(X[~idx]) out[~idx] = exp_X / (1 + exp_X) return out except RuntimeWarning: raise RuntimeError def _loglike(self, params): return np.sum(self._loglikeobs(params)) def _loglikeobs(self, params): q = 2 * self._endog - 1 X = self._exog return np.log(self._cdf(q * dot(X, params))) def _score(self, params): z = dot(self._exog, params) L = self._cdf(z) return dot(self._endog - L, self._exog) def _hessian(self, params): X = self._exog L = self._cdf(dot(X, params)) return dot(L * (1 - L) * X.T, X) def _optimize(self): max_iter = self._options["iterate"] tolerance = self._options["convergence"] iterations = 0 score = lambda params: self._score(params) / self._n_obs hess = lambda params: -self._hessian(params) / self._n_obs oldparams = np.inf newparams = np.repeat(0, self._n_vars) while iterations < max_iter and np.any(np.abs(newparams - oldparams) > tolerance): oldparams = newparams H = hess(oldparams) newparams = oldparams - dot(inv(H), score(oldparams)) iterations += 1 return newparams class NullLogitModel(BaseLogit): def __init__(self, endog, options=None): n_obs = endog.shape[0] exog = np.ones((n_obs, 1)) if not options: options = {} super().__init__(endog, exog, options) class ParallelMediationModel(object): """ A class describing a parallel mediation model between an endogenous variable Y, one or several mediators M, and a set of exogenous predictors for the endogenous variable and the mediators. """ def __init__(self, data, exog_terms_y, exog_terms_m, mod_symb, spot_values, n_meds, analysis_list, symb_to_ind, symb_to_var, options=None): """ :param data: array An NxK array of data :param exog_terms_y: list of strings Symbols of exogenous terms for the estimation of the outcome Y :param exog_terms_m: list of strings Symbols of exogenous terms for the estimation of the mediator(s) M (same for all mediators) :param mod_symb: list of strings Symbols of the moderator(s) of the path from X to the mediator(s) M and of the path from M to Y :param spot_values: dict of lists The spotlight values of the moderator(s) :param n_meds: int Number of mediator(s) :param analysis_list: list of ["PMM", "CMM", "MMM"] The list of additional analysis to conduct. :param symb_to_ind: dict of int Dictionary mapping the symbols to the indices of the variable in the data :param symb_to_var: Dictionary mapping the symbols to the actual names of the variable in the data :param options: dict Dictionary of options, from the Process object """ self._data = data self._exog_terms_y = exog_terms_y self._exog_terms_m = exog_terms_m self._n_meds = n_meds self._symb_to_ind = symb_to_ind self._symb_to_var = symb_to_var self._n_obs = data.shape[0] if not options: options = {} self._options = options self._vars_y = [i for i in self._exog_terms_y if (("*" not in i) & (i != "Cons"))] self._ind_y = self._symb_to_ind["y"] self._exog_inds_y = [self._symb_to_ind[var] for var in self._exog_terms_y] self._vars_m = [i for i in self._exog_terms_m if (("*" not in i) & (i != "Cons"))] self._endog_vars_m = ["m{}".format(i + 1) for i in range(self._n_meds)] self._inds_m = [self._symb_to_ind[m] for m in self._endog_vars_m] self._exog_inds_m = [self._symb_to_ind[var] for var in self._exog_terms_m] self._compute_betas_m = fast_OLS if self._options["logit"]: max_iter = self._options["iterate"] tolerance = self._options["convergence"] self._compute_betas_y = partial(fast_optimize, n_obs=self._n_obs, n_vars=len(self._exog_inds_y), max_iter=max_iter, tolerance=tolerance) else: self._compute_betas_y = fast_OLS self._true_betas_y, self._true_betas_m = self._estimate_true_params() self._boot_betas_y, self._boot_betas_m, self._n_fail_samples = self._estimate_bootstrapped_params() self._base_derivs = self._gen_derivatives() self._moderators_symb = mod_symb self._moderators_values = [spot_values.get(i, [0]) for i in self._moderators_symb] self._has_moderation = True if mod_symb else False self._analysis_list = analysis_list if self._has_moderation: self.estimation_results = self._cond_ind_effects() else: self.estimation_results = self._simple_ind_effects() def _estimate_true_params(self): """ Compute the true parameters for: * The path from the predictors to Y (computed using OLS/Logit, depending on the nature of Y) * The path(s) from the mediator(s) to Y (computed using OLS) :return: A tuple of (true_betas_y, true_betas_m) * true_betas_y is a vector of size n_params_y * true_betas_m is a list of vectors of size n_params_m """ # True betas of the path from Ms to Y endog_y = self._data[:, self._ind_y] exog_y = self._data[:, self._exog_inds_y] true_betas_y = self._compute_betas_y(endog_y, exog_y) # For each mediator Mi, true betas from X to Mi true_betas_m = [] m_exog = self._data[:, self._exog_inds_m] for m_ind in self._inds_m: m_endog = self._data[:, m_ind] betas = self._compute_betas_m(m_endog, m_exog) true_betas_m.append(betas) return true_betas_y, true_betas_m def _estimate_bootstrapped_params(self): """ Compute the bootstrapped parameters for: * The path from the predictors to Y (computed using OLS/Logit, depending on the nature of Y) * The path(s) from the mediator(s) to Y (computed using OLS) :return: A tuple of (true_betas_y, true_betas_m) * true_betas_y is a matrix of size n_boots x n_params_y * true_betas_m is a list of matrices of size n_boots x n_params_y """ n_boots = self._options["boot"] seed = self._options["seed"] boot_betas_y = np.empty((n_boots, len(self._exog_terms_y))) boot_betas_m = np.empty((self._n_meds, n_boots, len(self._exog_terms_m))) n_fail_samples = 0 boot_ind = 0 sampler = bootstrap_sampler(self._n_obs, seed) while boot_ind < n_boots: ind = next(sampler) data_boot = self._data[ind, :] y_e = data_boot[:, self._ind_y] y_x = data_boot[:, self._exog_inds_y] try: y_b = self._compute_betas_y(y_e, y_x) m_x = data_boot[:, self._exog_inds_m] boot_betas_y[boot_ind] = y_b for j, m_ind in enumerate(self._inds_m): m_e = data_boot[:, m_ind] m_b = self._compute_betas_m(m_e, m_x) boot_betas_m[j][boot_ind] = m_b boot_ind += 1 except LinAlgError: # Hessian (Logit) or X'X (OLS) cannot be inverted n_fail_samples += 1 return boot_betas_y, boot_betas_m, n_fail_samples def _gen_derivatives(self): """ Generate the list of symbolic derivatives for the indirect path(s) from X to Y. The derivative of the path from X to M is taken with respect to X, and the derivative of the path to Y is taken with respect to M. For instance (Model 21), we consider the equation of x_to_m: * The equation of x_to_m is: aConstant + bX + cW + dX*W. Rearranging for X: 1*(aConstant + cW) + X*(b + dW). * The derivative of this expression is: (b + dW), or in matrix form: [0, 1, 0, W] * [a, b, c, d] The first vector depends on the value of the moderator W: therefore, it cannot be represented numerically. Instead, we express derivative using the following technique: * Each term in the equation (i.e. Constant, X, W, X*W) is represented by a row. * Each variable is represented by a column. * The column for X (the variable with respect to which the equation is derivated) is equal to 0 if the term does not contain X, and 1 otherwise * The other columns are equal to the variable if the term contains the variable, and to 1 otherwise. That way, the product of the columns is equal to the value of each term in the derivative: X W [[ 0, 1 ], # Value of the Constant term : 0*1 = 0 [ 1, 1 ], # Value of X term : 1*1 = 1 [ 0, W ], # Value of the W term: 0*W = 0 [ 1, W ]] # Value of the X*W: 1*W = W The advantage of this matrix is that it is a symbolic expression, in which we can substitute for the values of the moderators, and then take the product of columns to obtain the numerical representation of the derivative as a vector. :return: dict of matrices A dictionary with keys 'x_to_m' and 'm_to_y': 'x_to_m' is the symbolic derivative of X to the mediator(s) M (one derivative) 'm_to_y' is the list of symbolic derivative(s) from the mediator(s) M to Y (n_meds derivative(s)) """ derivs = {} # Derivative of X to M vars_m = self._vars_m exog_terms_m = self._exog_terms_m x_to_m = np.empty((len(vars_m), len(exog_terms_m)), dtype="object") for j, var in enumerate(vars_m): if var == "x": x_to_m[j] = [1 if var in term else 0 for term in exog_terms_m] else: x_to_m[j] = [var if var in term else 1 for term in exog_terms_m] derivs['x_to_m'] = x_to_m.T list_m_to_y = [] for i in range(self._n_meds): # For all the mediators... # ... derivate the path from M to Y (unique to each mediator) vars_y = self._vars_y exog_terms_y = self._exog_terms_y m_to_y = np.empty((len(vars_y), len(exog_terms_y)), dtype="object") for j, var in enumerate(vars_y): if var == "m{}".format(i + 1): m_to_y[j] = [1 if var in term else 0 for term in exog_terms_y] else: m_to_y[j] = [var if var in term else 1 for term in exog_terms_y] list_m_to_y.append(m_to_y.T) derivs['m_to_y'] = list_m_to_y return derivs def _indirect_effect_at(self, med_index, mod_dict): """ Compute the indirect effect through a specific mediator at specific value(s) of the moderator(s) :param med_index: int Index of the mediator. :param mod_dict: dict None, or a mod_name:mod_value dictionary of moderator values. :return: e: scalar Effect at the moderator values be: array Effects for all bootstrap samples (N_Boots x 1) se: scalar Standard error based on bootstrap samples llci: scalar Lower level of CI based on bootstrap samples ulci: scalar Upper level of CI based on bootstrap samples """ conf = self._options["conf"] der_x_to_m = self._base_derivs["x_to_m"] der_m_to_y = self._base_derivs["m_to_y"][med_index] expr_x_to_m = eval_expression(der_x_to_m, mod_dict) expr_m_to_y = eval_expression(der_m_to_y, mod_dict) # Generation of the effects and bootstrapped effects: product of m_der and y_der e = dot(self._true_betas_y, expr_m_to_y) * dot(self._true_betas_m[med_index], expr_x_to_m) be = dot(self._boot_betas_y, expr_m_to_y) * dot(self._boot_betas_m[med_index], expr_x_to_m) se = be.std(ddof=1) if self._options["percent"]: llci, ulci = percentile_ci(be, conf) else: llci, ulci = bias_corrected_ci(e, be, conf) return e, be, se, llci, ulci def _get_conditional_indirect_effects(self, med_index, mod_symb, mod_values): """ Return the indirect effects for all combinations of the moderators mod_symb specified in mod_values. :param med_index: int Index of the mediator. :param mod_names: array An array of moderator names :param mod_values: matrix A (N_Comb x N_Mods) matrix of all combinations of values for all moderator(s) :return: e: array Effects for all combinations of the moderator values (N_Comb x 1) be: matrix Effects for all combinations of the moderator values for all bootstrap samples (N_Comb x N_Boots) se: array SE based on bootstrap samples for all combinations of the moderator values (N_Comb x 1) llci: array LLCI based on bootstrap samples for all combinations of the moderator values (N_Comb x 1) ulci: array ULCI based on bootstrap samples for all combinations of the moderator values (N_Comb x 1) """ n_boots = self._options["boot"] n_comb = len(mod_values) e, se, llci, ulci = np.empty((4, n_comb)) be = np.empty((n_comb, n_boots)) for i, vals in enumerate(mod_values): mod_dict = {k: v for k, v in zip(mod_symb, vals)} e[i], be[i], se[i], llci[i], ulci[i] = self._indirect_effect_at(med_index, mod_dict) return e, be, se, llci, ulci def _simple_ind_effects(self): """ Generate the indirect effects. This is done only if the indirect path from X to Y through M is not moderated. If the option "total" is set to 1, then the total indirect effect is estimated. If the option "contrast" is set to 1, then the pairwise contrasts between the different mediators are estimated. :return: dict A dictionary of lists "effect", "se", "llci", and "ulci". """ conf = self._options["conf"] n_boots = self._options["boot"] e = np.empty(self._n_meds) be = np.empty((self._n_meds, n_boots)) for i in range(self._n_meds): e[i], be[i], *_ = self._indirect_effect_at(i, {}) effects = [] se = [] llci, ulci = [], [] if self._options["total"]: total_e = e.sum() boot_total_e = be.sum(axis=0) total_se = boot_total_e.std(ddof=1) if self._options["percent"]: total_ci = percentile_ci(boot_total_e, conf) else: total_ci = bias_corrected_ci(total_e, boot_total_e, conf) effects.append(total_e) se.append(total_se) llci.append(total_ci[0]) ulci.append(total_ci[1]) for i in range(self._n_meds): effects.append(e[i]) se.append(be[i].std(ddof=1)) if self._options["percent"]: ci = percentile_ci(be[i], conf) else: ci = bias_corrected_ci(e[i], be[i], conf) llci.append(ci[0]) ulci.append(ci[1]) if self._options["contrast"]: inds = [i for i in range(self._n_meds)] contrasts = combinations(inds, 2) for i1, i2 in contrasts: cont_e = e[i1] - e[i2] boot_cont_e = be[i1] - be[i2] cont_se = boot_cont_e.std(ddof=1) if self._options["percent"]: cont_ci = percentile_ci(boot_cont_e, conf) else: cont_ci = bias_corrected_ci(cont_e, boot_cont_e, conf) effects.append(cont_e) se.append(cont_se) llci.append(cont_ci[0]) ulci.append(cont_ci[1]) statistics = [np.array(i).flatten() for i in [effects, se, llci, ulci]] return {k: v for k, v in zip(["effect", "se", "llci", "ulci"], statistics)} def _cond_ind_effects(self): """ Generate the conditional indirect effects for all mediators. :return: dict A dictionary "effect", "se", "llci", and "ulci" of (N_Meds x N_Comb) matrices, corresponding to the statistics for the N_Meds mediators at the N_Comb different levels of the moderator(s). """ mod_values = [i for i in product(*self._moderators_values)] mod_symb = self._moderators_symb n_combs = len(mod_values) effects, se, llci, ulci = np.empty((4, self._n_meds, n_combs)) for i in range(self._n_meds): effects[i], _, se[i], llci[i], ulci[i] = self._get_conditional_indirect_effects(i, mod_symb, mod_values) statistics = [i.flatten() for i in [effects, se, llci, ulci]] return {k: v for k, v in zip(["effect", "se", "llci", "ulci"], statistics)} def _PMM_index(self): """ The Partial Moderated Mediation (PMM) index is only computed when exactly two moderators are present on the mediation path. It represents the marginal impact of one moderator (i.e. the impact of an increase in one unit for this moderator on the indirect effect), conditional on a value of zero for the other moderator. """ if "PMM" not in self._analysis_list: raise ValueError("This model does not report the Index for Partial Moderated Mediation.") conf = self._options["conf"] n_boots = self._options["boot"] mod1, mod2 = self._moderators_symb # Only two moderators dict_baseline = dict([[mod1, 0], [mod2, 0]]) e_baseline, be_baseline = np.empty(self._n_meds), np.empty((self._n_meds, n_boots)) dict_mod1 = dict([[mod1, 1], [mod2, 0]]) e_mod1, be_mod1 = np.empty(self._n_meds), np.empty((self._n_meds, n_boots)) dict_mod2 = dict([[mod1, 0], [mod2, 1]]) e_mod2, be_mod2 = np.empty(self._n_meds), np.empty((self._n_meds, n_boots)) effects, se, llci, ulci = np.empty((4, 2, self._n_meds)) for i in range(self._n_meds): e_baseline[i], be_baseline[i], *_ = self._indirect_effect_at(i, dict_baseline) e_mod1[i], be_mod1[i], *_ = self._indirect_effect_at(i, dict_mod1) e_mod2[i], be_mod2[i], *_ = self._indirect_effect_at(i, dict_mod2) e_pmm1 = e_mod1[i] - e_baseline[i] # Moderator1 at 1 vs. Moderator1 at 0 e_pmm2 = e_mod2[i] - e_baseline[i] # Moderator2 at 1 vs. Moderator2 at 0 be_pmm1 = be_mod1[i] - be_baseline[i] be_pmm2 = be_mod2[i] - be_baseline[i] effects[0][i] = e_pmm1 se[0][i] = be_pmm1.std(ddof=1) if self._options["percent"]: llci[0][i], ulci[0][i] = percentile_ci(be_pmm1, conf) else: llci[0][i], ulci[0][i] = bias_corrected_ci(e_pmm1, be_pmm1, conf) effects[1][i] = e_pmm2 se[1][i] = be_pmm2.std(ddof=1) if self._options["percent"]: llci[1][i], ulci[1][i] = percentile_ci(be_pmm2, conf) else: llci[1][i], ulci[1][i] = bias_corrected_ci(e_pmm2, be_pmm2, conf) statistics = [i.flatten() for i in [effects, se, llci, ulci]] return {k: v for k, v in zip(["effect", "se", "llci", "ulci"], statistics)} def _MMM_index(self): """ """ if "MMM" not in self._analysis_list: raise ValueError("This model does not report the Index for Moderated Moderated Mediation.") conf = self._options["conf"] n_boots = self._options["boot"] mod1, mod2 = self._moderators_symb # Only two moderators dict_baseline = dict([[mod1, 1], [mod2, 1]]) e_baseline, be_baseline = np.empty(self._n_meds), np.empty((self._n_meds, n_boots)) dict_mod1 = dict([[mod1, 2], [mod2, 0]]) e_mod1, be_mod1 = np.empty(self._n_meds), np.empty((self._n_meds, n_boots)) dict_mod2 = dict([[mod1, 0], [mod2, 2]]) e_mod2, be_mod2 = np.empty(self._n_meds), np.empty((self._n_meds, n_boots)) effects, se, llci, ulci = np.empty((4, 1, self._n_meds)) for i in range(self._n_meds): e_baseline[i], be_baseline[i], *_ = self._indirect_effect_at(i, dict_baseline) e_mod1[i], be_mod1[i], *_ = self._indirect_effect_at(i, dict_mod1) e_mod2[i], be_mod2[i], *_ = self._indirect_effect_at(i, dict_mod2) e_pmm = e_baseline[i] - (e_mod1[i] + e_mod2[i]) / 2 be_pmm = be_mod1[i] - be_baseline[i] effects[0][i] = e_pmm se[0][i] = be_pmm.std(ddof=1) if self._options["percent"]: llci[0][i], ulci[0][i] = percentile_ci(be_pmm, conf) else: llci[0][i], ulci[0][i] = bias_corrected_ci(e_pmm, be_pmm, conf) statistics = [i.flatten() for i in [effects, se, llci, ulci]] return {k: v for k, v in zip(["effect", "se", "llci", "ulci"], statistics)} def _CMM_index(self): """ """ if "CMM" not in self._analysis_list: raise ValueError("This model does not report the Index for Conditional Moderated Mediation.") conf = self._options["conf"] mod1, mod2 = self._moderators_symb mod1_val, mod2_val = self._moderators_values n_levels_mod1 = len(mod1_val) n_levels_mod2 = len(mod2_val) effects_mod1, se_mod1, llci_mod1, ulci_mod1 = np.empty((4, self._n_meds, n_levels_mod1)) effects_mod2, se_mod2, llci_mod2, ulci_mod2 = np.empty((4, self._n_meds, n_levels_mod2)) for i in range(self._n_meds): for j, val in enumerate(mod1_val): # Conditional moderated mediation effects for Moderator 1 dict_off = dict([[mod1, val], [mod2, 0]]) dict_on = dict([[mod1, val], [mod2, 1]]) e_off, be_off, *_ = self._indirect_effect_at(i, dict_off) e_on, be_on, *_ = self._indirect_effect_at(i, dict_on) e_cmm = e_on - e_off be_cmm = be_on - be_off effects_mod1[i][j] = e_cmm se_mod1[i][j] = be_cmm.std(ddof=1) if self._options["percent"]: llci_mod1[i][j], ulci_mod1[i][j] = percentile_ci(be_cmm, conf) else: llci_mod1[i][j], ulci_mod1[i][j] = bias_corrected_ci(e_cmm, be_cmm, conf) for j, val in enumerate(mod2_val): # Conditional moderated mediation effects for Moderator 1 dict_off = dict([[mod1, val], [mod2, 0]]) dict_on = dict([[mod1, val], [mod2, 1]]) e_off, be_off, *_ = self._indirect_effect_at(i, dict_off) e_on, be_on, *_ = self._indirect_effect_at(i, dict_on) e_cmm = e_on - e_off be_cmm = be_on - be_off effects_mod2[i][j] = e_cmm se_mod2[i][j] = be_cmm.std(ddof=1) if self._options["percent"]: llci_mod2[i][j], ulci_mod2[i][j] = percentile_ci(be_cmm, conf) else: llci_mod2[i][j], ulci_mod2[i][j] = bias_corrected_ci(e_cmm, be_cmm, conf) stats_mod1 = [i.flatten() for i in [effects_mod1, se_mod1, llci_mod1, ulci_mod1]] stats_mod2 = [i.flatten() for i in [effects_mod2, se_mod2, llci_mod2, ulci_mod2]] statistics = np.concatenate([stats_mod1, stats_mod2], axis=1) return {k: v for k, v in zip(["effect", "se", "llci", "ulci"], statistics)} def _cond_ind_effects_wrapper(self): """ A wrapper for the conditional indirect effects. :return: pd.DataFrame A DataFrame of effects, se, llci, and ulci, for the conditional indirect effects. """ symb_to_var = self._symb_to_var results = self.estimation_results rows_stats = np.array([results["effect"], results["se"], results["llci"], results["ulci"]]).T cols_stats = ["Effect", "Boot SE", "BootLLCI", "BootULCI"] mod_values = self._moderators_values med_values = [[symb_to_var.get('m{}'.format(i + 1), 'm{}'.format(i + 1)) for i in range(self._n_meds)]] values = med_values + mod_values rows_levels = np.array([i for i in product(*values)]) cols_levels = ["Mediator"] + [symb_to_var.get(x, x) for x in self._moderators_symb] rows = np.concatenate([rows_levels, rows_stats], axis=1) cols = cols_levels + cols_stats df = pd.DataFrame(rows, columns=cols, index=[""] * rows.shape[0]) return df.apply(pd.to_numeric, args=["ignore"]) def _simple_ind_effects_wrapper(self): """ A wrapper for the indirect effects (and for total/contrast effects if specified) :return: pd.DataFrame A DataFrame of effects, se, llci, and ulci, for the simple/total/constrasts of indirect effects. """ symb_to_var = self._symb_to_var results = self.estimation_results rows_stats = np.array([results["effect"], results["se"], results["llci"], results["ulci"]]).T med_names = [symb_to_var.get('m{}'.format(i + 1), 'm{}'.format(i + 1)) for i in range(self._n_meds)] rows_levels = [] if self._options["total"]: rows_levels += ["TOTAL"] rows_levels += med_names if self._options["contrast"]: contrasts = ["Contrast: {} vs. {}".format(a, b) for a, b in combinations(med_names, 2)] rows_levels += contrasts rows_levels = np.array(rows_levels).reshape(-1, 1) rows = np.concatenate([rows_levels, rows_stats], axis=1) cols = ["", "Effect", "Boot SE", "BootLLCI", "BootULCI"] df = pd.DataFrame(rows, columns=cols, index=[""] * rows.shape[0]) return df.apply(pd.to_numeric, args=["ignore"]) def _PMM_index_wrapper(self): """ A wrapper for the Partial Moderated Mediation index. :return: pd.DataFrame A DataFrame of effects, se, llci, and ulci, for the PMM index. """ symb_to_var = self._symb_to_var results = self._PMM_index() rows_stats = np.array([results["effect"], results["se"], results["llci"], results["ulci"]]).T cols_stats = ["Index", "Boot SE", "LLCI", "ULCI"] mod_names = [[symb_to_var.get(i, i) for i in self._moderators_symb]] med_names = [[symb_to_var.get('m{}'.format(i + 1), 'm{}'.format(i + 1)) for i in range(self._n_meds)]] values = mod_names + med_names rows_levels = np.array([i for i in product(*values)]) cols_levels = ["Moderator", "Mediator"] rows = np.concatenate([rows_levels, rows_stats], axis=1) cols = cols_levels + cols_stats df = pd.DataFrame(rows, columns=cols, index=[""] * rows.shape[0]) return df.apply(pd.to_numeric, args=["ignore"]) def _CMM_index_wrapper(self): """ A wrapper for the Conditional Moderated Mediation index. :return: pd.DataFrame A DataFrame of effects, se, llci, and ulci, for the CMM index. """ symb_to_var = self._symb_to_var results = self._CMM_index() rows_stats = np.array([results["effect"], results["se"], results["llci"], results["ulci"]]).T cols_stats = ["Index", "Boot SE", "BootLLCI", "BootULCI"] mod1_name, mod2_name = [symb_to_var.get(i, i) for i in self._moderators_symb] mod1_values, mod2_values = self._moderators_values med_names = [symb_to_var.get('m{}'.format(i + 1), 'm{}'.format(i + 1)) for i in range(self._n_meds)] rows_modname = [mod2_name] * len(mod1_values) * self._n_meds + [mod1_name] * len(mod2_values) * self._n_meds rows_modname = np.reshape(rows_modname, (-1, 1)) rows_medname = np.concatenate([np.repeat(med_names, len(mod1_values)), np.repeat(med_names, len(mod2_values))]) rows_medname = np.reshape(rows_medname, (-1, 1)) rows_modvalues = np.concatenate([np.tile(mod1_values, self._n_meds), np.tile(mod2_values, self._n_meds)]) rows_modvalues = np.reshape(rows_modvalues, (-1, 1)) cols_levels = ["Focal Mod", "Mediator", "Other Mod At"] rows_levels = np.concatenate([rows_modname, rows_medname, rows_modvalues], axis=1) rows = np.concatenate([rows_levels, rows_stats], axis=1) cols = cols_levels + cols_stats df = pd.DataFrame(rows, columns=cols, index=[""] * rows.shape[0]) return df.apply(pd.to_numeric, args=["ignore"]) def _MMM_index_wrapper(self): """ A wrapper for the Moderated Moderated Mediation index. :return: pd.DataFrame A DataFrame of effects, se, llci, and ulci, for the CMM index. """ symb_to_var = self._symb_to_var results = self._MMM_index() rows_stats = np.array([results["effect"], results["se"], results["llci"], results["ulci"]]).T cols_stats = ["Index", "Boot SE", "BootLLCI", "BootULCI"] med_names = [[symb_to_var.get('m{}'.format(i + 1), 'm{}'.format(i + 1)) for i in range(self._n_meds)]] rows_levels = np.array([i for i in product(*med_names)]) cols_levels = ["Mediator"] rows = np.concatenate([rows_levels, rows_stats], axis=1) cols = cols_levels + cols_stats df = pd.DataFrame(rows, columns=cols, index=[""] * rows.shape[0]) return df.apply(pd.to_numeric, args=["ignore"]) def MMM_index_summary(self): if "MMM" in self._analysis_list: return self._MMM_index_wrapper() else: raise NotImplementedError("This model does not reported the Moderated Moderated Mediation index.") def PMM_index_summary(self): if "PMM" in self._analysis_list: return self._PMM_index_wrapper() else: raise NotImplementedError("This model does not reported the Partial Moderated Mediation index.") def CMM_index_summary(self): if "CMM" in self._analysis_list: return self._CMM_index_wrapper() else: raise NotImplementedError("This model does not reported the Conditional Moderated Mediation index.") def coeff_summary(self): """ Get the summary of the indirect effect(s). :return: The appropriate moderated/unmoderated effect(s). """ return self._cond_ind_effects_wrapper() if self._has_moderation else self._simple_ind_effects_wrapper() def summary(self): """ Pretty-print the summary with text. Used by Process to display the coefficients in a nicer way. :return: A string to display. """ prec = self._options["precision"] float_format = partial('{:.{prec}f}'.format, prec=prec) analysis_func = {"PMM": ('PARTIAL MODERATED MEDIATION', self._PMM_index_wrapper), "MMM": ('MODERATED MODERATED MEDIATION', self._MMM_index_wrapper), "CMM": ('CONDITIONAL MODERATED MEDIATION', self._CMM_index_wrapper)} symb_to_var = self._symb_to_var if self._has_moderation: basestr = "Conditional indirect effect(s) of {x} on {y} at values of the moderator(s):\n\n" \ "{coeffs}\n\n".format(x=symb_to_var["x"], y=symb_to_var["y"], coeffs=self.coeff_summary().to_string(float_format=float_format)) else: basestr = "Indirect effect of {x} on {y}:\n\n" \ "{coeffs}\n\n".format(x=symb_to_var["x"], y=symb_to_var["y"], coeffs=self.coeff_summary().to_string(float_format=float_format)) for a in self._analysis_list: name, get_results = analysis_func[a] results = get_results() basestr += "**************** INDEX OF {name} ******************\n\n" \ "{results}\n\n".format(name=name, results=results.to_string(float_format=float_format)) return basestr def __str__(self): return self.summary() class BaseOutcomeModel(object): """ A statistical model reflecting the path from independent predictors (X, or X and M) to an endogenous outcome (Y, or M). """ def __init__(self, data, endogvar, exogvars, symb_to_ind, symb_to_var, options=None): """ Instantiate the model. :param data: np.array A NxK array of data :param endogvar: string The name of the endogenous variable. :param exogvars: list of strings The names of the exogenous variables. :param symb_to_ind: dict of int A dictionary mapping variable symbols to indices. :param symb_to_var: dict of strings A dictionary mapping variable symbols to names. :param options: dict A dictionary of options. """ if options is None: options = {} self._data = data self._endogvar = endogvar self._exogvars = exogvars self._symb_to_ind = symb_to_ind self._symb_to_var = symb_to_var if not options: options = {} self._options = options endog_ind = self._symb_to_ind[self._endogvar] exog_ind = [self._symb_to_ind[var] for var in self._exogvars] self._endog = data[:, endog_ind] self._exog = data[:, exog_ind] self._n_obs = self._exog.shape[0] self._n_vars = self._exog.shape[1] self._varnames = [i for i in self._exogvars if (("*" not in i) & (i != "Cons"))] self._derivative = self._gen_derivative(wrt="x") self.estimation_results = self._estimate() def _gen_derivative(self, wrt): """ Generate a symbolic derivative of the equation with respect to the variable 'wrt', and stores it in a matrix. For instance (Model 21), we consider the equation aConstant + bX + cW + dX*W, that we derivate wrt to X: * The rearranged equation for X is: 1*(aConstant + cW) + X*(b + dW). * The derivative of this expression is: (b + dW), or in matrix form: [0, 1, 0, W] * [a, b, c, d] The first vector depends on the value of the moderator W: therefore, it cannot be represented numerically. Instead, we express derivative using the following technique: * Each term in the equation (i.e. Constant, X, W, X*W) is represented by a row. * Each variable is represented by a column. * The column for X (the variable with respect to which the equation is derivated) is equal to 0 if the term does not contain X, and 1 otherwise * The other columns are equal to the variable if the term contains the variable, and to 1 otherwise. That way, the product of the columns is equal to the value of each term in the derivative: X W [[ 0, 1 ], # Value of the Constant term : 0*1 = 0 [ 1, 1 ], # Value of X term : 1*1 = 1 [ 0, W ], # Value of the W term: 0*W = 0 [ 1, W ]] # Value of the X*W: 1*W = W The advantage of this matrix is that it is a symbolic expression, in which we can substitute for the values of the moderators, and then take the product of columns to obtain the numerical representation of the derivative as a vector. :return: A matrix of size (n_terms x n_vars) """ deriv = np.empty((len(self._varnames), len(self._exogvars)), dtype="object") for i, var in enumerate(self._varnames): if var == wrt: deriv[i] = [1 if var in term else 0 for term in self._exogvars] else: deriv[i] = [var if var in term else 1 for term in self._exogvars] return deriv.T def coeff_summary(self): """ Get the estimates of the terms in the model. :return: A DataFrame of betas, se, t (or z), p, llci, ulci for all variables of the model. """ results = self.estimation_results if results: if "t" in results.keys(): # Model has t-stats rather than z-stats coeffs = np.array( [results["betas"], results["se"], results["t"], results["p"], results["llci"], results["ulci"]]).T df = pd.DataFrame(coeffs, index=results["names"], columns=["coeff", "se", "t", "p", "LLCI", "ULCI"]) else: # Model has z-stats. coeffs = np.array( [results["betas"], results["se"], results["z"], results["p"], results["llci"], results["ulci"]]).T df = pd.DataFrame(coeffs, index=results["names"], columns=["coeff", "se", "Z", "p", "LLCI", "ULCI"]) else: raise NotImplementedError( "The model has not been estimated yet. Please estimate the model first." ) return df def _estimate(self): pass class OLSOutcomeModel(BaseOutcomeModel): """ An OLS subclass for OutcomeModels. Implement methods specific to the OLS estimation. """ def _estimate(self): """ Estimate the coefficients and statistics of the OLS model, and store the results in a dictionary of estimation_results. :return: self """ y = self._endog x = self._exog n_obs = self._n_obs n_vars = self._n_vars inv_xx = inv(dot(x.T, x)) xy = dot(x.T, y) betas = dot(inv_xx, xy) df_e = n_obs - n_vars df_r = n_vars - 1 resid = y - dot(x, betas) mse = (resid ** 2).sum() / df_e sse = dot(resid.T, resid) / df_e errortype = "standard" if self._options["hc3"] == 1 else "HC3" if errortype == 'standard': vcv = np.true_divide(1, n_obs - n_vars) * dot(resid.T, resid) * inv_xx elif errortype == 'HC0': sq_resid = (resid ** 2).squeeze() vcv = dot(dot(dot(inv_xx, x.T) * sq_resid, x), inv_xx) elif errortype == 'HC1': sq_resid = (resid ** 2).squeeze() vcv = np.true_divide(n_obs, n_obs - n_vars - 1) * \ dot(dot(dot(inv_xx, x.T) * sq_resid, x), inv_xx) elif errortype == 'HC2': sq_resid = (resid ** 2).squeeze() H = (x.dot(inv_xx) * x).sum(axis=-1) vcv = dot(dot(dot(inv_xx, x.T) * (sq_resid / (1 - H)), x), inv_xx) elif errortype == 'HC3': sq_resid = (resid ** 2).squeeze() H = (x.dot(inv_xx) * x).sum(axis=-1) vcv = dot(dot(dot(inv_xx, x.T) * (sq_resid / ((1 - H) ** 2)), x), inv_xx) else: raise ValueError("The covariance type {} is not supported. Please specify 'standard', 'HC0'" "'HC1', 'HC2', or 'HC3".format(errortype)) betas = betas.squeeze() se = np.sqrt(np.diagonal(vcv)).squeeze() t = betas / se p = stats.t.sf(np.abs(t), df_e) * 2 conf = self._options["conf"] zscore = z_score(conf) R2 = 1 - resid.var() / y.var() adjR2 = 1 - (1 - R2) * ((n_obs - 1) / (n_obs - n_vars - 1)) F = (R2 / df_r) / ((1 - R2) / df_e) F_pval = 1 - stats.f._cdf(F, df_r, df_e) llci = betas - (se * zscore) ulci = betas + (se * zscore) names = [self._symb_to_var.get(x, x) for x in self._exogvars] estimation_results = {"betas": betas, "se": se, "vcv": vcv, "t": t, "p": p, "R2": R2, "adjR2": adjR2, "df_e": int(df_e), "df_r": int(df_r), "mse": mse, "F": F, "sse": sse, "F_pval": F_pval, "llci": llci, "ulci": ulci, "names": names, "n": int(n_obs)} return estimation_results def model_summary(self): """ The summary of the model statistics: R², F-stats, etc... :return: A DataFrame of model statistics """ results = self.estimation_results stats = ["R2", "adjR2", "mse", "F", "df_r", "df_e", "F_pval"] row = [[results[s] for s in stats]] df = pd.DataFrame(row, index=[""], columns=["R²", "Adj. R²", "MSE", "F", "df1", "df2", "p-value"]) return df def coeff_summary(self): """ The summary of the OLS estimates for the model: betas, se, t, p-values, etc... :return: A DataFrame of coefficient statistics """ return super().coeff_summary() def summary(self): """ Pretty-print the summary with text. Used by Process to display the model and coefficients in a nicer way. :return: A string to display. """ prec = self._options["precision"] float_format = partial('{:.