prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd from datetime import datetime, timedelta from typing import Optional, Union def check_prices(**kwargs) -> bool: '''checks if one or more series of prices are of correct types''' for key, value in kwargs.items(): if not isinstance(value, pd.Series): print(f'{key} must be a pandas.Series') return False elif not isinstance(value.index, pd.DatetimeIndex): print(f'index of {key} must be a pandas.DatetimeIndex') return False return True def check_time(**kwargs) -> bool: '''checks if one or more timestamps are of correct types''' for key, value in kwargs.items(): if (not isinstance(value, pd.Timestamp)) and (not isinstance(value, datetime)): print(f'{key} must be a pandas.Timestamp or datetime.datetime') return False return True def convert_ticker(ticker) -> str: '''converts ticker symbol for easier complementary API usage''' assert ('XSHG' in ticker) or ('XSHE' in ticker) or ('SH' in ticker) or ('SZ' in ticker), 'Invalid ticker symbol' if 'XSHG' in ticker: ticker = ticker.replace('.XSHG', '.SH') elif 'XSHE' in ticker: ticker = ticker.replace('.XSHE', '.SZ') elif 'SH' in ticker: ticker = ticker.replace('.SH', '.XSHG') elif 'SZ' in ticker: ticker = ticker.replace('.SZ', '.XSHE') return ticker def add_suffix(ticker:str) -> str: ''' Adds Shanghai or Shenzhen stock exchange suffix (.SH or .SZ) to a ticker Parameters ---------- ticker : str the ticker symbol to add suffix onto Examples -------- >>> from xquant.util import add_suffix >>> add_suffix('1') '000001.SZ' >>> add_suffix('300001') '300001.SZ' >>> add_suffix('600001') '600001.SH' ''' ticker = ticker.zfill(6) if len(ticker) > 6: raise Exception('Cannot interpret ticker symbol') if ticker[0] == '6': ticker += '.SH' else: ticker += '.SZ' return ticker def closest_trading_day(date, df_index, method:str=None) -> pd.Timestamp: '''gets the closest trading day according to a provided index''' assert check_time(date=date) assert isinstance(df_index, pd.DatetimeIndex), 'df_index must be a pandas.DatetimeIndex' assert method in [None, 'ffill','bfill'], "method must be one of None, 'ffill', or 'bfill'" date = pd.to_datetime(date) open_days = df_index try: idx = open_days.get_loc(date) except KeyError: idx = open_days.get_loc(date, method=method) day = open_days[idx] return day def next_trading_day(date, df_index) -> pd.Timestamp: '''gets the next trading day after a certain date according to a provided index''' assert check_time(date=date) assert isinstance(df_index, pd.DatetimeIndex), 'df_index must be a pandas.DatetimeIndex' date = pd.to_datetime(date) open_days = df_index try: idx = open_days.get_loc(date) + 1 next_day = open_days[idx] except KeyError: idx = open_days.get_loc(date, method='bfill') next_day = open_days[idx] return next_day def last_trading_day(date, df_index) -> pd.Timestamp: '''gets the last trading day before a certain date according to a provided index''' assert check_time(date=date) assert isinstance(df_index, pd.DatetimeIndex), 'df_index must be a pandas.DatetimeIndex' date = pd.to_datetime(date) open_days = df_index try: idx = open_days.get_loc(date) - 1 last_day = open_days[idx] except KeyError: idx = open_days.get_loc(date, method='ffill') last_day = open_days[idx] return last_day def business_days(month, df_index) -> pd.DatetimeIndex: '''returns all business days in a month accroding to a provided index''' assert isinstance(df_index, pd.DatetimeIndex), 'df_index must be a pandas.DatetimeIndex' month = pd.to_datetime(month) return df_index[str(month.year)+'-'+str(month.month)].index def quarter_generator(start, end) -> None: ''' A generator that yields beginnings of quarters ''' assert check_time(start=start, end=end) date = start - timedelta(1) end = end -
pd.tseries.offsets.BQuarterBegin(startingMonth=1)
pandas.tseries.offsets.BQuarterBegin
import json import numpy as np import pytest from pandas import DataFrame, Index, json_normalize import pandas._testing as tm from pandas.io.json._normalize import nested_to_record @pytest.fixture def deep_nested(): # deeply nested data return [ { "country": "USA", "states": [ { "name": "California", "cities": [ {"name": "San Francisco", "pop": 12345}, {"name": "Los Angeles", "pop": 12346}, ], }, { "name": "Ohio", "cities": [ {"name": "Columbus", "pop": 1234}, {"name": "Cleveland", "pop": 1236}, ], }, ], }, { "country": "Germany", "states": [ {"name": "Bayern", "cities": [{"name": "Munich", "pop": 12347}]}, { "name": "Nordrhein-Westfalen", "cities": [ {"name": "Duesseldorf", "pop": 1238}, {"name": "Koeln", "pop": 1239}, ], }, ], }, ] @pytest.fixture def state_data(): return [ { "counties": [ {"name": "Dade", "population": 12345}, {"name": "Broward", "population": 40000}, {"name": "<NAME>", "population": 60000}, ], "info": {"governor": "<NAME>"}, "shortname": "FL", "state": "Florida", }, { "counties": [ {"name": "Summit", "population": 1234}, {"name": "Cuyahoga", "population": 1337}, ], "info": {"governor": "<NAME>"}, "shortname": "OH", "state": "Ohio", }, ] @pytest.fixture def author_missing_data(): return [ {"info": None}, { "info": {"created_at": "11/08/1993", "last_updated": "26/05/2012"}, "author_name": {"first": "Jane", "last_name": "Doe"}, }, ] @pytest.fixture def missing_metadata(): return [ { "name": "Alice", "addresses": [ { "number": 9562, "street": "Morris St.", "city": "Massillon", "state": "OH", "zip": 44646, } ], }, { "addresses": [ { "number": 8449, "street": "Spring St.", "city": "Elizabethton", "state": "TN", "zip": 37643, } ] }, ] @pytest.fixture def max_level_test_input_data(): """ input data to test json_normalize with max_level param """ return [ { "CreatedBy": {"Name": "User001"}, "Lookup": { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, "Image": {"a": "b"}, } ] class TestJSONNormalize: def test_simple_records(self): recs = [ {"a": 1, "b": 2, "c": 3}, {"a": 4, "b": 5, "c": 6}, {"a": 7, "b": 8, "c": 9}, {"a": 10, "b": 11, "c": 12}, ] result = json_normalize(recs) expected = DataFrame(recs) tm.assert_frame_equal(result, expected) def test_simple_normalize(self, state_data): result = json_normalize(state_data[0], "counties") expected = DataFrame(state_data[0]["counties"]) tm.assert_frame_equal(result, expected) result = json_normalize(state_data, "counties") expected = [] for rec in state_data: expected.extend(rec["counties"]) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) result = json_normalize(state_data, "counties", meta="state") expected["state"] = np.array(["Florida", "Ohio"]).repeat([3, 2]) tm.assert_frame_equal(result, expected) def test_empty_array(self): result = json_normalize([]) expected = DataFrame() tm.assert_frame_equal(result, expected) def test_simple_normalize_with_separator(self, deep_nested): # GH 14883 result =
json_normalize({"A": {"A": 1, "B": 2}})
pandas.io.json.json_normalize
import requests from bs4 import BeautifulSoup import json import pandas as pd def get_list_of_youtube_channels(term,n): # initialize list of links links = [] # get a list of links for channels while searching for a given term for i in range(0,n,10): r = requests.get("https://www.bing.com/search?q="+term+"%20site%3A%20https%3A%2F%2Fwww.youtube.com%2Fchannel%2F&first="+str(i)) soup = BeautifulSoup(r.text,'html.parser') link_elements = soup.find_all('h2') for l in link_elements: try: a = l.find('a') links = links + [a['href']] except: pass # get user ids from urls channel_ids_rough = [l.split("/")[l.split("/").index('channel')+1] for l in links if "channel" in l.split("/")] channel_ids = [c.split("?")[0] for c in channel_ids_rough] # remove duplicates channel_ids = list(set(channel_ids)) return channel_ids # get API key for the YouTube Data v3 API -- you can create one at https://console.developers.google.com/apis/credentials def get_youtube_api_key(): with open('authentications/youtube_api_key.txt', 'r') as f: api_key=f.read() return api_key def get_data_string_for_youtube_channels(channel_ids): # initialize dataframe df =
pd.DataFrame()
pandas.DataFrame
from jug import TaskGenerator, CachedFunction import os from os import path from jug.hooks.exit_checks import exit_if_file_exists, exit_env_vars exit_env_vars() exit_if_file_exists('jug.exit.marker') def get_sample(f): return path.split(f)[-1].split('_')[0] BASE = '/g/scb2/bork/ralves/projects/genecat/outputs/' HEADERS_FILE = 'GMGC.95nr.fna.sam.header' def list_samfiles(): from glob import glob samfiles = glob(BASE + '/*.iter2.*') blacklist = set([get_sample(s) for s in samfiles if s.endswith('.sam.gz')]) return [s for s in samfiles if s.endswith('minimap.iter2.noseq.sam.xz') and get_sample(s) not in blacklist] _gene_blacklist= None def expand_sort(ifile, ofile): import lzma import subprocess from os import unlink from tempfile import TemporaryDirectory global _gene_blacklist if _gene_blacklist is None: _gene_blacklist = set(line.strip() for line in open('redundant.complete.sorted.txt')) print("Loaded blacklist with {} elements.".format(len(_gene_blacklist ))) BUFSIZE = 16*1024*1024 block = [] partials = [] def write_block(out_base): nonlocal block if not block: return block.sort() out_name = out_base + '/' + str(len(partials)) + '.sam' print(f'Writing to {out_name}') with open(out_name, 'wt') as output: for line in block: output.write(line) block = [] partials.append(out_name) block = [] with TemporaryDirectory() as tdir: for line in lzma.open(ifile, 'rt'): if line[0] == '@': continue if line.split('\t')[2] in _gene_blacklist : continue block.append(line) if len(block) == BUFSIZE: write_block(tdir) write_block(tdir) subprocess.check_call(['sort', '--merge', '-o', ofile] + partials) @TaskGenerator def count1(samfile): from ngless import NGLess import tempfile ofname = 'outputs/{}.txt'.format(get_sample(samfile)) ofname_u = 'outputs/{}.unique.txt'.format(get_sample(samfile)) sname = tempfile.NamedTemporaryFile(suffix='.sam', delete=False) sname.close() try: sname = sname.name expand_sort(samfile, sname) sc = NGLess.NGLess('0.7') e = sc.env e.sam = sc.samfile_(sname, headers=HEADERS_FILE) sc.write_(sc.count_(e.sam, features=['seqname'], multiple='{unique_only}', discard_zeros=True), ofile=ofname_u + '.gz') sc.write_(sc.count_(e.sam, features=['seqname'], discard_zeros=True), ofile=ofname + '.gz') sc.run(auto_install=False, ncpus='auto') return ofname finally: os.unlink(sname) _rename = None def load_rename_table(): global _rename if _rename is None: _rename = {} for line in open('/g/bork1/coelho/DD_DeCaF/genecats.cold/GMGC10.rename.table.txt'): n, name = line.split() _rename[name] = int(n.split('.')[1], 10) return _rename def load_gene2bactNOG(): gene2bactNOG = {} for line in open('cold/annotations/GMGC.95nr.emapper.annotations'): tokens = line.strip('\n').split('\t') bactNOG = [b for b in tokens[9].split(',') if 'bactNOG' in b] if len(bactNOG): gene2bactNOG[tokens[0]] = bactNOG[0] return gene2bactNOG def load_gene2ko(): return load_annotation(6) def load_gene2highNOG(): return load_annotation(11) def load_annotation(ix): group = {} for line in open('cold/annotations/GMGC.95nr.emapper.annotations'): tokens = line.strip('\n').split('\t') tok = tokens[ix] if len(tok): group[tokens[0]] = tok return group _sizes = None def scale(g, sizes): total = g.sum() gn = g / sizes[g.index] gn *= total /gn.sum() return gn @TaskGenerator def scale_combine(f): f = f + '.gz' import pandas as pd import numpy as np global _sizes if _sizes is None: _sizes = pd.read_table('tables/GMGC.95nr.sizes', index_col=0, squeeze=True) _rename = load_rename_table() non_unique = pd.read_table(f, index_col=0, squeeze=True) fu = f.replace('.txt.gz', '.unique.txt.gz') unique = pd.read_table(fu, index_col=0, squeeze=True) unique_scaled = scale(unique, _sizes) non_unique_scaled = scale(non_unique, _sizes) pasted = pd.DataFrame({'raw_unique': unique, 'raw': non_unique, 'unique_scaled' : unique_scaled, 'scaled' : non_unique_scaled}) pasted.fillna(0, inplace=True) pasted.rename(index=_rename, inplace=True) pasted.reset_index(inplace=True) pasted['index'] = pasted['index'].astype(np.int32) fname = f.replace('.txt.gz', '.feather') pasted.to_feather(fname) return fname @TaskGenerator def compute_totals(counts): import pandas as pd totals = {} for f in counts: print(f"Loading {f}") sample = f.split('/')[1].split('.')[0] f = pd.read_feather(f.replace('txt', 'feather')) totals[sample] = pd.Series({'total': f['raw'].values.sum(), 'total_unique': f['raw_unique'].values.sum()}) return pd.DataFrame(totals) @TaskGenerator def save_totals(totals): totals.T.astype(int).to_csv('tables/total.tsv', sep='\t') def prepare_gene2functional(annotation, oname_feather, oname_list): import pandas as pd rename = load_rename_table() gi2func = {} for k,v in annotation.items(): gi2func[rename[k]] = v gi = pd.DataFrame({'gi2func':
pd.Series(gi2func)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ replacement_comparison.py Functions to compare openSMILE outputs for various noise replacement methods for each waveform in the sample. Authors: – <NAME>, 2017 (<EMAIL>) © 2017, Child Mind Institute, Apache v2.0 License @author: jon.clucas """ import numpy as np, os, pandas as pd, sys if os.path.abspath('../../') not in sys.path: if os.path.isdir(os.path.join(os.path.abspath('../..'), 'SM_openSMILE')): sys.path.append(os.path.abspath('../..')) elif os.path.isdir(os.path.join(os.path.abspath('..'), 'SM_openSMILE')): sys.path.append(os.path.abspath('..')) elif os.path.isdir('SM_openSMILE'): sys.path.append(os.path.abspath('.')) from SM_openSMILE.openSMILE_preprocessing.noise_replacement import \ condition_comparison_nr_all as cc, nr_box_plots as nbp from SM_openSMILE.cfg import conditions, oSdir, configs adults_replaced = os.path.dirname(oSdir) def main(): # collect_mad_ranks() plot_mad_ranks() def collect_mad_ranks(): """ Function to collect median absolute deviations for all [replacement × condition]s for each configuration for each URSI Parameters ---------- None Returns ------- None Outputs ------- csv files two csv files per URSI per configuration file: one for totals, and one for summaries """ replacements = ['removed', 'replaced_clone', 'replaced_pink', 'timeshifted' ] for i, replacement in enumerate(replacements): replacements[i] = '_'.join(['adults', replacement]) replacements = [*replacements, 'adults'] list_of_dataframes = [] for URSI in os.listdir(adults_replaced): if URSI not in ['.DS_Store', 'summary']: for condition in conditions: for config_file in configs: URSI_files = [] for method in replacements: method_dir = os.path.join(adults_replaced, URSI, 'openSMILE_outputs', config_file, method) if os.path.isdir(method_dir): if len(URSI_files) == 0: or_dir = os.path.join(adults_replaced, URSI, 'openSMILE_outputs', config_file, 'original') if os.path.isdir(or_dir): for or_file in os.listdir(or_dir): if condition in or_file: URSI_files.append(os.path.join( or_dir, or_file)) for csv_file in os.listdir(method_dir): csv_path = os.path.join(method_dir, csv_file) if condition in csv_file and csv_path not in \ URSI_files: URSI_files.append(csv_path) if len(URSI_files) == 6: print(''.join(["Processing ", URSI, ", ", condition, " : ", config_file])) list_of_dataframes.append(["_".join([URSI, config_file] ), cc.build_dataframe(URSI, ['original', *replacements], config_file, URSI_files)]) cc.mad_rank_analyses([list_of_dataframes], adults_replaced) def plot_mad_ranks(): """ Function to build boxplots for the outputs of collect_mad_ranks(). Parameters ---------- None Returns ------- None Outputs ------- svg files one svg file for each config file """ for config in configs: for y in ["sum(MAD)", "mean(MAD)"]: out_path = os.path.join(oSdir, 'mad_ranks', config) if not os.path.exists(out_path): os.makedirs(out_path) nbp.plot(sum_mad_ranks(config), out_path, y, "csv") nbp.plot(sum_mad_ranks(config), out_path, y) def sum_mad_ranks(config): """ Function to build boxplots for the outputs of collect_mad_ranks(). Parameters ---------- config : string openSMILE config file Returns ------- df : pandas dataframe pandas dataframe totalling all relevant summaries Outputs ------- csv files one csv file for each config file """ df =
pd.DataFrame()
pandas.DataFrame
""" Functions that load downloaded emoji data and prepare train/dev/test sets for NNs """ from math import ceil import os import string import pandas as pd import numpy as np # import emoji CHARACTERS = """ '",.\\/|?:;@'~#[]{}-=_+!"£$%^&*()abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890""" def read_tweet_data(path): """" loads the csv (path) containing text and emoji data returns a pandas dataframe containing line number, text, and emoji """ data = pd.read_csv(path, dtype='object') data = data.loc[:, ['text', 'emoji']] # should contain two labelled columns # filter out comumn headers (rows where text='text' emoji='emoji') filt = data['emoji'] != 'emoji' return data[filt] def filter_tweets_min_count(tweets, min_count=1000): """ loads an m x 3 pandas dataframe (cols line number, text, emoji) and returns filtered list with only emojis with >min_count examples """ return tweets.groupby('emoji').filter(lambda c: len(c) > min_count) def filter_text_for_handles(text, chars=CHARACTERS): """ takes an pd.Series of text, removes twitter handles from text data - all text preceded by @ and then all characters not contained in universal set""" def filter_handles(txt): return ' '.join( word for word in txt.split(' ') if not word.startswith('@')) def filter_chars(txt): return ''.join([c for c in txt if c in chars]) def filter(txt): return filter_chars(filter_handles(txt)) return text.apply(filter) def pad_text(text, length=160): """ pads text with preceding whitespace and/or truncates tweet to 160 characters """ if len(text) > length: return text[0:length] padded_text = ' ' * (length - len(text)) + text return padded_text def get_series_data_from_tweet(tweet, length=160, window_size=40, step=3): """ input (tweet) is a pd.Series, a row of a pd.DataFrame returns corresponding lists sentences (of length window_size) and next_chars (single character). """ sentences = [] next_chars = [] # pad all tweets to 160 characters # padded_text = ' ' * (160-tweet_length) + tweet['text'] padded_text = pad_text(tweet['text'], length=length) for i in range(0, length - window_size, step): sentences.append(padded_text[i:i+window_size]) next_chars.append(padded_text[i+window_size]) return (sentences, next_chars) def get_emoji_and_series_data_from_tweet(tweet, length=160, window_size=40, step=3): """ input (tweet) is a pd.Series, a row of a pd.DataFrame returns corresponding lists sentences (of length window_size), emoji and next_chars (both single characters). """ sentences = [] next_chars = [] emoji = [] # pad all tweets to 160 characters # padded_text = ' ' * (160-tweet_length) + tweet['text'] padded_text = pad_text(tweet['text'], length=length) for i in range(0, length - window_size, step): sentences.append(padded_text[i:i+window_size]) next_chars.append(padded_text[i+window_size]) emoji.append(tweet['emoji']) return (sentences, emoji, next_chars) def get_unique_chars_list(list_strings): """ takes list of strings, returns dict of all characters """ one_big_string = ' '.join(list_strings) chars = sorted(list(set(one_big_string))) # print('Unique chars: ', len(chars)) char_indices = dict((char, chars.index(char)) for char in chars) return chars, char_indices def get_emojis_list(emoji_pandas_series): """ Gets a sorted list of unique emojis, and a dictionary of inverses""" emojis = sorted(list(set(emoji_pandas_series))) emoji_indices = dict((emoji, emojis.index(emoji)) for emoji in emojis) return emojis, emoji_indices def get_universal_chars_list(): """ gets a universal set of text characters and basic punctuation, suitable for using on all tweets. returns set of characters and the index. """ return get_unique_chars_list(CHARACTERS) def get_x_y_bool_arrays(sentences, next_chars): """ takes the list of strings (sentences) and list of next_chars, and one-hot encodes them using Boolean type, returns as arrays of x, y. Now replaced by get_x_bool_array and get_y_bool_array as vectorisable versions that work over a pd.Series""" print("Deprecated! Use get_x_bool_array or get_y_bool_array instead") chars, char_index = get_universal_chars_list() text_x = np.zeros((len(sentences), len(sentences[0]), len(chars)), dtype=np.bool) text_y = np.zeros((len(sentences), len(char_index)), dtype=np.bool) for i, sentence in enumerate(sentences): for pos, char in enumerate(sentence): text_x[i, pos, char_index[char]] = 1 text_y[i, char_index[next_chars[i]]] = 1 return (text_x, text_y) def get_x_bool_array(sentence, chars, char_index): """ similar to get_x_y_bool_arrays() but operates on a single sentence and returns a one-hot encoded bool array (dims len(sentence) x len(chars)). Series chars is a list of recognised characters and char_index is the corresponding index""" # chars, char_index = get_unique_chars_list(sentence) text_x = np.zeros((len(sentence), len(sentence[0]), len(chars)), dtype=np.bool) # text_y = np.zeros((len(sentences), len(char_index)), dtype=np.bool) for i, s in enumerate(sentence): for pos, char in enumerate(s): text_x[i, pos, char_index[char]] = 1 # text_y[i, char_index[next_chars[i]]] = 1 return np.asarray(text_x) def get_y_bool_array(next_chars, char_index): """ similar to get_x_y_bool_arrays() but operates on a single sentence and returns a one-hot encoded bool array only (one dimension of size len(chars)). Series chars is a list of recognised characters and char_index is the corresponding index""" # Pass in a global list/index of characters so it's the same encoding for all tweets # chars, char_index = get_unique_chars_list(sentence) # text_x = np.zeros((len(sentence), len(sentence[0]), # len(chars)), dtype=np.bool) text_y = np.zeros((len(next_chars), len(char_index)), dtype=np.bool) for i in range(len(next_chars)): text_y[i, char_index[next_chars[i]]] = 1 return np.asarray(text_y) def get_emoji_bool_array(emoji, emoji_index): """ gets the one-hot encoded array for emojis, exactly like get_y_bool_array""" #emoji_one_hot = np.zeros((1, len(emoji_index)), dtype=np.bool) #emoji_one_hot[0, emoji_index[emoji]] = 1 emoji_one_hot = np.zeros((len(emoji), len(emoji_index)), dtype=np.bool) for i in range(len(emoji)): emoji_one_hot[i, emoji_index[emoji[i]]] = 1 return np.asarray(emoji_one_hot) def x_y_bool_array_to_sentence(text_x, text_y, chars, position=0, separator=False): """ converts one-hot encoded arrays text_x, text_y back to human readable, for debug purposes """ def bool_array_to_char(bool_array, chars): return chars[np.argmax(bool_array.astype(int))] def decode_line(text_x, chars): string = [] for i in range(text_x.shape[0]): string.append(bool_array_to_char(text_x[i], chars)) return string def decode_example(text_x, text_y): # decodes x, y from array type back into english if separator: sep = ':' else: sep = '' return(''.join(decode_line(text_x, chars)) + # decode x sep + bool_array_to_char(text_y, chars)) # decode y return decode_example(text_x[position], text_y[position]) def convert_tweet_to_xy(tweet, length=160, window_size=40, step=3): """ converts a tweet (pd DataFrame with 'text' field) to x, y text pairs, where x is window_size character moving window over the text, and y is the expected next character. outputs an ndarray of dims (m, window_size, characters) where m is the final number of training examples and characters is the number of characters in the set (78 by default) """ # apply the function to split each tweet into multiple windows of 40 chars and # a corresponding n_char # spits out a list of (x, y) tuples which is a real headache but we can fix it assert length > window_size zipped = tweet.apply( lambda x: get_series_data_from_tweet(x, length=length, window_size=window_size, step=step), axis=1) (x_tuple, y_tuple) = zip(*zipped) # unzips the tuples into separate tuples of x, y # get the universal character set and the corresponding index chars_univ, char_idx_univ = get_universal_chars_list() x_bool = pd.Series(x_tuple).apply(lambda x: get_x_bool_array(x, chars_univ, char_idx_univ)) y_bool = pd.Series(y_tuple).apply(lambda x: get_y_bool_array(x, char_idx_univ)) x_dims = (len(x_bool), # indexes over tweets # indexes over different sentence windows ((160 - window_size) / step = 40) x_bool[0].shape[0], x_bool[0].shape[1], # indexes over characters in the window (window_size = 40) x_bool[0].shape[2]) # one-hot encoding for each character (78) y_dims = (len(y_bool), # indexes over tweets y_bool[0].shape[0], # indexes over different sentence windows (40) y_bool[0].shape[1]) # one-hot encoding for each character (78) # allocate space for the array x_arr = np.zeros(shape=x_dims) y_arr = np.zeros(shape=y_dims) for i, twit in enumerate(x_bool): x_arr[i] = twit for i, nchar in enumerate(y_bool): y_arr[i] = nchar # temp for profiling del x_bool, y_bool # finally, reshape into a (m, w, c) array # where m is training example, w is window size, # c is one-hot encoded character x_fin = x_arr.reshape(x_arr.shape[0] * x_arr.shape[1], x_arr.shape[2], x_arr.shape[3]) # y is a (m, c) array, where m is training example and c is one-hot encoded character y_fin = y_arr.reshape(y_arr.shape[0] * y_arr.shape[1], y_arr.shape[2]) # temp del x_arr, y_arr return x_fin, y_fin def convert_tweet_to_xy_generator(tweet, length=160, window_size=40, step=3, batch_size=64, emoji_set=None): """ generator function that batch converts tweets (from pd DataFrame of tweets) to tuple of (x,y) data, (where x is (m, window_size, character_set_size) ndarray and y is an (m,character_set_size) dimensional array) suitable for feeding to keras fit_generator. If set of all emojis is passed in as emoji_set, then the x return value is a list containing m,emoji_size matrix as well as the text. Num training examples per tweet given by math.ceil((length - window_size)/step)""" assert length > window_size batch_num = 0 n_batches = int(tweet.shape[0] / batch_size) # terminate after last full batch for now # calculate num training examples per tweet m_per_tweet = int(ceil((length - window_size) / step)) # get the universal character set and its index chars_univ, char_idx_univ = get_universal_chars_list() if emoji_set: emoji_idx = dict((emoji, emoji_set.index(emoji)) for emoji in emoji_set) # allocate ndarray to contain one-hot encoded batch x_dims = (batch_size, # num tweets m_per_tweet, window_size, len(chars_univ)) # length of the one-hot vector y_dims = (batch_size, # num tweets m_per_tweet, len(chars_univ)) # length of the one-hot vector x_arr = np.zeros(shape=x_dims) y_arr = np.zeros(shape=y_dims) if emoji_set: emoji_dims = (batch_size, m_per_tweet, len(emoji_set)) emoji_arr = np.zeros(shape=emoji_dims) while batch_num < n_batches: # in case tweet < batch_size # slice the batch this_batch = tweet.iloc[(batch_num*batch_size):(batch_num+1)*batch_size] # expand out all the tweets if emoji_set: zipped = this_batch.apply( lambda x: get_emoji_and_series_data_from_tweet( x, length=length, window_size=window_size, step=step), axis=1) # unzips the tuples into separate tuples of x, y (x_tuple, emoji_tuple, y_tuple) = zip(*zipped) else: zipped = this_batch.apply( lambda x: get_series_data_from_tweet( x, length=length, window_size=window_size, step=step), axis=1) # unzips the tuples into separate tuples of x, y (x_tuple, y_tuple) = zip(*zipped) # turn each tuple into an series and then one-hot encode it x_bool = pd.Series(x_tuple).apply(lambda x: get_x_bool_array(x, chars_univ, char_idx_univ)) y_bool =
pd.Series(y_tuple)
pandas.Series
import os, glob, sys, io import numpy as np import pandas as pd # Timeseries data import datetime as dt # Time manipulation import yaml from matplotlib.dates import date2num # Convert dates to matplotlib axis coords from matplotlib import dates from scipy import fftpack from scipy import stats from bin.tools import * def init(config_file): # Read configuration with open(r'%s' % config_file) as file: config_list = yaml.load(file, Loader=yaml.FullLoader) src = config_list['sources']['ebas_ozone'] src_svanvik_OzoNorClim = config_list['sources']['svanvik_ozone'] src_rra = config_list['sources']['regional_ozone'] station_list = config_list['station_list'] workflow = config_list['workflow'] file.close() # Read data try: data = {} for station in station_list: if station=='Barrow': data.update({station:load_data(src+station+'/*', type="Barrow")}) else: data.update({station:load_data(src+station+'/*.nas')}) except NameError: sys.exit("Can't load ozone station data please check your source directory!") # Concate Jergul and Karasjok data data.update({'jergkara':pd.concat((data['Jergul'], data['Karasjok']))}) # Read and convert xls file data data_svanvik_OzoNorClim = [] for file in sorted(glob.glob(src_svanvik_OzoNorClim)): tmp_data_svanvik = pd.read_excel(file, index_col=0, header=0) data_svanvik_OzoNorClim.append(tmp_data_svanvik['O3_mugm-3'].where(tmp_data_svanvik['O3_mugm-3']>=0.5).dropna()/2.) # Concat data Svanvik data data.update({'svanvik_OzoNorClim':pd.concat(data_svanvik_OzoNorClim)}) # Load regional model reanalysis 2018 and set time axis try: data_rra = xr.open_dataset(src_rra) data_rra['time'] = pd.date_range("2018-01-01", periods=365*24, freq='H') data.update({'rra':data_rra}) except NameError: print("Warning: Can't load regional data please check your source directory!") return(data, workflow) def extract_station_data(data, station_list): from bin.station_info import station_location local_rra = {} for each in station_list: local_rra.update({each:data['rra'].sel(lat=station_location[each].lat, lon=station_location[each].lon, method='nearest', time='2018-07')['O3']*0.5}) return(local_rra) def compute_time_lag(data): time_lag = range(-32,33) lag_jergkara_esrange = [] lag_jergkara_pallas = [] lag_svanvik_esrange = [] lag_svanvik_pallas = [] lag_svanvik_jergkara = [] lag_label = ("jergkara_esrange","jergkara_pallas","svanvik_esrange","svanvik_pallas","svanvik_jergkara") for i in time_lag: lag_jergkara_esrange.append(time_lagged_corr(data['jergkara'], data['Esrange'], lag=i, pandas=True)) lag_jergkara_pallas.append(time_lagged_corr(data['jergkara'], data['Pallas'], lag=i, pandas=True)) lag_svanvik_esrange.append(time_lagged_corr(data['Svanvik'], data['Esrange'], lag=i, pandas=True)) lag_svanvik_pallas.append(time_lagged_corr(data['Svanvik'], data['Pallas'], lag=i, pandas=True)) lag_svanvik_jergkara.append(time_lagged_corr(data['Svanvik'], data['jergkara'], lag=i, pandas=True)) # Print maximum in lag lag_max = {} print("Lag correlation") for i,lag in zip(lag_label,(lag_jergkara_esrange, lag_jergkara_pallas, lag_svanvik_esrange, lag_svanvik_pallas, lag_svanvik_jergkara)): lag_max.update({i:np.array(time_lag)[np.where(np.array(lag)==np.array(lag).max())[0]][0]}) print("%s max at %d h" % (i, lag_max[i])) return(lag_max) def compute_clim(data): doys = np.arange(1,367) # Climatology from Esrange, Pallas, Jergul/Karasjok data climatology = pd.concat((data['Esrange'][:'2012'], data['Pallas'][:'2012'], data['jergkara'][:'2012'])) # Daily mean climatology from Esrange, Pallas, Jergul/Karasjok data yozone, yerr, yerr_mean = compute_climatology(climatology) yozone_max, yerr_max, yerr_mean_max = compute_climatology(climatology, mode='max') yozone_min, yerr_min, yerr_mean_min = compute_climatology(climatology, mode='min') # Svanvik climatology yozone_svanvik, yerr_svanvik, yerr_mean_svanvik = compute_climatology(data['Svanvik']) yozone_max_svanvik, yerr_max_svanvik, yerr_mean_max_svanvik = compute_climatology(data['Svanvik'], mode='max') yozone_min_svanvik, yerr_min_svanvik, yerr_mean_min_svanvik = compute_climatology(data['Svanvik'], mode='min') # Hourly climatology clim_hourly, clim_hourly_err, clim_hourly_err_mean = compute_climatology(climatology, mode='hourly') clim_hourly_svanvik, clim_hourly_err_svanvik, clim_hourly_err_mean_svanvik = compute_climatology(data['Svanvik'], mode='hourly') # Compute spline fits from scipy.interpolate import UnivariateSpline # Fennoscandic climatology w = 1/yerr_mean fitSpl_dmean = UnivariateSpline(doys, climatology.groupby(climatology.index.dayofyear).apply(np.nanmean), w=w) dmax = climatology.resample('1d').apply(np.nanmax) fitSpl_dmax = UnivariateSpline(doys, dmax.groupby(dmax.index.dayofyear).apply(np.nanmean)) # Svanvik w_svanvik = 1/yerr_mean_svanvik fitSpl_dmean_svanvik = UnivariateSpline(doys, data['Svanvik'].groupby(data['Svanvik'].index.dayofyear).apply(np.nanmean), w=w_svanvik) dmax_svanvik = data['Svanvik'].resample('1d').apply(np.nanmax) fitSpl_dmax_svanvik = UnivariateSpline(doys, dmax_svanvik.groupby(dmax_svanvik.index.dayofyear).apply(np.nanmean)) # Pickle splines for comparison with other data import pickle with open('obs_climatologies.pkl','wb') as output: pickle.dump(fitSpl_dmean, output, pickle.HIGHEST_PROTOCOL) pickle.dump(fitSpl_dmean_svanvik, output, pickle.HIGHEST_PROTOCOL) pickle.dump(yerr_mean, output, pickle.HIGHEST_PROTOCOL) pickle.dump(yerr_mean_svanvik, output, pickle.HIGHEST_PROTOCOL) return({'clim':clim_hourly, 'clim_err':clim_hourly_err, 'clim_err_mean':clim_hourly_err_mean}, {'clim':clim_hourly_svanvik, 'clim_err':clim_hourly_err_svanvik, 'clim_err_mean':clim_hourly_err_mean_svanvik}) def sample_climatology(clim, clim_svanvik): # Sample from houerly climatology sample_clim_svanvik = pd.DataFrame(pd.concat((clim_svanvik.iloc[:(31+28)*24],clim_svanvik.iloc[(31+29)*24:])).values, index=pd.date_range("2018-01-01 0:0", "2018-12-31 23:0", freq='H')) sample_clim = pd.DataFrame(pd.concat((clim.iloc[:(31+28)*24],clim.iloc[(31+29)*24:])).values, index=
pd.date_range("2018-01-01 0:0", "2018-12-31 23:0", freq='H')
pandas.date_range
""" Functions for comparing and visualizing model performance. Most of these functions rely on ATOM's model tracker and datastore services, which are not part of the standard AMPL installation, but a few functions will work on collections of models saved as local files. """ import os import sys import pdb import pandas as pd import numpy as np import matplotlib import logging import json import shutil import tarfile import tempfile from collections import OrderedDict from atomsci.ddm.utils import datastore_functions as dsf from atomsci.ddm.pipeline import model_tracker as trkr import atomsci.ddm.pipeline.model_pipeline as mp import atomsci.ddm.pipeline.parameter_parser as parse import atomsci.ddm.pipeline.model_wrapper as mw import atomsci.ddm.pipeline.featurization as feat from tensorflow.python.keras.utils.layer_utils import count_params logger = logging.getLogger('ATOM') mlmt_supported = True try: from atomsci.clients import MLMTClient except (ModuleNotFoundError, ImportError): logger.debug("Model tracker client not supported in your environment; can look at models in filesystem only.") mlmt_supported = False matplotlib.rc('xtick', labelsize=12) matplotlib.rc('ytick', labelsize=12) matplotlib.rc('axes', labelsize=12) logging.basicConfig(format='%(asctime)-15s %(message)s') nan = np.float32('nan') #------------------------------------------------------------------------------------------------------------------ def del_ignored_params(dictionary, ignored_params): """ Deletes ignored parameters from the dictionary if they exist Args: dictionary (dict): A dictionary with parameters ignored_parameters (list(str)): A list of keys potentially in the dictionary Returns: None """ for ip in ignored_params: if ip in dictionary: del dictionary[ip] #------------------------------------------------------------------------------------------------------------------ def get_collection_datasets(collection_name): """ Returns a list of unique training datasets used for all models in a given collection. Args: collection_name (str): Name of model tracker collection to search for models. Returns: list: List of model training (dataset_key, bucket) tuples. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return None dataset_set = set() mlmt_client = dsf.initialize_model_tracker() dset_dicts = mlmt_client.model.query_datasets(collection_name=collection_name, metrics_type='training').result() # Convert to a list of (dataset_key, bucket) tuples for dset_dict in dset_dicts: dataset_set.add((dset_dict['dataset_key'], dset_dict['bucket'])) return sorted(dataset_set) #------------------------------------------------------------------------------------------------------------------ def extract_collection_perf_metrics(collection_name, output_dir, pred_type='regression'): """ Obtain list of training datasets with models in the given collection. Get performance metrics for models on each dataset and save them as CSV files in the given output directory. Args: collection_name (str): Name of model tracker collection to search for models. output_dir (str): Directory where tables of performance metrics will be written. pred_type (str): Prediction type ('classification' or 'regression') of models to query. Returns: None """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return datasets = get_collection_datasets(collection_name) os.makedirs(output_dir, exist_ok=True) for dset_key, bucket in datasets: dset_perf_df = get_training_perf_table(dset_key, bucket, collection_name, pred_type=pred_type) dset_perf_file = '%s/%s_%s_model_perf_metrics.csv' % (output_dir, os.path.basename(dset_key).replace('.csv', ''), collection_name) dset_perf_df.to_csv(dset_perf_file, index=False) print('Wrote file %s' % dset_perf_file) #------------------------------------------------------------------------------------------------------------------ def get_training_perf_table(dataset_key, bucket, collection_name, pred_type='regression', other_filters = {}): """ Load performance metrics from model tracker for all models saved in the model tracker DB under a given collection that were trained against a particular dataset. Identify training parameters that vary between models, and generate plots of performance vs particular combinations of parameters. Args: dataset_key (str): Training dataset key. bucket (str): Training dataset bucket. collection_name (str): Name of model tracker collection to search for models. pred_type (str): Prediction type ('classification' or 'regression') of models to query. other_filters (dict): Other filter criteria to use in querying models. Returns: pd.DataFrame: Table of models and performance metrics. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return None print("Finding models trained on %s dataset %s" % (bucket, dataset_key)) mlmt_client = dsf.initialize_model_tracker() query_params = { "match_metadata": { "training_dataset.bucket": bucket, "training_dataset.dataset_key": dataset_key, }, "match_metrics": { "metrics_type": "training", # match only training metrics "label": "best", }, } query_params['match_metadata'].update(other_filters) metadata_list = mlmt_client.model.query_model_metadata( collection_name=collection_name, query_params=query_params, ).result() if metadata_list == []: print("No matching models returned") return else: print("Found %d matching models" % len(metadata_list)) model_uuid_list = [] model_type_list = [] max_epochs_list = [] learning_rate_list = [] dropouts_list = [] layer_sizes_list = [] featurizer_list = [] splitter_list = [] rf_estimators_list = [] rf_max_features_list = [] rf_max_depth_list = [] xgb_learning_rate_list = [] xgb_gamma_list = [] best_epoch_list = [] max_epochs_list = [] subsets = ['train', 'valid', 'test'] score_dict = {} for subset in subsets: score_dict[subset] = [] if pred_type == 'regression': metric_type = 'r2_score' else: metric_type = 'roc_auc_score' for metadata_dict in metadata_list: model_uuid = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_uuid) # Get model metrics for this model metrics_dicts = metadata_dict['training_metrics'] #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) if len(metrics_dicts) < 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) continue subset_metrics = {} for metrics_dict in metrics_dicts: subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['prediction_results'] model_uuid_list.append(model_uuid) model_params = metadata_dict['model_parameters'] model_type = model_params['model_type'] model_type_list.append(model_type) featurizer = model_params['featurizer'] featurizer_list.append(featurizer) split_params = metadata_dict['splitting_parameters'] splitter_list.append(split_params['splitter']) dataset_key = metadata_dict['training_dataset']['dataset_key'] if model_type == 'NN': nn_params = metadata_dict['nn_specific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) rf_estimators_list.append(nan) rf_max_features_list.append(nan) rf_max_depth_list.append(nan) xgb_learning_rate_list.append(nan) xgb_gamma_list.append(nan) if model_type == 'RF': rf_params = metadata_dict['rf_specific'] rf_estimators_list.append(rf_params['rf_estimators']) rf_max_features_list.append(rf_params['rf_max_features']) rf_max_depth_list.append(rf_params['rf_max_depth']) max_epochs_list.append(nan) best_epoch_list.append(nan) learning_rate_list.append(nan) layer_sizes_list.append(nan) dropouts_list.append(nan) xgb_learning_rate_list.append(nan) xgb_gamma_list.append(nan) if model_type == 'xgboost': xgb_params = metadata_dict['xgb_specific'] rf_estimators_list.append(nan) rf_max_features_list.append(nan) rf_max_depth_list.append(nan) max_epochs_list.append(nan) best_epoch_list.append(nan) learning_rate_list.append(nan) layer_sizes_list.append(nan) dropouts_list.append(nan) xgb_learning_rate_list.append(xgb_params["xgb_learning_rate"]) xgb_gamma_list.append(xgb_params["xgb_gamma"]) for subset in subsets: score_dict[subset].append(subset_metrics[subset][metric_type]) perf_df = pd.DataFrame(dict( model_uuid=model_uuid_list, model_type=model_type_list, dataset_key=dataset_key, featurizer=featurizer_list, splitter=splitter_list, max_epochs=max_epochs_list, best_epoch=best_epoch_list, learning_rate=learning_rate_list, layer_sizes=layer_sizes_list, dropouts=dropouts_list, rf_estimators=rf_estimators_list, rf_max_features=rf_max_features_list, rf_max_depth=rf_max_depth_list, xgb_learning_rate = xgb_learning_rate_list, xgb_gamma = xgb_gamma_list)) for subset in subsets: metric_col = '%s_%s' % (metric_type, subset) perf_df[metric_col] = score_dict[subset] sort_metric = '%s_valid' % metric_type perf_df = perf_df.sort_values(sort_metric, ascending=False) return perf_df # ----------------------------------------------------------------------------------------------------------------- def extract_model_and_feature_parameters(metadata_dict): """ Given a config file, extract model and featuer parameters. Looks for parameter names that end in *_specific. e.g. nn_specific, auto_featurizer_specific Args: model_metadict (dict): Dictionary containing NON-FLATTENED metadata for an AMPL model Returns: dictionary containing featurizer and model parameters. Most contain the following keys. ['max_epochs', 'best_epoch', 'learning_rate', 'layer_sizes', 'drop_outs', 'rf_estimators', 'rf_max_features', 'rf_max_depth', 'xgb_gamma', 'xgb_learning_rate', 'featurizer_parameters_dict', 'model_parameters_dict'] """ model_params = metadata_dict['model_parameters'] model_type = model_params['model_type'] required = ['max_epochs', 'best_epoch', 'learning_rate', 'layer_sizes', 'dropouts', 'rf_estimators', 'rf_max_features', 'rf_max_depth', 'xgb_gamma', 'xgb_learning_rate'] model_info = {} model_info['model_uuid'] = metadata_dict['model_uuid'] if model_type == 'NN': nn_params = metadata_dict['nn_specific'] model_info['max_epochs'] = nn_params['max_epochs'] model_info['best_epoch'] = nn_params['best_epoch'] model_info['learning_rate'] = nn_params['learning_rate'] model_info['layer_sizes'] = ','.join(['%d' % s for s in nn_params['layer_sizes']]) model_info['dropouts'] = ','.join(['%.2f' % d for d in nn_params['dropouts']]) elif model_type == 'RF': rf_params = metadata_dict['rf_specific'] model_info['rf_estimators'] = rf_params['rf_estimators'] model_info['rf_max_features'] = rf_params['rf_max_features'] model_info['rf_max_depth'] = rf_params['rf_max_depth'] elif model_type == 'xgboost': xgb_params = metadata_dict['xgb_specific'] model_info['xgb_gamma'] = xgb_params['xgb_gamma'] model_info['xgb_learning_rate'] = xgb_params['xgb_learning_rate'] for r in required: if r not in model_info: # all fields must be filled in model_info[r] = nan # the new way of extracting model parameters is to simply save them in json if 'nn_specific' in metadata_dict: model_metadata = metadata_dict['nn_specific'] # include learning rate, max_epochs, and best_epoch for convenience model_info['max_epochs'] = model_metadata['max_epochs'] model_info['best_epoch'] = model_metadata['best_epoch'] learning_rate_col = [c for c in model_metadata.keys() if c.endswith('learning_rate')] if len(learning_rate_col) == 1: model_info['learning_rate'] = model_metadata[learning_rate_col[0]] # delete several parameters that aren't normally saved ignored_params = ['batch_size','bias_init_consts','optimizer_type', 'weight_decay_penalty','weight_decay_penalty_type','weight_init_stddevs'] del_ignored_params(model_metadata, ignored_params) elif 'rf_specific' in metadata_dict: model_metadata = metadata_dict['rf_specific'] elif 'xgb_specific' in metadata_dict: model_metadata = metadata_dict['xgb_specific'] # delete several parameters that aren't normally saved ignored_params = ['xgb_colsample_bytree','xgb_max_depth', 'xgb_min_child_weight','xgb_n_estimators','xgb_subsample'] del_ignored_params(model_metadata, ignored_params) else: # no model parameters found model_metadata = {} model_info['model_parameters_dict'] = json.dumps(model_metadata) if 'ecfp_specific' in metadata_dict: feat_metadata = metadata_dict['ecfp_specific'] elif 'auto_featurizer_specific' in metadata_dict: feat_metadata = metadata_dict['auto_featurizer_specific'] elif 'autoencoder_specific' in metadata_dict: feat_metadata = metadata_dict['autoencoder_specific'] else: # no model parameters found feat_metadata = {} model_info['feat_parameters_dict'] = json.dumps(feat_metadata) return model_info # ------------------------------------------------------------------------------------------------------------------ def get_best_perf_table(metric_type, col_name=None, result_dir=None, model_uuid=None, metadata_dict=None, PK_pipe=False): """ Extract parameters and training run performance metrics for a single model. The model may be specified either by a metadata dictionary, a model_uuid or a result directory; in the model_uuid case, the function queries the model tracker DB for the model metadata. For models saved in the filesystem, can query the performance data from the original result directory, but not from a saved tarball. Args: metric_type (str): Performance metric to include in result dictionary. col_name (str): Collection name containing model, if model is specified by model_uuid. result_dir (str): result directory of the model, if Model tracker is not supported and metadata_dict not provided. model_uuid (str): UUID of model to query, if metadata_dict is not provided. metadata_dict (dict): Full metadata dictionary for a model, including training metrics and dataset metadata. PK_pipe (bool): If True, include some additional parameters in the result dictionary specific to PK models. Returns: model_info (dict): Dictionary of parameter or metric name - value pairs. Todo: Add support for models saved as local tarball files. """ if not mlmt_supported and not result_dir: print("Model tracker not supported in your environment; can examine models saved in filesystem only, 'result_dir' needs to be provided.") return None elif mlmt_supported and col_name: mlmt_client = dsf.initialize_model_tracker() if metadata_dict is None: if model_uuid is None: print("Have to specify either metadata_dict or model_uuid") return query_params = { "match_metadata": { "model_uuid": model_uuid, }, "match_metrics": { "metrics_type": "training", # match only training metrics "label": "best", }, } metadata_list = list(mlmt_client.model.query_model_metadata( collection_name=col_name, query_params=query_params ).result()) if len(metadata_list) == 0: print("No matching models returned") return None metadata_dict = metadata_list[0] elif result_dir: model_dir = "" for dirpath, dirnames, filenames in os.walk(result_dir): if model_uuid in dirnames: model_dir = os.path.join(dirpath, model_uuid) break if model_dir: with open(os.path.join(model_dir, 'model_metadata.json')) as f: metadata_dict = json.load(f) else: print(f"model_uuid ({model_uuid}) not exist in {result_dir}.") return None model_info = {} model_info['model_uuid'] = metadata_dict['model_uuid'] model_info['collection_name'] = col_name # Get model metrics for this model metrics_dicts = [d for d in metadata_dict['training_metrics'] if d['label'] == 'best'] if len(metrics_dicts) != 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) return None model_params = metadata_dict['model_parameters'] model_info['model_type'] = model_params['model_type'] model_info['featurizer'] = model_params['featurizer'] split_params = metadata_dict['splitting_parameters'] model_info['splitter'] = split_params['splitter'] if 'split_uuid' in split_params: model_info['split_uuid'] = split_params['split_uuid'] model_info['dataset_key'] = metadata_dict['training_dataset']['dataset_key'] model_info['bucket'] = metadata_dict['training_dataset']['bucket'] dset_meta = metadata_dict['training_dataset']['dataset_metadata'] if PK_pipe: model_info['assay_name'] = dset_meta.get('assay_category', 'NA') model_info['response_col'] = dset_meta.get('response_cols', dset_meta.get('response_col', 'NA')) try: model_info['descriptor_type'] = metadata_dict['descriptor_specific']['descriptor_type'] except KeyError: model_info['descriptor_type'] = 'NA' try: model_info['num_samples'] = dset_meta['num_row'] except: # KSM: Commented out because original dataset may no longer be accessible. #tmp_df = dsf.retrieve_dataset_by_datasetkey(model_info['dataset_key'], model_info['bucket']) #model_info['num_samples'] = tmp_df.shape[0] model_info['num_samples'] = nan # add model and feature params # model_uuid appears in model_feature_params and will overwrite the one in model_info # it's the same uuid, so it should be ok model_feature_params = extract_model_and_feature_parameters(metadata_dict) model_info.update(model_feature_params) for metrics_dict in metrics_dicts: subset = metrics_dict['subset'] metric_col = '%s_%s' % (metric_type, subset) model_info[metric_col] = metrics_dict['prediction_results'][metric_type] if (model_params['prediction_type'] == 'regression') and (metric_type != 'rms_score'): metric_col = 'rms_score_%s' % subset model_info[metric_col] = metrics_dict['prediction_results']['rms_score'] return model_info # --------------------------------------------------------------------------------------------------------- def get_best_models_info(col_names=None, bucket='public', pred_type="regression", result_dir=None, PK_pipeline=False, output_dir='/usr/local/data', shortlist_key=None, input_dset_keys=None, save_results=False, subset='valid', metric_type=None, selection_type='max', other_filters={}): """ Tabulate parameters and performance metrics for the best models, according to a given metric, trained against each specified dataset. Args: col_names (list of str): List of model tracker collections to search. bucket (str): Datastore bucket for training datasets. pred_type (str): Type of models (regression or classification). result_dir (list of str): Result directories of the models, if model tracker is not supported. PK_pipeline (bool): Are we being called from PK pipeline? output_dir (str): Directory to write output table to. shortlist_key (str): Datastore key for table of datasets to query models for. input_dset_keys (str or list of str): List of datastore keys for datasets to query models for. Either shortlist_key or input_dset_keys must be specified, but not both. save_results (bool): If True, write the table of results to a CSV file. subset (str): Input dataset subset ('train', 'valid', or 'test') for which metrics are used to select best models. metric_type (str): Type of performance metric (r2_score, roc_auc_score, etc.) to use to select best models. selection_type (str): Score criterion ('max' or 'min') to use to select best models. other_filters (dict): Additional selection criteria to include in model query. Returns: top_models_df (DataFrame): Table of parameters and metrics for best models for each dataset. """ if not mlmt_supported and not result_dir: print("Model tracker not supported in your environment; can examine models saved in filesystem only, 'result_dir' needs to be provided.") return None top_models_info = [] sort_order = {'max': -1, 'min': 1} sort_ascending = {'max': False, 'min': True} if metric_type is None: if pred_type == 'regression': metric_type = 'r2_score' else: metric_type = 'roc_auc_score' if other_filters is None: other_filters = {} # define dset_keys if input_dset_keys is not None and shortlist_key is not None: raise ValueError("You can specify either shortlist_key or input_dset_keys but not both.") elif input_dset_keys is not None and shortlist_key is None: if type(input_dset_keys) == str: dset_keys = [input_dset_keys] else: dset_keys = input_dset_keys elif input_dset_keys is None and shortlist_key is None: raise ValueError('Must specify either input_dset_keys or shortlist_key') else: dset_keys = dsf.retrieve_dataset_by_datasetkey(shortlist_key, bucket) if dset_keys is None: # define dset_keys, col_names and buckets from shortlist file shortlist = pd.read_csv(shortlist_key) if 'dataset_key' in shortlist.columns: dset_keys = shortlist['dataset_key'].unique() elif 'task_name' in shortlist.columns: dset_keys = shortlist['task_name'].unique() else: dset_keys = shortlist.values if 'collection' in shortlist.columns: col_names = shortlist['collection'].unique() if 'bucket' in shortlist.columns: bucket = shortlist['bucket'].unique() if mlmt_supported and col_names is not None: mlmt_client = dsf.initialize_model_tracker() if type(col_names) == str: col_names = [col_names] if type(bucket) == str: bucket=[bucket] # Get the best model over all collections for each dataset for dset_key in dset_keys: dset_key = dset_key.strip() dset_model_info = [] for col_name in col_names: for buck in bucket: try: query_params = { "match_metadata": { "training_dataset.dataset_key": dset_key, "training_dataset.bucket": buck, }, "match_metrics": { "metrics_type": "training", # match only training metrics "label": "best", "subset": subset, "$sort": [{"prediction_results.%s" % metric_type : sort_order[selection_type]}] }, } query_params['match_metadata'].update(other_filters) try: print('Querying collection %s for models trained on dataset %s, %s' % (col_name, buck, dset_key)) metadata_list = list(mlmt_client.model.query_model_metadata( collection_name=col_name, query_params=query_params, limit=1 ).result()) except Exception as e: print("Error returned when querying the best model for dataset %s in collection %s" % (dset_key, col_name)) print(e) continue if len(metadata_list) == 0: print("No models returned for dataset %s in collection %s" % (dset_key, col_name)) continue print('Query returned %d models' % len(metadata_list)) model = metadata_list[0] model_info = get_best_perf_table(metric_type, col_name, metadata_dict=model, PK_pipe=PK_pipeline) if model_info is not None: res_df = pd.DataFrame.from_records([model_info]) dset_model_info.append(res_df) except Exception as e: print(e) continue metric_col = '%s_%s' % (metric_type, subset) if len(dset_model_info) > 0: dset_model_df = pd.concat(dset_model_info, ignore_index=True).sort_values( by=metric_col, ascending=sort_ascending[selection_type]) top_models_info.append(dset_model_df.head(1)) print('Adding data for bucket %s, dset_key %s' % (dset_model_df.bucket.values[0], dset_model_df.dataset_key.values[0])) elif result_dir: metric_col = '%s_%s' % (subset, metric_type) for rd in result_dir: temp_perf_df = get_filesystem_perf_results(result_dir = rd, pred_type = pred_type).sort_values( by=metric_col, ascending=sort_ascending[selection_type]) top_models_info.append(temp_perf_df.head(1)) print(f"Adding data from '{rd}' ") if len(top_models_info) == 0: print("No metadata found") return None top_models_df = pd.concat(top_models_info, ignore_index=True) if save_results: os.makedirs(output_dir, exist_ok=True) if shortlist_key is not None: # Not including shortlist key right now because some are weirdly formed and have .csv in the middle top_models_df.to_csv(os.path.join(output_dir, 'best_models_metadata.csv'), index=False) else: for dset_key in input_dset_keys: # TODO: This doesn't make sense; why output multiple copies of the same table? shortened_key = dset_key.rstrip('.csv') top_models_df.to_csv(os.path.join(output_dir, 'best_models_metadata_%s.csv' % shortened_key), index=False) return top_models_df # TODO: This function looks like work in progress, should we delete it? ''' #--------------------------------------------------------------------------------------------------------- def _get_best_grouped_models_info(collection='pilot_fixed', pred_type='regression', top_n=1, subset='test'): """ Get results for models in the given collection. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return res_dir = '/usr/local/data/%s_perf' % collection plt_dir = '%s/Plots' % res_dir os.makedirs(plt_dir, exist_ok=True) res_files = os.listdir(res_dir) suffix = '_%s_model_perf_metrics.csv' % collection if pred_type == 'regression': metric_type = 'r2_score' else: metric_type = 'roc_auc_score' for res_file in res_files: try: if not res_file.endswith(suffix): continue res_path = os.path.join(res_dir, res_file) res_df = pd.read_csv(res_path, index_col=False) res_df['combo'] = ['%s/%s' % (m,f) for m, f in zip(res_df.model_type.values, res_df.featurizer.values)] dset_name = res_file.replace(suffix, '') datasets.append(dset_name) res_df['dataset'] = dset_name print(dset_name) res_df = res_df.sort_values('{0}_{1}'.format(metric_type, subset), ascending=False) res_df['model_type/feat'] = ['%s/%s' % (m,f) for m, f in zip(res_df.model_type.values, res_df.featurizer.values)] res_df = res_df.sort_values('{0}_{1}'.format(metric_type, subset), ascending=False) grouped_df = res_df.groupby('model_type/feat').apply( lambda t: t.head(top_n) ).reset_index(drop=True) top_grouped_models.append(grouped_df) top_combo = res_df['model_type/feat'].values[0] top_combo_dsets.append(top_combo + dset_name.lstrip('ATOM_GSK_dskey')) top_score = res_df['{0}_{1}'.format(metric_type, subset)].values[0] top_model_feat.append(top_combo) top_scores.append(top_score) num_samples.append(res_df['Dataset Size'][0]) ''' #------------------------------------------------------------------------------------------------------------------ def get_umap_nn_model_perf_table(dataset_key, bucket, collection_name, pred_type='regression'): """ Load performance metrics from model tracker for all NN models with the given prediction_type saved in the model tracker DB under a given collection that were trained against a particular dataset. Show parameter settings for UMAP transformer for models where they are available. Args: dataset_key (str): Dataset key for training dataset. bucket (str): Dataset bucket for training dataset. collection_name (str): Name of model tracker collection to search for models. pred_type (str): Prediction type ('classification' or 'regression') of models to query. Returns: pd.DataFrame: Table of model performance metrics. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return None query_params = { "match_metadata": { "training_dataset.bucket": bucket, "training_dataset.dataset_key": dataset_key, "model_parameters.model_type" : "NN", "model_parameters.prediction_type" : pred_type }, "match_metrics": { "metrics_type": "training", # match only training metrics "label": "best", }, } query_params['match_metadata'].update(other_filters) print("Finding models trained on %s dataset %s" % (bucket, dataset_key)) mlmt_client = dsf.initialize_model_tracker() metadata_list = mlmt_client.model.query_model_metadata( collection_name=collection_name, query_params=query_params, ).result() if metadata_list == []: print("No matching models returned") return else: print("Found %d matching models" % len(metadata_list)) model_uuid_list = [] learning_rate_list = [] dropouts_list = [] layer_sizes_list = [] featurizer_list = [] best_epoch_list = [] max_epochs_list = [] feature_transform_type_list = [] umap_dim_list = [] umap_targ_wt_list = [] umap_neighbors_list = [] umap_min_dist_list = [] subsets = ['train', 'valid', 'test'] if pred_type == 'regression': sort_metric = 'r2_score' metrics = ['r2_score', 'rms_score', 'mae_score'] else: sort_metric = 'roc_auc_score' metrics = ['roc_auc_score', 'prc_auc_score', 'matthews_cc', 'kappa', 'confusion_matrix'] score_dict = {} for subset in subsets: score_dict[subset] = {} for metric in metrics: score_dict[subset][metric] = [] for metadata_dict in metadata_list: model_uuid = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_uuid) # Get model metrics for this model metrics_dicts = metadata_dict['training_metrics'] #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) if len(metrics_dicts) < 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) continue if len(metrics_dicts) > 3: raise Exception('Got more than one set of best epoch metrics for model %s' % model_uuid) subset_metrics = {} for metrics_dict in metrics_dicts: subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['prediction_results'] model_uuid_list.append(model_uuid) model_params = metadata_dict['model_parameters'] model_type = model_params['model_type'] if model_type != 'NN': continue featurizer = model_params['featurizer'] featurizer_list.append(featurizer) feature_transform_type = metadata_dict['training_dataset']['feature_transform_type'] feature_transform_type_list.append(feature_transform_type) nn_params = metadata_dict['nn_specific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) for subset in subsets: for metric in metrics: score_dict[subset][metric].append(subset_metrics[subset][metric]) if 'umap_specific' in metadata_dict: umap_params = metadata_dict['umap_specific'] umap_dim_list.append(umap_params['umap_dim']) umap_targ_wt_list.append(umap_params['umap_targ_wt']) umap_neighbors_list.append(umap_params['umap_neighbors']) umap_min_dist_list.append(umap_params['umap_min_dist']) else: umap_dim_list.append(nan) umap_targ_wt_list.append(nan) umap_neighbors_list.append(nan) umap_min_dist_list.append(nan) perf_df = pd.DataFrame(dict( model_uuid=model_uuid_list, learning_rate=learning_rate_list, dropouts=dropouts_list, layer_sizes=layer_sizes_list, featurizer=featurizer_list, best_epoch=best_epoch_list, max_epochs=max_epochs_list, feature_transform_type=feature_transform_type_list, umap_dim=umap_dim_list, umap_targ_wt=umap_targ_wt_list, umap_neighbors=umap_neighbors_list, umap_min_dist=umap_min_dist_list )) for subset in subsets: for metric in metrics: metric_col = '%s_%s' % (metric, subset) perf_df[metric_col] = score_dict[subset][metric] sort_by = '%s_valid' % sort_metric perf_df = perf_df.sort_values(sort_by, ascending=False) return perf_df #------------------------------------------------------------------------------------------------------------------ def get_tarball_perf_table(model_tarball, pred_type='classification'): """ Retrieve model metadata and performance metrics for a model saved as a tarball (.tar.gz) file. Args: model_tarball (str): Path of model tarball file, named as model.tar.gz. pred_type (str): Prediction type ('classification' or 'regression') of model. Returns: tuple (pd.DataFrame, dict): Table of performance metrics and a dictionary of model metadata. """ tarf_content = tarfile.open(model_tarball, "r") metadata_file = tarf_content.getmember("./model_metadata.json") ext_metadata = tarf_content.extractfile(metadata_file) meta_json = json.load(ext_metadata) ext_metadata.close() subsets = ['train', 'valid', 'test'] if pred_type == 'regression': metrics = ['r2_score', 'rms_score', 'mae_score'] else: metrics = ['roc_auc_score', 'prc_auc_score', 'precision', 'recall_score', 'accuracy_score', 'npv', 'matthews_cc', 'kappa', 'cross_entropy', 'confusion_matrix'] score_dict = {} for subset in subsets: score_dict[subset] = {} for metric in metrics: score_dict[subset][metric] = [0,0] for emet in meta_json["training_metrics"]: label = emet["label"] score_ix = 0 if label == "best" else 1 subset = emet["subset"] for metric in metrics: score_dict[subset][metric][score_ix] = emet["prediction_results"][metric] perf_df = pd.DataFrame() for subset in subsets: for metric in metrics: metric_col = '%s_%s' % (subset, metric) perf_df[metric_col] = score_dict[subset][metric] return perf_df, meta_json #------------------------------------------------------------------------------------------------------------------ def get_filesystem_perf_results(result_dir, pred_type='classification'): """ Retrieve metadata and performance metrics for models stored in the filesystem from a hyperparameter search run. Args: result_dir (str): Root directory for results from a hyperparameter search training run. pred_type (str): Prediction type ('classification' or 'regression') of models to query. Returns: pd.DataFrame: Table of metadata fields and performance metrics. """ ampl_version_list = [] model_uuid_list = [] model_type_list = [] featurizer_list = [] dataset_key_list = [] splitter_list = [] model_score_type_list = [] feature_transform_type_list = [] # model type specific lists param_list = [] subsets = ['train', 'valid', 'test'] if pred_type == 'regression': metrics = ['r2_score', 'rms_score', 'mae_score', 'num_compounds'] else: metrics = ['roc_auc_score', 'prc_auc_score', 'precision', 'recall_score', 'num_compounds', 'accuracy_score', 'bal_accuracy', 'npv', 'matthews_cc', 'kappa', 'cross_entropy', 'confusion_matrix'] score_dict = {} for subset in subsets: score_dict[subset] = {} for metric in metrics: score_dict[subset][metric] = [] score_dict['valid']['model_choice_score'] = [] # Navigate the results directory tree model_list = [] metrics_list = [] tar_list = [] for dirpath, dirnames, filenames in os.walk(result_dir): # collect all tars for later tar_list = tar_list + [os.path.join(dirpath, f) for f in filenames if f.endswith('.tar.gz')] if ('model_metadata.json' in filenames) and ('model_metrics.json' in filenames): meta_path = os.path.join(dirpath, 'model_metadata.json') with open(meta_path, 'r') as meta_fp: meta_dict = json.load(meta_fp) if meta_dict['model_parameters']['prediction_type']==pred_type: model_list.append(meta_dict) metrics_path = os.path.join(dirpath, 'model_metrics.json') with open(metrics_path, 'r') as metrics_fp: metrics_dicts = json.load(metrics_fp) metrics_list.append(metrics_dicts) print("Found data for %d models under %s" % (len(model_list), result_dir)) # build dictonary of tarball names tar_dict = {os.path.basename(tf):tf for tf in tar_list} path_list = [] for metadata_dict, metrics_dicts in zip(model_list, metrics_list): model_uuid = metadata_dict['model_uuid'] dataset_key = metadata_dict['training_dataset']['dataset_key'] dataset_name = mp.build_tarball_name(mp.build_dataset_name(dataset_key), model_uuid) if dataset_name in tar_dict: path_list.append(tar_dict[dataset_name]) else: # unable to find saved tar file path_list.append('') # Get list of training run metrics for this model if len(metrics_dicts) < 3: print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) continue subset_metrics = {} for metrics_dict in metrics_dicts: if metrics_dict['label'] == 'best': subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['prediction_results'] model_uuid_list.append(model_uuid) model_params = metadata_dict['model_parameters'] ampl_version = model_params['ampl_version'] ampl_version_list.append(ampl_version) model_type = model_params['model_type'] model_type_list.append(model_type) model_score_type = model_params['model_choice_score_type'] model_score_type_list.append(model_score_type) featurizer = model_params['featurizer'] #mix ecfp, graphconv, moe, mordred, rdkit for concise representation if featurizer in ["computed_descriptors", "descriptors"]: featurizer = metadata_dict["descriptor_specific"]["descriptor_type"] featurizer_list.append(featurizer) split_params = metadata_dict['splitting_parameters'] splitter_list.append(split_params['splitter']) dataset_key_list.append(metadata_dict['training_dataset']['dataset_key']) feature_transform_type = metadata_dict['training_dataset']['feature_transform_type'] feature_transform_type_list.append(feature_transform_type) param_list.append(extract_model_and_feature_parameters(metadata_dict)) for subset in subsets: for metric in metrics: score_dict[subset][metric].append(subset_metrics[subset][metric]) score_dict['valid']['model_choice_score'].append(subset_metrics['valid']['model_choice_score']) param_df = pd.DataFrame(param_list) perf_df = pd.DataFrame(dict( model_uuid=model_uuid_list, model_path = path_list, ampl_version=ampl_version_list, model_type=model_type_list, dataset_key=dataset_key_list, featurizer=featurizer_list, splitter=splitter_list, model_score_type=model_score_type_list, feature_transform_type=feature_transform_type_list)) perf_df = perf_df.merge(param_df, on='model_uuid', how='inner') perf_df['model_choice_score'] = score_dict['valid']['model_choice_score'] for subset in subsets: for metric in metrics: metric_col = '%s_%s' % (subset, metric) perf_df[metric_col] = score_dict[subset][metric] sort_by = 'model_choice_score' perf_df = perf_df.sort_values(sort_by, ascending=False) return perf_df def get_filesystem_models(result_dir, pred_type): """ Identify all models in result_dir and create perf_result table with 'tarball_path' column containing a path to each tarball. """ perf_df = get_filesystem_perf_results(result_dir, pred_type) if pred_type == 'regression': metric = 'valid_r2_score' else: metric = 'valid_roc_auc_score' #best_df = perf_df.sort_values(by=metric, ascending=False).drop_duplicates(subset='dataset_key').copy() perf_df['dataset_names'] = perf_df['dataset_key'].apply(lambda f: os.path.splitext(os.path.basename(f))[0]) perf_df['tarball_names'] = perf_df.apply(lambda x: '%s_model_%s.tar.gz' % (x['dataset_names'], x['model_uuid']), axis=1) tarball_names = set(perf_df['tarball_names'].values) all_filenames = [] for dirpath, dirnames, filenames in os.walk(result_dir): for fn in filenames: if fn in tarball_names: all_filenames.append((fn, os.path.join(dirpath, fn))) found_files_df = pd.DataFrame({'tarball_names':[f[0] for f in all_filenames], 'tarball_paths':[f[1] for f in all_filenames]}) perf_df = perf_df.merge(found_files_df, on='tarball_names', how='outer') return perf_df #------------------------------------------------------------------------------------------------------------------ def copy_best_filesystem_models(result_dir, dest_dir, pred_type, force_update=False): """ Identify the best models for each dataset within a result directory tree (e.g. from a hyperparameter search). Copy the associated model tarballs to a destination directory. Args: result_dir (str): Path to model training result directory. dest_dir (str): Path of directory wherre model tarballs will be copied to. pred_type (str): Prediction type ('classification' or 'regression') of models to copy force_update (bool): If true, overwrite tarball files that already exist in dest_dir. Returns: pd.DataFrame: Table of performance metrics for best models. """ perf_df = get_filesystem_perf_results(result_dir, pred_type) if pred_type == 'regression': metric = 'valid_r2_score' else: metric = 'valid_roc_auc_score' best_df = perf_df.sort_values(by=metric, ascending=False).drop_duplicates(subset='dataset_key').copy() dataset_names = [os.path.splitext(os.path.basename(f))[0] for f in best_df.dataset_key.values] model_uuids = best_df.model_uuid.values tarball_names = ['%s_model_%s.tar.gz' % (dset_name, model_uuid) for dset_name, model_uuid in zip(dataset_names, model_uuids)] for dirpath, dirnames, filenames in os.walk(result_dir): for fn in filenames: if (fn in tarball_names) and (force_update or not os.path.exists(os.path.join(dest_dir, fn))): shutil.copy2(os.path.join(dirpath, fn), dest_dir) print('Copied %s' % fn) return best_df #------------------------------------------------------------------------------------------------------------------ def get_summary_perf_tables(collection_names=None, filter_dict={}, result_dir=None, prediction_type='regression', verbose=False): """ Load model parameters and performance metrics from model tracker for all models saved in the model tracker DB under the given collection names (or result directory if Model tracker is not available) with the given prediction type. Tabulate the parameters and metrics including: dataset (assay name, target, parameter, key, bucket) dataset size (train/valid/test/total) number of training folds model type (NN or RF) featurizer transformation type metrics: r2_score, mae_score and rms_score for regression, or ROC AUC for classification Args: collection_names (list): Names of model tracker collections to search for models. filter_dict (dict): Additional filter criteria to use in model query. result_dir (str or list): Directories to search for models; must be provided if the model tracker DB is not available. prediction_type (str): Type of models (classification or regression) to query. verbose (bool): If true, print status messages as collections are processed. Returns: pd.DataFrame: Table of model metadata fields and performance metrics. """ if not mlmt_supported and not result_dir: print("Model tracker not supported in your environment; can examine models saved in filesystem only, 'result_dir' is needed.") return None collection_list = [] ampl_version_list=[] model_uuid_list = [] time_built_list = [] model_type_list = [] dataset_key_list = [] bucket_list = [] param_list = [] featurizer_list = [] desc_type_list = [] transform_list = [] dset_size_list = [] splitter_list = [] split_strategy_list = [] split_uuid_list = [] umap_dim_list = [] umap_targ_wt_list = [] umap_neighbors_list = [] umap_min_dist_list = [] split_uuid_list=[] model_feat_param_list = [] if prediction_type == 'regression': score_types = ['r2_score', 'mae_score', 'rms_score'] else: # TODO: add more classification metrics later score_types = ['roc_auc_score', 'prc_auc_score', 'accuracy_score', 'bal_accuracy', 'precision', 'recall_score', 'npv', 'matthews_cc', 'kappa'] subsets = ['train', 'valid', 'test'] score_dict = {} ncmpd_dict = {} for subset in subsets: score_dict[subset] = {} for score_type in score_types: score_dict[subset][score_type] = [] ncmpd_dict[subset] = [] metadata_list_dict = {} if mlmt_supported and collection_names: mlmt_client = dsf.initialize_model_tracker() filter_dict['model_parameters.prediction_type'] = prediction_type for collection_name in collection_names: print("Finding models in collection %s" % collection_name) query_params = { "match_metadata": filter_dict, "match_metrics": { "metrics_type": "training", # match only training metrics "label": "best", }, } metadata_list = mlmt_client.model.query_model_metadata( collection_name=collection_name, query_params=query_params, ).result() metadata_list_dict[collection_name] = metadata_list elif result_dir: if isinstance(result_dir, str): result_dir = [result_dir] for rd in result_dir: if rd not in metadata_list_dict: metadata_list_dict[rd] = [] for dirpath, dirnames, filenames in os.walk(rd): if "model_metadata.json" in filenames: with open(os.path.join(dirpath, 'model_metadata.json')) as f: metadata_dict = json.load(f) metadata_list_dict[rd].append(metadata_dict) for ss in metadata_list_dict: for i, metadata_dict in enumerate(metadata_list_dict[ss]): if (i % 10 == 0) and verbose: print('Processing collection %s model %d' % (ss, i)) # Check that model has metrics before we go on if not 'training_metrics' in metadata_dict: continue collection_list.append(ss) model_uuid = metadata_dict['model_uuid'] model_uuid_list.append(model_uuid) time_built = metadata_dict['time_built'] time_built_list.append(time_built) model_params = metadata_dict['model_parameters'] ampl_version = model_params.get('ampl_version', 'probably 1.0.0') ampl_version_list.append(ampl_version) model_type = model_params['model_type'] model_type_list.append(model_type) featurizer = model_params['featurizer'] featurizer_list.append(featurizer) if 'descriptor_specific' in metadata_dict: desc_type = metadata_dict['descriptor_specific']['descriptor_type'] elif featurizer in ['graphconv', 'ecfp']: desc_type = featurizer else: desc_type = '' desc_type_list.append(desc_type) dataset_key = metadata_dict['training_dataset']['dataset_key'] bucket = metadata_dict['training_dataset']['bucket'] dataset_key_list.append(dataset_key) bucket_list.append(bucket) dset_metadata = metadata_dict['training_dataset']['dataset_metadata'] param = metadata_dict['training_dataset']['response_cols'][0] param_list.append(param) transform_type = metadata_dict['training_dataset']['feature_transform_type'] transform_list.append(transform_type) split_params = metadata_dict['splitting_parameters'] splitter_list.append(split_params['splitter']) split_uuid_list.append(split_params.get('split_uuid', '')) split_strategy = split_params['split_strategy'] split_strategy_list.append(split_strategy) if 'umap_specific' in metadata_dict: umap_params = metadata_dict['umap_specific'] umap_dim_list.append(umap_params['umap_dim']) umap_targ_wt_list.append(umap_params['umap_targ_wt']) umap_neighbors_list.append(umap_params['umap_neighbors']) umap_min_dist_list.append(umap_params['umap_min_dist']) else: umap_dim_list.append(nan) umap_targ_wt_list.append(nan) umap_neighbors_list.append(nan) umap_min_dist_list.append(nan) model_feat_param_list.append(extract_model_and_feature_parameters(metadata_dict)) # Get model metrics for this model metrics_dicts = metadata_dict['training_metrics'] #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) subset_metrics = {} for metrics_dict in metrics_dicts: if metrics_dict['label'] == 'best': subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['prediction_results'] if split_strategy == 'k_fold_cv': dset_size = subset_metrics['train']['num_compounds'] + subset_metrics['test']['num_compounds'] else: dset_size = subset_metrics['train']['num_compounds'] + subset_metrics['valid']['num_compounds'] + subset_metrics['test']['num_compounds'] for subset in subsets: subset_size = subset_metrics[subset]['num_compounds'] for score_type in score_types: try: score = subset_metrics[subset][score_type] except KeyError: score = float('nan') score_dict[subset][score_type].append(score) ncmpd_dict[subset].append(subset_size) dset_size_list.append(dset_size) col_dict = dict( collection=collection_list, ampl_version=ampl_version_list, model_uuid=model_uuid_list, time_built=time_built_list, model_type=model_type_list, featurizer=featurizer_list, features=desc_type_list, transformer=transform_list, splitter=splitter_list, split_strategy=split_strategy_list, split_uuid=split_uuid_list, umap_dim=umap_dim_list, umap_targ_wt=umap_targ_wt_list, umap_neighbors=umap_neighbors_list, umap_min_dist=umap_min_dist_list, dataset_bucket=bucket_list, dataset_key=dataset_key_list, dataset_size=dset_size_list, parameter=param_list ) perf_df = pd.DataFrame(col_dict) param_df = pd.DataFrame(model_feat_param_list) perf_df = perf_df.merge(param_df, on='model_uuid', how='inner') for subset in subsets: ncmpds_col = '%s_size' % subset perf_df[ncmpds_col] = ncmpd_dict[subset] for score_type in score_types: metric_col = '%s_%s' % (subset, score_type) perf_df[metric_col] = score_dict[subset][score_type] return perf_df #------------------------------------------------------------------------------------------------------------------ def get_summary_metadata_table(uuids, collections=None): """ Tabulate metadata fields and performance metrics for a set of models identified by specific model_uuids. Args: uuids (list): List of model UUIDs to query. collections (list or str): Names of collections in model tracker DB to get models from. If collections is a string, it must identify one collection to search for all models. If a list, it must be of the same length as `uuids`. If not provided, all collections will be searched. Returns: pd.DataFrame: Table of metadata fields and performance metrics for models. