code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
# Copyright (c) 2010-2014 openpyxl import pytest from openpyxl.styles.borders import Border, Side from openpyxl.styles.fills import GradientFill from openpyxl.styles.colors import Color from openpyxl.writer.styles import StyleWriter from openpyxl.tests.helper import get_xml, compare_xml class DummyWorkbook: style_properties = [] def test_write_gradient_fill(): fill = GradientFill(degree=90, stop=[Color(theme=0), Color(theme=4)]) writer = StyleWriter(DummyWorkbook()) writer._write_gradient_fill(writer._root, fill) xml = get_xml(writer._root) expected = """<?xml version="1.0" ?> <styleSheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main"> <gradientFill degree="90" type="linear"> <stop position="0"> <color theme="0"/> </stop> <stop position="1"> <color theme="4"/> </stop> </gradientFill> </styleSheet> """ diff = compare_xml(xml, expected) assert diff is None, diff def test_write_borders(): borders = Border() writer = StyleWriter(DummyWorkbook()) writer._write_border(writer._root, borders) xml = get_xml(writer._root) expected = """<?xml version="1.0"?> <styleSheet xmlns="http://schemas.openxmlformats.org/spreadsheetml/2006/main"> <border> <left/> <right/> <top/> <bottom/> <diagonal/> </border> </styleSheet> """ diff = compare_xml(xml, expected) assert diff is None, diff
[ "openpyxl.styles.colors.Color", "openpyxl.tests.helper.get_xml", "openpyxl.tests.helper.compare_xml", "openpyxl.styles.borders.Border" ]
[((552, 573), 'openpyxl.tests.helper.get_xml', 'get_xml', (['writer._root'], {}), '(writer._root)\n', (559, 573), False, 'from openpyxl.tests.helper import get_xml, compare_xml\n'), ((910, 936), 'openpyxl.tests.helper.compare_xml', 'compare_xml', (['xml', 'expected'], {}), '(xml, expected)\n', (921, 936), False, 'from openpyxl.tests.helper import get_xml, compare_xml\n'), ((1009, 1017), 'openpyxl.styles.borders.Border', 'Border', ([], {}), '()\n', (1015, 1017), False, 'from openpyxl.styles.borders import Border, Side\n'), ((1118, 1139), 'openpyxl.tests.helper.get_xml', 'get_xml', (['writer._root'], {}), '(writer._root)\n', (1125, 1139), False, 'from openpyxl.tests.helper import get_xml, compare_xml\n'), ((1381, 1407), 'openpyxl.tests.helper.compare_xml', 'compare_xml', (['xml', 'expected'], {}), '(xml, expected)\n', (1392, 1407), False, 'from openpyxl.tests.helper import get_xml, compare_xml\n'), ((415, 429), 'openpyxl.styles.colors.Color', 'Color', ([], {'theme': '(0)'}), '(theme=0)\n', (420, 429), False, 'from openpyxl.styles.colors import Color\n'), ((431, 445), 'openpyxl.styles.colors.Color', 'Color', ([], {'theme': '(4)'}), '(theme=4)\n', (436, 445), False, 'from openpyxl.styles.colors import Color\n')]
from unittest import TestCase from io import StringIO import json class TestDump(TestCase): def test_dump(self): sio = StringIO() json.dump({}, sio) self.assertEquals(sio.getvalue(), '{}') def test_dumps(self): self.assertEquals(json.dumps({}), '{}') def test_encode_truefalse(self): self.assertEquals(json.dumps( {True: False, False: True}, sort_keys=True), '{"false": true, "true": false}') self.assertEquals(json.dumps( {2: 3.0, 4.0: 5, False: 1, 6: True}, sort_keys=True), '{"false": 1, "2": 3.0, "4.0": 5, "6": true}')
[ "io.StringIO", "json.dumps", "json.dump" ]
[((133, 143), 'io.StringIO', 'StringIO', ([], {}), '()\n', (141, 143), False, 'from io import StringIO\n'), ((152, 170), 'json.dump', 'json.dump', (['{}', 'sio'], {}), '({}, sio)\n', (161, 170), False, 'import json\n'), ((272, 286), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (282, 286), False, 'import json\n'), ((358, 416), 'json.dumps', 'json.dumps', (['{(True): False, (False): True}'], {'sort_keys': '(True)'}), '({(True): False, (False): True}, sort_keys=True)\n', (368, 416), False, 'import json\n'), ((509, 580), 'json.dumps', 'json.dumps', (['{(2): 3.0, (4.0): 5, (False): 1, (6): True}'], {'sort_keys': '(True)'}), '({(2): 3.0, (4.0): 5, (False): 1, (6): True}, sort_keys=True)\n', (519, 580), False, 'import json\n')]
# -*- coding: utf-8 -*- # # Tencent is pleased to support the open source community by making QT4C available. # Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. # QT4C is licensed under the BSD 3-Clause License, except for the third-party components listed below. # A copy of the BSD 3-Clause License is included in this file. # '''单元测试 ''' import unittest import os import sys test_dir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.dirname(test_dir)) def main(): runner = unittest.TextTestRunner(verbosity=10 + sys.argv.count('-v')) suite = unittest.TestLoader().discover(test_dir, pattern='test_*.py') raise SystemExit(not runner.run(suite).wasSuccessful()) if __name__ == '__main__': main()
[ "os.path.abspath", "os.path.dirname", "sys.argv.count", "unittest.TestLoader" ]
[((439, 464), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (454, 464), False, 'import os\n'), ((485, 510), 'os.path.dirname', 'os.path.dirname', (['test_dir'], {}), '(test_dir)\n', (500, 510), False, 'import os\n'), ((611, 632), 'unittest.TestLoader', 'unittest.TestLoader', ([], {}), '()\n', (630, 632), False, 'import unittest\n'), ((577, 597), 'sys.argv.count', 'sys.argv.count', (['"""-v"""'], {}), "('-v')\n", (591, 597), False, 'import sys\n')]
from cffi import FFI ffibuilder = FFI() ffibuilder.cdef(""" int test(int t); """) ffibuilder.set_source("_pi_cffi", """ #include "brute.h" """, sources=['brute.c']) if __name__ == "__main__": ffibuilder.compile(verbose = True)
[ "cffi.FFI" ]
[((35, 40), 'cffi.FFI', 'FFI', ([], {}), '()\n', (38, 40), False, 'from cffi import FFI\n')]
"""Board Module""" import copy from typing import Tuple, List from src.coordinate import Coordinate from src.snake import Snake class Board: """Track the cooardinates for all snakes and food in the game.""" def __init__(self, data): self._data = data self._snakes = None self._foods = None @property def snakes(self) -> List[Snake]: """Retreive the list of snakes from the board data.""" if self._snakes is None: snakes = [Snake(snake_data) for snake_data in self._data['snakes']] self._snakes = snakes return self._snakes @property def foods(self) -> List[Coordinate]: """Retreive the list of food from the board data.""" if self._foods is None: self._foods = [Coordinate(food_data) for food_data in self._data['food']] return self._foods @property def width(self) -> int: """Get width of the board -- note: it's a square.""" return self._data['width'] def is_coordinate_in_bounds(self, coordinate) -> bool: """Check whether or not the Coordinate is within the bounds of the Board.""" is_wall = (coordinate.x == -1 or coordinate.x == self.width or coordinate.y == -1 or coordinate.y == self.width) return not is_wall def get_other_snakes(self, exclude_id) -> List[Snake]: """Get the List of Snakes whose IDs don't match the given ID.""" return [snake for snake in self.snakes if snake.id != exclude_id] def advance_snake_along_path(self, snake_id: str, path: List[Coordinate]): """Return a new board with our snake advanced along given path.""" new_board = copy.deepcopy(self) return new_board.__help_advance_snake_along_path(snake_id, path) def __help_advance_snake_along_path(self, snake_id: str, path: List[Coordinate]): """Do the actual advancement of the snake along the path.""" me = next((snake for snake in self.snakes if snake.id == snake_id), None) if not me: raise ValueError("No snake for given id!") me.coordinates += path me.coordinates = me.coordinates[len(path):] me.coordinates.reverse() me.coordinates.append(me.coordinates[-1]) print("new coords:") for coord in me.coordinates: print(coord) return self
[ "src.snake.Snake", "src.coordinate.Coordinate", "copy.deepcopy" ]
[((1708, 1727), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (1721, 1727), False, 'import copy\n'), ((493, 510), 'src.snake.Snake', 'Snake', (['snake_data'], {}), '(snake_data)\n', (498, 510), False, 'from src.snake import Snake\n'), ((789, 810), 'src.coordinate.Coordinate', 'Coordinate', (['food_data'], {}), '(food_data)\n', (799, 810), False, 'from src.coordinate import Coordinate\n')]
import os import warnings from django.conf import settings CAPTCHA_FONT_PATH = getattr(settings, 'CAPTCHA_FONT_PATH', os.path.normpath(os.path.join(os.path.dirname(__file__), '..', 'fonts/Vera.ttf'))) CAPTCHA_FONT_SIZE = getattr(settings, 'CAPTCHA_FONT_SIZE', 22) CAPTCHA_LETTER_ROTATION = getattr(settings, 'CAPTCHA_LETTER_ROTATION', (-35, 35)) CAPTCHA_BACKGROUND_COLOR = getattr(settings, 'CAPTCHA_BACKGROUND_COLOR', '#ffffff') CAPTCHA_FOREGROUND_COLOR = getattr(settings, 'CAPTCHA_FOREGROUND_COLOR', '#001100') CAPTCHA_CHALLENGE_FUNCT = getattr(settings, 'CAPTCHA_CHALLENGE_FUNCT', 'captcha.helpers.random_char_challenge') CAPTCHA_NOISE_FUNCTIONS = getattr(settings, 'CAPTCHA_NOISE_FUNCTIONS', ('captcha.helpers.noise_arcs', 'captcha.helpers.noise_dots',)) CAPTCHA_FILTER_FUNCTIONS = getattr(settings, 'CAPTCHA_FILTER_FUNCTIONS', ('captcha.helpers.post_smooth',)) CAPTCHA_WORDS_DICTIONARY = getattr(settings, 'CAPTCHA_WORDS_DICTIONARY', '/usr/share/dict/words') CAPTCHA_PUNCTUATION = getattr(settings, 'CAPTCHA_PUNCTUATION', '''_"',.;:-''') CAPTCHA_FLITE_PATH = getattr(settings, 'CAPTCHA_FLITE_PATH', None) CAPTCHA_SOX_PATH = getattr(settings, 'CAPTCHA_SOX_PATH', None) CAPTCHA_TIMEOUT = getattr(settings, 'CAPTCHA_TIMEOUT', 5) # Minutes CAPTCHA_LENGTH = int(getattr(settings, 'CAPTCHA_LENGTH', 4)) # Chars # CAPTCHA_IMAGE_BEFORE_FIELD = getattr(settings, 'CAPTCHA_IMAGE_BEFORE_FIELD', True) CAPTCHA_DICTIONARY_MIN_LENGTH = getattr(settings, 'CAPTCHA_DICTIONARY_MIN_LENGTH', 0) CAPTCHA_DICTIONARY_MAX_LENGTH = getattr(settings, 'CAPTCHA_DICTIONARY_MAX_LENGTH', 99) CAPTCHA_IMAGE_SIZE = getattr(settings, 'CAPTCHA_IMAGE_SIZE', None) CAPTCHA_IMAGE_TEMPLATE = getattr(settings, 'CAPTCHA_IMAGE_TEMPLATE', 'captcha/image.html') CAPTCHA_HIDDEN_FIELD_TEMPLATE = getattr(settings, 'CAPTCHA_HIDDEN_FIELD_TEMPLATE', 'captcha/hidden_field.html') CAPTCHA_TEXT_FIELD_TEMPLATE = getattr(settings, 'CAPTCHA_TEXT_FIELD_TEMPLATE', 'captcha/text_field.html') if getattr(settings, 'CAPTCHA_FIELD_TEMPLATE', None): msg = ("CAPTCHA_FIELD_TEMPLATE setting is deprecated in favor of widget's template_name.") warnings.warn(msg, DeprecationWarning) CAPTCHA_FIELD_TEMPLATE = getattr(settings, 'CAPTCHA_FIELD_TEMPLATE', None) if getattr(settings, 'CAPTCHA_OUTPUT_FORMAT', None): msg = ("CAPTCHA_OUTPUT_FORMAT setting is deprecated in favor of widget's template_name.") warnings.warn(msg, DeprecationWarning) CAPTCHA_OUTPUT_FORMAT = getattr(settings, 'CAPTCHA_OUTPUT_FORMAT', None) CAPTCHA_MATH_CHALLENGE_OPERATOR = getattr(settings, 'CAPTCHA_MATH_CHALLENGE_OPERATOR', '*') CAPTCHA_GET_FROM_POOL = getattr(settings, 'CAPTCHA_GET_FROM_POOL', False) CAPTCHA_GET_FROM_POOL_TIMEOUT = getattr(settings, 'CAPTCHA_GET_FROM_POOL_TIMEOUT', 5) CAPTCHA_TEST_MODE = getattr(settings, 'CAPTCHA_TEST_MODE', False) # Failsafe if CAPTCHA_DICTIONARY_MIN_LENGTH > CAPTCHA_DICTIONARY_MAX_LENGTH: CAPTCHA_DICTIONARY_MIN_LENGTH, CAPTCHA_DICTIONARY_MAX_LENGTH = CAPTCHA_DICTIONARY_MAX_LENGTH, CAPTCHA_DICTIONARY_MIN_LENGTH def _callable_from_string(string_or_callable): if callable(string_or_callable): return string_or_callable else: return getattr(__import__('.'.join(string_or_callable.split('.')[:-1]), {}, {}, ['']), string_or_callable.split('.')[-1]) def get_challenge(generator=None): return _callable_from_string(generator or CAPTCHA_CHALLENGE_FUNCT) def noise_functions(): if CAPTCHA_NOISE_FUNCTIONS: return map(_callable_from_string, CAPTCHA_NOISE_FUNCTIONS) return [] def filter_functions(): if CAPTCHA_FILTER_FUNCTIONS: return map(_callable_from_string, CAPTCHA_FILTER_FUNCTIONS) return []
[ "warnings.warn", "os.path.dirname" ]
[((2103, 2141), 'warnings.warn', 'warnings.warn', (['msg', 'DeprecationWarning'], {}), '(msg, DeprecationWarning)\n', (2116, 2141), False, 'import warnings\n'), ((2368, 2406), 'warnings.warn', 'warnings.warn', (['msg', 'DeprecationWarning'], {}), '(msg, DeprecationWarning)\n', (2381, 2406), False, 'import warnings\n'), ((150, 175), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (165, 175), False, 'import os\n')]
# Generated by Django 2.2.21 on 2021-06-23 12:43 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('resources', '0125_add_timmi_payload_model'), ] operations = [ migrations.AddField( model_name='unit', name='disallow_overlapping_reservations_per_user', field=models.BooleanField(default=False, verbose_name='Disallow overlapping reservations in this unit per user.'), ), ]
[ "django.db.models.BooleanField" ]
[((409, 521), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'verbose_name': '"""Disallow overlapping reservations in this unit per user."""'}), "(default=False, verbose_name=\n 'Disallow overlapping reservations in this unit per user.')\n", (428, 521), False, 'from django.db import migrations, models\n')]
import logging from lora_multihop import serial_connection, variables def config_module(configuration=variables.MODULE_CONFIG): if serial_connection.execute_command(configuration, [variables.STATUS_OK]): serial_connection.execute_command('AT+SEND=1', [variables.STATUS_OK]) serial_connection.execute_command('a', ['AT,SENDING', 'AT,SENDED']) logging.debug('module config successfully set') return True logging.warning("could not set module config") return False def set_address(address): cmd = f'AT+ADDR={address}' if serial_connection.execute_command(serial_connection.str_to_bytes(cmd), [variables.STATUS_OK]): logging.debug(f'module address successfully set to: {address}') return True logging.warning("could not set module address") return False def get_current_address(): serial_connection.execute_command(serial_connection.str_to_bytes(variables.GET_ADDR)) addr = serial_connection.response_q.get(variables.COMMAND_VERIFICATION_TIMEOUT) addr = serial_connection.bytes_to_str(addr) addr_as_list = addr.split(variables.LORA_MODULE_DELIMITER) if addr_as_list[0].strip() != 'AT' or addr_as_list[2].strip() != 'OK': raise ValueError('could not get address of module') return addr_as_list[1]
[ "logging.debug", "lora_multihop.serial_connection.execute_command", "logging.warning", "lora_multihop.serial_connection.response_q.get", "lora_multihop.serial_connection.str_to_bytes", "lora_multihop.serial_connection.bytes_to_str" ]
[((138, 209), 'lora_multihop.serial_connection.execute_command', 'serial_connection.execute_command', (['configuration', '[variables.STATUS_OK]'], {}), '(configuration, [variables.STATUS_OK])\n', (171, 209), False, 'from lora_multihop import serial_connection, variables\n'), ((445, 491), 'logging.warning', 'logging.warning', (['"""could not set module config"""'], {}), "('could not set module config')\n", (460, 491), False, 'import logging\n'), ((766, 813), 'logging.warning', 'logging.warning', (['"""could not set module address"""'], {}), "('could not set module address')\n", (781, 813), False, 'import logging\n'), ((961, 1033), 'lora_multihop.serial_connection.response_q.get', 'serial_connection.response_q.get', (['variables.COMMAND_VERIFICATION_TIMEOUT'], {}), '(variables.COMMAND_VERIFICATION_TIMEOUT)\n', (993, 1033), False, 'from lora_multihop import serial_connection, variables\n'), ((1045, 1081), 'lora_multihop.serial_connection.bytes_to_str', 'serial_connection.bytes_to_str', (['addr'], {}), '(addr)\n', (1075, 1081), False, 'from lora_multihop import serial_connection, variables\n'), ((219, 288), 'lora_multihop.serial_connection.execute_command', 'serial_connection.execute_command', (['"""AT+SEND=1"""', '[variables.STATUS_OK]'], {}), "('AT+SEND=1', [variables.STATUS_OK])\n", (252, 288), False, 'from lora_multihop import serial_connection, variables\n'), ((297, 364), 'lora_multihop.serial_connection.execute_command', 'serial_connection.execute_command', (['"""a"""', "['AT,SENDING', 'AT,SENDED']"], {}), "('a', ['AT,SENDING', 'AT,SENDED'])\n", (330, 364), False, 'from lora_multihop import serial_connection, variables\n'), ((373, 420), 'logging.debug', 'logging.debug', (['"""module config successfully set"""'], {}), "('module config successfully set')\n", (386, 420), False, 'import logging\n'), ((609, 644), 'lora_multihop.serial_connection.str_to_bytes', 'serial_connection.str_to_bytes', (['cmd'], {}), '(cmd)\n', (639, 644), False, 'from lora_multihop import serial_connection, variables\n'), ((678, 741), 'logging.debug', 'logging.debug', (['f"""module address successfully set to: {address}"""'], {}), "(f'module address successfully set to: {address}')\n", (691, 741), False, 'import logging\n'), ((898, 948), 'lora_multihop.serial_connection.str_to_bytes', 'serial_connection.str_to_bytes', (['variables.GET_ADDR'], {}), '(variables.GET_ADDR)\n', (928, 948), False, 'from lora_multihop import serial_connection, variables\n')]
import abc from typing import Dict, Callable import tensorflow as tf from flink_ml_framework.context import Context from flink_ml_framework.java_file import * from ..runner import tf_helper, io_helper from ..runner.output_writer import DirectOutputWriter try: from flink_ml_tensorflow.tensorflow_context import TFContext except: from flink_ml_tensorflow2.tensorflow_context import TFContext # noinspection PyUnresolvedReferences from tensorflow_io.core.python.ops import core_ops __all__ = ['TF1_TYPE', 'TF2_TYPE'] TF1_TYPE = 'tf1' TF2_TYPE = 'tf2' class BaseEntry(abc.ABC): def __init__(self, func_name, engine_type): self.func_name = func_name self.engine_type = engine_type @staticmethod def get_func_by_name(func_name): """ Get function by the func name :param func_name: func name :return: function """ if '.' not in func_name: if func_name in globals(): return globals()[func_name] else: raise RuntimeError('cannot find function[{}]'.format(func_name)) else: module_name, func_name = func_name.rsplit('.', 1) import importlib # load the module, will raise ImportError if module cannot be loaded m = importlib.import_module(module_name) # get the class, will raise AttributeError if class cannot be found c = getattr(m, func_name) return c @abc.abstractmethod def construct_args(self, **kwargs): pass def is_batch(self): return True def post_process(self, **kwargs): pass def entry_func(self, context: Context): tf_context = TFContext(context) properties = tf_context.properties print('properties', properties, flush=True) # intra_op_parallelism is set by akdl, because there is a bug in TensorFlow 1.x # See: https://stackoverflow.com/questions/34426268/restricting-number-of-cores-used intra_op_parallelism = int(properties['ALINK:intra_op_parallelism']) if self.engine_type == TF1_TYPE: tf_helper.set_intra_op_parallelism(intra_op_parallelism_threads=intra_op_parallelism) elif self.engine_type == TF2_TYPE: tf.config.threading.set_intra_op_parallelism_threads(intra_op_parallelism) num_workers = int(properties['ALINK:num_workers']) work_dir = properties['ALINK:work_dir'] cluster, task_type, task_index = tf_context.export_estimator_cluster() if self.is_batch(): java_queue_file = JavaFile(context.from_java(), context.to_java()) dataset_file = os.path.join(work_dir, 'dataset.tfrecords') dataset, dataset_length = io_helper.convert_java_queue_file_to_repeatable_dataset(java_queue_file, dataset_file) print("number of records: " + str(dataset_length), flush=True) dataset_fn: Callable[[], tf.data.TFRecordDataset] = lambda: tf.data.TFRecordDataset(dataset_file) else: dataset_fn: Callable[[], tf.data.TFRecordDataset] = lambda: tf_context.flink_stream_dataset() dataset = None dataset_file = None dataset_length = None saved_model_dir = os.path.join(work_dir, 'savedmodel') user_params: Dict = json.loads(properties['ALINK:user_defined_params']) for i in range(1, 1024): key = "ALINK:bc_" + str(i) if key in properties: user_params[key] = context.properties[key] key = "ALINK:model_dir" if key in properties: user_params[key] = properties[key] output_writer = DirectOutputWriter(tf_context.from_java(), tf_context.to_java()) locals_copy = locals().copy() locals_copy.pop("self") print("locals_copy = ", locals_copy, flush=True) args = self.construct_args(**locals_copy) func = self.get_func_by_name(self.func_name) func(args) print("task_type = {}, task_index = {}: done tf_user_main".format(task_type, task_index), flush=True) local_vars = locals().copy() local_vars.pop('self') self.post_process(**local_vars) print("task_type = {}, task_index = {}: exit".format(task_type, task_index), flush=True) output_writer.close()
[ "flink_ml_tensorflow2.tensorflow_context.TFContext", "tensorflow.data.TFRecordDataset", "tensorflow.config.threading.set_intra_op_parallelism_threads", "importlib.import_module" ]
[((1728, 1746), 'flink_ml_tensorflow2.tensorflow_context.TFContext', 'TFContext', (['context'], {}), '(context)\n', (1737, 1746), False, 'from flink_ml_tensorflow2.tensorflow_context import TFContext\n'), ((1311, 1347), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (1334, 1347), False, 'import importlib\n'), ((2295, 2369), 'tensorflow.config.threading.set_intra_op_parallelism_threads', 'tf.config.threading.set_intra_op_parallelism_threads', (['intra_op_parallelism'], {}), '(intra_op_parallelism)\n', (2347, 2369), True, 'import tensorflow as tf\n'), ((3102, 3139), 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['dataset_file'], {}), '(dataset_file)\n', (3125, 3139), True, 'import tensorflow as tf\n')]
import pytest ENCODING = 'utf-8' @pytest.fixture(scope='function', autouse=True) def setup_case(request): def destroy_case(): from corm import annihilate_keyspace_tables, SESSIONS annihilate_keyspace_tables('mykeyspace') for keyspace_name, session in SESSIONS.copy().items(): if keyspace_name in ['global']: continue session.shutdown() del SESSIONS[keyspace_name] request.addfinalizer(destroy_case) def test_initial_api(): from corm import register_table, insert, sync_schema from corm.models import CORMBase class TestModel(CORMBase): __keyspace__ = 'mykeyspace' something: str other: str register_table(TestModel) sync_schema() one = TestModel('one', 'two') two = TestModel('one', 'two') three = TestModel('one', 'three') insert([one, two, three]) def test_keyspace_api(): import hashlib import uuid from corm import register_table, insert, sync_schema, \ keyspace_exists, keyspace_destroy, keyspace_create from corm.datatypes import CassandraKeyspaceStrategy from corm.models import CORMBase # Keyspaces seem to have to start with Alpha-Letters keyspace_name = hashlib.md5(str(uuid.uuid4()).encode(ENCODING)).hexdigest() keyspace_name = f'abc_{keyspace_name}' assert keyspace_exists(keyspace_name) is False keyspace_create(keyspace_name, CassandraKeyspaceStrategy.Simple) assert keyspace_exists(keyspace_name) is True keyspace_destroy(keyspace_name) assert keyspace_exists(keyspace_name) is False class TestModelKeyspace(CORMBase): __keyspace__ = keyspace_name item: str register_table(TestModelKeyspace) assert keyspace_exists(keyspace_name) is False sync_schema() assert keyspace_exists(keyspace_name) is True one = TestModelKeyspace('one') insert([one]) keyspace_destroy(keyspace_name) assert keyspace_exists(keyspace_name) is False def test_float_api(): from corm import register_table, insert, sync_schema, select from corm.models import CORMBase class TestModelFloat(CORMBase): __keyspace__ = 'mykeyspace' input_one: float register_table(TestModelFloat) sync_schema() data = 324.593998934 one = TestModelFloat(data) insert([one]) for idx, entry in enumerate(select(TestModelFloat)): assert entry.input_one == data def test_boolean_api(): from corm import register_table, insert, sync_schema from corm.models import CORMBase from datetime import datetime class TestModelBoolean(CORMBase): __keyspace__ = 'mykeyspace' item: str created: datetime value: bool register_table(TestModelBoolean) sync_schema() one = TestModelBoolean('one', datetime.utcnow(), True) two = TestModelBoolean('two', datetime.utcnow(), False) insert([one, two]) def test_datetime_api(): from corm import register_table, insert, sync_schema from corm.models import CORMBase from datetime import datetime class TestModelDatetime(CORMBase): __keyspace__ = 'mykeyspace' item: str created: datetime register_table(TestModelDatetime) sync_schema() one = TestModelDatetime('one', datetime.utcnow()) two = TestModelDatetime('two', datetime.utcnow()) insert([one, two]) def test_set_api(): from corm import register_table, insert, sync_schema from corm.models import CORMBase from corm.annotations import Set class TestModelSet(CORMBase): __keyspace__ = 'mykeyspace' something: str other: Set register_table(TestModelSet) sync_schema() one = TestModelSet('one', {'first'}) two = TestModelSet('two', {'last', 'second-to-last'}) three = TestModelSet('three', {'last', 'second-to-last', 'last'}) four = TestModelSet('four', ['one', 'two', 'three', 'four']) insert([one, two, three, four]) def test_select_api(): import random from corm import register_table, insert, sync_schema, select from corm.models import CORMBase from corm.annotations import Set from datetime import datetime MAX_INT = 1000 class TestModelSelect(CORMBase): __keyspace__ = 'mykeyspace' random_number: int created: datetime register_table(TestModelSelect) sync_schema() insert_later = [] values = [] for idx in range(0, 100): values.append({ 'random_number': random.randint(0, MAX_INT), 'created': datetime.utcnow() }) entry = TestModelSelect(values[-1]['random_number'], values[-1]['created']) insert_later.append(entry) if len(insert_later) > 20: insert(insert_later) insert_later = [] insert(insert_later) for idx, entry in enumerate(select(TestModelSelect, fetch_size=100)): assert isinstance(entry, TestModelSelect) # Order is not consistent # assert entry.random_number == values[idx]['random_number'] # assert entry.created == values[idx]['created'] assert idx > 0 def test_select_where_api(): import random from corm import register_table, insert, sync_schema, select, where from corm.models import CORMBase from datetime import datetime MAX_INT = 99999 class TestModelSelectSource(CORMBase): __keyspace__ = 'mykeyspace' random_number: int created: datetime one: str two: str class TestModelSelectPivot(CORMBase): __keyspace__ = 'mykeyspace' random_number: int created: datetime one: str two: str source: TestModelSelectSource # TODO: Build UserType integration # register_table(TestModelSelectSource) # register_table(TestModelSelectPivot) def test_alter_table_api(): from corm import register_table, insert, sync_schema, select, obtain_session from corm.models import CORMBase from datetime import datetime # Create Table or Delete Column on existing Table class TestModelAlter(CORMBase): __keyspace__ = 'mykeyspace' random_number: int created: datetime register_table(TestModelAlter) sync_schema() COL_CQL = f''' SELECT column_name, type FROM system_schema.columns WHERE table_name = '{TestModelAlter._corm_details.table_name}' AND keyspace_name = '{TestModelAlter._corm_details.keyspace}' ''' rows = [(row.column_name, row.type) for row in obtain_session('mykeyspace').execute(COL_CQL)] assert len(rows) == 3 # Add Column on existing Table class TestModelAlter(CORMBase): __keyspace__ = 'mykeyspace' random_number: int created: datetime new_column: str register_table(TestModelAlter) sync_schema() rows = [(row.column_name, row.type) for row in obtain_session('mykeyspace').execute(COL_CQL)] assert len(rows) == 4 def test_not_ordered_by_pk_field(): import random from corm import register_table, insert, sync_schema, select, obtain_session from corm.models import CORMBase from datetime import datetime class TestNotOrderedByPkField(CORMBase): __keyspace__ = 'mykeyspace' __primary_keys__ = ['one', 'two', 'three'] random_number: int created: datetime one: str two: str three: str register_table(TestNotOrderedByPkField) sync_schema() first_entry = TestNotOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'beta') gamma = TestNotOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'gamma') delta = TestNotOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'delta') second_entry = TestNotOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'alpha') insert([first_entry, gamma, delta, second_entry]) for idx, entry in enumerate(select(TestNotOrderedByPkField)): if idx == 0: assert entry.three != 'alpha' def test_ordered_by_pk_field(): import random from corm import register_table, insert, sync_schema, select, obtain_session from corm.models import CORMBase from corm.datatypes import TableOrdering from datetime import datetime class TestOrderedByPkField(CORMBase): __keyspace__ = 'mykeyspace' __primary_keys__ = ['one', 'two', 'three'] __ordered_by_primary_keys__ = TableOrdering.DESC random_number: int created: datetime one: str two: str three: str register_table(TestOrderedByPkField) sync_schema() first_entry = TestOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'beta') second_entry = TestOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'alpha') gamma = TestOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'gamma') delta = TestOrderedByPkField(random.randint(0, 99999), datetime.utcnow(), 'one', 'one', 'delta') insert([first_entry, second_entry, delta, gamma]) for idx, entry in enumerate(select(TestOrderedByPkField)): if idx == 0: assert entry.three == 'alpha' elif idx == 1: assert entry.three == 'beta' elif idx == 2: assert entry.three == 'delta' elif idx == 3: assert entry.three == 'gamma' def test_corm_auth(): import os os.environ['CLUSTER_PORT'] = '9043' os.environ['CLUSTER_USERNAME'] = 'cassandra' os.environ['CLUSTER_PASSWORD'] = '<PASSWORD>' from corm import register_table, insert, sync_schema from corm.models import CORMBase class TestCORMAuth(CORMBase): one: str __keyspace__ = 'test_corm_auth' register_table(TestCORMAuth) sync_schema() def test_corm_enum(): import enum from corm import register_table, insert, sync_schema, select from corm.models import CORMBase class OptionList(enum.Enum): One = 'one' Two = 'two' class TestCormEnum(CORMBase): __keyspace__ = 'test_corm_enum' option: OptionList register_table(TestCormEnum) sync_schema() first = TestCormEnum(OptionList.One) second = TestCormEnum(OptionList.Two) insert([first, second]) for idx, entry in enumerate(select(TestCormEnum)): assert entry.option in OptionList.__members__.values() def test_corm_where(): import enum from corm import register_table, insert, sync_schema, select, where, cp, Operator from corm.models import CORMBase class OptionList(enum.Enum): One = 'one' Two = 'two' class TestCORMWhere(CORMBase): __keyspace__ = 'test_corm_where' option: OptionList score: int register_table(TestCORMWhere) sync_schema() one = TestCORMWhere(OptionList.One, 1) two = TestCORMWhere(OptionList.One, 2) three = TestCORMWhere(OptionList.Two, 3) four = TestCORMWhere(OptionList.Two, 4) insert([one, two, three, four]) for idx, entry in enumerate(where(TestCORMWhere, [cp(Operator.Equal, 'score', 4)])): assert idx == 0 assert entry.score == 4 assert entry.option == OptionList.Two for idx, entry in enumerate(where(TestCORMWhere, [cp(Operator.Equal, 'score', 1)])): assert idx == 0 assert entry.score == 1 assert entry.option == OptionList.One for idx, entry in enumerate(where(TestCORMWhere, [cp(Operator.Equal, 'option', OptionList.One)])): assert idx in [0, 1] assert entry.score in [1, 2] assert entry.option == OptionList.One for idx, entry in enumerate(where(TestCORMWhere, [cp(Operator.Equal, 'option', OptionList.Two)])): assert idx in [0, 1] assert entry.score in [3, 4] assert entry.option == OptionList.Two def test_corm_uuid(): import uuid from corm import register_table, insert, sync_schema, select from corm.models import CORMBase class TestCORMUUID(CORMBase): __keyspace__ = 'mykeyspace' identity_test: uuid.UUID register_table(TestCORMUUID) sync_schema() one = TestCORMUUID(uuid.uuid4()) insert([one]) for entry in select(TestCORMUUID): assert isinstance(entry.identity_test, uuid.UUID)
[ "corm.register_table", "corm.select", "corm.keyspace_exists", "datetime.datetime.utcnow", "corm.annihilate_keyspace_tables", "corm.sync_schema", "corm.insert", "corm.keyspace_destroy", "uuid.uuid4", "corm.cp", "corm.obtain_session", "pytest.fixture", "corm.SESSIONS.copy", "random.randint", "corm.keyspace_create" ]
[((36, 82), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""', 'autouse': '(True)'}), "(scope='function', autouse=True)\n", (50, 82), False, 'import pytest\n'), ((735, 760), 'corm.register_table', 'register_table', (['TestModel'], {}), '(TestModel)\n', (749, 760), False, 'from corm import register_table, insert, sync_schema, select\n'), ((765, 778), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (776, 778), False, 'from corm import register_table, insert, sync_schema, select\n'), ((889, 914), 'corm.insert', 'insert', (['[one, two, three]'], {}), '([one, two, three])\n', (895, 914), False, 'from corm import register_table, insert, sync_schema, select\n'), ((1430, 1494), 'corm.keyspace_create', 'keyspace_create', (['keyspace_name', 'CassandraKeyspaceStrategy.Simple'], {}), '(keyspace_name, CassandraKeyspaceStrategy.Simple)\n', (1445, 1494), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((1549, 1580), 'corm.keyspace_destroy', 'keyspace_destroy', (['keyspace_name'], {}), '(keyspace_name)\n', (1565, 1580), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((1733, 1766), 'corm.register_table', 'register_table', (['TestModelKeyspace'], {}), '(TestModelKeyspace)\n', (1747, 1766), False, 'from corm import register_table, insert, sync_schema, select\n'), ((1822, 1835), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (1833, 1835), False, 'from corm import register_table, insert, sync_schema, select\n'), ((1925, 1938), 'corm.insert', 'insert', (['[one]'], {}), '([one])\n', (1931, 1938), False, 'from corm import register_table, insert, sync_schema, select\n'), ((1943, 1974), 'corm.keyspace_destroy', 'keyspace_destroy', (['keyspace_name'], {}), '(keyspace_name)\n', (1959, 1974), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((2255, 2285), 'corm.register_table', 'register_table', (['TestModelFloat'], {}), '(TestModelFloat)\n', (2269, 2285), False, 'from corm import register_table, insert, sync_schema, select\n'), ((2290, 2303), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (2301, 2303), False, 'from corm import register_table, insert, sync_schema, select\n'), ((2364, 2377), 'corm.insert', 'insert', (['[one]'], {}), '([one])\n', (2370, 2377), False, 'from corm import register_table, insert, sync_schema, select\n'), ((2773, 2805), 'corm.register_table', 'register_table', (['TestModelBoolean'], {}), '(TestModelBoolean)\n', (2787, 2805), False, 'from corm import register_table, insert, sync_schema, select\n'), ((2810, 2823), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (2821, 2823), False, 'from corm import register_table, insert, sync_schema, select\n'), ((2947, 2965), 'corm.insert', 'insert', (['[one, two]'], {}), '([one, two])\n', (2953, 2965), False, 'from corm import register_table, insert, sync_schema, select\n'), ((3247, 3280), 'corm.register_table', 'register_table', (['TestModelDatetime'], {}), '(TestModelDatetime)\n', (3261, 3280), False, 'from corm import register_table, insert, sync_schema, select\n'), ((3285, 3298), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (3296, 3298), False, 'from corm import register_table, insert, sync_schema, select\n'), ((3411, 3429), 'corm.insert', 'insert', (['[one, two]'], {}), '([one, two])\n', (3417, 3429), False, 'from corm import register_table, insert, sync_schema, select\n'), ((3701, 3729), 'corm.register_table', 'register_table', (['TestModelSet'], {}), '(TestModelSet)\n', (3715, 3729), False, 'from corm import register_table, insert, sync_schema, select\n'), ((3734, 3747), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (3745, 3747), False, 'from corm import register_table, insert, sync_schema, select\n'), ((3986, 4017), 'corm.insert', 'insert', (['[one, two, three, four]'], {}), '([one, two, three, four])\n', (3992, 4017), False, 'from corm import register_table, insert, sync_schema, select\n'), ((4385, 4416), 'corm.register_table', 'register_table', (['TestModelSelect'], {}), '(TestModelSelect)\n', (4399, 4416), False, 'from corm import register_table, insert, sync_schema, select\n'), ((4421, 4434), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (4432, 4434), False, 'from corm import register_table, insert, sync_schema, select\n'), ((4858, 4878), 'corm.insert', 'insert', (['insert_later'], {}), '(insert_later)\n', (4864, 4878), False, 'from corm import register_table, insert, sync_schema, select\n'), ((6262, 6292), 'corm.register_table', 'register_table', (['TestModelAlter'], {}), '(TestModelAlter)\n', (6276, 6292), False, 'from corm import register_table, insert, sync_schema, select\n'), ((6297, 6310), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (6308, 6310), False, 'from corm import register_table, insert, sync_schema, select\n'), ((6843, 6873), 'corm.register_table', 'register_table', (['TestModelAlter'], {}), '(TestModelAlter)\n', (6857, 6873), False, 'from corm import register_table, insert, sync_schema, select\n'), ((6878, 6891), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (6889, 6891), False, 'from corm import register_table, insert, sync_schema, select\n'), ((7470, 7509), 'corm.register_table', 'register_table', (['TestNotOrderedByPkField'], {}), '(TestNotOrderedByPkField)\n', (7484, 7509), False, 'from corm import register_table, insert, sync_schema, select\n'), ((7514, 7527), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (7525, 7527), False, 'from corm import register_table, insert, sync_schema, select\n'), ((7961, 8010), 'corm.insert', 'insert', (['[first_entry, gamma, delta, second_entry]'], {}), '([first_entry, gamma, delta, second_entry])\n', (7967, 8010), False, 'from corm import register_table, insert, sync_schema, select\n'), ((8688, 8724), 'corm.register_table', 'register_table', (['TestOrderedByPkField'], {}), '(TestOrderedByPkField)\n', (8702, 8724), False, 'from corm import register_table, insert, sync_schema, select\n'), ((8729, 8742), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (8740, 8742), False, 'from corm import register_table, insert, sync_schema, select\n'), ((9164, 9213), 'corm.insert', 'insert', (['[first_entry, second_entry, delta, gamma]'], {}), '([first_entry, second_entry, delta, gamma])\n', (9170, 9213), False, 'from corm import register_table, insert, sync_schema, select\n'), ((9905, 9933), 'corm.register_table', 'register_table', (['TestCORMAuth'], {}), '(TestCORMAuth)\n', (9919, 9933), False, 'from corm import register_table, insert, sync_schema, select\n'), ((9938, 9951), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (9949, 9951), False, 'from corm import register_table, insert, sync_schema, select\n'), ((10276, 10304), 'corm.register_table', 'register_table', (['TestCormEnum'], {}), '(TestCormEnum)\n', (10290, 10304), False, 'from corm import register_table, insert, sync_schema, select\n'), ((10309, 10322), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (10320, 10322), False, 'from corm import register_table, insert, sync_schema, select\n'), ((10411, 10434), 'corm.insert', 'insert', (['[first, second]'], {}), '([first, second])\n', (10417, 10434), False, 'from corm import register_table, insert, sync_schema, select\n'), ((10922, 10951), 'corm.register_table', 'register_table', (['TestCORMWhere'], {}), '(TestCORMWhere)\n', (10936, 10951), False, 'from corm import register_table, insert, sync_schema, select\n'), ((10956, 10969), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (10967, 10969), False, 'from corm import register_table, insert, sync_schema, select\n'), ((11149, 11180), 'corm.insert', 'insert', (['[one, two, three, four]'], {}), '([one, two, three, four])\n', (11155, 11180), False, 'from corm import register_table, insert, sync_schema, select\n'), ((12252, 12280), 'corm.register_table', 'register_table', (['TestCORMUUID'], {}), '(TestCORMUUID)\n', (12266, 12280), False, 'from corm import register_table, insert, sync_schema, select\n'), ((12285, 12298), 'corm.sync_schema', 'sync_schema', ([], {}), '()\n', (12296, 12298), False, 'from corm import register_table, insert, sync_schema, select\n'), ((12340, 12353), 'corm.insert', 'insert', (['[one]'], {}), '([one])\n', (12346, 12353), False, 'from corm import register_table, insert, sync_schema, select\n'), ((12371, 12391), 'corm.select', 'select', (['TestCORMUUID'], {}), '(TestCORMUUID)\n', (12377, 12391), False, 'from corm import register_table, insert, sync_schema, select\n'), ((202, 242), 'corm.annihilate_keyspace_tables', 'annihilate_keyspace_tables', (['"""mykeyspace"""'], {}), "('mykeyspace')\n", (228, 242), False, 'from corm import annihilate_keyspace_tables, SESSIONS\n'), ((1386, 1416), 'corm.keyspace_exists', 'keyspace_exists', (['keyspace_name'], {}), '(keyspace_name)\n', (1401, 1416), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((1506, 1536), 'corm.keyspace_exists', 'keyspace_exists', (['keyspace_name'], {}), '(keyspace_name)\n', (1521, 1536), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((1592, 1622), 'corm.keyspace_exists', 'keyspace_exists', (['keyspace_name'], {}), '(keyspace_name)\n', (1607, 1622), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((1778, 1808), 'corm.keyspace_exists', 'keyspace_exists', (['keyspace_name'], {}), '(keyspace_name)\n', (1793, 1808), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((1847, 1877), 'corm.keyspace_exists', 'keyspace_exists', (['keyspace_name'], {}), '(keyspace_name)\n', (1862, 1877), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((1986, 2016), 'corm.keyspace_exists', 'keyspace_exists', (['keyspace_name'], {}), '(keyspace_name)\n', (2001, 2016), False, 'from corm import register_table, insert, sync_schema, keyspace_exists, keyspace_destroy, keyspace_create\n'), ((2410, 2432), 'corm.select', 'select', (['TestModelFloat'], {}), '(TestModelFloat)\n', (2416, 2432), False, 'from corm import register_table, insert, sync_schema, select\n'), ((2858, 2875), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2873, 2875), False, 'from datetime import datetime\n'), ((2917, 2934), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2932, 2934), False, 'from datetime import datetime\n'), ((3334, 3351), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (3349, 3351), False, 'from datetime import datetime\n'), ((3388, 3405), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (3403, 3405), False, 'from datetime import datetime\n'), ((4911, 4950), 'corm.select', 'select', (['TestModelSelect'], {'fetch_size': '(100)'}), '(TestModelSelect, fetch_size=100)\n', (4917, 4950), False, 'from corm import register_table, insert, sync_schema, select\n'), ((7571, 7595), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (7585, 7595), False, 'import random\n'), ((7597, 7614), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (7612, 7614), False, 'from datetime import datetime\n'), ((7674, 7698), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (7688, 7698), False, 'import random\n'), ((7700, 7717), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (7715, 7717), False, 'from datetime import datetime\n'), ((7778, 7802), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (7792, 7802), False, 'import random\n'), ((7804, 7821), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (7819, 7821), False, 'from datetime import datetime\n'), ((7889, 7913), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (7903, 7913), False, 'import random\n'), ((7915, 7932), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (7930, 7932), False, 'from datetime import datetime\n'), ((8043, 8074), 'corm.select', 'select', (['TestNotOrderedByPkField'], {}), '(TestNotOrderedByPkField)\n', (8049, 8074), False, 'from corm import register_table, insert, sync_schema, select\n'), ((8783, 8807), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (8797, 8807), False, 'import random\n'), ((8809, 8826), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (8824, 8826), False, 'from datetime import datetime\n'), ((8890, 8914), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (8904, 8914), False, 'import random\n'), ((8916, 8933), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (8931, 8933), False, 'from datetime import datetime\n'), ((8991, 9015), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (9005, 9015), False, 'import random\n'), ((9017, 9034), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (9032, 9034), False, 'from datetime import datetime\n'), ((9092, 9116), 'random.randint', 'random.randint', (['(0)', '(99999)'], {}), '(0, 99999)\n', (9106, 9116), False, 'import random\n'), ((9118, 9135), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (9133, 9135), False, 'from datetime import datetime\n'), ((9246, 9274), 'corm.select', 'select', (['TestOrderedByPkField'], {}), '(TestOrderedByPkField)\n', (9252, 9274), False, 'from corm import register_table, insert, sync_schema, select\n'), ((10468, 10488), 'corm.select', 'select', (['TestCormEnum'], {}), '(TestCormEnum)\n', (10474, 10488), False, 'from corm import register_table, insert, sync_schema, select\n'), ((12322, 12334), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (12332, 12334), False, 'import uuid\n'), ((4802, 4822), 'corm.insert', 'insert', (['insert_later'], {}), '(insert_later)\n', (4808, 4822), False, 'from corm import register_table, insert, sync_schema, select\n'), ((281, 296), 'corm.SESSIONS.copy', 'SESSIONS.copy', ([], {}), '()\n', (294, 296), False, 'from corm import annihilate_keyspace_tables, SESSIONS\n'), ((4556, 4582), 'random.randint', 'random.randint', (['(0)', 'MAX_INT'], {}), '(0, MAX_INT)\n', (4570, 4582), False, 'import random\n'), ((4607, 4624), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4622, 4624), False, 'from datetime import datetime\n'), ((11236, 11266), 'corm.cp', 'cp', (['Operator.Equal', '"""score"""', '(4)'], {}), "(Operator.Equal, 'score', 4)\n", (11238, 11266), False, 'from corm import register_table, insert, sync_schema, select, where, cp, Operator\n'), ((11428, 11458), 'corm.cp', 'cp', (['Operator.Equal', '"""score"""', '(1)'], {}), "(Operator.Equal, 'score', 1)\n", (11430, 11458), False, 'from corm import register_table, insert, sync_schema, select, where, cp, Operator\n'), ((11621, 11665), 'corm.cp', 'cp', (['Operator.Equal', '"""option"""', 'OptionList.One'], {}), "(Operator.Equal, 'option', OptionList.One)\n", (11623, 11665), False, 'from corm import register_table, insert, sync_schema, select, where, cp, Operator\n'), ((11837, 11881), 'corm.cp', 'cp', (['Operator.Equal', '"""option"""', 'OptionList.Two'], {}), "(Operator.Equal, 'option', OptionList.Two)\n", (11839, 11881), False, 'from corm import register_table, insert, sync_schema, select, where, cp, Operator\n'), ((6579, 6607), 'corm.obtain_session', 'obtain_session', (['"""mykeyspace"""'], {}), "('mykeyspace')\n", (6593, 6607), False, 'from corm import register_table, insert, sync_schema, select, obtain_session\n'), ((6944, 6972), 'corm.obtain_session', 'obtain_session', (['"""mykeyspace"""'], {}), "('mykeyspace')\n", (6958, 6972), False, 'from corm import register_table, insert, sync_schema, select, obtain_session\n'), ((1288, 1300), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1298, 1300), False, 'import uuid\n')]
import json import os from utilities.SaveLoadJson import SaveLoadJson as SLJ from utilities.LineCount import LineCount as LC import subprocess from geolite2 import geolite2 class getData: #Get Data Functions ------------------------------------------------------ @staticmethod def getDATA(): result = {"requests":{}, "time":'', "cpuload":'', "uptime":'', "temp":'', "ip":''} result["requests"]=getData.getRequests() time = getData.getTime().split('\t') result["time"] = time[0] result["cpuload"]=time[1] result["uptime"]=getData.getUptime() result["temp"]=getData.getTemp() result["ip"]=getData.getIP() return json.dumps(result) @staticmethod def getRequests(): data = SLJ.load('dataStore.txt') return {"totalRequests":str(data["totalRequests"]), "totalQueries":str(data["totalQueries"]), "totalAdjusts":str(data["totalAdjusts"])} @staticmethod def getTime(): proc = subprocess.Popen(['uptime'],stdout=subprocess.PIPE, shell=False) (out, err) = proc.communicate() return (str(out)[1:9] + '\t' + str(float(str(out).split(',')[4])*100)+'%') @staticmethod def getUptime(): proc = subprocess.Popen(['uptime', '-p'],stdout=subprocess.PIPE, shell=False) (out, err) = proc.communicate() return str(out) @staticmethod def getTemp(): proc = subprocess.Popen(['vcgencmd', 'measure_temp'],stdout=subprocess.PIPE, shell=False) (out,err) = proc.communicate() return str(out)[5:-1] @staticmethod def getIP(): proc = subprocess.Popen(['hostname', '-I'],stdout=subprocess.PIPE, shell=False) (out, err) = proc.communicate() return str(out) #Get Access Functions --------------------------------------------------- @staticmethod def getAccess(): result={"Countries":dict(), "CountrySrs":dict(), "devices":dict(), "mostRecentSearch":'', "mostRecentAcc":'', "mostRecentIP":'', "recentSearches":[], "Users":0} lastNum = 200 total=0 mostRecentIP = '' mostRecentAcc = '' mostRecentSearch = '' Cname='Unknown' Sname='Unknown' Ctyname='Unknown' ips=dict() logFile = 'utilities/access.log' newFile='utilities/new.log' #f = open(newFile, 'w') with open(logFile, 'r') as lf: for temp in lf: line = temp.split(';') if len(line) > 1: if line[2] == '200': if 'GET /find' in line[3]: #f.write(temp) mostRecentIP=line[0] mostRecentAcc=line[1] reader = geolite2.reader() loc = reader.get(line[0]) Cname = loc['country']['names']['en'] if 'subdivisions' in loc: Sname = loc['subdivisions'][0]['names']['en'] else: Sname='Unknown' if 'city' in loc: Ctyname = loc['city']['names']['en'] else: Ctyname='Unknown' if Cname not in result["Countries"]: result["Countries"][Cname]=dict() result["CountrySrs"][Cname]=0 if Sname not in result["Countries"][Cname]: result["Countries"][Cname][Sname]=dict() if Ctyname not in result["Countries"][Cname][Sname]: result["Countries"][Cname][Sname][Ctyname] = [] result["CountrySrs"][Cname]+=1 total+=1 search = (line[3].split(' ')[1][6:]).replace('%20',' ') mostRecentSearch=search if search not in result["Countries"][Cname][Sname][Ctyname]: result["Countries"][Cname][Sname][Ctyname].append(search) if len(result["Countries"][Cname][Sname][Ctyname]) >= lastNum: result["Countries"][Cname][Sname][Ctyname].pop(0) if search not in result["recentSearches"]: result["recentSearches"].insert(0,search) if len(result["recentSearches"]) >= lastNum: result["recentSearches"].pop(-1) ips[line[0]]=1 device=(line[4].split('(')) if len(device)>1: device=device[1] else: device="Unknown" if device not in result["devices"]: result["devices"][device]=0 result["devices"][device]+=1 #f.close() #Most recent stuff result["mostRecentIP"]=mostRecentIP result["mostRecentAcc"]=mostRecentAcc result["mostRecentSearch"]=mostRecentSearch result["mostRecentLoc"]=str(Ctyname+', '+Sname+', '+Cname) #Unique Users for key, value in ips.items(): result["Users"]+=1 #Device percents for key, value in result["devices"].items(): percnt = (float(value)/float(total))*100 result["devices"][key]=format(percnt, '.2f') #Country percents for key, value in result["CountrySrs"].items(): percnt = (float(value)/float(total))*100 result["CountrySrs"][key]=format(percnt,'.2f') #os.system("sudo mv -f "+newFile+" "+logFile) return json.dumps(result)
[ "utilities.SaveLoadJson.SaveLoadJson.load", "subprocess.Popen", "json.dumps", "geolite2.geolite2.reader" ]
[((789, 807), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (799, 807), False, 'import json\n'), ((865, 890), 'utilities.SaveLoadJson.SaveLoadJson.load', 'SLJ.load', (['"""dataStore.txt"""'], {}), "('dataStore.txt')\n", (873, 890), True, 'from utilities.SaveLoadJson import SaveLoadJson as SLJ\n'), ((1124, 1189), 'subprocess.Popen', 'subprocess.Popen', (["['uptime']"], {'stdout': 'subprocess.PIPE', 'shell': '(False)'}), "(['uptime'], stdout=subprocess.PIPE, shell=False)\n", (1140, 1189), False, 'import subprocess\n'), ((1383, 1454), 'subprocess.Popen', 'subprocess.Popen', (["['uptime', '-p']"], {'stdout': 'subprocess.PIPE', 'shell': '(False)'}), "(['uptime', '-p'], stdout=subprocess.PIPE, shell=False)\n", (1399, 1454), False, 'import subprocess\n'), ((1571, 1658), 'subprocess.Popen', 'subprocess.Popen', (["['vcgencmd', 'measure_temp']"], {'stdout': 'subprocess.PIPE', 'shell': '(False)'}), "(['vcgencmd', 'measure_temp'], stdout=subprocess.PIPE,\n shell=False)\n", (1587, 1658), False, 'import subprocess\n'), ((1774, 1847), 'subprocess.Popen', 'subprocess.Popen', (["['hostname', '-I']"], {'stdout': 'subprocess.PIPE', 'shell': '(False)'}), "(['hostname', '-I'], stdout=subprocess.PIPE, shell=False)\n", (1790, 1847), False, 'import subprocess\n'), ((6318, 6336), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (6328, 6336), False, 'import json\n'), ((3078, 3095), 'geolite2.geolite2.reader', 'geolite2.reader', ([], {}), '()\n', (3093, 3095), False, 'from geolite2 import geolite2\n')]
# All credit to https://stackoverflow.com/questions/46571448/tkinter-and-a-html-file - thanks DELICA - https://stackoverflow.com/users/7027346/delica from cefpython3 import cefpython as cef import ctypes try: import tkinter as tk from tkinter import messagebox except ImportError: import Tkinter as tk import sys import platform import logging as _logging # Fix for PyCharm hints warnings WindowUtils = cef.WindowUtils() # Platforms WINDOWS = (platform.system() == "Windows") LINUX = (platform.system() == "Linux") MAC = (platform.system() == "Darwin") # Globals logger = _logging.getLogger("tkinter_.py") url = "localhost:8050/" class MainFrame(tk.Frame): def __init__(self, root): self.closing = False self.browser = None # Root root.geometry("900x640") tk.Grid.rowconfigure(root, 0, weight=1) tk.Grid.columnconfigure(root, 0, weight=1) # MainFrame tk.Frame.__init__(self, root) self.master.title('SimBA Dashboard') self.master.protocol("WM_DELETE_WINDOW", self.on_close) self.bind("<Configure>", self.on_configure) self.bind("<FocusIn>", self.on_focus_in) self.bind("<FocusOut>", self.on_focus_out) self.focus_set() # Pack MainFrame self.pack(fill=tk.BOTH, expand=tk.YES) def embed_browser(self): window_info = cef.WindowInfo() rect = [0, 0, self.winfo_width(), self.winfo_height()] window_info.SetAsChild(self.get_window_handle(), rect) self.browser = cef.CreateBrowserSync(window_info, url=url) #todo assert self.browser self.browser.SetClientHandler(LoadHandler(self)) self.browser.SetClientHandler(FocusHandler(self)) self.message_loop_work() def get_window_handle(self): if self.winfo_id() > 0: return self.winfo_id() else: raise Exception("Couldn't obtain window handle") def message_loop_work(self): cef.MessageLoopWork() self.after(10, self.message_loop_work) def on_configure(self, event): width = event.width height = event.height if self.browser: if WINDOWS: ctypes.windll.user32.SetWindowPos( self.browser.GetWindowHandle(), 0, 0, 0, width, height, 0x0002) elif LINUX: self.browser.SetBounds(0, 0, width, height) self.browser.NotifyMoveOrResizeStarted() if not self.browser: self.embed_browser() def on_focus_in(self, _): logger.debug("BrowserFrame.on_focus_in") if self.browser: self.browser.SetFocus(True) self.focus_set() def on_focus_out(self, _): logger.debug("BrowserFrame.on_focus_out") if self.browser: self.browser.SetFocus(False) def on_close(self): if self.browser: self.browser.CloseBrowser(True) self.clear_browser_references() self.destroy() self.master.destroy() def get_browser(self): if self.browser: return self.browser return None def clear_browser_references(self): self.browser = None class LoadHandler(object): def __init__(self, browser_frame): self.browser_frame = browser_frame class FocusHandler(object): def __init__(self, browser): self.browser = browser def OnTakeFocus(self, next_component, **_): logger.debug("FocusHandler.OnTakeFocus, next={next}" .format(next=next_component)) def OnSetFocus(self, source, **_): logger.debug("FocusHandler.OnSetFocus, source={source}" .format(source=source)) return False def OnGotFocus(self, **_): """Fix CEF focus issues (#255). Call browser frame's focus_set to get rid of type cursor in url entry widget.""" logger.debug("FocusHandler.OnGotFocus") self.browser.focus_set() # if __name__ == '__main__': logger.setLevel(_logging.INFO) stream_handler = _logging.StreamHandler() formatter = _logging.Formatter("[%(filename)s] %(message)s") stream_handler.setFormatter(formatter) logger.addHandler(stream_handler) logger.info("CEF Python {ver}".format(ver=cef.__version__)) logger.info("Python {ver} {arch}".format( ver=platform.python_version(), arch=platform.architecture()[0])) logger.info("Tk {ver}".format(ver=tk.Tcl().eval('info patchlevel'))) assert cef.__version__ >= "55.3", "CEF Python v55.3+ required to run this" sys.excepthook = cef.ExceptHook # To shutdown all CEF processes on error root = tk.Tk() app = MainFrame(root) def on_closing(): if messagebox.askokcancel("Quit", "Do you want to quit?"): root.destroy() root.protocol("WM_DELETE_WINDOW", on_closing) # Tk must be initialized before CEF otherwise fatal error (Issue #306) cef.Initialize() root.mainloop() # app.mainloop() cef.Shutdown()
[ "logging.getLogger", "Tkinter.Grid.rowconfigure", "logging.StreamHandler", "tkinter.messagebox.askokcancel", "Tkinter.Frame.__init__", "logging.Formatter", "Tkinter.Tk", "Tkinter.Tcl", "cefpython3.cefpython.MessageLoopWork", "cefpython3.cefpython.Initialize", "platform.system", "platform.architecture", "Tkinter.Grid.columnconfigure", "cefpython3.cefpython.CreateBrowserSync", "cefpython3.cefpython.WindowUtils", "cefpython3.cefpython.WindowInfo", "platform.python_version", "cefpython3.cefpython.Shutdown" ]
[((418, 435), 'cefpython3.cefpython.WindowUtils', 'cef.WindowUtils', ([], {}), '()\n', (433, 435), True, 'from cefpython3 import cefpython as cef\n'), ((589, 622), 'logging.getLogger', '_logging.getLogger', (['"""tkinter_.py"""'], {}), "('tkinter_.py')\n", (607, 622), True, 'import logging as _logging\n'), ((4152, 4176), 'logging.StreamHandler', '_logging.StreamHandler', ([], {}), '()\n', (4174, 4176), True, 'import logging as _logging\n'), ((4189, 4237), 'logging.Formatter', '_logging.Formatter', (['"""[%(filename)s] %(message)s"""'], {}), "('[%(filename)s] %(message)s')\n", (4207, 4237), True, 'import logging as _logging\n'), ((4711, 4718), 'Tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (4716, 4718), True, 'import Tkinter as tk\n'), ((4964, 4980), 'cefpython3.cefpython.Initialize', 'cef.Initialize', ([], {}), '()\n', (4978, 4980), True, 'from cefpython3 import cefpython as cef\n'), ((5014, 5028), 'cefpython3.cefpython.Shutdown', 'cef.Shutdown', ([], {}), '()\n', (5026, 5028), True, 'from cefpython3 import cefpython as cef\n'), ((460, 477), 'platform.system', 'platform.system', ([], {}), '()\n', (475, 477), False, 'import platform\n'), ((501, 518), 'platform.system', 'platform.system', ([], {}), '()\n', (516, 518), False, 'import platform\n'), ((538, 555), 'platform.system', 'platform.system', ([], {}), '()\n', (553, 555), False, 'import platform\n'), ((4766, 4820), 'tkinter.messagebox.askokcancel', 'messagebox.askokcancel', (['"""Quit"""', '"""Do you want to quit?"""'], {}), "('Quit', 'Do you want to quit?')\n", (4788, 4820), False, 'from tkinter import messagebox\n'), ((820, 859), 'Tkinter.Grid.rowconfigure', 'tk.Grid.rowconfigure', (['root', '(0)'], {'weight': '(1)'}), '(root, 0, weight=1)\n', (840, 859), True, 'import Tkinter as tk\n'), ((868, 910), 'Tkinter.Grid.columnconfigure', 'tk.Grid.columnconfigure', (['root', '(0)'], {'weight': '(1)'}), '(root, 0, weight=1)\n', (891, 910), True, 'import Tkinter as tk\n'), ((940, 969), 'Tkinter.Frame.__init__', 'tk.Frame.__init__', (['self', 'root'], {}), '(self, root)\n', (957, 969), True, 'import Tkinter as tk\n'), ((1381, 1397), 'cefpython3.cefpython.WindowInfo', 'cef.WindowInfo', ([], {}), '()\n', (1395, 1397), True, 'from cefpython3 import cefpython as cef\n'), ((1547, 1590), 'cefpython3.cefpython.CreateBrowserSync', 'cef.CreateBrowserSync', (['window_info'], {'url': 'url'}), '(window_info, url=url)\n', (1568, 1590), True, 'from cefpython3 import cefpython as cef\n'), ((2036, 2057), 'cefpython3.cefpython.MessageLoopWork', 'cef.MessageLoopWork', ([], {}), '()\n', (2055, 2057), True, 'from cefpython3 import cefpython as cef\n'), ((4425, 4450), 'platform.python_version', 'platform.python_version', ([], {}), '()\n', (4448, 4450), False, 'import platform\n'), ((4457, 4480), 'platform.architecture', 'platform.architecture', ([], {}), '()\n', (4478, 4480), False, 'import platform\n'), ((4520, 4528), 'Tkinter.Tcl', 'tk.Tcl', ([], {}), '()\n', (4526, 4528), True, 'import Tkinter as tk\n')]
#!/usr/bin/env python3 # encoding: utf-8 import sys import urllib.parse import selenium.webdriver def exit(): driver.quit() sys.exit(0) driver = selenium.webdriver.Firefox() # for some reason, detectportal.firefox.com and connectivitycheck.gstatic.com are not blocked # therefore, they cannot be used to detect connectivity # we instead visit another site that is known not to ever have TLS driver.get('http://neverssl.com') if 'neverssl.com' in urllib.parse.urlparse(driver.current_url).netloc: exit() driver.find_element_by_css_selector('label[for="promo_button"]').click() driver.find_element_by_css_selector('input[alt="Next"]').click() driver.find_element_by_css_selector('#PromotionCode').send_keys('lobby18') driver.find_element_by_css_selector('input[alt="Connect"]').click() exit()
[ "sys.exit" ]
[((129, 140), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (137, 140), False, 'import sys\n')]
from django.shortcuts import render from django.contrib.auth.decorators import login_required from django.http import JsonResponse from django.views.decorators.csrf import csrf_exempt from . import helpers # Create your views here. @csrf_exempt def convert_video(request, version): # Get video video = request.FILES['video'] # Transcribe video and extract audio response = helpers.transcribe_file(video) context = response # return render(request, 'api/v1/result_successful.html', context) return JsonResponse(context, safe=False)
[ "django.http.JsonResponse" ]
[((532, 565), 'django.http.JsonResponse', 'JsonResponse', (['context'], {'safe': '(False)'}), '(context, safe=False)\n', (544, 565), False, 'from django.http import JsonResponse\n')]
from itertools import count import numpy as np class Particle(object): """Object containing all the properties for a single particle""" _ids = count(0) def __init__(self, main_data=None, x=np.zeros(2)): self.id = next(self._ids) self.main_data = main_data self.x = np.array(x) self.v = np.zeros(2) self.a = np.zeros(2) self.D = 0 self.rho = main_data.rho0 self.P = 0 self.m = main_data.dx ** 2 * main_data.rho0 # initial mass depends on the initial particle spacing self.boundary = False # Particle by default is not on the boundary # For predictor corrector self.prev_x = np.array(x) self.prev_v = np.zeros(2) self.prev_rho = main_data.rho0 def calc_index(self): """Calculates the 2D integer index for the particle's location in the search grid""" # Calculates the bucket coordinates self.list_num = np.array((self.x - self.main_data.min_x) / (2.0 * self.main_data.h), int) def B(self): return (self.main_data.rho0 * self.main_data.c0 ** 2) / self.main_data.gamma def update_P(self): """ Equation of state System is assumed slightly compressible """ rho0 = self.main_data.rho0 gamma = self.main_data.gamma self.P = self.B() * ((self.rho / rho0)**gamma - 1) def set_main_data(self, main_data): self.main_data = main_data def set_x(self, x): self.x = x self.calc_index() def set_v(self, v): self.v = v def set_a(self, a): self.a = a def set_D(self, D): self.D = D def set_rho(self, rho): self.rho = rho self.update_P() def m(self, m): self.m = m def list_attributes(self): x_s = "position: " + str(self.x) + ", " v_s = "velocity: " + str(self.v) + ", " a_s = "acceleration: " + str(self.a) + ", " D_s = "derivative of density: " + str(self.D) + ", " rho_s = "density: " + str(self.rho) + ", " m_s = "mass: " + str(self.m) + ", " P_s = "pressure: " + str(self.P) + ", " boundary_s = "is boundary: " + str(self.boundary) return [x_s + v_s + a_s + D_s + rho_s + m_s + P_s + boundary_s]