{prec}f}'.format, prec=prec) basestr = ("Outcome = {} \n" "OLS Regression Summary\n\n{}\n\n" "Coefficients\n\n{}".format(self._symb_to_var[self._endogvar], self.model_summary().to_string(float_format=float_format), self.coeff_summary().to_string(float_format=float_format))) return basestr def __str__(self): return self.summary() class LogitOutcomeModel(BaseOutcomeModel, BaseLogit): """ A Logit subclass for OutcomeModels. Implement methods specific to the Logistic estimation. """ def _estimate(self): """ Estimate the coefficients and statistics of the Logistic model, and store the results in a dictionary of estimation_results. :return: self """ betas = self._optimize() vcv = inv(self._hessian(betas)) se = np.sqrt(np.diagonal(vcv)).squeeze() z = betas / se p = stats.norm.sf(np.abs(z)) * 2 conf = self._options["conf"] zscore = z_score(conf) llci = betas - (se * zscore) ulci = betas + (se * zscore) # GOF statistics llmodel = self._loglike(betas) lmodel = np.exp(llmodel) minus2ll = -2 * llmodel null_model = NullLogitModel(self._endog, self._options) betas_null = null_model._optimize() llnull = null_model._loglike(betas_null) lnull = np.exp(llnull) d = 2 * (llmodel - llnull) pvalue = stats.chi2.sf(d, self._n_vars - 1) mcfadden = 1 - llmodel / llnull coxsnell = 1 - (lnull / lmodel) ** (2 / self._n_obs) nagelkerke = coxsnell / (1 - lnull ** (2 / self._n_obs)) names = [self._symb_to_var.get(x, x) for x in self._exogvars] estimation_results = {"betas": betas, "se": se, "vcv": vcv, "z": z, "p": p, "llci": llci, "ulci": ulci, "mcfadden": mcfadden, "coxsnell": coxsnell, "nagelkerke": nagelkerke, "d": d, "minus2ll": minus2ll, "pvalue": pvalue, "n": int(self._n_obs), "names": names} return estimation_results def model_summary(self): """ The summary of the model statistics: Model LL, pseudo R², etc... :return: A DataFrame of model statistics """ results = self.estimation_results row = [[results[i] for i in ["minus2ll", "d", "pvalue", "mcfadden", "coxsnell", "nagelkerke", "n"]]] return pd.DataFrame(row, index=[""], columns=["-2LL", "Model LL", "p-value", "McFadden", "Cox-Snell", "Nagelkerke", "n"]) def coeff_summary(self): """ The summary of the OLS estimates for the model: betas, se, t, p-values, etc... :return: A DataFrame of coefficient statistics """ return super().coeff_summary() def summary(self): """ Pretty-print the summary with text. Used by Process to display the model and coefficients in a nicer way. :return: A string to display. """ prec = self._options["precision"] float_format = partial('{:.{prec}f}'.format, prec=prec) basestr = ("\n**************************************************************************\n" "Outcome = {} \n" "Logistic Regression Summary\n\n{}\n\n" "Coefficients\n\n{}".format(self._symb_to_var[self._endogvar], self.model_summary().to_string(float_format=float_format), self.coeff_summary().to_string(float_format=float_format))) return basestr def __str__(self): return self.summary() class DirectEffectModel(object): def __init__(self, model, mod_symb, spot_values, has_mediation, symb_to_var, options=None): """ A container for the direct effect of the variable X on the outcome Y. If the model includes one or several moderators of X, this container returns the conditional direct effects. :param model: process.OutcomeModel The OutcomeModel object of the outcome Y. :param mod_symb: list of string The symbols of the moderators of the direct effect. :param symb_to_var: dict of string The dictionary mapping each symbol to a variable name. :param options: dict The options of the model. """ self._model = model self._is_logit = isinstance(model, LogitOutcomeModel) self._symb_to_var = symb_to_var self._derivative = self._model._derivative self._has_mediation = has_mediation self._moderators_symb = mod_symb self._moderators_values = [spot_values.get(i, [0]) for i in self._moderators_symb] self._has_moderation = True if self._moderators_symb else False if not options: options = {} self._options = options self._estimation_results = self._estimate() def _estimate(self): """ Estimates the direct effect of X on Y, and return the results into as a dictionary. :return: dict A dictionary of parameters and model estimates. """ mod_values = [i for i in product(*self._moderators_values)] mod_symb = self._moderators_symb betas, se, llci, ulci = self._get_conditional_direct_effects(mod_symb, mod_values) t = betas / se if self._is_logit: p = stats.norm.sf(np.abs(t)) * 2 else: df_e = self._model.estimation_results["df_e"] p = stats.t.sf(np.abs(t), df_e) * 2 estimation_results = {"betas": betas, "se": se, "t": t, "p": p, "llci": llci, "ulci": ulci} return estimation_results def _get_conditional_direct_effects(self, mod_symb, mod_values): """ Estimates the conditional direct effects of X on Y, at different values of the moderator(s) :param mod_symb: list of string A list of moderator symbols :param mod_values: array of int/float A list of lists of spotlight values for each moderator. :return: """ betas, se, llci, ulci = np.zeros((4, len(mod_values))) for i, val in enumerate(mod_values): # All possible products of level(s) of moderator(s) mod_dict = {n: v for n, v in zip(mod_symb, val)} betas[i], se[i], llci[i], ulci[i] = self._direct_effect_at(mod_dict) return betas, se, llci, ulci def _direct_effect_at(self, mod_dict): """ Compute the direct effect at specific value(s) of the moderator(s) :param mod_dict: dict None, or a mod_symb:mod_value dictionary of moderator values. :return: e: scalar Effect at the moderator values se: scalar Standard error llci: scalar Lower level of CI based on normal theory ulci: scalar Upper level of CI based on normal theory """ conf = self._options["conf"] b = self._model.estimation_results["betas"] vcv = self._model.estimation_results["vcv"] deriv = self._derivative grad = eval_expression(deriv, mod_dict) # Gradient at level(s) of the moderator(s) betas = dot(grad, b) # Estimate is dot product of gradient and coefficients var = dot(dot(grad, vcv), np.transpose(grad)) # V(Grad(X)) = Grad(X).V(X).Grad'(X) se = np.sqrt(var) zscore = z_score(conf) llci = betas - (se * zscore) ulci = betas + (se * zscore) return betas, se, llci, ulci def coeff_summary(self): """ The summary of the direct effect(s): betas, se, t, p-values, etc... :return: pd.DataFrame A DataFrame of coefficient statistics """ if self._estimation_results: symb_to_var = self._symb_to_var results = self._estimation_results statistics = [results["betas"], results["se"], results["t"], results["p"], results["llci"], results["ulci"]] coeffs_rows = np.array([i.flatten() for i in statistics]).T if self._is_logit: coeffs_columns = ["Effect", "SE", "Z", "p", "LLCI", "ULCI"] else: coeffs_columns = ["Effect", "SE", "t", "p", "LLCI", "ULCI"] mod_rows = np.array([i for i in product(*self._moderators_values)]) mod_columns = [symb_to_var.get(x, x) for x in self._moderators_symb] rows = np.concatenate([mod_rows, coeffs_rows], axis=1) columns = mod_columns + coeffs_columns df =
pd.DataFrame(rows, columns=columns, index=[""] * rows.shape[0])
pandas.DataFrame
# -------------------------------------------------- ML 02/10/2019 ----------------------------------------------------# # # This is the class for poisson process # # -------------------------------------------------------------------------------------------------------------------- # import numpy as np import pandas as pd import math from handles.data_hand import get_slotted_data from sklearn.linear_model import LinearRegression from scipy.stats import kstest import statsmodels.api as sm import statsmodels.formula.api as smf from modeling.stat.models import fit_neg_binom from scipy.stats import expon,gamma,nbinom import random random.seed( 30 ) class poisson_process: def __init__(self,events,x,slotmin=60,sesonality=24.00,x_meta=None,combine=None,variablity_lambda=True): # x is the numeric features lambda depends on. # x_meta are catagorical features that lambda depends on # Sesonality is when to loop the ts back. i.e. like 24 hours # x can be any factor levels. with _ in between each category. however, each catogory # should be defined by a numeric indicator self.x_names = np.array( x.columns ) self.ts = np.array(events) self.x = np.array(x) self.x_meta=x_meta self.slotmin = slotmin self.sesonality = float( sesonality ) self.processed_data = self.get_combined_ts_data(combine=combine) self.def_scale_multiplier() self._variablity_lambda = variablity_lambda def combine_timeslots(self,x,combine): p = x.copy() p[np.in1d(x, combine)] = combine[0] return p def poles_fun(self,d): return pd.DataFrame(d).apply(lambda x: 1/(x**3)) def def_scale_multiplier(self): # this is based on emperical data average_mat = pd.DataFrame({'2014':[0.237053898,0.23033784,0.22646637,0.224855127,0.22145071,0.22017719,0.219680942], '2015':[0.190591233,0.185363899,0.183113651,0.180825924,0.179276851,0.179478113,0.17919847]}).T average_mat.columns = [1000,1100,1200,1300,1400,1500,1600] average_mat=average_mat.reset_index() average_mat=average_mat.melt(id_vars=["index"],var_name="Poles",value_name="Value") cols = ['year','poles','scale'] average_mat.columns = cols average_mat[cols] = average_mat[cols].apply(pd.to_numeric, errors='coerce') average_mat['poles']=self.poles_fun(average_mat['poles']) regressor = LinearRegression() regressor.fit(average_mat[['year','poles']], average_mat['scale']) self.scale_multiplier_predictor = regressor self.reset_scale_multiplier() def reset_scale_multiplier(self): self._scale_multiplier = 1 def avg_scale_pred(self,year,poles): return self.scale_multiplier_predictor.predict(np.array([year, np.array(self.poles_fun([poles]))]).reshape(1, -1)) def get_processed_data(self): diff_col_name = 'Aarrival_diff' delta_t = np.diff(self.ts, n=1).reshape(-1, 1) fin_d = pd.DataFrame(np.concatenate((delta_t, self.x[:-1, :]), axis=1)) fin_d.columns = np.concatenate( (np.array(diff_col_name).reshape(-1, 1), np.array(self.x_names).reshape(-1, 1)), axis=0).flatten() fin_d[diff_col_name] = pd.to_numeric(fin_d[diff_col_name]) # split the values in the factor that was provided to us split = fin_d[self.x_names[0]].str.split("_", -1) n = [] for i in range(0, len(split[0])): fin_d['f' + str(i)] = split.str.get(i)#.astype(float) # update this if code breaks n.append('f' + str(i)) n.append(self.x_names[1]) self.all_names = n fin_d = fin_d.sort_values(by=n) return fin_d def get_combined_ts_data(self,combine): # combine timeslots # if given argument = combine -- array of time slots to combine. we will replace these with # the first element of the combine array # start time internal is the timeslots to model the data on self.processed_data = self.get_processed_data() self.combine = combine if combine is None: self.combined_slots = False combined_timeslots = self.processed_data[self.x_names[1]] else: self.combined_slots = True combined_timeslots = self.combine_timeslots(self.processed_data[self.x_names[1]], combine=combine) self.processed_data['Start_time_internal'] = combined_timeslots return self.processed_data def get_slotted_data(self,data, slot_secs): return get_slotted_data(data=data,slot_secs=slot_secs) # ------------------------------------------- FITTING -------------------------------------------------------------- def daywise_training_data(self,d,combine,fac1,fac2,f1,days,orignal_start_slot): # fac2 is out internal slots that are combined # it is also worth noting that we calculate the average for combined slots and then put them for # all the slots for that given duration if self.combined_slots: x = fac2[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) scale_val = model_d_temp[(model_d_temp[:, 0] == combine[0])].flatten()[1] add = [[i, scale_val, day_i] for i in combine[1:]] model_d_temp = np.concatenate((model_d_temp, add)) model_d.append(model_d_temp) model_d = np.vstack(model_d) else: x = orignal_start_slot[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) model_d.append(model_d_temp) model_d = np.vstack(model_d) return model_d def discreet_fit_model(self,data,x): data_gamma = pd.DataFrame({'days':data, 'arrivalslot':x,'indicator':1}) data_gamma = data_gamma.groupby(['days','arrivalslot']).agg(['count']).reset_index() data_gamma.columns = ['days', 'arrivalslot','count'] data_save = data_gamma['count'] x_save = data_gamma['arrivalslot'] ks_t_D = pd.DataFrame() ks_t_pval = pd.DataFrame() t_t_pval = pd.DataFrame() exp_loc = pd.DataFrame() exp_scale = pd.DataFrame() exp_shape = pd.DataFrame() time_slot = pd.DataFrame() pos_l = pd.DataFrame() neg_bio_r = pd.DataFrame() neg_bio_p = pd.DataFrame() for f2 in np.unique(data_gamma['arrivalslot']): d = pd.to_numeric( data_gamma[data_gamma['arrivalslot'] == f2]['count'] ) # poission lam = np.mean(d) # gamma alpha,loc, beta = gamma.fit(d,loc=0) # ks test D , kspval = kstest(d,'gamma', args=(alpha,loc,beta)) # ttest - one sided # sample2 = gamma.rvs(a = alpha, loc=loc, scale=beta, size=d.shape[0]) val , pval = 0,0 #ttest_ind(d,sample2) # neg_binom r,p = fit_neg_binom(vec=np.array(d).flatten(),init=0.0000001) # if we have combined data then add same model to all combined timeslots if self.combined_slots and f2 == self.combine[0]: for var in self.combine: pos_l = pos_l.append(pd.DataFrame([lam])) exp_loc = exp_loc.append(pd.DataFrame([loc])) exp_shape = exp_shape.append(pd.DataFrame([alpha])) exp_scale = exp_scale.append(pd.DataFrame([beta])) neg_bio_r = neg_bio_r.append(pd.DataFrame([r])) neg_bio_p = neg_bio_p.append(pd.DataFrame([p])) ks_t_D = ks_t_D.append(pd.DataFrame([D])) ks_t_pval = ks_t_pval.append(pd.DataFrame([kspval])) t_t_pval = t_t_pval.append(pd.DataFrame([pval / 2])) # add timeslot time_slot = time_slot.append([var]) else: pos_l = pos_l.append(pd.DataFrame([lam])) exp_loc = exp_loc.append(pd.DataFrame([loc])) exp_shape = exp_shape.append(pd.DataFrame([alpha])) exp_scale = exp_scale.append(pd.DataFrame([beta])) neg_bio_r = neg_bio_r.append(pd.DataFrame([r])) neg_bio_p = neg_bio_p.append(pd.DataFrame([p])) ks_t_D = ks_t_D.append(pd.DataFrame([D])) ks_t_pval = ks_t_pval.append(pd.DataFrame([kspval])) t_t_pval = t_t_pval.append(pd.DataFrame([pval / 2])) # add timeslot time_slot = time_slot.append([f2]) # this is the final fit fit = pd.DataFrame() fit[[self.x_names[1]]] = time_slot fit['gamma_loc'] = np.array(exp_loc).flatten() fit['gamma_scale'] = np.array(exp_scale).flatten() fit['gamma_shape'] = np.array(exp_shape).flatten() fit['KS_D'] = np.array(ks_t_D).flatten() fit['KS_PVal'] = np.array(ks_t_pval).flatten() fit['Ttest_PVal'] = np.array(t_t_pval).flatten() fit['Poisson_lam'] = np.array(pos_l).flatten() fit['Negbio_r'] = np.array(neg_bio_r).flatten() fit['Negbio_p'] = np.array(neg_bio_p).flatten() return fit,data_save,x_save def neg_bio_reg_fit_model(self,data,x): data_gamma = pd.DataFrame({'days': data, 'arrivalslot': x, 'indicator': 1}) data_gamma = data_gamma.groupby(['days', 'arrivalslot']).agg(['count']).reset_index() data_gamma.columns = ['days', 'arrivalslot', 'count'] data_save = data_gamma['count'] x_save = data_gamma['arrivalslot'] nb_mu = pd.DataFrame() nb_p = pd.DataFrame() nb_n = pd.DataFrame() nb_alpha =
pd.DataFrame()
pandas.DataFrame
from x2df.fileIOhandlers.__fileIOhandler__ import FileIOhandler from pandas import DataFrame, read_csv import json import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtWidgets import io import inspect # we want to do the imports as late as possible to # keep it snappy once we have more and more fileIOhandlers dumpparams = inspect.signature(DataFrame.to_csv).parameters.keys() claimedFormats = [".csv", ".txt"] class Handler(FileIOhandler): def dump(self, df, dst=None, **kwargs): kwargs["index"] = False kwargs["line_terminator"] = "\n" parseinfo = df.attrs.setdefault("parseinfo", {}) parseinfo["comment"] = "#" metastr = "#" + json.dumps(df.attrs, indent=4).replace("\n", "\n#") + "\n" allargs = kwargs | parseinfo allargs = dict((k, v) for k, v in allargs.items() if k in dumpparams) csvstring = metastr + df.to_csv(**allargs) if dst is not None: open(dst, "w").write(csvstring) return None return csvstring def parse(self, path, postprocess=True, **kwargs): # since csvs are not a well-defined format, lets try a few things: # first, check if the file starts with a metadata comment, # we take the parser args from there tryParseOverride = kwargs.get("parseinfo") if tryParseOverride: origmetadata = {"parseinfo": kwargs["parseinfo"]} with open(path, "r") as f: origmetadata = getMetadata(f) skip = False dfraw = DataFrame() while not skip: # we remove parseinfo from kwargs if it is present. # this means that the override will be tried once, # and it doesnt work, we try again without override. if "parseinfo" in kwargs: parseinfo = kwargs.pop("parseinfo") infoValid = True else: parseinfo, infoValid = getParseInfo(path) if not infoValid: break dfraw = readCSV(path, parseinfo) skip |= not dfraw.empty # if the parsing was successfull and we changed the original metadata, # ask if we should add the metadata to the top of the file. if not tryParseOverride: updateOrigParseInfo(path, origmetadata, parseinfo, not dfraw.empty) if postprocess: return self.processRawDF(dfraw) else: return [dfraw] def claim(self, path): if any(path.endswith(x) for x in claimedFormats): return [path] else: return [] def readCSV(path, parseInfo): dfraw =
DataFrame()
pandas.DataFrame
#!/usr/bin/env python from scipy import interpolate import numpy as np from numpy.lib.recfunctions import append_fields import scipy.signal as sig import scipy.stats as st import time, os import pandas as pd import math #import report_ctd import ctdcal.report_ctd as report_ctd import warnings import ctdcal.fit_ctd as fit_ctd import datetime from decimal import Decimal import settings import sys sys.path.append('ctdcal/') import oxy_fitting import gsw warnings.filterwarnings("ignore", 'Mean of empty slice.') def cast_details(stacast, log_file, p_col, time_col, b_lat_col, b_lon_col, alt_col, inMat=None): ''' We determine the cast details using pandas magic. First find alternating periods of pumps on and pumps off, then select the pumps on period with the highest pressure. Get values from the row with the highest pressure, and return all values to be sent to log. Input: stacast - integer, the station and cast, as SSSCC format log_file - file handle or string, log_file p_col - string, name of the pressure column time_col - string, name of the time column b_lat_col - string, name of the latitude column b_lon_col - string, name of the longitude column alt_col - string, name of the altimeter column inMat - pandas dataframe, the dataframe to come in Output: start_cast_time - float, unix epoch seconds?, start of cast time, to be reported to log file end_cast_time - float, unix epoch seconds?, end of cast time, to be reported to log file bottom_cast_time - float, unix epoch seconds?, bottom of cast time, to be reported to log file start_pressure - float, pressure at which cast started, to be reported to log file max_pressure - float, bottom of the cast pressure, to be reported to log file b_lat - float, latitude at bottom of cast b_lon - float, longitude at bottom of cast b_alti - float, altimeter reading at bottom of cast - volts only! inMat - the dataframe that came in, with soak period trimmed off don't need end_cast_time, max_pressure inMat is trimmed to start and end of cast ''' df_test = pd.DataFrame.from_records(inMat) dfs = find_pump_on_off_dfs(df_test) dfs_1 = find_pumps_on_dfs(dfs) df_cast = find_max_pressure_df(dfs_1) df_cast1 = find_last_soak_period(df_cast) df_cast2 = trim_soak_period_from_df(df_cast1) start_cast_time = float(df_cast2['scan_datetime'].head(1)) start_pressure = float(df_cast2['CTDPRS'].head(1)) end_cast_time = float(df_cast2['scan_datetime'].tail(1)) max_pressure = float(df_cast2['CTDPRS'].max()) bottom_cast_time = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['scan_datetime']) b_lat = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['GPSLAT']) b_lon = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['GPSLON']) b_alti = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['ALT']) #last two lines must be in to return the same as old - change to slices of df later report_ctd.report_cast_details(stacast, log_file, start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_alti, b_lat, b_lon) #reconvert to ndarray - might need to be altered to remove second index # inMat = df_cast2.loc[:df_cast2['CTDPRS'].idxmax()].to_records(index=False) inMat = df_cast2.loc[:df_cast2['CTDPRS'].idxmax()] return start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_lat, b_lon, b_alti, inMat #Move next four functions to a library or class(?) Clean up module def find_pump_on_off_dfs(df): '''Find pump_on patterns of dataframes, and return a list(?) of dataframes to iterate over. ''' return [g for i,g in df.groupby(df['pump_on'].ne(df['pump_on'].shift()).cumsum())] def find_max_pressure_df(dfs): '''Giving a list of data frames, return a reference to the frame with which contians the highest pressure value ''' max_pressure_df = dfs[0] max_pressure = max_pressure_df['CTDPRS'].max() #TODO make into config var for df in dfs: if df['CTDPRS'].max() > max_pressure: max_pressure_df = df return max_pressure_df def find_pumps_on_dfs(dfs): '''given a list of dataframes, remove all the frames with one or more rows containing a "false" pump on flag ''' return list(filter(lambda df: df['pump_on'].all(), dfs)) def trim_soak_period_from_df(df): '''Look for minimum pressure in dataframe, then return everything after minimum pressure/top of cast. ''' test = int(df.iloc[1:int((len(df)/4))]['CTDPRS'].idxmin()) return df.loc[test:] def find_last_soak_period(df_cast, surface_pressure=2, time_bin=8, downcast_pressure=50): """Find the soak period before the downcast starts. The algorithm is tuned for repeat hydrography work, specifically US GO-SHIP parameters. This assumes the soak depth will be somewhere between 10 and 30 meters, the package will sit at the soak depth for at least 20 to 30 seconds before starting ascent to the surface and descent to target depth. Parameters ---------- df_cast : DataFrame DataFrame of the entire cast surface_pressure : integer Minimum surface pressure threshold required to look for soak depth. 2 dbar was chosen as an average rosette is roughly 1.5 to 2 meters tall. time_bin : integer Time, in whole seconds. downcast_pressure : integer Minimum pressure threshold required to assume downcast has started. 