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return None if isinstance(uuids,str): uuids = [uuids] if isinstance(collections,str): collections = [collections] * len(uuids) mlist = [] mlmt_client = dsf.initialize_model_tracker() for idx,uuid in enumerate(uuids): if collections is not None: collection_name = collections[idx] else: collection_name = trkr.get_model_collection_by_uuid(uuid) model_meta = trkr.get_full_metadata_by_uuid(uuid, collection_name=collection_name) mdl_params = model_meta['model_parameters'] data_params = model_meta['training_dataset'] # Get model metrics for this model metrics = pd.DataFrame(model_meta['training_metrics']) metrics = metrics[metrics['label']=='best'] train_metrics = metrics[metrics['subset']=='train']['prediction_results'].values[0] valid_metrics = metrics[metrics['subset']=='valid']['prediction_results'].values[0] test_metrics = metrics[metrics['subset']=='test']['prediction_results'].values[0] # Try to name the model something intelligible in the table name = 'NA' if 'target' in data_params['dataset_metadata']: name = data_params['dataset_metadata']['target'] if (name == 'NA') & ('assay_endpoint' in data_params['dataset_metadata']): name = data_params['dataset_metadata']['assay_endpoint'] if (name == 'NA') & ('response_col' in data_params['dataset_metadata']): name = data_params['dataset_metadata']['response_col'] if name != 'NA': if 'param' in data_params['dataset_metadata'].keys(): name = name + ' ' + data_params['dataset_metadata']['param'] else: name = 'unknown' transform = 'None' if 'transformation' in data_params['dataset_metadata'].keys(): transform = data_params['dataset_metadata']['transformation'] if mdl_params['featurizer'] == 'computed_descriptors': featurizer = model_meta['descriptor_specific']['descriptor_type'] else: featurizer = mdl_params['featurizer'] try: split_uuid = model_meta['splitting_parameters']['split_uuid'] except: split_uuid = 'Not Available' if mdl_params['prediction_type'] == 'regression': if mdl_params['model_type'] == 'NN': nn_params = model_meta['nn_specific'] minfo = {'Name': name, 'Transformation': transform, 'AMPL version used:': mdl_params.get('ampl_version', 'probably 1.0.0'), 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'r^2 (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['r2_score'], valid_metrics['r2_score'], test_metrics['r2_score']), 'MAE (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['mae_score'], valid_metrics['mae_score'], test_metrics['mae_score']), 'RMSE(Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['rms_score'], valid_metrics['rms_score'], test_metrics['rms_score']), 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['splitting_parameters']['splitter'], 'Layer Sizes': nn_params['layer_sizes'], 'Optimizer': nn_params['optimizer_type'], 'Learning Rate': nn_params['learning_rate'], 'Dropouts': nn_params['dropouts'], 'Best Epoch (Max)': '%i (%i)' % (nn_params['best_epoch'],nn_params['max_epochs']), 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} elif mdl_params['model_type'] == 'RF': rf_params = model_meta['rf_specific'] minfo = {'Name': name, 'Transformation': transform, 'AMPL version used:': mdl_params.get('ampl_version', 'probably 1.0.0'), 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'Max Depth': rf_params['rf_max_depth'], 'Max Features': rf_params['rf_max_depth'], 'RF Estimators': rf_params['rf_estimators'], 'r^2 (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['r2_score'], valid_metrics['r2_score'], test_metrics['r2_score']), 'MAE (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['mae_score'], valid_metrics['mae_score'], test_metrics['mae_score']), 'RMSE(Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['rms_score'], valid_metrics['rms_score'], test_metrics['rms_score']), 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['splitting_parameters']['splitter'], 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} elif mdl_params['model_type'] == 'xgboost': xgb_params = model_meta['xgb_specific'] minfo = {'Name': name, 'Transformation': transform, 'AMPL version used:': mdl_params.get('ampl_version', 'probably 1.0.0'), 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'Gamma': xgb_params['xgb_gamma'], 'Learning rate': xgb_params['xgb_max_depth'], 'r^2 (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['r2_score'], valid_metrics['r2_score'], test_metrics['r2_score']), 'MAE (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['mae_score'], valid_metrics['mae_score'], test_metrics['mae_score']), 'RMSE(Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['rms_score'], valid_metrics['rms_score'], test_metrics['rms_score']), 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['splitting_parameters']['splitter'], 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} else: architecture = 'unknown' elif mdl_params['prediction_type'] == 'classification': if mdl_params['model_type'] == 'NN': nn_params = model_meta['nn_specific'] minfo = {'Name': name, 'Transformation': transform, 'AMPL version used:': mdl_params.get('ampl_version', 'probably 1.0.0'), 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'ROC AUC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['roc_auc_score'], valid_metrics['roc_auc_score'], test_metrics['roc_auc_score']), 'PRC AUC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['prc_auc_score'], valid_metrics['prc_auc_score'], test_metrics['prc_auc_score']), 'Balanced accuracy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics.get('bal_accuracy', np.nan), valid_metrics.get('bal_accuracy',np.nan), test_metrics.get('bal_accuracy', np.nan)), 'Accuracy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['accuracy_score'], valid_metrics['accuracy_score'], test_metrics['accuracy_score']), 'Precision (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['precision'], valid_metrics['precision'], test_metrics['precision']), 'Recall (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['recall_score'], valid_metrics['recall_score'], test_metrics['recall_score']), 'NPV (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['npv'], valid_metrics['npv'], test_metrics['npv']), 'Kappa (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['kappa'], valid_metrics['kappa'], test_metrics['kappa']), 'Matthews CC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['matthews_cc'], valid_metrics['matthews_cc'], test_metrics['matthews_cc']), 'Cross entropy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['cross_entropy'], valid_metrics['cross_entropy'], test_metrics['cross_entropy']), 'Confusion matrices (Train/Valid/Test)': f"{str(train_metrics['confusion_matrix'])}/{str(valid_metrics['confusion_matrix'])}/{str(test_metrics['confusion_matrix'])}", 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['splitting_parameters']['splitter'], 'Layer Sizes': nn_params['layer_sizes'], 'Optimizer': nn_params['optimizer_type'], 'Learning Rate': nn_params['learning_rate'], 'Dropouts': nn_params['dropouts'], 'Best Epoch (Max)': '%i (%i)' % (nn_params['best_epoch'],nn_params['max_epochs']), 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} elif mdl_params['model_type'] == 'RF': rf_params = model_meta['rf_specific'] minfo = {'Name': name, 'Transformation': transform, 'AMPL version used:': mdl_params.get('ampl_version', 'probably 1.0.0'), 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'Max Depth': rf_params['rf_max_depth'], 'Max Features': rf_params['rf_max_depth'], 'RF Estimators': rf_params['rf_estimators'], 'ROC AUC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['roc_auc_score'], valid_metrics['roc_auc_score'], test_metrics['roc_auc_score']), 'PRC AUC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['prc_auc_score'], valid_metrics['prc_auc_score'], test_metrics['prc_auc_score']), 'Balanced accuracy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics.get('bal_accuracy', np.nan), valid_metrics.get('bal_accuracy',np.nan), test_metrics.get('bal_accuracy', np.nan)), 'Accuracy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['accuracy_score'], valid_metrics['accuracy_score'], test_metrics['accuracy_score']), 'Precision (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['precision'], valid_metrics['precision'], test_metrics['precision']), 'Recall (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['recall_score'], valid_metrics['recall_score'], test_metrics['recall_score']), 'NPV (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['npv'], valid_metrics['npv'], test_metrics['npv']), 'Kappa (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['kappa'], valid_metrics['kappa'], test_metrics['kappa']), 'Matthews CC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['matthews_cc'], valid_metrics['matthews_cc'], test_metrics['matthews_cc']), 'Cross entropy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['cross_entropy'], valid_metrics['cross_entropy'], test_metrics['cross_entropy']), 'Confusion matrices (Train/Valid/Test)': f"{train_metrics['confusion_matrix']}/{valid_metrics['confusion_matrix']}/{test_metrics['confusion_matrix']}", 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['splitting_parameters']['splitter'], 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} elif mdl_params['model_type'] == 'xgboost': xgb_params = model_meta['xgb_specific'] minfo = {'Name': name, 'Transformation': transform, 'AMPL version used:': mdl_params.get('ampl_version', 'probably 1.0.0'), 'Model Type (Featurizer)': '%s (%s)' % (mdl_params['model_type'],featurizer), 'Gamma': xgb_params['xgb_gamma'], 'XGB Learning rate': xgb_params['xgb_max_depth'], 'ROC AUC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['roc_auc_score'], valid_metrics['roc_auc_score'], test_metrics['roc_auc_score']), 'PRC AUC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['prc_auc_score'], valid_metrics['prc_auc_score'], test_metrics['prc_auc_score']), 'Balanced accuracy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics.get('bal_accuracy', np.nan), valid_metrics.get('bal_accuracy',np.nan), test_metrics.get('bal_accuracy', np.nan)), 'Accuracy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['accuracy_score'], valid_metrics['accuracy_score'], test_metrics['accuracy_score']), 'Precision (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['precision'], valid_metrics['precision'], test_metrics['precision']), 'Recall (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['recall_score'], valid_metrics['recall_score'], test_metrics['recall_score']), 'NPV (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['npv'], valid_metrics['npv'], test_metrics['npv']), 'Kappa (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['kappa'], valid_metrics['kappa'], test_metrics['kappa']), 'Matthews CC (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['matthews_cc'], valid_metrics['matthews_cc'], test_metrics['matthews_cc']), 'Cross entropy (Train/Valid/Test)': '%0.2f/%0.2f/%0.2f' % (train_metrics['cross_entropy'], valid_metrics['cross_entropy'], test_metrics['cross_entropy']), 'Confusion matrices (Train/Valid/Test)': f"{train_metrics['confusion_matrix']}/{valid_metrics['confusion_matrix']}/{test_metrics['confusion_matrix']}", 'Data Size (Train/Valid/Test)': '%i/%i/%i' % (train_metrics["num_compounds"],valid_metrics["num_compounds"],test_metrics["num_compounds"]), 'Splitter': model_meta['splitting_parameters']['splitter'], 'Collection': collection_name, 'UUID': model_meta['model_uuid'], 'Split UUID': split_uuid, 'Dataset Key': data_params['dataset_key']} else: architecture = 'unknown' mlist.append(OrderedDict(minfo)) return pd.DataFrame(mlist).set_index('Name').transpose() #------------------------------------------------------------------------------------------------------------------ def get_training_datasets(collection_names): """ Query the model tracker DB for all the unique dataset keys and buckets used to train models in the given collections. Args: collection_names (list): List of names of model tracker collections to search for models. Returns: dict: Dictionary mapping collection names to lists of (dataset_key, bucket) tuples for training sets. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return None result_dict = {} mlmt_client = dsf.initialize_model_tracker() for collection_name in collection_names: dset_list = mlmt_client.model.get_training_datasets(collection_name=collection_name).result() result_dict[collection_name] = dset_list return result_dict #------------------------------------------------------------------------------------------------------------------ def get_dataset_models(collection_names, filter_dict={}): """ Query the model tracker for all models saved in the model tracker DB under the given collection names. Returns a dictionary mapping (dataset_key,bucket) pairs to the list of (collection,model_uuid) pairs trained on the corresponding datasets. Args: collection_names (list): List of names of model tracker collections to search for models. filter_dict (dict): Additional filter criteria to use in model query. Returns: dict: Dictionary mapping training set (dataset_key, bucket) tuples to (collection, model_uuid) pairs. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return None result_dict = {} coll_dset_dict = get_training_dict(collection_names) mlmt_client = dsf.initialize_model_tracker() for collection_name in collection_names: dset_list = coll_dset_dict[collection_name] for dset_dict in dset_list: query_filter = { 'training_dataset.bucket': dset_dict['bucket'], 'training_dataset.dataset_key': dset_dict['dataset_key'] } query_filter.update(filter_dict) query_params = { "match_metadata": query_filter } print('Querying models in collection %s for dataset %s, %s' % (collection_name, bucket, dset_key)) metadata_list = mlmt_client.model.query_model_metadata( collection_name=collection_name, query_params=query_params, include_fields=['model_uuid'] ).result() for i, metadata_dict in enumerate(metadata_list): if i % 50 == 0: print('Processing collection %s model %d' % (collection_name, i)) model_uuid = metadata_dict['model_uuid'] result_dict.setdefault((dset_key,bucket), []).append((collection_name, model_uuid)) return result_dict #------------------------------------------------------------------------------------------------------------------- def get_multitask_perf_from_files(result_dir, pred_type='regression'): """ Retrieve model metadata and performance metrics stored in the filesystem from a multitask hyperparameter search. Format the per-task performance metrics in a table with a row for each task and columns for each model/subset combination. Args: result_dir (str): Path to root result directory containing output from a hyperparameter search run. pred_type (str): Prediction type ('classification' or 'regression') of models to query. Returns: pd.DataFrame: Table of model metadata fields and performance metrics. """ model_uuid_list = [] learning_rate_list = [] dropouts_list = [] layer_sizes_list = [] best_epoch_list = [] max_epochs_list = [] subsets = ['train', 'valid', 'test'] if pred_type == 'regression': metrics = ['num_compounds', 'r2_score', 'task_r2_scores'] else: metrics = ['num_compounds', 'roc_auc_score', 'task_roc_auc_scores'] score_dict = {} for subset in subsets: score_dict[subset] = {} for metric in metrics: score_dict[subset][metric] = [] # Navigate the results directory tree model_list = [] metrics_list = [] for dirpath, dirnames, filenames in os.walk(result_dir): if ('model_metadata.json' in filenames) and ('model_metrics.json' in filenames): meta_path = os.path.join(dirpath, 'model_metadata.json') with open(meta_path, 'r') as meta_fp: meta_dict = json.load(meta_fp) model_list.append(meta_dict) metrics_path = os.path.join(dirpath, 'model_metrics.json') with open(metrics_path, 'r') as metrics_fp: metrics_dicts = json.load(metrics_fp) metrics_list.append(metrics_dicts) print("Found data for %d models under %s" % (len(model_list), result_dir)) for metadata_dict, metrics_dicts in zip(model_list, metrics_list): model_uuid = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_uuid) # Get list of training run metrics for this model #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) if len(metrics_dicts) < 3: raise Exception("Got no or incomplete metrics for model %s, skipping..." % model_uuid) #print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) #continue subset_metrics = {} for metrics_dict in metrics_dicts: if metrics_dict['label'] == 'best': subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['prediction_results'] model_uuid_list.append(model_uuid) model_params = metadata_dict['model_parameters'] dset_params = metadata_dict['training_dataset'] response_cols = dset_params['response_cols'] nn_params = metadata_dict['nn_specific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) for subset in subsets: for metric in metrics: score_dict[subset][metric].append(subset_metrics[subset][metric]) # Format the data as a table with groups of 3 columns for each model num_models = len(model_uuid_list) if pred_type == 'regression': model_params = ['model_uuid', 'learning_rate', 'layer_sizes', 'dropouts', 'max_epochs', 'best_epoch', 'subset', 'num_compounds', 'mean_r2_score'] else: model_params = ['model_uuid', 'learning_rate', 'layer_sizes', 'dropouts', 'max_epochs', 'best_epoch', 'subset', 'num_compounds', 'mean_roc_auc_score'] param_list = model_params + response_cols perf_df = pd.DataFrame(dict(col_0=param_list)) colnum = 0 for i in range(num_models): for subset in subsets: vals = [] if subset == 'train': vals.append(model_uuid_list[i]) vals.append(learning_rate_list[i]) vals.append(layer_sizes_list[i]) vals.append(dropouts_list[i]) vals.append('%d' % max_epochs_list[i]) vals.append('%d' % best_epoch_list[i]) else: vals = vals + ['']*6 vals.append(subset) vals.append('%d' % score_dict[subset]['num_compounds'][i]) if pred_type == 'regression': vals.append('%.3f' % score_dict[subset]['r2_score'][i]) vals = vals + ['%.3f' % v for v in score_dict[subset]['task_r2_scores'][i]] else: vals.append('%.3f' % score_dict[subset]['roc_auc_score'][i]) vals = vals + ['%.3f' % v for v in score_dict[subset]['task_roc_auc_scores'][i]] colnum += 1 colname = 'col_%d' % colnum perf_df[colname] = vals return perf_df #------------------------------------------------------------------------------------------------------------------- def get_multitask_perf_from_files_new(result_dir, pred_type='regression'): """ Retrieve model metadata and performance metrics stored in the filesystem from a multitask hyperparameter search. Format the per-task performance metrics in a table with a row for each task and columns for each model/subset combination. Args: result_dir (str): Path to root result directory containing output from a hyperparameter search run. pred_type (str): Prediction type ('classification' or 'regression') of models to query. Returns: pd.DataFrame: Table of model metadata fields and performance metrics. """ model_uuid_list = [] learning_rate_list = [] dropouts_list = [] layer_sizes_list = [] best_epoch_list = [] max_epochs_list = [] featurizer_list = [] subsets = ['train', 'valid', 'test'] if pred_type == 'regression': metrics = ['num_compounds', 'r2_score', 'task_r2_scores', 'task_rms_scores'] else: metrics = ['num_compounds', 'roc_auc_score', 'task_roc_auc_scores'] score_dict = {} for subset in subsets: score_dict[subset] = {} for metric in metrics: score_dict[subset][metric] = [] # Navigate the results directory tree model_list = [] metrics_list = [] for dirpath, dirnames, filenames in os.walk(result_dir): if ('model_metadata.json' in filenames) and ('model_metrics.json' in filenames): meta_path = os.path.join(dirpath, 'model_metadata.json') with open(meta_path, 'r') as meta_fp: meta_dict = json.load(meta_fp) model_list.append(meta_dict) metrics_path = os.path.join(dirpath, 'model_metrics.json') with open(metrics_path, 'r') as metrics_fp: metrics_dicts = json.load(metrics_fp) metrics_list.append(metrics_dicts) print("Found data for %d models under %s" % (len(model_list), result_dir)) for metadata_dict, metrics_dicts in zip(model_list, metrics_list): model_uuid = metadata_dict['model_uuid'] #print("Got metadata for model UUID %s" % model_uuid) # Get list of training run metrics for this model #print("Got %d metrics dicts for model %s" % (len(metrics_dicts), model_uuid)) if len(metrics_dicts) < 3: raise Exception("Got no or incomplete metrics for model %s, skipping..." % model_uuid) #print("Got no or incomplete metrics for model %s, skipping..." % model_uuid) #continue subset_metrics = {} for metrics_dict in metrics_dicts: if metrics_dict['label'] == 'best': subset = metrics_dict['subset'] subset_metrics[subset] = metrics_dict['prediction_results'] model_uuid_list.append(model_uuid) model_params = metadata_dict['model_parameters'] dset_params = metadata_dict['training_dataset'] response_cols = dset_params['response_cols'] nn_params = metadata_dict['nn_specific'] max_epochs_list.append(nn_params['max_epochs']) best_epoch_list.append(nn_params['best_epoch']) learning_rate_list.append(nn_params['learning_rate']) layer_sizes_list.append(','.join(['%d' % s for s in nn_params['layer_sizes']])) dropouts_list.append(','.join(['%.2f' % d for d in nn_params['dropouts']])) featurizer_list.append(model_params["featurizer"]) for subset in subsets: for metric in metrics: score_dict[subset][metric].append(subset_metrics[subset][metric]) # Format the data as a table with groups of 3 columns for each model num_models = len(model_uuid_list) data = { "model_uuid": model_uuid_list, "learning_rate": learning_rate_list, "layer_sizes": layer_sizes_list, "dropouts": dropouts_list, "featurizer": featurizer_list } for i in range(num_models): for subset in subsets: for ix, task in enumerate(response_cols): if pred_type == "regression": colr2 = f"{subset}_{task}_r2" colrms = f"{subset}_{task}_rms" if colr2 not in data: data[colr2] = [] data[colrms] = [] data[colr2].append(score_dict[subset]["task_r2_scores"][i][ix]) data[colrms].append(score_dict[subset]["task_rms_scores"][i][ix]) else: colauc = f"{subset}_{task}_roc_auc" if colauc not in data: data[colauc] = [] data[colauc].append(score_dict[subset]["task_roc_auc_scores"][i][ix]) perf_df = pd.DataFrame(data) return perf_df #------------------------------------------------------------------------------------------------------------------- def get_multitask_perf_from_tracker(collection_name, response_cols=None, expand_responses=None, expand_subsets='test', exhaustive=False): """ Retrieve full metadata and metrics from model tracker for all models in a collection and format them into a table, including per-task performance metrics for multitask models. Meant for multitask NN models, but works for single task models as well. By AKP. Works for model tracker as of 10/2020 Args: collection_name (str): Name of model tracker collection to search for models. response_cols (list, str or None): Names of tasks (response columns) to query performance results for. If None, checks to see if the entire collection has the same response cols. Otherwise, should be list of strings or a comma-separated string. asks for clarification. Note: make sure response cols are listed in same order as in metadata. Recommended: None first, then clarify. expand_responses (list, str or None): Names of tasks / response columns you want to include results for in the final dataframe. Useful if you have a lot of tasks and only want to look at the performance of a few of them. Must also be a list or comma separated string, and must be a subset of response_cols. If None, will expand all responses. expand_subsets (list, str or None): Dataset subsets ('train', 'valid' and/or 'test') to show metrics for. Again, must be list or comma separated string, or None to expand all. exhaustive (bool): If True, return large dataframe with all model tracker metadata minus any columns not in expand_responses. If False, return trimmed dataframe with most relevant columns. Returns: pd.DataFrame: Table of model metadata fields and performance metrics. """ if not mlmt_supported: print("Model tracker not supported in your environment; can examine models saved in filesystem only.") return None # check inputs are correct if collection_name.startswith('old_'): raise Exception("This function is not implemented for the old format of metadata.") if isinstance(response_cols, list): pass elif response_cols is None: pass elif isinstance(response_cols, str): response_cols=[x.strip() for x in response_cols.split(',')] else: raise Exception("Please input response cols as None, list or comma separated string.") if isinstance(expand_responses, list): pass elif expand_responses is None: pass elif isinstance(expand_responses, str): expand_responses=[x.strip() for x in expand_responses.split(',')] else: raise Exception("Please input expand response col(s) as list or comma separated string.") if isinstance(expand_subsets, list): pass elif expand_subsets is None: pass elif isinstance(expand_subsets, str): expand_subsets=[x.strip() for x in expand_subsets.split(',')] else: raise Exception("Please input subset(s) as list or comma separated string.") # get metadata if response_cols is not None: filter_dict={'training_dataset.response_cols': response_cols} else: filter_dict={} models = trkr.get_full_metadata(filter_dict, collection_name) if len(models)==0: raise Exception("No models found with these response cols in this collection. To get a list of possible response cols, pass response_cols=None.") models = pd.DataFrame.from_records(models) # expand model metadata - deal with NA descriptors / NA other fields alldat=models[['model_uuid', 'time_built']] models=models.drop(['model_uuid', 'time_built'], axis = 1) for column in models.columns: if column == 'training_metrics': continue nai=models[models[column].isna()].index nonas=models[~models[column].isna()] tempdf=pd.DataFrame.from_records(nonas[column].tolist(), index=nonas.index) tempdf=pd.concat([tempdf, pd.DataFrame(np.nan, index=nai, columns=tempdf.columns)]) alldat=alldat.join(tempdf) # assign response cols if len(alldat.response_cols.astype(str).unique())==1: response_cols=alldat.response_cols[0] print("Response cols:", response_cols) else: raise Exception(f"There is more than one set of response cols in this collection. Please choose from these lists: {alldat.response_cols.unique()}") # expand training metrics - deal with NA's in columns metrics=pd.DataFrame.from_dict(models['training_metrics'].tolist()) allmet=alldat[['model_uuid']] for column in metrics.columns: nai=metrics[metrics[column].isna()].index nonas=metrics[~metrics[column].isna()] tempdf=pd.DataFrame.from_records(nonas[column].tolist(), index=nonas.index) tempdf=pd.concat([tempdf, pd.DataFrame(np.nan, index=nai, columns=tempdf.columns)]) label=tempdf[f'label'][nonas.index[0]] metrics_type=tempdf[f'metrics_type'][nonas.index[0]] subset=tempdf[f'subset'][nonas.index[0]] nai=tempdf[tempdf[f'prediction_results'].isna()].index nonas=tempdf[~tempdf[f'prediction_results'].isna()] tempdf=pd.DataFrame.from_records(nonas[f'prediction_results'].tolist(), index=nonas.index) tempdf=pd.concat([tempdf, pd.DataFrame(np.nan, index=nai, columns=tempdf.columns)]) tempdf=tempdf.add_prefix(f'{label}_{subset}_') allmet=allmet.join(tempdf, lsuffix='', rsuffix="_2") alldat=alldat.merge(allmet, on='model_uuid') # expand task level training metrics for subset(s) of interest - deal w/ NA values if expand_subsets is None: expand_subsets=['train', 'valid', 'test'] for sub in expand_subsets: listcols=alldat.columns[alldat.columns.str.contains("task")& alldat.columns.str.contains(sub)] for column in listcols: colnameslist=[] for task in response_cols: colnameslist.append(f'{column}_{task}') nai=alldat[alldat[column].isna()].index nonas=alldat[~alldat[column].isna()] if isinstance(nonas.loc[nonas.index[0],column], list): tempdf=pd.DataFrame.from_records(nonas[column].tolist(), index= nonas.index, columns=colnameslist) tempdf=pd.concat([tempdf,
pd.DataFrame(np.nan, index=nai, columns=tempdf.columns)
pandas.DataFrame
import argparse import pandas as pd import numpy as np GENE = 'Hugo_Symbol' PROTEIN = 'Protein_Change' CHROMOSOME = 'Chromosome' ALT = 'Alteration' START_POSITION = 'Start_position' END_POSITION = 'End_position' REF_ALLELE = 'Reference_Allele' ALT_ALLELE = 'Tumor_Seq_Allele2' REF_COUNT = 't_ref_count' ALT_COUNT = 't_alt_count' VAR_CLASS = 'Variant_Classification' sample_id = 'sample_id' maf_handle = 'maf_handle' exac_handle = 'exac_handle' whitelist_handle = 'whitelist_handle' filter_syn = 'filter_syn' min_exac_ac = 'min_exac_ac' min_depth = 'min_depth' boolean_filter_noncoding = 'boolean_filter_noncoding' boolean_whitelist = 'boolean_disable_whitelist' EXAC_CHR = 'CHROM' EXAC_POS = 'POS' EXAC_REF = 'REF' EXAC_ALT = 'ALT' EXAC_AF = 'AF' EXAC_AC = 'AC' EXAC_AC_AFR = 'AC_AFR' EXAC_AC_AMR = 'AC_AMR' EXAC_AC_EAS = 'AC_EAS' EXAC_AC_FIN = 'AC_FIN' EXAC_AC_NFE = 'AC_NFE' EXAC_AC_OTH = 'AC_OTH' EXAC_AC_SAS = 'AC_SAS' EXAC_AN = 'AN' EXAC_AN_AFR = 'AN_AFR' EXAC_AN_AMR = 'AN_AMR' EXAC_AN_EAS = 'AN_EAS' EXAC_AN_FIN = 'AN_FIN' EXAC_AN_NFE = 'AN_NFE' EXAC_AN_OTH = 'AN_OTH' EXAC_AN_SAS = 'AN_SAS' MAPPED_GENE = 'gene' MAPPED_CHR = 'chromosome' MAPPED_REF = 'ref_allele' MAPPED_ALT = 'alt_allele' MAPPED_POS = 'start_position' MAPPED_AA = 'protein_change' MAPPED_VAR_CLASS = 'variant_classification' MAPPED_REF_COUNT = 'ref_count' MAPPED_ALT_COUNT = 'alt_count' EXAC_COMMON = 'exac_common' WL = 'whitelist' DEPTH = 'read_depth' LOW_DEPTH = 'low_read_depth' CODING = 'coding' COMMON = 'common_variant' maf_column_map = { GENE: MAPPED_GENE, CHROMOSOME: MAPPED_CHR, PROTEIN: MAPPED_AA, START_POSITION: MAPPED_POS, REF_ALLELE: MAPPED_REF, ALT_ALLELE: MAPPED_ALT, VAR_CLASS: MAPPED_VAR_CLASS, REF_COUNT: MAPPED_REF_COUNT, ALT_COUNT: MAPPED_ALT_COUNT } output_column_map = {v: k for k, v in maf_column_map.items()} exac_column_map = { EXAC_CHR: MAPPED_CHR, EXAC_POS: MAPPED_POS, EXAC_REF: MAPPED_REF, EXAC_ALT: MAPPED_ALT, EXAC_AF: 'exac_af', EXAC_AC: 'exac_ac', EXAC_AC_AFR: 'exac_ac_afr', EXAC_AC_AMR: 'exac_ac_amr', EXAC_AC_EAS: 'exac_ac_eas', EXAC_AC_FIN: 'exac_ac_fin', EXAC_AC_NFE: 'exac_ac_nfe', EXAC_AC_OTH: 'exac_ac_oth', EXAC_AC_SAS: 'exac_ac_sas', EXAC_AN: 'exac_an', EXAC_AN_AFR: 'exac_an_afr', EXAC_AN_AMR: 'exac_an_amr', EXAC_AN_EAS: 'exac_an_eas', EXAC_AN_FIN: 'exac_an_fin', EXAC_AN_NFE: 'exac_an_nfe', EXAC_AN_OTH: 'exac_an_oth', EXAC_AN_SAS: 'exac_an_sas', } whitelist_column_map = {0: MAPPED_CHR, 1: MAPPED_POS, 2: END_POSITION, 3:ALT} population_keys = [EXAC_AC_AFR, EXAC_AC_AMR, EXAC_AC_EAS, EXAC_AC_FIN, EXAC_AC_NFE, EXAC_AC_OTH, EXAC_AC_SAS] populations = [exac_column_map[x] for x in population_keys] def check_column_names(df, map): for column_name in map.keys(): assert column_name in df.columns, \ 'Expected column %s not found among %s' % (column_name, df.columns) def read(handle, **kwargs): return pd.read_csv(handle, sep='\t', comment='#', dtype='object', **kwargs) def standard_read(handle, column_map, **kwargs): check_column_names(read(handle, nrows=3), column_map) return read(handle, encoding='latin-1', **kwargs).rename(columns=column_map) def apply_str(x): try: return x.astype(int).astype(str) except ValueError: return x.astype(str) def annotate_read_depth(series_alt_count, series_ref_count): return series_alt_count.astype(int).add(series_ref_count.astype(int)) def get_idx_low_depth(series_depth, min_depth): return series_depth[series_depth.astype(int).lt(int(min_depth))].index def get_idx_coding_classifications(series_classification): coding_classifications = [ 'Missense_Mutation', 'Nonsense_Mutation', 'Nonstop_Mutation', 'Splice_Site', 'Frame_Shift_Ins', 'Frame_Shift_Del', 'In_Frame_Ins', 'In_Frame_Del'] return series_classification[series_classification.isin(coding_classifications)].index def rename_exac_cols(df): colmap = {} old_columns = df.columns[df.columns.str.lower().str.contains('exac')] new_columns = ['_'.join([col, 'previous_annotation']) for col in old_columns] for old, new in zip(old_columns, new_columns): colmap[old] = new return df.rename(columns=colmap) def write_integer(number, filename): with open(filename, 'w') as f: f.write('%d' % number) def main(inputs): df = standard_read(inputs[maf_handle], maf_column_map, low_memory=False) df = rename_exac_cols(df) exac = standard_read(inputs[exac_handle], exac_column_map, low_memory=False) merge_cols = [MAPPED_CHR, MAPPED_POS, MAPPED_REF, MAPPED_ALT] df = df.merge(exac, on=merge_cols, how='left') df.loc[:, populations] = df.loc[:, populations].fillna(0.0) df.loc[:, LOW_DEPTH] = np.nan df.loc[:, CODING] = np.nan df.loc[:, WL] = np.nan df.loc[:, EXAC_COMMON] = 0.0 idx_original = df.index df[MAPPED_ALT_COUNT] = df[MAPPED_ALT_COUNT].fillna(0.0) df[MAPPED_REF_COUNT] = df[MAPPED_REF_COUNT].fillna(0.0) df[DEPTH] = annotate_read_depth(df[MAPPED_ALT_COUNT], df[MAPPED_REF_COUNT]) df.loc[:, LOW_DEPTH] = 0.0 idx_read_depth = get_idx_low_depth(df[DEPTH], inputs[min_depth]) df.loc[:, CODING] = 0.0 idx_coding = get_idx_coding_classifications(df[MAPPED_VAR_CLASS]) idx_noncoding = idx_original.difference(idx_coding) if not inputs[boolean_whitelist]: df.loc[:, WL] = 0.0 whitelist = read(inputs_dict[whitelist_handle], header=-1).rename(columns=whitelist_column_map) df[whitelist_column_map[3]] = df[MAPPED_GENE].astype(str) + ':' + \ df[MAPPED_AA].str.split('p.', expand=True).loc[:, 1].astype(str) df[whitelist_column_map[3]] = df[whitelist_column_map[3]].fillna('') idx_whitelist = df[df[whitelist_column_map[3]].isin(whitelist[whitelist_column_map[3]])].index else: idx_whitelist =
pd.DataFrame()
pandas.DataFrame
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1":
pd.Series([10, 9, 8])
pandas.Series
import json import os import re from typing import Any, Dict, Optional import pandas as pd from pandas import DataFrame import geopandas as gpd from network_wrangler import ProjectCard from network_wrangler import RoadwayNetwork from .transit import CubeTransit, StandardTransit from .logger import WranglerLogger from .parameters import Parameters from .roadway import ModelRoadwayNetwork class Project(object): """A single or set of changes to the roadway or transit system. Compares a base and a build transit network or a base and build highway network and produces project cards. .. highlight:: python Typical usage example: :: test_project = Project.create_project( base_transit_source=os.path.join(CUBE_DIR, "transit.LIN"), build_transit_source=os.path.join(CUBE_DIR, "transit_route_shape_change"), ) test_project.evaluate_changes() test_project.write_project_card( os.path.join(SCRATCH_DIR, "t_transit_shape_test.yml") ) Attributes: DEFAULT_PROJECT_NAME: a class-level constant that defines what the project name will be if none is set. STATIC_VALUES: a class-level constant which defines values that are not evaluated when assessing changes. card_data (dict): {"project": <project_name>, "changes": <list of change dicts>} roadway_changes (DataFrame): pandas dataframe of CUBE roadway changes. transit_changes (CubeTransit): base_roadway_network (RoadwayNetwork): base_transit_network (CubeTransit): build_transit_network (CubeTransit): project_name (str): name of the project, set to DEFAULT_PROJECT_NAME if not provided """ DEFAULT_PROJECT_NAME = "USER TO define" STATIC_VALUES = [ "model_link_id", "area_type", "county", #"assign_group", "centroidconnect", ] def __init__( self, roadway_changes: Optional[DataFrame] = None, transit_changes: Optional[CubeTransit] = None, base_roadway_network: Optional[RoadwayNetwork] = None, base_transit_network: Optional[CubeTransit] = None, build_transit_network: Optional[CubeTransit] = None, project_name: Optional[str] = "", evaluate: bool = False, parameters={}, ): """ constructor """ self.card_data = Dict[str, Dict[str, Any]] self.roadway_changes = roadway_changes self.base_roadway_network = base_roadway_network self.base_transit_network = base_transit_network self.build_transit_network = build_transit_network self.transit_changes = transit_changes self.project_name = ( project_name if project_name else Project.DEFAULT_PROJECT_NAME ) self.parameters = Parameters(**parameters) if base_roadway_network != None: self.determine_roadway_network_changes_compatability() if evaluate: self.evaluate_changes() def write_project_card(self, filename): """ Writes project cards. Args: filename (str): File path to output .yml Returns: None """ ProjectCard(self.card_data).write(filename) WranglerLogger.info("Wrote project card to: {}".format(filename)) @staticmethod def create_project( roadway_log_file: Optional[str] = None, roadway_shp_file: Optional[str] = None, roadway_csv_file: Optional[str] = None, base_roadway_dir: Optional[str] = None, base_transit_source: Optional[str] = None, build_transit_source: Optional[str] = None, roadway_changes: Optional[DataFrame] = None, transit_changes: Optional[CubeTransit] = None, base_roadway_network: Optional[RoadwayNetwork] = None, base_transit_network: Optional[CubeTransit] = None, build_transit_network: Optional[CubeTransit] = None, project_name=None, parameters={}, ): """ Constructor for a Project instance. Args: roadway_log_file (str): File path to consuming logfile. roadway_shp_file (str): File path to consuming shape file for roadway changes. roadway_csv_file (str): File path to consuming csv file for roadway changes. base_roadway_dir (str): Folder path to base roadway network. base_transit_dir (str): Folder path to base transit network. base_transit_file (str): File path to base transit network. build_transit_dir (str): Folder path to build transit network. build_transit_file (str): File path to build transit network. roadway_changes (DataFrame): pandas dataframe of CUBE roadway changes. transit_changes (CubeTransit): build transit changes. base_roadway_network (RoadwayNetwork): Base roadway network object. base_transit_network (CubeTransit): Base transit network object. build_transit_network (CubeTransit): Build transit network object. Returns: A Project instance. """ if base_transit_source: base_transit_network = CubeTransit.create_from_cube(base_transit_source) WranglerLogger.debug( "Base network has {} lines".format(len(base_transit_network.lines)) ) if len(base_transit_network.lines) <= 10: WranglerLogger.debug( "Base network lines: {}".format( "\n - ".join(base_transit_network.lines) ) ) else: msg = "No base transit network." WranglerLogger.info(msg) base_transit_network = None if build_transit_source and transit_changes: msg = "Method takes only one of 'build_transit_source' and 'transit_changes' but both given" WranglerLogger.error(msg) raise ValueError(msg) if build_transit_source: WranglerLogger.debug("build") build_transit_network = CubeTransit.create_from_cube(build_transit_source) WranglerLogger.debug( "Build network has {} lines".format(len(build_transit_network.lines)) ) if len(build_transit_network.lines) <= 10: WranglerLogger.debug( "Build network lines: {}".format( "\n - ".join(build_transit_network.lines) ) ) else: msg = "No transit changes given or processed." WranglerLogger.info(msg) transit_changes = None if roadway_log_file and roadway_changes: msg = "Method takes only one of 'roadway_log_file' and 'roadway_changes' but both given" WranglerLogger.error(msg) raise ValueError(msg) if roadway_shp_file and roadway_changes: msg = "Method takes only one of 'roadway_shp_file' and 'roadway_changes' but both given" WranglerLogger.error(msg) raise ValueError(msg) if roadway_csv_file and roadway_changes: msg = "Method takes only one of 'roadway_csv_file' and 'roadway_changes' but both given" WranglerLogger.error(msg) raise ValueError(msg) if roadway_log_file and roadway_csv_file: msg = "Method takes only one of 'roadway_log_file' and 'roadway_csv_file' but both given" WranglerLogger.error(msg) raise ValueError(msg) if roadway_shp_file and roadway_csv_file: msg = "Method takes only one of 'roadway_shp_file' and 'roadway_csv_file' but both given" WranglerLogger.error(msg) raise ValueError(msg) if roadway_log_file and roadway_shp_file: msg = "Method takes only one of 'roadway_log_file' and 'roadway_shp_file' but both given" WranglerLogger.error(msg) raise ValueError(msg) if roadway_log_file: roadway_changes = Project.read_logfile(roadway_log_file) elif roadway_shp_file: roadway_changes = gpd.read_file(roadway_shp_file) roadway_changes = DataFrame(roadway_changes.drop("geometry", axis = 1)) roadway_changes["model_node_id"] = 0 elif roadway_csv_file: roadway_changes = pd.read_csv(roadway_csv_file) roadway_changes["model_node_id"] = 0 else: msg = "No roadway changes given or processed." WranglerLogger.info(msg) roadway_changes = pd.DataFrame({}) if base_roadway_network and base_roadway_dir: msg = "Method takes only one of 'base_roadway_network' and 'base_roadway_dir' but both given" WranglerLogger.error(msg) raise ValueError(msg) if base_roadway_dir: base_roadway_network = ModelRoadwayNetwork.read( os.path.join(base_roadway_dir, "link.json"), os.path.join(base_roadway_dir, "node.geojson"), os.path.join(base_roadway_dir, "shape.geojson"), True, ) base_roadway_network.create_calculated_variables() base_roadway_network.calculate_distance(overwrite = True) base_roadway_network.fill_na() base_roadway_network.convert_int() base_roadway_network.split_properties_by_time_period_and_category() else: msg = "No base roadway network." WranglerLogger.info(msg) base_roadway_network = None project = Project( roadway_changes=roadway_changes, transit_changes=transit_changes, base_roadway_network=base_roadway_network, base_transit_network=base_transit_network, build_transit_network=build_transit_network, evaluate=True, project_name=project_name, parameters=parameters, ) return project @staticmethod def read_logfile(logfilename: str) -> DataFrame: """ Reads a Cube log file and returns a dataframe of roadway_changes Args: logfilename (str): File path to CUBE logfile. Returns: A DataFrame reprsentation of the log file. """ WranglerLogger.info("Reading logfile: {}".format(logfilename)) with open(logfilename) as f: content = f.readlines() # (content[0].startswith("HighwayLayerLogX")): if not content[0].startswith("HighwayLayerLogX"): WranglerLogger.info("Returning an empty dataframe") return DataFrame() NodeLines = [x.strip() for x in content if x.startswith("N")] LinkLines = [x.strip() for x in content if x.startswith("L")] linkcol_names = ["OBJECT", "OPERATION", "GROUP"] + LinkLines[0].split(",")[1:] nodecol_names = ["OBJECT", "OPERATION", "GROUP"] + NodeLines[0].split(",")[1:] link_df = DataFrame( data=[re.split(",|;", x) for x in LinkLines[1:]], columns=linkcol_names ) node_df = DataFrame( data=[re.split(",|;", x) for x in NodeLines[1:]], columns=nodecol_names ) log_df =
pd.concat([link_df, node_df], ignore_index=True, sort=False)
pandas.concat
""" Train for manipulate files only """ import argparse import data_loader import models import numpy as np import utils from torch import nn from torch.nn import CrossEntropyLoss from torch.optim import SGD from pathlib import Path import transforms as albu_trans from torchvision.transforms import ToTensor, Normalize, Compose from PIL import Image import pandas as pd data_path = Path('data') class_map = {'HTC-1-M7': 0, 'LG-Nexus-5x': 1, 'Motorola-Droid-Maxx': 2, 'Motorola-Nexus-6': 3, 'Motorola-X': 4, 'Samsung-Galaxy-Note3': 5, 'Samsung-Galaxy-S4': 6, 'Sony-NEX-7': 7, 'iPhone-4s': 8, 'iPhone-6': 9} target_size = 256 def validation(model, criterion, valid_loader): model.eval() losses = [] accuracy_scores = [] for inputs, targets in valid_loader: inputs = utils.variable(inputs, volatile=True) targets = utils.variable(targets) outputs = model(inputs) loss = criterion(outputs, targets) losses.append(loss.data[0]) accuracy_scores += list(targets.data.cpu().numpy() == np.argmax(outputs.data.cpu().numpy(), axis=1)) valid_loss = np.mean(losses) # type: float valid_accuracy = np.mean(accuracy_scores) # type: float print('Valid loss: {:.4f}, accuracy: {:.4f}'.format(valid_loss, valid_accuracy)) return {'valid_loss': valid_loss, 'accuracy': valid_accuracy} def is_image(file_path): img = Image.open(str(file_path)) try: img.size except: return False return True def get_df(mode=None): if mode == 'train': train_path = data_path / 'train' train_file_names = list(train_path.glob('**/*.*')) train_file_names = [x.absolute() for x in train_file_names if is_image(x)] main_df = pd.DataFrame({'file_name': train_file_names}) main_df['fname'] = main_df['file_name'].apply(lambda x: x.name, 1) main_df = main_df[main_df['fname'] != '(MotoNex6)8.jpg'] main_df['target'] = main_df['file_name'].apply(lambda x: x.parent.name, 1) main_df['is_manip'] = 0 flickr_path = data_path / 'new_flickr' flickr_file_names = list(flickr_path.glob('**/*.*')) flickr_file_names = [x.absolute() for x in flickr_file_names] flickr_df =
pd.DataFrame({'file_name': flickr_file_names})
pandas.DataFrame
import unittest import backtest_pkg as bt import pandas as pd import numpy as np from math import sqrt, log from pandas.util.testing import assert_frame_equal def cal_std(data): if len(data)<=1: return np.nan data_mean = sum(data)/len(data) data_var = sum((i-data_mean)**2 for i in data)/(len(data)-1) return sqrt(data_var) def cal_mean(data): return sum(data)/len(data) class TestMarketSingleAsset(unittest.TestCase): def setUp(self): def construct_market(data): ticker = ['Test Ticker'] index = pd.date_range('2020-01-01', periods=len(data), freq='D') data_dict = dict( adj_close_price = pd.DataFrame(data, index=index, columns=ticker), open_price = pd.DataFrame(data, index=index, columns=ticker), high_price = pd.DataFrame([i*1.1 for i in data], index=index, columns=ticker), low_price = pd.DataFrame([i*0.9 for i in data], index=index, columns=ticker), close_price = pd.DataFrame(data, index=index, columns=ticker), ) return bt.market(**data_dict) data_trend = [1, 2, 3, 4, 5] self.index = pd.date_range('2020-01-01', periods=len(data_trend), freq='D') self.ticker = ['Test Ticker'] self.market = construct_market(data_trend) self.market_down = construct_market(data_trend[::-1]) data_sin = [3, 5, 3, 1, 3] data_convex = [3, 2, 1, 2, 3] data_concave = [1, 2, 3, 2, 1] self.market_sin = construct_market(data_sin) self.market_convex = construct_market(data_convex) self.market_concave = construct_market(data_concave) # Daily return: np.log([np.nan, 2/1, 3/2, 4/3, 5/4]) def test_market_daily_ret(self): expect = pd.DataFrame(log(5/4), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.daily_ret(), expect) def test_market_daily_ret_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) expect = pd.DataFrame(log(3/2), index=[date], columns=self.ticker) assert_frame_equal(self.market.daily_ret(date=date), expect) assert_frame_equal(self.market.daily_ret(date=date_str), expect) def test_market_daily_ret_given_lag(self): lag = 1 expect = pd.DataFrame(log(4/3), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.daily_ret(lag=lag), expect) def test_market_daily_ret_given_date_lag(self): date = pd.to_datetime('2020-01-03') lag = 1 expect = pd.DataFrame(log(2/1), index=[date], columns=self.ticker) assert_frame_equal(self.market.daily_ret(date=date, lag=lag), expect) def test_market_daily_ret_out_range_date(self): late_date = pd.to_datetime('2020-01-20') early_date = pd.to_datetime('2019-01-01') with self.assertRaises(AssertionError): self.market.daily_ret(date=early_date) with self.assertRaises(AssertionError): self.market.daily_ret(date=late_date) def test_market_daily_ret_large_lag(self): lag = 100 expect = pd.DataFrame(np.nan, index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.daily_ret(lag=lag), expect) def test_market_daily_ret_negative_lag(self): lag = -1 with self.assertRaises(AssertionError): self.market.daily_ret(lag=lag) def test_market_total_ret(self): expect = pd.DataFrame(log(5), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.total_ret(), expect) def test_market_total_ret_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) expect = pd.DataFrame(log(3), index=[date], columns=self.ticker) assert_frame_equal(self.market.total_ret(date=date), expect) assert_frame_equal(self.market.total_ret(date=date_str), expect) def test_market_total_ret_given_period(self): expect = pd.DataFrame(log(5/3), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.total_ret(period=2), expect) def test_market_total_ret_given_date_period(self): date_str = '2020-01-04' date = pd.to_datetime(date_str) expect = pd.DataFrame(log(4/2), index=[date], columns=self.ticker) assert_frame_equal(self.market.total_ret(date = date, period=2), expect) def test_market_total_ret_out_range_date(self): late_date = pd.to_datetime('2020-01-20') early_date = pd.to_datetime('2019-01-01') with self.assertRaises(AssertionError): self.market.total_ret(date=early_date) with self.assertRaises(AssertionError): self.market.total_ret(date=late_date) def test_market_total_ret_large_period(self): with self.assertRaises(AssertionError): self.market.total_ret(period=100) def test_market_total_ret_negative_period(self): with self.assertRaises(AssertionError): self.market.total_ret(period=0) with self.assertRaises(AssertionError): self.market.total_ret(period=-1) def test_market_vol(self): data = [log(i) for i in [2/1, 3/2, 4/3, 5/4]] expect = pd.DataFrame(cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.volatility(), expect) def test_market_vol_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) data = [log(i) for i in [2/1, 3/2]] expect = pd.DataFrame(cal_std(data), index=[date], columns=self.ticker) assert_frame_equal(self.market.volatility(date=date), expect) assert_frame_equal(self.market.volatility(date=date_str), expect) def test_market_vol_given_period(self): data = [log(i) for i in [4/3, 5/4]] expect = pd.DataFrame(cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.volatility(period=2), expect) def test_market_vol_given_date_period(self): date_str = '2020-01-04' date = pd.to_datetime(date_str) data = [log(i) for i in [3/2, 4/3]] expect = pd.DataFrame(cal_std(data), index=[date], columns=self.ticker) assert_frame_equal(self.market.volatility(date=date, period=2), expect) def test_market_vol_period_1(self): expect = pd.DataFrame(np.nan, index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.volatility(period=1), expect) def test_market_vol_out_range_period(self): with self.assertRaises(AssertionError): self.market.volatility(period=10) def test_market_bollinger(self): data_std = cal_std(list(range(1, 6))) expect = pd.DataFrame((5-3)/data_std, index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.bollinger(), expect) def test_market_bollinger_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) data = [1, 2, 3] expect = pd.DataFrame((3-2)/cal_std(data), index=[date], columns=self.ticker) assert_frame_equal(self.market.bollinger(date=date), expect) assert_frame_equal(self.market.bollinger(date=date_str), expect) def test_market_bollinger_given_period(self): data = [3, 4, 5] expect = pd.DataFrame((5-4)/cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market.bollinger(period=3), expect) def test_market_bollinger_given_date_period(self): date_str = '2020-01-04' date = pd.to_datetime(date_str) data = [2, 3, 4] expect = pd.DataFrame((4-3)/cal_std(data), index=[date], columns=self.ticker) assert_frame_equal(self.market.bollinger(date=date, period=3), expect) def test_market_bollinger_down(self): data = [5, 4, 3, 2, 1] expect = pd.DataFrame((data[-1] - cal_mean(data))/cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market_down.bollinger(), expect) def test_market_bollinger_sin(self): data = [3, 5, 3, 1, 3] expect = pd.DataFrame((data[-1] - cal_mean(data))/cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market_sin.bollinger(), expect) def test_market_bollinger_convex(self): data = [3, 2, 1, 2, 3] expect = pd.DataFrame((data[-1] - cal_mean(data))/cal_std(data), index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market_convex.bollinger(), expect) def test_market_RSI(self): expect = pd.DataFrame(0.5, index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market_convex.RSI(), expect) def test_market_RSI_given_date(self): date_str = '2020-01-03' date = pd.to_datetime(date_str) expect = pd.DataFrame(0., index=[date], columns=self.ticker) assert_frame_equal(self.market_convex.RSI(date=date), expect) assert_frame_equal(self.market_convex.RSI(date=date_str), expect) def test_market_RSI_given_period(self): expect = pd.DataFrame(1., index=[self.index[-1]], columns=self.ticker) assert_frame_equal(self.market_convex.RSI(period=2), expect) def test_market_RSI_given_date_period(self): date_str = '2020-01-04' date = pd.to_datetime(date_str) expect = pd.DataFrame(0.5, index=[date], columns=self.ticker) assert_frame_equal(self.market_convex.RSI(date=date, period=2), expect) def test_market_RSI_up(self): expect =
pd.DataFrame(1., index=[self.index[-1]], columns=self.ticker)
pandas.DataFrame
import pandas as pd import string import matplotlib.pyplot as plt import numpy as np import scipy as sp from scipy import signal from scipy import constants from scipy.integrate import cumtrapz from numba import vectorize, jit import os import sys import seaborn as sns rc = {'legend.frameon': True, 'legend.fancybox': True, 'patch.facecolor': 'white', 'patch.edgecolor': 'black', 'axes.formatter.useoffset': False, 'text.usetex': True, 'font.weight': 'bold', 'mathtext.fontset': 'stix'} sns.set(context='poster', style='white', font_scale=1.7, font='serif', rc=rc) sns.set_style("ticks") import exa import exatomic from exatomic import qe import notebook as nb import math from nuc import * nuc_df = pd.DataFrame.from_dict(nuc) def read_efg_data(file_path,ensemble_average=False): rawdf =
pd.io.parsers.read_csv(file_path)
pandas.io.parsers.read_csv
""" This script calls the networkSimulator to create voxelwise synapse counts and can be used as starting point to integrate existing inference algorithms. """ ################################################################################ ### LOAD LIBRARIES ################################################################################ import os import json import subprocess import numpy as np import pandas as pd import statsmodels.api as sm # import sys # import csv ################################################################################ ### SET FILE NAMES ################################################################################ specFile = "synapseSpec.json" simulator = "networkSimulator.exe" featuresFile = "features.csv" synapseFile = "synapses.csv" ################################################################################ ### GENERATE RULE-BASED SYNAPSE COUNTS ################################################################################ # Load default spec file as template with open(specFile) as f: spec = json.load(f) # Set theta in temporary spec file. Example with fixed theta [0, 1, 1, -1]: true_beta = [0, 1, 1, -1] spec["CONNECTIVITY_RULE_PARAMETERS"] = true_beta newSpecFilePath = os.path.join(os.path.dirname(specFile), "generatedSpecFile.json") with open(newSpecFilePath, 'w') as generatedSpecFile: json.dump(spec, generatedSpecFile) # Call the simulator and remove temporary spec file. subprocess.run([simulator, "SYNAPSE", newSpecFilePath]) os.remove(newSpecFilePath) ################################################################################ ### MAXIMUM LIKELIHOOD ESTIMATION (MLE) ################################################################################ # Read data data =
pd.read_csv("synapses.csv")
pandas.read_csv
""" Tests that work on both the Python and C engines but do not have a specific classification into the other test modules. """ import codecs import csv from datetime import datetime from io import StringIO import os import platform from tempfile import TemporaryFile from urllib.error import URLError import numpy as np import pytest from pandas._libs.tslib import Timestamp from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas import DataFrame, Index, MultiIndex, Series, compat, concat import pandas._testing as tm from pandas.io.parsers import CParserWrapper, TextFileReader, TextParser def test_override_set_noconvert_columns(): # see gh-17351 # # Usecols needs to be sorted in _set_noconvert_columns based # on the test_usecols_with_parse_dates test from test_usecols.py class MyTextFileReader(TextFileReader): def __init__(self): self._currow = 0 self.squeeze = False class MyCParserWrapper(CParserWrapper): def _set_noconvert_columns(self): if self.usecols_dtype == "integer": # self.usecols is a set, which is documented as unordered # but in practice, a CPython set of integers is sorted. # In other implementations this assumption does not hold. # The following code simulates a different order, which # before GH 17351 would cause the wrong columns to be # converted via the parse_dates parameter self.usecols = list(self.usecols) self.usecols.reverse() return
CParserWrapper._set_noconvert_columns(self)
pandas.io.parsers.CParserWrapper._set_noconvert_columns
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for datetime64 and datetime64tz dtypes from datetime import ( datetime, time, timedelta, ) from itertools import ( product, starmap, ) import operator import warnings import numpy as np import pytest import pytz from pandas._libs.tslibs.conversion import localize_pydatetime from pandas._libs.tslibs.offsets import shift_months from pandas.errors import PerformanceWarning import pandas as pd from pandas import ( DateOffset, DatetimeIndex, NaT, Period, Series, Timedelta, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.core.arrays import ( DatetimeArray, TimedeltaArray, ) from pandas.core.ops import roperator from pandas.tests.arithmetic.common import ( assert_cannot_add, assert_invalid_addsub_type, assert_invalid_comparison, get_upcast_box, ) # ------------------------------------------------------------------ # Comparisons class TestDatetime64ArrayLikeComparisons: # Comparison tests for datetime64 vectors fully parametrized over # DataFrame/Series/DatetimeIndex/DatetimeArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, tz_naive_fixture, box_with_array): # Test comparison with zero-dimensional array is unboxed tz = tz_naive_fixture box = box_with_array dti = date_range("20130101", periods=3, tz=tz) other = np.array(dti.to_numpy()[0]) dtarr = tm.box_expected(dti, box) xbox = get_upcast_box(dtarr, other, True) result = dtarr <= other expected = np.array([True, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "other", [ "foo", -1, 99, 4.0, object(), timedelta(days=2), # GH#19800, GH#19301 datetime.date comparison raises to # match DatetimeIndex/Timestamp. This also matches the behavior # of stdlib datetime.datetime datetime(2001, 1, 1).date(), # GH#19301 None and NaN are *not* cast to NaT for comparisons None, np.nan, ], ) def test_dt64arr_cmp_scalar_invalid(self, other, tz_naive_fixture, box_with_array): # GH#22074, GH#15966 tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) dtarr = tm.box_expected(rng, box_with_array) assert_invalid_comparison(dtarr, other, box_with_array) @pytest.mark.parametrize( "other", [ # GH#4968 invalid date/int comparisons list(range(10)), np.arange(10), np.arange(10).astype(np.float32), np.arange(10).astype(object), pd.timedelta_range("1ns", periods=10).array, np.array(pd.timedelta_range("1ns", periods=10)), list(pd.timedelta_range("1ns", periods=10)), pd.timedelta_range("1 Day", periods=10).astype(object), pd.period_range("1971-01-01", freq="D", periods=10).array, pd.period_range("1971-01-01", freq="D", periods=10).astype(object), ], ) def test_dt64arr_cmp_arraylike_invalid( self, other, tz_naive_fixture, box_with_array ): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="ns", periods=10, tz=tz)._data obj = tm.box_expected(dta, box_with_array) assert_invalid_comparison(obj, other, box_with_array) def test_dt64arr_cmp_mixed_invalid(self, tz_naive_fixture): tz = tz_naive_fixture dta = date_range("1970-01-01", freq="h", periods=5, tz=tz)._data other = np.array([0, 1, 2, dta[3], Timedelta(days=1)]) result = dta == other expected = np.array([False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = dta != other tm.assert_numpy_array_equal(result, ~expected) msg = "Invalid comparison between|Cannot compare type|not supported between" with pytest.raises(TypeError, match=msg): dta < other with pytest.raises(TypeError, match=msg): dta > other with pytest.raises(TypeError, match=msg): dta <= other with pytest.raises(TypeError, match=msg): dta >= other def test_dt64arr_nat_comparison(self, tz_naive_fixture, box_with_array): # GH#22242, GH#22163 DataFrame considered NaT == ts incorrectly tz = tz_naive_fixture box = box_with_array ts = Timestamp("2021-01-01", tz=tz) ser = Series([ts, NaT]) obj = tm.box_expected(ser, box) xbox = get_upcast_box(obj, ts, True) expected = Series([True, False], dtype=np.bool_) expected = tm.box_expected(expected, xbox) result = obj == ts tm.assert_equal(result, expected) class TestDatetime64SeriesComparison: # TODO: moved from tests.series.test_operators; needs cleanup @pytest.mark.parametrize( "pair", [ ( [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [NaT, NaT, Timestamp("2011-01-03")], ), ( [Timedelta("1 days"), NaT, Timedelta("3 days")], [NaT, NaT, Timedelta("3 days")], ), ( [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], [NaT, NaT, Period("2011-03", freq="M")], ), ], ) @pytest.mark.parametrize("reverse", [True, False]) @pytest.mark.parametrize("dtype", [None, object]) @pytest.mark.parametrize( "op, expected", [ (operator.eq, Series([False, False, True])), (operator.ne, Series([True, True, False])), (operator.lt, Series([False, False, False])), (operator.gt, Series([False, False, False])), (operator.ge, Series([False, False, True])), (operator.le, Series([False, False, True])), ], ) def test_nat_comparisons( self, dtype, index_or_series, reverse, pair, op, expected, ): box = index_or_series l, r = pair if reverse: # add lhs / rhs switched data l, r = r, l left = Series(l, dtype=dtype) right = box(r, dtype=dtype) result = op(left, right) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "data", [ [Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")], [Timedelta("1 days"), NaT, Timedelta("3 days")], [Period("2011-01", freq="M"), NaT, Period("2011-03", freq="M")], ], ) @pytest.mark.parametrize("dtype", [None, object]) def test_nat_comparisons_scalar(self, dtype, data, box_with_array): box = box_with_array left = Series(data, dtype=dtype) left = tm.box_expected(left, box) xbox = get_upcast_box(left, NaT, True) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left == NaT, expected) tm.assert_equal(NaT == left, expected) expected = [True, True, True] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left != NaT, expected) tm.assert_equal(NaT != left, expected) expected = [False, False, False] expected = tm.box_expected(expected, xbox) if box is pd.array and dtype is object: expected = pd.array(expected, dtype="bool") tm.assert_equal(left < NaT, expected) tm.assert_equal(NaT > left, expected) tm.assert_equal(left <= NaT, expected) tm.assert_equal(NaT >= left, expected) tm.assert_equal(left > NaT, expected) tm.assert_equal(NaT < left, expected) tm.assert_equal(left >= NaT, expected) tm.assert_equal(NaT <= left, expected) @pytest.mark.parametrize("val", [datetime(2000, 1, 4), datetime(2000, 1, 5)]) def test_series_comparison_scalars(self, val): series = Series(date_range("1/1/2000", periods=10)) result = series > val expected = Series([x > val for x in series]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "left,right", [("lt", "gt"), ("le", "ge"), ("eq", "eq"), ("ne", "ne")] ) def test_timestamp_compare_series(self, left, right): # see gh-4982 # Make sure we can compare Timestamps on the right AND left hand side. ser = Series(date_range("20010101", periods=10), name="dates") s_nat = ser.copy(deep=True) ser[0] = Timestamp("nat") ser[3] = Timestamp("nat") left_f = getattr(operator, left) right_f = getattr(operator, right) # No NaT expected = left_f(ser, Timestamp("20010109")) result = right_f(Timestamp("20010109"), ser) tm.assert_series_equal(result, expected) # NaT expected = left_f(ser, Timestamp("nat")) result = right_f(Timestamp("nat"), ser) tm.assert_series_equal(result, expected) # Compare to Timestamp with series containing NaT expected = left_f(s_nat, Timestamp("20010109")) result = right_f(Timestamp("20010109"), s_nat) tm.assert_series_equal(result, expected) # Compare to NaT with series containing NaT expected = left_f(s_nat, NaT) result = right_f(NaT, s_nat) tm.assert_series_equal(result, expected) def test_dt64arr_timestamp_equality(self, box_with_array): # GH#11034 ser = Series([Timestamp("2000-01-29 01:59:00"), Timestamp("2000-01-30"), NaT]) ser = tm.box_expected(ser, box_with_array) xbox = get_upcast_box(ser, ser, True) result = ser != ser expected = tm.box_expected([False, False, True], xbox) tm.assert_equal(result, expected) warn = FutureWarning if box_with_array is pd.DataFrame else None with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[0] expected = tm.box_expected([False, True, True], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser != ser[2] expected = tm.box_expected([True, True, True], xbox) tm.assert_equal(result, expected) result = ser == ser expected = tm.box_expected([True, True, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[0] expected = tm.box_expected([True, False, False], xbox) tm.assert_equal(result, expected) with tm.assert_produces_warning(warn): # alignment for frame vs series comparisons deprecated result = ser == ser[2] expected = tm.box_expected([False, False, False], xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize( "datetimelike", [ Timestamp("20130101"), datetime(2013, 1, 1), np.datetime64("2013-01-01T00:00", "ns"), ], ) @pytest.mark.parametrize( "op,expected", [ (operator.lt, [True, False, False, False]), (operator.le, [True, True, False, False]), (operator.eq, [False, True, False, False]), (operator.gt, [False, False, False, True]), ], ) def test_dt64_compare_datetime_scalar(self, datetimelike, op, expected): # GH#17965, test for ability to compare datetime64[ns] columns # to datetimelike ser = Series( [ Timestamp("20120101"), Timestamp("20130101"), np.nan, Timestamp("20130103"), ], name="A", ) result = op(ser, datetimelike) expected = Series(expected, name="A") tm.assert_series_equal(result, expected) class TestDatetimeIndexComparisons: # TODO: moved from tests.indexes.test_base; parametrize and de-duplicate def test_comparators(self, comparison_op): index = tm.makeDateIndex(100) element = index[len(index) // 2] element = Timestamp(element).to_datetime64() arr = np.array(index) arr_result = comparison_op(arr, element) index_result = comparison_op(index, element) assert isinstance(index_result, np.ndarray) tm.assert_numpy_array_equal(arr_result, index_result) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) def test_dti_cmp_datetimelike(self, other, tz_naive_fixture): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=2, tz=tz) if tz is not None: if isinstance(other, np.datetime64): # no tzaware version available return other = localize_pydatetime(other, dti.tzinfo) result = dti == other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = dti > other expected = np.array([False, True]) tm.assert_numpy_array_equal(result, expected) result = dti >= other expected = np.array([True, True]) tm.assert_numpy_array_equal(result, expected) result = dti < other expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) result = dti <= other expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [None, object]) def test_dti_cmp_nat(self, dtype, box_with_array): left = DatetimeIndex([Timestamp("2011-01-01"), NaT, Timestamp("2011-01-03")]) right = DatetimeIndex([NaT, NaT, Timestamp("2011-01-03")]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) xbox = get_upcast_box(left, right, True) lhs, rhs = left, right if dtype is object: lhs, rhs = left.astype(object), right.astype(object) result = rhs == lhs expected = np.array([False, False, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) result = lhs != rhs expected = np.array([True, True, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs == NaT, expected) tm.assert_equal(NaT == rhs, expected) expected = np.array([True, True, True]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs != NaT, expected) tm.assert_equal(NaT != lhs, expected) expected = np.array([False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(lhs < NaT, expected) tm.assert_equal(NaT > lhs, expected) def test_dti_cmp_nat_behaves_like_float_cmp_nan(self): fidx1 = pd.Index([1.0, np.nan, 3.0, np.nan, 5.0, 7.0]) fidx2 = pd.Index([2.0, 3.0, np.nan, np.nan, 6.0, 7.0]) didx1 = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) didx2 = DatetimeIndex( ["2014-02-01", "2014-03-01", NaT, NaT, "2014-06-01", "2014-07-01"] ) darr = np.array( [ np.datetime64("2014-02-01 00:00"), np.datetime64("2014-03-01 00:00"), np.datetime64("nat"), np.datetime64("nat"), np.datetime64("2014-06-01 00:00"), np.datetime64("2014-07-01 00:00"), ] ) cases = [(fidx1, fidx2), (didx1, didx2), (didx1, darr)] # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, idx2 in cases: result = idx1 < idx2 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx2 > idx1 expected = np.array([True, False, False, False, True, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= idx2 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx2 >= idx1 expected = np.array([True, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == idx2 expected = np.array([False, False, False, False, False, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 != idx2 expected = np.array([True, True, True, True, True, False]) tm.assert_numpy_array_equal(result, expected) with tm.assert_produces_warning(None): for idx1, val in [(fidx1, np.nan), (didx1, NaT)]: result = idx1 < val expected = np.array([False, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val tm.assert_numpy_array_equal(result, expected) result = idx1 <= val tm.assert_numpy_array_equal(result, expected) result = idx1 >= val tm.assert_numpy_array_equal(result, expected) result = idx1 == val tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, True, True, True, True]) tm.assert_numpy_array_equal(result, expected) # Check pd.NaT is handles as the same as np.nan with tm.assert_produces_warning(None): for idx1, val in [(fidx1, 3), (didx1, datetime(2014, 3, 1))]: result = idx1 < val expected = np.array([True, False, False, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 > val expected = np.array([False, False, False, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 <= val expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 >= val expected = np.array([False, False, True, False, True, True]) tm.assert_numpy_array_equal(result, expected) result = idx1 == val expected = np.array([False, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result = idx1 != val expected = np.array([True, True, False, True, True, True]) tm.assert_numpy_array_equal(result, expected) def test_comparison_tzawareness_compat(self, comparison_op, box_with_array): # GH#18162 op = comparison_op box = box_with_array dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box) dz = tm.box_expected(dz, box) if box is pd.DataFrame: tolist = lambda x: x.astype(object).values.tolist()[0] else: tolist = list if op not in [operator.eq, operator.ne]: msg = ( r"Invalid comparison between dtype=datetime64\[ns.*\] " "and (Timestamp|DatetimeArray|list|ndarray)" ) with pytest.raises(TypeError, match=msg): op(dr, dz) with pytest.raises(TypeError, match=msg): op(dr, tolist(dz)) with pytest.raises(TypeError, match=msg): op(dr, np.array(tolist(dz), dtype=object)) with pytest.raises(TypeError, match=msg): op(dz, dr) with pytest.raises(TypeError, match=msg): op(dz, tolist(dr)) with pytest.raises(TypeError, match=msg): op(dz, np.array(tolist(dr), dtype=object)) # The aware==aware and naive==naive comparisons should *not* raise assert np.all(dr == dr) assert np.all(dr == tolist(dr)) assert np.all(tolist(dr) == dr) assert np.all(np.array(tolist(dr), dtype=object) == dr) assert np.all(dr == np.array(tolist(dr), dtype=object)) assert np.all(dz == dz) assert np.all(dz == tolist(dz)) assert np.all(tolist(dz) == dz) assert np.all(np.array(tolist(dz), dtype=object) == dz) assert np.all(dz == np.array(tolist(dz), dtype=object)) def test_comparison_tzawareness_compat_scalars(self, comparison_op, box_with_array): # GH#18162 op = comparison_op dr = date_range("2016-01-01", periods=6) dz = dr.tz_localize("US/Pacific") dr = tm.box_expected(dr, box_with_array) dz = tm.box_expected(dz, box_with_array) # Check comparisons against scalar Timestamps ts = Timestamp("2000-03-14 01:59") ts_tz = Timestamp("2000-03-14 01:59", tz="Europe/Amsterdam") assert np.all(dr > ts) msg = r"Invalid comparison between dtype=datetime64\[ns.*\] and Timestamp" if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dr, ts_tz) assert np.all(dz > ts_tz) if op not in [operator.eq, operator.ne]: with pytest.raises(TypeError, match=msg): op(dz, ts) if op not in [operator.eq, operator.ne]: # GH#12601: Check comparison against Timestamps and DatetimeIndex with pytest.raises(TypeError, match=msg): op(ts, dz) @pytest.mark.parametrize( "other", [datetime(2016, 1, 1), Timestamp("2016-01-01"), np.datetime64("2016-01-01")], ) # Bug in NumPy? https://github.com/numpy/numpy/issues/13841 # Raising in __eq__ will fallback to NumPy, which warns, fails, # then re-raises the original exception. So we just need to ignore. @pytest.mark.filterwarnings("ignore:elementwise comp:DeprecationWarning") @pytest.mark.filterwarnings("ignore:Converting timezone-aware:FutureWarning") def test_scalar_comparison_tzawareness( self, comparison_op, other, tz_aware_fixture, box_with_array ): op = comparison_op tz = tz_aware_fixture dti = date_range("2016-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) xbox = get_upcast_box(dtarr, other, True) if op in [operator.eq, operator.ne]: exbool = op is operator.ne expected = np.array([exbool, exbool], dtype=bool) expected = tm.box_expected(expected, xbox) result = op(dtarr, other) tm.assert_equal(result, expected) result = op(other, dtarr) tm.assert_equal(result, expected) else: msg = ( r"Invalid comparison between dtype=datetime64\[ns, .*\] " f"and {type(other).__name__}" ) with pytest.raises(TypeError, match=msg): op(dtarr, other) with pytest.raises(TypeError, match=msg): op(other, dtarr) def test_nat_comparison_tzawareness(self, comparison_op): # GH#19276 # tzaware DatetimeIndex should not raise when compared to NaT op = comparison_op dti = DatetimeIndex( ["2014-01-01", NaT, "2014-03-01", NaT, "2014-05-01", "2014-07-01"] ) expected = np.array([op == operator.ne] * len(dti)) result = op(dti, NaT) tm.assert_numpy_array_equal(result, expected) result = op(dti.tz_localize("US/Pacific"), NaT) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_str(self, tz_naive_fixture): # GH#22074 # regardless of tz, we expect these comparisons are valid tz = tz_naive_fixture rng = date_range("1/1/2000", periods=10, tz=tz) other = "1/1/2000" result = rng == other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng != other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng < other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = rng <= other expected = np.array([True] + [False] * 9) tm.assert_numpy_array_equal(result, expected) result = rng > other expected = np.array([False] + [True] * 9) tm.assert_numpy_array_equal(result, expected) result = rng >= other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) def test_dti_cmp_list(self): rng = date_range("1/1/2000", periods=10) result = rng == list(rng) expected = rng == rng tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize( "other", [ pd.timedelta_range("1D", periods=10), pd.timedelta_range("1D", periods=10).to_series(), pd.timedelta_range("1D", periods=10).asi8.view("m8[ns]"), ], ids=lambda x: type(x).__name__, ) def test_dti_cmp_tdi_tzawareness(self, other): # GH#22074 # reversion test that we _don't_ call _assert_tzawareness_compat # when comparing against TimedeltaIndex dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") result = dti == other expected = np.array([False] * 10) tm.assert_numpy_array_equal(result, expected) result = dti != other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) msg = "Invalid comparison between" with pytest.raises(TypeError, match=msg): dti < other with pytest.raises(TypeError, match=msg): dti <= other with pytest.raises(TypeError, match=msg): dti > other with pytest.raises(TypeError, match=msg): dti >= other def test_dti_cmp_object_dtype(self): # GH#22074 dti = date_range("2000-01-01", periods=10, tz="Asia/Tokyo") other = dti.astype("O") result = dti == other expected = np.array([True] * 10) tm.assert_numpy_array_equal(result, expected) other = dti.tz_localize(None) result = dti != other tm.assert_numpy_array_equal(result, expected) other = np.array(list(dti[:5]) + [Timedelta(days=1)] * 5) result = dti == other expected = np.array([True] * 5 + [False] * 5) tm.assert_numpy_array_equal(result, expected) msg = ">=' not supported between instances of 'Timestamp' and 'Timedelta'" with pytest.raises(TypeError, match=msg): dti >= other # ------------------------------------------------------------------ # Arithmetic class TestDatetime64Arithmetic: # This class is intended for "finished" tests that are fully parametrized # over DataFrame/Series/Index/DatetimeArray # ------------------------------------------------------------- # Addition/Subtraction of timedelta-like @pytest.mark.arm_slow def test_dt64arr_add_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): # GH#22005, GH#22163 check DataFrame doesn't raise TypeError tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("2000-01-01 02:00", "2000-02-01 02:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng + two_hours tm.assert_equal(result, expected) rng += two_hours tm.assert_equal(rng, expected) def test_dt64arr_sub_timedeltalike_scalar( self, tz_naive_fixture, two_hours, box_with_array ): tz = tz_naive_fixture rng = date_range("2000-01-01", "2000-02-01", tz=tz) expected = date_range("1999-12-31 22:00", "2000-01-31 22:00", tz=tz) rng = tm.box_expected(rng, box_with_array) expected = tm.box_expected(expected, box_with_array) result = rng - two_hours tm.assert_equal(result, expected) rng -= two_hours tm.assert_equal(rng, expected) # TODO: redundant with test_dt64arr_add_timedeltalike_scalar def test_dt64arr_add_td64_scalar(self, box_with_array): # scalar timedeltas/np.timedelta64 objects # operate with np.timedelta64 correctly ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:01"), Timestamp("20130101 9:02:01")] ) dtarr = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(1, "s") tm.assert_equal(result, expected) result = np.timedelta64(1, "s") + dtarr tm.assert_equal(result, expected) expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) expected = tm.box_expected(expected, box_with_array) result = dtarr + np.timedelta64(5, "ms") tm.assert_equal(result, expected) result = np.timedelta64(5, "ms") + dtarr tm.assert_equal(result, expected) def test_dt64arr_add_sub_td64_nat(self, box_with_array, tz_naive_fixture): # GH#23320 special handling for timedelta64("NaT") tz = tz_naive_fixture dti = date_range("1994-04-01", periods=9, tz=tz, freq="QS") other = np.timedelta64("NaT") expected = DatetimeIndex(["NaT"] * 9, tz=tz) obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): other - obj def test_dt64arr_add_sub_td64ndarray(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) tdi = TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = date_range("2015-12-31", "2016-01-02", periods=3, tz=tz) dtarr = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) result = dtarr + tdarr tm.assert_equal(result, expected) result = tdarr + dtarr tm.assert_equal(result, expected) expected = date_range("2016-01-02", "2016-01-04", periods=3, tz=tz) expected = tm.box_expected(expected, box_with_array) result = dtarr - tdarr tm.assert_equal(result, expected) msg = "cannot subtract|(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): tdarr - dtarr # ----------------------------------------------------------------- # Subtraction of datetime-like scalars @pytest.mark.parametrize( "ts", [ Timestamp("2013-01-01"), Timestamp("2013-01-01").to_pydatetime(), Timestamp("2013-01-01").to_datetime64(), ], ) def test_dt64arr_sub_dtscalar(self, box_with_array, ts): # GH#8554, GH#22163 DataFrame op should _not_ return dt64 dtype idx = date_range("2013-01-01", periods=3)._with_freq(None) idx = tm.box_expected(idx, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = idx - ts tm.assert_equal(result, expected) def test_dt64arr_sub_datetime64_not_ns(self, box_with_array): # GH#7996, GH#22163 ensure non-nano datetime64 is converted to nano # for DataFrame operation dt64 = np.datetime64("2013-01-01") assert dt64.dtype == "datetime64[D]" dti = date_range("20130101", periods=3)._with_freq(None) dtarr = tm.box_expected(dti, box_with_array) expected = TimedeltaIndex(["0 Days", "1 Day", "2 Days"]) expected = tm.box_expected(expected, box_with_array) result = dtarr - dt64 tm.assert_equal(result, expected) result = dt64 - dtarr tm.assert_equal(result, -expected) def test_dt64arr_sub_timestamp(self, box_with_array): ser = date_range("2014-03-17", periods=2, freq="D", tz="US/Eastern") ser = ser._with_freq(None) ts = ser[0] ser = tm.box_expected(ser, box_with_array) delta_series = Series([np.timedelta64(0, "D"), np.timedelta64(1, "D")]) expected = tm.box_expected(delta_series, box_with_array) tm.assert_equal(ser - ts, expected) tm.assert_equal(ts - ser, -expected) def test_dt64arr_sub_NaT(self, box_with_array): # GH#18808 dti = DatetimeIndex([NaT, Timestamp("19900315")]) ser = tm.box_expected(dti, box_with_array) result = ser - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) dti_tz = dti.tz_localize("Asia/Tokyo") ser_tz = tm.box_expected(dti_tz, box_with_array) result = ser_tz - NaT expected = Series([NaT, NaT], dtype="timedelta64[ns]") expected = tm.box_expected(expected, box_with_array) tm.assert_equal(result, expected) # ------------------------------------------------------------- # Subtraction of datetime-like array-like def test_dt64arr_sub_dt64object_array(self, box_with_array, tz_naive_fixture): dti = date_range("2016-01-01", periods=3, tz=tz_naive_fixture) expected = dti - dti obj = tm.box_expected(dti, box_with_array) expected = tm.box_expected(expected, box_with_array) with tm.assert_produces_warning(PerformanceWarning): result = obj - obj.astype(object) tm.assert_equal(result, expected) def test_dt64arr_naive_sub_dt64ndarray(self, box_with_array): dti = date_range("2016-01-01", periods=3, tz=None) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) expected = dtarr - dtarr result = dtarr - dt64vals tm.assert_equal(result, expected) result = dt64vals - dtarr tm.assert_equal(result, expected) def test_dt64arr_aware_sub_dt64ndarray_raises( self, tz_aware_fixture, box_with_array ): tz = tz_aware_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) msg = "subtraction must have the same timezones or" with pytest.raises(TypeError, match=msg): dtarr - dt64vals with pytest.raises(TypeError, match=msg): dt64vals - dtarr # ------------------------------------------------------------- # Addition of datetime-like others (invalid) def test_dt64arr_add_dt64ndarray_raises(self, tz_naive_fixture, box_with_array): tz = tz_naive_fixture dti = date_range("2016-01-01", periods=3, tz=tz) dt64vals = dti.values dtarr = tm.box_expected(dti, box_with_array) assert_cannot_add(dtarr, dt64vals) def test_dt64arr_add_timestamp_raises(self, box_with_array): # GH#22163 ensure DataFrame doesn't cast Timestamp to i8 idx = DatetimeIndex(["2011-01-01", "2011-01-02"]) ts = idx[0] idx = tm.box_expected(idx, box_with_array) assert_cannot_add(idx, ts) # ------------------------------------------------------------- # Other Invalid Addition/Subtraction @pytest.mark.parametrize( "other", [ 3.14, np.array([2.0, 3.0]), # GH#13078 datetime +/- Period is invalid Period("2011-01-01", freq="D"), # https://github.com/pandas-dev/pandas/issues/10329 time(1, 2, 3), ], ) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_invalid(self, dti_freq, other, box_with_array): dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) dtarr = tm.box_expected(dti, box_with_array) msg = "|".join( [ "unsupported operand type", "cannot (add|subtract)", "cannot use operands with types", "ufunc '?(add|subtract)'? cannot use operands with types", "Concatenation operation is not implemented for NumPy arrays", ] ) assert_invalid_addsub_type(dtarr, other, msg) @pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "H"]) @pytest.mark.parametrize("dti_freq", [None, "D"]) def test_dt64arr_add_sub_parr( self, dti_freq, pi_freq, box_with_array, box_with_array2 ): # GH#20049 subtracting PeriodIndex should raise TypeError dti = DatetimeIndex(["2011-01-01", "2011-01-02"], freq=dti_freq) pi = dti.to_period(pi_freq) dtarr = tm.box_expected(dti, box_with_array) parr = tm.box_expected(pi, box_with_array2) msg = "|".join( [ "cannot (add|subtract)", "unsupported operand", "descriptor.*requires", "ufunc.