[ "numpy.array", "numpy.zeros", "itertools.count" ]
[((154, 162), 'itertools.count', 'count', (['(0)'], {}), '(0)\n', (159, 162), False, 'from itertools import count\n'), ((205, 216), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (213, 216), True, 'import numpy as np\n'), ((305, 316), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (313, 316), True, 'import numpy as np\n'), ((334, 345), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (342, 345), True, 'import numpy as np\n'), ((363, 374), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (371, 374), True, 'import numpy as np\n'), ((687, 698), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (695, 698), True, 'import numpy as np\n'), ((721, 732), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (729, 732), True, 'import numpy as np\n'), ((960, 1033), 'numpy.array', 'np.array', (['((self.x - self.main_data.min_x) / (2.0 * self.main_data.h))', 'int'], {}), '((self.x - self.main_data.min_x) / (2.0 * self.main_data.h), int)\n', (968, 1033), True, 'import numpy as np\n')]
from unittest import TestCase from pyRdfa import pyRdfa class NonXhtmlTest(TestCase): """ RDFa that is in not well-formed XHTML is passed through html5lib. These tests make sure that this RDFa can be processed both from a file, and from a URL. """ target1 = '<og:isbn>9780596516499</og:isbn>' target2 = '<gr:typeOfGood rdf:resource="urn:x-domain:oreilly.com:product:9780596803391.EBOOK"/>' def test_url(self): g = pyRdfa().rdf_from_source('http://oreilly.com/catalog/9780596516499/') self.assert_(self.target1.encode('utf-8') in g) def test_file(self): g = pyRdfa().rdf_from_source('test/rdfa/oreilly.html') self.assert_(self.target2.encode('utf-8') in g)
[ "pyRdfa.pyRdfa" ]
[((459, 467), 'pyRdfa.pyRdfa', 'pyRdfa', ([], {}), '()\n', (465, 467), False, 'from pyRdfa import pyRdfa\n'), ((623, 631), 'pyRdfa.pyRdfa', 'pyRdfa', ([], {}), '()\n', (629, 631), False, 'from pyRdfa import pyRdfa\n')]
from des109 import moeda preco = float(input('Digite o preço pretendido: €')) print(f'''A metade do preço é {(moeda.metade(preco))} O dobro do preço é {(moeda.dobra(preco))} Aumentando o preço 10% temos {(moeda.aumentar(preco, 10))} Diminuindo o preço 13% temos {(moeda.aumentar(preco, 13))}''')
[ "des109.moeda.metade", "des109.moeda.dobra", "des109.moeda.aumentar" ]
[((113, 132), 'des109.moeda.metade', 'moeda.metade', (['preco'], {}), '(preco)\n', (125, 132), False, 'from des109 import moeda\n'), ((163, 181), 'des109.moeda.dobra', 'moeda.dobra', (['preco'], {}), '(preco)\n', (174, 181), False, 'from des109 import moeda\n'), ((214, 239), 'des109.moeda.aumentar', 'moeda.aumentar', (['preco', '(10)'], {}), '(preco, 10)\n', (228, 239), False, 'from des109 import moeda\n'), ((279, 304), 'des109.moeda.aumentar', 'moeda.aumentar', (['preco', '(13)'], {}), '(preco, 13)\n', (293, 304), False, 'from des109 import moeda\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * __all__ = ['PartnerRegistrationArgs', 'PartnerRegistration'] @pulumi.input_type class PartnerRegistrationArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], authorized_azure_subscription_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, customer_service_uri: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, logo_uri: Optional[pulumi.Input[str]] = None, long_description: Optional[pulumi.Input[str]] = None, partner_customer_service_extension: Optional[pulumi.Input[str]] = None, partner_customer_service_number: Optional[pulumi.Input[str]] = None, partner_name: Optional[pulumi.Input[str]] = None, partner_registration_name: Optional[pulumi.Input[str]] = None, partner_resource_type_description: Optional[pulumi.Input[str]] = None, partner_resource_type_display_name: Optional[pulumi.Input[str]] = None, partner_resource_type_name: Optional[pulumi.Input[str]] = None, setup_uri: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, visibility_state: Optional[pulumi.Input[Union[str, 'PartnerRegistrationVisibilityState']]] = None): """ The set of arguments for constructing a PartnerRegistration resource. :param pulumi.Input[str] resource_group_name: The name of the resource group within the user's subscription. :param pulumi.Input[Sequence[pulumi.Input[str]]] authorized_azure_subscription_ids: List of Azure subscription Ids that are authorized to create a partner namespace associated with this partner registration. This is an optional property. Creating partner namespaces is always permitted under the same Azure subscription as the one used for creating the partner registration. :param pulumi.Input[str] customer_service_uri: The extension of the customer service URI of the publisher. :param pulumi.Input[str] location: Location of the resource. :param pulumi.Input[str] logo_uri: URI of the logo. :param pulumi.Input[str] long_description: Long description for the custom scenarios and integration to be displayed in the portal if needed. Length of this description should not exceed 2048 characters. :param pulumi.Input[str] partner_customer_service_extension: The extension of the customer service number of the publisher. Only digits are allowed and number of digits should not exceed 10. :param pulumi.Input[str] partner_customer_service_number: The customer service number of the publisher. The expected phone format should start with a '+' sign followed by the country code. The remaining digits are then followed. Only digits and spaces are allowed and its length cannot exceed 16 digits including country code. Examples of valid phone numbers are: +1 515 123 4567 and +966 7 5115 2471. Examples of invalid phone numbers are: +1 (515) 123-4567, 1 515 123 4567 and +966 121 5115 24 7 551 1234 43 :param pulumi.Input[str] partner_name: Official name of the partner name. For example: "Contoso". :param pulumi.Input[str] partner_registration_name: Name of the partner registration. :param pulumi.Input[str] partner_resource_type_description: Short description of the partner resource type. The length of this description should not exceed 256 characters. :param pulumi.Input[str] partner_resource_type_display_name: Display name of the partner resource type. :param pulumi.Input[str] partner_resource_type_name: Name of the partner resource type. :param pulumi.Input[str] setup_uri: URI of the partner website that can be used by Azure customers to setup Event Grid integration on an event source. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Tags of the resource. :param pulumi.Input[Union[str, 'PartnerRegistrationVisibilityState']] visibility_state: Visibility state of the partner registration. """ pulumi.set(__self__, "resource_group_name", resource_group_name) if authorized_azure_subscription_ids is not None: pulumi.set(__self__, "authorized_azure_subscription_ids", authorized_azure_subscription_ids) if customer_service_uri is not None: pulumi.set(__self__, "customer_service_uri", customer_service_uri) if location is not None: pulumi.set(__self__, "location", location) if logo_uri is not None: pulumi.set(__self__, "logo_uri", logo_uri) if long_description is not None: pulumi.set(__self__, "long_description", long_description) if partner_customer_service_extension is not None: pulumi.set(__self__, "partner_customer_service_extension", partner_customer_service_extension) if partner_customer_service_number is not None: pulumi.set(__self__, "partner_customer_service_number", partner_customer_service_number) if partner_name is not None: pulumi.set(__self__, "partner_name", partner_name) if partner_registration_name is not None: pulumi.set(__self__, "partner_registration_name", partner_registration_name) if partner_resource_type_description is not None: pulumi.set(__self__, "partner_resource_type_description", partner_resource_type_description) if partner_resource_type_display_name is not None: pulumi.set(__self__, "partner_resource_type_display_name", partner_resource_type_display_name) if partner_resource_type_name is not None: pulumi.set(__self__, "partner_resource_type_name", partner_resource_type_name) if setup_uri is not None: pulumi.set(__self__, "setup_uri", setup_uri) if tags is not None: pulumi.set(__self__, "tags", tags) if visibility_state is not None: pulumi.set(__self__, "visibility_state", visibility_state) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group within the user's subscription. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="authorizedAzureSubscriptionIds") def authorized_azure_subscription_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ List of Azure subscription Ids that are authorized to create a partner namespace associated with this partner registration. This is an optional property. Creating partner namespaces is always permitted under the same Azure subscription as the one used for creating the partner registration. """ return pulumi.get(self, "authorized_azure_subscription_ids") @authorized_azure_subscription_ids.setter def authorized_azure_subscription_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "authorized_azure_subscription_ids", value) @property @pulumi.getter(name="customerServiceUri") def customer_service_uri(self) -> Optional[pulumi.Input[str]]: """ The extension of the customer service URI of the publisher. """ return pulumi.get(self, "customer_service_uri") @customer_service_uri.setter def customer_service_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "customer_service_uri", value) @property @pulumi.getter def location(self) -> Optional[pulumi.Input[str]]: """ Location of the resource. """ return pulumi.get(self, "location") @location.setter def location(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "location", value) @property @pulumi.getter(name="logoUri") def logo_uri(self) -> Optional[pulumi.Input[str]]: """ URI of the logo. """ return pulumi.get(self, "logo_uri") @logo_uri.setter def logo_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "logo_uri", value) @property @pulumi.getter(name="longDescription") def long_description(self) -> Optional[pulumi.Input[str]]: """ Long description for the custom scenarios and integration to be displayed in the portal if needed. Length of this description should not exceed 2048 characters. """ return pulumi.get(self, "long_description") @long_description.setter def long_description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "long_description", value) @property @pulumi.getter(name="partnerCustomerServiceExtension") def partner_customer_service_extension(self) -> Optional[pulumi.Input[str]]: """ The extension of the customer service number of the publisher. Only digits are allowed and number of digits should not exceed 10. """ return pulumi.get(self, "partner_customer_service_extension") @partner_customer_service_extension.setter def partner_customer_service_extension(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "partner_customer_service_extension", value) @property @pulumi.getter(name="partnerCustomerServiceNumber") def partner_customer_service_number(self) -> Optional[pulumi.Input[str]]: """ The customer service number of the publisher. The expected phone format should start with a '+' sign followed by the country code. The remaining digits are then followed. Only digits and spaces are allowed and its length cannot exceed 16 digits including country code. Examples of valid phone numbers are: +1 515 123 4567 and +966 7 5115 2471. Examples of invalid phone numbers are: +1 (515) 123-4567, 1 515 123 4567 and +966 121 5115 24 7 551 1234 43 """ return pulumi.get(self, "partner_customer_service_number") @partner_customer_service_number.setter def partner_customer_service_number(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "partner_customer_service_number", value) @property @pulumi.getter(name="partnerName") def partner_name(self) -> Optional[pulumi.Input[str]]: """ Official name of the partner name. For example: "Contoso". """ return pulumi.get(self, "partner_name") @partner_name.setter def partner_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "partner_name", value) @property @pulumi.getter(name="partnerRegistrationName") def partner_registration_name(self) -> Optional[pulumi.Input[str]]: """ Name of the partner registration. """ return pulumi.get(self, "partner_registration_name") @partner_registration_name.setter def partner_registration_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "partner_registration_name", value) @property @pulumi.getter(name="partnerResourceTypeDescription") def partner_resource_type_description(self) -> Optional[pulumi.Input[str]]: """ Short description of the partner resource type. The length of this description should not exceed 256 characters. """ return pulumi.get(self, "partner_resource_type_description") @partner_resource_type_description.setter def partner_resource_type_description(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "partner_resource_type_description", value) @property @pulumi.getter(name="partnerResourceTypeDisplayName") def partner_resource_type_display_name(self) -> Optional[pulumi.Input[str]]: """ Display name of the partner resource type. """ return pulumi.get(self, "partner_resource_type_display_name") @partner_resource_type_display_name.setter def partner_resource_type_display_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "partner_resource_type_display_name", value) @property @pulumi.getter(name="partnerResourceTypeName") def partner_resource_type_name(self) -> Optional[pulumi.Input[str]]: """ Name of the partner resource type. """ return pulumi.get(self, "partner_resource_type_name") @partner_resource_type_name.setter def partner_resource_type_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "partner_resource_type_name", value) @property @pulumi.getter(name="setupUri") def setup_uri(self) -> Optional[pulumi.Input[str]]: """ URI of the partner website that can be used by Azure customers to setup Event Grid integration on an event source. """ return pulumi.get(self, "setup_uri") @setup_uri.setter def setup_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "setup_uri", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Tags of the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="visibilityState") def visibility_state(self) -> Optional[pulumi.Input[Union[str, 'PartnerRegistrationVisibilityState']]]: """ Visibility state of the partner registration. """ return pulumi.get(self, "visibility_state") @visibility_state.setter def visibility_state(self, value: Optional[pulumi.Input[Union[str, 'PartnerRegistrationVisibilityState']]]): pulumi.set(self, "visibility_state", value) class PartnerRegistration(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, authorized_azure_subscription_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, customer_service_uri: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, logo_uri: Optional[pulumi.Input[str]] = None, long_description: Optional[pulumi.Input[str]] = None, partner_customer_service_extension: Optional[pulumi.Input[str]] = None, partner_customer_service_number: Optional[pulumi.Input[str]] = None, partner_name: Optional[pulumi.Input[str]] = None, partner_registration_name: Optional[pulumi.Input[str]] = None, partner_resource_type_description: Optional[pulumi.Input[str]] = None, partner_resource_type_display_name: Optional[pulumi.Input[str]] = None, partner_resource_type_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, setup_uri: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, visibility_state: Optional[pulumi.Input[Union[str, 'PartnerRegistrationVisibilityState']]] = None, __props__=None): """ Information about a partner registration. API Version: 2020-04-01-preview. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Sequence[pulumi.Input[str]]] authorized_azure_subscription_ids: List of Azure subscription Ids that are authorized to create a partner namespace associated with this partner registration. This is an optional property. Creating partner namespaces is always permitted under the same Azure subscription as the one used for creating the partner registration. :param pulumi.Input[str] customer_service_uri: The extension of the customer service URI of the publisher. :param pulumi.Input[str] location: Location of the resource. :param pulumi.Input[str] logo_uri: URI of the logo. :param pulumi.Input[str] long_description: Long description for the custom scenarios and integration to be displayed in the portal if needed. Length of this description should not exceed 2048 characters. :param pulumi.Input[str] partner_customer_service_extension: The extension of the customer service number of the publisher. Only digits are allowed and number of digits should not exceed 10. :param pulumi.Input[str] partner_customer_service_number: The customer service number of the publisher. The expected phone format should start with a '+' sign followed by the country code. The remaining digits are then followed. Only digits and spaces are allowed and its length cannot exceed 16 digits including country code. Examples of valid phone numbers are: +1 515 123 4567 and +966 7 5115 2471. Examples of invalid phone numbers are: +1 (515) 123-4567, 1 515 123 4567 and +966 121 5115 24 7 551 1234 43 :param pulumi.Input[str] partner_name: Official name of the partner name. For example: "Contoso". :param pulumi.Input[str] partner_registration_name: Name of the partner registration. :param pulumi.Input[str] partner_resource_type_description: Short description of the partner resource type. The length of this description should not exceed 256 characters. :param pulumi.Input[str] partner_resource_type_display_name: Display name of the partner resource type. :param pulumi.Input[str] partner_resource_type_name: Name of the partner resource type. :param pulumi.Input[str] resource_group_name: The name of the resource group within the user's subscription. :param pulumi.Input[str] setup_uri: URI of the partner website that can be used by Azure customers to setup Event Grid integration on an event source. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Tags of the resource. :param pulumi.Input[Union[str, 'PartnerRegistrationVisibilityState']] visibility_state: Visibility state of the partner registration. """ ... @overload def __init__(__self__, resource_name: str, args: PartnerRegistrationArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Information about a partner registration. API Version: 2020-04-01-preview. :param str resource_name: The name of the resource. :param PartnerRegistrationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(PartnerRegistrationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, authorized_azure_subscription_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, customer_service_uri: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, logo_uri: Optional[pulumi.Input[str]] = None, long_description: Optional[pulumi.Input[str]] = None, partner_customer_service_extension: Optional[pulumi.Input[str]] = None, partner_customer_service_number: Optional[pulumi.Input[str]] = None, partner_name: Optional[pulumi.Input[str]] = None, partner_registration_name: Optional[pulumi.Input[str]] = None, partner_resource_type_description: Optional[pulumi.Input[str]] = None, partner_resource_type_display_name: Optional[pulumi.Input[str]] = None, partner_resource_type_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, setup_uri: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, visibility_state: Optional[pulumi.Input[Union[str, 'PartnerRegistrationVisibilityState']]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = PartnerRegistrationArgs.__new__(PartnerRegistrationArgs) __props__.__dict__["authorized_azure_subscription_ids"] = authorized_azure_subscription_ids __props__.__dict__["customer_service_uri"] = customer_service_uri __props__.__dict__["location"] = location __props__.__dict__["logo_uri"] = logo_uri __props__.__dict__["long_description"] = long_description __props__.__dict__["partner_customer_service_extension"] = partner_customer_service_extension __props__.__dict__["partner_customer_service_number"] = partner_customer_service_number __props__.__dict__["partner_name"] = partner_name __props__.__dict__["partner_registration_name"] = partner_registration_name __props__.__dict__["partner_resource_type_description"] = partner_resource_type_description __props__.__dict__["partner_resource_type_display_name"] = partner_resource_type_display_name __props__.__dict__["partner_resource_type_name"] = partner_resource_type_name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["setup_uri"] = setup_uri __props__.__dict__["tags"] = tags __props__.__dict__["visibility_state"] = visibility_state __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["system_data"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:eventgrid:PartnerRegistration"), pulumi.Alias(type_="azure-native:eventgrid/v20200401preview:PartnerRegistration"), pulumi.Alias(type_="azure-nextgen:eventgrid/v20200401preview:PartnerRegistration"), pulumi.Alias(type_="azure-native:eventgrid/v20201015preview:PartnerRegistration"), pulumi.Alias(type_="azure-nextgen:eventgrid/v20201015preview:PartnerRegistration")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(PartnerRegistration, __self__).__init__( 'azure-native:eventgrid:PartnerRegistration', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'PartnerRegistration': """ Get an existing PartnerRegistration resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = PartnerRegistrationArgs.__new__(PartnerRegistrationArgs) __props__.__dict__["authorized_azure_subscription_ids"] = None __props__.__dict__["customer_service_uri"] = None __props__.__dict__["location"] = None __props__.__dict__["logo_uri"] = None __props__.__dict__["long_description"] = None __props__.__dict__["name"] = None __props__.__dict__["partner_customer_service_extension"] = None __props__.__dict__["partner_customer_service_number"] = None __props__.__dict__["partner_name"] = None __props__.__dict__["partner_resource_type_description"] = None __props__.__dict__["partner_resource_type_display_name"] = None __props__.__dict__["partner_resource_type_name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["setup_uri"] = None __props__.__dict__["system_data"] = None __props__.__dict__["tags"] = None __props__.__dict__["type"] = None __props__.__dict__["visibility_state"] = None return PartnerRegistration(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="authorizedAzureSubscriptionIds") def authorized_azure_subscription_ids(self) -> pulumi.Output[Optional[Sequence[str]]]: """ List of Azure subscription Ids that are authorized to create a partner namespace associated with this partner registration. This is an optional property. Creating partner namespaces is always permitted under the same Azure subscription as the one used for creating the partner registration. """ return pulumi.get(self, "authorized_azure_subscription_ids") @property @pulumi.getter(name="customerServiceUri") def customer_service_uri(self) -> pulumi.Output[Optional[str]]: """ The extension of the customer service URI of the publisher. """ return pulumi.get(self, "customer_service_uri") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter(name="logoUri") def logo_uri(self) -> pulumi.Output[Optional[str]]: """ URI of the logo. """ return pulumi.get(self, "logo_uri") @property @pulumi.getter(name="longDescription") def long_description(self) -> pulumi.Output[Optional[str]]: """ Long description for the custom scenarios and integration to be displayed in the portal if needed. Length of this description should not exceed 2048 characters. """ return pulumi.get(self, "long_description") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="partnerCustomerServiceExtension") def partner_customer_service_extension(self) -> pulumi.Output[Optional[str]]: """ The extension of the customer service number of the publisher. Only digits are allowed and number of digits should not exceed 10. """ return pulumi.get(self, "partner_customer_service_extension") @property @pulumi.getter(name="partnerCustomerServiceNumber") def partner_customer_service_number(self) -> pulumi.Output[Optional[str]]: """ The customer service number of the publisher. The expected phone format should start with a '+' sign followed by the country code. The remaining digits are then followed. Only digits and spaces are allowed and its length cannot exceed 16 digits including country code. Examples of valid phone numbers are: +1 515 123 4567 and +966 7 5115 2471. Examples of invalid phone numbers are: +1 (515) 123-4567, 1 515 123 4567 and +966 121 5115 24 7 551 1234 43 """ return pulumi.get(self, "partner_customer_service_number") @property @pulumi.getter(name="partnerName") def partner_name(self) -> pulumi.Output[Optional[str]]: """ Official name of the partner name. For example: "Contoso". """ return pulumi.get(self, "partner_name") @property @pulumi.getter(name="partnerResourceTypeDescription") def partner_resource_type_description(self) -> pulumi.Output[Optional[str]]: """ Short description of the partner resource type. The length of this description should not exceed 256 characters. """ return pulumi.get(self, "partner_resource_type_description") @property @pulumi.getter(name="partnerResourceTypeDisplayName") def partner_resource_type_display_name(self) -> pulumi.Output[Optional[str]]: """ Display name of the partner resource type. """ return pulumi.get(self, "partner_resource_type_display_name") @property @pulumi.getter(name="partnerResourceTypeName") def partner_resource_type_name(self) -> pulumi.Output[Optional[str]]: """ Name of the partner resource type. """ return pulumi.get(self, "partner_resource_type_name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Provisioning state of the partner registration. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="setupUri") def setup_uri(self) -> pulumi.Output[Optional[str]]: """ URI of the partner website that can be used by Azure customers to setup Event Grid integration on an event source. """ return pulumi.get(self, "setup_uri") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ The system metadata relating to Partner Registration resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Tags of the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Type of the resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="visibilityState") def visibility_state(self) -> pulumi.Output[Optional[str]]: """ Visibility state of the partner registration. """ return pulumi.get(self, "visibility_state")
[ "pulumi.get", "pulumi.Alias", "pulumi.getter", "pulumi.set", "pulumi.ResourceOptions", "pulumi.ResourceOptions.merge" ]
[((6655, 6694), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""resourceGroupName"""'}), "(name='resourceGroupName')\n", (6668, 6694), False, 'import pulumi\n'), ((7070, 7122), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""authorizedAzureSubscriptionIds"""'}), "(name='authorizedAzureSubscriptionIds')\n", (7083, 7122), False, 'import pulumi\n'), ((7891, 7931), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""customerServiceUri"""'}), "(name='customerServiceUri')\n", (7904, 7931), False, 'import pulumi\n'), ((8646, 8675), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""logoUri"""'}), "(name='logoUri')\n", (8659, 8675), False, 'import pulumi\n'), ((8970, 9007), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""longDescription"""'}), "(name='longDescription')\n", (8983, 9007), False, 'import pulumi\n'), ((9495, 9548), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerCustomerServiceExtension"""'}), "(name='partnerCustomerServiceExtension')\n", (9508, 9548), False, 'import pulumi\n'), ((10086, 10136), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerCustomerServiceNumber"""'}), "(name='partnerCustomerServiceNumber')\n", (10099, 10136), False, 'import pulumi\n'), ((11009, 11042), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerName"""'}), "(name='partnerName')\n", (11022, 11042), False, 'import pulumi\n'), ((11399, 11444), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerRegistrationName"""'}), "(name='partnerRegistrationName')\n", (11412, 11444), False, 'import pulumi\n'), ((11841, 11893), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerResourceTypeDescription"""'}), "(name='partnerResourceTypeDescription')\n", (11854, 11893), False, 'import pulumi\n'), ((12409, 12461), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerResourceTypeDisplayName"""'}), "(name='partnerResourceTypeDisplayName')\n", (12422, 12461), False, 'import pulumi\n'), ((12912, 12957), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerResourceTypeName"""'}), "(name='partnerResourceTypeName')\n", (12925, 12957), False, 'import pulumi\n'), ((13360, 13390), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""setupUri"""'}), "(name='setupUri')\n", (13373, 13390), False, 'import pulumi\n'), ((14146, 14183), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""visibilityState"""'}), "(name='visibilityState')\n", (14159, 14183), False, 'import pulumi\n'), ((26360, 26412), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""authorizedAzureSubscriptionIds"""'}), "(name='authorizedAzureSubscriptionIds')\n", (26373, 26412), False, 'import pulumi\n'), ((26943, 26983), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""customerServiceUri"""'}), "(name='customerServiceUri')\n", (26956, 26983), False, 'import pulumi\n'), ((27402, 27431), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""logoUri"""'}), "(name='logoUri')\n", (27415, 27431), False, 'import pulumi\n'), ((27601, 27638), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""longDescription"""'}), "(name='longDescription')\n", (27614, 27638), False, 'import pulumi\n'), ((28147, 28200), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerCustomerServiceExtension"""'}), "(name='partnerCustomerServiceExtension')\n", (28160, 28200), False, 'import pulumi\n'), ((28535, 28585), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerCustomerServiceNumber"""'}), "(name='partnerCustomerServiceNumber')\n", (28548, 28585), False, 'import pulumi\n'), ((29264, 29297), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerName"""'}), "(name='partnerName')\n", (29277, 29297), False, 'import pulumi\n'), ((29517, 29569), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerResourceTypeDescription"""'}), "(name='partnerResourceTypeDescription')\n", (29530, 29569), False, 'import pulumi\n'), ((29885, 29937), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerResourceTypeDisplayName"""'}), "(name='partnerResourceTypeDisplayName')\n", (29898, 29937), False, 'import pulumi\n'), ((30185, 30230), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""partnerResourceTypeName"""'}), "(name='partnerResourceTypeName')\n", (30198, 30230), False, 'import pulumi\n'), ((30454, 30493), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""provisioningState"""'}), "(name='provisioningState')\n", (30467, 30493), False, 'import pulumi\n'), ((30704, 30734), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""setupUri"""'}), "(name='setupUri')\n", (30717, 30734), False, 'import pulumi\n'), ((31013, 31045), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""systemData"""'}), "(name='systemData')\n", (31026, 31045), False, 'import pulumi\n'), ((31646, 31683), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""visibilityState"""'}), "(name='visibilityState')\n", (31659, 31683), False, 'import pulumi\n'), ((4683, 4747), 'pulumi.set', 'pulumi.set', (['__self__', '"""resource_group_name"""', 'resource_group_name'], {}), "(__self__, 'resource_group_name', resource_group_name)\n", (4693, 4747), False, 'import pulumi\n'), ((6861, 6900), 'pulumi.get', 'pulumi.get', (['self', '"""resource_group_name"""'], {}), "(self, 'resource_group_name')\n", (6871, 6900), False, 'import pulumi\n'), ((7003, 7049), 'pulumi.set', 'pulumi.set', (['self', '"""resource_group_name"""', 'value'], {}), "(self, 'resource_group_name', value)\n", (7013, 7049), False, 'import pulumi\n'), ((7592, 7645), 'pulumi.get', 'pulumi.get', (['self', '"""authorized_azure_subscription_ids"""'], {}), "(self, 'authorized_azure_subscription_ids')\n", (7602, 7645), False, 'import pulumi\n'), ((7810, 7870), 'pulumi.set', 'pulumi.set', (['self', '"""authorized_azure_subscription_ids"""', 'value'], {}), "(self, 'authorized_azure_subscription_ids', value)\n", (7820, 7870), False, 'import pulumi\n'), ((8106, 8146), 'pulumi.get', 'pulumi.get', (['self', '"""customer_service_uri"""'], {}), "(self, 'customer_service_uri')\n", (8116, 8146), False, 'import pulumi\n'), ((8261, 8308), 'pulumi.set', 'pulumi.set', (['self', '"""customer_service_uri"""', 'value'], {}), "(self, 'customer_service_uri', value)\n", (8271, 8308), False, 'import pulumi\n'), ((8471, 8499), 'pulumi.get', 'pulumi.get', (['self', '"""location"""'], {}), "(self, 'location')\n", (8481, 8499), False, 'import pulumi\n'), ((8590, 8625), 'pulumi.set', 'pulumi.set', (['self', '"""location"""', 'value'], {}), "(self, 'location', value)\n", (8600, 8625), False, 'import pulumi\n'), ((8795, 8823), 'pulumi.get', 'pulumi.get', (['self', '"""logo_uri"""'], {}), "(self, 'logo_uri')\n", (8805, 8823), False, 'import pulumi\n'), ((8914, 8949), 'pulumi.set', 'pulumi.set', (['self', '"""logo_uri"""', 'value'], {}), "(self, 'logo_uri', value)\n", (8924, 8949), False, 'import pulumi\n'), ((9288, 9324), 'pulumi.get', 'pulumi.get', (['self', '"""long_description"""'], {}), "(self, 'long_description')\n", (9298, 9324), False, 'import pulumi\n'), ((9431, 9474), 'pulumi.set', 'pulumi.set', (['self', '"""long_description"""', 'value'], {}), "(self, 'long_description', value)\n", (9441, 9474), False, 'import pulumi\n'), ((9807, 9861), 'pulumi.get', 'pulumi.get', (['self', '"""partner_customer_service_extension"""'], {}), "(self, 'partner_customer_service_extension')\n", (9817, 9861), False, 'import pulumi\n'), ((10004, 10065), 'pulumi.set', 'pulumi.set', (['self', '"""partner_customer_service_extension"""', 'value'], {}), "(self, 'partner_customer_service_extension', value)\n", (10014, 10065), False, 'import pulumi\n'), ((10742, 10793), 'pulumi.get', 'pulumi.get', (['self', '"""partner_customer_service_number"""'], {}), "(self, 'partner_customer_service_number')\n", (10752, 10793), False, 'import pulumi\n'), ((10930, 10988), 'pulumi.set', 'pulumi.set', (['self', '"""partner_customer_service_number"""', 'value'], {}), "(self, 'partner_customer_service_number', value)\n", (10940, 10988), False, 'import pulumi\n'), ((11208, 11240), 'pulumi.get', 'pulumi.get', (['self', '"""partner_name"""'], {}), "(self, 'partner_name')\n", (11218, 11240), False, 'import pulumi\n'), ((11339, 11378), 'pulumi.set', 'pulumi.set', (['self', '"""partner_name"""', 'value'], {}), "(self, 'partner_name', value)\n", (11349, 11378), False, 'import pulumi\n'), ((11598, 11643), 'pulumi.get', 'pulumi.get', (['self', '"""partner_registration_name"""'], {}), "(self, 'partner_registration_name')\n", (11608, 11643), False, 'import pulumi\n'), ((11768, 11820), 'pulumi.set', 'pulumi.set', (['self', '"""partner_registration_name"""', 'value'], {}), "(self, 'partner_registration_name', value)\n", (11778, 11820), False, 'import pulumi\n'), ((12134, 12187), 'pulumi.get', 'pulumi.get', (['self', '"""partner_resource_type_description"""'], {}), "(self, 'partner_resource_type_description')\n", (12144, 12187), False, 'import pulumi\n'), ((12328, 12388), 'pulumi.set', 'pulumi.set', (['self', '"""partner_resource_type_description"""', 'value'], {}), "(self, 'partner_resource_type_description', value)\n", (12338, 12388), False, 'import pulumi\n'), ((12633, 12687), 'pulumi.get', 'pulumi.get', (['self', '"""partner_resource_type_display_name"""'], {}), "(self, 'partner_resource_type_display_name')\n", (12643, 12687), False, 'import pulumi\n'), ((12830, 12891), 'pulumi.set', 'pulumi.set', (['self', '"""partner_resource_type_display_name"""', 'value'], {}), "(self, 'partner_resource_type_display_name', value)\n", (12840, 12891), False, 'import pulumi\n'), ((13113, 13159), 'pulumi.get', 'pulumi.get', (['self', '"""partner_resource_type_name"""'], {}), "(self, 'partner_resource_type_name')\n", (13123, 13159), False, 'import pulumi\n'), ((13286, 13339), 'pulumi.set', 'pulumi.set', (['self', '"""partner_resource_type_name"""', 'value'], {}), "(self, 'partner_resource_type_name', value)\n", (13296, 13339), False, 'import pulumi\n'), ((13618, 13647), 'pulumi.get', 'pulumi.get', (['self', '"""setup_uri"""'], {}), "(self, 'setup_uri')\n", (13628, 13647), False, 'import pulumi\n'), ((13740, 13776), 'pulumi.set', 'pulumi.set', (['self', '"""setup_uri"""', 'value'], {}), "(self, 'setup_uri', value)\n", (13750, 13776), False, 'import pulumi\n'), ((13959, 13983), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (13969, 13983), False, 'import pulumi\n'), ((14094, 14125), 'pulumi.set', 'pulumi.set', (['self', '"""tags"""', 'value'], {}), "(self, 'tags', value)\n", (14104, 14125), False, 'import pulumi\n'), ((14385, 14421), 'pulumi.get', 'pulumi.get', (['self', '"""visibility_state"""'], {}), "(self, 'visibility_state')\n", (14395, 14421), False, 'import pulumi\n'), ((14573, 14616), 'pulumi.set', 'pulumi.set', (['self', '"""visibility_state"""', 'value'], {}), "(self, 'visibility_state', value)\n", (14583, 14616), False, 'import pulumi\n'), ((24283, 24329), 'pulumi.ResourceOptions.merge', 'pulumi.ResourceOptions.merge', (['opts', 'alias_opts'], {}), '(opts, alias_opts)\n', (24311, 24329), False, 'import pulumi\n'), ((26869, 26922), 'pulumi.get', 'pulumi.get', (['self', '"""authorized_azure_subscription_ids"""'], {}), "(self, 'authorized_azure_subscription_ids')\n", (26879, 26922), False, 'import pulumi\n'), ((27159, 27199), 'pulumi.get', 'pulumi.get', (['self', '"""customer_service_uri"""'], {}), "(self, 'customer_service_uri')\n", (27169, 27199), False, 'import pulumi\n'), ((27353, 27381), 'pulumi.get', 'pulumi.get', (['self', '"""location"""'], {}), "(self, 'location')\n", (27363, 27381), False, 'import pulumi\n'), ((27552, 27580), 'pulumi.get', 'pulumi.get', (['self', '"""logo_uri"""'], {}), "(self, 'logo_uri')\n", (27562, 27580), False, 'import pulumi\n'), ((27920, 27956), 'pulumi.get', 'pulumi.get', (['self', '"""long_description"""'], {}), "(self, 'long_description')\n", (27930, 27956), False, 'import pulumi\n'), ((28102, 28126), 'pulumi.get', 'pulumi.get', (['self', '"""name"""'], {}), "(self, 'name')\n", (28112, 28126), False, 'import pulumi\n'), ((28460, 28514), 'pulumi.get', 'pulumi.get', (['self', '"""partner_customer_service_extension"""'], {}), "(self, 'partner_customer_service_extension')\n", (28470, 28514), False, 'import pulumi\n'), ((29192, 29243), 'pulumi.get', 'pulumi.get', (['self', '"""partner_customer_service_number"""'], {}), "(self, 'partner_customer_service_number')\n", (29202, 29243), False, 'import pulumi\n'), ((29464, 29496), 'pulumi.get', 'pulumi.get', (['self', '"""partner_name"""'], {}), "(self, 'partner_name')\n", (29474, 29496), False, 'import pulumi\n'), ((29811, 29864), 'pulumi.get', 'pulumi.get', (['self', '"""partner_resource_type_description"""'], {}), "(self, 'partner_resource_type_description')\n", (29821, 29864), False, 'import pulumi\n'), ((30110, 30164), 'pulumi.get', 'pulumi.get', (['self', '"""partner_resource_type_display_name"""'], {}), "(self, 'partner_resource_type_display_name')\n", (30120, 30164), False, 'import pulumi\n'), ((30387, 30433), 'pulumi.get', 'pulumi.get', (['self', '"""partner_resource_type_name"""'], {}), "(self, 'partner_resource_type_name')\n", (30397, 30433), False, 'import pulumi\n'), ((30645, 30683), 'pulumi.get', 'pulumi.get', (['self', '"""provisioning_state"""'], {}), "(self, 'provisioning_state')\n", (30655, 30683), False, 'import pulumi\n'), ((30963, 30992), 'pulumi.get', 'pulumi.get', (['self', '"""setup_uri"""'], {}), "(self, 'setup_uri')\n", (30973, 30992), False, 'import pulumi\n'), ((31230, 31261), 'pulumi.get', 'pulumi.get', (['self', '"""system_data"""'], {}), "(self, 'system_data')\n", (31240, 31261), False, 'import pulumi\n'), ((31431, 31455), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (31441, 31455), False, 'import pulumi\n'), ((31601, 31625), 'pulumi.get', 'pulumi.get', (['self', '"""type"""'], {}), "(self, 'type')\n", (31611, 31625), False, 'import pulumi\n'), ((31841, 31877), 'pulumi.get', 'pulumi.get', (['self', '"""visibility_state"""'], {}), "(self, 'visibility_state')\n", (31851, 31877), False, 'import pulumi\n'), ((4818, 4914), 'pulumi.set', 'pulumi.set', (['__self__', '"""authorized_azure_subscription_ids"""', 'authorized_azure_subscription_ids'], {}), "(__self__, 'authorized_azure_subscription_ids',\n authorized_azure_subscription_ids)\n", (4828, 4914), False, 'import pulumi\n'), ((4968, 5034), 'pulumi.set', 'pulumi.set', (['__self__', '"""customer_service_uri"""', 'customer_service_uri'], {}), "(__self__, 'customer_service_uri', customer_service_uri)\n", (4978, 5034), False, 'import pulumi\n'), ((5080, 5122), 'pulumi.set', 'pulumi.set', (['__self__', '"""location"""', 'location'], {}), "(__self__, 'location', location)\n", (5090, 5122), False, 'import pulumi\n'), ((5168, 5210), 'pulumi.set', 'pulumi.set', (['__self__', '"""logo_uri"""', 'logo_uri'], {}), "(__self__, 'logo_uri', logo_uri)\n", (5178, 5210), False, 'import pulumi\n'), ((5264, 5322), 'pulumi.set', 'pulumi.set', (['__self__', '"""long_description"""', 'long_description'], {}), "(__self__, 'long_description', long_description)\n", (5274, 5322), False, 'import pulumi\n'), ((5394, 5492), 'pulumi.set', 'pulumi.set', (['__self__', '"""partner_customer_service_extension"""', 'partner_customer_service_extension'], {}), "(__self__, 'partner_customer_service_extension',\n partner_customer_service_extension)\n", (5404, 5492), False, 'import pulumi\n'), ((5557, 5649), 'pulumi.set', 'pulumi.set', (['__self__', '"""partner_customer_service_number"""', 'partner_customer_service_number'], {}), "(__self__, 'partner_customer_service_number',\n partner_customer_service_number)\n", (5567, 5649), False, 'import pulumi\n'), ((5695, 5745), 'pulumi.set', 'pulumi.set', (['__self__', '"""partner_name"""', 'partner_name'], {}), "(__self__, 'partner_name', partner_name)\n", (5705, 5745), False, 'import pulumi\n'), ((5808, 5884), 'pulumi.set', 'pulumi.set', (['__self__', '"""partner_registration_name"""', 'partner_registration_name'], {}), "(__self__, 'partner_registration_name', partner_registration_name)\n", (5818, 5884), False, 'import pulumi\n'), ((5955, 6051), 'pulumi.set', 'pulumi.set', (['__self__', '"""partner_resource_type_description"""', 'partner_resource_type_description'], {}), "(__self__, 'partner_resource_type_description',\n partner_resource_type_description)\n", (5965, 6051), False, 'import pulumi\n'), ((6119, 6217), 'pulumi.set', 'pulumi.set', (['__self__', '"""partner_resource_type_display_name"""', 'partner_resource_type_display_name'], {}), "(__self__, 'partner_resource_type_display_name',\n partner_resource_type_display_name)\n", (6129, 6217), False, 'import pulumi\n'), ((6277, 6355), 'pulumi.set', 'pulumi.set', (['__self__', '"""partner_resource_type_name"""', 'partner_resource_type_name'], {}), "(__self__, 'partner_resource_type_name', partner_resource_type_name)\n", (6287, 6355), False, 'import pulumi\n'), ((6402, 6446), 'pulumi.set', 'pulumi.set', (['__self__', '"""setup_uri"""', 'setup_uri'], {}), "(__self__, 'setup_uri', setup_uri)\n", (6412, 6446), False, 'import pulumi\n'), ((6488, 6522), 'pulumi.set', 'pulumi.set', (['__self__', '"""tags"""', 'tags'], {}), "(__self__, 'tags', tags)\n", (6498, 6522), False, 'import pulumi\n'), ((6576, 6634), 'pulumi.set', 'pulumi.set', (['__self__', '"""visibility_state"""', 'visibility_state'], {}), "(__self__, 'visibility_state', visibility_state)\n", (6586, 6634), False, 'import pulumi\n'), ((21660, 21684), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {}), '()\n', (21682, 21684), False, 'import pulumi\n'), ((25143, 25172), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'id': 'id'}), '(id=id)\n', (25165, 25172), False, 'import pulumi\n'), ((23866, 23931), 'pulumi.Alias', 'pulumi.Alias', ([], {'type_': '"""azure-nextgen:eventgrid:PartnerRegistration"""'}), "(type_='azure-nextgen:eventgrid:PartnerRegistration')\n", (23878, 23931), False, 'import pulumi\n'), ((23933, 24019), 'pulumi.Alias', 'pulumi.Alias', ([], {'type_': '"""azure-native:eventgrid/v20200401preview:PartnerRegistration"""'}), "(type_=\n 'azure-native:eventgrid/v20200401preview:PartnerRegistration')\n", (23945, 24019), False, 'import pulumi\n'), ((24016, 24103), 'pulumi.Alias', 'pulumi.Alias', ([], {'type_': '"""azure-nextgen:eventgrid/v20200401preview:PartnerRegistration"""'}), "(type_=\n 'azure-nextgen:eventgrid/v20200401preview:PartnerRegistration')\n", (24028, 24103), False, 'import pulumi\n'), ((24100, 24186), 'pulumi.Alias', 'pulumi.Alias', ([], {'type_': '"""azure-native:eventgrid/v20201015preview:PartnerRegistration"""'}), "(type_=\n 'azure-native:eventgrid/v20201015preview:PartnerRegistration')\n", (24112, 24186), False, 'import pulumi\n'), ((24183, 24270), 'pulumi.Alias', 'pulumi.Alias', ([], {'type_': '"""azure-nextgen:eventgrid/v20201015preview:PartnerRegistration"""'}), "(type_=\n 'azure-nextgen:eventgrid/v20201015preview:PartnerRegistration')\n", (24195, 24270), False, 'import pulumi\n')]
import os import glob import cv2 import numpy as np import torch from torchvision.transforms import transforms from natsort import natsorted from models import resmasking_dropout1 from utils.datasets.fer2013dataset import EMOTION_DICT from barez import show transform = transforms.Compose( [ transforms.ToPILImage(), transforms.ToTensor(), ] ) def activations_mask(tensor): tensor = torch.squeeze(tensor, 0) tensor = torch.mean(tensor, 0) tensor = tensor.detach().cpu().numpy() tensor = np.maximum(tensor, 0) tensor = cv2.resize(tensor, (224, 224)) tensor = tensor - np.min(tensor) tensor = tensor / np.max(tensor) heatmap = cv2.applyColorMap(np.uint8(255 * tensor), cv2.COLORMAP_JET) return heatmap model = resmasking_dropout1(3, 7) # state = torch.load('./saved/checkpoints/resmasking_dropout1_rot30_2019Nov17_14.33') state = torch.load("./saved/checkpoints/Z_resmasking_dropout1_rot30_2019Nov30_13.32") model.load_state_dict(state["net"]) model.cuda() model.eval() for image_path in natsorted( glob.glob("/home/z/research/bkemo/images/**/*.png", recursive=True) ): image_name = os.path.basename(image_path) print(image_name) # image_path = '/home/z/research/bkemo/images/disgust/0.0_dc10a3_1976_0.png' image = cv2.imread(image_path) image = cv2.resize(image, (224, 224)) tensor = transform(image) tensor = torch.unsqueeze(tensor, 0) tensor = tensor.cuda() # output = model(tensor) x = model.conv1(tensor) # 112 x = model.bn1(x) x = model.relu(x) x = model.maxpool(x) # 56 x = model.layer1(x) # 56 m = model.mask1(x) x = x * (1 + m) x = model.layer2(x) # 28 m = model.mask2(x) x = x * (1 + m) x = model.layer3(x) # 14 heat_1 = activations_mask(x) m = model.mask3(x) x = x * (1 + m) # heat_2 = activations_mask(m) x = model.layer4(x) # 7 m = model.mask4(x) x = x * (1 + m) x = model.avgpool(x) x = torch.flatten(x, 1) output = model.fc(x) # print(np.sum(heat_1 - heat_2)) # show(np.concatenate((image, heat_1, heat_2), axis=1)) cv2.imwrite( "./masking_provements/{}".format(image_name), np.concatenate((image, heat_1), axis=1), ) # np.concatenate((image, heat_1, heat_2), axis=1)) # output = output.cpu().numpy() # print(EMOTION_DICT[torch.argmax(output, 1).item()])
[ "torchvision.transforms.transforms.ToPILImage", "models.resmasking_dropout1", "numpy.uint8", "cv2.resize", "torch.mean", "torch.unsqueeze", "torch.load", "numpy.min", "torch.flatten", "numpy.max", "torchvision.transforms.transforms.ToTensor", "os.path.basename", "numpy.concatenate", "torch.squeeze", "numpy.maximum", "cv2.imread", "glob.glob" ]
[((774, 799), 'models.resmasking_dropout1', 'resmasking_dropout1', (['(3)', '(7)'], {}), '(3, 7)\n', (793, 799), False, 'from models import resmasking_dropout1\n'), ((894, 971), 'torch.load', 'torch.load', (['"""./saved/checkpoints/Z_resmasking_dropout1_rot30_2019Nov30_13.32"""'], {}), "('./saved/checkpoints/Z_resmasking_dropout1_rot30_2019Nov30_13.32')\n", (904, 971), False, 'import torch\n'), ((414, 438), 'torch.squeeze', 'torch.squeeze', (['tensor', '(0)'], {}), '(tensor, 0)\n', (427, 438), False, 'import torch\n'), ((452, 473), 'torch.mean', 'torch.mean', (['tensor', '(0)'], {}), '(tensor, 0)\n', (462, 473), False, 'import torch\n'), ((530, 551), 'numpy.maximum', 'np.maximum', (['tensor', '(0)'], {}), '(tensor, 0)\n', (540, 551), True, 'import numpy as np\n'), ((565, 595), 'cv2.resize', 'cv2.resize', (['tensor', '(224, 224)'], {}), '(tensor, (224, 224))\n', (575, 595), False, 'import cv2\n'), ((1068, 1135), 'glob.glob', 'glob.glob', (['"""/home/z/research/bkemo/images/**/*.png"""'], {'recursive': '(True)'}), "('/home/z/research/bkemo/images/**/*.png', recursive=True)\n", (1077, 1135), False, 'import glob\n'), ((1156, 1184), 'os.path.basename', 'os.path.basename', (['image_path'], {}), '(image_path)\n', (1172, 1184), False, 'import os\n'), ((1300, 1322), 'cv2.imread', 'cv2.imread', (['image_path'], {}), '(image_path)\n', (1310, 1322), False, 'import cv2\n'), ((1335, 1364), 'cv2.resize', 'cv2.resize', (['image', '(224, 224)'], {}), '(image, (224, 224))\n', (1345, 1364), False, 'import cv2\n'), ((1408, 1434), 'torch.unsqueeze', 'torch.unsqueeze', (['tensor', '(0)'], {}), '(tensor, 0)\n', (1423, 1434), False, 'import torch\n'), ((1999, 2018), 'torch.flatten', 'torch.flatten', (['x', '(1)'], {}), '(x, 1)\n', (2012, 2018), False, 'import torch\n'), ((305, 328), 'torchvision.transforms.transforms.ToPILImage', 'transforms.ToPILImage', ([], {}), '()\n', (326, 328), False, 'from torchvision.transforms import transforms\n'), ((338, 359), 'torchvision.transforms.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (357, 359), False, 'from torchvision.transforms import transforms\n'), ((618, 632), 'numpy.min', 'np.min', (['tensor'], {}), '(tensor)\n', (624, 632), True, 'import numpy as np\n'), ((655, 669), 'numpy.max', 'np.max', (['tensor'], {}), '(tensor)\n', (661, 669), True, 'import numpy as np\n'), ((703, 725), 'numpy.uint8', 'np.uint8', (['(255 * tensor)'], {}), '(255 * tensor)\n', (711, 725), True, 'import numpy as np\n'), ((2223, 2262), 'numpy.concatenate', 'np.concatenate', (['(image, heat_1)'], {'axis': '(1)'}), '((image, heat_1), axis=1)\n', (2237, 2262), True, 'import numpy as np\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = [ 'GetNamespaceResult', 'AwaitableGetNamespaceResult', 'get_namespace', ] warnings.warn("""The 'latest' version is deprecated. Please migrate to the function in the top-level module: 'azure-native:notificationhubs:getNamespace'.""", DeprecationWarning) @pulumi.output_type class GetNamespaceResult: """ Description of a Namespace resource. """ def __init__(__self__, created_at=None, critical=None, data_center=None, enabled=None, id=None, location=None, metric_id=None, name=None, namespace_type=None, provisioning_state=None, region=None, scale_unit=None, service_bus_endpoint=None, sku=None, status=None, subscription_id=None, tags=None, type=None, updated_at=None): if created_at and not isinstance(created_at, str): raise TypeError("Expected argument 'created_at' to be a str") pulumi.set(__self__, "created_at", created_at) if critical and not isinstance(critical, bool): raise TypeError("Expected argument 'critical' to be a bool") pulumi.set(__self__, "critical", critical) if data_center and not isinstance(data_center, str): raise TypeError("Expected argument 'data_center' to be a str") pulumi.set(__self__, "data_center", data_center) if enabled and not isinstance(enabled, bool): raise TypeError("Expected argument 'enabled' to be a bool") pulumi.set(__self__, "enabled", enabled) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if metric_id and not isinstance(metric_id, str): raise TypeError("Expected argument 'metric_id' to be a str") pulumi.set(__self__, "metric_id", metric_id) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if namespace_type and not isinstance(namespace_type, str): raise TypeError("Expected argument 'namespace_type' to be a str") pulumi.set(__self__, "namespace_type", namespace_type) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if region and not isinstance(region, str): raise TypeError("Expected argument 'region' to be a str") pulumi.set(__self__, "region", region) if scale_unit and not isinstance(scale_unit, str): raise TypeError("Expected argument 'scale_unit' to be a str") pulumi.set(__self__, "scale_unit", scale_unit) if service_bus_endpoint and not isinstance(service_bus_endpoint, str): raise TypeError("Expected argument 'service_bus_endpoint' to be a str") pulumi.set(__self__, "service_bus_endpoint", service_bus_endpoint) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if status and not isinstance(status, str): raise TypeError("Expected argument 'status' to be a str") pulumi.set(__self__, "status", status) if subscription_id and not isinstance(subscription_id, str): raise TypeError("Expected argument 'subscription_id' to be a str") pulumi.set(__self__, "subscription_id", subscription_id) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if updated_at and not isinstance(updated_at, str): raise TypeError("Expected argument 'updated_at' to be a str") pulumi.set(__self__, "updated_at", updated_at) @property @pulumi.getter(name="createdAt") def created_at(self) -> Optional[str]: """ The time the namespace was created. """ return pulumi.get(self, "created_at") @property @pulumi.getter def critical(self) -> Optional[bool]: """ Whether or not the namespace is set as Critical. """ return pulumi.get(self, "critical") @property @pulumi.getter(name="dataCenter") def data_center(self) -> Optional[str]: """ Data center for the namespace """ return pulumi.get(self, "data_center") @property @pulumi.getter def enabled(self) -> Optional[bool]: """ Whether or not the namespace is currently enabled. """ return pulumi.get(self, "enabled") @property @pulumi.getter def id(self) -> str: """ Resource Id """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter(name="metricId") def metric_id(self) -> str: """ Identifier for Azure Insights metrics """ return pulumi.get(self, "metric_id") @property @pulumi.getter def name(self) -> str: """ Resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="namespaceType") def namespace_type(self) -> Optional[str]: """ The namespace type. """ return pulumi.get(self, "namespace_type") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> Optional[str]: """ Provisioning state of the Namespace. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def region(self) -> Optional[str]: """ Specifies the targeted region in which the namespace should be created. It can be any of the following values: Australia East, Australia Southeast, Central US, East US, East US 2, West US, North Central US, South Central US, East Asia, Southeast Asia, Brazil South, Japan East, Japan West, North Europe, West Europe """ return pulumi.get(self, "region") @property @pulumi.getter(name="scaleUnit") def scale_unit(self) -> Optional[str]: """ ScaleUnit where the namespace gets created """ return pulumi.get(self, "scale_unit") @property @pulumi.getter(name="serviceBusEndpoint") def service_bus_endpoint(self) -> Optional[str]: """ Endpoint you can use to perform NotificationHub operations. """ return pulumi.get(self, "service_bus_endpoint") @property @pulumi.getter def sku(self) -> Optional['outputs.SkuResponse']: """ The sku of the created namespace """ return pulumi.get(self, "sku") @property @pulumi.getter def status(self) -> Optional[str]: """ Status of the namespace. It can be any of these values:1 = Created/Active2 = Creating3 = Suspended4 = Deleting """ return pulumi.get(self, "status") @property @pulumi.getter(name="subscriptionId") def subscription_id(self) -> Optional[str]: """ The Id of the Azure subscription associated with the namespace. """ return pulumi.get(self, "subscription_id") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ Resource type """ return pulumi.get(self, "type") @property @pulumi.getter(name="updatedAt") def updated_at(self) -> Optional[str]: """ The time the namespace was updated. """ return pulumi.get(self, "updated_at") class AwaitableGetNamespaceResult(GetNamespaceResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetNamespaceResult( created_at=self.created_at, critical=self.critical, data_center=self.data_center, enabled=self.enabled, id=self.id, location=self.location, metric_id=self.metric_id, name=self.name, namespace_type=self.namespace_type, provisioning_state=self.provisioning_state, region=self.region, scale_unit=self.scale_unit, service_bus_endpoint=self.service_bus_endpoint, sku=self.sku, status=self.status, subscription_id=self.subscription_id, tags=self.tags, type=self.type, updated_at=self.updated_at) def get_namespace(namespace_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetNamespaceResult: """ Description of a Namespace resource. Latest API Version: 2017-04-01. :param str namespace_name: The namespace name. :param str resource_group_name: The name of the resource group. """ pulumi.log.warn("""get_namespace is deprecated: The 'latest' version is deprecated. Please migrate to the function in the top-level module: 'azure-native:notificationhubs:getNamespace'.""") __args__ = dict() __args__['namespaceName'] = namespace_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:notificationhubs/latest:getNamespace', __args__, opts=opts, typ=GetNamespaceResult).value return AwaitableGetNamespaceResult( created_at=__ret__.created_at, critical=__ret__.critical, data_center=__ret__.data_center, enabled=__ret__.enabled, id=__ret__.id, location=__ret__.location, metric_id=__ret__.metric_id, name=__ret__.name, namespace_type=__ret__.namespace_type, provisioning_state=__ret__.provisioning_state, region=__ret__.region, scale_unit=__ret__.scale_unit, service_bus_endpoint=__ret__.service_bus_endpoint, sku=__ret__.sku, status=__ret__.status, subscription_id=__ret__.subscription_id, tags=__ret__.tags, type=__ret__.type, updated_at=__ret__.updated_at)
[ "pulumi.get", "pulumi.getter", "pulumi.set", "warnings.warn", "pulumi.log.warn", "pulumi.runtime.invoke", "pulumi.InvokeOptions" ]
[((436, 620), 'warnings.warn', 'warnings.warn', (['"""The \'latest\' version is deprecated. Please migrate to the function in the top-level module: \'azure-native:notificationhubs:getNamespace\'."""', 'DeprecationWarning'], {}), '(\n "The \'latest\' version is deprecated. Please migrate to the function in the top-level module: \'azure-native:notificationhubs:getNamespace\'."\n , DeprecationWarning)\n', (449, 620), False, 'import warnings\n'), ((4544, 4575), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""createdAt"""'}), "(name='createdAt')\n", (4557, 4575), False, 'import pulumi\n'), ((4954, 4986), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""dataCenter"""'}), "(name='dataCenter')\n", (4967, 4986), False, 'import pulumi\n'), ((5671, 5701), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""metricId"""'}), "(name='metricId')\n", (5684, 5701), False, 'import pulumi\n'), ((6016, 6051), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""namespaceType"""'}), "(name='namespaceType')\n", (6029, 6051), False, 'import pulumi\n'), ((6221, 6260), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""provisioningState"""'}), "(name='provisioningState')\n", (6234, 6260), False, 'import pulumi\n'), ((6918, 6949), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""scaleUnit"""'}), "(name='scaleUnit')\n", (6931, 6949), False, 'import pulumi\n'), ((7134, 7174), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""serviceBusEndpoint"""'}), "(name='serviceBusEndpoint')\n", (7147, 7174), False, 'import pulumi\n'), ((7846, 7882), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""subscriptionId"""'}), "(name='subscriptionId')\n", (7859, 7882), False, 'import pulumi\n'), ((8416, 8447), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""updatedAt"""'}), "(name='updatedAt')\n", (8429, 8447), False, 'import pulumi\n'), ((9955, 10150), 'pulumi.log.warn', 'pulumi.log.warn', (['"""get_namespace is deprecated: The \'latest\' version is deprecated. Please migrate to the function in the top-level module: \'azure-native:notificationhubs:getNamespace\'."""'], {}), '(\n "get_namespace is deprecated: The \'latest\' version is deprecated. Please migrate to the function in the top-level module: \'azure-native:notificationhubs:getNamespace\'."\n )\n', (9970, 10150), False, 'import pulumi\n'), ((1190, 1236), 'pulumi.set', 'pulumi.set', (['__self__', '"""created_at"""', 'created_at'], {}), "(__self__, 'created_at', created_at)\n", (1200, 1236), False, 'import pulumi\n'), ((1374, 1416), 'pulumi.set', 'pulumi.set', (['__self__', '"""critical"""', 'critical'], {}), "(__self__, 'critical', critical)\n", (1384, 1416), False, 'import pulumi\n'), ((1561, 1609), 'pulumi.set', 'pulumi.set', (['__self__', '"""data_center"""', 'data_center'], {}), "(__self__, 'data_center', data_center)\n", (1571, 1609), False, 'import pulumi\n'), ((1744, 1784), 'pulumi.set', 'pulumi.set', (['__self__', '"""enabled"""', 'enabled'], {}), "(__self__, 'enabled', enabled)\n", (1754, 1784), False, 'import pulumi\n'), ((1902, 1932), 'pulumi.set', 'pulumi.set', (['__self__', '"""id"""', 'id'], {}), "(__self__, 'id', id)\n", (1912, 1932), False, 'import pulumi\n'), ((2068, 2110), 'pulumi.set', 'pulumi.set', (['__self__', '"""location"""', 'location'], {}), "(__self__, 'location', location)\n", (2078, 2110), False, 'import pulumi\n'), ((2249, 2293), 'pulumi.set', 'pulumi.set', (['__self__', '"""metric_id"""', 'metric_id'], {}), "(__self__, 'metric_id', metric_id)\n", (2259, 2293), False, 'import pulumi\n'), ((2417, 2451), 'pulumi.set', 'pulumi.set', (['__self__', '"""name"""', 'name'], {}), "(__self__, 'name', name)\n", (2427, 2451), False, 'import pulumi\n'), ((2605, 2659), 'pulumi.set', 'pulumi.set', (['__self__', '"""namespace_type"""', 'namespace_type'], {}), "(__self__, 'namespace_type', namespace_type)\n", (2615, 2659), False, 'import pulumi\n'), ((2825, 2887), 'pulumi.set', 'pulumi.set', (['__self__', '"""provisioning_state"""', 'provisioning_state'], {}), "(__self__, 'provisioning_state', provisioning_state)\n", (2835, 2887), False, 'import pulumi\n'), ((3017, 3055), 'pulumi.set', 'pulumi.set', (['__self__', '"""region"""', 'region'], {}), "(__self__, 'region', region)\n", (3027, 3055), False, 'import pulumi\n'), ((3197, 3243), 'pulumi.set', 'pulumi.set', (['__self__', '"""scale_unit"""', 'scale_unit'], {}), "(__self__, 'scale_unit', scale_unit)\n", (3207, 3243), False, 'import pulumi\n'), ((3415, 3481), 'pulumi.set', 'pulumi.set', (['__self__', '"""service_bus_endpoint"""', 'service_bus_endpoint'], {}), "(__self__, 'service_bus_endpoint', service_bus_endpoint)\n", (3425, 3481), False, 'import pulumi\n'), ((3604, 3636), 'pulumi.set', 'pulumi.set', (['__self__', '"""sku"""', 'sku'], {}), "(__self__, 'sku', sku)\n", (3614, 3636), False, 'import pulumi\n'), ((3766, 3804), 'pulumi.set', 'pulumi.set', (['__self__', '"""status"""', 'status'], {}), "(__self__, 'status', status)\n", (3776, 3804), False, 'import pulumi\n'), ((3961, 4017), 'pulumi.set', 'pulumi.set', (['__self__', '"""subscription_id"""', 'subscription_id'], {}), "(__self__, 'subscription_id', subscription_id)\n", (3971, 4017), False, 'import pulumi\n'), ((4143, 4177), 'pulumi.set', 'pulumi.set', (['__self__', '"""tags"""', 'tags'], {}), "(__self__, 'tags', tags)\n", (4153, 4177), False, 'import pulumi\n'), ((4301, 4335), 'pulumi.set', 'pulumi.set', (['__self__', '"""type"""', 'type'], {}), "(__self__, 'type', type)\n", (4311, 4335), False, 'import pulumi\n'), ((4477, 4523), 'pulumi.set', 'pulumi.set', (['__self__', '"""updated_at"""', 'updated_at'], {}), "(__self__, 'updated_at', updated_at)\n", (4487, 4523), False, 'import pulumi\n'), ((4702, 4732), 'pulumi.get', 'pulumi.get', (['self', '"""created_at"""'], {}), "(self, 'created_at')\n", (4712, 4732), False, 'import pulumi\n'), ((4905, 4933), 'pulumi.get', 'pulumi.get', (['self', '"""critical"""'], {}), "(self, 'critical')\n", (4915, 4933), False, 'import pulumi\n'), ((5108, 5139), 'pulumi.get', 'pulumi.get', (['self', '"""data_center"""'], {}), "(self, 'data_center')\n", (5118, 5139), False, 'import pulumi\n'), ((5313, 5340), 'pulumi.get', 'pulumi.get', (['self', '"""enabled"""'], {}), "(self, 'enabled')\n", (5323, 5340), False, 'import pulumi\n'), ((5459, 5481), 'pulumi.get', 'pulumi.get', (['self', '"""id"""'], {}), "(self, 'id')\n", (5469, 5481), False, 'import pulumi\n'), ((5622, 5650), 'pulumi.get', 'pulumi.get', (['self', '"""location"""'], {}), "(self, 'location')\n", (5632, 5650), False, 'import pulumi\n'), ((5819, 5848), 'pulumi.get', 'pulumi.get', (['self', '"""metric_id"""'], {}), "(self, 'metric_id')\n", (5829, 5848), False, 'import pulumi\n'), ((5971, 5995), 'pulumi.get', 'pulumi.get', (['self', '"""name"""'], {}), "(self, 'name')\n", (5981, 5995), False, 'import pulumi\n'), ((6166, 6200), 'pulumi.get', 'pulumi.get', (['self', '"""namespace_type"""'], {}), "(self, 'namespace_type')\n", (6176, 6200), False, 'import pulumi\n'), ((6396, 6434), 'pulumi.get', 'pulumi.get', (['self', '"""provisioning_state"""'], {}), "(self, 'provisioning_state')\n", (6406, 6434), False, 'import pulumi\n'), ((6871, 6897), 'pulumi.get', 'pulumi.get', (['self', '"""region"""'], {}), "(self, 'region')\n", (6881, 6897), False, 'import pulumi\n'), ((7083, 7113), 'pulumi.get', 'pulumi.get', (['self', '"""scale_unit"""'], {}), "(self, 'scale_unit')\n", (7093, 7113), False, 'import pulumi\n'), ((7335, 7375), 'pulumi.get', 'pulumi.get', (['self', '"""service_bus_endpoint"""'], {}), "(self, 'service_bus_endpoint')\n", (7345, 7375), False, 'import pulumi\n'), ((7544, 7567), 'pulumi.get', 'pulumi.get', (['self', '"""sku"""'], {}), "(self, 'sku')\n", (7554, 7567), False, 'import pulumi\n'), ((7799, 7825), 'pulumi.get', 'pulumi.get', (['self', '"""status"""'], {}), "(self, 'status')\n", (7809, 7825), False, 'import pulumi\n'), ((8042, 8077), 'pulumi.get', 'pulumi.get', (['self', '"""subscription_id"""'], {}), "(self, 'subscription_id')\n", (8052, 8077), False, 'import pulumi\n'), ((8224, 8248), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (8234, 8248), False, 'import pulumi\n'), ((8371, 8395), 'pulumi.get', 'pulumi.get', (['self', '"""type"""'], {}), "(self, 'type')\n", (8381, 8395), False, 'import pulumi\n'), ((8574, 8604), 'pulumi.get', 'pulumi.get', (['self', '"""updated_at"""'], {}), "(self, 'updated_at')\n", (8584, 8604), False, 'import pulumi\n'), ((10306, 10328), 'pulumi.InvokeOptions', 'pulumi.InvokeOptions', ([], {}), '()\n', (10326, 10328), False, 'import pulumi\n'), ((10420, 10543), 'pulumi.runtime.invoke', 'pulumi.runtime.invoke', (['"""azure-native:notificationhubs/latest:getNamespace"""', '__args__'], {'opts': 'opts', 'typ': 'GetNamespaceResult'}), "('azure-native:notificationhubs/latest:getNamespace',\n __args__, opts=opts, typ=GetNamespaceResult)\n", (10441, 10543), False, 'import pulumi\n')]