50 dbar has been chosen as double the deep soak depth of 20-30 dbar. Returns ------- df_cast_ret : DataFrame DataFrame starting within time_bin seconds of the last soak period. The algorithm is not guaranteed to catch the exact start of the soak period, but within a minimum period of time_bin seconds(?) from end of the soak if the soak period assumption is valid. This should be shorter than the total soak period time, and able to catch the following rise and descent of the package that signals the start of the cast. The algorithm has been designed to handle four general cases of casts: * A routine cast with pumps turning on in water and normal soak * A cast where the pumps turn on in air/on deck * A cast where the pumps turn on and off due to rosette coming out of water * A cast where there are multiple stops on the downcast to the target depth """ #Validate user input if time_bin <= 0: raise ValueError('Time bin value should be positive whole seconds.') if downcast_pressure <=0: raise ValueError('Starting downcast pressure threshold must be positive integers.') if downcast_pressure < surface_pressure: raise ValueError(f'Starting downcast pressure threshold must be greater \ than surface pressure threshold.') # If pumps have not turned on until in water, return DataFrame if df_cast.iloc[0]['CTDPRS'] > surface_pressure: return df_cast #Bin the data by time, and compute the average rate of descent df_blah = df_cast.loc[:,:] df_blah['bin'] = pd.cut(df_blah.loc[:,'index'], range(df_blah.iloc[0]['index'],df_blah.iloc[-1]['index'],time_bin*24), labels=False, include_lowest=True) df_blah2 = df_blah.groupby('bin').mean() #Compute difference of descent rates and label bins df_blah2['prs_diff'] = df_blah2['CTDPRS'].diff().fillna(0).round(0) df_blah2['movement'] = pd.cut(df_blah2['prs_diff'], [-1000,-0.5,0.5,1000], labels=['up','stop','down']) #Find all periods where the rosette is not moving df_stop = df_blah2.groupby('movement').get_group('stop') groupby_test = df_blah2.groupby(df_blah2['movement'].ne(df_blah2['movement'].shift()).cumsum()) list_test = [g for i,g in groupby_test] #Find a dataframe index of the last soak period before starting descent def poop(list_obj, downcast_pressure): """ Return dataframe index in the last soak period before starting descent to target depth. """ for i, x in zip(range(len(list_test)),list_test): if x['CTDPRS'].max() < downcast_pressure: if x.max()['movement'] == 'stop': index = i if x['CTDPRS'].max() > downcast_pressure: return index return index #Truncate dataframe to new starting index : end of dataframe start_index = np.around(list_test[poop(list_test, downcast_pressure)].head(1)['index']) df_cast = df_cast.set_index('index') df_cast = df_cast.loc[int(start_index):,:] df_cast_ret = df_cast.reset_index() return df_cast_ret #End move four functions # def cast_details_old(stacast, log_file, p_col, time_col, b_lat_col, b_lon_col, alt_col, inMat=None): # """cast_details function # # Function takes full NUMPY ndarray with predefined dtype array # and adjusts ndarray to remove all extraneous surface data. # Function returns cast start time, end time, bottom time and # cleaned up matrix. # # Args: # param1 (str): stacast, station cast input # param2 (str): log_file, log file to write cast data. # param3 (str): p_col, pressure data column name # param4 (str): time_col, time data column name # param5 (ndarray): inMat, numpy ndarray with dtype array # # Returns: # Narray: The return value is ndarray with adjusted time of parameter # specified. # # """ # # # if inMat is None: # print("In cast_details: No data") # return # else: # # Top of cast time, bottom of cast time, end of cast time, # start_cast_time = 0.0 # bottom_cast_time = 0.0 # end_cast_time = 0.0 # # Test cycle time constant # fl = 24 # # starting P # start_pressure = 2.0 # # Max P # max_pressure = 10000.0 # lm = len(inMat)-1 # rev = np.arange(int(lm/4),0,-1) # # # Find starting top of cast # # Smallest P from reverse array search # for i in rev: # if start_pressure < inMat[p_col][i]: # tmp = i # elif start_pressure > inMat[p_col][i]: # start_pressure = inMat[p_col][i] # tmp = abs(i - 24) #patched to not break through the c(sea)-floor, can be made cleaner # break # start_cast_time = inMat[time_col][tmp] # # # Remove everything before cast start # inMat = inMat[tmp:] # # # Max P and bottom time # max_pressure = max(inMat[p_col]) # tmp = np.argmax((inMat[p_col])) # bottom_cast_time = inMat[time_col][tmp] # b_lat = inMat[b_lat_col][tmp] # b_lon = inMat[b_lon_col][tmp] # b_alti = inMat[alt_col][tmp] # # tmp = len(inMat) # # Find ending top of cast time # for i in range(int(tmp/2),tmp): # if start_pressure > inMat[p_col][i]: # end_cast_time = inMat[time_col][i] # if i < tmp: tmp = i + 24 # break # # # Remove everything after cast end # inMat = inMat[:tmp] # # report_ctd.report_cast_details(stacast, log_file, start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_alti, b_lat, b_lon) # # return start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_lat, b_lon, b_alti, inMat def ctd_align(inMat=None, col=None, time=0.0): """ctd_align function Function takes full NUMPY ndarray with predefined dtype array and adjusts time of sensor responce and water flow relative to the time frame of temperature sensor. Args: param1 (ndarray): inMat, numpy ndarray with dtype array param2 (float): col, column to apply time advance to. param3 (float): time, advance in seconds to apply to raw data. Returns: Narray: The return value is ndarray with adjusted time of parameter specified. """ # Num of frames per second. fl = 24 if (inMat is not None) & (col is not None) & ( time > 0.0): # Time to advance advnc = int(fl * time) tmp = np.arange(advnc, dtype=np.float) last = inMat[col][len(inMat)-1] tmp.fill(float(last)) inMat[col] = np.concatenate((inMat[col][advnc:],tmp)) return inMat def ctd_quality_codes(column=None, p_range=None, qual_code=None, oxy_fit=False, p_qual_col=None, qual_one=None, inMat=None): """ctd_quality_codes function Function takes full NUMPY ndarray with predefined dtype array Args: param1 (ndarray): param2 (float): Returns: Narray: The return value is ndarray with adjusted time of parameter specified. """ #If p_range set apply qual codes to part of array and return if p_range is not None: print("Some algoirythm for formatting qual codes per pressure range") return else: q_df = pd.DataFrame(index=np.arange(len(inMat)), columns=p_qual_col) for pq in p_qual_col: if pq in list(qual_one): q_df[pq] = q_df[pq].fillna(1) elif oxy_fit and pq is column: q_df[pq] = q_df[pq].fillna(2) else: q_df[pq] = q_df[pq].fillna(2) q_nd = q_df.as_matrix(columns=q_df.columns) return q_nd def formatTimeEpoc(time_zone='UTC', time_pattern='%Y-%m-%d %H:%M:%S', input_time = None): """formatTimeEpoc function Function takes pattern of time input, relative time zone, and date time data array and returns array of epoc time. title and the second row are the units for each column. Args: param1 (str): relative time zone for data. param2 (str): pattern of incoming data. param3 (ndarray): input_time, numpy 1d ndarray time array Returns: 1D ndarray: The return array of epoch time """ if input_time is None: print("In formatTimeEpoc: No data entered.") return else: os.environ['TZ'] = 'UTC' epoch_time = input_time for i in range(0,len(input_time)): epoch_time[i] = int(time.mktime(time.strptime(str(input_time[i], "utf-8"), time_pattern))) return epoch_time def dataToDataFrame(inFile): """dataToDataFrame function Function takes full file path to csv type data file and returns a PANDAS dataframe for data treatment with a two row header. Data file should have a two row header. The first row being the column title and the second row are the units for each column. Args: param1 (str): Full path to data file. Returns: DataFrame: The return value is a full dataframe with header. .. REF PAGE: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html#pandas.read_csv """ #df = pd.read_csv(inFile, header=[0,2]) df = pd.read_csv(inFile) return df def dataToNDarray(inFile, dtype=None, names=None, separator=',', skip=None): """dataToNDarray function Function takes full file path to csv type data file and returns NUMPY ndarray type ndarray for data manipulation with a two row header. Data file should have a two row header. The first row being the column title and the second row are the units for each column. Args: param1 (str): inFile, full path to csv file param2 (arr): dtype list param3 (str): separator, default comma ',' Returns: Narray: The return value is a full data ndarray with two row header. Reference Page: https://scipy.github.io/old-wiki/pages/Cookbook/InputOutput.html """ try: return pd.read_pickle(inFile).to_records() except: if skip is None: arr = np.genfromtxt(inFile, delimiter=separator, dtype=dtype, names=names) else: arr = np.genfromtxt(inFile, delimiter=separator, dtype=dtype, names=names, skip_header=skip) return arr def hysteresis_correction(H1=-0.033, H2=5000, H3=1450, inMat = None): """Hysteresis Correction function Function takes data ndarray and hysteresis coefficiants and returns hysteresis corrected oxygen data. Args: param1 (float): H1, hysteresis correction coefficiant 1 param2 (float): H2, hysteresis correction coefficiant 2 param3 (float): H3, hysteresis correction coefficiant 3 param5 (array): inMat, raw ctd data. Returns: array: Return dissolved oxygen hysteresis corrected data. .. REF PAGE: http://http://www.seabird.com/document/an64-3-sbe-43-dissolved-oxygen-do-sensor-hysteresis-corrections """ Oxnewconc = np.arange(0,len(inMat),1) Oxnewconc[0] = inMat['o1_mll'][1] if inMat is None: print("Hysteresis Correction function: No data") return else: for i in range(1,len(inMat)-1): D = 1 + H1 * (math.exp(inMat['p_dbar'][i] / H2) - 1) C = math.exp(-1 * 0.04167/ H3) Oxnewconc[i] = ((inMat['o1_mll'][i] + (Oxnewconc[i-1] * C * D)) - (inMat['o1_mll'][i-1] * C)) / D inMat['o1_mll'][:] = Oxnewconc[:] return inMat def data_interpolater(inArr): """data_interpolater to handle indices and logical indices of NaNs. Input: - inArr, 1d numpy array with return True np.isnans() Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices - interpolated array Example: >>> # linear interpolation of NaNs >>> outArray = data_interpolater(inArr) """ nans, tmp= np.isnan(inArr), lambda z: z.nonzero()[0] inArr[nans] = np.interp(tmp(nans), tmp(~nans), inArr[~nans]) return inArr def o2pl2pkg(p_col, t_col, sal_col, dopl_col, dopkg_col, lat_col, lon_col, inMat): """o2pl2pkg convert ml/l dissolved oxygen to umol/kg Input: - t_col, temperature column header deg c. - sal_col, salinity column header psu. - dopl_col, dissolved column header ml/l. - dopkg_col, dissolved column header umol/kg - lat_col, latitude for entire cast deg. - lon_col, longitude for entire cast deg. - inMat, dtype ndarray processed ctd time data. Output: - Converted Oxygen column umol/kg Example: >>> # linear interpolation of NaNs >>> outArray = o2pl2kg(inArr) """ pkg = np.ndarray(shape=len(inMat), dtype=[(dopkg_col, np.float)]) # Absolute sailinity from Practical salinity. SA = gsw.SA_from_SP(inMat[sal_col], inMat[p_col], inMat[lat_col], inMat[lon_col]) # Conservative temperature from insitu temperature. CT = gsw.CT_from_t(SA, inMat[t_col], inMat[p_col]) s0 = gsw.sigma0(SA, CT) # Potential density from Absolute Salinity g/Kg Conservative temperature deg C. # Convert DO ml/l to umol/kg for i in range(0,len(inMat[dopl_col])): pkg[i] = inMat[dopl_col][i] * 44660 / (s0[i] + 1000) return pkg def oxy_to_umolkg(df_sal, df_pressure, df_lat, df_lon, df_temp, df_oxy): '''Rewritten from Courtney's method to use array-likes (aka use dataframes and ndarrays). ''' # Absolute salinity from Practical salinity. SA = gsw.SA_from_SP(df_sal, df_pressure, df_lat, df_lon) # Conservative temperature from insitu temperature. CT = gsw.CT_from_t(SA, df_temp, df_pressure) s0 = gsw.sigma0(SA, CT) # Potential density from Absolute Salinity g/Kg Conservative temperature deg C. series = df_oxy * 44660 / (s0 + 1000) return series def raw_ctd_filter(input_array=None, filter_type='triangle', win_size=24, parameters=None): """raw_ctd_filter function Function takes NUMPY array of raw ctd data and returns filtered data. This function also needs one of three filter types (boxcar, gaussian, triangle) as well as window size. Args: param1 (ndarray): Numpy ndarray with predefined header with at param2 (str): One of three tested filter types boxcar, gaussian_std, triangle. default is triangle param3 (int): A window size for the filter. Default is 24, which is the number of frames per second from a SBE9+/11 CTD/Dech unit. param4 (ndarray): parameters the dtype names used in filtering the analytical inputs. Returns: Narray: The return value is a matrix of filtered ctd data with the above listed header values. """ if input_array is None: print("In raw_ctd_filter: No data array.") return else: return_array = input_array if parameters is None: print("In raw_ctd_filter: Empty parameter list.") else: for p in parameters: if filter_type is 'boxcar': win = sig.boxcar(win_size) return_array[str(p)] = sig.convolve(input_array[str(p)], win, mode='same')/len(win) elif filter_type is 'gaussian': sigma = np.std(arr) win = sig.general_gaussian(win_size, 1.0, sigma) return_array[str(p)] = sig.convolve(input_array[str(p)], win, mode='same')/(len(win)) elif filter_type is 'triangle': win = sig.triang(win_size) return_array[p] = 2*sig.convolve(input_array[p], win, mode='same')/len(win) return return_array def ondeck_pressure(stacast, p_col, c1_col, c2_col, time_col, inMat=None, conductivity_startup=20.0, log_file=None): """ondeck_pressure function Function takes full NUMPY ndarray with predefined dtype array of filtered ctd raw data the stores, analizes and removes ondeck values from data. Args: param1 (str): stacast, station cast info param1 (str): p_col, pressure data column name param2 (str): c1_col, cond1 data column name param3 (str): c2_col, cond2 data column name param4 (str): time_col, time data column name param5 (ndarray): numpy ndarray with dtype array param6 (float): conductivity_startup, threshold value param7 (str): log_file, log file name Returns: Narray: The return ndarray with ondeck data removed. Also output start/end ondeck pressure. """ start_pressure = [] tmpMat = [] outMat = [] tmp = 0 start_p = 0.0 n = 0 ep = [] end_p = 0.0 # Frequency fl = 24 fl2 = fl*2 # One minute mt = 60 # Half minute ms = 30 time_delay = fl*ms if inMat is None: print("Ondeck_pressure function: No data.") return else: # Searches first quarter of matrix, uses conductivity # threshold min to capture startup pressure for j in range(0,int(len(inMat)/4)): if ((inMat[c1_col][j] < conductivity_startup) and (inMat[c2_col][j] < conductivity_startup)): tmp = j start_pressure.append(inMat[p_col][j]) # Evaluate starting pressures if not start_pressure: start_p = "Started in Water" else: n = len(start_pressure) if (n > time_delay): start_p = np.average(start_pressure[fl2:n-(time_delay)]) else: start_p = np.average(start_pressure[fl2:n]) # Remove on-deck startup inMat = inMat[tmp:] tmp = len(inMat); # Searches last half of NDarray for conductivity threshold if len(inMat) % 2 == 0: inMat_2 = inMat.copy() else: inMat_2 = inMat.iloc[1:].copy() inMat_half1, inMat_half2 = np.split(inMat_2,2) ep = inMat_half2[(inMat_half2[c1_col] < conductivity_startup) & (inMat_half2[c2_col] < conductivity_startup)][p_col] # for j in range(int(len(inMat)*0.5), len(inMat)): # if ((inMat[c1_col][j] < conductivity_startup) and (inMat[c2_col][j] < conductivity_startup)): # ep.append(inMat[p_col][j]) # if (tmp > j): tmp = j # Evaluate ending pressures if (len(ep) > (time_delay)): end_p = np.average(ep[(time_delay):]) else: end_p = np.average(ep[(len(ep)):]) # Remove on-deck ending outMat = inMat[:tmp] # Store ending on-deck pressure report_ctd.report_pressure_details(stacast, log_file, start_p, end_p) return outMat def _roll_filter(df, pressure_column="CTDPRS", direction="down"): #fix/remove try/except once serialization is fixed try: if direction == 'down': monotonic_sequence = df[pressure_column].expanding().max() elif direction == 'up': monotonic_sequence = df[pressure_column].expanding().min() else: raise ValueError("direction must be one of (up, down)") except KeyError: pressure_column = 'CTDPRS' if direction == 'down': monotonic_sequence = df[pressure_column].expanding().max() elif direction == 'up': monotonic_sequence = df[pressure_column].expanding().min() else: raise ValueError("direction must be one of (up, down)") return df[df[pressure_column] == monotonic_sequence] def roll_filter(inMat, p_col, up='down', frames_per_sec=24, search_time=15, **kwargs): """roll_filter function Function takes full NUMPY ndarray with predefined dtype array and subsample arguments to return a roll filtered ndarray. Args: param1 (str): stacast, station cast info param2 (ndarray): inMat, numpy ndarray with dtype array param3 (str): up, direction to filter cast (up vs down) param4 (int): frames_per_sec, subsample selection rate param5 (int): seach_time, search time past pressure inversion Returns: Narray: The return value ndarray of data with ship roll removed """ #When the "pressure sequence" code is fixed, uncomment and use this instead start = kwargs.get("start", 0) end = kwargs.get("end", -1) full_matrix = kwargs.get("full_matrix", inMat) tmp_df = pd.DataFrame.from_records(full_matrix[start:end]) tmp_df = _roll_filter(tmp_df) #return tmp_df.to_records(index=False) return tmp_df remove = [] frequency = 24 # Hz of package if (frames_per_sec > 0) & (frames_per_sec <= 24): sample = int(frequency/frames_per_sec) # establish subsample rate to time ratio else: sample = frequency # Adjusted search time with subsample rate search_time = int(sample*frequency*int(search_time)) if inMat is None: print("Roll filter function: No input data.") return else: P = inMat[p_col] dP = np.diff(P,1) if up is 'down': index_to_remove = np.where(dP < 0)[0] # Differential filter subMat = np.delete(inMat, index_to_remove, axis=0) P = subMat[p_col] tmp = np.array([]) for i in range(0,len(P)-1): if P[i] > P[i+1]: deltaP = P[i+1] + abs(P[i] - P[i+1]) # Remove aliasing k = np.where(P == min(P[i+1:i+search_time], key=lambda x:abs(x-deltaP)))[0] tmp = np.arange(i+1,k[0]+1,1) remove = np.append(remove,tmp) deltaP = 0 elif up is 'up': index_to_remove = np.where(dP > 0)[0] # Differential filter subMat = np.delete(inMat, index_to_remove, axis=0) P = subMat[p_col] tmp = np.array([]) for i in range(0,len(P)-1): if P[i] < P[i+1]: deltaP = P[i+1] - abs(P[i] - P[i+1]) # Remove aliasing k = np.where(P == min(P[i+1:i+search_time], key=lambda x:abs(x-deltaP)))[0] tmp = np.arange(i+1,k[0]+1,1) remove = np.append(remove,tmp) deltaP = 0 subMat = np.delete(subMat,remove,axis=0) return subMat def pressure_sequence(df, p_col='CTDPRS', intP=2.0, startT=-1.0, startP=0.0, up='down', sample_rate=12, search_time=15): """pressure_sequence function Function takes a dataframe and several arguments to return a pressure sequenced data ndarray. Pressure sequencing includes rollfilter. Necessary inputs are input Matrix (inMat) and pressure interval (intP). The other inputs have default settings. The program will figure out specifics for those settings if left blank. Start time (startT), start pressure (startP) and up are mutually exclusive. If sensors are not not fully functional when ctd starts down cast analyst can select a later start time or start pressure but not both. There is no interpolation to the surface for other sensor values. 'up' indicates direction for pressure sequence. If up is set startT and startP are void. Args: param1 (Dataframe: Dataframe containing measurement data param2 (str): p_col, pressure column name param3 (float): starting pressure interval param5 (float): start time (startT) for pressure sequence param6 (float): start pressure (startP) for pressure sequence param7 (str): pressure sequence direction (down/up) param8 (int): sample_rate, sub sample rate for roll_filter. Cleans & speeds processing. param9 (int): search_time, truncate search index for the aliasing part of ship roll. param10 (ndarray): inMat, input data ndarray Returns: Narray: The return value is a matrix of pressure sequenced data todo: deep data bin interpolation to manage empty slices """ # change to take dataframe with the following properties # * in water data only (no need to find cast start/end) # * The full down and up time series (not already split since this method will do it) # New "algorithm" (TODO spell this right) # * if direction is "down", use the input as is # * if direction is "up", invert the row order of the input dataframe # Use the "roll filter" method to get only the rows to be binned # * the roll filter will treat the "up" part of the cast as a giant roll to be filtered out # * the reversed dataframe will ensure we get the "up" or "down" part of the cast # * there is no need to reverse the dataframe again as the pressure binning process will remove any "order" information (it doesn't care about the order) # That's basically all I (barna) have so far TODO Binning, etc... # pandas.cut() to do binning #lenP, prvPrs not used # Passed Time-Series, Create Pressure Series start = 0 # Roll Filter roll_filter_matrix = roll_filter(df, p_col, up, sample_rate, search_time, start=start) df_roll_surface = fill_surface_data(roll_filter_matrix, bin_size=2) #bin_size should be moved into config binned_df = binning_df(df_roll_surface, bin_size=2) binned_df = binned_df.reset_index(drop=True) return binned_df def binning_df(df, **kwargs): '''Bins records according to bin_size, then finds the mean of each bin and returns a df. ''' bin_size = kwargs.get("bin_size", 2) try: labels_in = [x for x in range(0,int(np.ceil(df['CTDPRS_DBAR'].max())),2)] df['bins'] = pd.cut(df['CTDPRS_DBAR'], range(0,int(np.ceil(df['CTDPRS_DBAR'].max()))+bin_size,bin_size), right=False, include_lowest=True, labels=labels_in) df['CTDPRS_DBAR'] = df['bins'].astype('float64') df_out = df.groupby('bins').mean() return df_out except KeyError: labels_in = [x for x in range(0,int(np.ceil(df['CTDPRS'].max())),2)] df['bins'] = pd.cut(df['CTDPRS'], range(0,int(np.ceil(df['CTDPRS'].max()))+bin_size,bin_size), right=False, include_lowest=True, labels=labels_in) df['CTDPRS'] = df['bins'].astype('float64') df_out = df.groupby('bins').mean() return df_out def fill_surface_data(df, **kwargs): '''Copy first scan from top of cast, and propgate up to surface ''' surface_values = [] bin_size = kwargs.get("bin_size", 2) try: for x in range(1, int(np.floor(df.iloc[0]['CTDPRS_DBAR'])), bin_size): surface_values.append(x) df_surface = pd.DataFrame({'CTDPRS_DBAR': surface_values}) df_surface['interp_bol'] = 1 df_merged = pd.merge(df_surface, df, on='CTDPRS_DBAR', how='outer') except KeyError: for x in range(1, int(np.floor(df.iloc[0]['CTDPRS'])), bin_size): surface_values.append(x) df_surface = pd.DataFrame({'CTDPRS': surface_values}) # Added by KJ to keep track of backfilled values df_surface['interp_bol'] = 1 if len(df_surface['interp_bol']) == 1: df_surface['interp_bol'] = 0 df_merged = pd.merge(df_surface.astype('float64'), df, on='CTDPRS', how='outer') if 'interp_bol' not in df_merged.columns: df_merged['interp_bol'] = np.NaN df_merged['interp_bol'].fillna(0,inplace=True) return df_merged.fillna(method='bfill') def load_reft_data(reft_file,index_name = 'btl_fire_num'): """ Loads reft_file to dataframe and reindexes to match bottle data dataframe""" reft_data = pd.read_csv(reft_file,usecols=['btl_fire_num','T90']) reft_data.set_index(index_name) reft_data['SSSCC_TEMP'] = reft_file[-14:-9] reft_data['REFTMP'] = reft_data['T90'] return reft_data def load_salt_data(salt_file, index_name= 'SAMPNO'): salt_data = pd.read_csv(salt_file,usecols = ['SAMPNO','SALNTY','BathTEMP','CRavg']) salt_data.set_index(index_name) salt_data['SSSCC_SALT'] = salt_file[-15:-10] salt_data.rename(columns={'SAMPNO':'SAMPNO_SALT'}, inplace=True) return salt_data def load_btl_data(btl_file,cols=None): """ex. '/Users/k3jackson/p06e/data/bottle/00201_btl_mean.pkl'""" btl_data = dataToNDarray(btl_file,float,True,',',0) btl_data = pd.DataFrame.from_records(btl_data) if cols != None: btl_data = btl_data[cols] ssscc = btl_file[-18:-13] btl_data['SSSCC'] = ssscc return btl_data def load_time_data(time_file): time_data = dataToNDarray(time_file,float,True,',',1) time_data = pd.DataFrame.from_records(time_data) return time_data def calibrate_param(param,ref_param,press,calib,order,ssscc,btl_num,xRange=None,): ### NOTE: REF VALUES DEEMED QUESTIONABLE ARE STILL BEING USED FOR CALIBRATION df_good = quality_check(param,ref_param,press,ssscc,btl_num,find='good') df_ques = quality_check(param,ref_param,press,ssscc,btl_num,find='quest') df_ques['Parameter'] = param.name #report questionable data to a csv file #constrain pressure to within limits of xRange if xRange != None: x0 = int(xRange.split(":")[0]) x1 = int(xRange.split(":")[1]) df_good_cons = df_good[(df_good[press.name] >= x0) & (df_good[press.name] <= x1)] else: #Take full range of temperature values x0 = df_good[param.name].min() x1 = df_good[param.name].max() df_good_cons = df_good[(df_good[param.name] >= x0) & (df_good[param.name] <= x1)] if 'P' in calib: coef = get_param_coef(df_good_cons[press.name],df_good_cons['Diff'],order,calib) elif 'T' or 'C' in calib: coef = get_param_coef(df_good_cons[param.name],df_good_cons['Diff'],order,calib) else: print('calib argument not valid, use CP TP T or C') return coef,df_ques def quality_check(param,param_2,press,ssscc,btl_num,find,thresh=[0.002, 0.005, 0.010, 0.020]): param = fit_ctd.array_like_to_series(param) param_2 = fit_ctd.array_like_to_series(param_2) press = fit_ctd.array_like_to_series(press) ssscc = fit_ctd.array_like_to_series(ssscc) btl_num = fit_ctd.array_like_to_series(btl_num) diff = param_2 - param df = pd.concat([ssscc,btl_num.rename('Bottle'),param.rename('Param_1'),param_2.rename('Param_2'),press.rename('CTDPRS'),diff.rename('Diff')],axis=1) if find == 'good': # Find data values for each sensor that are below the threshold (good) df['Flag'] = 1 #df_range_comp = df_range[(df_range[diff].abs() < threshold)]# & (df_range[d_2].abs() < threshold) & (df_range[d_12].abs() < threshold)] df.loc[(df.CTDPRS > 2000) & (df.Diff.abs() < thresh[0]), 'Flag'] = 2 df.loc[(df.CTDPRS <= 2000) & (df.CTDPRS >1000) & (df.Diff.abs() < thresh[1]), 'Flag'] = 2 df.loc[(df.CTDPRS <= 1000) & (df.CTDPRS >500) & (df.Diff.abs() < thresh[2]), 'Flag'] = 2 df.loc[(df.CTDPRS <= 500) & (df.Diff.abs() < thresh[3]), 'Flag'] = 2 # # Filter out bad values df = df[df['Flag'] == 2] # Rename Columns back to what they were if param.name != None: df.rename(columns = {'Param_1' : param.name}, inplace=True) if param_2.name != None: df.rename(columns = {'Param_2' : param_2.name},inplace=True) if press.name != None: df.rename(columns = {'CTDPRS' : press.name}, inplace=True ) elif find == 'quest': # Find data values for each sensor that are above the threshold (questionable) df['Flag'] = 1 df.loc[(df.CTDPRS > 2000) & (df.Diff.abs() > thresh[0]), 'Flag'] = 3 df.loc[(df.CTDPRS <= 2000) & (df.CTDPRS >1000) & (df.Diff.abs() > thresh[1]), 'Flag'] = 3 df.loc[(df.CTDPRS <= 1000) & (df.CTDPRS >500) & (df.Diff.abs() > thresh[2]), 'Flag'] = 3 df.loc[(df.CTDPRS <= 500) & (df.Diff.abs() > thresh[3]), 'Flag'] = 3 # Filter out good values df = df[df['Flag'] == 3] # Remove unneeded columns df = df.drop(['Param_1','Param_2'],axis=1) # Re-Order Columns for better readability df = df[[ssscc.name,'Bottle',press.name,'Flag','Diff']] else: print('Find argument not valid, please enter "good" or "quest" to find good or questionable values') return df def get_param_coef(calib_param,diff,order,calib): cf1 = np.polyfit(calib_param, diff, order) if 'T' in calib: coef = np.zeros(shape=5) if order is 0: coef[4] = cf1[0] elif (order is 1) and (calib == 'TP'): coef[1] = cf1[0] coef[4] = cf1[1] elif (order is 2) and (calib == 'TP'): coef[0] = cf1[0] coef[1] = cf1[1] coef[4] = cf1[2] elif (order is 1) and (calib == 'T'): coef[3] = cf1[0] coef[4] = cf1[1] elif (order is 2) and (calib == 'T'): coef[2] = cf1[0] coef[3] = cf1[1] coef[4] = cf1[2] if 'C' in calib: coef = np.zeros(shape=7) if order is 0: coef[6] = cf1[0] elif (order is 1) and (calib == 'CP'): coef[1] = cf1[0] coef[6] = cf1[1] elif (order is 2) and (calib == 'CP'): coef[0] = cf1[0] coef[1] = cf1[1] coef[6] = cf1[2] elif (order is 1) and (calib == 'C'): coef[5] = cf1[0] coef[6] = cf1[1] elif (order is 2) and (calib == 'C'): coef[4] = cf1[0] coef[5] = cf1[1] coef[6] = cf1[2] return coef def combine_quality_flags(df_list): combined_df = pd.concat(df_list) combined_df = combined_df.sort_values(['SSSCC','Bottle']) combined_df = combined_df.round(4) return combined_df #Combine these three into a dataframe and write out to a csv #Sort by sta/cast, bottle number, rev. press def calibrate_conductivity(df,order,calib_param,sensor,xRange=None, refc_col='BTLCOND',cond_col_1='CTDCOND1',cond_col_2='CTDCOND2', p_col='CTDPRS'):#refc_data ### NOTE: REF VALUES DEEMED QUESTIONABLE ARE STILL BEING USED FOR CALIBRATION if sensor == 1: postfix = 'c1' cond_col = 'CTDCOND1' t_col = 'CTDTMP1' elif sensor ==2: postfix = 'c2' cond_col = 'CTDCOND2' t_col = 'CTDTMP2' else: print('No sensor name supplied, difference column name will be: diff') if calib_param == 'P': calib_col = p_col elif calib_param == 'T': calib_col = t_col elif calib_param == 'C': calib_col = cond_col else: print('No calib_param supplied') diff = 'd_'+postfix #Difference between ref and prim sensor # Calculate absolute differences between sensors and salt sample data #df[diff] = refc_data[refc_col] - df[cond_col] df[diff] = df[refc_col] - df[cond_col] #df['primary_diff'] = refc_data[refc_col] - df[cond_col_1] df['primary_diff'] = df[refc_col] - df[cond_col_1] #df['secondary_diff'] = refc_data[refc_col] - df[cond_col_2] df['secondary_diff'] = df[refc_col] - df[cond_col_2] df['P-S'] = df[cond_col_1] - df[cond_col_2] #Greater than 2000 dBar lower_lim = 2000 upper_lim = df[p_col].max() threshold = 0.002 df_deep_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_deep_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_deep_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #Between 2000 and 1000 lower_lim = 1000 upper_lim = 2000 threshold = 0.005 df_lmid_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_lmid_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_lmid_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #Between 1000 and 500 lower_lim = 500 upper_lim = 1000 threshold = 0.010 df_umid_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_umid_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_umid_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #Less than 500 lower_lim = df[p_col].min() - 1 upper_lim = 500 threshold = 0.020 df_shal_good = quality_check(df,diff,lower_lim,upper_lim,threshold) df_shal_ques = quality_check(df,diff,lower_lim,upper_lim,threshold,find='quest') df_shal_ref = quality_check(df,diff,lower_lim,upper_lim,threshold,find='ref') #concat dataframes into two main dfs df_good = pd.concat([df_deep_good,df_lmid_good,df_umid_good,df_shal_good]) df_ques = pd.concat([df_deep_ques,df_lmid_ques,df_umid_ques,df_shal_ques]) df_ref = pd.concat([df_deep_ref,df_lmid_ref,df_umid_ref,df_shal_ref]) if sensor == 1: df_ques['Parameter'] = 'C1' df_ques['Flag'] = 3 df_ref['Parameter'] = 'C' df_ref['Flag'] = 3 elif sensor == 2: df_ques['Parameter'] = 'C2' df_ques['Flag'] = 3 df_ref['Flag'] = 3 if xRange != None: x0 = int(xRange.split(":")[0]) x1 = int(xRange.split(":")[1]) df_good_cons = df_good[(df_good[calib_col] >= x0) & (df_good[calib_col] <= x1)] else: #Take full range of temperature values # x0 = df_good[t_col].min() # x1 = df_good[t_col].max() df_good_cons = df_good#[(df_good[calib_col] >= x0) & (df_good[calib_col] <= x1)] cf = np.polyfit(df_good_cons[calib_col], df_good_cons[diff], order) sensor = '_c'+str(sensor) coef = np.zeros(shape=7) if order is 0: coef[6] = cf[0] elif (order is 1) and (calib_param == 'P'): coef[1] = cf[0] coef[6] = cf[1] elif (order is 2) and (calib_param == 'P'): coef[0] = cf[0] coef[1] = cf[1] coef[6] = cf[2] elif (order is 1) and (calib_param == 'T'): coef[3] = cf[0] coef[6] = cf[1] elif (order is 2) and (calib_param == 'T'): coef[2] = cf[0] coef[3] = cf[1] coef[6] = cf[2] elif (order is 1) and (calib_param == 'C'): coef[5] = cf[0] coef[6] = cf[1] elif (order is 2) and (calib_param == 'C'): coef[4] = cf[0] coef[5] = cf[1] coef[6] = cf[2] return coef,df_ques,df_ref def prepare_fit_data(df,ref_col): good_data = df.copy() good_data = good_data[np.isfinite(good_data[ref_col])] return good_data def prepare_conductivity_data(ssscc,df,refc,ssscc_col = 'SSSCC',index_col = 'btl_fire_num'): btl_concat = pd.DataFrame() for x in ssscc: btl_data = df[df[ssscc_col] == x] refc_data = refc[refc[ssscc_col] == x] btl_data_clean = prepare_fit_data(btl_data,refc_data,'C') btl_concat = pd.concat([btl_concat,btl_data_clean]) refc = refc[refc[index_col] != 0] refc = refc.reset_index(drop=True) btl_concat = btl_concat.reset_index(drop=True) return btl_concat, refc def prepare_all_fit_data(ssscc,df,ref_data,param): data_concat = pd.DataFrame() for x in ssscc: btl_data = df[df['SSSCC']==x] ref_data_stn= ref_data[ref_data['SSSCC']==x] btl_data_good = prepare_fit_data(btl_data,ref_data_stn,param) data_concat = pd.concat([data_concat,btl_data_good]) return data_concat def get_pressure_offset(start_vals,end_vals): """ Finds unique values and calclates mean for pressure offset Parameters ---------- start_vals :array_like Array containing initial ondeck pressure values end_vals :array_like Array containing ending ondeck pressure values Returns ------- p_off :float Average pressure offset """ p_start = pd.Series(np.unique(start_vals)) p_end = pd.Series(np.unique(end_vals)) p_start = p_start[p_start.notnull()] p_end = p_end[p_end.notnull()] p_off = p_start.mean() - p_end.mean() # <NAME> THIS METHOD SHOULD BE USED TO KEEP START END PAIRS # p_df = pd.DataFrame() # p_df['p_start'] = p_start # p_df['p_end'] = p_end # p_df = p_df[p_df['p_end'].notnull()] # p_df = p_df[p_df['p_start'].notnull()] # p_off = p_df['p_start'].mean() - p_df['p_end'].mean() ########################################################## p_off = np.around(p_off,decimals=4) return p_off def load_pressure_logs(file): """ Loads pressure offset file from logs. Parameters ---------- file : string Path to ondeck_pressure log Returns ------- df : DataFrame Pandas DataFrame containing ondeck start and end pressure values """ df = pd.read_csv(file,names=['SSSCC','ondeck_start_p','ondeck_end_p']) # Change vaules in each row by removing non-number parts df['SSSCC'] = df['SSSCC'].str[-5:] df['ondeck_start_p'] = df['ondeck_start_p'].str[16:] df['ondeck_end_p'] = df['ondeck_end_p'].str[14:] df.loc[df['ondeck_start_p'].str[-5:] == 'Water','ondeck_start_p'] = np.NaN df['ondeck_start_p'] = df['ondeck_start_p'].astype(float) df['ondeck_end_p'] = df['ondeck_end_p'].astype(float) return df def write_offset_file(df,p_off,write_file='data/logs/poffset_test.csv'): """ """ df_out = pd.DataFrame() df_out['SSSCC'] = df['SSSCC'] df_out['offset'] = p_off df_out.to_csv(write_file,index=False) return def pressure_calibrate(file): pressure_log = load_pressure_logs(file) p_off = get_pressure_offset(pressure_log) return p_off def load_hy_file(path_to_hyfile): df = pd.read_csv(path_to_hyfile, comment='#', skiprows=[0]) df = df[df['EXPOCODE'] != 'END_DATA'] return df def load_all_ctd_files(ssscc,prefix,postfix,series,cols,reft_prefix='data/reft/',reft_postfix='_reft.csv', refc_prefix='data/salt/',refc_postfix='_salts.csv',press_file='data/logs/ondeck_pressure.csv', cast_details = 'data/logs/cast_details.csv', oxy_prefix='data/oxygen/', oxy_postfix='',index_col='btl_fire_num',t_col='CTDTMP1', p_col='CTDPRS',ssscc_col='SSSCC'): """ LOAD ALL CTD FILES was changed (commented out) Lines 1324-1328,1335,1337, 1338,345 """ df_data_all = pd.DataFrame() if series == 'bottle': for x in ssscc: print('Loading BTL data for station: ' + x + '...') btl_file = prefix + x + postfix btl_data = load_btl_data(btl_file,cols) reft_file = reft_prefix + x + reft_postfix try: reft_data = load_reft_data(reft_file) except FileNotFoundError: print('Missing (or misnamed) REFT Data Station: ' + x + '...filling with NaNs') reft_data = pd.DataFrame() reft_data[index_col] = pd.Series(btl_data[index_col].values.astype(int)) reft_data['T90'] = pd.Series([np.nan]*len(btl_data)) ref_ssscc = ssscc_col + '_TEMP' reft_data[ref_ssscc] = x reft_data.index = btl_data.index #refc_file = refc_prefix + x + refc_postfix refc_file = refc_prefix + x + refc_postfix try: #refc_data = fit_ctd.salt_calc(refc_file,index_col,t_col,p_col,btl_data) refc_data = load_salt_data(refc_file, index_name= 'SAMPNO') except FileNotFoundError: print('Missing (or misnamed) REFC Data Station: ' + x + '...filling with NaNs') refc_data = pd.DataFrame() refc_data['SAMPNO_SALT'] = pd.Series(btl_data[index_col].values.astype(int)) refc_data['CRavg'] = pd.Series([np.nan]*len(btl_data)) refc_data['BathTEMP'] = pd.Series([np.nan]*len(btl_data)) refc_data['BTLCOND'] = pd.Series([np.nan]*len(btl_data)) refc_data.index = btl_data.index #Fix Index for each parameter to bottle number # btl_data[index_col] = btl_data[index_col].astype(int) # btl_data=btl_data.set_index(btl_data[index_col].values) # # reft_data = reft_data.set_index(reft_data[index_col].values) oxy_file = oxy_prefix + x + oxy_postfix try: oxy_data,params = oxy_fitting.oxy_loader(oxy_file) except FileNotFoundError: print('Missing (or misnamed) REFO Data Station: ' + x + '...filling with NaNs') oxy_data =