*cannot use operands", ] ) assert_invalid_addsub_type(dtarr, parr, msg) def test_dt64arr_addsub_time_objects_raises(self, box_with_array, tz_naive_fixture): # https://github.com/pandas-dev/pandas/issues/10329 tz = tz_naive_fixture obj1 = date_range("2012-01-01", periods=3, tz=tz) obj2 = [time(i, i, i) for i in range(3)] obj1 = tm.box_expected(obj1, box_with_array) obj2 = tm.box_expected(obj2, box_with_array) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) # If `x + y` raises, then `y + x` should raise here as well msg = ( r"unsupported operand type\(s\) for -: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 - obj2 msg = "|".join( [ "cannot subtract DatetimeArray from ndarray", "ufunc (subtract|'subtract') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 - obj1 msg = ( r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'" ) with pytest.raises(TypeError, match=msg): obj1 + obj2 msg = "|".join( [ r"unsupported operand type\(s\) for \+: " "'(Timestamp|DatetimeArray)' and 'datetime.time'", "ufunc (add|'add') cannot use operands with types " r"dtype\('O'\) and dtype\('<M8\[ns\]'\)", ] ) with pytest.raises(TypeError, match=msg): obj2 + obj1 class TestDatetime64DateOffsetArithmetic: # ------------------------------------------------------------- # Tick DateOffsets # TODO: parametrize over timezone? def test_dt64arr_series_add_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:01:05"), Timestamp("20130101 9:02:05")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser + pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) def test_dt64arr_series_sub_tick_DateOffset(self, box_with_array): # GH#4532 # operate with pd.offsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) expected = Series( [Timestamp("20130101 9:00:55"), Timestamp("20130101 9:01:55")] ) ser = tm.box_expected(ser, box_with_array) expected = tm.box_expected(expected, box_with_array) result = ser - pd.offsets.Second(5) tm.assert_equal(result, expected) result2 = -pd.offsets.Second(5) + ser tm.assert_equal(result2, expected) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): pd.offsets.Second(5) - ser @pytest.mark.parametrize( "cls_name", ["Day", "Hour", "Minute", "Second", "Milli", "Micro", "Nano"] ) def test_dt64arr_add_sub_tick_DateOffset_smoke(self, cls_name, box_with_array): # GH#4532 # smoke tests for valid DateOffsets ser = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) ser = tm.box_expected(ser, box_with_array) offset_cls = getattr(pd.offsets, cls_name) ser + offset_cls(5) offset_cls(5) + ser ser - offset_cls(5) def test_dti_add_tick_tzaware(self, tz_aware_fixture, box_with_array): # GH#21610, GH#22163 ensure DataFrame doesn't return object-dtype tz = tz_aware_fixture if tz == "US/Pacific": dates = date_range("2012-11-01", periods=3, tz=tz) offset = dates + pd.offsets.Hour(5) assert dates[0] + pd.offsets.Hour(5) == offset[0] dates = date_range("2010-11-01 00:00", periods=3, tz=tz, freq="H") expected = DatetimeIndex( ["2010-11-01 05:00", "2010-11-01 06:00", "2010-11-01 07:00"], freq="H", tz=tz, ) dates = tm.box_expected(dates, box_with_array) expected = tm.box_expected(expected, box_with_array) # TODO: sub? for scalar in [pd.offsets.Hour(5), np.timedelta64(5, "h"), timedelta(hours=5)]: offset = dates + scalar tm.assert_equal(offset, expected) offset = scalar + dates tm.assert_equal(offset, expected) # ------------------------------------------------------------- # RelativeDelta DateOffsets def test_dt64arr_add_sub_relativedelta_offsets(self, box_with_array): # GH#10699 vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec # DateOffset relativedelta fastpath relative_kwargs = [ ("years", 2), ("months", 5), ("days", 3), ("hours", 5), ("minutes", 10), ("seconds", 2), ("microseconds", 5), ] for i, (unit, value) in enumerate(relative_kwargs): off = DateOffset(**{unit: value}) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) off = DateOffset(**dict(relative_kwargs[: i + 1])) expected = DatetimeIndex([x + off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + off) expected = DatetimeIndex([x - off for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - off) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): off - vec # ------------------------------------------------------------- # Non-Tick, Non-RelativeDelta DateOffsets # TODO: redundant with test_dt64arr_add_sub_DateOffset? that includes # tz-aware cases which this does not @pytest.mark.parametrize( "cls_and_kwargs", [ "YearBegin", ("YearBegin", {"month": 5}), "YearEnd", ("YearEnd", {"month": 5}), "MonthBegin", "MonthEnd", "SemiMonthEnd", "SemiMonthBegin", "Week", ("Week", {"weekday": 3}), "Week", ("Week", {"weekday": 6}), "BusinessDay", "BDay", "QuarterEnd", "QuarterBegin", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "BMonthBegin", "BMonthEnd", "BusinessHour", "BYearBegin", "BYearEnd", "BQuarterBegin", ("LastWeekOfMonth", {"weekday": 2}), ( "FY5253Quarter", { "qtr_with_extra_week": 1, "startingMonth": 1, "weekday": 2, "variation": "nearest", }, ), ("FY5253", {"weekday": 0, "startingMonth": 2, "variation": "nearest"}), ("WeekOfMonth", {"weekday": 2, "week": 2}), "Easter", ("DateOffset", {"day": 4}), ("DateOffset", {"month": 5}), ], ) @pytest.mark.parametrize("normalize", [True, False]) @pytest.mark.parametrize("n", [0, 5]) def test_dt64arr_add_sub_DateOffsets( self, box_with_array, n, normalize, cls_and_kwargs ): # GH#10699 # assert vectorized operation matches pointwise operations if isinstance(cls_and_kwargs, tuple): # If cls_name param is a tuple, then 2nd entry is kwargs for # the offset constructor cls_name, kwargs = cls_and_kwargs else: cls_name = cls_and_kwargs kwargs = {} if n == 0 and cls_name in [ "WeekOfMonth", "LastWeekOfMonth", "FY5253Quarter", "FY5253", ]: # passing n = 0 is invalid for these offset classes return vec = DatetimeIndex( [ Timestamp("2000-01-05 00:15:00"), Timestamp("2000-01-31 00:23:00"), Timestamp("2000-01-01"), Timestamp("2000-03-31"), Timestamp("2000-02-29"), Timestamp("2000-12-31"), Timestamp("2000-05-15"), Timestamp("2001-06-15"), ] ) vec = tm.box_expected(vec, box_with_array) vec_items = vec.iloc[0] if box_with_array is pd.DataFrame else vec offset_cls = getattr(pd.offsets, cls_name) with warnings.catch_warnings(record=True): # pandas.errors.PerformanceWarning: Non-vectorized DateOffset being # applied to Series or DatetimeIndex # we aren't testing that here, so ignore. warnings.simplefilter("ignore", PerformanceWarning) offset = offset_cls(n, normalize=normalize, **kwargs) expected = DatetimeIndex([x + offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec + offset) expected = DatetimeIndex([x - offset for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, vec - offset) expected = DatetimeIndex([offset + x for x in vec_items]) expected = tm.box_expected(expected, box_with_array) tm.assert_equal(expected, offset + vec) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): offset - vec def test_dt64arr_add_sub_DateOffset(self, box_with_array): # GH#10699 s = date_range("2000-01-01", "2000-01-31", name="a") s = tm.box_expected(s, box_with_array) result = s + DateOffset(years=1) result2 = DateOffset(years=1) + s exp = date_range("2001-01-01", "2001-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) result = s - DateOffset(years=1) exp = date_range("1999-01-01", "1999-01-31", name="a")._with_freq(None) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.Day() result2 = pd.offsets.Day() + s exp = DatetimeIndex( [ Timestamp("2000-01-16 00:15:00", tz="US/Central"), Timestamp("2000-02-16", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) s = DatetimeIndex( [ Timestamp("2000-01-15 00:15:00", tz="US/Central"), Timestamp("2000-02-15", tz="US/Central"), ], name="a", ) s = tm.box_expected(s, box_with_array) result = s + pd.offsets.MonthEnd() result2 = pd.offsets.MonthEnd() + s exp = DatetimeIndex( [ Timestamp("2000-01-31 00:15:00", tz="US/Central"), Timestamp("2000-02-29", tz="US/Central"), ], name="a", ) exp = tm.box_expected(exp, box_with_array) tm.assert_equal(result, exp) tm.assert_equal(result2, exp) @pytest.mark.parametrize( "other", [ np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]), np.array([pd.offsets.DateOffset(years=1), pd.offsets.MonthEnd()]), np.array( # matching offsets [pd.offsets.DateOffset(years=1), pd.offsets.DateOffset(years=1)] ), ], ) @pytest.mark.parametrize("op", [operator.add, roperator.radd, operator.sub]) @pytest.mark.parametrize("box_other", [True, False]) def test_dt64arr_add_sub_offset_array( self, tz_naive_fixture, box_with_array, box_other, op, other ): # GH#18849 # GH#10699 array of offsets tz = tz_naive_fixture dti = date_range("2017-01-01", periods=2, tz=tz) dtarr = tm.box_expected(dti, box_with_array) other = np.array([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) expected = DatetimeIndex([op(dti[n], other[n]) for n in range(len(dti))]) expected = tm.box_expected(expected, box_with_array) if box_other: other = tm.box_expected(other, box_with_array) with tm.assert_produces_warning(PerformanceWarning): res = op(dtarr, other) tm.assert_equal(res, expected) @pytest.mark.parametrize( "op, offset, exp, exp_freq", [ ( "__add__", DateOffset(months=3, days=10), [ Timestamp("2014-04-11"), Timestamp("2015-04-11"), Timestamp("2016-04-11"), Timestamp("2017-04-11"), ], None, ), ( "__add__", DateOffset(months=3), [ Timestamp("2014-04-01"), Timestamp("2015-04-01"), Timestamp("2016-04-01"), Timestamp("2017-04-01"), ], "AS-APR", ), ( "__sub__", DateOffset(months=3, days=10), [ Timestamp("2013-09-21"), Timestamp("2014-09-21"), Timestamp("2015-09-21"), Timestamp("2016-09-21"), ], None, ), ( "__sub__", DateOffset(months=3), [ Timestamp("2013-10-01"), Timestamp("2014-10-01"), Timestamp("2015-10-01"), Timestamp("2016-10-01"), ], "AS-OCT", ), ], ) def test_dti_add_sub_nonzero_mth_offset( self, op, offset, exp, exp_freq, tz_aware_fixture, box_with_array ): # GH 26258 tz = tz_aware_fixture date = date_range(start="01 Jan 2014", end="01 Jan 2017", freq="AS", tz=tz) date = tm.box_expected(date, box_with_array, False) mth = getattr(date, op) result = mth(offset) expected = DatetimeIndex(exp, tz=tz) expected = tm.box_expected(expected, box_with_array, False) tm.assert_equal(result, expected) class TestDatetime64OverflowHandling: # TODO: box + de-duplicate def test_dt64_overflow_masking(self, box_with_array): # GH#25317 left = Series([Timestamp("1969-12-31")]) right = Series([NaT]) left = tm.box_expected(left, box_with_array) right = tm.box_expected(right, box_with_array) expected = TimedeltaIndex([NaT]) expected = tm.box_expected(expected, box_with_array) result = left - right tm.assert_equal(result, expected) def test_dt64_series_arith_overflow(self): # GH#12534, fixed by GH#19024 dt = Timestamp("1700-01-31") td = Timedelta("20000 Days") dti = date_range("1949-09-30", freq="100Y", periods=4) ser = Series(dti) msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): ser - dt with pytest.raises(OverflowError, match=msg): dt - ser with pytest.raises(OverflowError, match=msg): ser + td with pytest.raises(OverflowError, match=msg): td + ser ser.iloc[-1] = NaT expected = Series( ["2004-10-03", "2104-10-04", "2204-10-04", "NaT"], dtype="datetime64[ns]" ) res = ser + td tm.assert_series_equal(res, expected) res = td + ser tm.assert_series_equal(res, expected) ser.iloc[1:] = NaT expected = Series(["91279 Days", "NaT", "NaT", "NaT"], dtype="timedelta64[ns]") res = ser - dt tm.assert_series_equal(res, expected) res = dt - ser tm.assert_series_equal(res, -expected) def test_datetimeindex_sub_timestamp_overflow(self): dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) tsneg = Timestamp("1950-01-01") ts_neg_variants = [ tsneg, tsneg.to_pydatetime(), tsneg.to_datetime64().astype("datetime64[ns]"), tsneg.to_datetime64().astype("datetime64[D]"), ] tspos = Timestamp("1980-01-01") ts_pos_variants = [ tspos, tspos.to_pydatetime(), tspos.to_datetime64().astype("datetime64[ns]"), tspos.to_datetime64().astype("datetime64[D]"), ] msg = "Overflow in int64 addition" for variant in ts_neg_variants: with pytest.raises(OverflowError, match=msg): dtimax - variant expected = Timestamp.max.value - tspos.value for variant in ts_pos_variants: res = dtimax - variant assert res[1].value == expected expected = Timestamp.min.value - tsneg.value for variant in ts_neg_variants: res = dtimin - variant assert res[1].value == expected for variant in ts_pos_variants: with pytest.raises(OverflowError, match=msg): dtimin - variant def test_datetimeindex_sub_datetimeindex_overflow(self): # GH#22492, GH#22508 dtimax = pd.to_datetime(["now", Timestamp.max]) dtimin = pd.to_datetime(["now", Timestamp.min]) ts_neg = pd.to_datetime(["1950-01-01", "1950-01-01"]) ts_pos = pd.to_datetime(["1980-01-01", "1980-01-01"]) # General tests expected = Timestamp.max.value - ts_pos[1].value result = dtimax - ts_pos assert result[1].value == expected expected = Timestamp.min.value - ts_neg[1].value result = dtimin - ts_neg assert result[1].value == expected msg = "Overflow in int64 addition" with pytest.raises(OverflowError, match=msg): dtimax - ts_neg with pytest.raises(OverflowError, match=msg): dtimin - ts_pos # Edge cases tmin = pd.to_datetime([Timestamp.min]) t1 = tmin + Timedelta.max + Timedelta("1us") with pytest.raises(OverflowError, match=msg): t1 - tmin tmax = pd.to_datetime([Timestamp.max]) t2 = tmax + Timedelta.min - Timedelta("1us") with pytest.raises(OverflowError, match=msg): tmax - t2 class TestTimestampSeriesArithmetic: def test_empty_series_add_sub(self): # GH#13844 a = Series(dtype="M8[ns]") b = Series(dtype="m8[ns]") tm.assert_series_equal(a, a + b) tm.assert_series_equal(a, a - b) tm.assert_series_equal(a, b + a) msg = "cannot subtract" with pytest.raises(TypeError, match=msg): b - a def test_operators_datetimelike(self): # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [ Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103"), ] ) dt1.iloc[2] = np.nan dt2 = Series( [ Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104"), ] ) dt1 - dt2 dt2 - dt1 # datetime64 with timetimedelta dt1 + td1 td1 + dt1 dt1 - td1 # timetimedelta with datetime64 td1 + dt1 dt1 + td1 def test_dt64ser_sub_datetime_dtype(self): ts = Timestamp(datetime(1993, 1, 7, 13, 30, 00)) dt = datetime(1993, 6, 22, 13, 30) ser = Series([ts]) result = pd.to_timedelta(np.abs(ser - dt)) assert result.dtype == "timedelta64[ns]" # ------------------------------------------------------------- # TODO: This next block of tests came from tests.series.test_operators, # needs to be de-duplicated and parametrized over `box` classes def test_operators_datetimelike_invalid(self, all_arithmetic_operators): # these are all TypeEror ops op_str = all_arithmetic_operators def check(get_ser, test_ser): # check that we are getting a TypeError # with 'operate' (from core/ops.py) for the ops that are not # defined op = getattr(get_ser, op_str, None) # Previously, _validate_for_numeric_binop in core/indexes/base.py # did this for us. with pytest.raises( TypeError, match="operate|[cC]annot|unsupported operand" ): op(test_ser) # ## timedelta64 ### td1 = Series([timedelta(minutes=5, seconds=3)] * 3) td1.iloc[2] = np.nan # ## datetime64 ### dt1 = Series( [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] ) dt1.iloc[2] = np.nan dt2 = Series( [Timestamp("20111231"), Timestamp("20120102"), Timestamp("20120104")] ) if op_str not in ["__sub__", "__rsub__"]: check(dt1, dt2) # ## datetime64 with timetimedelta ### # TODO(jreback) __rsub__ should raise? if op_str not in ["__add__", "__radd__", "__sub__"]: check(dt1, td1) # 8260, 10763 # datetime64 with tz tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan if op_str not in ["__add__", "__radd__", "__sub__", "__rsub__"]: check(dt2, td2) def test_sub_single_tz(self): # GH#12290 s1 = Series([Timestamp("2016-02-10", tz="America/Sao_Paulo")]) s2 = Series([Timestamp("2016-02-08", tz="America/Sao_Paulo")]) result = s1 - s2 expected = Series([Timedelta("2days")]) tm.assert_series_equal(result, expected) result = s2 - s1 expected = Series([Timedelta("-2days")]) tm.assert_series_equal(result, expected) def test_dt64tz_series_sub_dtitz(self): # GH#19071 subtracting tzaware DatetimeIndex from tzaware Series # (with same tz) raises, fixed by #19024 dti = date_range("1999-09-30", periods=10, tz="US/Pacific") ser = Series(dti) expected = Series(TimedeltaIndex(["0days"] * 10)) res = dti - ser tm.assert_series_equal(res, expected) res = ser - dti tm.assert_series_equal(res, expected) def test_sub_datetime_compat(self): # see GH#14088 s = Series([datetime(2016, 8, 23, 12, tzinfo=pytz.utc), NaT]) dt = datetime(2016, 8, 22, 12, tzinfo=pytz.utc) exp = Series([Timedelta("1 days"), NaT]) tm.assert_series_equal(s - dt, exp) tm.assert_series_equal(s - Timestamp(dt), exp) def test_dt64_series_add_mixed_tick_DateOffset(self): # GH#4532 # operate with pd.offsets s = Series([Timestamp("20130101 9:01"), Timestamp("20130101 9:02")]) result = s + pd.offsets.Milli(5) result2 = pd.offsets.Milli(5) + s expected = Series( [Timestamp("20130101 9:01:00.005"), Timestamp("20130101 9:02:00.005")] ) tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) result = s + pd.offsets.Minute(5) + pd.offsets.Milli(5) expected = Series( [Timestamp("20130101 9:06:00.005"), Timestamp("20130101 9:07:00.005")] ) tm.assert_series_equal(result, expected) def test_datetime64_ops_nat(self): # GH#11349 datetime_series = Series([NaT, Timestamp("19900315")]) nat_series_dtype_timestamp = Series([NaT, NaT], dtype="datetime64[ns]") single_nat_dtype_datetime = Series([NaT], dtype="datetime64[ns]") # subtraction tm.assert_series_equal(-NaT + datetime_series, nat_series_dtype_timestamp) msg = "bad operand type for unary -: 'DatetimeArray'" with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + datetime_series tm.assert_series_equal( -NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) with pytest.raises(TypeError, match=msg): -single_nat_dtype_datetime + nat_series_dtype_timestamp # addition tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) tm.assert_series_equal( nat_series_dtype_timestamp + NaT, nat_series_dtype_timestamp ) tm.assert_series_equal( NaT + nat_series_dtype_timestamp, nat_series_dtype_timestamp ) # ------------------------------------------------------------- # Invalid Operations # TODO: this block also needs to be de-duplicated and parametrized @pytest.mark.parametrize( "dt64_series", [ Series([Timestamp("19900315"), Timestamp("19900315")]), Series([NaT, Timestamp("19900315")]), Series([NaT, NaT], dtype="datetime64[ns]"), ], ) @pytest.mark.parametrize("one", [1, 1.0, np.array(1)]) def test_dt64_mul_div_numeric_invalid(self, one, dt64_series): # multiplication msg = "cannot perform .* with this index type" with pytest.raises(TypeError, match=msg): dt64_series * one with pytest.raises(TypeError, match=msg): one * dt64_series # division with pytest.raises(TypeError, match=msg): dt64_series / one with pytest.raises(TypeError, match=msg): one / dt64_series # TODO: parametrize over box def test_dt64_series_add_intlike(self, tz_naive_fixture): # GH#19123 tz = tz_naive_fixture dti = DatetimeIndex(["2016-01-02", "2016-02-03", "NaT"], tz=tz) ser = Series(dti) other = Series([20, 30, 40], dtype="uint8") msg = "|".join( [ "Addition/subtraction of integers and integer-arrays", "cannot subtract .* from ndarray", ] ) assert_invalid_addsub_type(ser, 1, msg) assert_invalid_addsub_type(ser, other, msg) assert_invalid_addsub_type(ser, np.array(other), msg) assert_invalid_addsub_type(ser, pd.Index(other), msg) # ------------------------------------------------------------- # Timezone-Centric Tests def test_operators_datetimelike_with_timezones(self): tz = "US/Eastern" dt1 = Series(date_range("2000-01-01 09:00:00", periods=5, tz=tz), name="foo") dt2 = dt1.copy() dt2.iloc[2] = np.nan td1 = Series(pd.timedelta_range("1 days 1 min", periods=5, freq="H")) td2 = td1.copy() td2.iloc[1] = np.nan assert td2._values.freq is None result = dt1 + td1[0] exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2[0] exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) # odd numpy behavior with scalar timedeltas result = td1[0] + dt1 exp = (dt1.dt.tz_localize(None) + td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = td2[0] + dt2 exp = (dt2.dt.tz_localize(None) + td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1[0] exp = (dt1.dt.tz_localize(None) - td1[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "(bad|unsupported) operand type for unary" with pytest.raises(TypeError, match=msg): td1[0] - dt1 result = dt2 - td2[0] exp = (dt2.dt.tz_localize(None) - td2[0]).dt.tz_localize(tz) tm.assert_series_equal(result, exp) with pytest.raises(TypeError, match=msg): td2[0] - dt2 result = dt1 + td1 exp = (dt1.dt.tz_localize(None) + td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 + td2 exp = (dt2.dt.tz_localize(None) + td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt1 - td1 exp = (dt1.dt.tz_localize(None) - td1).dt.tz_localize(tz) tm.assert_series_equal(result, exp) result = dt2 - td2 exp = (dt2.dt.tz_localize(None) - td2).dt.tz_localize(tz) tm.assert_series_equal(result, exp) msg = "cannot (add|subtract)" with pytest.raises(TypeError, match=msg): td1 - dt1 with pytest.raises(TypeError, match=msg): td2 - dt2 class TestDatetimeIndexArithmetic: # ------------------------------------------------------------- # Binary operations DatetimeIndex and int def test_dti_addsub_int(self, tz_naive_fixture, one): # Variants of `one` for #19012 tz = tz_naive_fixture rng = date_range("2000-01-01 09:00", freq="H", periods=10, tz=tz) msg = "Addition/subtraction of integers" with pytest.raises(TypeError, match=msg): rng + one with pytest.raises(TypeError, match=msg): rng += one with pytest.raises(TypeError, match=msg): rng - one with pytest.raises(TypeError, match=msg): rng -= one # ------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("freq", ["H", "D"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("freq", ["W", "M", "MS", "Q"]) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_non_tick(self, int_holder, freq): # GH#19959 dti = date_range("2016-01-01", periods=2, freq=freq) other = int_holder([4, -1]) msg = "|".join( ["Addition/subtraction of integers", "cannot subtract DatetimeArray from"] ) assert_invalid_addsub_type(dti, other, msg) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_dti_add_intarray_no_freq(self, int_holder): # GH#19959 dti = DatetimeIndex(["2016-01-01", "NaT", "2017-04-05 06:07:08"]) other = int_holder([9, 4, -1]) msg = "|".join( ["cannot subtract DatetimeArray from", "Addition/subtraction of integers"] ) assert_invalid_addsub_type(dti, other, msg) # ------------------------------------------------------------- # Binary operations DatetimeIndex and TimedeltaIndex/array def test_dti_add_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # add with TimdeltaIndex result = dti + tdi tm.assert_index_equal(result, expected) result = tdi + dti tm.assert_index_equal(result, expected) # add with timedelta64 array result = dti + tdi.values tm.assert_index_equal(result, expected) result = tdi.values + dti tm.assert_index_equal(result, expected) def test_dti_iadd_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz) expected = expected._with_freq(None) # iadd with TimdeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) # iadd with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result += tdi.values tm.assert_index_equal(result, expected) result = pd.timedelta_range("0 days", periods=10) result += dti tm.assert_index_equal(result, expected) def test_dti_sub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # sub with TimedeltaIndex result = dti - tdi tm.assert_index_equal(result, expected) msg = "cannot subtract .*TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi - dti # sub with timedelta64 array result = dti - tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi.values - dti def test_dti_isub_tdi(self, tz_naive_fixture): # GH#17558 tz = tz_naive_fixture dti = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) tdi = pd.timedelta_range("0 days", periods=10) expected = date_range("2017-01-01", periods=10, tz=tz, freq="-1D") expected = expected._with_freq(None) # isub with TimedeltaIndex result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi tm.assert_index_equal(result, expected) # DTA.__isub__ GH#43904 dta = dti._data.copy() dta -= tdi tm.assert_datetime_array_equal(dta, expected._data) out = dti._data.copy() np.subtract(out, tdi, out=out) tm.assert_datetime_array_equal(out, expected._data) msg = "cannot subtract .* from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi -= dti # isub with timedelta64 array result = DatetimeIndex([Timestamp("2017-01-01", tz=tz)] * 10) result -= tdi.values tm.assert_index_equal(result, expected) msg = "cannot subtract DatetimeArray from ndarray" with pytest.raises(TypeError, match=msg): tdi.values -= dti msg = "cannot subtract a datelike from a TimedeltaArray" with pytest.raises(TypeError, match=msg): tdi._values -= dti # ------------------------------------------------------------- # Binary Operations DatetimeIndex and datetime-like # TODO: A couple other tests belong in this section. Move them in # A PR where there isn't already a giant diff. @pytest.mark.parametrize( "addend", [ datetime(2011, 1, 1), DatetimeIndex(["2011-01-01", "2011-01-02"]), DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize("US/Eastern"), np.datetime64("2011-01-01"), Timestamp("2011-01-01"), ], ids=lambda x: type(x).__name__, ) @pytest.mark.parametrize("tz", [None, "US/Eastern"]) def test_add_datetimelike_and_dtarr(self, box_with_array, addend, tz): # GH#9631 dti = DatetimeIndex(["2011-01-01", "2011-01-02"]).tz_localize(tz) dtarr = tm.box_expected(dti, box_with_array) msg = "cannot add DatetimeArray and" assert_cannot_add(dtarr, addend, msg) # ------------------------------------------------------------- def test_dta_add_sub_index(self, tz_naive_fixture): # Check that DatetimeArray defers to Index classes dti =
date_range("20130101", periods=3, tz=tz_naive_fixture)
pandas.date_range
# -*- coding: utf-8 -*- """ Reading data for WB, PRO, for kennisimpulse project to read data from province, water companies, and any other sources Created on Sun Jul 26 21:55:57 2020 @author: <NAME> """ import pytest import numpy as np import pandas as pd from pathlib import Path import pickle as pckl from hgc import ner from hgc import io import tests # import xlsxwriter def test_province(): # WD = Path(tests.__file__).parent / 'provincie_data_long_preprocessed.csv' WD = r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse'+'/provincie_data_long_preprocessed.csv' df_temp = pd.read_csv(WD, encoding='ISO-8859-1', header=None) # define the nrow here n_row = None feature_map, feature_unmapped, df_feature_map = ner.generate_feature_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 25].dropna())) unit_map, unit_unmapped, df_unit_map = ner.generate_unit_map(entity_orig=list(df_temp.iloc[slice(2, n_row), 26].dropna())) # create a df to record what has been mapped and what has not df_map = pd.DataFrame((feature_map.keys(),feature_map.values(),unit_map.keys(),unit_map.values()), index=['Feature','Mapped feature','Unit','Mapped unit']).transpose() if not not feature_unmapped: df_map = df_map.join(pd.DataFrame(feature_unmapped, columns=['Unmapped feature'])) if not not unit_unmapped: df_map = df_map.join(pd.DataFrame(unit_unmapped, columns=['Unmapped unit'])) dct2_arguments = { 'file_path': WD, 'sheet_name': 'stacked', 'shape': 'stacked', 'slice_header': [1, slice(1, None)], 'slice_data': [slice(1, n_row), slice(1, None)], 'map_header': { **io.default_map_header(), 'MeetpuntId': 'LocationID', 'parameter':'Feature', 'eenheid': 'Unit', 'waarde': 'Value', 'Opgegeven bemonstering datum': 'Datetime', 'Monsternummer': 'SampleID', # "SampleID" already exists as header, but contains wrong date. Use "Sample number" as "SampleID" # 'SampleID': None # otherwise exists twice in output file }, 'map_features': {**feature_map,'pH(1)':'pH'}, 'map_units': {**unit_map, 'oC':'°C'}, } df2 = io.import_file(**dct2_arguments)[0] df2_hgc = io.stack_to_hgc(df2) with
pd.ExcelWriter(r'C:\Users\beta6\Documents\Dropbox\008KWR\0081Projects\kennisimpulse'+r'/provincie_processed.xlsx')
pandas.ExcelWriter
################################################################################################ # NOTE: I started this code to get better matching results than matching by address, # but I never finished and thus this code hasn't actually been used yet. ################################################################################################ import pandas as pd import numpy as np import re valid_street_types = [ 'ST', 'AVE', 'CT', 'CIR', 'BLVD', 'WAY', 'DR', 'TER', 'HWY', 'HL', 'PL', 'LN', 'RD', 'PARK', 'ALY', 'PLZ', 'ROW', 'WALK', 'SQ', 'SW'] def clean_eviction_data(ev): if 'index' not in ev.columns: ev.reset_index(inplace=True) ev = ev[(~pd.isnull(ev['address'])) & (ev['address'] != 'UNKNOWN') & (ev['address'].str.contains('^[0-9]'))] ev.address = ev.address.str.upper() ev.loc[ev['address'].str.contains('APT\.'), 'apt'] = ev.loc[ ev['address'].str.contains('APT\.'), 'address'].str.split('\s#?APT\.?').str[1] ev.loc[ev['address'].str.contains('APT\.'), 'address'] = ev.loc[ ev['address'].str.contains('APT\.'), 'address'].str.split('\s#?APT\.?').str[0] ev.loc[ev['address'].str.contains('#'), 'apt'] = ev.loc[ ev['address'].str.contains('#'), 'address'].str.split('\s#').str[1] ev.loc[ev['address'].str.contains('#'), 'address'] = ev.loc[ ev['address'].str.contains('#'), 'address'].str.split('\s#').str[0] ev['address'] = ev['address'].str.replace( '|'.join(['STRETT', 'STRRET', 'STREET31', 'SREET', 'DTREET', 'STREEET']), 'ST') ev['address'] = ev['address'].str.replace( '|'.join(['STRET', 'STRRE', 'STREE$']), 'ST') ev['address'] = ev['address'].str.replace( '|'.join(['AVENEU', 'AVENE', 'AVENE', 'AVNEUE', 'AAVE']), 'AVE') ev['address'] = ev['address'].str.replace('BOUELVARD', 'BLVD') ev['address'] = ev['address'].str.replace('VAN VAN', 'VAN') ev['address'] = ev['address'].str.replace('ST ST', 'ST') ev['address'] = ev['address'].str.replace('AVE AVE', 'AVE') ev['address'] = ev['address'].str.replace('MERCED MERCED', 'MERCED') ev['address'] = ev['address'].str.replace('POSTREET', 'POST ST') ev['address'] = ev['address'].str.replace('21STREET', '21ST ST') ev['address'] = ev['address'].str.replace('JOOSTREET', 'JOOST AVE') ev['address'] = ev['address'].str.replace('LOCUSTREET', 'LOCUS ST') ev['address'] = ev['address'].str.replace('BUSTREET', 'BUSH ST') ev['address'] = ev['address'].str.replace('1STREET', '1ST ST') ev['address'] = ev['address'].str.replace('AMHERSTREET', 'AMHERST ST') ev['address'] = ev['address'].str.replace('TURKSTREET', 'TURK ST') ev['address'] = ev['address'].str.replace('HARRISOIN', 'HARRISON') ev['address'] = ev['address'].str.replace('BOARDWAY', 'BROADWAY') ev['address'] = ev['address'].str.replace("檀蘝涛虧檀迦", "") ev['address'] = ev['address'].str.replace("涛宕", "") ev['address'] = ev['address'].str.replace("'", "") ev.loc[ev['address'] == "20 FRANKLIN STREET", 'address'] = "1580-1598 MARKET ST" ev.loc[ev['address'] == "57 TAYLOR STREET", 'address'] = "101-105 TURK ST" ev.loc[ev['address'] == "455 EDDY STREET", 'address'] = "350 TURK ST" ev.loc[ev['address'] == "790 VALLEJO STREET", 'address'] = "1500-1506 POWELL ST" ev.loc[ev['address'] == "2 EMERY LANE", 'address'] = "734-752 VALLEJO ST" ev.loc[ev['address'] == "1091 BUSH STREET", 'address'] = "850 LEAVENWORTH ST" ev.loc[ev['address'] == "795 20TH AVENUE", 'address'] = "4400 FULTON ST" ev.loc[ev['address'] == "440 DAVIS COURT", 'address'] = "100 WASHINGTON ST" ev.loc[ev['address'] == "405 12TH AVENUE", 'address'] = "4801 GEARY BLVD" ev.loc[ev['address'] == "4 BECKETT STREET", 'address'] = "670 JACKSON ST" ev.loc[ev['address'] == "874 SACRAMENTO STREET", 'address'] = "800 STOCKTON ST" ev.loc[ev['address'] == "265 NORTH POINT STREET", 'address'] = "2310-2390 POWELL ST" ev.loc[ev['address'] == "20 12TH STREET", 'address'] = "1613 MARKET ST" ev.loc[ev['address'] == "609 ASHBURY STREET", 'address'] = "1501-1509 HAIGHT ST" ev.loc[ev['address'] == "22 VANDEWATER STREET", 'address'] = "333 BAY ST" ev.loc[ev['address'] == "160 BAY STREET", 'address'] = "2210-2290 STOCKTON ST" ev.loc[ev['address'] == "505 26TH AVENUE", 'address'] = "6201-6209 GEARY BLVD" ev.loc[ev['address'] == "3410 22ND STREET", 'address'] = "994-998 GUERRERO ST" ev.loc[ev['address'] == "1312 UTAH STREET", 'address'] = "2601-2611 24TH ST" ev.loc[ev['address'] == "1290 HAYES STREET", 'address'] = "600-604 DIVISADERO ST" ev.loc[ev['address'] == "130 COSO AVE", 'address'] = "1 LUNDY'S LN" ev.loc[ev['address'] == '3444 16TH STREET', 'address'] = "3440 16TH ST" ev.loc[ev['address'] == '603 NATOMA STREET', 'address'] = "170 7TH ST" ev.loc[ev['address'].str.contains('[0-9]02ND'), 'address'] = ev.loc[ ev['address'].str.contains('[0-9]02ND'), 'address'].str.replace('02ND', ' 2ND') ev.loc[ev['address'].str.contains('\s[0-9A-Z]$'), 'address'] = ev.loc[ ev['address'].str.contains('\s[0-9A-Z]$'), 'address'].str.split(' ').str[:-1].str.join(' ') ev.loc[ev['address'].str.contains('BROADWAY'), 'street_type'] = 'ST' # ev.loc[ev['address'].str.contains('CESAR CHAVEZ'), 'street_type'] = 'BLVD' ev.loc[ev['address'].str.contains('RUSSIA'), 'street_type'] = 'AVE' ev.loc[ev['petition'] == 'M101171', 'address'] = '531 GONZALEZ DRIVE' ev.loc[ev['petition'] == 'M111009', 'address'] = '55 CHUMASERO DRIVE' ev.loc[ev['petition'] == 'M112072', 'address'] = '125 CAMBON DRIVE' ev.loc[ev['petition'] == 'M131872', 'address'] = '1921 ELLIS STREET' ev.loc[ev['petition'] == 'M140347', 'address'] = '326 LONDON STREET' ev.loc[ev['petition'] == 'E980001', 'address'] = '1551A 20TH AVE' ev.loc[ev['petition'] == 'E991754', 'address'] = '1271 FILBERT ST' ev.loc[ev['petition'] == 'M2K0279', 'address'] = '2364 FULTON ST' ev.loc[ev['petition'] == 'S000521', 'address'] = '431 SOMERSET ST' ev.loc[ev['petition'] == 'S000417', 'address'] = '1201 GUERRERO ST' # parkmerced ev.loc[ev['address'].str.contains( 'GONZALEZ|FONT|SERRANO|CHUMASERO|ARBALLO|GARCES|CAMBON|VIDAL|GRIJALVA|TAPIA|BUCARELI|RIVAS|CRESPI|CARDENAS|HIGUERA'), 'address'] = '3711 19TH AVE' ev = ev[ev['address'] != 'NO ADDRESS PROVIDED'] # clean street types ev['street_type'] = ev['address'].str.split(' ').str[-1] st_typ_dict = {'STREET': 'ST', 'AVENUE': 'AVE', 'DRIVE': 'DR', 'BOULEVARD': 'BLVD', 'COURT': 'CT', 'TERRACE': 'TER', 'PLACE': 'PL', 'HIGHWAY': 'HWY', 'LANE': 'LN', 'ROAD': 'RD', 'ALLEY': 'ALY', 'CIRCLE': 'CIR', 'SQUARE': 'SQ', 'PLAZA': 'PLZ', 'HILLS': 'HL', 'HILL': 'HL' } ev = ev.replace({'street_type': st_typ_dict}) ev.loc[~ev['street_type'].isin(valid_street_types), 'street_type'] = None # clean street numbers ev['street_num'] = ev['address'].str.split(' ').str[0] ev['house_1'] = '' ev['house_2'] = ev['street_num'] ev.loc[ev['street_num'].str.contains('-'), 'house_1'] = ev.loc[ ev['street_num'].str.contains('-'), 'street_num'].str.split('-').str[0] ev.loc[ev['street_num'].str.contains('-'), 'house_2'] = ev.loc[ ev['street_num'].str.contains('-'), 'street_num'].str.split('-').str[1] ev['house_1'] = ev['house_1'].str.replace('\D', '') ev['house_2'] = ev['house_2'].str.replace('\D', '') # clean street names ev['street_name'] = None ev.loc[~pd.isnull(ev['street_type']), 'street_name'] = ev.loc[ ~pd.isnull(ev['street_type']), 'address'].str.split(' ').str[1:-1].str.join(' ') ev.loc[
pd.isnull(ev['street_name'])
pandas.isnull
''' Scripts for loading various experimental datasets. Created on Jul 6, 2017 @author: <NAME> ''' import os import pandas as pd import numpy as np from evaluation.experiment import data_root_dir all_root_dir = data_root_dir#os.path.expanduser('~/data/bayesian_sequence_combination') data_root_dir = os.path.join(all_root_dir, 'data') def _load_bio_folder(anno_path_root, folder_name): ''' Loads one data directory out of the complete collection. :return: dataframe containing the data from this folder. ''' from data.pico.corpus import Corpus DOC_PATH = os.path.join(data_root_dir, "bio-PICO/docs/") ANNOTYPE = 'Participants' anno_path = anno_path_root + folder_name anno_fn = anno_path + '/PICO-annos-crowdsourcing.json' gt_fn = anno_path + '/PICO-annos-professional.json' corpus = Corpus(doc_path=DOC_PATH, verbose=False) corpus.load_annotations(anno_fn, docids=None) if os.path.exists(gt_fn): corpus.load_groundtruth(gt_fn) # get a list of the docids docids = [] workerids = np.array([], dtype=str) all_data = None #all_fv = _load_pico_feature_vectors_from_file(corpus) for d, docid in enumerate(corpus.docs): docids.append(docid) annos_d = corpus.get_doc_annos(docid, ANNOTYPE) spacydoc = corpus.get_doc_spacydoc(docid) text_d = spacydoc #all_fv[d] doc_length = len(text_d) doc_data = None for workerid in annos_d: print('Processing data for doc %s and worker %s' % (docid, workerid)) if workerid not in workerids: workerids = np.append(workerids, workerid) # add the worker to the dataframe if not already there if doc_data is None or workerid not in doc_data: doc_data_w = np.ones(doc_length, dtype=int) # O tokens if doc_data is None: doc_data = pd.DataFrame(doc_data_w, columns=[workerid]) else: doc_data_w = doc_data[workerid] for span in annos_d[workerid]: start = span[0] fin = span[1] doc_data_w[start] = 2 doc_data_w[start + 1:fin] = 0 doc_data[workerid] = doc_data_w if os.path.exists(gt_fn): gold_d = corpus.get_doc_groundtruth(docid, ANNOTYPE) if 'gold' not in doc_data: doc_data['gold'] = np.ones(doc_length, dtype=int) for spans in gold_d: start = spans[0] fin = spans[1] doc_data['gold'][start] = 2 doc_data['gold'][start + 1:fin] = 0 else: doc_data['gold'] = np.zeros(doc_length, dtype=int) - 1 # -1 for missing gold values text_d = [spacytoken.text for spacytoken in text_d] doc_data['features'] = text_d doc_start = np.zeros(doc_length, dtype=int) doc_start[0] = 1 doc_gaps = doc_data['features'] == '\n\n' # sentence breaks doc_start[doc_gaps[doc_gaps].index[:-1] + 1] = 1 doc_data['doc_start'] = doc_start # doc_data = doc_data.replace(r'\n', ' ', regex=True) doc_data = doc_data[np.invert(doc_gaps)] doc_data['docid'] = docid if all_data is None: all_data = doc_data else: all_data =
pd.concat([all_data, doc_data], axis=0)
pandas.concat
"""Load a model and evaluate its performance against an unknown test set""" import glob import logging import os import re import sqlite3 from pathlib import Path import configargparse import keras.models import numpy as np import pandas from keras.preprocessing.image import ImageDataGenerator from sklearn.metrics import classification_report, confusion_matrix IMG_DIM = (201, 201) def evaluate( model_file: str, test_dir: str, output_dir: str, sample_lable_lst: str, slices_per_structure: int = 60, rgb: bool = False, ): # Load model try: model = keras.models.load_model(model_file) except Exception: logging.error(f"Failed to load model from {model_file}") raise logging.info(f"Model loaded from {model_file}") # Get test files prepared # Load files try: test_files = glob.glob(f"{test_dir}/*") logging.info(f"Found {len(test_files)} files for testing") assert len(test_files) > 0, f"Could not find files at {test_dir}" assert ( len(test_files) % slices_per_structure == 0 ), f"Number of test files is not an exact multiple of slices per structure" except AssertionError as e: logging.error(e) raise except Exception as e: logging.error(e) raise # Read table into pandas dataframe # Load data CSV file with filenames and labels print(sample_lable_lst) data = pandas.read_csv(sample_lable_lst) # remove image number from file name names = [re.findall("(.*)(?=_[0-9]+)", Path(file).stem)[0] for file in test_files] test_labels = [] for name in names: sample = data.loc[data["file_path"].str.contains(name)] label = sample["map_class_autobuild"].values[0] test_labels.append(label) print(test_labels) # Create training dataframe # testing_dataframe = pandas.DataFrame({"Files": test_files, "Labels": test_labels}) testing_dataframe = pandas.DataFrame( {"Files": test_files, "Labels": [str(label) for label in test_labels]} ) print(testing_dataframe.head()) testing_dataframe.set_index("Files") test_datagen = ImageDataGenerator(rescale=1.0 / 255) test_batch_size = slices_per_structure # Add color mode selection, this is necessary for testing pretrained models which are expecting RGB images if rgb: color_mode = "rgb" else: color_mode = "grayscale" test_generator = test_datagen.flow_from_dataframe( testing_dataframe, x_col="Files", y_col="Labels", target_size=IMG_DIM, class_mode=None, color_mode=color_mode, batch_size=test_batch_size, shuffle=False, ) logging.info("Getting predictions") try: predictions = model.predict( test_generator, steps=int(len(testing_dataframe["Files"]) / test_batch_size) ) except ValueError: logging.exception( "Ensure the RGB option is set correctly for your model - " "Some models expect 3 channel data" ) raise # Per image analysis predictions_1 = [x for x in predictions if x[1] > x[0]] predictions_0 = [x for x in predictions if x[1] < x[0]] logging.info(f"Predicted good value {len(predictions_1)} times") logging.info(f"Predicted bad value {len(predictions_0)} times") predictions_decoded = [int(pred[1] > pred[0]) for pred in predictions] # Create an output directory if it doesn't exist output_dir_path = Path(output_dir) if not output_dir_path.exists(): # Make one try: os.mkdir(output_dir_path) logging.info(f"Created new directory in {output_dir_path}") except Exception as e: logging.error( f"Could not create directory at {output_dir_path}.\n" f"Please check permissions and location." ) logging.error(e) raise # Save raw predictions raw_dataframe = pandas.DataFrame( { "File": testing_dataframe["Files"], "0": predictions[:, 0], "1": predictions[:, 1], "True Score": test_labels, } ) raw_dataframe.set_index("File", inplace=True) raw_dataframe.to_csv(output_dir_path / "raw_predictions.csv") logging.info("Per image analysis:") per_image_class = classification_report( predictions_decoded, testing_dataframe["Labels"], output_dict=True ) per_image_class_frame = pandas.DataFrame(per_image_class).transpose() per_image_conf = confusion_matrix(predictions_decoded, testing_dataframe["Labels"]) per_image_conff_frame =
pandas.DataFrame(per_image_conf)
pandas.DataFrame
#!/usr/bin/env python3 import argparse import datetime import concurrent import concurrent.futures import itertools import logging import os import warnings import rows.forecast.visit import rows.forecast.cluster import rows.forecast.forecast import numpy import pandas import fbprophet import fbprophet.plot import tqdm import matplotlib.pyplot import matplotlib.dates import matplotlib.ticker def parse_args(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='command') prepare_cluster = subparsers.add_parser(name='prepare') prepare_cluster.add_argument('data_set_file') prepare_cluster.add_argument('--output') cluster_parser = subparsers.add_parser(name='cluster') cluster_parser.add_argument('data_set_file') cluster_parser.add_argument('--output') cluster_parser.add_argument('--table', required=True) forecast_parser = subparsers.add_parser(name='forecast') forecast_parser.add_argument('data_set_file') residuals_parser = subparsers.add_parser(name='compute-residuals') residuals_parser.add_argument('data_set_file') investigate_parser = subparsers.add_parser(name='investigate') investigate_parser.add_argument('data_set_file') investigate_parser.add_argument('--client', required=True) investigate_parser.add_argument('--cluster', required=True) plot_residuals_parser = subparsers.add_parser(name='plot-residuals') plot_residuals_parser.add_argument('data_set_file') subparsers.add_parser(name='test') return parser.parse_args() def prepare_dataset_command(args): data_set_file_path = getattr(args, 'data_set_file') output_path = getattr(args, 'output') frame = pandas.read_csv(data_set_file_path, header=None, names=['visit_id', 'client_id', 'tasks', 'area', 'carer', 'planned_start_time', 'planned_end_time', 'check_in', 'check_out', 'check_in_processed'], index_col=False) def parse_datetime(value): return datetime.datetime.strptime(value, '%Y-%m-%d %H:%M:%S.%f') frame['planned_end_time'] = frame['planned_end_time'].apply(parse_datetime) frame['planned_start_time'] = frame['planned_start_time'].apply(parse_datetime) frame['check_in'] = frame['check_in'].apply(parse_datetime) frame['check_out'] = frame['check_out'].apply(parse_datetime) frame['planned_duration'] = frame['planned_end_time'] - frame['planned_start_time'] frame['real_duration'] = frame['check_out'] - frame['check_in'] frame['check_in_processed'] = frame['check_in_processed'].astype('bool') frame['tasks'] = frame['tasks'].apply(rows.forecast.visit.Tasks) frame.to_hdf(output_path, key='a') class PandasTimeDeltaConverter: def __init__(self, unit): self.__unit = unit def __call__(self, x, pos=None): try: timedelta = pandas.Timedelta(value=x, unit=self.__unit) py_timedelta = timedelta.to_pytimedelta() total_seconds = py_timedelta.total_seconds() hours, minutes, seconds = PandasTimeDeltaConverter.split_total_seconds(total_seconds) return '{0}{1:02d}:{2:02d}:{3:02d}'.format('' if total_seconds > 0.0 else '-', hours, minutes, seconds) except: logging.exception('Failure to convert {0} to time delta'.format(x)) return x @staticmethod def split_total_seconds(value): abs_value = abs(value) hours = int(abs_value // matplotlib.dates.SEC_PER_HOUR) minutes = int((abs_value - hours * matplotlib.dates.SEC_PER_HOUR) // matplotlib.dates.SEC_PER_MIN) seconds = int(abs_value - 3600 * hours - 60 * minutes) return hours, minutes, seconds def save_figure(figure, file_name): matplotlib.pyplot.savefig(file_name + '.png', transparent=True) matplotlib.pyplot.close(figure) def visualize_cluster(data_frame, client_id): selected_visits = data_frame[data_frame['client_id'] == client_id].copy() selected_visits['planned_start_date'] \ = selected_visits.apply(lambda row: row['planned_start_time'].date(), axis=1) selected_visits['real_start_time'] \ = selected_visits.apply(lambda row: row['planned_start_time'].time(), axis=1) color_map = matplotlib.pyplot.get_cmap('tab20') clusters = selected_visits['cluster'].unique() fig, ax = matplotlib.pyplot.subplots(figsize=(5, 8)) for cluster in clusters: cluster_frame = selected_visits[selected_visits['cluster'] == cluster] ax.plot_date(cluster_frame['planned_start_date'], cluster_frame['real_start_time'], c=color_map.colors[cluster], fmt='s', markersize=3) ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(PandasTimeDeltaConverter('ns'))) ax.set_yticks(numpy.arange(0, 24 * matplotlib.dates.SEC_PER_HOUR + 1, 2 * matplotlib.dates.SEC_PER_HOUR)) ax.set_ylim(bottom=0, top=24 * matplotlib.dates.SEC_PER_HOUR) matplotlib.pyplot.xticks(rotation=70) ax.set_xlabel('Date') ax.set_ylabel('Check In') matplotlib.pyplot.tight_layout() return fig, ax def cluster_command(args): data_set_file = getattr(args, 'data_set_file') output_file = getattr(args, 'output') table = getattr(args, 'table', None) frame = pandas.read_hdf(data_set_file) if not output_file: file_name = os.path.basename(data_set_file) data_set_file_no_ext, __ = os.path.splitext(file_name) output_file_name = 'clusters_' + data_set_file_no_ext + '.hdf' output_file = os.path.join(os.path.dirname(data_set_file), output_file_name) with warnings.catch_warnings(): warnings.filterwarnings('ignore', '', tqdm.TqdmSynchronisationWarning) with tqdm.tqdm(frame.itertuples(), desc='Loading the data set', leave=False) as reader: visits = rows.forecast.visit.Visit.load_from_tuples(reader) visits_to_use = rows.forecast.visit.filter_incorrect_visits(visits) visits_to_use.sort(key=lambda v: v.client_id) visit_groups = {client_id: list(visit_group) for client_id, visit_group in itertools.groupby(visits_to_use, lambda v: v.client_id)} cluster_frame = frame.copy() cluster_frame['cluster'] = 0 def cluster(visit_group): model = rows.forecast.cluster.AgglomerativeModel(rows.forecast.cluster.NoSameDayPlannedStarDurationDistanceMatrix()) return model.cluster(visit_group) records = [] with warnings.catch_warnings(): warnings.filterwarnings('ignore', '', tqdm.TqdmSynchronisationWarning) with tqdm.tqdm(desc='Computing clusters', total=len(visit_groups), leave=False) as cluster_progress_bar: with concurrent.futures.ThreadPoolExecutor() as executor: futures_list = [executor.submit(cluster, visit_groups[visit_group]) for visit_group in visit_groups] for f in concurrent.futures.as_completed(futures_list): try: customer_clusters = f.result() if customer_clusters: for label, clustered_visits in customer_clusters.items(): for visit in clustered_visits: record = visit.to_list() record.append(label) records.append(record) cluster_progress_bar.update(1) except: logging.exception('Exception in processing results') record_columns = list(rows.forecast.Visit.columns()) record_columns.append('cluster') data_frame =
pandas.DataFrame.from_records(records, columns=record_columns)
pandas.DataFrame.from_records
import pandas as pd import numpy as np import h5py import geopandas as gp import os import datetime import dask import dask.dataframe as dd from tqdm import tqdm def latlon_iter(latdf, londf, valdf, date): out_df = pd.concat([latdf, londf, valdf], axis = 1, keys = ['lat', 'lon', 'sst']).stack().reset_index().drop(columns = ['level_0', 'level_1']) out_df['date'] = date return out_df def latlon_iter_chlorpar(latdf, londf, valdf1, valdf2, date): out_df = pd.concat([latdf, londf, valdf1, valdf2], axis = 1, keys = ['lat', 'lon', 'chlor', 'par']).stack().reset_index().drop(columns = ['level_0', 'level_1']) out_df['date'] = date return out_df # @dask.delayed def get_outdf(h5file): ds = h5py.File(h5file, 'r') date = datetime.datetime.strptime(ds.attrs['time_coverage_start'].decode("utf-8"), "%Y-%m-%dT%H:%M:%S.%fZ").strftime("%Y-%m-%d") if 'L2_LAC_OC' in h5file: #get chlor and par lat_df = pd.DataFrame(ds['navigation_data']['latitude']) lon_df = pd.DataFrame(ds['navigation_data']['longitude']) chlor_df = pd.DataFrame(ds['geophysical_data']['chlor_a']) par_df =
pd.DataFrame(ds['geophysical_data']['par'])
pandas.DataFrame
from nltk.sentiment.vader import SentimentIntensityAnalyzer from nltk import tokenize import nltk import pandas as pd import json from nltk.stem.snowball import SnowballStemmer import itertools from scipy.cluster.hierarchy import ward, dendrogram import matplotlib.pyplot as plt import random from wordcloud import WordCloud import nltk import numpy as np class sentanceanalyser: """docstring for ClassName""" def __init__(self): pass def sentance_sentiment(self,text): nltk.download('vader_lexicon') cl_text=tokenize.sent_tokenize(text) sid = SentimentIntensityAnalyzer() counter = 0 sentiment =pd.DataFrame(columns=('Sentance','Positive', 'Negative', 'Neutral', 'Compound')) sentiment12=[] for sentence1 in range(len(cl_text)): sentence=cl_text[sentence1] article_compound = 0 article_neg = 0 article_pos = 0 article_neu = 0 counter = counter + 1 ss = sid.polarity_scores(sentence) article_compound = article_compound + ss['compound'] article_compound=round(article_compound,2) article_neg = article_neg + ss['neg'] article_neg=round(article_neg,2) article_pos = article_pos + ss['pos'] article_pos=round(article_pos,2) article_neu = article_neu + ss['neu'] article_neu=round(article_neg,2) article_sentiment =
pd.DataFrame([[sentence,article_pos, article_neg, article_neu, article_compound]], columns=('Sentance','Positive', 'Negative', 'Neutral', 'Compound'))
pandas.DataFrame
import streamlit as st import numpy as np import pandas as pd import altair as alt from cohort import CohortTable # Common functions color = '#800000ff' def bar_chart(df_melted, y_axis, title): chart = alt.Chart(df_melted).mark_bar(color=color, size=40).encode( x = alt.X('Year:Q', axis=alt.Axis(tickCount=forecast_period), sort=list(df_melted.index)), y = alt.Y(y_axis), tooltip = [alt.Tooltip(y_axis, format=',.0f')] ).properties(title=title, width=alt.Step(60), height=400).interactive() return chart def line_chart(df_melted, y_axis, title): nearest = alt.selection(type='single', nearest=True, on='mouseover', fields=['Year'], empty='none') selectors = alt.Chart(df_melted).mark_point().encode( x='Year:Q', opacity=alt.value(0), ).add_selection(nearest) line = alt.Chart(df_melted).mark_line(color=color).encode( x = alt.X('Year:Q', axis=alt.Axis(tickCount=forecast_period), sort=list(df_melted.index)), y = alt.Y(y_axis), tooltip = [alt.Tooltip(y_axis, format=',.0%')] ) points = line.mark_point(color=color, size=40).encode( opacity=alt.condition(nearest, alt.value(1), alt.value(0)) ) chart = alt.layer(line, selectors, points).properties(title=title, width=alt.Step(60), height=400).interactive() return chart # Site st.title('Cohort Tables with Productivity Ramp Up') st.sidebar.title('Variables') forecast_period = st.sidebar.slider('Forecast Period', 3, 15, 5) n_years = st.sidebar.slider('Productivity Ramp Up Period', 1, 10, 3) ramp_type = st.sidebar.selectbox('Ramp Up Type', ['Linear', 'Sigmoid']).lower() if ramp_type == 'sigmoid': beta = st.sidebar.slider('Beta for S Curve', .1, 1.0, value=.3, step=.1) shift = st.sidebar.slider('Shift for S Curve', -10, 10, value=3, step=1) x = np.linspace(-10,10,50) source = pd.DataFrame({ 'Time Passed to Full Productivity' : ((x+10)*5)/100, '% of Productivity' : 1 / (1 + np.exp(beta*(-x-shift))) }) s_chart = alt.Chart(source).mark_line().encode( alt.X('Time Passed to Full Productivity', axis=alt.Axis(format='.0%')), alt.Y('% of Productivity', axis=alt.Axis(format='.0%')), tooltip=[alt.Tooltip('Time Passed to Full Productivity', format='.0%'), alt.Tooltip('% of Productivity', format='.0%')] ) st.sidebar.altair_chart(s_chart, use_container_width=True) else: beta=.3 shift=3 hires_per_year_string = st.sidebar.text_input('Number of hires per year, seperated by commas', value='10, 12, 15, 18, 20') revenue_goal = st.sidebar.number_input('Revenue Goal per Individual', min_value=0, format='%i') annual_attrition=st.sidebar.number_input('Annual Attrition Rate', min_value=0.00, max_value=1.00, value=.10, step=.01, format='%f') first_year_full_hire = st.sidebar.checkbox('First Year Full Hire?', value=True) attrition_y0 = st.sidebar.checkbox('Attrition in First Year?', value=False) try: hires_per_year = hires_per_year_string.split(",") hires_per_year = [float(i) for i in hires_per_year] except ValueError: st.error('The hires per year variable has been entered incorrectly. Please enter a series of numbers seperated by commas') st.stop() # Model T = CohortTable(forecast_period=forecast_period, n_years=n_years, ramp_type=ramp_type, beta=beta, shift=shift, hires_per_year=hires_per_year, \ revenue_goal=revenue_goal, annual_attrition=annual_attrition, \ first_year_full_hire=first_year_full_hire, attrition_y0=attrition_y0) # Sitewide variables columns_years = [f'Year {i+1}' for i in range(forecast_period)] columns_Q = [i+1 for i in range(forecast_period)] rows_cohorts = [f'Cohort {i+1}' for i in range(forecast_period)] # Main Page st.write('Click to expand each of the sections below') with st.beta_expander("Variables and Assumptions"): st.write('##### General') st.write('Forecast Period = ', '{:.0f} years'.format(forecast_period)) st.write('Productivity Ramp = ', '{:.0f} years'.format(n_years)) st.write('Revenue Goal per Employee = ', '${:,.0f}'.format(revenue_goal)) st.write('Annual Attrition Rate = ', '{:.0%}'.format(annual_attrition)) if attrition_y0: st.write('This model assumes that there **is** attrition in the first year.') else: st.write('This model **does not** assume attrition in the first year') if first_year_full_hire: st.write('This model assumes that employees in the first year are hired at the **beginning** of the year.') else: st.write('This model assumes that employees in the first year are hired **throughout** the year, not at the beginning.') st.write('##### Hires per Year') st.write(
pd.DataFrame([hires_per_year], columns=columns_years, index=['No. Hires'])
pandas.DataFrame
import argparse import os import seaborn as sns import pandas as pd import glob import matplotlib.pyplot as plt import matplotlib matplotlib.use('Agg') import numpy as np def plot_primary(args): """ Plots the jointplot of model performance (predicted v. true) on held out test or validation sets from the primary Stokes Cell 2020 dataset. """ for method in args.methods: files = glob.glob(os.path.join(args.preds_path,f"{method}/*.csv")) for fname in files: df = pd.read_csv(fname) smiles = df['smiles'] preds = df['mean_inhibition'] targets = df['true_mean_inhibition'] # rmse = np.sqrt(np.mean((df['true_target'] - df['mean_inhibition'])**2)) g = sns.jointplot(x='mean_inhibition', y='true_mean_inhibition', data=df, kind='reg') g.ax_joint.set_xlim(0,1.4) g.ax_joint.set_ylim(0,1.4) g.ax_joint.plot([0, 1.4], [0, 1.4], 'k--') save_name = fname.split('.csv')[0] save_path = save_name + str(args.use_stds) + '_performance' + args.ext plt.savefig(save_path) plt.show() plt.close() def plot_broad(args): """ Plots the jointplot of model performance (predicted v. true); jointplot of predictions v. uncertainty; as well as uncertainty cutoff v. experimentally validated hit rate, on Broad repurposing hub data. """ for method in args.methods: files = glob.glob(os.path.join(args.preds_path,f"{method}/broad/*.csv")) df_percentiles =
pd.DataFrame()
pandas.DataFrame
import os import sys import glob import numpy as np import pandas as pd import shutil import itertools import random import multiprocessing from sklearn import metrics from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import ParameterGrid from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.model_selection import GridSearchCV scaler = StandardScaler() fil = sys.argv[1] num_splits = int(sys.argv[2]) num_repeats = int(sys.argv[3]) features = pd.read_csv(fil) features = features.drop([features.columns[0]], axis=1) labels = features[features.columns[-1]] features = features.drop([features.columns[-1]], axis=1) features = scaler.fit_transform(features) model = KNeighborsClassifier() params = { 'n_neighbors': [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15], 'leaf_size': [2,3,4,5,6,7,8,9,10,20,30,40,50], 'p': [1,2,3,4,5], 'weights':['uniform', 'distance'], 'algorithm':['auto']} cv = RepeatedStratifiedKFold(n_splits=num_splits, n_repeats=num_repeats, random_state=1) grid_search = GridSearchCV(estimator=model, param_grid=params, n_jobs=-1, cv=cv, scoring='accuracy', error_score=0, return_train_score=True) grid_result = grid_search.fit(features, labels) df =
pd.DataFrame(grid_search.cv_results_)
pandas.DataFrame
import pandas as pd import datetime as dt from typing import Dict from typing import List from src.typeDefs.pxiDamRecord import IPxiDamDataRecord def getPxiDamData(targetFilePath: str) -> List[IPxiDamDataRecord]: dataSheetDf =
pd.read_csv(targetFilePath)
pandas.read_csv
__author__ = 'saeedamen' # <NAME> # # Copyright 2016-2020 Cuemacro - https://www.cuemacro.com / @cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # """ Shows how to use finmarketpy to create total return indices for FX forwards with appropriate roll rules """ import pandas as pd # For plotting from chartpy import Chart, Style # For loading market data from findatapy.market import Market, MarketDataGenerator, MarketDataRequest from findatapy.timeseries import Calculations from findatapy.util.loggermanager import LoggerManager logger = LoggerManager().getLogger(__name__) chart = Chart(engine='plotly') market = Market(market_data_generator=MarketDataGenerator()) calculations = Calculations() # Choose run_example = 0 for everything # run_example = 1 - creating USDTRY total return index rolling forwards and compare with BBG indices # run_example = 2 - creating AUDJPY (via AUDUSD and JPYUSD) total return index rolling forwards & compare with BBG indices run_example = 0 from finmarketpy.curve.fxforwardscurve import FXForwardsCurve ###### Create total return indices plot for USDBRL using forwards # We shall be using USDBRL 1M forward contracts and rolling them 5 business days before month end if run_example == 1 or run_example == 0: cross = 'USDBRL' # Download more tenors fx_forwards_tenors = ['1W', '1M', '2M', '3M'] # Get AUDUSD data for spot, forwards + depos md_request = MarketDataRequest(start_date='02 Jan 2007', finish_date='01 Jun 2007', data_source='bloomberg', cut='NYC', category='fx-forwards-market', tickers=cross, fx_forwards_tenor=fx_forwards_tenors, base_depos_currencies=[cross[0:3], cross[3:6]], cache_algo='cache_algo_return') # In case any missing values fill down (particularly can get this for NDFs) df_market = market.fetch_market(md_request=md_request).fillna(method='ffill') fx_forwards_curve = FXForwardsCurve() # Let's trade a 1M forward, and we roll 5 business days (based on both base + terms currency holidays) # before month end df_cuemacro_tot_1M = fx_forwards_curve.construct_total_return_index(cross, df_market, fx_forwards_trading_tenor='1M', roll_days_before=5, roll_event='month-end', roll_months=1, fx_forwards_tenor_for_interpolation=fx_forwards_tenors, output_calculation_fields=True) df_cuemacro_tot_1M.columns = [x.replace('forward-tot', 'forward-tot-1M-cuemacro') for x in df_cuemacro_tot_1M.columns] # Now do a 3M forward, and we roll 5 business days before end of quarter(based on both base + terms currency holidays) # before month end df_cuemacro_tot_3M = fx_forwards_curve.construct_total_return_index(cross, df_market, fx_forwards_trading_tenor='3M', roll_days_before=5, roll_event='month-end', roll_months=3, fx_forwards_tenor_for_interpolation=fx_forwards_tenors, output_calculation_fields=True) df_cuemacro_tot_3M.columns = [x.replace('forward-tot', 'forward-tot-3M-cuemacro') for x in df_cuemacro_tot_3M.columns] # Get spot data md_request.abstract_curve = None md_request.category = 'fx' df_spot = market.fetch_market(md_request=md_request) df_spot.columns = [x + '-spot' for x in df_spot.columns] # Get Bloomberg calculated total return indices (for spot) md_request.category = 'fx-tot' df_bbg_tot = market.fetch_market(md_request) df_bbg_tot.columns = [x + '-bbg' for x in df_bbg_tot.columns] # Get Bloomberg calculated total return indices (for 1M forwards rolled) md_request.category = 'fx-tot-forwards' df_bbg_tot_forwards = market.fetch_market(md_request) df_bbg_tot_forwards.columns = [x + '-bbg' for x in df_bbg_tot_forwards.columns] # Combine into a single data frame and plot, we note that the Cuemacro constructed indices track the Bloomberg # indices relatively well (both from spot and forwards). Also note the large difference with spot indices # CAREFUL to fill down, before reindexing because forwards indices are likely to have different publishing dates df = calculations.pandas_outer_join([pd.DataFrame(df_cuemacro_tot_1M[cross + '-forward-tot-1M-cuemacro.close']), pd.DataFrame(df_cuemacro_tot_3M[cross + '-forward-tot-3M-cuemacro.close']), df_bbg_tot, df_spot, df_bbg_tot_forwards]).fillna(method='ffill') df = calculations.create_mult_index_from_prices(df) chart.plot(df) ###### Create total return indices plot for AUDJPY using the underlying USD legs (ie. AUDUSD & JPYUSD) if run_example == 2 or run_example == 0: cross = 'AUDJPY' # Download more tenors fx_forwards_tenors = ['1W', '1M', '2M', '3M'] # Parameters for how to construct total return indices, and the rolling rule # 1M forward contract, and roll it 5 working days before month end # We'll be constructing our total return index from AUDUSD and JPYUSD fx_forwards_curve = FXForwardsCurve(fx_forwards_trading_tenor='1M', roll_days_before=5, roll_event='month-end', construct_via_currency='USD', fx_forwards_tenor_for_interpolation=fx_forwards_tenors, roll_months=1, output_calculation_fields=True) # Get AUDUSD data for spot, forwards + depos and also construct the total returns forward index md_request = MarketDataRequest(start_date='02 Jan 2007', finish_date='01 Jun 2007', data_source='bloomberg', cut='NYC', category='fx', tickers=cross, fx_forwards_tenor=fx_forwards_tenors, base_depos_currencies=[cross[0:3], cross[3:6]], cache_algo='cache_algo_return', abstract_curve=fx_forwards_curve) # In case any missing values fill down (particularly can get this for NDFs) df_cuemacro_tot_1M = market.fetch_market(md_request=md_request).fillna(method='ffill') fx_forwards_curve = FXForwardsCurve() df_cuemacro_tot_1M.columns = [x.replace('forward-tot', 'forward-tot-1M-cuemacro') for x in df_cuemacro_tot_1M.columns] # Get spot data md_request.abstract_curve = None md_request.category = 'fx' df_spot = market.fetch_market(md_request=md_request) df_spot.columns = [x + '-spot' for x in df_spot.columns] # Get Bloomberg calculated total return indices (for spot) md_request.category = 'fx-tot' df_bbg_tot = market.fetch_market(md_request) df_bbg_tot.columns = [x + '-bbg' for x in df_bbg_tot.columns] # Get Bloomberg calculated total return indices (for 1M forwards rolled) md_request.category = 'fx-tot-forwards' df_bbg_tot_forwards = market.fetch_market(md_request) df_bbg_tot_forwards.columns = [x + '-bbg' for x in df_bbg_tot_forwards.columns] # Combine into a single data frame and plot, we note that the Cuemacro constructed indices track the Bloomberg # indices relatively well (both from spot and forwards). Also note the large difference with spot indices # CAREFUL to fill down, before reindexing because forwards indices are likely to have different publishing dates df = calculations.pandas_outer_join([
pd.DataFrame(df_cuemacro_tot_1M[cross + '-forward-tot-1M-cuemacro.close'])
pandas.DataFrame
import re from copy import deepcopy from contextlib import suppress from collections.abc import Iterable import numpy as np import pandas as pd __all__ = ['aes'] all_aesthetics = { 'alpha', 'angle', 'color', 'colour', 'fill', 'group', 'intercept', 'label', 'lineheight', 'linetype', 'lower', 'middle', 'radius', 'sample', 'shape', 'size', 'slope', 'stroke', 'upper', 'weight', 'x', 'xend', 'xintercept', 'xmax', 'xmin', 'y', 'yend', 'yintercept', 'ymax', 'ymin'} scaled_aesthetics = { 'x', 'y', 'alpha', 'color', 'colour', 'fill', 'linetype', 'shape', 'size', 'stroke' } NO_GROUP = -1 # Calculated aesthetics searchers STAT_RE = re.compile(r'\bstat\(') DOTS_RE = re.compile(r'\.\.([a-zA-Z0-9_]+)\.\.') class aes(dict): """ Create aesthetic mappings Parameters ---------- x : expression | array_like | scalar x aesthetic mapping y : expression | array_like | scalar y aesthetic mapping **kwargs : dict Other aesthetic mappings Notes ----- Only the **x** and **y** aesthetic mappings can be specified as positional arguments. All the rest must be keyword arguments. The value of each mapping must be one of: - **string**:: import pandas as pd import numpy as np arr = [11, 12, 13] df = pd.DataFrame({'alpha': [1, 2, 3], 'beta': [1, 2, 3], 'gam ma': [1, 2, 3]}) # Refer to a column in a dataframe ggplot(df, aes(x='alpha', y='beta')) - **array_like**:: # A variable ggplot(df, aes(x='alpha', y=arr)) # or an inplace list ggplot(df, aes(x='alpha', y=[4, 5, 6])) - **scalar**:: # A scalar value/variable ggplot(df, aes(x='alpha', y=4)) # The above statement is equivalent to ggplot(df, aes(x='alpha', y=[4, 4, 4])) - **String expression**:: ggplot(df, aes(x='alpha', y='2*beta')) ggplot(df, aes(x='alpha', y='np.sin(beta)')) ggplot(df, aes(x='df.index', y='beta')) # If `count` is an aesthetic calculated by a stat ggplot(df, aes(x='alpha', y='stat(count)')) ggplot(df, aes(x='alpha', y='stat(count/np.max(count))')) The strings in the expression can refer to; 1. columns in the dataframe 2. variables in the namespace 3. aesthetic values (columns) calculated by the ``stat`` with the column names having precedence over the variables. For expressions, columns in the dataframe that are mapped to must have names that would be valid python variable names. This is okay:: # 'gam ma' is a column in the dataframe ggplot(df, aes(x='df.index', y='gam ma')) While this is not:: # 'gam ma' is a column in the dataframe, but not # valid python variable name ggplot(df, aes(x='df.index', y='np.sin(gam ma)')) ``aes`` has 2 internal methods you can use to transform variables being mapped. 1. ``factor`` - This function turns the variable into a factor. It is just an alias to ``pd.Caterogical``:: ggplot(mtcars, aes(x='factor(cyl)')) + geom_bar() 2. ``reorder`` - This function changes the order of first variable based on values of the second variable:: df = pd.DataFrame({ 'x': ['b', 'd', 'c', 'a'], 'y': [1, 2, 3, 4] }) ggplot(df, aes('reorder(x, y)', 'y')) + geom_col() .. rubric:: The group aesthetic ``group`` is a special aesthetic that the user can *map* to. It is used to group the plotted items. If not specified, it is automatically computed and in most cases the computed groups are sufficient. However, there may be cases were it is handy to map to it. """ def __init__(self, *args, **kwargs): kwargs = rename_aesthetics(kwargs) kwargs.update(zip(('x', 'y'), args)) self.update(kwargs) def __deepcopy__(self, memo): """ Deep copy without copying the environment """ cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result # Just copy the keys and point to the env for key, item in self.items(): result[key] = deepcopy(self[key], memo) return result def __radd__(self, gg, inplace=False): gg = gg if inplace else deepcopy(gg) self = deepcopy(self) gg.mapping.update(self) gg.labels.update(make_labels(self)) return gg def rename_aesthetics(obj): """ Rename aesthetics in obj Parameters ---------- obj : dict or list Object that contains aesthetics names Returns ------- obj : dict or list Object that contains aesthetics names """ if isinstance(obj, dict): for name in tuple(obj.keys()): new_name = name.replace('colour', 'color') if name != new_name: obj[new_name] = obj.pop(name) else: obj = [name.replace('colour', 'color') for name in obj] return obj def get_calculated_aes(aesthetics): """ Return a list of the aesthetics that are calculated """ calculated_aesthetics = [] for name, value in aesthetics.items(): if is_calculated_aes(value): calculated_aesthetics.append(name) return calculated_aesthetics def is_calculated_aes(ae): """ Return a True if of the aesthetics that are calculated Parameters ---------- ae : object Aesthetic mapping >>> is_calculated_aes('density') False >>> is_calculated_aes(4) False >>> is_calculated_aes('..density..') True >>> is_calculated_aes('stat(density)') True >>> is_calculated_aes('stat(100*density)') True >>> is_calculated_aes('100*stat(density)') True """ if not isinstance(ae, str): return False for pattern in (STAT_RE, DOTS_RE): if pattern.search(ae): return True return False def stat(x): """ Return calculated aesthetic Aesthetics wrapped around the stat function evaluated *after* the statistics have been calculated. This gives the user a chance to use any aesthetic columns created by the statistic. Paremeters ---------- x : object An expression """ return x def strip_stat(value): """ Remove stat function that mark calculated aesthetics Parameters ---------- value : object Aesthetic value. In most cases this will be a string but other types will pass through unmodified. Return ------ out : object Aesthetic value with the dots removed. >>> strip_stat('stat(density + stat(count))') density + count >>> strip_stat('stat(density) + 5') density + 5 >>> strip_stat('5 + stat(func(density))') 5 + func(density) >>> strip_stat('stat(func(density) + var1)') func(density) + var1 >>> strip_stat('stat + var1') stat + var1 >>> strip_stat(4) 4 """ def strip_hanging_closing_parens(s): """ Remove leftover parens """ # Use and integer stack to track parens # and ignore leftover closing parens stack = 0 idx = [] for i, c in enumerate(s): if c == '(': stack += 1 elif c == ')': stack -= 1 if stack < 0: idx.append(i) stack = 0 continue yield c with suppress(TypeError): if STAT_RE.search(value): value = re.sub(r'\bstat\(', '', value) value = ''.join(strip_hanging_closing_parens(value)) return value def strip_dots(value): """ Remove dots(if any) that mark calculated aesthetics Parameters ---------- value : object Aesthetic value. In most cases this will be a string but other types will pass through unmodified. Return ------ out : object Aesthetic value with the dots removed. """ with suppress(TypeError): value = DOTS_RE.sub(r'\1', value) return value def strip_calculated_markers(value): """ Remove markers for calculated aesthetics Parameters ---------- value : object Aesthetic value. In most cases this will be a string but other types will pass through unmodified. Return ------ out : object Aesthetic value with the dots removed. """ return strip_stat(strip_dots(value)) def aes_to_scale(var): """ Look up the scale that should be used for a given aesthetic """ if var in {'x', 'xmin', 'xmax', 'xend', 'xintercept'}: var = 'x' elif var in {'y', 'ymin', 'ymax', 'yend', 'yintercept'}: var = 'y' return var def is_position_aes(vars_): """ Figure out if an aesthetic is a position aesthetic or not """ try: return all([aes_to_scale(v) in {'x', 'y'} for v in vars_]) except TypeError: return aes_to_scale(vars_) in {'x', 'y'} def make_labels(mapping): """ Convert aesthetic mapping into text labels """ def _make_label(ae, label): if isinstance(label, pd.Series): return label.name # if label is a scalar elif not isinstance(label, Iterable) or isinstance(label, str): return strip_calculated_markers(str(label)) else: return None return { ae: _make_label(ae, label) for ae, label in mapping.items() } def is_valid_aesthetic(value, ae): """ Return True if `value` looks valid. Parameters ---------- value : object Value to check ae : str Aesthetic name Returns ------- out : bool Whether the value is of a valid looking form. Notes ----- There are no guarantees that he value is spot on valid. """ if ae == 'linetype': named = {'solid', 'dashed', 'dashdot', 'dotted', '_', '--', '-.', ':', 'None', ' ', ''} if value in named: return True # tuple of the form (offset, (on, off, on, off, ...)) # e.g (0, (1, 2)) conditions = [isinstance(value, tuple), isinstance(value[0], int), isinstance(value[1], tuple), len(value[1]) % 2 == 0, all(isinstance(x, int) for x in value[1])] if all(conditions): return True return False elif ae == 'shape': if isinstance(value, str): return True # tuple of the form (numsides, style, angle) # where style is in the range [0, 3] # e.g (4, 1, 45) conditions = [isinstance(value, tuple), all(isinstance(x, int) for x in value), 0 <= value[1] < 3] if all(conditions): return True return False elif ae in {'color', 'fill'}: if isinstance(value, str): return True with suppress(TypeError): if (isinstance(value, (tuple, list)) and all(0 <= x <= 1 for x in value)): return True return False # For any other aesthetics we return False to allow # for special cases to be discovered and then coded # for appropriately. return False def has_groups(data): """ Check if data is grouped Parameters ---------- data : dataframe Data Returns ------- out : bool If True, the data has groups. """ # If any row in the group column is equal to NO_GROUP, then # the data all of them are and the data has no groups return data.loc[0, 'group'] != NO_GROUP def reorder(x, y, fun=np.median, ascending=True): """ Reorder categorical by sorting along another variable It is the order of the categories that changes. Values in x are grouped by categories and summarised to determine the new order. Credit: Copied from plydata Parameters ---------- x : list-like Values that will make up the categorical. y : list-like Values by which ``c`` will be ordered. fun : callable Summarising function to ``x`` for each category in ``c``. Default is the *median*. ascending : bool If ``True``, the ``c`` is ordered in ascending order of ``x``. Examples -------- >>> c = list('abbccc') >>> x = [11, 2, 2, 3, 33, 3] >>> cat_reorder(c, x) [a, b, b, c, c, c] Categories (3, object): [b, c, a] >>> cat_reorder(c, x, fun=max) [a, b, b, c, c, c] Categories (3, object): [b, a, c] >>> cat_reorder(c, x, fun=max, ascending=False) [a, b, b, c, c, c] Categories (3, object): [c, a, b] >>> c_ordered = pd.Categorical(c, ordered=True) >>> cat_reorder(c_ordered, x) [a, b, b, c, c, c] Categories (3, object): [b < c < a] >>> cat_reorder(c + ['d'], x) Traceback (most recent call last): ... ValueError: Lengths are not equal. len(c) is 7 and len(x) is 6. """ if len(x) != len(y): raise ValueError( "Lengths are not equal. len(x) is {} and len(x) is {}.".format( len(x), len(y) ) ) summary = (
pd.Series(y)
pandas.Series
import datetime import matplotlib import numpy as np import pandas as pd import pytz from finrl.config import config from finrl.marketdata.utils import fetch_and_store, load from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import calculate_split, data_split from finrl.env.env_stocktrading import StockTradingEnv from finrl.model.models import DRLAgent from finrl.trade.backtest import backtest_stats, backtest_plot matplotlib.use("Agg") def train_one(fetch=False): """ train an agent """ if fetch: df = fetch_and_store() else: df = load() counts = df[['date', 'tic']].groupby(['date']).count().tic assert counts.min() == counts.max() print("==============Start Feature Engineering===========") fe = FeatureEngineer( use_technical_indicator=True, tech_indicator_list=config.TECHNICAL_INDICATORS_LIST, use_turbulence=True, # use_turbulence=False, user_defined_feature=False, ) processed = fe.preprocess_data(df) # Training & Trading data split start_date, trade_date, end_date = calculate_split(df, start=config.START_DATE) print(start_date, trade_date, end_date) train = data_split(processed, start_date, trade_date) trade = data_split(processed, trade_date, end_date) print(f'\n******\nRunning from {start_date} to {end_date} for:\n{", ".join(config.CRYPTO_TICKER)}\n******\n') # calculate state action space stock_dimension = len(train.tic.unique()) state_space = (1 + (2 * stock_dimension) + (len(config.TECHNICAL_INDICATORS_LIST) * stock_dimension)) env_kwargs = { "hmax": 100, "initial_amount": 100000, "buy_cost_pct": 0.0026, "sell_cost_pct": 0.0026, "state_space": state_space, "stock_dim": stock_dimension, "tech_indicator_list": config.TECHNICAL_INDICATORS_LIST, "action_space": stock_dimension, "reward_scaling": 1e-4 } e_train_gym = StockTradingEnv(df=train, **env_kwargs) e_trade_gym = StockTradingEnv(df=trade, turbulence_threshold=250, make_plots=True, **env_kwargs) env_train, _ = e_train_gym.get_sb_env() env_trade, obs_trade = e_trade_gym.get_sb_env() agent = DRLAgent(env=env_train) print("==============Model Training===========") now = datetime.datetime.now().strftime(config.DATETIME_FMT) model_sac = agent.get_model("sac") trained_sac = agent.train_model( model=model_sac, tb_log_name="sac", # total_timesteps=100 total_timesteps=80000 ) print("==============Start Trading===========") df_account_value, df_actions = DRLAgent.DRL_prediction( # model=trained_sac, test_data=trade, test_env=env_trade, test_obs=obs_trade trained_sac, e_trade_gym) df_account_value.to_csv(f"./{config.RESULTS_DIR}/df_account_value_{now}.csv") df_actions.to_csv(f"./{config.RESULTS_DIR}/df_actions_{now}.csv") df_txns = pd.DataFrame(e_trade_gym.transactions, columns=['date', 'amount', 'price', 'symbol']) df_txns = df_txns.set_index(pd.DatetimeIndex(df_txns['date'], tz=pytz.utc)) df_txns.to_csv(f'./{config.RESULTS_DIR}/df_txns_{now}.csv') df_positions =
pd.DataFrame(e_trade_gym.positions, columns=['date', 'cash'] + config.CRYPTO_TICKER)
pandas.DataFrame
import os import pandas as pd import csv from sklearn.model_selection import train_test_split import numpy as np import random import tensorflow as tf import torch #directory of tasks dataset os.chdir("original_data") #destination path to create tsv files, dipends on data cutting path_0 = "mttransformer/data/0" path_100_no_gan = "mttransformer/data/100/no_gan" path_200_no_gan = "mttransformer/data/200/no_gan" path_500_no_gan = "mttransformer/data/500/no_gan" path_100_gan = "mttransformer/data/100/gan" path_200_gan = "mttransformer/data/200/gan" path_500_gan = "mttransformer/data/500/gan" #if you use a model with gan the flag "apply_gan" is True, else False apply_gan=False #data cutting number_labeled_examples=0 #0-100-200-500 #if you want activate balancing, that is used only in the model Multi-task, MT-DNN and MT-GANBERT balancing=False #path train and test dataset of the task tsv_haspeede_train = 'haspeede_TW-train.tsv' tsv_haspeede_test = 'haspeede_TW-reference.tsv' tsv_AMI2018_train = 'AMI2018_it_training.tsv' tsv_AMI2018_test = 'AMI2018_it_testing.tsv' tsv_AMI2018_train = 'AMI2018_it_training.tsv' tsv_AMI2018_test = 'AMI2018_it_testing.tsv' tsv_DANKMEMES2020_train = 'dankmemes_task2_train.csv' tsv_DANKMEMES2020_test = 'hate_test.csv' tsv_SENTIPOLC2016_train = 'training_set_sentipolc16.csv' tsv_SENTIPOLC2016_test = 'test_set_sentipolc16_gold2000.csv' tsv_SENTIPOLC2016_train = 'training_set_sentipolc16.csv' tsv_SENTIPOLC2016_test = 'test_set_sentipolc16_gold2000.csv' #Upload the dataset of all task as dataframes #haspeede_TW df_train = pd.read_csv(tsv_haspeede_train, delimiter='\t', names=('id','sentence','label')) df_train = df_train[['id']+['label']+['sentence']] df_test = pd.read_csv(tsv_haspeede_test, delimiter='\t', names=('id','sentence','label')) df_test = df_test[['id']+['label']+['sentence']] #AMI2018A df_train2 = pd.read_csv(tsv_AMI2018_train, delimiter='\t') df_train2 = df_train2[['id']+['misogynous']+['text']] df_test2 = pd.read_csv(tsv_AMI2018_test, delimiter='\t') df_test2 = df_test2[['id']+['misogynous']+['text']] #AMI2018B df_train3 = pd.read_csv(tsv_AMI2018_train, delimiter='\t') df = pd.DataFrame(columns=['id', 'misogyny_category', 'text']) for ind in df_train3.index: if df_train3.misogynous[ind]==1: if df_train3.misogyny_category[ind] == 'stereotype': df = df.append({'id' : df_train3['id'][ind], 'misogyny_category' : 0, 'text' : df_train3['text'][ind] }, ignore_index=True) #elif df_train3.misogyny_category[ind] == 'dominance': #df = df.append({'id' : df_train3['id'][ind], 'misogyny_category' : 1, 'text' : df_train3['text'][ind] }, ignore_index=True) #elif df_train3.misogyny_category[ind] == 'derailing': #df = df.append({'id' : df_train3['id'][ind], 'misogyny_category' : 2, 'text' : df_train3['text'][ind] }, ignore_index=True) elif df_train3.misogyny_category[ind] == 'sexual_harassment': df = df.append({'id' : df_train3['id'][ind], 'misogyny_category' : 1, 'text' : df_train3['text'][ind] }, ignore_index=True) elif df_train3.misogyny_category[ind] == 'discredit': df = df.append({'id' : df_train3['id'][ind], 'misogyny_category' : 2, 'text' : df_train3['text'][ind] }, ignore_index=True) df_train3 = df df_test3 = pd.read_csv(tsv_AMI2018_test, delimiter='\t') df = pd.DataFrame(columns=['id', 'misogyny_category', 'text']) for ind in df_test3.index: if df_test3.misogynous[ind]==1: if df_test3.misogyny_category[ind] == 'stereotype': df = df.append({'id' : df_test3['id'][ind], 'misogyny_category' : 0, 'text' : df_test3['text'][ind] }, ignore_index=True) #elif df_test3.misogyny_category[ind] == 'dominance': #df = df.append({'id' : df_test3['id'][ind], 'misogyny_category' : 1, 'text' : df_test3['text'][ind] }, ignore_index=True) #elif df_test3.misogyny_category[ind] == 'derailing': #df = df.append({'id' : df_test3['id'][ind], 'misogyny_category' : 2, 'text' : df_test3['text'][ind] }, ignore_index=True) elif df_test3.misogyny_category[ind] == 'sexual_harassment': df = df.append({'id' : df_test3['id'][ind], 'misogyny_category' : 1, 'text' : df_test3['text'][ind] }, ignore_index=True) elif df_test3.misogyny_category[ind] == 'discredit': df = df.append({'id' : df_test3['id'][ind], 'misogyny_category' : 2, 'text' : df_test3['text'][ind] }, ignore_index=True) df_test3 = df #DANKMEMES2020 df_train4 = pd.read_csv(tsv_DANKMEMES2020_train, delimiter=',') df_train4 = df_train4[['File']+['Hate Speech']+['Text']] df_test4 = pd.read_csv(tsv_DANKMEMES2020_test, delimiter=',') df_test4 = df_test4[['File']+['Hate Speech']+['Text']] #SENTIPOLC20161 df_train5 = pd.read_csv(tsv_SENTIPOLC2016_train, delimiter=',') df_train5 = df_train5[['idtwitter']+['subj']+['text']] df_test5 = pd.read_csv(tsv_SENTIPOLC2016_test, delimiter=',') df_test5 = df_test5[['idtwitter']+['subj']+['text']] for ind in df_train5.index: if "\t" in df_train5.text[ind]: df_train5 = df_train5.replace(to_replace='\t', value='', regex=True) #SENTIPOLC20162 df_train6 = pd.read_csv(tsv_SENTIPOLC2016_train, delimiter=',') df = pd.DataFrame(columns=['idtwitter', 'polarity', 'text']) for ind in df_train6.index: if df_train6['subj'][ind] == 1: if df_train6['opos'][ind] == 1 and df_train6['oneg'][ind] == 0: df = df.append({'idtwitter' : df_train6['idtwitter'][ind], 'polarity' : 0, 'text' : df_train6['text'][ind] }, ignore_index=True) elif df_train6['opos'][ind] == 0 and df_train6['oneg'][ind] == 1: df = df.append({'idtwitter' : df_train6['idtwitter'][ind], 'polarity' : 1, 'text' : df_train6['text'][ind] }, ignore_index=True) elif df_train6['opos'][ind] == 0 and df_train6['oneg'][ind] == 0: df = df.append({'idtwitter' : df_train6['idtwitter'][ind], 'polarity' : 2, 'text' : df_train6['text'][ind] }, ignore_index=True) else: if df_train6['opos'][ind] == 0 and df_train6['oneg'][ind] == 0: df = df.append({'idtwitter' : df_train6['idtwitter'][ind], 'polarity' : 2, 'text' : df_train6['text'][ind] }, ignore_index=True) df_train6 = df for ind in df_train6.index: if "\t" in df_train6.text[ind]: df_train6 = df_train6.replace(to_replace='\t', value='', regex=True) df_test6 = pd.read_csv(tsv_SENTIPOLC2016_test, delimiter=',') df = pd.DataFrame(columns=['idtwitter', 'polarity', 'text']) for ind in df_test6.index: if df_test6['subj'][ind] == 1: if df_test6['opos'][ind] == 1 and df_test6['oneg'][ind] == 0: df = df.append({'idtwitter' : df_test6['idtwitter'][ind], 'polarity' : 0, 'text' : df_test6['text'][ind] }, ignore_index=True) elif df_test6['opos'][ind] == 0 and df_test6['oneg'][ind] == 1: df = df.append({'idtwitter' : df_test6['idtwitter'][ind], 'polarity' : 1, 'text' : df_test6['text'][ind] }, ignore_index=True) elif df_test6['opos'][ind] == 0 and df_test6['oneg'][ind] == 0: df = df.append({'idtwitter' : df_test6['idtwitter'][ind], 'polarity' : 2, 'text' : df_test6['text'][ind] }, ignore_index=True) else: if df_test6['opos'][ind] == 0 and df_test6['oneg'][ind] == 0: df = df.append({'idtwitter' : df_test6['idtwitter'][ind], 'polarity' : 2, 'text' : df_test6['text'][ind] }, ignore_index=True) df_test6 = df #split train dev, in all tasks train_dataset, dev_dataset = train_test_split(df_train, test_size=0.2, shuffle = True) train_dataset2, dev_dataset2 = train_test_split(df_train2, test_size=0.2, shuffle = True) train_dataset3, dev_dataset3 = train_test_split(df_train3, test_size=0.2, shuffle = True) train_dataset4, dev_dataset4 = train_test_split(df_train4, test_size=0.2, shuffle = True) train_dataset5, dev_dataset5 = train_test_split(df_train5, test_size=0.2, shuffle = True) train_dataset6, dev_dataset6 = train_test_split(df_train6, test_size=0.2, shuffle = True) #reduction of datasets in case of data cutting 100, 200, 500 if number_labeled_examples!=0: if number_labeled_examples==100: labeled = train_dataset.sample(n=100) unlabeled = train_dataset labeled2 = train_dataset2.sample(n=100) unlabeled2 = train_dataset2 labeled3 = train_dataset3.sample(n=100) unlabeled3 = train_dataset3 labeled4 = train_dataset4.sample(n=100) unlabeled4 = train_dataset4 labeled5 = train_dataset5.sample(n=100) unlabeled5 = train_dataset5 labeled6 = train_dataset6.sample(n=100) unlabeled6 = train_dataset6 cond = unlabeled['id'].isin(labeled['id']) cond2 = unlabeled2['id'].isin(labeled2['id']) cond3 = unlabeled3['id'].isin(labeled3['id']) cond4 = unlabeled4['File'].isin(labeled4['File']) cond5 = unlabeled5['idtwitter'].isin(labeled5['idtwitter']) cond6 = unlabeled6['idtwitter'].isin(labeled6['idtwitter']) unlabeled.drop(unlabeled[cond].index, inplace = True) unlabeled2.drop(unlabeled2[cond2].index, inplace = True) unlabeled3.drop(unlabeled3[cond3].index, inplace = True) unlabeled4.drop(unlabeled4[cond4].index, inplace = True) unlabeled5.drop(unlabeled5[cond5].index, inplace = True) unlabeled6.drop(unlabeled6[cond6].index, inplace = True) elif number_labeled_examples==200: labeled = train_dataset.sample(n=200) unlabeled = train_dataset labeled2 = train_dataset2.sample(n=200) unlabeled2 = train_dataset2 labeled3 = train_dataset3.sample(n=200) unlabeled3 = train_dataset3 labeled4 = train_dataset4.sample(n=200) unlabeled4 = train_dataset4 labeled5 = train_dataset5.sample(n=200) unlabeled5 = train_dataset5 labeled6 = train_dataset6.sample(n=200) unlabeled6 = train_dataset6 cond = unlabeled['id'].isin(labeled['id']) cond2 = unlabeled2['id'].isin(labeled2['id']) cond3 = unlabeled3['id'].isin(labeled3['id']) cond4 = unlabeled4['File'].isin(labeled4['File']) cond5 = unlabeled5['idtwitter'].isin(labeled5['idtwitter']) cond6 = unlabeled6['idtwitter'].isin(labeled6['idtwitter']) unlabeled.drop(unlabeled[cond].index, inplace = True) unlabeled2.drop(unlabeled2[cond2].index, inplace = True) unlabeled3.drop(unlabeled3[cond3].index, inplace = True) unlabeled4.drop(unlabeled4[cond4].index, inplace = True) unlabeled5.drop(unlabeled5[cond5].index, inplace = True) unlabeled6.drop(unlabeled6[cond6].index, inplace = True) elif number_labeled_examples==500: labeled = train_dataset.sample(n=500) unlabeled = train_dataset labeled2 = train_dataset2.sample(n=500) unlabeled2 = train_dataset2 labeled3 = train_dataset3.sample(n=500) unlabeled3 = train_dataset3 labeled4 = train_dataset4.sample(n=500) unlabeled4 = train_dataset4 labeled5 = train_dataset5.sample(n=500) unlabeled5 = train_dataset5 labeled6 = train_dataset6.sample(n=500) unlabeled6 = train_dataset6 cond = unlabeled['id'].isin(labeled['id']) cond2 = unlabeled2['id'].isin(labeled2['id']) cond3 = unlabeled3['id'].isin(labeled3['id']) cond4 = unlabeled4['File'].isin(labeled4['File']) cond5 = unlabeled5['idtwitter'].isin(labeled5['idtwitter']) cond6 = unlabeled6['idtwitter'].isin(labeled6['idtwitter']) unlabeled.drop(unlabeled[cond].index, inplace = True) unlabeled2.drop(unlabeled2[cond2].index, inplace = True) unlabeled3.drop(unlabeled3[cond3].index, inplace = True) unlabeled4.drop(unlabeled4[cond4].index, inplace = True) unlabeled5.drop(unlabeled5[cond5].index, inplace = True) unlabeled6.drop(unlabeled6[cond6].index, inplace = True) #model with or without gan if apply_gan == True: print("MT-GANBERT") #dataset unlabeled with label -1 unlabeled['label'] = unlabeled['label'].replace(0,-1) unlabeled['label'] = unlabeled['label'].replace(1,-1) unlabeled2['misogynous'] = unlabeled2['misogynous'].replace(0,-1) unlabeled2['misogynous'] = unlabeled2['misogynous'].replace(1,-1) unlabeled3['misogyny_category'] = unlabeled3['misogyny_category'].replace(0,-1) unlabeled3['misogyny_category'] = unlabeled3['misogyny_category'].replace(1,-1) unlabeled3['misogyny_category'] = unlabeled3['misogyny_category'].replace(2,-1) unlabeled3['misogyny_category'] = unlabeled3['misogyny_category'].replace(3,-1) unlabeled3['misogyny_category'] = unlabeled3['misogyny_category'].replace(4,-1) unlabeled4['Hate Speech'] = unlabeled4['Hate Speech'].replace(0,-1) unlabeled4['Hate Speech'] = unlabeled4['Hate Speech'].replace(1,-1) unlabeled5['subj'] = unlabeled5['subj'].replace(0,-1) unlabeled5['subj'] = unlabeled5['subj'].replace(1,-1) unlabeled6['polarity'] = unlabeled6['polarity'].replace(0,-1) unlabeled6['polarity'] = unlabeled6['polarity'].replace(1,-1) unlabeled6['polarity'] = unlabeled6['polarity'].replace(2,-1) train = pd.concat([labeled, unlabeled]) train2 = pd.concat([labeled2, unlabeled2]) train3 = pd.concat([labeled3, unlabeled3]) train4 = pd.concat([labeled4, unlabeled4]) train5 = pd.concat([labeled5, unlabeled5]) train6 = pd.concat([labeled6, unlabeled6]) dev = dev_dataset dev2 = dev_dataset2 dev3 = dev_dataset3 dev4 = dev_dataset4 dev5 = dev_dataset5 dev6 = dev_dataset6 print("Size of Train dataset is {}, with {} labeled and {} not labeled ".format(len(train),len(labeled), len(unlabeled))) print("Size of Train dataset is {}, with {} labeled and {} not labeled ".format(len(train2),len(labeled2), len(unlabeled2))) print("Size of Train dataset is {}, with {} labeled and {} not labeled ".format(len(train3),len(labeled3), len(unlabeled3))) print("Size of Train dataset is {}, with {} labeled and {} not labeled ".format(len(train4),len(labeled4), len(unlabeled4))) print("Size of Train dataset is {}, with {} labeled and {} not labeled ".format(len(train5),len(labeled5), len(unlabeled5))) print("Size of Train dataset is {}, with {} labeled and {} not labeled ".format(len(train6),len(labeled6), len(unlabeled6))) print("Size of Dev dataset is {} ".format(len(dev))) print("Size of Dev dataset is {} ".format(len(dev2))) print("Size of Dev dataset is {} ".format(len(dev3))) print("Size of Dev dataset is {} ".format(len(dev4))) print("Size of Dev dataset is {} ".format(len(dev5))) print("Size of Dev dataset is {} ".format(len(dev6))) else: print("MT-DNN, with reduction dataset") train = labeled train2 = labeled2 train3 = labeled3 train4 = labeled4 train5 = labeled5 train6 = labeled6 dev = dev_dataset dev2 = dev_dataset2 dev3 = dev_dataset3 dev4 = dev_dataset4 dev5 = dev_dataset5 dev6 = dev_dataset6 print("Size of Train dataset is {} ".format(len(labeled))) print("Size of Train dataset is {} ".format(len(labeled2))) print("Size of Train dataset is {} ".format(len(labeled3))) print("Size of Train dataset is {} ".format(len(labeled4))) print("Size of Train dataset is {} ".format(len(labeled5))) print("Size of Train dataset is {} ".format(len(labeled6))) print("Size of Dev dataset is {} ".format(len(dev))) print("Size of Dev dataset is {} ".format(len(dev2))) print("Size of Dev dataset is {} ".format(len(dev3))) print("Size of Dev dataset is {} ".format(len(dev4))) print("Size of Dev dataset is {} ".format(len(dev5))) print("Size of Dev dataset is {} ".format(len(dev6))) else: print("MT-DNN") train = train_dataset train2 = train_dataset2 train3 = train_dataset3 train4 = train_dataset4 train5 = train_dataset5 train6 = train_dataset6 dev = dev_dataset dev2 = dev_dataset2 dev3=dev_dataset3 dev4=dev_dataset4 dev5=dev_dataset5 dev6=dev_dataset6 print("Size of Train dataset is {} ".format(len(train))) print("Size of Train dataset is {} ".format(len(train2))) print("Size of Train dataset is {} ".format(len(train3))) print("Size of Train dataset is {} ".format(len(train4))) print("Size of Train dataset is {} ".format(len(train5))) print("Size of Train dataset is {} ".format(len(train6))) print("Size of Dev dataset is {} ".format(len(dev))) print("Size of Dev dataset is {} ".format(len(dev2))) print("Size of Dev dataset is {} ".format(len(dev3))) print("Size of Dev dataset is {} ".format(len(dev4))) print("Size of Dev dataset is {} ".format(len(dev5))) print("Size of Dev dataset is {} ".format(len(dev6))) #Balancing for: #- MT-DNN, trained on the total dataset of each task #- MT-GAN, trained on the chosen data cutting of each task if balancing==True: if apply_gan== True: print("MT-GAN") max_train_un = max(len(unlabeled), len(unlabeled2), len(unlabeled3), len(unlabeled4), len(unlabeled5), len(unlabeled6)) print(max_train_un) else: print("MT-DNN") unlabeled=train unlabeled2=train2 unlabeled3=train3 unlabeled4=train4 unlabeled5=train5 unlabeled6=train6 max_train_un = max(len(unlabeled), len(unlabeled2), len(unlabeled3), len(unlabeled4), len(unlabeled5), len(unlabeled6)) print(max_train_un) #double dataset df = pd.DataFrame(columns=['id', 'label', 'sentence']) count=0 if len(unlabeled)<max_train_un: for i in range(max_train_un): if i < len(unlabeled): df = df.append({'id' : unlabeled.iloc[i, 0], 'label' : unlabeled.iloc[i, 1], 'sentence' : unlabeled.iloc[i, 2] }, ignore_index=True) else: if count < len(unlabeled): df = df.append({'id' : unlabeled.iloc[count, 0], 'label' : unlabeled.iloc[count, 1], 'sentence' : unlabeled.iloc[count, 2] }, ignore_index=True) count = count+1 else: count = 0 df = df.append({'id' : unlabeled.iloc[count, 0], 'label' : unlabeled.iloc[count, 1], 'sentence' : unlabeled.iloc[count, 2] }, ignore_index=True) count = count+1 unlabeled = df if apply_gan== True: train = pd.concat([labeled, unlabeled]) else: train=unlabeled df =