import json from pygments import highlight from pygments.lexers import JsonLexer from pygments.formatters import TerminalFormatter def print_json_obj(json_object): json_str = json.dumps(json_object, indent=4, sort_keys=True) print(highlight(json_str, JsonLexer(), TerminalFormatter())) def print_json_str(json_str): print(highlight(json_str, JsonLexer(), TerminalFormatter()))
[ "pygments.lexers.JsonLexer", "json.dumps", "pygments.formatters.TerminalFormatter" ]
[((181, 230), 'json.dumps', 'json.dumps', (['json_object'], {'indent': '(4)', 'sort_keys': '(True)'}), '(json_object, indent=4, sort_keys=True)\n', (191, 230), False, 'import json\n'), ((261, 272), 'pygments.lexers.JsonLexer', 'JsonLexer', ([], {}), '()\n', (270, 272), False, 'from pygments.lexers import JsonLexer\n'), ((274, 293), 'pygments.formatters.TerminalFormatter', 'TerminalFormatter', ([], {}), '()\n', (291, 293), False, 'from pygments.formatters import TerminalFormatter\n'), ((358, 369), 'pygments.lexers.JsonLexer', 'JsonLexer', ([], {}), '()\n', (367, 369), False, 'from pygments.lexers import JsonLexer\n'), ((371, 390), 'pygments.formatters.TerminalFormatter', 'TerminalFormatter', ([], {}), '()\n', (388, 390), False, 'from pygments.formatters import TerminalFormatter\n')]
#!/usr/bin/env python3 import os from opendbc.can.parser import CANParser from cereal import car from selfdrive.car.interfaces import RadarInterfaceBase RADAR_MSGS_C = list(range(0x2c2, 0x2d4+2, 2)) # c_ messages 706,...,724 RADAR_MSGS_D = list(range(0x2a2, 0x2b4+2, 2)) # d_ messages LAST_MSG = max(RADAR_MSGS_C + RADAR_MSGS_D) NUMBER_MSGS = len(RADAR_MSGS_C) + len(RADAR_MSGS_D) def _create_radar_can_parser(): dbc_f = 'chrysler_pacifica_2017_hybrid_private_fusion.dbc' msg_n = len(RADAR_MSGS_C) # list of [(signal name, message name or number, initial values), (...)] # [('RADAR_STATE', 1024, 0), # ('LONG_DIST', 1072, 255), # ('LONG_DIST', 1073, 255), # ('LONG_DIST', 1074, 255), # ('LONG_DIST', 1075, 255), # The factor and offset are applied by the dbc parsing library, so the # default values should be after the factor/offset are applied. signals = list(zip(['LONG_DIST'] * msg_n + ['LAT_DIST'] * msg_n + ['REL_SPEED'] * msg_n, RADAR_MSGS_C * 2 + # LONG_DIST, LAT_DIST RADAR_MSGS_D, # REL_SPEED [0] * msg_n + # LONG_DIST [-1000] * msg_n + # LAT_DIST [-146.278] * msg_n)) # REL_SPEED set to 0, factor/offset to this # TODO what are the checks actually used for? # honda only checks the last message, # toyota checks all the messages. Which do we want? checks = list(zip(RADAR_MSGS_C + RADAR_MSGS_D, [20]*msg_n + # 20Hz (0.05s) [20]*msg_n)) # 20Hz (0.05s) return CANParser(os.path.splitext(dbc_f)[0], signals, checks, 1) def _address_to_track(address): if address in RADAR_MSGS_C: return (address - RADAR_MSGS_C[0]) // 2 if address in RADAR_MSGS_D: return (address - RADAR_MSGS_D[0]) // 2 raise ValueError("radar received unexpected address %d" % address) class RadarInterface(RadarInterfaceBase): def __init__(self, CP): self.pts = {} self.delay = 0 # Delay of radar #TUNE self.rcp = _create_radar_can_parser() self.updated_messages = set() self.trigger_msg = LAST_MSG def update(self, can_strings): vls = self.rcp.update_strings(can_strings) self.updated_messages.update(vls) if self.trigger_msg not in self.updated_messages: return None ret = car.RadarData.new_message() errors = [] if not self.rcp.can_valid: errors.append("canError") ret.errors = errors for ii in self.updated_messages: # ii should be the message ID as a number cpt = self.rcp.vl[ii] trackId = _address_to_track(ii) if trackId not in self.pts: self.pts[trackId] = car.RadarData.RadarPoint.new_message() self.pts[trackId].trackId = trackId self.pts[trackId].aRel = float('nan') self.pts[trackId].yvRel = float('nan') self.pts[trackId].measured = True if 'LONG_DIST' in cpt: # c_* message self.pts[trackId].dRel = cpt['LONG_DIST'] # from front of car # our lat_dist is positive to the right in car's frame. # TODO what does yRel want? self.pts[trackId].yRel = cpt['LAT_DIST'] # in car frame's y axis, left is positive else: # d_* message self.pts[trackId].vRel = cpt['REL_SPEED'] # We want a list, not a dictionary. Filter out LONG_DIST==0 because that means it's not valid. ret.points = [x for x in self.pts.values() if x.dRel != 0] self.updated_messages.clear() return ret
[ "cereal.car.RadarData.new_message", "os.path.splitext", "cereal.car.RadarData.RadarPoint.new_message" ]
[((2329, 2356), 'cereal.car.RadarData.new_message', 'car.RadarData.new_message', ([], {}), '()\n', (2354, 2356), False, 'from cereal import car\n'), ((1589, 1612), 'os.path.splitext', 'os.path.splitext', (['dbc_f'], {}), '(dbc_f)\n', (1605, 1612), False, 'import os\n'), ((2670, 2708), 'cereal.car.RadarData.RadarPoint.new_message', 'car.RadarData.RadarPoint.new_message', ([], {}), '()\n', (2706, 2708), False, 'from cereal import car\n')]
import os import numpy as np import tensorflow as tf from image_quality.utils import utils class TrainDataGenerator(tf.keras.utils.Sequence): '''inherits from Keras Sequence base object, allows to use multiprocessing in .fit_generator''' def __init__(self, samples, img_dir, batch_size, n_classes, basenet_preprocess, img_load_dims=(256, 256), img_crop_dims=(224, 224), shuffle=True): self.samples = samples self.img_dir = img_dir self.batch_size = batch_size self.n_classes = n_classes self.basenet_preprocess = basenet_preprocess # Keras basenet specific preprocessing function self.img_load_dims = img_load_dims # dimensions that images get resized into when loaded self.img_crop_dims = img_crop_dims # dimensions that images get randomly cropped to self.shuffle = shuffle self.on_epoch_end() # call ensures that samples are shuffled in first epoch if shuffle is set to True def __len__(self): return int(np.ceil(len(self.samples) / self.batch_size)) # number of batches per epoch def __getitem__(self, index): batch_indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # get batch indexes batch_samples = [self.samples[i] for i in batch_indexes] # get batch samples X, y = self.__data_generator(batch_samples) return X, y def on_epoch_end(self): self.indexes = np.arange(len(self.samples)) if self.shuffle is True: np.random.shuffle(self.indexes) def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_crop_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join(self.img_dir, '{}'.format(sample['image_id'])) img = utils.load_image(img_file, self.img_load_dims) if img is not None: img = utils.random_crop(img, self.img_crop_dims) img = utils.random_horizontal_flip(img) X[i, ] = img # normalize labels y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y class TestDataGenerator(tf.keras.utils.Sequence): '''inherits from Keras Sequence base object, allows to use multiprocessing in .fit_generator''' def __init__(self, samples, img_dir, batch_size, n_classes, basenet_preprocess, img_load_dims=(224, 224)): self.samples = samples self.img_dir = img_dir self.batch_size = batch_size self.n_classes = n_classes self.basenet_preprocess = basenet_preprocess # Keras basenet specific preprocessing function self.img_load_dims = img_load_dims # dimensions that images get resized into when loaded self.on_epoch_end() # call ensures that samples are shuffled in first epoch if shuffle is set to True def __len__(self): return int(np.ceil(len(self.samples) / self.batch_size)) # number of batches per epoch def __getitem__(self, index): batch_indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] # get batch indexes batch_samples = [self.samples[i] for i in batch_indexes] # get batch samples X, y = self.__data_generator(batch_samples) return X, y def on_epoch_end(self): self.indexes = np.arange(len(self.samples)) def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_load_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join(self.img_dir, '{}'.format(sample['image_id'])) img = utils.load_image(img_file, self.img_load_dims) if img is not None: X[i, ] = img # normalize labels if sample.get('label') is not None: y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y
[ "image_quality.utils.utils.random_crop", "image_quality.utils.utils.load_image", "image_quality.utils.utils.random_horizontal_flip", "image_quality.utils.utils.normalize_labels", "numpy.random.shuffle" ]
[((1440, 1471), 'numpy.random.shuffle', 'np.random.shuffle', (['self.indexes'], {}), '(self.indexes)\n', (1457, 1471), True, 'import numpy as np\n'), ((1878, 1924), 'image_quality.utils.utils.load_image', 'utils.load_image', (['img_file', 'self.img_load_dims'], {}), '(img_file, self.img_load_dims)\n', (1894, 1924), False, 'from image_quality.utils import utils\n'), ((2118, 2157), 'image_quality.utils.utils.normalize_labels', 'utils.normalize_labels', (["sample['label']"], {}), "(sample['label'])\n", (2140, 2157), False, 'from image_quality.utils import utils\n'), ((3876, 3922), 'image_quality.utils.utils.load_image', 'utils.load_image', (['img_file', 'self.img_load_dims'], {}), '(img_file, self.img_load_dims)\n', (3892, 3922), False, 'from image_quality.utils import utils\n'), ((1965, 2007), 'image_quality.utils.utils.random_crop', 'utils.random_crop', (['img', 'self.img_crop_dims'], {}), '(img, self.img_crop_dims)\n', (1982, 2007), False, 'from image_quality.utils import utils\n'), ((2022, 2055), 'image_quality.utils.utils.random_horizontal_flip', 'utils.random_horizontal_flip', (['img'], {}), '(img)\n', (2050, 2055), False, 'from image_quality.utils import utils\n'), ((4055, 4094), 'image_quality.utils.utils.normalize_labels', 'utils.normalize_labels', (["sample['label']"], {}), "(sample['label'])\n", (4077, 4094), False, 'from image_quality.utils import utils\n')]
# -*- coding: utf-8 -*- """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp import numpy as np from qat.comm.quops.ttypes import QuantumChannel, RepresentationType from qat.comm.datamodel.ttypes import Matrix, ComplexNumber def array_to_matrix(array): """ Transform a two dimmentional numpy array to a myqlm Matrix. Args: array: (ndarray) a two dimmentional numpy array Returns: (Matrix): a myqlm Matrix """ assert len(array.shape) == 2, "The array must be two dimmentional" data = [] for arr in array: for elem in arr: data.append(ComplexNumber(np.real(elem), np.imag(elem))) matri = Matrix(array.shape[0], array.shape[1], data) return matri def qiskit_to_qchannel(representation): """ Create a myqlm representation of quantum channel from a qiskit representation of a quantum channel. Args: representation: (Kraus|Choi|Chi|SuperOp|PTM) qiskit representation of a quantum channel. Returns: (QuantumChannel): myqlm representation of a quantum channel. """ qchannel = None qiskit_data = representation.data # Find what representation it is. # Then create the corresponding matrix (kraus_ops|basis|matrix)from the data # of the representation. # Finally, create the QuantumChannel with the RepresentationType, the arity # (got from the qiskit representation) and the matrix. if isinstance(representation, Kraus): kraus_ops = [] for arr in qiskit_data: kraus_ops.append(array_to_matrix(arr)) qchannel = QuantumChannel( representation=RepresentationType.KRAUS, arity=representation.num_qubits, kraus_ops=kraus_ops) elif isinstance(representation, Chi): basis = [] basis.append(array_to_matrix(qiskit_data)) qchannel = QuantumChannel( representation=RepresentationType.CHI, arity=representation.num_qubits, basis=basis) elif isinstance(representation, SuperOp): basis = [] basis.append(array_to_matrix(qiskit_data)) qchannel = QuantumChannel( representation=RepresentationType.SUPEROP, arity=representation.num_qubits, basis=basis) elif isinstance(representation, PTM): matri = array_to_matrix(qiskit_data) qchannel = QuantumChannel( representation=RepresentationType.PTM, arity=representation.num_qubits, matrix=matri) elif isinstance(representation, Choi): matri = array_to_matrix(qiskit_data) qchannel = QuantumChannel( representation=RepresentationType.CHOI, arity=representation.num_qubits, matrix=matri) return qchannel def qchannel_to_qiskit(representation): """ Create a qiskit representation of quantum channel from a myqlm representation of a quantum channel. Args: representation: (QuantumChannel) myqlm representation of a quantum channel. Returns: (Kraus|Choi|Chi|SuperOp|PTM): qiskit representation of a quantum channel. """ rep = representation.representation # Find what representation it is. # Then create the corresponding matrix and shape it like qiskit is expecting it. # Finally, create the qiskit representation from that matrix. if rep in (RepresentationType.PTM, RepresentationType.CHOI): matri = representation.matrix data_re = [] data_im = [] for i in range(matri.nRows): for j in range(matri.nCols): data_re.append(matri.data[i * matri.nRows + j].re + 0.j) data_im.append(matri.data[i * matri.nRows + j].im) data = np.array(data_re) data.imag = np.array(data_im) data = data.reshape((matri.nRows, matri.nCols)) return PTM(data) if (rep == RepresentationType.PTM) else Choi(data) if rep in (RepresentationType.CHI, RepresentationType.SUPEROP): final_data = [] for matri in representation.basis: data_re = [] data_im = [] for i in range(matri.nRows): for j in range(matri.nCols): data_re.append(matri.data[i * matri.nRows + j].re + 0.j) data_im.append(matri.data[i * matri.nRows + j].im) data = np.array(data_re) data.imag = np.array(data_im) data = data.reshape((matri.nRows, matri.nCols)) final_data.append(data) if rep == RepresentationType.CHI: return Chi(final_data) if len(final_data) > 1 else Chi(final_data[0]) return SuperOp(final_data) if len(final_data) > 1 else SuperOp(final_data[0]) if rep == RepresentationType.KRAUS: final_data = [] for matri in representation.kraus_ops: data_re = [] data_im = [] for i in range(matri.nRows): for j in range(matri.nCols): data_re.append(matri.data[i * matri.nRows + j].re + 0.j) data_im.append(matri.data[i * matri.nRows + j].im) data = np.array(data_re) data.imag = np.array(data_im) data = data.reshape((matri.nRows, matri.nCols)) final_data.append(data) return Kraus(final_data) return None
[ "qiskit.quantum_info.operators.channel.Chi", "qiskit.quantum_info.operators.channel.Kraus", "qiskit.quantum_info.operators.channel.Choi", "qiskit.quantum_info.operators.channel.PTM", "qat.comm.quops.ttypes.QuantumChannel", "numpy.array", "qiskit.quantum_info.operators.channel.SuperOp", "numpy.real", "qat.comm.datamodel.ttypes.Matrix", "numpy.imag" ]
[((1512, 1556), 'qat.comm.datamodel.ttypes.Matrix', 'Matrix', (['array.shape[0]', 'array.shape[1]', 'data'], {}), '(array.shape[0], array.shape[1], data)\n', (1518, 1556), False, 'from qat.comm.datamodel.ttypes import Matrix, ComplexNumber\n'), ((2444, 2558), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.KRAUS', 'arity': 'representation.num_qubits', 'kraus_ops': 'kraus_ops'}), '(representation=RepresentationType.KRAUS, arity=\n representation.num_qubits, kraus_ops=kraus_ops)\n', (2458, 2558), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((4610, 4627), 'numpy.array', 'np.array', (['data_re'], {}), '(data_re)\n', (4618, 4627), True, 'import numpy as np\n'), ((4648, 4665), 'numpy.array', 'np.array', (['data_im'], {}), '(data_im)\n', (4656, 4665), True, 'import numpy as np\n'), ((6187, 6204), 'qiskit.quantum_info.operators.channel.Kraus', 'Kraus', (['final_data'], {}), '(final_data)\n', (6192, 6204), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((2722, 2826), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.CHI', 'arity': 'representation.num_qubits', 'basis': 'basis'}), '(representation=RepresentationType.CHI, arity=representation.\n num_qubits, basis=basis)\n', (2736, 2826), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((4737, 4746), 'qiskit.quantum_info.operators.channel.PTM', 'PTM', (['data'], {}), '(data)\n', (4740, 4746), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((4787, 4797), 'qiskit.quantum_info.operators.channel.Choi', 'Choi', (['data'], {}), '(data)\n', (4791, 4797), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((5236, 5253), 'numpy.array', 'np.array', (['data_re'], {}), '(data_re)\n', (5244, 5253), True, 'import numpy as np\n'), ((5278, 5295), 'numpy.array', 'np.array', (['data_im'], {}), '(data_im)\n', (5286, 5295), True, 'import numpy as np\n'), ((5531, 5550), 'qiskit.quantum_info.operators.channel.SuperOp', 'SuperOp', (['final_data'], {}), '(final_data)\n', (5538, 5550), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((5579, 5601), 'qiskit.quantum_info.operators.channel.SuperOp', 'SuperOp', (['final_data[0]'], {}), '(final_data[0])\n', (5586, 5601), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((6016, 6033), 'numpy.array', 'np.array', (['data_re'], {}), '(data_re)\n', (6024, 6033), True, 'import numpy as np\n'), ((6058, 6075), 'numpy.array', 'np.array', (['data_im'], {}), '(data_im)\n', (6066, 6075), True, 'import numpy as np\n'), ((2994, 3102), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.SUPEROP', 'arity': 'representation.num_qubits', 'basis': 'basis'}), '(representation=RepresentationType.SUPEROP, arity=\n representation.num_qubits, basis=basis)\n', (3008, 3102), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((5453, 5468), 'qiskit.quantum_info.operators.channel.Chi', 'Chi', (['final_data'], {}), '(final_data)\n', (5456, 5468), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((5497, 5515), 'qiskit.quantum_info.operators.channel.Chi', 'Chi', (['final_data[0]'], {}), '(final_data[0])\n', (5500, 5515), False, 'from qiskit.quantum_info.operators.channel import Choi, PTM, Kraus, Chi, SuperOp\n'), ((1469, 1482), 'numpy.real', 'np.real', (['elem'], {}), '(elem)\n', (1476, 1482), True, 'import numpy as np\n'), ((1484, 1497), 'numpy.imag', 'np.imag', (['elem'], {}), '(elem)\n', (1491, 1497), True, 'import numpy as np\n'), ((3241, 3346), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.PTM', 'arity': 'representation.num_qubits', 'matrix': 'matri'}), '(representation=RepresentationType.PTM, arity=representation.\n num_qubits, matrix=matri)\n', (3255, 3346), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n'), ((3486, 3592), 'qat.comm.quops.ttypes.QuantumChannel', 'QuantumChannel', ([], {'representation': 'RepresentationType.CHOI', 'arity': 'representation.num_qubits', 'matrix': 'matri'}), '(representation=RepresentationType.CHOI, arity=representation\n .num_qubits, matrix=matri)\n', (3500, 3592), False, 'from qat.comm.quops.ttypes import QuantumChannel, RepresentationType\n')]
""" util.auth2: Authentication tools This module is based off of util.auth, except with the action paradigm removed. """ from flask import session from app.models import Account from app.util import course as course_util # Session keys SESSION_EMAIL = 'email' def create_account(email: str, password: str, first_name: str, last_name: str, fsuid: str, course_list: list = []): """ Creates an account for a single user. :email: Required, the email address of the user. :password: Required, user's chosen password. :first_name: Required, user's first name. :last_name: Required, user's last name. :fsuid: Optional, user's FSUID. :course_list: Optional, courses being taken by user :return: Account object. """ account = Account( email=email, first_name=first_name, last_name=last_name, fsuid=fsuid, is_admin=False ) # Set user's extra credit courses course_util.set_courses(account, course_list) account.set_password(password) account.save() return account def get_account(email: str=None): """ Retrieves account via email (defaults to using session), otherwise redirects to login page. :email: Optional email string, if not provided will use session['email'] :return: Account if email is present in session, None otherwise. """ try: email = email or session['email'] return Account.objects.get_or_404(email=email) except: return None
[ "app.models.Account.objects.get_or_404", "app.util.course.set_courses", "app.models.Account" ]
[((795, 893), 'app.models.Account', 'Account', ([], {'email': 'email', 'first_name': 'first_name', 'last_name': 'last_name', 'fsuid': 'fsuid', 'is_admin': '(False)'}), '(email=email, first_name=first_name, last_name=last_name, fsuid=\n fsuid, is_admin=False)\n', (802, 893), False, 'from app.models import Account\n'), ((978, 1023), 'app.util.course.set_courses', 'course_util.set_courses', (['account', 'course_list'], {}), '(account, course_list)\n', (1001, 1023), True, 'from app.util import course as course_util\n'), ((1464, 1503), 'app.models.Account.objects.get_or_404', 'Account.objects.get_or_404', ([], {'email': 'email'}), '(email=email)\n', (1490, 1503), False, 'from app.models import Account\n')]
from PyQt5.QtWidgets import * from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar class PstaticWidget(QWidget): def __init__(self, parent=None): QWidget.__init__(self, parent) self.fig_pstatic = Figure() self.fig_pstatic.set_facecolor('#ffffff') self.canvas_pstatic = FigureCanvas(self.fig_pstatic) vertical_layout = QVBoxLayout() vertical_layout.addWidget(self.canvas_pstatic) self.canvas_pstatic.axes_pstatic = self.canvas_pstatic.figure.add_subplot(111) self.setLayout(vertical_layout) self.canvas_pstatic.axes_pstatic.set_xticks([]) self.canvas_pstatic.axes_pstatic.set_yticks([]) self.canvas_pstatic.axes_pstatic.axis('off') self.fig_pstatic.subplots_adjust(left=0.12, bottom=0.15, right=0.985, top=0.95) self.toolbar = NavigationToolbar(self.canvas_pstatic, self) self.toolbar.setFixedHeight(25) vertical_layout.addWidget(self.toolbar)
[ "matplotlib.figure.Figure", "matplotlib.backends.backend_qt5agg.NavigationToolbar2QT", "matplotlib.backends.backend_qt5agg.FigureCanvas" ]
[((360, 368), 'matplotlib.figure.Figure', 'Figure', ([], {}), '()\n', (366, 368), False, 'from matplotlib.figure import Figure\n'), ((451, 481), 'matplotlib.backends.backend_qt5agg.FigureCanvas', 'FigureCanvas', (['self.fig_pstatic'], {}), '(self.fig_pstatic)\n', (463, 481), False, 'from matplotlib.backends.backend_qt5agg import FigureCanvas\n'), ((991, 1035), 'matplotlib.backends.backend_qt5agg.NavigationToolbar2QT', 'NavigationToolbar', (['self.canvas_pstatic', 'self'], {}), '(self.canvas_pstatic, self)\n', (1008, 1035), True, 'from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar\n')]
import os class Config: CSRF_ENABLED = True SECRET_KEY = 'your-very-very-secret-key' SQLALCHEMY_DATABASE_URI = 'postgresql:///flask_template_dev' SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_ECHO = True class Development(Config): ENV = 'development' DEBUG = True TESTING = False class Production(Config): ENV = 'production' DEBUG = False SQLALCHEMY_DATABASE_URI = os.getenv('DATABASE_URL', 'postgres://firhokdcdnfygz:93231d3f2ae1156cabfc40f7e4ba08587a77f68a5e2072fbcbbdb30150ba4bcb@ec2-107-22-253-158.compute-1.amazonaws.com:5432/df9c5vvl0s21da')
[ "os.getenv" ]
[((419, 610), 'os.getenv', 'os.getenv', (['"""DATABASE_URL"""', '"""postgres://firhokdcdnfygz:93231d3f2ae1156cabfc40f7e4ba08587a77f68a5e2072fbcbbdb30150ba4bcb@ec2-107-22-253-158.compute-1.amazonaws.com:5432/df9c5vvl0s21da"""'], {}), "('DATABASE_URL',\n 'postgres://firhokdcdnfygz:93231d3f2ae1156cabfc40f7e4ba08587a77f68a5e2072fbcbbdb30150ba4bcb@ec2-107-22-253-158.compute-1.amazonaws.com:5432/df9c5vvl0s21da'\n )\n", (428, 610), False, 'import os\n')]
import itertools import numpy as np import pandas as pd def find_intersections(formula_lists,group_labels,exclusive = True): """ Docstring for function pyKrev.find_intersections ==================== This function compares n lists of molecular formula and outputs a dictionary containing the intersections between each list. Use ---- find_intersections([list_1,..,list_n],['group_1',...,'group_n']) Returns a dictionary in which each key corresponds to a combination of group labels and the corresponding value is a set containing the intersections between the groups in that combination. Parameters ---------- formula_lists: a list containing n lists of molecular formula. Each item in the sub list should be a formula string. group_labels: a list containing n strings of corresponding group labels. exclusive: True or False, depending on whether you want the intersections to contain only unique values. """ if len(formula_lists) != len(group_labels): raise InputError('formula_lists and group_labels must be of equal length') combinations = [seq for i in range(0,len(group_labels)+1) for seq in itertools.combinations(group_labels,i) if len(seq) > 0] combinations = sorted(combinations,key = lambda c : len(c),reverse = True) # sort combinations by length if exclusive == True: assigned_formula = set() #create a set that will hold all the formula already assigned to a group amb = pd.DataFrame(data = formula_lists).T amb.columns = group_labels intersections = dict() for combo in combinations: queries = [] for c in combo: formula = list(filter(None,amb[c])) #Remove None entries introduced by dataframe queries.append(set(formula)) if len(queries) == 1: #if there is only one query find the unique elements in it q_set = frozenset(queries[0]) #qset is a frozen set, so it will not be mutated by changes to queries[0] for f_list in formula_lists: #cycle all formula in formula_lists set_f = frozenset(f_list) #convert f_list to sets, must be frozen so type matches q_set if set_f == q_set: # ignore the set that corresponds to the query pass else: queries[0] = queries[0] - set_f #delete any repeated elements in fset intersections[combo] = queries[0] elif len(queries) > 1: if exclusive == True: q_intersect = intersect(queries) intersections[combo] = q_intersect - assigned_formula #remove any elements from q_intersect that have already been assigned assigned_formula.update(q_intersect) #update the assigned_set with q_intersect else: intersections[combo] = intersect(queries) return intersections def intersect(samples,counter=0): """ This command uses recursion to find the intersections between a variable number of sets given in samples. Where samples = [set_1,set_2,...,set_n] """ if len(samples) == 1: return samples[0] a = samples[counter] b = samples[counter+1::] if len(b) == 1: #check to see whether the recursion has reached the final element return a & b[0] else: counter += 1 return a & intersect(samples,counter)
[ "pandas.DataFrame", "itertools.combinations" ]
[((1483, 1515), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'formula_lists'}), '(data=formula_lists)\n', (1495, 1515), True, 'import pandas as pd\n'), ((1176, 1215), 'itertools.combinations', 'itertools.combinations', (['group_labels', 'i'], {}), '(group_labels, i)\n', (1198, 1215), False, 'import itertools\n')]
import os import glob import shutil from tinytag import TinyTag """ root = 'C:/' copy_to = '/copy to/folder' tag = TinyTag.get('C:/Users/jchap/OneDrive/Pictures/(VERYRAREBOYZ) (feat. $ki Mask The Slump God and Drugz).mp3') print(tag.artist) print('song duration: '+str(tag.duration)) """ f = [] f=glob.glob('C:/Users/jchap/OneDrive/*.mp3') print(f) musicDirectory=[] musicFiles =[] # tag = TinyTag.get(f[0]) # print(tag.artist) # for root, dirs, files in os.walk("C:/Users/jchap/OneDrive/"): for root, dirs, files in os.walk("C:/"): for file in files: if file.endswith(".mp3"): musicFiles.append(file) musicDirectory.append(os.path.join(root, file)) #print(os.path.join(root, file)) print('files'+str(musicFiles)) tag = TinyTag.get(musicDirectory[0]) print('Artist',tag.artist) print('Album Artist',tag.albumartist) print('Title',tag.title) print('Biterate',tag.bitrate) print('music directory'+str(musicDirectory)) print(len(musicDirectory)) currentDirectory =os.path.dirname(__file__) with open(currentDirectory+'/The_Krabby_Patty Formula_.m3u', "r") as f: content_list = [word.strip() for word in f] """ my_file = open(currentDirectory+'/The_Krabby_Patty Formula_.m3u', "r") content_list = my_file. readlines() """ # print('playlist contents') # print(content_list) musicDirectory musicWithoutDuplicates = [] duplicatesList = [] count =0 # check for tags equal to none #musicDirectory =[x for x in musicDirectory j = TinyTag.get(x) if x != 'wdg'] #remove tracks without albumn artist or title for track in reversed(range(len(musicDirectory))): try: trackTag = TinyTag.get(musicDirectory[track]) if str(trackTag.albumartist)== 'None' or str(trackTag.title)=='None': print('albumArtist = none',musicDirectory[track]) print('removing track and adding to log file') musicDirectory.remove(musicDirectory[track]) except IndexError: break #check for duplicates for j in range(len(musicDirectory)): musicDtag = TinyTag.get(musicDirectory[j]) duplicateL=[] duplicateLBiterate=[] for duplicate in range(len(musicDirectory)): duplicateTag = TinyTag.get(musicDirectory[duplicate]) musicWithoutDuplicates.append(musicDirectory[j]) if duplicateTag.albumartist == musicDtag.albumartist or duplicateTag.albumartist in musicDtag.albumartist: if duplicateTag.title == musicDtag.title or duplicateTag.title in musicDtag.title : #check if last iteration if duplicate>=len(musicDirectory)-1: print("found a duplicate!",musicDirectory[duplicate],duplicateTag.albumartist,duplicateTag.title) if len(duplicateLBiterate)==1:## did something here may need to change the conditional statement or add another print('biterate') #[x for x in duplicateL if TinyTag.get(musicDirectory[x]).bitrate > musicDirectory[x]] print("Current duplicate Bite rate", duplicateLBiterate) for x in range(len(duplicateL)): if TinyTag.get(duplicateL[x]).bitrate == max(duplicateLBiterate): #REMOVE ONE WITH THE BEST BITERATE duplicateL.remove(duplicateL[x]) print('duplicate list',duplicateL) #Add duplicatesList = duplicatesList + duplicateL else: print("found a duplicate!",musicDirectory[duplicate],duplicateTag.albumartist,duplicateTag.title) duplicateL.append(musicDirectory[duplicate]) duplicateLBiterate.append(duplicateTag.bitrate) print('dup ',duplicatesList) #remove duplicates from list for u in range(len(duplicatesList)): for i in range(len(musicDirectory)): if duplicatesList[u]==musicDirectory[i]: musicDirectory.remove(musicDirectory[i]) print('music ',musicDirectory) #create playlist newPlaylist = open("Test.m3u", "w") #add file path to the respective track in the new playlist for content in enumerate(content_list): # split strings into artist and title trackNumber=content[0] trackArray =str(content[1]).split('-') albumArtist= trackArray[0].strip() title=trackArray[1].strip() print('title:',title) print('albumArtist:',albumArtist) for trackDirectory in range(len(musicDirectory)): trackTag = TinyTag.get(musicDirectory[trackDirectory]) if trackTag.albumartist == albumArtist or trackTag.albumartist in albumArtist: if trackTag.title == title or trackTag.title in title: newPlaylist.write(trackDirectory + " " + content) newPlaylist.close() try: while True: content.next() except StopIteration: pass break else: print() else: print()
[ "os.path.join", "os.path.dirname", "tinytag.TinyTag.get", "glob.glob", "os.walk" ]
[((313, 355), 'glob.glob', 'glob.glob', (['"""C:/Users/jchap/OneDrive/*.mp3"""'], {}), "('C:/Users/jchap/OneDrive/*.mp3')\n", (322, 355), False, 'import glob\n'), ((544, 558), 'os.walk', 'os.walk', (['"""C:/"""'], {}), "('C:/')\n", (551, 558), False, 'import os\n'), ((807, 837), 'tinytag.TinyTag.get', 'TinyTag.get', (['musicDirectory[0]'], {}), '(musicDirectory[0])\n', (818, 837), False, 'from tinytag import TinyTag\n'), ((1059, 1084), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1074, 1084), False, 'import os\n'), ((2139, 2169), 'tinytag.TinyTag.get', 'TinyTag.get', (['musicDirectory[j]'], {}), '(musicDirectory[j])\n', (2150, 2169), False, 'from tinytag import TinyTag\n'), ((1714, 1748), 'tinytag.TinyTag.get', 'TinyTag.get', (['musicDirectory[track]'], {}), '(musicDirectory[track])\n', (1725, 1748), False, 'from tinytag import TinyTag\n'), ((2300, 2338), 'tinytag.TinyTag.get', 'TinyTag.get', (['musicDirectory[duplicate]'], {}), '(musicDirectory[duplicate])\n', (2311, 2338), False, 'from tinytag import TinyTag\n'), ((4808, 4851), 'tinytag.TinyTag.get', 'TinyTag.get', (['musicDirectory[trackDirectory]'], {}), '(musicDirectory[trackDirectory])\n', (4819, 4851), False, 'from tinytag import TinyTag\n'), ((693, 717), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (705, 717), False, 'import os\n'), ((3360, 3386), 'tinytag.TinyTag.get', 'TinyTag.get', (['duplicateL[x]'], {}), '(duplicateL[x])\n', (3371, 3386), False, 'from tinytag import TinyTag\n')]
#import modules import os import csv #input csvpath = os.path.join('Resources', 'budget_data.csv') #output outfile = os.path.join('Analysis', 'pybankstatements.txt') #declare variables months = []; total_m = 1; net_total = 0; total_change = 0; monthly_changes = []; greatest_inc = ['', 0]; greatest_dec = ['', 0] #open & read csv with open(csvpath) as csvfile: csvreader = csv.reader(csvfile, delimiter=',') header = next(csvreader) first_row = next(csvreader) previous_row = int(first_row[1]) net_total = int(first_row[1]) #loop for row in csvreader: net_total += int(row[1]) total_m = total_m+1 current_value = int(row[1]) change_value = int(current_value-previous_row) monthly_changes.append(change_value) months.append(row[0]) previous_row = int(row[1]) total_change = total_change + change_value if change_value > greatest_inc[1]: greatest_inc[0] = str(row[0]) greatest_inc[1] = change_value if change_value < greatest_dec[1]: greatest_dec[0] = str(row[0]) greatest_dec[1] = change_value avg_change = total_change/len(months) output = ( f"\n Financial Analysis \n" f"------------------------------\n" f"Total Months: {total_m}\n" f"Total: ${net_total}\n" f"Average Change: ${avg_change:.2f}\n" f"Greatest Increase in Profits: {greatest_inc[0]} (${greatest_inc[1]})\n" f"Greatest Decrease in Profits: {greatest_dec[0]} (${greatest_dec[1]})\n") with open(outfile, "w") as txt_file: txt_file.write(output) outfile
[ "os.path.join", "csv.reader" ]
[((54, 98), 'os.path.join', 'os.path.join', (['"""Resources"""', '"""budget_data.csv"""'], {}), "('Resources', 'budget_data.csv')\n", (66, 98), False, 'import os\n'), ((117, 165), 'os.path.join', 'os.path.join', (['"""Analysis"""', '"""pybankstatements.txt"""'], {}), "('Analysis', 'pybankstatements.txt')\n", (129, 165), False, 'import os\n'), ((379, 413), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (389, 413), False, 'import csv\n')]
from rest_framework import serializers from cms.api.serializers import UniCMSContentTypeClass, UniCMSCreateUpdateSerializer from cms.medias.serializers import MediaSerializer from . models import Carousel, CarouselItem, CarouselItemLink, CarouselItemLinkLocalization, CarouselItemLocalization class CarouselForeignKey(serializers.PrimaryKeyRelatedField): def get_queryset(self): request = self.context.get('request', None) if request: carousel_id = self.context['request'].parser_context['kwargs']['carousel_id'] return Carousel.objects.filter(pk=carousel_id) return None # pragma: no cover class CarouselItemForeignKey(serializers.PrimaryKeyRelatedField): def get_queryset(self): request = self.context.get('request', None) if request: carousel_id = self.context['request'].parser_context['kwargs']['carousel_id'] item_id = self.context['request'].parser_context['kwargs']['carousel_item_id'] return CarouselItem.objects.filter(pk=item_id, carousel__pk=carousel_id) return None # pragma: no cover class CarouselItemLinkForeignKey(serializers.PrimaryKeyRelatedField): def get_queryset(self): request = self.context.get('request', None) if request: carousel_id = self.context['request'].parser_context['kwargs']['carousel_id'] item_id = self.context['request'].parser_context['kwargs']['carousel_item_id'] link_id = self.context['request'].parser_context['kwargs']['carousel_item_link_id'] return CarouselItemLink.objects.filter(pk=link_id, carousel_item__pk=item_id, carousel_item__carousel__pk=carousel_id) return None # pragma: no cover class CarouselSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): class Meta: model = Carousel fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselItemSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel = CarouselForeignKey() def to_representation(self, instance): data = super().to_representation(instance) image = MediaSerializer(instance.image) data['image'] = image.data return data class Meta: model = CarouselItem fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselItemLocalizationSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel_item = CarouselItemForeignKey() class Meta: model = CarouselItemLocalization fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselItemLinkSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel_item = CarouselItemForeignKey() class Meta: model = CarouselItemLink fields = '__all__' class CarouselItemLinkLocalizationSerializer(UniCMSCreateUpdateSerializer, UniCMSContentTypeClass): carousel_item_link = CarouselItemLinkForeignKey() class Meta: model = CarouselItemLinkLocalization fields = '__all__' read_only_fields = ('created_by', 'modified_by') class CarouselSelectOptionsSerializer(serializers.ModelSerializer): def to_representation(self, instance): data = super().to_representation(instance) data['value'] = instance.pk data['text'] = instance.name return data class Meta: model = Carousel fields = ()
[ "cms.medias.serializers.MediaSerializer" ]
[((2384, 2415), 'cms.medias.serializers.MediaSerializer', 'MediaSerializer', (['instance.image'], {}), '(instance.image)\n', (2399, 2415), False, 'from cms.medias.serializers import MediaSerializer\n')]
#!/usr/bin/env python3 """ Copyright (c) 2018-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from openvino.runtime import Core, get_version import cv2 as cv import numpy as np import logging as log from time import perf_counter import sys from argparse import ArgumentParser, SUPPRESS from pathlib import Path sys.path.append(str(Path(__file__).resolve().parents[2] / 'common/python')) sys.path.append(str(Path(__file__).resolve().parents[2] / 'common/python/openvino/model_zoo')) import monitors from images_capture import open_images_capture from model_api.performance_metrics import PerformanceMetrics log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.DEBUG, stream=sys.stdout) def build_arg(): parser = ArgumentParser(add_help=False) in_args = parser.add_argument_group('Options') in_args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Help with the script.') in_args.add_argument("-m", "--model", help="Required. Path to .xml file with pre-trained model.", required=True, type=Path) in_args.add_argument("-d", "--device", help="Optional. Specify target device for infer: CPU, GPU, HDDL or MYRIAD. " "Default: CPU", default="CPU", type=str) in_args.add_argument('-i', "--input", required=True, help='Required. An input to process. The input must be a single image, ' 'a folder of images, video file or camera id.') in_args.add_argument('--loop', default=False, action='store_true', help='Optional. Enable reading the input in a loop.') in_args.add_argument('-o', '--output', required=False, help='Optional. Name of the output file(s) to save.') in_args.add_argument('-limit', '--output_limit', required=False, default=1000, type=int, help='Optional. Number of frames to store in output. ' 'If 0 is set, all frames are stored.') in_args.add_argument("--no_show", help="Optional. Don't show output.", action='store_true', default=False) in_args.add_argument("-u", "--utilization_monitors", default="", type=str, help="Optional. List of monitors to show initially.") return parser def main(args): cap = open_images_capture(args.input, args.loop) log.info('OpenVINO Inference Engine') log.info('\tbuild: {}'.format(get_version())) core = Core() log.info('Reading model {}'.format(args.model)) model = core.read_model(args.model, args.model.with_suffix(".bin")) input_tensor_name = 'data_l' input_shape = model.input(input_tensor_name).shape assert input_shape[1] == 1, "Expected model input shape with 1 channel" inputs = {} for input in model.inputs: inputs[input.get_any_name()] = np.zeros(input.shape) assert len(model.outputs) == 1, "Expected number of outputs is equal 1" compiled_model = core.compile_model(model, device_name=args.device) infer_request = compiled_model.create_infer_request() log.info('The model {} is loaded to {}'.format(args.model, args.device)) _, _, h_in, w_in = input_shape frames_processed = 0 imshow_size = (640, 480) graph_size = (imshow_size[0] // 2, imshow_size[1] // 4) presenter = monitors.Presenter(args.utilization_monitors, imshow_size[1] * 2 - graph_size[1], graph_size) metrics = PerformanceMetrics() video_writer = cv.VideoWriter() if args.output and not video_writer.open(args.output, cv.VideoWriter_fourcc(*'MJPG'), cap.fps(), (imshow_size[0] * 2, imshow_size[1] * 2)): raise RuntimeError("Can't open video writer") start_time = perf_counter() original_frame = cap.read() if original_frame is None: raise RuntimeError("Can't read an image from the input") while original_frame is not None: (h_orig, w_orig) = original_frame.shape[:2] if original_frame.shape[2] > 1: frame = cv.cvtColor(cv.cvtColor(original_frame, cv.COLOR_BGR2GRAY), cv.COLOR_GRAY2RGB) else: frame = cv.cvtColor(original_frame, cv.COLOR_GRAY2RGB) img_rgb = frame.astype(np.float32) / 255 img_lab = cv.cvtColor(img_rgb, cv.COLOR_RGB2Lab) img_l_rs = cv.resize(img_lab.copy(), (w_in, h_in))[:, :, 0] inputs[input_tensor_name] = np.expand_dims(img_l_rs, axis=[0, 1]) res = next(iter(infer_request.infer(inputs).values())) update_res = np.squeeze(res) out = update_res.transpose((1, 2, 0)) out = cv.resize(out, (w_orig, h_orig)) img_lab_out = np.concatenate((img_lab[:, :, 0][:, :, np.newaxis], out), axis=2) img_bgr_out = np.clip(cv.cvtColor(img_lab_out, cv.COLOR_Lab2BGR), 0, 1) original_image = cv.resize(original_frame, imshow_size) grayscale_image = cv.resize(frame, imshow_size) colorize_image = (cv.resize(img_bgr_out, imshow_size) * 255).astype(np.uint8) lab_image = cv.resize(img_lab_out, imshow_size).astype(np.uint8) original_image = cv.putText(original_image, 'Original', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) grayscale_image = cv.putText(grayscale_image, 'Grayscale', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) colorize_image = cv.putText(colorize_image, 'Colorize', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) lab_image = cv.putText(lab_image, 'LAB interpretation', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA) ir_image = [cv.hconcat([original_image, grayscale_image]), cv.hconcat([lab_image, colorize_image])] final_image = cv.vconcat(ir_image) metrics.update(start_time, final_image) frames_processed += 1 if video_writer.isOpened() and (args.output_limit <= 0 or frames_processed <= args.output_limit): video_writer.write(final_image) presenter.drawGraphs(final_image) if not args.no_show: cv.imshow('Colorization Demo', final_image) key = cv.waitKey(1) if key in {ord("q"), ord("Q"), 27}: break presenter.handleKey(key) start_time = perf_counter() original_frame = cap.read() metrics.log_total() for rep in presenter.reportMeans(): log.info(rep) if __name__ == "__main__": args = build_arg().parse_args() sys.exit(main(args) or 0)
[ "cv2.vconcat", "model_api.performance_metrics.PerformanceMetrics", "images_capture.open_images_capture", "cv2.imshow", "logging.info", "argparse.ArgumentParser", "pathlib.Path", "time.perf_counter", "cv2.VideoWriter", "numpy.concatenate", "cv2.VideoWriter_fourcc", "cv2.waitKey", "numpy.squeeze", "cv2.putText", "cv2.cvtColor", "cv2.resize", "cv2.hconcat", "logging.basicConfig", "openvino.runtime.Core", "numpy.zeros", "numpy.expand_dims", "monitors.Presenter", "openvino.runtime.get_version" ]
[((1125, 1220), 'logging.basicConfig', 'log.basicConfig', ([], {'format': '"""[ %(levelname)s ] %(message)s"""', 'level': 'log.DEBUG', 'stream': 'sys.stdout'}), "(format='[ %(levelname)s ] %(message)s', level=log.DEBUG,\n stream=sys.stdout)\n", (1140, 1220), True, 'import logging as log\n'), ((1249, 1279), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'add_help': '(False)'}), '(add_help=False)\n', (1263, 1279), False, 'from argparse import ArgumentParser, SUPPRESS\n'), ((2931, 2973), 'images_capture.open_images_capture', 'open_images_capture', (['args.input', 'args.loop'], {}), '(args.input, args.loop)\n', (2950, 2973), False, 'from images_capture import open_images_capture\n'), ((2979, 3016), 'logging.info', 'log.info', (['"""OpenVINO Inference Engine"""'], {}), "('OpenVINO Inference Engine')\n", (2987, 3016), True, 'import logging as log\n'), ((3078, 3084), 'openvino.runtime.Core', 'Core', ([], {}), '()\n', (3082, 3084), False, 'from openvino.runtime import Core, get_version\n'), ((3936, 4033), 'monitors.Presenter', 'monitors.Presenter', (['args.utilization_monitors', '(imshow_size[1] * 2 - graph_size[1])', 'graph_size'], {}), '(args.utilization_monitors, imshow_size[1] * 2 -\n graph_size[1], graph_size)\n', (3954, 4033), False, 'import monitors\n'), ((4044, 4064), 'model_api.performance_metrics.PerformanceMetrics', 'PerformanceMetrics', ([], {}), '()\n', (4062, 4064), False, 'from model_api.performance_metrics import PerformanceMetrics\n'), ((4085, 4101), 'cv2.VideoWriter', 'cv.VideoWriter', ([], {}), '()\n', (4099, 4101), True, 'import cv2 as cv\n'), ((4363, 4377), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (4375, 4377), False, 'from time import perf_counter\n'), ((3462, 3483), 'numpy.zeros', 'np.zeros', (['input.shape'], {}), '(input.shape)\n', (3470, 3483), True, 'import numpy as np\n'), ((4886, 4924), 'cv2.cvtColor', 'cv.cvtColor', (['img_rgb', 'cv.COLOR_RGB2Lab'], {}), '(img_rgb, cv.COLOR_RGB2Lab)\n', (4897, 4924), True, 'import cv2 as cv\n'), ((5030, 5067), 'numpy.expand_dims', 'np.expand_dims', (['img_l_rs'], {'axis': '[0, 1]'}), '(img_l_rs, axis=[0, 1])\n', (5044, 5067), True, 'import numpy as np\n'), ((5154, 5169), 'numpy.squeeze', 'np.squeeze', (['res'], {}), '(res)\n', (5164, 5169), True, 'import numpy as np\n'), ((5231, 5263), 'cv2.resize', 'cv.resize', (['out', '(w_orig, h_orig)'], {}), '(out, (w_orig, h_orig))\n', (5240, 5263), True, 'import cv2 as cv\n'), ((5286, 5351), 'numpy.concatenate', 'np.concatenate', (['(img_lab[:, :, 0][:, :, np.newaxis], out)'], {'axis': '(2)'}), '((img_lab[:, :, 0][:, :, np.newaxis], out), axis=2)\n', (5300, 5351), True, 'import numpy as np\n'), ((5458, 5496), 'cv2.resize', 'cv.resize', (['original_frame', 'imshow_size'], {}), '(original_frame, imshow_size)\n', (5467, 5496), True, 'import cv2 as cv\n'), ((5523, 5552), 'cv2.resize', 'cv.resize', (['frame', 'imshow_size'], {}), '(frame, imshow_size)\n', (5532, 5552), True, 'import cv2 as cv\n'), ((5738, 5846), 'cv2.putText', 'cv.putText', (['original_image', '"""Original"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(original_image, 'Original', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1,\n (0, 0, 255), 2, cv.LINE_AA)\n", (5748, 5846), True, 'import cv2 as cv\n'), ((5905, 6015), 'cv2.putText', 'cv.putText', (['grayscale_image', '"""Grayscale"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(grayscale_image, 'Grayscale', (25, 50), cv.FONT_HERSHEY_SIMPLEX,\n 1, (0, 0, 255), 2, cv.LINE_AA)\n", (5915, 6015), True, 'import cv2 as cv\n'), ((6074, 6182), 'cv2.putText', 'cv.putText', (['colorize_image', '"""Colorize"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(colorize_image, 'Colorize', (25, 50), cv.FONT_HERSHEY_SIMPLEX, 1,\n (0, 0, 255), 2, cv.LINE_AA)\n", (6084, 6182), True, 'import cv2 as cv\n'), ((6235, 6349), 'cv2.putText', 'cv.putText', (['lab_image', '"""LAB interpretation"""', '(25, 50)', 'cv.FONT_HERSHEY_SIMPLEX', '(1)', '(0, 0, 255)', '(2)', 'cv.LINE_AA'], {}), "(lab_image, 'LAB interpretation', (25, 50), cv.\n FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv.LINE_AA)\n", (6245, 6349), True, 'import cv2 as cv\n'), ((6527, 6547), 'cv2.vconcat', 'cv.vconcat', (['ir_image'], {}), '(ir_image)\n', (6537, 6547), True, 'import cv2 as cv\n'), ((7066, 7080), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (7078, 7080), False, 'from time import perf_counter\n'), ((7190, 7203), 'logging.info', 'log.info', (['rep'], {}), '(rep)\n', (7198, 7203), True, 'import logging as log\n'), ((3051, 3064), 'openvino.runtime.get_version', 'get_version', ([], {}), '()\n', (3062, 3064), False, 'from openvino.runtime import Core, get_version\n'), ((4771, 4817), 'cv2.cvtColor', 'cv.cvtColor', (['original_frame', 'cv.COLOR_GRAY2RGB'], {}), '(original_frame, cv.COLOR_GRAY2RGB)\n', (4782, 4817), True, 'import cv2 as cv\n'), ((5382, 5424), 'cv2.cvtColor', 'cv.cvtColor', (['img_lab_out', 'cv.COLOR_Lab2BGR'], {}), '(img_lab_out, cv.COLOR_Lab2BGR)\n', (5393, 5424), True, 'import cv2 as cv\n'), ((6397, 6442), 'cv2.hconcat', 'cv.hconcat', (['[original_image, grayscale_image]'], {}), '([original_image, grayscale_image])\n', (6407, 6442), True, 'import cv2 as cv\n'), ((6464, 6503), 'cv2.hconcat', 'cv.hconcat', (['[lab_image, colorize_image]'], {}), '([lab_image, colorize_image])\n', (6474, 6503), True, 'import cv2 as cv\n'), ((6862, 6905), 'cv2.imshow', 'cv.imshow', (['"""Colorization Demo"""', 'final_image'], {}), "('Colorization Demo', final_image)\n", (6871, 6905), True, 'import cv2 as cv\n'), ((6924, 6937), 'cv2.waitKey', 'cv.waitKey', (['(1)'], {}), '(1)\n', (6934, 6937), True, 'import cv2 as cv\n'), ((4160, 4190), 'cv2.VideoWriter_fourcc', 'cv.VideoWriter_fourcc', (["*'MJPG'"], {}), "(*'MJPG')\n", (4181, 4190), True, 'import cv2 as cv\n'), ((4670, 4716), 'cv2.cvtColor', 'cv.cvtColor', (['original_frame', 'cv.COLOR_BGR2GRAY'], {}), '(original_frame, cv.COLOR_BGR2GRAY)\n', (4681, 4716), True, 'import cv2 as cv\n'), ((5659, 5694), 'cv2.resize', 'cv.resize', (['img_lab_out', 'imshow_size'], {}), '(img_lab_out, imshow_size)\n', (5668, 5694), True, 'import cv2 as cv\n'), ((5579, 5614), 'cv2.resize', 'cv.resize', (['img_bgr_out', 'imshow_size'], {}), '(img_bgr_out, imshow_size)\n', (5588, 5614), True, 'import cv2 as cv\n'), ((848, 862), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (852, 862), False, 'from pathlib import Path\n'), ((924, 938), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (928, 938), False, 'from pathlib import Path\n')]
# coding: utf-8 """ [AHOI cookbook](/ahoi/docs/cookbook/index.html) [Data Privacy](/sandboxmanager/#/privacy) [Terms of Service](/sandboxmanager/#/terms) [Imprint](https://sparkassen-hub.com/impressum/) &copy; 2016&dash;2017 Starfinanz - Ein Unternehmen der Finanz Informatik # noqa: E501 OpenAPI spec version: 2.1.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.amount import Amount # noqa: F401,E501 class Transfer(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'iban': 'str', 'bic': 'str', 'name': 'str', 'amount': 'Amount', 'purpose': 'str', 'tan_media_id': 'str', 'tan_scheme': 'str' } attribute_map = { 'iban': 'iban', 'bic': 'bic', 'name': 'name', 'amount': 'amount', 'purpose': 'purpose', 'tan_media_id': 'tanMediaId', 'tan_scheme': 'tanScheme' } def __init__(self, iban=None, bic=None, name=None, amount=None, purpose=None, tan_media_id=None, tan_scheme=None): # noqa: E501 """Transfer - a model defined in Swagger""" # noqa: E501 self._iban = None self._bic = None self._name = None self._amount = None self._purpose = None self._tan_media_id = None self._tan_scheme = None self.discriminator = None self.iban = iban if bic is not None: self.bic = bic self.name = name self.amount = amount if purpose is not None: self.purpose = purpose self.tan_media_id = tan_media_id self.tan_scheme = tan_scheme @property def iban(self): """Gets the iban of this Transfer. # noqa: E501 IBAN - International Bank Account Number (defined in ISO 13616-1) # noqa: E501 :return: The iban of this Transfer. # noqa: E501 :rtype: str """ return self._iban @iban.setter def iban(self, iban): """Sets the iban of this Transfer. IBAN - International Bank Account Number (defined in ISO 13616-1) # noqa: E501 :param iban: The iban of this Transfer. # noqa: E501 :type: str """ if iban is None: raise ValueError("Invalid value for `iban`, must not be `None`") # noqa: E501 self._iban = iban @property def bic(self): """Gets the bic of this Transfer. # noqa: E501 BIC - Business Identifier Code (defined in ISO-9362) # noqa: E501 :return: The bic of this Transfer. # noqa: E501 :rtype: str """ return self._bic @bic.setter def bic(self, bic): """Sets the bic of this Transfer. BIC - Business Identifier Code (defined in ISO-9362) # noqa: E501 :param bic: The bic of this Transfer. # noqa: E501 :type: str """ self._bic = bic @property def name(self): """Gets the name of this Transfer. # noqa: E501 Name - Name of the creditor # noqa: E501 :return: The name of this Transfer. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Transfer. Name - Name of the creditor # noqa: E501 :param name: The name of this Transfer. # noqa: E501 :type: str """ if name is None: raise ValueError("Invalid value for `name`, must not be `None`") # noqa: E501 self._name = name @property def amount(self): """Gets the amount of this Transfer. # noqa: E501 Amount to be transfered # noqa: E501 :return: The amount of this Transfer. # noqa: E501 :rtype: Amount """ return self._amount @amount.setter def amount(self, amount): """Sets the amount of this Transfer. Amount to be transfered # noqa: E501 :param amount: The amount of this Transfer. # noqa: E501 :type: Amount """ if amount is None: raise ValueError("Invalid value for `amount`, must not be `None`") # noqa: E501 self._amount = amount @property def purpose(self): """Gets the purpose of this Transfer. # noqa: E501 Purpose # noqa: E501 :return: The purpose of this Transfer. # noqa: E501 :rtype: str """ return self._purpose @purpose.setter def purpose(self, purpose): """Sets the purpose of this Transfer. Purpose # noqa: E501 :param purpose: The purpose of this Transfer. # noqa: E501 :type: str """ self._purpose = purpose @property def tan_media_id(self): """Gets the tan_media_id of this Transfer. # noqa: E501 TANMediaId - The identifying ID of the TANMedia. # noqa: E501 :return: The tan_media_id of this Transfer. # noqa: E501 :rtype: str """ return self._tan_media_id @tan_media_id.setter def tan_media_id(self, tan_media_id): """Sets the tan_media_id of this Transfer. TANMediaId - The identifying ID of the TANMedia. # noqa: E501 :param tan_media_id: The tan_media_id of this Transfer. # noqa: E501 :type: str """ if tan_media_id is None: raise ValueError("Invalid value for `tan_media_id`, must not be `None`") # noqa: E501 self._tan_media_id = tan_media_id @property def tan_scheme(self): """Gets the tan_scheme of this Transfer. # noqa: E501 TANScheme - The scheme **id** that is used to verify this payment (e.g. \"901\") # noqa: E501 :return: The tan_scheme of this Transfer. # noqa: E501 :rtype: str """ return self._tan_scheme @tan_scheme.setter def tan_scheme(self, tan_scheme): """Sets the tan_scheme of this Transfer. TANScheme - The scheme **id** that is used to verify this payment (e.g. \"901\") # noqa: E501 :param tan_scheme: The tan_scheme of this Transfer. # noqa: E501 :type: str """ if tan_scheme is None: raise ValueError("Invalid value for `tan_scheme`, must not be `None`") # noqa: E501 self._tan_scheme = tan_scheme def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Transfer): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "six.iteritems" ]
[((6926, 6959), 'six.iteritems', 'six.iteritems', (['self.swagger_types'], {}), '(self.swagger_types)\n', (6939, 6959), False, 'import six\n')]
# Copyright 2015-2017 ARM Limited, Google and contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import unicode_literals from __future__ import division from __future__ import print_function from builtins import chr import os import json import shutil import sys import unittest import utils_tests import trappy from trappy.ftrace import GenericFTrace from trappy.systrace import SysTrace class TestCaching(utils_tests.SetupDirectory): def __init__(self, *args, **kwargs): super(TestCaching, self).__init__( [("trace_sched.txt", "trace.txt"), ("trace_sched.txt", "trace.raw.txt"), ("trace_systrace.html", "trace.html")], *args, **kwargs) def test_cache_created(self): """Test cache creation when enabled""" GenericFTrace.disable_cache = False traces = (trappy.FTrace(), trappy.SysTrace(path='./trace.html')) for trace in traces: trace_path = os.path.abspath(trace.trace_path) trace_dir = os.path.dirname(trace_path) trace_file = os.path.basename(trace_path) cache_dir = '.' + trace_file + '.cache' self.assertTrue(cache_dir in os.listdir(trace_dir)) def test_cache_not_created(self): """Test that cache should not be created when disabled """ GenericFTrace.disable_cache = True traces = (trappy.FTrace(), trappy.SysTrace(path='./trace.html')) for trace in traces: trace_path = os.path.abspath(trace.trace_path) trace_dir = os.path.dirname(trace_path) trace_file = os.path.basename(trace_path) cache_dir = '.' + trace_file + '.cache' self.assertFalse(cache_dir in os.listdir(trace_dir)) def test_compare_cached_vs_uncached(self): """ Test that the cached and uncached traces are same """ # Build the cache, but the actual trace will be parsed # fresh since this is a first time parse GenericFTrace.disable_cache = False uncached_trace = trappy.FTrace() uncached_dfr = uncached_trace.sched_wakeup.data_frame # Now read from previously parsed cache by reusing the path cached_trace = trappy.FTrace(uncached_trace.trace_path) cached_dfr = cached_trace.sched_wakeup.data_frame # By default, the str to float conversion done when reading from csv is # different from the one used when reading from the trace.txt file. # # Here's an example: # - trace.txt string timestamps: # [76.402065, 80.402065, 80.001337] # - parsed dataframe timestamps: # [76.402065000000007, 80.402065000000007, 82.001337000000007] # # - csv string timestamps: # [76.402065, 80.402065, 80.001337] # - cached dataframe timestamps: # [76.402064999999993, 80.402064999999993, 82.001337000000007] # # To fix this, the timestamps read from the cache are converted using # the same conversion method as the trace.txt parser, which results in # cache-read timestamps being identical to trace-read timestamps. # # This test ensures that this stays true. cached_times = [r[0] for r in cached_dfr.iterrows()] uncached_times = [r[0] for r in uncached_dfr.iterrows()] self.assertTrue(cached_times == uncached_times) # compare other columns as well self.assertTrue([r[1].pid for r in cached_dfr.iterrows()] == [r[1].pid for r in uncached_dfr.iterrows()]) self.assertTrue([r[1].comm for r in cached_dfr.iterrows()] == [r[1].comm for r in uncached_dfr.iterrows()]) self.assertTrue([r[1].prio for r in cached_dfr.iterrows()] == [r[1].prio for r in uncached_dfr.iterrows()]) def test_invalid_cache_overwritten(self): """Test a cache with a bad checksum is overwritten""" # This is a directory so we can't use the files_to_copy arg of # SetUpDirectory, just do it ourselves. cache_path = ".trace.txt.cache" src = os.path.join(utils_tests.TESTS_DIRECTORY, "trace_sched.txt.cache") shutil.copytree(src, cache_path) metadata_path = os.path.join(cache_path, "metadata.json") def read_metadata(): with open(metadata_path, "r") as f: return json.load(f) def write_md5(md5): metadata = read_metadata() metadata["md5sum"] = md5 with open(metadata_path, "w") as f: json.dump(metadata, f) # Change 1 character of the stored checksum md5sum = read_metadata()["md5sum"] md5sum_inc = md5sum[:-1] + chr(ord(md5sum[-1]) + 1) write_md5(md5sum_inc) # Parse a trace, this should delete and overwrite the invalidated cache GenericFTrace.disable_cache = False trace = trappy.FTrace() # Check that the modified md5sum was overwritten self.assertNotEqual(read_metadata()["md5sum"], md5sum_inc, "The invalid ftrace cache wasn't overwritten") def test_cache_dynamic_events(self): """Test that caching works if new event parsers have been registered""" # Parse the trace to create a cache GenericFTrace.disable_cache = False trace1 = trappy.FTrace() # Check we're actually testing what we think we are if hasattr(trace1, 'dynamic_event'): raise RuntimeError('Test bug: found unexpected event in trace') # Now register a new event type, call the constructor again, and check # that the newly added event (which is not present in the cache) is # parsed. parse_class = trappy.register_dynamic_ftrace("DynamicEvent", "dynamic_test_key") trace2 = trappy.FTrace() self.assertTrue(len(trace2.dynamic_event.data_frame) == 1) trappy.unregister_dynamic_ftrace(parse_class) def test_cache_normalize_time(self): """Test that caching doesn't break normalize_time""" GenericFTrace.disable_cache = False # Times in trace_sched.txt start_time = 6550.018511 first_freq_event_time = 6550.056870 # Parse without normalizing time trace1 = trappy.FTrace(events=['cpu_frequency', 'sched_wakeup'], normalize_time=False) self.assertEqual(trace1.cpu_frequency.data_frame.index[0], first_freq_event_time) # Parse with normalized time trace2 = trappy.FTrace(events=['cpu_frequency', 'sched_wakeup'], normalize_time=True) self.assertEqual(trace2.cpu_frequency.data_frame.index[0], first_freq_event_time - start_time) def test_cache_window_broad(self): """Test that caching doesn't break the 'window' parameter""" GenericFTrace.disable_cache = False trace1 = trappy.FTrace( events=['sched_wakeup'], window=(0, 1)) # Check that we're testing what we think we're testing The trace # contains 2 sched_wakeup events; this window should get rid of one of # them. if len(trace1.sched_wakeup.data_frame) != 1: raise RuntimeError('Test bug: bad sched_wakeup event count') # Parse again without the window trace1 = trappy.FTrace( events=['sched_wakeup'], window=(0, None)) self.assertEqual(len(trace1.sched_wakeup.data_frame), 2) def test_cache_window_narrow(self): """ Test that applying a window to a cached trace returns EXACTLY what is expected """ # As described in test_compare_cache_vs_uncached, reading from cache # results in slightly different timestamps # # This test verifies that applying windows results in identical # dataframes whether cache is used or not. GenericFTrace.disable_cache = False uncached_trace = trappy.FTrace() trace = trappy.FTrace(uncached_trace.trace_path, normalize_time=False, abs_window=(6550.100000, 6552.000002)) self.assertAlmostEquals(trace.get_duration(), 1.900002) self.assertEqual(len(trace.sched_wakeup.data_frame), 2) self.assertEqual(len(trace.sched_wakeup_new.data_frame), 1) def test_ftrace_metadata(self): """Test that caching keeps trace metadata""" GenericFTrace.disable_cache = False self.test_cache_created() trace = trappy.FTrace() version = int(trace._version) cpus = int(trace._cpus) self.assertEqual(version, 6) self.assertEqual(cpus, 6) def test_cache_delete_single(self): GenericFTrace.disable_cache = False trace = trappy.FTrace() trace_path = os.path.abspath(trace.trace_path) trace_dir = os.path.dirname(trace_path) trace_file = os.path.basename(trace_path) cache_dir = '.' + trace_file + '.cache' number_of_trace_categories = 31 self.assertEqual(len(os.listdir(cache_dir)), number_of_trace_categories) os.remove(os.path.join(cache_dir, 'SchedWakeup.csv')) self.assertEqual(len(os.listdir(cache_dir)), number_of_trace_categories - 1) # Generate trace again, should regenerate only the missing item trace = trappy.FTrace() self.assertEqual(len(os.listdir(cache_dir)), number_of_trace_categories) for c in trace.trace_classes: if isinstance(c, trace.class_definitions['sched_wakeup']): self.assertEqual(c.cached, False) continue self.assertEqual(c.cached, True)
[ "os.listdir", "trappy.register_dynamic_ftrace", "os.path.join", "shutil.copytree", "os.path.dirname", "json.load", "os.path.basename", "os.path.abspath", "trappy.FTrace", "trappy.unregister_dynamic_ftrace", "json.dump", "trappy.SysTrace" ]