pd.DataFrame()
pandas.DataFrame
from io import BytesIO import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm def test_compression_roundtrip(compression): df = pd.DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) with tm.ensure_clean() as path: df.to_json(path, compression=compression) tm.assert_frame_equal(df, pd.read_json(path, compression=compression)) # explicitly ensure file was compressed. with tm.decompress_file(path, compression) as fh: result = fh.read().decode("utf8") tm.assert_frame_equal(df, pd.read_json(result)) def test_read_zipped_json(datapath): uncompressed_path = datapath("io", "json", "data", "tsframe_v012.json") uncompressed_df = pd.read_json(uncompressed_path) compressed_path = datapath("io", "json", "data", "tsframe_v012.json.zip") compressed_df = pd.read_json(compressed_path, compression="zip") tm.assert_frame_equal(uncompressed_df, compressed_df) @td.skip_if_not_us_locale def test_with_s3_url(compression, s3_resource, s3so): # Bucket "pandas-test" created in tests/io/conftest.py df = pd.read_json('{"a": [1, 2, 3], "b": [4, 5, 6]}') with tm.ensure_clean() as path: df.to_json(path, compression=compression) with open(path, "rb") as f: s3_resource.Bucket("pandas-test").put_object(Key="test-1", Body=f) roundtripped_df = pd.read_json( "s3://pandas-test/test-1", compression=compression, storage_options=s3so ) tm.assert_frame_equal(df, roundtripped_df) def test_lines_with_compression(compression): with tm.ensure_clean() as path: df = pd.read_json('{"a": [1, 2, 3], "b": [4, 5, 6]}') df.to_json(path, orient="records", lines=True, compression=compression) roundtripped_df = pd.read_json(path, lines=True, compression=compression) tm.assert_frame_equal(df, roundtripped_df) def test_chunksize_with_compression(compression): with tm.ensure_clean() as path: df = pd.read_json('{"a": ["foo", "bar", "baz"], "b": [4, 5, 6]}') df.to_json(path, orient="records", lines=True, compression=compression) with pd.read_json( path, lines=True, chunksize=1, compression=compression ) as res: roundtripped_df = pd.concat(res) tm.assert_frame_equal(df, roundtripped_df) def test_write_unsupported_compression_type(): df = pd.read_json('{"a": [1, 2, 3], "b": [4, 5, 6]}') with tm.ensure_clean() as path: msg = "Unrecognized compression type: unsupported" with pytest.raises(ValueError, match=msg): df.to_json(path, compression="unsupported") def test_read_unsupported_compression_type(): with
tm.ensure_clean()
pandas._testing.ensure_clean
from datetime import datetime from pathlib import Path import numpy as np import pandas as pd from tqdm import tqdm from pyconsolida.budget_reader import read_full_budget from pyconsolida.postdoc_fix_utils import ( check_consistency_of_matches, fix_tipologie_df, isinlist, ) DIRECTORY = Path(r"C:\Users\lpetrucco\Desktop\Sostenibilità_biennio19_20") dest_dir = DIRECTORY / "exported_luigi" dest_dir.mkdir(exist_ok=True) # Trova tutti i file analisi: file_analisi_list = list(DIRECTORY.glob("[0-9]*[0-9]*[0-9]*[0-9]/*nalisi*.xls")) settori_map = pd.read_excel(DIRECTORY / "settori_map.xlsx").set_index("commessa") tipologie_map = pd.read_excel(DIRECTORY / "tipologie_map.xlsx").set_index("da") tipologie_fix = pd.read_excel(DIRECTORY / "tipologie_fix.xlsx") categorie_map =
pd.read_excel(DIRECTORY / "categorie_map.xlsx")
pandas.read_excel
# -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : <NAME> # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD import requests import pandas as pd import datetime import numpy as np import os from matplotlib import pyplot import matplotlib.dates as mdates import matplotlib.ticker as ticker import calendar def get_extracted_data_from_restful(ms, year, parcel_id, api_user, api_pass, tstype, ptype): was_error = False if ms == "be-wa": ms = "bewa" if ptype == "": url = "http://cap.users.creodias.eu/query/parcelTimeSeries?aoi=" + ms + "&year=" + str(year) + "&pid=" + str(parcel_id) + "&tstype=" + tstype + "&scl=True&ref=True" else: url = "http://cap.users.creodias.eu/query/parcelTimeSeries?aoi=" + ms + "&year=" + str(year) + "&pid=" + str(parcel_id) + "&ptype=" + ptype + "&tstype=" + tstype + "&scl=True&ref=True" print(url) # response = requests.get(url, auth=(api_user, api_pass)) try: response = requests.get(url, auth=(api_user, api_pass)) print(response) if response.status_code == 404 or response.status_code == 500: was_error = True df = pd.DataFrame() else: df = pd.read_json(response.text) if not df.empty: if tstype == "c6": df['date_part']=df['date_part'].map(lambda e: datetime.datetime.fromtimestamp(e)) df['orbit'] = df['date_part'].apply(lambda s: 'D' if s.hour < 12 else 'A') df['date'] = df['date_part'].apply(lambda s: s.date()) if tstype == "bs": df['date_part']=df['date_part'].map(lambda e: datetime.datetime.fromtimestamp(e)) df['orbit'] = df['date_part'].apply(lambda s: 'D' if s.hour < 12 else 'A') df['date'] = df['date_part'].apply(lambda s: s.date()) # convert backscatters to decibels # df['mean'] = df['mean'].map(lambda s: 10.0*np.log10(s)) else: # create an Empty DataFrame object df = pd.DataFrame() except requests.exceptions.HTTPError as errh: was_error = True print ("Http Error:",errh) except requests.exceptions.ConnectionError as errc: was_error = True print ("Error Connecting:",errc) except requests.exceptions.Timeout as errt: was_error = True print ("Timeout Error:",errt) except requests.exceptions.RequestException as err: was_error = True print ("OOps: Something Else",err) if was_error: df = pd.DataFrame() return url, df, was_error def get_extracted_data_from_db(host : str, port : str, dbname : str, user : str, password : str, sql_select : str) -> pd.DataFrame : """ Summary : This function connects with the database and run the SQL query that is passed as a parameter. The query extracts time series of sentinel data formatted according to the marker detection tool requirements. A single, a subset or the whole set of parcels is retrieved according to the SQL based on the parameters set by the user. The result is stored in a dataframe and an index is set using the db id and the timestamp of the image. Database creadential are needed (that is different from Restful). Arguments : host - IP address of the database server port - port of the database (usually, 5432) dbname - name of the database where data is stored user - database user (with access privilege to the parcel, hist, sigs and metadata tables) password - <PASSWORD> sql_select - sql query that retrive the desired data. It is passed as a parament by the function that calls get_extracted_data_from_db. Returns : A data frame with all sentinel data ready to be used by the preprocessing and marker detection modules. """ # I connect with the db and check id the connection works fine conn = None try: conn = psycopg2.connect(host=host, port=port, dbname= dbname, user= user, password= password) print("Connection to DB established") except (Exception, psycopg2.DatabaseError) as error: print(error) # I execute the query and copy the data it in a panda dataframe that # I create with the same colums returned by the SQL statement cur = conn.cursor() cur.execute(sql_select) data_ts = cur.fetchall() col = [] for x in cur.description: col.append(x[0]) ts_db = pd.DataFrame(data=data_ts, columns = col) # I close the connection cur.close() conn.close() # I set the index (parcel id as in the db + datetime of the images) ts_db.set_index(['db_id', 'obstime'], inplace=True, verify_integrity=True) return ts_db def get_parcel_data_from_restful(ms, year, parcel_id, api_user, api_pass, ptype): was_error = False if ms == "be-wa": ms = "bewa" if ptype == "": url = "http://cap.users.creodias.eu/query/parcelById?aoi=" + ms + "&year=" + str(year) + "&pid=" + str(parcel_id) + "&withGeometry=True" else: url = "http://cap.users.creodias.eu/query/parcelById?aoi=" + ms + "&year=" + str(year) + "&pid=" + str(parcel_id) + "&ptype=" + ptype + "&withGeometry=True" print(url) try: response = requests.get(url, auth=(api_user, api_pass)) print(response) if response.status_code == 404 or response.status_code == 500: was_error = True df = pd.DataFrame() else: df = pd.read_json(response.text) except requests.exceptions.HTTPError as errh: was_error = True print ("Http Error:",errh) except requests.exceptions.ConnectionError as errc: was_error = True print ("Error Connecting:",errc) except requests.exceptions.Timeout as errt: was_error = True print ("Timeout Error:",errt) except requests.exceptions.RequestException as err: was_error = True print ("OOps: Something Else",err) if was_error: df = pd.DataFrame() return url, df, was_error def get_cloudyness(cloud_stats, cloud_categories): is_cloudy = False cloudy_pixels = 0 total_pixels = 0 keys = [*cloud_stats] for key in keys: if int(key) in cloud_categories: is_cloudy = True cloudy_pixels += cloud_stats[key] total_pixels += cloud_stats[key] else: total_pixels += cloud_stats[key] if total_pixels > 0: # cloud_percent = int(round(cloudy_pixels / total_pixels *100,0)) cloud_percent = round(cloudy_pixels / total_pixels *100,4) else: cloud_percent = None return is_cloudy, cloud_percent def get_utm_number_from_reference(ref): return int(ref.split('_')[5][1:3]) def calculate_ndvi_std_from_band_mean_and_std(red_mean,nir_mean,red_std,nir_std): ndvi_std = 2 * np.sqrt((nir_mean*red_std)**2 + (red_mean*nir_std)**2) / (nir_mean + red_mean)**2 return ndvi_std def calculate_ndvi_and_cloud_percent_for_the_parcel(df_ext, cloud_categories): # we make a copy first of the dataframe passed to this function to avoid changing the original # dataframe df = df_ext.copy() # Convert the epoch timestamp to a datetime df['date_part']=df['date_part'].map(lambda e: datetime.datetime.fromtimestamp(e)) df['cloud_pct'] = df['hist'].apply(lambda s: get_cloudyness(s, cloud_categories)[1]) bands = ['B04', 'B08'] # Check if extraction exists for these bands 4 and 8 for NDVI calculation, otherwise quit length_of_band0 = len(df[df['band']==bands[0]]) length_of_band1 = len(df[df['band']==bands[1]]) if length_of_band0>0 and length_of_band1>0: # Treat each band separately. df0 = df[df['band']==bands[0]][['date_part', 'mean', 'count', 'std', 'cloud_pct', 'reference']] df1 = df[df['band']==bands[1]][['date_part', 'mean', 'count', 'std', 'cloud_pct', 'reference']] # Merge back into one DataFrame based on reference that should be unique dff = pd.merge(df0, df1, on = 'reference', suffixes = (bands[0], bands[1])) dff['ndvi'] = (dff[f"mean{bands[1]}"]-dff[f"mean{bands[0]}"])/(dff[f"mean{bands[1]}"]+dff[f"mean{bands[0]}"]) dff['utm_number'] = dff['reference'].apply(lambda s: get_utm_number_from_reference(s)) dff['ndvi_std'] = dff.apply(lambda x: calculate_ndvi_std_from_band_mean_and_std(x.meanB04,x.meanB08,x.stdB04,x.stdB08), axis=1)
pd.set_option('precision', 3)
pandas.set_option
import numpy as np from scipy.stats import poisson #lr1,lr2 = [int(x) for x in input().strip().split()] #lrr1,lrr2 = [int(x) for x in input().strip().split()] #reward = [10,-2] gamma = 0.9 V = np.zeros([20+1,20+1]) pie = np.zeros([20+1,20+1]) class samples: def __init__(self,l1,l2,ep = 0.01): self.ep = ep self.probs1 = self.sample(l1) self.probs2 = self.sample(l2) def sample(self,lam): d = [] i = 0 flag=False s = 0 while True: prob = poisson.pmf(i,lam) if prob>=self.ep: flag=True s+=prob d.append([i,prob]) i+=1 if prob<self.ep and flag: break s = (1-s)/len(d) d = [(i,j+s) for i,j in d] return d locA = samples(3,3) locB = samples(4,2) def max_cars(): return 20 def state_action_value(state1,state2,action,V,gamma): new_state = [max(0,min(state1-action,max_cars())),max(0,min(state2+action,max_cars()))] val = -2*abs(action) for kA1,vA1 in locA.probs1: for kB1,vB1 in locB.probs1: for kA2,vA2 in locA.probs2: for kB2,vB2 in locB.probs2: val_req = [min(new_state[0],kA1),min(new_state[1],kB1)] probs = vA1*vB1*vA2*vB2 reward = sum(val_req)*10 new_s = [max(0,min(new_state[0]-val_req[0]+kA2,max_cars())),max(0,min(new_state[1]+val_req[1]+kB2,max_cars()))]#;print(new_state) val+= probs*(reward+gamma*V[int(new_s[0]),int(new_s[1])]) return val # def transition(state1,state2,action,r): # s_ = state1-action # s2_= state2+action # s_,s2_ = state(s_,s2_) # r += -2*abs(action) # return s_,r,s2_ def policy_evaluation(V,pie,theta): while True: delta=0 for s1 in range(0,21): for s2 in range(0,21): v = V[s1,s2] action = pie[s1,s2] V[s1,s2] = state_action_value(s1,s2,action,V,0.9) delta = max(delta,np.abs(v-V[s1,s2])) print("one",delta) if delta<theta: break def policy_iteration(V,pie): stable = True for i in range(21): for j in range(21): old = pie[i,j] val = [] t1 = min(i,5) t2 = -min(j,5) for action in range(t2,t1+1): v = state_action_value(i,j,action,V,0.9) val.append([v,action]) action = sorted(val,key=lambda x: x[0])[-1][1] pie[i,j] = action if old!=pie[i,j] and abs(V[i,j]-val[-1][0])>0.1: stable = False return stable import seaborn as sns def policy_improvement(V,pie,theta): while True: policy_evaluation(V,pie,theta) print("ok") theta = theta/2 stable = policy_iteration(V,pie) if stable: break policy_improvement(V,pie,50) import cv2 import numpy as np img =np.clip(np.load(r"C:\Users\Akshay\Desktop\img.npy"),0,1) imgcorr =np.clip(np.load(r"C:\Users\Akshay\Desktop\imgcorr.npy"),0,1) cv2.imshow("ff",2*img) ax = sns.heatmap(imgcorr) import matplotlib.pyplot as plt plt.savefig("av.png") track=np.zeros(shape=[1000,1000]) track[500:,500:] = 1 plt.imshow(track) import cv2 class Track_simulator: def __init__(self,size,s_len,f_len,max_speed): self.size = size self.s_len = s_len self.f_len = f_len self.max_speed = max_speed self.real_track = self.make_track() def make_track(self): track = np.zeros(self.size) #track[self.s_len:,self.f_len:] = 1 real_track = np.ones([self.size[0]+4*self.max_speed,self.size[1]+4*self.max_speed]) real_track[2*self.max_speed:-2*self.max_speed,2*self.max_speed:-2*self.max_speed] = track return real_track def reset_speed(self): self.Vx = 0 self.Vy = 0 def is_boundry(self,i,j): return self.real_track[i][j]==1 def show_track(self): plt.imshow(self.real_track) def is_finish(self,i,j): f_i = self.size[0]+2*self.max_speed-1 f_j_min = 2*self.max_speed f_j_max = f_j_min+self.f_len-1 return i>=f_i and f_j_min<=j<=f_j_max # def rand_start(self): # start = np.random.randint(low=0,high=self.s_len) # start_index = start+2*self.max_speed # return start_index,self.size[0]+2*self.max_speed-2 def is_start(self,i,j): s_j = self.size[1]+2*self.max_speed-1 s_i_min = 2*self.max_speed s_i_max = s_i_min+self.s_len-1 return j==s_j and s_i_min<=i<=s_i_max def take_action(self,action,i,j): vx = self.Vx+action[0] vy = self.Vy+action[1] if (vx<=0 or vy<=0) and not self.is_start(i,j): return self.Vx,self.Vy self.Vx = max(min(vx,self.max_speed-1),0) self.Vy = max(min(vy,self.max_speed-1),0) return self.Vx,self.Vy def s_point_loc(self,x): i = 2*self.max_speed+x j = self.size[1]+2*self.max_speed-1 return i,j def rand_start(self): x = np.random.randint(low=0,high=self.s_len) return self.s_point_loc(x) class MonteCarlo: def __init__(self,num_sim,gamma=1): self.track = Track_simulator([50]*2,10,20,5) self.policy = np.zeros([*self.track.real_track.shape],dtype=int) self.action_value = np.random.uniform(size=[*self.track.real_track.shape,9]) self.index_to_action = [[i,j] for i in range(-1,2) for j in range(-1,2)] self.action_to_index = {str(self.index_to_action[i]):i for i in range(0,len(self.index_to_action))} self.policy = np.argmax(self.action_value,axis=2) self.num_sim = num_sim self.b = 1/9 self.gamma = gamma def rand_action(self): x = np.random.choice([-1,0,1]) y = np.random.choice([-1,0,1]) return x,y def create_chain(self,start): self.track.reset_speed() chain = [] mini = [] i,j=start while True: x,y = self.rand_action() mini.append([i,j]) mini.append([x,y]) mini.append(-1) Vx,Vy = self.track.take_action([x,y],i,j) i+=Vx j-=Vy chain.append(mini) mini = [] if self.track.is_finish(i,j): break if self.track.is_boundry(i,j): self.track.reset_speed() i,j = self.track.rand_start() return chain def arg_max(self,arr,i,j): index = [] val = np.max(arr[i,j]) for k in range(len(arr[i,j])): if arr[i,j,k]==val: index.append(k) return index def Off_policy(self): # This off policy Monte Carlo sampling uses per decision importance sampling s = 0 count = np.zeros_like(self.action_value) for episode in range(self.num_sim): G = 0 s = s%self.track.s_len i,j = self.track.s_point_loc(s) chain = self.create_chain([i,j]) for stateT,actionT,rewardT in chain[::-1]: G = self.gamma*G+rewardT actionT = self.action_to_index[str(actionT)] count[stateT[0],stateT[1],actionT]+=1 t=count[stateT[0],stateT[1],actionT] self.action_value[stateT[0],stateT[1],actionT]+=(G-self.action_value[stateT[0],stateT[1],actionT])/t index = self.arg_max(self.action_value,stateT[0],stateT[1]) max_action = actionT if actionT in index else index[0] self.policy[stateT[0],stateT[1]] = max_action W = 1/self.b if max_action==actionT else 0 G = W*G s+=1 print("Episode:",episode) def show(self,i,j): temp = self.track.real_track.copy() temp[i,j] = 10 cv2.imshow("playing with the policy",temp) return cv2.waitKey(10) & 0xFF == ord('q') def play(self,rand_start=True,pos=0): self.track.reset_speed() if rand_start: loc = self.track.rand_start() else: loc = self.track.s_point_loc(pos) while True: close = self.show(*loc) if close: break action = self.policy[loc[0],loc[1]] action = self.index_to_action[action] Vx,Vy = self.track.take_action(action,*loc) #print(action,Vx,Vy) loc = loc[0]+Vx,loc[1]-Vy if self.track.is_finish(*loc): print("FINISHED") break if self.track.is_boundry(*loc): self.track.reset_speed() loc = self.track.rand_start() #print("Boundry Hit. New location is",loc,self.track.real_track[loc[0],loc[1]]) # def MCES_Every_Visit(self,): # #t = Track_simulator([10**3]*2,100,500,5) #t.show_track() d = MonteCarlo(100000) ipolicy = d.policy.copy() #f = d.create_chain(d.track.rand_start()) d.Off_policy() d.play(False,pos=11) #import gc #gc.collect() def pl(chain): for i in chain: temp = d.track.real_track.copy() temp[i[0],i[1]]=10 cv2.imshow("track",temp) cv2.waitKey(0) yield 1 k = pl(f) while True: next(k) # ============================================================================= # # ============================================================================= import pygame import sys import time class Grid_WorldSim: def __init__(self,height,width,start_loc,finish_loc,actions,reward=-1,shift=None,kings_move=False): self.shift = [0]*width if shift==None else shift self.height = height self.width = width self.start_loc = start_loc self.finish_loc = finish_loc self.grid = self.make_grid() self.r = reward self.actions = actions self.num_actions = len(self.actions) self.reset_loc() self.kings_move=kings_move def reset_loc(self): self.x_loc,self.y_loc = self.start_loc[0]+1,self.start_loc[1]+1 def ActionVal_init(self): action_val = 0*np.random.uniform(low = 0,high = 1,size = [self.height+2,self.width+2,self.num_actions]) action_val[self.finish_loc[0]+1,self.finish_loc[1]+1] = 0 return action_val def make_grid(self): grid = np.zeros([self.height,self.width]) grid[self.finish_loc[0],self.finish_loc[1]]=-1 sudo_grid = np.ones([self.height+2,self.width+2]) sudo_grid[1:self.height+1,1:self.width+1] = grid return sudo_grid def is_finished(self,i,j): return self.grid[i,j]==-1 def is_boundry(self,i,j): return self.grid[i,j]==1 def apply_wind(self,x,y): stoc_move = 0 if self.kings_move: stoc_move = np.random.choice([-1,0,1]) x_ = x x_ -= self.shift[y-1]+stoc_move if 0<x_<=self.height and 0<y<self.width: x = x_ return x,y def starting_state(self): return self.start_loc[0]+1,self.start_loc[1]+1 def simulate(self,action): action = self.actions[action] x_temp,y_temp = self.apply_wind(self.x_loc,self.y_loc) if not self.is_boundry(x_temp,y_temp): self.x_loc,self.y_loc = x_temp,y_temp x_temp,y_temp=self.x_loc+action[0],self.y_loc+action[1] if not self.is_boundry(x_temp,y_temp): self.x_loc,self.y_loc = x_temp,y_temp return self.r,[self.x_loc,self.y_loc] class TDZero: def __init__(self,simulation,num_episodes,epsilon=0.1,alpha=0.5,gamma=1): self.simulation = simulation self.epsilon = epsilon self.alpha = alpha self.gamma = gamma self.num_episodes = num_episodes self.action_val = self.simulation.ActionVal_init() self.policy = np.argmax(self.action_val,axis=2) self.num_action = self.simulation.num_actions def action(self,state): if self.epsilon>0: probs = self.epsilon/self.num_action rand = np.random.uniform() if rand<=self.epsilon: action = np.random.choice(range(self.num_action)) else: action = self.policy[state[0],state[1]] if action==self.policy[state[0],state[1]]: return action,1-self.epsilon+probs else: return action,probs else: return self.policy[state[0],state[1]],1 def Learn(self): t = 0 for episode in range(self.num_episodes): self.simulation.reset_loc() state = self.simulation.starting_state() action = self.action(state)[0] while True: r,new_state = self.simulation.simulate(action) new_action = self.action(new_state)[0] Q = self.action_val[state[0],state[1],action] Q_next = self.action_val[new_state[0],new_state[1],new_action] self.action_val[state[0],state[1],action]+=self.alpha*(r+self.gamma*Q_next-Q) self.policy[state[0],state[1]] = np.argmax(self.action_val[state[0],state[1]]) state = new_state action = new_action t+=1 if self.simulation.is_finished(*state): break print("Episode:",episode,"Time Steps Taken",t) def play(self,rand_start=True,pos=0): global SCREEN, CLOCK, GRID, HEIGHT, WIDTH, blockSize, BLACK, WHITE, GREEN, RED BLACK = (0, 0, 0) WHITE = (200, 200, 200) WHITE = (255, 255, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) pygame.init() GRID = self.simulation.grid.copy() blockSize = 20 WINDOW_HEIGHT, WINDOW_WIDTH = GRID.shape[0]*blockSize, GRID.shape[1]*blockSize SCREEN = pygame.display.set_mode((WINDOW_WIDTH,WINDOW_HEIGHT)) CLOCK = pygame.time.Clock() SCREEN.fill(BLACK) HEIGHT,WIDTH = GRID.shape[0], GRID.shape[1] self.simulation.reset_loc() state = self.simulation.starting_state() count=0 while True: GRID = self.simulation.grid.copy() GRID[state[0],state[1]] = 10 self.main() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() pygame.display.update() SCREEN.fill(BLACK) action = self.action(state)[0] print(state,action) _,state = self.simulation.simulate(action) count+=1 if self.simulation.is_finished(*state): print("FINISHED") print("Steps Taken",count) pygame.quit() sys.exit() break def main(self): time.sleep(.5) for x in range(WIDTH): for y in range(HEIGHT): color=WHITE rect = pygame.Rect(x*(blockSize), y*(blockSize), blockSize, blockSize) if GRID[y][x]==1: color=GREEN SCREEN.fill(color,rect) if GRID[y][x]==10: color=RED SCREEN.fill(color,rect) if GRID[y][x]==-1: color = WHITE SCREEN.fill(color,rect) pygame.draw.rect(SCREEN, color, rect, 1) s = "0 0 0 1 1 1 2 2 1 0" shift = [int(x) for x in s.strip().split()] action = [[i,j] for i in range(-1,2) for j in range(-1,2) if not abs(i)==abs(j)==0] grid = Grid_WorldSim(height=7,width=10,start_loc=[3,0],finish_loc=[3,7],shift = shift,actions = action,kings_move=True) TD = TDZero(grid,1000,alpha=0.5) TD.epsilon=0 import cv2 TD.Learn() TD.play() # ============================================================================= # EXPERIMENTS # ============================================================================= class ChainSim: def __init__(self,chain_len=5,reward=1): self.chain_len = chain_len self.pos = 1 self.reward = reward def actual_val(self): trans_mat = np.zeros(shape=(self.chain_len+2,self.chain_len+2)) for i in range(1,trans_mat.shape[0]-1): for j in range(1,trans_mat.shape[1]-1): if i==j: trans_mat[i][j-1]=0.5 trans_mat[i][j+1]=0.5 ones = self.reward*np.ones(self.chain_len) const= np.zeros(self.chain_len+2) const[1:-1]=ones val = np.linalg.solve(np.identity(self.chain_len+2)-trans_mat,const) return val[1:-1] def is_finished(self,state): return state<=0 or state>=self.chain_len+1 def take_step(self,e): return 1 if np.random.uniform()>e else -1 def set_pos(self,pos): self.pos = pos def StateVal_init(self): return np.zeros(self.chain_len+2) def num_state(self): return self.chain_len def simulate(self,e): a = self.take_step(e) if self.is_finished(self.pos): return 0,self.pos,a self.pos += a return self.reward,self.pos,a class TDnStep: def __init__(self,sim,num_episodes,average_over,alpha,gamma,n_steps): self.sim = sim self.num_states = self.sim.num_state() self.num_episodes = num_episodes self.average_over = average_over self.alpha = alpha self.n_steps = n_steps self.state_val = self.sim.StateVal_init() self.gamma = gamma self.actual_val = self.sim.actual_val() def Learn(self): c = 0 store=[] b = 0.5 for episode in range(self.num_episodes): state = c%self.num_states +1 self.sim.set_pos(state) t = 0 chain=[] #print('New_episode') while True: #print(state) if not self.sim.is_finished(state): r,s,a = self.sim.simulate(b) chain.append([r,s,a]) else: break #print(chain) tou = t-self.n_steps+1 if tou>=0: G = 0 for r,s,a in chain[::-1]: G=self.gamma*G+r G+=(self.gamma**(self.n_steps))*self.state_val[chain[-1][-2]] self.state_val[state] += self.alpha*(G-self.state_val[state]) state = chain.pop(0)[-2] t+=1 c+=1 store.append(self.rms(self.state_val[1:-1],self.actual_val)) return sum(store)/len(store) def rms(self,V,v): rms = V-v rms = rms**2 rms = np.sum(rms) rms = rms**0.5 return rms def TDerrorLearn(self): c = 0 store = [] b=0.5 for episode in range(self.num_episodes): state = c%self.num_states +1 self.sim.set_pos(state) t = 0 chain=[] #print('New_episode') while True: #print(state) if not self.sim.is_finished(state): r,s,a = self.sim.simulate(b) chain.append([r,s,a]) else: break #print(chain) tou = t-self.n_steps+1 if tou>=0: G = 0 for i in range(0,self.n_steps-1): _,s_,_ = chain[-2-i] r,s,_ = chain[-1-i] TDerror= r+self.gamma*self.state_val[s]-self.state_val[s_] G=self.gamma*G+TDerror r,s,a = chain[0] TDerror = r+self.gamma*self.state_val[s]-self.state_val[state] G = self.state_val[state]+self.gamma*G+TDerror #G+=(self.gamma**(self.n_steps))*self.state_val[chain[-1][-1]] self.state_val[state] += self.alpha*(G-self.state_val[state]) state = chain.pop(0)[-2] t+=1 c+=1 store.append(self.rms(self.state_val[1:-1],self.actual_val)) return sum(store)/len(store) def