pd.DataFrame(columns=['id', 'misogynous', 'text'])
pandas.DataFrame
# -*- coding: utf-8 -*- # Measurements, COrrelation and sanitY of data import argparse import os import sys import csv from typing import Callable, Any import numpy as np import pandas as pd import matplotlib.pyplot as plt import keras import tensorflow from sklearn.model_selection import train_test_split import ERIK import XAVIER import RAVEN def cleanlogfile(filename, filename_out=None): with open(filename, 'r') as f: lines = f.readlines() lines = [line.strip() for line in lines if "] - ETA:" not in line] for line in lines: print(line) lines2 = [i for i in lines if "=] - " in i] lines2 = [i.split("] - ")[1] for i in lines2] lines2 = [int(i.split("s ", 1)[0]) for i in lines2] print("times per epoch:") print(lines2) print("sum:", sum(lines2)) print("min:", sum(lines2) / 60) print("hours:", sum(lines2) / 3600) lines.append(f"s_total: {sum(lines2)}") lines.append(f"m_total: {sum(lines2) / 60}") lines.append(f"h_total: {sum(lines2) / 3600}") lines = [line + "\n" for line in lines] with open(filename_out, "w+") as f: f.writelines(lines) def verify_model(model_paths, data_path, name_models=None, loss=None, method_standardize_label_sfh=0, method_standardize_label_z=0, method_standardize_spectra=0, method_standardize_magnitudes=0, which_data_is_going_to_be_used=2, first_id_plot=0, n_plot=3, train_size=0.8, test_size=0.2, traintestrandomstate=42, traintestshuffle=True): # Load Data print("[INFO] Loading data...") label_path = data_path.replace("Input_", "Label_") metadata_path = data_path.replace("Input_", "MetaD_").replace(".fits", ".rda") input_spectra, input_magnitudes, label_sfh, label_z, spectra_lambda, agevec, _ = \ ERIK.loadfiles(input_path=data_path, labels_path=label_path, method_standardize_label_sfh=method_standardize_label_sfh, method_standardize_label_z=method_standardize_label_z, method_standardize_spectra=method_standardize_spectra, method_standardize_magnitudes=method_standardize_magnitudes) _, _, label_sfh_real, label_z_real, _, _, _ = \ ERIK.loadfiles(input_path=data_path, labels_path=label_path, method_standardize_label_sfh=0, method_standardize_label_z=0, method_standardize_spectra=0, method_standardize_magnitudes=0) # Verified: If indices are added, they will STILL respect the output as if there were no indices split_train_test = train_test_split(input_spectra, input_magnitudes, label_sfh, label_z, label_sfh_real, label_z_real, range(input_spectra.shape[0]), # Indices test_size=test_size, train_size=train_size, random_state=traintestrandomstate, shuffle=traintestshuffle) (trainSpect, testSpect, trainMag, testMag, trainLabSfh, testLabSfh, trainLabZ, testLabZ, trainLabSfh_real, testLabSfh_real, trainLabZ_real, testLabZ_real, trainIndices, testIndices) = split_train_test if name_models is None: name_models = model_paths saved_models = [] for model_p in model_paths: saved_models.append(keras.models.load_model(model_p, custom_objects={"smape_loss": XAVIER.Cerebro.smape_loss})) # saved_models[0].summary() ################# # Decide which data is going to be used if which_data_is_going_to_be_used == 0: # All the data in_data = np.concatenate([input_spectra, input_magnitudes], axis=1) idx = list(range(input_spectra.shape[0])) elif which_data_is_going_to_be_used == 1: # Only Training data in_data = np.concatenate([trainSpect, trainMag], axis=1) label_sfh = trainLabSfh label_z = trainLabZ label_sfh_real = trainLabSfh_real label_z_real = trainLabZ_real idx = trainIndices elif which_data_is_going_to_be_used == 2: # Only Test data in_data = np.concatenate([testSpect, testMag], axis=1) label_sfh = testLabSfh label_z = testLabZ label_sfh_real = testLabSfh_real label_z_real = testLabZ_real idx = testIndices else: raise ValueError(f"which_data_is_going_to_be_used should be [0, 1, 2] and is {which_data_is_going_to_be_used}") if loss is None: loss = tensorflow.keras.losses.MeanSquaredError() outputs = [] for model in saved_models: outputs.append(model.predict(in_data[first_id_plot:(first_id_plot + n_plot)])) legend_name = ["Label"] + name_models for i in range(first_id_plot, first_id_plot + n_plot): fig, ax = plt.subplots(2, 2, figsize=(25, 15)) plt.suptitle(f"i:{i + 1} - ID:{idx[i]}") ax[0, 0].set_title("SFH") ax[0, 0].plot(agevec, label_sfh[i, :], 'k') for q, k in enumerate(outputs): ax[0, 0].plot(agevec, k[0][(i - first_id_plot), :]) ax[0, 0].set_xscale('log') ax[0, 0].legend(legend_name) ax[1, 0].set_title("SFH - residuals") ax[1, 0].plot(agevec, np.zeros(agevec.shape), 'k') current_legend = ["Label"] for q, k in enumerate(outputs): ax[1, 0].scatter(agevec, np.subtract(k[0][(i - first_id_plot), :], label_sfh[i, :])) current_legend.append(name_models[q] + "_" + f"{loss(label_sfh[i, :], k[0][(i - first_id_plot), :]).numpy():3f}") ax[1, 0].set_xscale('log') ax[1, 0].legend(current_legend) ax[0, 1].set_title("Metallicity") ax[0, 1].plot(agevec, label_z[i, :], 'k') for k in outputs: ax[0, 1].plot(agevec, k[1][(i - first_id_plot), :]) ax[0, 1].set_xscale('log') ax[0, 1].legend(legend_name) ax[1, 1].set_title("Metallicity - residuals") ax[1, 1].plot(agevec, np.zeros(agevec.shape), 'k') current_legend = ["Label"] for q, k in enumerate(outputs): ax[1, 1].scatter(agevec, np.subtract(k[1][(i - first_id_plot), :], label_z[i, :])) current_legend.append(name_models[q] + "_" + f"{loss(label_z[i, :], k[1][(i - first_id_plot), :]).numpy():4f}") ax[1, 1].set_xscale('log') ax[1, 1].legend(current_legend) plt.tight_layout() plt.show() tmp_dic = {"agevec": agevec, "sfh_true": label_sfh[i, :], "z_true": label_z[i, :], "sfh_no_stand": label_sfh_real[i, :], "z_no_stand": label_z_real[i, :]} for q, k in enumerate(outputs): tmp_dic[f"sfh{q}"] = k[0][(i - first_id_plot), :] tmp_dic[f"z{q}"] = k[1][(i - first_id_plot), :] tmp_sp = {"spectr_in": input_spectra[i, :], "waveout": spectra_lambda} tmp_mag = {"magnitudes_in": input_magnitudes[i, :], "ID": [idx[i]]*5} tmp_id_names = {"ID": [idx[i]]} for q, k in enumerate(legend_name): if q == 0: continue else: tmp_id_names[f"name{q-1}"] = [k] tmp_df = pd.DataFrame(tmp_dic) tmp_df.to_csv("/Users/enrique/Documents/GitHub/LOGAN-SFH/tmp_file.pd", index=False) tmp_df2 = pd.DataFrame(tmp_sp) tmp_df3 =
pd.DataFrame(tmp_mag)
pandas.DataFrame
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Module contains class PandasDataframe. PandasDataframe is a parent abstract class for any dataframe class for pandas storage format. """ from collections import OrderedDict import numpy as np import pandas import datetime from pandas.core.indexes.api import ensure_index, Index, RangeIndex from pandas.core.dtypes.common import is_numeric_dtype, is_list_like from pandas._libs.lib import no_default from typing import List, Hashable, Optional, Callable, Union, Dict from modin.core.storage_formats.pandas.query_compiler import PandasQueryCompiler from modin.error_message import ErrorMessage from modin.core.storage_formats.pandas.parsers import ( find_common_type_cat as find_common_type, ) from modin.core.dataframe.base.dataframe.dataframe import ModinDataframe from modin.core.dataframe.base.dataframe.utils import ( Axis, JoinType, ) from modin.pandas.indexing import is_range_like from modin.pandas.utils import is_full_grab_slice, check_both_not_none from modin.logging import LoggerMetaClass def lazy_metadata_decorator(apply_axis=None, axis_arg=-1, transpose=False): """ Lazily propagate metadata for the ``PandasDataframe``. This decorator first adds the minimum required reindexing operations to each partition's queue of functions to be lazily applied for each PandasDataframe in the arguments by applying the function run_f_on_minimally_updated_metadata. The decorator also sets the flags for deferred metadata synchronization on the function result if necessary. Parameters ---------- apply_axis : str, default: None The axes on which to apply the reindexing operations to the `self._partitions` lazily. Case None: No lazy metadata propagation. Case "both": Add reindexing operations on both axes to partition queue. Case "opposite": Add reindexing operations complementary to given axis. Case "rows": Add reindexing operations on row axis to partition queue. axis_arg : int, default: -1 The index or column axis. transpose : bool, default: False Boolean for if a transpose operation is being used. Returns ------- Wrapped Function. """ def decorator(f): from functools import wraps @wraps(f) def run_f_on_minimally_updated_metadata(self, *args, **kwargs): for obj in ( [self] + [o for o in args if isinstance(o, PandasDataframe)] + [v for v in kwargs.values() if isinstance(v, PandasDataframe)] + [ d for o in args if isinstance(o, list) for d in o if isinstance(d, PandasDataframe) ] + [ d for _, o in kwargs.items() if isinstance(o, list) for d in o if isinstance(d, PandasDataframe) ] ): if apply_axis == "both": if obj._deferred_index and obj._deferred_column: obj._propagate_index_objs(axis=None) elif obj._deferred_index: obj._propagate_index_objs(axis=0) elif obj._deferred_column: obj._propagate_index_objs(axis=1) elif apply_axis == "opposite": if "axis" not in kwargs: axis = args[axis_arg] else: axis = kwargs["axis"] if axis == 0 and obj._deferred_column: obj._propagate_index_objs(axis=1) elif axis == 1 and obj._deferred_index: obj._propagate_index_objs(axis=0) elif apply_axis == "rows": obj._propagate_index_objs(axis=0) result = f(self, *args, **kwargs) if apply_axis is None and not transpose: result._deferred_index = self._deferred_index result._deferred_column = self._deferred_column elif apply_axis is None and transpose: result._deferred_index = self._deferred_column result._deferred_column = self._deferred_index elif apply_axis == "opposite": if axis == 0: result._deferred_index = self._deferred_index else: result._deferred_column = self._deferred_column elif apply_axis == "rows": result._deferred_column = self._deferred_column return result return run_f_on_minimally_updated_metadata return decorator class PandasDataframe(object, metaclass=LoggerMetaClass): """ An abstract class that represents the parent class for any pandas storage format dataframe class. This class provides interfaces to run operations on dataframe partitions. Parameters ---------- partitions : np.ndarray A 2D NumPy array of partitions. index : sequence The index for the dataframe. Converted to a ``pandas.Index``. columns : sequence The columns object for the dataframe. Converted to a ``pandas.Index``. row_lengths : list, optional The length of each partition in the rows. The "height" of each of the block partitions. Is computed if not provided. column_widths : list, optional The width of each partition in the columns. The "width" of each of the block partitions. Is computed if not provided. dtypes : pandas.Series, optional The data types for the dataframe columns. """ _partition_mgr_cls = None _query_compiler_cls = PandasQueryCompiler # These properties flag whether or not we are deferring the metadata synchronization _deferred_index = False _deferred_column = False @property def __constructor__(self): """ Create a new instance of this object. Returns ------- PandasDataframe """ return type(self) def __init__( self, partitions, index, columns, row_lengths=None, column_widths=None, dtypes=None, ): self._partitions = partitions self._index_cache =
ensure_index(index)
pandas.core.indexes.api.ensure_index
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import seaborn as sns import plotly.io as pio pio.templates.default = "simple_white" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ house_df = pd.read_csv(filename) house_df = house_df.drop(labels=["id", "lat", "long"], axis=1).dropna().drop_duplicates() house_df.zipcode = house_df.zipcode.astype(int) house_df = house_df[ (house_df.bedrooms > 0) & (house_df.bathrooms > 0) & (house_df.sqft_above > 0) & (house_df.sqft_above > 0) & (house_df.floors >= 0) & (house_df.sqft_basement >= 0) ] house_df["is_renovated_lately"] = np.where(house_df["yr_renovated"] >= 1995, 1, 0) house_df = house_df.drop(labels="yr_renovated", axis=1) house_df['date'] = pd.to_datetime(house_df['date']) house_df['month'] = house_df['date'].dt.month house_df['date_day'] = house_df['date'].dt.day house_df['weekday'] = house_df['date'].dt.weekday house_df['year'] = house_df['date'].dt.year house_df['quarter'] = house_df['date'].dt.quarter house_df = house_df.drop(labels="date", axis=1) house_df["built_decade"] = (house_df["yr_built"] / 10).astype(int) house_df = house_df.drop(labels="yr_built", axis=1) house_df = pd.get_dummies(house_df, prefix="zipcode", columns=["zipcode"]) house_df = pd.get_dummies(house_df, prefix="month", columns=["month"]) house_df =
pd.get_dummies(house_df, prefix="built_decade", columns=["built_decade"])
pandas.get_dummies
#%%[markdown] ## Carregar base de dados para o SQLite #Definir localização da base de dados #%% path_to_database='data/raw/elo7_recruitment_dataset.csv' #%%[markdown] #Definir localização onde SQLite vai ser guardado, é recomendavel usar uma partição #mapeada em RAM para aumentar a performance (exemplo /dev/shm) #%% path_to_sqlite='/dev/shm/database.sqlite3' #Store the database in ram partition (as /dev/shm) to increase the performance #%%[markdown] #Passar os dados de CSV para SQLITE, isso é para facilitar algumas #análises porque o SQLITE é uma linguagem de consulta de dados que permite #facíl manipulação dos dados. #%% import pandas as pd import sqlite3 import matplotlib.pyplot as plt import seaborn as sns import nltk import numpy as np from nltk import word_tokenize from nltk.corpus import stopwords import sklearn from sklearn import tree from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score from IPython.display import display from sklearn import linear_model import pickle #########nltk.download('punkt') #########nltk.download('stopwords') #%% def xorshift32(x): for i in range(16): x ^= (x << 13) &4294967295 x ^= (x >> 17) &4294967295 x ^= (x << 5)&4294967295 return x%20 def pass_csv_database_to_sqlite3(path_to_sqlite3,path_raw_data_in_csv): conn = sqlite3.connect(path_to_sqlite3) df=pd.read_csv(path_raw_data_in_csv) df=df.reset_index() df=df.rename(columns = {"index": "query_elo7_id"}) df['hash_for_query_elo7_id']=df.apply((lambda row: xorshift32(row.query_elo7_id)), axis = 1) df['hash_for_product_id']=df.apply((lambda row: xorshift32(row.product_id)), axis = 1) df['price_group']=df.apply((lambda row: -1), axis = 1) df.to_sql("query_elo7", conn, if_exists="replace",index=False) conn.commit() cur=conn.cursor() cur.execute(""" CREATE INDEX index_query_elo7_querys_elo7_id ON query_elo7 ( query_elo7_id ); """) cur.execute(""" CREATE INDEX index_query_elo7_hash_for_query_elo7_id ON query_elo7 ( hash_for_query_elo7_id ); """) conn.commit() conn.close() #########pass_csv_database_to_sqlite3(path_to_sqlite,path_to_database) #%%[markdown] #Associar individualmente cada palavras digitadas nas consultas com as #consultas em que foram digitadas, isso é util para futuras análises #estatísticas #%% def create_schema_for_tables_that_associate_words_in_querys_with_querys_typed(path_to_sqlite3): conn = sqlite3.connect(path_to_sqlite3) cur=conn.cursor() cur.execute("DROP TABLE IF EXISTS word_typed_in_query;") cur.execute("VACUUM;") cur.execute(""" CREATE TABLE word_typed_in_query ( word VARCHAR (256), word_typed_in_query_id INTEGER PRIMARY KEY AUTOINCREMENT ); """) conn.commit() conn.close() def create_schema_for_table___word_typed_in_query___query_elo7(path_to_sqlite3): conn = sqlite3.connect(path_to_sqlite3) cur=conn.cursor() cur.execute("DROP TABLE IF EXISTS word_typed_in_query___query_elo7;") cur.execute("VACUUM;") cur.execute(""" CREATE TABLE word_typed_in_query___query_elo7 ( word_typed_in_query_id INTEGER REFERENCES word_typed_in_query (word_typed_in_query_id) ON DELETE CASCADE ON UPDATE CASCADE, query_elo7_id INTEGER REFERENCES query_elo7 (query_elo7_id) ON DELETE CASCADE ON UPDATE CASCADE, word_typed_in_query___query_elo7_id INTEGER PRIMARY KEY AUTOINCREMENT ); """) conn.commit() conn.close() def create_schema_for_table___vector_element(path_to_sqlite3): conn = sqlite3.connect(path_to_sqlite3) cur=conn.cursor() cur.execute("DROP TABLE IF EXISTS vector_element;") cur.execute("VACUUM;") sql=""" CREATE TABLE vector_element ( vector_element_id INTEGER PRIMARY KEY AUTOINCREMENT, query_elo7_id INTEGER REFERENCES query_elo7 (query_elo7_id) ON DELETE CASCADE ON UPDATE CASCADE, position_in_vector INT, word VARCHAR (256), value DOUBLE, hash_for_query_elo7_id INTEGER ); """ cur.execute(sql) cur.execute(""" CREATE INDEX index_vector_element___query_elo7_id ON vector_element ( query_elo7_id ); """) cur.execute(""" CREATE INDEX index_vector_element___hash_for_query_elo7_id ON vector_element ( hash_for_query_elo7_id ); """) conn.commit() conn.close() def populate_table__word_typed_in_query(path_to_sqlite3): conn = sqlite3.connect(path_to_sqlite3) cur=conn.cursor() cur.execute(""" SELECT query FROM query_elo7; """) words={} for line in cur: words_line= word_tokenize(line[0]) for word_line in words_line: if(not(word_line in words)): words[word_line]=None for word in words.keys(): cur.execute(""" INSERT INTO word_typed_in_query ( word ) VALUES ( '{word}' ); """.format(word=word)) conn.commit() conn.close() def word_typed_in_query___query_elo7(path_to_sqlite3): conn = sqlite3.connect(path_to_sqlite3) cur=conn.cursor() converter_word_to_word_id_in_table={} cur.execute(''' SELECT word, word_typed_in_query_id FROM word_typed_in_query; ''') for line in cur: converter_word_to_word_id_in_table[line[0]]=line[1] cur.execute(""" SELECT query_elo7_id, query FROM query_elo7; """) cur2=conn.cursor() for line in cur: query_words= word_tokenize(line[1]) for word in query_words: word_id=converter_word_to_word_id_in_table[word] sql=''' INSERT INTO word_typed_in_query___query_elo7 ( word_typed_in_query_id, query_elo7_id ) VALUES ( {word_typed_in_query_id}, {query_elo7_id} ); '''.format(word_typed_in_query_id=word_id, query_elo7_id=line[0]) cur2.execute(sql) conn.commit() conn.close() #########create_schema_for_tables_that_associate_words_in_querys_with_querys_typed(path_to_sqlite) #########populate_table__word_typed_in_query(path_to_sqlite) #########create_schema_for_table___word_typed_in_query___query_elo7(path_to_sqlite) #########word_typed_in_query___query_elo7(path_to_sqlite) #########create_schema_for_table___vector_element(path_to_sqlite) #%%[markdown] ## Análise exploratoria ### Análises das palavras dígitadas nas consultas ###### Para estas análises foram retiradas as palavras conhecidas em *PLN* (processamento de linguagem natural) como *stopwords*, *stopwords* são palavras muito comuns que não adicionam significado para o texto (preposições por exemplo) #Contagem do número de palavras distintas que já foram digitadas por #usuários em consultadas, admitindo que nos modelos que vão ser desenvolvidos as #palavras vão ser as variáveis de entrada, estas são as variáveis que primeiro vão ser análisadas. #%% #########conn=sqlite3.connect(path_to_sqlite) #########sql="""SELECT COUNT(DISTINCT word) ######### FROM word_typed_in_query ######### WHERE word NOT IN ({stopwords}) ######### """.format(stopwords=str(list(stopwords.words('portuguese')))[1:-1]) #########print("Número de palavras distintas já digitadas: "+str(conn.execute(sql).fetchall()[0][0])) #########conn.close() #%%[markdown] # Por causa da quantidade de palavras que existem é preciso realizar # uma contagem de frequência de palavras nas consultas, isso pode ser # utíl para diminuir quantidade de palavras que são necessárias serem # tratadas pelos modelos desenvolvidos. Com menos palavras para se # preocupar em analisar os modelos podem ser mais acertivos, essa # é uma tática comum para melhor a qualidade de modelos de IA. #%% def count_number_of_times_that_word_appear_in_query(path_to_sqlite3): sql=""" WITH word_typed_in_query___query_elo7_distinct AS ( SELECT DISTINCT word_typed_in_query_id, query_elo7_id FROM word_typed_in_query___query_elo7 ) SELECT COUNT(query_elo7_id) AS numbero_de_consultas_onde_a_palavra_foi_digitada, word_typed_in_query.word AS palavra FROM word_typed_in_query___query_elo7_distinct INNER JOIN word_typed_in_query ON word_typed_in_query.word_typed_in_query_id=word_typed_in_query___query_elo7_distinct.word_typed_in_query_id WHERE word_typed_in_query.word NOT IN ({stopwords}) GROUP BY word_typed_in_query___query_elo7_distinct.word_typed_in_query_id ORDER BY COUNT(query_elo7_id) DESC """.format(stopwords=str(list(stopwords.words('portuguese')))[1:-1]) conn = sqlite3.connect(path_to_sqlite3) df=pd.read_sql_query(sql,conn) conn.close() return df #########print("Análise de frequência das vinte palavras mais digitadas nas consultas:") #########df_number_of_times_for_words_in_querys=count_number_of_times_that_word_appear_in_query(path_to_sqlite) #########df_number_of_times_for_words_in_querys.head(20) # %%[markdown] # Pode-se notar um decaimento exponencial (muito rápido) na # frequencia da palavra mais digitada para vigesima mais digitada. <br> # Uma melhor análise seria plotar um gráfico para confirmar # este decaimento exponencial onde, o eixo X representa o # *ranking* da palavra entre as que mais aparecem e o eixo Y o número de # vezes que ela aparece. # %% #########df_number_of_times_for_words_in_querys=count_number_of_times_that_word_appear_in_query(path_to_sqlite) #########df_number_of_times_for_words_in_querys=df_number_of_times_for_words_in_querys.reset_index() #########df_number_of_times_for_words_in_querys.rename(columns = {'index':'ranking da palavra', 'numbero_de_consultas_onde_a_palavra_foi_digitada':'número de vezes que aparece'}, inplace = True) #########sns.lineplot(data=df_number_of_times_for_words_in_querys.reset_index(), x="ranking da palavra", y="número de vezes que aparece") # %% [markdown] # Com as análises apresentadas até agora pode-se dizer que com poucas # palavras, algumas centenas, esta dentro da maioria das consultas # (querys). Para confirmar isso # é necessario criar grupos de palavras onde o primeiro grupo possui # apenas a palavras mais frequente, o segundo grupo as duas palavras # mais frequentes, o terceiro as três palavras mais frequentes e assim # por diante, para então analisar em quantas consultas existe pelo uma das # palavras de um determinado grupo. Para simplificar a escrita vai ser # utilizado o termo *cobertura* neste relatorio tem a seguinte # definição: "Um grupo de palavras cobre um consulta se e somente se existe # pelo menos uma palavra do grupo que esta dentro da consulta".<br> <br> # A seguir um plot que mostra quantas consultas são cobertas por grupos com # as N palavras mais frequentes: #%% def words_are_in_query(listOfWordsToSearch, query_string): for word in listOfWordsToSearch: if(word in query_string): return 1 return 0 def number_of_queries_coverage_by_groups_with_the_N_most_frequent_words(path_to_sqlite3,path_to_csv): ranking_for_occurrence_words_in_querys=(count_number_of_times_that_word_appear_in_query(path_to_sqlite3)['palavra']).values prototype_for_dataframe_with_result={'grupo com as N palavras mais frequentes':[],'número de consultas cobertas pelo grupo':[]} for i in range(384): wordGroup=ranking_for_occurrence_words_in_querys[:(i+1)] queryBelongToWordGroup=lambda query: words_are_in_query(wordGroup,query) df=pd.read_csv(path_to_csv) numberOfQuerysCoverage=np.sum(df['query'].apply(queryBelongToWordGroup).values) prototype_for_dataframe_with_result['grupo com as N palavras mais frequentes'].append(i+1) prototype_for_dataframe_with_result['número de consultas cobertas pelo grupo'].append(numberOfQuerysCoverage) return pd.DataFrame.from_dict(prototype_for_dataframe_with_result) #########df_with_number_of_queries_coverage_by_groups_with_the_N_most_frequent_words=number_of_queries_coverage_by_groups_with_the_N_most_frequent_words(path_to_sqlite,path_to_database) #########sns.lineplot(data=df_with_number_of_queries_coverage_by_groups_with_the_N_most_frequent_words, x="grupo com as N palavras mais frequentes", y="número de consultas cobertas pelo grupo") # %% #########last_row_for_infomation_about_group_of_words=(df_with_number_of_queries_coverage_by_groups_with_the_N_most_frequent_words.values)[-1] #########print ("Quantidade consultas cobertas pelo grupo com as {num_of_words} palavras mais frequentes: {num_of_querys}".format(num_of_words=last_row_for_infomation_about_group_of_words[0],num_of_querys=last_row_for_infomation_about_group_of_words[1])) # %%[markdown] # Observando o gráfico anterior observa-se que as 384 das palavras mais frequentes # estão em 35591 das 38507 consultas que estão disponiveis na base dados fornecida, # aproximadamente 92% de cobertura. Deste modo os modelos de IA desenvolvidos caso # recebam uma consulta/query como uma de suas entradas vão analisa apenas estas 384 # palavras. # %%[markdown] ### Análises dos atributos dos produtos existentes (peso, preço e entrega rápida). #### A seguir histogramas para diferentes faixas peso que os produtos possuem em cada categoria: # %%[markdown] # Histogramas com a distribuição de peso por categoria. #%% #########conn=sqlite3.connect(path_to_sqlite) #########df=pd.read_sql_query("""SELECT DISTINCT product_id, category, weight FROM query_elo7 WHERE weight""",conn) #########sns.histplot(hue="category", x="weight", data=df,bins=10) #########conn.close() # %% # %%[markdown] # Histogramas com a distribuição de peso por categoria com limite de peso de até 40, isso é equivalente a um zoom no inicio no eixo X dos histogramas do gráfico anterior. #%% #########conn=sqlite3.connect(path_to_sqlite) #########df=pd.read_sql_query("""SELECT DISTINCT product_id, category, weight FROM query_elo7 WHERE weight<40""",conn) #########sns.histplot(hue="category", x="weight", data=df,bins=10) #########conn.close() # %%[markdown] #### A seguir histogramas para diferentes faixas preço que os produtos possuem em cada categoria: # %%[markdown] # Histogramas com a distribuição de preço por categoria. #%% #########conn=sqlite3.connect(path_to_sqlite) #########df=pd.read_sql_query("""SELECT DISTINCT product_id, category, price FROM query_elo7 WHERE price""",conn) #########sns.histplot(hue="category", x="price", data=df,bins=10) #########conn.close() # %%[markdown] # Histogramas com a distribuição de peso por categoria com limite de preço de até 100, isso é equivalente a um zoom no inicio do eixo X dos histogramas do gráfico anterior. #%% #########conn=sqlite3.connect(path_to_sqlite) #########df=pd.read_sql_query("""SELECT DISTINCT product_id, category, price FROM query_elo7 WHERE price<200 """,conn) #ax = sns.boxplot(x="category", y="weight", data=df) #########sns.histplot(hue="category", x="price", data=df,bins=10) #########conn.close() # %%[markdown] # Nos histogramas do gráfico anterior a categoria "Lembrancinhas" esta atrapalhando # a visualizaçao das distribuição de preços das outras categorias, ela vai ser retirada # do próximo gráfico então. O gráifco a seguir é um replot dos histogramas do gráfico # anterior porem sem a categoria "Lembrancinhas": #%% #########conn=sqlite3.connect(path_to_sqlite) #########df=pd.read_sql_query("""SELECT DISTINCT product_id, category, price FROM query_elo7 WHERE price<200 AND category!='Lembrancinhas' """,conn) #ax = sns.boxplot(x="category", y="weight", data=df) #########sns.histplot(hue="category", x="price", data=df,bins=10) #########conn.close() # %%[markdown] #### Análise sobre a distribuição de peso e preço # Como pode ser observado nem o preço nem o peso dos produtos segue uma distribuição # normal portanto, a melhores estrategias para discretizar estes valores seriam: # <ul> # <li>Discretizar os valores resultantes de uma transformação logaritma ou .</li> # <li>Clusteriza-los via algum algoritmo de aprendizado de aprendizado não supervisionado como o K-means.</li> # </ul> # É importante pensar em tecnicas para discretizar de valores continuos porque isso pode melhorar # qualidade dos modelos de IA desenvolvidos. # %%[markdown] #### Análise sobre a distribuição do atributo envio expresso #%% #########conn=sqlite3.connect(path_to_sqlite) #########df=pd.read_sql_query("""SELECT DISTINCT product_id, category, express_delivery FROM query_elo7 WHERE price<200 AND category!='Lembrancinhas' """,conn) #########df['express_delivery']=df['express_delivery'].apply(lambda x: 'yes' if x>0.0 else 'no') #########categories=df['category'].unique() #########for category in categories: ######### print("Distribuição para a categoria:"+str(category)+"\n") ######### dfT=df[df['category']==category] ######### sns.histplot( x="express_delivery", data=dfT.sort_values(by=['express_delivery']), stat='probability',discrete=True, shrink=.8) ######### plt.show() ######### print("\n\n\n\n") #########conn.close() # %%[markdown] # Como pode ser observado existem diferentes distribuições de envio expresso # por categoria, isso faz este atributo interessante para usar em um # classificador de categorias. #%%[markdown] ## Sistema de Classificação de Produtos #### Histograma de palavras dos produtos associados as palavras digitadas as buscas # Esse histograma foi uma das metricas criadas que servem de entrada para os modelos descritos # nas seções **Encontrar o melhor modelo de predição de categorias com base na metodologia K-Fold**, **Sistema de termos de busca** e **Colaboração entre os sistemas**. # Para fazer essa métrica devem ser calculados os histogramas das palavras que cada produto # da base de dados possui com base nas consultas associadas ao produto para então, calcular a média # dos histogramas dos produtos associados a uma categoria. # Os histogramas podem ser feitos seguindo os seguintes passos: <br> # <ul> # <li> # Com base nas 384 palavras mais frequentes associamos cada palavra a uma posição # vetores de 384 elementos onde, cada produto que esta base de dados vai ter um vetor destes. # Estes são os vetores que guardam o histograma dos produtos. # </li> # <li> # Percorrer todas as consultas que existem para cada um dos produtos cadastrados na # base de dados e sempre que achar uma palavra que associada ao vetor de histograma do produto # incrementar o valor do elemento do vetor associado a palavra. # </li> #</ul> <br> <br> # A seguir o código que cria os histogramas para cada consulta: #%% def populate_table____vector_element(path_to_sqlite3): ranking_for_occurrence_words_in_querys=list((count_number_of_times_that_word_appear_in_query(path_to_sqlite3)['palavra']).values)[:384] ranking_for_occurrence_words_in_querys.sort() conn = sqlite3.connect(path_to_sqlite3) cur=conn.cursor() cur2=conn.cursor() cur.execute("SELECT query_elo7_id,query FROM query_elo7") for line in cur: query_words= word_tokenize(line[1]) elementsToInsert="" for i in range(len(ranking_for_occurrence_words_in_querys)): number_of_times=query_words.count(ranking_for_occurrence_words_in_querys[i]) elementsToInsert=elementsToInsert+"({query_elo7_id},{position_in_vector},'{word}',{number_of_times},{hash_for_query_elo7_id}),".format(query_elo7_id=line[0],position_in_vector=i,word=ranking_for_occurrence_words_in_querys[i],number_of_times=number_of_times,hash_for_query_elo7_id=xorshift32(line[0])) cur2.execute("INSERT INTO vector_element (query_elo7_id,position_in_vector,word,value,hash_for_query_elo7_id) VALUES "+elementsToInsert[:-1]) conn.commit() conn.close() #########populate_table____vector_element(path_to_sqlite) #%%[markdown] #### Variáveis utilizadas para a criação do sistema # Para a criação de sistema foram utilizados os campos price, weight e express_delivery das consultas # e o histograma de palavras dos produtos associados as palavras digitadas as buscas. #### Encontrar o melhor modelo de predição de categorias com base na metodologia K-Fold # A maioria dos passos a seguir vão ser repetidos várias vezes com o objetivo de encontrar o melho modelo, esta # repetição usa a metodoliga K-Fold e ela consiste de: # <ul> # <li> # Dividir um conjunto de dados em validação e não validação de forma aleatória. # </li> # <li> # Dividir a não validação do conjunto de dados em treinamento e teste, com 86.67% do conjunto como treinamento e 13.33% teste. # </li> # <li> # Treinar um modelo no conjunto de treinamento e testa-lo no conjunto de teste e no conjunto de validação. # </li> # <li> # Repartir a não validação entre treinamento e teste de modo que 13.33% do conjunto de treino anterior vire o conjunto de teste atual e os elementos do conjunto de teste anterior entrem no conjunto de treinamento atual. # </li> # <li> # Voltar para o passo 3 até todos os elementos do conjunto de não validação tenham sido utilizados para treinar ao menos um modelo. # </li> # <li> # Utilizar o modelo que obteve melhor resultado no conjunto de validação. # </li> # </ul> # # Para facilitar o escolha dos conjuntos que dados que vão ser parte do treino, teste e # validação as tabelas vector_element e query_elo7 possuem uma coluna chamada hash_for_query_elo7_id # onde o valor de hash vai de 0 a 19 deste modo, a divisão pode ser feita com base nos valores do # hash que devem ser utilizados para que elementos destas tabelas façam parte dos conjuntos de treino, # teste e validação. Para a seleção do melhor modelo a métrica utilizada foi a media das acuracias # alcançadas para classificar cada categoria. <br><br> # A seguir a matriz de confusão e a acurácia média para o melhor de modelo de predição encontrado para a elaboração do sistema: #%% def transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(database,column_to_be_y='category',fields_to_drop=[]): fields=list(database[list(database.keys())[0]].keys()) dataFrameInDict={} for field in fields: if(field !="vector"): dataFrameInDict[field]=[] dataFrameInDict['Y']=[] for i in range(384): dataFrameInDict['vector_e'+str(i)]=[] for data_id in database: data=database[data_id] for field in fields: if(field!="vector"): dataFrameInDict[field].append(data[field]) for i in range(384): dataFrameInDict['vector_e'+str(i)].append(data['vector'][i]) dataFrameInDict['Y'].append(data[column_to_be_y]) df=pd.DataFrame.from_dict(dataFrameInDict) df=df.dropna() y=df['Y'].values df=df.drop(['Y'],axis=1) #df['weight'].fillna(value=df['weight'].mean(), inplace=True) #df['price'].fillna(value=df['price'].mean(), inplace=True) df=df.drop([column_to_be_y],axis=1) if(len(fields_to_drop)>0): df=df.drop(fields_to_drop,axis=1) return {'dataframeX':df,'Y':y} def merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3, query_to_get_words_histograms, query_to_get_varied_information): #Important Note========================================= # The first field of query_to_get_words_histograms # and query_to_get_varied_information have to be # equals and they are the for the dictonaries #End==================================================== conn = sqlite3.connect(path_to_sqlite3) cur=conn.cursor() information_about_products={} cur.execute(query_to_get_varied_information) fields=[] for field in cur.description: fields.append(field[0]) for row in cur: dictTemp={} keyForDict=fields[0] for i in range(len(fields)-1): dictTemp[fields[i+1]]=row[i+1] information_about_products[row[0]]=dictTemp cur.execute(query_to_get_words_histograms) productsDict={} for row in cur: if(not (row[0] in productsDict)): dictTemp={'vector':np.zeros(384)} for i in range(len(fields)-1): dictTemp[fields[i+1]]=information_about_products[row[0]][fields[i+1]] productsDict[row[0]]=dictTemp productsDict[row[0]]['vector'][row[1]]=row[2] conn.close() return productsDict def get_data_to_validation_to_use_in_the_model_to_predict_categories(path_to_sqlite3): query_to_get_words_histograms=""" WITH vector_products AS ( SELECT query_elo7.product_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_product_id>=15 GROUP BY query_elo7.product_id,vector_element.position_in_vector ORDER BY query_elo7.product_id,vector_element.position_in_vector ) SELECT product_id, position_in_vector, value FROM vector_products WHERE value>0 """ query_to_get_varied_information=""" SELECT DISTINCT product_id, category, weight, price, express_delivery FROM query_elo7; """ products_dict_validation=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms,query_to_get_varied_information) return transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_validation) def get_data_to_train_and_test_to_use_in_the_model_to_predict_categories(path_to_sqlite3,folder): query_to_get_varied_information=""" SELECT DISTINCT product_id, category, weight, price, express_delivery FROM query_elo7; """ query_to_get_words_histograms_to_train=""" WITH vector_products AS ( SELECT query_elo7.product_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_product_id<15 AND query_elo7.hash_for_product_id NOT IN ({folder1},{folder2}) GROUP BY query_elo7.product_id,vector_element.position_in_vector ORDER BY query_elo7.product_id,vector_element.position_in_vector ) SELECT product_id, position_in_vector, value FROM vector_products WHERE value>0 """.format(folder1=folder*2,folder2=(folder*2)+1) products_dict_train=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms_to_train,query_to_get_varied_information) query_to_get_words_histograms_to_test=""" WITH vector_products AS ( SELECT query_elo7.product_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_product_id<15 AND query_elo7.hash_for_product_id IN ({folder1},{folder2}) GROUP BY query_elo7.product_id,vector_element.position_in_vector ORDER BY query_elo7.product_id,vector_element.position_in_vector ) SELECT product_id, position_in_vector, value FROM vector_products WHERE value>0 """.format(folder1=folder*2,folder2=(folder*2)+1) products_dict_test=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms_to_test,query_to_get_varied_information) return { "train":transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_train), "test":transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_test) } def define_better_model_to_predict_categories(path_to_sqlite,data_validation,dropColumnsFromDataTrainAndTest=[]): bestModel=None averageAcuracyForBestModel=None for i in range(7): data_train_test=get_data_to_train_and_test_to_use_in_the_model_to_predict_categories(path_to_sqlite,i) if(len(dropColumnsFromDataTrainAndTest)>0): data_train_test['train']['dataframeX']=data_train_test['train']['dataframeX'].drop(dropColumnsFromDataTrainAndTest, axis=1) clf = tree.DecisionTreeClassifier() clf = clf.fit(data_train_test['train']['dataframeX'], data_train_test['train']['Y']) ypred=clf.predict(data_validation['dataframeX']) confusion_mat=confusion_matrix(data_validation['Y'], ypred, labels=pd.Series(list(ypred)+list(data_validation['Y'])).unique()) avg_acc=0.0 for i in range(len(confusion_mat)): avg_acc=avg_acc+(float(confusion_mat[i,i])/float(sum((confusion_mat[i,:])))) avg_acc=avg_acc/float(len(confusion_mat)) if(averageAcuracyForBestModel== None or avg_acc>averageAcuracyForBestModel): averageAcuracyForBestModel=avg_acc bestModel=clf return {'bestModel':bestModel,'averageAcuracy':averageAcuracyForBestModel} def create_dataFrame_with_confusion_matrix(real,pred, labels_arg=None): if(labels_arg==None): labels=list(pd.Series(list(real)+list(pred)).unique()) else: labels=labels_arg confusion_mat=confusion_matrix(real, pred, labels=labels) df=pd.DataFrame(confusion_mat,columns=[['predito']*len(labels),labels], index=[['real']*len(labels),labels]) return df #########columns_to_drop=[] #########data_validation=get_data_to_validation_to_use_in_the_model_to_predict_categories(path_to_sqlite) #########if(len(columns_to_drop)>0): ######### data_validation['dataframeX']=data_validation['dataframeX'].drop(columns_to_drop,axis=1) #########return_from_defineBetterModel=define_better_model_to_predict_categories(path_to_sqlite,data_validation,dropColumnsFromDataTrainAndTest=columns_to_drop) #########model=return_from_defineBetterModel['bestModel'] #########ypred=model.predict(data_validation['dataframeX']) #########confusion_mat_0=create_dataFrame_with_confusion_matrix(data_validation['Y'],ypred) #########print("Matriz de confusão para classificar produtos:") #########display(confusion_mat_0) #########print("Acurácia media: "+str(return_from_defineBetterModel['averageAcuracy'])) #%%[markdown] # Um fato interessante é que as variávies price, weight e express_delivery parecem não contribuir para # na construção modelo, podendo até mesmo atrapalhar na elaboração do mesmo. Tal afirmação pode ser # confirmada nos resultados obtidos pelo modelo a seguir, onde estas variáveis de entrada foram retiradas da criação do mesmo: #%% #########columns_to_drop=['price', 'express_delivery','weight'] #########data_validation=get_data_to_validation_to_use_in_the_model_to_predict_categories(path_to_sqlite) #########if(len(columns_to_drop)>0): ######### data_validation['dataframeX']=data_validation['dataframeX'].drop(columns_to_drop,axis=1) #########return_from_defineBetterModel=define_better_model_to_predict_categories(path_to_sqlite,data_validation,dropColumnsFromDataTrainAndTest=columns_to_drop) #########model=return_from_defineBetterModel['bestModel'] #########ypred=model.predict(data_validation['dataframeX']) #########confusion_mat_1=create_dataFrame_with_confusion_matrix(data_validation['Y'],ypred) #########print("Matriz de confusão para classificar produtos apenas com os histogramas:") #########display(confusion_mat_1) #########print("Acurácia media: "+str(return_from_defineBetterModel['averageAcuracy'])) #########model_predict_category_fp=open( "data/models/predict_category/mode.pickle", "wb" ) #########pickle.dump( model, model_predict_category_fp) #########model_predict_category_fp.close() #%%[markdown] ## Sistema de termos de busca # Para criar este sistema foi primeiro pensado na ideia de criar grupos de preço e # a partir destes grupos utilizar um algoritmo de aprendizado de maquina que # encontre uma relação entre os histogramas de palavras das consultas # com um determinado grupo de preço, descobrindo assim a intenção do usuário # de comprar produtos de um terminado preço com base naquilo que digita em suas # consultas. # Para a criação dos grupo de preço foi utilizado o algoritmo K-médias. A seguir # o código que divide os preços em grupos: #%% def create_discretization_model_from_k_means_for_product_price(path_to_sqlite3,n_clusters): conn = sqlite3.connect(path_to_sqlite3) sql=""" SELECT query_elo7_id, price, minimum_quantity FROM query_elo7; """ df=pd.read_sql_query(sql,conn) clusterer = KMeans(n_clusters=n_clusters, random_state=10) df['price_log']=df['price'].apply(np.log) #df['price_log']=df['price'] cluster_labels = clusterer.fit_predict(df['price_log'].values.reshape(-1, 1) ) silhouette_avg = silhouette_score(df['price_log'].values.reshape(-1, 1), cluster_labels) conn.close() return {"model":clusterer,'score':silhouette_avg} #%% [markdown] # Para computar o número ideal de valores discretos que a variável price deve ter vai ser # utilizado o metódo da silueta média, onde quanto menor melhor, a seguir os valores obtidos # pelo metodo da silueta quando price e discretizado para 2,3,5,8,13 e 21 valores distintos. #%% #########for i in [2,3,5,8,13,21]: ######### score=create_discretization_model_from_k_means_for_product_price(path_to_sqlite,i)['score'] ######### print('Discretizando price para {i} valores distintos o valor da silueta média é {resu}.'.format(i=i,resu=score)) #Use Kmeans with 13 clusters to discretize price============================== def update_column_price_group_with_groups_found_in_kmeans_for_price(path_to_sqlite): conn = sqlite3.connect(path_to_sqlite) model=create_discretization_model_from_k_means_for_product_price(path_to_sqlite,8)['model'] df=pd.read_sql_query("SELECT query_elo7_id,price, minimum_quantity FROM query_elo7;",conn) df['price_log']=df['price'].apply(np.log) df['price_group']=df['price_log'].apply(lambda x: model.predict([[x]])[0]) cur=conn.cursor() progress=0 for index, row in df.iterrows(): cur.execute("UPDATE query_elo7 SET price_group={group} WHERE query_elo7_id={query_elo7_id}".format(group=row['price_group'],query_elo7_id=row['query_elo7_id'])) progress=progress+1 conn.commit() conn.close() #update_column_price_group_with_groups_found_in_kmeans_for_price(path_to_sqlite) #end=========================================================================== #%%[markdown] #Como pode ser observado a divisão da variável price em oito grupos apresenta um bom resultado #para o metódo da silueta. A seguir um dataframe com os valores mínimo e máximo que cada um dos 13 #grupos da variável price apresenta: #########conn=sqlite3.connect(path_to_sqlite) #########df=pd.read_sql_query("""SELECT price_group, ######### MIN(price), ######### MAX(price) ######### FROM query_elo7 ######### GROUP BY price_group ######### ORDER BY MIN(price),MAX(price) ######### """,conn) #########conn.close() #########display(df) #%%[markdown] ### Modelo para predição da intenção de preço do usuario por árvore de decisão # A seguir um modelo que infere a intenção de preço do usuário, # assim como o modelo que categoriza produtos ele foi criado via #árvore de decisão e utilizando a metodologia K-fold: #%% def get_data_to_validation_to_use_in_the_model_to_predict_price(path_to_sqlite3): query_to_get_words_histograms=""" WITH vector_query AS ( SELECT query_elo7.query_elo7_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_query_elo7_id>=15 GROUP BY query_elo7.query_elo7_id,vector_element.position_in_vector ORDER BY query_elo7.query_elo7_id,vector_element.position_in_vector ) SELECT query_elo7_id, position_in_vector, value FROM vector_query WHERE value>0 """ query_to_get_varied_information=""" SELECT query_elo7_id, price_group FROM query_elo7; """ products_dict_validation=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms,query_to_get_varied_information) return transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_validation, column_to_be_y='price_group') def get_data_to_validation_to_use_in_the_model_to_regress_price(path_to_sqlite3): query_to_get_words_histograms=""" WITH vector_query AS ( SELECT query_elo7.query_elo7_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_query_elo7_id>=15 GROUP BY query_elo7.query_elo7_id,vector_element.position_in_vector ORDER BY query_elo7.query_elo7_id,vector_element.position_in_vector ) SELECT query_elo7_id, position_in_vector, value FROM vector_query WHERE value>0 """ query_to_get_varied_information=""" SELECT query_elo7_id, price FROM query_elo7; """ products_dict_validation=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms,query_to_get_varied_information) return transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_validation, column_to_be_y='price') def get_data_to_train_and_test_to_use_in_the_model_to_predict_prices(path_to_sqlite3,folder): query_to_get_varied_information=""" SELECT query_elo7_id, price_group FROM query_elo7; """ query_to_get_words_histograms_to_train=""" WITH vector_query AS ( SELECT query_elo7.query_elo7_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_query_elo7_id<15 AND query_elo7.hash_for_query_elo7_id NOT IN ({folder1},{folder2}) GROUP BY query_elo7.query_elo7_id,vector_element.position_in_vector ORDER BY query_elo7.query_elo7_id,vector_element.position_in_vector ) SELECT query_elo7_id, position_in_vector, value FROM vector_query WHERE value>0 """.format(folder1=folder*2,folder2=(folder*2)+1) products_dict_train=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms_to_train,query_to_get_varied_information) query_to_get_words_histograms_to_test=""" WITH vector_query AS ( SELECT query_elo7.query_elo7_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_query_elo7_id<15 AND query_elo7.hash_for_query_elo7_id IN ({folder1},{folder2}) GROUP BY query_elo7.query_elo7_id,vector_element.position_in_vector ORDER BY query_elo7.query_elo7_id,vector_element.position_in_vector ) SELECT query_elo7_id, position_in_vector, value FROM vector_query WHERE value>0 """.format(folder1=folder*2,folder2=(folder*2)+1) products_dict_test=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms_to_test,query_to_get_varied_information) return { "train":transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_train, column_to_be_y='price_group'), "test":transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_test, column_to_be_y='price_group') } def get_data_to_train_and_test_to_use_in_the_model_to_regress_prices(path_to_sqlite3,folder): query_to_get_varied_information=""" SELECT query_elo7_id, price FROM query_elo7; """ query_to_get_words_histograms_to_train=""" WITH vector_query AS ( SELECT query_elo7.query_elo7_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_query_elo7_id<15 AND query_elo7.hash_for_query_elo7_id NOT IN ({folder1},{folder2}) GROUP BY query_elo7.query_elo7_id,vector_element.position_in_vector ORDER BY query_elo7.query_elo7_id,vector_element.position_in_vector ) SELECT query_elo7_id, position_in_vector, value FROM vector_query WHERE value>0 """.format(folder1=folder*2,folder2=(folder*2)+1) products_dict_train=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms_to_train,query_to_get_varied_information) query_to_get_words_histograms_to_test=""" WITH vector_query AS ( SELECT query_elo7.query_elo7_id, vector_element.position_in_vector, SUM(vector_element.value) AS value FROM vector_element INNER JOIN query_elo7 ON query_elo7.query_elo7_id=vector_element.query_elo7_id WHERE query_elo7.hash_for_query_elo7_id<15 AND query_elo7.hash_for_query_elo7_id IN ({folder1},{folder2}) GROUP BY query_elo7.query_elo7_id,vector_element.position_in_vector ORDER BY query_elo7.query_elo7_id,vector_element.position_in_vector ) SELECT query_elo7_id, position_in_vector, value FROM vector_query WHERE value>0 """.format(folder1=folder*2,folder2=(folder*2)+1) products_dict_test=merge_query_to_get_words_histograms_and_query_to_get_varied_information_into_dictonaries(path_to_sqlite3,query_to_get_words_histograms_to_test,query_to_get_varied_information) return { "train":transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_train, column_to_be_y='price'), "test":transform_products_load_as_dict_to_dataframeX_variable_to_fit_Y(products_dict_test, column_to_be_y='price') } def define_better_model_to_predict_price_from_text_in_query(path_to_sqlite,data_validation,dropColumnsFromDataTrainAndTest=[]): bestModel=None averageAcuracyForBestModel=None for i in range(7): data_train_test=get_data_to_train_and_test_to_use_in_the_model_to_predict_prices(path_to_sqlite,i) if(len(dropColumnsFromDataTrainAndTest)>0): data_train_test['train']['dataframeX']=data_train_test['train']['dataframeX'].drop(dropColumnsFromDataTrainAndTest, axis=1) clf = tree.DecisionTreeClassifier() clf = clf.fit(data_train_test['train']['dataframeX'], data_train_test['train']['Y']) ypred=clf.predict(data_validation['dataframeX']) confusion_mat=confusion_matrix(data_validation['Y'], ypred, labels=pd.Series(list(ypred)+data_validation['Y']).unique()) avg_acc=0.0 for i in range(len(confusion_mat)): try: avg_acc=avg_acc+(float(confusion_mat[i,i])/float(sum((confusion_mat[i,:])))) except: pass avg_acc=avg_acc/float(len(confusion_mat)) if(averageAcuracyForBestModel== None or avg_acc>averageAcuracyForBestModel): averageAcuracyForBestModel=avg_acc bestModel=clf return {'bestModel':bestModel,'averageAcuracy':averageAcuracyForBestModel} def create_a_list_with_range_of_values_from_list_with_price_group(path_to_sqlite,list_with_price_group): conn=sqlite3.connect(path_to_sqlite) df=
pd.read_sql_query("""SELECT price_group, MIN(price), MAX(price) FROM query_elo7 GROUP BY price_group ORDER BY MIN(price),MAX(price) """,conn)
pandas.read_sql_query
import sys import argparse import pandas as pd import numpy as np import pyfsdb import dnssplitter splitter = dnssplitter.DNSSplitter() splitter.init_tree() def get_psl(x): noval = [np.NaN, np.NaN, np.NaN] try: ret = splitter.search_tree(x) if not ret or len(ret) != 3: return noval return ret except: return noval def main(argv): parser = argparse.ArgumentParser() parser.add_argument("-i", "--infile", help="Input file", type=argparse.FileType('r'), action="append", default=None) parser.add_argument("-o", "--outfile", help="Output file", type=argparse.FileType('w'), default="-") parser.add_argument("-s", "--sortkey", help="Sort by key", type=str, default=None) parser.add_argument("-H", "--addheader", help="Add FSDB header", action="store_true") parser.add_argument("-p", "--pslkey", help="Split PSL key", type=str, action="append", default=None) parser.add_argument("-M", "--pslmerged", help="Make merged psl columns", action="store_true") p = parser.parse_args(argv) # create empty dataframe df = pd.DataFrame() # Process each file and add to dataframe for fp in p.infile: db = pyfsdb.Fsdb(file_handle=fp) rows = [r for r in db] data = np.array(rows) dfp = pd.DataFrame(data=data, columns=db.column_names) df = pd.concat([df,dfp], ignore_index=True) cols = list(df.columns) # Sort dataframe if p.sortkey: df.sort_values(by=[p.sortkey], inplace=True) # Move sortkey to first col if p.sortkey in cols: cols.remove(p.sortkey) cols.insert(0, p.sortkey) df = df[cols] # Add psl where needed if p.pslkey: pslcols = ["_pslpfx", "_psldom", "_pslpub"] dfncons = pd.DataFrame(columns=pslcols) for k in p.pslkey: vals = df[k].apply(lambda x: get_psl(x)) dfn = vals.to_frame() listvals = dfn[k].values.tolist() dfn_split =
pd.DataFrame(listvals, index=dfn.index, columns=pslcols)
pandas.DataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Dec 14 18:21:32 2020 @author: dhbubu18 """ import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import os plt.rcParams['savefig.dpi'] = 300 plt.rcParams['font.size'] = 16 climate = 'LA' file1 = '{0}/BICBase.txt'.format(climate) #file2 = 'BICBase_{0}_hLoad_lHours/BICBase_ts.csv'.format(climate) file3 = '{0}/BICMid.txt'.format(climate) #file4 = 'BICMid_{0}_hLoad_lHours/BICMid_ts.csv'.format(climate) file5 = '{0}/Guideline36.txt'.format(climate) file6 = '{0}/Guideline36_small.txt'.format(climate) #def load_results(result_file1, result_file2, resample=False): def load_results(result_file1, result_file2=None, resample=False): result_folder = '/mnt/hgfs/VMShare18/202010' result_path1 = os.path.join(result_folder,result_file1) df_ts = pd.read_csv(result_path1, index_col='Time') df_ts.index = pd.to_datetime(df_ts.index,unit='s') df_ts = df_ts[~df_ts.index.duplicated(keep='first')] if result_file2: result_path2 = os.path.join(result_folder,result_file2) df_2 = pd.read_csv(result_path2, index_col='Time') df_2.index = pd.to_datetime(df_2.index,unit='s') df_2 = df_2[~df_2.index.duplicated(keep='first')] print(df_ts) print(df_2) df =
pd.concat([df_ts,df_2],axis=1)
pandas.concat
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import random import unittest.mock as mock from datetime import datetime, timedelta from unittest import TestCase import numpy as np import pandas as pd from kats.consts import TimeSeriesData from kats.detectors.stat_sig_detector import ( MultiStatSigDetectorModel, StatSigDetectorModel, SeasonalityHandler, ) from kats.utils.simulator import Simulator from parameterized.parameterized import parameterized from operator import attrgetter _SERIALIZED = b'{"n_control": 20, "n_test": 7, "time_unit": "s"}' _SERIALIZED2 = b'{"n_control": 20, "n_test": 7, "time_unit": "s", "rem_season": false, "seasonal_period": "weekly", "use_corrected_scores": true, "max_split_ts_length": 500}' class TestStatSigDetector(TestCase): def setUp(self) -> None: date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") previous_seq = [date_start + timedelta(days=x) for x in range(60)] values = np.random.randn(len(previous_seq)) self.ts_init = TimeSeriesData( pd.DataFrame({"time": previous_seq[0:30], "value": values[0:30]}) ) self.ts_later = TimeSeriesData( pd.DataFrame({"time": previous_seq[30:35], "value": values[30:35]}) ) self.ss_detect = StatSigDetectorModel(n_control=20, n_test=7) def test_detector(self) -> None: np.random.seed(100) pred_later = self.ss_detect.fit_predict( historical_data=self.ts_init, data=self.ts_later ) self.ss_detect.visualize() # prediction returns scores of same length self.assertEqual(len(pred_later.scores), len(self.ts_later)) def test_logging(self) -> None: np.random.seed(100) date_start_str = "2020-03-01" date_start = datetime.strptime(date_start_str, "%Y-%m-%d") num_seq = 3 previous_seq = [date_start + timedelta(days=x) for x in range(60)] values = [np.random.randn(len(previous_seq)) for _ in range(num_seq)] ts_init = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq[0:30]}, **{f"value_{i}": values[i][0:30] for i in range(num_seq)}, } ) ) ts_later = TimeSeriesData( pd.DataFrame( { **{"time": previous_seq[30:35]}, **{f"value_{i}": values[i][30:35] for i in range(num_seq)}, } ) ) self.assertEqual(self.ss_detect.n_test, 7) with self.assertRaises(ValueError): self.ss_detect.fit_predict(historical_data=ts_init, data=ts_later) # pyre-fixme[56]: Pyre was not able to infer the type of the decorator @parameterized.expand( [ ["n_control", 20], ["n_test", 7], ["time_unit", "s"], ["rem_season", False], ["seasonal_period", "weekly"], ] ) def test_load_from_serialized(self, attribute:str, expected:object) -> None: detector = StatSigDetectorModel(serialized_model=_SERIALIZED) self.assertEqual(attrgetter(attribute)(detector), expected) def test_serialize(self) -> None: detector = StatSigDetectorModel(n_control=20, n_test=7, time_unit="s") self.assertEqual(_SERIALIZED2, detector.serialize()) def test_missing_values(self) -> None: with self.assertRaises(ValueError): _ = StatSigDetectorModel() def test_visualize_unpredicted(self) -> None: detector = StatSigDetectorModel(n_control=20, n_test=7) with self.assertRaises(ValueError): detector.visualize() def test_missing_time_unit(self) -> None: detector = StatSigDetectorModel(n_control=20, n_test=7) with mock.patch.object(detector, "_set_time_unit"): with self.assertRaises(ValueError): detector.fit_predict(data=self.ts_later, historical_data=self.ts_init) def test_no_update(self) -> None: detector = StatSigDetectorModel(n_control=20, n_test=7) with mock.patch.object(detector, "_should_update") as su: su.return_value = False result = detector.fit_predict( data=self.ts_later, historical_data=self.ts_init ) self.assertEqual(detector.response, result) def test_fallback_on_historical_time_unit(self) -> None: data = TimeSeriesData( pd.DataFrame( { "time": [ datetime(2021, 1, 1), datetime(2021, 1, 2), datetime(2021, 2, 1), ], "values": [0, 1, 2], } ) ) detector = StatSigDetectorModel(n_control=20, n_test=7) detector.fit_predict(data=data, historical_data=self.ts_init) self.assertEqual("D", detector.time_unit) def test_remove_season(self) -> None: sim3 = Simulator(n=120, start="2018-01-01") ts3 = sim3.level_shift_sim( cp_arr=[60], level_arr=[1.35, 1.05], noise=0.05, seasonal_period=7, seasonal_magnitude=0.575, ) n_control = 14 * 86400 n_test = 14 * 86400 ss_detect5 = StatSigDetectorModel( n_control=n_control, n_test=n_test, time_unit="sec", rem_season=True, seasonal_period="biweekly", ) anom3 = ss_detect5.fit_predict(data=ts3) self.assertEqual(np.min(anom3.scores.value.values) < -5, True) # pyre-fixme[56]: Pyre was not able to infer the type of the decorator @parameterized.expand( [ ["weekly", 0.1], ["daily"], ] ) def test_season_handler(self, period:str, lpj_factor:float=0.1) -> None: sim3 = Simulator(n=120, start="2018-01-01") ts3 = sim3.level_shift_sim( cp_arr=[60], level_arr=[1.35, 1.05], noise=0.05, seasonal_period=7, seasonal_magnitude=0.575, ) with self.assertRaises(ValueError): if period == "weekly": SeasonalityHandler(data=ts3, seasonal_period=period, lpj_factor=lpj_factor) else: SeasonalityHandler(data=ts3, seasonal_period=period) class TestStatSigDetectorPMM(TestCase): def setUp(self) -> None: random.seed(100) time_unit = 86400 hist_data_time = [x * time_unit for x in range(0, 28)] data_time = [x * time_unit for x in range(28, 35)] hist_data_value = [random.normalvariate(100, 10) for _ in range(0, 28)] data_value = [random.normalvariate(130, 10) for _ in range(28, 35)] self.hist_ts = TimeSeriesData( time=pd.Series(hist_data_time), value=pd.Series(hist_data_value), use_unix_time=True, unix_time_units="s", ) self.data_ts = TimeSeriesData( time=pd.Series(data_time), value=pd.Series(data_value), use_unix_time=True, unix_time_units="s", ) # default pmm_model = StatSigDetectorModel(n_control=20 * 86400, n_test=7 * 86400, time_unit="S") self.pred_default = pmm_model.fit_predict(historical_data=self.hist_ts, data=self.data_ts) # remove seasonality pmm_no_seasonality_model = StatSigDetectorModel( n_control=20 * 86400, n_test=7 * 86400, time_unit="S", rem_season=True, seasonal_period="weekly", ) self.pred_no_seasonality = pmm_no_seasonality_model.fit_predict(historical_data=self.hist_ts, data=self.data_ts) # no history pmm_no_history_model = StatSigDetectorModel( n_control=10 * 86400, n_test=10 * 86400, time_unit="S" ) self.pred_no_history = pmm_no_history_model.fit_predict(data=self.hist_ts) # no history, remove seasonality pmm_no_history_no_seasonality_model = StatSigDetectorModel( n_control=10 * 86400, n_test=10 * 86400, time_unit="S", rem_season=True, seasonal_period="weekly", ) self.pred_no_history_no_seasonality = pmm_no_history_no_seasonality_model.fit_predict(data=self.hist_ts) # pyre-fixme[56]: Pyre was not able to infer the type of the decorator @parameterized.expand( [ ["pred_default", "data_ts"], ["pred_no_seasonality", "data_ts"], ["pred_no_history", "hist_ts"], ["pred_no_history_no_seasonality", "hist_ts"], ] ) def test_pmm_length(self, attr_pred: str, attr_actual: str) -> None: self.assertEqual(len(attrgetter(attr_pred)(self).scores), len(attrgetter(attr_actual)(self))) # pyre-fixme[56]: Pyre was not able to infer the type of the decorator @parameterized.expand( [ ["pred_default"], ["pred_no_seasonality"], ] ) def test_pmm_max(self, attr_pred: str) -> None: self.assertTrue(attrgetter(attr_pred)(self).scores.value.values.max() > 2.0) class TestStatSigDetectorBigData(TestCase): def setUp(self) -> None: n_control = 28 n_test = 7 random.seed(0) control_time = pd.date_range( start="2018-01-06", freq="D", periods=(n_control + n_test - 5) ) test_time =
pd.date_range(start="2018-02-05", freq="D", periods=500)
pandas.date_range
import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates import matplotlib as mpl import netCDF4 as nc import datetime as dt from salishsea_tools import evaltools as et, places, viz_tools, visualisations, geo_tools import xarray as xr import pandas as pd import pickle import os import gsw # Extracting winds from the correct path def getWindVarsYear(year,loc): ''' Given a year, returns the correct directory and nam_fmt for wind forcing as well as the location of S3 on the corresponding grid. Parameters: year: a year value in integer form loc: the location name as a string. Eg. loc='S3' Returns: jW: y-coordinate for the location iW: x-coordinate for the location opsdir: path to directory where wind forcing file is stored nam_fmt: naming convention of the appropriate files ''' if year>2014: opsdir='/results/forcing/atmospheric/GEM2.5/operational/' nam_fmt='ops' jW,iW=places.PLACES[loc]['GEM2.5 grid ji'] else: opsdir='/data/eolson/results/MEOPAR/GEMLAM/' nam_fmt='gemlam' with xr.open_dataset('/results/forcing/atmospheric/GEM2.5/gemlam/gemlam_y2012m03d01.nc') as gridrefWind: # always use a post-2011 file here to identify station grid location lon,lat=places.PLACES[loc]['lon lat'] jW,iW=geo_tools.find_closest_model_point(lon,lat, gridrefWind.variables['nav_lon'][:,:]-360,gridrefWind.variables['nav_lat'][:,:], grid='GEM2.5') # the -360 is needed because longitudes in this case are reported in postive degrees East return jW,iW,opsdir,nam_fmt # Metric 1: def metric1_bloomtime(phyto_alld,no3_alld,bio_time): ''' Given datetime array and two 2D arrays of phytoplankton and nitrate concentrations, over time and depth, returns a datetime value of the spring phytoplankton bloom date according to the following definition (now called 'metric 1'): 'The spring bloom date is the peak phytoplankton concentration (averaged from the surface to 3 m depth) within four days of the average upper 3 m nitrate concentration going below 0.5 uM (the half-saturation concentration) for two consecutive days' EDIT: 0.5 uM was changed to 2.0 uM to yield more accurate results Parameters: phyto_alld: 2D array of phytoplankton concentrations (in uM N) over all depths and time range of 'bio_time' no3_alld: 2D array of nitrate concentrations (in uM N) over all depths and time range of 'bio_time' bio_time: 1D datetime array of the same time frame as phyto_alld and no3_alld Returns: bloomtime1: the spring bloom date as a single datetime value ''' # a) get avg phytplankton in upper 3m phyto_alld_df=pd.DataFrame(phyto_alld) upper_3m_phyto=pd.DataFrame(phyto_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_phyto.columns=['upper_3m_phyto'] #upper_3m_phyto # b) get average no3 in upper 3m no3_alld_df=pd.DataFrame(no3_alld) upper_3m_no3=pd.DataFrame(no3_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_no3.columns=['upper_3m_no3'] #upper_3m_no3 # make bio_time into a dataframe bio_time_df=pd.DataFrame(bio_time) bio_time_df.columns=['bio_time'] metric1_df=pd.concat((bio_time_df,upper_3m_phyto,upper_3m_no3), axis=1) # c) Find first location where nitrate crosses below 0.5 micromolar and # stays there for 2 days # NOTE: changed the value to 2 micromolar location1=np.nan for i, row in metric1_df.iterrows(): try: if metric1_df['upper_3m_no3'].iloc[i]<2 and metric1_df['upper_3m_no3'].iloc[i+1]<2: location1=i break except IndexError: location1=np.nan print('bloom not found') # d) Find date with maximum phytoplankton concentration within four days (say 9 day window) of date in c) if np.isnan(location1): bloomrange=np.nan bloomtime1=np.nan else: bloomrange=metric1_df[location1-4:location1+5] bloomtime1=bloomrange.loc[bloomrange.upper_3m_phyto.idxmax(), 'bio_time'] return bloomtime1 # Metric 2: def metric2_bloomtime(phyto_alld,no3_alld,bio_time): ''' Given datetime array and two 2D arrays of phytoplankton and nitrate concentrations, over time and depth, returns a datetime value of the spring phytoplankton bloom date according to the following definition (now called 'metric 2'): 'The first peak in which chlorophyll concentrations in upper 3m are above 5 ug/L for more than two days' Parameters: phyto_alld: 2D array of phytoplankton concentrations (in uM N) over all depths and time range of 'bio_time' no3_alld: 2D array of nitrate concentrations (in uM N) over all depths and time range of 'bio_time' bio_time: 1D datetime array of the same time frame as sphyto and sno3 Returns: bloomtime2: the spring bloom date as a single datetime value ''' # a) get avg phytplankton in upper 3m phyto_alld_df=pd.DataFrame(phyto_alld) upper_3m_phyto=pd.DataFrame(phyto_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_phyto.columns=['sphyto'] #upper_3m_phyto # b) get average no3 in upper 3m no3_alld_df=pd.DataFrame(no3_alld) upper_3m_no3=pd.DataFrame(no3_alld_df[[0,1,2,3]].mean(axis=1)) upper_3m_no3.columns=['sno3'] #upper_3m_no3 # make bio_time into a dataframe bio_time_df=pd.DataFrame(bio_time) bio_time_df.columns=['bio_time'] df=pd.concat((bio_time_df,upper_3m_phyto,upper_3m_no3), axis=1) # to find all the peaks: df['phytopeaks'] = df.sphyto[(df.sphyto.shift(1) < df.sphyto) & (df.sphyto.shift(-1) < df.sphyto)] # need to covert the value of interest from ug/L to uM N (conversion factor: 1.8 ug Chl per umol N) chlvalue=5/1.8 # extract the bloom time date for i, row in df.iterrows(): try: if df['sphyto'].iloc[i-1]>chlvalue and df['sphyto'].iloc[i-2]>chlvalue and pd.notna(df['phytopeaks'].iloc[i]): bloomtime2=df.bio_time[i] break elif df['sphyto'].iloc[i+1]>chlvalue and df['sphyto'].iloc[i+2]>chlvalue and pd.notna(df['phytopeaks'].iloc[i]): bloomtime2=df.bio_time[i] break except IndexError: bloomtime2=np.nan print('bloom not found') return bloomtime2 # Metric 3: def metric3_bloomtime(sphyto,sno3,bio_time): ''' Given datetime array and two 1D arrays of surface phytplankton and nitrate concentrations over time, returns a datetime value of the spring phytoplankton bloom date according to the following definition (now called 'metric 3'): 'The median + 5% of the annual Chl concentration is deemed “threshold value” for each year. For a given year, bloom initiation is determined to be the week that first reaches the threshold value (by looking at weekly averages) as long as one of the two following weeks was >70% of the threshold value' Parameters: sphyto: 1D array of phytoplankton concentrations (in uM N) over time range of 'bio_time' sno3: 1D array of nitrate concentrations (in uM N) over time range of 'bio_time' bio_time: 1D datetime array of the same time frame as sphyto and sno3 Returns: bloomtime3: the spring bloom date as a single datetime value ''' # 1) determine threshold value df = pd.DataFrame({'bio_time':bio_time, 'sphyto':sphyto, 'sno3':sno3}) # a) find median chl value of that year, add 5% (this is only feb-june, should we do the whole year?) threshold=df['sphyto'].median()*1.05 # b) secondthresh = find 70% of threshold value secondthresh=threshold*0.7 # 2) Take the average of each week and make a dataframe with start date of week and weekly average weeklychl = pd.DataFrame(df.resample('W', on='bio_time').sphyto.mean()) weeklychl.reset_index(inplace=True) # 3) Loop through the weeks and find the first week that reaches the threshold. # Is one of the two week values after this week > secondthresh? for i, row in weeklychl.iterrows(): try: if weeklychl['sphyto'].iloc[i]>threshold and weeklychl['sphyto'].iloc[i+1]>secondthresh: bloomtime3=weeklychl.bio_time[i] break elif weeklychl['sphyto'].iloc[i]>threshold and weeklychl['sphyto'].iloc[i+2]>secondthresh: bloomtime3=weeklychl.bio_time[i] break except IndexError: bloomtime2=np.nan print('bloom not found') return bloomtime3 # Surface monthly average calculation given 2D array with depth and time: def D2_3monthly_avg(time,x): ''' Given datetime array of 3 months and a 2D array of variable x, over time and depth, returns an array containing the 3 monthly averages of the surface values of variable x Parameters: time: datetime array of each day starting from the 1st day of the first month, ending on the last day of the third month x: 2-dimensional numpy array containing daily averages of the same length and time frame as 'time', and depth profile Returns: jan_x, feb_x, mar_x: monthly averages of variable x at surface ''' depthx=
pd.DataFrame(x)
pandas.DataFrame
from datetime import datetime import os import re import numpy as np import pandas as pd from fetcher.extras.common import MaRawData, zipContextManager from fetcher.utils import Fields, extract_arcgis_attributes NULL_DATE = datetime(2020, 1, 1) DATE = Fields.DATE.name TS = Fields.TIMESTAMP.name DATE_USED = Fields.DATE_USED.name def add_query_constants(df, query): for k, v in query.constants.items(): df[k] = v return df def build_leveled_mapping(mapping): tab_mapping = {x.split(":")[0]: {} for x in mapping.keys() if x.find(':') > 0} for k, v in mapping.items(): if k.find(':') < 0: continue tab, field = k.split(":") tab_mapping[tab][field] = v return tab_mapping def prep_df(values, mapping): df = pd.DataFrame(values).rename(columns=mapping).set_index(DATE) for c in df.columns: if c.find('status') >= 0: continue # convert to numeric df[c] = pd.to_numeric(df[c]) df.index = pd.to_datetime(df.index, errors='coerce') return df def make_cumsum_df(data, timestamp_field=Fields.TIMESTAMP.name): df = pd.DataFrame(data) df.set_index(timestamp_field, inplace=True) df.sort_index(inplace=True) df = df.select_dtypes(exclude=['string', 'object']) # .groupby(level=0).last() # can do it here, but not mandatory cumsum_df = df.cumsum() cumsum_df[Fields.TIMESTAMP.name] = cumsum_df.index return cumsum_df def handle_ak(res, mapping): tests = res[0] collected = [x['attributes'] for x in tests['features']] df = pd.DataFrame(collected) df = df.pivot(columns='Test_Result', index='Date_Collected') df.columns = df.columns.droplevel() df['tests_total'] = df.sum(axis=1) df = df.rename(columns=mapping).cumsum() df[TS] = df.index df[DATE_USED] = 'Specimen Collection' tagged = df.to_dict(orient='records') return tagged def handle_ar(res, mapping): # simply a cumsum table data = extract_arcgis_attributes(res[0], mapping) cumsum_df = make_cumsum_df(data) return cumsum_df.to_dict(orient='records') def handle_ct(res, mapping, queries): tests = res[0] df = pd.DataFrame(tests).rename(columns=mapping).set_index(DATE) for c in df.columns: # convert to numeric df[c] = pd.to_numeric(df[c]) df.index = df.index.fillna(NULL_DATE.strftime(mapping.get('__strptime'))) df = df.sort_index().cumsum() df[TS] = pd.to_datetime(df.index) df[TS] = df[TS].values.astype(np.int64) // 10 ** 9 add_query_constants(df, queries[0]) tagged = df.to_dict(orient='records') # by report df = res[1].rename(columns=mapping).sort_values('DATE') add_query_constants(df, queries[1]) df[TS] = df['DATE'] tagged.extend(df.to_dict(orient='records')) # death + cases for i, df in enumerate(res[2:]): df = res[2+i].rename(columns=mapping).set_index('DATE').sort_index().cumsum() add_query_constants(df, queries[2+i]) df[TS] = df.index tagged.extend(df.to_dict(orient='records')) return tagged def handle_dc(res, mapping, queries): df = res[0] # make it pretty df = df[df['Unnamed: 0'] == 'Testing'].T df.columns = df.loc['Unnamed: 1'] df = df.iloc[2:] df.index =
pd.to_datetime(df.index, errors='coerce')
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Importing modules import os import sys import numpy as np import pandas as pd import tqdm import gc import csv import argparse import scipy import scipy.stats # This function is to read the file and to get the DataFrame with unweighted counts # Input: # - input_file_path: Path to the file with reads and their corresponding transcripts (total_summary.txt file) # Output: DataFrame with unweighted counts without 'Total' and 'N/A' rows and columns def FileRead(input_file_path): # Reading the file to DataFrame to_return = pd.read_csv(input_file_path, sep="\t", header=0) return to_return # This function is used to normalize the counts using TMM # Input: # - input_downweighted_df: DataFrame with downweighted counts # Output: DataFrame with normalized read counts def TMMNormalization(input_downweighted_df): # Adding small number to prevent doing log(0) final_df = input_downweighted_df.copy() # Output DataFrames first_df = pd.DataFrame() geom_mean_df = pd.DataFrame() # Iterate on the sample names list to obtain a DataFrame of downweighted read counts divided by geometric mean of a transcript for i in range(final_df.shape[0]): # Obtain list of counts for a particular transcript transcript_counts = list(final_df.iloc[i,2:]) # Obtain geometric mean transcript_geom_mean = scipy.stats.mstats.gmean(transcript_counts) # If the geometric mean of the transcript is equal 0, omit the transcript if transcript_geom_mean == 0: del transcript_counts, transcript_geom_mean continue # Creating output DataFrames transcript_geom_mean_df = pd.DataFrame({0: [final_df.iloc[i,0]], 1: [final_df.iloc[i,1]] , 2: [transcript_geom_mean]}) geom_mean_df = geom_mean_df.append(transcript_geom_mean_df) del transcript_geom_mean_df # Obtain DataFrame with downweighted read counts multiplied by geometric mean of a transcript temp_df = pd.DataFrame([final_df.iloc[i,:]]) temp_df.iloc[:,2:] = temp_df.iloc[:,2:]/transcript_geom_mean # Append the row to the final DataFrame first_df = first_df.append(temp_df) del transcript_counts, transcript_geom_mean, temp_df del i geom_mean_df.columns = ['#Transcript_splicing_pattern', 'Transcript_ID', 'geometric_mean'] # Read sample names from column names of DataFrame iteration_list = list(final_df.columns)[2:] # Iterate on the DataFrame sample name columns with normalization factors and normalize the read counts by multiplification of each read count by median of normalization factor per sample sample_factor_df =
pd.DataFrame()
pandas.DataFrame
# coding=utf-8 import unittest import numpy as np import pandas as pd from clustermatch.utils.data import merge_sources from .utils import get_data_file class ReadTomateTest(unittest.TestCase): def test_merge_sources_using_ps(self): ## Preparar data_file = get_data_file('ps_2011_2012.csv') ## Correr ps_pro = merge_sources(data_file)[0] ## Validar assert ps_pro is not None assert hasattr(ps_pro, 'shape') assert ps_pro.shape[0] == 10 assert ps_pro.shape[1] == 13 assert ps_pro.notnull().all().all() # arriba izquierda assert ps_pro.round(3).loc['Arom-1', '552'] == 0.000 assert ps_pro.round(3).loc['Arom-1', '553'] == 0.000 assert ps_pro.round(3).loc['Arom-5', '552'] == 0.533 # arriba derecha assert ps_pro.round(3).loc['Arom-1', 'Bigua'] == 0.111 assert ps_pro.round(3).loc['Arom-1', 'Elpida'] == 0.037 assert ps_pro.round(3).loc['Arom-5', 'Elpida'] == 0.296 # abajo derecha assert ps_pro.round(3).loc['Jug-4', 'Bigua'] == 0.172 assert ps_pro.round(3).loc['Jug-4', 'Elpida'] == 0.586 assert ps_pro.round(3).loc['Jug-1', 'Elpida'] == 0.000 # abajo izquierda assert ps_pro.round(3).loc['Jug-4', '553'] == 0.158 assert ps_pro.round(3).loc['Jug-4', '552'] == 0.533 assert ps_pro.round(3).loc['Jug-1', '552'] == 0.000 def test_merge_sources_using_vo(self): ## Preparar data_file = get_data_file('vo_2011_2012.csv') ## Correr vo_pro = merge_sources(data_file)[0] ## Validar assert vo_pro is not None assert hasattr(vo_pro, 'shape') assert vo_pro.shape[0] == 42 assert vo_pro.shape[1] == 11 assert vo_pro.notnull().all().all() # arriba izquierda assert vo_pro.round(3).loc['UNK 43', '552'] == 5.12 assert vo_pro.round(3).loc['UNK 43', '553'] == 4.77 assert vo_pro.round(3).loc['3mBUTANAL', '552'] == 0.000 # arriba derecha assert vo_pro.round(3).loc['UNK 43', 'Bigua'] == 2.43 assert vo_pro.round(3).loc['UNK 43', 'Elpida'] == 3.40 assert vo_pro.round(3).loc['3mBUTANAL', 'Elpida'] == 1.34 # abajo derecha assert vo_pro.round(3).loc['TRANS2HEXENAL', 'Bigua'] == 0.00 assert vo_pro.round(3).loc['TRANS2HEXENAL', 'Elpida'] == 7.11 assert vo_pro.round(3).loc['CIS2HEXENAL', 'Elpida'] == 0.00 # abajo izquierda assert vo_pro.round(3).loc['TRANS2HEXENAL', '553'] == 6.90 assert vo_pro.round(3).loc['TRANS2HEXENAL', '552'] == 5.40 assert vo_pro.round(3).loc['CIS2HEXENAL', '552'] == 0.000 def test_merge_sources_using_me_with_rep_merge_mean(self): ## Preparar data_file = get_data_file('me_2011_2012.csv') ## Correr me_pro = merge_sources(data_file, rep_merge=np.mean)[0] ## Validar assert me_pro is not None assert hasattr(me_pro, 'shape') assert me_pro.shape[0] == 89 assert me_pro.shape[1] == 44 # chequear todos los valores nulos assert pd.isnull(me_pro.loc['NA_2106.37', '3806']) assert pd.isnull(me_pro.loc['NA_1608.87', '3815']) assert pd.isnull(me_pro.loc['NA_2106.37', '4748']) assert pd.isnull(me_pro.loc['Glucoheptonic acid-1.4-lactone', '4748']) assert pd.isnull(me_pro.loc['NA_2106.37', '560']) assert pd.isnull(me_pro.loc['Glucoheptonic acid-1.4-lactone', '560']) # arriba izquierda assert me_pro.round(3).loc['serine', '549'] == 19.905 assert me_pro.round(3).loc['serine', '551'] == 13.735 # arriba derecha assert me_pro.round(3).loc['serine', '4751'] == 38.439 assert me_pro.round(3).loc['Ethanolamine', '4751'] == 1.619 # abajo izquierda assert me_pro.round(3).loc['Sucrose', '549'] == 171.211 assert me_pro.round(3).loc['NA_2627.66', '549'] == 3.853 # abajo derecha assert me_pro.round(3).loc['NA_2627.66', '4751'] == 5.018 assert me_pro.round(3).loc['NA_2627.66', '4750'] == 13.353 def test_merge_sources_using_ag(self): ## Preparar data_file = get_data_file('ag_2011_2012.csv') ## Correr ag_pro = merge_sources(data_file)[0] ## Validar assert ag_pro is not None assert hasattr(ag_pro, 'shape') assert ag_pro.shape[0] == 16 assert ag_pro.shape[1] == 19 # chequear todos los valores nulos # assert pd.isnull(ag_pro.loc['perim', '549']) # arriba izquierda assert ag_pro.round(3).loc['peso', '549'] == 287.247 assert ag_pro.round(3).loc['peso', '550'] == 189.247 assert ag_pro.round(3).loc['perim', '549'] == 280.336 # arriba derecha assert ag_pro.round(3).loc['peso', '572'] == 10.31 assert ag_pro.round(3).loc['firmeza', '572'] == 1.383 # abajo izquierda assert ag_pro.round(3).loc['a_cielab', '549'] == 44.870 assert ag_pro.round(3).loc['b_cielab', '549'] == 61.691 # abajo derecha assert ag_pro.round(3).loc['b_cielab', '572'] == 57.386 assert ag_pro.round(3).loc['b_cielab', '571'] == 61.842 # Casos especiales # todos ceros assert ag_pro.round(3).loc['area_indent', '572'] == 0.000 # valores cercanos a cero assert ag_pro.round(3).loc['area_indent', '571'] == 0.038 def test_merge_sources_using_ap(self): ## Preparar data_file = get_data_file('ap_2011_2012.csv') ## Correr ap_pro = merge_sources(data_file)[0] ## Validar assert ap_pro is not None assert hasattr(ap_pro, 'shape') assert ap_pro.shape[0] == 7 assert ap_pro.shape[1] == 42 # chequear todos los valores nulos # assert pd.isnull(ag_pro.loc['perim', '549']) # arriba izquierda assert ap_pro.round(3).loc['Peso', '549'] == 0.532 assert ap_pro.round(3).loc['Peso', '550'] == 0.620 # arriba derecha assert ap_pro.round(3).loc['Peso', 'elpida'] == 0.540 assert ap_pro.round(3).loc['TEAC HID (meq. Trolox %)', 'elpida'] == 0.351 # abajo izquierda assert ap_pro.round(3).loc['carotenos (mg%)', '549'] == 0.260 assert ap_pro.round(3).loc['LICOP (mg%)', '549'] == 3.969 # abajo derecha assert ap_pro.round(3).loc['carotenos (mg%)', 'elpida'] == 0.511 assert ap_pro.round(3).loc['carotenos (mg%)', 'bigua'] == 0.319 # Casos especiales # un nan en el medio assert ap_pro.round(3).loc['TEAC LIP (meq. Trolox %)', '558'] == 0.029 def test_merge_sources_index_name(self): ## Preparar data_file = get_data_file('ap_2011_2012.csv') ## Correr ap_pro = merge_sources(data_file)[0] ## Validar assert ap_pro is not None assert hasattr(ap_pro, 'index') assert ap_pro.index.name == 'features' def test_merge_source_returning_names_using_ag(self): ## Preparar data_file = get_data_file('ag_2011_2012.csv') ## Correr ag_pro, ag_nom, _ = merge_sources(data_file) ## Validar assert ag_pro is not None assert ag_nom is not None assert len(ag_nom) == 16 assert ag_nom[0] == 'peso' assert ag_nom[1] == 'firmeza' assert ag_nom[7] == 'area_indent' assert ag_nom[14] == 'a_cielab' assert ag_nom[15] == 'b_cielab' def test_merge_source_returning_names_using_ap(self): ## Preparar data_file = get_data_file('ap_2011_2012.csv') ## Correr ap_pro, ap_nom, _ = merge_sources(data_file) ## Validar assert ap_pro is not None assert ap_nom is not None assert len(ap_nom) == 7 assert ap_nom[0] == 'Peso' assert ap_nom[1] == 'TEAC HID (meq. Trolox %)' assert ap_nom[2] == 'TEAC LIP (meq. Trolox %)' assert ap_nom[3] == 'FRAP (meq. Trolox %)' assert ap_nom[4] == 'FOLIN (mg Ac Galico/100g)' assert ap_nom[5] == 'LICOP (mg%)' assert ap_nom[6] == 'carotenos (mg%)' def test_merge_source_returning_names_using_ap_ps(self): ## Preparar data_files = [get_data_file('ap_2011_2012.csv'), get_data_file('ps_2011_2012.csv')] ## Correr pro, nom, _ = merge_sources(data_files) ## Validar assert pro is not None assert nom is not None assert len(nom) == 7 + 10 ap_var_names = ['Peso', 'TEAC HID (meq. Trolox %)', 'TEAC LIP (meq. Trolox %)', 'FRAP (meq. Trolox %)', 'FOLIN (mg Ac Galico/100g)', 'LICOP (mg%)', 'carotenos (mg%)'] if not (ap_var_names == nom[:7] or ap_var_names == nom[-7:]): self.fail('ap variables not found') ps_var_names = ['Arom-1', 'Arom-5', 'Sab-1', 'Sab-5', 'Dulz-1', 'Dulz-5', 'Acid-1', 'Acid-5', 'Jug-1', 'Jug-4'] if not (ps_var_names == nom[:10] or ps_var_names == nom[-10:]): self.fail('ap variables not found') def test_merge_source_returning_sources_using_ap_ps(self): ## Preparar data_files = [get_data_file('ap_2011_2012.csv'), get_data_file('ps_2011_2012.csv')] ## Correr pro, nom, sources = merge_sources(data_files) ## Validar assert pro is not None assert nom is not None assert sources is not None assert len(sources) == 7 + 10 assert len(set(sources)) == 2 # unique source names assert 'ps_2011_2012' in sources assert 'ap_2011_2012' in sources if sources[0] == 'ps_2011_2012': assert len(set(sources[:10])) == 1 assert 'ps_2011_2012' in set(sources[:10]) assert len(set(sources[-7:])) == 1 assert 'ap_2011_2012' in set(sources[-7:]) else: assert len(set(sources[:7])) == 1 assert 'ap_2011_2012' in set(sources[:7]) assert len(set(sources[-10:])) == 1 assert 'ps_2011_2012' in set(sources[-10:]) def test_merge_sources_multiple_using_ps_vo(self): ## Preparar ps_data_file = get_data_file('ps_2011_2012.csv') vo_data_file = get_data_file('vo_2011_2012.csv') fuentes = [ps_data_file, vo_data_file] ## Correr procesado, nombres, _ = merge_sources(fuentes) ## Validar assert procesado is not None assert hasattr(procesado, 'shape') assert procesado.shape[0] == 10 + 42 assert procesado.shape[1] == 13 # columnas totales, se cuenta una sola vez las compartidas # ps assert procesado.round(3).loc['Arom-1', '552'] == 0.00 assert procesado.round(3).loc['Arom-1', '3837'] == 0.00 assert procesado.round(3).loc['Arom-1', '4735'] == 0.063 assert procesado.round(3).loc['Arom-1', '1589'] == 0.231 assert procesado.round(3).loc['Arom-1', 'Bigua'] == 0.111 assert procesado.round(3).loc['Arom-1', 'Elpida'] == 0.037 assert procesado.round(3).loc['Jug-4', '552'] == 0.533 # abajo izquierda assert procesado.round(3).loc['Jug-4', 'Elpida'] == 0.586 # abajo derecha # vo assert procesado.round(3).loc['UNK 43', '552'] == 5.12 assert procesado.round(3).loc['UNK 43', '3837'] == 3.98 assert pd.isnull(procesado.round(3).loc['UNK 43', '4735']) assert pd.isnull(procesado.round(3).loc['UNK 43', '1589']) assert procesado.round(3).loc['UNK 43', 'Bigua'] == 2.430 assert procesado.round(3).loc['UNK 43', 'Elpida'] == 3.400 assert procesado.round(3).loc['TRANS2HEXENAL', '552'] == 5.400 # abajo izquierda assert procesado.round(3).loc['TRANS2HEXENAL', 'Elpida'] == 7.110 # abajo derecha def test_merge_sources_multiple_using_me_ag(self): ## Preparar me_data_file = get_data_file('me_2011_2012.csv') ag_data_file = get_data_file('ag_2011_2012.csv') fuentes = [me_data_file, ag_data_file] ## Correr procesado, nombres, _ = merge_sources(fuentes) ## Validar assert procesado is not None assert hasattr(procesado, 'shape') assert procesado.shape[0] == 89 + 16 assert procesado.shape[1] == 47 # columnas totales, se cuenta una sola vez las compartidas # me ## valores nulos assert pd.isnull(procesado.loc['NA_2106.37', '3806']) assert pd.isnull(procesado.loc['NA_1608.87', '3815']) assert pd.isnull(procesado.loc['NA_2106.37', '4748']) assert pd.isnull(procesado.loc['Glucoheptonic acid-1.4-lactone', '4748']) assert pd.isnull(procesado.loc['NA_2106.37', '560']) assert
pd.isnull(procesado.loc['Glucoheptonic acid-1.4-lactone', '560'])