[((2584, 2599), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (2597, 2599), False, 'import trappy\n'), ((2754, 2794), 'trappy.FTrace', 'trappy.FTrace', (['uncached_trace.trace_path'], {}), '(uncached_trace.trace_path)\n', (2767, 2794), False, 'import trappy\n'), ((4683, 4749), 'os.path.join', 'os.path.join', (['utils_tests.TESTS_DIRECTORY', '"""trace_sched.txt.cache"""'], {}), "(utils_tests.TESTS_DIRECTORY, 'trace_sched.txt.cache')\n", (4695, 4749), False, 'import os\n'), ((4758, 4790), 'shutil.copytree', 'shutil.copytree', (['src', 'cache_path'], {}), '(src, cache_path)\n', (4773, 4790), False, 'import shutil\n'), ((4816, 4857), 'os.path.join', 'os.path.join', (['cache_path', '"""metadata.json"""'], {}), "(cache_path, 'metadata.json')\n", (4828, 4857), False, 'import os\n'), ((5492, 5507), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (5505, 5507), False, 'import trappy\n'), ((5936, 5951), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (5949, 5951), False, 'import trappy\n'), ((6331, 6397), 'trappy.register_dynamic_ftrace', 'trappy.register_dynamic_ftrace', (['"""DynamicEvent"""', '"""dynamic_test_key"""'], {}), "('DynamicEvent', 'dynamic_test_key')\n", (6361, 6397), False, 'import trappy\n'), ((6416, 6431), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (6429, 6431), False, 'import trappy\n'), ((6508, 6553), 'trappy.unregister_dynamic_ftrace', 'trappy.unregister_dynamic_ftrace', (['parse_class'], {}), '(parse_class)\n', (6540, 6553), False, 'import trappy\n'), ((6873, 6950), 'trappy.FTrace', 'trappy.FTrace', ([], {'events': "['cpu_frequency', 'sched_wakeup']", 'normalize_time': '(False)'}), "(events=['cpu_frequency', 'sched_wakeup'], normalize_time=False)\n", (6886, 6950), False, 'import trappy\n'), ((7153, 7229), 'trappy.FTrace', 'trappy.FTrace', ([], {'events': "['cpu_frequency', 'sched_wakeup']", 'normalize_time': '(True)'}), "(events=['cpu_frequency', 'sched_wakeup'], normalize_time=True)\n", (7166, 7229), False, 'import trappy\n'), ((7561, 7614), 'trappy.FTrace', 'trappy.FTrace', ([], {'events': "['sched_wakeup']", 'window': '(0, 1)'}), "(events=['sched_wakeup'], window=(0, 1))\n", (7574, 7614), False, 'import trappy\n'), ((7994, 8050), 'trappy.FTrace', 'trappy.FTrace', ([], {'events': "['sched_wakeup']", 'window': '(0, None)'}), "(events=['sched_wakeup'], window=(0, None))\n", (8007, 8050), False, 'import trappy\n'), ((8625, 8640), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (8638, 8640), False, 'import trappy\n'), ((8658, 8759), 'trappy.FTrace', 'trappy.FTrace', (['uncached_trace.trace_path'], {'normalize_time': '(False)', 'abs_window': '(6550.1, 6552.000002)'}), '(uncached_trace.trace_path, normalize_time=False, abs_window=(\n 6550.1, 6552.000002))\n', (8671, 8759), False, 'import trappy\n'), ((9204, 9219), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (9217, 9219), False, 'import trappy\n'), ((9464, 9479), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (9477, 9479), False, 'import trappy\n'), ((9502, 9535), 'os.path.abspath', 'os.path.abspath', (['trace.trace_path'], {}), '(trace.trace_path)\n', (9517, 9535), False, 'import os\n'), ((9556, 9583), 'os.path.dirname', 'os.path.dirname', (['trace_path'], {}), '(trace_path)\n', (9571, 9583), False, 'import os\n'), ((9605, 9633), 'os.path.basename', 'os.path.basename', (['trace_path'], {}), '(trace_path)\n', (9621, 9633), False, 'import os\n'), ((10040, 10055), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (10053, 10055), False, 'import trappy\n'), ((1387, 1402), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (1400, 1402), False, 'import trappy\n'), ((1404, 1440), 'trappy.SysTrace', 'trappy.SysTrace', ([], {'path': '"""./trace.html"""'}), "(path='./trace.html')\n", (1419, 1440), False, 'import trappy\n'), ((1497, 1530), 'os.path.abspath', 'os.path.abspath', (['trace.trace_path'], {}), '(trace.trace_path)\n', (1512, 1530), False, 'import os\n'), ((1555, 1582), 'os.path.dirname', 'os.path.dirname', (['trace_path'], {}), '(trace_path)\n', (1570, 1582), False, 'import os\n'), ((1608, 1636), 'os.path.basename', 'os.path.basename', (['trace_path'], {}), '(trace_path)\n', (1624, 1636), False, 'import os\n'), ((1921, 1936), 'trappy.FTrace', 'trappy.FTrace', ([], {}), '()\n', (1934, 1936), False, 'import trappy\n'), ((1938, 1974), 'trappy.SysTrace', 'trappy.SysTrace', ([], {'path': '"""./trace.html"""'}), "(path='./trace.html')\n", (1953, 1974), False, 'import trappy\n'), ((2031, 2064), 'os.path.abspath', 'os.path.abspath', (['trace.trace_path'], {}), '(trace.trace_path)\n', (2046, 2064), False, 'import os\n'), ((2089, 2116), 'os.path.dirname', 'os.path.dirname', (['trace_path'], {}), '(trace_path)\n', (2104, 2116), False, 'import os\n'), ((2142, 2170), 'os.path.basename', 'os.path.basename', (['trace_path'], {}), '(trace_path)\n', (2158, 2170), False, 'import os\n'), ((9822, 9864), 'os.path.join', 'os.path.join', (['cache_dir', '"""SchedWakeup.csv"""'], {}), "(cache_dir, 'SchedWakeup.csv')\n", (9834, 9864), False, 'import os\n'), ((4959, 4971), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4968, 4971), False, 'import json\n'), ((5141, 5163), 'json.dump', 'json.dump', (['metadata', 'f'], {}), '(metadata, f)\n', (5150, 5163), False, 'import json\n'), ((9751, 9772), 'os.listdir', 'os.listdir', (['cache_dir'], {}), '(cache_dir)\n', (9761, 9772), False, 'import os\n'), ((9895, 9916), 'os.listdir', 'os.listdir', (['cache_dir'], {}), '(cache_dir)\n', (9905, 9916), False, 'import os\n'), ((10085, 10106), 'os.listdir', 'os.listdir', (['cache_dir'], {}), '(cache_dir)\n', (10095, 10106), False, 'import os\n'), ((1731, 1752), 'os.listdir', 'os.listdir', (['trace_dir'], {}), '(trace_dir)\n', (1741, 1752), False, 'import os\n'), ((2266, 2287), 'os.listdir', 'os.listdir', (['trace_dir'], {}), '(trace_dir)\n', (2276, 2287), False, 'import os\n')]
from django.contrib.auth.decorators import login_required from django.contrib.auth.models import User from django.shortcuts import render from django.urls import reverse from django.http import HttpResponseRedirect, HttpResponse from django.utils import timezone from olaf.models import * from olaf.forms import * from olaf.utility import usertools from olaf.chess.controller import proccess_move def index ( request ): args = {} message = request.session.pop ( 'message', default = None ) if ( message is not None ): args [ 'message' ] = message if ( request.user.is_authenticated ): if ( request.method == 'POST' ): if ( request.POST.get ( 'game_id' ) is not None ): game_id = request.POST.get ( 'game_id' ) if ( game_id == '-1' ): game_id = usertools.new_game ( request ) request.session [ 'game_id' ] = game_id else: request.session.pop ( 'game_id', default = None ) f = lambda a : str ( a.date () ) + " - " + str ( a.hour ) + ":" + str ( a.minute ) + ":" + str ( a.second ) args [ 'game_list' ] = list ([str ( game.id ), f ( game.creation_time )] for game in request.user.userdata.game_history.filter ( result = 0 ).order_by ( '-creation_time' ) ) if ( request.session.get ( 'game_id' ) is not None ): args [ 'game_board' ] = usertools.get_translated_game_board ( request ) else: args [ 'game_board' ] = None return render ( request, 'olaf/index_logged_in.html', args ) else: args [ 'login_form' ] = LoginForm () args [ 'register_form' ] = RegisterForm () args [ 'score' ] = list ( [user.master.username, user.wins, user.loses, user.ties] for user in UserData.objects.filter ( is_active = True ) ) return render ( request, 'olaf/index_not_logged_in.html', args ) form_operation_dict = { 'login' : ( usertools.login_user, LoginForm, 'olaf/login.html', {}, 'index', { 'message' : "You're logged in. :)"} ), 'register' : ( usertools.register_user, RegisterForm, 'olaf/register.html', {}, 'index', { 'message' : "An activation email has been sent to you" } ), 'password_reset_request' : ( usertools.init_pass_reset_token, ForgotPasswordUsernameOrEmailForm, 'olaf/password_reset_request.html', {}, 'index', { 'message' : "An email containing the password reset link will be sent to your email"} ), 'reset_password' : ( usertools.reset_password_action, PasswordChangeForm, 'olaf/reset_password.html', {}, 'olaf:login', { 'message' : "Password successfully changed, you can login now" } ), 'resend_activation_email' : ( usertools.resend_activation_email, ResendActivationUsernameOrEmailForm, 'olaf/resend_activation_email.html', {}, 'index', { 'message' : "Activation email successfully sent to your email" } ), } def form_operation ( request, oper, *args ): func, FORM, fail_template, fail_args, success_url, success_args = form_operation_dict [ oper ] if ( request.method == 'POST' ): form = FORM ( request.POST ) if ( form.is_valid () ): func ( request, form, *args ) for key in success_args: request.session [ key ] = success_args [ key ] return HttpResponseRedirect ( reverse ( success_url ) ) else: form = FORM () message = request.session.pop ( 'message', default = None ) if ( message is not None ): fail_args [ 'message' ] = message fail_args [ 'form' ] = form return render ( request, fail_template, fail_args ) #view functions def login_user ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'login' ) def register_user ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'register' ) def password_reset_request ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'password_reset_request' ) def reset_password_action ( request, token ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) tk = ExpirableTokenField.objects.filter ( token = token ).first () if ( tk is None ): request.session [ 'message' ] = "Broken link" return HttpResponseRedirect ( reverse ( 'index' ) ) else: if ( timezone.now () <= tk.expiration_time ): return form_operation ( request, 'reset_password', token ) else: request.session [ 'message' ] = "Link expired, try getting a new one" return HttpResponseRedirect ( reverse ( 'olaf:reset_password' ) ) def activate_account ( request, token ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) tk = ExpirableTokenField.objects.filter ( token = token ).first () if ( tk is None ): request.session [ 'message' ] = "Broken link" return HttpResponseRedirect ( reverse ( 'index' ) ) else: if ( timezone.now () <= tk.expiration_time ): if ( tk.user.is_active ): request.session [ 'message' ] = "Account already active" return HttpResponseRedirect ( reverse ( 'index' ) ) else: userdata = tk.user userdata.is_active = True userdata.save () request.session [ 'message' ] = "Your account has been activated successfully" return HttpResponseRedirect ( reverse ( 'olaf:login' ) ) else: request.session [ 'message' ] = "Link expired, try getting a new one" return HttpResponseRedirect ( reverse ( 'olaf:resend_activation_email' ) ) def resend_activation_email ( request ): if ( request.user.is_authenticated ): return HttpResponseRedirect ( reverse ( 'index' ) ) return form_operation ( request, 'resend_activation_email' ) def logout_user ( request ): usertools.logout_user ( request ) request.session [ 'message' ] = "Goodbye :)" return HttpResponseRedirect ( reverse ( 'index' ) ) def scoreboard ( request ): if ( request.method == 'POST' ): username = request.POST.get ( 'username' ) user = User.objects.filter ( username = username ).first () if ( user is None ): request.session [ 'message' ] = "User not found" return HttpResponseRedirect ( reverse ( 'olaf:scoreboard' ) ) else: return HttpResponseRedirect ( reverse ( 'olaf:user_profile', args = (username, ) ) ) else: args = {} message = request.session.pop ( 'message', default = None ) if ( message is not None ): args [ 'message' ] = message lst = [ (user.master.username, user.wins, user.loses, user.ties) for user in UserData.objects.filter ( is_active = True ) ] args [ 'lst' ] = lst if ( request.user.is_authenticated ): args [ 'logged_in' ] = True return render ( request, 'olaf/scoreboard.html', args ) def move ( request ): proccess_move ( request ) return HttpResponseRedirect ( reverse ( 'index' ) )
[ "django.shortcuts.render", "django.utils.timezone.now", "django.contrib.auth.models.User.objects.filter", "django.urls.reverse", "olaf.chess.controller.proccess_move", "olaf.utility.usertools.get_translated_game_board", "olaf.utility.usertools.new_game", "olaf.utility.usertools.logout_user" ]
[((3350, 3391), 'django.shortcuts.render', 'render', (['request', 'fail_template', 'fail_args'], {}), '(request, fail_template, fail_args)\n', (3356, 3391), False, 'from django.shortcuts import render\n'), ((5689, 5719), 'olaf.utility.usertools.logout_user', 'usertools.logout_user', (['request'], {}), '(request)\n', (5710, 5719), False, 'from olaf.utility import usertools\n'), ((6679, 6701), 'olaf.chess.controller.proccess_move', 'proccess_move', (['request'], {}), '(request)\n', (6692, 6701), False, 'from olaf.chess.controller import proccess_move\n'), ((1382, 1432), 'django.shortcuts.render', 'render', (['request', '"""olaf/index_logged_in.html"""', 'args'], {}), "(request, 'olaf/index_logged_in.html', args)\n", (1388, 1432), False, 'from django.shortcuts import render\n'), ((1681, 1735), 'django.shortcuts.render', 'render', (['request', '"""olaf/index_not_logged_in.html"""', 'args'], {}), "(request, 'olaf/index_not_logged_in.html', args)\n", (1687, 1735), False, 'from django.shortcuts import render\n'), ((5801, 5817), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (5808, 5817), False, 'from django.urls import reverse\n'), ((6606, 6651), 'django.shortcuts.render', 'render', (['request', '"""olaf/scoreboard.html"""', 'args'], {}), "(request, 'olaf/scoreboard.html', args)\n", (6612, 6651), False, 'from django.shortcuts import render\n'), ((6737, 6753), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (6744, 6753), False, 'from django.urls import reverse\n'), ((1284, 1328), 'olaf.utility.usertools.get_translated_game_board', 'usertools.get_translated_game_board', (['request'], {}), '(request)\n', (1319, 1328), False, 'from olaf.utility import usertools\n'), ((3512, 3528), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (3519, 3528), False, 'from django.urls import reverse\n'), ((3682, 3698), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (3689, 3698), False, 'from django.urls import reverse\n'), ((3864, 3880), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (3871, 3880), False, 'from django.urls import reverse\n'), ((4066, 4082), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (4073, 4082), False, 'from django.urls import reverse\n'), ((4257, 4273), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (4264, 4273), False, 'from django.urls import reverse\n'), ((4293, 4307), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (4305, 4307), False, 'from django.utils import timezone\n'), ((4659, 4675), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (4666, 4675), False, 'from django.urls import reverse\n'), ((4850, 4866), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (4857, 4866), False, 'from django.urls import reverse\n'), ((4886, 4900), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (4898, 4900), False, 'from django.utils import timezone\n'), ((5573, 5589), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (5580, 5589), False, 'from django.urls import reverse\n'), ((3135, 3155), 'django.urls.reverse', 'reverse', (['success_url'], {}), '(success_url)\n', (3142, 3155), False, 'from django.urls import reverse\n'), ((4510, 4540), 'django.urls.reverse', 'reverse', (['"""olaf:reset_password"""'], {}), "('olaf:reset_password')\n", (4517, 4540), False, 'from django.urls import reverse\n'), ((5415, 5454), 'django.urls.reverse', 'reverse', (['"""olaf:resend_activation_email"""'], {}), "('olaf:resend_activation_email')\n", (5422, 5454), False, 'from django.urls import reverse\n'), ((5940, 5978), 'django.contrib.auth.models.User.objects.filter', 'User.objects.filter', ([], {'username': 'username'}), '(username=username)\n', (5959, 5978), False, 'from django.contrib.auth.models import User\n'), ((6102, 6128), 'django.urls.reverse', 'reverse', (['"""olaf:scoreboard"""'], {}), "('olaf:scoreboard')\n", (6109, 6128), False, 'from django.urls import reverse\n'), ((6175, 6221), 'django.urls.reverse', 'reverse', (['"""olaf:user_profile"""'], {'args': '(username,)'}), "('olaf:user_profile', args=(username,))\n", (6182, 6221), False, 'from django.urls import reverse\n'), ((774, 801), 'olaf.utility.usertools.new_game', 'usertools.new_game', (['request'], {}), '(request)\n', (792, 801), False, 'from olaf.utility import usertools\n'), ((5051, 5067), 'django.urls.reverse', 'reverse', (['"""index"""'], {}), "('index')\n", (5058, 5067), False, 'from django.urls import reverse\n'), ((5274, 5295), 'django.urls.reverse', 'reverse', (['"""olaf:login"""'], {}), "('olaf:login')\n", (5281, 5295), False, 'from django.urls import reverse\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- # [Import start] from flask import Blueprint, jsonify # [Import end] app = Blueprint( 'hoge', __name__, url_prefix='/hoge' ) @app.route('/test') def hoge(): return "\nhogehoge"
[ "flask.Blueprint" ]
[((119, 166), 'flask.Blueprint', 'Blueprint', (['"""hoge"""', '__name__'], {'url_prefix': '"""/hoge"""'}), "('hoge', __name__, url_prefix='/hoge')\n", (128, 166), False, 'from flask import Blueprint, jsonify\n')]
#!/usr/bin/env python3 import apt_pkg import sys from apt_pkg import CURSTATE_INSTALLED, version_compare from operator import lt, le, eq, ge, gt # Function mappings for relationship operators. relation_operators = {"<<": lt, "<=": le, "=": eq, ">=": ge, ">>": gt} # Set up APT cache. apt_pkg.init() cache = apt_pkg.Cache(None) missing_packages = [] for i in sys.argv[1:]: # Build the package relationship string for use by 'apt-get satisfy'. relationship_operator = None for j in ["<=", ">=", "<", ">", "="]: if j in i: relationship_operator = j break if relationship_operator is not None: if relationship_operator in ["<", ">"]: relationship_operator_formatted = j + j else: relationship_operator_formatted = j package = i.split(relationship_operator) pkgname = package[0] pkgver = package[1] package_string = f"{pkgname} ({relationship_operator_formatted} {pkgver})" else: pkgname = i pkgver = None package_string = pkgname # Check if the package is in the cache. try: pkg = cache[pkgname] except KeyError: missing_packages += [package_string] continue # Get the list of installed and provided packages that are currently installed. installed_pkg_versions = [] if pkg.current_state == CURSTATE_INSTALLED: installed_pkg_versions += [pkg] for i in pkg.provides_list: parent_pkg = i[2].parent_pkg if parent_pkg.current_state == CURSTATE_INSTALLED: installed_pkg_versions += [parent_pkg] # If an installed package was found and no relationship operators were used, the dependency has been satisfied. if (len(installed_pkg_versions) != 0) and (relationship_operator is None): continue # Otherwise, check all matching installed packages and see if any of them fit the specified relationship operator. matched_pkg = False for i in installed_pkg_versions: installed_version = i.current_ver.ver_str version_result = version_compare(installed_version, pkgver) if relation_operators[relationship_operator_formatted](version_result, 0): matched_pkg = True if not matched_pkg: missing_packages += [package_string] for i in missing_packages: print(i) exit(0)
[ "apt_pkg.version_compare", "apt_pkg.Cache", "apt_pkg.init" ]
[((287, 301), 'apt_pkg.init', 'apt_pkg.init', ([], {}), '()\n', (299, 301), False, 'import apt_pkg\n'), ((310, 329), 'apt_pkg.Cache', 'apt_pkg.Cache', (['None'], {}), '(None)\n', (323, 329), False, 'import apt_pkg\n'), ((2105, 2147), 'apt_pkg.version_compare', 'version_compare', (['installed_version', 'pkgver'], {}), '(installed_version, pkgver)\n', (2120, 2147), False, 'from apt_pkg import CURSTATE_INSTALLED, version_compare\n')]
# Generated by Django 3.0.7 on 2020-08-24 06:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('datasets', '0008_auto_20200821_1427'), ] operations = [ migrations.AddField( model_name='rawdar', name='AsB', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='AsB_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='AsB_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Ba', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Ba_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Ba_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Cs', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Cs_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Cs_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='DMA', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='DMA_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='DMA_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='MMA', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='MMA_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='MMA_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Sr', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='Sr_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='Sr_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='iAs', field=models.FloatField(blank=True, null=True), ), migrations.AddField( model_name='rawdar', name='iAs_BDL', field=models.CharField(choices=[('1', 'below detection level'), ('0', 'above detection level'), ('nan', 'invalid')], default=0, max_length=3), preserve_default=False, ), migrations.AddField( model_name='rawdar', name='iAs_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ag', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ag_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Al', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Al_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='As', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='As_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Be', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Be_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cd', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cd_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Co', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Co_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cr', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cr_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cu', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Cu_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Fe', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Fe_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Hg', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Hg_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mo', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Mo_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ni', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Ni_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Pb', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Pb_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sb', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sb_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Se', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Se_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Sn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Tl', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Tl_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='U', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='U_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='V', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='V_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='W', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='W_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Zn', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='Zn_IDL', field=models.FloatField(blank=True, null=True), ), migrations.AlterField( model_name='rawdar', name='urine_specific_gravity', field=models.FloatField(blank=True, null=True), ), ]
[ "django.db.models.FloatField", "django.db.models.CharField" ]
[((332, 372), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (349, 372), False, 'from django.db import migrations, models\n'), ((493, 632), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('1', 'below detection level'), ('0', 'above detection level'), ('nan',\n 'invalid')]", 'default': '(0)', 'max_length': '(3)'}), "(choices=[('1', 'below detection level'), ('0',\n 'above detection level'), ('nan', 'invalid')], default=0, max_length=3)\n", (509, 632), False, 'from django.db import migrations, models\n'), ((785, 825), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (802, 825), False, 'from django.db import migrations, models\n'), ((941, 981), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (958, 981), False, 'from django.db import migrations, models\n'), ((1101, 1240), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('1', 'below detection level'), ('0', 'above detection level'), ('nan',\n 'invalid')]", 'default': '(0)', 'max_length': '(3)'}), "(choices=[('1', 'below detection level'), ('0',\n 'above detection level'), ('nan', 'invalid')], default=0, max_length=3)\n", (1117, 1240), False, 'from django.db import migrations, models\n'), ((1392, 1432), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1409, 1432), False, 'from django.db import migrations, models\n'), ((1548, 1588), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1565, 1588), False, 'from django.db import migrations, models\n'), ((1708, 1847), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('1', 'below detection level'), ('0', 'above detection level'), ('nan',\n 'invalid')]", 'default': '(0)', 'max_length': '(3)'}), "(choices=[('1', 'below detection level'), ('0',\n 'above detection level'), ('nan', 'invalid')], default=0, max_length=3)\n", (1724, 1847), False, 'from django.db import migrations, models\n'), ((1999, 2039), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2016, 2039), False, 'from django.db import migrations, models\n'), ((2156, 2196), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2173, 2196), False, 'from django.db import migrations, models\n'), ((2317, 2456), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('1', 'below detection level'), ('0', 'above detection level'), ('nan',\n 'invalid')]", 'default': '(0)', 'max_length': '(3)'}), "(choices=[('1', 'below detection level'), ('0',\n 'above detection level'), ('nan', 'invalid')], default=0, max_length=3)\n", (2333, 2456), False, 'from django.db import migrations, models\n'), ((2609, 2649), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2626, 2649), False, 'from django.db import migrations, models\n'), ((2766, 2806), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2783, 2806), False, 'from django.db import migrations, models\n'), ((2927, 3066), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('1', 'below detection level'), ('0', 'above detection level'), ('nan',\n 'invalid')]", 'default': '(0)', 'max_length': '(3)'}), "(choices=[('1', 'below detection level'), ('0',\n 'above detection level'), ('nan', 'invalid')], default=0, max_length=3)\n", (2943, 3066), False, 'from django.db import migrations, models\n'), ((3219, 3259), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (3236, 3259), False, 'from django.db import migrations, models\n'), ((3375, 3415), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (3392, 3415), False, 'from django.db import migrations, models\n'), ((3535, 3674), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('1', 'below detection level'), ('0', 'above detection level'), ('nan',\n 'invalid')]", 'default': '(0)', 'max_length': '(3)'}), "(choices=[('1', 'below detection level'), ('0',\n 'above detection level'), ('nan', 'invalid')], default=0, max_length=3)\n", (3551, 3674), False, 'from django.db import migrations, models\n'), ((3826, 3866), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (3843, 3866), False, 'from django.db import migrations, models\n'), ((3983, 4023), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (4000, 4023), False, 'from django.db import migrations, models\n'), ((4144, 4283), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('1', 'below detection level'), ('0', 'above detection level'), ('nan',\n 'invalid')]", 'default': '(0)', 'max_length': '(3)'}), "(choices=[('1', 'below detection level'), ('0',\n 'above detection level'), ('nan', 'invalid')], default=0, max_length=3)\n", (4160, 4283), False, 'from django.db import migrations, models\n'), ((4436, 4476), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (4453, 4476), False, 'from django.db import migrations, models\n'), ((4594, 4634), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (4611, 4634), False, 'from django.db import migrations, models\n'), ((4756, 4796), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (4773, 4796), False, 'from django.db import migrations, models\n'), ((4914, 4954), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (4931, 4954), False, 'from django.db import migrations, models\n'), ((5076, 5116), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5093, 5116), False, 'from django.db import migrations, models\n'), ((5234, 5274), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5251, 5274), False, 'from django.db import migrations, models\n'), ((5396, 5436), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5413, 5436), False, 'from django.db import migrations, models\n'), ((5554, 5594), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5571, 5594), False, 'from django.db import migrations, models\n'), ((5716, 5756), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5733, 5756), False, 'from django.db import migrations, models\n'), ((5874, 5914), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (5891, 5914), False, 'from django.db import migrations, models\n'), ((6036, 6076), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (6053, 6076), False, 'from django.db import migrations, models\n'), ((6194, 6234), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (6211, 6234), False, 'from django.db import migrations, models\n'), ((6356, 6396), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (6373, 6396), False, 'from django.db import migrations, models\n'), ((6514, 6554), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (6531, 6554), False, 'from django.db import migrations, models\n'), ((6676, 6716), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (6693, 6716), False, 'from django.db import migrations, models\n'), ((6834, 6874), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (6851, 6874), False, 'from django.db import migrations, models\n'), ((6996, 7036), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (7013, 7036), False, 'from django.db import migrations, models\n'), ((7154, 7194), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (7171, 7194), False, 'from django.db import migrations, models\n'), ((7316, 7356), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (7333, 7356), False, 'from django.db import migrations, models\n'), ((7474, 7514), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (7491, 7514), False, 'from django.db import migrations, models\n'), ((7636, 7676), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (7653, 7676), False, 'from django.db import migrations, models\n'), ((7794, 7834), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (7811, 7834), False, 'from django.db import migrations, models\n'), ((7956, 7996), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (7973, 7996), False, 'from django.db import migrations, models\n'), ((8114, 8154), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (8131, 8154), False, 'from django.db import migrations, models\n'), ((8276, 8316), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (8293, 8316), False, 'from django.db import migrations, models\n'), ((8434, 8474), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (8451, 8474), False, 'from django.db import migrations, models\n'), ((8596, 8636), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (8613, 8636), False, 'from django.db import migrations, models\n'), ((8754, 8794), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (8771, 8794), False, 'from django.db import migrations, models\n'), ((8916, 8956), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (8933, 8956), False, 'from django.db import migrations, models\n'), ((9074, 9114), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (9091, 9114), False, 'from django.db import migrations, models\n'), ((9236, 9276), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (9253, 9276), False, 'from django.db import migrations, models\n'), ((9394, 9434), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (9411, 9434), False, 'from django.db import migrations, models\n'), ((9556, 9596), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (9573, 9596), False, 'from django.db import migrations, models\n'), ((9714, 9754), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (9731, 9754), False, 'from django.db import migrations, models\n'), ((9876, 9916), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (9893, 9916), False, 'from django.db import migrations, models\n'), ((10034, 10074), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (10051, 10074), False, 'from django.db import migrations, models\n'), ((10196, 10236), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (10213, 10236), False, 'from django.db import migrations, models\n'), ((10353, 10393), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (10370, 10393), False, 'from django.db import migrations, models\n'), ((10514, 10554), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (10531, 10554), False, 'from django.db import migrations, models\n'), ((10671, 10711), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (10688, 10711), False, 'from django.db import migrations, models\n'), ((10832, 10872), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (10849, 10872), False, 'from django.db import migrations, models\n'), ((10989, 11029), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (11006, 11029), False, 'from django.db import migrations, models\n'), ((11150, 11190), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (11167, 11190), False, 'from django.db import migrations, models\n'), ((11308, 11348), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (11325, 11348), False, 'from django.db import migrations, models\n'), ((11470, 11510), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (11487, 11510), False, 'from django.db import migrations, models\n'), ((11648, 11688), 'django.db.models.FloatField', 'models.FloatField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (11665, 11688), False, 'from django.db import migrations, models\n')]
import os import math import time import geohash import geojson from geojson import MultiLineString from shapely import geometry import shapefile import numpy import datetime as dt import pandas as pd import logging logger = logging.getLogger(__name__) source_shape_file_path = "C:/temp/2018/" threshold = 60*60 cols = ['start', 'end','start_epoch_round','end_epoch_round','start_epoch_round_dt','end_epoch_round_dt'] times = [] for root,dirs,files in os.walk(source_shape_file_path): for file in files: with open(os.path.join(root,file),"r") as auto: if file.endswith(".shp"): try: filename = file.replace(".shp","") shape=shapefile.Reader(source_shape_file_path+filename+"/"+file) for r in shape.iterRecords(): start_time = dt.datetime.strptime(r[1], '%Y%j %H%M') end_time = dt.datetime.strptime(r[2], '%Y%j %H%M') epoch_s = dt.datetime.timestamp(dt.datetime.strptime(r[1], '%Y%j %H%M')) epoch_e = dt.datetime.timestamp(dt.datetime.strptime(r[2], '%Y%j %H%M')) # sometimes start is later than end time, we'll assume the earlier time is start epoch_end_round = round(max(epoch_s,epoch_e) / threshold) * threshold epoch_start_round = round(min(epoch_s,epoch_e) / threshold) * threshold epoch_end_round_dt = dt.datetime.utcfromtimestamp(3600 * ((max(epoch_s,epoch_e) + 1800) // 3600)) epoch_start_round_dt = dt.datetime.utcfromtimestamp(3600 * ((min(epoch_s,epoch_e) + 1800) // 3600)) times.append([start_time,end_time,epoch_start_round,epoch_end_round,epoch_start_round_dt,epoch_end_round_dt]) break except: logger.error('failed to parse file:'+source_shape_file_path+filename+"/") continue df = pd.DataFrame(times, columns=cols) df.to_csv('noaa_times.csv')
[ "logging.getLogger", "shapefile.Reader", "datetime.datetime.strptime", "os.path.join", "pandas.DataFrame", "os.walk" ]
[((226, 253), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (243, 253), False, 'import logging\n'), ((454, 485), 'os.walk', 'os.walk', (['source_shape_file_path'], {}), '(source_shape_file_path)\n', (461, 485), False, 'import os\n'), ((2012, 2045), 'pandas.DataFrame', 'pd.DataFrame', (['times'], {'columns': 'cols'}), '(times, columns=cols)\n', (2024, 2045), True, 'import pandas as pd\n'), ((528, 552), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (540, 552), False, 'import os\n'), ((706, 770), 'shapefile.Reader', 'shapefile.Reader', (["(source_shape_file_path + filename + '/' + file)"], {}), "(source_shape_file_path + filename + '/' + file)\n", (722, 770), False, 'import shapefile\n'), ((852, 891), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['r[1]', '"""%Y%j %H%M"""'], {}), "(r[1], '%Y%j %H%M')\n", (872, 891), True, 'import datetime as dt\n'), ((927, 966), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['r[2]', '"""%Y%j %H%M"""'], {}), "(r[2], '%Y%j %H%M')\n", (947, 966), True, 'import datetime as dt\n'), ((1023, 1062), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['r[1]', '"""%Y%j %H%M"""'], {}), "(r[1], '%Y%j %H%M')\n", (1043, 1062), True, 'import datetime as dt\n'), ((1120, 1159), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['r[2]', '"""%Y%j %H%M"""'], {}), "(r[2], '%Y%j %H%M')\n", (1140, 1159), True, 'import datetime as dt\n')]
import pygame_sdl2 pygame_sdl2.import_as_pygame() import pygame import os import random import math from Ball import Ball def save_state(balls): """ Saves the game state. """ stateString = "" with open("state.txt", "w") as f: for ball in balls: stateString += "{} {} {} {} {}".format(ball.imageFile, ball.speedx, ball.speedy, ball.rect.centerx, ball.rect.centery) stateString += '\n' f.write(stateString) def load_state(): try: objects = [] with open("state.txt", "r") as f: for line in f.read(): f, sx, sy, x, y = line.split() objects += Ball(f, [int(sx), int(sy)], [int(x), int(y)]) return objects except: return None def delete_state(): if os.path.exists("state.txt"): os.unlink("state.txt") def main(): pygame.init() clock = pygame.time.Clock() infoObject = pygame.display.Info() #print infoObject.current_w width = infoObject.current_w height = infoObject.current_h size = width, height bgColor = r,g,b = 0, 0, 0 screen = pygame.display.set_mode(size) pygame.display.set_mode() balls = load_state() delete_state() if balls == None: balls = [] ballTimer = 0 ballTimerMax = .75 * 60 done = False sleeping = False font = pygame.font.Font("DejaVuSans.ttf", 124) text = font.render("Start", True, (255, 255, 255, 255)) textRect = text.get_rect(center = (width/2, height/2)) while not done: for event in pygame.event.get(): text = font.render(str(event.type), True, (255, 255, 255, 255)) if event.type == pygame.QUIT: done = True elif event.type == pygame.KEYDOWN and event.key == pygame.K_AC_BACK: done = True elif event.type == pygame.APP_WILLENTERBACKGROUND: # The app is about to go to sleep. It should save state, cancel # any timers, and stop drawing the screen until an APP_DIDENTERFOREGROUND # event shows up. save_state(balls) sleeping = True elif event.type == pygame.APP_DIDENTERFOREGROUND: # The app woke back up. Delete the saved state (we don't need it), # restore any times, and start drawing the screen again. delete_state() sleeping = False # For now, we have to re-open the window when entering the # foreground. screen = pygame.display.set_mode((1280, 720)) if not sleeping: ballTimer += 1 if ballTimer >= ballTimerMax: ballTimer = 0 ballSpeed = [random.randint(-5, 5), random.randint(-5, 5)] ballPos = [random.randint(100, width-100), random.randint(100, height-100)] balls += [Ball("ball.png",ballSpeed,ballPos)] save_state(balls) for ball in balls: ball.move() ball.collideScreen(size) for first in balls: for second in balls: if first != second: first.collideBall(second) bgColor = r,g,b screen.fill(bgColor) for ball in balls: screen.blit(ball.image, ball.rect) screen.blit(text, textRect) pygame.display.flip() clock.tick(60) if done: break if __name__ == "__main__": main()
[ "os.path.exists", "pygame.init", "pygame.event.get", "pygame.display.set_mode", "pygame.display.flip", "pygame.display.Info", "pygame_sdl2.import_as_pygame", "os.unlink", "pygame.time.Clock", "pygame.font.Font", "random.randint", "Ball.Ball" ]
[((19, 49), 'pygame_sdl2.import_as_pygame', 'pygame_sdl2.import_as_pygame', ([], {}), '()\n', (47, 49), False, 'import pygame_sdl2\n'), ((999, 1026), 'os.path.exists', 'os.path.exists', (['"""state.txt"""'], {}), "('state.txt')\n", (1013, 1026), False, 'import os\n'), ((1076, 1089), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1087, 1089), False, 'import pygame\n'), ((1107, 1126), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (1124, 1126), False, 'import pygame\n'), ((1144, 1165), 'pygame.display.Info', 'pygame.display.Info', ([], {}), '()\n', (1163, 1165), False, 'import pygame\n'), ((1351, 1380), 'pygame.display.set_mode', 'pygame.display.set_mode', (['size'], {}), '(size)\n', (1374, 1380), False, 'import pygame\n'), ((1385, 1410), 'pygame.display.set_mode', 'pygame.display.set_mode', ([], {}), '()\n', (1408, 1410), False, 'import pygame\n'), ((1612, 1651), 'pygame.font.Font', 'pygame.font.Font', (['"""DejaVuSans.ttf"""', '(124)'], {}), "('DejaVuSans.ttf', 124)\n", (1628, 1651), False, 'import pygame\n'), ((1036, 1058), 'os.unlink', 'os.unlink', (['"""state.txt"""'], {}), "('state.txt')\n", (1045, 1058), False, 'import os\n'), ((1817, 1835), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1833, 1835), False, 'import pygame\n'), ((3821, 3842), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (3840, 3842), False, 'import pygame\n'), ((3036, 3057), 'random.randint', 'random.randint', (['(-5)', '(5)'], {}), '(-5, 5)\n', (3050, 3057), False, 'import random\n'), ((3088, 3109), 'random.randint', 'random.randint', (['(-5)', '(5)'], {}), '(-5, 5)\n', (3102, 3109), False, 'import random\n'), ((3138, 3170), 'random.randint', 'random.randint', (['(100)', '(width - 100)'], {}), '(100, width - 100)\n', (3152, 3170), False, 'import random\n'), ((3199, 3232), 'random.randint', 'random.randint', (['(100)', '(height - 100)'], {}), '(100, height - 100)\n', (3213, 3232), False, 'import random\n'), ((3258, 3294), 'Ball.Ball', 'Ball', (['"""ball.png"""', 'ballSpeed', 'ballPos'], {}), "('ball.png', ballSpeed, ballPos)\n", (3262, 3294), False, 'from Ball import Ball\n'), ((2838, 2874), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(1280, 720)'], {}), '((1280, 720))\n', (2861, 2874), False, 'import pygame\n')]
from __future__ import division import math, copy import argparse from brownian import Brownian import scipy import LLRcalc class sprt: def __init__(self, alpha=0.05, beta=0.05, elo0=0, elo1=5, elo_model="logistic"): assert elo_model in ("logistic", "normalized") self.elo_model = elo_model self.a = math.log(beta / (1 - alpha)) self.b = math.log((1 - beta) / alpha) self.elo0 = elo0 self.elo1 = elo1 self.clamped = False self.LLR_drift_variance = LLRcalc.LLR_drift_variance_alt2 def elo_to_score(self, elo): """ "elo" is expressed in our current elo_model. """ if self.elo_model == "normalized": nt = elo / LLRcalc.nelo_divided_by_nt return nt * self.sigma_pg + 0.5 else: return LLRcalc.L_(elo) def lelo_to_elo(self, lelo): """ For external use. "elo" is expressed in our current elo_model. "lelo" is logistic. """ if self.elo_model == "logistic": return lelo score = LLRcalc.L_(lelo) nt = (score - 0.5) / self.sigma_pg return nt * LLRcalc.nelo_divided_by_nt def set_state(self, results): N, self.pdf = LLRcalc.results_to_pdf(results) if self.elo_model == "normalized": mu, var = LLRcalc.stats(self.pdf) # code duplication with LLRcalc if len(results) == 5: self.sigma_pg = (2 * var) ** 0.5 elif len(results) == 3: self.sigma_pg = var ** 0.5 else: assert False self.s0, self.s1 = [self.elo_to_score(elo) for elo in (self.elo0, self.elo1)] mu_LLR, var_LLR = self.LLR_drift_variance(self.pdf, self.s0, self.s1, None) # llr estimate self.llr = N * mu_LLR self.T = N # now normalize llr (if llr is not legal then the implications # of this are unclear) slope = self.llr / N if self.llr > 1.03 * self.b or self.llr < 1.03 * self.a: self.clamped = True if self.llr < self.a: self.T = self.a / slope self.llr = self.a elif self.llr > self.b: self.T = self.b / slope self.llr = self.b def outcome_prob(self, elo): """ The probability of a test with the given elo with worse outcome (faster fail, slower pass or a pass changed into a fail). """ s = LLRcalc.L_(elo) mu_LLR, var_LLR = self.LLR_drift_variance(self.pdf, self.s0, self.s1, s) sigma_LLR = math.sqrt(var_LLR) return Brownian(a=self.a, b=self.b, mu=mu_LLR, sigma=sigma_LLR).outcome_cdf( T=self.T, y=self.llr ) def lower_cb(self, p): """ Maximal elo value such that the observed outcome of the test has probability less than p. """ avg_elo = (self.elo0 + self.elo1) / 2 delta = self.elo1 - self.elo0 N = 30 # Various error conditions must be handled better here! while True: elo0 = max(avg_elo - N * delta, -1000) elo1 = min(avg_elo + N * delta, 1000) try: sol, res = scipy.optimize.brentq( lambda elo: self.outcome_prob(elo) - (1 - p), elo0, elo1, full_output=True, disp=False, ) except ValueError: if elo0 > -1000 or elo1 < 1000: N *= 2 continue else: if self.outcome_prob(elo0) - (1 - p) > 0: return elo1 else: return elo0 assert res.converged break return sol def analytics(self, p=0.05): ret = {} ret["clamped"] = self.clamped ret["a"] = self.a ret["b"] = self.b ret["elo"] = self.lower_cb(0.5) ret["ci"] = [self.lower_cb(p / 2), self.lower_cb(1 - p / 2)] ret["LOS"] = self.outcome_prob(0) ret["LLR"] = self.llr return ret if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--alpha", help="probability of a false positve", type=float, default=0.05 ) parser.add_argument( "--beta", help="probability of a false negative", type=float, default=0.05 ) parser.add_argument( "--elo0", help="H0 (expressed in LogisticElo)", type=float, default=0.0 ) parser.add_argument( "--elo1", help="H1 (expressed in LogisticElo)", type=float, default=5.0 ) parser.add_argument("--level", help="confidence level", type=float, default=0.95) parser.add_argument( "--elo-model", help="logistic or normalized", choices=['logistic', 'normalized'], default='logistic', ) parser.add_argument( "--results", help="trinomial of pentanomial frequencies, low to high", nargs="*", type=int, required=True, ) args = parser.parse_args() results = args.results if len(results) != 3 and len(results) != 5: parser.error("argument --results: expected 3 or 5 arguments") alpha = args.alpha beta = args.beta elo0 = args.elo0 elo1 = args.elo1 elo_model = args.elo_model p = 1 - args.level s = sprt(alpha=alpha, beta=beta, elo0=elo0, elo1=elo1, elo_model=elo_model) s.set_state(results) a = s.analytics(p) print("Design parameters") print("=================") print("False positives : %4.2f%%" % (100 * alpha,)) print("False negatives : %4.2f%%" % (100 * beta,)) print("[Elo0,Elo1] : [%.2f,%.2f]" % (elo0, elo1)) print("Confidence level : %4.2f%%" % (100 * (1 - p),)) print("Elo model : %s" % elo_model) print("Estimates") print("=========") print("Elo : %.2f" % a["elo"]) print( "Confidence interval : [%.2f,%.2f] (%4.2f%%)" % (a["ci"][0], a["ci"][1], 100 * (1 - p)) ) print("LOS : %4.2f%%" % (100 * a["LOS"],)) print("Context") print("=======") print( "LLR [u,l] : %.2f %s [%.2f,%.2f]" % (a["LLR"], "(clamped)" if a["clamped"] else "", a["a"], a["b"]) )
[ "LLRcalc.results_to_pdf", "argparse.ArgumentParser", "math.sqrt", "math.log", "LLRcalc.stats", "LLRcalc.L_", "brownian.Brownian" ]
[((4157, 4182), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4180, 4182), False, 'import argparse\n'), ((330, 358), 'math.log', 'math.log', (['(beta / (1 - alpha))'], {}), '(beta / (1 - alpha))\n', (338, 358), False, 'import math, copy\n'), ((376, 404), 'math.log', 'math.log', (['((1 - beta) / alpha)'], {}), '((1 - beta) / alpha)\n', (384, 404), False, 'import math, copy\n'), ((1054, 1070), 'LLRcalc.L_', 'LLRcalc.L_', (['lelo'], {}), '(lelo)\n', (1064, 1070), False, 'import LLRcalc\n'), ((1218, 1249), 'LLRcalc.results_to_pdf', 'LLRcalc.results_to_pdf', (['results'], {}), '(results)\n', (1240, 1249), False, 'import LLRcalc\n'), ((2432, 2447), 'LLRcalc.L_', 'LLRcalc.L_', (['elo'], {}), '(elo)\n', (2442, 2447), False, 'import LLRcalc\n'), ((2549, 2567), 'math.sqrt', 'math.sqrt', (['var_LLR'], {}), '(var_LLR)\n', (2558, 2567), False, 'import math, copy\n'), ((815, 830), 'LLRcalc.L_', 'LLRcalc.L_', (['elo'], {}), '(elo)\n', (825, 830), False, 'import LLRcalc\n'), ((1315, 1338), 'LLRcalc.stats', 'LLRcalc.stats', (['self.pdf'], {}), '(self.pdf)\n', (1328, 1338), False, 'import LLRcalc\n'), ((2583, 2639), 'brownian.Brownian', 'Brownian', ([], {'a': 'self.a', 'b': 'self.b', 'mu': 'mu_LLR', 'sigma': 'sigma_LLR'}), '(a=self.a, b=self.b, mu=mu_LLR, sigma=sigma_LLR)\n', (2591, 2639), False, 'from brownian import Brownian\n')]
"""Simple Hail query example.""" import click import hail as hl from bokeh.io.export import get_screenshot_as_png from analysis_runner import output_path GNOMAD_HGDP_1KG_MT = ( 'gs://gcp-public-data--gnomad/release/3.1/mt/genomes/' 'gnomad.genomes.v3.1.hgdp_1kg_subset_dense.mt' ) @click.command() @click.option('--rerun', help='Whether to overwrite cached files', default=False) def query(rerun): """Query script entry point.""" hl.init(default_reference='GRCh38') sample_qc_path = output_path('sample_qc.mt') if rerun or not hl.hadoop_exists(sample_qc_path): mt = hl.read_matrix_table(GNOMAD_HGDP_1KG_MT) mt = mt.head(100, n_cols=100) mt_qc = hl.sample_qc(mt) mt_qc.write(sample_qc_path) mt_qc = hl.read_matrix_table(sample_qc_path) plot_filename = output_path('call_rate_plot.png', 'web') if rerun or not hl.hadoop_exists(plot_filename): call_rate_plot = hl.plot.histogram( mt_qc.sample_qc.call_rate, range=(0, 1), legend='Call rate' ) with hl.hadoop_open(plot_filename, 'wb') as f: get_screenshot_as_png(call_rate_plot).save(f, format='PNG') if __name__ == '__main__': query() # pylint: disable=no-value-for-parameter
[ "hail.hadoop_open", "click.option", "hail.sample_qc", "hail.hadoop_exists", "hail.read_matrix_table", "hail.init", "bokeh.io.export.get_screenshot_as_png", "click.command", "analysis_runner.output_path", "hail.plot.histogram" ]
[((295, 310), 'click.command', 'click.command', ([], {}), '()\n', (308, 310), False, 'import click\n'), ((312, 397), 'click.option', 'click.option', (['"""--rerun"""'], {'help': '"""Whether to overwrite cached files"""', 'default': '(False)'}), "('--rerun', help='Whether to overwrite cached files', default=False\n )\n", (324, 397), False, 'import click\n'), ((452, 487), 'hail.init', 'hl.init', ([], {'default_reference': '"""GRCh38"""'}), "(default_reference='GRCh38')\n", (459, 487), True, 'import hail as hl\n'), ((510, 537), 'analysis_runner.output_path', 'output_path', (['"""sample_qc.mt"""'], {}), "('sample_qc.mt')\n", (521, 537), False, 'from analysis_runner import output_path\n'), ((765, 801), 'hail.read_matrix_table', 'hl.read_matrix_table', (['sample_qc_path'], {}), '(sample_qc_path)\n', (785, 801), True, 'import hail as hl\n'), ((823, 863), 'analysis_runner.output_path', 'output_path', (['"""call_rate_plot.png"""', '"""web"""'], {}), "('call_rate_plot.png', 'web')\n", (834, 863), False, 'from analysis_runner import output_path\n'), ((605, 645), 'hail.read_matrix_table', 'hl.read_matrix_table', (['GNOMAD_HGDP_1KG_MT'], {}), '(GNOMAD_HGDP_1KG_MT)\n', (625, 645), True, 'import hail as hl\n'), ((700, 716), 'hail.sample_qc', 'hl.sample_qc', (['mt'], {}), '(mt)\n', (712, 716), True, 'import hail as hl\n'), ((942, 1020), 'hail.plot.histogram', 'hl.plot.histogram', (['mt_qc.sample_qc.call_rate'], {'range': '(0, 1)', 'legend': '"""Call rate"""'}), "(mt_qc.sample_qc.call_rate, range=(0, 1), legend='Call rate')\n", (959, 1020), True, 'import hail as hl\n'), ((558, 590), 'hail.hadoop_exists', 'hl.hadoop_exists', (['sample_qc_path'], {}), '(sample_qc_path)\n', (574, 590), True, 'import hail as hl\n'), ((884, 915), 'hail.hadoop_exists', 'hl.hadoop_exists', (['plot_filename'], {}), '(plot_filename)\n', (900, 915), True, 'import hail as hl\n'), ((1056, 1091), 'hail.hadoop_open', 'hl.hadoop_open', (['plot_filename', '"""wb"""'], {}), "(plot_filename, 'wb')\n", (1070, 1091), True, 'import hail as hl\n'), ((1110, 1147), 'bokeh.io.export.get_screenshot_as_png', 'get_screenshot_as_png', (['call_rate_plot'], {}), '(call_rate_plot)\n', (1131, 1147), False, 'from bokeh.io.export import get_screenshot_as_png\n')]
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Loads, converts, and runs sample models.""" import abc import collections import functools import tempfile import time from typing import Callable, Iterable, List, Mapping, Optional, Sequence, Union from absl import logging import numpy as np from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.python.client import session from tensorflow.python.compiler.tensorrt import trt_convert as trt from tensorflow.python.framework import convert_to_constants from tensorflow.python.framework import dtypes as tf_dtypes from tensorflow.python.framework import importer from tensorflow.python.framework import ops as framework_ops from tensorflow.python.ops import random_ops from tensorflow.python.saved_model import load as saved_model_load from tensorflow.python.saved_model import loader as saved_model_loader from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants # pylint: disable=bad-whitespace ### Helper Functions def _get_concrete_tensor_shape( tensor_shape: tensor_shape_pb2.TensorShapeProto, batch_size: Optional[int] = None) -> Sequence[int]: """Gets a concrete tensor shape without dynamic dimensions.""" if tensor_shape.unknown_rank: raise ValueError("Cannot generates random tensors for unknown rank!") shape = [dim.size for dim in tensor_shape.dim] if not shape: raise ValueError("The tensor cannot have a rank of 0!") if shape[0] < 0: if batch_size is None or batch_size <= 0: raise ValueError("Must provide a valid batch size " "as the tensor has a dynamic batch size!") shape[0] = batch_size if any(filter(lambda x: x < 0, shape)): raise ValueError("Cannot have dynamic dimensions except for batch size!") return shape def _generate_random_tensor_v1(tensor_info: meta_graph_pb2.TensorInfo, batch_size: Optional[int] = None) -> np.ndarray: """Generates a random tensor based on the data type and tensor shape.""" dtype = tf_dtypes.as_dtype(tensor_info.dtype) shape = _get_concrete_tensor_shape(tensor_info.tensor_shape, batch_size) with session.Session(): return random_ops.random_uniform( shape=shape, dtype=dtype, name=tensor_info.name.split(":")[0]).eval() def _generate_random_tensor_v2( tensor: framework_ops.Tensor, batch_size: Optional[int] = None) -> framework_ops.Tensor: """Generates a random tensor based on the data type and tensor shape.""" shape = _get_concrete_tensor_shape(tensor.shape.as_proto(), batch_size) return random_ops.random_uniform( shape=shape, dtype=tensor.dtype, name=tensor.name) # Models are repeatedly loaded for different TensorRT conversion settings. # Using cache can reduce I/O. @functools.lru_cache() def load_meta_graph( saved_model_dir: str, saved_model_tags: str, saved_model_signature_key: str) -> meta_graph_pb2.MetaGraphDef: """Loads a `tf.MetaGraphDef` in TF1.""" with session.Session() as sess: meta_graph = saved_model_loader.load( sess=sess, export_dir=saved_model_dir, tags=saved_model_tags, ) output_node_names = [ tensor.name.split(":")[0] for tensor in meta_graph.signature_def[saved_model_signature_key].outputs.values() ] graph_def = ( convert_to_constants.convert_variables_to_constants_from_session_graph( sess, meta_graph.graph_def, output_node_names)) meta_graph.graph_def.CopyFrom(graph_def) return meta_graph @functools.lru_cache() def load_graph_func(saved_model_dir: str, saved_model_tags: str, saved_model_signature_key: str): """Loads a graph function in TF2.""" imported = saved_model_load.load( export_dir=saved_model_dir, tags=saved_model_tags) graph_func = imported.signatures[saved_model_signature_key] return convert_to_constants.convert_variables_to_constants_v2(graph_func) ### Test Classes class TestResult( collections.namedtuple("TestResult", ["outputs", "latency", "trt_convert_params"])): def __new__(cls, outputs: Mapping[str, np.ndarray], latency: List[float], trt_convert_params: trt.TrtConversionParams = None): return super(TestResult, cls).__new__(cls, outputs, latency, trt_convert_params) class ModelConfig( collections.namedtuple("ModelConfig", [ "saved_model_dir", "saved_model_tags", "saved_model_signature_key", "default_batch_size" ])): """Configurations for test models.""" def __new__(cls, saved_model_dir: str, saved_model_tags: Sequence[str] = (tag_constants.SERVING,), saved_model_signature_key: str = ( signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY), default_batch_size: int = 1): return super(ModelConfig, cls).__new__(cls, saved_model_dir, saved_model_tags, saved_model_signature_key, default_batch_size) class TestResultCollection( collections.namedtuple("TestResultCollection", ["results", "config"])): def __new__(cls, config: ModelConfig, results: Sequence[TestResult] = tuple()): return super(TestResultCollection, cls).__new__(cls, config, results) class _ModelHandlerBase(metaclass=abc.ABCMeta): """Base class for running a model.""" def __init__(self, model_config: ModelConfig): self._model_config = model_config def __str__(self) -> str: return str(self._model_config) def __repr__(self) -> str: return "{}({})".format(self.__class__.__name__, str(self)) @property def model_config(self) -> ModelConfig: return self._model_config @property def input_tensort_names(self) -> Sequence[str]: """Names of input tensors.""" @property def output_tensor_names(self) -> Sequence[str]: """Names of output tensors.""" @abc.abstractmethod def generate_random_inputs( self, batch_size: Optional[int] = None ) -> Mapping[str, Union[np.ndarray, framework_ops.Tensor]]: """Generates mapping from names to input tensors.""" @abc.abstractmethod def run(self, inputs=None, warmup_iterations: int = 10, benchmark_iterations: int = 100, allow_to_use_gpu: bool = False) -> TestResult: """Runs the model with provided or randomly generated input tensors. Args: inputs: Mapping from names to input ndarrays in TF1, or a sequence of tensors in TF2. If `None`, ramdomly generated inputs will be used instead. warmup_iterations: Number of inferences to warm up the runtime. benchmark_iterations: Number of inferences to measure the latency. allow_to_use_gpu: Whether it is allowed to use GPU or not. Returns: `TestResult` summarizing timing and numerics information. """ class ModelHandlerV1(_ModelHandlerBase): """Runs a model in TF1.""" @property def meta_graph(self) -> meta_graph_pb2.MetaGraphDef: return load_meta_graph( saved_model_dir=self.model_config.saved_model_dir, saved_model_tags=self.model_config.saved_model_tags, saved_model_signature_key=self.model_config.saved_model_signature_key) @property def input_tensor_info(self) -> Mapping[str, meta_graph_pb2.TensorInfo]: return self.meta_graph.signature_def[ self.model_config.saved_model_signature_key].inputs @property def output_tensor_info(self) -> Mapping[str, meta_graph_pb2.TensorInfo]: return self.meta_graph.signature_def[ self.model_config.saved_model_signature_key].outputs @property def input_tensort_names(self) -> Sequence[str]: return [info.name for info in self.input_tensor_info.values()] @property def output_tensor_names(self) -> Sequence[str]: return [info.name for info in self.output_tensor_info.values()] def generate_random_inputs(self, batch_size: Optional[int] = None ) -> Mapping[str, np.ndarray]: batch_size = batch_size or self.model_config.default_batch_size return { tensor_info.name: _generate_random_tensor_v1(tensor_info, batch_size) for tensor_info in self.input_tensor_info.values() } def run(self, inputs: Optional[Mapping[str, np.ndarray]] = None, warmup_iterations=10, benchmark_iterations=100, allow_to_use_gpu=False) -> TestResult: inputs = inputs or self.generate_random_inputs() config_proto = None if not allow_to_use_gpu: config_proto = config_pb2.ConfigProto(device_count={"CPU": 1, "GPU": 0}) with session.Session(config=config_proto) as sess: importer.import_graph_def(self.meta_graph.graph_def) try: for _ in range(warmup_iterations): sess.run(fetches=self.output_tensor_names, feed_dict=inputs) latency = [] for _ in range(benchmark_iterations): before = time.time() outputs = sess.run(fetches=self.output_tensor_names, feed_dict=inputs) latency.append(time.time() - before) except Exception as exc: raise RuntimeError("Failed to run model inference! " "Model information: {}".format(str(self))) from exc outputs = dict(zip(self.output_tensor_names, outputs)) return TestResult(latency=latency, outputs=outputs if inputs else None) class ModelHandlerV2(_ModelHandlerBase): """Runs a model in TF2.""" @property def graph_func(self): graph_func = load_graph_func( saved_model_dir=self.model_config.saved_model_dir, saved_model_tags=self.model_config.saved_model_tags, saved_model_signature_key=self.model_config.saved_model_signature_key) return convert_to_constants.convert_variables_to_constants_v2(graph_func) @property def input_tensor_names(self): return [tensor.name for tensor in self.graph_func.inputs] @property def output_tensor_names(self): return [tensor.name for tensor in self.graph_func.outputs] def generate_random_inputs(self, batch_size: Optional[int] = None ) -> Sequence[framework_ops.Tensor]: batch_size = batch_size or self.model_config.default_batch_size return [ _generate_random_tensor_v2(tensor, batch_size) for tensor in self.graph_func.inputs ] def run(self, inputs: Optional[Sequence[framework_ops.Tensor]] = None, warmup_iterations=10, benchmark_iterations=100, allow_to_use_gpu=False) -> TestResult: inputs = inputs or self.generate_random_inputs() try: device = "/device:gpu:0" if allow_to_use_gpu else "/device:cpu:0" with framework_ops.device(device): for _ in range(warmup_iterations): self.graph_func(*inputs) latency = [] for _ in range(benchmark_iterations): before = time.time() outputs = self.graph_func(*inputs) latency.append(time.time() - before) except Exception as exc: raise RuntimeError("Failed to run model inference! " "Model information: {}".format(str(self))) from exc outputs = dict(zip(self.output_tensor_names, outputs)) return TestResult(latency=latency, outputs=outputs if inputs else None) class _TrtModelHandlerBase(_ModelHandlerBase): """Base class for converting and running a model.""" def __init__( self, model_config: ModelConfig, trt_convert_params: trt.TrtConversionParams, ): super(_TrtModelHandlerBase, self).__init__(model_config) self._trt_convert_params = trt_convert_params self._converter = self._create_converter(trt_convert_params) logging.info("Converting to TensorRT!") self._check_conversion(self._converter.convert()) self._conversion_is_saved = False @abc.abstractmethod def _create_converter(self, trt_convert_params: trt.TrtConversionParams): """Creates a converter for the corresponding TF version.""" @abc.abstractmethod def _check_conversion(self, conversion_output): """Checks if conversion output has any TensorRT engines.""" def _check_contains_trt_engine(self, graph_def: graph_pb2.GraphDef): if "TRTEngineOp" not in [node.op for node in graph_def.node]: raise RuntimeError("Failed to convert to TensorRT! " "Model Information: {}".format(str(self))) def __str__(self) -> str: base = super(_TrtModelHandlerBase, self).__str__() return "{}, TrtConversionParams: {}".format(base, str(self._trt_convert_params)) @property def trt_convert_params(self) -> trt.TrtConversionParams: return self._trt_convert_params def save(self, output_saved_model_dir: Optional[str] = None, overwrite=True) -> None: """Saves a TensorRT converted model.""" if self._conversion_is_saved and not overwrite: return output_saved_model_dir = output_saved_model_dir or tempfile.mkdtemp() logging.info("Saving TensorRT model to %s!", output_saved_model_dir) self._converter.save(output_saved_model_dir) self._model_config = self.model_config._replace( saved_model_dir=output_saved_model_dir) self._conversion_is_saved = True class TrtModelHandlerV1(_TrtModelHandlerBase, ModelHandlerV1): """Converts a TF1 model with TensorRT and runs the converted model.""" def _create_converter(self, trt_convert_params: trt.TrtConversionParams): conversion_nodes_denylist = self.output_tensor_names return trt.TrtGraphConverter( input_saved_model_dir=self.model_config.saved_model_dir, input_saved_model_tags=self.model_config.saved_model_tags, input_saved_model_signature_key=( self.model_config.saved_model_signature_key), nodes_denylist=conversion_nodes_denylist, max_batch_size=trt_convert_params.max_batch_size, max_workspace_size_bytes=trt_convert_params.max_workspace_size_bytes, precision_mode=trt_convert_params.precision_mode, minimum_segment_size=trt_convert_params.minimum_segment_size, is_dynamic_op=trt_convert_params.is_dynamic_op, maximum_cached_engines=trt_convert_params.maximum_cached_engines, use_calibration=trt_convert_params.use_calibration, ) _check_conversion = _TrtModelHandlerBase._check_contains_trt_engine def run(self, inputs: Optional[Mapping[str, np.ndarray]] = None, warmup_iterations=10, benchmark_iterations=100) -> TestResult: self.save(overwrite=False) logging.info("Running with TensorRT!") test_result = ModelHandlerV1.run( self, inputs, warmup_iterations, benchmark_iterations, allow_to_use_gpu=True) return test_result._replace(trt_convert_params=self._trt_convert_params) class TrtModelHandlerV2(_TrtModelHandlerBase, ModelHandlerV2): """Converts a TF2 model with TensorRT and runs the converted model.""" def _create_converter(self, trt_convert_params: trt.TrtConversionParams): return trt.TrtGraphConverterV2( input_saved_model_dir=self.model_config.saved_model_dir, input_saved_model_tags=self.model_config.saved_model_tags, input_saved_model_signature_key=( self.model_config.saved_model_signature_key), conversion_params=trt_convert_params) def _check_conversion(self, graph_func): graph_def = graph_func.graph.as_graph_def() self._check_contains_trt_engine(graph_def) def run(self, inputs: Optional[Sequence[framework_ops.Tensor]] = None, warmup_iterations=10, benchmark_iterations=100) -> TestResult: self.save(overwrite=False) logging.info("Running with TensorRT!") test_result = ModelHandlerV2.run( self, inputs, warmup_iterations, benchmark_iterations, allow_to_use_gpu=True) return test_result._replace(trt_convert_params=self._trt_convert_params) class _ModelHandlerManagerBase(metaclass=abc.ABCMeta): """Manages a series of ModelHandlers for aggregrated testing/benchmarking.""" def __init__( self, model_config: ModelConfig, default_trt_convert_params: trt.TrtConversionParams, trt_convert_params_updater: Callable[[trt.TrtConversionParams], Iterable[trt.TrtConversionParams]]): self._ori_model = self.model_handler_cls(model_config) self._trt_models = [] for trt_convert_params in trt_convert_params_updater( default_trt_convert_params): trt_model = self.trt_model_handler_cls( model_config, trt_convert_params=trt_convert_params) self._trt_models.append(trt_model) self._result_collection = TestResultCollection( results=[], config=model_config) def __str__(self) -> str: return "Input Model: {}".format(str(self._ori_model)) def __repr__(self) -> str: return "{}({})".format(self.__class__.__name__, str(self)) @property @classmethod @abc.abstractmethod def model_handler_cls(cls): """The modle handler class. ModelHandleV1/ModelHandlerV2.""" @property @classmethod @abc.abstractmethod def trt_model_handler_cls(cls): """The TensorRTmodle handler class. TrtModelHandleV1/TrtModelHandlerV2.""" @property def model_config(self): return self._ori_model.model_config def generate_random_inputs(self, batch_size: Optional[int] = None): return self._ori_model.generate_random_inputs(batch_size) def run(self, inputs=None, warmup_iterations: int = 10, benchmark_iterations: int = 100) -> TestResultCollection: """Runs model inference with provided or randomly generated input tensors. Args: inputs: Mapping from names to input ndarrays in TF1. Or a sequence of tensors in TF2. If `None`, ramdomly generated input tensors will be used instead. warmup_iterations: Number of inferences to warm up the runtime. benchmark_iterations: Number of inferences to measure the latency. Returns: `TestResultCollection` summarizing timing and numerics information for different TensorRT conversion settings. """ inputs = inputs or self.generate_random_inputs() results = [ model.run(inputs, warmup_iterations, benchmark_iterations) for model in [self._ori_model] + self._trt_models ] return self._result_collection._replace(results=results) class ModelHandlerManagerV1(_ModelHandlerManagerBase): """Manages a series of ModelHandlers for aggregrated testing/benchmarking in TF1.""" model_handler_cls = ModelHandlerV1 trt_model_handler_cls = TrtModelHandlerV1 class ModelHandlerManagerV2(_ModelHandlerManagerBase): """Manages a series of ModelHandlers for aggregrated testing/benchmarking in TF2.""" model_handler_cls = ModelHandlerV2 trt_model_handler_cls = TrtModelHandlerV2