off_policyLearn(self): c = 0 store=[] b=0.4 for episode in range(self.num_episodes): state = c%self.num_states +1 self.sim.set_pos(state) t = 0 chain=[] sigma = 1 #print('New_episode') while True: #print(state) if not self.sim.is_finished(state): r,s,a = self.sim.simulate(b) chain.append([r,s,a]) else: break #print(chain) tou = t-self.n_steps+1 if tou>=0: for i in len(self.no_chain): if a==1: sigma = sigma*(0.5/(1-b)) else: sigma = sigma*(0.5/b) G = 0 for r,s in chain[::-1]: G=self.gamma*G+r G+=(self.gamma**(self.n_steps))*self.state_val[chain[-1][-1]] self.state_val[state] += self.alpha*sigma*(G-self.state_val[state]) state = chain.pop(0)[-2] t+=1 c+=1 store.append(self.rms(self.state_val[1:-1],self.actual_val)) def off_policyLearn_contVariate(self): c = 0 store=[] b=0.4 for episode in range(self.num_episodes): state = c%self.num_states +1 self.sim.set_pos(state) t = 0 chain=[] sigma = 1 #print('New_episode') while True: #print(state) if not self.sim.is_finished(state): r,s,a = self.sim.simulate(b) chain.append([r,s,a]) else: break #print(chain) tou = t-self.n_steps+1 if tou>=0: for i in len(self.no_chain): if a==1: sigma = sigma*(0.5/(1-b)) else: sigma = sigma*(0.5/b) G = self.state_val[chain[-1][-2]] for i in range(0,self.no_chain-1): r,s,a = chain[-i-1] _,s_,_ = chain[-i-2] if a==1: sigma = (0.5/(1-b)) else: sigma = (0.5/b) G=sigma*(self.gamma*G+r) + (1-sigma)*self.state_val[s_] r,s,a = chain[0] if a==1: sigma = (0.5/(1-b)) else: sigma = (0.5/b) G+=sigma*(r+self.gamma*G)+(1-sigma)*self.state_val[state] self.state_val[state] += self.alpha*(G-self.state_val[state]) state = chain.pop(0)[-2] t+=1 c+=1 store.append(self.rms(self.state_val[1:-1],self.actual_val)) import pickle d = {} alpha=0 inc = 0.05 while alpha<1: alpha+=inc n = 1 while n<256: n = n*2 d[alpha,n] = [] store1=store2=0 for j in range(0,100): sim = ChainSim(chain_len=10,reward=0.01) td = TDnStep(sim,num_episodes=100,average_over=1,alpha=alpha,n_steps=n,gamma=1) store1 += td.Learn() td = TDnStep(sim,num_episodes=100,average_over=1,alpha=alpha,n_steps=n,gamma=1) store2 += td.TDerrorLearn() d[alpha,n].append(store1/100) d[alpha,n].append(store2/100) with open("data.plk",'wb') as a: pickle.dump(d,a) import seaborn as sns from collections import Counter alpha = [x[0] for x in d] alpha = [x for x in Counter(sorted(alpha))] n=1 ratings = np.unique(list(range(20))) palette = iter(sns.husl_palette(len(ratings))) while n<256: n*=2 rms = [] for i in range(0,len(alpha)): rms.append(d[alpha[i],n][0]) sns.pointplot(alpha,rms,color=next(palette)) rms = [] for i in range(0,len(alpha)): rms.append(d[alpha[i],n][1]) sns.pointplot(alpha,rms) class Grid_WorldSim2: def __init__(self,height,width,start_loc,finish_loc,actions,phase_change=3000,reward=1): self.height = height self.width = width self.start_loc = start_loc self.finish_loc = finish_loc self.grid = self.make_grid() self.r = reward self.actions = actions self.num_actions = len(self.actions) self.reset_loc() self.phase_change=phase_change self.t = 0 def reset_loc(self): self.x_loc,self.y_loc = self.start_loc[0]+1,self.start_loc[1]+1 def ActionVal_init(self): action_val = 0*np.random.uniform(low = 0,high = 1,size = [self.height+2,self.width+2,self.num_actions]) action_val[self.finish_loc[0]+1,self.finish_loc[1]+1] = 0 return action_val def make_grid(self): grid = np.zeros([self.height,self.width]) grid[self.finish_loc[0],self.finish_loc[1]]=-1 grid[-2,0:-1]=1 sudo_grid1 = np.ones([self.height+2,self.width+2]) sudo_grid1[1:self.height+1,1:self.width+1] = grid grid = np.zeros([self.height,self.width]) grid[self.finish_loc[0],self.finish_loc[1]]=-1 grid[-2,1:-1]=1 sudo_grid2 = np.ones([self.height+2,self.width+2]) sudo_grid2[1:self.height+1,1:self.width+1] = grid return sudo_grid1,sudo_grid2 def is_finished(self,i,j): phase = 0 if self.t<self.phase_change else 1 return self.grid[phase][i,j]==-1 def is_boundry(self,i,j): phase = 0 if self.t<self.phase_change else 1 return self.grid[phase][i,j]==1 def starting_state(self): return self.start_loc[0]+1,self.start_loc[1]+1 def simulate(self,action): self.t +=1 action = self.actions[action] x_temp,y_temp=self.x_loc+action[0],self.y_loc+action[1] if not self.is_boundry(x_temp,y_temp): self.x_loc,self.y_loc = x_temp,y_temp return 0 if not self.is_finished(self.x_loc,self.y_loc) else self.r,[self.x_loc,self.y_loc] class DyanQ: def __init__(self,sim,alpha,num_loops,epsilon,model_learn_steps,gamma=1,k=0): self.sim = sim self.alpha =alpha self.num_loops = num_loops self.gamma = gamma self.epsilon = epsilon self.alpha = alpha self.action_val = self.sim.ActionVal_init() self.policy = np.argmax(self.action_val,axis=2) self.num_action = self.sim.num_actions self.model = {} self.model_learn_steps = model_learn_steps self.T = {} self.k = k def action(self,state): if self.epsilon>0: probs = self.epsilon/self.num_action rand = np.random.uniform() if rand<=self.epsilon: action = np.random.choice(range(self.num_action)) else: action = self.policy[state[0],state[1]] if action==self.policy[state[0],state[1]]: return action,1-self.epsilon+probs else: return action,probs else: return self.policy[state[0],state[1]],1 def Learn(self): t = 0 self.sim.reset_loc() state = self.sim.starting_state() cumm_r = [0] for episode in range(self.num_loops): t+=1 action = self.action(state)[0] self.set_time(state,action,t) r,new_state = self.sim.simulate(action) Q = self.action_val[state[0],state[1],action] Q_next = np.max(self.action_val[new_state[0],new_state[1]]) self.action_val[state[0],state[1],action]+=self.alpha*(r+self.gamma*Q_next-Q) self.model_input(state,action,r,new_state) self.Model_Learn(t) self.policy[state[0],state[1]] = np.argmax(self.action_val[state[0],state[1]]) state = new_state if self.sim.is_finished(*state): self.sim.reset_loc() cumm_r.append(cumm_r[-1]+r) # print("Episode:",episode,"Time Steps Taken",t) return cumm_r def set_time(self,state,action,t): state = tuple(state) key = (state,action) self.T[key]=t def get_time(self,state,action): state = tuple(state) key = (state,action) return 0 if key not in self.T else self.T[key] def model_input(self,state,action,reward,state_): state = tuple(state) key = (state,action) self.model[key]=[reward,state_] def model_output(self,state,action): state = tuple(state) key = (state,action) return self.model[key] def sample_state_action(self): state_actions = self.model.keys() if len(state_actions)==1: return list(state_actions)[0] state,action = list(state_actions)[np.random.choice(range(len(list(state_actions))))] return state,action def Model_Learn(self,t): for i in range(self.model_learn_steps): state,action = self.sample_state_action() r,new_state = self.model_output(state,action) Q = self.action_val[state[0],state[1],action] Q_next = np.max(self.action_val[new_state[0],new_state[1]]) T = t-self.get_time(state,action) extra_r = self.k*(T**0.5) self.action_val[state[0],state[1],action]+=self.alpha*(r+extra_r+self.gamma*Q_next-Q) def play(self,rand_start=True,pos=0): global SCREEN, CLOCK, GRID, HEIGHT, WIDTH, blockSize, BLACK, WHITE, GREEN, RED BLACK = (0, 0, 0) WHITE = (200, 200, 200) WHITE = (255, 255, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) pygame.init() GRID = self.sim.grid[1].copy() blockSize = 20 WINDOW_HEIGHT, WINDOW_WIDTH = GRID.shape[0]*blockSize, GRID.shape[1]*blockSize SCREEN = pygame.display.set_mode((WINDOW_WIDTH,WINDOW_HEIGHT)) CLOCK = pygame.time.Clock() SCREEN.fill(BLACK) HEIGHT,WIDTH = GRID.shape[0], GRID.shape[1] self.sim.reset_loc() state = self.sim.starting_state() count=0 while True: GRID = self.sim.grid.copy() GRID[state[0],state[1]] = 10 self.main() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() pygame.display.update() SCREEN.fill(BLACK) action = self.action(state)[0] print(state,action) _,state = self.sim.sim(action) count+=1 if self.sim.is_finished(*state): print("FINISHED") print("Steps Taken",count) pygame.quit() sys.exit() break def main(self): time.sleep(.5) for x in range(WIDTH): for y in range(HEIGHT): color=WHITE rect = pygame.Rect(x*(blockSize), y*(blockSize), blockSize, blockSize) if GRID[y][x]==1: color=GREEN SCREEN.fill(color,rect) if GRID[y][x]==10: color=RED SCREEN.fill(color,rect) if GRID[y][x]==-1: color = WHITE SCREEN.fill(color,rect) pygame.draw.rect(SCREEN, color, rect, 1) action = [[i,j] for i in range(-1,2) for j in range(-1,2) if not abs(i)==abs(j)] grid = Grid_WorldSim2(height=6,width=9,start_loc=[-1,3],finish_loc=[0,-1],actions = action) TD = DyanQ(grid,0.1,num_loops=10000,model_learn_steps=100,epsilon=0.1,k=0.2) #TD.epsilon=0 import cv2 cumm = TD.Learn() #TD.play() import seaborn as sns sns.pointplot(x=list(range(len(cumm))),y=cumm) import pandas class Model: def __init__(self,num_states,num_actions,b,terminal_prob=0.1): self.num_states = num_states self.b = b self.start_state = 0 self.num_actions = num_actions self.rewards = self.set_reward() self.transitions = self.set_transitions() self.terminal_prob = terminal_prob self.terminal_r = np.random.normal(0,1) def ActionVal_init(self): return np.zeros([self.num_states,self.num_actions]) def reset_state(self): self.state = self.start_state def stating_state(self): return self.start_state def set_transitions(self): T = np.random.randint(low=0,high=self.num_states,size=[self.num_states,self.num_actions,self.b]) return T def set_reward(self): reward = np.random.normal(0,1,size=[self.num_states,self.num_actions,self.b]) return reward def sample_index(self): probT = np.random.uniform() if probT<self.terminal_prob: return -1 index = np.random.randint(low=0,high=self.b) return index def on_policy_sim(self,action): index = self.sample_index() if index>=0: s,r = self.transitions[self.state,action,index],self.rewards[self.state,action,index] self.state = s return r,s self.state = -1 return self.terminal_r,-1 def uniform_sim(self): state = np.random.randint(low=0,high=self.num_states) action = np.random.randint(low=0,high=self.num_actions) return state,action class Agent: def __init__(self,model,num_updates,epsilon=0.1): self.model = model self.num_updates = num_updates self.epsilon = epsilon def ValPolicy_init(self): self.q = self.model.ActionVal_init() self.policy = np.argmax(self.q,axis=-1) def action(self,state): if self.epsilon>0: probs = self.epsilon/self.model.num_actions rand = np.random.uniform() if rand<=self.epsilon: action = np.random.choice(range(self.model.num_actions)) else: action = self.policy[state] if action==self.policy[state]: return action,1-self.epsilon+probs else: return action,probs else: return self.policy[state],1 def calc_v_naught(self): max_action = self.policy[self.model.start_state] exp = (1-self.epsilon+self.epsilon/self.model.num_actions)*self.q[self.model.start_state,max_action] for i in range(self.model.num_actions): if i!= max_action: exp+=self.epsilon*self.q[self.model.start_state,i]/self.model.num_actions return exp def exp_update(self,state,action): exp = 0 T = self.model.transitions for i in range(self.model.b): s = T[state,action,i] r = self.model.rewards[state,action,i] exp+=(1-self.model.terminal_prob)*(r+np.max(self.q[s])) exp /= self.model.b exp += self.model.terminal_prob*(self.model.terminal_r) return exp def on_policy_updates(self): self.ValPolicy_init() self.model.reset_state() v_naught =[] for i in range(self.num_updates): state = self.model.state action,_ = self.action(state) r,s = self.model.on_policy_sim(action) self.q[state,action] = self.exp_update(state,action) if s==-1: self.model.reset_state() v_naught.append(self.calc_v_naught()) return v_naught def uniform_updates(self): self.ValPolicy_init() self.model.reset_state() v_naught =[] for i in range(self.num_updates): state,action = self.model.uniform_sim() self.q[state,action] = self.exp_update(state,action) v_naught.append(self.calc_v_naught()) return v_naught df = pandas.DataFrame() l = [] lk = [] for i in range(200): model = Model(num_states=1000,num_actions=2,b=1) agent = Agent(model,num_updates=20000,epsilon=0.1) l.append(agent.on_policy_updates()) lk.append(agent.uniform_updates()) df["on_policy,b=1"]=np.sum(np.array(l),axis=0) df["uniform,b=1"] =np.sum(np.array(lk),axis=0) l = [] lk = [] for i in range(200): model = Model(num_states=1000,num_actions=2,b=3) agent = Agent(model,num_updates=20000,epsilon=0.1) l.append(agent.on_policy_updates()) lk.append(agent.uniform_updates()) df["on_policy,b=3"]=np.sum(np.array(l),axis=0) df["uniform,b=3"] =np.sum(np.array(lk),axis=0) l = [] lk = [] for i in range(200): model = Model(num_states=1000,num_actions=2,b=10) agent = Agent(model,num_updates=20000,epsilon=0.1) l.append(agent.on_policy_updates()) lk.append(agent.uniform_updates()) df["on_policy,b=10"]=np.sum(np.array(l),axis=0) df["uniform,b=10"] =np.sum(np.array(lk),axis=0) df.plot() df.to_csv("1000states:ex8.8.csv") df = pandas.DataFrame() l = [] lk = [] for i in range(200): model = Model(num_states=10000,num_actions=2,b=1) agent = Agent(model,num_updates=200000,epsilon=0.1) l.append(agent.on_policy_updates()) lk.append(agent.uniform_updates()) df["on_policy,b=3"]=np.sum(np.array(l),axis=0) df["uniform,b=3"] =np.sum(np.array(lk),axis=0) l = [] lk = [] for i in range(200): model = Model(num_states=10000,num_actions=2,b=3) agent = Agent(model,num_updates=200000,epsilon=0.1) l.append(agent.on_policy_updates()) lk.append(agent.uniform_updates()) df["on_policy,b=10"]=np.sum(np.array(l),axis=0) df["uniform,b=10"] =np.sum(np.array(lk),axis=0) df.plot() df.to_csv("1000states:ex8.8.csv") # ============================================================================= # Exercise 11.3 # ============================================================================= class Biard: def __init__(self,num_states): self.num_states = num_states self.action = {'solid':0,"dashed":1} def starting_state(self): self.state = np.random.randint(low=0,high=self.num_states) return self.state def simulate(self,action): action = self.action[action] if action==0: self.state = self.num_states-1 else: self.state = np.random.randint(low=0,high=self.num_states-1) return 0,self.state class SemiGrad_QLearning: def __init__(self,sim,num_steps,alpha,gamma): self.sim = sim self.num_steps = num_steps self.alpha = alpha self.gamma = gamma self.features = self.create_features() self.params = np.ones(self.sim.num_states+1+1) #self.params[6]=10 #probs for solid action self.b = 1/self.sim.num_states self.pie = 1 def create_features(self): solid = [1] dashed = [0] from collections import defaultdict features_dict = defaultdict(dict) for i in range(self.sim.num_states): zero_model = [0]*(self.sim.num_states+1) if i ==self.sim.num_states-1: zero_model[i] = 1 zero_model[self.sim.num_states] = 2 else: zero_model[i] = 2 zero_model[self.sim.num_states] = 1 features_dict[i]['solid'] = np.array(zero_model+solid) features_dict[i]['dashed'] =np.array(zero_model+dashed) return features_dict def action(self): rand = np.random.uniform() if rand<=self.b: return "solid",self.b,self.pie return "dashed",1-self.b,1-self.pie def action_val(self,state,action): params = self.params xs = self.features[state][action] return np.sum(params*xs) def max_action_val(self,state): params = self.params xs1,xs2 = self.features[state].values() return max(np.sum(params*xs1),np.sum(params*xs2)) def updates(self): state = self.sim.starting_state() p= [self.params] for iteration in range(self.num_steps): action,b_probs,pie_probs = self.action() r,next_state = self.sim.simulate(action) self.params = self.params+self.alpha*(r+self.gamma*self.max_action_val(next_state)-self.action_val(state,action))*self.features[state][action] state=next_state p.append(self.params) return p k=5 sim = Biard(k) agent = SemiGrad_QLearning(sim,10,0.01,0.99) p = [] for i in range(1000): p += agent.updates() import pandas df =
pandas.DataFrame()
pandas.DataFrame
import json, os, sys from pprint import pprint as print from datetime import datetime from datetime import date, timedelta from collections import Counter from collections import OrderedDict import openpyxl from openpyxl.worksheet.dimensions import ColumnDimension, DimensionHolder from openpyxl.utils import get_column_letter from openpyxl.styles import Color, PatternFill, Font, Border from openpyxl.styles import Font import pandas as pd import lh3.api as lh3 try: from home.models import UnansweredChat from home.models import ReportMonthly except: pass client = lh3.Client() chats = client.chats() FRENCH_QUEUES = ['algoma-fr', 'clavardez', 'laurentian-fr', 'ottawa-fr', 'saintpaul-fr', 'western-fr', 'york-glendon-fr'] SMS_QUEUES = ['carleton-txt', 'clavardez-txt', 'guelph-humber-txt', 'mcmaster-txt', 'ottawa-fr-txt', 'ottawa-txt', 'scholars-portal-txt', 'western-txt', 'york-txt'] PRACTICE_QUEUES = ['practice-webinars', 'practice-webinars-fr', 'practice-webinars-txt'] LIST_OF_HOURS = dict() UNANSWERED_CHATS = list() UNANSWERED_CHATS_HTML = ['<h1 align="center">UNANSWERED CHATS</h1><hr/><br/>'] def french_queues(chats): french = list() for chat in chats: if chat.get('queue') in FRENCH_QUEUES: french.append(chat) return french def sms_queues(chats): sms = list() for chat in chats: if chat.get('queue') in SMS_QUEUES: sms.append(chat) return sms def remove_practice_queues(chats_this_day): res = [chat for chat in chats_this_day if not "practice" in chat.get("queue")] return res def select_specific_queues(chats_this_day, specific_queues): res = [chat for chat in chats_this_day if specific_queues in chat.get("queue")] return res def get_chat_for_this_day(this_day): day = this_day.day year = this_day.year month = this_day.month all_chats = chats.list_day(year,month,day) return all_chats def get_daily_stats(chats_this_day, chat_not_none, today): unanswered_chats = [chat for chat in chats_this_day if chat.get("accepted") is None] answered_chats_nbr = len(chats_this_day)- len(unanswered_chats) french_chats = french_queues(chat_not_none) sms_chats = sms_queues(chat_not_none) data = [] data.append({ 'Date': today.strftime("%A, %b %d, %Y"), 'Day': today.strftime("%A"), 'Month': today.strftime("%B"), 'Year': today.year, 'Total chats': len(chats_this_day), 'Total Answered Chats': answered_chats_nbr, 'Total UnAnswered Chats': len(unanswered_chats), 'Total French Answered': len(french_chats), 'Total SMS Answered': len(sms_chats) }) return data def get_chat_per_hour(chat_not_none): chat_per_hour_not_none = list() for chat in chat_not_none: d = datetime.strptime(chat.get('started'), "%Y-%m-%d %H:%M:%S") chat["hour"] = d.hour chat_per_hour_not_none.append(d.hour) nb_chat_per_hours = dict(Counter(chat_per_hour_not_none)) sort_dic_hourly = {} for i in sorted(nb_chat_per_hours): sort_dic_hourly.update({i:nb_chat_per_hours[i]}) return sort_dic_hourly def list_of_un_answered_chats(all_chats, this_day, queues): chats_this_day = remove_practice_queues(all_chats) chat_is_none = [chat for chat in chats_this_day if chat.get("accepted") == None] for chat in chat_is_none: # breakpoint() try: queue = [q for q in queues if q['name'] == chat.get('queue')] url = "https://ca.libraryh3lp.com/dashboard/queues/" +str(queue[0].get('id')) +"/calls/"+ str(chat.get('guest')) + "/"+ str(chat.get('id')) chat.update({'transcript_url':url}) UNANSWERED_CHATS.append(chat) UNANSWERED_CHATS_HTML.append("<p>"+"<a target='_blank' href='"+ url +"'>"+chat.get('started') + "--> " + chat.get('profile') + " --> " + chat.get('protocol') + "</a>"+ "'</p>") transcript = client.one('chats', chat.get('id')).get()['transcript'] or '<h3>No transcript found</h3>' UNANSWERED_CHATS_HTML.append(transcript+"<hr/>") except: pass return chat_is_none def main(all_chats, this_day): chats_this_day = remove_practice_queues(all_chats) chat_not_none = [chat for chat in chats_this_day if chat.get("accepted") != None] data = get_daily_stats(chats_this_day, chat_not_none, this_day) data = data[-1] sort_dic_hourly = get_chat_per_hour(chat_not_none) print(data) report = data.update(sort_dic_hourly) LIST_OF_HOURS.update(sort_dic_hourly) return data #update_excel_file(data, sort_dic_hourly) def unanswered_chats(): #print(UNANSWERED_CHATS) df =
pd.DataFrame(UNANSWERED_CHATS)
pandas.DataFrame
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from collections import OrderedDict import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None from ....config import options, option_context from ....dataframe import DataFrame from ....tensor import arange, tensor from ....tensor.random import rand from ....tests.core import require_cudf from ....utils import lazy_import from ... import eval as mars_eval, cut, qcut from ...datasource.dataframe import from_pandas as from_pandas_df from ...datasource.series import from_pandas as from_pandas_series from ...datasource.index import from_pandas as from_pandas_index from .. import to_gpu, to_cpu from ..to_numeric import to_numeric from ..rebalance import DataFrameRebalance cudf = lazy_import('cudf', globals=globals()) @require_cudf def test_to_gpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) res = cdf.execute().fetch() assert isinstance(res, cudf.DataFrame) pd.testing.assert_frame_equal(res.to_pandas(), pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries) cseries = series.to_gpu() res = cseries.execute().fetch() assert isinstance(res, cudf.Series) pd.testing.assert_series_equal(res.to_pandas(), pseries) @require_cudf def test_to_cpu_execution(setup_gpu): pdf = pd.DataFrame(np.random.rand(20, 30), index=np.arange(20, 0, -1)) df = from_pandas_df(pdf, chunk_size=(13, 21)) cdf = to_gpu(df) df2 = to_cpu(cdf) res = df2.execute().fetch() assert isinstance(res, pd.DataFrame) pd.testing.assert_frame_equal(res, pdf) pseries = pdf.iloc[:, 0] series = from_pandas_series(pseries, chunk_size=(13, 21)) cseries = to_gpu(series) series2 = to_cpu(cseries) res = series2.execute().fetch() assert isinstance(res, pd.Series) pd.testing.assert_series_equal(res, pseries) def test_rechunk_execution(setup): data = pd.DataFrame(np.random.rand(8, 10)) df = from_pandas_df(pd.DataFrame(data), chunk_size=3) df2 = df.rechunk((3, 4)) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) data = pd.DataFrame(np.random.rand(10, 10), index=np.random.randint(-100, 100, size=(10,)), columns=[np.random.bytes(10) for _ in range(10)]) df = from_pandas_df(data) df2 = df.rechunk(5) res = df2.execute().fetch() pd.testing.assert_frame_equal(data, res) # test Series rechunk execution. data = pd.Series(np.random.rand(10,)) series = from_pandas_series(data) series2 = series.rechunk(3) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) series2 = series.rechunk(1) res = series2.execute().fetch() pd.testing.assert_series_equal(data, res) # test index rechunk execution data = pd.Index(np.random.rand(10,)) index = from_pandas_index(data) index2 = index.rechunk(3) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) index2 = index.rechunk(1) res = index2.execute().fetch() pd.testing.assert_index_equal(data, res) # test rechunk on mixed typed columns data = pd.DataFrame({0: [1, 2], 1: [3, 4], 'a': [5, 6]}) df = from_pandas_df(data) df = df.rechunk((2, 2)).rechunk({1: 3}) res = df.execute().fetch() pd.testing.assert_frame_equal(data, res) def test_series_map_execution(setup): raw = pd.Series(np.arange(10)) s = from_pandas_series(raw, chunk_size=7) with pytest.raises(ValueError): # cannot infer dtype, the inferred is int, # but actually it is float # just due to nan s.map({5: 10}) r = s.map({5: 10}, dtype=float) result = r.execute().fetch() expected = raw.map({5: 10}) pd.testing.assert_series_equal(result, expected) r = s.map({i: 10 + i for i in range(7)}, dtype=float) result = r.execute().fetch() expected = raw.map({i: 10 + i for i in range(7)}) pd.testing.assert_series_equal(result, expected) r = s.map({5: 10}, dtype=float, na_action='ignore') result = r.execute().fetch() expected = raw.map({5: 10}, na_action='ignore') pd.testing.assert_series_equal(result, expected) # dtype can be inferred r = s.map({5: 10.}) result = r.execute().fetch() expected = raw.map({5: 10.}) pd.testing.assert_series_equal(result, expected) r = s.map(lambda x: x + 1, dtype=int) result = r.execute().fetch() expected = raw.map(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) def f(x: int) -> float: return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) def f(x: int): return x + 1. # dtype can be inferred for function r = s.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series raw2 = pd.Series([10], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2, dtype=float) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test arg is a md.Series, and dtype can be inferred raw2 = pd.Series([10.], index=[5]) s2 = from_pandas_series(raw2) r = s.map(s2) result = r.execute().fetch() expected = raw.map(raw2) pd.testing.assert_series_equal(result, expected) # test str raw = pd.Series(['a', 'b', 'c', 'd']) s = from_pandas_series(raw, chunk_size=2) r = s.map({'c': 'e'}) result = r.execute().fetch() expected = raw.map({'c': 'e'}) pd.testing.assert_series_equal(result, expected) # test map index raw = pd.Index(np.random.rand(7)) idx = from_pandas_index(pd.Index(raw), chunk_size=2) r = idx.map(f) result = r.execute().fetch() expected = raw.map(lambda x: x + 1.) pd.testing.assert_index_equal(result, expected) def test_describe_execution(setup): s_raw = pd.Series(np.random.rand(10)) # test one chunk series = from_pandas_series(s_raw, chunk_size=10) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) # test multi chunks series = from_pandas_series(s_raw, chunk_size=3) r = series.describe() result = r.execute().fetch() expected = s_raw.describe() pd.testing.assert_series_equal(result, expected) r = series.describe(percentiles=[]) result = r.execute().fetch() expected = s_raw.describe(percentiles=[]) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(5) df_raw = pd.DataFrame(rs.rand(10, 4), columns=list('abcd')) df_raw['e'] = rs.randint(100, size=10) # test one chunk df = from_pandas_df(df_raw, chunk_size=10) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = series.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = s_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_series_equal(result, expected) # test multi chunks df = from_pandas_df(df_raw, chunk_size=3) r = df.describe() result = r.execute().fetch() expected = df_raw.describe() pd.testing.assert_frame_equal(result, expected) r = df.describe(percentiles=[], include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) pd.testing.assert_frame_equal(result, expected) # test skip percentiles r = df.describe(percentiles=False, include=np.float64) result = r.execute().fetch() expected = df_raw.describe(percentiles=[], include=np.float64) expected.drop(['50%'], axis=0, inplace=True) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): df.describe(percentiles=[1.1]) with pytest.raises(ValueError): # duplicated values df.describe(percentiles=[0.3, 0.5, 0.3]) # test input dataframe which has unknown shape df = from_pandas_df(df_raw, chunk_size=3) df2 = df[df['a'] < 0.5] r = df2.describe() result = r.execute().fetch() expected = df_raw[df_raw['a'] < 0.5].describe() pd.testing.assert_frame_equal(result, expected) def test_data_frame_apply_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 df = from_pandas_df(df_raw, chunk_size=5) r = df.apply('ffill') result = r.execute().fetch() expected = df_raw.apply('ffill') pd.testing.assert_frame_equal(result, expected) r = df.apply(['sum', 'max']) result = r.execute().fetch() expected = df_raw.apply(['sum', 'max']) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sqrt) result = r.execute().fetch() expected = df_raw.apply(np.sqrt) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2])) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2])) pd.testing.assert_frame_equal(result, expected) r = df.apply(np.sum, axis='index') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='index') pd.testing.assert_series_equal(result, expected) r = df.apply(np.sum, axis='columns') result = r.execute().fetch() expected = df_raw.apply(np.sum, axis='columns') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1) pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) result = r.execute().fetch() expected = df_raw.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: [1, 2], axis=1, result_type='expand') result = r.execute().fetch() expected = df_raw.apply(lambda x: [1, 2], axis=1, result_type='expand') pd.testing.assert_frame_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='reduce') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='reduce') pd.testing.assert_series_equal(result, expected) r = df.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') result = r.execute().fetch() expected = df_raw.apply(lambda x: list(range(10)), axis=1, result_type='broadcast') pd.testing.assert_frame_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit def test_series_apply_execute(setup): idxes = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idxes) series = from_pandas_series(s_raw, chunk_size=5) r = series.apply('add', args=(1,)) result = r.execute().fetch() expected = s_raw.apply('add', args=(1,)) pd.testing.assert_series_equal(result, expected) r = series.apply(['sum', 'max']) result = r.execute().fetch() expected = s_raw.apply(['sum', 'max']) pd.testing.assert_series_equal(result, expected) r = series.apply(np.sqrt) result = r.execute().fetch() expected = s_raw.apply(np.sqrt) pd.testing.assert_series_equal(result, expected) r = series.apply('sqrt') result = r.execute().fetch() expected = s_raw.apply('sqrt') pd.testing.assert_series_equal(result, expected) r = series.apply(lambda x: [x, x + 1], convert_dtype=False) result = r.execute().fetch() expected = s_raw.apply(lambda x: [x, x + 1], convert_dtype=False) pd.testing.assert_series_equal(result, expected) s_raw2 = pd.Series([np.array([1, 2, 3]), np.array([4, 5, 6])]) series = from_pandas_series(s_raw2) dtypes = pd.Series([np.dtype(float)] * 3) r = series.apply(pd.Series, output_type='dataframe', dtypes=dtypes) result = r.execute().fetch() expected = s_raw2.apply(pd.Series) pd.testing.assert_frame_equal(result, expected) @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_apply_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.apply(lambda row: str(row[0]) + row[1], axis=1) result = r.execute().fetch() expected = df1.apply(lambda row: str(row[0]) + row[1], axis=1) pd.testing.assert_series_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.apply(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.apply(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_transform_execute(setup): cols = [chr(ord('A') + i) for i in range(10)] df_raw = pd.DataFrame(dict((c, [i ** 2 for i in range(20)]) for c in cols)) idx_vals = [chr(ord('A') + i) for i in range(20)] s_raw = pd.Series([i ** 2 for i in range(20)], index=idx_vals) def rename_fn(f, new_name): f.