pandas.isnull
'''Assignment 4 - Understanding and Predicting Property Maintenance Fines This assignment is based on a data challenge from the Michigan Data Science Team (MDST). The Michigan Data Science Team (MDST) and the Michigan Student Symposium for Interdisciplinary Statistical Sciences (MSSISS) have partnered with the City of Detroit to help solve one of the most pressing problems facing Detroit - blight. Blight violations are issued by the city to individuals who allow their properties to remain in a deteriorated condition. Every year, the city of Detroit issues millions of dollars in fines to residents and every year, many of these fines remain unpaid. Enforcing unpaid blight fines is a costly and tedious process, so the city wants to know: how can we increase blight ticket compliance? The first step in answering this question is understanding when and why a resident might fail to comply with a blight ticket. This is where predictive modeling comes in. For this assignment, your task is to predict whether a given blight ticket will be paid on time. All data for this assignment has been provided to us through the Detroit Open Data Portal. Only the data already included in your Coursera directory can be used for training the model for this assignment. Nonetheless, we encourage you to look into data from other Detroit datasets to help inform feature creation and model selection. We recommend taking a look at the following related datasets: Building Permits Trades Permits Improve Detroit: Submitted Issues DPD: Citizen Complaints Parcel Map We provide you with two data files for use in training and validating your models: train.csv and test.csv. Each row in these two files corresponds to a single blight ticket, and includes information about when, why, and to whom each ticket was issued. The target variable is compliance, which is True if the ticket was paid early, on time, or within one month of the hearing data, False if the ticket was paid after the hearing date or not at all, and Null if the violator was found not responsible. Compliance, as well as a handful of other variables that will not be available at test-time, are only included in train.csv. Note: All tickets where the violators were found not responsible are not considered during evaluation. They are included in the training set as an additional source of data for visualization, and to enable unsupervised and semi-supervised approaches. However, they are not included in the test set. File descriptions (Use only this data for training your model!) readonly/train.csv - the training set (all tickets issued 2004-2011) readonly/test.csv - the test set (all tickets issued 2012-2016) readonly/addresses.csv & readonly/latlons.csv - mapping from ticket id to addresses, and from addresses to lat/lon coordinates. Note: misspelled addresses may be incorrectly geolocated. Data fields train.csv & test.csv ticket_id - unique identifier for tickets agency_name - Agency that issued the ticket inspector_name - Name of inspector that issued the ticket violator_name - Name of the person/organization that the ticket was issued to violation_street_number, violation_street_name, violation_zip_code - Address where the violation occurred mailing_address_str_number, mailing_address_str_name, city, state, zip_code, non_us_str_code, country - Mailing address of the violator ticket_issued_date - Date and time the ticket was issued hearing_date - Date and time the violator's hearing was scheduled violation_code, violation_description - Type of violation disposition - Judgment and judgement type fine_amount - Violation fine amount, excluding fees admin_fee - $20 fee assigned to responsible judgments state_fee - $10 fee assigned to responsible judgments late_fee - 10% fee assigned to responsible judgments discount_amount - discount applied, if any clean_up_cost - DPW clean-up or graffiti removal cost judgment_amount - Sum of all fines and fees grafitti_status - Flag for graffiti violations train.csv only payment_amount - Amount paid, if any payment_date - Date payment was made, if it was received payment_status - Current payment status as of Feb 1 2017 balance_due - Fines and fees still owed collection_status - Flag for payments in collections compliance [target variable for prediction] Null = Not responsible 0 = Responsible, non-compliant 1 = Responsible, compliant compliance_detail - More information on why each ticket was marked compliant or non-compliant Evaluation Your predictions will be given as the probability that the corresponding blight ticket will be paid on time. The evaluation metric for this assignment is the Area Under the ROC Curve (AUC). Your grade will be based on the AUC score computed for your classifier. A model which with an AUROC of 0.7 passes this assignment, over 0.75 will recieve full points. For this assignment, create a function that trains a model to predict blight ticket compliance in Detroit using readonly/train.csv. Using this model, return a series of length 61001 with the data being the probability that each corresponding ticket from readonly/test.csv will be paid, and the index being the ticket_id. Example: ticket_id 284932 0.531842 285362 0.401958 285361 0.105928 285338 0.018572 ... 376499 0.208567 376500 0.818759 369851 0.018528 Name: compliance, dtype: float32 Hints Make sure your code is working before submitting it to the autograder. Print out your result to see whether there is anything weird (e.g., all probabilities are the same). Generally the total runtime should be less than 10 mins. You should NOT use Neural Network related classifiers (e.g., MLPClassifier) in this question. Try to avoid global variables. If you have other functions besides blight_model, you should move those functions inside the scope of blight_model. Refer to the pinned threads in Week 4's discussion forum when there is something you could not figure it out.''' #---------- ANSWER CODE ---------- import pandas as pd import numpy as np def blight_model(): from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.model_selection import train_test_split,GridSearchCV from sklearn.metrics import roc_auc_score train = pd.read_csv('train.csv',encoding='latin1',engine='python') train.set_index('ticket_id',inplace=True) test = pd.read_csv('test.csv') test.set_index('ticket_id',inplace=True) #Cleaning Data train = train[train.compliance.notnull()] train = train.loc[train.city.str.lower() == 'detroit'] y_train = train.compliance train = train.loc[:,train.columns.isin(test.columns)] drop_columns = [ 'admin_fee','state_fee','late_fee','clean_up_cost', 'mailing_address_str_number','mailing_address_str_name', 'grafitti_status','non_us_str_code', 'inspector_name', 'violation_zip_code','violation_street_name','violation_description', 'violation_code','violation_street_number','violator_name', 'country','city','zip_code','state', 'ticket_issued_date', 'hearing_date', ] train.drop(drop_columns, axis=1, inplace=True) test.drop(drop_columns, axis=1, inplace=True) X_train =
pd.get_dummies(train)
pandas.get_dummies
''' THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ABOUT: This handles how the static and live figures are plotted in the DataAnalysis and Telemetry pages ''' import threading import lib.app_settings as settings import pandas as pd import numpy as np from matplotlib.figure import Figure from matplotlib import style import time import lib.app_settings as settings live_plot = Figure(figsize=(5,10), dpi=100) live_plot_subplot1 = live_plot.add_subplot(221) live_plot_subplot2 = live_plot.add_subplot(222) live_plot_subplot3 = live_plot.add_subplot(223) live_plot_subplot4 = live_plot.add_subplot(224) live_table = Figure(figsize=(5,2), dpi=100) live_table_subplot = live_table.add_subplot(111) static_plot = Figure(figsize=(5,10), dpi=100) static_plot_subplot1 = static_plot.add_subplot(221) static_plot_subplot2 = static_plot.add_subplot(222) static_plot_subplot3 = static_plot.add_subplot(223) static_plot_subplot4 = static_plot.add_subplot(224) static_table = Figure(figsize=(5,2), dpi=100) static_table_subplot = static_table.add_subplot(111) def plotting_init(): '''Initialize and configure subplots''' style.use("ggplot") global live_plot, live_plot_subplot1, live_plot_subplot2, live_plot_subplot3, live_plot_subplot4 global live_table, live_table_subplot global static_plot, static_plot_subplot1, static_plot_subplot2, static_plot_subplot3, static_plot_subplot4 global static_table, static_table_subplot live_plot = Figure(figsize=(5,10), dpi=100) live_plot_subplot1 = live_plot.add_subplot(221) live_plot_subplot2 = live_plot.add_subplot(222) live_plot_subplot3 = live_plot.add_subplot(223) live_plot_subplot4 = live_plot.add_subplot(224) live_table = Figure(figsize=(5,2), dpi=100) live_table_subplot = live_table.add_subplot(111) static_plot = Figure(figsize=(5,10), dpi=100) static_plot_subplot1 = static_plot.add_subplot(221) static_plot_subplot2 = static_plot.add_subplot(222) static_plot_subplot3 = static_plot.add_subplot(223) static_plot_subplot4 = static_plot.add_subplot(224) static_table = Figure(figsize=(5,2), dpi=100) static_table_subplot = static_table.add_subplot(111) def animate_live_plot(i): '''Used to create an animated matplotlib plot''' if (settings.CURRENT_PAGE == "Telemetry"): # To do: add additional statement to require new data to update plot if (settings.DEBUG.status == True): start = time.time() print("\nTelemetry plot performance:") data = pd.read_csv(settings.PATH_LIVEDATA) try: data.drop(["Events"], axis=1) except: if (settings.DEBUG.status == True): print("WARNING: No 'Events' in data file") if (settings.DEBUG.status == True): data_time_stop = time.time() print("Data Read Time: %f sec" %(data_time_stop-start)) start = time.time() live_plot.subplots_adjust(hspace = 0.3) # Multi-threading start def plot_altitude(): live_plot_subplot1.clear() live_plot_subplot1.plot(data['Time'], data['Altitude'], color='k') live_plot_subplot1.set_xlabel("Time (sec)") live_plot_subplot1.set_ylabel("AGL Altitude (ft)") def plot_velocity(): live_plot_subplot2.clear() live_plot_subplot2.plot(data['Time'], data['Velocity'], color='k') live_plot_subplot2.set_xlabel("Time (sec)") live_plot_subplot2.set_ylabel("Velocity (ft/s)") def plot_acceleration(): live_plot_subplot3.clear() live_plot_subplot3.plot(data['Time'], data['Acceleration'], color='k') live_plot_subplot3.set_xlabel("Time (sec)") live_plot_subplot3.set_ylabel("Acceleration (G)") def plot_coordinates(): live_plot_subplot4.clear() live_plot_subplot4.plot(data['Longitude'], data['Latitude'], color='k') live_plot_subplot4.set_xlabel("Longitude (deg)") live_plot_subplot4.set_ylabel("Latitude (deg)") t1 = threading.Thread(target=plot_altitude) t2 = threading.Thread(target=plot_velocity) t3 = threading.Thread(target=plot_acceleration) t4 = threading.Thread(target=plot_coordinates) t1.start() t2.start() t3.start() t4.start() if (settings.DEBUG.status == True): data_plot_stop = time.time() print("Plot Time: %f sec\n" %(data_plot_stop-start)) def animate_live_table(i): '''Used to create an animated matplotlib table''' if (settings.CURRENT_PAGE == "Telemetry"): # To Do: add additional statement to require new data flag data =
pd.read_csv(settings.PATH_LIVEDATA)
pandas.read_csv
import pandas as pd from dateutil.relativedelta import relativedelta from datacode.typing import StrList def expand_entity_date_selections(full_df: pd.DataFrame, selections_df: pd.DataFrame, cols: StrList = None, num_firms: int = 3, expand_months: int = 3, entity_id_col: str = 'TICKER', date_col: str = 'Date', begin_datevar: str = 'Begin Date', end_datevar: str = 'End Date', ) -> pd.DataFrame: entity_date_df = _firm_date_range_df_from_df( selections_df, num_firms=num_firms, firm_id_col=entity_id_col, date_col=date_col, begin_datevar=begin_datevar, end_datevar=end_datevar ) _expand_date_df( entity_date_df, expand_months=expand_months, begin_datevar=begin_datevar, end_datevar=end_datevar ) entity_df = _select_orig_df_from_date_df( full_df, entity_date_df, firm_id_col=entity_id_col, date_col=date_col, begin_datevar=begin_datevar, end_datevar=end_datevar, associated_cols=cols ) return entity_df def _firm_date_range_df_from_df(df: pd.DataFrame, num_firms: int = 3, firm_id_col: str = 'TICKER', date_col: str = 'Date', begin_datevar: str = 'Begin Date', end_datevar: str = 'End Date') -> pd.DataFrame: firm_date_vars = [firm_id_col, date_col] firms = df[firm_id_col].unique()[:num_firms] firm_dates = df[df[firm_id_col].isin(firms)][firm_date_vars].sort_values(firm_date_vars) earliest_dates = firm_dates.groupby(firm_id_col).min() earliest_dates.rename(columns={date_col: begin_datevar}, inplace=True) latest_dates = firm_dates.groupby(firm_id_col).max() latest_dates.rename(columns={date_col: end_datevar}, inplace=True) return earliest_dates.join(latest_dates) def _expand_date_df(date_df: pd.DataFrame, expand_months: int = 3, begin_datevar: str = 'Begin Date', end_datevar: str = 'End Date'): """ Note: inplace """ date_df[begin_datevar] = date_df[begin_datevar].apply(lambda x: x - relativedelta(months=expand_months)) date_df[end_datevar] = date_df[end_datevar].apply(lambda x: x + relativedelta(months=expand_months)) def _select_orig_df_from_date_df(df: pd.DataFrame, date_df: pd.DataFrame, firm_id_col: str = 'TICKER', date_col: str = 'Date', begin_datevar: str = 'Begin Date', end_datevar: str = 'End Date', associated_cols: StrList = None) -> pd.DataFrame: if associated_cols == None: associated_cols = [firm_id_col, date_col] out_df =
pd.DataFrame()
pandas.DataFrame
import copy import os import warnings from collections import OrderedDict import numpy as np import pandas as pd import woodwork as ww from sklearn.exceptions import NotFittedError from sklearn.inspection import partial_dependence as sk_partial_dependence from sklearn.inspection._partial_dependence import ( _grid_from_X, _partial_dependence_brute, ) from sklearn.manifold import TSNE from sklearn.metrics import auc as sklearn_auc from sklearn.metrics import confusion_matrix as sklearn_confusion_matrix from sklearn.metrics import ( precision_recall_curve as sklearn_precision_recall_curve, ) from sklearn.metrics import roc_curve as sklearn_roc_curve from sklearn.preprocessing import LabelBinarizer from sklearn.tree import export_graphviz from sklearn.utils.multiclass import unique_labels import evalml from evalml.exceptions import NoPositiveLabelException, NullsInColumnWarning from evalml.model_family import ModelFamily from evalml.model_understanding.permutation_importance import ( calculate_permutation_importance, ) from evalml.objectives.utils import get_objective from evalml.problem_types import ProblemTypes from evalml.utils import import_or_raise, infer_feature_types, jupyter_check def confusion_matrix(y_true, y_predicted, normalize_method="true"): """Confusion matrix for binary and multiclass classification. Arguments: y_true (pd.Series or np.ndarray): True binary labels. y_pred (pd.Series or np.ndarray): Predictions from a binary classifier. normalize_method ({'true', 'pred', 'all', None}): Normalization method to use, if not None. Supported options are: 'true' to normalize by row, 'pred' to normalize by column, or 'all' to normalize by all values. Defaults to 'true'. Returns: pd.DataFrame: Confusion matrix. The column header represents the predicted labels while row header represents the actual labels. """ y_true = infer_feature_types(y_true) y_predicted = infer_feature_types(y_predicted) y_true = y_true.to_numpy() y_predicted = y_predicted.to_numpy() labels = unique_labels(y_true, y_predicted) conf_mat = sklearn_confusion_matrix(y_true, y_predicted) conf_mat = pd.DataFrame(conf_mat, index=labels, columns=labels) if normalize_method is not None: return normalize_confusion_matrix(conf_mat, normalize_method=normalize_method) return conf_mat def normalize_confusion_matrix(conf_mat, normalize_method="true"): """Normalizes a confusion matrix. Arguments: conf_mat (pd.DataFrame or np.ndarray): Confusion matrix to normalize. normalize_method ({'true', 'pred', 'all'}): Normalization method. Supported options are: 'true' to normalize by row, 'pred' to normalize by column, or 'all' to normalize by all values. Defaults to 'true'. Returns: pd.DataFrame: normalized version of the input confusion matrix. The column header represents the predicted labels while row header represents the actual labels. """ conf_mat = infer_feature_types(conf_mat) col_names = conf_mat.columns conf_mat = conf_mat.to_numpy() with warnings.catch_warnings(record=True) as w: if normalize_method == "true": conf_mat = conf_mat.astype("float") / conf_mat.sum(axis=1)[:, np.newaxis] elif normalize_method == "pred": conf_mat = conf_mat.astype("float") / conf_mat.sum(axis=0) elif normalize_method == "all": conf_mat = conf_mat.astype("float") / conf_mat.sum().sum() else: raise ValueError( 'Invalid value provided for "normalize_method": {}'.format( normalize_method ) ) if w and "invalid value encountered in" in str(w[0].message): raise ValueError( "Sum of given axis is 0 and normalization is not possible. Please select another option." ) conf_mat = pd.DataFrame(conf_mat, index=col_names, columns=col_names) return conf_mat def graph_confusion_matrix( y_true, y_pred, normalize_method="true", title_addition=None ): """Generate and display a confusion matrix plot. If `normalize_method` is set, hover text will show raw count, otherwise hover text will show count normalized with method 'true'. Arguments: y_true (pd.Series or np.ndarray): True binary labels. y_pred (pd.Series or np.ndarray): Predictions from a binary classifier. normalize_method ({'true', 'pred', 'all', None}): Normalization method to use, if not None. Supported options are: 'true' to normalize by row, 'pred' to normalize by column, or 'all' to normalize by all values. Defaults to 'true'. title_addition (str or None): if not None, append to plot title. Defaults to None. Returns: plotly.Figure representing the confusion matrix plot generated """ _go = import_or_raise( "plotly.graph_objects", error_msg="Cannot find dependency plotly.graph_objects" ) _ff = import_or_raise( "plotly.figure_factory", error_msg="Cannot find dependency plotly.figure_factory", ) if jupyter_check(): import_or_raise("ipywidgets", warning=True) conf_mat = confusion_matrix(y_true, y_pred, normalize_method=None) conf_mat_normalized = confusion_matrix( y_true, y_pred, normalize_method=normalize_method or "true" ) labels = conf_mat.columns.tolist() title = "Confusion matrix{}{}".format( "" if title_addition is None else (" " + title_addition), "" if normalize_method is None else (', normalized using method "' + normalize_method + '"'), ) z_data, custom_data = ( (conf_mat, conf_mat_normalized) if normalize_method is None else (conf_mat_normalized, conf_mat) ) z_data = z_data.to_numpy() z_text = [["{:.3f}".format(y) for y in x] for x in z_data] primary_heading, secondary_heading = ( ("Raw", "Normalized") if normalize_method is None else ("Normalized", "Raw") ) hover_text = ( "<br><b>" + primary_heading + " Count</b>: %{z}<br><b>" + secondary_heading + " Count</b>: %{customdata} <br>" ) # the "<extra> tags at the end are necessary to remove unwanted trace info hover_template = ( "<b>True</b>: %{y}<br><b>Predicted</b>: %{x}" + hover_text + "<extra></extra>" ) layout = _go.Layout( title={"text": title}, xaxis={"title": "Predicted Label", "type": "category", "tickvals": labels}, yaxis={"title": "True Label", "type": "category", "tickvals": labels}, ) fig = _ff.create_annotated_heatmap( z_data, x=labels, y=labels, annotation_text=z_text, customdata=custom_data, hovertemplate=hover_template, colorscale="Blues", showscale=True, ) fig.update_layout(layout) # put xaxis text on bottom to not overlap with title fig["layout"]["xaxis"].update(side="bottom") # plotly Heatmap y axis defaults to the reverse of what we want: https://community.plotly.com/t/heatmap-y-axis-is-reversed-by-default-going-against-standard-convention-for-matrices/32180 fig.update_yaxes(autorange="reversed") return fig def precision_recall_curve(y_true, y_pred_proba, pos_label_idx=-1): """ Given labels and binary classifier predicted probabilities, compute and return the data representing a precision-recall curve. Arguments: y_true (pd.Series or np.ndarray): True binary labels. y_pred_proba (pd.Series or np.ndarray): Predictions from a binary classifier, before thresholding has been applied. Note this should be the predicted probability for the "true" label. pos_label_idx (int): the column index corresponding to the positive class. If predicted probabilities are two-dimensional, this will be used to access the probabilities for the positive class. Returns: list: Dictionary containing metrics used to generate a precision-recall plot, with the following keys: * `precision`: Precision values. * `recall`: Recall values. * `thresholds`: Threshold values used to produce the precision and recall. * `auc_score`: The area under the ROC curve. """ y_true = infer_feature_types(y_true) y_pred_proba = infer_feature_types(y_pred_proba) if isinstance(y_pred_proba, pd.DataFrame): y_pred_proba_shape = y_pred_proba.shape try: y_pred_proba = y_pred_proba.iloc[:, pos_label_idx] except IndexError: raise NoPositiveLabelException( f"Predicted probabilities of shape {y_pred_proba_shape} don't contain a column at index {pos_label_idx}" ) precision, recall, thresholds = sklearn_precision_recall_curve(y_true, y_pred_proba) auc_score = sklearn_auc(recall, precision) return { "precision": precision, "recall": recall, "thresholds": thresholds, "auc_score": auc_score, } def graph_precision_recall_curve(y_true, y_pred_proba, title_addition=None): """Generate and display a precision-recall plot. Arguments: y_true (pd.Series or np.ndarray): True binary labels. y_pred_proba (pd.Series or np.ndarray): Predictions from a binary classifier, before thresholding has been applied. Note this should be the predicted probability for the "true" label. title_addition (str or None): If not None, append to plot title. Default None. Returns: plotly.Figure representing the precision-recall plot generated """ _go = import_or_raise( "plotly.graph_objects", error_msg="Cannot find dependency plotly.graph_objects" ) if jupyter_check(): import_or_raise("ipywidgets", warning=True) precision_recall_curve_data = precision_recall_curve(y_true, y_pred_proba) title = "Precision-Recall{}".format( "" if title_addition is None else (" " + title_addition) ) layout = _go.Layout( title={"text": title}, xaxis={"title": "Recall", "range": [-0.05, 1.05]}, yaxis={"title": "Precision", "range": [-0.05, 1.05]}, ) data = [] data.append( _go.Scatter( x=precision_recall_curve_data["recall"], y=precision_recall_curve_data["precision"], name="Precision-Recall (AUC {:06f})".format( precision_recall_curve_data["auc_score"] ), line=dict(width=3), ) ) return _go.Figure(layout=layout, data=data) def roc_curve(y_true, y_pred_proba): """ Given labels and classifier predicted probabilities, compute and return the data representing a Receiver Operating Characteristic (ROC) curve. Works with binary or multiclass problems. Arguments: y_true (pd.Series or np.ndarray): True labels. y_pred_proba (pd.Series or np.ndarray): Predictions from a classifier, before thresholding has been applied. Returns: list(dict): A list of dictionaries (with one for each class) is returned. Binary classification problems return a list with one dictionary. Each dictionary contains metrics used to generate an ROC plot with the following keys: * `fpr_rate`: False positive rate. * `tpr_rate`: True positive rate. * `threshold`: Threshold values used to produce each pair of true/false positive rates. * `auc_score`: The area under the ROC curve. """ y_true = infer_feature_types(y_true).to_numpy() y_pred_proba = infer_feature_types(y_pred_proba).to_numpy() if len(y_pred_proba.shape) == 1: y_pred_proba = y_pred_proba.reshape(-1, 1) if y_pred_proba.shape[1] == 2: y_pred_proba = y_pred_proba[:, 1].reshape(-1, 1) nan_indices = np.logical_or(pd.isna(y_true), np.isnan(y_pred_proba).any(axis=1)) y_true = y_true[~nan_indices] y_pred_proba = y_pred_proba[~nan_indices] lb = LabelBinarizer() lb.fit(np.unique(y_true)) y_one_hot_true = lb.transform(y_true) n_classes = y_one_hot_true.shape[1] curve_data = [] for i in range(n_classes): fpr_rates, tpr_rates, thresholds = sklearn_roc_curve( y_one_hot_true[:, i], y_pred_proba[:, i] ) auc_score = sklearn_auc(fpr_rates, tpr_rates) curve_data.append( { "fpr_rates": fpr_rates, "tpr_rates": tpr_rates, "thresholds": thresholds, "auc_score": auc_score, } ) return curve_data def graph_roc_curve(y_true, y_pred_proba, custom_class_names=None, title_addition=None): """Generate and display a Receiver Operating Characteristic (ROC) plot for binary and multiclass classification problems. Arguments: y_true (pd.Series or np.ndarray): True labels. y_pred_proba (pd.Series or np.ndarray): Predictions from a classifier, before thresholding has been applied. Note this should a one dimensional array with the predicted probability for the "true" label in the binary case. custom_class_labels (list or None): If not None, custom labels for classes. Default None. title_addition (str or None): if not None, append to plot title. Default None. Returns: plotly.Figure representing the ROC plot generated """ _go = import_or_raise( "plotly.graph_objects", error_msg="Cannot find dependency plotly.graph_objects" ) if jupyter_check(): import_or_raise("ipywidgets", warning=True) title = "Receiver Operating Characteristic{}".format( "" if title_addition is None else (" " + title_addition) ) layout = _go.Layout( title={"text": title}, xaxis={"title": "False Positive Rate", "range": [-0.05, 1.05]}, yaxis={"title": "True Positive Rate", "range": [-0.05, 1.05]}, ) all_curve_data = roc_curve(y_true, y_pred_proba) graph_data = [] n_classes = len(all_curve_data) if custom_class_names and len(custom_class_names) != n_classes: raise ValueError( "Number of custom class names does not match number of classes" ) for i in range(n_classes): roc_curve_data = all_curve_data[i] name = i + 1 if custom_class_names is None else custom_class_names[i] graph_data.append( _go.Scatter( x=roc_curve_data["fpr_rates"], y=roc_curve_data["tpr_rates"], hovertemplate="(False Postive Rate: %{x}, True Positive Rate: %{y})<br>" + "Threshold: %{text}", name=f"Class {name} (AUC {roc_curve_data['auc_score']:.06f})", text=roc_curve_data["thresholds"], line=dict(width=3), ) ) graph_data.append( _go.Scatter( x=[0, 1], y=[0, 1], name="Trivial Model (AUC 0.5)", line=dict(dash="dash") ) ) return _go.Figure(layout=layout, data=graph_data) def graph_permutation_importance(pipeline, X, y, objective, importance_threshold=0): """Generate a bar graph of the pipeline's permutation importance. Arguments: pipeline (PipelineBase or subclass): Fitted pipeline X (pd.DataFrame): The input data used to score and compute permutation importance y (pd.Series): The target data objective (str, ObjectiveBase): Objective to score on importance_threshold (float, optional): If provided, graph features with a permutation importance whose absolute value is larger than importance_threshold. Defaults to zero. Returns: plotly.Figure, a bar graph showing features and their respective permutation importance. """ go = import_or_raise( "plotly.graph_objects", error_msg="Cannot find dependency plotly.graph_objects" ) if jupyter_check(): import_or_raise("ipywidgets", warning=True) perm_importance = calculate_permutation_importance(pipeline, X, y, objective) perm_importance["importance"] = perm_importance["importance"] if importance_threshold < 0: raise ValueError( f"Provided importance threshold of {importance_threshold} must be greater than or equal to 0" ) # Remove features with close to zero importance perm_importance = perm_importance[ abs(perm_importance["importance"]) >= importance_threshold ] # List is reversed to go from ascending order to descending order perm_importance = perm_importance.iloc[::-1] title = "Permutation Importance" subtitle = ( "The relative importance of each input feature's " "overall influence on the pipelines' predictions, computed using " "the permutation importance algorithm." ) data = [ go.Bar( x=perm_importance["importance"], y=perm_importance["feature"], orientation="h", ) ] layout = { "title": "{0}<br><sub>{1}</sub>".format(title, subtitle), "height": 800, "xaxis_title": "Permutation Importance", "yaxis_title": "Feature", "yaxis": {"type": "category"}, } fig = go.Figure(data=data, layout=layout) return fig def binary_objective_vs_threshold(pipeline, X, y, objective, steps=100): """Computes objective score as a function of potential binary classification decision thresholds for a fitted binary classification pipeline. Arguments: pipeline (BinaryClassificationPipeline obj): Fitted binary classification pipeline X (pd.DataFrame): The input data used to compute objective score y (pd.Series): The target labels objective (ObjectiveBase obj, str): Objective used to score steps (int): Number of intervals to divide and calculate objective score at Returns: pd.DataFrame: DataFrame with thresholds and the corresponding objective score calculated at each threshold """ objective = get_objective(objective, return_instance=True) if not objective.is_defined_for_problem_type(ProblemTypes.BINARY): raise ValueError( "`binary_objective_vs_threshold` can only be calculated for binary classification objectives" ) if objective.score_needs_proba: raise ValueError("Objective `score_needs_proba` must be False") pipeline_tmp = copy.copy(pipeline) thresholds = np.linspace(0, 1, steps + 1) costs = [] for threshold in thresholds: pipeline_tmp.threshold = threshold scores = pipeline_tmp.score(X, y, [objective]) costs.append(scores[objective.name]) df = pd.DataFrame({"threshold": thresholds, "score": costs}) return df def graph_binary_objective_vs_threshold(pipeline, X, y, objective, steps=100): """Generates a plot graphing objective score vs. decision thresholds for a fitted binary classification pipeline. Arguments: pipeline (PipelineBase or subclass): Fitted pipeline X (pd.DataFrame): The input data used to score and compute scores y (pd.Series): The target labels objective (ObjectiveBase obj, str): Objective used to score, shown on the y-axis of the graph steps (int): Number of intervals to divide and calculate objective score at Returns: plotly.Figure representing the objective score vs. threshold graph generated """ _go = import_or_raise( "plotly.graph_objects", error_msg="Cannot find dependency plotly.graph_objects" ) if jupyter_check(): import_or_raise("ipywidgets", warning=True) objective = get_objective(objective, return_instance=True) df = binary_objective_vs_threshold(pipeline, X, y, objective, steps) title = f"{objective.name} Scores vs. Thresholds" layout = _go.Layout( title={"text": title}, xaxis={"title": "Threshold", "range": _calculate_axis_range(df["threshold"])}, yaxis={ "title": f"{objective.name} Scores vs. Binary Classification Decision Threshold", "range": _calculate_axis_range(df["score"]), }, ) data = [] data.append(_go.Scatter(x=df["threshold"], y=df["score"], line=dict(width=3))) return _go.Figure(layout=layout, data=data) def _is_feature_of_type(feature, X, ltype): """Determine whether the feature the user passed in to partial dependence is a Woodwork logical type.""" if isinstance(feature, int): is_type = isinstance(X.ww.logical_types[X.columns[feature]], ltype) else: is_type = isinstance(X.ww.logical_types[feature], ltype) return is_type def _put_categorical_feature_first(features, first_feature_categorical): """If the user is doing a two-way partial dependence plot and one of the features is categorical, we need to make sure the categorical feature is the first element in the tuple that's passed to sklearn. This is because in the two-way grid calculation, sklearn will try to coerce every element of the grid to the type of the first feature in the tuple. If we put the categorical feature first, the grid will be of type 'object' which can accommodate both categorical and numeric data. If we put the numeric feature first, the grid will be of type float64 and we can't coerce categoricals to float64 dtype. """ new_features = features if first_feature_categorical else (features[1], features[0]) return new_features def _get_feature_names_from_str_or_col_index(X, names_or_col_indices): """Helper function to map the user-input features param to column names.""" feature_list = [] for name_or_index in names_or_col_indices: if isinstance(name_or_index, int): feature_list.append(X.columns[name_or_index]) else: feature_list.append(name_or_index) return feature_list def _raise_value_error_if_any_features_all_nan(df): """Helper for partial dependence data validation.""" nan_pct = df.isna().mean() all_nan = nan_pct[nan_pct == 1].index.tolist() all_nan = [f"'{name}'" for name in all_nan] if all_nan: raise ValueError( "The following features have all NaN values and so the " f"partial dependence cannot be computed: {', '.join(all_nan)}" ) def _raise_value_error_if_mostly_one_value(df, percentile): """Helper for partial dependence data validation.""" one_value = [] values = [] for col in df.columns: normalized_counts = df[col].value_counts(normalize=True) + 0.01 normalized_counts = normalized_counts[normalized_counts > percentile] if not normalized_counts.empty: one_value.append(f"'{col}'") values.append(str(normalized_counts.index[0])) if one_value: raise ValueError( f"Features ({', '.join(one_value)}) are mostly one value, ({', '.join(values)}), " f"and cannot be used to compute partial dependence. Try raising the upper percentage value." ) def partial_dependence( pipeline, X, features, percentiles=(0.05, 0.95), grid_resolution=100, kind="average" ): """Calculates one or two-way partial dependence. If a single integer or string is given for features, one-way partial dependence is calculated. If a tuple of two integers or strings is given, two-way partial dependence is calculated with the first feature in the y-axis and second feature in the x-axis. Arguments: pipeline (PipelineBase or subclass): Fitted pipeline X (pd.DataFrame, np.ndarray): The input data used to generate a grid of values for feature where partial dependence will be calculated at features (int, string, tuple[int or string]): The target feature for which to create the partial dependence plot for. If features is an int, it must be the index of the feature to use. If features is a string, it must be a valid column name in X. If features is a tuple of int/strings, it must contain valid column integers/names in X. percentiles (tuple[float]): The lower and upper percentile used to create the extreme values for the grid. Must be in [0, 1]. Defaults to (0.05, 0.95). grid_resolution (int): Number of samples of feature(s) for partial dependence plot. If this value is less than the maximum number of categories present in categorical data within X, it will be set to the max number of categories + 1. Defaults to 100. kind {'average', 'individual', 'both'}: The type of predictions to return. 'individual' will return the predictions for all of the points in the grid for each sample in X. 'average' will return the predictions for all of the points in the grid but averaged over all of the samples in X. Returns: pd.DataFrame, list(pd.DataFrame), or tuple(pd.DataFrame, list(pd.DataFrame)): When `kind='average'`: DataFrame with averaged predictions for all points in the grid averaged over all samples of X and the values used to calculate those predictions. When `kind='individual'`: DataFrame with individual predictions for all points in the grid for each sample of X and the values used to calculate those predictions. If a two-way partial dependence is calculated, then the result is a list of DataFrames with each DataFrame representing one sample's predictions. When `kind='both'`: A tuple consisting of the averaged predictions (in a DataFrame) over all samples of X and the individual predictions (in a list of DataFrames) for each sample of X. In the one-way case: The dataframe will contain two columns, "feature_values" (grid points at which the partial dependence was calculated) and "partial_dependence" (the partial dependence at that feature value). For classification problems, there will be a third column called "class_label" (the class label for which the partial dependence was calculated). For binary classification, the partial dependence is only calculated for the "positive" class. In the two-way case: The data frame will contain grid_resolution number of columns and rows where the index and column headers are the sampled values of the first and second features, respectively, used to make the partial dependence contour. The values of the data frame contain the partial dependence data for each feature value pair. Raises: ValueError: if the user provides a tuple of not exactly two features. ValueError: if the provided pipeline isn't fitted. ValueError: if the provided pipeline is a Baseline pipeline. ValueError: if any of the features passed in are completely NaN ValueError: if any of the features are low-variance. Defined as having one value occurring more than the upper percentile passed by the user. By default 95%. """ # Dynamically set the grid resolution to the maximum number of values # in the categorical/datetime variables if there are more categories/datetime values than resolution cells X = infer_feature_types(X) if isinstance(features, (list, tuple)): is_categorical = [ _is_feature_of_type(f, X, ww.logical_types.Categorical) for f in features ] is_datetime = [ _is_feature_of_type(f, X, ww.logical_types.Datetime) for f in features ] else: is_categorical = [ _is_feature_of_type(features, X, ww.logical_types.Categorical) ] is_datetime = [_is_feature_of_type(features, X, ww.logical_types.Datetime)] if isinstance(features, (list, tuple)): if len(features) != 2: raise ValueError( "Too many features given to graph_partial_dependence. Only one or two-way partial " "dependence is supported." ) if not ( all([isinstance(x, str) for x in features]) or all([isinstance(x, int) for x in features]) ): raise ValueError( "Features provided must be a tuple entirely of integers or strings, not a mixture of both." ) X_features = ( X.ww.iloc[:, list(features)] if isinstance(features[0], int) else X.ww[list(features)] ) else: X_features = ( X.ww.iloc[:, [features]] if isinstance(features, int) else X.ww[[features]] ) X_unknown = X_features.ww.select("unknown") if len(X_unknown.columns): # We drop the unknown columns in the pipelines, so we cannot calculate partial dependence for these raise ValueError( f"Columns {X_unknown.columns.values} are of type 'Unknown', which cannot be used for partial dependence" ) X_cats = X_features.ww.select("categorical") if any(is_categorical): max_num_cats = max(X_cats.ww.describe().loc["nunique"]) grid_resolution = max([max_num_cats + 1, grid_resolution]) X_dt = X_features.ww.select("datetime") if isinstance(features, (list, tuple)): feature_names = _get_feature_names_from_str_or_col_index(X, features) if any(is_datetime): raise ValueError( "Two-way partial dependence is not supported for datetime columns." ) if any(is_categorical): features = _put_categorical_feature_first(features, is_categorical[0]) else: feature_names = _get_feature_names_from_str_or_col_index(X, [features]) if not pipeline._is_fitted: raise ValueError("Pipeline to calculate partial dependence for must be fitted") if pipeline.model_family == ModelFamily.BASELINE: raise ValueError( "Partial dependence plots are not supported for Baseline pipelines" ) feature_list = X[feature_names] _raise_value_error_if_any_features_all_nan(feature_list) if feature_list.isnull().sum().any(): warnings.warn( "There are null values in the features, which will cause NaN values in the partial dependence output. " "Fill in these values to remove the NaN values.", NullsInColumnWarning, ) _raise_value_error_if_mostly_one_value(feature_list, percentiles[1]) wrapped = evalml.pipelines.components.utils.scikit_learn_wrapped_estimator(pipeline) try: if any(is_datetime): timestamps = np.array( [X_dt - pd.Timestamp("1970-01-01")] // np.timedelta64(1, "s") ).reshape(-1, 1) grid, values = _grid_from_X( timestamps, percentiles=percentiles, grid_resolution=grid_resolution ) grid_dates = pd.to_datetime( pd.Series(grid.squeeze()), unit="s" ).values.reshape(-1, 1) # convert values to dates for the output value_dates = pd.to_datetime(pd.Series(values[0]), unit="s") # need to pass in the feature as an int index rather than string feature_index = ( X.columns.tolist().index(features) if isinstance(features, str) else features ) averaged_predictions, predictions = _partial_dependence_brute( wrapped, grid_dates, [feature_index], X, response_method="auto" ) # reshape based on the way scikit-learn reshapes the data predictions = predictions.reshape( -1, X.shape[0], *[val.shape[0] for val in values] ) averaged_predictions = averaged_predictions.reshape( -1, *[val.shape[0] for val in values] ) preds = { "average": averaged_predictions, "individual": predictions, "values": [value_dates], } else: preds = sk_partial_dependence( wrapped, X=X, features=features, percentiles=percentiles, grid_resolution=grid_resolution, kind=kind, ) except ValueError as e: if "percentiles are too close to each other" in str(e): raise ValueError( "The scale of these features is too small and results in" "percentiles that are too close together. Partial dependence" "cannot be computed for these types of features. Consider" "scaling the features so that they differ by > 10E-7" ) else: raise e classes = None if isinstance(pipeline, evalml.pipelines.BinaryClassificationPipeline): classes = [pipeline.classes_[1]] elif isinstance(pipeline, evalml.pipelines.MulticlassClassificationPipeline): classes = pipeline.classes_ values = preds["values"] if kind in ["average", "both"]: avg_pred = preds["average"] if isinstance(features, (int, str)): avg_data = pd.DataFrame( { "feature_values": np.tile(values[0], avg_pred.shape[0]), "partial_dependence": np.concatenate([pred for pred in avg_pred]), } ) elif isinstance(features, (list, tuple)): avg_data = pd.DataFrame(avg_pred.reshape((-1, avg_pred.shape[-1]))) avg_data.columns = values[1] avg_data.index = np.tile(values[0], avg_pred.shape[0]) if classes is not None: avg_data["class_label"] = np.repeat(classes, len(values[0])) if kind in ["individual", "both"]: ind_preds = preds["individual"] if isinstance(features, (int, str)): ind_data = list() for label in ind_preds: ind_data.append(
pd.DataFrame(label)
pandas.DataFrame
import pandas as pd ### デスクトップアプリ作成課題 def kimetsu_search(path, word): # 検索対象取得 df=pd.read_csv(path) source=list(df["name"]) # 検索 if word in source: return True else: return False def add_to_kimetsu(path, word): # 検索対象取得 df=
pd.read_csv("./source.csv")
pandas.read_csv
# Import Statements import matplotlib.pyplot as plt import pandas as pd import torch import json from PIL import Image import numpy as np from torch import nn from torch import optim from torchvision import datasets, transforms, models from collections import OrderedDict # Load Data Function def LoadData(data_dir, batch_size): train_dir = data_dir + '/train' valid_dir = data_dir + '/valid' # Define transforms for the training and validation/test sets train_transforms = transforms.Compose([transforms.RandomRotation(30), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) valid_transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # Load the train, valid, and test datasets and apply tranformations to each train_data = datasets.ImageFolder(train_dir, transform=train_transforms) valid_data = datasets.ImageFolder(valid_dir, transform=valid_transforms) # Define a loader for each dataset trainloader = torch.utils.data.DataLoader( train_data, batch_size=batch_size, shuffle=True) validloader = torch.utils.data.DataLoader( valid_data, batch_size=batch_size) return train_data, trainloader, validloader # Define the Model def CreateModel(model_arch, hidden_units, drp_out=0.3): model = models.__dict__[model_arch](pretrained=True) for param in model.parameters(): param.requires_grad = False input_size = None if type(model.classifier) is torch.nn.modules.container.Sequential: got_input_size = False i = 0 while got_input_size is False: if type(model.classifier[i]) is torch.nn.modules.linear.Linear: got_input_size = True input_size = int(model.classifier[i].in_features) elif type(model.classifier[i]) is torch.nn.modules.conv.Conv2d: got_input_size = True input_size = int(model.classifier[i].in_channels) else: i += 1 else: input_size = int(model.classifier.in_features) hidden_layer = hidden_units output_size = 102 dropout = drp_out classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(input_size, hidden_layer)), ('relu', nn.ReLU()), ('drop', nn.Dropout(p=dropout)), ('fc2', nn.Linear(hidden_layer, output_size)), ('output', nn.LogSoftmax(dim=1)) ])) model.classifier = classifier return model, input_size, dropout # Train the Network def TrainNetwork(model, trainloader, train_data, validloader, criterion, optimizer, epochs, device): print_every = 20 steps = 0 model.to(device) for e in range(epochs): model.train() running_loss = 0 for ii, (inputs, labels) in enumerate(trainloader): steps += 1 inputs = inputs.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model.forward(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if steps % print_every == 0: model.eval() valid_loss = 0 accuracy = 0 with torch.no_grad(): for inputs, labels in validloader: inputs = inputs.to(device) labels = labels.to(device) output = model.forward(inputs) valid_loss += criterion(output, labels).item() ps = torch.exp(output) equality = (labels.data == ps.max(dim=1)[1]) accuracy += equality.type(torch.FloatTensor).mean() print("Epoch: {}/{}".format(e+1, epochs), "Loss: {:.4f}".format(running_loss/len(train_data)), "Validation Loss: {:.3f}".format( valid_loss/len(validloader)), "Validation Accuracy: {:.3f}".format(accuracy/len(validloader))) # Save a Checkpoint def SaveCheckpoint(model, model_arch, learning_rate, epochs, classifier_input_size, dropout, hidden_units, class_to_idx, save_dir): # Define Features for Checkpoint model.to('cpu') checkpoint = { 'input_size': classifier_input_size, 'hidden_layer': hidden_units, 'output_size': 102, 'dropout': dropout, 'class_to_idx': class_to_idx, 'state_dict': model.state_dict(), 'arch': model_arch, 'learning_rate': learning_rate, 'epochs': epochs } # Save the Checkpoint to Specified Directory torch.save(checkpoint, './' + save_dir + 'checkpoint.pth') # Loading The Checkpoint def LoadCheckpoint(checkpoint_path): # Get Checkpoint from Specified Path checkpoint = torch.load(checkpoint_path) # Create a Model from the Information Provided in the Checkpoint new_model = models.__dict__[checkpoint['arch']](pretrained=True) new_classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(checkpoint['input_size'], checkpoint['hidden_layer'])), ('relu', nn.ReLU()), ('drop', nn.Dropout(p=checkpoint['dropout'])), ('fc2', nn.Linear( checkpoint['hidden_layer'], checkpoint['output_size'])), ('output', nn.LogSoftmax(dim=1)) ])) new_model.classifier = new_classifier new_model.load_state_dict(checkpoint['state_dict']) new_model.class_to_idx = checkpoint['class_to_idx'] return new_model # Process Image to be Used for Pytorch Model def process_image(image): ''' Scales, crops, and normalizes a PIL image for a PyTorch model, returns an Numpy array ''' im = Image.open(image) im.resize((256, 256)) im = im.crop((16, 16, 240, 240)) np_image = np.array(im) np_image = np_image / 255 means = np.array([0.485, 0.456, 0.406]) stds = np.array([0.229, 0.224, 0.225]) im = (np_image - means) / stds tranposed_im = im.transpose(2, 0, 1) return torch.from_numpy(tranposed_im) # Predict the Class of an Image def Predict(image_path, model, device, topk): ''' Predict the class (or classes) of an image using a trained deep learning model. ''' img = process_image(image_path).unsqueeze(0).float() model, img = model.to(device), img.to(device) model.eval() output = torch.exp(model.forward(img)) output = output.topk(topk) probs = output[0].data.cpu().numpy()[0] classes = output[1].data.cpu().numpy()[0] idx_to_class = {key: value for value, key in model.class_to_idx.items()} classes = [idx_to_class[classes[i]] for i in range(classes.size)] return probs, classes def ViewPredictionResults(probs, classes): dataframe = pd.DataFrame({ 'classes': pd.Series(data=classes), 'probabilities':
pd.Series(data=probs, dtype='float64')
pandas.Series
def censor_diagnosis(path,genotype_file,phenotype_file,final_pfile, final_gfile, field ='na',type='ICD',ad=1,start_time=float('nan'),end_time=float('nan')): import pandas as pd import numpy as np genotypes =
pd.read_csv(path+genotype_file)
pandas.read_csv
import matplotlib import pandas as pd import numpy as np import cvxpy as cp from cvxopt import matrix, solvers import pickle import matplotlib.pyplot as plt import os from tqdm import tqdm from colorama import Fore from config import RISK_FREE_RATE, DATAPATH, EXPECTED_RETURN, STOCKS_NUMBER, MONTO_CARLO_TIMES class InvestmentStrategy: @staticmethod def process_data_x_matrix(datapath): df_raw = pd.read_excel(datapath) df_raw = df_raw.T df_raw = df_raw.drop(index=['code', 'name'], columns=[0]) df_raw = df_raw.fillna(method='ffill') # 第32只股票第一天就是空缺值,用向前填补方式 df = df_raw.fillna(method='backfill') return df @staticmethod def process_data_contain_hs300(datapath): df_raw = pd.read_excel(datapath) df_raw = df_raw.T df_raw = df_raw.drop(index=['code', 'name']) # df_raw.to_excel("./test1.xlsx") # print(df_raw.isnull().any()) df_raw = df_raw.fillna(method='ffill') # 第32只股票第一天就是空缺值,用向前填补方式 df = df_raw.fillna(method='backfill') return df @staticmethod def day_yield_compute(x_matrix): day_yield = (x_matrix.shift(-1) - x_matrix) / x_matrix return day_yield.iloc[:-1, :] @staticmethod def ex_vector_compute(x_matrix): day_yield = (x_matrix.shift(-1) - x_matrix) / x_matrix day_avg_yield = day_yield.mean().to_numpy() return day_yield.iloc[:-1, :], day_avg_yield @staticmethod def ex_matrix_compute(x_matrix, ex_numpy_vector): ex_np = np.repeat(np.expand_dims(ex_numpy_vector, axis=0), x_matrix.shape[0], axis=0) ex_matrix = pd.DataFrame(ex_np, index=x_matrix.index, columns=x_matrix.columns) return ex_matrix @staticmethod def cov_matrix_compute(x_ex_matrix): return np.matmul(x_ex_matrix.T.to_numpy(), x_ex_matrix.to_numpy()) / (x_ex_matrix.shape[0] - 1) def compute_weight(self, x_matrix, total_days=252, method="Markowitz", starttime=0, endtime=0): # ex_numpy_vector是r拔 (50,) numpy # x_matrix是矩阵X [6个月天数 rows x 50 columns] 比如第一次计算权重就是(1212, 50) # ex_matrix是EX矩阵 [6个月天数 rows x 50 columns] # x_ex_matrix矩阵X-EX # 协方差矩阵:cov (50, 50) total_days_every_year = total_days / 5 day_yield_matrix, ex_numpy_vector = self.ex_vector_compute(x_matrix) ex_matrix = self.ex_matrix_compute(day_yield_matrix, ex_numpy_vector) x_ex_matrix = day_yield_matrix - ex_matrix cov_matrix_numpy = self.cov_matrix_compute(x_ex_matrix) # stocks_number = 50 n = STOCKS_NUMBER one_matrix = np.ones((1, n)) ''' # cvxopt这个包也能做 P = matrix(cov_matrix_numpy.tolist()) # print(P) # print('*' * 50) q = matrix([0.0] * 50) # G = matrix([[-1.0, 0.0], [0.0, -1.0]]) # h = matrix([0.0, 0.0]) A = matrix(np.vstack((ex_numpy_vector, one_matrix))) # 原型为cvxopt.matrix(array,dims),等价于A = matrix([[1.0],[1.0]]) # print(A) b = matrix([0.1, 1.0]) result = solvers.qp(P=P, q=q, A=A, b=b) print(result) print(result['x']) ''' if method == "Markowitz": print("\033[0;36;m 开始计算组合权重,采用策略:\033[0m \033[0;34;m Markowitz投资组合 \033[0m") # print("\033[0;36;m 开始求解二次规划:\033[0m") annual_yield_vector = ex_numpy_vector * total_days_every_year w = cp.Variable(n) prob = cp.Problem(cp.Minimize((1 / 2) * cp.quad_form(w, cov_matrix_numpy)), [annual_yield_vector.T @ w == EXPECTED_RETURN, one_matrix @ w == 1]) prob.solve() # print("\nThe optimal value is", prob.value) # # print("A solution w is") # # print(w.value) print("\033[0;36;m 完成Markowitz投资组合最优权重二次规划求解,方差最优值为:\033[0m \033[0;34;m {} \033[0m".format(prob.value)) return w.value r_p_list = [] sigma_p_list = [] sharpe_ratio_list = [] weight_list = [] if method == "MontoCarlo": print("\033[0;36;m 开始计算组合权重,采用策略:\033[0m \033[0;34;m Monto Carlo 求解最大夏普比率 \033[0m") # 正态分布均值设置为 1 / 50 更符合 np.random.seed(1) risk_free_rate_day = RISK_FREE_RATE / total_days_every_year bar = tqdm(list(range(int(MONTO_CARLO_TIMES))), bar_format='{l_bar}%s{bar}%s{r_bar}' % (Fore.BLUE, Fore.RESET)) for _ in bar: # bar.set_description(f"现在到Monto Carlo第{_}次") weights = np.random.normal(1 / n, 1.0, n - 1) weights_last = 1 - np.sum(weights) weights = np.append(weights, weights_last) weights_row_vector = np.expand_dims(weights, axis=0) yield_avg_vector = np.expand_dims(ex_numpy_vector, axis=0) sigma_p = np.sqrt(np.matmul(np.matmul(weights_row_vector, cov_matrix_numpy), weights_row_vector.T))[0][ 0] r_p = np.matmul(weights_row_vector, yield_avg_vector.T)[0][0] sharpe_ratio = (r_p - risk_free_rate_day) / sigma_p r_p_list.append(r_p) sigma_p_list.append(sigma_p) sharpe_ratio_list.append(sharpe_ratio) weight_list.append(weights) r_p_list_numpy = np.array(r_p_list) sigma_p_list_numpy = np.array(sigma_p_list) sharpe_ratio_list_numpy = np.array(sharpe_ratio_list) weight_list_numpy = np.array(weight_list) # 最大夏普比率 max_sharpe_ratio = np.max(sharpe_ratio_list_numpy) max_sharpe_ratio_index = np.argmax(sharpe_ratio_list_numpy) # 对应的标准差和均值 sigma_rp = [sigma_p_list_numpy[max_sharpe_ratio_index], r_p_list_numpy[max_sharpe_ratio_index]] # r_p与无风险利率组合达到10%收益目标,alpha为投资于无风险利率权重,但其实alpha要接近97%,因为此时市场组合夏普比率最大,日收益率在10%以上,与年收益10%的目标收益和年利率3%无风险利率相去甚远 alpha = (EXPECTED_RETURN / total_days_every_year - sigma_rp[1]) / (risk_free_rate_day - sigma_rp[1]) weight_list_numpy_opt_alpha = np.append(weight_list_numpy[max_sharpe_ratio_index], alpha) print("\033[0;36;m 完成 Monto Carlo 策略权重求解 \033[0m") # 作图 filename = os.path.join(os.getcwd(), 'images') if not os.path.exists(filename): os.makedirs(filename) plt.figure(figsize=(8, 6)) plt.style.use('seaborn-dark') plt.rcParams['savefig.dpi'] = 300 # 图片像素 plt.rcParams['figure.dpi'] = 300 # 分辨率 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 plt.scatter(sigma_p_list_numpy, r_p_list_numpy, c=r_p_list_numpy / sigma_p_list_numpy, marker='o', cmap='coolwarm') plt.plot([0, sigma_rp[0]], [risk_free_rate_day, sigma_rp[1]], 'r') # plt.annotate('max Sharpe ratio:'.format(max_sharpe_ratio), xy=rp_sigma, xytext=(3, 1.5), # arrowprops=dict(facecolor='black', shrink=0.05), # ) plt.annotate('max Sharpe ratio:{}'.format(max_sharpe_ratio), xy=sigma_rp) plt.xlabel('日标准差') plt.ylabel('日收益率') plt.colorbar(label='Sharpe ratio') plt.title("Monta Carlo抽样{}次获得CAL和有效前沿".format(MONTO_CARLO_TIMES)) plt.savefig("./images/Montacarlo_CAL_{}_{}_{}".format(MONTO_CARLO_TIMES, starttime, endtime), dpi=300) print("\033[0;36;m 完成资本市场线作图 \033[0m") return weight_list_numpy_opt_alpha @staticmethod def get_six_month_map(x_matrix): dfx =
pd.DataFrame(x_matrix.index, columns=['time'])
pandas.DataFrame
############################################################## # # # <NAME> (2021) # # Textmining medical notes for cognition # # ParseDataset # # # ############################################################## # Import the relevant packages import pandas as pd class ParseDataset: def __init__(self, filename, file, i): self.file = file self.i = i self.filename = filename def create_dataset(self): ID, re = self.get_ID() self.data_table = pd.DataFrame({'ID':ID, 're':re}, index=[self.i]) def get_ID(self): id = str(self.filename.split('/')[-1].split('.')[0]) return self.check_id(id) def check_id(self, id): ids = id.split('-') if ids[-1] == 're': re = True else: re = False id = ids[0].split('_')[-1] return id, re def pre_parser(self): """ parsing basic variables of files in to dict """ # make dict from items in file items = {} # parse each line in the file for line in self.file.splitlines(): # remove whitespace at the end of the line line = line.strip() line = re.sub(r"\s+", " ", line) if line.startswith('Verhage:'): line = line.split(':') items['verhage'] = line[-1] elif line.startswith('Opleiding:'): line = line.split(':') items['opleiding'] = line[-1] elif line.startswith('Aantal jaren:'): line = line.split(':') items['jaren'] = line[-1] elif line.startswith('handvoorkeur'): line = line.split(':') items['hand'] = line[-1] elif line.startswith('Partner'): line = line.split(':') items['partner'] = line[-1] elif line.startswith('Woonsituatie'): line = line.split(':') items['woon'] = line[-1] elif line.startswith('Roker'): line = line.split(':') items['roker'] = line[-1] elif line.startswith('Alcohol'): line = line.split(':') items['alcohol'] = line[-1] elif line.startswith('Kleurenblind'): line = line.split(':') items['kleur'] = line[-1] elif line.startswith('Epilepsie:'): line = line.split(':') items['epil'] = line[-1] elif line.startswith('Computergebruik:'): line = line.split(':') items['com'] = line[-1] break else: continue data = pd.DataFrame(items, index=[self.i]) self.data_table = self.data_table.join(data) def T0_parser(self): """ parsing basic pre measurements and questions variables of files in to dict format for T0 """ try: file = self.file.split('PRE-meting')[1:] file = "\n".join(file).split('POST-meting')[0].replace('3 maanden', '').replace('12 maanden', '') except: file = '' lines = file.splitlines() items = self.test_parser(lines) items = {'T0_' + str(key): val for key, val in items.items()} data =
pd.DataFrame(items, index=[self.i])
pandas.DataFrame
from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import object from past.utils import old_div import os import numpy as np import pandas as pd from threeML.io.rich_display import display from threeML.io.file_utils import sanitize_filename from ..serialize import Serialization from .from_root_file import from_root_file from .from_hdf5_file import from_hdf5_file import astropy.units as u def map_tree_factory(map_tree_file, roi): # Sanitize files in input (expand variables and so on) map_tree_file = sanitize_filename(map_tree_file) if os.path.splitext(map_tree_file)[-1] == '.root': return MapTree.from_root_file(map_tree_file, roi) else: return MapTree.from_hdf5(map_tree_file, roi) class MapTree(object): def __init__(self, analysis_bins, roi): self._analysis_bins = analysis_bins self._roi = roi @classmethod def from_hdf5(cls, map_tree_file, roi): data_analysis_bins = from_hdf5_file(map_tree_file, roi) return cls(data_analysis_bins, roi) @classmethod def from_root_file(cls, map_tree_file, roi): """ Create a MapTree object from a ROOT file and a ROI. Do not use this directly, use map_tree_factory instead. :param map_tree_file: :param roi: :return: """ data_analysis_bins = from_root_file(map_tree_file, roi) return cls(data_analysis_bins, roi) def __iter__(self): """ This allows to loop over the analysis bins as in: for analysis_bin in maptree: ... do something ... :return: analysis bin_name iterator """ for analysis_bin in self._analysis_bins: yield analysis_bin def __getitem__(self, item): """ This allows to access the analysis bins by name: first_analysis_bin = maptree["bin_name 0"] :param item: string for access by name :return: the analysis bin_name """ try: return self._analysis_bins[item] except IndexError: raise IndexError("Analysis bin_name with index %i does not exist" % (item)) def __len__(self): return len(self._analysis_bins) @property def analysis_bins_labels(self): return list(self._analysis_bins.keys()) def display(self): df = pd.DataFrame() df['Bin'] = list(self._analysis_bins.keys()) df['Nside'] = [self._analysis_bins[bin_id].nside for bin_id in self._analysis_bins] df['Scheme'] = [self._analysis_bins[bin_id].scheme for bin_id in self._analysis_bins] # Compute observed counts, background counts, how many pixels we have in the ROI and # the sky area they cover n_bins = len(self._analysis_bins) obs_counts = np.zeros(n_bins) bkg_counts = np.zeros_like(obs_counts) n_pixels = np.zeros(n_bins, dtype=int) sky_area = np.zeros_like(obs_counts) size = 0 for i, bin_id in enumerate(self._analysis_bins): analysis_bin = self._analysis_bins[bin_id] sparse_obs = analysis_bin.observation_map.as_partial() sparse_bkg = analysis_bin.background_map.as_partial() size += sparse_obs.nbytes size += sparse_bkg.nbytes obs_counts[i] = sparse_obs.sum() bkg_counts[i] = sparse_bkg.sum() n_pixels[i] = sparse_obs.shape[0] sky_area[i] = n_pixels[i] * analysis_bin.observation_map.pixel_area df['Obs counts'] = obs_counts df['Bkg counts'] = bkg_counts df['obs/bkg'] = old_div(obs_counts, bkg_counts) df['Pixels in ROI'] = n_pixels df['Area (deg^2)'] = sky_area display(df) first_bin_id = list(self._analysis_bins.keys())[0] print("This Map Tree contains %.3f transits in the first bin" \ % self._analysis_bins[first_bin_id].n_transits) print("Total data size: %.2f Mb" % (size * u.byte).to(u.megabyte).value) def write(self, filename): """ Export the tree to a HDF5 file. NOTE: if an ROI has been applied, only the data within the ROI will be saved. :param filename: output filename. Use an extension .hd5 or .hdf5 to ensure proper handling by downstream software :return: None """ # Make a dataframe with the ordered list of bin names # bin_names = map(lambda x:x.name, self._analysis_bins) # Create a dataframe with a multi-index, with the energy bin name as first level and the HEALPIX pixel ID # as the second level multi_index_keys = [] dfs = [] all_metas = [] for bin_id in self._analysis_bins: analysis_bin = self._analysis_bins[bin_id] assert bin_id == analysis_bin.name, \ 'Bin name inconsistency: {} != {}'.format(bin_id, analysis_bin.name) multi_index_keys.append(analysis_bin.name) this_df, this_meta = analysis_bin.to_pandas() dfs.append(this_df) all_metas.append(pd.Series(this_meta)) analysis_bins_df = pd.concat(dfs, axis=0, keys=multi_index_keys) meta_df = pd.concat(all_metas, axis=1, keys=multi_index_keys).T with Serialization(filename, mode='w') as serializer: serializer.store_pandas_object('/analysis_bins', analysis_bins_df) serializer.store_pandas_object('/analysis_bins_meta', meta_df) # Write the ROI if self._roi is not None: serializer.store_pandas_object('/ROI',
pd.Series()
pandas.Series
from functools import reduce import numpy as np import pandas as pd import pyprind from .enums import * class Backtest: """Backtest runner class.""" def __init__(self, allocation, initial_capital=1_000_000, shares_per_contract=100): assets = ('stocks', 'options', 'cash') total_allocation = sum(allocation.get(a, 0.0) for a in assets) self.allocation = {} for asset in assets: self.allocation[asset] = allocation.get(asset, 0.0) / total_allocation self.initial_capital = initial_capital self.stop_if_broke = True self.shares_per_contract = shares_per_contract self._stocks = [] self._options_strategy = None self._stocks_data = None self._options_data = None @property def stocks(self): return self._stocks @stocks.setter def stocks(self, stocks): assert np.isclose(sum(stock.percentage for stock in stocks), 1.0, atol=0.000001), 'Stock percentages must sum to 1.0' self._stocks = list(stocks) return self @property def options_strategy(self): return self._options_strategy @options_strategy.setter def options_strategy(self, strat): self._options_strategy = strat @property def stocks_data(self): return self._stocks_data @stocks_data.setter def stocks_data(self, data): self._stocks_schema = data.schema self._stocks_data = data @property def options_data(self): return self._options_data @options_data.setter def options_data(self, data): self._options_schema = data.schema self._options_data = data def run(self, rebalance_freq=0, monthly=False, sma_days=None): """Runs the backtest and returns a `pd.DataFrame` of the orders executed (`self.trade_log`) Args: rebalance_freq (int, optional): Determines the frequency of portfolio rebalances. Defaults to 0. monthly (bool, optional): Iterates through data monthly rather than daily. Defaults to False. Returns: pd.DataFrame: Log of the trades executed. """ assert self._stocks_data, 'Stock data not set' assert all(stock.symbol in self._stocks_data['symbol'].values for stock in self._stocks), 'Ensure all stocks in portfolio are present in the data' assert self._options_data, 'Options data not set' assert self._options_strategy, 'Options Strategy not set' assert self._options_data.schema == self._options_strategy.schema option_dates = self._options_data['date'].unique() stock_dates = self.stocks_data['date'].unique() assert np.array_equal(stock_dates, option_dates), 'Stock and options dates do not match (check that TZ are equal)' self._initialize_inventories() self.current_cash = self.initial_capital self.trade_log = pd.DataFrame() self.balance = pd.DataFrame({ 'total capital': self.current_cash, 'cash': self.current_cash }, index=[self.stocks_data.start_date - pd.Timedelta(1, unit='day')]) if sma_days: self.stocks_data.sma(sma_days) dates = pd.DataFrame(self.options_data._data[['quotedate', 'volume']]).drop_duplicates('quotedate').set_index('quotedate') rebalancing_days = pd.to_datetime( dates.groupby(pd.Grouper(freq=str(rebalance_freq) + 'BMS')).apply(lambda x: x.index.min()).values) if rebalance_freq else [] data_iterator = self._data_iterator(monthly) bar = pyprind.ProgBar(len(stock_dates), bar_char='█') for date, stocks, options in data_iterator: if (date in rebalancing_days): previous_rb_date = rebalancing_days[rebalancing_days.get_loc(date) - 1] if rebalancing_days.get_loc(date) != 0 else date self._update_balance(previous_rb_date, date) self._rebalance_portfolio(date, stocks, options, sma_days) bar.update() # Update balance for the period between the last rebalancing day and the last day self._update_balance(rebalancing_days[-1], self.stocks_data.end_date) self.balance['options capital'] = self.balance['calls capital'] + self.balance['puts capital'] self.balance['stocks capital'] = sum(self.balance[stock.symbol] for stock in self._stocks) self.balance['stocks capital'].iloc[0] = 0 self.balance['options capital'].iloc[0] = 0 self.balance[ 'total capital'] = self.balance['cash'] + self.balance['stocks capital'] + self.balance['options capital'] self.balance['% change'] = self.balance['total capital'].pct_change() self.balance['accumulated return'] = (1.0 + self.balance['% change']).cumprod() return self.trade_log def _initialize_inventories(self): """Initialize empty stocks and options inventories.""" columns = pd.MultiIndex.from_product( [[l.name for l in self._options_strategy.legs], ['contract', 'underlying', 'expiration', 'type', 'strike', 'cost', 'order']]) totals = pd.MultiIndex.from_product([['totals'], ['cost', 'qty', 'date']]) self._options_inventory = pd.DataFrame(columns=columns.append(totals)) self._stocks_inventory = pd.DataFrame(columns=['symbol', 'price', 'qty']) def _data_iterator(self, monthly): """Returns combined iterator for stock and options data. Each step, it produces a tuple like the following: (date, stocks, options) Returns: generator: Daily/monthly iterator over `self._stocks_data` and `self.options_data`. """ if monthly: it = zip(self._stocks_data.iter_months(), self._options_data.iter_months()) else: it = zip(self._stocks_data.iter_dates(), self._options_data.iter_dates()) return ((date, stocks, options) for (date, stocks), (_, options) in it) def _rebalance_portfolio(self, date, stocks, options, sma_days): """Reabalances the portfolio according to `self.allocation` weights. Args: date (pd.Timestamp): Current date. stocks (pd.DataFrame): Stocks data for the current date. options (pd.DataFrame): Options data for the current date. sma_days (int): SMA window size """ self._execute_option_exits(date, options) stock_capital = self._current_stock_capital(stocks) options_capital = self._current_options_capital(options) total_capital = self.current_cash + stock_capital + options_capital # buy stocks stocks_allocation = self.allocation['stocks'] * total_capital self._stocks_inventory = pd.DataFrame(columns=['symbol', 'price', 'qty']) # We simulate a sell of the stock positions and then a rebuy. # This would **not** work if we added transaction fees. self.current_cash = stocks_allocation + total_capital * self.allocation['cash'] self._buy_stocks(stocks, stocks_allocation, sma_days) # exit/enter contracts options_allocation = self.allocation['options'] * total_capital if options_allocation >= options_capital: self._execute_option_entries(date, options, options_allocation - options_capital) else: to_sell = options_capital - options_allocation current_options = self._get_current_option_quotes(options) self._sell_some_options(date, to_sell, current_options) def _sell_some_options(self, date, to_sell, current_options): sold = 0 total_costs = sum([current_options[i]['cost'] for i in range(len(current_options))]) for (exit_cost, (row_index, inventory_row)) in zip(total_costs, self._options_inventory.iterrows()): if (to_sell - sold > -exit_cost) and (to_sell - sold) > 0: qty_to_sell = (to_sell - sold) // exit_cost if -qty_to_sell <= inventory_row['totals']['qty']: qty_to_sell = (to_sell - sold) // exit_cost else: if qty_to_sell != 0: qty_to_sell = -inventory_row['totals']['qty'] if qty_to_sell != 0: trade_log_append = self._options_inventory.loc[row_index].copy() trade_log_append['totals', 'qty'] = -qty_to_sell trade_log_append['totals', 'date'] = date trade_log_append['totals', 'cost'] = exit_cost for i, leg in enumerate(self._options_strategy.legs): trade_log_append[leg.name, 'order'] = ~trade_log_append[leg.name, 'order'] trade_log_append[leg.name, 'cost'] = current_options[i].loc[row_index]['cost'] self.trade_log = self.trade_log.append(trade_log_append, ignore_index=True) self._options_inventory.at[row_index, ('totals', 'date')] = date self._options_inventory.at[row_index, ('totals', 'qty')] += qty_to_sell sold += (qty_to_sell * exit_cost) self.current_cash += sold - to_sell def _current_stock_capital(self, stocks): """Return the current value of the stocks inventory. Args: stocks (pd.DataFrame): Stocks data for the current time step. Returns: float: Total capital in stocks. """ current_stocks = self._stocks_inventory.merge(stocks, how='left', left_on='symbol', right_on=self._stocks_schema['symbol']) return (current_stocks[self._stocks_schema['adjClose']] * current_stocks['qty']).sum() def _current_options_capital(self, options): options_value = self._get_current_option_quotes(options) values_by_row = [0] * len(options_value[0]) if len(options_value[0]) != 0: for i in range(len(self._options_strategy.legs)): values_by_row += options_value[i]['cost'].values total = -sum(values_by_row * self._options_inventory['totals']['qty'].values) else: total = 0 return total def _buy_stocks(self, stocks, allocation, sma_days): """Buys stocks according to their given weight, optionally using an SMA entry filter. Updates `self._stocks_inventory` and `self.current_cash`. Args: stocks (pd.DataFrame): Stocks data for the current time step. allocation (float): Total capital allocation for stocks. sma_days (int): SMA window. """ stock_symbols = [stock.symbol for stock in self.stocks] query = '{} in {}'.format(self._stocks_schema['symbol'], stock_symbols) inventory_stocks = stocks.query(query) stock_percentages = np.array([stock.percentage for stock in self.stocks]) stock_prices = inventory_stocks[self._stocks_schema['adjClose']] if sma_days: qty = np.where(inventory_stocks['sma'] < stock_prices, (allocation * stock_percentages) // stock_prices, 0) else: qty = (allocation * stock_percentages) // stock_prices self.current_cash -= np.sum(stock_prices * qty) self._stocks_inventory = pd.DataFrame({'symbol': stock_symbols, 'price': stock_prices, 'qty': qty}) def _update_balance(self, start_date, end_date): """Updates self.balance in batch in a certain period between rebalancing days""" stocks_date_col = self._stocks_schema['date'] stocks_data = self._stocks_data.query('({date_col} >= "{start_date}") & ({date_col} < "{end_date}")'.format( date_col=stocks_date_col, start_date=start_date, end_date=end_date)) options_date_col = self._options_schema['date'] options_data = self._options_data.query('({date_col} >= "{start_date}") & ({date_col} < "{end_date}")'.format( date_col=options_date_col, start_date=start_date, end_date=end_date)) calls_value = pd.Series(0, index=options_data[options_date_col].unique()) puts_value = pd.Series(0, index=options_data[options_date_col].unique()) for leg in self._options_strategy.legs: leg_inventory = self._options_inventory[leg.name] cost_field = (~leg.direction).value for contract in leg_inventory['contract']: leg_inventory_contract = leg_inventory.query('contract == "{}"'.format(contract)) qty = self._options_inventory.loc[leg_inventory_contract.index]['totals']['qty'].values[0] options_contract_col = self._options_schema['contract'] current = leg_inventory_contract[['contract']].merge(options_data, how='left', left_on='contract', right_on=options_contract_col) current.set_index(options_date_col, inplace=True) if cost_field == Direction.BUY.value: current[cost_field] = -current[cost_field] if (leg_inventory_contract['type'] == Type.CALL.value).any(): calls_value = calls_value.add(current[cost_field] * qty * self.shares_per_contract, fill_value=0) else: puts_value = puts_value.add(current[cost_field] * qty * self.shares_per_contract, fill_value=0) stocks_current = self._stocks_inventory[['symbol', 'qty']].merge(stocks_data[['date', 'symbol', 'adjClose']], on='symbol') stocks_current['cost'] = stocks_current['qty'] * stocks_current['adjClose'] columns = [ stocks_current[stocks_current['symbol'] == stock.symbol].set_index(stocks_date_col)[[ 'cost' ]].rename(columns={'cost': stock.symbol}) for stock in self._stocks ] add = pd.concat(columns, axis=1) add['cash'] = self.current_cash add['options qty'] = self._options_inventory['totals']['qty'].sum() add['calls capital'] = calls_value add['puts capital'] = puts_value add['stocks qty'] = self._stocks_inventory['qty'].sum() for _index, row in self._stocks_inventory.iterrows(): symbol = row['symbol'] add[symbol + ' qty'] = row['qty'] # sort=False means we're assuming the updates are done in chronological order, i.e, # the dates in add are the immediate successors to the ones at the end of self.balance. # Pass sort=True to ensure self.balance is always sorted chronologically if needed. self.balance = self.balance.append(add, sort=False) def _execute_option_entries(self, date, options, options_allocation): """Enters option positions according to `self._options_strategy`. Calls `self._pick_entry_signals` to select from the entry signals given by the strategy. Updates `self._options_inventory` and `self.current_cash`. Args: date (pd.Timestamp): Current date. options (pd.DataFrame): Options data for the current time step. options_allocation (float): Capital amount allocated to options. """ self.current_cash += options_allocation # Remove contracts already in inventory inventory_contracts = pd.concat( [self._options_inventory[leg.name]['contract'] for leg in self._options_strategy.legs]) subset_options = options[~options[self._options_schema['contract']].isin(inventory_contracts)] entry_signals = [] for leg in self._options_strategy.legs: flt = leg.entry_filter cost_field = leg.direction.value leg_entries = subset_options[flt(subset_options)] # Exit if no entry signals for the current leg if leg_entries.empty: return fields = self._signal_fields(cost_field) leg_entries = leg_entries.reindex(columns=fields.keys()) leg_entries.rename(columns=fields, inplace=True) order = get_order(leg.direction, Signal.ENTRY) leg_entries['order'] = order # Change sign of cost for SELL orders if leg.direction == Direction.SELL: leg_entries['cost'] = -leg_entries['cost'] leg_entries['cost'] *= self.shares_per_contract leg_entries.columns = pd.MultiIndex.from_product([[leg.name], leg_entries.columns]) entry_signals.append(leg_entries.reset_index(drop=True)) # Append the 'totals' column to entry_signals total_costs = sum([leg_entry.droplevel(0, axis=1)['cost'] for leg_entry in entry_signals]) qty = options_allocation // abs(total_costs) totals =
pd.DataFrame.from_dict({'cost': total_costs, 'qty': qty, 'date': date})
pandas.DataFrame.from_dict
#TODO: import tensorflow as tf import os import argparse import sys import random import math import logging import operator import itertools import datetime import numpy as np import pandas as pd from csv import reader from random import randrange FLAGS = None #FORMAT = '%(asctime)s %(levelname)s %(message)s' #logging.basicConfig(format=FORMAT) #logger = logging.getLogger('tensorflow') logger = logging.getLogger('tensorflow') formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') handler = logging.StreamHandler() handler.setFormatter(formatter) logger.addHandler(handler) logger.removeHandler(logger.handlers[0]) logger.propagate = False def sales_example(sales): record = { 'sales': tf.train.Feature(float_list=tf.train.FloatList(value=sales)) } return tf.train.Example(features=tf.train.Features(feature=record)) def capacity_example(capacity): record = { 'capacity': tf.train.Feature(float_list=tf.train.FloatList(value=capacity)) } return tf.train.Example(features=tf.train.Features(feature=record)) def stock_example(stock): record = { 'stock': tf.train.Feature(float_list=tf.train.FloatList(value=stock)) } return tf.train.Example(features=tf.train.Features(feature=record)) #https://stackoverflow.com/questions/553303/generate-a-random-date-between-two-other-dates def random_date(start, end): return start + datetime.timedelta( seconds=random.randint(0, int((end - start).total_seconds())), ) def create_records(number_of_products, start_date, end_date, start_time_period, middle_time_period, end_time_period, orders_file, products_file, departments_file, order_products_prior_file, order_products_train_file, train_tfrecords_file, test_tfrecords_file, capacity_tfrecords_file, stock_tfrecords_file): stock = np.random.uniform(low=0.0, high=1.0, size=(FLAGS.number_of_products)) with tf.io.TFRecordWriter(stock_tfrecords_file) as writer: logger.debug ("stock: {}".format(stock)) tf_example = stock_example(stock) writer.write(tf_example.SerializeToString()) with open(orders_file, 'r') as f: csv_reader = reader(f) next(csv_reader) orders_list = list(map(tuple, csv_reader)) sorted_orders = sorted(orders_list, key = lambda x: (int(x[1]), int(x[3]))) dated_orders = [] i = 0 for k, g in itertools.groupby(sorted_orders, lambda x : int(x[1])): item = next(g) order_date = random_date(start_date, end_date) while order_date.weekday() != int(item[4]): order_date = order_date + datetime.timedelta(days=1) start_date = datetime.datetime.combine(start_date, datetime.datetime.min.time()) end_date = datetime.datetime.combine(end_date, datetime.datetime.min.time()) order_date = datetime.datetime(order_date.year, order_date.month, order_date.day, int(item[5]), 0, 0) time_period = int((order_date - start_date).total_seconds() / (60*60*6)) dated_orders.append((int(item[0]), int(item[1]), int(item[4]), order_date, time_period)) for item in g: order_date = order_date + datetime.timedelta(days=int(float(item[6]))) order_date = datetime.datetime(order_date.year, order_date.month, order_date.day, int(item[5]), 0, 0) time_period = int((order_date - start_date).total_seconds() / (60*60*6)) dated_orders.append((int(item[0]), int(item[1]), int(item[4]), order_date, time_period)) orders = pd.DataFrame(dated_orders, columns =['order_id', 'user_id', 'order_dow', 'order_date', 'time_period']) products = pd.read_csv(products_file) departments = pd.read_csv(departments_file) prior_order = pd.read_csv("data/order_products__prior.csv") train_order = pd.read_csv("data/order_products__train.csv") #aisles = pd.read_csv("data/aisles.csv") ntop = int(FLAGS.top_products*products['product_id'].count()) all_ordered_products = pd.concat([prior_order, train_order], axis=0)[["order_id", "product_id"]] largest = all_ordered_products[['product_id']].groupby(['product_id']).size().nlargest(ntop).to_frame() largest.reset_index(inplace=True) products_largest =
pd.merge(largest, products, how="left", on="product_id")
pandas.merge
# coding: utf-8 # We are going to try and predict the if a loan will be late or default using the below data. The do the preprocessing and to explore the data. # ### Import Libraries # In[ ]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns get_ipython().run_line_magic('matplotlib', 'inline') sns.set(style='white', font_scale=0.9) # ### Import DataSet # In[ ]: dataset = pd.read_csv('../input/loan.csv') # In[ ]: pd.set_option('display.max_columns', len(dataset.columns)) dataset.head(3) # In[ ]:
pd.reset_option('display.max_columns')
pandas.reset_option