[ "tensorflow.python.framework.convert_to_constants.convert_variables_to_constants_from_session_graph", "collections.namedtuple", "tensorflow.python.ops.random_ops.random_uniform", "tensorflow.python.saved_model.load.load", "tensorflow.python.client.session.Session", "tensorflow.core.protobuf.config_pb2.ConfigProto", "tensorflow.python.saved_model.loader.load", "absl.logging.info", "tensorflow.python.framework.importer.import_graph_def", "tensorflow.python.compiler.tensorrt.trt_convert.TrtGraphConverter", "tensorflow.python.compiler.tensorrt.trt_convert.TrtGraphConverterV2", "tempfile.mkdtemp", "tensorflow.python.framework.convert_to_constants.convert_variables_to_constants_v2", "tensorflow.python.framework.ops.device", "functools.lru_cache", "tensorflow.python.framework.dtypes.as_dtype", "time.time" ]
[((3602, 3623), 'functools.lru_cache', 'functools.lru_cache', ([], {}), '()\n', (3621, 3623), False, 'import functools\n'), ((4355, 4376), 'functools.lru_cache', 'functools.lru_cache', ([], {}), '()\n', (4374, 4376), False, 'import functools\n'), ((4806, 4892), 'collections.namedtuple', 'collections.namedtuple', (['"""TestResult"""', "['outputs', 'latency', 'trt_convert_params']"], {}), "('TestResult', ['outputs', 'latency',\n 'trt_convert_params'])\n", (4828, 4892), False, 'import collections\n'), ((5242, 5375), 'collections.namedtuple', 'collections.namedtuple', (['"""ModelConfig"""', "['saved_model_dir', 'saved_model_tags', 'saved_model_signature_key',\n 'default_batch_size']"], {}), "('ModelConfig', ['saved_model_dir',\n 'saved_model_tags', 'saved_model_signature_key', 'default_batch_size'])\n", (5264, 5375), False, 'import collections\n'), ((5944, 6013), 'collections.namedtuple', 'collections.namedtuple', (['"""TestResultCollection"""', "['results', 'config']"], {}), "('TestResultCollection', ['results', 'config'])\n", (5966, 6013), False, 'import collections\n'), ((2866, 2903), 'tensorflow.python.framework.dtypes.as_dtype', 'tf_dtypes.as_dtype', (['tensor_info.dtype'], {}), '(tensor_info.dtype)\n', (2884, 2903), True, 'from tensorflow.python.framework import dtypes as tf_dtypes\n'), ((3410, 3486), 'tensorflow.python.ops.random_ops.random_uniform', 'random_ops.random_uniform', ([], {'shape': 'shape', 'dtype': 'tensor.dtype', 'name': 'tensor.name'}), '(shape=shape, dtype=tensor.dtype, name=tensor.name)\n', (3435, 3486), False, 'from tensorflow.python.ops import random_ops\n'), ((4547, 4619), 'tensorflow.python.saved_model.load.load', 'saved_model_load.load', ([], {'export_dir': 'saved_model_dir', 'tags': 'saved_model_tags'}), '(export_dir=saved_model_dir, tags=saved_model_tags)\n', (4568, 4619), True, 'from tensorflow.python.saved_model import load as saved_model_load\n'), ((4698, 4764), 'tensorflow.python.framework.convert_to_constants.convert_variables_to_constants_v2', 'convert_to_constants.convert_variables_to_constants_v2', (['graph_func'], {}), '(graph_func)\n', (4752, 4764), False, 'from tensorflow.python.framework import convert_to_constants\n'), ((2986, 3003), 'tensorflow.python.client.session.Session', 'session.Session', ([], {}), '()\n', (3001, 3003), False, 'from tensorflow.python.client import session\n'), ((3811, 3828), 'tensorflow.python.client.session.Session', 'session.Session', ([], {}), '()\n', (3826, 3828), False, 'from tensorflow.python.client import session\n'), ((3855, 3945), 'tensorflow.python.saved_model.loader.load', 'saved_model_loader.load', ([], {'sess': 'sess', 'export_dir': 'saved_model_dir', 'tags': 'saved_model_tags'}), '(sess=sess, export_dir=saved_model_dir, tags=\n saved_model_tags)\n', (3878, 3945), True, 'from tensorflow.python.saved_model import loader as saved_model_loader\n'), ((4155, 4276), 'tensorflow.python.framework.convert_to_constants.convert_variables_to_constants_from_session_graph', 'convert_to_constants.convert_variables_to_constants_from_session_graph', (['sess', 'meta_graph.graph_def', 'output_node_names'], {}), '(sess,\n meta_graph.graph_def, output_node_names)\n', (4225, 4276), False, 'from tensorflow.python.framework import convert_to_constants\n'), ((10665, 10731), 'tensorflow.python.framework.convert_to_constants.convert_variables_to_constants_v2', 'convert_to_constants.convert_variables_to_constants_v2', (['graph_func'], {}), '(graph_func)\n', (10719, 10731), False, 'from tensorflow.python.framework import convert_to_constants\n'), ((12645, 12684), 'absl.logging.info', 'logging.info', (['"""Converting to TensorRT!"""'], {}), "('Converting to TensorRT!')\n", (12657, 12684), False, 'from absl import logging\n'), ((13965, 14033), 'absl.logging.info', 'logging.info', (['"""Saving TensorRT model to %s!"""', 'output_saved_model_dir'], {}), "('Saving TensorRT model to %s!', output_saved_model_dir)\n", (13977, 14033), False, 'from absl import logging\n'), ((14504, 15205), 'tensorflow.python.compiler.tensorrt.trt_convert.TrtGraphConverter', 'trt.TrtGraphConverter', ([], {'input_saved_model_dir': 'self.model_config.saved_model_dir', 'input_saved_model_tags': 'self.model_config.saved_model_tags', 'input_saved_model_signature_key': 'self.model_config.saved_model_signature_key', 'nodes_denylist': 'conversion_nodes_denylist', 'max_batch_size': 'trt_convert_params.max_batch_size', 'max_workspace_size_bytes': 'trt_convert_params.max_workspace_size_bytes', 'precision_mode': 'trt_convert_params.precision_mode', 'minimum_segment_size': 'trt_convert_params.minimum_segment_size', 'is_dynamic_op': 'trt_convert_params.is_dynamic_op', 'maximum_cached_engines': 'trt_convert_params.maximum_cached_engines', 'use_calibration': 'trt_convert_params.use_calibration'}), '(input_saved_model_dir=self.model_config.\n saved_model_dir, input_saved_model_tags=self.model_config.\n saved_model_tags, input_saved_model_signature_key=self.model_config.\n saved_model_signature_key, nodes_denylist=conversion_nodes_denylist,\n max_batch_size=trt_convert_params.max_batch_size,\n max_workspace_size_bytes=trt_convert_params.max_workspace_size_bytes,\n precision_mode=trt_convert_params.precision_mode, minimum_segment_size=\n trt_convert_params.minimum_segment_size, is_dynamic_op=\n trt_convert_params.is_dynamic_op, maximum_cached_engines=\n trt_convert_params.maximum_cached_engines, use_calibration=\n trt_convert_params.use_calibration)\n', (14525, 15205), True, 'from tensorflow.python.compiler.tensorrt import trt_convert as trt\n'), ((15536, 15574), 'absl.logging.info', 'logging.info', (['"""Running with TensorRT!"""'], {}), "('Running with TensorRT!')\n", (15548, 15574), False, 'from absl import logging\n'), ((16034, 16303), 'tensorflow.python.compiler.tensorrt.trt_convert.TrtGraphConverterV2', 'trt.TrtGraphConverterV2', ([], {'input_saved_model_dir': 'self.model_config.saved_model_dir', 'input_saved_model_tags': 'self.model_config.saved_model_tags', 'input_saved_model_signature_key': 'self.model_config.saved_model_signature_key', 'conversion_params': 'trt_convert_params'}), '(input_saved_model_dir=self.model_config.\n saved_model_dir, input_saved_model_tags=self.model_config.\n saved_model_tags, input_saved_model_signature_key=self.model_config.\n saved_model_signature_key, conversion_params=trt_convert_params)\n', (16057, 16303), True, 'from tensorflow.python.compiler.tensorrt import trt_convert as trt\n'), ((16678, 16716), 'absl.logging.info', 'logging.info', (['"""Running with TensorRT!"""'], {}), "('Running with TensorRT!')\n", (16690, 16716), False, 'from absl import logging\n'), ((9481, 9538), 'tensorflow.core.protobuf.config_pb2.ConfigProto', 'config_pb2.ConfigProto', ([], {'device_count': "{'CPU': 1, 'GPU': 0}"}), "(device_count={'CPU': 1, 'GPU': 0})\n", (9503, 9538), False, 'from tensorflow.core.protobuf import config_pb2\n'), ((9548, 9584), 'tensorflow.python.client.session.Session', 'session.Session', ([], {'config': 'config_proto'}), '(config=config_proto)\n', (9563, 9584), False, 'from tensorflow.python.client import session\n'), ((9600, 9652), 'tensorflow.python.framework.importer.import_graph_def', 'importer.import_graph_def', (['self.meta_graph.graph_def'], {}), '(self.meta_graph.graph_def)\n', (9625, 9652), False, 'from tensorflow.python.framework import importer\n'), ((13942, 13960), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (13958, 13960), False, 'import tempfile\n'), ((11644, 11672), 'tensorflow.python.framework.ops.device', 'framework_ops.device', (['device'], {}), '(device)\n', (11664, 11672), True, 'from tensorflow.python.framework import ops as framework_ops\n'), ((9864, 9875), 'time.time', 'time.time', ([], {}), '()\n', (9873, 9875), False, 'import time\n'), ((11838, 11849), 'time.time', 'time.time', ([], {}), '()\n', (11847, 11849), False, 'import time\n'), ((9982, 9993), 'time.time', 'time.time', ([], {}), '()\n', (9991, 9993), False, 'import time\n'), ((11920, 11931), 'time.time', 'time.time', ([], {}), '()\n', (11929, 11931), False, 'import time\n')]
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. from typing import List, Pattern from recognizers_text.utilities import RegExpUtility from recognizers_number.number import BaseNumberParser from recognizers_number.number.italian.extractors import ItalianIntegerExtractor, ItalianCardinalExtractor from recognizers_number.number.italian.parsers import ItalianNumberParserConfiguration from ...resources.base_date_time import BaseDateTime from ...resources.italian_date_time import ItalianDateTime from ..extractors import DateTimeExtractor from ..base_duration import BaseDurationExtractor from ..base_date import BaseDateExtractor from ..base_dateperiod import DatePeriodExtractorConfiguration, MatchedIndex from .duration_extractor_config import ItalianDurationExtractorConfiguration from .date_extractor_config import ItalianDateExtractorConfiguration from recognizers_text.extractor import Extractor from recognizers_number import ItalianOrdinalExtractor, BaseNumberExtractor, ItalianCardinalExtractor class ItalianDatePeriodExtractorConfiguration(DatePeriodExtractorConfiguration): @property def previous_prefix_regex(self) -> Pattern: return self._previous_prefix_regex @property def check_both_before_after(self) -> bool: return self._check_both_before_after @property def simple_cases_regexes(self) -> List[Pattern]: return self._simple_cases_regexes @property def illegal_year_regex(self) -> Pattern: return self._illegal_year_regex @property def year_regex(self) -> Pattern: return self._year_regex @property def till_regex(self) -> Pattern: return self._till_regex @property def followed_unit(self) -> Pattern: return self._followed_unit @property def number_combined_with_unit(self) -> Pattern: return self._number_combined_with_unit @property def past_regex(self) -> Pattern: return self._past_regex @property def decade_with_century_regex(self) -> Pattern: return self._decade_with_century_regex @property def future_regex(self) -> Pattern: return self._future_regex @property def week_of_regex(self) -> Pattern: return self._week_of_regex @property def month_of_regex(self) -> Pattern: return self._month_of_regex @property def date_unit_regex(self) -> Pattern: return self._date_unit_regex @property def in_connector_regex(self) -> Pattern: return self._in_connector_regex @property def range_unit_regex(self) -> Pattern: return self._range_unit_regex @property def date_point_extractor(self) -> DateTimeExtractor: return self._date_point_extractor @property def integer_extractor(self) -> BaseNumberExtractor: return self._integer_extractor @property def number_parser(self) -> BaseNumberParser: return self._number_parser @property def duration_extractor(self) -> DateTimeExtractor: return self._duration_extractor @property def now_regex(self) -> Pattern: return self._now_regex @property def future_suffix_regex(self) -> Pattern: return self._future_suffix_regex @property def ago_regex(self) -> Pattern: return self._ago_regex @property def later_regex(self) -> Pattern: return self._later_regex @property def less_than_regex(self) -> Pattern: return self._less_than_regex @property def more_than_regex(self) -> Pattern: return self._more_than_regex @property def duration_date_restrictions(self) -> [str]: return self._duration_date_restrictions @property def year_period_regex(self) -> Pattern: return self._year_period_regex @property def month_num_regex(self) -> Pattern: return self._month_num_regex @property def century_suffix_regex(self) -> Pattern: return self._century_suffix_regex @property def ordinal_extractor(self) -> BaseNumberExtractor: return self._ordinal_extractor @property def cardinal_extractor(self) -> Extractor: return self._cardinal_extractor @property def time_unit_regex(self) -> Pattern: return self._time_unit_regex @property def within_next_prefix_regex(self) -> Pattern: return self._within_next_prefix_regex @property def range_connector_regex(self) -> Pattern: return self._range_connector_regex @property def day_regex(self) -> Pattern: return self._day_regex @property def week_day_regex(self) -> Pattern: return self._week_day_regex @property def relative_month_regex(self) -> Pattern: return self._relative_month_regex @property def month_suffix_regex(self) -> Pattern: return self._month_suffix_regex @property def past_prefix_regex(self) -> Pattern: return self._past_prefix_regex @property def next_prefix_regex(self) -> Pattern: return self._next_prefix_regex @property def this_prefix_regex(self) -> Pattern: return self._this_prefix_regex @property def which_week_regex(self) -> Pattern: return self._which_week_regex @property def rest_of_date_regex(self) -> Pattern: return self._rest_of_date_regex @property def complex_date_period_regex(self) -> Pattern: return self._complex_date_period_regex @property def week_day_of_month_regex(self) -> Pattern: return self._week_day_of_month_regex @property def all_half_year_regex(self) -> Pattern: return self._all_half_year_regex def __init__(self): self._all_half_year_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.AllHalfYearRegex) self._week_day_of_month_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekDayOfMonthRegex) self._complex_date_period_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.ComplexDatePeriodRegex) self._rest_of_date_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.RestOfDateRegex) self._which_week_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.WhichWeekRegex) self._this_prefix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.ThisPrefixRegex) self._next_prefix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.NextSuffixRegex) self._past_prefix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.PastSuffixRegex) self._month_suffix_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.MonthSuffixRegex) self._relative_month_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.RelativeMonthRegex) self._week_day_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekDayRegex) self._day_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.DayRegex) self._range_connector_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.RangeConnectorRegex) self._time_unit_regex = RegExpUtility.get_safe_reg_exp(ItalianDateTime.TimeUnitRegex) self._previous_prefix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.PastSuffixRegex) self._check_both_before_after = ItalianDateTime.CheckBothBeforeAfter self._simple_cases_regexes = [ RegExpUtility.get_safe_reg_exp(ItalianDateTime.SimpleCasesRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.BetweenRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.OneWordPeriodRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.MonthWithYear), RegExpUtility.get_safe_reg_exp(ItalianDateTime.MonthNumWithYear), RegExpUtility.get_safe_reg_exp(ItalianDateTime.YearRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.YearPeriodRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekOfYearRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.WeekDayOfMonthRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthFrontBetweenRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthFrontSimpleCasesRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.QuarterRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.QuarterRegexYearFront), RegExpUtility.get_safe_reg_exp(ItalianDateTime.SeasonRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.LaterEarlyPeriodRegex), RegExpUtility.get_safe_reg_exp( ItalianDateTime.WeekWithWeekDayRangeRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.YearPlusNumberRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.DecadeWithCenturyRegex), RegExpUtility.get_safe_reg_exp(ItalianDateTime.RelativeDecadeRegex) ] self._check_both_before_after = ItalianDateTime.CheckBothBeforeAfter self._illegal_year_regex = RegExpUtility.get_safe_reg_exp( BaseDateTime.IllegalYearRegex) self._year_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.YearRegex) self._till_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.TillRegex) self._followed_unit = RegExpUtility.get_safe_reg_exp( ItalianDateTime.FollowedDateUnit) self._number_combined_with_unit = RegExpUtility.get_safe_reg_exp( ItalianDateTime.NumberCombinedWithDateUnit) self._past_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.PastSuffixRegex) self._future_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.NextSuffixRegex) self._week_of_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.WeekOfRegex) self._month_of_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthOfRegex) self._date_unit_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.DateUnitRegex) self._within_next_prefix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.WithinNextPrefixRegex) self._in_connector_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.InConnectorRegex) self._range_unit_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.RangeUnitRegex) self.from_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.FromRegex) self.connector_and_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.ConnectorAndRegex) self.before_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.BeforeRegex2) self._date_point_extractor = BaseDateExtractor( ItalianDateExtractorConfiguration()) self._integer_extractor = ItalianIntegerExtractor() self._number_parser = BaseNumberParser( ItalianNumberParserConfiguration()) self._duration_extractor = BaseDurationExtractor( ItalianDurationExtractorConfiguration()) self._now_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.NowRegex) self._future_suffix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.FutureSuffixRegex ) self._ago_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.AgoRegex ) self._later_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.LaterRegex ) self._less_than_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.LessThanRegex ) self._more_than_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.MoreThanRegex ) self._duration_date_restrictions = ItalianDateTime.DurationDateRestrictions self._year_period_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.YearPeriodRegex ) self._month_num_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.MonthNumRegex ) self._century_suffix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.CenturySuffixRegex ) self._ordinal_extractor = ItalianOrdinalExtractor() self._cardinal_extractor = ItalianCardinalExtractor() self._previous_prefix_regex = RegExpUtility.get_safe_reg_exp( ItalianDateTime.PreviousPrefixRegex ) self._cardinal_extractor = ItalianCardinalExtractor() # TODO When the implementation for these properties is added, change the None values to their respective Regexps self._time_unit_regex = None def get_from_token_index(self, source: str) -> MatchedIndex: match = self.from_regex.search(source) if match: return MatchedIndex(True, match.start()) return MatchedIndex(False, -1) def get_between_token_index(self, source: str) -> MatchedIndex: match = self.before_regex.search(source) if match: return MatchedIndex(True, match.start()) return MatchedIndex(False, -1) def has_connector_token(self, source: str) -> bool: return not self.connector_and_regex.search(source) is None
[ "recognizers_number.ItalianCardinalExtractor", "recognizers_number.number.italian.extractors.ItalianIntegerExtractor", "recognizers_text.utilities.RegExpUtility.get_safe_reg_exp", "recognizers_number.ItalianOrdinalExtractor", "recognizers_number.number.italian.parsers.ItalianNumberParserConfiguration" ]
[((5851, 5915), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.AllHalfYearRegex'], {}), '(ItalianDateTime.AllHalfYearRegex)\n', (5881, 5915), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((5956, 6023), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WeekDayOfMonthRegex'], {}), '(ItalianDateTime.WeekDayOfMonthRegex)\n', (5986, 6023), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6066, 6136), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.ComplexDatePeriodRegex'], {}), '(ItalianDateTime.ComplexDatePeriodRegex)\n', (6096, 6136), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6172, 6235), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.RestOfDateRegex'], {}), '(ItalianDateTime.RestOfDateRegex)\n', (6202, 6235), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6269, 6331), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WhichWeekRegex'], {}), '(ItalianDateTime.WhichWeekRegex)\n', (6299, 6331), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6366, 6429), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.ThisPrefixRegex'], {}), '(ItalianDateTime.ThisPrefixRegex)\n', (6396, 6429), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6464, 6527), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.NextSuffixRegex'], {}), '(ItalianDateTime.NextSuffixRegex)\n', (6494, 6527), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6562, 6625), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.PastSuffixRegex'], {}), '(ItalianDateTime.PastSuffixRegex)\n', (6592, 6625), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6661, 6725), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MonthSuffixRegex'], {}), '(ItalianDateTime.MonthSuffixRegex)\n', (6691, 6725), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6763, 6829), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.RelativeMonthRegex'], {}), '(ItalianDateTime.RelativeMonthRegex)\n', (6793, 6829), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6861, 6921), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WeekDayRegex'], {}), '(ItalianDateTime.WeekDayRegex)\n', (6891, 6921), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((6948, 7004), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.DayRegex'], {}), '(ItalianDateTime.DayRegex)\n', (6978, 7004), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7043, 7110), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.RangeConnectorRegex'], {}), '(ItalianDateTime.RangeConnectorRegex)\n', (7073, 7110), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7143, 7204), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.TimeUnitRegex'], {}), '(ItalianDateTime.TimeUnitRegex)\n', (7173, 7204), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7243, 7306), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.PastSuffixRegex'], {}), '(ItalianDateTime.PastSuffixRegex)\n', (7273, 7306), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9151, 9212), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['BaseDateTime.IllegalYearRegex'], {}), '(BaseDateTime.IllegalYearRegex)\n', (9181, 9212), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9253, 9310), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.YearRegex'], {}), '(ItalianDateTime.YearRegex)\n', (9283, 9310), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9351, 9408), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.TillRegex'], {}), '(ItalianDateTime.TillRegex)\n', (9381, 9408), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9452, 9516), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.FollowedDateUnit'], {}), '(ItalianDateTime.FollowedDateUnit)\n', (9482, 9516), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9572, 9646), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.NumberCombinedWithDateUnit'], {}), '(ItalianDateTime.NumberCombinedWithDateUnit)\n', (9602, 9646), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9687, 9750), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.PastSuffixRegex'], {}), '(ItalianDateTime.PastSuffixRegex)\n', (9717, 9750), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9793, 9856), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.NextSuffixRegex'], {}), '(ItalianDateTime.NextSuffixRegex)\n', (9823, 9856), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((9900, 9959), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WeekOfRegex'], {}), '(ItalianDateTime.WeekOfRegex)\n', (9930, 9959), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10004, 10064), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MonthOfRegex'], {}), '(ItalianDateTime.MonthOfRegex)\n', (10034, 10064), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10110, 10171), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.DateUnitRegex'], {}), '(ItalianDateTime.DateUnitRegex)\n', (10140, 10171), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10226, 10295), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WithinNextPrefixRegex'], {}), '(ItalianDateTime.WithinNextPrefixRegex)\n', (10256, 10295), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10344, 10408), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.InConnectorRegex'], {}), '(ItalianDateTime.InConnectorRegex)\n', (10374, 10408), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10455, 10517), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.RangeUnitRegex'], {}), '(ItalianDateTime.RangeUnitRegex)\n', (10485, 10517), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10558, 10615), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.FromRegex'], {}), '(ItalianDateTime.FromRegex)\n', (10588, 10615), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10664, 10729), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.ConnectorAndRegex'], {}), '(ItalianDateTime.ConnectorAndRegex)\n', (10694, 10729), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10771, 10831), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.BeforeRegex2'], {}), '(ItalianDateTime.BeforeRegex2)\n', (10801, 10831), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((10985, 11010), 'recognizers_number.number.italian.extractors.ItalianIntegerExtractor', 'ItalianIntegerExtractor', ([], {}), '()\n', (11008, 11010), False, 'from recognizers_number.number.italian.extractors import ItalianIntegerExtractor, ItalianCardinalExtractor\n'), ((11244, 11300), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.NowRegex'], {}), '(ItalianDateTime.NowRegex)\n', (11274, 11300), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((11350, 11415), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.FutureSuffixRegex'], {}), '(ItalianDateTime.FutureSuffixRegex)\n', (11380, 11415), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((11464, 11520), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.AgoRegex'], {}), '(ItalianDateTime.AgoRegex)\n', (11494, 11520), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((11571, 11629), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.LaterRegex'], {}), '(ItalianDateTime.LaterRegex)\n', (11601, 11629), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((11684, 11745), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.LessThanRegex'], {}), '(ItalianDateTime.LessThanRegex)\n', (11714, 11745), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((11800, 11861), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MoreThanRegex'], {}), '(ItalianDateTime.MoreThanRegex)\n', (11830, 11861), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((12002, 12065), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.YearPeriodRegex'], {}), '(ItalianDateTime.YearPeriodRegex)\n', (12032, 12065), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((12120, 12181), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MonthNumRegex'], {}), '(ItalianDateTime.MonthNumRegex)\n', (12150, 12181), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((12241, 12307), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.CenturySuffixRegex'], {}), '(ItalianDateTime.CenturySuffixRegex)\n', (12271, 12307), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((12364, 12389), 'recognizers_number.ItalianOrdinalExtractor', 'ItalianOrdinalExtractor', ([], {}), '()\n', (12387, 12389), False, 'from recognizers_number import ItalianOrdinalExtractor, BaseNumberExtractor, ItalianCardinalExtractor\n'), ((12425, 12451), 'recognizers_number.ItalianCardinalExtractor', 'ItalianCardinalExtractor', ([], {}), '()\n', (12449, 12451), False, 'from recognizers_number import ItalianOrdinalExtractor, BaseNumberExtractor, ItalianCardinalExtractor\n'), ((12490, 12557), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.PreviousPrefixRegex'], {}), '(ItalianDateTime.PreviousPrefixRegex)\n', (12520, 12557), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((12615, 12641), 'recognizers_number.ItalianCardinalExtractor', 'ItalianCardinalExtractor', ([], {}), '()\n', (12639, 12641), False, 'from recognizers_number import ItalianOrdinalExtractor, BaseNumberExtractor, ItalianCardinalExtractor\n'), ((7448, 7512), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.SimpleCasesRegex'], {}), '(ItalianDateTime.SimpleCasesRegex)\n', (7478, 7512), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7526, 7586), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.BetweenRegex'], {}), '(ItalianDateTime.BetweenRegex)\n', (7556, 7586), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7600, 7666), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.OneWordPeriodRegex'], {}), '(ItalianDateTime.OneWordPeriodRegex)\n', (7630, 7666), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7680, 7741), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MonthWithYear'], {}), '(ItalianDateTime.MonthWithYear)\n', (7710, 7741), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7755, 7819), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MonthNumWithYear'], {}), '(ItalianDateTime.MonthNumWithYear)\n', (7785, 7819), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7833, 7890), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.YearRegex'], {}), '(ItalianDateTime.YearRegex)\n', (7863, 7890), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7904, 7967), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.YearPeriodRegex'], {}), '(ItalianDateTime.YearPeriodRegex)\n', (7934, 7967), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((7981, 8044), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WeekOfYearRegex'], {}), '(ItalianDateTime.WeekOfYearRegex)\n', (8011, 8044), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8058, 8125), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WeekDayOfMonthRegex'], {}), '(ItalianDateTime.WeekDayOfMonthRegex)\n', (8088, 8125), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8139, 8209), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MonthFrontBetweenRegex'], {}), '(ItalianDateTime.MonthFrontBetweenRegex)\n', (8169, 8209), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8240, 8314), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.MonthFrontSimpleCasesRegex'], {}), '(ItalianDateTime.MonthFrontSimpleCasesRegex)\n', (8270, 8314), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8345, 8405), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.QuarterRegex'], {}), '(ItalianDateTime.QuarterRegex)\n', (8375, 8405), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8419, 8488), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.QuarterRegexYearFront'], {}), '(ItalianDateTime.QuarterRegexYearFront)\n', (8449, 8488), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8519, 8578), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.SeasonRegex'], {}), '(ItalianDateTime.SeasonRegex)\n', (8549, 8578), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8592, 8661), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.LaterEarlyPeriodRegex'], {}), '(ItalianDateTime.LaterEarlyPeriodRegex)\n', (8622, 8661), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8692, 8765), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.WeekWithWeekDayRangeRegex'], {}), '(ItalianDateTime.WeekWithWeekDayRangeRegex)\n', (8722, 8765), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8796, 8863), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.YearPlusNumberRegex'], {}), '(ItalianDateTime.YearPlusNumberRegex)\n', (8826, 8863), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8877, 8947), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.DecadeWithCenturyRegex'], {}), '(ItalianDateTime.DecadeWithCenturyRegex)\n', (8907, 8947), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((8961, 9028), 'recognizers_text.utilities.RegExpUtility.get_safe_reg_exp', 'RegExpUtility.get_safe_reg_exp', (['ItalianDateTime.RelativeDecadeRegex'], {}), '(ItalianDateTime.RelativeDecadeRegex)\n', (8991, 9028), False, 'from recognizers_text.utilities import RegExpUtility\n'), ((11071, 11105), 'recognizers_number.number.italian.parsers.ItalianNumberParserConfiguration', 'ItalianNumberParserConfiguration', ([], {}), '()\n', (11103, 11105), False, 'from recognizers_number.number.italian.parsers import ItalianNumberParserConfiguration\n')]
def test_setupcall(): """ Test the call of the setup function """ import jupyter_libertem_proxy as jx print("\nRunning test_setupcall...") print(jx.setup_libertem())
[ "jupyter_libertem_proxy.setup_libertem" ]
[((170, 189), 'jupyter_libertem_proxy.setup_libertem', 'jx.setup_libertem', ([], {}), '()\n', (187, 189), True, 'import jupyter_libertem_proxy as jx\n')]
import math import imageio import cv2 as cv import numpy as np import transformer def fix_rotation(img): img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) rows, cols = img.shape img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) roi = max(contours, key=cv.contourArea) x, y, w, h = cv.boundingRect(roi) corners = [[x, y], [x + w, y], [x, y + h], [x + w, y + h]] src = np.float32(corners) # src = np.reshape(src, (len(src), 1, 2)) # perimeter = cv.arcLength(src, True) # corners = cv.approxPolyDP(src, perimeter // 10, True) # corners = np.vstack(corners) dst = np.float32([[0, 0], [cols, 0], [0, rows], [cols, rows]]) matrix = cv.getPerspectiveTransform(src, dst) rotated_img = cv.warpPerspective(img_copy, matrix, (cols, rows)) cv.imshow('', rotated_img) D1 = 105 D2 = 175 D3 = 275 if __name__ == "__main__": cap = cv.VideoCapture('samples/delta.mp4') if not cap.isOpened(): raise IOError("Video was not opened!") mse = 0 count = 0 reader = imageio.get_reader('samples/delta.mp4') fps = reader.get_meta_data()['fps'] writer = imageio.get_writer('samples/result.mp4', fps=fps) while True: res, frame = cap.read() if not res: break mean_error = 0 holes_count = 0 img = frame.copy() cv.imshow('dfa', img) frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) frame_copy = frame.copy() # frame = cv.adaptiveThreshold(frame, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) # kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) # frame = cv.morphologyEx(frame, cv.MORPH_OPEN, kernel) # frame = cv.medianBlur(frame, 3) # contours, hierarchy = cv.findContours(frame, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) # roi = max(contours, key=cv.contourArea) # x, y, w, h = cv.boundingRect(roi) x, y, w, h = 115, 0, 445, 360 img = img[y: y+h, x: x+w] img = transformer.rotate_along_axis(img, theta=40) frame_copy = frame_copy[y: y+h, x: x+w] frame_copy = transformer.rotate_along_axis(frame_copy, theta=40) # cv.imshow('', frame_copy) # cv.rectangle(frame_copy, (x, y), (x + w, y + h), (0, 255, 0), 2) # cv.drawContours(frame_copy, roi, -1, (0, 0, 255), 2) # res, mask = cv.threshold(frame_copy, 0, 255, cv.THRESH_BINARY) # frame_copy = cv.bitwise_and(frame_copy, frame_copy, mask=mask) # corners = cv.goodFeaturesToTrack(frame_copy, 1000, 0.0001, 1) # corners = list(sorted(corners, key=lambda x: x[0][1])) # print(corners[-1], corners[-2]) # print() # corners = np.array([[38, 293], [407, 293]]) # for item in corners: # # x, y = map(int, item.ravel()) # x, y = item # cv.circle(img, (x, y), 5, (0, 0, 255), -1) src = np.float32([[0, 0], [w, 0], [38, 293], [407, 293]]) dst = np.float32([[0, 0], [w, 0], [30, h], [w - 30, h]]) matrix = cv.getPerspectiveTransform(src, dst) img = cv.warpPerspective(img, matrix, (w, h)) cv.imshow('', img) img_copy = img.copy() img = cv.cvtColor(img, cv.COLOR_BGR2GRAY) img = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 15, 9) kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE, (3, 3)) img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel) img = cv.medianBlur(img, 3) origin = (w // 2 + 4, h // 2 + 2) o1, o2 = origin r = w // 2 + 1 ORIGIN = (0, 0) R = 300 # mm contours, hierarchy = cv.findContours(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) contours = list(filter(lambda x: 50 < cv.contourArea(x) < 175, contours)) factor = 0.1 smooth_contours = [] for i in range(len(contours)): epsilon = factor * cv.arcLength(contours[i], True) approx = cv.approxPolyDP(contours[i], epsilon, True) x, y, width, height = cv.boundingRect(approx) area = width*height if len(approx) == 4 and 75 < area < 200: smooth_contours.append(contours[i]) center, radius = cv.minEnclosingCircle(approx) radius = int(radius) center = tuple(map(int, center)) x, y = center X = ((x - o1) * R) / r Y = ((y - o2) * R) / r X, Y = round(X, 2), round(Y, 2) cv.circle(img_copy, center, radius, (0, 255, 0), 2) cv.putText(img_copy, str((X, Y)), center, cv.FONT_HERSHEY_SIMPLEX, 0.3, (255, 0, 255, 255), 1, cv.LINE_AA) e1, e2, e3 = map(lambda d: abs(math.hypot(X, Y) - d), [D1, D2, D3]) error = min(e1, e2, e3) if error < 10: mean_error += error ** 2 holes_count += 1 cv.circle(img_copy, origin, 4, (0, 0, 255), -1) # cv.line(img_copy, origin, (origin[0], origin[1]), (255, 0, 255), 2) mean_error /= holes_count mse += mean_error count += 1 cv.imshow("Final", img_copy) writer.append_data(img_copy) # cv.imshow("Chg", img) if cv.waitKey(30) == 27: break print("E:", mse / count, "N:", count) writer.close() cap.release() cv.destroyAllWindows()
[ "cv2.imshow", "cv2.warpPerspective", "cv2.destroyAllWindows", "cv2.approxPolyDP", "math.hypot", "imageio.get_writer", "imageio.get_reader", "cv2.arcLength", "cv2.medianBlur", "cv2.contourArea", "cv2.waitKey", "cv2.getPerspectiveTransform", "cv2.minEnclosingCircle", "cv2.morphologyEx", "cv2.circle", "cv2.cvtColor", "transformer.rotate_along_axis", "cv2.adaptiveThreshold", "cv2.VideoCapture", "cv2.findContours", "cv2.getStructuringElement", "numpy.float32", "cv2.boundingRect" ]
[((142, 177), 'cv2.cvtColor', 'cv.cvtColor', (['img', 'cv.COLOR_BGR2GRAY'], {}), '(img, cv.COLOR_BGR2GRAY)\n', (153, 177), True, 'import cv2 as cv\n'), ((215, 306), 'cv2.adaptiveThreshold', 'cv.adaptiveThreshold', (['img', '(255)', 'cv.ADAPTIVE_THRESH_MEAN_C', 'cv.THRESH_BINARY_INV', '(15)', '(9)'], {}), '(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.\n THRESH_BINARY_INV, 15, 9)\n', (235, 306), True, 'import cv2 as cv\n'), ((316, 366), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(3, 3)'], {}), '(cv.MORPH_ELLIPSE, (3, 3))\n', (340, 366), True, 'import cv2 as cv\n'), ((377, 420), 'cv2.morphologyEx', 'cv.morphologyEx', (['img', 'cv.MORPH_OPEN', 'kernel'], {}), '(img, cv.MORPH_OPEN, kernel)\n', (392, 420), True, 'import cv2 as cv\n'), ((432, 453), 'cv2.medianBlur', 'cv.medianBlur', (['img', '(3)'], {}), '(img, 3)\n', (445, 453), True, 'import cv2 as cv\n'), ((481, 537), 'cv2.findContours', 'cv.findContours', (['img', 'cv.RETR_LIST', 'cv.CHAIN_APPROX_NONE'], {}), '(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)\n', (496, 537), True, 'import cv2 as cv\n'), ((604, 624), 'cv2.boundingRect', 'cv.boundingRect', (['roi'], {}), '(roi)\n', (619, 624), True, 'import cv2 as cv\n'), ((698, 717), 'numpy.float32', 'np.float32', (['corners'], {}), '(corners)\n', (708, 717), True, 'import numpy as np\n'), ((912, 968), 'numpy.float32', 'np.float32', (['[[0, 0], [cols, 0], [0, rows], [cols, rows]]'], {}), '([[0, 0], [cols, 0], [0, rows], [cols, rows]])\n', (922, 968), True, 'import numpy as np\n'), ((983, 1019), 'cv2.getPerspectiveTransform', 'cv.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (1009, 1019), True, 'import cv2 as cv\n'), ((1038, 1088), 'cv2.warpPerspective', 'cv.warpPerspective', (['img_copy', 'matrix', '(cols, rows)'], {}), '(img_copy, matrix, (cols, rows))\n', (1056, 1088), True, 'import cv2 as cv\n'), ((1093, 1119), 'cv2.imshow', 'cv.imshow', (['""""""', 'rotated_img'], {}), "('', rotated_img)\n", (1102, 1119), True, 'import cv2 as cv\n'), ((1187, 1223), 'cv2.VideoCapture', 'cv.VideoCapture', (['"""samples/delta.mp4"""'], {}), "('samples/delta.mp4')\n", (1202, 1223), True, 'import cv2 as cv\n'), ((1339, 1378), 'imageio.get_reader', 'imageio.get_reader', (['"""samples/delta.mp4"""'], {}), "('samples/delta.mp4')\n", (1357, 1378), False, 'import imageio\n'), ((1432, 1481), 'imageio.get_writer', 'imageio.get_writer', (['"""samples/result.mp4"""'], {'fps': 'fps'}), "('samples/result.mp4', fps=fps)\n", (1450, 1481), False, 'import imageio\n'), ((5765, 5787), 'cv2.destroyAllWindows', 'cv.destroyAllWindows', ([], {}), '()\n', (5785, 5787), True, 'import cv2 as cv\n'), ((1653, 1674), 'cv2.imshow', 'cv.imshow', (['"""dfa"""', 'img'], {}), "('dfa', img)\n", (1662, 1674), True, 'import cv2 as cv\n'), ((1691, 1728), 'cv2.cvtColor', 'cv.cvtColor', (['frame', 'cv.COLOR_BGR2GRAY'], {}), '(frame, cv.COLOR_BGR2GRAY)\n', (1702, 1728), True, 'import cv2 as cv\n'), ((2320, 2364), 'transformer.rotate_along_axis', 'transformer.rotate_along_axis', (['img'], {'theta': '(40)'}), '(img, theta=40)\n', (2349, 2364), False, 'import transformer\n'), ((2434, 2485), 'transformer.rotate_along_axis', 'transformer.rotate_along_axis', (['frame_copy'], {'theta': '(40)'}), '(frame_copy, theta=40)\n', (2463, 2485), False, 'import transformer\n'), ((3234, 3285), 'numpy.float32', 'np.float32', (['[[0, 0], [w, 0], [38, 293], [407, 293]]'], {}), '([[0, 0], [w, 0], [38, 293], [407, 293]])\n', (3244, 3285), True, 'import numpy as np\n'), ((3300, 3350), 'numpy.float32', 'np.float32', (['[[0, 0], [w, 0], [30, h], [w - 30, h]]'], {}), '([[0, 0], [w, 0], [30, h], [w - 30, h]])\n', (3310, 3350), True, 'import numpy as np\n'), ((3368, 3404), 'cv2.getPerspectiveTransform', 'cv.getPerspectiveTransform', (['src', 'dst'], {}), '(src, dst)\n', (3394, 3404), True, 'import cv2 as cv\n'), ((3419, 3458), 'cv2.warpPerspective', 'cv.warpPerspective', (['img', 'matrix', '(w, h)'], {}), '(img, matrix, (w, h))\n', (3437, 3458), True, 'import cv2 as cv\n'), ((3467, 3485), 'cv2.imshow', 'cv.imshow', (['""""""', 'img'], {}), "('', img)\n", (3476, 3485), True, 'import cv2 as cv\n'), ((3531, 3566), 'cv2.cvtColor', 'cv.cvtColor', (['img', 'cv.COLOR_BGR2GRAY'], {}), '(img, cv.COLOR_BGR2GRAY)\n', (3542, 3566), True, 'import cv2 as cv\n'), ((3581, 3672), 'cv2.adaptiveThreshold', 'cv.adaptiveThreshold', (['img', '(255)', 'cv.ADAPTIVE_THRESH_MEAN_C', 'cv.THRESH_BINARY_INV', '(15)', '(9)'], {}), '(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.\n THRESH_BINARY_INV, 15, 9)\n', (3601, 3672), True, 'import cv2 as cv\n'), ((3686, 3736), 'cv2.getStructuringElement', 'cv.getStructuringElement', (['cv.MORPH_ELLIPSE', '(3, 3)'], {}), '(cv.MORPH_ELLIPSE, (3, 3))\n', (3710, 3736), True, 'import cv2 as cv\n'), ((3751, 3794), 'cv2.morphologyEx', 'cv.morphologyEx', (['img', 'cv.MORPH_OPEN', 'kernel'], {}), '(img, cv.MORPH_OPEN, kernel)\n', (3766, 3794), True, 'import cv2 as cv\n'), ((3809, 3830), 'cv2.medianBlur', 'cv.medianBlur', (['img', '(3)'], {}), '(img, 3)\n', (3822, 3830), True, 'import cv2 as cv\n'), ((3998, 4054), 'cv2.findContours', 'cv.findContours', (['img', 'cv.RETR_LIST', 'cv.CHAIN_APPROX_NONE'], {}), '(img, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)\n', (4013, 4054), True, 'import cv2 as cv\n'), ((5318, 5365), 'cv2.circle', 'cv.circle', (['img_copy', 'origin', '(4)', '(0, 0, 255)', '(-1)'], {}), '(img_copy, origin, 4, (0, 0, 255), -1)\n', (5327, 5365), True, 'import cv2 as cv\n'), ((5532, 5560), 'cv2.imshow', 'cv.imshow', (['"""Final"""', 'img_copy'], {}), "('Final', img_copy)\n", (5541, 5560), True, 'import cv2 as cv\n'), ((4319, 4362), 'cv2.approxPolyDP', 'cv.approxPolyDP', (['contours[i]', 'epsilon', '(True)'], {}), '(contours[i], epsilon, True)\n', (4334, 4362), True, 'import cv2 as cv\n'), ((4410, 4433), 'cv2.boundingRect', 'cv.boundingRect', (['approx'], {}), '(approx)\n', (4425, 4433), True, 'import cv2 as cv\n'), ((5641, 5655), 'cv2.waitKey', 'cv.waitKey', (['(30)'], {}), '(30)\n', (5651, 5655), True, 'import cv2 as cv\n'), ((4266, 4297), 'cv2.arcLength', 'cv.arcLength', (['contours[i]', '(True)'], {}), '(contours[i], True)\n', (4278, 4297), True, 'import cv2 as cv\n'), ((4605, 4634), 'cv2.minEnclosingCircle', 'cv.minEnclosingCircle', (['approx'], {}), '(approx)\n', (4626, 4634), True, 'import cv2 as cv\n'), ((4896, 4947), 'cv2.circle', 'cv.circle', (['img_copy', 'center', 'radius', '(0, 255, 0)', '(2)'], {}), '(img_copy, center, radius, (0, 255, 0), 2)\n', (4905, 4947), True, 'import cv2 as cv\n'), ((4101, 4118), 'cv2.contourArea', 'cv.contourArea', (['x'], {}), '(x)\n', (4115, 4118), True, 'import cv2 as cv\n'), ((5119, 5135), 'math.hypot', 'math.hypot', (['X', 'Y'], {}), '(X, Y)\n', (5129, 5135), False, 'import math\n')]
# Altere o Programa 8.20 de forma que o usuário tenha três chances de acertar o número # O programa termina se o usuário acertar ou errar três vezes # Programa 8.20 do livro, página 184 # Programa 8.20 - Adivinhando o número # # import random # # n = random.randint(1, 10) # x = int(input('Escolha um número entre 1 e 10: ')) # if x == n: # print('Você acertou!') # else: # print('Você errou.') import random numberRandom = random.randint(1, 10) counter = 0 while True: chosenNumber = int(input('\nEscolha um número entre 1 e 10: ')) counter += 1 if chosenNumber == numberRandom: print(f'Parabéns! Você acertou na {counter}ª de 3 tentativas!') break else: print(f'Você errou!') if counter < 3: print(f'Resta(m) {3 - counter} tentativa(s).') else: print('Suas tentativas acabaram! Mais sorte na próxima vez.') print(f'O número sorteado foi {numberRandom}.') break
[ "random.randint" ]
[((435, 456), 'random.randint', 'random.randint', (['(1)', '(10)'], {}), '(1, 10)\n', (449, 456), False, 'import random\n')]
import setuptools # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setuptools.setup( name="atm76", version="0.1.0", author="<NAME>", author_email="<EMAIL>", description="Differentiable 1976 Atmosphere", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/shb84/ATM76.git", packages=setuptools.find_packages(), package_data={}, install_requires=["numpy>=1.16", "genn"], include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires='>=3.7', )
[ "os.path.dirname", "setuptools.find_packages", "os.path.join" ]
[((115, 137), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (127, 137), False, 'from os import path\n'), ((150, 178), 'os.path.join', 'path.join', (['here', '"""README.md"""'], {}), "(here, 'README.md')\n", (159, 178), False, 'from os import path\n'), ((542, 568), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (566, 568), False, 'import setuptools\n')]
import logging import asyncio from agent.check_plugins import AbstractCheckPlugin # Do khong biet dung thu vien asyncio ntn ca nen em dung thu vien request # python import requests import sys import time from datetime import datetime logger = logging.getLogger(__name__) class Download(AbstractCheckPlugin): @asyncio.coroutine def __call__(self, client, dnode): logger.info('Test download speed : running...') start = time.clock() r = requests.get('http://{}'.format(dnode), stream=True) total_length = int(r.headers.get('content-length')) if total_length is None: logger.error("Empty file!") else: array_speed = [] start_chunk = time.clock() for chunk in r.iter_content(1024): # 1kB1024 1MB 1048576 end_chunk = time.clock() delta = end_chunk - start_chunk start_chunk = end_chunk if delta <= 0: break else: array_speed.append(1//delta) # kB / s end = time.clock() yield from self._queue.put(self.get_result(dnode, start, end, total_length, array_speed)) @asyncio.coroutine def get_result(self, url, start, end, total_length, array_speed): """Download and processing data. Args: url (str): url file download. start (float): It's time which started download. end (float): It's time which finished download. total_length (int): size of file download (Byte) array_speed (list): list download speeds for each 1024 Byte (kB/s) Returns: list with item 0 : json format for influxdb """ download_speed = total_length // (time.clock() - start) accelerationS = self.acceleration(array_speed) mean_deviationS = self.mean_deviation(array_speed, download_speed) logger.info("Test download speed done!") #TODO Bỏ time, để kiểm tra xem db có ghi đc dữ liệu hay chưa return [self.output([self._snode, url, datetime.now(), download_speed, mean_deviationS, accelerationS])] def acceleration(self, array_speed): """Caculate acceleration. By get the highest speed in the first cycle. Args: array_speed (list): list download times for each 1024 Byte Returns: acceleration (kB/s) : the deviation between highest speed and first byte speed """ if len(array_speed) == 0: return 0 speed_before = array_speed[0] for speed in array_speed: if speed < speed_before: break else: speed_before = speed return speed_before - array_speed[0] def mean_deviation(self, array_speed, download_speed): """The mean deviation each downloads with download_speed. Args: array_speed (list): list download speeds for each kB. download_speed (kB/s): mean download speed. Returns: mean_deviation (kB/s) """ if len(array_speed) == 0: return 0 sum = 0 for speed in array_speed: sum += abs(speed - download_speed) return sum//len(array_speed) def output(self, my_array): """Reformat my_array for inserting into influxdb. Args: my_array (list): [self._snode, url, str(datetime.now()), download_speed, mean_deviationS, accelerationS] Returns: json format for influxdb """ return { "measurement": "download_speed", "tags": { "snode": "{}".format(my_array[0]), "dnode": "{}".format(my_array[1]) }, # "time": "{}".format(my_array[2]), "fields": { "speed": my_array[3], "mean_deviation": my_array[4], "acceleration": my_array[5] } }
[ "logging.getLogger", "datetime.datetime.now", "time.clock" ]
[((245, 272), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (262, 272), False, 'import logging\n'), ((448, 460), 'time.clock', 'time.clock', ([], {}), '()\n', (458, 460), False, 'import time\n'), ((728, 740), 'time.clock', 'time.clock', ([], {}), '()\n', (738, 740), False, 'import time\n'), ((1097, 1109), 'time.clock', 'time.clock', ([], {}), '()\n', (1107, 1109), False, 'import time\n'), ((839, 851), 'time.clock', 'time.clock', ([], {}), '()\n', (849, 851), False, 'import time\n'), ((1795, 1807), 'time.clock', 'time.clock', ([], {}), '()\n', (1805, 1807), False, 'import time\n'), ((2112, 2126), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2124, 2126), False, 'from datetime import datetime\n')]
import weakref import os import requests import ssl from ssl import SSLContext import logging from ssl_context_builder.builder.builder import SslContextBuilder from ssl_context_builder.http_impl.requests_wrapper.ssl_adapter import SslAdapter class RequestsSecureSession: def __init__(self, ssl_context: SSLContext): """ This class create a wrapper for the requests.Session object It does the following: 1. Disable session env_vars consuming 2. Load certificates provided with the ssl_context 3. Except ssl_context to control the TLS communication @param ssl_context: SSLContext """ self.cert_file_path = self._create_cert_file(ssl_context) # see note inside the function why not using tempfile self._ssl_context = ssl_context self.session = requests.Session() self.session.trust_env = False self.session.verify = self.cert_file_path self.session.mount('https://', SslAdapter(ssl_context)) self._finalizer = weakref.finalize( self, self._cleanup, self.cert_file_path, self.session, warn_message="Implicitly cleaning up {!r}".format(self)) def __enter__(self): return self def __exit__(self, exc, value, tb): self.cleanup() def cleanup(self): # Non throw function """ Delete the cert file and close the session @return: """ if self._finalizer.detach(): try: os.remove(self.cert_file_path) except: logging.warning(f"Couldn't delete certs file {self.cert_file_path}") try: self.session.close() except: logging.warning("Couldn't close session") @staticmethod def _cleanup(name, session, warn_message): try: os.remove(name) except: logging.warning(f"Couldn't delete certs file {name}") try: session.close() except: logging.warning("Couldn't close session") logging.warning(warn_message) @classmethod def _create_cert_file(cls, ssl_context: SSLContext): """ This create a CA bundle file extracted from the ssl_context The reason we are creating a real file and deleting it is that this file is being opened later on in the requests flow. This means we have to close the file before it is being used tempfile is being destroyed when closed. @param ssl_context: ssl_context @return: path to the created ca_bundle file """ path = "certs.pem" if os.path.exists(path): path = cls._generate_cert_file_path("certs") with open(path, mode="a+") as certs_file: certs = "" for der in ssl_context.get_ca_certs(True): certs += f"{ssl.DER_cert_to_PEM_cert(der)}\n" certs_file.write(certs) return path @classmethod def _generate_cert_file_path(cls, file_name: str, num=1): file_name_candidate = f"{file_name}({num}).pem" if os.path.exists(file_name_candidate): return cls._generate_cert_file_path(file_name, num + 1) return file_name_candidate
[ "os.path.exists", "requests.Session", "logging.warning", "ssl.DER_cert_to_PEM_cert", "ssl_context_builder.http_impl.requests_wrapper.ssl_adapter.SslAdapter", "os.remove" ]
[((838, 856), 'requests.Session', 'requests.Session', ([], {}), '()\n', (854, 856), False, 'import requests\n'), ((2087, 2116), 'logging.warning', 'logging.warning', (['warn_message'], {}), '(warn_message)\n', (2102, 2116), False, 'import logging\n'), ((2660, 2680), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (2674, 2680), False, 'import os\n'), ((3132, 3167), 'os.path.exists', 'os.path.exists', (['file_name_candidate'], {}), '(file_name_candidate)\n', (3146, 3167), False, 'import os\n'), ((985, 1008), 'ssl_context_builder.http_impl.requests_wrapper.ssl_adapter.SslAdapter', 'SslAdapter', (['ssl_context'], {}), '(ssl_context)\n', (995, 1008), False, 'from ssl_context_builder.http_impl.requests_wrapper.ssl_adapter import SslAdapter\n'), ((1870, 1885), 'os.remove', 'os.remove', (['name'], {}), '(name)\n', (1879, 1885), False, 'import os\n'), ((1510, 1540), 'os.remove', 'os.remove', (['self.cert_file_path'], {}), '(self.cert_file_path)\n', (1519, 1540), False, 'import os\n'), ((1914, 1967), 'logging.warning', 'logging.warning', (['f"""Couldn\'t delete certs file {name}"""'], {}), '(f"Couldn\'t delete certs file {name}")\n', (1929, 1967), False, 'import logging\n'), ((2037, 2078), 'logging.warning', 'logging.warning', (['"""Couldn\'t close session"""'], {}), '("Couldn\'t close session")\n', (2052, 2078), False, 'import logging\n'), ((1577, 1645), 'logging.warning', 'logging.warning', (['f"""Couldn\'t delete certs file {self.cert_file_path}"""'], {}), '(f"Couldn\'t delete certs file {self.cert_file_path}")\n', (1592, 1645), False, 'import logging\n'), ((1737, 1778), 'logging.warning', 'logging.warning', (['"""Couldn\'t close session"""'], {}), '("Couldn\'t close session")\n', (1752, 1778), False, 'import logging\n'), ((2895, 2924), 'ssl.DER_cert_to_PEM_cert', 'ssl.DER_cert_to_PEM_cert', (['der'], {}), '(der)\n', (2919, 2924), False, 'import ssl\n')]