__name__ = new_name return f old_chunk_store_limit = options.chunk_store_limit try: options.chunk_store_limit = 20 # DATAFRAME CASES df = from_pandas_df(df_raw, chunk_size=5) # test transform scenarios on data frames r = df.transform(lambda x: list(range(len(x)))) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x)))) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: list(range(len(x))), axis=1) result = r.execute().fetch() expected = df_raw.transform(lambda x: list(range(len(x))), axis=1) pd.testing.assert_frame_equal(result, expected) r = df.transform(['cumsum', 'cummax', lambda x: x + 1]) result = r.execute().fetch() expected = df_raw.transform(['cumsum', 'cummax', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) fn_dict = OrderedDict([ ('A', 'cumsum'), ('D', ['cumsum', 'cummax']), ('F', lambda x: x + 1), ]) r = df.transform(fn_dict) result = r.execute().fetch() expected = df_raw.transform(fn_dict) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1]) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.iloc[:-1], axis=1, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.iloc[:-1], axis=1) pd.testing.assert_frame_equal(result, expected) fn_list = [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)] r = df.transform(fn_list, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_list) pd.testing.assert_frame_equal(result, expected) r = df.transform(lambda x: x.sum(), _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(lambda x: x.sum()) pd.testing.assert_series_equal(result, expected) fn_dict = OrderedDict([ ('A', rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1')), ('D', [rename_fn(lambda x: x.iloc[1:].reset_index(drop=True), 'f1'), lambda x: x.iloc[:-1].reset_index(drop=True)]), ('F', lambda x: x.iloc[:-1].reset_index(drop=True)), ]) r = df.transform(fn_dict, _call_agg=True) result = r.execute().fetch() expected = df_raw.agg(fn_dict) pd.testing.assert_frame_equal(result, expected) # SERIES CASES series = from_pandas_series(s_raw, chunk_size=5) # test transform scenarios on series r = series.transform(lambda x: x + 1) result = r.execute().fetch() expected = s_raw.transform(lambda x: x + 1) pd.testing.assert_series_equal(result, expected) r = series.transform(['cumsum', lambda x: x + 1]) result = r.execute().fetch() expected = s_raw.transform(['cumsum', lambda x: x + 1]) pd.testing.assert_frame_equal(result, expected) # test transform on string dtype df_raw = pd.DataFrame({'col1': ['str'] * 10, 'col2': ['string'] * 10}) df = from_pandas_df(df_raw, chunk_size=3) r = df['col1'].transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw['col1'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) r = df.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = df_raw.transform(lambda x: x + '_suffix') pd.testing.assert_frame_equal(result, expected) r = df['col2'].transform(lambda x: x + '_suffix', dtype=np.dtype('str')) result = r.execute().fetch() expected = df_raw['col2'].transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) finally: options.chunk_store_limit = old_chunk_store_limit @pytest.mark.skipif(pa is None, reason='pyarrow not installed') def test_transform_with_arrow_dtype_execution(setup): df1 = pd.DataFrame({'a': [1, 2, 1], 'b': ['a', 'b', 'a']}) df = from_pandas_df(df1) df['b'] = df['b'].astype('Arrow[string]') r = df.transform({'b': lambda x: x + '_suffix'}) result = r.execute().fetch() expected = df1.transform({'b': lambda x: x + '_suffix'}) pd.testing.assert_frame_equal(result, expected) s1 = df1['b'] s = from_pandas_series(s1) s = s.astype('arrow_string') r = s.transform(lambda x: x + '_suffix') result = r.execute().fetch() expected = s1.transform(lambda x: x + '_suffix') pd.testing.assert_series_equal(result, expected) def test_string_method_execution(setup): s = pd.Series(['s1,s2', 'ef,', 'dd', np.nan]) s2 = pd.concat([s, s, s]) series = from_pandas_series(s, chunk_size=2) series2 = from_pandas_series(s2, chunk_size=2) # test getitem r = series.str[:3] result = r.execute().fetch() expected = s.str[:3] pd.testing.assert_series_equal(result, expected) # test split, expand=False r = series.str.split(',', n=2) result = r.execute().fetch() expected = s.str.split(',', n=2) pd.testing.assert_series_equal(result, expected) # test split, expand=True r = series.str.split(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.split(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test rsplit r = series.str.rsplit(',', expand=True, n=1) result = r.execute().fetch() expected = s.str.rsplit(',', expand=True, n=1) pd.testing.assert_frame_equal(result, expected) # test cat all data r = series2.str.cat(sep='/', na_rep='e') result = r.execute().fetch() expected = s2.str.cat(sep='/', na_rep='e') assert result == expected # test cat list r = series.str.cat(['a', 'b', np.nan, 'c']) result = r.execute().fetch() expected = s.str.cat(['a', 'b', np.nan, 'c']) pd.testing.assert_series_equal(result, expected) # test cat series r = series.str.cat(series.str.capitalize(), join='outer') result = r.execute().fetch() expected = s.str.cat(s.str.capitalize(), join='outer') pd.testing.assert_series_equal(result, expected) # test extractall r = series.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") result = r.execute().fetch() expected = s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") pd.testing.assert_frame_equal(result, expected) # test extract, expand=False r = series.str.extract(r'[ab](\d)', expand=False) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=False) pd.testing.assert_series_equal(result, expected) # test extract, expand=True r = series.str.extract(r'[ab](\d)', expand=True) result = r.execute().fetch() expected = s.str.extract(r'[ab](\d)', expand=True) pd.testing.assert_frame_equal(result, expected) def test_datetime_method_execution(setup): # test datetime s = pd.Series([pd.Timestamp('2020-1-1'), pd.Timestamp('2020-2-1'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.year result = r.execute().fetch() expected = s.dt.year pd.testing.assert_series_equal(result, expected) r = series.dt.strftime('%m-%d-%Y') result = r.execute().fetch() expected = s.dt.strftime('%m-%d-%Y') pd.testing.assert_series_equal(result, expected) # test timedelta s = pd.Series([pd.Timedelta('1 days'), pd.Timedelta('3 days'), np.nan]) series = from_pandas_series(s, chunk_size=2) r = series.dt.days result = r.execute().fetch() expected = s.dt.days pd.testing.assert_series_equal(result, expected) def test_isin_execution(setup): # one chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=10) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in one chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=4) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) # multiple chunk in multiple chunks a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = from_pandas_series(b, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = pd.Series([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = np.array([2, 1, 9, 3]) sa = from_pandas_series(a, chunk_size=2) sb = tensor(b, chunk_size=3) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) a = pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) b = {2, 1, 9, 3} # set sa = from_pandas_series(a, chunk_size=2) result = sa.isin(sb).execute().fetch() expected = a.isin(b) pd.testing.assert_series_equal(result, expected) rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 3))) df = from_pandas_df(raw, chunk_size=(5, 2)) # set b = {2, 1, raw[1][0]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin(b) pd.testing.assert_frame_equal(result, expected) # mars object b = tensor([2, 1, raw[1][0]], chunk_size=2) r = df.isin(b) result = r.execute().fetch() expected = raw.isin([2, 1, raw[1][0]]) pd.testing.assert_frame_equal(result, expected) # dict b = {1: tensor([2, 1, raw[1][0]], chunk_size=2), 2: [3, 10]} r = df.isin(b) result = r.execute().fetch() expected = raw.isin({1: [2, 1, raw[1][0]], 2: [3, 10]}) pd.testing.assert_frame_equal(result, expected) def test_cut_execution(setup): session = setup rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) bins = [10, 100, 500] ii = pd.interval_range(10, 500, 3) labels = ['a', 'b'] t = tensor(raw, chunk_size=4) series = from_pandas_series(s, chunk_size=4) iii = from_pandas_index(ii, chunk_size=2) # cut on Series r = cut(series, bins) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins)) r, b = cut(series, bins, retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # cut on tensor r = cut(t, bins) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # one chunk r = cut(s, tensor(bins, chunk_size=2), right=False, include_lowest=True) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, bins, right=False, include_lowest=True)) # test labels r = cut(t, bins, labels=labels) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) r = cut(t, bins, labels=False) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=False) np.testing.assert_array_equal(result, expected) # test labels which is tensor labels_t = tensor(['a', 'b'], chunk_size=1) r = cut(raw, bins, labels=labels_t, include_lowest=True) # result and expected is array whose dtype is CategoricalDtype result = r.execute().fetch() expected = pd.cut(raw, bins, labels=labels, include_lowest=True) assert len(result) == len(expected) for r, e in zip(result, expected): np.testing.assert_equal(r, e) # test labels=False r, b = cut(raw, ii, labels=False, retbins=True) # result and expected is array whose dtype is CategoricalDtype r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(raw, ii, labels=False, retbins=True) for r, e in zip(r_result, r_expected): np.testing.assert_equal(r, e) pd.testing.assert_index_equal(b_result, b_expected) # test bins which is md.IntervalIndex r, b = cut(series, iii, labels=tensor(labels, chunk_size=1), retbins=True) r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, ii, labels=labels, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) pd.testing.assert_index_equal(b_result, b_expected) # test duplicates bins2 = [0, 2, 4, 6, 10, 10] r, b = cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') r_result = r.execute().fetch() b_result = b.execute().fetch() r_expected, b_expected = pd.cut(s, bins2, labels=False, retbins=True, right=False, duplicates='drop') pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test integer bins r = cut(series, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s, 3)) r, b = cut(series, 3, right=False, retbins=True) r_result, b_result = session.fetch(*session.execute(r, b)) r_expected, b_expected = pd.cut(s, 3, right=False, retbins=True) pd.testing.assert_series_equal(r_result, r_expected) np.testing.assert_array_equal(b_result, b_expected) # test min max same s2 = pd.Series([1.1] * 15) r = cut(s2, 3) result = r.execute().fetch() pd.testing.assert_series_equal(result, pd.cut(s2, 3)) # test inf exist s3 = s2.copy() s3[-1] = np.inf with pytest.raises(ValueError): cut(s3, 3).execute() def test_transpose_execution(setup): raw = pd.DataFrame({"a": ['1', '2', '3'], "b": ['5', '-6', '7'], "c": ['1', '2', '3']}) # test 1 chunk df = from_pandas_df(raw) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # test multi chunks df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = from_pandas_df(raw, chunk_size=2) result = df.T.execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # dtypes are varied raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": [5, -6, 7], "c": [1, 2, 3]}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) raw = pd.DataFrame({"a": [1.1, 2.2, 3.3], "b": ['5', '-6', '7']}) df = from_pandas_df(raw, chunk_size=2) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) # Transposing from results of other operands raw = pd.DataFrame(np.arange(0, 100).reshape(10, 10)) df = DataFrame(arange(0, 100, chunk_size=5).reshape(10, 10)) result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) df = DataFrame(rand(100, 100, chunk_size=10)) raw = df.to_pandas() result = df.transpose().execute().fetch() pd.testing.assert_frame_equal(result, raw.transpose()) def test_to_numeric_execition(setup): rs = np.random.RandomState(0) s = pd.Series(rs.randint(5, size=100)) s[rs.randint(100)] = np.nan # test 1 chunk series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test multi chunks series = from_pandas_series(s, chunk_size=20) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test object dtype s = pd.Series(['1.0', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series) pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s)) # test errors and downcast s = pd.Series(['appple', 2, -3, '2.0']) series = from_pandas_series(s) r = to_numeric(series, errors='ignore', downcast='signed') pd.testing.assert_series_equal(r.execute().fetch(), pd.to_numeric(s, errors='ignore', downcast='signed')) # test list data l = ['1.0', 2, -3, '2.0'] r = to_numeric(l) np.testing.assert_array_equal(r.execute().fetch(), pd.to_numeric(l)) def test_q_cut_execution(setup): rs = np.random.RandomState(0) raw = rs.random(15) * 1000 s = pd.Series(raw, index=[f'i{i}' for i in range(15)]) series = from_pandas_series(s) r = qcut(series, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) r = qcut(s, 3) result = r.execute().fetch() expected = pd.qcut(s, 3) pd.testing.assert_series_equal(result, expected) series = from_pandas_series(s) r = qcut(series, [0.3, 0.5, 0.7]) result = r.execute().fetch() expected = pd.qcut(s, [0.3, 0.5, 0.7]) pd.testing.assert_series_equal(result, expected) r = qcut(range(5), 3) result = r.execute().fetch() expected = pd.qcut(range(5), 3) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), [0.2, 0.5]) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) r = qcut(range(5), tensor([0.2, 0.5])) result = r.execute().fetch() expected = pd.qcut(range(5), [0.2, 0.5]) assert isinstance(result, type(expected)) pd.testing.assert_series_equal(pd.Series(result), pd.Series(expected)) def test_shift_execution(setup): # test dataframe rs = np.random.RandomState(0) raw = pd.DataFrame(rs.randint(1000, size=(10, 8)), columns=['col' + str(i + 1) for i in range(8)]) df = from_pandas_df(raw, chunk_size=5) for periods in (2, -2, 6, -6): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df.shift(periods=periods, axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw.shift(periods=periods, axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected, check_dtype=False) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}' ) from e raw2 = raw.copy() raw2.index = pd.date_range('2020-1-1', periods=10) raw2.columns = pd.date_range('2020-3-1', periods=8) df2 = from_pandas_df(raw2, chunk_size=5) # test freq not None for periods in (2, -2): for axis in (0, 1): for fill_value in (None, 0, 1.): r = df2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) try: result = r.execute().fetch() expected = raw2.shift(periods=periods, freq='D', axis=axis, fill_value=fill_value) pd.testing.assert_frame_equal(result, expected) except AssertionError as e: # pragma: no cover raise AssertionError( f'Failed when periods: {periods}, axis: {axis}, fill_value: {fill_value}') from e # test tshift r = df2.tshift(periods=1) result = r.execute().fetch() expected = raw2.tshift(periods=1) pd.testing.assert_frame_equal(result, expected) with pytest.raises(ValueError): _ = df.tshift(periods=1) # test series s = raw.iloc[:, 0] series = from_pandas_series(s, chunk_size=5) for periods in (0, 2, -2, 6, -6): for fill_value in (None, 0, 1.): r = series.shift(periods=periods, fill_value=fill_value) try: result = r.execute().fetch() expected = s.shift(periods=periods, fill_value=fill_value)
pd.testing.assert_series_equal(result, expected)
pandas.testing.assert_series_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 15 12:49:10 2017 @author: fubao """ #main function for creation graph data import os import numpy as np import pandas as pd from blist import blist from readCityState import readcitySatesExecute from extractweatherData import readUSAStationIdToNameMap class nodeType: placeType = 1 timeType = 2 #time type, year, month or day time tempType = 3 #temperature range prcpType = 4 #precipation snowType = 5 #snow depth class graphCreationClass: startNodeId = 1 #graph node Id starting from 1 graphNodeNameToIdMap = {} #store node name+type -> ID map gNodeIdToNameMap = {} #store node id -> name map graNodeTypeMap = {} #node id to type edgeList = blist() #graph edge list "nodeId, nodeId, edge" def __init__(self): pass def createNodeIdPlaces(self): stateCityMap, stateToCountyMap, countyToCityMap = readcitySatesExecute() #get state and county edge list for state, counties in stateToCountyMap.items(): nodeInfoState = state + "+" + str(nodeType.placeType) #store state and id mapping if nodeInfoState not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoState] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoState #node type map if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.placeType graphCreationClass.startNodeId += 1 #store county and id mapping for county in set(counties): nodeInfoCounty = county + "+" + str(nodeType.placeType) if nodeInfoCounty not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoCounty] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoCounty #node type map if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.placeType graphCreationClass.startNodeId += 1 #get edge list for each pair edgeProp = 'lower' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoState], graphCreationClass.graphNodeNameToIdMap[nodeInfoCounty], edgeProp]) edgeProp = 'higher' graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoCounty], graphCreationClass.graphNodeNameToIdMap[nodeInfoState], edgeProp]) #get county and city edge list for county, cities in countyToCityMap.items(): #store state and id mapping nodeInfoCounty = county + "+" + str(nodeType.placeType) if nodeInfoCounty not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoCounty] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoCounty #node type map if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.placeType graphCreationClass.startNodeId += 1 #store city and id mapping for city in set(cities): nodeInfoCity = city + "+" + str(nodeType.placeType) if nodeInfoCity not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoCity] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoCity #node type map if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.placeType graphCreationClass.startNodeId += 1 #get edge list for each pair edgeProp = 'lower' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoCounty], graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], edgeProp]) edgeProp = 'higher' graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], graphCreationClass.graphNodeNameToIdMap[nodeInfoCounty], edgeProp]) #read the output of extrated daily weather (getDailyWeather) into edge list #'stationID','year','month','day','tmax','tmin','snwd','acmm', 'acss','prcp','snow']) def readstationWeatherOutput(self, inUSAStationFile, inFileStationWeather): stationIDCodesUSAToNameMap = readUSAStationIdToNameMap(inUSAStationFile) df = pd.read_csv(inFileStationWeather, delimiter = "\t") #create edge list between city/town and weather df['stationTemp'] = list(zip(df["stationID"], df["tmax"], df["tmin"])) #station temperature #print ("stationTemp: ", df['stationTemp']) #get temperature for tple in df['stationTemp'].unique(): nodeInfoCity = stationIDCodesUSAToNameMap[tple[0]].split(',')[1].lower().strip() + "+" + str(nodeType.placeType) #state,city to split #print ("stationCity: ", stationCity, type(tple), type(tple[1])) if not np.isnan(tple[0]) and not np.isnan(tple[1]): nodeInfoTmperature = "[" + str(tple[2]) + "," + str(tple[1]) + "]" + "+" + str(nodeType.tempType) if nodeInfoTmperature not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoTmperature] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoTmperature if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.tempType graphCreationClass.startNodeId += 1 #edge for town/city to temperature #cityNodeId = graphCreationClass.graphNodeNameToIdMap[stationCity] if nodeInfoCity in graphCreationClass.graphNodeNameToIdMap: edgeProp = 'same' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], graphCreationClass.graphNodeNameToIdMap[nodeInfoTmperature], edgeProp]) graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoTmperature], graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], edgeProp]) #get precipitation df['stationPrcp'] = list(zip(df["stationID"], df["prcp"])) #station temperature for tple in df['stationPrcp']: nodeInfoCity = stationIDCodesUSAToNameMap[tple[0]].split(',')[1].lower().strip() + "+" + str(nodeType.placeType) #state,city to split if not np.isnan(tple[0]) and not np.isnan(tple[1]): nodeInfoprcp = str(tple[1]) + "+" + str(nodeType.prcpType) if nodeInfoprcp not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoprcp] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoprcp if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.prcpType #print("ddddddddddddddddddd: ", nodeType.prcpType) graphCreationClass.startNodeId += 1 #edge for town/city to prcp #cityNodeId = graphCreationClass.graphNodeNameToIdMap[stationCity] if nodeInfoCity in graphCreationClass.graphNodeNameToIdMap: edgeProp = 'same' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], graphCreationClass.graphNodeNameToIdMap[nodeInfoprcp], edgeProp]) graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoprcp], graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], edgeProp]) #get snow type df['stationsnwd'] = list(zip(df["stationID"], df["snwd"])) #station temperature print ("stationsnwd describe", df['stationsnwd'].describe()) for tple in df['stationsnwd'].unique(): nodeInfoCity = stationIDCodesUSAToNameMap[tple[0]].split(',')[1].lower().strip() + "+" + str(nodeType.placeType) #state,city to split if not np.isnan(tple[0]) and not np.isnan(tple[1]): # tple[1] is not None: nodeinfoSnwd = str(tple[1]) + "+" + str(nodeType.snowType) #print("previous eeeeeeeeeeeeeeeeee: ", nodeType.snowType, nodeinfoSnwd) if nodeinfoSnwd not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeinfoSnwd] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeinfoSnwd if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.snowType #print("eeeeeeeeeeeeeeeee: ", nodeType.snowType) graphCreationClass.startNodeId += 1 #edge for town/city to snwd #cityNodeId = graphCreationClass.graphNodeNameToIdMap[stationCity] if nodeInfoCity in graphCreationClass.graphNodeNameToIdMap: edgeProp = 'same' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], graphCreationClass.graphNodeNameToIdMap[nodeinfoSnwd], edgeProp]) graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeinfoSnwd], graphCreationClass.graphNodeNameToIdMap[nodeInfoCity], edgeProp]) #get time month/day/year df['tempTime'] = list(zip(df["tmax"], df["tmin"],df["month"], df["day"], df["year"])) #station temperature for tple in df['tempTime'].unique(): if not np.isnan(tple[1]) and not np.isnan(tple[3]): #temp tmin and time day is not None nodeInfoTmperature = "[" + str(tple[1]) + "," + str(tple[0]) + "]" + "+" + str(nodeType.tempType) nodeInfoTime = str(tple[2]) + "/" + str(tple[3]) + "/" + str(tple[4]) + "+" + str(nodeType.timeType) if nodeInfoTime not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoTime] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoTime if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.timeType #print("fffffffffffffffffff: ", nodeType.timeType) graphCreationClass.startNodeId += 1 if nodeInfoTmperature not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoTime] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoTmperature if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.tempType #print("fffffffffffffffffff: ", nodeType.timeType) graphCreationClass.startNodeId += 1 #edge for temp to time if nodeInfoTmperature in graphCreationClass.graphNodeNameToIdMap: edgeProp = 'same' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoTmperature], graphCreationClass.graphNodeNameToIdMap[nodeInfoTime], edgeProp]) graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoTime], graphCreationClass.graphNodeNameToIdMap[nodeInfoTmperature], edgeProp]) #get time month/day/year and prcp relations df['prcpTime'] = list(zip(df["prcp"], df["month"], df["day"], df["year"])) #station temperature for tple in df['prcpTime'].unique(): if not np.isnan(tple[0]) and not np.isnan(tple[3]): #temp tmin and time day is not None nodeInfoPrcp = str(tple[0]) + "+" + str(nodeType.prcpType) nodeInfoTime = str(tple[1]) + "/" + str(tple[2]) + "/" + str(tple[3]) + "+" + str(nodeType.timeType) if nodeInfoTime not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoTime] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoTime if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.timeType #print("fffffffffffffffffff: ", nodeType.timeType) graphCreationClass.startNodeId += 1 if nodeInfoPrcp not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoTime] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoPrcp if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.prcpType #print("fffffffffffffffffff: ", nodeType.timeType) graphCreationClass.startNodeId += 1 #edge for temp to time if nodeInfoPrcp in graphCreationClass.graphNodeNameToIdMap: edgeProp = 'same' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoPrcp], graphCreationClass.graphNodeNameToIdMap[nodeInfoTime], edgeProp]) graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoTime], graphCreationClass.graphNodeNameToIdMap[nodeInfoPrcp], edgeProp]) #get time month/day/year and snwd relations df['snwdTime'] = list(zip(df["snwd"], df["month"], df["day"], df["year"])) #station temperature for tple in df['snwdTime'].unique(): if not np.isnan(tple[0]) and not np.isnan(tple[3]): #tple[0] is not None and tple[3] is not None: #temp tmin and time day is not None nodeInfoSnwd = str(tple[0]) + "+" + str(nodeType.snowType) nodeInfoTime = str(tple[1]) + "/" + str(tple[2]) + "/" + str(tple[3]) + "+" + str(nodeType.timeType) if nodeInfoTime not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoTime] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoTime if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.timeType #print("fffffffffffffffffff: ", nodeType.timeType) graphCreationClass.startNodeId += 1 if nodeInfoSnwd not in graphCreationClass.graphNodeNameToIdMap: graphCreationClass.graphNodeNameToIdMap[nodeInfoTime] = graphCreationClass.startNodeId graphCreationClass.gNodeIdToNameMap[graphCreationClass.startNodeId] = nodeInfoSnwd if graphCreationClass.startNodeId not in graphCreationClass.graNodeTypeMap: graphCreationClass.graNodeTypeMap[graphCreationClass.startNodeId] = nodeType.snowType #print("fffffffffffffffffff: ", nodeType.timeType) graphCreationClass.startNodeId += 1 #edge for temp to time if nodeInfoSnwd in graphCreationClass.graphNodeNameToIdMap: edgeProp = 'same' #lower hierarchical relation graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoSnwd], graphCreationClass.graphNodeNameToIdMap[nodeInfoTime], edgeProp]) graphCreationClass.edgeList.append([graphCreationClass.graphNodeNameToIdMap[nodeInfoTime], graphCreationClass.graphNodeNameToIdMap[nodeInfoSnwd], edgeProp]) #write graphNodeNameToIdMap, graNodeTypeMap, and edgeList def writeIntoFile(self, outNodeTypeFile, outNodeNameToIdFile, outEdgeListFile): #write node type file os.remove(outNodeTypeFile) if os.path.exists(outNodeTypeFile) else None df = pd.DataFrame.from_dict(graphCreationClass.graNodeTypeMap, orient='index') df.to_csv(outNodeTypeFile, header = ["node Type"], sep='\t', index=True) #write into outNodeNameToIdFile os.remove(outNodeNameToIdFile) if os.path.exists(outNodeNameToIdFile) else None df =
pd.DataFrame.from_dict(graphCreationClass.graphNodeNameToIdMap, orient='index')
pandas.DataFrame.from_dict