import pandas as pd import pytest import woodwork as ww from pandas.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, ) from evalml.pipelines.components import LabelEncoder def test_label_encoder_init(): encoder = LabelEncoder() assert encoder.parameters == {"positive_label": None} assert encoder.random_seed == 0 def test_label_encoder_fit_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() with pytest.raises(ValueError, match="y cannot be None"): encoder.fit(X) encoder.fit(X, y) with pytest.raises(ValueError, match="y cannot be None"): encoder.inverse_transform(None) def test_label_encoder_transform_y_is_None(): X = pd.DataFrame({}) y = pd.Series(["a", "b"]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X) assert_frame_equal(X, X_t) assert y_t is None def test_label_encoder_fit_transform_with_numeric_values_does_not_encode(): X = pd.DataFrame({}) # binary y = pd.Series([0, 1, 1, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) # multiclass X = pd.DataFrame({}) y = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y, y_t) def test_label_encoder_fit_transform_with_numeric_values_needs_encoding(): X = pd.DataFrame({}) # binary y = pd.Series([2, 1, 2, 1]) y_expected = pd.Series([1, 0, 1, 0]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series([0, 1, 1, 3, 0, 3]) y_expected = pd.Series([0, 1, 1, 2, 0, 2]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_with_categorical_values(): X = pd.DataFrame({}) # binary y = pd.Series(["b", "a", "b", "b"]) y_expected = pd.Series([1, 0, 1, 1]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) # multiclass y = pd.Series(["c", "a", "b", "c", "d"]) y_expected = pd.Series([2, 0, 1, 2, 3]) encoder = LabelEncoder() encoder.fit(X, y) X_t, y_t = encoder.transform(X, y) assert_frame_equal(X, X_t) assert_series_equal(y_expected, y_t) def test_label_encoder_fit_transform_equals_fit_and_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) encoder = LabelEncoder() X_fit_transformed, y_fit_transformed = encoder.fit_transform(X, y) encoder_duplicate = LabelEncoder() encoder_duplicate.fit(X, y) X_transformed, y_transformed = encoder_duplicate.transform(X, y) assert_frame_equal(X_fit_transformed, X_transformed) assert_series_equal(y_fit_transformed, y_transformed) def test_label_encoder_inverse_transform(): X = pd.DataFrame({}) y = pd.Series(["a", "b", "c", "a"]) y_expected = ww.init_series(y) encoder = LabelEncoder() _, y_fit_transformed = encoder.fit_transform(X, y) y_inverse_transformed = encoder.inverse_transform(y_fit_transformed) assert_series_equal(y_expected, y_inverse_transformed) y_encoded = pd.Series([1, 0, 2, 1]) y_expected = ww.init_series(pd.Series(["b", "a", "c", "b"])) y_inverse_transformed = encoder.inverse_transform(y_encoded) assert_series_equal(y_expected, y_inverse_transformed) def test_label_encoder_with_positive_label_multiclass_error(): y = pd.Series(["a", "b", "c", "a"]) encoder = LabelEncoder(positive_label="a") with pytest.raises( ValueError, match="positive_label should only be set for binary classification targets", ): encoder.fit(None, y) def test_label_encoder_with_positive_label_missing_from_input(): y = pd.Series(["a", "b", "a"]) encoder = LabelEncoder(positive_label="z") with pytest.raises( ValueError, match="positive_label was set to `z` but was not found in the input target data.", ): encoder.fit(None, y) @pytest.mark.parametrize( "y, positive_label, y_encoded_expected", [ ( pd.Series([True, False, False, True]), False, pd.Series([0, 1, 1, 0]), ), # boolean ( pd.Series([True, False, False, True]), True, pd.Series([1, 0, 0, 1]), ), # boolean ( pd.Series([0, 1, 1, 0]), 0, pd.Series([1, 0, 0, 1]), ), # int, 0 / 1, encoding should flip ( pd.Series([0, 1, 1, 0]), 1,
pd.Series([0, 1, 1, 0])
pandas.Series
""" Fields ------ In this module the Fields are defined, which are the main containers for the elements. """ from dataclasses import dataclass from typing import Sequence, Tuple, Optional import numpy as np import pandas as pd from matplotlib import pyplot as plt, ticker from matplotlib.axes import Axes from matplotlib.figure import Figure from scipy.integrate import ode from plofeld.utils.classes import Vector from plofeld.utils.constants import INTEGRATION_TIME_STEP, ZORDER, ELECTRIC, MAGNETIC, RealNumber from plofeld.elements import PointCharge from plofeld.utils.plotting import ( charge_to_marker, charge_to_circle, add_arrow_to_line, went_straight_through_origin, is_point_visible ) @dataclass class StaticField: charges: Sequence[PointCharge] field_type: str = ELECTRIC def __post_init__(self): if self.field_type == MAGNETIC: assert all(abs(c.q) == 1 for c in self.charges) def field_at(self, location: Vector) -> Vector: """Calculates the field Vector at a given location from the charges.""" return Vector(*np.sum([c.field_at(location) for c in self.charges], axis=0)) def plot(self, xlim: Tuple[RealNumber, RealNumber] = (None, None), ylim: Tuple[RealNumber, RealNumber] = (None, None), no_ticks: bool = True, **kwargs) -> Figure: """Plot the given static field with all the lines and charges. Args: xlim (Tuple[RealNumber, RealNumber]): xlimits to set ylim (Tuple[RealNumber, RealNumber]): ylimits to set no_ticks (bool): No ticks on the axes. Default: True Keyword Args: other: passed on to :func:`plot_field_lines` """ fig, ax = plt.subplots(1, 1) ax.axis("image") ax.set_xlim(xlim) ax.set_ylim(ylim) self.plot_field_lines(ax, **kwargs) self.plot_charges(ax) if no_ticks: ax.xaxis.set_major_locator(ticker.NullLocator()) ax.yaxis.set_major_locator(ticker.NullLocator()) ax.set_xlabel('$x$') ax.set_ylabel('$y$') fig.tight_layout() return fig # Line Plotting ---------------------------------------------------------------- def plot_field_lines(self, ax: Axes, **kwargs): """Plot all the field lines around the charges in given static field. The field lines are on-the-fly evaluated via integration. So this can take a while. Inspired by: https://www.numbercrunch.de/blog/2013/05/visualizing-streamlines/ Args: ax (Axes): Matplotlib Axes to plot on Keyword Args: n_lines (int): Number of field lines per charge, distributed in a circle. Default: ``20`` no_origin_lines (bool): Tries to remove straight lines through the origin (0, 0). Default: ``False`` arrows (bool): Plot arrows on the lines. Default: ``True`` color (str): Desired color of the lines. Default: ``'k'`` time_step (float): Time step for the integration. Default: see ``INTEGRATION_TIME_STEP`` """ n_lines: int = kwargs.get('n_lines', 20) no_origin_lines: bool = kwargs.get('no_origin_lines', False) arrows: bool = kwargs.get('arrows', True) color: str = kwargs.get('color', 'k') time_step: float = kwargs.get('time_step', INTEGRATION_TIME_STEP) charges_strings = [str(c) for c in self.charges] connected_charges =
pd.DataFrame(False, index=charges_strings, columns=charges_strings, dtype=bool)
pandas.DataFrame
from collections import deque from datetime import datetime import operator import numpy as np import pytest import pytz import pandas as pd import pandas._testing as tm from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) with pytest.raises(TypeError): x >= y with pytest.raises(TypeError): x > y with pytest.raises(TypeError): x < y with pytest.raises(TypeError): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: with pytest.raises(TypeError): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.slow @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(10 ** 6).reshape(100, -1) df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df =
pd.DataFrame({0: dti, 1: tdi})
pandas.DataFrame
import pandas as pd import numpy as np # from pandas.core.tools.datetimes import normalize_date from pandas._libs import tslib from backend.robinhood_api import RobinhoodAPI class RobinhoodData: """ Wrapper to download orders and dividends from Robinhood accounts Downloads two dataframes and saves to datafile ---------- Parameters: datafile : location of h5 datafile """ def __init__(self, datafile): self.datafile = datafile def _login(self, user, password): self.client = RobinhoodAPI() # try import the module with passwords try: _temp = __import__('auth') self.client.login(_temp.local_user, _temp.local_password) except: self.client.login(username=user, password=password) return self # private method for getting all orders def _fetch_json_by_url(self, url): return self.client.session.get(url).json() # deleting sensitive or redundant fields def _delete_sensitive_fields(self, df): for col in ['account', 'url', 'id', 'instrument']: if col in df: del df[col] return df # download orders and fields requiring RB client def _download_orders(self): print("Downloading orders from Robinhood") orders = [] past_orders = self.client.order_history() orders.extend(past_orders['results']) while past_orders['next']: next_url = past_orders['next'] past_orders = self._fetch_json_by_url(next_url) orders.extend(past_orders['results']) df = pd.DataFrame(orders) df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='created_at', inplace=True) df.reset_index(inplace=True, drop=True) df_ord = self._delete_sensitive_fields(df) return df_ord # download dividends and fields requiring RB client def _download_dividends(self): print("Downloading dividends from Robinhood") dividends = self.client.dividends() dividends = [x for x in dividends['results']] df = pd.DataFrame(dividends) if df.shape[0] > 0: df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='paid_at', inplace=True) df.reset_index(inplace=True, drop=True) df_div = self._delete_sensitive_fields(df) else: df_div = pd.DataFrame(columns=['symbol', 'amount', 'position', 'rate', 'paid_at', 'payable_date']) return df_div # process orders def _process_orders(self, df_ord): # assign to df and reduce the number of fields df = df_ord.copy() fields = [ 'created_at', 'average_price', 'cumulative_quantity', 'fees', 'symbol', 'side'] df = df[fields] # convert types for field in ['average_price', 'cumulative_quantity', 'fees']: df[field] = pd.to_numeric(df[field]) for field in ['created_at']: df[field] = pd.to_datetime(df[field]) # add days df['date'] = df['created_at'].apply( lambda x: tslib.normalize_date(x)) # rename columns for consistency df.rename(columns={ 'cumulative_quantity': 'current_size' }, inplace=True) # quantity accounting for side of transaction for cumsum later df['signed_size'] = np.where( df.side == 'buy', df['current_size'], -df['current_size']) df['signed_size'] = df['signed_size'].astype(np.int64) return df # process_orders def _process_dividends(self, df_div): df = df_div.copy() # convert types for field in ['amount', 'position', 'rate']: df[field] = pd.to_numeric(df[field]) for field in ['paid_at', 'payable_date']: df[field] = pd.to_datetime(df[field]) # add days df['date'] = df['paid_at'].apply( lambda x: tslib.normalize_date(x)) return df def _generate_positions(self, df_ord): """ Process orders dataframe and generate open and closed positions. For all open positions close those which were later sold, so that the cost_basis for open can be calculated correctly. For closed positions calculate the cost_basis based on the closed open positions. Note: the olders open positions are first to be closed. The logic here is to reduce the tax exposure. ----- Parameters: - Pre-processed df_ord Return: - Two dataframes with open and closed positions correspondingly """ # prepare dataframe for open and closed positions df_open = df_ord[df_ord.side == 'buy'].copy() df_closed = df_ord[df_ord.side == 'sell'].copy() # create a new column for today's position size # TODO: may be redundant - review later df_open['final_size'] = df_open['current_size'] df_closed['final_size'] = df_closed['current_size'] # main loop for i_closed, row_closed in df_closed.iterrows(): sell_size = row_closed.final_size sell_cost_basis = 0 for i_open, row_open in df_open[ (df_open.symbol == row_closed.symbol) & (df_open.date < row_closed.date)].iterrows(): new_sell_size = sell_size - df_open.loc[i_open, 'final_size'] new_sell_size = 0 if new_sell_size < 0 else new_sell_size new_open_size = df_open.loc[i_open, 'final_size'] - sell_size new_open_size = new_open_size if new_open_size > 0 else 0 # updating open positions df_open.loc[i_open, 'final_size'] = new_open_size # updating closed positions df_closed.loc[i_closed, 'final_size'] = new_sell_size sold_size = sell_size - new_sell_size sell_cost_basis +=\ df_open.loc[i_open, 'average_price'] * sold_size sell_size = new_sell_size # assign a cost_basis to the closed position df_closed.loc[i_closed, 'current_cost_basis'] = -sell_cost_basis # calculate cost_basis for open positions df_open['current_cost_basis'] =\ df_open['current_size'] * df_open['average_price'] df_open['final_cost_basis'] =\ df_open['final_size'] * df_open['average_price'] # calculate capital gains for closed positions df_closed['realized_gains'] =\ df_closed['current_size'] * df_closed['average_price'] +\ df_closed['current_cost_basis'] df_closed['final_cost_basis'] = 0 return df_open, df_closed def download_robinhood_data(self, user, password): self._login(user, password) df_div = self._process_dividends(self._download_dividends()) df_div.to_hdf(self.datafile, 'dividends') df_ord = self._process_orders(self._download_orders()) df_ord.to_hdf(self.datafile, 'orders') df_open, df_closed = self._generate_positions(df_ord) df_open.to_hdf(self.datafile, 'open') df_closed.to_hdf(self.datafile, 'closed') return df_div, df_ord, df_open, df_closed if __name__ == "__main__": rd = RobinhoodData('../data/data.h5') if False: df_div, df_ord, df_open, df_closed =\ rd.download_robinhood_data(None, None) df_div = pd.read_hdf('../data/data.h5', 'dividends') df_ord =
pd.read_hdf('../data/data.h5', 'orders')
pandas.read_hdf
from datetime import date, datetime, timedelta from dateutil import tz import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm class TestDatetimeIndex: def test_setitem_with_datetime_tz(self): # 16889 # support .loc with alignment and tz-aware DatetimeIndex mask = np.array([True, False, True, False]) idx = date_range("20010101", periods=4, tz="UTC") df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) idx = date_range("20010101", periods=4) df = DataFrame({"a": np.arange(4)}, index=idx).astype("float64") result = df.copy() result.loc[mask, :] = df.loc[mask, :] tm.assert_frame_equal(result, df) result = df.copy() result.loc[mask] = df.loc[mask] tm.assert_frame_equal(result, df) def test_indexing_with_datetime_tz(self): # GH#8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) df = DataFrame({"A": idx, "B": dr}) df["C"] = idx df.iloc[1, 1] = pd.NaT df.iloc[1, 2] = pd.NaT # indexing result = df.iloc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) result = df.loc[1] expected = Series( [Timestamp("2013-01-02 00:00:00-0500", tz="US/Eastern"), pd.NaT, pd.NaT], index=list("ABC"), dtype="object", name=1, ) tm.assert_series_equal(result, expected) # indexing - fast_xs df = DataFrame({"a": date_range("2014-01-01", periods=10, tz="UTC")}) result = df.iloc[5] expected = Series( [Timestamp("2014-01-06 00:00:00+0000", tz="UTC")], index=["a"], name=5 ) tm.assert_series_equal(result, expected) result = df.loc[5] tm.assert_series_equal(result, expected) # indexing - boolean result = df[df.a > df.a[3]] expected = df.iloc[4:] tm.assert_frame_equal(result, expected) # indexing - setting an element df = DataFrame( data=pd.to_datetime(["2015-03-30 20:12:32", "2015-03-12 00:11:11"]), columns=["time"], ) df["new_col"] = ["new", "old"] df.time = df.set_index("time").index.tz_localize("UTC") v = df[df.new_col == "new"].set_index("time").index.tz_convert("US/Pacific") # trying to set a single element on a part of a different timezone # this converts to object df2 = df.copy() df2.loc[df2.new_col == "new", "time"] = v expected = Series([v[0], df.loc[1, "time"]], name="time") tm.assert_series_equal(df2.time, expected) v = df.loc[df.new_col == "new", "time"] + pd.Timedelta("1s") df.loc[df.new_col == "new", "time"] = v tm.assert_series_equal(df.loc[df.new_col == "new", "time"], v) def test_consistency_with_tz_aware_scalar(self): # xef gh-12938 # various ways of indexing the same tz-aware scalar df = Series([Timestamp("2016-03-30 14:35:25", tz="Europe/Brussels")]).to_frame() df =
pd.concat([df, df])
pandas.concat
import cPickle from collections import defaultdict from helpers import functions as helpers from view import View import pandas as pd import copy class Chain(defaultdict): """ Container class that holds ordered Link defintions and associated Views. The Chain object is a subclassed dict of list where each list contains one or more View aggregations of a Stack. It is an internal class included and used inside the Stack object. Users can interact with the data directly through the Chain or through the related Cluster object. """ def __init__(self, name=None): super(Chain, self).__init__(Chain) self.name = name self.orientation = None self.source_name = None self.source_type = None self.source_length = None self.len_of_axis = None self.content_of_axis = None self.data_key = None self.filter = None self.views = None # self.view_sizes = None # self.view_lengths = None self.has_weighted_views = False self.x_hidden_codes = None self.y_hidden_codes = None self.x_new_order = None self.y_new_order = None self.props_tests = list() self.props_tests_levels = list() self.means_tests = list() self.means_tests_levels = list() self.has_props_tests = False self.has_means_tests = False self.is_banked = False self.banked_spec = None self.banked_view_key = None self.banked_meta = None self.base_text = None self.annotations = None def __repr__(self): return ('%s:\norientation-axis: %s - %s,\ncontent-axis: %s, \nviews: %s' %(Chain, self.orientation, self.source_name, self.content_of_axis, len(self.views))) def __setstate__(self, attr_dict): self.__dict__.update(attr_dict) def __reduce__(self): return self.__class__, (self.name, ), self.__dict__, None, self.iteritems() def save(self, path=None): """ This method saves the current chain instance (self) to file (.chain) using cPickle. Attributes : path (string) Specifies the location of the saved file, NOTE: has to end with '/' Example: './tests/' """ if path is None: path_chain = "./{}.chain".format(self.name) else: path_chain = path f = open(path_chain, 'wb') cPickle.dump(self, f, cPickle.HIGHEST_PROTOCOL) f.close() def copy(self): """ Create a copy of self by serializing to/from a bytestring using cPickle. """ new_chain = cPickle.loads( cPickle.dumps(self, cPickle.HIGHEST_PROTOCOL)) return new_chain def _lazy_name(self): """ Apply lazy-name logic to chains created without an explicit name. - This method does not take any responsibilty for uniquley naming chains """ self.name = '%s.%s.%s.%s' % (self.orientation, self.source_name, '.'.join(self.content_of_axis), '.'.join(self.views).replace(' ', '_')) def _derive_attributes(self, data_key, filter, x_def, y_def, views, source_type=None, orientation=None): """ A simple method that is deriving attributes of the chain from its specification: (some attributes are only updated when chains get post-processed, i.e. there is meta data available for the dataframe) -- examples: - orientation: directional alignment of the link - source_name: name of the orientation defining variable - source_type: dtype of the source variable - len_of_axis: number of variables in the non-orientation axis - views: the list of views specified in the chain - view_sizes: a list of lists of dataframe index and column lenght tuples, matched on x/view index (only when post-processed) """ if x_def is not None or y_def is not None: self.orientation = orientation if self.orientation=='x': self.source_name = ''.join(x_def) self.len_of_axis = len(y_def) self.content_of_axis = y_def else: self.source_name = ''.join(y_def) self.len_of_axis = len(x_def) self.content_of_axis = x_def self.views = views self.data_key = data_key self.filter = filter self.source_type = source_type def concat(self): """ Concatenates all Views found for the Chain definition along its orientations axis. """ views_on_var = [] contents = [] full_chain = [] all_chains = [] chain_query = self[self.data_key][self.filter] if self.orientation == 'y': for var in self.content_of_axis: contents = [] for view in self.views: try: res = (chain_query[var][self.source_name] [view].dataframe.copy()) if self.source_name == '@': res.columns = pd.MultiIndex.from_product( ['@', '-'], names=['Question', 'Values']) views_on_var.append(res) except: pass contents.append(views_on_var) for c in contents: full_chain.append(pd.concat(c, axis=0)) concat_chain = pd.concat(full_chain, axis=0) else: for var in self.content_of_axis: views_on_var = [] for view in self.views: try: res = (chain_query[self.source_name][var] [view].dataframe.copy()) if var == '@': res.columns = pd.MultiIndex.from_product( ['@', '-'], names=['Question', 'Values']) views_on_var.append(res) except: pass contents.append(
pd.concat(views_on_var, axis=0)
pandas.concat
from decimal import * from slugify import slugify # awesome-slugify, from requirements import configuration # configuration.py, with user-defined variables. from pandas import DataFrame, read_csv from pandas import datetime as dt import pandas as pd #this is how I usually import pandas import sys #only needed to determine Python version number import matplotlib #only needed to determine Matplotlib version number import numpy as np import csv import glob import time import datetime from collections import OrderedDict import pprint import os import sys from subprocess import Popen import pickle import json import pandas time = datetime.datetime.now().strftime("%Y-%m-%d %I:%M %p") def FloridaResults(): targetdir = configuration.snapshotsdir sourcecsvs = sorted(list(glob.glob(targetdir + "*"))) for filename in sourcecsvs: newestdirectories = sorted(list(glob.glob(filename +"/*"))) sorted_files = sorted(newestdirectories, key=os.path.getctime) newestdirectory = sorted_files[-1] csvs = sorted(list(glob.glob(newestdirectory +"/*.csv"))) for filename in csvs: if '/snapshots/Florida/' in filename: df = pd.read_csv(filename, dtype='object', sep=',', encoding="utf8") df['seatname'] = df['seatname'].fillna(" ") df['officename'] = df['officename'] + " " + df['seatname'] df['precinctsreporting'] = df['precinctsreporting'].astype('int64') df['precinctstotal'] = df['precinctstotal'].astype('int64') df['votecount'] = df['votecount'].astype('int64') df['party'] = df['party'].fillna(" ") df['first'] = df['first'].fillna(" ") df['party'] = df['party'].replace(['Republican Party', 'Democratic Party', 'No Party Affiliation', 'Libertarian Party', 'Green Party', 'Reform Party', 'Non-Partisan'],['REP', 'DEM', 'NPA', 'LPF', 'GRE', 'REF', '']) df['last'] = df['last'].replace(['Fried',],['"Nikki" Fried']) df['lastupdated'] = time votestotal = df.groupby(['officename', 'last', 'first', 'party', 'lastupdated'])['precinctsreporting', 'precinctstotal', 'votecount'].sum() votestotal['totalvotesinrace'] = votestotal.groupby(['officename'])['votecount'].transform('sum') votestotal['totalvotesinrace'] = votestotal['totalvotesinrace'].astype('int64') votestotal['votepct'] = votestotal['votecount']/votestotal['totalvotesinrace'] votestotal['precinctsreportingpct'] = votestotal['precinctsreporting']/votestotal['precinctstotal'] # print(votestotal['party']) votestotal.to_csv("stateagg.csv") csvfile = open('stateagg.csv', 'r') jsonfile = open('stateagg.json', 'w') data = [] reader = csv.DictReader(csvfile) for row in reader: data.append(row) jsonfile.write(json.dumps(data, jsonfile)) df = df.loc[(df['officename'] == 'Governor ') | (df['officename'] == 'United States Senator ')] countyturnout = df.groupby(['officename', 'last', 'first', 'party', 'reportingunitname'])['precinctsreporting', 'precinctstotal', 'votecount'].sum() countyturnout['totalvotesinrace'] = countyturnout.groupby(['officename'])['votecount'].transform('sum') countyturnout['totalvotesinrace'] = countyturnout['totalvotesinrace'].astype('int64') countyturnout['votepct'] = countyturnout['votecount']/countyturnout['totalvotesinrace'] countyturnout['precinctsreportingpct'] = countyturnout['precinctsreporting']/countyturnout['precinctstotal'] countyturnout.to_csv("countyturnout.csv") FloridaResults() def countyResults(): targetdir = configuration.snapshotsdir files = [] dfs = [] sourcecsvs = sorted(list(glob.glob(targetdir + "*"))) for filename in sourcecsvs: newestdirectories = sorted(list(glob.glob(filename +"/*"))) sorted_files = sorted(newestdirectories, key=os.path.getctime) newestdirectory = sorted_files[-1] csvs = sorted(list(glob.glob(newestdirectory +"/*.csv"))) for filename in csvs: if '/snapshots/Miami-Dade/' in filename: df =
pd.read_csv(filename, dtype='object', sep=',', encoding="utf8")
pandas.read_csv
import string import pandas as pd import sqlite3 import re from urllib.request import urlopen from datetime import datetime from bs4 import BeautifulSoup from fundamentus import get_data from tqdm import tqdm from exception_util import exception, create_logger, retry # Create instances of loggers cvm_logger = create_logger('cvm_logger') result_logger = create_logger('result_logger') cvm2symbol_logger = create_logger('cvm2symbol_logger') price_logger = create_logger('price_logger') @retry() @exception(cvm_logger) def cvm(): """ Get registration of all companies listed in CVM. This function is a crawler which get all registration information from companies on cvmweb page.cvmweb Parameters ---------- None Returns ------- DataFrame The dataframe with fields ['cnpj', 'name', 'type', 'cvm_code', 'situation'] """ # Define url base url = 'http://cvmweb.cvm.gov.br/SWB/Sistemas/SCW/CPublica/CiaAb/FormBuscaCiaAbOrdAlf.aspx?LetraInicial=' # Get alphanum uppercase set to use in page index alphanum =string.ascii_lowercase.upper() + ''.join(list(map(str,range(10)))) # Attribute values to identify table lines of interest colors = ['Cornsilk','#FAEFCA'] # Loop through index pages and append registration information to data list data = list() #for letra_inicial in tqdm(alphanum, desc='Reading companies', unit='tabs'): for letra_inicial in alphanum: # get html with urlopen(url+f'{letra_inicial}') as html: soup = BeautifulSoup(html, 'html.parser') try: # loop through table lines retrieving fields values for row in soup.find_all('tr', bgcolor=True): row_tup = tuple() # check the attribute matching if row['bgcolor'] in colors: for field in row.find_all('td'): row_tup += (field.get_text(),) data.append(row_tup) except: continue # Store data in dataframe columns = ['cnpj', 'name', 'type', 'cvm_code', 'situation'] df = pd.DataFrame(data, columns=columns) df['cvm_code'] = df['cvm_code'].apply(int) return df @retry() @exception(cvm2symbol_logger) def cvm2symbol(cvm_codes, cvm_prices_and_liq): """ Get most relevant symbol price with cvm_code information This function is a crawler which get all symbols from companies listed in cvm and then retrieve between the symbols with same cvm_code the one with best liq. Parameters ---------- cvm_codes : list or numpy.array List of cvm_codes cvm_prices_and_liq : DataFrame or numpy.ndarray Table indexed by symbol name and with price and liq info Returns ------- DataFrame The dataframe with fields ['cvm_code', 'symbol', 'price', 'date'] """ # Define cvm symbols source url url = 'http://bvmf.bmfbovespa.com.br/pt-br/mercados/acoes/empresas/ExecutaAcaoConsultaInfoEmp.asp?CodCVM=' # Get symbols at url entering adding cmv_code to query cvm_symbol = [] for code in tqdm(cvm_codes, desc='Reading prices', unit='codes'): #for code in cvm_codes: with urlopen(url+f'{code}') as html: soup = BeautifulSoup(html, 'html.parser') liq = .0 symbol = None # Take the symbol with best liq for this cvm_code for row in soup.find_all('a', "LinkCodNeg"): tmp_symbol = row.get_text().strip() # Evaluate if symbol exists if tmp_symbol in cvm_prices_and_liq.index: tmp_liq = convertNum(cvm_prices_and_liq.loc[tmp_symbol].liq) if tmp_liq < liq: continue liq = tmp_liq symbol = tmp_symbol # Skip when no symbol if symbol: cvm_symbol.append((code, symbol, pd.to_datetime(cvm_prices_and_liq.loc[symbol].date))) return
pd.DataFrame(cvm_symbol, columns=['cvm_code', 'symbol', 'date'])
pandas.DataFrame
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def plot_feature_diff(diff, xaxis_labels=None, title="", file_path_out=None): data = {i+1: diff[:,i] for i in range(diff.shape[1])} df =
pd.DataFrame(data)
pandas.DataFrame
import re import numpy as np import pandas as pd from typing import List, Tuple def prepare_data(link: str) -> Tuple[pd.DataFrame, List[str]]: """ Load and prepare/preprocess the data Parameters: ----------- link : str Link to the dataset, which should be in excel and of the following format: | Date | Players | Game | Scores | Winner | Version | | 2018-11-18 | Peter+Mike | Qwixx | Peter77+Mike77 | Peter+Mike | Normal | | 2018-11-18 | Chris+Mike | Qwixx | Chris42+Mike99 | Mike | Big Points | | 2018-11-22 | Mike+Chris | Jaipur | Mike84+Chris91 | Chris | Normal | | 2018-11-30 | Peter+Chris+Mike | Kingdomino | Chris43+Mike37+Peter35 | Chris | 5x5 | Returns: -------- df : pandas.core.frame.DataFrame The preprocessed data to be used for the analyses of played board game matches. player_list : list of str List of players """ df =
pd.read_excel(link)
pandas.read_excel
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313: pd.Timestamp("2013-03-11 00:00:00"), 314: pd.Timestamp("2013-03-12 00:00:00"), 315: pd.Timestamp("2013-03-13 00:00:00"), 316: pd.Timestamp("2013-03-14 00:00:00"), 317: pd.Timestamp("2013-03-15 00:00:00"), 318: pd.Timestamp("2013-03-16 00:00:00"), 319: pd.Timestamp("2013-03-17 00:00:00"), 320: pd.Timestamp("2013-03-18 00:00:00"), 321: pd.Timestamp("2013-03-19 00:00:00"), 322: pd.Timestamp("2013-03-20 00:00:00"), 323: pd.Timestamp("2013-03-21 00:00:00"), 324: pd.Timestamp("2013-03-22 00:00:00"), 325: pd.Timestamp("2013-03-23 00:00:00"), 326: pd.Timestamp("2013-03-24 00:00:00"), 327: pd.Timestamp("2013-03-25 00:00:00"), 328: pd.Timestamp("2013-03-26 00:00:00"), 329: pd.Timestamp("2013-03-27 00:00:00"), 330: pd.Timestamp("2013-03-28 00:00:00"), 331: pd.Timestamp("2013-03-29 00:00:00"), 332: pd.Timestamp("2013-03-30 00:00:00"), 333: pd.Timestamp("2013-03-31 00:00:00"), 334: pd.Timestamp("2013-04-01 00:00:00"), 335: pd.Timestamp("2013-04-02 00:00:00"), 336: pd.Timestamp("2013-04-03 00:00:00"), 337: pd.Timestamp("2013-04-04 00:00:00"), 338: pd.Timestamp("2013-04-05 00:00:00"), 339: pd.Timestamp("2013-04-06 00:00:00"), 340: pd.Timestamp("2013-04-07 00:00:00"), 341: pd.Timestamp("2013-04-08 00:00:00"), 342: pd.Timestamp("2013-04-09 00:00:00"), 343: pd.Timestamp("2013-04-10 00:00:00"), 344: pd.Timestamp("2013-04-11 00:00:00"), 345: pd.Timestamp("2013-04-12 00:00:00"), 346: pd.Timestamp("2013-04-13 00:00:00"), 347: pd.Timestamp("2013-04-14 00:00:00"), 348: pd.Timestamp("2013-04-15 00:00:00"), 349: pd.Timestamp("2013-04-16 00:00:00"), 350: pd.Timestamp("2013-04-17 00:00:00"), 351: pd.Timestamp("2013-04-18 00:00:00"), 352: pd.Timestamp("2013-04-19 00:00:00"), 353: pd.Timestamp("2013-04-20 00:00:00"), 354: pd.Timestamp("2013-04-21 00:00:00"), 355: pd.Timestamp("2013-04-22 00:00:00"), 356: pd.Timestamp("2013-04-23 00:00:00"), 357: pd.Timestamp("2013-04-24 00:00:00"), 358: pd.Timestamp("2013-04-25 00:00:00"), 359: pd.Timestamp("2013-04-26 00:00:00"), 360: pd.Timestamp("2013-04-27 00:00:00"), 361: pd.Timestamp("2013-04-28 00:00:00"), 362: pd.Timestamp("2013-04-29 00:00:00"), 363: pd.Timestamp("2013-04-30 00:00:00"), 364: pd.Timestamp("2013-05-01 00:00:00"), 365: pd.Timestamp("2013-05-02 00:00:00"), 366: pd.Timestamp("2013-05-03 00:00:00"), 367: pd.Timestamp("2013-05-04 00:00:00"), 368: pd.Timestamp("2013-05-05 00:00:00"), 369: pd.Timestamp("2013-05-06 00:00:00"), 370: pd.Timestamp("2013-05-07 00:00:00"), 371: pd.Timestamp("2013-05-08 00:00:00"), 372: pd.Timestamp("2013-05-09 00:00:00"), 373: pd.Timestamp("2013-05-10 00:00:00"), 374:
pd.Timestamp("2013-05-11 00:00:00")
pandas.Timestamp
# Importing default django methods: from django.shortcuts import render, redirect from django.db.models import Count from django.core.paginator import Paginator from django.db.models.functions import TruncDay from django.http import HttpResponseRedirect # Importing plotly methods: import plotly.graph_objs as go from plotly.subplots import make_subplots # Importing data manipulation packages: import numpy as np import pandas as pd # Importing date methods: import datetime # Importing database models: from .models import Source, Topic, Author, Publisher # TODO: Generate the array of Sources read per day to populate the heatmaps (add custom coloring). # Function for generating calendar heatmaps (modified from https://gist.github.com/bendichter/d7dccacf55c7d95aec05c6e7bcf4e66e): def display_year(z, year: int = None, month_lines: bool = True, fig=None, row: int = None, color: str = "#76cf63" ): """The method that renders a calendar heatmap showing the number of sources per day given an array of Source counts. This method can either be called on its own to generate a calendar heatmap for a single year or it can be 'recursively' called by the display_years function to generate a heatmap across multiple years. Args: z (np.array): A dataset containing the daily counts of all Sources read per day stored in a 1-D numpy array. year (int): The year that the calendar heatmap will be rendered for. It creates a subplot of the calendar heatmap with this specific year as a label. month_lines (Bool): A boolean which determines if lines will be used to seperate each month on the heatmap. fig (go.Figure): The figure object that the subplot the method generates will be appended too. This is necessary as this method is recursively called via the display_years() method. row (int): The row of the sublot that is used for labeling and the transforming the dataset. color (str): The color that the individaul plots would be. This sets the base color used in the colorscale. """ if year is None: year = datetime.datetime.now().year data = np.ones(365) * 0 data[:len(z)] = z d1 = datetime.date(year, 1, 1) d2 = datetime.date(year, 12, 31) delta = d2 - d1 month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] month_days = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] month_positions = (np.cumsum(month_days) - 15)/7 dates_in_year = [d1 + datetime.timedelta(i) for i in range(delta.days+1)] #gives me a list with datetimes for each day a year weekdays_in_year = [i.weekday() for i in dates_in_year] #gives [0,1,2,3,4,5,6,0,1,2,3,4,5,6,…] (ticktext in xaxis dict translates this to weekdays weeknumber_of_dates = [int(i.strftime("%V")) if not (int(i.strftime("%V")) == 1 and i.month == 12) else 53 for i in dates_in_year] #gives [1,1,1,1,1,1,1,2,2,2,2,2,2,2,…] name is self-explanatory text = [str(date.strftime("%d %b, %Y")) for date in dates_in_year] #4cc417 green #347c17 dark green colorscale=[[False, '#eeeeee'], [True, color]] # handle end of year data = [ go.Heatmap( x=weeknumber_of_dates, y=weekdays_in_year, z=data, text=text, hovertemplate = "<b style='font-family: Helvetica Neue;'>%{z} sources read on %{text}</b>", xgap=3, # this ygap=3, # and this is used to make the grid-like apperance showscale=False, colorscale=colorscale, hoverlabel=dict(align="left") ) ] # TODO: Add onclick events in plotly to imbed links to each day's Sources page. # https://plotly.com/python/click-events/ if month_lines: kwargs = dict( mode='lines', line=dict( color='#9e9e9e', width=1 ), hoverinfo='skip' ) for date, dow, wkn in zip(dates_in_year, weekdays_in_year, weeknumber_of_dates): if date.day == 1: data += [ go.Scatter( x=[wkn-.5, wkn-.5], y=[dow-.5, 6.5], **kwargs ) ] if dow: data += [ go.Scatter( x=[wkn-.5, wkn+.5], y=[dow-.5, dow - .5], **kwargs ), go.Scatter( x=[wkn+.5, wkn+.5], y=[dow-.5, -.5], **kwargs ) ] layout = go.Layout( title=f'Sources Read in {year}', height=280, yaxis=dict( showline=False, showgrid=False, zeroline=False, tickmode='array', ticktext=['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], tickvals=[0, 1, 2, 3, 4, 5, 6], autorange="reversed" ), xaxis=dict( showline=False, showgrid=False, zeroline=False, tickmode='array', ticktext=month_names, tickvals=month_positions ), font={'size':10, 'color':'#000000'}, plot_bgcolor=('#fff'), margin = dict(t=40), showlegend=False ) if fig is None: fig = go.Figure(data=data, layout=layout) else: fig.add_traces(data, rows=[(row+1)]*len(data), cols=[1]*len(data)) fig.update_layout(layout) fig.update_xaxes(layout['xaxis']) fig.update_yaxes(layout['yaxis']) return fig def display_years(z, years): """The method that makes use of the display_year() method to create and modify the calendar heatmap of Sources read. Args: z (np.array): The dataset of Sources read per year stored as a 1-D array of integers. years (tuple): The relevant years of the dataset stored as a tuple which determines which subplots are generated eg: (2019, 2020). Returns: go.Figure: The fully rendered calendar heatmap ready to be passed onto the template. """ fig = make_subplots(rows=len(years), cols=1, subplot_titles=years) for i, year in enumerate(years): data = z[i*365 : (i+1)*365] display_year(data, year=year, fig=fig, row=i) fig.update_layout(height=250*len(years)) return fig def refactor_annual_queryset(queryset, year): """This is a method that inqests a Source queryset and refactors it into a 1-D array (list) of the number of sources read per day in a year. This array is used by the 'display_year' function to create the calendar heatmap of sources read per year. Args: queryset (Queryset): The queryset of Source objects for the year. Only supports the local Source model year (datetime.datetime.date): The current year of the queryset and the calendar heatmap. It is used to build the datetime index. Returns: lst: The 1-D array of source counts for the day. Should always be 365 elements. """ # Annotating the queryset to create datetime and count fields: year_sources = queryset.annotate(date=TruncDay('date_read')).values( "date").annotate(created_count=Count('id')).order_by("date") # Creating a pandas datetime index of each day in the current year: heatmap_datetime_index = pd.date_range( start=datetime.date(year, 1, 1), end=(datetime.date(year, 12, 31)) ) # Full series of only 0 for the year: heatmap_series =
pd.Series(data=0, index=heatmap_datetime_index)
pandas.Series
import numpy as np import random import pandas as pd from itertools import combinations items_set = ['beer','burger','milk','onion','potato'] max_trn = 20 data=np.random.randint(2, size=(random.randint(1,max_trn),len(items_set))) df = pd.DataFrame(data) df.columns = items_set print(df) def candidate_gen(df,items,level,global_freq): candidate_set = [] if level <=1: for i in combinations(items,level): p_s = df[list(i)].all(axis=1).sum() p_sp = df[list(i)].all(axis=1).sum()/len(df) candidate_set.append((",".join(i),p_s,p_sp)) candidate_set = pd.DataFrame(candidate_set, columns=["Candidate", "Support","Support %"]) elif level == 2: for i in combinations(items,level): p_s = df[list(i)].all(axis=1).sum() p_sp = df[list(i)].all(axis=1).sum()/len(df) candidate_set.append((i,p_s,p_sp)) candidate_set =
pd.DataFrame(candidate_set, columns=["Candidate", "Support","Support %"])
pandas.DataFrame
import pandas as pd import numpy as np import requests from termcolor import colored as cl from math import floor import matplotlib.pyplot as plt plt.rcParams['figure.figsize'] = (20, 10) plt.style.use('fivethirtyeight') # EXTRACTING STOCK DATA def get_historical_data(symbol, start_date): api_key = 'YOUR API KEY' api_url = f'https://api.twelvedata.com/time_series?symbol={symbol}&interval=1day&outputsize=5000&apikey={api_key}' raw_df = requests.get(api_url).json() df = pd.DataFrame(raw_df['values']).iloc[::-1].set_index('datetime').astype(float) df = df[df.index >= start_date] df.index = pd.to_datetime(df.index) return df aapl = get_historical_data('AAPL', '2020-01-01') aapl def get_stoch(symbol, k_period, d_period, start_date): api_key = open(r'api_key.txt') url = f'https://www.alphavantage.co/query?function=STOCH&symbol={symbol}&interval=daily&fastkperiod={k_period}&slowdperiod={d_period}&apikey={api_key}' raw = requests.get(url).json() df = pd.DataFrame(raw['Technical Analysis: STOCH']).T.iloc[::-1] df = df[df.index >= start_date] df.index = pd.to_datetime(df.index) df = df.astype(float) return df['SlowK'], df['SlowD'] aapl['%k'], aapl['%d'] = get_stoch('aapl', 14, 3, '2020-01-01') aapl = aapl.dropna() aapl.head() def plot_stoch(symbol, price, k, d): ax1 = plt.subplot2grid((9, 1), (0,0), rowspan = 5, colspan = 1) ax2 = plt.subplot2grid((9, 1), (6,0), rowspan = 3, colspan = 1) ax1.plot(price) ax1.set_title(f'{symbol} STOCK PRICE') ax2.plot(k, color = 'deepskyblue', linewidth = 1.5, label = '%K') ax2.plot(d, color = 'orange', linewidth = 1.5, label = '%D') ax2.axhline(80, color = 'black', linewidth = 1, linestyle = '--') ax2.axhline(20, color = 'black', linewidth = 1, linestyle = '--') ax2.set_title(f'{symbol} STOCH') ax2.legend() plt.show() plot_stoch('aapl', aapl['close'], aapl['%k'], aapl['%d']) def implement_stoch_strategy(prices, k, d): buy_price = [] sell_price = [] stoch_signal = [] signal = 0 for i in range(len(prices)): if k[i] < 20 and d[i] < 20 and k[i] < d[i]: if signal != 1: buy_price.append(prices[i]) sell_price.append(np.nan) signal = 1 stoch_signal.append(signal) else: buy_price.append(np.nan) sell_price.append(np.nan) stoch_signal.append(0) elif k[i] > 80 and d[i] > 80 and k[i] > d[i]: if signal != -1: buy_price.append(np.nan) sell_price.append(prices[i]) signal = -1 stoch_signal.append(signal) else: buy_price.append(np.nan) sell_price.append(np.nan) stoch_signal.append(0) else: buy_price.append(np.nan) sell_price.append(np.nan) stoch_signal.append(0) return buy_price, sell_price, stoch_signal buy_price, sell_price, stoch_signal = implement_stoch_strategy(aapl['close'], aapl['%k'], aapl['%d']) ax1 = plt.subplot2grid((9, 1), (0,0), rowspan = 5, colspan = 1) ax2 = plt.subplot2grid((9, 1), (6,0), rowspan = 3, colspan = 1) ax1.plot(aapl['close'], color = 'skyblue', label = 'aapl') ax1.plot(aapl.index, buy_price, marker = '^', color = 'green', markersize = 10, label = 'BUY SIGNAL', linewidth = 0) ax1.plot(aapl.index, sell_price, marker = 'v', color = 'r', markersize = 10, label = 'SELL SIGNAL', linewidth = 0) ax1.legend(loc = 'upper left') ax1.set_title('aapl STOCK PRICE') ax2.plot(aapl['%k'], color = 'deepskyblue', linewidth = 1.5, label = '%K') ax2.plot(aapl['%d'], color = 'orange', linewidth = 1.5, label = '%D') ax2.axhline(80, color = 'black', linewidth = 1, linestyle = '--') ax2.axhline(20, color = 'black', linewidth = 1, linestyle = '--') ax2.set_title('aapl STOCH') ax2.legend() plt.show() position = [] for i in range(len(stoch_signal)): if stoch_signal[i] > 1: position.append(0) else: position.append(1) for i in range(len(aapl['close'])): if stoch_signal[i] == 1: position[i] = 1 elif stoch_signal[i] == -1: position[i] = 0 else: position[i] = position[i-1] k = aapl['%k'] d = aapl['%d'] close_price = aapl['close'] stoch_signal =
pd.DataFrame(stoch_signal)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME>, PhD, MSB, BCBA-D https://www.researchgate.net/profile/David_Cox26 twitter: @davidjcox_ LinkedIn: https://www.linkedin.com/in/coxdavidj/ Website: https://davidjcox.xyz """ #Set current working directory to the folder that contains your data. import os import pandas as pd import numpy as np import sys import re, string, unicodedata import matplotlib.pyplot as plt sys.path.append('/Users/davidjcox/Dropbox/Coding/Local Python Modules/') # Set path to data os.chdir('/Users/davidjcox/Dropbox/Projects/CurrentProjectManuscripts/Empirical/PersonalFun/Org_Statements_Diversity/Org-Statements-Diversity-Inclusion/Data') # Change settings to view all columns of data pd.set_option('display.max_columns', None) #%% Import data. raw_data = pd.read_csv('all_data.csv').drop(['Unnamed: 0'], axis=1) data = raw_data.copy() data #%% DATA PRE-PROCESSING # Pre-process our data. Goal is to have: # (1) Single list where each item in the list is the raw string of the narrative for that participant. # (2) List of lists with one list per subject, and each item in list is a sentence from their narrative. # (3) List of lists with one list per subject, and each item in the list is a clean* word from their narrative. # (4) Single list with all of the cleaned vocab for the entire group. # (5) Single list of the vocabulary used throughout all narratives (i.e., omitting all redundancies from (4)). # (6) Single list where each item in the list is a string of the cleaned narrative for that participant. # (7) Single list where each item in the list is a string of the participant narratives with only clean words. # ---------------------- # List names for above: # (1) narratives # (2) narratives_sent_tokenized # (3) clean_words_tokenized # (4) narratives_word_list # (5) narrative_vocab # (6) narr_as_string # (7) clean_ind_narr # -------------------------------------------------- # * Clean = punctuation and stop words removed. #%% Start with (1) narratives: # Single list where each item in the list is the raw string of the narrative for that participant. narratives = data['body_text'] # Create a list of the narratives. #%% Next we'll get (2), narratives_sent_tokenized: # List of lists with one list per subject, and each item in list is a sentence from their narrative. import nltk from nltk.tokenize import sent_tokenize, word_tokenize #nltk.download() # Need to download the 'punkt' model from nltk if not already on computer. # Make some empty lists we'll store our data in. lower_narratives = [] narratives_sent_tokenized = [] count=0 # Make lowercase all words in the narratives. Store in lower_narratives list. for each_narr in narratives: lower = each_narr.lower() lower = lower.replace("/", '') lower = lower.replace("\\", '') lower = lower.replace("_", ' ') lower_narratives.append(lower) len(lower_narratives) # Should still have 1141 narratives. lower_narratives[:2] # Check out first few to make sure everything looks okay. # Sentence tokenize the narratives. Store in narratives_sent_tokenized list. for each_narr in lower_narratives: sent_tokens = nltk.sent_tokenize(each_narr) narratives_sent_tokenized.append(sent_tokens) print(len(narratives_sent_tokenized)) # Should still have 1141 narratives. narratives_sent_tokenized[::500] # Check out every 500th narrative to make sure it looks okay. #%% Next, we'll get (3), clean_words_tokenized: # List of lists with one list per subject, and each item in the list is a clean* word from their narrative. # Some empty lists we'll need to store data. stem_narratives = [] clean_words_tokenized = [] narratives_word_tokenized = [] # Word tokenize the narratives. Store in narratives_word_tokenized list. for list in lower_narratives: word_tokens = nltk.word_tokenize(list) narratives_word_tokenized.append(word_tokens) len(narratives_word_tokenized) # Should still have 1141 items. narratives_word_tokenized[:1] # Check to make sure the last two look okay. # Convert each word to its root (i.e., lemmatize). from nltk.stem import WordNetLemmatizer wnl = nltk.WordNetLemmatizer() for list in narratives_word_tokenized: temp_list = [] for word in list: words_stemmed = wnl.lemmatize(word) # Noun words_stemmed = wnl.lemmatize(word, pos='v') # Verb temp_list.append(words_stemmed) stem_narratives.append(temp_list) len(stem_narratives) # Should still have 1141 items. stem_narratives[:1] # Check last two and compare to narratives_word_tokenized # Some additional punctuation characters. punctuation = [",", ".", "''", "' '", "\"", "!", "?", '-', '``', ':', ';', \ "'s", "...", "'d", '(', ')', '=', "'", "#", "$", "%", "&", '_', \ "<", "=v=", ">", "@", "[", "]", "^_^", '{', '}', "\"", '/', "\\\\", \ "n't", "'ll", "'m", '*', '..', "\"links:\"", "[001]", "[002]", \ "[003]", "<b>", "\"buttons\"", "\\r", "\\n", "\\\"", "\""] # Define list of punctuation to remove. # Remove all punctuation, any sticky contraction elements, and stopwords from stem_narratives list. from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) a_range = [0, 1, 2, 3, 4, 5] for i in a_range: for list in stem_narratives: for word in list: if word == "'ve": list.remove(word) if word in punctuation: list.remove(word) if word in stop_words: list.remove(word) # Put this cleaned list into it's own list so we don't mess it up. clean_words_tokenized = stem_narratives len(clean_words_tokenized) # Should still have 5044 items clean_words_tokenized[::200] # Check look the same. #%% Next, we'll get (4) narratives_word_list: # (4) Single list with all of the cleaned vocab for the entire group. # ====================================================================================================================================== # Create empty list where we'll store our data. narratives_word_list = [] # Iterate over each list and add the word to the list we just created. for list in stem_narratives: for word in list: narratives_word_list.append(word) narr_all_words = ' '.join(narratives_word_list) len(narratives_word_list) # Should be 4038 total words. #%% Next we'll get (5) narrative_vocab: # Single list of the vocabulary used throughout all narratives (i.e., omitting all redundancies from (4)). # Create empty list where we'll store our data. narrative_vocab = [] # Iterate over narratives_word_list and only append to narrative_vocab if the word is not in there already. for word in narratives_word_list: if word not in narrative_vocab: narrative_vocab.append(word) print("Number of words in vocab:", len(narrative_vocab)) # Should be 1373 unique words in our vocab. sorted_vocab = sorted(narrative_vocab) unique_words = np.unique(sorted_vocab) # Look at every 100th word in the vocab set. #%% Next, we'll get (6) narr_as_string: # Single item of all narratives as a single string of the cleaned narratives. # Create empty list where we'll store our data. narr_as_string = [] # Join all of the words into single string. narr_as_string = ' '.join(narratives_word_list) print("Number of characters total:", len(narr_as_string)) # Should be 31,973 characters in this string. narr_as_string[:198] # Look at the first 300 characters of this string. #%% Finally, we'll get (7) clean_ind_narr: # Single list where each item in the list is a string of the participant narratives with only clean words. clean_ind_narr = [] for list in clean_words_tokenized: sub_clean_narr = ' '.join(list) clean_ind_narr.append(sub_clean_narr) data['cleaned_sentences'] = clean_ind_narr print("Number of total statements", len(clean_ind_narr)) print(clean_ind_narr[::500]) #%% =========================================================================== ############################## LIST CREATION COMPLETE ######################### # ============================================================================= narratives # Single list where each item in the list is the raw string of the narrative for that participant. narratives_sent_tokenized # List of lists with one list per subject, and each item in list is a sentence from their narrative. clean_words_tokenized # List of lists with one list per subject, and each item in the list is a clean word from their narrative. narratives_word_list # Single list with all of the cleaned words for the entire group. narr_all_words # Single item of all the cleaned words for entire group as single string narrative_vocab # Single list of the vocabulary used throughout all narratives (i.e., omitting all redundancies from (4)). narr_as_string # Single item of all narratives as a string of the cleaned narratives. clean_ind_narr # Single list where each item in the list is a string of the participant narratives with only clean words. #%% from wordcloud import WordCloud import matplotlib.pyplot as plt #%% All words. wordcloud = WordCloud(width=500, height=500, background_color='white').generate(narr_all_words) plt.figure() plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.margins(x=0, y=0) plt.show() #%% Just top 50 words. wordcloud = WordCloud(width=500, height=500, background_color='white', max_words=50).generate(narr_all_words) plt.figure() plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.margins(x=0, y=0) plt.show() #%% Sentiment Analysis on the raw input from nltk.sentiment.vader import SentimentIntensityAnalyzer raw_sentiment_score = [] for sentence in data['body_text']: ss = SentimentIntensityAnalyzer().polarity_scores(sentence) raw_sentiment_score.append(ss) raw_sent_df = pd.DataFrame(raw_sentiment_score) raw_sent_df = raw_sent_df.rename(columns={'neg':'raw_neg', 'neu':'raw_neu', \ 'pos':'raw_pos', 'compound':'raw_compound'}) raw_sent_df #%% Sentiment Analysis on the lemmatized and cleaned sentences lemmed_sentiment_score = [] for sentence in clean_ind_narr: ss = SentimentIntensityAnalyzer().polarity_scores(sentence) lemmed_sentiment_score.append(ss) lemmed_sent_df = pd.DataFrame(lemmed_sentiment_score) lemmed_sent_df = lemmed_sent_df.rename(columns={'neg':'cleaned_neg', 'neu':'cleaned_neu', \ 'pos':'cleaned_pos', 'compound':'cleaned_compound'}) lemmed_sent_df #%% Add the above to the data df data =
pd.concat([data, raw_sent_df, lemmed_sent_df], axis=1)
pandas.concat
from bokeh.plotting import figure from bokeh.models import ColumnDataSource, Panel, Slider, RangeSlider, Span from bokeh.models import HoverTool from bokeh.layouts import column, row import pandas as pd import numpy as np class Residual_model: def __init__(self, data): #self.source = ColumnDataSource(data=dict(Time=[], residual_ols=[],residual_tls=[], Beta=[], Alfa=[], STD=[], Z=[], Un=[], Ln=[], Ux=[], Lx=[])) self.source = ColumnDataSource() self.data = data self.LRperiod = 20 self.EntryT = 2.5 self.ExitT = 0.0 self.tools = ['reset', 'hover', 'zoom_in', 'zoom_out', 'pan'] self.t1 = self.data.keys()[0] self.t2 = self.data.keys()[2] self.isLRperiodChanged = True linreg = np.polyfit(data.t1, data.t2, 1) self.gradient = linreg[0] self.intercept = linreg[1] self.resids = self.calculate_resid(data) self.data['resids']=self.resids #self.data=self.data.dropna() self.p1 = figure(plot_width=1100, plot_height=300, tools=self.tools, x_axis_type="datetime") self.source.data = ColumnDataSource.from_df(data[['Time', 'resids']]) self.p1.title.text = 'Residual of prices: '+ self.t1 + ' and ' + self.t2 self.p1.line('date', 'resids', source=self.source, line_width=2, color='black', alpha=0.8) self.p1.line('date', 'Un', source=self.source, line_width=1, color='green', alpha=0.8) self.p1.line('date', 'Ln', source=self.source, line_width=1, color='blue', alpha=0.8) self.p1.line('date', 'Ux', source=self.source, line_width=1, color='brown', alpha=0.8) self.p1.line('date', 'Lx', source=self.source, line_width=1, color='pink', alpha=0.8) self.hover = self.p1.select(dict(type=HoverTool)) self.hover.tooltips = [('date', '@date{%F}'), ('zscore', '@resids')] self.hover.formatters = {'date' : 'datetime'} self.p1.legend.location = "bottom_left" self.p1.title.text = 'Residual of prices: ' + self.t1 + ' and ' + self.t2 self.LR_slider = Slider(start=10, end=80, value=25, step=1, title='Experimental! Regresson Period', callback_policy = "mouseup", callback_throttle=1000) self.Entry_slider = Slider(start=1.0, end=5.0, value=2.0, step=0.1, title='Entry Treshold') self.Exit_slider = Slider(start=0.0, end=1.5, value=0.0, step=0.1, title='Exit Treshold') self.Entry_slider.on_change('value', self.Entry_slider_callback) self.Exit_slider.on_change('value', self.Exit_slider_callback) self.LR_slider.on_change('value', self.LR_slider_callback) self.update(self.data) layout = row(column(self.p1), column(self.LR_slider, self.Entry_slider, self.Exit_slider)) self.tab = Panel(child=layout, title='Residual Model') def calculate_resid(self, data): slopes=[] intercepts=[] resids=[] res_indices=[] data_lines=data.t1.count() for r in range(0, (data_lines - self.LRperiod) + 1): c0 = data.t1[r:r+self.LRperiod] c1 = data.t2[r:r+self.LRperiod] slope, intercept = np.polyfit(c1,c0, 1) resid = (c0 - (slope * c1 + intercept)) # slopes.append(slope) # intercepts.append(intercept) resids.append(resid[-1]) res_indices.append(c0.index[-1]) # slopes = pd.Series(slopes, index=res_indices) # intercepts = pd.Series(intercepts, index=res_indices) resids =
pd.Series(resids, index=res_indices)
pandas.Series
# Core imports import os import time from datetime import datetime import random # Third party imports import geopandas as gpd import pandas as pd import yaml #import gptables as gpt # Module imports import geospatial_mods as gs import data_ingest as di import data_transform as dt import ftp_get_files_logic as fpts import data_output as do start_time = time.time() # get current working directory CWD = os.getcwd() # TODO: find out best practice on CWD # Load config with open(os.path.join(CWD, "config.yaml")) as yamlfile: config = yaml.load(yamlfile, Loader=yaml.FullLoader) module = os.path.basename(__file__) print(f"Config loaded in {module}") # Retrieve Missing Data Files via FTP #fpts.execute_file_grab(CWD) # Constants DEFAULT_CRS = config["DEFAULT_CRS"] DATA_DIR = config["DATA_DIR"] EXT_ORDER = config['EXT_ORDER'] # Years # Getting the year for population data pop_year = str(config["calculation_year"]) # Getting the year for centroid data centroid_year = str(config["centroid_year"]) # Get the pandas dataframe for the stops data stops_df = di.get_stops_file(url=config["NAPTAN_API"], dir=os.path.join(os.getcwd(), "data", "stops")) # filter out on inactive stops filtered_stops = dt.filter_stops(stops_df=stops_df) # coverts from pandas df to geo df stops_geo_df = (di.geo_df_from_pd_df(pd_df=filtered_stops, geom_x='Easting', geom_y='Northing', crs=DEFAULT_CRS)) # adds in high/low capacity column stops_geo_df=dt.add_stop_capacity_type(stops_df=stops_geo_df) # define la col which is LADXXNM where XX is last 2 digits of year e.g 21 from 2021 lad_col = f'LAD{pop_year[-2:]}NM' # getting path for .shp file for LA's uk_la_path = di.get_shp_file_name(dir=os.path.join(os.getcwd(), "data", "LA_shp", pop_year)) # getting the coordinates for all LA's uk_la_file = di.geo_df_from_geospatialfile(path_to_file=uk_la_path) # Get list of all pop_estimate files for target year pop_files = os.listdir(os.path.join(os.getcwd(), "data/population_estimates", pop_year ) ) # Get the population data for the whole nation for the specified year whole_nation_pop_df = di.get_whole_nation_pop_df(pop_files, pop_year) # Get population weighted centroids into a dataframe uk_pop_wtd_centr_df = (di.geo_df_from_geospatialfile (os.path.join (DATA_DIR, 'pop_weighted_centroids', centroid_year))) # Get output area boundaries # OA_df = pd.read_csv(config["OA_boundaries_csv"]) # Links were changed at the source site which made the script fail. # Manually downloading the csv for now OA_boundaries_df = pd.read_csv( os.path.join("data", "Output_Areas__December_2011__Boundaries_EW_BGC.csv")) # Merge with uk population df uk_pop_wtd_centr_df = uk_pop_wtd_centr_df.merge( OA_boundaries_df, on="OA11CD", how='left') # Clean after merge uk_pop_wtd_centr_df.drop('OBJECTID_y', axis=1, inplace=True) uk_pop_wtd_centr_df.rename({'OBJECTID_x': 'OBJECTID'}, inplace=True) # Getting the urban-rural classification by OA for England and Wales Urb_Rur_ZIP_LINK = config["Urb_Rur_ZIP_LINK"] URB_RUR_TYPES = config["URB_RUR_TYPES"] # Make a df of the urban-rural classification urb_rur_df = (di.any_to_pd("RUC11_OA11_EW", Urb_Rur_ZIP_LINK, ['csv'], URB_RUR_TYPES)) # These are the codes (RUC11CD) mapping to rural and urban descriptions (RUC11) # I could make this more succinct, but leaving here # for clarity and maintainability urban_dictionary = {'A1': 'Urban major conurbation', 'C1': 'Urban city and town', 'B1': 'Urban minor conurbation', 'C2': 'Urban city and town in a sparse setting'} # mapping to a simple urban or rural classification urb_rur_df["urb_rur_class"] = (urb_rur_df.RUC11CD.map (lambda x: "urban" if x in urban_dictionary.keys() else "rural")) # filter the df. We only want OA11CD and an urban/rurual classification urb_rur_df = urb_rur_df[['OA11CD', 'urb_rur_class']] # joining urban rural classification onto the pop df uk_pop_wtd_centr_df = (uk_pop_wtd_centr_df.merge (urb_rur_df, on="OA11CD", how='left')) # Joining the population dataframe to the centroids dataframe, whole_nation_pop_df = whole_nation_pop_df.join( other=uk_pop_wtd_centr_df.set_index('OA11CD'), on='OA11CD', how='left') # Map OA codes to Local Authority Names oa_la_lookup_path = di.get_oa_la_file_name(os.path.join(os.getcwd(), "data/oa_la_mapping", pop_year)) LA_df = pd.read_csv(oa_la_lookup_path, usecols=["OA11CD", lad_col]) whole_nation_pop_df = pd.merge( whole_nation_pop_df, LA_df, how="left", on="OA11CD") # Unique list of LA's to iterate through list_local_auth = uk_la_file[lad_col].unique() # selecting random LA for dev purposes # eventually will iterate through all LA's random_la=random.choice(list_local_auth) list_local_auth=[random_la] # define output dicts to capture dfs total_df_dict = {} sex_df_dict = {} urb_rur_df_dict={} disab_df_dict = {} age_df_dict = {} for local_auth in list_local_auth: print(f"Processing: {local_auth}") # Get a polygon of la based on the Location Code la_poly = (gs.get_polygons_of_loccode( geo_df=uk_la_file, dissolveby=lad_col, search=local_auth)) # Creating a Geo Dataframe of only stops in la la_stops_geo_df = (gs.find_points_in_poly (geo_df=stops_geo_df, polygon_obj=la_poly)) # Make LA LSOA just containing local auth uk_la_file = uk_la_file[[lad_col, 'geometry']] # merge the two dataframes limiting to just the la la_pop_df = whole_nation_pop_df.merge(uk_la_file, how='right', left_on=lad_col, right_on=lad_col, suffixes=('_pop', '_LA')) # subset by the local authority name needed la_pop_df = la_pop_df.loc[la_pop_df[lad_col] == local_auth] # rename the "All Ages" column to pop_count as it's the population count la_pop_df.rename(columns={"All Ages": "pop_count"}, inplace=True) # Get a list of ages from config age_lst = config['age_lst'] # Get a datframe limited to the data ages columns only age_df = dt.slice_age_df(la_pop_df, age_lst) # Create a list of tuples of the start and finish indexes for the age bins age_bins = dt.get_col_bins(age_lst) # get the ages in the age_df binned, and drop the original columns age_df = dt.bin_pop_ages(age_df, age_bins, age_lst) # Ridding the la_pop df of the same cols la_pop_df.drop(age_lst, axis=1, inplace=True) # merging summed+grouped ages back in la_pop_df = pd.merge(la_pop_df, age_df, left_index=True, right_index=True) # converting into GeoDataFrame la_pop_df = gpd.GeoDataFrame(la_pop_df) # create a buffer around the stops, in column "geometry" #forthedemo # the `buffer_points` function changes the df in situ la_stops_geo_df = gs.buffer_points(la_stops_geo_df) # renaming the column to geometry so the point in polygon func gets expected la_pop_df.rename(columns={"geometry_pop": "geometry"}, inplace=True) # import the disability data - this is the based on the 2011 census # TODO: use new csv_to_df func to make disability_df disability_df = pd.read_csv(os.path.join(CWD, "data", "nomis_QS303.csv"), header=5) # drop the column "mnemonic" as it seems to be a duplicate of the OA code # also "All categories: Long-term health problem or disability" is not needed, # nor is "Day-to-day activities not limited" drop_lst = ["mnemonic", "All categories: Long-term health problem or disability"] disability_df.drop(drop_lst, axis=1, inplace=True) # the col headers are database unfriendly. Defining their replacement names replacements = {"2011 output area": 'OA11CD', "Day-to-day activities limited a lot": "disab_ltd_lot", "Day-to-day activities limited a little": "disab_ltd_little", 'Day-to-day activities not limited': "disab_not_ltd"} # renaming the dodgy col names with their replacements disability_df.rename(columns=replacements, inplace=True) # Getting the disab total disability_df["disb_total"] = (disability_df["disab_ltd_lot"] + disability_df["disab_ltd_little"]) # Calcualting the total "non-disabled" la_pop_only = la_pop_df[['OA11CD','pop_count']] disability_df = la_pop_only.merge(disability_df, on="OA11CD") # Putting the result back into the disability df disability_df["non-disabled"] = disability_df["pop_count"] - disability_df['disb_total'] # Calculating the proportion of disabled people in each OA disability_df["proportion_disabled"] = ( disability_df['disb_total'] / disability_df['pop_count'] ) # Calcualting the proportion of non-disabled people in each OA disability_df["proportion_non-disabled"] = ( disability_df['non-disabled'] / disability_df['pop_count'] ) # Slice disability df that only has the proportion disabled column and the OA11CD col disab_prop_df = disability_df[['OA11CD', 'proportion_disabled', 'proportion_non-disabled']] # Merge the proportion disability df into main the pop df with a left join la_pop_df = la_pop_df.merge(disab_prop_df, on='OA11CD', how="left") # Make the calculation of the number of people with disabilities in the year # of the population estimates la_pop_df["number_disabled"] = ( round (la_pop_df["pop_count"] * la_pop_df["proportion_disabled"]) ) la_pop_df["number_disabled"] = la_pop_df["number_disabled"].astype(int) # Make the calculation of the number of non-disabled people in the year # of the population estimates la_pop_df["number_non-disabled"] = ( round (la_pop_df["pop_count"] * la_pop_df["proportion_non-disabled"]) ) la_pop_df["number_non-disabled"] = la_pop_df["number_non-disabled"].astype(int) # import the sex data # # TODO: use new csv_to_df func to make the sex_df # sex_df = pd.read_csv(os.path.join(CWD, "data", "nomis_QS104EW.csv"), # header=6, # usecols=["2011 output area", # "Males", "Females"]) # sex_df = bham_pop_df['OA11CD', 'males_pop', 'fem_pop'] # # # renaming the dodgy col names with their replacements replacements = {"males_pop": "male", "fem_pop": "female"} la_pop_df.rename(columns=replacements, inplace=True) # # merge the sex data with the rest of the population data # bham_pop_df = bham_pop_df.merge(sex_df, on='OA11CD', how='left') # Make a polygon object from the geometry column of the stops df # all_stops_poly = gs.poly_from_polys(birmingham_stops_geo_df) # # find all the pop centroids which are in the la_stops_geo_df pop_in_poly_df = gs.find_points_in_poly(la_pop_df, la_stops_geo_df) # Dedupe the df because many OAs are appearing multiple times (i.e. they are served by multiple stops) pop_in_poly_df = pop_in_poly_df.drop_duplicates(subset="OA11CD") # Count the population served by public transport served = pop_in_poly_df.pop_count.sum() full_pop = la_pop_df.pop_count.sum() not_served = full_pop - served pct_not_served = "{:.2f}".format(not_served/full_pop*100) pct_served = "{:.2f}".format(served/full_pop*100) print(f"""The number of people who are served by public transport is {served}.\n The full population of {local_auth} is calculated as {full_pop} While the number of people who are not served is {not_served}""") la_results_df = pd.DataFrame({"All_pop":[full_pop], "Served":[served], "Unserved":[not_served], "Percentage served":[pct_served], "Percentage unserved":[pct_not_served]}) # Re-orienting the df to what's accepted by the reshaper and renaming col la_results_df = la_results_df.T.rename(columns={0:"Total"}) # Feeding the la_results_df to the reshaper la_results_df_out = do.reshape_for_output(la_results_df, id_col="Total", local_auth=local_auth) # Finally for the local authority totals the id_col can be dropped # That's because the disaggregations each have their own column, # but "Total" is not a disaggregation so doesn't have a column. # It will simply show up as blanks (i.e. Total) in all disagg columns la_results_df_out.drop("Total", axis=1, inplace=True) # Output this iteration's df to the dict total_df_dict[local_auth] = la_results_df_out # # Disaggregations! pd.set_option("precision", 1) # Calculating those served and not served by age age_bins_ = ['0-4', '5-9', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+'] age_servd_df = dt.served_proportions_disagg(pop_df=la_pop_df, pop_in_poly_df=pop_in_poly_df, cols_lst=age_bins_) # Feeding the results to the reshaper age_servd_df_out = do.reshape_for_output(age_servd_df, id_col="Age", local_auth=local_auth) # Output this local auth's age df to the dict age_df_dict[local_auth] = age_servd_df_out # print(age_servd_df) # # Calculating those served and not served by sex sex_cols = ['male', 'female'] sex_servd_df = dt.served_proportions_disagg(pop_df=la_pop_df, pop_in_poly_df=pop_in_poly_df, cols_lst=sex_cols) # Feeding the results to the reshaper sex_servd_df_out = do.reshape_for_output(sex_servd_df, id_col="Sex", local_auth=local_auth) # Output this iteration's sex df to the dict sex_df_dict[local_auth]=sex_servd_df_out # Calculating those served and not served by disability disab_cols = ["number_disabled"] disab_servd_df = dt.served_proportions_disagg(pop_df=la_pop_df, pop_in_poly_df=pop_in_poly_df, cols_lst=disab_cols) # Feeding the results to the reshaper disab_servd_df_out = do.reshape_for_output(disab_servd_df, id_col=disab_cols[0], local_auth=local_auth, id_rename="Disability Status") # The disability df is unusual. I think all rows correspond to people with # disabilities only. There is no "not-disabled" status here (I think) disab_servd_df_out.replace(to_replace="number_disabled", value="Disabled", inplace=True) # Output this iteration's sex df to the dict sex_df_dict[local_auth]=sex_servd_df_out # Calculating non-disabled people served and not served non_disab_cols = ["number_non-disabled"] non_disab_servd_df = dt.served_proportions_disagg(pop_df=la_pop_df, pop_in_poly_df=pop_in_poly_df, cols_lst=non_disab_cols) # Feeding the results to the reshaper non_disab_servd_df_out = do.reshape_for_output(non_disab_servd_df, id_col=disab_cols[0], local_auth=local_auth, id_rename="Disability Status") # The disability df is unusual. I think all rows correspond to people with # disabilities only. There is no "not-disabled" status here (I think) non_disab_servd_df_out.replace(to_replace="number_non-disabled", value="Non-disabled", inplace=True) # Concatting non-disabled and disabled dataframes non_disab_disab_servd_df_out =
pd.concat([non_disab_servd_df_out, disab_servd_df_out])
pandas.concat
import os from common.score import scorePredict import pandas as pd import numpy as np from sklearn.metrics import accuracy_score from simpletransformers.classification.classification_model import ClassificationModel def train_predict_model(df_train, df_test, is_predict, use_cuda): labels_test = pd.Series(df_test['labels']).to_numpy() labels = list(df_train['labels'].unique()) labels.sort() model = ClassificationModel('bert', 'dccuchile/bert-base-spanish-wwm-cased', num_labels=len(labels), use_cuda=use_cuda, args={ 'learning_rate':2e-5, 'num_train_epochs': 3, 'reprocess_input_data': True, 'overwrite_output_dir': True, 'process_count': 10, 'train_batch_size': 4, 'eval_batch_size': 4, 'max_seq_length': 512, 'multiprocessing_chunksize': 500, 'fp16': True, 'fp16_opt_level': 'O1'}) model.train_model(df_train) results = '' if is_predict: text_a = df_test['text_a'] text_b = df_test['text_b'] df_result =
pd.concat([text_a, text_b], axis=1)
pandas.concat
# tests.test_features.test_jointplot # Test the JointPlot Visualizer # # Author: <NAME> # Created: Mon Apr 10 21:00:54 2017 -0400 # # Copyright (C) 2017 The scikit-yb developers. # For license information, see LICENSE.txt # # ID: test_jointplot.py [9e008b0] <EMAIL> $ """ Test joint plot visualization methods. These tests work differently depending on what version of matplotlib is installed. If version 2.0.2 or greater is installed, then most tests will execute, otherwise the histogram tests will skip and only the warning will be tested. """ ########################################################################## ## Imports ########################################################################## import sys import pytest import numpy as np from functools import partial from unittest.mock import patch, MagicMock from sklearn.datasets import make_classification, make_regression from tests.base import IS_WINDOWS_OR_CONDA, VisualTestCase from yellowbrick.exceptions import YellowbrickValueError from yellowbrick.features.jointplot import * from ..fixtures import Dataset try: # Only available in Matplotlib >= 2.0.2 from mpl_toolkits.axes_grid1 import make_axes_locatable except ImportError: make_axes_locatable = None try: import pandas as pd except ImportError: pd = None ########################################################################## ## Fixtures ########################################################################## # Random numpy array generators rand1d = partial(np.random.rand, 120) rand2col = partial(np.random.rand, 120, 2) rand3col = partial(np.random.rand, 120, 3) @pytest.fixture(scope="class") def discrete(request): """ Creates a simple 2-column dataset with a discrete target. """ X, y = make_classification( n_samples=120, n_features=2, n_informative=2, n_redundant=0, n_classes=3, n_clusters_per_class=1, random_state=2221, ) request.cls.discrete = Dataset(X, y) @pytest.fixture(scope="class") def continuous(request): """ Creates a simple 2-column dataset with a continuous target. """ X, y = make_regression(n_samples=120, n_features=2, random_state=1112) request.cls.continuous = Dataset(X, y) ########################################################################## ## JointPlot Tests ########################################################################## @pytest.mark.usefixtures("discrete", "continuous") class TestJointPlotNoHistogram(VisualTestCase): """ Test the JointPlot visualizer without histograms """ def test_invalid_columns_values(self): """ Assert invalid columns arguments raise exception """ with pytest.raises(YellowbrickValueError, match="invalid for joint plot"): JointPlot(columns=["a", "b", "c"], hist=False) def test_invalid_correlation_values(self): """ Assert invalid correlation arguments raise an exception """ with pytest.raises(YellowbrickValueError, match="invalid correlation method"): JointPlot(correlation="foo", hist=False) def test_invalid_kind_values(self): """ Assert invalid kind arguments raise exception """ for bad_kind in ("foo", None, 123): with pytest.raises(YellowbrickValueError, match="invalid joint plot kind"): JointPlot(kind=bad_kind, hist=False) def test_invalid_hist_values(self): """ Assert invalid hist arguments raise exception """ for bad_hist in ("foo", 123): with pytest.raises( YellowbrickValueError, match="invalid argument for hist" ): JointPlot(hist=bad_hist) def test_no_haxes(self): """ Test that xhax and yhax are not available """ oz = JointPlot(hist=False) with pytest.raises(AttributeError, match="histogram for the X axis"): oz.xhax with pytest.raises(AttributeError, match="histogram for the Y axis"): oz.yhax @patch("yellowbrick.features.jointplot.plt") def test_correlation(self, mplt): """ Test correlation is correctly computed """ x = self.discrete.X[:, 0] y = self.discrete.X[:, 1] cases = ( ("pearson", -0.3847799883805261), ("spearman", -0.37301201472324463), ("covariance", -0.5535440619953924), ("kendalltau", -0.2504201680672269), ) for alg, expected in cases: oz = JointPlot(hist=False, correlation=alg, columns=None) oz.ax = MagicMock() oz.fit(x, y) assert hasattr(oz, "corr_") assert oz.corr_ == pytest.approx( expected ), "{} not computed correctly".format(alg) def test_columns_none_invalid_x(self): """ When self.columns=None validate X and y """ bad_kws = ( {"X": rand1d(), "y": None}, {"X": rand3col(), "y": None}, {"X": rand2col(), "y": rand1d()}, {"X": rand3col(), "y": rand1d()}, {"X": rand1d(), "y": rand2col()}, ) for kws in bad_kws: oz = JointPlot(columns=None, hist=False) with pytest.raises( YellowbrickValueError, match="when self.columns is None" ): oz.fit(**kws) def test_columns_none_x_y(self): """ When self.columns=None image similarity with valid X and y """ oz = JointPlot(hist=False, columns=None) assert oz.fit(self.discrete.X[:, 0], self.discrete.y) is oz assert hasattr(oz, "corr_") oz.finalize() # Appveyor and Linux conda fail due to non-text-based differences self.assert_images_similar(oz, tol=2.5) def test_columns_none_x(self): """ When self.columns=None image similarity with valid X, no y """ oz = JointPlot(hist=False, columns=None) assert oz.fit(self.discrete.X) is oz assert hasattr(oz, "corr_") oz.finalize() tol = ( 4.0 if sys.platform == "win32" else 0.01 ) # Fails on AppVeyor with RMS 3.941 self.assert_images_similar(oz, tol=tol) def test_columns_single_index_no_y(self): """ When self.columns=int or str y must not be None """ oz = JointPlot(columns="foo", hist=False) with pytest.raises(YellowbrickValueError, match="y must be specified"): oz.fit(rand2col(), y=None) def test_columns_single_invalid_index_numpy(self): """ When self.columns=int validate the index in X """ oz = JointPlot(columns=2, hist=False) with pytest.raises(IndexError, match="could not index column '2' into type"): oz.fit(self.continuous.X, self.continuous.y) @pytest.mark.skipif(pd is None, reason="test requires pandas") def test_columns_single_invalid_index_pandas(self): """ When self.columns=str validate the index in X """ oz = JointPlot(columns="foo", hist=False) X = pd.DataFrame(self.continuous.X, columns=["a", "b"]) y =
pd.Series(self.continuous.y)
pandas.Series
import pandas as pd # The ndarrays must all be the same length. If an index is passed, it must clearly also be # the same length as the arrays. If no index is passed, the result will be range(n), where # n is the array length. data = {'Username': ['foo', 'bar', 'buz'], 'Email': ['<EMAIL>', '<EMAIL>', '<EMAIL>'] } df =
pd.DataFrame(data=data)
pandas.DataFrame
#!/usr/bin/env python # ---------------------------------------------------------------- # Copyright 2016 Cisco Systems # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------ import os import datetime from secrets import USERNAME, PASSWORD import ipaddress import xlsxwriter import pandas as pd import constants from eman import Eman from logging_config import configure_logger LOGPATH = os.path.abspath(os.curdir) + "/logs/viptela_onboarding.log" LOGGER = configure_logger(__name__, LOGPATH) class UserOnboard: """ Pulls from CSV file to create subnets for a specific addressblock for use in assigning for viptela CVO users. If username and password are not passed via command line, they mus tbe present in a file called secrets.py in the same directory as onboarding.py in the following format: USERNAME = "username" PASSWORD = "password" Please provide absolute path to the csv file. An xlsx called vedge_onboarding-<current date>.xls is created in the same directory as onboarding.py with the results. """ def __init__(self, username="", password=""): self.username = username self.password = password self.csv_file = csv_file def read_csv(self): """ Reads the CSV file, row by row and creates the subnets, scope and dhco interfaces accordingly. :return: """ LOGGER.info( "\n" "+++++++++++++++++++++++++++++\n" "Starting new on-boarding run.\n" "+++++++++++++++++++++++++++++\n" ) # get username/password for address management access if self.username and self.password: am = Eman(self.username, self.password) else: am = Eman(USERNAME, PASSWORD) # Checking Authentication with EMAN self.check_eman_auth(am) # Open xlsx workbook for editing workbook, worksheet = self.openxlsx() # read dataset from csv file into data with pandas data = pd.read_csv(self.csv_file) outputrow = 2 # read and act upon each row in dataset for index, row in data.head(n=1000).iterrows(): hostname = row["csv-host-name"] LOGGER.info("\n\n" f"++++++++++++++{hostname}+++++++++++++++\n") region = row["REGION"].upper() if
pd.isnull(row["csv-deviceIP"])
pandas.isnull
# coding: utf-8 # In[4]: from math import sqrt from numpy import concatenate from matplotlib import pyplot import pandas as pd from datetime import datetime from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import LabelEncoder from sklearn.metrics import mean_squared_error from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM import plotly.offline as py import plotly.graph_objs as go import numpy as np import seaborn as sns py.init_notebook_mode(connected=True) get_ipython().magic('matplotlib inline') # In[5]: import matplotlib import pylab import matplotlib.pyplot as plt import matplotlib.dates as md import datetime import seaborn as sns from scipy.stats import pearsonr from matplotlib import cm as cm import calendar import warnings import itertools from statsmodels.tsa.stattools import adfuller import statsmodels.formula.api as smf import statsmodels.api as sm import statsmodels.tsa.api as smt from sklearn.metrics import mean_squared_error import pandas as pd import seaborn as sb import itertools import numpy as np from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.arima_model import ARIMA from numpy import loadtxt import os import json import numpy as np import pandas as pd from sklearn.externals import joblib from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.base import BaseEstimator, TransformerMixin from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import make_pipeline import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.externals import joblib import warnings warnings.filterwarnings("ignore") y = 2016 new_data = pd.DataFrame() sample_times = [] for y in range(2014,2016,1): print (y) for m in range(1,13,1): no_of_days = calendar.monthrange(2014,m)[1] for d in range (1,no_of_days+1,1): ## for d in range (1,2,1): # data = pd.read_csv("C:\\Users\\ahilan\\Dropbox\\Research\\Solar Forecast\\Solar Asia 2018\\Data\\Year %d\\D120318_%d%02d%02d_0000.csv"%(y,y,m, d)); data = pd.read_csv("F:\edit\Data\data\Predicting\\D120318_%d%02d%02d_0000.csv"%(y,m,d)); pd if (pd.to_datetime(data['Date/time'][2]) -pd.to_datetime(data['Date/time'][1])).seconds ==600: new_data_temp = data[['Date/time','Anemometer;wind_speed;Avg','Wind Vane;wind_direction;Avg','Hygro/Thermo;humidity;Avg', 'Hygro/Thermo;temperature;Avg','Barometer;air_pressure;Avg','Pyranometer-Diffused;solar_irradiance;Avg', 'Pyranometer-Global;solar_irradiance;Avg', 'Silicon;voltage;Avg']][0:144].copy() new_data = new_data.append(new_data_temp) for i in range(len(new_data_temp)): sample_times.append(datetime.datetime(y, m, d, 6, 00, 0)+ i*datetime.timedelta(minutes=10)) elif (pd.to_datetime(data['Date/time'][2]) -
pd.to_datetime(data['Date/time'][1])
pandas.to_datetime
""" This file contains methods to visualize EKG data, clean EKG data and run EKG analyses. Classes ------- EKG Notes ----- All R peak detections should be manually inspected with EKG.plotpeaks method and false detections manually removed with rm_peak method. After rpeak examination, NaN data can be accounted for by removing false IBIs with rm_ibi method. """ import datetime import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import scipy as sp import statistics import biosignalsnotebooks as bsnb from scipy import interpolate from numpy import linspace, diff, zeros_like, arange, array from mne.time_frequency import psd_array_multitaper from pandas.plotting import register_matplotlib_converters from scipy.signal import welch class EKG: """ Run EKG analyses including cleaning and visualizing data. Attributes ---------- metadata : nested dict File information and analysis information. Format {str:{str:val}} with val being str, bool, float, int or pd.Timestamp. data : pd.DataFrame Raw data of the EKG signal (mV) and the threshold line (mV) at each sampled time point. rpeak_artifacts : pd.Series False R peak detections that have been removed. rpeaks_added : pd.Series R peak detections that have been added. ibi_artifacts : pd.Series Interbeat interval data that has been removed. rpeaks : pd.Series Cleaned R peaks data without removed peaks and with added peaks. rr : np.ndarray Time between R peaks (ms). nn : np.ndarray Cleaned time between R peaks (ms) without removed interbeat interval data. rpeaks_df : pd.DataFrame Raw EKG value (mV) and corresponding interbeat interval leading up to the data point (ms) at each sampled point. """ def __init__(self, fname, fpath, polarity='positive', min_dur=True, epoched=True, smooth=False, sm_wn=30, mw_size=100, upshift=3.5, rms_align='right', detect_peaks=True, pan_tompkins=True): """ Initialize raw EKG object. Parameters ---------- fname : str Filename. fpath : str Path to file. polarity: str, default 'positive' polarity of the R-peak deflection. Options: 'positive', 'negative' min_dur : bool, default True Only load files that are >= 5 minutes long. epoched : bool, default True Whether file was epoched using ioeeg. smooth : bool, default False Whether raw signal should be smoothed before peak detections. Set True if raw data has consistent high frequency noise preventing accurate peak detection. sm_wn : float, default 30 Size of moving window for rms smoothing preprocessing (milliseconds). mw_size : float, default 100 Moving window size for R peak detection (milliseconds). upshift : float, default 3.5 Detection threshold upshift for R peak detection (% of signal). rms_align: str, default 'right' whether to align the mean to the right or left side of the moving window [options: 'right', 'left'] rm_artifacts : bool, default False Apply IBI artifact removal algorithm. detect_peaks : bool, default True Option to detect R peaks and calculate interbeat intervals. pan_tompkins : bool, default True Option to detect R peaks using automatic pan tompkins detection method Returns ------- EKG object. Includes R peak detections and calculated inter-beat intervals if detect_peaks is set to True. """ # set metadata filepath = os.path.join(fpath, fname) if epoched == False: in_num, start_date, slpstage, cycle = fname.split('_')[:4] elif epoched == True: in_num, start_date, slpstage, cycle, epoch = fname.split('_')[:5] self.metadata = {'file_info':{'in_num': in_num, 'fname': fname, 'path': filepath, 'rpeak_polarity': polarity, 'start_date': start_date, 'sleep_stage': slpstage, 'cycle': cycle } } if epoched == True: self.metadata['file_info']['epoch'] = epoch # load the ekg self.load_ekg(min_dur) # flip the polarity if R peaks deflections are negative if polarity == 'negative': self.data = self.data*-1 if smooth == True: self.rms_smooth(sm_wn) else: self.metadata['analysis_info']['smooth'] = False # create empty series for false detections removed and missed peaks added self.rpeak_artifacts = pd.Series() self.rpeaks_added = pd.Series() self.ibi_artifacts = pd.Series() # detect R peaks if detect_peaks == True: if pan_tompkins == True: self.pan_tompkins_detector() # detect R peaks & calculate inter-beat intevals else: self.calc_RR(smooth, mw_size, upshift, rms_align) self.metadata['analysis_info']['pan_tompkins'] = False # initialize the nn object self.nn = self.rr register_matplotlib_converters() def load_ekg(self, min_dur): """ Load EKG data from csv file and extract metadata including sampling frequency, cycle length, start time and NaN data. Parameters ---------- min_dur : bool, default True If set to True, will not load files shorter than the minimum duration length of 5 minutes. """ data = pd.read_csv(self.metadata['file_info']['path'], header = [0, 1], index_col = 0, parse_dates=True)['EKG'] # Check cycle length against 5 minute duration minimum cycle_len_secs = (data.index[-1] - data.index[0]).total_seconds() if cycle_len_secs < 60*5-1: if min_dur == True: print('Data is shorter than minimum duration. Cycle will not be loaded.') print('--> To load data, set min_dur to False') return else: print('* WARNING: Data is shorter than 5 minutes.') self.data = data else: self.data = data diff = data.index.to_series().diff()[1:2] s_freq = 1000000/diff[0].microseconds nans = len(data) - data['Raw'].count() # Set metadata self.metadata['file_info']['start_time'] = data.index[0] self.metadata['analysis_info'] = {'s_freq': s_freq, 'cycle_len_secs': cycle_len_secs, 'NaNs(samples)': nans, 'NaNs(secs)': nans/s_freq} print('EKG successfully imported.') def rms_smooth(self, sm_wn): """ Smooth raw data with root mean square (RMS) moving window. Reduce noise leading to false R peak detections. Parameters ---------- sm_wn : float, default 30 Size of moving window for RMS smoothing preprocessing (ms). """ self.metadata['analysis_info']['smooth'] = True self.metadata['analysis_info']['rms_smooth_wn'] = sm_wn mw = int((sm_wn/1000)*self.metadata['analysis_info']['s_freq']) self.data['raw_smooth'] = self.data.Raw.rolling(mw, center=True).mean() def set_Rthres(self, smooth, mw_size, upshift, rms_align): """ Set R peak detection threshold based on moving average shifted up by a percentage of the EKG signal. Parameters ---------- smooth : bool, default False If set to True, raw EKG data will be smoothed using RMS smoothing window. mw_size : float, default 100 Time over which the moving average of the EKG signal will be taken to calculate the R peak detection threshold (ms). upshift : float, default 3.5 Percentage of EKG signal that the moving average will be shifted up by to set the R peak detection threshold. rms_align: str, default 'right' whether to align the mean to the right or left side of the moving window [options: 'right', 'left'] See Also -------- EKG.rms_smooth : Smooth raw EKG data with root mean square (RMS) moving window. """ print('Calculating moving average with {} ms window and a {}% upshift...'.format(mw_size, upshift)) # convert moving window to sample & calc moving average over window mw = int((mw_size/1000)*self.metadata['analysis_info']['s_freq']) #if smooth is true have the moving average calculated based off of smoothed data if smooth == False: mavg = self.data.Raw.rolling(mw).mean() ekg_avg = np.mean(self.data['Raw']) elif smooth == True: mavg = self.data.raw_smooth.rolling(mw).mean() ekg_avg = np.mean(self.data['raw_smooth']) if rms_align == 'left': # get the number of NaNs and shift the average left by that amount mavg = mavg.shift(-mavg.isna().sum()) # replace edge nans with overall average mavg = mavg.fillna(ekg_avg) # set detection threshold as +upshift% of moving average upshift_perc = upshift/100 det_thres = mavg + np.abs(mavg*upshift_perc) # insert threshold column at consistent position in df to ensure same color for plotting regardless of smoothing self.data.insert(1, 'EKG_thres', det_thres) # can remove this for speed, just keep as series #set metadata self.metadata['analysis_info']['mw_size'] = mw_size self.metadata['analysis_info']['upshift'] = upshift self.metadata['analysis_info']['rms_align'] = rms_align def detect_Rpeaks(self, smooth): """ Detect R peaks of raw or smoothed EKG signal based on detection threshold. Parameters ---------- smooth : bool, default False If set to True, raw EKG data is smoothed using a RMS smoothing window. See Also -------- EKG.rms_smooth : Smooth raw EKG data with root mean square (RMS) moving window EKG.set_Rthres : Set R peak detection threshold based on moving average shifted up by a percentage of the EKG signal. """ print('Detecting R peaks...') #Use the raw data or smoothed data depending on bool smooth if smooth == False: raw = pd.Series(self.data['Raw']) elif smooth == True: raw = pd.Series(self.data['raw_smooth']) thres = pd.Series(self.data['EKG_thres']) #create empty peaks list peaks = [] x = 0 #Within the length of the data if the value of raw data (could be smoothed raw data) is less than ekg threshold keep counting forwards while x < len(raw): if raw[x] > thres[x]: roi_start = x # count forwards to find down-crossing for h in range(x, len(raw), 1): # if value drops below threshold, end ROI if raw[h] < thres[h]: roi_end = h break # else if data ends before dropping below threshold, leave ROI open # & advance h pointer to end loop elif (raw[h] >= thres[h]) and (h == len(raw)-1): roi_end = None h += 1 break # if ROI is closed, get maximum between roi_start and roi_end if roi_end: peak = raw[x:h].idxmax() peaks.append(peak) # advance the pointer x = h else: x += 1 self.rpeaks = raw[peaks] print('R peak detection complete') # get time between peaks and convert to mseconds self.rr = np.diff(self.rpeaks.index)/np.timedelta64(1, 'ms') # create rpeaks dataframe and add ibi columm rpeaks_df =