# Ghetto Fixtures from codebox import app from codebox.apps.auth.models import User from codebox.apps.snippets.models import Snippet from codebox.apps.organizations.models import Organization, OrganizationMember from flask import g client = app.test_client() _ctx = app.test_request_context() _ctx.push() app.preprocess_request() g.redis.flushdb() User.objects.create(pk=1, name='zeeg') Organization.objects.create(pk='disqus', name='DISQUS') OrganizationMember.objects.create(org='disqus', user=1) # Create sample snippets # plaintext Snippet.objects.create(org='disqus', user=1, lang='text', text = "Hello World!") # python Snippet.objects.create(org='disqus', user=1, lang='python', text = "print 'Disqus was here'") # html Snippet.objects.create(org='disqus', user=1, lang='html', text = '<h1>Look its HTML!</h1>') # javascript Snippet.objects.create(org='disqus', user=1, lang='javascript', text = "document.write('Di-squs')")
[ "codebox.app.test_client", "codebox.apps.snippets.models.Snippet.objects.create", "codebox.apps.organizations.models.Organization.objects.create", "codebox.app.preprocess_request", "codebox.apps.organizations.models.OrganizationMember.objects.create", "flask.g.redis.flushdb", "codebox.app.test_request_context", "codebox.apps.auth.models.User.objects.create" ]
[((243, 260), 'codebox.app.test_client', 'app.test_client', ([], {}), '()\n', (258, 260), False, 'from codebox import app\n'), ((268, 294), 'codebox.app.test_request_context', 'app.test_request_context', ([], {}), '()\n', (292, 294), False, 'from codebox import app\n'), ((307, 331), 'codebox.app.preprocess_request', 'app.preprocess_request', ([], {}), '()\n', (329, 331), False, 'from codebox import app\n'), ((332, 349), 'flask.g.redis.flushdb', 'g.redis.flushdb', ([], {}), '()\n', (347, 349), False, 'from flask import g\n'), ((351, 389), 'codebox.apps.auth.models.User.objects.create', 'User.objects.create', ([], {'pk': '(1)', 'name': '"""zeeg"""'}), "(pk=1, name='zeeg')\n", (370, 389), False, 'from codebox.apps.auth.models import User\n'), ((391, 446), 'codebox.apps.organizations.models.Organization.objects.create', 'Organization.objects.create', ([], {'pk': '"""disqus"""', 'name': '"""DISQUS"""'}), "(pk='disqus', name='DISQUS')\n", (418, 446), False, 'from codebox.apps.organizations.models import Organization, OrganizationMember\n'), ((448, 503), 'codebox.apps.organizations.models.OrganizationMember.objects.create', 'OrganizationMember.objects.create', ([], {'org': '"""disqus"""', 'user': '(1)'}), "(org='disqus', user=1)\n", (481, 503), False, 'from codebox.apps.organizations.models import Organization, OrganizationMember\n'), ((543, 621), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', ([], {'org': '"""disqus"""', 'user': '(1)', 'lang': '"""text"""', 'text': '"""Hello World!"""'}), "(org='disqus', user=1, lang='text', text='Hello World!')\n", (565, 621), False, 'from codebox.apps.snippets.models import Snippet\n'), ((633, 729), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', ([], {'org': '"""disqus"""', 'user': '(1)', 'lang': '"""python"""', 'text': '"""print \'Disqus was here\'"""'}), '(org=\'disqus\', user=1, lang=\'python\', text=\n "print \'Disqus was here\'")\n', (655, 729), False, 'from codebox.apps.snippets.models import Snippet\n'), ((734, 828), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', ([], {'org': '"""disqus"""', 'user': '(1)', 'lang': '"""html"""', 'text': '"""<h1>Look its HTML!</h1>"""'}), "(org='disqus', user=1, lang='html', text=\n '<h1>Look its HTML!</h1>')\n", (756, 828), False, 'from codebox.apps.snippets.models import Snippet\n'), ((839, 941), 'codebox.apps.snippets.models.Snippet.objects.create', 'Snippet.objects.create', ([], {'org': '"""disqus"""', 'user': '(1)', 'lang': '"""javascript"""', 'text': '"""document.write(\'Di-squs\')"""'}), '(org=\'disqus\', user=1, lang=\'javascript\', text=\n "document.write(\'Di-squs\')")\n', (861, 941), False, 'from codebox.apps.snippets.models import Snippet\n')]
import function_exercise_01 as st st.sandwich_toppings('meatballs', 'salad')
[ "function_exercise_01.sandwich_toppings" ]
[((35, 77), 'function_exercise_01.sandwich_toppings', 'st.sandwich_toppings', (['"""meatballs"""', '"""salad"""'], {}), "('meatballs', 'salad')\n", (55, 77), True, 'import function_exercise_01 as st\n')]
import json import time from functools import lru_cache from multiprocessing import Pool, Process from threading import Thread, Timer from typing import Any, Dict, List from datetime import datetime import hashlib import inspect import requests import waitress from bottle import BaseTemplate, Bottle, request, response, static_file, template, error import utils.constants as consts from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block from authority import Authority from utils.logger import logger, iplogger from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db from utils.utils import compress, decompress, dhash from wallet import Wallet app = Bottle() BaseTemplate.defaults["get_url"] = app.get_url LINE_PROFILING = False BLOCKCHAIN = BlockChain() PEER_LIST: List[Dict[str, Any]] = [] MY_WALLET = Wallet() miner = Authority() def mining_thread_task(): while True: if not miner.is_mining() and not consts.NO_MINING: miner.start_mining(BLOCKCHAIN.mempool, BLOCKCHAIN.active_chain, MY_WALLET) time.sleep(consts.MINING_INTERVAL_THRESHOLD // 2) def send_to_all_peers(url, data): def request_task(peers, url, data): for peer in peers: try: requests.post(get_peer_url(peer) + url, data=data, timeout=(5, 1)) except Exception as e: logger.debug("Server: Requests: Error while sending data in process" + str(peer)) Process(target=request_task, args=(PEER_LIST, url, data), daemon=True).start() def start_mining_thread(): time.sleep(5) Thread(target=mining_thread_task, name="Miner", daemon=True).start() def fetch_peer_list() -> List[Dict[str, Any]]: try: r = requests.post(consts.SEED_SERVER_URL, data={"port": consts.MINER_SERVER_PORT}) peer_list = json.loads(r.text) return peer_list except Exception as e: logger.error("Could not connect to DNS Seed") return [] def get_peer_url(peer: Dict[str, Any]) -> str: return "http://" + str(peer["ip"]) + ":" + str(peer["port"]) def greet_peer(peer: Dict[str, Any]) -> bool: try: url = get_peer_url(peer) data = {"port": consts.MINER_SERVER_PORT, "version": consts.MINER_VERSION, "blockheight": BLOCKCHAIN.active_chain.length} # Send a POST request to the peer r = requests.post(url + "/greetpeer", data=data) data = json.loads(r.text) # Update the peer data in the peer list with the new data received from the peer. if data.get("blockheight", None): peer.update(data) else: logger.debug("Main: Peer data does not have Block Height") return False return True except Exception as e: logger.debug("Main: Could not greet peer" + str(e)) return False def receive_block_from_peer(peer: Dict[str, Any], header_hash) -> Block: r = requests.post(get_peer_url(peer) + "/getblock", data={"headerhash": header_hash}) return Block.from_json(decompress(r.text)).object() def check_block_with_peer(peer, hhash): r = requests.post(get_peer_url(peer) + "/checkblock", data={"headerhash": hhash}) result = json.loads(r.text) if result: return True return False def get_block_header_hash(height): return dhash(BLOCKCHAIN.active_chain.header_list[height]) def sync(max_peer): fork_height = BLOCKCHAIN.active_chain.length r = requests.post(get_peer_url(max_peer) + "/getblockhashes", data={"myheight": fork_height}) hash_list = json.loads(decompress(r.text.encode())) for hhash in hash_list: block = receive_block_from_peer(max_peer, hhash) if not BLOCKCHAIN.add_block(block): logger.error("Sync: Block received is invalid, Cannot Sync") break return # Periodically sync with all the peers def sync_with_peers(): try: PEER_LIST = fetch_peer_list() new_peer_list = [] for peer in PEER_LIST: if greet_peer(peer): new_peer_list.append(peer) PEER_LIST = new_peer_list if PEER_LIST: max_peer = max(PEER_LIST, key=lambda k: k["blockheight"]) logger.debug(f"Sync: Syncing with {get_peer_url(max_peer)}, he seems to have height {max_peer['blockheight']}") sync(max_peer) except Exception as e: logger.error("Sync: Error: " + str(e)) Timer(consts.MINING_INTERVAL_THRESHOLD * 2, sync_with_peers).start() def check_balance(pub_key: str) -> int: current_balance = 0 for x, utxo_list in BLOCKCHAIN.active_chain.utxo.utxo.items(): tx_out = utxo_list[0] if tx_out.address == pub_key: current_balance += int(tx_out.amount) return int(current_balance) def send_bounty(receiver_public_keys: List[str], amounts: List[int]): current_balance = check_balance(MY_WALLET.public_key) for key in receiver_public_keys: if len(key) < consts.PUBLIC_KEY_LENGTH: logger.debug("Invalid Public Key Length") return False total_amount = sum(amounts) if current_balance < total_amount: logger.debug("Insuficient balance") elif MY_WALLET.public_key in receiver_public_keys: logger.debug("Cannot send to myself") else: transaction = create_transaction(receiver_public_keys, amounts, MY_WALLET.public_key, message="Authority: Faucet Money") transaction.sign(MY_WALLET) logger.info("Wallet: Attempting to Send Transaction") try: r = requests.post( "http://0.0.0.0:" + str(consts.MINER_SERVER_PORT) + "/newtransaction", data=compress(transaction.to_json()), timeout=(5, 1), ) if r.status_code == 400: logger.info("Wallet: Could not Send Transaction. Invalid Transaction") else: logger.info("Wallet: Transaction Sent, Wait for it to be Mined") return True except Exception as e: logger.error("Wallet: Could not Send Transaction. Try Again." + str(e)) return False def create_transaction(receiver_public_keys: List[str], amounts: List[int], sender_public_key, message="") -> Transaction: vout = {} vin = {} current_amount = 0 total_amount = sum(amounts) i = 0 for so, utxo_list in BLOCKCHAIN.active_chain.utxo.utxo.items(): tx_out = utxo_list[0] if current_amount >= total_amount: break if tx_out.address == sender_public_key: current_amount += tx_out.amount vin[i] = TxIn(payout=SingleOutput.from_json(so), pub_key=sender_public_key, sig="") i += 1 for i, address in enumerate(receiver_public_keys): vout[i] = TxOut(amount=amounts[i], address=address) change = (current_amount - total_amount) if change > 0: vout[i + 1] = TxOut(amount=change, address=sender_public_key) tx = Transaction(version=consts.MINER_VERSION, locktime=0, timestamp=int(time.time()), vin=vin, vout=vout, message=message) return tx def get_ip(request): return request.environ.get("HTTP_X_FORWARDED_FOR") or request.environ.get("REMOTE_ADDR") def log_ip(request, fname): client_ip = get_ip(request) iplogger.info(f"{client_ip} : Called function {fname}") @app.post("/checkBalance") def checkingbalance(): log_ip(request, inspect.stack()[0][3]) data = request.json public_key = data["public_key"] logger.debug(public_key) current_balance = check_balance(public_key) return str(current_balance) @app.post("/makeTransaction") def make_transaction(): log_ip(request, inspect.stack()[0][3]) data = request.json bounty = int(data["bounty"]) receiver_public_key = data["receiver_public_key"] sender_public_key = data["sender_public_key"] message = "No Message" if "message" in data: message = data["message"] if len(receiver_public_key) < consts.PUBLIC_KEY_LENGTH: logger.debug("Invalid Receiver Public Key") response.status = 400 return "Invalid Receiver Public Key" current_balance = check_balance(sender_public_key) if current_balance < bounty: logger.debug("Insufficient Balance to make Transaction") response.status = 400 return "Insufficient Balance to make Transaction, need more " + str(bounty - current_balance) elif sender_public_key == receiver_public_key: logger.debug("Someone trying to send money to himself") response.status = 400 return "Cannot send money to youself" else: transaction = create_transaction([receiver_public_key], [bounty], sender_public_key, message=message) data = {} data["send_this"] = transaction.to_json() transaction.vin = {} data["sign_this"] = transaction.to_json() return json.dumps(data) @app.post("/sendTransaction") def send_transaction(): log_ip(request, inspect.stack()[0][3]) data = request.json transaction = Transaction.from_json(data["transaction"]).object() sig = data["signature"] transaction.add_sign(sig) logger.debug(transaction) logger.info("Wallet: Attempting to Send Transaction") try: r = requests.post( "http://0.0.0.0:" + str(consts.MINER_SERVER_PORT) + "/newtransaction", data=compress(transaction.to_json()), timeout=(5, 1), ) if r.status_code == 400: response.status = 400 logger.error("Wallet: Could not Send Transaction. Invalid transaction") return "Try Again" except Exception as e: response.status = 400 logger.error("Wallet: Could not Send Transaction. Try Again." + str(e)) return "Try Again" else: logger.info("Wallet: Transaction Sent, Wait for it to be Mined") return "Done" @app.post("/transactionHistory") def transaction_history(): log_ip(request, inspect.stack()[0][3]) data = request.json public_key = data["public_key"] tx_hist = BLOCKCHAIN.active_chain.transaction_history.get(public_key) return json.dumps(tx_hist) @app.post("/greetpeer") def greet_peer_f(): log_ip(request, inspect.stack()[0][3]) try: peer = {} peer["port"] = request.forms.get("port") peer["ip"] = request.remote_addr peer["time"] = time.time() peer["version"] = request.forms.get("version") peer["blockheight"] = request.forms.get("blockheight") ADD_ENTRY = True for entry in PEER_LIST: ip = entry["ip"] port = entry["port"] if ip == peer["ip"] and port == peer["port"]: ADD_ENTRY = False if ADD_ENTRY: PEER_LIST.append(peer) logger.debug("Server: Greet, A new peer joined, Adding to List") except Exception as e: logger.debug("Server: Greet Error: " + str(e)) pass data = {"version": consts.MINER_VERSION, "blockheight": BLOCKCHAIN.active_chain.length} response.content_type = "application/json" return json.dumps(data) @lru_cache(maxsize=128) def cached_get_block(headerhash: str) -> str: if headerhash: db_block = get_block_from_db(headerhash) if db_block: return compress(db_block) else: logger.error("ERROR CALLED GETBLOCK FOR NON EXISTENT BLOCK") return "Invalid Hash" @app.post("/getblock") def getblock(): log_ip(request, inspect.stack()[0][3]) hhash = request.forms.get("headerhash") return cached_get_block(hhash) @app.post("/checkblock") def checkblock(): log_ip(request, inspect.stack()[0][3]) headerhash = request.forms.get("headerhash") if get_block_from_db(headerhash): return json.dumps(True) return json.dumps(False) @app.post("/getblockhashes") def send_block_hashes(): log_ip(request, inspect.stack()[0][3]) peer_height = int(request.forms.get("myheight")) hash_list = [] for i in range(peer_height, BLOCKCHAIN.active_chain.length): hash_list.append(dhash(BLOCKCHAIN.active_chain.header_list[i])) return compress(json.dumps(hash_list)).decode() @lru_cache(maxsize=16) def process_new_block(request_data: bytes) -> str: global BLOCKCHAIN block_json = decompress(request_data) if block_json: try: block = Block.from_json(block_json).object() # Check if block already exists if get_block_from_db(dhash(block.header)): logger.info("Server: Received block exists, doing nothing") return "Block already Received Before" if BLOCKCHAIN.add_block(block): logger.info("Server: Received a New Valid Block, Adding to Chain") logger.debug("Server: Sending new block to peers") # Broadcast block to other peers send_to_all_peers("/newblock", request_data) # TODO Make new chain/ orphan set for Block that is not added except Exception as e: logger.error("Server: New Block: invalid block received " + str(e)) return "Invalid Block Received" # Kill Miner t = Timer(1, miner.stop_mining) t.start() return "Block Received" logger.error("Server: Invalid Block Received") return "Invalid Block" @app.post("/newblock") def received_new_block(): log_ip(request, inspect.stack()[0][3]) return process_new_block(request.body.read()) @lru_cache(maxsize=16) def process_new_transaction(request_data: bytes) -> str: global BLOCKCHAIN transaction_json = decompress(request_data) if transaction_json: try: tx = Transaction.from_json(transaction_json).object() # Add transaction to Mempool if tx not in BLOCKCHAIN.mempool: if BLOCKCHAIN.active_chain.is_transaction_valid(tx): logger.debug("Valid Transaction received, Adding to Mempool") BLOCKCHAIN.mempool.add(tx) # Broadcast block to other peers send_to_all_peers("/newtransaction", request_data) else: logger.debug("The transation is not valid, not added to Mempool") return False, "Not Valid Transaction" else: return True, "Transaction Already received" except Exception as e: logger.error("Server: New Transaction: Invalid tx received: " + str(e)) return False, "Not Valid Transaction" return True, "Done" # Transactions for all active chains @app.post("/newtransaction") def received_new_transaction(): log_ip(request, inspect.stack()[0][3]) result, message = process_new_transaction(request.body.read()) if result: response.status = 200 else: response.status = 400 return message question = '''What is greater than God, more evil than the devil, the poor have it, the rich need it, and if you eat it, you'll die?''' actual_answer = "nothing" @app.get("/") def home(): log_ip(request, inspect.stack()[0][3]) message = "" message_type = "info" return template("index.html", message=message, message_type=message_type, question=question) with open('uuids.json', 'r') as file: uuid_json = file.read() valid_ids = set(json.loads(uuid_json)) @app.post("/") def puzzle(): log_ip(request, inspect.stack()[0][3]) message = "" message_type = "info" uuid = request.forms.get("uuid") pubkey = request.forms.get("pubkey") amounts = [300] if uuid in valid_ids: logger.debug("Valid Answer, Rewarding " + pubkey) message = "Well Done!" if check_balance(MY_WALLET.public_key) >= sum(amounts): result = send_bounty([pubkey], amounts) if result: message = "Your reward is being sent, please wait for it to be mined!" valid_ids.remove(uuid) else: message = "Some Error Occured, Contact Admin." message_type = "warning" else: message = "Invalid Unique ID!" message_type = "danger" return template("index.html", message=message, message_type=message_type, question=question) @app.get('/about') def about(): return template("about.html") # @app.get("/wallet") # def wallet(): # log_ip(request, inspect.stack()[0][3]) # return template("wallet.html", message="", message_type="", pubkey=MY_WALLET.public_key) # @app.post("/wallet") # def wallet_post(): # log_ip(request, inspect.stack()[0][3]) # number = int(request.forms.get("number")) # message = "" # message_type = "info" # try: # receivers = [] # amounts = [] # total_amount = 0 # for i in range(0, number): # receiver = str(request.forms.get("port" + str(i))) # bounty = int(request.forms.get("amount" + str(i))) # publickey = "" # if len(receiver) < 10: # wallet = get_wallet_from_db(receiver) # if wallet is not None: # publickey = wallet[1] # else: # message = "Error with the Receiver Port ID, try again." # message_type = "danger" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) # else: # publickey = receiver # total_amount += bounty # receivers.append(publickey) # amounts.append(bounty) # if check_balance(MY_WALLET.public_key) >= total_amount: # result = send_bounty(receivers, amounts) # if result: # message = "Your transaction is sent, please wait for it to be mined!" # else: # message = "Some Error Occured, Contact Admin." # message_type = "warning" # else: # message = "You have Insufficient Balance!" # message_type = "warning" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) # except Exception as e: # logger.error(e) # message = "Some Error Occured. Please try again later." # message_type = "danger" # return template("wallet.html", message=message, message_type=message_type, pubkey=MY_WALLET.public_key) @app.get("/checkmybalance") def checkblance(): log_ip(request, inspect.stack()[0][3]) return str(check_balance(MY_WALLET.public_key)) @app.route("/static/<filename:path>", name="static") def serve_static(filename): log_ip(request, inspect.stack()[0][3]) return static_file(filename, root="static") @app.get("/favicon.ico") def get_favicon(): log_ip(request, inspect.stack()[0][3]) return static_file("favicon.ico", root="static") @app.get("/info") def sendinfo(): log_ip(request, inspect.stack()[0][3]) s = ( "No. of Blocks: " + str(BLOCKCHAIN.active_chain.length) + "<br>" + dhash(BLOCKCHAIN.active_chain.header_list[-1]) + "<br>" + "Balance " + str(check_balance(MY_WALLET.public_key)) + "<br>Public Key: <br>" + str(get_wallet_from_db(consts.MINER_SERVER_PORT)[1]) ) return s def render_block_header(hdr): html = "<table>" html += "<tr><th>" + "Height" + "</th>" html += "<td>" + str(hdr.height) + "</td></tr>" html += "<tr><th>" + "Block Hash" + "</th>" html += "<td>" + dhash(hdr) + "</td></tr>" html += "<tr><th>" + "Prev Block Hash" + "</th>" html += "<td>" + str(hdr.prev_block_hash) + "</td></tr>" html += "<tr><th>" + "Merkle Root" + "</th>" html += "<td>" + str(hdr.merkle_root) + "</td></tr>" html += "<tr><th>" + "Timestamp" + "</th>" html += ( "<td>" + str(datetime.fromtimestamp(hdr.timestamp).strftime("%d-%m-%Y %H:%M:%S")) + " (" + str(hdr.timestamp) + ")</td></tr>" ) # get block block = Block.from_json(get_block_from_db(dhash(hdr))).object() html += "<tr><th>" + "Transactions" + "</th>" html += "<td>" + str(len(block.transactions)) + "</td></tr>" # for i, transaction in enumerate(block.transactions): # s = "coinbase: " + str(transaction.is_coinbase) + ", fees: " + str(transaction.fees) # html += "<tr><th>Transaction " + str(i) + "</th><td>" + str(s) + "</td></tr>" html += "</table>" return str(html) @app.get("/chains") def visualize_chain(): log_ip(request, inspect.stack()[0][3]) data = [] start = BLOCKCHAIN.active_chain.length - 10 if BLOCKCHAIN.active_chain.length > 10 else 0 headers = [] hdr_list = BLOCKCHAIN.active_chain.header_list if len(hdr_list) > 200: hdr_list = BLOCKCHAIN.active_chain.header_list[:100] + BLOCKCHAIN.active_chain.header_list[-100:] for hdr in hdr_list: d = {} d["hash"] = dhash(hdr)[-5:] d["time"] = hdr.timestamp d["data"] = render_block_header(hdr) headers.append(d) data.append(headers) return template("chains.html", data=data, start=start) @app.get("/explorer") def explorer(): log_ip(request, inspect.stack()[0][3]) prev = int(request.query.prev or 0) if prev < 0: prev = 0 hdr_list = list(reversed(BLOCKCHAIN.active_chain.header_list)) indexes = [i for i in range(prev * 8, (prev + 1) * 8) if i < len(hdr_list)] blocks = [Block.from_json(get_block_from_db(dhash(hdr_list[i]))).object() for i in indexes] transactions = list(BLOCKCHAIN.mempool) return template("explorer.html", blocks=blocks, transactions=transactions, prev=prev) @app.route("/block/<blockhash>", name="transaction") def block(blockhash): log_ip(request, inspect.stack()[0][3]) try: block = Block.from_json(get_block_from_db(blockhash)).object() except Exception as e: logger.debug("BLOCK/blockhash: " + str(e)) return template("error.html") return template("block.html", block=block) @app.route("/transaction/<blockhash>/<txhash>", name="transaction") def transaction(blockhash, txhash): log_ip(request, inspect.stack()[0][3]) try: block = Block.from_json(get_block_from_db(blockhash)).object() tx = None for t in block.transactions: if t.hash() == txhash: tx = t except Exception as e: logger.debug("Transaction/bhash/tx: " + str(e)) return template("error.html") return template("transaction.html", tx=tx, block=block) @app.route("/address/<pubkey:re:.+>", name="account") def account(pubkey): log_ip(request, inspect.stack()[0][3]) balance = check_balance(pubkey) tx_hist = BLOCKCHAIN.active_chain.transaction_history.get(pubkey) return template("account.html", tx_hist=tx_hist, balance=balance, pubkey=pubkey) @app.post("/mining") def mining(): log_ip(request, inspect.stack()[0][3]) password = request.body.read().decode("utf-8") hashed = b"\x11`\x1e\xdd\xd1\xb6\x80\x0f\xd4\xb0t\x90\x9b\xd3]\xa0\xcc\x1d\x04$\x8b\xb1\x19J\xaa!T5-\x9eJ\xfcI5\xc0\xbb\xf5\xb1\x9d\xba\xbef@\xa1)\xcf\x9b]c(R\x91\x0e\x9dMM\xb6\x94\xa9\xe2\x94il\x15" dk = hashlib.pbkdf2_hmac("sha512", password.encode("utf-8"), b"<PASSWORD>", 200000) if hashed == dk: consts.NO_MINING = not consts.NO_MINING logger.info("Mining: " + str(not consts.NO_MINING)) return "Mining Toggled, " + "NOT MINING" if consts.NO_MINING else "MINING" else: return "Password Mismatch," + "NOT MINING" if consts.NO_MINING else "MINING" @app.route("/<url:re:.+>") @error(403) @error(404) @error(505) def error_handle(url="url", error="404"): log_ip(request, inspect.stack()[0][3]) return template("error.html") if __name__ == "__main__": try: if consts.NEW_BLOCKCHAIN: logger.info("FullNode: Starting New Chain from Genesis") BLOCKCHAIN.add_block(genesis_block) else: # Restore Blockchain logger.info("FullNode: Restoring Existing Chain") header_list = read_header_list_from_db() BLOCKCHAIN.build_from_header_list(header_list) # Sync with all my peers sync_with_peers() # Start mining Thread Thread(target=start_mining_thread, daemon=True).start() if consts.NO_MINING: logger.info("FullNode: Not Mining") # Start server if LINE_PROFILING: from wsgi_lineprof.middleware import LineProfilerMiddleware with open("lineprof" + str(consts.MINER_SERVER_PORT) + ".log", "w") as f: app = LineProfilerMiddleware(app, stream=f, async_stream=True) waitress.serve(app, host="0.0.0.0", threads=16, port=consts.MINER_SERVER_PORT) else: waitress.serve(app, host="0.0.0.0", threads=16, port=consts.MINER_SERVER_PORT) except KeyboardInterrupt: miner.stop_mining()
[ "requests.post", "utils.utils.decompress", "bottle.Bottle", "multiprocessing.Process", "utils.logger.logger.info", "time.sleep", "core.Block.from_json", "utils.storage.read_header_list_from_db", "core.BlockChain", "bottle.error", "bottle.template", "utils.utils.compress", "json.dumps", "core.Transaction.from_json", "core.TxOut", "utils.logger.logger.debug", "bottle.request.environ.get", "json.loads", "bottle.request.forms.get", "inspect.stack", "threading.Timer", "utils.logger.iplogger.info", "utils.storage.get_block_from_db", "bottle.request.body.read", "waitress.serve", "threading.Thread", "utils.logger.logger.error", "time.time", "wsgi_lineprof.middleware.LineProfilerMiddleware", "bottle.static_file", "datetime.datetime.fromtimestamp", "utils.storage.get_wallet_from_db", "wallet.Wallet", "utils.utils.dhash", "functools.lru_cache", "core.SingleOutput.from_json", "authority.Authority" ]
[((723, 731), 'bottle.Bottle', 'Bottle', ([], {}), '()\n', (729, 731), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((817, 829), 'core.BlockChain', 'BlockChain', ([], {}), '()\n', (827, 829), False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((881, 889), 'wallet.Wallet', 'Wallet', ([], {}), '()\n', (887, 889), False, 'from wallet import Wallet\n'), ((899, 910), 'authority.Authority', 'Authority', ([], {}), '()\n', (908, 910), False, 'from authority import Authority\n'), ((11202, 11224), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(128)'}), '(maxsize=128)\n', (11211, 11224), False, 'from functools import lru_cache\n'), ((12273, 12294), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(16)'}), '(maxsize=16)\n', (12282, 12294), False, 'from functools import lru_cache\n'), ((13601, 13622), 'functools.lru_cache', 'lru_cache', ([], {'maxsize': '(16)'}), '(maxsize=16)\n', (13610, 13622), False, 'from functools import lru_cache\n'), ((23854, 23864), 'bottle.error', 'error', (['(403)'], {}), '(403)\n', (23859, 23864), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((23866, 23876), 'bottle.error', 'error', (['(404)'], {}), '(404)\n', (23871, 23876), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((23878, 23888), 'bottle.error', 'error', (['(505)'], {}), '(505)\n', (23883, 23888), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((1612, 1625), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1622, 1625), False, 'import time\n'), ((3236, 3254), 'json.loads', 'json.loads', (['r.text'], {}), '(r.text)\n', (3246, 3254), False, 'import json\n'), ((3355, 3405), 'utils.utils.dhash', 'dhash', (['BLOCKCHAIN.active_chain.header_list[height]'], {}), '(BLOCKCHAIN.active_chain.header_list[height])\n', (3360, 3405), False, 'from utils.utils import compress, decompress, dhash\n'), ((7334, 7389), 'utils.logger.iplogger.info', 'iplogger.info', (['f"""{client_ip} : Called function {fname}"""'], {}), "(f'{client_ip} : Called function {fname}')\n", (7347, 7389), False, 'from utils.logger import logger, iplogger\n'), ((7549, 7573), 'utils.logger.logger.debug', 'logger.debug', (['public_key'], {}), '(public_key)\n', (7561, 7573), False, 'from utils.logger import logger, iplogger\n'), ((9223, 9248), 'utils.logger.logger.debug', 'logger.debug', (['transaction'], {}), '(transaction)\n', (9235, 9248), False, 'from utils.logger import logger, iplogger\n'), ((9253, 9306), 'utils.logger.logger.info', 'logger.info', (['"""Wallet: Attempting to Send Transaction"""'], {}), "('Wallet: Attempting to Send Transaction')\n", (9264, 9306), False, 'from utils.logger import logger, iplogger\n'), ((10211, 10230), 'json.dumps', 'json.dumps', (['tx_hist'], {}), '(tx_hist)\n', (10221, 10230), False, 'import json\n'), ((11182, 11198), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (11192, 11198), False, 'import json\n'), ((11607, 11638), 'bottle.request.forms.get', 'request.forms.get', (['"""headerhash"""'], {}), "('headerhash')\n", (11624, 11638), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((11779, 11810), 'bottle.request.forms.get', 'request.forms.get', (['"""headerhash"""'], {}), "('headerhash')\n", (11796, 11810), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((11818, 11847), 'utils.storage.get_block_from_db', 'get_block_from_db', (['headerhash'], {}), '(headerhash)\n', (11835, 11847), False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((11892, 11909), 'json.dumps', 'json.dumps', (['(False)'], {}), '(False)\n', (11902, 11909), False, 'import json\n'), ((12385, 12409), 'utils.utils.decompress', 'decompress', (['request_data'], {}), '(request_data)\n', (12395, 12409), False, 'from utils.utils import compress, decompress, dhash\n'), ((13380, 13426), 'utils.logger.logger.error', 'logger.error', (['"""Server: Invalid Block Received"""'], {}), "('Server: Invalid Block Received')\n", (13392, 13426), False, 'from utils.logger import logger, iplogger\n'), ((13725, 13749), 'utils.utils.decompress', 'decompress', (['request_data'], {}), '(request_data)\n', (13735, 13749), False, 'from utils.utils import compress, decompress, dhash\n'), ((15313, 15403), 'bottle.template', 'template', (['"""index.html"""'], {'message': 'message', 'message_type': 'message_type', 'question': 'question'}), "('index.html', message=message, message_type=message_type, question\n =question)\n", (15321, 15403), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((15483, 15504), 'json.loads', 'json.loads', (['uuid_json'], {}), '(uuid_json)\n', (15493, 15504), False, 'import json\n'), ((15634, 15659), 'bottle.request.forms.get', 'request.forms.get', (['"""uuid"""'], {}), "('uuid')\n", (15651, 15659), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((15673, 15700), 'bottle.request.forms.get', 'request.forms.get', (['"""pubkey"""'], {}), "('pubkey')\n", (15690, 15700), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((16321, 16411), 'bottle.template', 'template', (['"""index.html"""'], {'message': 'message', 'message_type': 'message_type', 'question': 'question'}), "('index.html', message=message, message_type=message_type, question\n =question)\n", (16329, 16411), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((16452, 16474), 'bottle.template', 'template', (['"""about.html"""'], {}), "('about.html')\n", (16460, 16474), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((18891, 18927), 'bottle.static_file', 'static_file', (['filename'], {'root': '"""static"""'}), "(filename, root='static')\n", (18902, 18927), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((19028, 19069), 'bottle.static_file', 'static_file', (['"""favicon.ico"""'], {'root': '"""static"""'}), "('favicon.ico', root='static')\n", (19039, 19069), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((21315, 21362), 'bottle.template', 'template', (['"""chains.html"""'], {'data': 'data', 'start': 'start'}), "('chains.html', data=data, start=start)\n", (21323, 21362), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((21818, 21896), 'bottle.template', 'template', (['"""explorer.html"""'], {'blocks': 'blocks', 'transactions': 'transactions', 'prev': 'prev'}), "('explorer.html', blocks=blocks, transactions=transactions, prev=prev)\n", (21826, 21896), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((22224, 22259), 'bottle.template', 'template', (['"""block.html"""'], {'block': 'block'}), "('block.html', block=block)\n", (22232, 22259), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((22734, 22782), 'bottle.template', 'template', (['"""transaction.html"""'], {'tx': 'tx', 'block': 'block'}), "('transaction.html', tx=tx, block=block)\n", (22742, 22782), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((23020, 23093), 'bottle.template', 'template', (['"""account.html"""'], {'tx_hist': 'tx_hist', 'balance': 'balance', 'pubkey': 'pubkey'}), "('account.html', tx_hist=tx_hist, balance=balance, pubkey=pubkey)\n", (23028, 23093), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((23985, 24007), 'bottle.template', 'template', (['"""error.html"""'], {}), "('error.html')\n", (23993, 24007), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((1109, 1158), 'time.sleep', 'time.sleep', (['(consts.MINING_INTERVAL_THRESHOLD // 2)'], {}), '(consts.MINING_INTERVAL_THRESHOLD // 2)\n', (1119, 1158), False, 'import time\n'), ((1769, 1847), 'requests.post', 'requests.post', (['consts.SEED_SERVER_URL'], {'data': "{'port': consts.MINER_SERVER_PORT}"}), "(consts.SEED_SERVER_URL, data={'port': consts.MINER_SERVER_PORT})\n", (1782, 1847), False, 'import requests\n'), ((1868, 1886), 'json.loads', 'json.loads', (['r.text'], {}), '(r.text)\n', (1878, 1886), False, 'import json\n'), ((2399, 2443), 'requests.post', 'requests.post', (["(url + '/greetpeer')"], {'data': 'data'}), "(url + '/greetpeer', data=data)\n", (2412, 2443), False, 'import requests\n'), ((2459, 2477), 'json.loads', 'json.loads', (['r.text'], {}), '(r.text)\n', (2469, 2477), False, 'import json\n'), ((5188, 5223), 'utils.logger.logger.debug', 'logger.debug', (['"""Insuficient balance"""'], {}), "('Insuficient balance')\n", (5200, 5223), False, 'from utils.logger import logger, iplogger\n'), ((6833, 6874), 'core.TxOut', 'TxOut', ([], {'amount': 'amounts[i]', 'address': 'address'}), '(amount=amounts[i], address=address)\n', (6838, 6874), False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((6961, 7008), 'core.TxOut', 'TxOut', ([], {'amount': 'change', 'address': 'sender_public_key'}), '(amount=change, address=sender_public_key)\n', (6966, 7008), False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((7186, 7229), 'bottle.request.environ.get', 'request.environ.get', (['"""HTTP_X_FORWARDED_FOR"""'], {}), "('HTTP_X_FORWARDED_FOR')\n", (7205, 7229), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((7233, 7267), 'bottle.request.environ.get', 'request.environ.get', (['"""REMOTE_ADDR"""'], {}), "('REMOTE_ADDR')\n", (7252, 7267), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((8071, 8114), 'utils.logger.logger.debug', 'logger.debug', (['"""Invalid Receiver Public Key"""'], {}), "('Invalid Receiver Public Key')\n", (8083, 8114), False, 'from utils.logger import logger, iplogger\n'), ((8288, 8344), 'utils.logger.logger.debug', 'logger.debug', (['"""Insufficient Balance to make Transaction"""'], {}), "('Insufficient Balance to make Transaction')\n", (8300, 8344), False, 'from utils.logger import logger, iplogger\n'), ((9878, 9942), 'utils.logger.logger.info', 'logger.info', (['"""Wallet: Transaction Sent, Wait for it to be Mined"""'], {}), "('Wallet: Transaction Sent, Wait for it to be Mined')\n", (9889, 9942), False, 'from utils.logger import logger, iplogger\n'), ((10370, 10395), 'bottle.request.forms.get', 'request.forms.get', (['"""port"""'], {}), "('port')\n", (10387, 10395), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((10460, 10471), 'time.time', 'time.time', ([], {}), '()\n', (10469, 10471), False, 'import time\n'), ((10498, 10526), 'bottle.request.forms.get', 'request.forms.get', (['"""version"""'], {}), "('version')\n", (10515, 10526), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((10557, 10589), 'bottle.request.forms.get', 'request.forms.get', (['"""blockheight"""'], {}), "('blockheight')\n", (10574, 10589), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((11309, 11338), 'utils.storage.get_block_from_db', 'get_block_from_db', (['headerhash'], {}), '(headerhash)\n', (11326, 11338), False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((11864, 11880), 'json.dumps', 'json.dumps', (['(True)'], {}), '(True)\n', (11874, 11880), False, 'import json\n'), ((12031, 12060), 'bottle.request.forms.get', 'request.forms.get', (['"""myheight"""'], {}), "('myheight')\n", (12048, 12060), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((13298, 13325), 'threading.Timer', 'Timer', (['(1)', 'miner.stop_mining'], {}), '(1, miner.stop_mining)\n', (13303, 13325), False, 'from threading import Thread, Timer\n'), ((13577, 13596), 'bottle.request.body.read', 'request.body.read', ([], {}), '()\n', (13594, 13596), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((14884, 14903), 'bottle.request.body.read', 'request.body.read', ([], {}), '()\n', (14901, 14903), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((15760, 15809), 'utils.logger.logger.debug', 'logger.debug', (["('Valid Answer, Rewarding ' + pubkey)"], {}), "('Valid Answer, Rewarding ' + pubkey)\n", (15772, 15809), False, 'from utils.logger import logger, iplogger\n'), ((1500, 1570), 'multiprocessing.Process', 'Process', ([], {'target': 'request_task', 'args': '(PEER_LIST, url, data)', 'daemon': '(True)'}), '(target=request_task, args=(PEER_LIST, url, data), daemon=True)\n', (1507, 1570), False, 'from multiprocessing import Pool, Process\n'), ((1630, 1690), 'threading.Thread', 'Thread', ([], {'target': 'mining_thread_task', 'name': '"""Miner"""', 'daemon': '(True)'}), "(target=mining_thread_task, name='Miner', daemon=True)\n", (1636, 1690), False, 'from threading import Thread, Timer\n'), ((1947, 1992), 'utils.logger.logger.error', 'logger.error', (['"""Could not connect to DNS Seed"""'], {}), "('Could not connect to DNS Seed')\n", (1959, 1992), False, 'from utils.logger import logger, iplogger\n'), ((2666, 2724), 'utils.logger.logger.debug', 'logger.debug', (['"""Main: Peer data does not have Block Height"""'], {}), "('Main: Peer data does not have Block Height')\n", (2678, 2724), False, 'from utils.logger import logger, iplogger\n'), ((3772, 3832), 'utils.logger.logger.error', 'logger.error', (['"""Sync: Block received is invalid, Cannot Sync"""'], {}), "('Sync: Block received is invalid, Cannot Sync')\n", (3784, 3832), False, 'from utils.logger import logger, iplogger\n'), ((4463, 4523), 'threading.Timer', 'Timer', (['(consts.MINING_INTERVAL_THRESHOLD * 2)', 'sync_with_peers'], {}), '(consts.MINING_INTERVAL_THRESHOLD * 2, sync_with_peers)\n', (4468, 4523), False, 'from threading import Thread, Timer\n'), ((5042, 5083), 'utils.logger.logger.debug', 'logger.debug', (['"""Invalid Public Key Length"""'], {}), "('Invalid Public Key Length')\n", (5054, 5083), False, 'from utils.logger import logger, iplogger\n'), ((5287, 5324), 'utils.logger.logger.debug', 'logger.debug', (['"""Cannot send to myself"""'], {}), "('Cannot send to myself')\n", (5299, 5324), False, 'from utils.logger import logger, iplogger\n'), ((5508, 5561), 'utils.logger.logger.info', 'logger.info', (['"""Wallet: Attempting to Send Transaction"""'], {}), "('Wallet: Attempting to Send Transaction')\n", (5519, 5561), False, 'from utils.logger import logger, iplogger\n'), ((8536, 8591), 'utils.logger.logger.debug', 'logger.debug', (['"""Someone trying to send money to himself"""'], {}), "('Someone trying to send money to himself')\n", (8548, 8591), False, 'from utils.logger import logger, iplogger\n'), ((8950, 8966), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (8960, 8966), False, 'import json\n'), ((9108, 9150), 'core.Transaction.from_json', 'Transaction.from_json', (["data['transaction']"], {}), "(data['transaction'])\n", (9129, 9150), False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((9593, 9664), 'utils.logger.logger.error', 'logger.error', (['"""Wallet: Could not Send Transaction. Invalid transaction"""'], {}), "('Wallet: Could not Send Transaction. Invalid transaction')\n", (9605, 9664), False, 'from utils.logger import logger, iplogger\n'), ((10871, 10935), 'utils.logger.logger.debug', 'logger.debug', (['"""Server: Greet, A new peer joined, Adding to List"""'], {}), "('Server: Greet, A new peer joined, Adding to List')\n", (10883, 10935), False, 'from utils.logger import logger, iplogger\n'), ((11379, 11397), 'utils.utils.compress', 'compress', (['db_block'], {}), '(db_block)\n', (11387, 11397), False, 'from utils.utils import compress, decompress, dhash\n'), ((11424, 11484), 'utils.logger.logger.error', 'logger.error', (['"""ERROR CALLED GETBLOCK FOR NON EXISTENT BLOCK"""'], {}), "('ERROR CALLED GETBLOCK FOR NON EXISTENT BLOCK')\n", (11436, 11484), False, 'from utils.logger import logger, iplogger\n'), ((12171, 12216), 'utils.utils.dhash', 'dhash', (['BLOCKCHAIN.active_chain.header_list[i]'], {}), '(BLOCKCHAIN.active_chain.header_list[i])\n', (12176, 12216), False, 'from utils.utils import compress, decompress, dhash\n'), ((19729, 19739), 'utils.utils.dhash', 'dhash', (['hdr'], {}), '(hdr)\n', (19734, 19739), False, 'from utils.utils import compress, decompress, dhash\n'), ((21158, 21168), 'utils.utils.dhash', 'dhash', (['hdr'], {}), '(hdr)\n', (21163, 21168), False, 'from utils.utils import compress, decompress, dhash\n'), ((22190, 22212), 'bottle.template', 'template', (['"""error.html"""'], {}), "('error.html')\n", (22198, 22212), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((22700, 22722), 'bottle.template', 'template', (['"""error.html"""'], {}), "('error.html')\n", (22708, 22722), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((23189, 23208), 'bottle.request.body.read', 'request.body.read', ([], {}), '()\n', (23206, 23208), False, 'from bottle import BaseTemplate, Bottle, request, response, static_file, template, error\n'), ((24092, 24148), 'utils.logger.logger.info', 'logger.info', (['"""FullNode: Starting New Chain from Genesis"""'], {}), "('FullNode: Starting New Chain from Genesis')\n", (24103, 24148), False, 'from utils.logger import logger, iplogger\n'), ((24256, 24305), 'utils.logger.logger.info', 'logger.info', (['"""FullNode: Restoring Existing Chain"""'], {}), "('FullNode: Restoring Existing Chain')\n", (24267, 24305), False, 'from utils.logger import logger, iplogger\n'), ((24332, 24358), 'utils.storage.read_header_list_from_db', 'read_header_list_from_db', ([], {}), '()\n', (24356, 24358), False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((24614, 24649), 'utils.logger.logger.info', 'logger.info', (['"""FullNode: Not Mining"""'], {}), "('FullNode: Not Mining')\n", (24625, 24649), False, 'from utils.logger import logger, iplogger\n'), ((25060, 25138), 'waitress.serve', 'waitress.serve', (['app'], {'host': '"""0.0.0.0"""', 'threads': '(16)', 'port': 'consts.MINER_SERVER_PORT'}), "(app, host='0.0.0.0', threads=16, port=consts.MINER_SERVER_PORT)\n", (25074, 25138), False, 'import waitress\n'), ((3066, 3084), 'utils.utils.decompress', 'decompress', (['r.text'], {}), '(r.text)\n', (3076, 3084), False, 'from utils.utils import compress, decompress, dhash\n'), ((7087, 7098), 'time.time', 'time.time', ([], {}), '()\n', (7096, 7098), False, 'import time\n'), ((7462, 7477), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (7475, 7477), False, 'import inspect\n'), ((7730, 7745), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (7743, 7745), False, 'import inspect\n'), ((9043, 9058), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (9056, 9058), False, 'import inspect\n'), ((10043, 10058), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (10056, 10058), False, 'import inspect\n'), ((10297, 10312), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (10310, 10312), False, 'import inspect\n'), ((11572, 11587), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (11585, 11587), False, 'import inspect\n'), ((11739, 11754), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (11752, 11754), False, 'import inspect\n'), ((11986, 12001), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (11999, 12001), False, 'import inspect\n'), ((12238, 12259), 'json.dumps', 'json.dumps', (['hash_list'], {}), '(hash_list)\n', (12248, 12259), False, 'import json\n'), ((12576, 12595), 'utils.utils.dhash', 'dhash', (['block.header'], {}), '(block.header)\n', (12581, 12595), False, 'from utils.utils import compress, decompress, dhash\n'), ((12614, 12673), 'utils.logger.logger.info', 'logger.info', (['"""Server: Received block exists, doing nothing"""'], {}), "('Server: Received block exists, doing nothing')\n", (12625, 12673), False, 'from utils.logger import logger, iplogger\n'), ((12789, 12855), 'utils.logger.logger.info', 'logger.info', (['"""Server: Received a New Valid Block, Adding to Chain"""'], {}), "('Server: Received a New Valid Block, Adding to Chain')\n", (12800, 12855), False, 'from utils.logger import logger, iplogger\n'), ((12873, 12923), 'utils.logger.logger.debug', 'logger.debug', (['"""Server: Sending new block to peers"""'], {}), "('Server: Sending new block to peers')\n", (12885, 12923), False, 'from utils.logger import logger, iplogger\n'), ((13525, 13540), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (13538, 13540), False, 'import inspect\n'), ((14815, 14830), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (14828, 14830), False, 'import inspect\n'), ((15236, 15251), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (15249, 15251), False, 'import inspect\n'), ((15556, 15571), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (15569, 15571), False, 'import inspect\n'), ((18679, 18694), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (18692, 18694), False, 'import inspect\n'), ((18857, 18872), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (18870, 18872), False, 'import inspect\n'), ((18994, 19009), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (19007, 19009), False, 'import inspect\n'), ((19126, 19141), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (19139, 19141), False, 'import inspect\n'), ((19441, 19485), 'utils.storage.get_wallet_from_db', 'get_wallet_from_db', (['consts.MINER_SERVER_PORT'], {}), '(consts.MINER_SERVER_PORT)\n', (19459, 19485), False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((20765, 20780), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (20778, 20780), False, 'import inspect\n'), ((21423, 21438), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (21436, 21438), False, 'import inspect\n'), ((21994, 22009), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (22007, 22009), False, 'import inspect\n'), ((22386, 22401), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (22399, 22401), False, 'import inspect\n'), ((22880, 22895), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (22893, 22895), False, 'import inspect\n'), ((23151, 23166), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (23164, 23166), False, 'import inspect\n'), ((23951, 23966), 'inspect.stack', 'inspect.stack', ([], {}), '()\n', (23964, 23966), False, 'import inspect\n'), ((24517, 24564), 'threading.Thread', 'Thread', ([], {'target': 'start_mining_thread', 'daemon': '(True)'}), '(target=start_mining_thread, daemon=True)\n', (24523, 24564), False, 'from threading import Thread, Timer\n'), ((24882, 24938), 'wsgi_lineprof.middleware.LineProfilerMiddleware', 'LineProfilerMiddleware', (['app'], {'stream': 'f', 'async_stream': '(True)'}), '(app, stream=f, async_stream=True)\n', (24904, 24938), False, 'from wsgi_lineprof.middleware import LineProfilerMiddleware\n'), ((24955, 25033), 'waitress.serve', 'waitress.serve', (['app'], {'host': '"""0.0.0.0"""', 'threads': '(16)', 'port': 'consts.MINER_SERVER_PORT'}), "(app, host='0.0.0.0', threads=16, port=consts.MINER_SERVER_PORT)\n", (24969, 25033), False, 'import waitress\n'), ((5846, 5916), 'utils.logger.logger.info', 'logger.info', (['"""Wallet: Could not Send Transaction. Invalid Transaction"""'], {}), "('Wallet: Could not Send Transaction. Invalid Transaction')\n", (5857, 5916), False, 'from utils.logger import logger, iplogger\n'), ((5951, 6015), 'utils.logger.logger.info', 'logger.info', (['"""Wallet: Transaction Sent, Wait for it to be Mined"""'], {}), "('Wallet: Transaction Sent, Wait for it to be Mined')\n", (5962, 6015), False, 'from utils.logger import logger, iplogger\n'), ((6677, 6703), 'core.SingleOutput.from_json', 'SingleOutput.from_json', (['so'], {}), '(so)\n', (6699, 6703), False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((12462, 12489), 'core.Block.from_json', 'Block.from_json', (['block_json'], {}), '(block_json)\n', (12477, 12489), False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((13805, 13844), 'core.Transaction.from_json', 'Transaction.from_json', (['transaction_json'], {}), '(transaction_json)\n', (13826, 13844), False, 'from core import Block, BlockChain, SingleOutput, Transaction, TxIn, TxOut, genesis_block\n'), ((14029, 14090), 'utils.logger.logger.debug', 'logger.debug', (['"""Valid Transaction received, Adding to Mempool"""'], {}), "('Valid Transaction received, Adding to Mempool')\n", (14041, 14090), False, 'from utils.logger import logger, iplogger\n'), ((14304, 14369), 'utils.logger.logger.debug', 'logger.debug', (['"""The transation is not valid, not added to Mempool"""'], {}), "('The transation is not valid, not added to Mempool')\n", (14316, 14369), False, 'from utils.logger import logger, iplogger\n'), ((20274, 20284), 'utils.utils.dhash', 'dhash', (['hdr'], {}), '(hdr)\n', (20279, 20284), False, 'from utils.utils import compress, decompress, dhash\n'), ((22058, 22086), 'utils.storage.get_block_from_db', 'get_block_from_db', (['blockhash'], {}), '(blockhash)\n', (22075, 22086), False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((22450, 22478), 'utils.storage.get_block_from_db', 'get_block_from_db', (['blockhash'], {}), '(blockhash)\n', (22467, 22478), False, 'from utils.storage import get_block_from_db, get_wallet_from_db, read_header_list_from_db\n'), ((21715, 21733), 'utils.utils.dhash', 'dhash', (['hdr_list[i]'], {}), '(hdr_list[i])\n', (21720, 21733), False, 'from utils.utils import compress, decompress, dhash\n'), ((19258, 19304), 'utils.utils.dhash', 'dhash', (['BLOCKCHAIN.active_chain.header_list[-1]'], {}), '(BLOCKCHAIN.active_chain.header_list[-1])\n', (19263, 19304), False, 'from utils.utils import compress, decompress, dhash\n'), ((20068, 20105), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['hdr.timestamp'], {}), '(hdr.timestamp)\n', (20090, 20105), False, 'from datetime import datetime\n')]
import io import os from setuptools import setup def read(file_name): """Read a text file and return the content as a string.""" with io.open(os.path.join(os.path.dirname(__file__), file_name), encoding='utf-8') as f: return f.read() setup( name='recmetrics', url='https://github.com/statisticianinstilettos/recommender_metrics', author='<NAME>', author_email='<EMAIL>', packages=['recmetrics'], install_requires=['funcsigs', 'numpy', 'pandas', 'plotly', 'scikit-learn', 'seaborn'], license='MIT', version='0.1.4', description='Evaluation metrics for recommender systems', long_description=read("README.md"), long_description_content_type="text/markdown", )
[ "os.path.dirname" ]
[((166, 191), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (181, 191), False, 'import os\n')]
import pygame class Texto: def __init__(self, screen, text, x, y, text_size = 20, fuente = 'Calibri', italic = False, bold= False, subrayado= False, color = (250, 240, 230), bg = [] ): self.screen = screen fg = color self.coord = x, y #load font, prepare values font = pygame.font.Font(None, 80) size = font.size(text) # Font a_sys_font = pygame.font.SysFont(fuente, text_size) # Cursiva if italic: a_sys_font.set_bold(1) # Negritas if bold: a_sys_font.set_bold(1) # Subrayado if subrayado: a_sys_font.set_underline(1) # Construccion del texto if len(bg) > 1: # Si hay fondo de texto ren = a_sys_font.render(text, 1, fg, bg) else: # Si no, transparente ren = a_sys_font.render(text, 1, fg) # self.size = x+size[0], y self.text_rect = ren.get_rect() self.text_rect.center = (x,y) self.image = ren, (x,y) screen.blit(ren, (x, y)) # Cursiva if italic: a_sys_font.set_bold(0) # Negritas if bold: a_sys_font.set_bold(0) # Subrayado if subrayado: a_sys_font.set_underline(0) # self.image.blit(ren, self.text_rect) # self.text_rect = (x, y),ren.get_size() # text = str(self.counter) # label = self.myfont.render(text, 1, (255,0,0)) # text_rect = label.get_rect() # text_rect.center = (50,50) # self.image.blit(label, text_rect) pass def getProperties(self): return self.text_rect def redraw(self): self.screen.blit(self.image[0], self.image[1]) pass ##################### EJEMPLO DE USO ############################## # texto1 = Texto(screen, 'Hola', 10, 10) class TextArea(): def __init__(self, screen, text, x, y, fuente='Calibri', text_size = 20, color=pygame.Color('black')): self.coord = x, y font = pygame.font.SysFont(fuente, text_size) words = [word.split(' ') for word in text.splitlines()] # 2D array where each row is a list of words. space = font.size(' ')[0] # The width of a space. max_width, max_height = screen.get_size() pos = x,y for line in words: for word in line: word_surface = font.render(word, 0, color) word_width, word_height = word_surface.get_size() if x + word_width >= max_width: x = pos[0] # Reset the x. y += word_height # Start on new row. screen.blit(word_surface, (x, y)) x += word_width + space x = pos[0] # Reset the x. y += word_height # Start on new row. self.size = word_width, word_height pass def getProperties(self): return self.size, self.coord ##################### EJEMPLO DE USO ############################## # textarea1 = Textarea(screen, 'Hola mundo que tal estas hoy')
[ "pygame.Color", "pygame.font.Font", "pygame.font.SysFont" ]
[((326, 352), 'pygame.font.Font', 'pygame.font.Font', (['None', '(80)'], {}), '(None, 80)\n', (342, 352), False, 'import pygame\n'), ((421, 459), 'pygame.font.SysFont', 'pygame.font.SysFont', (['fuente', 'text_size'], {}), '(fuente, text_size)\n', (440, 459), False, 'import pygame\n'), ((2049, 2070), 'pygame.Color', 'pygame.Color', (['"""black"""'], {}), "('black')\n", (2061, 2070), False, 'import pygame\n'), ((2114, 2152), 'pygame.font.SysFont', 'pygame.font.SysFont', (['fuente', 'text_size'], {}), '(fuente, text_size)\n', (2133, 2152), False, 'import pygame\n')]
# This is the code to train the xgboost model with cross-validation for each unique room in the dataset. # Models are dumped into ./models and results are dumped into two csv files in the current work directory. import argparse import json import math import os import pickle import warnings from typing import Tuple import numpy as np import pandas as pd import xgboost as xgb from hyperopt import fmin, tpe, hp, STATUS_OK, Trials from imblearn.over_sampling import SMOTE from numpy.random import RandomState from sklearn.metrics import r2_score, mean_squared_error from sklearn.model_selection import train_test_split from sklearn.utils import compute_sample_weight from tqdm import tqdm from xgboost import DMatrix, cv # Set up an argument parser to decide the metric function parser = argparse.ArgumentParser() parser.add_argument("--metric", choices=['R2', 'RMSE'], type=str, required=False, default='R2', help="The evaluation metric you want to use to train the XGBoost model") parser.add_argument("--log", choices=[0, 1, 100], type=int, required=False, default=0, help="Whether to print out the training progress") parser.add_argument("--SMOTE", choices=[0, 1], type=int, required=False, default=1, help="Whether use the SMOTE or not") parser.add_argument("--SMOGN", choices=[0, 1], type=int, required=False, default=0, help="Whether use the SMOGN or not") parser.add_argument("--SampleWeight", choices=[0, 1], type=int, required=False, default=0, help="Whether use the sample weight") args = parser.parse_args() # Ignore all the warnings and set pandas to display every column and row everytime we print a dataframe warnings.filterwarnings('ignore') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) assert args.SMOTE != args.SMOGN, "Can't use SMOTE and SMOGN at the same time!" # Load the data with a positive AC electricity consumption value, and drop the time data as we don't need them data = pd.read_csv("summer_data_compiled.csv", index_col=0) data = data[data.AC > 0].drop(['Time', 'Date', 'Hour'], axis=1).reset_index(drop=True) # Create some directory to store the models and future analysis figures. # log_folder_name = "Test_{}_{}".format(args.metric, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) log_folder_name = "Test_R2_HYPEROPT" log_folder_name = log_folder_name + "_SMOTE" if args.SMOTE else log_folder_name log_folder_name = log_folder_name + "_SMOGN" if args.SMOGN else log_folder_name log_folder_name = log_folder_name + "_SW" if args.SampleWeight else log_folder_name previous_parameter_folder = "Test_R2_HYPEROPT" assert log_folder_name != previous_parameter_folder, "Previous folder name exists" if not os.path.exists('./{}/'.format(log_folder_name)): os.mkdir('./{}'.format(log_folder_name)) os.mkdir('./{}/models/'.format(log_folder_name)) os.mkdir('./{}/trntst_models/'.format(log_folder_name)) # Define our evaluation functions def RMSE(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() root_squard_error = math.sqrt(mean_squared_error(truth_value, predt)) return "RMSE", root_squard_error def R2(predt: np.ndarray, dtrain: DMatrix) -> Tuple[str, float]: truth_value = dtrain.get_label() r2_value = r2_score(truth_value, predt) return "R2", r2_value def fobjective(space): param_dict_tunning = {'max_depth': int(space['max_depth']), 'learning_rate': space['learning_rate'], 'colsample_bytree': space['colsample_bytree'], 'min_child_weight': int(space['min_child_weight']), 'reg_alpha': int(space['reg_alpha']), 'reg_lambda': space['reg_lambda'], 'subsample': space['subsample'], 'min_split_loss': space['min_split_loss'], 'objective': 'reg:squarederror'} xgb_cv_result = xgb.cv(dtrain=data_matrix, params=param_dict_tunning, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, metrics='rmse', maximize=False, shuffle=True) return {"loss": (xgb_cv_result["test-rmse-mean"]).tail(1).iloc[0], "status": STATUS_OK} eval_dict = {'RMSE': RMSE, 'R2': R2} print("Start Training The Models") # Create two dataframes to store the result during the training and after the training. error_csv = pd.DataFrame( columns=['room', 'train-{}-mean'.format(args.metric), 'train-{}-std'.format(args.metric), 'train-rmse-mean', 'train-rmse-std', 'test-{}-mean'.format(args.metric), 'test-{}-std'.format(args.metric), 'test-rmse-mean', 'test-rmse-std']) prediction_csv = pd.DataFrame(columns=['room', 'observation', 'prediction']) room_list = data['Location'].unique() # ranging through all the rooms and do the training and cross-validation for each room. for room in tqdm(room_list): seed = 2030 + room # Four rooms have low quality data and we delete them manually if room == 309 or room == 312 or room == 826 or room == 917 or room == 1001: continue # We extract the data of particular room and run the SMOTE algorithm on it. room_data = data[data.Location == room].drop(['Location'], axis=1).reset_index(drop=True) if args.SMOTE: # Label all the AC data by 0.75, all AC above 0.75 will be marked as 1, otherwise 0. Split into X and y room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) elif args.SMOGN: if len(room_data) < 500: room_data['SMOTE_split'] = (room_data['AC'] > 0.75).astype('int') X = room_data.drop(['SMOTE_split'], axis=1) y = room_data['SMOTE_split'] # Run the SMOTE algorithm and retrieve the result. model_smote = SMOTE(random_state=621, k_neighbors=3) room_data_smote, smote_split = model_smote.fit_resample(X, y) # concat the result from SMOTE and split the result into X and y for training. room_data_smote = pd.concat([room_data_smote, smote_split], axis=1) y = room_data_smote['AC'] X = room_data_smote.drop(['AC', 'SMOTE_split'], axis=1) else: room_data = pd.read_csv('./SMOGN_processed/{}.csv'.format(room), index_col=0) y = room_data['AC'] X = room_data.drop(['AC'], axis=1) else: y = pd.DataFrame(room_data['AC'].fillna(method='pad')) X = room_data.drop(['AC'], axis=1).fillna(method='pad') if args.SampleWeight: class_sample = pd.cut(y, bins=15) weight = compute_sample_weight(class_weight="balanced", y=class_sample) X = X.to_numpy() # Build another full data matrix for the built-in cross validation function to work. data_matrix = DMatrix(data=X, label=y, weight=weight) if args.SampleWeight else DMatrix(data=X, label=y) # Cross_validation with hyper-parameter tuning space = {'max_depth': hp.quniform("max_depth", 3, 10, 1), 'learning_rate': hp.uniform("learning_rate", 0.1, 3), 'colsample_bytree': hp.uniform("colsample_bytree", 0.5, 1), 'min_child_weight': hp.quniform("min_child_weight", 1, 20, 1), 'reg_alpha': hp.quniform("reg_alpha", 0, 100, 1), 'reg_lambda': hp.uniform("reg_lambda", 0, 2), 'subsample': hp.uniform("subsample", 0.5, 1), 'min_split_loss': hp.uniform("min_split_loss", 0, 9)} if os.path.exists('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room)): best_param_dict = np.load('./{}/models/{}_parameter.npy'.format(previous_parameter_folder, room), allow_pickle=True).item() np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) else: trials = Trials() best_hyperparams = fmin(fn=fobjective, space=space, algo=tpe.suggest, max_evals=400, trials=trials, rstate=RandomState(seed)) # setup our training parameters and a model variable as model checkpoint best_param_dict = {'objective': 'reg:squarederror', 'max_depth': int(best_hyperparams['max_depth']), 'reg_alpha': best_hyperparams['reg_alpha'], 'reg_lambda': best_hyperparams['reg_lambda'], 'min_child_weight': best_hyperparams['min_child_weight'], 'colsample_bytree': best_hyperparams['colsample_bytree'], 'learning_rate': best_hyperparams['learning_rate'], 'subsample': best_hyperparams['subsample'], 'min_split_loss': best_hyperparams['min_split_loss']} np.save('./{}/models/{}_parameter.npy'.format(log_folder_name, room), best_param_dict) # Use the built-in cv function to do the cross validation, still with ten folds, this will return us the results. xgb_cv_result = cv(dtrain=data_matrix, params=best_param_dict, nfold=5, early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=seed, shuffle=True, feval=eval_dict[args.metric], maximize=True) xgb_cv_result['room'] = room error_csv.loc[len(error_csv)] = xgb_cv_result.loc[len(xgb_cv_result) - 1] # Use one training_testing for ploting, and save both ground truth and prediction value into the dataframe X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed) d_train = DMatrix(X_train, label=y_train) d_test = DMatrix(X_test, label=y_test) watchlist = [(d_test, 'eval'), (d_train, 'train')] xgb_model_train_test = xgb.train(params=best_param_dict, dtrain=d_train, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) prediction = np.array(xgb_model_train_test.predict(d_test)).tolist() real = np.array(y_test).tolist() prediction_csv.loc[len(prediction_csv)] = {'room': room, 'observation': json.dumps(real), 'prediction': json.dumps(prediction)} # Dump the error dataframes into csv files. error_csv.to_csv('./{}/error.csv'.format(log_folder_name), index=False) prediction_csv.to_csv('./{}/prediction.csv'.format(log_folder_name), index=False) # Develop a model using the whole orignial dataset, and save the model xgb_model_full = xgb.train(params=best_param_dict, dtrain=data_matrix, num_boost_round=200, evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict[args.metric], maximize=True) # Save all the models we trained for future use pickle.dump(xgb_model_train_test, open('./{}/trntst_models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) pickle.dump(xgb_model_full, open('./{}/models/{}.pickle.bat'.format(log_folder_name, room), 'wb')) print("Training finished!")