import pandas as pd import logging import os from collections import defaultdict from annotation.utility import Utility _logger = logging.getLogger(__name__) TYPE_MAP_DICT = {"string": "String", "number": "Quantity", "year": "Time", "month": "Time", "day": "Time", "date": "Time", "entity": 'WikibaseItem'} # kyao # Only add one location qualifier until datamart-api can handle multiple locations. 31 July 2020. ADDITIONAL_QUALIFIER_MAP = { # ("lat", "lon", "latitude", "longitude"): {"Attribute": "location", "Property": "P276"}, # ("country",): {"Attribute": "country", "Property": "P17"}, # ("admin1",): {"Attribute": "located in the first-level administrative country subdivision", # "Property": "P2006190001"}, # ("admin2",): {"Attribute": "located in the second-level administrative country subdivision", # "Property": "P2006190002"}, # ("admin3",): {"Attribute": "located in the third-level administrative country subdivision", # "Property": "P2006190003"}, ("country", "admin1", "admin2", "admin3"): {"Attribute": "located in the administrative territorial entity", "Property": "P131"}, } def generate_template_from_df(input_df: pd.DataFrame, dataset_qnode: str, dataset_id: str) -> dict: """ Function used for datamart annotation batch mode, return a dict of dataFrame instead of output a xlsx file. """ # Assumes cell [0,0] is the start of the annotation if not input_df.iloc[0,0] == 'dataset': raise Exception('The first column of the dataframe must bet the annotations (not the index of the dataframe)') utility = Utility() # updated 2020.7.22: it is possible that header is not at row 7, so we need to search header row if exist header_row, data_row = utility.find_data_start_row(input_df) input_df = input_df.set_index(0) if 'tag' in input_df.iloc[:7, 0]: annotation_rows = list(range(1, 7)) + [header_row] else: annotation_rows = list(range(1, 6)) + [header_row] content_rows = list(range(data_row, len(input_df))) annotation_part = input_df.iloc[annotation_rows].fillna("") content_part = input_df.iloc[content_rows] # start generate dataframe for templates dataset_df = _generate_dataset_tab(input_df, dataset_qnode, dataset_id) attribute_df = _generate_attributes_tab(dataset_qnode, annotation_part) unit_df = _generate_unit_tab(dataset_qnode, content_part, annotation_part) extra_df, wikifier_df1 = _process_main_subject(dataset_qnode, content_part, annotation_part, data_row) wikifier_df2 = _generate_wikifier_part(content_part, annotation_part, data_row) wikifier_df = pd.concat([wikifier_df1, wikifier_df2]) output_df_dict = { 'dataset_file': dataset_df, 'attributes_file': attribute_df, 'units_file': unit_df, "extra_edges": extra_df, "Wikifier_t2wml": wikifier_df, "wikifier": None, "qualifiers": None, } return output_df_dict def generate_template(input_path: str, output_path: str, dataset_qnode: str = None) -> None: """ generate the template xlsx file from the input xlsx file :param dataset_qnode: :param input_path: :param output_path: :return: """ input_df = pd.read_excel(input_path, index_col=0, header=None) output_df_dict = generate_template_from_df(input_df, dataset_qnode=dataset_qnode) output_folder = output_path[:output_path.rfind("/")] os.makedirs(output_folder, exist_ok=True) save_template_file(output_df_dict, output_path) def save_template_file(output_df_dict: dict, output_path: str) -> None: with pd.ExcelWriter(output_path) as writer: output_df_dict["dataset_file"].to_excel(writer, sheet_name='Dataset', index=False) output_df_dict["attributes_file"].to_excel(writer, sheet_name='Attributes', index=False) output_df_dict["units_file"].to_excel(writer, sheet_name='Units', index=False) output_df_dict["extra_edges"].to_excel(writer, sheet_name="Extra Edges", index=False) output_df_dict["Wikifier_t2wml"].to_excel(writer, sheet_name="Wikifier_t2wml", index=False) def _generate_dataset_tab(input_df: pd.DataFrame, dataset_qnode: str, dataset_id: str) -> pd.DataFrame: """ A sample dataset file looks like: here {dataset_qnode} = "aid-security" node1 label node2 id Qaid-security P31 Q1172284 aid-security-P31 Qaid-security label aid-security dataset aid-security-label Qaid-security P1476 aid-security dataset aid-security-P1476 Qaid-security description aid-security dataset aid-security-description Qaid-security P2699 aid-security aid-security-P2699 Qaid-security P1813 aid-security aid-security-P1813 :param dataset_qnode: input dataset id :return: """ dataset_qnode_df_list = [] name = input_df.iloc[0, 1] if input_df.shape[1] > 1 and input_df.iloc[0, 1] else '{} dataset'.format(dataset_id) description = input_df.iloc[0, 2] if input_df.shape[1] > 2 and input_df.iloc[0, 2] else '{} dataset'.format(dataset_id) url = input_df.iloc[0, 3] if input_df.shape[1] > 3 and input_df.iloc[0, 3] else 'http://not/defined/{}'.format(dataset_id) dataset_labels = ["P31", "label", "P1476", "description", "P2699", "P1813"] dataset_node2s = ["Q1172284", '"{}"'.format(name), '"{}"'.format(name), '"{}"'.format(description), '"{}"'.format(url), dataset_qnode] for label, node2 in zip(dataset_labels, dataset_node2s): dataset_qnode_df_list.append({"dataset": dataset_qnode, "label": label, "node2": node2}) dataset_df = pd.DataFrame(dataset_qnode_df_list) return dataset_df def _generate_attributes_tab(dataset_qnode: str, annotation_part: pd.DataFrame) -> pd.DataFrame: """ codes used to generate the template attribute tab 1. add for columns with role = variable or role = qualifier. """ attributes_df_list = [] seen_attributes = {} # for causx country as main subject # # update 2020.11.11, always check if P131 is needed # all_column_types = set(annotation_part.T['type'].unique()) # for types, edge_info in ADDITIONAL_QUALIFIER_MAP.items(): # if len(set(types).intersection(all_column_types)) > 0: # attributes_df_list.append({"Attribute": edge_info["Attribute"], # "Property": edge_info["Property"], "Role": "qualifier", # "Relationship": "", "type": "WikibaseItem", # "label": edge_info["Attribute"], # "description": edge_info["Attribute"]}) for i in range(annotation_part.shape[1]): each_col_info = annotation_part.iloc[:, i] role_info = each_col_info["role"].split(";") role_lower = role_info[0].lower() if role_lower in {"variable", "qualifier"}: # if ";" exists, we need to use those details on variables if len(role_info) > 1: relationship = role_info[1] # otherwise apply this variable / qualifier for all by give empty cell else: relationship = "" attribute = each_col_info["header"] role_type = each_col_info["type"].lower() if role_type == "": continue if role_type not in TYPE_MAP_DICT: raise ValueError("Column type {} for column {} is not valid!".format(role_type, i)) data_type = TYPE_MAP_DICT[each_col_info["type"]] label = "{}".format(attribute) if not each_col_info['name'] else each_col_info['name'] description = "{} column in {}".format(role_lower, dataset_qnode) if not each_col_info['description'] \ else each_col_info['description'] tag = each_col_info['tag'] if 'tag' in each_col_info else "" # qualifier and variables have been deduplicated already in validation. Now if anything is repeating, # it is meant to be same. if attribute not in seen_attributes: attributes_df_list.append({"Attribute": attribute, "Property": "", "Role": role_lower, "Relationship": relationship, "type": data_type, "label": label, "description": description, "tag": tag}) seen_attributes[attribute] = 1 if len(attributes_df_list) == 0: attributes_df =
pd.DataFrame(columns=['Attribute', 'Property', 'label', 'description'])
pandas.DataFrame
import numpy as np import pandas as pd from src.create_initial_states.make_educ_group_columns import ( _create_group_id_for_non_participants, ) from src.create_initial_states.make_educ_group_columns import ( _create_group_id_for_one_strict_assort_by_group, ) from src.create_initial_states.make_educ_group_columns import ( _create_group_id_for_participants, ) from src.create_initial_states.make_educ_group_columns import _determine_group_sizes from src.create_initial_states.make_educ_group_columns import _get_id_to_weak_group from src.create_initial_states.make_educ_group_columns import ( _get_key_with_longest_value, ) from src.create_initial_states.make_educ_group_columns import ( _get_key_with_shortest_value, ) from src.create_initial_states.make_educ_group_columns import _split_data_by_query def test_get_id_to_weak_group(): raw_id = pd.Series([2, 2, 3, 3, 4, 4, 5, 5]) # dtype int is right. participants = pd.DataFrame(index=[2, 3, 4, 5]) participants["__weak_group_id"] = [0, 1] + [1, 0] expected = pd.Series([0, 1], index=[3, 4]) res = _get_id_to_weak_group(participants, raw_id) pd.testing.assert_series_equal(res, expected, check_names=False) def test_split_data_by_query(): df = pd.DataFrame(index=list("abcde")) df["to_select"] = [True, True, False, True, False] query = "to_select" res_selected, res_others = _split_data_by_query(df, query) expected_selected = df.loc[["a", "b", "d"]] expected_other = df.loc[["c", "e"]] pd.testing.assert_frame_equal(res_selected, expected_selected) pd.testing.assert_frame_equal(res_others, expected_other) def test_create_group_id_for_participants(): df = pd.DataFrame() df["state"] = ["BY"] * 4 + ["NRW"] * 8 df["county"] = ["N", "N", "M", "M"] + ["K"] * 5 + ["D"] * 3 group_size = 2 strict_assort_by = "state" weak_assort_by = "county" res = _create_group_id_for_participants( df=df, group_size=group_size, strict_assort_by=strict_assort_by, weak_assort_by=weak_assort_by, ) expected = pd.Series( [2, 2, 1, 1, 4, 4, 6, 6, 7, 5, 5, 7], dtype=float, name="group_id" ) pd.testing.assert_series_equal(res, expected) def test_create_group_id_for_one_strict_assort_by_group_one_county_size_one(): df = pd.DataFrame() df["weak_assort_by"] = ["a", "a", "a", "a"] group_size = 1 weak_assort_by = "weak_assort_by" start_id = 20 res, end_id = _create_group_id_for_one_strict_assort_by_group( df=df, group_size=group_size, weak_assort_by=weak_assort_by, start_id=start_id ) expected = pd.Series([20.0, 21.0, 22.0, 23.0], index=df.index, name="group_id") pd.testing.assert_series_equal(expected, res) assert end_id == 24 def test_create_group_id_for_one_strict_assort_by_group_no_remainder(): df = pd.DataFrame() df["weak_assort_by"] = ["a", "b", "a", "b"] group_size = 2 weak_assort_by = "weak_assort_by" start_id = 20 res, end_id = _create_group_id_for_one_strict_assort_by_group( df=df, group_size=group_size, weak_assort_by=weak_assort_by, start_id=start_id ) expected = pd.Series([21.0, 20.0, 21.0, 20.0], index=df.index, name="group_id") pd.testing.assert_series_equal(expected, res) assert end_id == 22 def test_create_group_id_for_one_strict_assort_by_group_with_remainder(): df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Jul 16 16:43:25 2018 @author: nce3xin """ from scipy.io import arff import pandas as pd # .xlsx data file path root="../data/" origin_pt=root+"origin.xlsx" train_pt=root+"train.xlsx" test_pt=root+"test.xlsx" # .arff data file path train_arff_pt="../data/train.arff" test_arff_pt="../data/test.arff" # read .xlsx file usecols=[0,2] train_df=pd.read_excel(train_pt,usecols=usecols) test_df=pd.read_excel(test_pt,usecols=usecols) origin_weibo_df=
pd.read_excel(origin_pt,sheetname=0)
pandas.read_excel
# -*- coding: utf-8 -*- import fitz import logging import os import pandas as pd class PdfMerge: def __init__(self): formatter = logging.Formatter('%(asctime)s [%(threadName)s] %(levelname)s: %(message)s') sh = logging.StreamHandler() sh.setFormatter(formatter) sh.setLevel(logging.DEBUG) self.logger = logging.getLogger(__file__) self.logger.addHandler(sh) self.logger.setLevel(logging.DEBUG) def save_file_name(self, dir_path, save_file_path, encoding='gbk'): """ 获取文件夹dir下PDF文件的名称,并保存到CSV文件中 :param dir_path: 文件夹路径 :param encoding: 文件编码 :param save_file_path: 保存文件名的文件路径 :return: """ index = ['学号'] student_number = [] all_files_name = os.listdir(dir_path) # 读取文件夹下的所有文件名 for file_name in all_files_name: if file_name.endswith('.pdf'): # 判断是否为PDF文件名 file_name = file_name[:-6] # 1800271038-1.pdf ——> 1800271038 if file_name not in student_number: # 存在1800271038-1.pdf,1800271038-2.pdf的情况 student_number.append(file_name) csv_file = pd.DataFrame(columns=index, data=student_number) # 把list保存成CSV文件 csv_file.to_csv(save_file_path, encoding=encoding) def get_file_name(self, file_dir_path, encoding='gbk'): """ 读取CSV文件中的PDF文件名,并保存到list中 :param file_dir_path: CSV文件的路径 :param encoding: 文件编码 :return: PDF文件名 """ all_files_name = [] csv_data =
pd.read_csv(file_dir_path, encoding=encoding)
pandas.read_csv
""" Creates the index of files from the specific parser objects """ from pathlib import Path from collections import Counter from functools import wraps import datetime from typing import Tuple, List, Dict, Union, Collection # import re # import copy import logging logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) # create console handler with a higher log level ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # from elchempy.indexer.filepath_parser import FilePathParser # from elchempy.indexer.extra_EC_info import loading_ref, WE_surface_area_cm2 from elchempy.dataloaders.files_func_collector import run_func_on_files from elchempy.dataloaders.fetcher import ElChemData from elchempy.indexer.EC_path_parser import ElChemPathParser from elchempy.indexer.helpers import ( find_path_of_common_folder, relative_parent_paths_to_common_folder, find_relevant_files_in_folder, ) ### 3rd Party imports import pandas as pd #%% def create_index(files, include_metadata=False, multi_run=False): """creates the index from list of files, by crawling over each file""" ecpps = None ecpps = run_func_on_files(ElChemPathParser, files, multi_run=multi_run) ecds = None if include_metadata: ecds = run_func_on_files( ElChemData, files, multi_run=multi_run, metadata_only=include_metadata, ) index =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import scipy from sklearn import metrics from FPMax import FPMax from Apriori import Apriori from MASPC import MASPC import csv from scipy.cluster.hierarchy import fcluster from scipy.cluster.hierarchy import linkage from optbinning import ContinuousOptimalBinning # pd.set_option('display.max_colwidth', -1) # pd.options.display.max_columns = None pd.options.display.width = 0 class MASPC_Engine(): def __init__(self, inputFileName, myMinAc=None, myMinOv=None, myMinSup=None, myK=None,myContainsTemporal=False, myAutoDiscretize=False,myDiscretizeStrategy=None,myQ=4): print("inside maspc_engine constructor with "+inputFileName) self.inputFileName = inputFileName self.outputFileFolder = '/tmp/' self.sortedInputFile = self.outputFileFolder+'sortedInputFile.csv' self.myMinAc = myMinAc self.myMinOv = myMinOv self.myMinSup = myMinSup self.myK = myK self.myContainsTemporal = myContainsTemporal self.myAutoDiscretize = myAutoDiscretize self.myDiscretizeStrategy = myDiscretizeStrategy self.myQ = myQ # First thing we do is sort input file self.__sortInputFile(self.inputFileName) self.rtDataFrame = pd.read_csv(self.sortedInputFile, dtype=str) # remove any rows that may have empty diagnosis, sex, or age self.rtDataFrame.dropna(subset=['DX1', 'age', 'sex'], inplace=True) self.rtDataFrame.reset_index(drop=True, inplace=True) # Extract diagnoses for processing (Diagnosis DataFrame) rtDataFrameDiags = self.rtDataFrame.drop(['age', 'sex'], axis=1).copy() diagColumns = [str(i) for i in list(rtDataFrameDiags.columns.values) if i.startswith('D')] uvalues = list(pd.unique(self.rtDataFrame[diagColumns].values.ravel('K'))) uniqueDiags = [x for x in uvalues if str(x) != 'nan'] # process the list of unique diagnoses to update diagnosis dataframe and write file for fpmax and apriori self.__writeInputFile(uniqueDiags, rtDataFrameDiags) # # To do one hot encoding of sex: self.demographic =
pd.get_dummies(self.rtDataFrame['sex'])
pandas.get_dummies
import pandas as pd import numpy as np from scipy import integrate, stats from numpy import absolute, mean from itertools import islice import statsmodels.api as sm from statsmodels.formula.api import ols import statsmodels.stats.multicomp import seaborn as sns import matplotlib.pyplot as plt headers = [ 'participant_id', 'type', 'block', 'occurence', 'response_time', 'switch_type', ] df = pd.read_csv(r'C:\Users\danie\Documents\SURREY\Project_1\task_switching_paradigm\pilot4_withoccurence.csv', usecols = headers) df_behavstats1 = pd.DataFrame() df_behavstats2 = pd.DataFrame() df_behavstats = pd.DataFrame() df_switch_type = pd.DataFrame() # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # LOOP WHICH CALCULATES AND CONCATS MAD, SD, MRT, MED # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! df.set_index(['participant_id', 'block', 'type', 'occurence'], inplace = True) df_switch_type = df df_rt = df.drop(columns = [ 'switch_type' ]) for group_i, group_v in df_rt.groupby(level=[0, 1, 2, 3]): group_v = group_v.apply(pd.to_numeric, errors = 'coerce').dropna(how = 'all') mask = group_v.index.get_level_values(3) n = 0 for index, row in group_v.iterrows(): n = n + 1 mrt = group_v.mean() SD = group_v.std() MAD = mean(absolute(group_v - mean(group_v))) med = group_v.median() switchtrial0 = group_v['response_time'].iloc[0] switchtrial1 = group_v['response_time'].iloc[1] if n > 2: switchtrial2 = group_v['response_time'].iloc[2] for index, row in group_v.iterrows(): group_v.at[index, 'mean_rt'] = mrt group_v.at[index, 'SD_rt'] = SD group_v.at[index, 'MAD_rt'] = MAD group_v.at[index, 'median_rt'] = med group_v.at[index, 'rt_trial_1'] = switchtrial0 group_v.at[index, 'rt_trial_2'] = switchtrial1 if n < 3: group_v.at[index, 'rt_trial_3'] = np.nan else: group_v.at[index, 'rt_trial_3'] = switchtrial2 group_v.reset_index(drop = False, inplace = True) df_behavstats1 = pd.concat([df_behavstats1, group_v], sort=False) df_behavstats1.set_index(['participant_id', 'block', 'type', 'occurence'], inplace = True) # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # LOOP WHICH CALCULATES AND CONCATS SWITCH RT # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! for group_i, group_v in df_behavstats1.groupby(level=[0, 1, 2, 3]): n = 0 for index, row in group_v.iterrows(): n = n + 1 # here dicates over how many trials the RT is averaged over (m), dependant on how many # trials are in the overall group (n). ## # eg, when the number of overall trials in the group is less than 3 (if n < 3), then # the number of trials to average over is 0 (m = 0), and the rows are left empty (np.nan). if n < 3: m = 0 for index, row in group_v.iterrows(): group_v.at[index, 'switch_rt'] = np.nan elif n >= 3 and n < 5: m = 2 elif n >= 5: m = 3 number_of_trials = 0 overall_rt = 0 # the 'islice' tells pandas to iterate with iterrows over the first 'm' rows, where 'm' is # dictated above and depends on the overall number of trials, 'n', in the group. for index, row in islice(group_v.iterrows(), m): number_of_trials = number_of_trials + 1 overall_rt = overall_rt + row['response_time'] j = (overall_rt/number_of_trials) group_v.at[index, 'switch_rt'] = j group_v.reset_index(drop = True, inplace = False) df_behavstats = pd.concat([df_behavstats, group_v], sort=True) df_behavstats = pd.concat([df_behavstats, df_switch_type.reindex(columns=df.columns)], axis=1) df_behavstats = df_behavstats.drop(columns=['response_time']) df_behavstats.drop_duplicates(subset="MAD_rt", keep='first', inplace=True) # when a group has less than 3 trials in it, the switch_rt is not calculated (m = 0). # if there are NaN values in any of the rows of a column, that column returns NaN as a t-test # value for any t-test calculations it is involved in. therefore i have excluded those rows below: print("") print("") print('BELOW DISPLAYS THE GROUP(S) WHICH HAVE BEEN EXCLUDED AS THERE WERE LESS THAN') print('3 TRIALS IN THE GROUP, CAUSING A NaN VALUE FOR THE T-TEST CALCULATIONS:') print("") print(df_behavstats[df_behavstats.isna().any(axis=1)].index) df_behavstats = df_behavstats[pd.notnull(df_behavstats['switch_rt'])] print("") print("") df_behavstats.reset_index(drop=False, inplace=True) df_behavstats.to_csv('pilot4_RT_stats.csv') # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # ANOVAs # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! model = ols( 'switch_rt ~ C(block) + C(type) + C(participant_id) + C(switch_type) + C(block):C(switch_type) + C(type):C(switch_type) + C(participant_id):C(switch_type) + C(block):C(type) + C(block):C(participant_id) + C(type):C(participant_id)', data=df_behavstats ).fit() anova_table = sm.stats.anova_lm(model, typ=2) print(anova_table) model1 = ols( 'switch_rt ~ C(block) + C(type) + C(participant_id) + C(switch_type) + C(block):C(switch_type) + C(type):C(switch_type) + C(participant_id):C(switch_type) + C(block):C(type) + C(block):C(participant_id) + C(type):C(participant_id)', data=df_behavstats ).fit() anova_table1 = sm.stats.anova_lm(model1, typ=2) print(anova_table1) model2 = ols( 'mean_rt ~ C(block) + C(type) + C(participant_id) + C(switch_type) + C(block):C(switch_type) + C(type):C(switch_type) + C(participant_id):C(switch_type) + C(block):C(type) + C(block):C(participant_id) + C(type):C(participant_id)', data=df_behavstats ).fit() anova_table2 = sm.stats.anova_lm(model2, typ=2) print(anova_table2) # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # T-TESTS AND WRITING TO .TXT # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! mean = df_behavstats['mean_rt'] SD = df_behavstats['SD_rt'] MAD = df_behavstats['MAD_rt'] median = df_behavstats['median_rt'] # Check here is mean or median is different from one another; if so, decide which to use. If not, move ahead with one or the other. g1 = stats.ttest_ind(median, mean, equal_var = False) print(g1) rt1 = df_behavstats['rt_trial_1'] rt2 = df_behavstats['rt_trial_2'] rt3 = df_behavstats['rt_trial_3'] rt123 = df_behavstats['switch_rt'] a = stats.ttest_ind(mean, rt1) b = stats.ttest_ind(mean, rt2) c = stats.ttest_ind(mean, rt3) MEANvsAVRT = stats.ttest_ind(mean, rt123) d = stats.ttest_ind(median, rt1) e = stats.ttest_ind(median, rt2) f = stats.ttest_ind(median, rt3) MEDvsAVRT = stats.ttest_ind(median, rt123) standard_t_tests = [a,b,c,MEANvsAVRT,d,e,f,MEDvsAVRT] a1 = stats.ttest_ind(mean, rt1, equal_var = False) b1 = stats.ttest_ind(mean, rt2, equal_var = False) c1 = stats.ttest_ind(mean, rt3, equal_var = False) MEANvsAVRT1 = stats.ttest_ind(mean, rt123, equal_var = False) d1 = stats.ttest_ind(median, rt1, equal_var = False) e1 = stats.ttest_ind(median, rt2, equal_var = False) f1 = stats.ttest_ind(median, rt3, equal_var = False) MEDvsAVRT1 = stats.ttest_ind(median, rt123, equal_var = False) welchs_t_tests = [a1,b1,c1,MEANvsAVRT1,d1,e1,f1,MEDvsAVRT1] t_data = {'standard':standard_t_tests, 'welchs':welchs_t_tests} t_rows = ['mean_vs_rt1', 'mean_vs_rt2', 'mean_vs_rt3', 'mean_vs_rt123', 'med_vs_rt1', 'med_vs_rt2', 'med_vs_rt3', 'med_vs_rt123'] df_t_tests =
pd.DataFrame(data=t_data, index=t_rows)
pandas.DataFrame
# -*- coding: utf-8 -*- import subprocess import json import os import io from multiprocessing import Pool import multiprocessing import multiprocessing.pool from operator import itemgetter import random import string import pickle import copy import numpy as np import matplotlib.pyplot as plt from matplotlib import colors import pysam import mip_classes as mod import pandas as pd from pandas.errors import MergeError import gzip from primer3 import calcHeterodimerTm import primer3 import traceback from msa_to_vcf import msa_to_vcf as msa_to_vcf import itertools import sys import allel from Bio import SeqIO print("functions reloading") # backbone dictionary mip_backbones = { "hybrid_bb": "AGATCGGAAGAGCACACGTGACTCGCCAAGCTGAAGNNNNNNNNNNNN", "hybrid_split": "NNNNAGATCGGAAGAGCACACGTGACTCGCCAAGCTGAAGNNNNNNNNNN", "hybrid_split_hp": "AGATCGGAAGAGCACACGTGACTCGCCAAGCTGAAGNNNNNNNNNN", "gc_bb": "GCAGATCGGAAGAGCACACCTCGCCAAGCTTTCGGCNNNNNNNNNNNN", "slx_bb": "CTTCAGCTTCCCGATCCGACGGTAGTGTNNNNNNNNNNNN" } """ # Below class allows processors from a pool from multiprocessing module to create processor pools of their own. # http://mindcache.io/2015/08/09/python-multiprocessing-module-daemonic-processes-are-not-allowed-to-have-children.html class NoDaemonProcess(multiprocessing.Process): # make 'daemon' attribute always return False def _get_daemon(self): return False def _set_daemon(self, value): pass daemon = property(_get_daemon, _set_daemon) # We sub-class multiprocessing.pool.Pool instead of multiprocessing.Pool # because the latter is only a wrapper function, not a proper class. class NoDaemonProcessPool(multiprocessing.pool.Pool): Process = NoDaemonProcess """ # above code was broken when switching to python 3. Below is taken from: # https://stackoverflow.com/questions/6974695/python-process-pool-non-daemonic/8963618#8963618 class NoDaemonProcess(multiprocessing.Process): @property def daemon(self): return False @daemon.setter def daemon(self, value): pass class NoDaemonContext(type(multiprocessing.get_context())): Process = NoDaemonProcess # We sub-class multiprocessing.pool.Pool instead of multiprocessing.Pool # because the latter is only a wrapper function, not a proper class. class NoDaemonProcessPool(multiprocessing.pool.Pool): def __init__(self, *args, **kwargs): kwargs['context'] = NoDaemonContext() super(NoDaemonProcessPool, self).__init__(*args, **kwargs) # Exception wrapper for multiprocessing taken from # https://stackoverflow.com/questions/6126007/python-getting-a-traceback-from-a-multiprocessing-process/26096355#26096355 class ExceptionWrapper(object): def __init__(self, ee, exc): self.ee = ee self.exc = exc __, __, self.tb = sys.exc_info() def re_raise(self): print(self.exc) raise self.ee.with_traceback(self.tb) ############################################################### # Region prep related functions ############################################################### def coordinate_to_target(coordinates, snp_locations, capture_size): """ Create MIP targets starting from a snp file that is produced offline, usually from Annovar. This is a tab separated file with the following chr1 2595307 2595307 A G rs3748816. This can be generalized to any target with coordinates. """ # create target regions to cover all snps # start by getting snps on same chromosome together snp_chroms = {} reference_snp_locations = rsl = coordinates for r in rsl: chrom = rsl[r]["chrom"] try: snp_chroms[chrom].append([rsl[r]["begin"], rsl[r]["end"]]) except KeyError: snp_chroms[chrom] = [[rsl[r]["begin"], rsl[r]["end"]]] # merge snps that are too close to get separate regions # the length should be twice the capture size merged_snp_chroms = {} for c in snp_chroms: merged_snp_chroms[c] = merge_overlap(snp_chroms[c], 2 * capture_size) # create regions for alignment for c in merged_snp_chroms: regions = merged_snp_chroms[c] for r in regions: snps_in_region = [] for s in reference_snp_locations: if ((reference_snp_locations[s]["chrom"] == c) and (r[0] <= reference_snp_locations[s]["begin"] <= reference_snp_locations[s]["end"] <= r[1])): snps_in_region.append(s) r.append(snps_in_region) for reg in regions: snps = reg[2] reg_begin = reg[0] reg_end = reg[1] reg_locations = [] for s in snps: s_locations = [] locations = snp_locations[s] ref_location = reference_snp_locations[s] ref_begin = ref_location["begin"] ref_end = ref_location["end"] left_flank_buffer = ref_begin - reg_begin + capture_size right_flank_buffer = reg_end - ref_end + capture_size for l in locations: snp_chrom = l["chrom"] snp_begin = l["begin"] snp_end = l["end"] tar_begin = snp_begin - left_flank_buffer tar_end = snp_end + right_flank_buffer s_locations.append([snp_chrom, tar_begin, tar_end]) reg_locations.append(s_locations) reg.append(reg_locations) # create target coordinate for each region target_coordinates = {} for c in merged_snp_chroms: regions = merged_snp_chroms[c] for reg in regions: region_name = "-".join(reg[2]) region_targets = reg[3][0] for i in range(len(region_targets)): reg_name = region_name + "-" + str(i) if reg_name in target_coordinates: print((reg_name, " is already in targets!")) else: target_coordinates[reg_name] = region_targets[i] return target_coordinates def rsid_to_target(resource_dir, snp_file): """ Create MIP targets starting from a snp file that is produced offline, usually from Annovar. This is a tab separated file with the following content: chr1 2595307 2595307 A G rs3748816. This can be generalized to any target with coordinates. """ # one snp can have multiple locations on the reference genome, # this can happen with snps in regions where there are multiple different # assemblies (HLA locus, for example). So first step is to get each of # these locations in the genome. snp_locations = {} capture_types = {} with io.open(os.path.join(resource_dir, snp_file), encoding="utf-8") as infile: for line in infile: newline = line.strip().split("\t") rsid = newline[5] try: # update the location dictionary if the rsid is already present temp_dic = {"chrom": newline[0], "begin": int(newline[1]), "end": int(newline[2]), "ref_base": newline[3], "alt_bases": [newline[4]]} # check if this location is already in the dict # append the new alternative base to the dict for snp in snp_locations[rsid]: if ((snp["begin"] == temp_dic["begin"]) and (snp["end"] == temp_dic["end"]) and (snp["chrom"] == temp_dic["chrom"]) and (snp["ref_base"] == temp_dic["ref_base"])): snp["alt_bases"].append(temp_dic["alt_bases"][0]) break else: # add the snp dict if the location is different than what # is present in the location dict. snp_locations[rsid].append(temp_dic) except KeyError: # add the new rsid to location dict if it is not already there snp_locations[rsid] = [temp_dic] capture_types[rsid] = newline[6] # one reference location for each snp is required # alternative assambly chromosomes have an underscore in their names, # so that will be utilized to get the location in the orignal assembly, # i.e. the chromosome that does not have the underscore # (chr7 and not chr7_alt08) reference_snp_locations = {} problem_snps = [] for s in snp_locations: if len(snp_locations[s]) == 1: reference_snp_locations[s] = snp_locations[s][0] else: for i in range(len(snp_locations[s])): if len(snp_locations[s][i]["chrom"].split("_")) == 1: reference_snp_locations[s] = snp_locations[s][i] break else: print(("Short chromosome name not found! " "Please check the output list.")) problem_snps.append(s) reference_snp_locations[s]["capture_type"] = capture_types[s] return reference_snp_locations, snp_locations def gene_to_target(gene_list, species): target_coordinates = {} for gene in gene_list: e = get_exons(get_gene(gene, get_file_locations()[species]["refgene"], alternative_chr=1)) try: target_coordinates[gene] = {"chrom": e["chrom"], "begin": e["begin"], "end": e["end"]} except KeyError: target_coordinates[gene] = {"chrom": np.nan, "begin": np.nan, "end": np.nan} return target_coordinates def gene_to_target_exons(gene_list, species, exon_list): target_coordinates = {} for i in range(len(gene_list)): gene = gene_list[i] exons_wanted = exon_list[i] gene_exons = get_exons(get_gene(gene, get_file_locations()[species]["refgene"], alternative_chr=1)) exons = gene_exons["exons"] if gene_exons["orientation"] == "-": exons.reverse() if exons_wanted == "all": for j in range(len(exons)): e = exons[j] tar_name = "-".join([gene, "exon", str(j)]) target_coordinates[tar_name] = {"chrom": gene_exons["chrom"], "begin": e[0], "end": e[1]} else: for j in exons_wanted: try: e = exons[j] tar_name = "-".join(gene, "exon", str(j)) target_coordinates[tar_name] = { "chrom": gene_exons["chrom"], "begin": e[0], "end": e[1]} except IndexError: print(("Exon ", j, " does not exist for gene ", gene)) return target_coordinates def parse_alignment(reg_file): """ Create a rinfo dictionary from a rinfo file.""" reg_dic = {} with open(reg_file, "r") as infile: for line in infile: if line.startswith("REGION"): newline = line.strip().split("\t") key1 = newline[1].split(":")[0] key2 = newline[1].split(":")[1] if key1 not in reg_dic: reg_dic[key1] = {key2: {"copyname": newline[2], "chr": int(newline[3][3:]), "begin": int(newline[4]), "end": int(newline[5]), "ori": (newline[6] == "F")}} else: reg_dic[key1][key2] = {"copyname": newline[2], "chr": int(newline[3][3:]), "begin": int(newline[4]), "end": int(newline[5]), "ori": (newline[6] == "F")} return reg_dic def update_rinfo_file(rinfo_file, update_file, output_file): """Update a rinfo file with the lines provided in the update_file. This function will read all lines from a rinfo file and an update file. First two columns of rinfo files describe the parameters while the rest assign values. All the lines in the update file which share the first column with a line in the original file will replace that line in the original file. All other lines in the original file will remain. """ # read the update file update_dict = {} with open(update_file) as infile: for line in infile: if not line.startswith("#"): newline = line.strip().split("\t") update_dict[(newline[0], newline[1])] = line # read the rinfo file and update as appropriate with open(rinfo_file) as infile, open(output_file, "w") as outfile: for line in infile: if not line.startswith("#"): newline = line.strip().split("\t") line_key = (newline[0], newline[1]) try: outfile.write(update_dict[line_key]) except KeyError: outfile.write(line) else: outfile.write(line) def get_target_coordinates(res_dir, species, capture_size, coordinates_file=None, snps_file=None, genes_file=None): """Extract MIP target coordinates from provided files.""" capture_types = {} # Get target coordinates specified as genomic coordinates if coordinates_file is None: region_coordinates = {} coord_names = [] else: coordinates_file = os.path.join(res_dir, coordinates_file) try: coord_df =
pd.read_table(coordinates_file, index_col=False)