pd.DataFrame(self.rpeaks)
pandas.DataFrame
# -*- coding: utf-8 -*- """Calculate the mobility demand. SPDX-FileCopyrightText: 2016-2019 <NAME> <<EMAIL>> SPDX-License-Identifier: MIT """ __copyright__ = "<NAME> <<EMAIL>>" __license__ = "MIT" import os import pandas as pd from collections import namedtuple from reegis import geometries, config as cfg, tools, energy_balance def format_kba_table(filename, sheet): """ Clean the layout of the table. The tables are made for human readability and not for automatic processing. Lines with subtotals and format-strings of the column names are removed. A valid MultiIndex is created to make it easier to filter the table by the index. Parameters ---------- filename : str Path and name of the excel file. sheet : str Name of the sheet of the excel table. Returns ------- pandas.DataFrame """ # Read table df =
pd.read_excel(filename, sheet, skiprows=7, header=[0, 1])
pandas.read_excel
import logging from abc import ABC, abstractmethod import numpy as np import pandas as pd from hdrbp._util import ( basic_repr, basic_str, compute_correlation, compute_diversification_ratio, compute_drawdowns, compute_gini, compute_prices, compute_risk_contributions, compute_turnover, compute_variance, count_dates_per_year, count_years, ) logger = logging.getLogger(__name__) @basic_str @basic_repr class MetricCalculator(ABC): @property def name(self): return repr(self) @abstractmethod def calculate(self, result: pd.DataFrame) -> float: pass class GeometricMeanReturn(MetricCalculator): def __init__(self, annualized: bool = False) -> None: self._annualized = annualized def calculate(self, result: pd.DataFrame) -> float: logger.debug(f"{self}: Calculating metric") result = _filter_valid_returns(result) returns = result["return"].values log_returns = np.log1p(returns) mean_log_return = np.mean(log_returns) if self._annualized: dates =
pd.to_datetime(result["date"].values)
pandas.to_datetime
from __future__ import annotations from io import ( BytesIO, StringIO, ) import os import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( NA, DataFrame, Index, ) import pandas._testing as tm import pandas.io.common as icom from pandas.io.common import get_handle from pandas.io.xml import read_xml """ CHECKLIST [x] - ValueError: "Values for parser can only be lxml or etree." etree [x] - ImportError: "lxml not found, please install or use the etree parser." [X] - TypeError: "...is not a valid type for attr_cols" [X] - TypeError: "...is not a valid type for elem_cols" [X] - LookupError: "unknown encoding" [X] - KeyError: "...is not included in namespaces" [X] - KeyError: "no valid column" [X] - ValueError: "To use stylesheet, you need lxml installed..." [] - OSError: (NEED PERMISSOIN ISSUE, DISK FULL, ETC.) [X] - FileNotFoundError: "No such file or directory" [X] - PermissionError: "Forbidden" lxml [X] - TypeError: "...is not a valid type for attr_cols" [X] - TypeError: "...is not a valid type for elem_cols" [X] - LookupError: "unknown encoding" [] - OSError: (NEED PERMISSOIN ISSUE, DISK FULL, ETC.) [X] - FileNotFoundError: "No such file or directory" [X] - KeyError: "...is not included in namespaces" [X] - KeyError: "no valid column" [X] - ValueError: "stylesheet is not a url, file, or xml string." [] - LookupError: (NEED WRONG ENCODING FOR FILE OUTPUT) [] - URLError: (USUALLY DUE TO NETWORKING) [] - HTTPError: (NEED AN ONLINE STYLESHEET) [X] - OSError: "failed to load external entity" [X] - XMLSyntaxError: "Opening and ending tag mismatch" [X] - XSLTApplyError: "Cannot resolve URI" [X] - XSLTParseError: "failed to compile" [X] - PermissionError: "Forbidden" """ geom_df = DataFrame( { "shape": ["square", "circle", "triangle"], "degrees": [360, 360, 180], "sides": [4, np.nan, 3], } ) planet_df = DataFrame( { "planet": [ "Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune", ], "type": [ "terrestrial", "terrestrial", "terrestrial", "terrestrial", "gas giant", "gas giant", "ice giant", "ice giant", ], "location": [ "inner", "inner", "inner", "inner", "outer", "outer", "outer", "outer", ], "mass": [ 0.330114, 4.86747, 5.97237, 0.641712, 1898.187, 568.3174, 86.8127, 102.4126, ], } ) from_file_expected = """\ <?xml version='1.0' encoding='utf-8'?> <data> <row> <index>0</index> <category>cooking</category> <title>Everyday Italian</title> <author><NAME></author> <year>2005</year> <price>30.0</price> </row> <row> <index>1</index> <category>children</category> <title>Harry Potter</title> <author><NAME></author> <year>2005</year> <price>29.99</price> </row> <row> <index>2</index> <category>web</category> <title>Learning XML</title> <author><NAME></author> <year>2003</year> <price>39.95</price> </row> </data>""" def equalize_decl(doc): # etree and lxml differ on quotes and case in xml declaration if doc is not None: doc = doc.replace( '<?xml version="1.0" encoding="utf-8"?', "<?xml version='1.0' encoding='utf-8'?", ) return doc @pytest.fixture(params=["rb", "r"]) def mode(request): return request.param @pytest.fixture(params=[pytest.param("lxml", marks=td.skip_if_no("lxml")), "etree"]) def parser(request): return request.param # FILE OUTPUT def test_file_output_str_read(datapath, parser): filename = datapath("io", "data", "xml", "books.xml") df_file = read_xml(filename, parser=parser) with tm.ensure_clean("test.xml") as path: df_file.to_xml(path, parser=parser) with open(path, "rb") as f: output = f.read().decode("utf-8").strip() output = equalize_decl(output) assert output == from_file_expected def test_file_output_bytes_read(datapath, parser): filename = datapath("io", "data", "xml", "books.xml") df_file = read_xml(filename, parser=parser) with
tm.ensure_clean("test.xml")
pandas._testing.ensure_clean
""" Prepare training and testing datasets as CSV dictionaries 2.0 Created on 04/26/2019; modified on 11/06/2019 @author: RH """ import os import pandas as pd import sklearn.utils as sku import numpy as np import re # get all full paths of images def image_ids_in(root_dir, ignore=['.DS_Store','dict.csv', 'all.csv']): ids = [] for id in os.listdir(root_dir): if id in ignore: print('Skipping ID:', id) else: ids.append(id) return ids # Get intersection of 2 lists def intersection(lst1, lst2): lst3 = [value for value in lst1 if value in lst2] return lst3 # pair tiles of 20x, 10x, 5x of the same area def paired_tile_ids_in_old(slide, label, root_dir): dira = os.path.isdir(root_dir + 'level0') dirb = os.path.isdir(root_dir + 'level1') dirc = os.path.isdir(root_dir + 'level2') if dira and dirb and dirc: if "TCGA" in root_dir: fac = 1000 else: fac = 500 ids = [] for level in range(3): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '.png' in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0] except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) else: print('Skipping ID:', id) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 0] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 1] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 2] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path']) return idsa def tile_ids_in(inp): ids = [] try: for id in os.listdir(inp['path']): if '_{}.png'.format(str(inp['sldnum'])) in id: ids.append([inp['slide'], inp['level'], inp['path']+'/'+id, inp['BMI'], inp['age'], inp['label']]) except FileNotFoundError: print('Ignore:', inp['path']) return ids # pair tiles of 10x, 5x, 2.5x of the same area def paired_tile_ids_in(slide, label, root_dir, age=None, BMI=None): dira = os.path.isdir(root_dir + 'level1') dirb = os.path.isdir(root_dir + 'level2') dirc = os.path.isdir(root_dir + 'level3') if dira and dirb and dirc: if "TCGA" in root_dir: fac = 2000 else: fac = 1000 ids = [] for level in range(1, 4): dirr = root_dir + 'level{}'.format(str(level)) for id in os.listdir(dirr): if '.png' in id: x = int(float(id.split('x-', 1)[1].split('-', 1)[0]) / fac) y = int(float(re.split('_', id.split('y-', 1)[1])[0]) / fac) try: dup = re.split('.p', re.split('_', id.split('y-', 1)[1])[1])[0] except IndexError: dup = np.nan ids.append([slide, label, level, dirr + '/' + id, x, y, dup]) else: print('Skipping ID:', id) ids = pd.DataFrame(ids, columns=['slide', 'label', 'level', 'path', 'x', 'y', 'dup']) idsa = ids.loc[ids['level'] == 1] idsa = idsa.drop(columns=['level']) idsa = idsa.rename(index=str, columns={"path": "L0path"}) idsb = ids.loc[ids['level'] == 2] idsb = idsb.drop(columns=['slide', 'label', 'level']) idsb = idsb.rename(index=str, columns={"path": "L1path"}) idsc = ids.loc[ids['level'] == 3] idsc = idsc.drop(columns=['slide', 'label', 'level']) idsc = idsc.rename(index=str, columns={"path": "L2path"}) idsa = pd.merge(idsa, idsb, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa['x'] = idsa['x'] - (idsa['x'] % 2) idsa['y'] = idsa['y'] - (idsa['y'] % 2) idsa = pd.merge(idsa, idsc, on=['x', 'y', 'dup'], how='left', validate="many_to_many") idsa = idsa.drop(columns=['x', 'y', 'dup']) idsa = idsa.dropna() idsa = sku.shuffle(idsa) idsa['age'] = age idsa['BMI'] = BMI else: idsa = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) return idsa # Balance CPTAC and TCGA tiles in each class def balance(pdls, cls): balanced = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) for i in range(cls): ref = pdls.loc[pdls['label'] == i] CPTAC = ref[~ref['slide'].str.contains("TCGA")] TCGA = ref[ref['slide'].str.contains("TCGA")] if CPTAC.shape[0] != 0 and TCGA.shape[0] != 0: ratio = (CPTAC.shape[0])/(TCGA.shape[0]) if ratio < 0.2: TCGA = TCGA.sample(int(5*CPTAC.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) elif ratio > 5: CPTAC = CPTAC.sample(int(5*TCGA.shape[0]), replace=False) ref = pd.concat([TCGA, CPTAC], sort=False) balanced = pd.concat([balanced, ref], sort=False) return balanced # Prepare label at per patient level def big_image_sum(pmd, path='../tiles/', ref_file='../Fusion_dummy_His_MUT_joined.csv'): ref = pd.read_csv(ref_file, header=0) big_images = [] if pmd == 'subtype': ref = ref.loc[ref['subtype_0NA'] == 0] for idx, row in ref.iterrows(): if row['subtype_POLE'] == 1: big_images.append([row['name'], 0, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_MSI'] == 1: big_images.append([row['name'], 1, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_Endometrioid'] == 1: big_images.append([row['name'], 2, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif row['subtype_Serous-like'] == 1: big_images.append([row['name'], 3, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd == 'histology': ref = ref.loc[ref['histology_Mixed'] == 0] for idx, row in ref.iterrows(): if row['histology_Endometrioid'] == 1: big_images.append([row['name'], 0, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) if row['histology_Serous'] == 1: big_images.append([row['name'], 1, path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd in ['Endometrioid', 'MSI', 'Serous-like', 'POLE']: # ref = ref.loc[ref['histology_Endometrioid'] == 1] ref = ref.loc[ref['subtype_0NA'] == 0] for idx, row in ref.iterrows(): big_images.append([row['name'], int(row['subtype_{}'.format(pmd)]), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) elif pmd == 'MSIst': ref = ref.loc[ref['MSIst_0NA'] == 0] for idx, row in ref.iterrows(): big_images.append([row['name'], int(row['MSIst_MSI-H']), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) else: ref = ref.dropna(subset=[pmd]) for idx, row in ref.iterrows(): big_images.append([row['name'], int(row[pmd]), path + "{}/".format(str(row['name'])), row['age'], row['BMI']]) datapd = pd.DataFrame(big_images, columns=['slide', 'label', 'path', 'age', 'BMI']) return datapd # TO KEEP SPLIT SAME AS BASELINES. seperate into training and testing; each type is the same separation # ratio on big images test and train csv files contain tiles' path. def set_sep_secondary(alll, path, cls, pmd, batchsize=24): if pmd == 'subtype': split = pd.read_csv('../split/ST.csv', header=0) elif pmd == 'histology': split = pd.read_csv('../split/his.csv', header=0) elif pmd == 'Serous-like': split = pd.read_csv('../split/CNVH.csv', header=0) elif pmd == 'Endometrioid': split = pd.read_csv('../split/CNVL.csv', header=0) else: split = pd.read_csv('../split/{}.csv'.format(pmd), header=0) train = split.loc[split['set'] == 'train']['slide'].tolist() validation = split.loc[split['set'] == 'validation']['slide'].tolist() test = split.loc[split['set'] == 'test']['slide'].tolist() trlist = [] telist = [] valist = [] subset = alll valist.append(subset[subset['slide'].isin(validation)]) telist.append(subset[subset['slide'].isin(test)]) trlist.append(subset[subset['slide'].isin(train)]) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) train_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) validation_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) for idx, row in test.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) test_tiles = pd.concat([test_tiles, tile_ids]) for idx, row in train.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) train_tiles = pd.concat([train_tiles, tile_ids]) for idx, row in validation.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) validation_tiles = pd.concat([validation_tiles, tile_ids]) train_tiles = balance(train_tiles, cls=cls) validation_tiles = balance(validation_tiles, cls=cls) # No shuffle on test set train_tiles = sku.shuffle(train_tiles) validation_tiles = sku.shuffle(validation_tiles) if train_tiles.shape[0] > int(batchsize * 80000 / 3): train_tiles = train_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate training set!') if validation_tiles.shape[0] > int(batchsize * 80000 / 30): validation_tiles = validation_tiles.sample(int(batchsize * 80000 / 30), replace=False) print('Truncate validation set!') if test_tiles.shape[0] > int(batchsize * 80000 / 3): test_tiles = test_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate test set!') test_tiles.to_csv(path + '/te_sample.csv', header=True, index=False) train_tiles.to_csv(path + '/tr_sample.csv', header=True, index=False) validation_tiles.to_csv(path + '/va_sample.csv', header=True, index=False) return train_tiles, test_tiles, validation_tiles # Training and validation on TCGA; Testing on CPTAC def set_sep_idp(alll, path, cls, cut=0.1, batchsize=64): trlist = [] telist = [] valist = [] TCGA = alll[alll['slide'].str.contains("TCGA")] CPTAC = alll[~alll['slide'].str.contains("TCGA")] for i in range(cls): subset = TCGA.loc[TCGA['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq) * cut)] valist.append(subset[subset['slide'].isin(validation)]) train = unq[int(len(unq) * cut):] trlist.append(subset[subset['slide'].isin(train)]) telist.append(CPTAC) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) train_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) validation_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) for idx, row in test.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) test_tiles = pd.concat([test_tiles, tile_ids]) for idx, row in train.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) train_tiles = pd.concat([train_tiles, tile_ids]) for idx, row in validation.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) validation_tiles = pd.concat([validation_tiles, tile_ids]) train_tiles = balance(train_tiles, cls=cls) validation_tiles = balance(validation_tiles, cls=cls) # No shuffle on test set train_tiles = sku.shuffle(train_tiles) validation_tiles = sku.shuffle(validation_tiles) if train_tiles.shape[0] > int(batchsize * 80000 / 3): train_tiles = train_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate training set!') if validation_tiles.shape[0] > int(batchsize * 80000 / 30): validation_tiles = validation_tiles.sample(int(batchsize * 80000 / 30), replace=False) print('Truncate validation set!') if test_tiles.shape[0] > int(batchsize * 80000 / 3): test_tiles = test_tiles.sample(int(batchsize * 80000 / 3), replace=False) print('Truncate test set!') test_tiles.to_csv(path + '/te_sample.csv', header=True, index=False) train_tiles.to_csv(path + '/tr_sample.csv', header=True, index=False) validation_tiles.to_csv(path + '/va_sample.csv', header=True, index=False) return train_tiles, test_tiles, validation_tiles # seperate into training and testing; each type is the same separation ratio on big images # test and train csv files contain tiles' path. def set_sep(alll, path, cls, cut=0.2, batchsize=24): trlist = [] telist = [] valist = [] TCGA = alll[alll['slide'].str.contains("TCGA")] CPTAC = alll[~alll['slide'].str.contains("TCGA")] for i in range(cls): subset = TCGA.loc[TCGA['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq)*cut/2)] valist.append(subset[subset['slide'].isin(validation)]) test = unq[int(len(unq)*cut/2):int(len(unq)*cut)] telist.append(subset[subset['slide'].isin(test)]) train = unq[int(len(unq)*cut):] trlist.append(subset[subset['slide'].isin(train)]) subset = CPTAC.loc[CPTAC['label'] == i] unq = list(subset.slide.unique()) np.random.shuffle(unq) validation = unq[:int(len(unq) * cut / 2)] valist.append(subset[subset['slide'].isin(validation)]) test = unq[int(len(unq) * cut / 2):int(len(unq) * cut)] telist.append(subset[subset['slide'].isin(test)]) train = unq[int(len(unq) * cut):] trlist.append(subset[subset['slide'].isin(train)]) test = pd.concat(telist) train = pd.concat(trlist) validation = pd.concat(valist) test_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) train_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) validation_tiles = pd.DataFrame(columns=['slide', 'label', 'L0path', 'L1path', 'L2path', 'age', 'BMI']) for idx, row in test.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) test_tiles = pd.concat([test_tiles, tile_ids]) for idx, row in train.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) train_tiles = pd.concat([train_tiles, tile_ids]) for idx, row in validation.iterrows(): tile_ids = paired_tile_ids_in(row['slide'], row['label'], row['path'], row['age'], row['BMI']) validation_tiles =
pd.concat([validation_tiles, tile_ids])
pandas.concat
import keras.models from keras.layers import Dense, Dropout, Activation, Input, Concatenate import keras.backend as K import numpy as np import pandas as pd from sklearn.model_selection import KFold from sklearn.base import clone from EmoMap.coling18.framework import util import os import math class Model(): def __init__(self): raise NotImplementedError def fit(self): raise NotImplementedError def predict(self): raise NotImplementedError class Word_Model(Model): def fit(self, words, labels): raise NotImplementedError def predict(self, words): raise NotImplementedError def pearson(y_true, y_pred): fsp = y_pred - K.mean(y_pred) #being K.mean a scalar here, it will be automatically subtracted from all elements in y_pred fst = y_true - K.mean(y_true) devP = K.std(y_pred) devT = K.std(y_true) return K.mean(fsp*fst)/(devP*devT) class SKlearn_Mapping_Model(Word_Model): def __init__(self, base_model, source_lexicon): self.model=None self.untrained=base_model self.source_lex=source_lexicon self.targets=None self.initialize() def initialize(self): self.model=clone(self.untrained) def __feature_extraction__(self, words): return np.array([self.source_lex.loc[word] for word in words]) def fit(self, words, labels): # self.model.fit(features, labels) self.targets=labels.columns features=self.__feature_extraction__(words) self.model.fit(features, labels) def predict(self, words): features=self.__feature_extraction__(words) preds=self.model.predict(features) return pd.DataFrame(preds, columns=self.targets) class Mapping_Model(Word_Model): ''' Wrapper for Keras based MLP ''' def __init__( self, layers, #including input and output layer activation, dropout_hidden, batch_size, optimizer, source_lexicon, # Emotion lexicon with entries in the # source representation. Must also cover # the entries in the test set. verbose=0, epochs=None, train_steps=None, kind='joint', #either "joint" or "separate" ): ''' ARGS batch_generation either 'serial' or 'radomreplace' epochs Will be interpreted as training steps if batch_generation is set to "randomreplace" WATCH OUT!!! ''' self.targets=None self.source_lexicon=source_lexicon self.epochs=epochs self.train_steps=train_steps #will "round up" to make full epochs self.batch_size=batch_size self.verbose=verbose self.layers=layers self.activation=activation self.dropout_hidden=dropout_hidden self.optimizer=optimizer self.kind=kind self.kinds={'joint':self.__init_joint__, 'separate':self.__init_separate__} assert (epochs is not None) or (train_steps is not None), 'Either epochs or train_streps must be set.' assert not( epochs is not None and train_steps is not None ), 'You cannot specify both epochs and train_steps.' self.initialize() def __init_separate__(self): input_layer = Input(shape=(self.layers[0],)) top_layer=[] for i in range(self.layers[-1]): curr_layers=[input_layer] for j in range(len(self.layers)-2): curr_layers.append(Dense(self.layers[j+1])(curr_layers[-1])) curr_layers.append(Activation(self.activation)(curr_layers[-1])) curr_layers.append(Dropout(rate=self.dropout_hidden)(curr_layers[-1])) #last dense layer top_layer.append(Dense(1)(curr_layers[-1])) out=Concatenate()(top_layer) self.model=keras.models.Model(inputs=[input_layer], outputs=out) self.model.compile(optimizer=self.optimizer, loss='mse', metrics=[pearson]) def __init_joint__(self): self.model=keras.models.Sequential() self.model.add(Dense(self.layers[1], input_dim=self.layers[0])) i=1 while i<len(self.layers)-1: self.model.add(Activation(self.activation)) self.model.add(Dropout(rate=self.dropout_hidden)) self.model.add(Dense(self.layers[i+1])) i+=1 self.model.compile(optimizer=self.optimizer, loss='mse', metrics=[pearson]) def initialize(self): self.kinds[self.kind]() def __feature_extraction__(self, words): return np.array([self.source_lexicon.loc[word] for word in words]) def fit(self, words, labels): self.targets=labels.columns features=self.__feature_extraction__(words) if bool(self.epochs)==True: if self.verbose >0: print('Using epoch wise training') self.model.fit( features, labels, epochs=self.epochs, batch_size=self.batch_size, verbose=self.verbose) elif bool(self.train_steps)==True: if self.verbose > 0: print('Using step-wise training.') bs=util.Serial_Batch_Gen( features=pd.DataFrame(features), labels=pd.DataFrame(labels), batch_size=self.batch_size) for i_step in range(self.train_steps): if i_step%100==0 and self.verbose>0: print('Now at training step: '+str(i_step)) batch_features,batch_labels=bs.next() self.model.train_on_batch(batch_features,batch_labels) else: raise ValueError('Neither epochs nore train_steps are specified!') def predict(self,words): features=self.__feature_extraction__(words) preds=self.model.predict(features) return preds def lexicon_creation(self, words, features): preds=self.model.predict(features) return pd.DataFrame(preds, index=words, columns=self.targets) def test_at_steps(self, words, labels, test_split, test_steps, iterations): # self.targets=labels.columns # step 1 feature extraction assert bool(self.train_steps)==True, 'Training must be specified by the number of training steps' features=self.__feature_extraction__(words) labels=pd.DataFrame(labels, index=words) performance=pd.DataFrame(index=np.arange(1,iterations+1)) performance.index.names=['iteration'] for i in range(iterations): number_of_iteration=i+1 # print(number_of_iteration) features_train, features_test,\ labels_train,\ labels_test=util.train_test_split( features, labels, test_size=test_split) bs=util.Serial_Batch_Gen( features=pd.DataFrame(features_train), labels=pd.DataFrame(labels_train), batch_size=self.batch_size) for i_steps in range(self.train_steps): total_steps=i_steps+1 batch_features,batch_labels=bs.next() self.model.train_on_batch(batch_features,batch_labels) if total_steps in test_steps: preds=pd.DataFrame(self.model.predict(features_test), columns=list(labels)) # print(preds) perf=np.mean(util.eval(labels_test, preds)) performance.loc[number_of_iteration, total_steps]=perf # resets model self.initialize() # print(performance) perf_mean=pd.Series(performance.mean(axis=0)) return perf_mean class Attention_Mapping_Model(Word_Model): ''' Wrapper for Keras based MLP ''' def __init__( self, layers, #including input and output layer activation, dropout_hidden, batch_size, optimizer, source_lexicon, # Emotion lexicon with entries in the # source representation. Must also cover # the entries in the test set. verbose=0, epochs=None, train_steps=None, kind='joint', #either "joint" or "separate" ): ''' ARGS batch_generation either 'serial' or 'radomreplace' epochs Will be interpreted as training steps if batch_generation is set to "randomreplace" WATCH OUT!!! ''' self.targets=None self.source_lexicon=source_lexicon self.epochs=epochs self.train_steps=train_steps #will "round up" to make full epochs self.batch_size=batch_size self.verbose=verbose self.layers=layers self.activation=activation self.dropout_hidden=dropout_hidden self.optimizer=optimizer self.kind=kind self.kinds={'joint':self.__init_joint__, 'separate':self.__init_separate__} assert (epochs is not None) or (train_steps is not None), 'Either epochs or train_streps must be set.' assert not( epochs is not None and train_steps is not None ), 'You cannot specify both epochs and train_steps.' self.initialize() def __init_separate__(self): print("attention separate") input_layer = Input(shape=(self.layers[0],)) q = tf.keras.layers.Dense(128, activation=tf.nn.relu, name="linear_q")(input_layer) k = tf.keras.layers.Dense(128, activation=tf.nn.relu, name="linear_k")(input_layer) v = tf.keras.layers.Dense(128, activation=tf.nn.relu, name="linear_v")(input_layer) q_k_attention = tf.keras.layers.Attention(name="dot_product_attention")([q, k]) x = tf.keras.layers.Concatenate(name="concat")([v, q_k_attention]) x = tf.keras.layers.LayerNormalization(epsilon=1e-6, name="layer_normalization")(x) x = tf.keras.layers.Dense(128, activation=tf.nn.relu, name="dense")(x) top_layer=[] for i in range(self.layers[-1]): curr_layers=[input_layer] for j in range(len(self.layers)-2): curr_layers.append(Dense(self.layers[j+1])(curr_layers[-1])) curr_layers.append(Activation(self.activation)(curr_layers[-1])) curr_layers.append(Dropout(rate=self.dropout_hidden)(curr_layers[-1])) #last dense layer top_layer.append(Dense(1)(curr_layers[-1])) out=Concatenate()(top_layer) self.model=keras.models.Model(inputs=[input_layer], outputs=out) self.model.compile(optimizer=self.optimizer, loss='mse', metrics=[pearson]) def __init_joint__(self): print("attention joint") self.model=keras.models.Sequential() self.model.add(Dense(self.layers[1], input_dim=self.layers[0])) i=1 while i<len(self.layers)-1: self.model.add(Activation(self.activation)) self.model.add(Dropout(rate=self.dropout_hidden)) self.model.add(Dense(self.layers[i+1])) i+=1 self.model.compile(optimizer=self.optimizer, loss='mse', metrics=[pearson]) def initialize(self): self.kinds[self.kind]() def __feature_extraction__(self, words): return np.array([self.source_lexicon.loc[word] for word in words]) def fit(self, words, labels): self.targets=labels.columns features=self.__feature_extraction__(words) if bool(self.epochs)==True: if self.verbose >0: print('Using epoch wise training') self.model.fit( features, labels, epochs=self.epochs, batch_size=self.batch_size, verbose=self.verbose) elif bool(self.train_steps)==True: if self.verbose > 0: print('Using step-wise training.') bs=util.Serial_Batch_Gen( features=pd.DataFrame(features), labels=pd.DataFrame(labels), batch_size=self.batch_size) for i_step in range(self.train_steps): if i_step%100==0 and self.verbose>0: print('Now at training step: '+str(i_step)) batch_features,batch_labels=bs.next() self.model.train_on_batch(batch_features,batch_labels) else: raise ValueError('Neither epochs nore train_steps are specified!') def predict(self,words): features=self.__feature_extraction__(words) preds=self.model.predict(features) return preds def lexicon_creation(self, words, features): preds=self.model.predict(features) return pd.DataFrame(preds, index=words, columns=self.targets) def test_at_steps(self, words, labels, test_split, test_steps, iterations): # self.targets=labels.columns # step 1 feature extraction assert bool(self.train_steps)==True, 'Training must be specified by the number of training steps' features=self.__feature_extraction__(words) labels=pd.DataFrame(labels, index=words) performance=pd.DataFrame(index=np.arange(1,iterations+1)) performance.index.names=['iteration'] for i in range(iterations): number_of_iteration=i+1 # print(number_of_iteration) features_train, features_test,\ labels_train,\ labels_test=util.train_test_split( features, labels, test_size=test_split) bs=util.Serial_Batch_Gen( features=pd.DataFrame(features_train), labels=
pd.DataFrame(labels_train)
pandas.DataFrame
import os import pandas as pd from settings.config import DATASET_USAGE, K_FOLDS_VALUES, item_label, title_label, genre_label, algorithm_label, \ FAIRNESS_METRIC_LABEL, LAMBDA_LABEL, EVALUATION_METRIC_LABEL, EVALUATION_VALUE_LABEL, evaluation_label, \ LAMBDA_VALUE_LABEL, results_path, N_CORES from conversions.pandas_to_models import transform_trainset from graphics.experimental_evaluation import evaluation_linear_fairness_by_algo_over_lambda, evaluation_map_by_mc, \ evaluation_map_by_mace from settings.language_strings import LANGUAGE_LOAD_DATA_SET, LANGUAGE_MOVIELENS_SELECTED, LANGUAGE_OMS_SELECTED, \ LANGUAGE_DATA_SET_MEMORY, LANGUAGE_PROCESSING_STEP_START, LANGUAGE_PROCESSING_STEP_STOP from models.item import create_item_mapping from preprocessing.load_database import movielens_load_data, oms_load_data, yahoo_load_data from processing.step import recommender_algorithms def save_recommender_results(evaluation_results_df, k): for recommender in evaluation_results_df[algorithm_label].unique().tolist(): recommender_subset_df = evaluation_results_df[evaluation_results_df[algorithm_label] == recommender] ave_dir = results_path + '/' + str(recommender) if not os.path.exists(ave_dir): os.makedirs(ave_dir) rating_path = os.path.join(ave_dir, str(k) + '.csv') recommender_subset_df.to_csv(rating_path, index=False) def save_results(evaluation_results_df, k): if not os.path.exists(results_path): os.makedirs(results_path) rating_path = os.path.join(results_path, str(k) + '.csv') evaluation_results_df.to_csv(rating_path, index=False) def k_fold_results_concat(evaluation_results_df): k_results_df = pd.DataFrame() print(evaluation_results_df) for recommender in evaluation_results_df[algorithm_label].unique().tolist(): recommender_subset_df = evaluation_results_df[evaluation_results_df[algorithm_label] == recommender] for distance_metric in recommender_subset_df[FAIRNESS_METRIC_LABEL].unique().tolist(): fairness_subset_df = recommender_subset_df[recommender_subset_df[FAIRNESS_METRIC_LABEL] == distance_metric] for lambda_type in fairness_subset_df[LAMBDA_LABEL].unique().tolist(): lambda_subset_df = fairness_subset_df[fairness_subset_df[LAMBDA_LABEL] == lambda_type] for lambda_value in lambda_subset_df[LAMBDA_VALUE_LABEL].unique().tolist(): lambda_value_subset_df = lambda_subset_df[lambda_subset_df[LAMBDA_VALUE_LABEL] == lambda_value] for evaluation_metric in lambda_value_subset_df[EVALUATION_METRIC_LABEL].unique().tolist(): evaluation_subset_df = lambda_value_subset_df[ lambda_value_subset_df[EVALUATION_METRIC_LABEL] == evaluation_metric] result = evaluation_subset_df[EVALUATION_VALUE_LABEL].mean() k_results_df = pd.concat([k_results_df, pd.DataFrame( [[recommender, distance_metric, lambda_type, lambda_value, evaluation_metric, result]], columns=evaluation_label ) ]) print(k_results_df) return k_results_df def run_one_time(k=1): print(LANGUAGE_LOAD_DATA_SET) print('*' * 30) print(str('-' * 13) + str(k) + str('-' * 13)) print('*' * 30) trainset_df =
pd.DataFrame()
pandas.DataFrame
from logic.helpers import * import pandas as pd from sklearn import svm, preprocessing from scipy.stats import mode from sklearn.model_selection import cross_validate CLASS_LABEL = "class_label" TIMESTAMP = "timestamp" GROUP_INDEX = "group_index" class ClassificationManager: def __init__(self, windowSize=20): self.calibrationData = pd.DataFrame() self.calibrationLabels = [] self.mlData = None self.clf = None self.scaler = None self.clf_stats = None self.currentSamplingRate = None self.windowSize = windowSize self.currentPrediction = None def makePrediction(self, data): """ Uses the internally trained model (cf. trainClassifierModel) to predict classes for the given data. Return 'None' is not classifier is present. Executes a prediction for each EMG data sample (i.e. each row in data) and returns both a list of predictions and a voted (mode-based) final prediction. Note that a prediction is only possible when the window (cf. windowsize) completely overlaps with the data. Hence, the number of predictions is len(data) - windowsize. Accordingly, the first prediction corresponds to the element data[:][windowsize/2]. Parameters: data: 2D-array containing recorded EMG data samples (rows) per channel (columns). returns: currentPrediction: voted (mode-based) prediction for the given data prediction: list of predictions for valid window configurations; length = len(data) - windowsize """ if self.clf is None: return 'None' df = pd.DataFrame(data) df = df.transpose() apply_bandpass_filter(df, 2.0, self.currentSamplingRate / 2.0 - 1.0, self.currentSamplingRate) apply_bandstop_filter(df, 49.0, 51.0, self.currentSamplingRate) X =
pd.DataFrame()
pandas.DataFrame
import argparse import mplfinance as mpf import numba as nb import os import pandas as pd from pandas_datareader import data, wb from pandas_datareader.nasdaq_trader import get_nasdaq_symbols from pandas.tseries.holiday import USFederalHolidayCalendar from pandas.tseries.frequencies import to_offset import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator from datetime import datetime, timedelta import pytz import sys # %matplotlib inline plt.rcParams['figure.figsize'] = [15, 15] plt.style.use('ggplot') # plt.style.use('seaborn') from matplotlib.ticker import Formatter class WeekdayDateFormatter(Formatter): # https://matplotlib.org/gallery/ticks_and_spines/date_index_formatter.html # the data is first plotted against an integer. The formatter changes the integer to the correct date. def __init__(self, dates, fmt='%Y-%m-%d'): self.dates = dates self.fmt = fmt def __call__(self, x, pos=0): 'Return the label for time x at position pos' ind = int(round(x)) if ind >= len(self.dates) or ind < 0: return '' return (self.dates[ind]).strftime(self.fmt) def search_stock_symbols(stock): fn = 'symbols.csv' if not os.path.exists(fn): symbols = get_nasdaq_symbols() symbols.to_csv(fn, index='Symbol') else: symbols = pd.read_csv(fn, index_col='Symbol') if stock is None: return symbols stock = stock.upper() hard_search = symbols[symbols['NASDAQ Symbol'] == stock] if len(hard_search) == 1: return 1, symbols[symbols['NASDAQ Symbol'] == stock]['Security Name'][stock] else: found = symbols[symbols['NASDAQ Symbol'].str.contains(stock)] if found.empty: return 0, None else: return len(found), found def valid_time(arg): try: return datetime.strptime(arg, "%H:%M") except ValueError: msg = "Not a valid time: '{0}'.".format(arg) raise argparse.ArgumentTypeError(msg) def valid_date(arg): try: dt = datetime.strptime(arg, "%m/%d/%Y") except ValueError: msg = 'Not a valid date: "{0}".'.format(arg) raise argparse.ArgumentTypeError(msg) if dt.date() > datetime.now().date(): dt = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) msg = f'''A future date is not valid: "{arg}". Instead using "{dt.date().strftime('%m/%d/%Y')}"''' print(msg) return dt def cli_parameters(): parser = argparse.ArgumentParser() parser.add_argument('stock', metavar='N', type=str, nargs='*', help='create reports for all stocks entered') parser.add_argument('--compare', action='store_true', default=False, help='compare the list of stocks') parser.add_argument('--bb', action='store_true', default=False, help='show Bollinger Bands on stock chart') parser.add_argument('--macd', action='store_true', default=False, help='show Moving Average Convergence/Divergence on separate chart') parser.add_argument('--sto', action='store_true', default=False, help='show Stochastic on separate chart') parser.add_argument('--rsi', action='store_true', default=False, help='show Relative Srength Index on separate chart') parser.add_argument('--cmf', action='store_true', default=False, help='show Chaikin Money Flow on separate chart') parser.add_argument('--best', action='store_true', default=False, help='show BB, MACD, and RSI') parser.add_argument('--save', action='store_true', default=False, help='Save plot to disk') parser.add_argument('--show', action='store_true', default=False, help='Show interactive plot') parser.add_argument('--weekly', action='store_true', default=False, help='Resample data into weekly charts') parser.add_argument("--startdate", help="Start date - format MM/DD/YYYY", default=datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) - timedelta(days=547), type=valid_date) parser.add_argument("--enddate", help="End date - format MM/DD/YYYY", default=datetime.now().replace(hour=0, minute=0, second=0, microsecond=0), type=valid_date) parser.add_argument("--priceline", help="Insert a horizontal black line on plot at price (float)", type=float) parser.add_argument("--dateline", help="Insert a vertical black line on plot - format MM/DD/YYYY", type=valid_date) parser.add_argument('--daydelta', type=int, help='Days between start date and end date.') parser.add_argument('--zoom', type=int, default=0, help='Zoom into the plot for the last number of days.') args = parser.parse_args() args.stock = sorted([i.upper() for i in args.stock]) if not args.save: args.show = True # if len(args.stock) > 1: # args.save = True # args.show = False if args.startdate > args.enddate: parser.error(f'Start date "{args.startdate}" can not be greater than End Date "{args.enddate}"') if args.daydelta: args.startdate = args.enddate - timedelta(days=args.daydelta) if args.best: args.bb = True args.macd = True args.rsi = True # log_message(parser.parse_args().__str__()) if len(sys.argv) == 1: parser.print_help(sys.stderr) sys.exit(1) return args def remove_holidays_and_weekends(start, end, move_date_forward=True): holidays = USFederalHolidayCalendar().holidays(start=start - timedelta(days=14), end=end + timedelta(days=14)).to_pydatetime() if move_date_forward: dt = start else: dt = end while dt in holidays or dt.weekday() >= 5: if move_date_forward: dt += timedelta(days=1) else: dt -= timedelta(days=1) return dt class StockAnalysis: def __init__(self, stock: str, start: datetime, end: datetime, sma: list=[200, 100, 50, 5], close_col: str="Close", plot_type: str="line", weekly: bool=False, priceline: float=None, dateline: datetime=None): """ Gather data for the stock between the given dates. SMA: list of simple moving average days to plot CLOSE_COL: column name to use for close data. Usually Close or Adj Close PLOT_TYPE: how to plot the data. line or candlestick """ self.stock = stock self.stock_name = None self.stock_count = self.confirm_stock_symbol() if self.stock_count > 1:sys.exit(1) self.start = start self.end = end self.close_col = close_col self.sma = sma self.ema = sma + [20] self.plot_type = plot_type self.weekly = weekly self.priceline = priceline self.dateline = dateline self.df = self.get_data_frame(self.stock, self.start, self.end, weekly=self.weekly) self.set_day_color() self.simple_moving_average() self.exponential_moving_average() def confirm_stock_symbol(self): count, name = search_stock_symbols(self.stock) if count == 0: print(f'Symbol {self.stock} is not traded on the Nasdaq exchange') elif count == 1: self.stock_name = name else: print(f'Multiple stock symbols found for {self.stock}') return count def store_stock(self, stock: str, start: datetime, end: datetime, filename: str): print(f"Pulling stock data for {stock} from {start} to {end}") try: # df = pd.DataFrame(data.DataReader(stock,'yahoo',start,end)) df = pd.DataFrame(data.DataReader(stock,'stooq',start,end)) except KeyError: print("Stock out of range") df = pd.DataFrame() df = df.reset_index() if os.path.exists(filename): df_existing = pd.read_csv(filename, parse_dates=['Date']) df = df_existing.append(df).reset_index(drop=True) df = df.sort_values('Date') if df.empty and self.stock_name == 0: print(f"No data found for {self.stock}") sys.exit(1) # sometimes data is returned with two rows for the same date. The last row is the row to keep. df = df[~df.Date.duplicated(keep='last')] df_store = df.copy() market_close = datetime.now().replace(hour=15, minute=5, second=0, microsecond=0) # market_close = datetime.now().replace(hour=23, minute=59, second=59, microsecond=999999) if (df.Date.sort_values().iloc[-1].date() == datetime.today().date()) and (datetime.now() < market_close): # The market has not closed today so do not store today's data in csv. df_store.drop(df_store.tail(1).index,inplace=True) df_store.to_csv(filename, index=False) return df def get_data_frame(self, stock: str, start: datetime, end: datetime, get_most_recent_data: bool = True, weekly: bool = False): """ :stock: text stock ticker :start: date to start stock data in format "MM-DD-YYYY" or python datetime :end: date to end stock data in format "MM-DD-YYYY" or python datetime # :get_most_recent_data: update stored data to have recent close data """ if '-usd' in stock.lower(): start_dt = start end_dt = end else: # do not remove days when dealing with a currency like ETH-USD start_dt = remove_holidays_and_weekends(start, end, move_date_forward=True) end_dt = remove_holidays_and_weekends(start, end, move_date_forward=False) filename = f"data/{stock}.csv" if os.path.exists(filename): df = pd.read_csv(filename, parse_dates=['Date']) if start_dt >= df.Date.min() and end_dt <= df.Date.max(): print(f"Using Stored Stock Data for {stock} from {start_dt.date()} to {end_dt.date()}") if end_dt > df.Date.max(): interim_dt = remove_holidays_and_weekends(df.Date.max() + pd.Timedelta("1d"), end_dt, move_date_forward=True) if interim_dt <= end_dt and interim_dt > df.Date.max(): df = self.store_stock(stock, interim_dt, end_dt, filename) if start_dt < df.Date.min(): interim_dt = remove_holidays_and_weekends(start_dt, df.Date.min() - pd.Timedelta("1d"), move_date_forward=False) if interim_dt >= start_dt and interim_dt < df.Date.min(): df = self.store_stock(stock, start_dt, interim_dt, filename) else: df = self.store_stock(stock, start_dt, end_dt, filename) df.Date = pd.to_datetime(df.Date) df = df[(df.Date >= start_dt) & (df.Date <= end_dt)].copy() df.set_index('Date', inplace=True) if weekly: logic = { 'High' : 'max', 'Low' : 'min', 'Open' : 'first', 'Close' : 'last', 'Volume': 'sum'} # df = df.resample('W', loffset="-3D").apply(logic) df = df.resample("W").apply(logic) df.index = df.index + to_offset("-3D") df['TOpen'] = df.Open.shift(-1) # tomorrow's open # df = df.asfreq('D') return df def simple_moving_average(self): for sma in self.sma: self.df[f'{sma} mavg'] = self.df[self.close_col].rolling(window=sma, min_periods=sma).mean() def exponential_moving_average(self): for ema in self.ema: self.df[f'{ema} ema'] = self.df[self.close_col].ewm(span=ema, adjust=False).mean() def set_day_color(self): self.df['day_color'] = 'red' self.df.loc[self.df[self.close_col] >= self.df.Open, 'day_color'] = 'green' self.df.loc[self.df[self.close_col] == self.df.Open, 'day_color'] = 'gray' def MACD(self, big_ema: int = 26, small_ema: int = 12, signal_span: int = 9): """ TREND INDICATOR Moving Average Convergence/Divergence """ # period = 200 # sma = self.df[f'{period} mavg'][:period] # rest_of_close = self.df[self.close_col][period:] # series_for_ewm = pd.concat([sma, rest_of_close]) series_for_ewm = self.df[self.close_col] self.df[f'{big_ema} ema'] = series_for_ewm.ewm(span=big_ema, adjust=False).mean() self.df[f'{small_ema} ema'] = series_for_ewm.ewm(span=small_ema, adjust=False).mean() self.df['MACD'] = (self.df[f'{small_ema} ema'] - self.df[f'{big_ema} ema']) self.df['Signal'] = self.df['MACD'].ewm(span=signal_span, adjust=False).mean() self.df['Crossover'] = self.df['MACD'] - self.df['Signal'] self.df['YCrossover'] = self.df.Crossover.shift() #yesterday crossover self.df['MACD_indicator'] = 0 self.df.loc[(self.df.Crossover < 0) & (self.df.YCrossover > 0), 'MACD_indicator'] = 1 # Sell, cross line going negative self.df.loc[(self.df.Crossover > 0) & (self.df.YCrossover < 0), 'MACD_indicator'] = 2 # Buy, cross line going positive def Bollinger_Bands(self, n: int = 20, ndev: float = 2.0): """ VOLATILITY INDICATOR Bollinger Bands """ self.bb_mavg = f'{n} mavg' self.df[self.bb_mavg] = self.df[self.close_col].rolling(window=n).mean() # set .std(ddof=0) for population standard deviation instead of sample deviation self.df['BBstd'] = self.df[self.close_col].rolling(window=n).std(ddof=0) self.df['BBUpper'] = self.df[self.bb_mavg] + self.df.BBstd * ndev self.df['BBLower'] = self.df[self.bb_mavg] - self.df.BBstd * ndev self.df['BB_indicator'] = 0 self.df.loc[(self.df[self.close_col] < self.df['BBLower']), 'BB_indicator'] = 1 # close was below band self.df.loc[(self.df[self.close_col] > self.df['BBUpper']), 'BB_indicator'] = 2 # close was above band def Stochastic(self, n: int=14, d_n: int=3, over: float=80, under: float=20): """ MOMENTUM INDICATOR Stochastic Oscillator Indicator STOL = Stochastic Low STOH = Stochastic High STOK = Stochastic %K STOD = Stochastic %D n = number of days to consider d_n = rolling average for D line over = above this percent value is over bought territory under = below this percent value is over sold territory """ self.sto_over = over self.sto_under = under self.df['STOL'] = self.df['Low'].rolling(window=n).min() self.df['STOH'] = self.df['High'].rolling(window=n).max() self.df['STOK'] = 100 * ( (self.df[self.close_col] - self.df.STOL) / (self.df.STOH - self.df.STOL) ) # fast self.df['STOD'] = self.df['STOK'].rolling(window=d_n).mean() # slow self.df['STO_indicator'] = 0 self.df.loc[(self.df.STOK < self.df.STOD) & (self.df.STOK.shift(1) > self.df.STOD.shift(1)) & (self.df.STOD > over), 'STO_indicator'] = 1 # Sell, fast crosses below slow in the high range self.df.loc[(self.df.STOK > self.df.STOD) & (self.df.STOK.shift(1) < self.df.STOD.shift(1)) & (self.df.STOD < under), 'STO_indicator'] = 2 # Buy, fast crosses up over slow in the low range # @nb.jit(fastmath=True, nopython=True) def RSI(self, n: int = 14, over: float=70, under: float=30): """ MOMENTUM INDICATOR Relative Strength Index over = above this percent line is over bought territory under = below this percent line is over sold territory """ self.rsi_over = over self.rsi_under = under self.df['RSIchange'] = self.df[self.close_col].diff(1) self.df['RSIgain'] = 0 self.df['RSIloss'] = 0 self.df.loc[self.df.RSIchange > 0, 'RSIgain'] = self.df.RSIchange self.df.loc[self.df.RSIchange < 0, 'RSIloss'] = -self.df.RSIchange self.df['AvgGain'] = self.df.RSIgain.ewm(com=n - 1, min_periods=n, adjust=False).mean() self.df['AvgLoss'] = self.df.RSIloss.ewm(com=n - 1, min_periods=n, adjust=False).mean() self.df['RSI'] = 100 - (100 / (1 + abs(self.df.AvgGain / self.df.AvgLoss))) self.df['RSI_indicator'] = 0 self.df.loc[self.df.RSI > over, 'RSI_indicator'] = 1 # Sell, in overbought range self.df.loc[self.df.RSI < under, 'RSI_indicator'] = 2 # Buy, in oversold range def CMF(self, n: int = 20, buffer: float=0.05): """ VOLUME INDICATOR Chaikin Money Flow Indicator Money Flow Multiplier = ((Close value – Low value) – (High value – Close value)) / (High value – Low value) Money Flow Volume = Money Flow Multiplier x Volume for the Period CMF = n-day Average of the Daily Money Flow Volume / n-day Average of the Volume buffer = above this buffer is bullish buy territory below this negative buffer is bearish sell territory """ self.df["MFV"] = ((self.df[self.close_col] - self.df.Low) - (self.df.High - self.df[self.close_col])) / (self.df.High - self.df.Low) * self.df.Volume self.df["CMF"] = self.df.MFV.rolling(window=n, min_periods=n).mean() / self.df.Volume.rolling(window=n, min_periods=n).mean() self.df["CMF_indicator"] = 0 self.df.loc[self.df.CMF < -buffer, "CMF_indicator"] = 1 # Sell, crossed into negative territory self.df.loc[self.df.CMF > buffer, "CMF_indicator"] = 2 # Buy, crossed into positive territory self.cmf_buffer = buffer def HA(self, ema: int=12): """ Heikin-Ashi Smoothed Buy Sell """ self.df["HA_Close"] = (self.df[self.close_col] + self.df.Open + self.df.Low + self.df.High) / 4 self.df["HA_Open"] = (self.df[self.close_col].shift() + self.df.Open.shift()) / 2 self.df.iloc[0, self.df.columns.get_loc("HA_Open") ] = (self.df.iloc[0]['Open'] + self.df.iloc[0][self.close_col] ) / 2 # set value for the first HA_Open row self.df["HA_Low"] = self.df[["Low", "HA_Open", "HA_Close"]].min(axis=1) self.df["HA_High"] = self.df[["High", "HA_Open", "HA_Close"]].max(axis=1) self.df['HA_day_color'] = 'red' self.df.loc[self.df["HA_Close"] >= self.df["HA_Open"], 'HA_day_color'] = 'green' self.df.loc[self.df["HA_Close"] == self.df["HA_Open"], 'HA_day_color'] = 'gray' self.df[f'HA {ema} ema'] = self.df["HA_Close"].ewm(span=ema, adjust=False).mean() def VolumeByPrice(self, start: datetime, end: datetime): pass def plot_data_mpf(self): mc = mpf.make_marketcolors(up='g', down='r', edge='inherit', wick='inherit', volume='inherit', ohlc='inherit', alpha=0.5) #style="charles" s = mpf.make_mpf_style(base_mpl_style='seaborn', marketcolors=mc) mpf.plot(self.df, type='candlestick', mav=(1, 200), volume=True, style=s, figratio=(16,8), figscale=1, title=self.stock) def candlestick_plot(self, open: str="Open", close: str=None, low: str="Low", high: str="High", day_color: str="day_color", ax=None, positive_color: str='g', negative_color: str='r'): if close is None: close = self.close_col width_bar = 0.8 width_stick = 0.15 self.df['bar_top'] = self.df[open] self.df.loc[self.df[close] >= self.df[open], 'bar_top'] = self.df[close] self.df['bar_bot'] = self.df[open] self.df.loc[self.df[close] < self.df[open], 'bar_bot'] = self.df[close] ax.bar(x=self.df.index, height=self.df.bar_top - self.df.bar_bot, width=width_bar, bottom=self.df.bar_bot, color=self.df[day_color], edgecolor=self.df[day_color], alpha=0.5) ax.bar(x=self.df.index, height=self.df[high] - self.df.bar_top, width=width_stick, bottom=self.df.bar_top, color=self.df[day_color], edgecolor=self.df[day_color], alpha=0.5) ax.bar(x=self.df.index, height=self.df[low] - self.df.bar_bot, width=width_stick, bottom=self.df.bar_bot, color=self.df[day_color], edgecolor=self.df[day_color], alpha=0.5) return ax def plot_data(self, show_plot: bool = False, save_plot: bool = True, zoom: int = 0): # make Date a column in the DataFrame self.df.reset_index(inplace=True) # number of charts to create is determined by finding columns in the dataframe extra_charts = len(set(["MACD", "STOK", "CMF", "RSI"]).intersection(set(self.df.columns))) fig, axs = plt.subplots(2 + extra_charts, 1, sharex=True, gridspec_kw={'hspace': 0, 'height_ratios': [7, 1] + [2] * extra_charts}) axs_count = 0 text_offset = 1 text_lower = 0.05 * self.df[self.close_col].iloc[-1] self.df.plot(y=self.close_col, ax=axs[0]) # axs[0] = self.candlestick_plot(ax=axs[0], # open="HA_Open", # close="HA_Close", # low="HA_Low", # high="HA_High", # day_color="HA_day_color") # self.df.plot(y=f'HA 12 ema', ax=axs[0], linestyle='-') if self.plot_type == 'candlestick': axs[0] = self.candlestick_plot(ax=axs[0]) else: self.df.plot(y=self.close_col, ax=axs[0]) for sma in self.sma: if self.df[f'{sma} mavg'].count() > 0: self.df.plot(y=f'{sma} mavg', ax=axs[0], linestyle='--') for ema in self.ema: if self.df[f'{ema} ema'].count() > 0: self.df.plot(y=f'{ema} ema', ax=axs[0], linestyle=':') if self.priceline: axs[0].axhline(y=self.priceline, color='k', linestyle='-', alpha=0.5) if self.dateline and self.dateline >= self.df.Date.min() and self.dateline <= self.df.Date.max(): date_index = self.df.index[self.df.Date >= self.dateline].tolist()[0] axs[0].axvline(x=date_index, color='k', linestyle='-', alpha=0.5) annotate_date_text = axs[0].annotate(self.dateline.strftime("%b/%d/%Y"), xy=(date_index - 2, self.df.Close.min() * 1.05), xytext=(date_index -2, self.df.Close.min() * 1.05), bbox=dict(boxstyle="round", fc="0.7") ) annotate_date_text.set_alpha(.5) # Plot the volume chart below the price chart axs_count += 1 axs[axs_count].bar(x=self.df.index, height=self.df.Volume, width=1, color=self.df.day_color) # self.df.plot(y='Volume', kind='bar', ax=axs[axs_count]) # axs0 = axs[0].twinx() if "BBstd" in self.df.columns: axs[0].fill_between(self.df.index, self.df.BBUpper, self.df.BBLower, color='gray', alpha=0.3) self.df.plot(y=self.bb_mavg, ax=axs[0], linestyle="--") if "MACD" in self.df.columns: self.df.index.name = 'orig_index' self.df.reset_index(inplace=True) bull_bear_period_transparency = 0.2 bullish_momentum_periods = self.df[(self.df.MACD > 0) & (self.df.MACD > self.df.Signal)]['orig_index'] for row, dfg in bullish_momentum_periods.groupby((bullish_momentum_periods.diff() != 1).cumsum()): axs[0].axvspan(dfg.index.min(), dfg.index.max(), color='green', alpha=bull_bear_period_transparency) # bearish_momentum_periods = self.df[(self.df.MACD < 0) & (self.df.MACD < self.df.Signal)]['Date'] # for row, dfg in bearish_momentum_periods.groupby((bearish_momentum_periods.diff() != pd.Timedelta('1d')).cumsum()): # axs[0].axvspan(dfg.index.min(), dfg.index.max(), color='red', alpha=bull_bear_period_transparency) bearish_momentum_periods = self.df[(self.df.MACD < 0) & (self.df.MACD < self.df.Signal)]['orig_index'] for row, dfg in bearish_momentum_periods.groupby((bearish_momentum_periods.diff() != 1).cumsum()): axs[0].axvspan(dfg.index.min(), dfg.index.max(), color='red', alpha=bull_bear_period_transparency) axs_count += 1 # MACD buy sell indicators for index, row in self.df[self.df.MACD_indicator == 2].iterrows(): axs[axs_count].text(index, row.MACD, 'B', color='g') for index, row in self.df[self.df.MACD_indicator == 1].iterrows(): axs[axs_count].text(index, row.MACD, 'S', color='r') # MACD bars self.df["MACD Crossover diff"] = self.df.Crossover.diff(1) self.df["MACD bar color"] = 'r' self.df.loc[self.df["MACD Crossover diff"] > 0, "MACD bar color"] = 'g' axs[axs_count].bar(self.df.index, self.df.Crossover, width=1, color=self.df["MACD bar color"]) axs[axs_count].axhline(y=0, color='gray', linestyle='-.') self.df.plot(y=['MACD', 'Signal', 'Crossover'], ax=axs[axs_count]) axs[axs_count].legend(loc='center left') if 'STOK' in self.df.columns: axs_count += 1 axs[axs_count].axhline(y=self.sto_over, color='k', linestyle=':') axs[axs_count].axhline(y=self.sto_under, color='k', linestyle=':') axs[axs_count].fill_between(self.df.index, self.sto_over, self.df.STOK, where=self.df.STOK > self.sto_over, interpolate=True, color='red', alpha=0.5) axs[axs_count].fill_between(self.df.index, self.sto_under, self.df.STOK, where=self.df.STOK < self.sto_under, interpolate=True, color='green', alpha=0.5) self.df.plot(y=['STOK', 'STOD'], ax=axs[axs_count]) axs[axs_count].legend(loc='center left') for index, row in self.df[self.df.STO_indicator == 2].iterrows(): axs[axs_count].text(index, row.STOK, 'B', color='g') for index, row in self.df[self.df.STO_indicator == 1].iterrows(): axs[axs_count].text(index, row.STOK, 'S', color='r') if 'CMF' in self.df.columns: axs_count += 1 axs[axs_count].axhline(y=0, color='gray', linestyle='-.') axs[axs_count].fill_between(self.df.index, self.cmf_buffer, self.df.CMF, where=self.df.CMF > self.cmf_buffer, interpolate=True, color='green', alpha=0.5) axs[axs_count].fill_between(self.df.index, -self.cmf_buffer, self.df.CMF, where=self.df.CMF < -self.cmf_buffer, interpolate=True, color='red', alpha=0.5) self.df.plot(y='CMF', ax=axs[axs_count]) axs[axs_count].legend(loc='center left') if 'RSI' in self.df.columns: axs_count += 1 axs[axs_count].axhline(y=80, color='k', linestyle=':', alpha=0.5) axs[axs_count].axhline(y=self.rsi_over, color='k', linestyle=':') axs[axs_count].axhline(y=50, color='gray', linestyle='-.') axs[axs_count].axhline(y=self.rsi_under, color='k', linestyle=':') axs[axs_count].axhline(y=20, color='k', linestyle=':', alpha=0.5) axs[axs_count].fill_between(self.df.index, self.rsi_over, self.df.RSI, where=self.df.RSI > self.rsi_over, interpolate=True, color='red', alpha=0.7) axs[axs_count].fill_between(self.df.index, self.rsi_under, self.df.RSI, where=self.df.RSI < self.rsi_under, interpolate=True, color='green', alpha=0.7) self.df.plot(y='RSI', ax=axs[axs_count]) axs[axs_count].legend(loc='center left') formatter = WeekdayDateFormatter(self.df.Date) for ax in axs: # turn on tick marks for the right side of the graph ax.tick_params(labelright=True, right=True) ax.yaxis.set_minor_locator(AutoMinorLocator(4)) ax.yaxis.set_tick_params(which='minor', right='on') # Turn on the minor TICKS, which are required for the minor GRID ax.minorticks_on() # Customize the major grid ax.grid(which='major', linestyle='-', linewidth='1') # Customize the minor grid ax.grid(which='minor', linestyle=':') ax.xaxis.set_major_formatter(formatter) fig.autofmt_xdate() plt.xticks(rotation=5) title = f'Stock {self.stock}' if self.stock_name is not None: title += f' - {self.stock_name}' fig.suptitle(title) fig.tight_layout() figManager = plt.get_current_fig_manager() figManager.window.state('zoomed') # maximize the window # zoom to the last number of days indicated by zoom integer parameter if zoom > 0 and self.df.index[-1] > zoom: start_idx = zoom plt.xlim(self.df.index[-start_idx], self.df.index[-1]+2) if save_plot: min_date = self.df.Date.min().strftime("%Y%m%d") max_date = self.df.Date.max().strftime("%Y%m%d") plt.savefig(f'img/{self.stock} - {min_date} - {max_date}.png') if show_plot: plt.show() plt.close() def make_figure(self): self.fig, self.axs = plt.subplots(2, 1, sharex=True, gridspec_kw={'hspace': 0, 'height_ratios': [5, 2]}) def plot(self, ax): self.df.reset_index(inplace=True) def compare_stocks(args): """ compare all stocks in the list. each stock shows percent increase and decrease by day compared to the first closing day of the chosen range. """ fig, axs = plt.subplots(2, 1, sharex=True, gridspec_kw={'hspace': 0, 'height_ratios': [5, 2]}) objs = [] df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env runaiida # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function import sys import os import shutil import matplotlib from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt import pandas as pd from aiida.orm import load_node from aiida_yambo.utils.common_helpers import * from aiida_yambo.parsers.utils import * from aiida.orm.nodes.process.workflow.workchain import WorkChainNode def take_fermi(calc_node_pk): # calc_node_pk = node_conv_wfl.outputs.last_calculation node = load_node(calc_node_pk) path_folder = node.outputs.retrieved._repository._repo_folder.abspath+'/path/' for i in os.listdir(path_folder): if 'r-aiida.out' in i: file = open(path_folder+i,'r') for line in file: if '[X]Fermi Level' in line: print('The Fermi level is {}'.format(line.split()[3])) ef = float(line.split()[3]) if '[X] Fermi Level' in line: print('The Fermi level is {}'.format(line.split()[4])) ef = float(line.split()[4]) return ef def collect_all_params(story, param_list=['BndsRnXp','GbndRnge','NGsBlkXp']): if isinstance(story,WorkChainNode): y = story.outputs.story.get_dict() df= pd.DataFrame(y) elif isinstance(story,int): x = load_node(story) y = x.outputs.story.get_dict() df= pd.DataFrame(y) elif isinstance(story,dict): df= pd.DataFrame(story) elif 'DataFrame' in str(type(story)): df=story else: raise TypeError('You have to provide: node, node_pk, output_dict or dataframe') list_for_df=[] for calc in df['calc_pk']: node = load_node(int(calc)) node_pw = find_pw_parent(node, calc_type=['nscf','scf']) mesh = node_pw.inputs.kpoints.get_kpoints_mesh()[0] distance_mesh = get_distance_from_kmesh(node_pw) list_for_df.append([node.inputs.parameters.get_dict()[j] for j in param_list]+\ [mesh]+[distance_mesh]+df[df['calc_pk']==calc]['result_eV'].values.tolist()\ +[df[df['calc_pk']==calc]['useful'].values]) df_c=pd.DataFrame(list_for_df,columns=param_list+['mesh','distance_mesh']+['result_eV','useful']) return df_c def collect_2D_results(story=None, last_c=None, ef = 0): #returns array (val_1,val_2....,result_eV_1,...) and pandas DF to be further analyzed if isinstance(story,WorkChainNode): y = story.outputs.story.get_dict() story=pd.DataFrame(y) elif isinstance(story,int): x = load_node(story) y = x.outputs.story.get_dict() story=pd.DataFrame(y) elif isinstance(story,dict): story=
pd.DataFrame(story)
pandas.DataFrame
# # Data for analyzing causality. # By <NAME> # # Classes: # ccm # embed # # Paper: # Detecting Causality in Complex Ecosystems # Ge<NAME> et al. 2012 # # Thanks to <NAME> and <NAME> # # Notes: # Originally I thought this can be made way faster by only calculting the # distances once and then chopping it to a specific library length. It turns out # that calculating the distances is cheaper than filtering the indices. # import numpy as np from sklearn import neighbors from sklearn import metrics import skccm.utilities as ut import pandas as pd import time class CCM: """ Convergent cross mapping for two embedded time series """ def __init__(self, weights='exp', score_metric='corrcoef', verbose=False): """ Parameters ---------- weights : weighting scheme for predictions - exp : exponential weighting score : how to score the predictions -'score' -'corrcoef' verbose : prints out calculation status """ self.weights = weights self.score_metric = score_metric self.verbose = verbose def fit(self,X1,X2): """ Fit the training data for ccm. Creates seperate near neighbor regressors for X1 and X2 independently. X1 : embedded time series of shape (num_samps,embed_dim) X2 : embedded time series of shape (num_samps,embed_dim) near_neighs : string - 'sorround' : this is what the paper uses - 'all' : calculate the distance to all near neighbors """ # Save X1_train and X2_train for prediction later. Confusing, # but we need to make predictions about our testing set using these. self.X1 = X1 self.X2 = X2 #to sorround a point, there must be ndim + 1 points # we add two here because the closest neighbor is itself. so that is # going to be dropped. near_neighs = X1.shape[1] + 2 self.knn1 = neighbors.KNeighborsRegressor(near_neighs) self.knn2 = neighbors.KNeighborsRegressor(near_neighs) def predict_no_drop(self,lib_lengths): """ Make a prediction Parameters ---------- X1_test : test set X2_test : test set lib_lengths : list of library lengths to test """ X1_pred = [] X2_pred = [] for liblen in lib_lengths: x1_p = np.empty(self.X1.shape) x2_p = np.empty(self.X2.shape) #keep only the indices that are less than library length self.knn1.fit(self.X1[:liblen], self.X1[:liblen]) self.knn2.fit(self.X2[:liblen], self.X2[:liblen]) dist1,ind1 = self.knn1.kneighbors(self.X1) dist2,ind2 = self.knn2.kneighbors(self.X2) #drop indices and distances to themselves dist1 = dist1[:,1:] dist2 = dist2[:,1:] ind1 = ind1[:,1:] ind2 = ind2[:,1:] for j in range(self.X1.shape[1]): W1 = ut.exp_weight(dist1) W2 = ut.exp_weight(dist2) #flip the weights and indices x1_p[:, j] = np.sum(self.X1[ind2, j] * W2, axis=1) x2_p[:, j] = np.sum(self.X2[ind1, j] * W1, axis=1) X1_pred.append(x1_p) X2_pred.append(x2_p) self.X1_pred = X1_pred self.X2_pred = X2_pred return X1_pred, X2_pred def predict_drop_in_list(self,lib_lengths,emb_ind1,emb_ind2): """ Make a prediction, but the same indices cant be matched with each other. Parameters ---------- lib_lengths : library lengths to Test e_ind1 : indices of the first embed time series. e_ind2 : indices of the second embed time series. """ X1_pred = [] X2_pred = [] #need to reset the class ot use all neighbors so that the appropriate # neighbors can be dropped for each class self.knn1 = neighbors.KNeighborsRegressor(len(self.X1)) self.knn2 = neighbors.KNeighborsRegressor(len(self.X2)) self.knn1.fit(self.X1, self.X1) self.knn2.fit(self.X2, self.X2) dist1,ind1 = self.knn1.kneighbors(self.X1) dist2,ind2 = self.knn2.kneighbors(self.X2) #find the conflicting indices conf1 = ut.conflicting_indices(emb_ind1) conf2 = ut.conflicting_indices(emb_ind2) #throw out the indices that are in the embedding dist1, ind1 = ut.throw_out_nn_indices(dist1,ind1,conf1) dist2, ind2 = ut.throw_out_nn_indices(dist2,ind2,conf2) n_sorround = self.X1.shape[1] + 1 #flipping allows for a faster implentation as we can feed # ut.in_libary_len smaller and smaller arrays for liblen in lib_lengths: #keep only the indices that are less than library length #t0 = time.time() i_1, d_1 = ut.in_library_len_keep(ind1, dist1, liblen,n_sorround) i_2, d_2 = ut.in_library_len_keep(ind2, dist2, liblen,n_sorround) #t1 = time.time() #t0 = time.time() W1 = ut.exp_weight(d_1) W2 = ut.exp_weight(d_2) x1_p = np.empty(self.X1.shape) x2_p = np.empty(self.X2.shape) for j in range(self.X1.shape[1]): #flip the weights and indices x1_p[:, j] = np.sum(self.X1[i_2, j] * W2, axis=1) x2_p[:, j] = np.sum(self.X2[i_1, j] * W1, axis=1) #t1 = time.time() #print('second_loop:',np.around(t1-t0,4)) X1_pred.append(x1_p) X2_pred.append(x2_p) self.X1_pred = X1_pred self.X2_pred = X2_pred if self.verbose: print("predictions made") return X1_pred, X2_pred def score(self,how='corrcoef'): """ Evalulate the predictions. Calculates the skill down each column and averages them together to get the total skill. how : how to score the predictions -'score' -'corrcoef' """ num_preds = self.X1.shape[1] score_1 = [] score_2 = [] for x1_p, x2_p in zip(self.X1_pred, self.X2_pred): sc1 = np.empty(num_preds) sc2 = np.empty(num_preds) for ii in range(num_preds): p1 = x1_p[:,ii] p2 = x2_p[:,ii] if self.score_metric == 'score': sc1[ii] = ut.score(p1,self.X1[:,ii]) sc2[ii] = ut.score(p2,self.X2[:,ii]) if self.score_metric == 'corrcoef': sc1[ii] = ut.corrcoef(p1,self.X1[:,ii]) sc2[ii] = ut.corrcoef(p2,self.X2[:,ii]) score_1.append( np.mean(sc1) ) score_2.append( np.mean(sc2) ) return score_1, score_2 class Embed: def __init__(self,X): """ Parameters ---------- X : series or dataframe, """ if type(X) is pd.pandas.core.frame.DataFrame: self.df = X else: self.X = X def df_mutual_information(self,max_lag): """ Calculates the mutual information along each row of a time series. Ensure that the time series is continuous in time and sampled regularly. You can resample it hourly, daily, minutely etc. if needed. Parameters ---------- max_lag : int maximum amount to shift the time series Returns ------- mi : dataframe, shape(max_lag,num_cols) columns are the columns of the original dataframe with rows being the mutual information """ cols = self.df.columns mi = np.empty((max_lag, len(cols))) for i,col in enumerate(cols): self.X = self.df[col].values mi[:,i] = self.mutual_information(max_lag) mi =
pd.DataFrame(mi,columns=cols)
pandas.DataFrame
import datetime as dt import os import pickle from typing import Dict, List import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import activations from dl_portfolio.logger import LOGGER from dl_portfolio.data import get_features from dl_portfolio.pca_ae import build_model from dl_portfolio.regularizers import WeightsOrthogonality from dl_portfolio.regressors.nonnegative_linear.ridge import NonnegativeRidge from dl_portfolio.regressors.nonnegative_linear.base import NonnegativeLinear from dl_portfolio.constant import BASE_FACTOR_ORDER_DATASET2, BASE_FACTOR_ORDER_DATASET1 from sklearn.linear_model import LinearRegression, Lasso LOG_BASE_DIR = './dl_portfolio/log' def build_linear_model(ae_config, reg_type: str, **kwargs): if reg_type == 'nn_ridge': if ae_config.l_name == 'l2': alpha = kwargs.get('alpha', ae_config.l) kwargs['alpha'] = alpha else: alpha = kwargs.get('alpha') assert alpha is not None model = NonnegativeRidge(**kwargs) elif reg_type == 'nn_ls_custom': model = NonnegativeLinear() elif reg_type == 'nn_ls': model = LinearRegression(positive=True, fit_intercept=False, **kwargs) elif reg_type == 'nn_lasso': if ae_config.l_name == 'l1': alpha = kwargs.get('alpha', ae_config.l) kwargs['alpha'] = alpha else: alpha = kwargs.get('alpha') assert alpha is not None model = Lasso(positive=True, fit_intercept=False, **kwargs) else: raise NotImplementedError(reg_type) return model def fit_nnls_one_cv(cv: int, test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, ae_config, reg_type: str = 'nn_ridge', **kwargs): model, scaler, dates, test_data, test_features, prediction, embedding, decoding = load_result(ae_config, test_set, data, assets, base_dir, cv) prediction -= scaler['attributes']['mean_'] prediction /= np.sqrt(scaler['attributes']['var_']) mse_or = np.mean((test_data - prediction) ** 2, 0) relu_activation_layer = tf.keras.Model(inputs=model.input, outputs=model.get_layer('encoder').output) relu_activation = relu_activation_layer.predict(test_data) relu_activation = pd.DataFrame(relu_activation, index=prediction.index) # Fit linear encoder to the factors # input_dim = model.layers[0].input_shape[0][-1] # encoding_dim = model.layers[1].output_shape[-1] # vlin_encoder = create_linear_encoder_with_constraint(input_dim, encoding_dim) # lin_encoder.fit(test_data_i, relu_activation_i, batch_size = 1, epochs=500, verbose=2, # max_queue_size=20, workers=2*os.cpu_count()-1, use_multiprocessing=True) # factors_nnls_i = lin_encoder.predict(test_data_i) # lin_embedding = pd.DataFrame(encoder.layers[1].weights[0].numpy(), index=embed.index) # # Fit non-negative linear least square to the factor reg_nnls = build_linear_model(ae_config, reg_type, **kwargs) x = test_data.copy() mean_ = np.mean(x, 0) # Center the data as we do not fit intercept x = x - mean_ reg_nnls.fit(x, relu_activation) # Now compute intercept: it is just the mean of the dependent variable intercept_ = np.mean(relu_activation).values factors_nnls = reg_nnls.predict(x) + intercept_ factors_nnls = pd.DataFrame(factors_nnls, index=prediction.index) # Get reconstruction error based on nnls embedding if ae_config.model_type == "pca_ae_model": # For PCA AE model encoder and decoder share weights weights = reg_nnls.coef_.copy() # Compute bias (reconstruction intercept) bias = mean_ - np.dot(np.mean(factors_nnls, 0), weights) elif ae_config.model_type == "ae_model": weights = model.get_layer('decoder').get_weights()[0] bias = model.get_layer('decoder').get_weights()[1] else: raise NotImplementedError(ae_config.model_type) # Reconstruction pred_nnls_model = np.dot(factors_nnls, weights) + bias mse_nnls_model = np.mean((test_data - pred_nnls_model) ** 2, 0) # pred_nnls_factors = pd.concat([pred_nnls_factors, pd.DataFrame(pred_nnls_factors_i, # columns=pred.columns, # index=pred.index)]) pred_nnls_model = pd.DataFrame(pred_nnls_model, columns=prediction.columns, index=prediction.index) test_data = pd.DataFrame(test_data, columns=prediction.columns, index=prediction.index) reg_coef = pd.DataFrame(weights.T, index=embedding.index) return test_data, embedding, decoding, reg_coef, relu_activation, factors_nnls, prediction, pred_nnls_model, mse_or, mse_nnls_model def get_nnls_analysis(test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, ae_config, reg_type: str = 'nn_ridge', **kwargs): """ :param test_set: :param data: :param assets: :param base_dir: :param ae_config: :param reg_type: regression type to fit "nn_ridge" for non negative Ridge or "nn_ls" for non negative LS :return: """ test_data = pd.DataFrame() prediction = pd.DataFrame() # pred_nnls_factors = pd.DataFrame() pred_nnls_model = pd.DataFrame() factors_nnls = pd.DataFrame() relu_activation = pd.DataFrame() embedding = {} decoding = {} reg_coef = {} mse = { 'original': [], 'nnls_factors': [], 'nnls_model': [] } # cv = 0 for cv in ae_config.data_specs: LOGGER.info(f'CV: {cv}') test_data_i, embedding_i, decoding_i, reg_coef_i, relu_activation_i, factors_nnls_i, pred, pred_nnls_model_i, mse_or, mse_nnls_model = fit_nnls_one_cv( cv, test_set, data, assets, base_dir, ae_config, reg_type=reg_type, **kwargs) embedding[cv] = embedding_i decoding[cv] = decoding_i reg_coef[cv] = reg_coef_i relu_activation = pd.concat([relu_activation, relu_activation_i]) factors_nnls = pd.concat([factors_nnls, factors_nnls_i]) prediction = pd.concat([prediction, pred]) pred_nnls_model = pd.concat([pred_nnls_model, pred_nnls_model_i]) test_data = pd.concat([test_data, test_data_i]) mse['original'].append(mse_or) mse['nnls_model'].append(mse_nnls_model) results = { 'test_data': test_data, 'prediction': prediction, # 'pred_nnls_factors': pred_nnls_factors, 'pred_nnls_model': pred_nnls_model, 'factors_nnls': factors_nnls, 'relu_activation': relu_activation, 'mse': mse, 'embedding': embedding, 'decoding': decoding, 'reg_coef': reg_coef } return results def reorder_columns(data, new_order): return data.iloc[:, new_order] def load_result_wrapper(config, test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, reorder_features: bool = True, first_cv=None): test_data = pd.DataFrame() prediction = pd.DataFrame() features = pd.DataFrame() relu_activation = pd.DataFrame() residuals = pd.DataFrame() embedding = {} decoding = {} cvs = list(config.data_specs.keys()) if first_cv: cvs = [cv for cv in cvs if cv >= first_cv] for cv in cvs: embedding[cv] = {} model, scaler, dates, t_data, f, pred, embed, decod, relu_act = load_result(config, test_set, data, assets, base_dir, cv, reorder_features) t_data = pd.DataFrame(t_data, columns=pred.columns, index=pred.index) t_data *= scaler["attributes"]["scale_"] t_data += scaler["attributes"]["mean_"] test_data = pd.concat([test_data, t_data]) prediction = pd.concat([prediction, pred]) features = pd.concat([features, f]) if relu_act is not None: relu_activation = pd.concat([relu_activation, relu_act]) residuals = pd.concat([residuals, t_data - pred]) embedding[cv] = embed decoding[cv] = decod return test_data, prediction, features, residuals, embedding, decoding, relu_activation def get_linear_encoder(config, test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, cv: str, reorder_features=True): """ :param model_type: 'ae' or 'nmf' :param test_set: :param data: :param assets: :param base_dir: :param cv: :param ae_config: :return: """ model_type = config.model_type assert model_type in ["pca_ae_model", "ae_model", "convex_nmf", "semi_nmf"] assert test_set in ["train", "val", "test"] scaler = pickle.load(open(f'{base_dir}/{cv}/scaler.p', 'rb')) input_dim = len(assets) model, encoder, extra_features = build_model(config.model_type, input_dim, config.encoding_dim, n_features=None, extra_features_dim=1, activation=config.activation, batch_normalization=config.batch_normalization, kernel_initializer=config.kernel_initializer, kernel_constraint=config.kernel_constraint, kernel_regularizer=config.kernel_regularizer, activity_regularizer=config.activity_regularizer, loss=config.loss, uncorrelated_features=config.uncorrelated_features, weightage=config.weightage) model.load_weights(f'{base_dir}/{cv}/model.h5') layer_name = list(filter(lambda x: 'uncorrelated_features_layer' in x, [l.name for l in model.layers]))[0] encoder = tf.keras.Model(inputs=model.input, outputs=model.get_layer(layer_name).output) dense_layer = tf.keras.Model(inputs=model.input, outputs=model.get_layer('encoder').output) dense_layer.layers[-1].activation = activations.linear assert dense_layer.layers[-1].activation == activations.linear assert encoder.layers[1].activation == activations.linear data_spec = config.data_specs[cv] if test_set == 'test': _, _, test_data, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) elif test_set == 'val': _, test_data, _, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) elif test_set == 'train': # For first cv: predict on train data then for the others used previous validation data for prediction test_data, _, _, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) else: raise NotImplementedError(test_set) # Prediction test_features = encoder.predict(test_data) lin_activation = dense_layer.predict(test_data) index = dates[test_set] test_features = pd.DataFrame(test_features, index=index) lin_activation = pd.DataFrame(lin_activation, index=index) if reorder_features: embedding = pd.read_pickle(f'{base_dir}/{cv}/encoder_weights.p') if config.dataset == "dataset1": base_order = BASE_FACTOR_ORDER_DATASET1 elif config.dataset == "dataset2": base_order = BASE_FACTOR_ORDER_DATASET2 else: raise NotImplementedError() new_order = [embedding.loc[c].idxmax() for c in base_order] test_features = reorder_columns(test_features, new_order) test_features.columns = base_order lin_activation = reorder_columns(lin_activation, new_order) lin_activation.columns = base_order return model, test_features, lin_activation def load_result(config, test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, cv: str, reorder_features=True): """ :param model_type: 'ae' or 'nmf' :param test_set: :param data: :param assets: :param base_dir: :param cv: :param ae_config: :return: """ model_type = config.model_type assert model_type in ["pca_ae_model", "ae_model", "convex_nmf", "semi_nmf"] assert test_set in ["train", "val", "test"] scaler = pickle.load(open(f'{base_dir}/{cv}/scaler.p', 'rb')) input_dim = len(assets) if "ae" in model_type: embedding = pd.read_pickle(f'{base_dir}/{cv}/encoder_weights.p') if model_type == "pca_ae_model": decoding = embedding.copy() elif model_type == "ae_model": decoding = pd.read_pickle(f'{base_dir}/{cv}/decoder_weights.p') else: pass model, encoder, extra_features = build_model(config.model_type, input_dim, config.encoding_dim, n_features=None, extra_features_dim=1, activation=config.activation, batch_normalization=config.batch_normalization, kernel_initializer=config.kernel_initializer, kernel_constraint=config.kernel_constraint, kernel_regularizer=config.kernel_regularizer, activity_regularizer=config.activity_regularizer, loss=config.loss, uncorrelated_features=config.uncorrelated_features, weightage=config.weightage) model.load_weights(f'{base_dir}/{cv}/model.h5') layer_name = list(filter(lambda x: 'uncorrelated_features_layer' in x, [l.name for l in model.layers]))[0] encoder = tf.keras.Model(inputs=model.input, outputs=model.get_layer(layer_name).output) elif model_type == "convex_nmf": model = pickle.load(open(f'{base_dir}/{cv}/model.p', "rb")) embedding = model.encoding.copy() embedding = pd.DataFrame(embedding, index=assets) decoding = model.components.copy() decoding = pd.DataFrame(decoding, index=assets) elif model_type == "semi_nmf": model = pickle.load(open(f'{base_dir}/{cv}/model.p', "rb")) decoding = model.components.copy() decoding = pd.DataFrame(decoding, index=assets) embedding = decoding.copy() else: raise NotImplementedError(model_type) data_spec = config.data_specs[cv] if test_set == 'test': _, _, test_data, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) elif test_set == 'val': _, test_data, _, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) elif test_set == 'train': # For first cv: predict on train data then for the others used previous validation data for prediction if cv == 0: test_data, _, _, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) else: data_spec = config.data_specs[cv - 1] _, test_data, _, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) else: raise NotImplementedError(test_set) # Prediction if "ae" in model_type: pred = model.predict(test_data) test_features = encoder.predict(test_data) relu_activation_layer = tf.keras.Model(inputs=model.input, outputs=model.get_layer('encoder').output) relu_activation = relu_activation_layer.predict(test_data) elif "nmf" in model_type: test_features = model.transform(test_data) pred = model.inverse_transform(test_features) else: raise NotImplementedError(model_type) pred *= np.sqrt(scaler['attributes']['var_']) pred += scaler['attributes']['mean_'] if test_set == "train" and cv > 0: index = dates["val"] else: index = dates[test_set] pred =
pd.DataFrame(pred, columns=assets, index=index)
pandas.DataFrame