[ "pandas.read_csv", "numpy.array", "xgboost.DMatrix", "sklearn.metrics.r2_score", "numpy.random.RandomState", "argparse.ArgumentParser", "xgboost.train", "json.dumps", "pandas.set_option", "xgboost.cv", "pandas.DataFrame", "sklearn.model_selection.train_test_split", "hyperopt.hp.quniform", "sklearn.metrics.mean_squared_error", "hyperopt.hp.uniform", "sklearn.utils.compute_sample_weight", "warnings.filterwarnings", "hyperopt.Trials", "imblearn.over_sampling.SMOTE", "tqdm.tqdm", "pandas.cut", "pandas.concat" ]
[((792, 817), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (815, 817), False, 'import argparse\n'), ((1688, 1721), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (1711, 1721), False, 'import warnings\n'), ((1722, 1764), 'pandas.set_option', 'pd.set_option', (['"""display.max_columns"""', 'None'], {}), "('display.max_columns', None)\n", (1735, 1764), True, 'import pandas as pd\n'), ((1765, 1804), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', 'None'], {}), "('display.max_rows', None)\n", (1778, 1804), True, 'import pandas as pd\n'), ((2004, 2056), 'pandas.read_csv', 'pd.read_csv', (['"""summer_data_compiled.csv"""'], {'index_col': '(0)'}), "('summer_data_compiled.csv', index_col=0)\n", (2015, 2056), True, 'import pandas as pd\n'), ((4810, 4869), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['room', 'observation', 'prediction']"}), "(columns=['room', 'observation', 'prediction'])\n", (4822, 4869), True, 'import pandas as pd\n'), ((5010, 5025), 'tqdm.tqdm', 'tqdm', (['room_list'], {}), '(room_list)\n', (5014, 5025), False, 'from tqdm import tqdm\n'), ((3315, 3343), 'sklearn.metrics.r2_score', 'r2_score', (['truth_value', 'predt'], {}), '(truth_value, predt)\n', (3323, 3343), False, 'from sklearn.metrics import r2_score, mean_squared_error\n'), ((4010, 4201), 'xgboost.cv', 'xgb.cv', ([], {'dtrain': 'data_matrix', 'params': 'param_dict_tunning', 'nfold': '(5)', 'early_stopping_rounds': '(30)', 'as_pandas': '(True)', 'num_boost_round': '(200)', 'seed': 'seed', 'metrics': '"""rmse"""', 'maximize': '(False)', 'shuffle': '(True)'}), "(dtrain=data_matrix, params=param_dict_tunning, nfold=5,\n early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=\n seed, metrics='rmse', maximize=False, shuffle=True)\n", (4016, 4201), True, 'import xgboost as xgb\n'), ((9618, 9815), 'xgboost.cv', 'cv', ([], {'dtrain': 'data_matrix', 'params': 'best_param_dict', 'nfold': '(5)', 'early_stopping_rounds': '(30)', 'as_pandas': '(True)', 'num_boost_round': '(200)', 'seed': 'seed', 'shuffle': '(True)', 'feval': 'eval_dict[args.metric]', 'maximize': '(True)'}), '(dtrain=data_matrix, params=best_param_dict, nfold=5,\n early_stopping_rounds=30, as_pandas=True, num_boost_round=200, seed=\n seed, shuffle=True, feval=eval_dict[args.metric], maximize=True)\n', (9620, 9815), False, 'from xgboost import DMatrix, cv\n'), ((10116, 10172), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'y'], {'test_size': '(0.2)', 'random_state': 'seed'}), '(X, y, test_size=0.2, random_state=seed)\n', (10132, 10172), False, 'from sklearn.model_selection import train_test_split\n'), ((10187, 10218), 'xgboost.DMatrix', 'DMatrix', (['X_train'], {'label': 'y_train'}), '(X_train, label=y_train)\n', (10194, 10218), False, 'from xgboost import DMatrix, cv\n'), ((10232, 10261), 'xgboost.DMatrix', 'DMatrix', (['X_test'], {'label': 'y_test'}), '(X_test, label=y_test)\n', (10239, 10261), False, 'from xgboost import DMatrix, cv\n'), ((10346, 10526), 'xgboost.train', 'xgb.train', ([], {'params': 'best_param_dict', 'dtrain': 'd_train', 'num_boost_round': '(200)', 'evals': 'watchlist', 'verbose_eval': 'args.log', 'xgb_model': 'None', 'feval': 'eval_dict[args.metric]', 'maximize': '(True)'}), '(params=best_param_dict, dtrain=d_train, num_boost_round=200,\n evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict\n [args.metric], maximize=True)\n', (10355, 10526), True, 'import xgboost as xgb\n'), ((11154, 11338), 'xgboost.train', 'xgb.train', ([], {'params': 'best_param_dict', 'dtrain': 'data_matrix', 'num_boost_round': '(200)', 'evals': 'watchlist', 'verbose_eval': 'args.log', 'xgb_model': 'None', 'feval': 'eval_dict[args.metric]', 'maximize': '(True)'}), '(params=best_param_dict, dtrain=data_matrix, num_boost_round=200,\n evals=watchlist, verbose_eval=args.log, xgb_model=None, feval=eval_dict\n [args.metric], maximize=True)\n', (11163, 11338), True, 'import xgboost as xgb\n'), ((3119, 3157), 'sklearn.metrics.mean_squared_error', 'mean_squared_error', (['truth_value', 'predt'], {}), '(truth_value, predt)\n', (3137, 3157), False, 'from sklearn.metrics import r2_score, mean_squared_error\n'), ((5767, 5805), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {'random_state': '(621)', 'k_neighbors': '(3)'}), '(random_state=621, k_neighbors=3)\n', (5772, 5805), False, 'from imblearn.over_sampling import SMOTE\n'), ((5990, 6039), 'pandas.concat', 'pd.concat', (['[room_data_smote, smote_split]'], {'axis': '(1)'}), '([room_data_smote, smote_split], axis=1)\n', (5999, 6039), True, 'import pandas as pd\n'), ((7218, 7236), 'pandas.cut', 'pd.cut', (['y'], {'bins': '(15)'}), '(y, bins=15)\n', (7224, 7236), True, 'import pandas as pd\n'), ((7254, 7316), 'sklearn.utils.compute_sample_weight', 'compute_sample_weight', ([], {'class_weight': '"""balanced"""', 'y': 'class_sample'}), "(class_weight='balanced', y=class_sample)\n", (7275, 7316), False, 'from sklearn.utils import compute_sample_weight\n'), ((7447, 7486), 'xgboost.DMatrix', 'DMatrix', ([], {'data': 'X', 'label': 'y', 'weight': 'weight'}), '(data=X, label=y, weight=weight)\n', (7454, 7486), False, 'from xgboost import DMatrix, cv\n'), ((7513, 7537), 'xgboost.DMatrix', 'DMatrix', ([], {'data': 'X', 'label': 'y'}), '(data=X, label=y)\n', (7520, 7537), False, 'from xgboost import DMatrix, cv\n'), ((7616, 7650), 'hyperopt.hp.quniform', 'hp.quniform', (['"""max_depth"""', '(3)', '(10)', '(1)'], {}), "('max_depth', 3, 10, 1)\n", (7627, 7650), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7682, 7717), 'hyperopt.hp.uniform', 'hp.uniform', (['"""learning_rate"""', '(0.1)', '(3)'], {}), "('learning_rate', 0.1, 3)\n", (7692, 7717), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7752, 7790), 'hyperopt.hp.uniform', 'hp.uniform', (['"""colsample_bytree"""', '(0.5)', '(1)'], {}), "('colsample_bytree', 0.5, 1)\n", (7762, 7790), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7825, 7866), 'hyperopt.hp.quniform', 'hp.quniform', (['"""min_child_weight"""', '(1)', '(20)', '(1)'], {}), "('min_child_weight', 1, 20, 1)\n", (7836, 7866), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7894, 7929), 'hyperopt.hp.quniform', 'hp.quniform', (['"""reg_alpha"""', '(0)', '(100)', '(1)'], {}), "('reg_alpha', 0, 100, 1)\n", (7905, 7929), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((7958, 7988), 'hyperopt.hp.uniform', 'hp.uniform', (['"""reg_lambda"""', '(0)', '(2)'], {}), "('reg_lambda', 0, 2)\n", (7968, 7988), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((8016, 8047), 'hyperopt.hp.uniform', 'hp.uniform', (['"""subsample"""', '(0.5)', '(1)'], {}), "('subsample', 0.5, 1)\n", (8026, 8047), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((8080, 8114), 'hyperopt.hp.uniform', 'hp.uniform', (['"""min_split_loss"""', '(0)', '(9)'], {}), "('min_split_loss', 0, 9)\n", (8090, 8114), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((8500, 8508), 'hyperopt.Trials', 'Trials', ([], {}), '()\n', (8506, 8508), False, 'from hyperopt import fmin, tpe, hp, STATUS_OK, Trials\n'), ((10743, 10759), 'json.dumps', 'json.dumps', (['real'], {}), '(real)\n', (10753, 10759), False, 'import json\n'), ((10822, 10844), 'json.dumps', 'json.dumps', (['prediction'], {}), '(prediction)\n', (10832, 10844), False, 'import json\n'), ((10640, 10656), 'numpy.array', 'np.array', (['y_test'], {}), '(y_test)\n', (10648, 10656), True, 'import numpy as np\n'), ((6457, 6495), 'imblearn.over_sampling.SMOTE', 'SMOTE', ([], {'random_state': '(621)', 'k_neighbors': '(3)'}), '(random_state=621, k_neighbors=3)\n', (6462, 6495), False, 'from imblearn.over_sampling import SMOTE\n'), ((6692, 6741), 'pandas.concat', 'pd.concat', (['[room_data_smote, smote_split]'], {'axis': '(1)'}), '([room_data_smote, smote_split], axis=1)\n', (6701, 6741), True, 'import pandas as pd\n'), ((8656, 8673), 'numpy.random.RandomState', 'RandomState', (['seed'], {}), '(seed)\n', (8667, 8673), False, 'from numpy.random import RandomState\n')]
import os from setuptools import setup # Read the version g = {} with open(os.path.join("editorconfig", "version.py"), "rt") as fp: exec(fp.read(), g) v = g['VERSION'] version = ".".join(str(x) for x in v[:3]) if v[3] != "final": version += "-" + v[3] setup( name='EditorConfig', version=version, author='EditorConfig Team', packages=['editorconfig'], url='http://editorconfig.org/', license='python', description='EditorConfig File Locator and Interpreter for Python', long_description=open('README.rst').read(), entry_points = { 'console_scripts': [ 'editorconfig = editorconfig.__main__:main', ] }, classifiers=[ 'License :: OSI Approved :: Python Software Foundation License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: Implementation :: PyPy', ], )
[ "os.path.join" ]
[((76, 118), 'os.path.join', 'os.path.join', (['"""editorconfig"""', '"""version.py"""'], {}), "('editorconfig', 'version.py')\n", (88, 118), False, 'import os\n')]
# -*- coding: utf-8 -*- """Tests for sktime annotators.""" import pandas as pd import pytest from sktime.registry import all_estimators from sktime.utils._testing.estimator_checks import _make_args ALL_ANNOTATORS = all_estimators(estimator_types="series-annotator", return_names=False) @pytest.mark.parametrize("Estimator", ALL_ANNOTATORS) def test_output_type(Estimator): """Test annotator output type.""" estimator = Estimator.create_test_instance() args = _make_args(estimator, "fit") estimator.fit(*args) args = _make_args(estimator, "predict") y_pred = estimator.predict(*args) assert isinstance(y_pred, pd.Series)
[ "pytest.mark.parametrize", "sktime.utils._testing.estimator_checks._make_args", "sktime.registry.all_estimators" ]
[((218, 288), 'sktime.registry.all_estimators', 'all_estimators', ([], {'estimator_types': '"""series-annotator"""', 'return_names': '(False)'}), "(estimator_types='series-annotator', return_names=False)\n", (232, 288), False, 'from sktime.registry import all_estimators\n'), ((292, 344), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""Estimator"""', 'ALL_ANNOTATORS'], {}), "('Estimator', ALL_ANNOTATORS)\n", (315, 344), False, 'import pytest\n'), ((477, 505), 'sktime.utils._testing.estimator_checks._make_args', '_make_args', (['estimator', '"""fit"""'], {}), "(estimator, 'fit')\n", (487, 505), False, 'from sktime.utils._testing.estimator_checks import _make_args\n'), ((542, 574), 'sktime.utils._testing.estimator_checks._make_args', '_make_args', (['estimator', '"""predict"""'], {}), "(estimator, 'predict')\n", (552, 574), False, 'from sktime.utils._testing.estimator_checks import _make_args\n')]
#!/usr/bin/env python from __future__ import print_function from kaldi.segmentation import NnetSAD, SegmentationProcessor from kaldi.nnet3 import NnetSimpleComputationOptions from kaldi.util.table import SequentialMatrixReader # Construct SAD model = NnetSAD.read_model("final.raw") post = NnetSAD.read_average_posteriors("post_output.vec") transform = NnetSAD.make_sad_transform(post) graph = NnetSAD.make_sad_graph() decodable_opts = NnetSimpleComputationOptions() decodable_opts.extra_left_context = 79 decodable_opts.extra_right_context = 21 decodable_opts.extra_left_context_initial = 0 decodable_opts.extra_right_context_final = 0 decodable_opts.frames_per_chunk = 150 decodable_opts.acoustic_scale = 0.3 sad = NnetSAD(model, transform, graph, decodable_opts=decodable_opts) seg = SegmentationProcessor(target_labels=[2]) # Define feature pipeline as a Kaldi rspecifier feats_rspec = "ark:compute-mfcc-feats --config=mfcc.conf scp:wav.scp ark:- |" # Segment with SequentialMatrixReader(feats_rspec) as f, open ("segments", "w") as s: for key, feats in f: out = sad.segment(feats) segments, stats = seg.process(out["alignment"]) seg.write(key, segments, s) print("segments:", segments, flush=True) print("stats:", stats, flush=True) print("global stats:", seg.stats, flush=True)
[ "kaldi.nnet3.NnetSimpleComputationOptions", "kaldi.segmentation.NnetSAD.make_sad_transform", "kaldi.util.table.SequentialMatrixReader", "kaldi.segmentation.NnetSAD.read_average_posteriors", "kaldi.segmentation.NnetSAD", "kaldi.segmentation.SegmentationProcessor", "kaldi.segmentation.NnetSAD.read_model", "kaldi.segmentation.NnetSAD.make_sad_graph" ]
[((254, 285), 'kaldi.segmentation.NnetSAD.read_model', 'NnetSAD.read_model', (['"""final.raw"""'], {}), "('final.raw')\n", (272, 285), False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((293, 343), 'kaldi.segmentation.NnetSAD.read_average_posteriors', 'NnetSAD.read_average_posteriors', (['"""post_output.vec"""'], {}), "('post_output.vec')\n", (324, 343), False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((356, 388), 'kaldi.segmentation.NnetSAD.make_sad_transform', 'NnetSAD.make_sad_transform', (['post'], {}), '(post)\n', (382, 388), False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((397, 421), 'kaldi.segmentation.NnetSAD.make_sad_graph', 'NnetSAD.make_sad_graph', ([], {}), '()\n', (419, 421), False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((439, 469), 'kaldi.nnet3.NnetSimpleComputationOptions', 'NnetSimpleComputationOptions', ([], {}), '()\n', (467, 469), False, 'from kaldi.nnet3 import NnetSimpleComputationOptions\n'), ((720, 783), 'kaldi.segmentation.NnetSAD', 'NnetSAD', (['model', 'transform', 'graph'], {'decodable_opts': 'decodable_opts'}), '(model, transform, graph, decodable_opts=decodable_opts)\n', (727, 783), False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((790, 830), 'kaldi.segmentation.SegmentationProcessor', 'SegmentationProcessor', ([], {'target_labels': '[2]'}), '(target_labels=[2])\n', (811, 830), False, 'from kaldi.segmentation import NnetSAD, SegmentationProcessor\n'), ((974, 1009), 'kaldi.util.table.SequentialMatrixReader', 'SequentialMatrixReader', (['feats_rspec'], {}), '(feats_rspec)\n', (996, 1009), False, 'from kaldi.util.table import SequentialMatrixReader\n')]
""" Comparison between the efficiency of the Boyer-Moore algorithm and the naive substring search algorithm. The runtimes for both algorithms are plotted on the same axes. """ import matplotlib.pyplot as plt import numpy as np import string import time import random from bm_alg import boyer_moore_match, naive_match # number of test cases for each iteration TEST_CASES = 100 # test cases generated based on this pattern (vary_n) PATTERN = 'ICT1002 is a really great module!' # test cases generated based on this text (vary_m) TEXT = PATTERN * 50 def generate_test_cases(pattern, length, k): """ Generates <k> test cases with text of length <length> containing <pattern> Args: pattern (str): A pattern within the text. length (int): The length of the pattern k (int): The number of test cases Returns: A list of test cases, i.e. strings that contain <pattern> """ result = [] for _ in range(k): text = pattern while len(text) < length: direction = random.choice((0, 1)) # 0 --> Left if direction == 0: text = random.choice(string.ascii_lowercase) + text # 1 --> Right else: text = text + random.choice(string.ascii_lowercase) result.append(text) return result def vary_n(max_n): x = [n for n in range(1, max_n + 1)] y_bm = [] y_naive = [] for n in x: print('n =', n) bm_result = [] naive_result = [] if n >= len(PATTERN): # generate test cases of length n, which contain PATTERN test_cases = generate_test_cases(PATTERN, n, TEST_CASES) else: # generate test cases of length n, which do not (and can not possibly) contain PATTERN test_cases = generate_test_cases('', n, TEST_CASES) for test_case in test_cases: start = time.time() naive_match(test_case, PATTERN) naive_result.append(time.time() - start) start = time.time() boyer_moore_match(test_case, PATTERN) bm_result.append(time.time() - start) # obtain median runtime (mean is affected by outliers) y_naive.append(sorted(naive_result)[TEST_CASES // 2]) y_bm.append(sorted(bm_result)[TEST_CASES // 2]) plt.plot(x, y_naive, label="Naive Algorithm") plt.plot(x, y_bm, label="Boyer-Moore Algorithm") plt.xlabel("n") plt.ylabel("Runtime") plt.title("Substring Search Algorithm Efficiency") plt.legend() plt.show() def vary_m(max_m): x = [m for m in range(1, max_m + 1)] y_bm = [] y_naive = [] for m in x: print('m =', m) bm_result = [] naive_result = [] # generate test cases of length n test_cases = generate_test_cases('', m, TEST_CASES) for test_case in test_cases: start = time.time() naive_match(TEXT, test_case) naive_result.append(time.time() - start) start = time.time() boyer_moore_match(TEXT, test_case) bm_result.append(time.time() - start) # obtain median runtime (mean is affected by outliers) y_naive.append(sorted(naive_result)[TEST_CASES // 2]) y_bm.append(sorted(bm_result)[TEST_CASES // 2]) plt.plot(x, y_naive, label="Naive Algorithm") plt.plot(x, y_bm, label="Boyer-Moore Algorithm") plt.xlabel("m") plt.ylabel("Runtime") plt.title("Substring Search Algorithm Efficiency") plt.legend() plt.show() def main(): done = False print("m = Length of pattern\nn = Length of text\n") print("1. Constant m, vary n") print("2. Constant n, vary m") print("3. Quit\n") while not done: choice = input("Your choice: ") if choice == '1': max_n = input("Upper limit of n: ") while not (max_n.isnumeric() and int(max_n) > 1): print("That is not a valid number.") max_n = input("Upper limit of n: ") vary_n(int(max_n)) elif choice == '2': max_m = input("Upper limit of m: ") while not (max_m.isnumeric() and int(max_m) > 1): print("That is not a valid number.") max_m = input("Upper limit of m: ") vary_m(int(max_m)) elif choice == '3': done = True else: print("That is not a valid option.") if __name__ == '__main__': main()
[ "bm_alg.naive_match", "random.choice", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.title", "bm_alg.boyer_moore_match", "time.time", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((2371, 2416), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_naive'], {'label': '"""Naive Algorithm"""'}), "(x, y_naive, label='Naive Algorithm')\n", (2379, 2416), True, 'import matplotlib.pyplot as plt\n'), ((2421, 2469), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_bm'], {'label': '"""Boyer-Moore Algorithm"""'}), "(x, y_bm, label='Boyer-Moore Algorithm')\n", (2429, 2469), True, 'import matplotlib.pyplot as plt\n'), ((2474, 2489), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""n"""'], {}), "('n')\n", (2484, 2489), True, 'import matplotlib.pyplot as plt\n'), ((2494, 2515), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Runtime"""'], {}), "('Runtime')\n", (2504, 2515), True, 'import matplotlib.pyplot as plt\n'), ((2520, 2570), 'matplotlib.pyplot.title', 'plt.title', (['"""Substring Search Algorithm Efficiency"""'], {}), "('Substring Search Algorithm Efficiency')\n", (2529, 2570), True, 'import matplotlib.pyplot as plt\n'), ((2575, 2587), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2585, 2587), True, 'import matplotlib.pyplot as plt\n'), ((2592, 2602), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2600, 2602), True, 'import matplotlib.pyplot as plt\n'), ((3370, 3415), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_naive'], {'label': '"""Naive Algorithm"""'}), "(x, y_naive, label='Naive Algorithm')\n", (3378, 3415), True, 'import matplotlib.pyplot as plt\n'), ((3420, 3468), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y_bm'], {'label': '"""Boyer-Moore Algorithm"""'}), "(x, y_bm, label='Boyer-Moore Algorithm')\n", (3428, 3468), True, 'import matplotlib.pyplot as plt\n'), ((3473, 3488), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""m"""'], {}), "('m')\n", (3483, 3488), True, 'import matplotlib.pyplot as plt\n'), ((3493, 3514), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Runtime"""'], {}), "('Runtime')\n", (3503, 3514), True, 'import matplotlib.pyplot as plt\n'), ((3519, 3569), 'matplotlib.pyplot.title', 'plt.title', (['"""Substring Search Algorithm Efficiency"""'], {}), "('Substring Search Algorithm Efficiency')\n", (3528, 3569), True, 'import matplotlib.pyplot as plt\n'), ((3574, 3586), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (3584, 3586), True, 'import matplotlib.pyplot as plt\n'), ((3591, 3601), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3599, 3601), True, 'import matplotlib.pyplot as plt\n'), ((1047, 1068), 'random.choice', 'random.choice', (['(0, 1)'], {}), '((0, 1))\n', (1060, 1068), False, 'import random\n'), ((1942, 1953), 'time.time', 'time.time', ([], {}), '()\n', (1951, 1953), False, 'import time\n'), ((1966, 1997), 'bm_alg.naive_match', 'naive_match', (['test_case', 'PATTERN'], {}), '(test_case, PATTERN)\n', (1977, 1997), False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((2072, 2083), 'time.time', 'time.time', ([], {}), '()\n', (2081, 2083), False, 'import time\n'), ((2096, 2133), 'bm_alg.boyer_moore_match', 'boyer_moore_match', (['test_case', 'PATTERN'], {}), '(test_case, PATTERN)\n', (2113, 2133), False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((2947, 2958), 'time.time', 'time.time', ([], {}), '()\n', (2956, 2958), False, 'import time\n'), ((2971, 2999), 'bm_alg.naive_match', 'naive_match', (['TEXT', 'test_case'], {}), '(TEXT, test_case)\n', (2982, 2999), False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((3074, 3085), 'time.time', 'time.time', ([], {}), '()\n', (3083, 3085), False, 'import time\n'), ((3098, 3132), 'bm_alg.boyer_moore_match', 'boyer_moore_match', (['TEXT', 'test_case'], {}), '(TEXT, test_case)\n', (3115, 3132), False, 'from bm_alg import boyer_moore_match, naive_match\n'), ((1149, 1186), 'random.choice', 'random.choice', (['string.ascii_lowercase'], {}), '(string.ascii_lowercase)\n', (1162, 1186), False, 'import random\n'), ((1269, 1306), 'random.choice', 'random.choice', (['string.ascii_lowercase'], {}), '(string.ascii_lowercase)\n', (1282, 1306), False, 'import random\n'), ((2030, 2041), 'time.time', 'time.time', ([], {}), '()\n', (2039, 2041), False, 'import time\n'), ((2163, 2174), 'time.time', 'time.time', ([], {}), '()\n', (2172, 2174), False, 'import time\n'), ((3032, 3043), 'time.time', 'time.time', ([], {}), '()\n', (3041, 3043), False, 'import time\n'), ((3162, 3173), 'time.time', 'time.time', ([], {}), '()\n', (3171, 3173), False, 'import time\n')]
import json from typing import Type, TYPE_CHECKING from django.core.exceptions import ObjectDoesNotExist from django.utils.decorators import method_decorator from django.views.decorators.cache import cache_page from rest_framework import viewsets, filters from rest_framework.exceptions import NotFound from rest_framework.negotiation import BaseContentNegotiation from rest_framework.permissions import IsAuthenticatedOrReadOnly, AllowAny from rest_framework.request import Request from rest_framework.response import Response from rest_framework.views import APIView from indicators.models import Variable, DataViz from indicators.utils import get_geog_model from indicators.views import GeoJSONRenderer from maps.models import DataLayer from maps.serializers import DataLayerSerializer, DataLayerDetailsSerializer from profiles.settings import VIEW_CACHE_TTL if TYPE_CHECKING: from geo.models import AdminRegion from indicators.models.viz import MiniMap class DataLayerViewSet(viewsets.ModelViewSet): queryset = DataLayer.objects.all() serializer_class = DataLayerSerializer permission_classes = [IsAuthenticatedOrReadOnly, ] filter_backends = [filters.SearchFilter, ] def get_serializer_class(self): if self.action == 'list': return DataLayerSerializer return DataLayerDetailsSerializer media_type = 'application/geo+json' format = 'geojson' def render(self, data, media_type=None, renderer_context=None): return json.dumps(data) class GeoJSONContentNegotiation(BaseContentNegotiation): """ Custom content negotiation scheme for GeoJSON files. `GeoJSONRenderer` is used for downloading geojson files `JSONRenderer` is used for ajax calls. """ def select_parser(self, request, parsers): return super(GeoJSONContentNegotiation, self).select_parser(request, parsers) def select_renderer(self, request: Request, renderers, format_suffix=None): renderer = renderers[0] if request.query_params.get('download', False): renderer = GeoJSONRenderer() return renderer, renderer.media_type class GeoJSONDataLayerView(APIView): permission_classes = [AllowAny, ] content_negotiation_class = GeoJSONContentNegotiation @method_decorator(cache_page(VIEW_CACHE_TTL)) def get(self, request: Request, map_slug=None): try: data_layer: DataLayer = DataLayer.objects.get(slug=map_slug) geojson = data_layer.as_geojson() except KeyError as e: # when the geog is wrong todo: make 400 malformed with info on available geo types raise NotFound except ObjectDoesNotExist as e: raise NotFound if request.query_params.get('download', False): headers = { 'Content-Disposition': f'attachment; filename="{map_slug}.geojson"' } return Response(geojson, headers=headers, content_type='application/geo+json') return Response(geojson)
[ "json.dumps", "rest_framework.response.Response", "django.views.decorators.cache.cache_page", "indicators.views.GeoJSONRenderer", "maps.models.DataLayer.objects.get", "maps.models.DataLayer.objects.all" ]
[((1032, 1055), 'maps.models.DataLayer.objects.all', 'DataLayer.objects.all', ([], {}), '()\n', (1053, 1055), False, 'from maps.models import DataLayer\n'), ((1501, 1517), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (1511, 1517), False, 'import json\n'), ((3018, 3035), 'rest_framework.response.Response', 'Response', (['geojson'], {}), '(geojson)\n', (3026, 3035), False, 'from rest_framework.response import Response\n'), ((2301, 2327), 'django.views.decorators.cache.cache_page', 'cache_page', (['VIEW_CACHE_TTL'], {}), '(VIEW_CACHE_TTL)\n', (2311, 2327), False, 'from django.views.decorators.cache import cache_page\n'), ((2080, 2097), 'indicators.views.GeoJSONRenderer', 'GeoJSONRenderer', ([], {}), '()\n', (2095, 2097), False, 'from indicators.views import GeoJSONRenderer\n'), ((2430, 2466), 'maps.models.DataLayer.objects.get', 'DataLayer.objects.get', ([], {'slug': 'map_slug'}), '(slug=map_slug)\n', (2451, 2466), False, 'from maps.models import DataLayer\n'), ((2930, 3001), 'rest_framework.response.Response', 'Response', (['geojson'], {'headers': 'headers', 'content_type': '"""application/geo+json"""'}), "(geojson, headers=headers, content_type='application/geo+json')\n", (2938, 3001), False, 'from rest_framework.response import Response\n')]
# -*- coding: utf-8 -*- """ Provide download function by request """ from datetime import datetime import logging import time import urllib.parse import requests from bs4 import BeautifulSoup class Throttle(object): """Throttle downloading by sleeping between requests to same domain.""" def __init__(self, delay): # amount of delay between downloads for each domain self.delay = delay # timestamp of when a domain was last accessed self.domains = {} def wait(self, url): domain = urllib.parse.urlparse(url).netloc last_accessed = self.domains.get(domain) if self.delay > 0 and last_accessed is not None: sleep_secs = self.delay - (datetime.now() - last_accessed).seconds if sleep_secs > 0: time.sleep(sleep_secs) self.domains[domain] = datetime.now() class Downloader(object): """Convenient download of web pages or caller to call api. Args: delay: Interval between downloads (seconds) num_retries: Number of retries when downloading errors timeout: Download timeout """ def __init__(self, delay=5, user_agent='awsl', proxies=None, num_retries=1, timeout=60, cache=None, auth=None): self.session = requests.Session() self.session.headers.update({'user-agent': user_agent}) self.session.proxies = proxies self.session.auth = auth self.throttle = Throttle(delay) self.num_retries = num_retries self.timeout = timeout self.cache = cache def get_from_cache(self, request): """Try to get the result of the request from the cache.""" result = None if self.cache: result = self.cache.get(request.url) if result and self.num_retries > 0 and 500 <= result['code'] < 600: result = None return result def prepare_request(self, url, params=None): """Build requests based on the provided url and parameters.""" request = requests.Request('GET', url, params=params) return self.session.prepare_request(request) def send_request(self, request, num_retries): """Send request and return response object.""" self.throttle.wait(request.url) try: logging.info('Downloading: %s' % request.url) response = self.session.send(request, timeout=self.timeout) response.raise_for_status() except requests.exceptions.HTTPError as e: logging.warn('Download error: %s' % e) if num_retries > 0 and 500 <= response.status_code < 600: return self.send_request(request, num_retries - 1) except requests.exceptions.RequestException: logging.error('Download faild: %s' % request.url) response = None return response def text(self, url, params=None, encoding=None): """Download web content in text format or html.""" request = self.prepare_request(url, params) result = self.get_from_cache(request) if result is None: response = self.send_request(request, self.num_retries) if response: if encoding: response.encoding = encoding result = {'text': response.text, 'code': response.status_code} if self.cache: self.cache[request.url] = result return result['text'] def json(self, url, params=None): """Access the api and return the json object.""" request = self.prepare_request(url, params) result = self.get_from_cache(request) if result is None: response = self.send_request(request, self.num_retries) if response: result = {'json': response.json(), 'code': response.status_code} if self.cache: self.cache[request.url] = result return result['json']
[ "logging.warn", "requests.Session", "time.sleep", "requests.Request", "datetime.datetime.now", "logging.info", "logging.error" ]
[((891, 905), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (903, 905), False, 'from datetime import datetime\n'), ((1334, 1352), 'requests.Session', 'requests.Session', ([], {}), '()\n', (1350, 1352), False, 'import requests\n'), ((2118, 2161), 'requests.Request', 'requests.Request', (['"""GET"""', 'url'], {'params': 'params'}), "('GET', url, params=params)\n", (2134, 2161), False, 'import requests\n'), ((2393, 2438), 'logging.info', 'logging.info', (["('Downloading: %s' % request.url)"], {}), "('Downloading: %s' % request.url)\n", (2405, 2438), False, 'import logging\n'), ((836, 858), 'time.sleep', 'time.sleep', (['sleep_secs'], {}), '(sleep_secs)\n', (846, 858), False, 'import time\n'), ((2618, 2656), 'logging.warn', 'logging.warn', (["('Download error: %s' % e)"], {}), "('Download error: %s' % e)\n", (2630, 2656), False, 'import logging\n'), ((2863, 2912), 'logging.error', 'logging.error', (["('Download faild: %s' % request.url)"], {}), "('Download faild: %s' % request.url)\n", (2876, 2912), False, 'import logging\n'), ((747, 761), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (759, 761), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- # # The MIT License (MIT) # # Copyright (C) 2017 <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. try: from urllib.parse import urljoin except ImportError: from urlparse import urljoin import requests from requests.adapters import HTTPAdapter from .exceptions import KeycloakConnectionError class ConnectionManager(object): """ Represents a simple server connection. :param base_url: (str) The server URL. :param headers: (dict) The header parameters of the requests to the server. :param timeout: (int) Timeout to use for requests to the server. :param verify: (bool) Verify server SSL. :param proxies: (dict) The proxies servers requests is sent by. """ def __init__(self, base_url, headers={}, timeout=60, verify=True, proxies=None): self._base_url = base_url self._headers = headers self._timeout = timeout self._verify = verify self._s = requests.Session() self._s.auth = lambda x: x # don't let requests add auth headers # retry once to reset connection with Keycloak after tomcat's ConnectionTimeout # see https://github.com/marcospereirampj/python-keycloak/issues/36 for protocol in ("https://", "http://"): adapter = HTTPAdapter(max_retries=1) # adds POST to retry whitelist allowed_methods = set(adapter.max_retries.allowed_methods) allowed_methods.add("POST") adapter.max_retries.allowed_methods = frozenset(allowed_methods) self._s.mount(protocol, adapter) if proxies: self._s.proxies.update(proxies) def __del__(self): self._s.close() @property def base_url(self): """Return base url in use for requests to the server.""" return self._base_url @base_url.setter def base_url(self, value): """ """ self._base_url = value @property def timeout(self): """Return timeout in use for request to the server.""" return self._timeout @timeout.setter def timeout(self, value): """ """ self._timeout = value @property def verify(self): """Return verify in use for request to the server.""" return self._verify @verify.setter def verify(self, value): """ """ self._verify = value @property def headers(self): """Return header request to the server.""" return self._headers @headers.setter def headers(self, value): """ """ self._headers = value def param_headers(self, key): """ Return a specific header parameter. :param key: (str) Header parameters key. :returns: If the header parameters exist, return its value. """ return self.headers.get(key) def clean_headers(self): """Clear header parameters.""" self.headers = {} def exist_param_headers(self, key): """Check if the parameter exists in the header. :param key: (str) Header parameters key. :returns: If the header parameters exist, return True. """ return self.param_headers(key) is not None def add_param_headers(self, key, value): """Add a single parameter inside the header. :param key: (str) Header parameters key. :param value: (str) Value to be added. """ self.headers[key] = value def del_param_headers(self, key): """Remove a specific parameter. :param key: (str) Key of the header parameters. """ self.headers.pop(key, None) def raw_get(self, path, **kwargs): """Submit get request to the path. :param path: (str) Path for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.get( urljoin(self.base_url, path), params=kwargs, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_post(self, path, data, **kwargs): """Submit post request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.post( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_put(self, path, data, **kwargs): """Submit put request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.put( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e) def raw_delete(self, path, data={}, **kwargs): """Submit delete request to the path. :param path: (str) Path for request. :param data: (dict) Payload for request. :returns: Response the request. :raises: HttpError Can't connect to server. """ try: return self._s.delete( urljoin(self.base_url, path), params=kwargs, data=data, headers=self.headers, timeout=self.timeout, verify=self.verify, ) except Exception as e: raise KeycloakConnectionError("Can't connect to server (%s)" % e)
[ "urlparse.urljoin", "requests.adapters.HTTPAdapter", "requests.Session" ]
[((1981, 1999), 'requests.Session', 'requests.Session', ([], {}), '()\n', (1997, 1999), False, 'import requests\n'), ((2311, 2337), 'requests.adapters.HTTPAdapter', 'HTTPAdapter', ([], {'max_retries': '(1)'}), '(max_retries=1)\n', (2322, 2337), False, 'from requests.adapters import HTTPAdapter\n'), ((4972, 5000), 'urlparse.urljoin', 'urljoin', (['self.base_url', 'path'], {}), '(self.base_url, path)\n', (4979, 5000), False, 'from urlparse import urljoin\n'), ((5620, 5648), 'urlparse.urljoin', 'urljoin', (['self.base_url', 'path'], {}), '(self.base_url, path)\n', (5627, 5648), False, 'from urlparse import urljoin\n'), ((6292, 6320), 'urlparse.urljoin', 'urljoin', (['self.base_url', 'path'], {}), '(self.base_url, path)\n', (6299, 6320), False, 'from urlparse import urljoin\n'), ((6976, 7004), 'urlparse.urljoin', 'urljoin', (['self.base_url', 'path'], {}), '(self.base_url, path)\n', (6983, 7004), False, 'from urlparse import urljoin\n')]
import yaml from ruamel.yaml import YAML from ruamel.yaml.error import YAMLError try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader from dvc.exceptions import StageFileCorruptedError from dvc.utils.compat import open def load_stage_file(path): with open(path, "r", encoding="utf-8") as fd: return parse_stage(fd.read(), path) def parse_stage(text, path): try: return yaml.load(text, Loader=SafeLoader) or {} except yaml.error.YAMLError as exc: raise StageFileCorruptedError(path, cause=exc) def parse_stage_for_update(text, path): """Parses text into Python structure. Unlike `parse_stage()` this returns ordered dicts, values have special attributes to store comments and line breaks. This allows us to preserve all of those upon dump. This one is, however, several times slower than simple `parse_stage()`. """ try: yaml = YAML() return yaml.load(text) or {} except YAMLError as exc: raise StageFileCorruptedError(path, cause=exc) def dump_stage_file(path, data): with open(path, "w", encoding="utf-8") as fd: yaml = YAML() yaml.default_flow_style = False yaml.dump(data, fd)
[ "dvc.utils.compat.open", "dvc.exceptions.StageFileCorruptedError", "yaml.dump", "yaml.load", "ruamel.yaml.YAML" ]
[((310, 343), 'dvc.utils.compat.open', 'open', (['path', '"""r"""'], {'encoding': '"""utf-8"""'}), "(path, 'r', encoding='utf-8')\n", (314, 343), False, 'from dvc.utils.compat import open\n'), ((960, 966), 'ruamel.yaml.YAML', 'YAML', ([], {}), '()\n', (964, 966), False, 'from ruamel.yaml import YAML\n'), ((1132, 1165), 'dvc.utils.compat.open', 'open', (['path', '"""w"""'], {'encoding': '"""utf-8"""'}), "(path, 'w', encoding='utf-8')\n", (1136, 1165), False, 'from dvc.utils.compat import open\n'), ((1188, 1194), 'ruamel.yaml.YAML', 'YAML', ([], {}), '()\n', (1192, 1194), False, 'from ruamel.yaml import YAML\n'), ((1243, 1262), 'yaml.dump', 'yaml.dump', (['data', 'fd'], {}), '(data, fd)\n', (1252, 1262), False, 'import yaml\n'), ((450, 484), 'yaml.load', 'yaml.load', (['text'], {'Loader': 'SafeLoader'}), '(text, Loader=SafeLoader)\n', (459, 484), False, 'import yaml\n'), ((545, 585), 'dvc.exceptions.StageFileCorruptedError', 'StageFileCorruptedError', (['path'], {'cause': 'exc'}), '(path, cause=exc)\n', (568, 585), False, 'from dvc.exceptions import StageFileCorruptedError\n'), ((982, 997), 'yaml.load', 'yaml.load', (['text'], {}), '(text)\n', (991, 997), False, 'import yaml\n'), ((1047, 1087), 'dvc.exceptions.StageFileCorruptedError', 'StageFileCorruptedError', (['path'], {'cause': 'exc'}), '(path, cause=exc)\n', (1070, 1087), False, 'from dvc.exceptions import StageFileCorruptedError\n')]
import numpy as np from pyad.nn import NeuralNet from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split np.random.seed(0) data = load_breast_cancer() X_train, X_test, y_train, y_test = train_test_split( data.data, data.target, train_size=0.8, random_state=0 ) nn = NeuralNet(loss_fn='cross_entropy') nn.add_layer(X_train.shape[1], 100, activation='linear') nn.add_layer(100, 100, activation='logistic') nn.add_layer(100, 1 + np.max(y_train), activation='linear') nn.train( X_train, y_train, X_test, y_test, batch_size=1, learning_rate=1e-3, epochs=20 ) print('Predictions:', nn.predict(X_test))
[ "sklearn.model_selection.train_test_split", "sklearn.datasets.load_breast_cancer", "numpy.max", "pyad.nn.NeuralNet", "numpy.random.seed" ]
[((151, 168), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (165, 168), True, 'import numpy as np\n'), ((176, 196), 'sklearn.datasets.load_breast_cancer', 'load_breast_cancer', ([], {}), '()\n', (194, 196), False, 'from sklearn.datasets import load_breast_cancer\n'), ((233, 305), 'sklearn.model_selection.train_test_split', 'train_test_split', (['data.data', 'data.target'], {'train_size': '(0.8)', 'random_state': '(0)'}), '(data.data, data.target, train_size=0.8, random_state=0)\n', (249, 305), False, 'from sklearn.model_selection import train_test_split\n'), ((318, 352), 'pyad.nn.NeuralNet', 'NeuralNet', ([], {'loss_fn': '"""cross_entropy"""'}), "(loss_fn='cross_entropy')\n", (327, 352), False, 'from pyad.nn import NeuralNet\n'), ((478, 493), 'numpy.max', 'np.max', (['y_train'], {}), '(y_train)\n', (484, 493), True, 'import numpy as np\n')]
import ssl import nltk from textblob import TextBlob from nltk.corpus import stopwords # set SSL try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: pass else: ssl._create_default_https_context = _create_unverified_https_context # download noun data (if required) nltk.download('brown') nltk.download('punkt') nltk.download('stopwords') def extract_nouns(sentence): """Extract the nouns from a sentence using the 'textblob' library.""" blob = TextBlob(sentence) return blob.noun_phrases def remove_stopwords(sentence): """Remove stopwords from a sentence and return the list of words.""" blob = TextBlob(sentence) return [word for word in blob.words if word not in stopwords.words('english') and len(word)>2]
[ "textblob.TextBlob", "nltk.corpus.stopwords.words", "nltk.download" ]
[((322, 344), 'nltk.download', 'nltk.download', (['"""brown"""'], {}), "('brown')\n", (335, 344), False, 'import nltk\n'), ((345, 367), 'nltk.download', 'nltk.download', (['"""punkt"""'], {}), "('punkt')\n", (358, 367), False, 'import nltk\n'), ((368, 394), 'nltk.download', 'nltk.download', (['"""stopwords"""'], {}), "('stopwords')\n", (381, 394), False, 'import nltk\n'), ((510, 528), 'textblob.TextBlob', 'TextBlob', (['sentence'], {}), '(sentence)\n', (518, 528), False, 'from textblob import TextBlob\n'), ((675, 693), 'textblob.TextBlob', 'TextBlob', (['sentence'], {}), '(sentence)\n', (683, 693), False, 'from textblob import TextBlob\n'), ((749, 775), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (764, 775), False, 'from nltk.corpus import stopwords\n')]
from django_celery_beat.models import PeriodicTask, IntervalSchedule from django.core.management.base import BaseCommand from django.db import IntegrityError class Command(BaseCommand): def handle(self, *args, **options): try: schedule_channel, created = IntervalSchedule.objects.get_or_create( every=4, period=IntervalSchedule.HOURS, ) except IntegrityError as e: pass try: schedule_video, created = IntervalSchedule.objects.get_or_create( every=6, period=IntervalSchedule.HOURS, ) except IntegrityError as e: pass try: PeriodicTask.objects.create( interval=schedule_channel, name='Scrape Channels', task='toolbox.scraper.tasks.scrape_youtube_channels', ) except IntegrityError as e: pass try: PeriodicTask.objects.create( interval=schedule_video, name='Scrape Videos', task='toolbox.scraper.tasks.scrape_youtube_videos', ) except IntegrityError as e: pass
[ "django_celery_beat.models.PeriodicTask.objects.create", "django_celery_beat.models.IntervalSchedule.objects.get_or_create" ]
[((282, 360), 'django_celery_beat.models.IntervalSchedule.objects.get_or_create', 'IntervalSchedule.objects.get_or_create', ([], {'every': '(4)', 'period': 'IntervalSchedule.HOURS'}), '(every=4, period=IntervalSchedule.HOURS)\n', (320, 360), False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n'), ((573, 651), 'django_celery_beat.models.IntervalSchedule.objects.get_or_create', 'IntervalSchedule.objects.get_or_create', ([], {'every': '(6)', 'period': 'IntervalSchedule.HOURS'}), '(every=6, period=IntervalSchedule.HOURS)\n', (611, 651), False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n'), ((838, 975), 'django_celery_beat.models.PeriodicTask.objects.create', 'PeriodicTask.objects.create', ([], {'interval': 'schedule_channel', 'name': '"""Scrape Channels"""', 'task': '"""toolbox.scraper.tasks.scrape_youtube_channels"""'}), "(interval=schedule_channel, name=\n 'Scrape Channels', task='toolbox.scraper.tasks.scrape_youtube_channels')\n", (865, 975), False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n'), ((1143, 1273), 'django_celery_beat.models.PeriodicTask.objects.create', 'PeriodicTask.objects.create', ([], {'interval': 'schedule_video', 'name': '"""Scrape Videos"""', 'task': '"""toolbox.scraper.tasks.scrape_youtube_videos"""'}), "(interval=schedule_video, name='Scrape Videos',\n task='toolbox.scraper.tasks.scrape_youtube_videos')\n", (1170, 1273), False, 'from django_celery_beat.models import PeriodicTask, IntervalSchedule\n')]
# required modules import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib import cm from matplotlib.colors import Normalize from mpl_toolkits.mplot3d import Axes3D from matplotlib.animation import FuncAnimation # two-dimesional version def plot_mse_loss_surface_2d(fig, ax, x, y, v=0.0, l2=0.0, w1_range=(-2, 2), w2_range=(2, -2)): # create weight space n_w = 100 w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) # weight 1 w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) # weight 2 ws_x, ws_y = np.meshgrid(w1, w2) cost_ws = np.zeros((n_w, n_w)) # initialize cost matrix # Fill the cost matrix for each combination of weights for i in range(n_w): for j in range(n_w): y_pred = ws_x[i, j] * ws_y[i, j] * x y_true = y cost_ws[i, j] = 0.5 * (y_true - y_pred)**2 + \ 0.5 * l2 * (ws_x[i, j]**2 + ws_y[i, j]**2) + 0.5 * v * (ws_x[i, j]*ws_y[i, j])**2 # compute gradients dy, dx = np.gradient(cost_ws) # plot vector space skip = (slice(None, None, 5), slice(None, None, 5)) # fig, ax = plt.subplots(figsize=(8, 8)) #ax.contour(ws_x, ws_y, cost_ws, 200) im = ax.imshow(cost_ws, extent=[ws_x.min(), ws_x.max( ), ws_y.min(), ws_y.max()], cmap=cm.coolwarm) ax.quiver(ws_x[skip], ws_y[skip], -dx[skip], dy[skip], cost_ws[skip]) cbar = fig.colorbar(im, ax=ax) # ax.set(aspect=1, title='Loss Surface') cbar.ax.set_ylabel('$Loss$', fontsize=15) ax.set_xlabel('$w_1$', fontsize=15) ax.set_ylabel('$w_2$', fontsize=15) # ax.grid() # add saddle point ax.scatter(0, 0, label='Saddle point', c='red', marker='*') # ax.scatter(0,0, c='black', marker=r'$\rightarrow$', label='Negative gradient') settings = (x, y, v, l2, w1_range, w2_range) return ax, settings # three-dimensional version def plot_mse_loss_surface_3d(ax, x, y, v=0.0, l2=0.0, w1_range=(-2, 2), w2_range=(2, -2), angle=30): # create weight space n_w = 100 w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) # weight 1 w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) # weight 2 ws_x, ws_y = np.meshgrid(w1, w2) cost_ws = np.zeros((n_w, n_w)) # initialize cost matrix # Fill the cost matrix for each combination of weights for i in range(n_w): for j in range(n_w): y_pred = ws_x[i, j] * ws_y[i, j] * x y_true = y cost_ws[i, j] = 0.5 * (y_true - y_pred)**2 + \ 0.5 * l2 * (ws_x[i, j]**2 + ws_y[i, j]**2) + 0.5 * v * (ws_x[i, j]*ws_y[i, j])**2 X = ws_x Y = ws_y Z = cost_ws #fig, ax = plt.subplots(figsize=(8, 8)) #ax = fig.add_subplot(1,1,1, projection='3d') # fourth dimention - colormap # create colormap according to x-value (can use any 50x50 array) color_dimension = Z # change to desired fourth dimension minn, maxx = color_dimension.min(), color_dimension.max() norm = Normalize(minn, maxx) m = plt.cm.ScalarMappable(norm=norm, cmap='jet') m.set_array([]) fcolors = m.to_rgba(color_dimension) # plot # fig = plt.figure(figsize=(8, 8)) # ax = fig.gca(projection='3d') ax.set_zlim(0, 50) ax.plot([0], [0], 'ro', c='red', marker='*', label='Saddle point') ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=fcolors, vmin=minn, vmax=maxx, shade=False, alpha=1) ax.set_xlabel('$w_1$', fontsize=20) ax.set_ylabel('$w_2$', fontsize=20) ax.set_zlabel('$Loss$', fontsize=20) settings = (x, y, v, l2, w1_range, w2_range) ax.view_init(angle, 10) return ax, settings def plot_global_minimum_manifold_2d(ax, settings): # retieve cached settings x, y, v, l2, w1_range, w2_range = settings n_w = 1000 man_w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) man_w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) man_ws_x, man_ws_y = np.meshgrid(man_w1, man_w2) loss = 0.5 * y *(1 - man_ws_x * man_ws_y * x)**2 + \ 0.5 * l2 * (man_ws_x**2 + man_ws_y**2) + 0.5 * v * (man_ws_x * man_ws_y)**2 min_loss = np.min(loss) manifold_indices = loss < min_loss + 1e-5 manifold_x = man_ws_x[manifold_indices] manifold_y = man_ws_y[manifold_indices] # plot manifold of global minima ax.scatter(manifold_y, manifold_x, s=0.1, c='cyan', label='Manifold of global minima') def plot_global_minimum_manifold_3d(ax, settings): # retieve cached settings x, y, v, l2, w1_range, w2_range = settings n_w = 1000 man_w1 = np.linspace(w1_range[0], w1_range[1], num=n_w) man_w2 = np.linspace(w2_range[0], w2_range[1], num=n_w) man_ws_x, man_ws_y = np.meshgrid(man_w1, man_w2) loss = 0.5 * y * (1 - man_ws_x * man_ws_y * x)**2 + \ 0.5 * l2 * (man_ws_x**2 + man_ws_y**2) + 0.5 * v * (man_ws_x*man_ws_y)**2 min_loss = np.min(loss) manifold_indices = loss < min_loss + 1e-5 manifold_x = man_ws_x[manifold_indices] manifold_y = man_ws_y[manifold_indices] pos = np.where(np.abs(np.diff(manifold_y)) >= 0.1)[0]+1 x = np.insert(manifold_x, pos, np.nan) y = np.insert(manifold_y, pos, np.nan) # plot manifold of global minima #ax.scatter(manifold_y, manifold_x, 0, s=0.5, c='cyan', # label='Manifold of global minima') ax.plot(y, x, c='cyan', label='Manifold of global minima') def plot_optimiser_trajectory_2d(ax, weights, **kwargs): w1_vals = weights['w1'] w2_vals = weights['w2'] ax.plot(w1_vals, w2_vals, **kwargs) def plot_optimiser_trajectory_3d(ax, settings, weights, **kwargs): x, y, v, l2, _, _ = settings w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) loss = 0.5 * y * (1 - w1_vals * w2_vals * x)**2 + \ 0.5 * l2 * (w1_vals**2 + w2_vals**2) + 0.5 * v * (w1_vals*w2_vals)**2 ax.plot(w1_vals, w2_vals, loss, **kwargs) def plot_optimiser_trajectory(x, y, weights, dim='2d', angle=45, manifold=False, **kwargs): if dim == '3d': ax, settings = plot_mse_loss_surface_3d(x, y, angle=angle) if manifold: plot_global_minimum_manifold_3d(ax, settings) plot_optimiser_trajectory_3d(ax, settings, weights, **kwargs) else: ax, settings = plot_mse_loss_surface_2d(x, y) if manifold: plot_global_minimum_manifold_2d(ax, settings) plot_optimiser_trajectory_2d(ax, weights, **kwargs) def plot_weight_norm(ax, weights, **kwargs): w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) epochs = np.arange(0, len(w1_vals), 1) norms = np.sqrt(w1_vals**2 + w2_vals**2) ax.set_xlabel('Epoch', fontsize=12) ax.set_ylabel('Weight norm', fontsize=12) ax.plot(epochs, norms, linewidth=2.0, **kwargs) def animate_optimiser_trajectory_2d(i, ax, weights, **kwargs): w1_vals = weights['w1'] w2_vals = weights['w2'] ax.plot(w1_vals[:i], w2_vals[:i], **kwargs) return ax def animate_optimiser_trajectory_3d(i, ax, settings, weights, **kwargs): x, y, v, l2, _, _ = settings w1_vals = np.array(weights['w1']) w2_vals = np.array(weights['w2']) loss = 0.5 * y * (1 - w1_vals * w2_vals * x)**2 + \ 0.5 * l2 * (w1_vals**2 + w2_vals**2) + 0.5 * v * (w1_vals*w2_vals)**2 ax.plot(w1_vals[:i], w2_vals[:i], loss[:i], **kwargs) return ax def plot_optimiser_loss(x, y, v, l2, weights, **kwargs): loss = [] epoch = np.arange(0, len(weights['w1'])) for w1, w2 in zip(weights['w1'], weights['w2']): loss_val = 0.5 * y * (1 - w1 * w2 * x)**2 + 0.5 * l2 * (w1**2 + w2**2) + 0.5 * v * (w1 * w2)**2 loss.append(loss_val) plt.plot(epoch, loss, **kwargs) plt.xlabel('Epoch') plt.ylabel('Loss') def plot_interpolated_trajectory_2d(ax, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): alpha = np.arange(start, end, 0.001) w1_path = [] w2_path = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b w1_path.append(ww1) w2_path.append(ww2) ax.plot(w1_path, w2_path, **kwargs) def plot_interpolated_trajectory_3d(ax, settings, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): x, y, _, _ = settings alpha = np.arange(start, end, 0.001) w1_path = [] w2_path = [] loss = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b loss_val = 0.5 * (y - ww1 * ww2 * x)**2 + 0.5 * l2 * (ww1**2 + ww2**2) loss.append(loss_val) w1_path.append(ww1) w2_path.append(ww2) ax.plot(w1_path, w2_path, loss, **kwargs) def plot_interpolated_loss(x, y, w1_a, w2_a, w1_b, w2_b, start=0, end=1, **kwargs): alpha = np.arange(start, end, 0.001) interpolated_loss = [] for a in alpha: ww1 = (1 - a) * w1_a + a * w1_b ww2 = (1 - a) * w2_a + a * w2_b loss_val = 0.5 * (y - ww1 * ww2 * x)**2 + 0.5 * l2 * (ww1**2 + ww2**2) interpolated_loss.append(loss_val) plt.plot(alpha, interpolated_loss, **kwargs) plt.xlabel(r'$\alpha$') plt.ylabel('Loss') def plot_learning_dynamics(ax, weights, **kwargs): epoch = np.arange(0, len(weights['w1'])) scores = [] for w1, w2 in zip(weights['w1'], weights['w2']): scores.append(w1 * w2) ax.plot(epoch, scores, **kwargs) def animate_learning_dynamics(i, ax, weights, y, **kwargs): n_epoch = len(weights['w1']) epoch = np.arange(1, n_epoch) scores = [] for w1, w2 in zip(weights['w1'], weights['w2']): scores.append(w1 * w2) ax.set_xlim((1, n_epoch)) ax.set_ylim((0, y)) ax.set_xlabel('Epoch', fontsize=15) ax.set_ylabel('$w_2 \cdot w_1$', fontsize=15) ax.plot(epoch[:i], scores[:i], **kwargs) return ax def animate_learning(weights, save=False, name='anim'): gs = gridspec.GridSpec(2, 4) gs.update(wspace=0.5) fig = plt.figure(figsize=(12, 8)) ax1 = fig.add_subplot(gs[0, :2], ) ax2 = fig.add_subplot(gs[0, 2:], projection='3d') ax3 = fig.add_subplot(gs[1, 1:3]) # ax1 = fig.add_subplot(2, 2, 1) # ax2 = fig.add_subplot(2, 2, 2, projection = '3d') # ax3 = fig.add_subplot(2, 2, 3) # ax4 = fig.add_subplot(2, 2, 4) ax1, settings = plot_mse_loss_surface_2d(ax1, 1, 1) ax2, settings = plot_mse_loss_surface_3d(ax2, 1, 1, angle=60) plot_global_minimum_manifold_2d(ax1, settings) plot_global_minimum_manifold_3d(ax2, settings) def update(i): animate_optimiser_trajectory_2d( i, ax1, settings, weights, 'Gradient descent') animate_optimiser_trajectory_3d( i, ax2, settings, weights, 'Gradient descent') animate_learning_dynamics(i, ax3, weights, 1) # animate_weight_norm(i, ax4, scalarNet.history) # suncAnimation will call the 'update' function for each frame anim = FuncAnimation(fig, update, frames=100, interval=5, save_count=50) # HTML(anim.to_html5_video()) if save: anim.save(name + '.gif', dpi=80, writer='imagemagick') plt.show()
[ "numpy.sqrt", "matplotlib.pyplot.ylabel", "numpy.array", "numpy.gradient", "numpy.arange", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.diff", "numpy.linspace", "matplotlib.gridspec.GridSpec", "numpy.min", "numpy.meshgrid", "matplotlib.pyplot.cm.ScalarMappable", "matplotlib.colors.Normalize", "matplotlib.pyplot.show", "numpy.insert", "matplotlib.animation.FuncAnimation", "numpy.zeros", "matplotlib.pyplot.figure" ]
[((434, 480), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (445, 480), True, 'import numpy as np\n'), ((502, 548), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (513, 548), True, 'import numpy as np\n'), ((578, 597), 'numpy.meshgrid', 'np.meshgrid', (['w1', 'w2'], {}), '(w1, w2)\n', (589, 597), True, 'import numpy as np\n'), ((612, 632), 'numpy.zeros', 'np.zeros', (['(n_w, n_w)'], {}), '((n_w, n_w))\n', (620, 632), True, 'import numpy as np\n'), ((1040, 1060), 'numpy.gradient', 'np.gradient', (['cost_ws'], {}), '(cost_ws)\n', (1051, 1060), True, 'import numpy as np\n'), ((2062, 2108), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (2073, 2108), True, 'import numpy as np\n'), ((2130, 2176), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (2141, 2176), True, 'import numpy as np\n'), ((2206, 2225), 'numpy.meshgrid', 'np.meshgrid', (['w1', 'w2'], {}), '(w1, w2)\n', (2217, 2225), True, 'import numpy as np\n'), ((2240, 2260), 'numpy.zeros', 'np.zeros', (['(n_w, n_w)'], {}), '((n_w, n_w))\n', (2248, 2260), True, 'import numpy as np\n'), ((3007, 3028), 'matplotlib.colors.Normalize', 'Normalize', (['minn', 'maxx'], {}), '(minn, maxx)\n', (3016, 3028), False, 'from matplotlib.colors import Normalize\n'), ((3037, 3081), 'matplotlib.pyplot.cm.ScalarMappable', 'plt.cm.ScalarMappable', ([], {'norm': 'norm', 'cmap': '"""jet"""'}), "(norm=norm, cmap='jet')\n", (3058, 3081), True, 'import matplotlib.pyplot as plt\n'), ((3843, 3889), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (3854, 3889), True, 'import numpy as np\n'), ((3903, 3949), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (3914, 3949), True, 'import numpy as np\n'), ((3975, 4002), 'numpy.meshgrid', 'np.meshgrid', (['man_w1', 'man_w2'], {}), '(man_w1, man_w2)\n', (3986, 4002), True, 'import numpy as np\n'), ((4159, 4171), 'numpy.min', 'np.min', (['loss'], {}), '(loss)\n', (4165, 4171), True, 'import numpy as np\n'), ((4609, 4655), 'numpy.linspace', 'np.linspace', (['w1_range[0]', 'w1_range[1]'], {'num': 'n_w'}), '(w1_range[0], w1_range[1], num=n_w)\n', (4620, 4655), True, 'import numpy as np\n'), ((4669, 4715), 'numpy.linspace', 'np.linspace', (['w2_range[0]', 'w2_range[1]'], {'num': 'n_w'}), '(w2_range[0], w2_range[1], num=n_w)\n', (4680, 4715), True, 'import numpy as np\n'), ((4741, 4768), 'numpy.meshgrid', 'np.meshgrid', (['man_w1', 'man_w2'], {}), '(man_w1, man_w2)\n', (4752, 4768), True, 'import numpy as np\n'), ((4924, 4936), 'numpy.min', 'np.min', (['loss'], {}), '(loss)\n', (4930, 4936), True, 'import numpy as np\n'), ((5140, 5174), 'numpy.insert', 'np.insert', (['manifold_x', 'pos', 'np.nan'], {}), '(manifold_x, pos, np.nan)\n', (5149, 5174), True, 'import numpy as np\n'), ((5183, 5217), 'numpy.insert', 'np.insert', (['manifold_y', 'pos', 'np.nan'], {}), '(manifold_y, pos, np.nan)\n', (5192, 5217), True, 'import numpy as np\n'), ((5717, 5740), 'numpy.array', 'np.array', (["weights['w1']"], {}), "(weights['w1'])\n", (5725, 5740), True, 'import numpy as np\n'), ((5755, 5778), 'numpy.array', 'np.array', (["weights['w2']"], {}), "(weights['w2'])\n", (5763, 5778), True, 'import numpy as np\n'), ((6553, 6576), 'numpy.array', 'np.array', (["weights['w1']"], {}), "(weights['w1'])\n", (6561, 6576), True, 'import numpy as np\n'), ((6591, 6614), 'numpy.array', 'np.array', (["weights['w2']"], {}), "(weights['w2'])\n", (6599, 6614), True, 'import numpy as np\n'), ((6670, 6706), 'numpy.sqrt', 'np.sqrt', (['(w1_vals ** 2 + w2_vals ** 2)'], {}), '(w1_vals ** 2 + w2_vals ** 2)\n', (6677, 6706), True, 'import numpy as np\n'), ((7146, 7169), 'numpy.array', 'np.array', (["weights['w1']"], {}), "(weights['w1'])\n", (7154, 7169), True, 'import numpy as np\n'), ((7184, 7207), 'numpy.array', 'np.array', (["weights['w2']"], {}), "(weights['w2'])\n", (7192, 7207), True, 'import numpy as np\n'), ((7723, 7754), 'matplotlib.pyplot.plot', 'plt.plot', (['epoch', 'loss'], {}), '(epoch, loss, **kwargs)\n', (7731, 7754), True, 'import matplotlib.pyplot as plt\n'), ((7759, 7778), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Epoch"""'], {}), "('Epoch')\n", (7769, 7778), True, 'import matplotlib.pyplot as plt\n'), ((7783, 7801), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (7793, 7801), True, 'import matplotlib.pyplot as plt\n'), ((7907, 7935), 'numpy.arange', 'np.arange', (['start', 'end', '(0.001)'], {}), '(start, end, 0.001)\n', (7916, 7935), True, 'import numpy as np\n'), ((8307, 8335), 'numpy.arange', 'np.arange', (['start', 'end', '(0.001)'], {}), '(start, end, 0.001)\n', (8316, 8335), True, 'import numpy as np\n'), ((8793, 8821), 'numpy.arange', 'np.arange', (['start', 'end', '(0.001)'], {}), '(start, end, 0.001)\n', (8802, 8821), True, 'import numpy as np\n'), ((9075, 9119), 'matplotlib.pyplot.plot', 'plt.plot', (['alpha', 'interpolated_loss'], {}), '(alpha, interpolated_loss, **kwargs)\n', (9083, 9119), True, 'import matplotlib.pyplot as plt\n'), ((9124, 9147), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\alpha$"""'], {}), "('$\\\\alpha$')\n", (9134, 9147), True, 'import matplotlib.pyplot as plt\n'), ((9152, 9170), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Loss"""'], {}), "('Loss')\n", (9162, 9170), True, 'import matplotlib.pyplot as plt\n'), ((9513, 9534), 'numpy.arange', 'np.arange', (['(1)', 'n_epoch'], {}), '(1, n_epoch)\n', (9522, 9534), True, 'import numpy as np\n'), ((9905, 9928), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(2)', '(4)'], {}), '(2, 4)\n', (9922, 9928), True, 'import matplotlib.gridspec as gridspec\n'), ((9966, 9993), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 8)'}), '(figsize=(12, 8))\n', (9976, 9993), True, 'import matplotlib.pyplot as plt\n'), ((10929, 10994), 'matplotlib.animation.FuncAnimation', 'FuncAnimation', (['fig', 'update'], {'frames': '(100)', 'interval': '(5)', 'save_count': '(50)'}), '(fig, update, frames=100, interval=5, save_count=50)\n', (10942, 10994), False, 'from matplotlib.animation import FuncAnimation\n'), ((11110, 11120), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (11118, 11120), True, 'import matplotlib.pyplot as plt\n'), ((5098, 5117), 'numpy.diff', 'np.diff', (['manifold_y'], {}), '(manifold_y)\n', (5105, 5117), True, 'import numpy as np\n')]