pandas.read_table
""" .. module:: projectdirectory :platform: Unix, Windows :synopsis: A module for examining collections of git repositories as a whole .. moduleauthor:: <NAME> <<EMAIL>> """ import math import sys import os import numpy as np import pandas as pd from git import GitCommandError from gitpandas.repository import Repository __author__ = 'willmcginnis' class ProjectDirectory(object): """ An object that refers to a directory full of git repositories, for bulk analysis. It contains a collection of git-pandas repository objects, created by os.walk-ing a directory to file all child .git subdirectories. :param working_dir: (optional, default=None), the working directory to search for repositories in, None for cwd, or an explicit list of directories containing git repositories :param ignore: (optional, default=None), a list of directories to ignore when searching for git repos. :param verbose: (default=True), if True, will print out verbose logging to terminal :return: """ def __init__(self, working_dir=None, ignore=None, verbose=True): if working_dir is None: self.repo_dirs = set([x[0].split('.git')[0] for x in os.walk(os.getcwd()) if '.git' in x[0]]) elif isinstance(working_dir, list): self.repo_dirs = working_dir else: self.repo_dirs = set([x[0].split('.git')[0] for x in os.walk(working_dir) if '.git' in x[0]]) self.repos = [Repository(r, verbose=verbose) for r in self.repo_dirs] if ignore is not None: self.repos = [x for x in self.repos if x._repo_name not in ignore] def _repo_name(self): """ Returns a DataFrame of the repo names present in this project directory :return: DataFrame """ ds = [[x._repo_name()] for x in self.repos] df = pd.DataFrame(ds, columns=['repository']) return df def is_bare(self): """ Returns a dataframe of repo names and whether or not they are bare. :return: DataFrame """ ds = [[x._repo_name(), x.is_bare()] for x in self.repos] df = pd.DataFrame(ds, columns=['repository', 'is_bare']) return df def has_coverage(self): """ Returns a DataFrame of repo names and whether or not they have a .coverage file that can be parsed :return: DataFrame """ ds = [[x._repo_name(), x.has_coverage()] for x in self.repos] df = pd.DataFrame(ds, columns=['repository', 'has_coverage']) return df def coverage(self): """ Will return a DataFrame with coverage information (if available) for each repo in the project). If there is a .coverage file available, this will attempt to form a DataFrame with that information in it, which will contain the columns: * repository * filename * lines_covered * total_lines * coverage If it can't be found or parsed, an empty DataFrame of that form will be returned. :return: DataFrame """ df = pd.DataFrame(columns=['filename', 'lines_covered', 'total_lines', 'coverage', 'repository']) for repo in self.repos: try: cov = repo.coverage() cov['repository'] = repo._repo_name() df = df.append(cov) except GitCommandError as err: print('Warning! Repo: %s seems to not have coverage' % (repo, )) pass df.reset_index() return df def file_change_rates(self, branch='master', limit=None, extensions=None, ignore_dir=None, coverage=False): """ This function will return a DataFrame containing some basic aggregations of the file change history data, and optionally test coverage data from a coverage.py .coverage file. The aim here is to identify files in the project which have abnormal edit rates, or the rate of changes without growing the files size. If a file has a high change rate and poor test coverage, then it is a great candidate for writing more tests. :param branch: (optional, default=master) the branch to return commits for :param limit: (optional, default=None) a maximum number of commits to return, None for no limit :param extensions: (optional, default=None) a list of file extensions to return commits for :param ignore_dir: (optional, default=None) a list of directory names to ignore :param coverage: (optional, default=False) a bool for whether or not to attempt to join in coverage data. :return: DataFrame """ columns = ['unique_committers', 'abs_rate_of_change', 'net_rate_of_change', 'net_change', 'abs_change', 'edit_rate', 'repository'] if coverage: columns += ['lines_covered', 'total_lines', 'coverage'] df = pd.DataFrame(columns=columns) for repo in self.repos: try: fcr = repo.file_change_rates(branch=branch, limit=limit, extensions=extensions, ignore_dir=ignore_dir, coverage=coverage) fcr['repository'] = repo._repo_name() df = df.append(fcr) except GitCommandError as err: print('Warning! Repo: %s seems to not have the branch: %s' % (repo, branch)) pass df.reset_index() return df def commit_history(self, branch, limit=None, extensions=None, ignore_dir=None, days=None): """ Returns a pandas DataFrame containing all of the commits for a given branch. The results from all repositories are appended to each other, resulting in one large data frame of size <limit>. If a limit is provided, it is divided by the number of repositories in the project directory to find out how many commits to pull from each project. Future implementations will use date ordering across all projects to get the true most recent N commits across the project. Included in that DataFrame will be the columns: * repository * date (index) * author * committer * message * lines * insertions * deletions * net :param branch: the branch to return commits for :param limit: (optional, default=None) a maximum number of commits to return, None for no limit :param extensions: (optional, default=None) a list of file extensions to return commits for :param ignore_dir: (optional, default=None) a list of directory names to ignore :param days: (optional, default=None) number of days to return if limit is None :return: DataFrame """ if limit is not None: limit = int(limit / len(self.repo_dirs)) df = pd.DataFrame(columns=['author', 'committer', 'date', 'message', 'lines', 'insertions', 'deletions', 'net']) for repo in self.repos: try: ch = repo.commit_history(branch, limit=limit, extensions=extensions, ignore_dir=ignore_dir, days=days) ch['repository'] = repo._repo_name() df = df.append(ch) except GitCommandError as err: print('Warning! Repo: %s seems to not have the branch: %s' % (repo, branch)) pass df.reset_index() return df def file_change_history(self, branch='master', limit=None, extensions=None, ignore_dir=None): """ Returns a DataFrame of all file changes (via the commit history) for the specified branch. This is similar to the commit history DataFrame, but is one row per file edit rather than one row per commit (which may encapsulate many file changes). Included in the DataFrame will be the columns: * repository * date (index) * author * committer * message * filename * insertions * deletions :param branch: the branch to return commits for :param limit: (optional, default=None) a maximum number of commits to return, None for no limit :param extensions: (optional, default=None) a list of file extensions to return commits for :param ignore_dir: (optional, default=None) a list of directory names to ignore :return: DataFrame """ if limit is not None: limit = int(limit / len(self.repo_dirs)) df = pd.DataFrame(columns=['repository', 'date', 'author', 'committer', 'message', 'rev', 'filename', 'insertions', 'deletions']) for repo in self.repos: try: ch = repo.file_change_history(branch, limit=limit, extensions=extensions, ignore_dir=ignore_dir) ch['repository'] = repo._repo_name() df = df.append(ch) except GitCommandError as err: print('Warning! Repo: %s seems to not have the branch: %s' % (repo, branch)) pass df.reset_index() return df def blame(self, extensions=None, ignore_dir=None, committer=True, by='repository'): """ Returns the blame from the current HEAD of the repositories as a DataFrame. The DataFrame is grouped by committer name, so it will be the sum of all contributions to all repositories by each committer. As with the commit history method, extensions and ignore_dirs parameters can be passed to exclude certain directories, or focus on certain file extensions. The DataFrame will have the columns: * committer * loc :param extensions: (optional, default=None) a list of file extensions to return commits for :param ignore_dir: (optional, default=None) a list of directory names to ignore :param committer: (optional, default=True) true if committer should be reported, false if author :param by: (optional, default=repository) whether to group by repository or by file :return: DataFrame """ df = pd.DataFrame(columns=['loc']) for repo in self.repos: try: df = df.append(repo.blame(extensions=extensions, ignore_dir=ignore_dir, committer=committer, by=by)) except GitCommandError as err: print('Warning! Repo: %s couldnt be blamed' % (repo, )) pass df = df.groupby(df.index).agg({'loc': np.sum}) df = df.sort_values(by=['loc'], ascending=False) return df def branches(self): """ Returns a data frame of all branches in origin. The DataFrame will have the columns: * repository * local * branch :returns: DataFrame """ df = pd.DataFrame(columns=['repository', 'local', 'branch']) for repo in self.repos: try: df = df.append(repo.branches()) except GitCommandError as err: print('Warning! Repo: %s couldn\'t be inspected' % (repo, )) pass df.reset_index() return df def revs(self, branch='master', limit=None, skip=None, num_datapoints=None): """ Returns a dataframe of all revision tags and their timestamps for each project. It will have the columns: * date * repository * rev :param branch: (optional, default 'master') the branch to work in :param limit: (optional, default None), the maximum number of revisions to return, None for no limit :param skip: (optional, default None), the number of revisions to skip. Ex: skip=2 returns every other revision, None for no skipping. :param num_datapoints: (optional, default=None) if limit and skip are none, and this isn't, then num_datapoints evenly spaced revs will be used :return: DataFrame """ if limit is not None: limit = math.floor(float(limit) / len(self.repos)) if num_datapoints is not None: num_datapoints = math.floor(float(num_datapoints) / len(self.repos)) df = pd.DataFrame(columns=['repository', 'rev']) for repo in self.repos: try: revs = repo.revs(branch=branch, limit=limit, skip=skip, num_datapoints=num_datapoints) revs['repository'] = repo._repo_name() df = df.append(revs) except GitCommandError as err: print('Warning! Repo: %s couldn\'t be inspected' % (repo, )) pass df.reset_index() return df def cumulative_blame(self, branch='master', extensions=None, ignore_dir=None, by='committer', limit=None, skip=None, num_datapoints=None, committer=True): """ Returns a time series of cumulative blame for a collection of projects. The goal is to return a dataframe for a collection of projects with the LOC attached to an entity at each point in time. The returned dataframe can be returned in 3 forms (switched with the by parameter, default 'committer'): * committer: one column per committer * project: one column per project * raw: one column per committed per project :param branch: (optional, default 'master') the branch to work in :param limit: (optional, default None), the maximum number of revisions to return, None for no limit :param skip: (optional, default None), the number of revisions to skip. Ex: skip=2 returns every other revision, None for no skipping. :param extensions: (optional, default=None) a list of file extensions to return commits for :param ignore_dir: (optional, default=None) a list of directory names to ignore :param num_datapoints: (optional, default=None) if limit and skip are none, and this isn't, then num_datapoints evenly spaced revs will be used :param committer: (optional, default=True) true if committer should be reported, false if author :param by: (optional, default='committer') whether to arrange the output by committer or project :return: DataFrame """ blames = [] for repo in self.repos: try: blame = repo.cumulative_blame(branch=branch, extensions=extensions, ignore_dir=ignore_dir, limit=limit, skip=skip, num_datapoints=num_datapoints, committer=committer) blames.append((repo._repo_name(), blame)) except GitCommandError as err: print('Warning! Repo: %s couldn\'t be inspected' % (repo, )) pass global_blame = blames[0][1] global_blame.columns = [x + '__' + str(blames[0][0]) for x in global_blame.columns.values] blames = blames[1:] for reponame, blame in blames: blame.columns = [x + '__' + reponame for x in blame.columns.values] global_blame = pd.merge(global_blame, blame, left_index=True, right_index=True, how='outer') global_blame.fillna(method='pad', inplace=True) global_blame.fillna(0.0, inplace=True) if by == 'committer': committers = [(str(x).split('__')[0].lower().strip(), x) for x in global_blame.columns.values] if sys.version_info.major == 2: committer_mapping = dict([(c, [x[1] for x in committers if x[0] == c]) for c in set([x[0] for x in committers])]) else: committer_mapping = {c: [x[1] for x in committers if x[0] == c] for c in {x[0] for x in committers}} for committer in committer_mapping.keys(): global_blame[committer] = 0 for col in committer_mapping.get(committer, []): global_blame[committer] += global_blame[col] global_blame = global_blame.reindex(columns=list(committer_mapping.keys())) elif by == 'project': projects = [(str(x).split('__')[1].lower().strip(), x) for x in global_blame.columns.values] if sys.version_info.major == 2: project_mapping = dict([(c, [x[1] for x in projects if x[0] == c]) for c in set([x[0] for x in projects])]) else: project_mapping = {c: [x[1] for x in projects if x[0] == c] for c in {x[0] for x in projects}} for project in project_mapping.keys(): global_blame[project] = 0 for col in project_mapping.get(project, []): global_blame[project] += global_blame[col] global_blame = global_blame.reindex(columns=list(project_mapping.keys())) global_blame = global_blame[~global_blame.index.duplicated()] return global_blame def tags(self): """ Returns a data frame of all tags in origin. The DataFrame will have the columns: * repository * tag :returns: DataFrame """ df = pd.DataFrame(columns=['repository', 'tag']) for repo in self.repos: try: df = df.append(repo.tags()) except GitCommandError as err: print('Warning! Repo: %s couldn\'t be inspected' % (repo, )) pass df.reset_index() return df def repo_information(self): """ Returns a DataFrame with the properties of all repositories in the project directory. The returned DataFrame will have the columns: * local_directory * branches * bare * remotes * description * references * heads * submodules * tags * active_branch :return: DataFrame """ data = [[repo.git_dir, repo.repo.branches, repo.repo.bare, repo.repo.remotes, repo.repo.description, repo.repo.references, repo.repo.heads, repo.repo.submodules, repo.repo.tags, repo.repo.active_branch] for repo in self.repos] df = pd.DataFrame(data, columns=[ 'local_directory', 'branches', 'bare', 'remotes', 'description', 'references', 'heads', 'submodules', 'tags', 'active_branch' ]) return df def bus_factor(self, extensions=None, ignore_dir=None, by='projectd'): """ An experimental heuristic for truck factor of a repository calculated by the current distribution of blame in the repository's primary branch. The factor is the fewest number of contributors whose contributions make up at least 50% of the codebase's LOC :param extensions: (optional, default=None) a list of file extensions to return commits for :param ignore_dir: (optional, default=None) a list of directory names to ignore :return: """ if by == 'file': raise NotImplementedError('File-wise bus factor') elif by == 'projectd': blame = self.blame(extensions=extensions, ignore_dir=ignore_dir, by='repository') blame = blame.sort_values(by=['loc'], ascending=False) total = blame['loc'].sum() cumulative = 0 tc = 0 for idx in range(blame.shape[0]): cumulative += blame.ix[idx, 'loc'] tc += 1 if cumulative >= total / 2: break return
pd.DataFrame([['projectd', tc]], columns=['projectd', 'bus factor'])
pandas.DataFrame
from tl4sm.prepare_data import split_dataset from numpy import array, stack from pandas import read_csv, DataFrame from pathlib import Path from keras.models import load_model, clone_model import time from matplotlib import pyplot as plt from keras.models import Sequential from keras.layers import Dense, LSTM, BatchNormalization, RepeatVector, ConvLSTM2D from keras.layers import Flatten from keras.callbacks import ModelCheckpoint, EarlyStopping from keras import optimizers from tl4sm.prepare_data import to_supervised from keras.utils import to_categorical from numpy import argmax from sklearn.metrics import confusion_matrix, f1_score, accuracy_score, classification_report #function to bin data and return dataframe def bin_data(dataset, med, high): dataset['bin'] = 0 dataset['bin'][(dataset['intSpeed'] < high) & (dataset['intSpeed'] > med)] = 1 dataset['bin'][(dataset['intSpeed'] >= high)] = 2 return dataset #function to view the training history of each model def view_loss(history, exp_num): plt.plot(history.history['loss'],label='Train') plt.plot(history.history['val_loss'],label='Val') plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend() plt.savefig('../Plots/loss-history'+str(exp_num)+'.png') plt.show() #function to view the training history of each model def view_acc(history, exp_num): plt.close() plt.plot(history.history['acc'],label='Accuracy') plt.plot(history.history['loss'],label='Loss') plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend() plt.savefig('../Plots/loss-history'+str(exp_num)+'.png') plt.show() # function to build a ConvLSTM model def build_model(train, epochs, batch_size, lr, n_steps, n_length, n_input, source, exp_num, data_percent, verbose, n_out=10, batch_norm=True, plot=False): #prepare data train_x, train_y = to_supervised(train, n_input, step_size=1, n_out=1, is_y=True) #data percentage train_ind = int(round(len(train_x)*(data_percent))) train_x = train_x[-train_ind:, :] train_y = train_y[-train_ind:, :] # define parameters n_features, n_outputs = train_x.shape[2], train_y.shape[1] # reshape into subsequences [samples, timesteps, rows, cols, channels] train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features)) # reshape output into [samples, timesteps, features] train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1)) train_y =to_categorical(train_y) # define model model = Sequential() if batch_norm: model.add(BatchNormalization(input_shape=(n_steps, 1, n_length, n_features))) model.add(ConvLSTM2D(filters=128, kernel_size=(1,4), activation='relu', return_sequences=True, input_shape=(n_steps, 1, n_length, n_features))) model.add(ConvLSTM2D(filters=128, kernel_size=(1,4), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) model.add(RepeatVector(n_outputs)) if batch_norm: model.add(BatchNormalization(input_shape=(n_steps, 1, n_length, n_features))) model.add((LSTM(100, activation='relu', dropout=0.05, return_sequences=True))) model.add((LSTM(100, activation='relu', dropout=0.1, return_sequences=True))) model.add((Dense(500, activation='relu'))) model.add((Dense(3, activation='softmax'))) opt = optimizers.Adam(lr=lr) model.compile(loss='categorical_crossentropy', optimizer=opt, metrics = ['acc']) model.build() #use epoch checkpoints to ensure the best epoch is used es = EarlyStopping(monitor='val_acc', mode='max', verbose=1, patience=epochs) checkpointer = ModelCheckpoint(filepath="../Models/best_weights.hdf5", monitor = 'val_acc', verbose=2, save_best_only=True) callbacks_list = [checkpointer, es] #early #record time tic = time.time() # fit network history = model.fit(train_x, train_y, epochs=epochs, shuffle=False, callbacks=callbacks_list, batch_size=batch_size, verbose=verbose, validation_split=0.1) #record time toc = time.time() totalTime = toc-tic if plot: view_loss(history, str(exp_num)) model.load_weights('../Models/best_weights.hdf5') model.save('../Models/model_'+str(source)+'.h5') return model, totalTime # make a forecast def forecast(model, history, n_steps, n_length, n_input): # flatten data data = array(history) data = data.reshape((data.shape[0]*data.shape[1], data.shape[2])) # retrieve last observations for input data input_ = data[-n_input:, :] # reshape into [samples, timesteps, rows, cols, channels] input_x = input_.reshape((1, n_steps, 1, n_length, 2)) # forecast the next week yhat = model.predict(input_x, verbose=0) # we only want the vector forecast yhat = yhat[0] return yhat #function to evaluate the model def evaluate_model(train, test, n_input, n_length, batch_size, lr, source, exp_num, epochs, n_out, data_percent, verbose, batch_norm=True, plot=False): #define number of subsequence time steps n_steps = int(n_input/n_length) #build model model, tr_time = build_model(train, epochs, batch_size, lr, n_steps, n_length, n_input, source, exp_num, data_percent, verbose, n_out=10, batch_norm=batch_norm, plot=plot) # history is a list of training data history = [x for x in train] # walk-forward validation over each timestep predictions = list() for i in range(len(test)): # predict the timestep yhat_sequence = forecast(model, history, n_steps, n_length, n_input) # store the predictions predictions.append(yhat_sequence) # get real observation and add to history for predicting the next timestep history.append(test[i, :]) # evaluate predictions days for each timestep predictions = array(predictions) test1 = test[:, :, -1] YPred = argmax(predictions.reshape(predictions.shape[0], (predictions.shape[1]*predictions.shape[2])), out=None, axis=1) YPred = YPred.reshape(YPred.shape[0], 1) df = stack((YPred, test1)) df = df.transpose() df = df.reshape(df.shape[1], 2) DataFrame(df).to_csv('../Results/Files/2DConvLSTMAE_TL_'+str(exp_num)+'.csv') cm = confusion_matrix(test1, YPred) print(cm) f1 = f1_score(test1, YPred, average='weighted') acc = accuracy_score(test1, YPred) print(classification_report(test1, YPred)) return f1, acc, tr_time, f1, acc, tr_time #function to evaluate the model def evaluate_model_reuse(train, test, n_input, n_length, batch_size, lr, source, exp_num, epochs, model_name, data_percent, n_out, batch_norm=True, plot=False): #define number of subsequence time steps n_steps = int(n_input/n_length) #prepare data train_x, train_y = to_supervised(train, n_input, step_size=1, n_out=1, is_y=True) # define parameters n_features = train_x.shape[2] # define model model = load_model(model_name) model = clone_model(model) model.build() opt = optimizers.Adam() model.compile(loss='categorical_crossentropy', metrics = ['acc'], optimizer=opt) #model.summary() model.load_weights(model_name) #data percentage train_ind = int(round(len(train_x)*(data_percent))) train_x = train_x[-train_ind:, :] train_y = train_y[-train_ind:, :] # define parameters n_features = train_x.shape[2] # reshape into subsequences [samples, timesteps, rows, cols, channels] train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features)) # reshape output into [samples, timesteps, features] train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1)) train_y =to_categorical(train_y) #record time tic = time.time() # fit network history = model.fit(train_x, train_y, epochs=epochs, shuffle=False, batch_size=batch_size, verbose=2) #record time toc = time.time() totTime = toc-tic #model.load_weights('../Models/best_weights_TL.hdf5') model.save('../Models/model_TL_'+str(exp_num)+'.h5') if plot: view_loss(history, str(exp_num)) # history is a list of training data history = [x for x in train] # walk-forward validation over each timestep predictions = list() for i in range(len(test)): # predict the timestep yhat_sequence = forecast(model, history, n_steps, n_length, n_input) # store the predictions predictions.append(yhat_sequence) # get real observation and add to history for predicting the next timestep history.append(test[i, :]) # evaluate predictions days for each timestep predictions = array(predictions) test1 = test[:, :, -1] YPred = argmax(predictions.reshape(predictions.shape[0], (predictions.shape[1]*predictions.shape[2])), out=None, axis=1) YPred = YPred.reshape(YPred.shape[0], 1) df = stack((YPred, test1)) df = df.transpose() df = df.reshape(df.shape[1], 2) DataFrame(df).to_csv('../Results/Files/2DConvLSTMAE_TL_'+str(exp_num)+'.csv') cm = confusion_matrix(test1, YPred) print(cm) f1 = f1_score(test1, YPred, average='weighted') acc = accuracy_score(test1, YPred) print(classification_report(test1, YPred)) return f1, acc, totTime #function to evaluate the model def evaluate_model_tl(train, test, n_input, n_length, batch_size, lr, source, exp_num, epochs, model_name, data_percent, n_layers, n_out, batch_norm=False, plot=False): #define number of subsequence time steps n_steps = int(n_input/n_length) # load pretrained model model = load_model(model_name) #prepare data train_x, train_y = to_supervised(train, n_input, step_size=1, n_out=1, is_y=True) #data percentage train_ind = int(round(len(train_x)*(data_percent))) train_x = train_x[-train_ind:, :] train_y = train_y[-train_ind:, :] # define parameters n_features = train_x.shape[2] # reshape into subsequences [samples, timesteps, rows, cols, channels] train_x = train_x.reshape((train_x.shape[0], n_steps, 1, n_length, n_features)) # reshape output into [samples, timesteps, features] train_y = train_y.reshape((train_y.shape[0], train_y.shape[1], 1)) train_y =to_categorical(train_y) # fix the layers as indicated by the papameter 'layers' for layer in model.layers[:-n_layers]: layer.trainable = False #check trainable status of individual layers for layer in model.layers: print(layer, layer.trainable) opt = optimizers.Adam(lr=lr) model.compile(loss='categorical_crossentropy', metrics=['acc'], optimizer=opt) #model.summary() #record time tic = time.time() # fit network history = model.fit(train_x, train_y, epochs=epochs, shuffle=False, batch_size=batch_size, verbose=2) #record time toc = time.time() totTime = toc-tic #model.load_weights('../Models/best_weights_TL.hdf5') model.save('../Models/model_TL_'+str(exp_num)+'.h5') if plot: view_acc(history, str(exp_num)) history = [x for x in train] # walk-forward validation over each timestep predictions = list() for i in range(len(test)): # predict the timestep yhat_sequence = forecast(model, history, n_steps, n_length, n_input) # store the predictions predictions.append(yhat_sequence) # get real observation and add to history for predicting the next timestep history.append(test[i, :]) # evaluate predictions days for each timestep predictions = array(predictions) test1 = test[:, :, -1] YPred = argmax(predictions.reshape(predictions.shape[0], (predictions.shape[1]*predictions.shape[2])), out=None, axis=1) YPred = YPred.reshape(YPred.shape[0], 1) df = stack((YPred, test1)) df = df.transpose() df = df.reshape(df.shape[1], 2) DataFrame(df).to_csv('../Results/Files/2DConvLSTMAE_TL_'+str(exp_num)+'.csv') cm = confusion_matrix(test1, YPred) print(cm) f1 = f1_score(test1, YPred, average='weighted') acc = accuracy_score(test1, YPred) print(classification_report(test1, YPred)) return f1, acc, totTime def perform_experiment(resFile, file_name, n_test, model_, n_out, verbose, med, high): #load experimental config from csv file df_exp =
read_csv(resFile, header=0)
pandas.read_csv