""" July 2021 This code retrieves the calculation of sand use for concrete and glass production in the building sector in 26 global regions. For the original code & latest updates, see: https://github.com/ The dynamic material model is based on the BUMA model developed by <NAME>, Leiden University, the Netherlands. For the original code & latest updates, see: https://github.com/SPDeetman/BUMA The dynamic stock model is based on the ODYM model developed by <NAME>, Uni Freiburg, Germany. For the original code & latest updates, see: https://github.com/IndEcol/ODYM *NOTE: Insert location of GloBus-main folder in 'dir_path' (line 23) before running the code Software version: Python 3.7 """ #%% GENERAL SETTING & STATEMENTS import pandas as pd import numpy as np import os import ctypes import math # set current directory dir_path = "" os.chdir(dir_path) # Set general constants regions = 26 #26 IMAGE regions building_types = 4 #4 building types: detached, semi-detached, appartments & high-rise area = 2 #2 areas: rural & urban materials = 2 #2 materials: Concrete, Glass inflation = 1.2423 #gdp/cap inflation correction between 2005 (IMAGE data) & 2016 (commercial calibration) according to https://www.bls.gov/data/inflation_calculator.htm # Set Flags for sensitivity analysis flag_alpha = 0 # switch for the sensitivity analysis on alpha, if 1 the maximum alpha is 10% above the maximum found in the data flag_ExpDec = 0 # switch to choose between Gompertz and Exponential Decay function for commercial floorspace demand (0 = Gompertz, 1 = Expdec) flag_Normal = 0 # switch to choose between Weibull and Normal lifetime distributions (0 = Weibull, 1 = Normal) flag_Mean = 0 # switch to choose between material intensity settings (0 = regular regional, 1 = mean, 2 = high, 3 = low, 4 = median) #%%Load files & arrange tables ---------------------------------------------------- if flag_Mean == 0: file_addition = '' elif flag_Mean == 1: file_addition = '_mean' elif flag_Mean ==2: file_addition = '_high' elif flag_Mean ==3: file_addition = '_low' else: file_addition = '_median' # Load Population, Floor area, and Service value added (SVA) Database csv-files pop = pd.read_csv('files_population/pop.csv', index_col = [0]) # Pop; unit: million of people; meaning: global population (over time, by region) rurpop = pd.read_csv('files_population/rurpop.csv', index_col = [0]) # rurpop; unit: %; meaning: the share of people living in rural areas (over time, by region) housing_type = pd.read_csv('files_population\Housing_type.csv') # Housing_type; unit: %; meaning: the share of the NUMBER OF PEOPLE living in a particular building type (by region & by area) floorspace = pd.read_csv('files_floor_area/res_Floorspace.csv') # Floorspace; unit: m2/capita; meaning: the average m2 per capita (over time, by region & area) floorspace = floorspace[floorspace.Region != regions + 1] # Remove empty region 27 avg_m2_cap = pd.read_csv('files_floor_area\Average_m2_per_cap.csv') # Avg_m2_cap; unit: m2/capita; meaning: average square meters per person (by region & area (rural/urban) & building type) sva_pc_2005 = pd.read_csv('files_GDP/sva_pc.csv', index_col = [0]) sva_pc = sva_pc_2005 * inflation # we use the inflation corrected SVA to adjust for the fact that IMAGE provides gdp/cap in 2005 US$ # load material density data csv-files building_materials_concrete = pd.read_csv('files_material_density\Building_materials_concrete' + file_addition + '.csv') # Building_materials; unit: kg/m2; meaning: the average material use per square meter (by building type, by region & by area) building_materials_glass = pd.read_csv('files_material_density\Building_materials_glass' + file_addition + '.csv') # Building_materials; unit: kg/m2; meaning: the average material use per square meter (by building type, by region & by area) materials_commercial_concrete = pd.read_csv('files_material_density\materials_commercial_concrete' + file_addition + '.csv', index_col = [0]) # 7 building materials in 4 commercial building types; unit: kg/m2; meaning: the average material use per square meter (by commercial building type) materials_commercial_glass = pd.read_csv('files_material_density\materials_commercial_glass' + file_addition + '.csv', index_col = [0]) # 7 building materials in 4 commercial building types; unit: kg/m2; meaning: the average material use per square meter (by commercial building type) # Load fitted regression parameters for comercial floor area estimate if flag_alpha == 0: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters.csv', index_col = [0]) else: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters_alpha.csv', index_col = [0]) # Ensure full time series for pop & rurpop (interpolation, some years are missing) rurpop2 = rurpop.reindex(list(range(1970,2061,1))).interpolate() pop2 = pop.reindex(list(range(1970,2061,1))).interpolate() # Remove 1st year, to ensure same Table size as floorspace data (from 1971) pop2 = pop2.iloc[1:] rurpop2 = rurpop2.iloc[1:] #pre-calculate urban population urbpop = 1 - rurpop2 # urban population is 1 - the fraction of people living in rural areas (rurpop) # Restructure the tables to regions as columns; for floorspace floorspace_rur = floorspace.pivot(index="t", columns="Region", values="Rural") floorspace_urb = floorspace.pivot(index="t", columns="Region", values="Urban") # Restructuring for square meters (m2/cap) avg_m2_cap_urb = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_urb.columns = list(map(int,avg_m2_cap_urb.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_urb2 = avg_m2_cap_urb.drop(['Region']) # Remove idle row avg_m2_cap_rur = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_rur.columns = list(map(int,avg_m2_cap_rur.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_rur2 = avg_m2_cap_rur.drop(['Region']) # Remove idle row # Restructuring for the Housing types (% of population living in them) housing_type_urb = housing_type.loc[housing_type['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose housing_type_urb.columns = list(map(int,housing_type_urb.iloc[0])) # name columns according to the row containing the region-labels housing_type_urb2 = housing_type_urb.drop(['Region']) # Remove idle row housing_type_rur = housing_type.loc[housing_type['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose housing_type_rur.columns = list(map(int,housing_type_rur.iloc[0])) # name columns according to the row containing the region-labels housing_type_rur2 = housing_type_rur.drop(['Region']) # Remove idle row #%% COMMERCIAL building space demand (stock) calculated from Gomperz curve (fitted, using separate regression model) # Select gompertz curve paramaters for the total commercial m2 demand (stock) alpha = gompertz['All']['a'] if flag_ExpDec == 0 else 25.601 beta = gompertz['All']['b'] if flag_ExpDec == 0 else 28.431 gamma = gompertz['All']['c'] if flag_ExpDec == 0 else 0.0415 # find the total commercial m2 stock (in Millions of m2) commercial_m2_cap = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) for year in range(1971,2061): for region in range(1,27): if flag_ExpDec == 0: commercial_m2_cap[region][year] = alpha * math.exp(-beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) else: commercial_m2_cap[region][year] = max(0.542, alpha - beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) # Subdivide the total across Offices, Retail+, Govt+ & Hotels+ commercial_m2_cap_office = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Offices commercial_m2_cap_retail = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Retail & Warehouses commercial_m2_cap_hotels = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Hotels & Restaurants commercial_m2_cap_govern = pd.DataFrame(index=range(1971,2061), columns=range(1,27)) # Hospitals, Education, Government & Transportation minimum_com_office = 25 minimum_com_retail = 25 minimum_com_hotels = 25 minimum_com_govern = 25 for year in range(1971,2061): for region in range(1,27): # get the square meter per capita floorspace for 4 commercial applications office = gompertz['Office']['a'] * math.exp(-gompertz['Office']['b'] * math.exp((-gompertz['Office']['c']/1000) * sva_pc[str(region)][year])) retail = gompertz['Retail+']['a'] * math.exp(-gompertz['Retail+']['b'] * math.exp((-gompertz['Retail+']['c']/1000) * sva_pc[str(region)][year])) hotels = gompertz['Hotels+']['a'] * math.exp(-gompertz['Hotels+']['b'] * math.exp((-gompertz['Hotels+']['c']/1000) * sva_pc[str(region)][year])) govern = gompertz['Govt+']['a'] * math.exp(-gompertz['Govt+']['b'] * math.exp((-gompertz['Govt+']['c']/1000) * sva_pc[str(region)][year])) #calculate minimum values for later use in historic tail(Region 20: China @ 134 $/cap SVA) minimum_com_office = office if office < minimum_com_office else minimum_com_office minimum_com_retail = retail if retail < minimum_com_retail else minimum_com_retail minimum_com_hotels = hotels if hotels < minimum_com_hotels else minimum_com_hotels minimum_com_govern = govern if govern < minimum_com_govern else minimum_com_govern # Then use the ratio's to subdivide the total commercial floorspace into 4 categories commercial_sum = office + retail + hotels + govern commercial_m2_cap_office[region][year] = commercial_m2_cap[region][year] * (office/commercial_sum) commercial_m2_cap_retail[region][year] = commercial_m2_cap[region][year] * (retail/commercial_sum) commercial_m2_cap_hotels[region][year] = commercial_m2_cap[region][year] * (hotels/commercial_sum) commercial_m2_cap_govern[region][year] = commercial_m2_cap[region][year] * (govern/commercial_sum) #%% Add historic tail (1720-1970) + 100 yr initial -------------------------------------------- # load historic population development hist_pop = pd.read_csv('files_initial_stock\hist_pop.csv', index_col = [0]) # initial population as a percentage of the 1970 population; unit: %; according to the Maddison Project Database (MPD) 2018 (Groningen University) # Determine the historical average global trend in floorspace/cap & the regional rural population share based on the last 10 years of IMAGE data floorspace_urb_trend_by_region = [0 for j in range(0,26)] floorspace_rur_trend_by_region = [0 for j in range(0,26)] rurpop_trend_by_region = [0 for j in range(0,26)] commercial_m2_cap_office_trend = [0 for j in range(0,26)] commercial_m2_cap_retail_trend = [0 for j in range(0,26)] commercial_m2_cap_hotels_trend = [0 for j in range(0,26)] commercial_m2_cap_govern_trend = [0 for j in range(0,26)] # For the RESIDENTIAL & COMMERCIAL floorspace: Derive the annual trend (in m2/cap) over the initial 10 years of IMAGE data for region in range(1,27): floorspace_urb_trend_by_year = [0 for i in range(0,10)] floorspace_rur_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_office_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_retail_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_hotels_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_govern_trend_by_year = [0 for i in range(0,10)] # Get the growth by year (for the first 10 years) for year in range(1970,1980): floorspace_urb_trend_by_year[year-1970] = floorspace_urb[region][year+1]/floorspace_urb[region][year+2] floorspace_rur_trend_by_year[year-1970] = floorspace_rur[region][year+1]/floorspace_rur[region][year+2] commercial_m2_cap_office_trend_by_year[year-1970] = commercial_m2_cap_office[region][year+1]/commercial_m2_cap_office[region][year+2] commercial_m2_cap_retail_trend_by_year[year-1970] = commercial_m2_cap_retail[region][year+1]/commercial_m2_cap_retail[region][year+2] commercial_m2_cap_hotels_trend_by_year[year-1970] = commercial_m2_cap_hotels[region][year+1]/commercial_m2_cap_hotels[region][year+2] commercial_m2_cap_govern_trend_by_year[year-1970] = commercial_m2_cap_govern[region][year+1]/commercial_m2_cap_govern[region][year+2] rurpop_trend_by_region[region-1] = ((1-(rurpop[str(region)][1980]/rurpop[str(region)][1970]))/10)*100 floorspace_urb_trend_by_region[region-1] = sum(floorspace_urb_trend_by_year)/10 floorspace_rur_trend_by_region[region-1] = sum(floorspace_rur_trend_by_year)/10 commercial_m2_cap_office_trend[region-1] = sum(commercial_m2_cap_office_trend_by_year)/10 commercial_m2_cap_retail_trend[region-1] = sum(commercial_m2_cap_retail_trend_by_year)/10 commercial_m2_cap_hotels_trend[region-1] = sum(commercial_m2_cap_hotels_trend_by_year)/10 commercial_m2_cap_govern_trend[region-1] = sum(commercial_m2_cap_govern_trend_by_year)/10 # Average global annual decline in floorspace/cap in %, rural: 1%; urban 1.2%; commercial: 1.26-2.18% /yr floorspace_urb_trend_global = (1-(sum(floorspace_urb_trend_by_region)/26))*100 # in % decrease per annum floorspace_rur_trend_global = (1-(sum(floorspace_rur_trend_by_region)/26))*100 # in % decrease per annum commercial_m2_cap_office_trend_global = (1-(sum(commercial_m2_cap_office_trend)/26))*100 # in % decrease per annum commercial_m2_cap_retail_trend_global = (1-(sum(commercial_m2_cap_retail_trend)/26))*100 # in % decrease per annum commercial_m2_cap_hotels_trend_global = (1-(sum(commercial_m2_cap_hotels_trend)/26))*100 # in % decrease per annum commercial_m2_cap_govern_trend_global = (1-(sum(commercial_m2_cap_govern_trend)/26))*100 # in % decrease per annum # define historic floorspace (1820-1970) in m2/cap floorspace_urb_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=floorspace_urb.columns) floorspace_rur_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=floorspace_rur.columns) rurpop_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=rurpop.columns) pop_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=pop2.columns) commercial_m2_cap_office_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_office.columns) commercial_m2_cap_retail_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1820_1970 = pd.DataFrame(index=range(1820,1971), columns=commercial_m2_cap_govern.columns) # Find minumum or maximum values in the original IMAGE data (Just for residential, commercial minimum values have been calculated above) minimum_urb_fs = floorspace_urb.values.min() # Region 20: China minimum_rur_fs = floorspace_rur.values.min() # Region 20: China maximum_rurpop = rurpop.values.max() # Region 9 : Eastern Africa # Calculate the actual values used between 1820 & 1970, given the trends & the min/max values for region in range(1,regions+1): for year in range(1820,1971): # MAX of 1) the MINimum value & 2) the calculated value floorspace_urb_1820_1970[region][year] = max(minimum_urb_fs, floorspace_urb[region][1971] * ((100-floorspace_urb_trend_global)/100)**(1971-year)) # single global value for average annual Decrease floorspace_rur_1820_1970[region][year] = max(minimum_rur_fs, floorspace_rur[region][1971] * ((100-floorspace_rur_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_office_1820_1970[region][year] = max(minimum_com_office, commercial_m2_cap_office[region][1971] * ((100-commercial_m2_cap_office_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_retail_1820_1970[region][year] = max(minimum_com_retail, commercial_m2_cap_retail[region][1971] * ((100-commercial_m2_cap_retail_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_hotels_1820_1970[region][year] = max(minimum_com_hotels, commercial_m2_cap_hotels[region][1971] * ((100-commercial_m2_cap_hotels_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_govern_1820_1970[region][year] = max(minimum_com_govern, commercial_m2_cap_govern[region][1971] * ((100-commercial_m2_cap_govern_trend_global)/100)**(1971-year)) # single global value for average annual Decrease # MIN of 1) the MAXimum value & 2) the calculated value rurpop_1820_1970[str(region)][year] = min(maximum_rurpop, rurpop[str(region)][1970] * ((100+rurpop_trend_by_region[region-1])/100)**(1970-year)) # average annual INcrease by region # just add the tail to the population (no min/max & trend is pre-calculated in hist_pop) pop_1820_1970[str(region)][year] = hist_pop[str(region)][year] * pop[str(region)][1970] urbpop_1820_1970 = 1 - rurpop_1820_1970 # To avoid full model setup in 1820 (all required stock gets built in yr 1) we assume another tail that linearly increases to the 1820 value over a 100 year time period, so 1720 = 0 floorspace_urb_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=floorspace_urb.columns) floorspace_rur_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=floorspace_rur.columns) rurpop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=rurpop.columns) urbpop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=urbpop.columns) pop_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=pop2.columns) commercial_m2_cap_office_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_office.columns) commercial_m2_cap_retail_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1721_1820 = pd.DataFrame(index=range(1721,1820), columns=commercial_m2_cap_govern.columns) for region in range(1,27): for time in range(1721,1820): # MAX(0,...) Because of floating point deviations, leading to negative stock in some cases floorspace_urb_1721_1820[int(region)][time] = max(0.0, floorspace_urb_1820_1970[int(region)][1820] - (floorspace_urb_1820_1970[int(region)][1820]/100)*(1820-time)) floorspace_rur_1721_1820[int(region)][time] = max(0.0, floorspace_rur_1820_1970[int(region)][1820] - (floorspace_rur_1820_1970[int(region)][1820]/100)*(1820-time)) rurpop_1721_1820[str(region)][time] = max(0.0, rurpop_1820_1970[str(region)][1820] - (rurpop_1820_1970[str(region)][1820]/100)*(1820-time)) urbpop_1721_1820[str(region)][time] = max(0.0, urbpop_1820_1970[str(region)][1820] - (urbpop_1820_1970[str(region)][1820]/100)*(1820-time)) pop_1721_1820[str(region)][time] = max(0.0, pop_1820_1970[str(region)][1820] - (pop_1820_1970[str(region)][1820]/100)*(1820-time)) commercial_m2_cap_office_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_office_1820_1970[region][1820] - (commercial_m2_cap_office_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_retail_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_retail_1820_1970[region][1820] - (commercial_m2_cap_retail_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_hotels_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_hotels_1820_1970[region][1820] - (commercial_m2_cap_hotels_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_govern_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_govern_1820_1970[region][1820] - (commercial_m2_cap_govern_1820_1970[region][1820]/100)*(1820-time)) # combine historic with IMAGE data here rurpop_tail = rurpop_1820_1970.append(rurpop2, ignore_index=False) urbpop_tail = urbpop_1820_1970.append(urbpop, ignore_index=False) pop_tail = pop_1820_1970.append(pop2, ignore_index=False) floorspace_urb_tail = floorspace_urb_1820_1970.append(floorspace_urb, ignore_index=False) floorspace_rur_tail = floorspace_rur_1820_1970.append(floorspace_rur, ignore_index=False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index=False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index=False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index=False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index=False) rurpop_tail = rurpop_1721_1820.append(rurpop_1820_1970.append(rurpop2, ignore_index=False), ignore_index=False) urbpop_tail = urbpop_1721_1820.append(urbpop_1820_1970.append(urbpop, ignore_index=False), ignore_index=False) pop_tail = pop_1721_1820.append(pop_1820_1970.append(pop2, ignore_index=False), ignore_index=False) floorspace_urb_tail = floorspace_urb_1721_1820.append(floorspace_urb_1820_1970.append(floorspace_urb, ignore_index=False), ignore_index=False) floorspace_rur_tail = floorspace_rur_1721_1820.append(floorspace_rur_1820_1970.append(floorspace_rur, ignore_index=False), ignore_index=False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1721_1820.append(commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index=False), ignore_index=False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1721_1820.append(commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index=False), ignore_index=False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1721_1820.append(commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index=False), ignore_index=False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1721_1820.append(commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index=False), ignore_index=False) #%% SQUARE METER Calculations ----------------------------------------------------------- # adjust the share for urban/rural only (shares in csv are as percantage of the total(Rur + Urb), we needed to adjust the urban shares to add up to 1, same for rural) housing_type_rur3 = housing_type_rur2/housing_type_rur2.sum() housing_type_urb3 = housing_type_urb2/housing_type_urb2.sum() # calculte the total rural/urban population (pop2 = millions of people, rurpop2 = % of people living in rural areas) people_rur = pd.DataFrame(rurpop_tail.values*pop_tail.values, columns=pop_tail.columns, index=pop_tail.index) people_urb = pd.DataFrame(urbpop_tail.values*pop_tail.values, columns=pop_tail.columns, index=pop_tail.index) # calculate the total number of people (urban/rural) BY HOUSING TYPE (the sum of det,sem,app & hig equals the total population e.g. people_rur) people_det_rur = pd.DataFrame(housing_type_rur3.iloc[0].values*people_rur.values, columns=people_rur.columns, index=people_rur.index) people_sem_rur =
pd.DataFrame(housing_type_rur3.iloc[1].values*people_rur.values, columns=people_rur.columns, index=people_rur.index)
pandas.DataFrame
import pytest import jax.numpy as np import pandas as pd from pzflow import Flow from pzflow.bijectors import Chain, Reverse, Scale from pzflow.distributions import * @pytest.mark.parametrize( "data_columns,bijector,info,file", [ (None, None, None, None), (("x", "y"), None, None, None), (None, Reverse(), None, None), (("x", "y"), None, None, "file"), (None, Reverse(), None, "file"), (None, None, "fake", "file"), ], ) def test_bad_inputs(data_columns, bijector, info, file): with pytest.raises(ValueError): Flow(data_columns, bijector=bijector, info=info, file=file) @pytest.mark.parametrize( "flow", [ Flow(("redshift", "y"), Reverse(), latent=Normal(2)), Flow(("redshift", "y"), Reverse(), latent=Tdist(2)), Flow(("redshift", "y"), Reverse(), latent=Uniform((-3, 3), (-3, 3))), ], ) def test_returns_correct_shape(flow): xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) x = pd.DataFrame(xarray, columns=("redshift", "y")) conditions = flow._get_conditions(x, xarray.shape[0]) x_with_errs = flow._array_with_errs(x) assert x_with_errs.shape == (3, 4) x_with_errs = flow._array_with_errs(x, skip="redshift") assert x_with_errs.shape == (3, 3) xfwd, xfwd_log_det = flow._forward(flow._params, xarray, conditions=conditions) assert xfwd.shape == x.shape assert xfwd_log_det.shape == (x.shape[0],) xinv, xinv_log_det = flow._inverse(flow._params, xarray, conditions=conditions) assert xinv.shape == x.shape assert xinv_log_det.shape == (x.shape[0],) J = flow._jacobian(flow._params, xarray, conditions=conditions) assert J.shape == (3, 2, 2) nsamples = 4 assert flow.sample(nsamples).shape == (nsamples, x.shape[1]) assert flow.log_prob(x).shape == (x.shape[0],) grid = np.arange(0, 2.1, 0.12) pdfs = flow.posterior(x, column="y", grid=grid) assert pdfs.shape == (x.shape[0], grid.size) pdfs = flow.posterior(x.iloc[:, 1:], column="redshift", grid=grid) assert pdfs.shape == (x.shape[0], grid.size) pdfs = flow.posterior(x.iloc[:, 1:], column="redshift", grid=grid, batch_size=2) assert pdfs.shape == (x.shape[0], grid.size) assert len(flow.train(x, epochs=11, verbose=True)) == 12 def test_error_convolution(): xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) x = pd.DataFrame(xarray, columns=("redshift", "y")) flow = Flow(("redshift", "y"), Reverse(), latent=Normal(2)) assert flow.log_prob(x, convolve_err=True).shape == (x.shape[0],) assert np.allclose( flow.log_prob(x, convolve_err=True), flow.log_prob(x, convolve_err=False), ) grid = np.arange(0, 2.1, 0.12) pdfs = flow.posterior(x, column="y", grid=grid, convolve_err=True) assert pdfs.shape == (x.shape[0], grid.size) assert ( len(flow.train(x, epochs=11, convolve_err=True, burn_in_epochs=4, verbose=True)) == 17 ) flow = Flow(("redshift", "y"), Reverse(), latent=Tdist(2)) with pytest.raises(ValueError): flow.log_prob(x, convolve_err=True).shape with pytest.raises(ValueError): flow.posterior(x, column="y", grid=grid, convolve_err=True) with pytest.raises(ValueError): flow.train(x, epochs=11, convolve_err=True, burn_in_epochs=4, verbose=True) def test_columns_with_errs(): columns = ("redshift", "y") flow = Flow(columns, Reverse()) xarray = np.array([[1, 2, 0.4, 0.2], [3, 4, 0.1, 0.9]]) x = pd.DataFrame(xarray, columns=("redshift", "y", "y_err", "redshift_err")) x_with_errs = flow._array_with_errs(x) assert np.allclose(x_with_errs, np.array([[1, 2, 0.2, 0.4], [3, 4, 0.9, 0.1]])) xarray = np.array([[1, 2, 0.4], [3, 4, 0.1]]) x = pd.DataFrame(xarray, columns=("redshift", "y", "y_err")) x_with_errs = flow._array_with_errs(x) assert np.allclose(x_with_errs, np.array([[1, 2, 0, 0.4], [3, 4, 0, 0.1]])) xarray = np.array([[1, 2, 0.4, 0.2], [3, 4, 0.1, 0.9]]) x = pd.DataFrame(xarray, columns=("redshift", "y", "y_err", "redshift_err")) x_with_errs = flow._array_with_errs(x, skip="redshift") assert np.allclose(x_with_errs, np.array([[2, 0, 0.4], [4, 0, 0.1]])) def test_jacobian(): columns = ("redshift", "y") flow = Flow(columns, Chain(Reverse(), Scale(2.0))) xarray = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]) conditions = flow._get_conditions(None, xarray.shape[0]) J = flow._jacobian(flow._params, xarray, conditions=conditions) assert np.allclose( J, np.array([[[0, 2.0], [2.0, 0]], [[0, 2.0], [2.0, 0]], [[0, 2.0], [2.0, 0]]]), ) def test_posterior_batch(): columns = ("redshift", "y") flow = Flow(columns, Reverse()) xarray = np.array([[1, 2], [3, 4], [5, 6]]) x =
pd.DataFrame(xarray, columns=columns)
pandas.DataFrame
import json import os import random from random import sample import numpy as np import numpy.random import re from collections import Counter import inspect import pandas as pd import matplotlib.pyplot as plt import requests from IPython.display import HTML import seaborn as sns import networkx as nx from pylab import rcParams try: from wordcloud import WordCloud except ImportError: print("wordcloud er ikke installert, kan ikke lage ordskyer") #************** For defining wordbag search def dict2pd(dictionary): res = pd.DataFrame.from_dict(dictionary).fillna(0) s = (res.mean(axis=0)) s = s.rename('snitt') res = res.append(s) return res.sort_values(by='snitt', axis=1, ascending=False).transpose() def def2dict(ddef): res = dict() defs = ddef.split(';') for d in defs: lex = d.split(':') if len(lex) == 2: #print('#'.join(lex)) hyper = lex[0].strip() occurrences = [x.strip() for x in lex[1].split(',')] res[hyper] = occurrences for x in res: for y in res[x]: if y.capitalize() not in res[x]: res[x].append(y.capitalize()) return res def wordbag_eval(wordbag, urns): if type(urns) is list: if isinstance(urns[0], list): urns = [u[0] for u in urns] else: urns = urns else: urns = [urns] param = dict() param['wordbags'] = wordbag param['urns'] = urns r = requests.post("https://api.nb.no/ngram/wordbags", json = param) return dict2pd(r.json()) def wordbag_eval_para(wordbag, urns): if type(urns) is list: if isinstance(urns[0], list): urns = [u[0] for u in urns] else: urns = urns else: urns = [urns] param = dict() param['wordbags'] = wordbag param['urns'] = urns r = requests.post("https://api.nb.no/ngram/wordbags_para", json = param) return r.json() def get_paragraphs(urn, paras): """Return paragraphs for urn""" param = dict() param['paragraphs'] = paras param['urn'] = urn r = requests.get("https://api.nb.no/ngram/paragraphs", json=param) return dict2pd(r.json()) ### ******************* wordbag search end def ner(text = None, dist=False): """Analyze text for named entities - set dist = True will return the four values that go into decision""" r = [] if text != None: r = requests.post("https://api.nb.no/ngram/ner", json={'text':text,'dist':dist}) return r.json() #**** names **** def check_navn(navn, limit=2, remove='Ja Nei Nå Dem De Deres Unnskyld Ikke Ah Hmm <NAME> Jaja Jaha'.split()): """Removes all items in navn with frequency below limit and words in all case as well as all words in list 'remove'""" r = {x:navn[x] for x in navn if navn[x] > limit and x.upper() != x and not x in remove} return r def sentences(urns, num=300): if isinstance(urns[0], list): urns = [str(x[0]) for x in urns] params = {'urns':urns, 'num':num} res = requests.get("https://api.nb.no/ngram/sentences", params=params) return res.json() def names(urn, ratio = 0.3, cutoff = 2): """ Return namens in book with urn. Returns uni- , bi-, tri- and quadgrams """ if type(urn) is list: urn = urn[0] r = requests.get('https://api.nb.no/ngram/names', json={'urn':urn, 'ratio':ratio, 'cutoff':cutoff}) x = r.json() result = ( Counter(x[0][0]), Counter({tuple(x[1][i][0]):x[1][i][1] for i in range(len(x[1]))}), Counter({tuple(x[2][i][0]):x[2][i][1] for i in range(len(x[2]))}), Counter({tuple(x[3][i][0]):x[3][i][1] for i in range(len(x[3]))}) ) return result def name_graph(name_struct): m = [] for n in name_struct[0]: m.append(frozenset([n])) for n in name_struct[1:]: m += [frozenset(x) for x in n] G = [] for x in m: for y in m: if x < y: G.append((' '.join(x), ' '.join(y))) N = [] for x in m: N.append(' '.join(x)) Gg = nx.Graph() Gg.add_nodes_from(N) Gg.add_edges_from(G) return Gg def aggregate_urns(urnlist): """Sum up word frequencies across urns""" if isinstance(urnlist[0], list): urnlist = [u[0] for u in urnlist] r = requests.post("https://api.nb.no/ngram/book_aggregates", json={'urns':urnlist}) return r.json() # Norweigan word bank def word_variant(word, form): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/variant_form", params={'word':word, 'form':form}) return r.json() def word_paradigm(word): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/paradigm", params = {'word': word}) return r.json() def word_form(word): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/word_form", params = {'word': word}) return r.json() def word_lemma(word): """ Find lemma form for a given word form """ r = requests.get("https://api.nb.no/ngram/word_lemma", params = {'word': word}) return r.json() def word_freq(urn, words): """ Find frequency of words within urn """ params = {'urn':urn, 'words':words} r = requests.post("https://api.nb.no/ngram/freq", json=params) return dict(r.json()) def tot_freq(words): """ Find total frequency of words """ params = {'words':words} r = requests.post("https://api.nb.no/ngram/word_frequencies", json=params) return dict(r.json()) def book_count(urns): params = {'urns':urns} r = requests.post("https://api.nb.no/ngram/book_count", json=params) return dict(r.json()) def sttr(urn, chunk=5000): r = requests.get("https://api.nb.no/ngram/sttr", json = {'urn':urn, 'chunk':chunk}) return r.json() def totals(top=200): r = requests.get("https://api.nb.no/ngram/totals", json={'top':top}) return dict(r.json()) def navn(urn): if type(urn) is list: urn = urn[0] r = requests.get('https://api.nb.no/ngram/tingnavn', json={'urn':urn}) return dict(r.json()) def digibokurn_from_text(T): """Return URNs as 13 digits (any sequence of 13 digits is counted as an URN)""" return re.findall("(?<=digibok_)[0-9]{13}", T) def urn_from_text(T): """Return URNs as 13 digits (any sequence of 13 digits is counted as an URN)""" return re.findall("[0-9]{13}", T) def metadata(urn=None): urns = pure_urn(urn) #print(urns) r = requests.post("https://api.nb.no/ngram/meta", json={'urn':urns}) return r.json() def pure_urn(data): """Convert URN-lists with extra data into list of serial numbers. Args: data: May be a list of URNs, a list of lists with URNs as their initial element, or a string of raw texts containing URNs Any pandas dataframe or series. Urns must be in the first column of dataframe. Returns: List[str]: A list of URNs. Empty list if input is on the wrong format or contains no URNs """ korpus_def = [] if isinstance(data, list): if not data: # Empty list korpus_def = [] if isinstance(data[0], list): # List of lists try: korpus_def = [str(x[0]) for x in data] except IndexError: korpus_def = [] else: # Assume data is already a list of URNs korpus_def = [str(int(x)) for x in data] elif isinstance(data, str): korpus_def = [str(x) for x in urn_from_text(data)] elif isinstance(data, (int, np.integer)): korpus_def = [str(data)] elif isinstance(data, pd.DataFrame): col = data.columns[0] urns = pd.to_numeric(data[col]) korpus_def = [str(int(x)) for x in urns.dropna()] elif isinstance(data, pd.Series): korpus_def = [str(int(x)) for x in data.dropna()] return korpus_def #### N-Grams from fulltext updated def unigram(word, period=(1950, 2020), media = 'bok', ddk=None, topic=None, gender=None, publisher=None, lang=None, trans=None): r = requests.get("https://api.nb.no/ngram/unigrams", params={ 'word':word, 'ddk':ddk, 'topic':topic, 'gender':gender, 'publisher':publisher, 'lang':lang, 'trans':trans, 'period0':period[0], 'period1':period[1], 'media':media }) return frame(dict(r.json())) def bigram(first,second, period=(1950, 2020), media = 'bok', ddk=None, topic=None, gender=None, publisher=None, lang=None, trans=None): r = requests.get("https://api.nb.no/ngram/bigrams", params={ 'first':first, 'second':second, 'ddk':ddk, 'topic':topic, 'gender':gender, 'publisher':publisher, 'lang':lang, 'trans':trans, 'period0':period[0], 'period1':period[1], 'media':media }) return frame(dict(r.json())) def book_counts(period=(1800, 2050)): r = requests.get("https://api.nb.no/ngram/book_counts", params={ 'period0':period[0], 'period1':period[1], }) return frame(dict(r.json())) #### def difference(first, second, rf, rs, years=(1980, 2000),smooth=1, corpus='bok'): """Compute difference of difference (first/second)/(rf/rs)""" try: a_first = nb_ngram(first, years=years, smooth=smooth, corpus=corpus) a_second = nb_ngram(second, years=years, smooth=smooth, corpus=corpus) a = a_first.join(a_second) b_first = nb_ngram(rf, years=years, smooth=smooth, corpus=corpus) b_second = nb_ngram(rs, years=years, smooth=smooth, corpus=corpus) if rf == rs: b_second.columns = [rs + '2'] b = b_first.join(b_second) s_a = a.mean() s_b = b.mean() f1 = s_a[a.columns[0]]/s_a[a.columns[1]] f2 = s_b[b.columns[0]]/s_b[b.columns[1]] res = f1/f2 except: res = 'Mangler noen data - har bare for: ' + ', '.join([x for x in a.columns.append(b.columns)]) return res def df_combine(array_df): """Combine one columns dataframes""" import pandas as pd cols = [] for i in range(len(a)): #print(i) if array_df[i].columns[0] in cols: array_df[i].columns = [array_df[i].columns[0] + '_' + str(i)] cols.append(array_df[i].columns[0]) return pd.concat(a, axis=1, sort=True) def col_agg(df, col='sum'): c = df.sum(axis=0) c = pd.DataFrame(c) c.columns = [col] return c def row_agg(df, col='sum'): c = df.sum(axis=1) c = pd.DataFrame(c) c.columns = [col] return c def get_freq(urn, top=50, cutoff=3): """Get frequency list for urn""" if isinstance(urn, list): urn = urn[0] r = requests.get("https://api.nb.no/ngram/urnfreq", json={'urn':urn, 'top':top, 'cutoff':cutoff}) return Counter(dict(r.json())) ####=============== GET URNS ==================########## def book_corpus(words = None, author = None, title = None, subtitle = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): return frame(book_urn(words, author, title, subtitle, ddk, subject, period, gender, lang, trans, limit), "urn author title year".split()) def book_urn(words = None, author = None, title = None, subtitle = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Get URNs for books with metadata""" frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period'} query['year'] = period[0] query['next'] = period[1] - period[0] return get_urn(query) def unique_urns(korpus, newest=True): author_title = {(c[1],c[2]) for c in korpus} corpus = {(c[0], c[1]):[d for d in korpus if c[0] == d[1] and c[1]==d[2]] for c in author_title } for c in corpus: corpus[c].sort(key=lambda c: c[3]) if newest == True: res = [corpus[c][-1] for c in corpus] else: res = [corpus[c][0] for c in corpus] return res def refine_book_urn(urns = None, words = None, author = None, title = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Refine URNs for books with metadata""" # if empty urns nothing to refine if urns is None or urns == []: return [] # check if urns is a metadata list, and pick out first elements if that is the case if isinstance(urns[0], list): urns = [x[0] for x in urns] frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period' and i != 'urns'} query['year'] = period[0] query['next'] = period[1] - period[0] #print(query) return refine_urn(urns, query) def best_book_urn(word = None, author = None, title = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Get URNs for books with metadata""" if word is None: return [] frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period' and i != 'word'} query['year'] = period[0] query['next'] = period[1] - period[0] return get_best_urn(word, query) def get_urn(metadata=None): """Get urns from metadata""" if metadata is None: metadata = {} if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 100 if not 'year' in metadata: metadata['year'] = 1900 r = requests.get('https://api.nb.no/ngram/urn', json=metadata) return r.json() def refine_urn(urns, metadata=None): """Refine a list urns using extra information""" if metadata is None: metadata = {} metadata['urns'] = urns if not ('words' in metadata): metadata['words'] = [] if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 520 if not 'year' in metadata: metadata['year'] = 1500 r = requests.post('https://api.nb.no/ngram/refineurn', json=metadata) return r.json() def get_best_urn(word, metadata=None): """Get the best urns from metadata containing a specific word""" metadata['word'] = word if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 600 if not 'year' in metadata: metadata['year'] = 1500 r = requests.get('https://api.nb.no/ngram/best_urn', json=metadata) return r.json() def get_papers(top=5, cutoff=5, navn='%', yearfrom=1800, yearto=2020, samplesize=100): """Get newspapers""" div = lambda x, y: (int(x/y), x % y) chunks = 20 # split samplesize into chunks, go through the chunks and then the remainder (first, second) = div(samplesize, chunks) r = [] # collect chunkwise for i in range(first): r += requests.get("https://api.nb.no/ngram/avisfreq", json={'navn':navn, 'top':top, 'cutoff':cutoff, 'yearfrom':yearfrom, 'yearto':yearto,'samplesize':chunks} ).json() # collect the remainder r += requests.get("https://api.nb.no/ngram/avisfreq", json={'navn':navn, 'top':top, 'cutoff':cutoff, 'yearfrom':yearfrom, 'yearto':yearto,'samplesize':second} ).json() return [dict(x) for x in r] def urn_coll(word, urns=[], after=5, before=5, limit=1000): """Find collocations for word in a set of book URNs. Only books at the moment""" if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] r = requests.post("https://api.nb.no/ngram/urncoll", json={'word':word, 'urns':urns, 'after':after, 'before':before, 'limit':limit}) res = pd.DataFrame.from_dict(r.json(), orient='index') if not res.empty: res = res.sort_values(by=res.columns[0], ascending = False) return res def urn_coll_words(words, urns=None, after=5, before=5, limit=1000): """Find collocations for a group of words within a set of books given by a list of URNs. Only books at the moment""" coll = pd.DataFrame() if urns != None: if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] colls = Counter() if isinstance(words, str): words = words.split() res = Counter() for word in words: try: res += Counter( requests.post( "https://api.nb.no/ngram/urncoll", json={ 'word':word, 'urns':urns, 'after':after, 'before':before, 'limit':limit} ).json() ) except: True coll = pd.DataFrame.from_dict(res, orient='index') if not coll.empty: coll = coll.sort_values(by=coll.columns[0], ascending = False) return coll def get_aggregated_corpus(urns, top=0, cutoff=0): res = Counter() if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] for u in urns: #print(u) res += get_freq(u, top = top, cutoff = cutoff) return pd.DataFrame.from_dict(res, orient='index').sort_values(by=0, ascending = False) def compare_word_bags(bag_of_words, another_bag_of_words, first_freq = 0, another_freq = 1, top=100, first_col = 0, another_col= 0): """Compare two columns taken from two or one frame. Parameters x_freq are frequency limits used to cut down candidate words from the bag of words. Compare along the columns where first_col and another_col are column numbers. Typical situation is that bag_of_words is a one column frame and another_bag_of_words is another one column frame. When the columns are all from one frame, just change column numbers to match the columns""" diff = bag_of_words[bag_of_words > first_freq][bag_of_words.columns[first_col]]/another_bag_of_words[another_bag_of_words > another_freq][another_bag_of_words.columns[another_col]] return frame(diff, 'diff').sort_values(by='diff', ascending=False)[:top] def collocation( word, yearfrom=2010, yearto=2018, before=3, after=3, limit=1000, corpus='avis', lang='nob', title='%', ddk='%', subtitle='%'): """Defined collects frequencies for a given word""" data = requests.get( "https://api.nb.no/ngram/collocation", params={ 'word':word, 'corpus':corpus, 'yearfrom':yearfrom, 'before':before, 'after':after, 'limit':limit, 'yearto':yearto, 'title':title, 'ddk':ddk, 'subtitle':subtitle}).json() return pd.DataFrame.from_dict(data['freq'], orient='index') def collocation_data(words, yearfrom = 2000, yearto = 2005, limit = 1000, before = 5, after = 5, title = '%', corpus='bok'): """Collocation for a set of words sum up all the collocations words is a list of words or a blank separated string of words""" import sys a = dict() if isinstance(words, str): words = words.split() for word in words: print(word) try: a[word] = collocation( word, yearfrom = yearfrom, yearto = yearto, limit = limit, corpus = corpus, before = before, after = after, title = title ) a[word].columns = [word] except: print(word, ' feilsituasjon', sys.exc_info()) result = pd.DataFrame() for w in a: result = result.join(a[w], how='outer') return pd.DataFrame(result.sum(axis=1)).sort_values(by=0, ascending=False) class CollocationCorpus: from random import sample def __init__(self, corpus = None, name='', maximum_texts = 500): urns = pure_urn(corpus) if len(urns) > maximum_texts: selection = random(urns, maximum_texts) else: selection = urns self.corpus_def = selection self.corpus = get_aggregated_corpus(self.corpus_def, top=0, cutoff=0) def summary(self, head=10): info = { 'corpus_definition':self.corpus[:head], 'number_of_words':len(self.corpus) } return info def collocation_old(word, yearfrom=2010, yearto=2018, before=3, after=3, limit=1000, corpus='avis'): data = requests.get( "https://api.nb.no/ngram/collocation", params={ 'word':word, 'corpus':corpus, 'yearfrom':yearfrom, 'before':before, 'after':after, 'limit':limit, 'yearto':yearto}).json() return pd.DataFrame.from_dict(data['freq'], orient='index') def heatmap(df, color='green'): return df.fillna(0).style.background_gradient(cmap=sns.light_palette(color, as_cmap=True)) def get_corpus_text(urns, top = 0, cutoff=0): k = dict() if isinstance(urns, list): # a list of urns, or a korpus with urns as first element if isinstance(urns[0], list): urns = [u[0] for u in urns] else: # assume it is a single urn, text or number urns = [urns] for u in urns: #print(u) k[u] = get_freq(u, top = top, cutoff = cutoff) df = pd.DataFrame(k) res = df.sort_values(by=df.columns[0], ascending=False) return res def normalize_corpus_dataframe(df): colsums = df.sum() for x in colsums.index: #print(x) df[x] = df[x].fillna(0)/colsums[x] return True def show_korpus(korpus, start=0, size=4, vstart=0, vsize=20, sortby = ''): """Show corpus as a panda dataframe start = 0 indicates which dokument to show first, dataframe is sorted according to this size = 4 how many documents (or columns) are shown top = 20 how many words (or rows) are shown""" if sortby != '': val = sortby else: val = korpus.columns[start] return korpus[korpus.columns[start:start+size]].sort_values(by=val, ascending=False)[vstart:vstart + vsize] def aggregate(korpus): """Make an aggregated sum of all documents across the corpus, here we use average""" return pd.DataFrame(korpus.fillna(0).mean(axis=1)) def convert_list_of_freqs_to_dataframe(referanse): """The function get_papers() returns a list of frequencies - convert it""" res = [] for x in referanse: res.append( dict(x)) result = pd.DataFrame(res).transpose() normalize_corpus_dataframe(result) return result def get_corpus(top=0, cutoff=0, navn='%', corpus='avis', yearfrom=1800, yearto=2020, samplesize=10): if corpus == 'avis': result = get_papers(top=top, cutoff=cutoff, navn=navn, yearfrom=yearfrom, yearto=yearto, samplesize=samplesize) res = convert_list_of_freqs_to_dataframe(result) else: urns = get_urn({'author':navn, 'year':yearfrom, 'neste':yearto-yearfrom, 'limit':samplesize}) res = get_corpus_text([x[0] for x in urns], top=top, cutoff=cutoff) return res class Cluster: def __init__(self, word = '', filename = '', period = (1950,1960) , before = 5, after = 5, corpus='avis', reference = 200, word_samples=1000): if word != '': self.collocates = collocation(word, yearfrom=period[0], yearto = period[1], before=before, after=after, corpus=corpus, limit=word_samples) self.collocates.columns = [word] if type(reference) is pd.core.frame.DataFrame: reference = reference elif type(reference) is int: reference = get_corpus(yearfrom=period[0], yearto=period[1], corpus=corpus, samplesize=reference) else: reference = get_corpus(yearfrom=period[0], yearto=period[1], corpus=corpus, samplesize=int(reference)) self.reference = aggregate(reference) self.reference.columns = ['reference_corpus'] self.word = word self.period = period self.corpus = corpus else: if filename != '': self.load(filename) def cluster_set(self, exponent=1.1, top = 200, aslist=True): combo_corp = self.reference.join(self.collocates, how='outer') normalize_corpus_dataframe(combo_corp) korpus = compute_assoc(combo_corp, self.word, exponent) korpus.columns = [self.word] if top <= 0: res = korpus.sort_values(by=self.word, ascending=False) else: res = korpus.sort_values(by=self.word, ascending=False).iloc[:top] if aslist == True: res = HTML(', '.join(list(res.index))) return res def add_reference(self, number=20): ref = get_corpus(yearfrom=self.period[0], yearto=self.period[1], samplesize=number) ref = aggregate(ref) ref.columns = ['add_ref'] normalize_corpus_dataframe(ref) self.reference = aggregate(self.reference.join(ref, how='outer')) return True def save(self, filename=''): if filename == '': filename = "{w}_{p}-{q}.json".format(w=self.word,p=self.period[0], q = self.period[1]) model = { 'word':self.word, 'period':self.period, 'reference':self.reference.to_dict(), 'collocates':self.collocates.to_dict(), 'corpus':self.corpus } with open(filename, 'w', encoding = 'utf-8') as outfile: print('lagrer til:', filename) outfile.write(json.dumps(model)) return True def load(self, filename): with open(filename, 'r') as infile: try: model = json.loads(infile.read()) #print(model['word']) self.word = model['word'] self.period = model['period'] self.corpus = model['corpus'] self.reference = pd.DataFrame(model['reference']) self.collocates = pd.DataFrame(model['collocates']) except: print('noe gikk galt') return True def search_words(self, words, exponent=1.1): if type(words) is str: words = [w.strip() for w in words.split()] df = self.cluster_set(exponent=exponent, top=0, aslist=False) sub= [w for w in words if w in df.index] res = df.transpose()[sub].transpose().sort_values(by=df.columns[0], ascending=False) return res def wildcardsearch(params=None): if params is None: params = {'word': '', 'freq_lim': 50, 'limit': 50, 'factor': 2} res = requests.get('https://api.nb.no/ngram/wildcards', params=params) if res.status_code == 200: result = res.json() else: result = {'status':'feil'} resultat = pd.DataFrame.from_dict(result, orient='index') if not(resultat.empty): resultat.columns = [params['word']] return resultat def sorted_wildcardsearch(params): res = wildcardsearch(params) if not res.empty: res = res.sort_values(by=params['word'], ascending=False) return res def make_newspaper_network(key, wordbag, titel='%', yearfrom='1980', yearto='1990', limit=500): if type(wordbag) is str: wordbag = wordbag.split() r = requests.post("https://api.nb.no/ngram/avisgraph", json={ 'key':key, 'words':wordbag, 'yearto':yearto, 'yearfrom':yearfrom, 'limit':limit}) G = nx.Graph() if r.status_code == 200: G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > 0 and x != y]) else: print(r.text) return G def make_network(urn, wordbag, cutoff=0): if type(urn) is list: urn = urn[0] if type(wordbag) is str: wordbag = wordbag.split() G = make_network_graph(urn, wordbag, cutoff) return G def make_network_graph(urn, wordbag, cutoff=0): r = requests.post("https://api.nb.no/ngram/graph", json={'urn':urn, 'words':wordbag}) G = nx.Graph() G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > cutoff and x != y]) return G def make_network_name_graph(urn, tokens, tokenmap=None, cutoff=2): if isinstance(urn, list): urn = urn[0] # tokens should be a list of list of tokens. If it is list of dicts pull out the keys (= tokens) if isinstance(tokens[0], dict): tokens = [list(x.keys()) for x in tokens] r = requests.post("https://api.nb.no/ngram/word_graph", json={'urn':urn, 'tokens':tokens, 'tokenmap':tokenmap}) #print(r.text) G = nx.Graph() G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > cutoff and x != y]) return G def token_convert_back(tokens, sep='_'): """ convert a list of tokens to string representation""" res = [tokens[0]] for y in tokens: res.append([tuple(x.split(sep)) for x in y]) l = len(res) for x in range(1, 4-l): res.append([]) return res def token_convert(tokens, sep='_'): """ convert back to tuples """ tokens = [list(x.keys()) for x in tokens] tokens = [[(x,) for x in tokens[0]], tokens[1], tokens[2], tokens[3]] conversion = [] for x in tokens: conversion.append([sep.join(t) for t in x]) return conversion def token_map_to_tuples(tokens_as_strings, sep='_', arrow='==>'): tuples = [] for x in tokens_as_strings: token = x.split(arrow)[0].strip() mapsto = x.split(arrow)[1].strip() tuples.append((tuple(token.split(sep)), tuple(mapsto.split(sep)))) #tuples = [(tuple(x.split(arrow).strip()[0].split(sep)), tuple(x.split(arrow)[1].strip().split(sep))) for x in tokens_as_strings] return tuples def token_map(tokens, strings=False, sep='_', arrow= '==>'): """ tokens as from nb.names()""" if isinstance(tokens[0], dict): # get the keys(), otherwise it is already just a list of tokens up to length 4 tokens = [list(x.keys()) for x in tokens] # convert tokens to tuples and put them all in one list tokens = [(x,) for x in tokens[0]] + tokens[1] + tokens[2] + tokens[3] tm = [] #print(tokens) for token in tokens: if isinstance(token, str): trep = (token,) elif isinstance(token, list): trep = tuple(token) token = tuple(token) else: trep = token n = len(trep) #print(trep) if trep[-1].endswith('s'): cp = list(trep[:n-1]) cp.append(trep[-1][:-1]) cp = tuple(cp) #print('copy', cp, trep) if cp in tokens: #print(trep, cp) trep = cp larger = [ts for ts in tokens if set(ts) >= set(trep)] #print(trep, ' => ', larger) larger.sort(key=lambda x: len(x), reverse=True) tm.append((token,larger[0])) res = tm if strings == True: res = [sep.join(x[0]) + ' ' + arrow + ' ' + sep.join(x[1]) for x in tm] return res def draw_graph_centrality(G, h=15, v=10, fontsize=20, k=0.2, arrows=False, font_color='black', threshold=0.01): node_dict = nx.degree_centrality(G) subnodes = dict({x:node_dict[x] for x in node_dict if node_dict[x] >= threshold}) x, y = rcParams['figure.figsize'] rcParams['figure.figsize'] = h, v pos =nx.spring_layout(G, k=k) ax = plt.subplot() ax.set_xticks([]) ax.set_yticks([]) G = G.subgraph(subnodes) nx.draw_networkx_labels(G, pos, font_size=fontsize, font_color=font_color) nx.draw_networkx_nodes(G, pos, alpha=0.5, nodelist=subnodes.keys(), node_size=[v * 1000 for v in subnodes.values()]) nx.draw_networkx_edges(G, pos, alpha=0.7, arrows=arrows, edge_color='lightblue', width=1) rcParams['figure.figsize'] = x, y return True def combine(clusters): """Make new collocation analyses from data in clusters""" colls = [] collocates = clusters[0].collocates for c in clusters[1:]: collocates = collocates.join(c.collocates, rsuffix='-' + str(c.period[0])) return collocates def cluster_join(cluster): clusters = [cluster[i] for i in cluster] clst = clusters[0].cluster_set(aslist=False) for c in clusters[1:]: clst = clst.join(c.cluster_set(aslist=False), rsuffix = '_'+str(c.period[0])) return clst def serie_cluster(word, startår, sluttår, inkrement, before=5, after=5, reference=150, word_samples=500): tidscluster = dict() for i in range(startår, sluttår, inkrement): tidscluster[i] = Cluster( word, corpus='avis', period=(i, i + inkrement - 1), before=after, after=after, reference=reference, word_samples=word_samples) print(i, i+inkrement - 1) return tidscluster def save_serie_cluster(tidscluster): for i in tidscluster: tidscluster[i].save() return 'OK' def les_serie_cluster(word, startår, sluttår, inkrement): tcluster = dict() for i in range(startår, sluttår, inkrement): print(i, i+inkrement - 1) tcluster[i] = Cluster(filename='{w}_{f}-{t}.json'.format(w=word, f=i,t=i+inkrement - 1)) return tcluster def make_cloud(json_text, top=100, background='white', stretch=lambda x: 2**(10*x), width=500, height=500, font_path=None): pairs0 = Counter(json_text).most_common(top) pairs = {x[0]:stretch(x[1]) for x in pairs0} wc = WordCloud( font_path=font_path, background_color=background, width=width, #color_func=my_colorfunc, ranks_only=True, height=height).generate_from_frequencies(pairs) return wc def draw_cloud(sky, width=20, height=20, fil=''): plt.figure(figsize=(width,height)) plt.imshow(sky, interpolation='bilinear') figplot = plt.gcf() if fil != '': figplot.savefig(fil, format='png') return def cloud(pd, column='', top=200, width=1000, height=1000, background='black', file='', stretch=10, font_path=None): if column == '': column = pd.columns[0] data = json.loads(pd[column].to_json()) a_cloud = make_cloud(data, top=top, background=background, font_path=font_path, stretch=lambda x: 2**(stretch*x), width=width, height=height) draw_cloud(a_cloud, fil=file) return def make_a_collocation(word, period=(1990, 2000), before=5, after=5, corpus='avis', samplesize=100, limit=2000): collocates = collocation(word, yearfrom=period[0], yearto=period[1], before=before, after=after, corpus=corpus, limit=limit) collocates.columns = [word] reference = get_corpus(yearfrom=period[0], yearto=period[1], samplesize=samplesize) ref_agg = aggregate(reference) ref_agg.columns = ['reference_corpus'] return ref_agg def compute_assoc(coll_frame, column, exponent=1.1, refcolumn = 'reference_corpus'): return pd.DataFrame(coll_frame[column]**exponent/coll_frame.mean(axis=1)) class Corpus: def __init__(self, filename = '', target_urns = None, reference_urns = None, period = (1950,1960), author='%', title='%', ddk='%', gender='%', subject='%', reference = 100, max_books=100): params = { 'year':period[0], 'next': period[1]-period[0], 'subject':subject, 'ddk':ddk, 'author':author, #'gender':gender, ser ikke ut til å virke for get_urn - sjekk opp APIet 'title':title, 'limit':max_books, 'reference':reference } self.params = params self.coll = dict() self.coll_graph = dict() if filename == '': if target_urns != None: målkorpus_def = target_urns else: målkorpus_def = get_urn(params) #print("Antall bøker i målkorpus ", len(målkorpus_def)) if isinstance(målkorpus_def[0], list): målkorpus_urn = [str(x[0]) for x in målkorpus_def] #print(målkorpus_urn) else: målkorpus_urn = målkorpus_def if len(målkorpus_urn) > max_books and max_books > 0: target_urn = list(numpy.random.choice(målkorpus_urn, max_books)) else: target_urn = målkorpus_urn if reference_urns != None: referansekorpus_def = reference_urns else: # select from period, usually used only of target is by metadata referansekorpus_def = get_urn({'year':period[0], 'next':period[1]-period[0], 'limit':reference}) #print("<NAME> i referanse: ", len(referansekorpus_def)) # referansen skal være distinkt fra målkorpuset referanse_urn = [str(x[0]) for x in referansekorpus_def] self.reference_urn = referanse_urn self.target_urn = target_urn # make sure there is no overlap between target and reference # referanse_urn = list(set(referanse_urn) - set(target_urn)) målkorpus_txt = get_corpus_text(target_urn) normalize_corpus_dataframe(målkorpus_txt) if referanse_urn != []: referanse_txt = get_corpus_text(referanse_urn) normalize_corpus_dataframe(referanse_txt) combo = målkorpus_txt.join(referanse_txt) else: referanse_txt = målkorpus_txt combo = målkorpus_txt self.combo = combo self.reference = referanse_txt self.target = målkorpus_txt self.reference = aggregate(self.reference) self.reference.columns = ['reference_corpus'] ## dokumentfrekvenser mål_docf = pd.DataFrame(pd.DataFrame(målkorpus_txt/målkorpus_txt).sum(axis=1)) combo_docf = pd.DataFrame(pd.DataFrame(combo/combo).sum(axis=1)) ref_docf = pd.DataFrame(pd.DataFrame(referanse_txt/referanse_txt).sum(axis=1)) ### Normaliser dokumentfrekvensene normalize_corpus_dataframe(mål_docf) normalize_corpus_dataframe(combo_docf) normalize_corpus_dataframe(ref_docf) self.målkorpus_tot = aggregate(målkorpus_txt) self.combo_tot = aggregate(combo) self.mål_docf = mål_docf self.combo_docf = combo_docf self.lowest = self.combo_tot.sort_values(by=0)[0][0] else: self.load(filename) return def difference(self, freq_exp=1.1, doc_exp=1.1, top = 200, aslist=True): res = pd.DataFrame( (self.målkorpus_tot**freq_exp/self.combo_tot)*(self.mål_docf**doc_exp/self.combo_docf) ) res.columns = ['diff'] if top > 0: res = res.sort_values(by=res.columns[0], ascending=False).iloc[:top] else: res = res.sort_values(by=res.columns[0], ascending=False) if aslist == True: res = HTML(', '.join(list(res.index))) return res def save(self, filename): model = { 'params':self.params, 'target': self.målkorpus_tot.to_json(), 'combo': self.combo_tot.to_json(), 'target_df': self.mål_docf.to_json(), 'combo_df': self.combo_docf.to_json() } with open(filename, 'w', encoding = 'utf-8') as outfile: outfile.write(json.dumps(model)) return True def load(self, filename): with open(filename, 'r') as infile: try: model = json.loads(infile.read()) #print(model['word']) self.params = model['params'] #print(self.params) self.målkorpus_tot = pd.read_json(model['target']) #print(self.målkorpus_tot[:10]) self.combo_tot = pd.read_json(model['combo']) self.mål_docf = pd.read_json(model['target_df']) self.combo_docf = pd.read_json(model['combo_df']) except: print('noe gikk galt') return True def collocations(self, word, after=5, before=5, limit=1000): """Find collocations for word in a set of book URNs. Only books at the moment""" r = requests.post( "https://api.nb.no/ngram/urncoll", json={ 'word': word, 'urns': self.target_urn, 'after': after, 'before': before, 'limit': limit } ) temp = pd.DataFrame.from_dict(r.json(), orient='index') normalize_corpus_dataframe(temp) self.coll[word] = temp.sort_values(by = temp.columns[0], ascending = False) return True def conc(self, word, before=8, after=8, size=10, combo=0): if combo == 0: urns = self.target_urn + self.reference_urn elif combo == 1: urns = self.target_urn else: urns = self.reference_urn if len(urns) > 300: urns = list(numpy.random.choice(urns, 300, replace=False)) return get_urnkonk(word, {'urns':urns, 'before':before, 'after':after, 'limit':size}) def sort_collocations(self, word, comparison = None, exp = 1.0, above = None): if comparison == None: comparison = self.combo_tot[0] try: res = pd.DataFrame(self.coll[word][0]**exp/comparison) except KeyError: print('Constructing a collocation for {w} with default parameters.'.format(w=word)) self.collocations(word) res = pd.DataFrame(self.coll[word][0]**exp/comparison) if above == None: above = self.lowest res = res[self.combo_tot > above] return res.sort_values(by = 0, ascending = False) def search_collocations(self, word, words, comparison = None, exp = 1.0): if comparison == None: comparison = self.combo_tot[0] try: res = pd.DataFrame(self.coll[word][0]**exp/comparison) except KeyError: print('Constructing a collocation for {w} with default parameters.'.format(w=word)) self.collocations(word) res = pd.DataFrame(self.coll[word][0]**exp/comparison) search_items = list(set(res.index) & set(words)) return res.transpose()[search_items].transpose().sort_values(by = 0, ascending = False) def summary(self, head=10): info = { 'parameters':self.params, 'target_urn':self.target_urn[:head], 'reference urn':self.reference_urn[:head], } return info def search_words(self, words, freq_exp=1.1, doc_exp=1.1): if type(words) is str: words = [w.strip() for w in words.split()] df = self.difference(freq_exp = freq_exp, doc_exp=doc_exp,top=0, aslist=False) sub = [w for w in words if w in df.index] res = df.transpose()[sub].transpose().sort_values(by=df.columns[0], ascending=False) return res def make_collocation_graph(self, target_word, top = 15, before = 4, after = 4, limit = 1000, exp=1): """Make a cascaded network of collocations""" self.collocations(target_word, before=before, after=after, limit=limit) coll = self.sort_collocations(target_word, exp = exp) target_graf = dict() edges = [] for word in coll[:top].index: edges.append((target_word, word)) if word.isalpha(): self.collocations(word, before=before, after=after, limit=limit) for w in self.sort_collocations(word, exp = exp)[:top].index: if w.isalpha(): edges.append((word, w)) target_graph = nx.Graph() target_graph.add_edges_from(edges) self.coll_graph[target_word] = target_graph return target_graph def vekstdiagram(urn, params=None): if params is None: params = {} # if urn is the value of get_urn() it is a list # otherwise it just passes if type(urn) is list: urn = urn[0] para = params para['urn']= urn r = requests.post('https://api.nb.no/ngram/vekstdiagram', json = para) return pd.DataFrame(r.json()) def plot_book_wordbags(urn, wordbags, window=5000, pr = 100): """Generate a diagram of wordbags in book """ return plot_sammen_vekst(urn, wordbags, window=window, pr=pr) def plot_sammen_vekst(urn, ordlister, window=5000, pr = 100): """Plott alle seriene sammen""" rammer = [] c = dict() if isinstance(ordlister, list): if isinstance(ordlister[0], list): for l in ordlister: if l != []: c[l[0]] = l else: c[ordlister[0]] = ordlister else: c = ordlister for key in c: vekst = vekstdiagram(urn, params = {'words': c[key], 'window':window, 'pr': pr} ) vekst.columns = [key] rammer.append(vekst) return pd.concat(rammer) def spurious_names(n=300): topwords = totals(n) Removals = [x.capitalize() for x in topwords if x.isalpha()] return Removals def relaterte_ord(word, number = 20, score=False): G = make_graph(word) res = Counter(nx.eigenvector_centrality(G)).most_common(number) if score == False: res = [x[0] for x in res] return res def check_words(urn, ordbag): if type(urn) is list: urn = urn[0] ordliste = get_freq(urn, top=50000, cutoff=0) res = Counter() for w in ordbag: res[w] = ordliste[w] for p in res.most_common(): if p[1] != 0: print(p[0], p[1]) else: break return True def nb_ngram(terms, corpus='bok', smooth=3, years=(1810, 2010), mode='relative'): df = ngram_conv(get_ngram(terms, corpus=corpus), smooth=smooth, years=years, mode=mode) df.index = df.index.astype(int) return df def get_ngram(terms, corpus='avis'): req = requests.get( "http://www.nb.no/sp_tjenester/beta/ngram_1/ngram/query?terms={terms}&corpus={corpus}".format( terms=terms, corpus=corpus )) if req.status_code == 200: res = req.text else: res = "[]" return json.loads(res) def ngram_conv(ngrams, smooth=1, years=(1810,2013), mode='relative'): ngc = {} # check if relative frequency or absolute frequency is in question if mode.startswith('rel') or mode=='y': arg = 'y' else: arg = 'f' for x in ngrams: if x != []: ngc[x['key']] = {z['x']:z[arg] for z in x['values'] if int(z['x']) <= years[1] and int(z['x']) >= years[0]} return pd.DataFrame(ngc).rolling(window=smooth, win_type='triang').mean() def make_graph(words, lang='nob', cutoff=20, leaves=0): """Get galaxy from ngram-database. English and German provided by Google N-gram. Set leaves=1 to get the leaves. Parameter cutoff only works for lang='nob'. Specify English by setting lang='eng' and German by lang='ger'""" params = dict() params['terms'] = words params['corpus'] = lang params['limit'] = cutoff params['leaves'] = leaves result = requests.get("https://www.nb.no/sp_tjenester/beta/ngram_1/galaxies/query", params=params) G = nx.DiGraph() edgelist = [] if result.status_code == 200: graph = json.loads(result.text) #print(graph) nodes = graph['nodes'] edges = graph['links'] for edge in edges: edgelist += [(nodes[edge['source']]['name'], nodes[edge['target']]['name'], abs(edge['value']))] #print(edgelist) G.add_weighted_edges_from(edgelist) return G def urn_concordance(urns = None, word = None, size = 5, before = None, after = None ): """ Find a concordance within a corpus as list of URNs. This is a wrapper for get_urnkonk """ # exit if list of urns is empty if urns is None or word is None: return [] # The URNs may be presented in different ways. urns = pure_urn(urns) # find values and feed everything to get_urnkonk frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'word'} return get_urnkonk(word, query) def konk(word, urns=None, before=5, after=5): if urns == None: print('URNer mangler') return urner = refine_book_urn(words=[word], urns=urns) return urn_concordance(word=word, urns = sample(urner, min(20, len(urner))),before = before, after = after) def concordance(word = None, corpus='bok', author=None, title=None, subtitle=None, lang=None, ddk=None, subject=None, yearfrom = None, yearto=None, before=None, after=None, size=5, gender=None, offset=None, kind='html'): if word == None: return [] frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'word' and i != 'kind'} return get_konk(word, query, kind=kind) def get_konk(word, params=None, kind='html'): if params is None: params = {} para = params para['word']= word corpus = 'bok' if 'corpus' in para: corpus = para['corpus'] else: para['corpus'] = corpus r = requests.get('https://api.nb.no/ngram/konk', params=para) if kind=='html': rows = "" row_template = ("<tr>" "<td><a href='{urn}?searchText={kw}' target='_'>{urnredux}</a></td>" "<td>{b}</td>" "<td>{w}</td>" "<td style='text-align:left'>{a}</td>" "</tr>\n") if corpus == 'bok': for x in r.json(): rows += row_template.format( kw = word, urn=x['urn'], urnredux=','.join([x['author'], x['title'], str(x['year'])]), b=x['before'], w=x['word'], a=x['after']) else: #print(r.json()) for x in r.json(): rows += row_template.format( kw = word, urn=x['urn'], urnredux='-'.join(x['urn'].split('_')[2:6:3]), b=x['before'], w=x['word'], a=x['after']) res = "<table>{rows}</table>".format(rows=rows) res = HTML(res) elif kind == 'json': res = r.json() else: try: if corpus == 'bok': res = pd.DataFrame(r.json()) res = res[['urn','author','title','year','before','word','after']] else: res = pd.DataFrame(r.json()) res = res[['urn','before','word','after']] except: res= pd.DataFrame() #r = r.style.set_properties(subset=['after'],**{'text-align':'left'}) return res def konk_to_html(jsonkonk): rows = "" row_template = ("<tr>" "<td><a href='{urn}' target='_'>{urnredux}</a></td>" "<td>{b}</td>" "<td>{w}</td>" "<td style='text-align:left'>{a}</td>" "</tr>\n") for x in jsonkonk: rows += row_template.format( urn=x['urn'], urnredux=x['urn'], b=x['before'], w=x['word'], a=x['after']) res = "<table>{rows}</table>".format(rows=rows) return res def central_characters(graph, n=10): res = Counter(nx.degree_centrality(graph)).most_common(n) return res def central_betweenness_characters(graph, n=10): res = Counter(nx.betweenness_centrality(graph)).most_common(n) return res def get_urnkonk(word, params=None, html=True): if params is None: params = {} para = params para['word']= word try: para['urns'] = pure_urn(para['urns']) except: print('Parameter urns missing') r = requests.post('https://api.nb.no/ngram/urnkonk', json = para) if html: rows = "" for x in r.json(): rows += """<tr> <td> <a href='{urn}?searchText={kw}' target='_blank' style='text-decoration:none'>{urnredux}</a> </td> <td>{b}</td> <td>{w}</td> <td style='text-align:left'>{a}</td> </tr>\n""".format(kw=word, urn=x['urn'], urnredux="{t}, {f}, {y}".format(t=x['title'], f=x['author'], y=x['year']), b=x['before'], w=x['word'], a=x['after'] ) res = """<table>{rows}</table>""".format(rows=rows) res = HTML(res) else: res = pd.DataFrame(r.json()) res = res[['urn','before','word','after']] #r = r.style.set_properties(subset=['after'],**{'text-align':'left'}) return res def frame(something, name = None): """Try to make a frame out of something and name columns according to name, which should be a string or a list of strings, one for each column. Mismatch in numbers is taken care of.""" if isinstance(something, dict): res = pd.DataFrame.from_dict(something, orient='index') else: res =
pd.DataFrame(something)
pandas.DataFrame
import pandas as pd import scipy.stats import numpy as np import datetime pd.set_option('display.width', 1000) pd.set_option('max.columns', 100) class HistoricGames(object): def __init__(self, league, season, bookmaker='BbAv'): """ :param league: The league for which historical games should be retrived per football-data.co.uk standards. 'E0' for the English Premier League, 'D1' for the German Bundesliga etc. :param season: A four digit integer or a list of four digit integers corresponding to the final year of the season of interest. If the season finishes in 2017, season should be 2017. """ self.league = league self.season = season self.bookmaker = bookmaker def get_data(self): """ :return: A pandas DataFrame with historic results for the league and season along with outcome probabilities for the chosen bookie. """ data = pd.DataFrame() if type(self.season) == int: seasons = [self.season] else: seasons = self.season for s in seasons: base_url = "http://www.football-data.co.uk/mmz4281/" url = base_url + str(s - 1)[-2:] + str(s)[-2:] + '/' + self.league + '.csv' tmp =
pd.read_csv(url)
pandas.read_csv
import numpy as np from numpy.linalg import inv import matplotlib.pyplot as graph #matlab versiyasi pythonun from mpl_toolkits.mplot3d import Axes3D import pandas as pd #csv faylini read etmek ucun import csv from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures #import datamodify as dat def datatobeTaken(): data = pd.read_csv("turboazmodified.csv") dataframe = pd.DataFrame(data, columns= ['Yurush','Qiymet','Buraxilis ili']) yurush = data['Yurush'] qiymet = data['Qiymet'] buraxilishili = data['Buraxilish ili'] yurush = (yurush - yurush.mean()) / yurush.std() yurush = np.c_[np.ones(yurush.shape[0]),yurush] qiymet = (qiymet - qiymet.mean()) / qiymet.std() buraxilishili = (buraxilishili - buraxilishili.mean()) / buraxilishili.std() yurush.astype(float) m = len(qiymet) return yurush, qiymet, buraxilishili; data =
pd.read_csv("turboazmodified.csv")
pandas.read_csv
import rba import copy import pandas import time import numpy import seaborn import matplotlib.pyplot as plt from .rba_Session import RBA_Session from sklearn.linear_model import LinearRegression # import matplotlib.pyplot as plt def find_ribosomal_proteins(rba_session, model_processes=['TranslationC', 'TranslationM'], external_annotations=None): out = [] for i in model_processes: out += [rba_session.ModelStructure.ProteinInfo.Elements[j]['ProtoID'] for j in list(rba_session.ModelStructure.ProcessInfo.Elements[i]['Composition'].keys()) if j in rba_session.ModelStructure.ProteinInfo.Elements.keys()] if external_annotations is not None: out += list(external_annotations['ID']) return(list(set(out))) def build_model_compartment_map(rba_session): out = {rba_session.ModelStructure.ProteinInfo.Elements[i]['ProtoID']: rba_session.ModelStructure.ProteinInfo.Elements[i]['Compartment'] for i in list( rba_session.ModelStructure.ProteinInfo.Elements.keys())} return(out) def build_compartment_annotations(Compartment_Annotations_external, model_protein_compartment_map): for i in Compartment_Annotations_external.index: if Compartment_Annotations_external.loc[i, 'ID'] in list(model_protein_compartment_map.keys()): Compartment_Annotations_external.loc[i, 'modelproteinannotation'] = 1 else: Compartment_Annotations_external.loc[i, 'modelproteinannotation'] = 0 Compartment_Annotations_internal = pandas.DataFrame() Compartment_Annotations_internal['ID'] = list(model_protein_compartment_map.keys()) Compartment_Annotations_internal['ModelComp'] = list(model_protein_compartment_map.values()) Compartment_Annotations = pandas.concat( [Compartment_Annotations_internal, Compartment_Annotations_external.loc[Compartment_Annotations_external['modelproteinannotation'] == 0, ['ID', 'ModelComp']]], axis=0) return(Compartment_Annotations) def build_dataset_annotations(input, ID_column, Uniprot, Compartment_Annotations, model_protein_compartment_map, ribosomal_proteins): print('riboprots-----------------') print(ribosomal_proteins) out = pandas.DataFrame() for g in list(input[ID_column]): out.loc[g, 'ID'] = g matches = [i for i in list(Uniprot.loc[pandas.isna( Uniprot['Gene names']) == False, 'Gene names']) if g in i] mass_prot = numpy.nan if len(matches) > 0: mass_prot = len(Uniprot.loc[Uniprot['Gene names'] == matches[0], 'Sequence'].values[0]) out.loc[g, 'AA_residues'] = mass_prot if g in list(Compartment_Annotations['ID']): out.loc[g, 'Location'] = Compartment_Annotations.loc[Compartment_Annotations['ID'] == g, 'ModelComp'].values[0] in_model = 0 if g in model_protein_compartment_map.keys(): in_model = 1 is_ribosomal = 0 if g in ribosomal_proteins: is_ribosomal = 1 out.loc[g, 'InModel'] = in_model out.loc[g, 'IsRibosomal'] = is_ribosomal return(out) def build_full_annotations_from_dataset_annotations(annotations_list): out =
pandas.concat(annotations_list, axis=0)
pandas.concat
""" Official evaluation script for v1.0 of the ComplexWebQuestions dataset. """ import unicodedata import re import json import pandas as pd def proprocess(answer): proc_answer = unicodedata.normalize('NFKD', answer).encode('ascii', 'ignore').decode(encoding='UTF-8') # removing common endings such as "f.c." proc_answer = re.sub(r'\W', ' ', proc_answer).lower().strip() # removing The, a, an from begining of answer as proposed by SQuAD dataset answer comparison if proc_answer.startswith('the '): proc_answer = proc_answer[4:] if proc_answer.startswith('a '): proc_answer = proc_answer[2:] if proc_answer.startswith('an '): proc_answer = proc_answer[3:] return proc_answer def compute_P1(matched_answers, golden_answer_list, pred_answer): P1 = 0 if len(matched_answers) > 0: P1 = 100 return P1 def compare_span_to_answer(spans, gold_answers, question, question_annotated=None): """ Compares one answers to spans, multiple matches are possible spans是预测里面的list """ if len(spans) == 0: return [] found_answers = pd.DataFrame(columns=['span', 'answer', 'span_index']) spans_series =
pd.Series(spans)
pandas.Series
# -*- coding: utf-8 -*- """ These test the private routines in types/cast.py """ import pytest from datetime import datetime, timedelta, date import numpy as np import pandas as pd from pandas import (Timedelta, Timestamp, DatetimeIndex, DataFrame, NaT, Period, Series) from pandas.core.dtypes.cast import ( maybe_downcast_to_dtype, maybe_convert_objects, cast_scalar_to_array, infer_dtype_from_scalar, infer_dtype_from_array, maybe_convert_string_to_object, maybe_convert_scalar, find_common_type) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, PeriodDtype) from pandas.core.dtypes.common import ( is_dtype_equal) from pandas.util import testing as tm class TestMaybeDowncast(object): def test_downcast_conv(self): # test downcasting arr = np.array([8.5, 8.6, 8.7, 8.8, 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') assert (np.array_equal(result, arr)) arr = np.array([8., 8., 8., 8., 8.9999999999995]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9]) assert (np.array_equal(result, expected)) arr = np.array([8., 8., 8., 8., 9.0000000000005]) result = maybe_downcast_to_dtype(arr, 'infer') expected = np.array([8, 8, 8, 8, 9]) assert (np.array_equal(result, expected)) # GH16875 coercing of bools ser = Series([True, True, False]) result = maybe_downcast_to_dtype(ser, np.dtype(np.float64)) expected = ser tm.assert_series_equal(result, expected) # conversions expected = np.array([1, 2]) for dtype in [np.float64, object, np.int64]: arr = np.array([1.0, 2.0], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected, check_dtype=False) for dtype in [np.float64, object]: expected = np.array([1.0, 2.0, np.nan], dtype=dtype) arr = np.array([1.0, 2.0, np.nan], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'infer') tm.assert_almost_equal(result, expected) # empties for dtype in [np.int32, np.float64, np.float32, np.bool_, np.int64, object]: arr = np.array([], dtype=dtype) result = maybe_downcast_to_dtype(arr, 'int64') tm.assert_almost_equal(result, np.array([], dtype=np.int64)) assert result.dtype == np.int64 def test_datetimelikes_nan(self): arr = np.array([1, 2, np.nan]) exp = np.array([1, 2, np.datetime64('NaT')], dtype='datetime64[ns]') res = maybe_downcast_to_dtype(arr, 'datetime64[ns]') tm.assert_numpy_array_equal(res, exp) exp = np.array([1, 2, np.timedelta64('NaT')], dtype='timedelta64[ns]') res = maybe_downcast_to_dtype(arr, 'timedelta64[ns]') tm.assert_numpy_array_equal(res, exp) def test_datetime_with_timezone(self): # GH 15426 ts = Timestamp("2016-01-01 12:00:00", tz='US/Pacific') exp = DatetimeIndex([ts, ts]) res = maybe_downcast_to_dtype(exp, exp.dtype) tm.assert_index_equal(res, exp) res = maybe_downcast_to_dtype(exp.asi8, exp.dtype) tm.assert_index_equal(res, exp) class TestInferDtype(object): def testinfer_dtype_from_scalar(self): # Test that infer_dtype_from_scalar is returning correct dtype for int # and float. for dtypec in [np.uint8, np.int8, np.uint16, np.int16, np.uint32, np.int32, np.uint64, np.int64]: data = dtypec(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == type(data) data = 12 dtype, val = infer_dtype_from_scalar(data) assert dtype == np.int64 for dtypec in [np.float16, np.float32, np.float64]: data = dtypec(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == dtypec data = np.float(12) dtype, val = infer_dtype_from_scalar(data) assert dtype == np.float64 for data in [True, False]: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.bool_ for data in [np.complex64(1), np.complex128(1)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == np.complex_ for data in [np.datetime64(1, 'ns'), Timestamp(1), datetime(2000, 1, 1, 0, 0)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == 'M8[ns]' for data in [np.timedelta64(1, 'ns'), Timedelta(1), timedelta(1)]: dtype, val = infer_dtype_from_scalar(data) assert dtype == 'm8[ns]' for tz in ['UTC', 'US/Eastern', 'Asia/Tokyo']: dt = Timestamp(1, tz=tz) dtype, val = infer_dtype_from_scalar(dt, pandas_dtype=True) assert dtype == 'datetime64[ns, {0}]'.format(tz) assert val == dt.value dtype, val = infer_dtype_from_scalar(dt) assert dtype == np.object_ assert val == dt for freq in ['M', 'D']: p =
Period('2011-01-01', freq=freq)
pandas.Period
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from catboost import CatBoostRegressor from tqdm import tqdm import gc import datetime as dt print('Loading Properties ...') properties2016 = pd.read_csv('../input/properties_2016.csv', low_memory = False) properties2017 = pd.read_csv('../input/properties_2017.csv', low_memory = False) print('Loading Train ...') train2016 =
pd.read_csv('../input/train_2016_v2.csv', parse_dates=['transactiondate'], low_memory=False)
pandas.read_csv
""" Extract sampled paramaters of selected traces and prepare simulation input files with fitted parameters Outputs: - 2 csvs with fitting paramerers for a) single best fit and b) n best fits - 2 csv with samples parameters that can be used as input csv for subsequent simulation (for a and b as above) - 1 emodl with fitting parameters renamed for each grp for next simulation - 2 batch files to submit run scenarios for either a) or b) from above """ import argparse import os import pandas as pd import numpy as np import sys import subprocess sys.path.append('../') from load_paths import load_box_paths from processing_helpers import * from simulation_helpers import shell_header from sample_parameters import make_identifier, gen_combos def parse_args(): description = "Simulation run for modeling Covid-19" parser = argparse.ArgumentParser(description=description) parser.add_argument( "-s", "--stem", type=str, help="Name of simulation experiment" ) parser.add_argument( "-loc", "--Location", type=str, help="Local or NUCLUSTER", default = "Local" ) parser.add_argument( "--traces_to_keep_ratio", type=int, help="Ratio of traces to keep out of all trajectories", default=10 ) parser.add_argument( "--traces_to_keep_min", type=int, help="Minimum number of traces to keep, might overwrite traces_to_keep_ratio for small simulations", default=5 ) parser.add_argument( "--trace_to_run", type=str, choices=["ntraces", "besttrace",None], help="Whether to run single best trace or n best traces as defined in traces_to_keep_ratio ", default=None ) return parser.parse_args() def modify_emodl_and_save(exp_name,output_path): """Reads in emodl file and renames the parameters that had been identified in exact_sample_traces with grp_suffix to have grp specific parameters. Assumptions: 1 - each fitting parameters occurs once or twice the lengths as the defined groups (i.e. EMS-1 to 11) 2 - if parameters occur twice for each group, they do that in repeated order (i.e. EMS-1, EMS-1, EMS-2, EMS-2 ...) 3 - duplicated group names are not wanted and removed if accidentally added (i.e. EMS-1_EMS-1) """ grp_list = get_grp_list(exp_name) grp_suffix = grp_list[-1].split('_')[0] param_cols = pd.read_csv(os.path.join(output_path, f'fitted_parameters_besttrace.csv')).columns param_cols = [i for i in param_cols if grp_suffix in i] param_cols_unique = param_cols for grp in reversed(grp_list): param_cols_unique = [col.replace(f'_{grp}', '') for col in param_cols_unique] param_cols_unique = list(set(param_cols_unique)) emodl_name = [file for file in os.listdir(output_path) if 'emodl' in file][0].replace('.emodl','') emodl_name_new = f'{emodl_name}_resim' fin = open(os.path.join(output_path, f'{emodl_name}.emodl'), "rt") emodl_txt = fin.read() fin.close() emodl_chunks = emodl_txt.split('@') sample_cols=[] for col in param_cols_unique: col_pos = [] for i, chunk in enumerate(emodl_chunks): if col in chunk: col_pos = col_pos + [i] for i, pos in enumerate(col_pos): #print(emodl_chunks[pos]) if len(col_pos) <len(grp_list): sample_cols = sample_cols + [col] if len(col_pos) == len(grp_list): emodl_chunks[pos] = f'{emodl_chunks[pos]}_{grp_list[i]}' if len(col_pos) == len(grp_list)*2: """assuming if occuring twice, its the same grp in two consecutive instances""" grp_list_dup = [grp for grp in grp_list for i in range(2)] emodl_chunks[pos] = f'{emodl_chunks[pos]}_{grp_list_dup[i]}' #print(emodl_chunks[pos]) emodl_txt_new = '@'.join(emodl_chunks) for grp in grp_list: emodl_txt_new = emodl_txt_new.replace(f'{grp}_{grp}',f'{grp}') fin = open(os.path.join(output_path, f'{emodl_name_new}.emodl'), "w") fin.write(emodl_txt_new) fin.close() def write_submission_file(trace_selection,Location, r= 'IL',model='locale'): """Writes batch file that copies required input csvs and emodl to the corresponding location in git_dir Assumptions: Running location fixed to IL for spatial model (momentarily) """ emodl_name = [file for file in os.listdir(output_path) if 'emodl' in file][0].replace('.emodl','') sample_csv = f'sample_parameters_{trace_selection}.csv' input_csv_str = f' --sample_csv {sample_csv}' model_str = f' --model {model}' new_exp_name = f'{exp_name}_resim_{trace_selection}' csv_from = os.path.join(output_path, sample_csv ).replace("/","\\") csv_to = os.path.join(git_dir,"experiment_configs","input_csv").replace ("/","\\") emodl_from = os.path.join(output_path,emodl_name+"_resim.emodl") emodl_to = os.path.join(git_dir,"emodl",emodl_name+"_resim.emodl").replace("/","\\") if Location =='Local': file = open(os.path.join(output_path, 'bat', f'00_runScenarios_{trace_selection}.bat'), 'w') file.write( f'copy {csv_from} {csv_to}\n' f'copy {emodl_from} {emodl_to}\n' f'cd {git_dir} \n python runScenarios.py -r {r} ' f'-e {str(emodl_name)}_resim.emodl -n {new_exp_name} {model_str} {input_csv_str} \npause') file.close() if Location =='NUCLUSTER': csv_from = csv_from.replace("\\","/") csv_to = csv_to.replace("\\","/") emodl_to = emodl_to.replace("\\","/") jobname = 'runFittedParamSim' header = shell_header(job_name=jobname) commands = f'\ncp {csv_from} {csv_to}\n' \ f'\ncp {emodl_from} {emodl_to}\n' \ f'\ncd {git_dir} \n python runScenarios.py -r {r} ' \ f'-e {str(emodl_name)}_resim.emodl -n {new_exp_name} {model_str} {input_csv_str}' file = open(os.path.join(output_path,'sh', f'00_runScenarios_{trace_selection}.sh'), 'w') file.write(header + commands) file.close() file = open(os.path.join(output_path, f'submit_runScenarios_{trace_selection}.sh'), 'w') file.write( f'cd {os.path.join(output_path,"sh")}\n' f'sbatch 00_runScenarios_{trace_selection}.sh\n') file.close() def extract_sample_traces(exp_name,traces_to_keep_ratio, traces_to_keep_min): """Identifies parameters that vary as fitting parameters and writes them out into csvs. Combines fitting with sample parameters to simulate 'full' simulation. Assumption: Parameter that wish to no be grp specific were fixed (could be aggregated before fitting, which needs to be edited together with trace_selection.py) """ df_samples = pd.read_csv(os.path.join(output_path, 'sampled_parameters.csv')) """Drop parameter columns that have equal values in all scenarios (rows) to assess fitted parameters""" nunique = df_samples.apply(pd.Series.nunique) cols_to_drop = nunique[nunique == 1].index df_samples = df_samples.drop(cols_to_drop, axis=1) grp_list = get_grp_list(exp_name) df_traces = pd.DataFrame() for grp in grp_list: grp_nr = grp.split('_')[-1] grp_suffix= grp.split('_')[0] """Drop parameters that correspond to other regions""" grp_channels = [i for i in df_samples.columns if grp_suffix in i] grp_cols_to_drop = [i for i in grp_channels if grp_nr != i.split('_')[-1]] df_samples_sub = df_samples.drop(grp_cols_to_drop, axis=1) rank_export_df = pd.read_csv(os.path.join(output_path, f'traces_ranked_region_{str(grp_nr)}.csv')) n_traces_to_keep = int(len(rank_export_df) / traces_to_keep_ratio) if n_traces_to_keep < traces_to_keep_min and len(rank_export_df) >= traces_to_keep_min: n_traces_to_keep = traces_to_keep_min if len(rank_export_df) < traces_to_keep_min: n_traces_to_keep = len(rank_export_df) df_samples_sub =
pd.merge(how='left', left=rank_export_df[['scen_num','norm_rank']], left_on=['scen_num'], right=df_samples_sub, right_on=['scen_num'])
pandas.merge