# Copyright 2019 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test layers from qconvolutional.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from numpy.testing import assert_allclose import pytest import tempfile from tensorflow.keras import backend as K from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.backend import clear_session from qkeras import binary from qkeras import ternary from qkeras import QActivation from qkeras import QDense from qkeras import QConv1D from qkeras import QConv2D from qkeras import QSeparableConv2D from qkeras import quantized_bits from qkeras import quantized_relu from qkeras.utils import model_save_quantized_weights from qkeras.utils import quantized_model_from_json from qkeras.utils import load_qmodel from qkeras import print_qstats from qkeras import extract_model_operations # TODO(hzhuang): # qoctave_conv test # qbatchnorm test def test_qnetwork(): x = x_in = Input((28, 28, 1), name='input') x = QSeparableConv2D( 32, (2, 2), strides=(2, 2), depthwise_quantizer=binary(alpha=1.0), pointwise_quantizer=quantized_bits(4, 0, 1, alpha=1.0), depthwise_activation=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_0_m')( x) x = QActivation('quantized_relu(6,2,1)', name='act0_m')(x) x = QConv2D( 64, (3, 3), strides=(2, 2), kernel_quantizer=ternary(alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_1_m', activation=quantized_relu(6, 3, 1))( x) x = QConv2D( 64, (2, 2), strides=(2, 2), kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='conv2d_2_m')( x) x = QActivation('quantized_relu(6,4,1)', name='act2_m')(x) x = Flatten(name='flatten')(x) x = QDense( 10, kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='dense')( x) x = Activation('softmax', name='softmax')(x) model = Model(inputs=[x_in], outputs=[x]) # reload the model to ensure saving/loading works json_string = model.to_json() clear_session() model = quantized_model_from_json(json_string) # generate same output for weights np.random.seed(42) for layer in model.layers: all_weights = [] for i, weights in enumerate(layer.get_weights()): input_size = np.prod(layer.input.shape.as_list()[1:]) if input_size is None: input_size = 576 * 10 # to avoid learning sizes shape = weights.shape assert input_size > 0, 'input size for {} {}'.format(layer.name, i) # he normal initialization with a scale factor of 2.0 all_weights.append( 10.0 * np.random.normal(0.0, np.sqrt(2.0 / input_size), shape)) if all_weights: layer.set_weights(all_weights) # apply quantizer to weights model_save_quantized_weights(model) all_weights = [] for layer in model.layers: for i, weights in enumerate(layer.get_weights()): w = np.sum(weights) all_weights.append(w) all_weights = np.array(all_weights) # test_qnetwork_weight_quantization all_weights_signature = np.array( [2., -6.75, -0.625, -2., -0.25, -56., 1.125, -1.625, -1.125]) assert all_weights.size == all_weights_signature.size assert np.all(all_weights == all_weights_signature) # test_qnetwork_forward: expected_output = np.array( [[0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 6.e-08, 1.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [ 0.e+00 ,0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 5.e-07, 1.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00 ,1.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00 ,0.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00], [0.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00, 1.e+00, 0.e+00, 0.e+00, 0.e+00, 0.e+00]]).astype(np.float16) inputs = 2 * np.random.rand(10, 28, 28, 1) actual_output = model.predict(inputs).astype(np.float16) assert_allclose(actual_output, expected_output, rtol=1e-4) def test_qconv1d(): np.random.seed(33) x = Input((4, 4,)) y = QConv1D( 2, 1, kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='qconv1d')( x) model = Model(inputs=x, outputs=y) # Extract model operations model_ops = extract_model_operations(model) # Assertion about the number of operations for this Conv1D layer assert model_ops['qconv1d']['number_of_operations'] == 32 # Print qstats to make sure it works with Conv1D layer print_qstats(model) # reload the model to ensure saving/loading works # json_string = model.to_json() # clear_session() # model = quantized_model_from_json(json_string) for layer in model.layers: all_weights = [] for i, weights in enumerate(layer.get_weights()): input_size = np.prod(layer.input.shape.as_list()[1:]) if input_size is None: input_size = 10 * 10 shape = weights.shape assert input_size > 0, 'input size for {} {}'.format(layer.name, i) all_weights.append( 10.0 * np.random.normal(0.0, np.sqrt(2.0 / input_size), shape)) if all_weights: layer.set_weights(all_weights) # Save the model as an h5 file using Keras's model.save() fd, fname = tempfile.mkstemp('.h5') model.save(fname) del model # Delete the existing model # Return a compiled model identical to the previous one model = load_qmodel(fname) # Clean the created h5 file after loading the model os.close(fd) os.remove(fname) # apply quantizer to weights model_save_quantized_weights(model) inputs = np.random.rand(2, 4, 4) p = model.predict(inputs).astype(np.float16) y = np.array([[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, 0.9834]], [[-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, -0.467]]]).astype(np.float16) assert np.all(p == y) if __name__ == '__main__': pytest.main([__file__])
[ "qkeras.quantized_bits", "numpy.sqrt", "numpy.random.rand", "qkeras.utils.quantized_model_from_json", "qkeras.QActivation", "numpy.array", "tensorflow.keras.backend.clear_session", "qkeras.extract_model_operations", "os.remove", "tensorflow.keras.layers.Input", "qkeras.binary", "numpy.testing.assert_allclose", "pytest.main", "numpy.random.seed", "tensorflow.keras.models.Model", "tensorflow.keras.layers.Activation", "qkeras.utils.model_save_quantized_weights", "os.close", "qkeras.utils.load_qmodel", "tensorflow.keras.layers.Flatten", "tempfile.mkstemp", "qkeras.print_qstats", "qkeras.quantized_relu", "numpy.sum", "qkeras.ternary", "numpy.all" ]
[((1761, 1793), 'tensorflow.keras.layers.Input', 'Input', (['(28, 28, 1)'], {'name': '"""input"""'}), "((28, 28, 1), name='input')\n", (1766, 1793), False, 'from tensorflow.keras.layers import Input\n'), ((2913, 2946), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': '[x_in]', 'outputs': '[x]'}), '(inputs=[x_in], outputs=[x])\n', (2918, 2946), False, 'from tensorflow.keras.models import Model\n'), ((3034, 3049), 'tensorflow.keras.backend.clear_session', 'clear_session', ([], {}), '()\n', (3047, 3049), False, 'from tensorflow.keras.backend import clear_session\n'), ((3060, 3098), 'qkeras.utils.quantized_model_from_json', 'quantized_model_from_json', (['json_string'], {}), '(json_string)\n', (3085, 3098), False, 'from qkeras.utils import quantized_model_from_json\n'), ((3139, 3157), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (3153, 3157), True, 'import numpy as np\n'), ((3761, 3796), 'qkeras.utils.model_save_quantized_weights', 'model_save_quantized_weights', (['model'], {}), '(model)\n', (3789, 3796), False, 'from qkeras.utils import model_save_quantized_weights\n'), ((3972, 3993), 'numpy.array', 'np.array', (['all_weights'], {}), '(all_weights)\n', (3980, 3993), True, 'import numpy as np\n'), ((4059, 4132), 'numpy.array', 'np.array', (['[2.0, -6.75, -0.625, -2.0, -0.25, -56.0, 1.125, -1.625, -1.125]'], {}), '([2.0, -6.75, -0.625, -2.0, -0.25, -56.0, 1.125, -1.625, -1.125])\n', (4067, 4132), True, 'import numpy as np\n'), ((4203, 4247), 'numpy.all', 'np.all', (['(all_weights == all_weights_signature)'], {}), '(all_weights == all_weights_signature)\n', (4209, 4247), True, 'import numpy as np\n'), ((5385, 5445), 'numpy.testing.assert_allclose', 'assert_allclose', (['actual_output', 'expected_output'], {'rtol': '(0.0001)'}), '(actual_output, expected_output, rtol=0.0001)\n', (5400, 5445), False, 'from numpy.testing import assert_allclose\n'), ((5468, 5486), 'numpy.random.seed', 'np.random.seed', (['(33)'], {}), '(33)\n', (5482, 5486), True, 'import numpy as np\n'), ((5493, 5506), 'tensorflow.keras.layers.Input', 'Input', (['(4, 4)'], {}), '((4, 4))\n', (5498, 5506), False, 'from tensorflow.keras.layers import Input\n'), ((5686, 5712), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'x', 'outputs': 'y'}), '(inputs=x, outputs=y)\n', (5691, 5712), False, 'from tensorflow.keras.models import Model\n'), ((5757, 5788), 'qkeras.extract_model_operations', 'extract_model_operations', (['model'], {}), '(model)\n', (5781, 5788), False, 'from qkeras import extract_model_operations\n'), ((5977, 5996), 'qkeras.print_qstats', 'print_qstats', (['model'], {}), '(model)\n', (5989, 5996), False, 'from qkeras import print_qstats\n'), ((6711, 6734), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".h5"""'], {}), "('.h5')\n", (6727, 6734), False, 'import tempfile\n'), ((6865, 6883), 'qkeras.utils.load_qmodel', 'load_qmodel', (['fname'], {}), '(fname)\n', (6876, 6883), False, 'from qkeras.utils import load_qmodel\n'), ((6941, 6953), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (6949, 6953), False, 'import os\n'), ((6956, 6972), 'os.remove', 'os.remove', (['fname'], {}), '(fname)\n', (6965, 6972), False, 'import os\n'), ((7007, 7042), 'qkeras.utils.model_save_quantized_weights', 'model_save_quantized_weights', (['model'], {}), '(model)\n', (7035, 7042), False, 'from qkeras.utils import model_save_quantized_weights\n'), ((7055, 7078), 'numpy.random.rand', 'np.random.rand', (['(2)', '(4)', '(4)'], {}), '(2, 4, 4)\n', (7069, 7078), True, 'import numpy as np\n'), ((7365, 7379), 'numpy.all', 'np.all', (['(p == y)'], {}), '(p == y)\n', (7371, 7379), True, 'import numpy as np\n'), ((7411, 7434), 'pytest.main', 'pytest.main', (['[__file__]'], {}), '([__file__])\n', (7422, 7434), False, 'import pytest\n'), ((2119, 2170), 'qkeras.QActivation', 'QActivation', (['"""quantized_relu(6,2,1)"""'], {'name': '"""act0_m"""'}), "('quantized_relu(6,2,1)', name='act0_m')\n", (2130, 2170), False, 'from qkeras import QActivation\n'), ((2604, 2655), 'qkeras.QActivation', 'QActivation', (['"""quantized_relu(6,4,1)"""'], {'name': '"""act2_m"""'}), "('quantized_relu(6,4,1)', name='act2_m')\n", (2615, 2655), False, 'from qkeras import QActivation\n'), ((2665, 2688), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {'name': '"""flatten"""'}), "(name='flatten')\n", (2672, 2688), False, 'from tensorflow.keras.layers import Flatten\n'), ((2861, 2898), 'tensorflow.keras.layers.Activation', 'Activation', (['"""softmax"""'], {'name': '"""softmax"""'}), "('softmax', name='softmax')\n", (2871, 2898), False, 'from tensorflow.keras.layers import Activation\n'), ((5294, 5323), 'numpy.random.rand', 'np.random.rand', (['(10)', '(28)', '(28)', '(1)'], {}), '(10, 28, 28, 1)\n', (5308, 5323), True, 'import numpy as np\n'), ((3911, 3926), 'numpy.sum', 'np.sum', (['weights'], {}), '(weights)\n', (3917, 3926), True, 'import numpy as np\n'), ((4296, 4863), 'numpy.array', 'np.array', (['[[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, \n 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 6e-08, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 0.0, 5e-07, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, \n 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, \n 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0,\n 1.0, 0.0, 0.0, 0.0, 0.0]]'], {}), '([[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0, 0.0, 6e-08, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, \n 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5e-07, 1.0], [0.0, 0.0, 0.0, 0.0, 0.0, \n 0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,\n 0.0], [0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, \n 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]])\n', (4304, 4863), True, 'import numpy as np\n'), ((7132, 7296), 'numpy.array', 'np.array', (['[[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, 0.9834]], [\n [-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, -0.467]]]'], {}), '([[[-2.441, 3.816], [-3.807, -1.426], [-2.684, -1.317], [-1.659, \n 0.9834]], [[-4.99, 1.139], [-2.559, -1.216], [-2.285, 1.905], [-2.652, \n -0.467]]])\n', (7140, 7296), True, 'import numpy as np\n'), ((1884, 1901), 'qkeras.binary', 'binary', ([], {'alpha': '(1.0)'}), '(alpha=1.0)\n', (1890, 1901), False, 'from qkeras import binary\n'), ((1929, 1963), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {'alpha': '(1.0)'}), '(4, 0, 1, alpha=1.0)\n', (1943, 1963), False, 'from qkeras import quantized_bits\n'), ((1992, 2026), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (2006, 2026), False, 'from qkeras import quantized_bits\n'), ((2049, 2072), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2063, 2072), False, 'from qkeras import quantized_bits\n'), ((2252, 2270), 'qkeras.ternary', 'ternary', ([], {'alpha': '(1.0)'}), '(alpha=1.0)\n', (2259, 2270), False, 'from qkeras import ternary\n'), ((2293, 2316), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2307, 2316), False, 'from qkeras import quantized_bits\n'), ((2360, 2383), 'qkeras.quantized_relu', 'quantized_relu', (['(6)', '(3)', '(1)'], {}), '(6, 3, 1)\n', (2374, 2383), False, 'from qkeras import quantized_relu\n'), ((2477, 2511), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (2491, 2511), False, 'from qkeras import quantized_bits\n'), ((2534, 2557), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2548, 2557), False, 'from qkeras import quantized_bits\n'), ((2739, 2773), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (2753, 2773), False, 'from qkeras import quantized_bits\n'), ((2796, 2819), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (2810, 2819), False, 'from qkeras import quantized_bits\n'), ((5558, 5592), 'qkeras.quantized_bits', 'quantized_bits', (['(6)', '(2)', '(1)'], {'alpha': '(1.0)'}), '(6, 2, 1, alpha=1.0)\n', (5572, 5592), False, 'from qkeras import quantized_bits\n'), ((5615, 5638), 'qkeras.quantized_bits', 'quantized_bits', (['(4)', '(0)', '(1)'], {}), '(4, 0, 1)\n', (5629, 5638), False, 'from qkeras import quantized_bits\n'), ((3635, 3660), 'numpy.sqrt', 'np.sqrt', (['(2.0 / input_size)'], {}), '(2.0 / input_size)\n', (3642, 3660), True, 'import numpy as np\n'), ((6545, 6570), 'numpy.sqrt', 'np.sqrt', (['(2.0 / input_size)'], {}), '(2.0 / input_size)\n', (6552, 6570), True, 'import numpy as np\n')]
from typing import Optional, List, TypeVar, Generic, Callable import discord.ui from .item import Item from .select_option import SelectOption from .custom import CustomSelect def _default_check(_: discord.Interaction) -> bool: return True C = TypeVar("C", bound=discord.ui.Select) class Select(Item, Generic[C]): def __init__( self, placeholder: Optional[str] = None, min_values: int = 1, max_values: int = 1, options: Optional[list] = None, cls: C = CustomSelect, custom_id: Optional[str] = None, ) -> None: self._placeholder: Optional[str] = placeholder self._min_values: int = min_values self._max_values: int = max_values self._options: list = [] if options is None else options self._row: Optional[int] = None self.cls: C = cls self._custom_id: Optional[str] = custom_id self.func: Optional[Callable] = None self.check_func: Callable[[discord.Interaction], bool] = _default_check def placeholder(self, placeholder: str) -> 'Select': self._placeholder = placeholder return self def min_values(self, min_values: int) -> 'Select': self._min_values = min_values return self def max_values(self, max_values: int) -> 'Select': self._max_values = max_values return self def options(self, options: List[SelectOption]) -> 'Select': self._options = options return self def row(self, row: int) -> 'Select': self._row = row return self def on_select(self, func: Callable) -> 'Select': self.func = func return self def custom_id(self, custom_id: str) -> 'Select': self._custom_id = custom_id return self def check(self, func: Callable[[discord.Interaction], bool]) -> 'Select': self.check_func = func return self def to_discord(self) -> C: return self.cls( placeholder=self._placeholder, min_values=self._min_values, max_values=self._max_values, options=[o.to_discord_select_option() for o in self._options], row=self._row, custom_id=self._custom_id, check_func=self.check_func, callback=self.func )
[ "typing.TypeVar" ]
[((254, 291), 'typing.TypeVar', 'TypeVar', (['"""C"""'], {'bound': 'discord.ui.Select'}), "('C', bound=discord.ui.Select)\n", (261, 291), False, 'from typing import Optional, List, TypeVar, Generic, Callable\n')]
#!/usr/bin/env python3 import os import sys import time sys.path.append(os.getcwd()+'/lib') import random from dataclasses import dataclass, field from ObsInfo import ObsInfo def generate_random_obs(num_obs: int, size_list: list, config_data): """ config_file_name = "config.json" json_file = open(config_file_name) config_data = json.load(json_file) size_list = [length, width, height] """ ObsList = [] if (num_obs > 0.5): for i in range(0, num_obs): # random center center = [random.uniform(config_data["LAB_SPACE_LIMIT"]["LIMIT_X"][0], config_data["LAB_SPACE_LIMIT"]["LIMIT_X"][1]), \ random.uniform(config_data["LAB_SPACE_LIMIT"]["LIMIT_Y"][0], config_data["LAB_SPACE_LIMIT"]["LIMIT_Y"][1]), \ random.uniform(config_data["LAB_SPACE_LIMIT"]["LIMIT_Z"][0], config_data["LAB_SPACE_LIMIT"]["LIMIT_Z"][1])] ObsList.append( ObsInfo(center, size_list) ) return ObsList
[ "ObsInfo.ObsInfo", "random.uniform", "os.getcwd" ]
[((72, 83), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (81, 83), False, 'import os\n'), ((548, 659), 'random.uniform', 'random.uniform', (["config_data['LAB_SPACE_LIMIT']['LIMIT_X'][0]", "config_data['LAB_SPACE_LIMIT']['LIMIT_X'][1]"], {}), "(config_data['LAB_SPACE_LIMIT']['LIMIT_X'][0], config_data[\n 'LAB_SPACE_LIMIT']['LIMIT_X'][1])\n", (562, 659), False, 'import random\n'), ((674, 785), 'random.uniform', 'random.uniform', (["config_data['LAB_SPACE_LIMIT']['LIMIT_Y'][0]", "config_data['LAB_SPACE_LIMIT']['LIMIT_Y'][1]"], {}), "(config_data['LAB_SPACE_LIMIT']['LIMIT_Y'][0], config_data[\n 'LAB_SPACE_LIMIT']['LIMIT_Y'][1])\n", (688, 785), False, 'import random\n'), ((800, 911), 'random.uniform', 'random.uniform', (["config_data['LAB_SPACE_LIMIT']['LIMIT_Z'][0]", "config_data['LAB_SPACE_LIMIT']['LIMIT_Z'][1]"], {}), "(config_data['LAB_SPACE_LIMIT']['LIMIT_Z'][0], config_data[\n 'LAB_SPACE_LIMIT']['LIMIT_Z'][1])\n", (814, 911), False, 'import random\n'), ((937, 963), 'ObsInfo.ObsInfo', 'ObsInfo', (['center', 'size_list'], {}), '(center, size_list)\n', (944, 963), False, 'from ObsInfo import ObsInfo\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # License: BSD-3 (https://tldrlegal.com/license/bsd-3-clause-license-(revised)) # Copyright (c) 2016-2021, <NAME>; Luczywo, Nadia # All rights reserved. # ============================================================================= # DOCS # ============================================================================= """Functionalities for remove negatives from criteria. In addition to the main functionality, an MCDA agnostic function is offered to push negatives values on an array along an arbitrary axis. """ # ============================================================================= # IMPORTS # ============================================================================= import numpy as np from ..core import SKCMatrixAndWeightTransformerABC from ..utils import doc_inherit # ============================================================================= # FUNCTIONS # ============================================================================= def push_negatives(arr, axis): r"""Increment the array until all the valuer are sean >= 0. If an array has negative values this function increment the values proportionally to made all the array positive along an axis. .. math:: \overline{X}_{ij} = \begin{cases} X_{ij} + min_{X_{ij}} & \text{if } X_{ij} < 0\\ X_{ij} & \text{otherwise} \end{cases} Parameters ---------- arr: :py:class:`numpy.ndarray` like. A array with values axis : :py:class:`int` optional Axis along which to operate. By default, flattened input is used. Returns ------- :py:class:`numpy.ndarray` array with all values >= 0. Examples -------- .. code-block:: pycon >>> from skcriteria.preprocess import push_negatives >>> mtx = [[1, 2], [3, 4]] >>> mtx_lt0 = [[-1, 2], [3, 4]] # has a negative value >>> push_negatives(mtx) # array without negatives don't be affected array([[1, 2], [3, 4]]) # all the array is incremented by 1 to eliminate the negative >>> push_negatives(mtx_lt0) array([[0, 3], [4, 5]]) # by column only the first one (with the negative value) is affected >>> push_negatives(mtx_lt0, axis=0) array([[0, 2], [4, 4]]) # by row only the first row (with the negative value) is affected >>> push_negatives(mtx_lt0, axis=1) array([[0, 3], [3, 4]]) """ arr = np.asarray(arr) mins = np.min(arr, axis=axis, keepdims=True) delta = (mins < 0) * mins return arr - delta class PushNegatives(SKCMatrixAndWeightTransformerABC): r"""Increment the matrix/weights until all the valuer are sean >= 0. If the matrix/weights has negative values this function increment the values proportionally to made all the matrix/weights positive along an axis. .. math:: \overline{X}_{ij} = \begin{cases} X_{ij} + min_{X_{ij}} & \text{if } X_{ij} < 0\\ X_{ij} & \text{otherwise} \end{cases} """ @doc_inherit(SKCMatrixAndWeightTransformerABC._transform_weights) def _transform_weights(self, weights): return push_negatives(weights, axis=None) @doc_inherit(SKCMatrixAndWeightTransformerABC._transform_matrix) def _transform_matrix(self, matrix): return push_negatives(matrix, axis=0)
[ "numpy.asarray", "numpy.min" ]
[((2605, 2620), 'numpy.asarray', 'np.asarray', (['arr'], {}), '(arr)\n', (2615, 2620), True, 'import numpy as np\n'), ((2632, 2669), 'numpy.min', 'np.min', (['arr'], {'axis': 'axis', 'keepdims': '(True)'}), '(arr, axis=axis, keepdims=True)\n', (2638, 2669), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # # This class was auto-generated from the API references found at # https://support.direct.ingenico.com/documentation/api/reference/ # from ingenico.direct.sdk.data_object import DataObject from ingenico.direct.sdk.domain.address import Address from ingenico.direct.sdk.domain.company_information import CompanyInformation from ingenico.direct.sdk.domain.personal_information_token import PersonalInformationToken class CustomerToken(DataObject): __billing_address = None __company_information = None __personal_information = None @property def billing_address(self) -> Address: """ | Object containing billing address details Type: :class:`ingenico.direct.sdk.domain.address.Address` """ return self.__billing_address @billing_address.setter def billing_address(self, value: Address): self.__billing_address = value @property def company_information(self) -> CompanyInformation: """ | Object containing company information Type: :class:`ingenico.direct.sdk.domain.company_information.CompanyInformation` """ return self.__company_information @company_information.setter def company_information(self, value: CompanyInformation): self.__company_information = value @property def personal_information(self) -> PersonalInformationToken: """ Type: :class:`ingenico.direct.sdk.domain.personal_information_token.PersonalInformationToken` """ return self.__personal_information @personal_information.setter def personal_information(self, value: PersonalInformationToken): self.__personal_information = value def to_dictionary(self): dictionary = super(CustomerToken, self).to_dictionary() if self.billing_address is not None: dictionary['billingAddress'] = self.billing_address.to_dictionary() if self.company_information is not None: dictionary['companyInformation'] = self.company_information.to_dictionary() if self.personal_information is not None: dictionary['personalInformation'] = self.personal_information.to_dictionary() return dictionary def from_dictionary(self, dictionary): super(CustomerToken, self).from_dictionary(dictionary) if 'billingAddress' in dictionary: if not isinstance(dictionary['billingAddress'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['billingAddress'])) value = Address() self.billing_address = value.from_dictionary(dictionary['billingAddress']) if 'companyInformation' in dictionary: if not isinstance(dictionary['companyInformation'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['companyInformation'])) value = CompanyInformation() self.company_information = value.from_dictionary(dictionary['companyInformation']) if 'personalInformation' in dictionary: if not isinstance(dictionary['personalInformation'], dict): raise TypeError('value \'{}\' is not a dictionary'.format(dictionary['personalInformation'])) value = PersonalInformationToken() self.personal_information = value.from_dictionary(dictionary['personalInformation']) return self
[ "ingenico.direct.sdk.domain.address.Address", "ingenico.direct.sdk.domain.company_information.CompanyInformation", "ingenico.direct.sdk.domain.personal_information_token.PersonalInformationToken" ]
[((2597, 2606), 'ingenico.direct.sdk.domain.address.Address', 'Address', ([], {}), '()\n', (2604, 2606), False, 'from ingenico.direct.sdk.domain.address import Address\n'), ((2941, 2961), 'ingenico.direct.sdk.domain.company_information.CompanyInformation', 'CompanyInformation', ([], {}), '()\n', (2959, 2961), False, 'from ingenico.direct.sdk.domain.company_information import CompanyInformation\n'), ((3307, 3333), 'ingenico.direct.sdk.domain.personal_information_token.PersonalInformationToken', 'PersonalInformationToken', ([], {}), '()\n', (3331, 3333), False, 'from ingenico.direct.sdk.domain.personal_information_token import PersonalInformationToken\n')]
import time import pykeyboard # TODO: Replace following two lines with the code that activate the application. print('Activate the application 3 seconds.') time.sleep(3) k = pykeyboard.PyKeyboard() k.press_key(k.left_key) time.sleep(1) # Hold down left key for 1 second. k.release_key(k.left_key)
[ "pykeyboard.PyKeyboard", "time.sleep" ]
[((159, 172), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (169, 172), False, 'import time\n'), ((178, 201), 'pykeyboard.PyKeyboard', 'pykeyboard.PyKeyboard', ([], {}), '()\n', (199, 201), False, 'import pykeyboard\n'), ((226, 239), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (236, 239), False, 'import time\n')]
import os import tarfile from abc import ABC, abstractmethod from glob import glob import shutil import random import zstandard """ This registry is for automatically downloading and extracting datasets. To register a class you need to inherit the DataDownloader class, provide name, filetype and url attributes, and (optionally) provide download / extract / exists / tokenize functions to check if the data exists, and, if it doesn't, download, extract and tokenize the data into the correct directory. When done, add it to the DATA_DOWNLOADERS dict. The function process_data runs the pre-processing for the selected dataset. """ DATA_DIR = os.environ.get('DATA_DIR', './data') GPT2_VOCAB_FP = f"{DATA_DIR}/gpt2-vocab.json" GPT2_VOCAB_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json" GPT2_MERGE_FP = f"{DATA_DIR}/gpt2-merges.txt" GPT2_MERGE_URL = "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt" class DataDownloader(ABC): """Dataset registry class to automatically download / extract datasets""" @property def base_dir(self): """base data directory""" return DATA_DIR @property @abstractmethod def name(self): """name of dataset""" pass @property @abstractmethod def filetype(self): """filetype of dataset""" pass @property @abstractmethod def url(self): """URL from which to download dataset""" pass def _extract_tar(self): self.path = os.path.join(self.base_dir, self.name) os.makedirs(self.path, exist_ok=True) tarfile_path = os.path.join(self.base_dir, os.path.basename(self.url)) with tarfile.open(tarfile_path, "r:gz") as dataset_tar: print(f'Extracting files from {tarfile_path}...') dataset_tar.extractall(self.path) def _extract_zstd(self, remove_zstd=True): self.path = os.path.join(self.base_dir, self.name) os.makedirs(self.path, exist_ok=True) zstd_file_path = os.path.join(self.base_dir, os.path.basename(self.url)) with open(zstd_file_path, 'rb') as compressed: decomp = zstandard.ZstdDecompressor() output_path = zstd_file_path.replace(".zst", "") with open(output_path, 'wb') as destination: decomp.copy_stream(compressed, destination) if remove_zstd: os.remove(zstd_file_path) return output_path def extract(self): """extracts dataset and moves to the correct data dir if necessary""" self._extract_tar() def exists(self): """Checks if the dataset is present""" return os.path.isdir(f"{self.base_dir}/{self.name}") def download(self): """downloads dataset""" os.makedirs(self.base_dir, exist_ok=True) os.system(f"wget {self.url} -O {os.path.join(self.base_dir, os.path.basename(self.url))}") def tokenize(self): parent_folder = os.path.join(self.base_dir, self.name) jsonl_filepath = os.path.join(parent_folder, os.path.basename(self.url)).replace(".zst", "") assert jsonl_filepath.endswith(".jsonl") os.system(f"python tools/preprocess_data.py \ --input {jsonl_filepath} \ --output-prefix {parent_folder}/{self.name} \ --vocab {GPT2_VOCAB_FP} \ --dataset-impl mmap \ --tokenizer-type GPT2BPETokenizer \ --merge-file {GPT2_MERGE_FP} \ --append-eod") def prepare(self): if not self.exists(): self.download() self.extract() self.tokenize() class Enron(DataDownloader): name = "enron" filetype = "jsonl.zst" url = "http://eaidata.bmk.sh/data/enron_emails.jsonl.zst" seed = 1 def exists(self): self.path = os.path.join(self.base_dir, self.name) return os.path.isfile(os.path.join(self.path, os.path.basename(self.url).replace(".zst", ""))) def extract(self, remove_zstd=True): self._extract_zstd(remove_zstd=remove_zstd) shutil.move(os.path.join(self.base_dir, os.path.basename(self.url).replace(".zst", "")), os.path.join(self.base_dir, self.name)) def maybe_download_gpt2_tokenizer_data(): if not os.path.isfile(GPT2_VOCAB_FP): os.system(f'wget {GPT2_VOCAB_URL} -O {GPT2_VOCAB_FP}') if not os.path.isfile(GPT2_MERGE_FP): os.system(f'wget {GPT2_MERGE_URL} -O {GPT2_MERGE_FP}') DATA_DOWNLOADERS = { "enron": Enron } def prepare_dataset(dataset_name): os.makedirs(DATA_DIR, exist_ok=True) maybe_download_gpt2_tokenizer_data() DownloaderClass = DATA_DOWNLOADERS.get(dataset_name, None) if DownloaderClass is None: raise NotImplementedError else: d = DownloaderClass() d.prepare()
[ "tarfile.open", "os.makedirs", "os.path.join", "os.environ.get", "os.path.isfile", "os.path.isdir", "os.path.basename", "os.system", "zstandard.ZstdDecompressor", "os.remove" ]
[((648, 684), 'os.environ.get', 'os.environ.get', (['"""DATA_DIR"""', '"""./data"""'], {}), "('DATA_DIR', './data')\n", (662, 684), False, 'import os\n'), ((4552, 4588), 'os.makedirs', 'os.makedirs', (['DATA_DIR'], {'exist_ok': '(True)'}), '(DATA_DIR, exist_ok=True)\n', (4563, 4588), False, 'import os\n'), ((1524, 1562), 'os.path.join', 'os.path.join', (['self.base_dir', 'self.name'], {}), '(self.base_dir, self.name)\n', (1536, 1562), False, 'import os\n'), ((1571, 1608), 'os.makedirs', 'os.makedirs', (['self.path'], {'exist_ok': '(True)'}), '(self.path, exist_ok=True)\n', (1582, 1608), False, 'import os\n'), ((1928, 1966), 'os.path.join', 'os.path.join', (['self.base_dir', 'self.name'], {}), '(self.base_dir, self.name)\n', (1940, 1966), False, 'import os\n'), ((1975, 2012), 'os.makedirs', 'os.makedirs', (['self.path'], {'exist_ok': '(True)'}), '(self.path, exist_ok=True)\n', (1986, 2012), False, 'import os\n'), ((2681, 2726), 'os.path.isdir', 'os.path.isdir', (['f"""{self.base_dir}/{self.name}"""'], {}), "(f'{self.base_dir}/{self.name}')\n", (2694, 2726), False, 'import os\n'), ((2792, 2833), 'os.makedirs', 'os.makedirs', (['self.base_dir'], {'exist_ok': '(True)'}), '(self.base_dir, exist_ok=True)\n', (2803, 2833), False, 'import os\n'), ((2982, 3020), 'os.path.join', 'os.path.join', (['self.base_dir', 'self.name'], {}), '(self.base_dir, self.name)\n', (2994, 3020), False, 'import os\n'), ((3179, 3507), 'os.system', 'os.system', (['f"""python tools/preprocess_data.py --input {jsonl_filepath} --output-prefix {parent_folder}/{self.name} --vocab {GPT2_VOCAB_FP} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {GPT2_MERGE_FP} --append-eod"""'], {}), "(\n f'python tools/preprocess_data.py --input {jsonl_filepath} --output-prefix {parent_folder}/{self.name} --vocab {GPT2_VOCAB_FP} --dataset-impl mmap --tokenizer-type GPT2BPETokenizer --merge-file {GPT2_MERGE_FP} --append-eod'\n )\n", (3188, 3507), False, 'import os\n'), ((3843, 3881), 'os.path.join', 'os.path.join', (['self.base_dir', 'self.name'], {}), '(self.base_dir, self.name)\n', (3855, 3881), False, 'import os\n'), ((4270, 4299), 'os.path.isfile', 'os.path.isfile', (['GPT2_VOCAB_FP'], {}), '(GPT2_VOCAB_FP)\n', (4284, 4299), False, 'import os\n'), ((4309, 4363), 'os.system', 'os.system', (['f"""wget {GPT2_VOCAB_URL} -O {GPT2_VOCAB_FP}"""'], {}), "(f'wget {GPT2_VOCAB_URL} -O {GPT2_VOCAB_FP}')\n", (4318, 4363), False, 'import os\n'), ((4375, 4404), 'os.path.isfile', 'os.path.isfile', (['GPT2_MERGE_FP'], {}), '(GPT2_MERGE_FP)\n', (4389, 4404), False, 'import os\n'), ((4414, 4468), 'os.system', 'os.system', (['f"""wget {GPT2_MERGE_URL} -O {GPT2_MERGE_FP}"""'], {}), "(f'wget {GPT2_MERGE_URL} -O {GPT2_MERGE_FP}')\n", (4423, 4468), False, 'import os\n'), ((1660, 1686), 'os.path.basename', 'os.path.basename', (['self.url'], {}), '(self.url)\n', (1676, 1686), False, 'import os\n'), ((1701, 1735), 'tarfile.open', 'tarfile.open', (['tarfile_path', '"""r:gz"""'], {}), "(tarfile_path, 'r:gz')\n", (1713, 1735), False, 'import tarfile\n'), ((2066, 2092), 'os.path.basename', 'os.path.basename', (['self.url'], {}), '(self.url)\n', (2082, 2092), False, 'import os\n'), ((2170, 2198), 'zstandard.ZstdDecompressor', 'zstandard.ZstdDecompressor', ([], {}), '()\n', (2196, 2198), False, 'import zstandard\n'), ((2413, 2438), 'os.remove', 'os.remove', (['zstd_file_path'], {}), '(zstd_file_path)\n', (2422, 2438), False, 'import os\n'), ((4176, 4214), 'os.path.join', 'os.path.join', (['self.base_dir', 'self.name'], {}), '(self.base_dir, self.name)\n', (4188, 4214), False, 'import os\n'), ((3074, 3100), 'os.path.basename', 'os.path.basename', (['self.url'], {}), '(self.url)\n', (3090, 3100), False, 'import os\n'), ((2902, 2928), 'os.path.basename', 'os.path.basename', (['self.url'], {}), '(self.url)\n', (2918, 2928), False, 'import os\n'), ((3936, 3962), 'os.path.basename', 'os.path.basename', (['self.url'], {}), '(self.url)\n', (3952, 3962), False, 'import os\n'), ((4127, 4153), 'os.path.basename', 'os.path.basename', (['self.url'], {}), '(self.url)\n', (4143, 4153), False, 'import os\n')]
# -*- coding: utf-8 -*- import os from django.db import models from django.db.models.signals import post_delete from django.dispatch import receiver from .base import Pessoa from djangosige.apps.login.models import Usuario from djangosige.configs.settings import MEDIA_ROOT def logo_directory_path(instance, filename): extension = os.path.splitext(filename)[1] return 'imagens/empresas/logo_{0}_{1}{2}'.format(instance.nome_razao_social, instance.id, extension) class Empresa(Pessoa): logo_file = models.ImageField( upload_to=logo_directory_path, default='imagens/logo.png', blank=True, null=True) cnae = models.CharField(max_length=10, blank=True, null=True) iest = models.CharField(max_length=32, null=True, blank=True) class Meta: verbose_name = "Empresa" @property def caminho_completo_logo(self): if self.logo_file.name != 'imagens/logo.png': return os.path.join(MEDIA_ROOT, self.logo_file.name) else: return '' def save(self, *args, **kwargs): # Deletar logo se ja existir um try: obj = Empresa.objects.get(id=self.id) if obj.logo_file != self.logo_file and obj.logo_file != 'imagens/logo.png': obj.logo_file.delete(save=False) except: pass super(Empresa, self).save(*args, **kwargs) def __unicode__(self): return u'%s' % self.nome_razao_social def __str__(self): return u'%s' % self.nome_razao_social # Deletar logo quando empresa for deletada @receiver(post_delete, sender=Empresa) def logo_post_delete_handler(sender, instance, **kwargs): # Nao deletar a imagem default 'logo.png' if instance.logo_file != 'imagens/logo.png': instance.logo_file.delete(False) class MinhaEmpresa(models.Model): m_empresa = models.ForeignKey( Empresa, on_delete=models.CASCADE, related_name='minha_empresa', blank=True, null=True) m_usuario = models.ForeignKey( Usuario, on_delete=models.CASCADE, related_name='empresa_usuario')
[ "django.db.models.ForeignKey", "os.path.splitext", "os.path.join", "django.db.models.ImageField", "django.dispatch.receiver", "django.db.models.CharField" ]
[((1620, 1657), 'django.dispatch.receiver', 'receiver', (['post_delete'], {'sender': 'Empresa'}), '(post_delete, sender=Empresa)\n', (1628, 1657), False, 'from django.dispatch import receiver\n'), ((535, 638), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': 'logo_directory_path', 'default': '"""imagens/logo.png"""', 'blank': '(True)', 'null': '(True)'}), "(upload_to=logo_directory_path, default='imagens/logo.png',\n blank=True, null=True)\n", (552, 638), False, 'from django.db import models\n'), ((657, 711), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)', 'null': '(True)'}), '(max_length=10, blank=True, null=True)\n', (673, 711), False, 'from django.db import models\n'), ((724, 778), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(32)', 'null': '(True)', 'blank': '(True)'}), '(max_length=32, null=True, blank=True)\n', (740, 778), False, 'from django.db import models\n'), ((1912, 2022), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Empresa'], {'on_delete': 'models.CASCADE', 'related_name': '"""minha_empresa"""', 'blank': '(True)', 'null': '(True)'}), "(Empresa, on_delete=models.CASCADE, related_name=\n 'minha_empresa', blank=True, null=True)\n", (1929, 2022), False, 'from django.db import models\n'), ((2045, 2134), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Usuario'], {'on_delete': 'models.CASCADE', 'related_name': '"""empresa_usuario"""'}), "(Usuario, on_delete=models.CASCADE, related_name=\n 'empresa_usuario')\n", (2062, 2134), False, 'from django.db import models\n'), ((354, 380), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (370, 380), False, 'import os\n'), ((962, 1007), 'os.path.join', 'os.path.join', (['MEDIA_ROOT', 'self.logo_file.name'], {}), '(MEDIA_ROOT, self.logo_file.name)\n', (974, 1007), False, 'import os\n')]
import os from nltk.translate.bleu_score import corpus_bleu from nltk.translate.bleu_score import SmoothingFunction import json from tqdm import tqdm, trange from random import sample import numpy as np import pickle import argparse import bert_eval_acc import svm_eval_acc smooth = SmoothingFunction() def eval_bleu(ref, pred): """ :param ref: list(list(list(any))), a list of reference sentences, each element of the list is a list of references :param pred: list(list(any)), a list of predictions :return: corpus bleu score """ return corpus_bleu(ref, pred, smoothing_function=smooth.method1) def eval_bleu_detail(ref, pred): """ :param ref: list(list(list(any))), a list of reference sentences, each element of the list is a list of references :param pred: list(list(any)), a list of predictions :return: corpus bleu score """ return corpus_bleu(ref, pred, weights=[1, 0, 0, 0], smoothing_function=smooth.method1),\ corpus_bleu(ref, pred, weights=[0, 1, 0, 0], smoothing_function=smooth.method1), \ corpus_bleu(ref, pred, weights=[0, 0, 1, 0], smoothing_function=smooth.method1), \ corpus_bleu(ref, pred, weights=[0, 0, 0, 1], smoothing_function=smooth.method1) def count_ngram(hyps_resp, n): """ Count the number of unique n-grams :param hyps_resp: list, a list of responses :param n: int, n-gram :return: the number of unique n-grams in hyps_resp """ if len(hyps_resp) == 0: print("ERROR, eval_distinct get empty input") return if type(hyps_resp[0]) != list: print("ERROR, eval_distinct takes in a list of <class 'list'>, get a list of {} instead".format( type(hyps_resp[0]))) return ngram = set() for resp in hyps_resp: if len(resp) < n: continue for i in range(len(resp) - n + 1): ngram.add(' '.join(resp[i: i + n])) return len(ngram) def eval_distinct_detail(hyps_resp): """ compute distinct score for the hyps_resp :param hyps_resp: list, a list of hyps responses :return: average distinct score for 1, 2-gram """ if len(hyps_resp) == 0: print("ERROR, eval_distinct get empty input") return if type(hyps_resp[0]) != list: print("ERROR, eval_distinct takes in a list of <class 'list'>, get a list of {} instead".format( type(hyps_resp[0]))) return hyps_resp = [[str(x) for x in l] for l in hyps_resp] hyps_resp = [(' '.join(i)).split() for i in hyps_resp] num_tokens = sum([len(i) for i in hyps_resp]) dist1 = count_ngram(hyps_resp, 1) / float(num_tokens) dist2 = count_ngram(hyps_resp, 2) / float(num_tokens) return dist1, dist2 def eval_f1(ref, pred): """ :param ref: list(list(list(any))), a list of reference sentences, each element of the list is a list of references :param pred: list(list(any)), a list of predictions :return: f1 score """ assert len(ref) == len(pred) > 0 precisions = [] recalls = [] for i, s in enumerate(pred): ref_set = set() for rs in ref[i]: for w in rs: ref_set.add(w) pred_set = set() for w in s: pred_set.add(w) p = 0 for w in s: if w in ref_set: p += 1 if len(s) > 0: p /= len(s) r = 0 for rs in ref[i]: for w in rs: if w in pred_set: r += 1 tot_l = sum([len(rs) for rs in ref[i]]) if tot_l > 0: r /= tot_l precisions.append(p) recalls.append(r) precision = sum(precisions) / len(precisions) recall = sum(recalls) / len(recalls) return 0.0 if precision == recall == 0 else 2 * precision * recall / (precision + recall) def calc_metrics_value(task, fn, n_sample=None): with open(fn) as f: res = [json.loads(i) for i in f.readlines()] s0_pred, s0_ref = [], [] s1_pred, s1_ref = [], [] for d in res: if d['style'] == 0: s0_ref.append([list(d['resp'])]) s0_pred.append(list(d['pred_style0'][0])) else: s1_ref.append([list(d['resp'])]) s1_pred.append(list(d['pred_style1'][0])) if n_sample: assert len(s0_ref) >= n_sample assert len(s1_ref) >= n_sample sampled_idxs = sample(range(len(s0_ref)), n_sample) s0_ref = [x for i, x in enumerate(s0_ref) if i in sampled_idxs] s0_pred = [x for i, x in enumerate(s0_pred) if i in sampled_idxs] sampled_idxs = sample(range(len(s1_ref)), n_sample) s1_ref = [x for i, x in enumerate(s1_ref) if i in sampled_idxs] s1_pred = [x for i, x in enumerate(s1_pred) if i in sampled_idxs] bleu_s0 = eval_bleu_detail(s0_ref, s0_pred) bleu_s1 = eval_bleu_detail(s1_ref, s1_pred) dist_s0 = eval_distinct_detail(s0_pred) dist_s1 = eval_distinct_detail(s1_pred) f1_s0 = eval_f1(s0_ref, s0_pred) f1_s1 = eval_f1(s1_ref, s1_pred) for k in range(1, 4): print('%d-gram BLEU:' % k, 's0', bleu_s0[k - 1] * 100, 's1', bleu_s1[k - 1] * 100, 'mean', (bleu_s0[k - 1] + bleu_s1[k - 1]) / 2 * 100) print('F1:', 's0', f1_s0 * 100, 's1', f1_s1 * 100, 'mean', (f1_s0 + f1_s1) / 2 * 100) print('Dist:', 's0', dist_s0[1] * 100, 's1', dist_s1[1] * 100, 'mean', (dist_s0[1] + dist_s1[1]) / 2 * 100) parser = argparse.ArgumentParser() parser.add_argument('--eval_file_path', help='path of the eval file', required=True) args = parser.parse_args() file_path = args.eval_file_path calc_metrics_value(None, file_path) print("Evaluating acc results:") bert_eval_acc.main(file_path) svm_eval_acc.main(file_path)
[ "nltk.translate.bleu_score.corpus_bleu", "nltk.translate.bleu_score.SmoothingFunction", "json.loads", "argparse.ArgumentParser", "svm_eval_acc.main", "bert_eval_acc.main" ]
[((285, 304), 'nltk.translate.bleu_score.SmoothingFunction', 'SmoothingFunction', ([], {}), '()\n', (302, 304), False, 'from nltk.translate.bleu_score import SmoothingFunction\n'), ((5559, 5584), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (5582, 5584), False, 'import argparse\n'), ((5799, 5828), 'bert_eval_acc.main', 'bert_eval_acc.main', (['file_path'], {}), '(file_path)\n', (5817, 5828), False, 'import bert_eval_acc\n'), ((5829, 5857), 'svm_eval_acc.main', 'svm_eval_acc.main', (['file_path'], {}), '(file_path)\n', (5846, 5857), False, 'import svm_eval_acc\n'), ((566, 623), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (['ref', 'pred'], {'smoothing_function': 'smooth.method1'}), '(ref, pred, smoothing_function=smooth.method1)\n', (577, 623), False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((891, 970), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (['ref', 'pred'], {'weights': '[1, 0, 0, 0]', 'smoothing_function': 'smooth.method1'}), '(ref, pred, weights=[1, 0, 0, 0], smoothing_function=smooth.method1)\n', (902, 970), False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((984, 1063), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (['ref', 'pred'], {'weights': '[0, 1, 0, 0]', 'smoothing_function': 'smooth.method1'}), '(ref, pred, weights=[0, 1, 0, 0], smoothing_function=smooth.method1)\n', (995, 1063), False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((1078, 1157), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (['ref', 'pred'], {'weights': '[0, 0, 1, 0]', 'smoothing_function': 'smooth.method1'}), '(ref, pred, weights=[0, 0, 1, 0], smoothing_function=smooth.method1)\n', (1089, 1157), False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((1172, 1251), 'nltk.translate.bleu_score.corpus_bleu', 'corpus_bleu', (['ref', 'pred'], {'weights': '[0, 0, 0, 1]', 'smoothing_function': 'smooth.method1'}), '(ref, pred, weights=[0, 0, 0, 1], smoothing_function=smooth.method1)\n', (1183, 1251), False, 'from nltk.translate.bleu_score import corpus_bleu\n'), ((3967, 3980), 'json.loads', 'json.loads', (['i'], {}), '(i)\n', (3977, 3980), False, 'import json\n')]
"""Constants for the UniFi component.""" import logging LOGGER = logging.getLogger(__package__) DOMAIN = "unifi" CONTROLLER_ID = "{host}-{site}" CONF_CONTROLLER = "controller" CONF_SITE_ID = "site" UNIFI_WIRELESS_CLIENTS = "unifi_wireless_clients" CONF_ALLOW_BANDWIDTH_SENSORS = "allow_bandwidth_sensors" CONF_BLOCK_CLIENT = "block_client" CONF_DETECTION_TIME = "detection_time" CONF_POE_CLIENTS = "poe_clients" CONF_TRACK_CLIENTS = "track_clients" CONF_TRACK_DEVICES = "track_devices" CONF_TRACK_WIRED_CLIENTS = "track_wired_clients" CONF_SSID_FILTER = "ssid_filter" DEFAULT_ALLOW_BANDWIDTH_SENSORS = False DEFAULT_POE_CLIENTS = True DEFAULT_TRACK_CLIENTS = True DEFAULT_TRACK_DEVICES = True DEFAULT_TRACK_WIRED_CLIENTS = True DEFAULT_DETECTION_TIME = 300 ATTR_MANUFACTURER = "Ubiquiti Networks"
[ "logging.getLogger" ]
[((66, 96), 'logging.getLogger', 'logging.getLogger', (['__package__'], {}), '(__package__)\n', (83, 96), False, 'import logging\n')]
import numpy as np from treelas import post_order, TreeInstance def test_demo_3x7_postord(): parent = np.array([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]) po = post_order(parent, include_root=True) expect = np.array([12, 11, 19, 20, 21, 14, 15, 18, 17, 16, 13, 10, 7, 8, 9, 3, 6, 2, 5, 4, 1], dtype='i4') - 1 assert (po == expect).all() def test_demo_3x7(): y = np.fromstring("0.62 0.73 0.71 1.5 1.17 0.43 1.08 0.62 " + "1.73 0.95 1.46 1.6 1.16 0.38 0.9 0.32 " + "-0.48 0.95 1.08 0.02 0.4", sep=" ") parent = np.array([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]) lam = 1.0 prob = TreeInstance(y, parent, lam=lam) assert prob.root == 0 assert prob.parent.dtype == np.int32 prob.solve() assert abs(prob.x.mean() - prob.y.mean()) < 1e-15 assert len(np.unique(prob.x)) == 2 assert max(np.abs(prob.dual[2:]) - lam) < 1e-12 assert max(np.abs(prob.gamma)) < 1e-15
[ "numpy.abs", "numpy.unique", "treelas.post_order", "treelas.TreeInstance", "numpy.array", "numpy.fromstring" ]
[((108, 193), 'numpy.array', 'np.array', (['[0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]'], {}), '([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16,\n 17])\n', (116, 193), True, 'import numpy as np\n'), ((222, 259), 'treelas.post_order', 'post_order', (['parent'], {'include_root': '(True)'}), '(parent, include_root=True)\n', (232, 259), False, 'from treelas import post_order, TreeInstance\n'), ((461, 606), 'numpy.fromstring', 'np.fromstring', (["('0.62 0.73 0.71 1.5 1.17 0.43 1.08 0.62 ' +\n '1.73 0.95 1.46 1.6 1.16 0.38 0.9 0.32 ' + '-0.48 0.95 1.08 0.02 0.4')"], {'sep': '""" """'}), "('0.62 0.73 0.71 1.5 1.17 0.43 1.08 0.62 ' +\n '1.73 0.95 1.46 1.6 1.16 0.38 0.9 0.32 ' + '-0.48 0.95 1.08 0.02 0.4',\n sep=' ')\n", (474, 606), True, 'import numpy as np\n'), ((656, 741), 'numpy.array', 'np.array', (['[0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16, 17]'], {}), '([0, 4, 5, 0, 3, 4, 7, 8, 5, 6, 7, 8, 9, 14, 17, 12, 15, 16, 19, 16,\n 17])\n', (664, 741), True, 'import numpy as np\n'), ((786, 818), 'treelas.TreeInstance', 'TreeInstance', (['y', 'parent'], {'lam': 'lam'}), '(y, parent, lam=lam)\n', (798, 818), False, 'from treelas import post_order, TreeInstance\n'), ((273, 374), 'numpy.array', 'np.array', (['[12, 11, 19, 20, 21, 14, 15, 18, 17, 16, 13, 10, 7, 8, 9, 3, 6, 2, 5, 4, 1]'], {'dtype': '"""i4"""'}), "([12, 11, 19, 20, 21, 14, 15, 18, 17, 16, 13, 10, 7, 8, 9, 3, 6, 2,\n 5, 4, 1], dtype='i4')\n", (281, 374), True, 'import numpy as np\n'), ((972, 989), 'numpy.unique', 'np.unique', (['prob.x'], {}), '(prob.x)\n', (981, 989), True, 'import numpy as np\n'), ((1063, 1081), 'numpy.abs', 'np.abs', (['prob.gamma'], {}), '(prob.gamma)\n', (1069, 1081), True, 'import numpy as np\n'), ((1011, 1032), 'numpy.abs', 'np.abs', (['prob.dual[2:]'], {}), '(prob.dual[2:])\n', (1017, 1032), True, 'import numpy as np\n')]
import argparse import os import torch import yaml DEFAULT_DEVICE = 'cuda:0' def load_config(): parser = argparse.ArgumentParser(description='UNet3D training') parser.add_argument('--config', type=str, help='Path to the YAML config file', required=True) args = parser.parse_args() config = _load_config_yaml(args.config) # Get a device to train on device = config.get('device', DEFAULT_DEVICE) config['device'] = torch.device(device if torch.cuda.is_available() else "cpu") return config def _load_config_yaml(config_file): return yaml.load(open(config_file, 'r'), Loader=yaml.FullLoader)
[ "torch.cuda.is_available", "argparse.ArgumentParser" ]
[((113, 167), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""UNet3D training"""'}), "(description='UNet3D training')\n", (136, 167), False, 'import argparse\n'), ((473, 498), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (496, 498), False, 'import torch\n')]
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from load_cora import load_cora from baseline_model import create_ffn from utils import run_experiment from utils import display_learning_curves # Graph convolution layer class GraphConvLayer(layers.Layer): def __init__( self, hidden_units, dropout_rate=0.2, aggregation_type="mean", combination_type="concat", normalize=False, *args, **kwargs ): super(GraphConvLayer, self).__init__(*args, **kwargs) self._aggregation_type = aggregation_type self._combination_type = combination_type self._normalize = normalize self._ffn_prepare = create_ffn(hidden_units, dropout_rate) if self._combination_type == "gated": self._update_fn = layers.GRU( units=hidden_units, activation="tanh", recurrent_activation="sigmoid", dropout=dropout_rate, return_state=True, recurrent_dropout=dropout_rate ) else: self._update_fn = create_ffn(hidden_units, dropout_rate) def _prepare(self, node_representations, weights=None): # node_representations shape is [num_edges, embedding_dim] messages = self._ffn_prepare(node_representations) if weights is not None: messages = messages * tf.expand_dims(weights, -1) return messages def _aggregate(self, node_indices, neighbour_messages): # node_indices shape is [num_edges] # neighbour_messages shape: [num_edges, representation_dim] num_nodes = tf.math.reduce_max(node_indices) + 1 if self._aggregation_type == "sum": aggregated_message = tf.math.unsorted_segment_sum( neighbour_messages, node_indices, num_segments=num_nodes ) elif self._aggregation_type == "mean": aggregated_message = tf.math.unsorted_segment_mean( neighbour_messages, node_indices, num_segments=num_nodes ) elif self._aggregation_type == "max": aggregated_message = tf.math.unsorted_segment_max( neighbour_messages, node_indices, num_segments=num_nodes ) else: raise ValueError(f"Invalid aggregation type: {self._aggregation_type}.") return aggregated_message def _update(self, node_representations, aggregated_messages): # node_representations shape is [num_nodes, representation_dim] # aggregated_messages shape is [num_nodes, representation_dim] if self._combination_type == "gru": # Create a sequence of two elements for the GRU layer h = tf.stack([node_respresentations, aggregated_messages], axis=1) elif self._combination_type == "concat": # Concatenate the node_representations and aggregated_messages h = tf.concat([node_representations, aggregated_messages], axis=1) elif self._combination_type == "add": # Add node_representations and aggregated_messages h = node_representations + aggregated_messages else: raise ValueError(f"Invalid combination type: {self._combinatino_type}.") # Apply the processing function node_embeddings = self._update_fn(h) if self._combination_type == "gru": node_embeddings = tf.unstack(node_embeddings, axis=1)[-1] if self._normalize: node_embeddings = tf.nn.l2_normalize(node_embeddings, axis=-1) return node_embeddings def call(self, inputs): """Process the inputs to produce the node_embeddings. Args: Inputs: A tuple of three elements: node_representations, edges, edge_weights. Returns: node_embeddings of shape [num_nodes, representation_dim]. """ node_representations, edges, edge_weights = inputs # Get node_indices (source) and neighbour_indices (target) from edges node_indices, neighbour_indices = edges[0], edges[1] # neighbour_representations shape is [num_edges, representation_dim] neighbour_representations = tf.gather(node_representations, neighbour_indices) # Prepare the messages of the neighbours neighbour_messages = self._prepare(neighbour_representations, edge_weights) # Aggregate the neighbour messages aggregated_messages = self._aggregate(node_indices, neighbour_messages) # Update the node embedding with the neighbour messages return self._update(node_representations, aggregated_messages) class GNNNodeClassifier(tf.keras.Model): def __init__( self, graph_info, num_classes, hidden_units, aggregation_type="sum", combination_type="concat", dropout_rate=0.2, normalize=True, *args, **kwargs ): super(GNNNodeClassifier, self).__init__(*args, **kwargs) # Unpack graph_info node_features, edges, edge_weights = graph_info self._node_features = node_features self._edges = edges self._edge_weights = edge_weights # Set edge_weights to ones if not provided if self._edge_weights is None: self._edge_weights = tf.ones(shape=edges.shape[1]) # Scale edge_weights to sum to 1 self._edge_weights = self._edge_weights / tf.math.reduce_sum(self._edge_weights) # Create a process layer self._preprocess = create_ffn(hidden_units, dropout_rate, name="preprocess") # Create the 1st GraphConv layer self._conv1 = GraphConvLayer( hidden_units, dropout_rate, aggregation_type, combination_type, normalize, name="graph_conv1" ) # Create the 2nd GraphConv layer self._conv2 = GraphConvLayer( hidden_units, dropout_rate, aggregation_type, combination_type, normalize, name="graph_conv2" ) # Create a postprocess layer self._postprocess = create_ffn(hidden_units, dropout_rate, name="postprocess") # Create a compute logits layer self._compute_logits = layers.Dense(units=num_classes, name="logits") def call(self, input_node_indices): # Preprocess the node_features to produce node representations x = self._preprocess(self._node_features) # Apply the 1st graph conv layer x1 = self._conv1((x, self._edges, self._edge_weights)) # Skip connection x = x1 + x # Apply the 2nd graph conv layer x2 = self._conv2((x, self._edges, self._edge_weights)) # Skip connection x = x2 + x # Postprocess node embedding x = self._postprocess(x) # Fetch node embeddings for the input node_indices node_embeddings = tf.gather(x, input_node_indices) # Compute logits return self._compute_logits(node_embeddings) if __name__ == '__main__': papers, train_data, test_data, paper_idx, class_idx, citations, feature_names = load_cora(verbose=1) num_features = len(feature_names) num_classes = len(class_idx) hidden_units = [32, 32] learning_rate = 0.01 dropout_rate = 0.5 epochs = 300 batch_size = 256 # Create an edges array (sparse adjacency matrix) of shape [2, num_edges] edges = citations[["source", "target"]].to_numpy().T #print(edges) # Create an edge weights array of ones (default weights) edge_weights = tf.ones(shape=edges.shape[1]) # Create a node features array of shape [num_nodes, num_features] node_features = tf.cast( papers.sort_values("paper_id")[feature_names].to_numpy(), dtype=tf.float32) # Create graph info tuple with node_features, edges, and edge_weights graph_info = (node_features, edges, edge_weights) print("Edges shape: ", edges.shape) print("Nodes shape: ", node_features.shape) gnn_model = GNNNodeClassifier( graph_info=graph_info, num_classes=num_classes, hidden_units=hidden_units, dropout_rate=dropout_rate, name="gnn_model" ) print("GNN output shape: ", gnn_model([1, 10, 100])) gnn_model.summary() # Train the GNN model X_train = train_data.paper_id.to_numpy() y_train = train_data.subject history = run_experiment(gnn_model, X_train, y_train, batch_size, epochs, learning_rate) # Plot the learning curves display_learning_curves(history, figure_name="gnn.png") # Evaluate on test data X_test = test_data.paper_id.to_numpy() y_test = test_data.subject _, test_accuracy = gnn_model.evaluate(x=X_test, y=y_test, verbose=1) print(f"Test accuracy: {round(test_accuracy * 100, 2)}%")
[ "tensorflow.expand_dims", "load_cora.load_cora", "tensorflow.unstack", "tensorflow.ones", "tensorflow.math.unsorted_segment_mean", "tensorflow.nn.l2_normalize", "utils.display_learning_curves", "utils.run_experiment", "tensorflow.concat", "tensorflow.math.unsorted_segment_sum", "tensorflow.gather", "tensorflow.keras.layers.Dense", "tensorflow.math.unsorted_segment_max", "tensorflow.math.reduce_max", "tensorflow.math.reduce_sum", "baseline_model.create_ffn", "tensorflow.stack", "tensorflow.keras.layers.GRU" ]
[((6709, 6729), 'load_cora.load_cora', 'load_cora', ([], {'verbose': '(1)'}), '(verbose=1)\n', (6718, 6729), False, 'from load_cora import load_cora\n'), ((7127, 7156), 'tensorflow.ones', 'tf.ones', ([], {'shape': 'edges.shape[1]'}), '(shape=edges.shape[1])\n', (7134, 7156), True, 'import tensorflow as tf\n'), ((7921, 7999), 'utils.run_experiment', 'run_experiment', (['gnn_model', 'X_train', 'y_train', 'batch_size', 'epochs', 'learning_rate'], {}), '(gnn_model, X_train, y_train, batch_size, epochs, learning_rate)\n', (7935, 7999), False, 'from utils import run_experiment\n'), ((8032, 8087), 'utils.display_learning_curves', 'display_learning_curves', (['history'], {'figure_name': '"""gnn.png"""'}), "(history, figure_name='gnn.png')\n", (8055, 8087), False, 'from utils import display_learning_curves\n'), ((698, 736), 'baseline_model.create_ffn', 'create_ffn', (['hidden_units', 'dropout_rate'], {}), '(hidden_units, dropout_rate)\n', (708, 736), False, 'from baseline_model import create_ffn\n'), ((3969, 4019), 'tensorflow.gather', 'tf.gather', (['node_representations', 'neighbour_indices'], {}), '(node_representations, neighbour_indices)\n', (3978, 4019), True, 'import tensorflow as tf\n'), ((5213, 5270), 'baseline_model.create_ffn', 'create_ffn', (['hidden_units', 'dropout_rate'], {'name': '"""preprocess"""'}), "(hidden_units, dropout_rate, name='preprocess')\n", (5223, 5270), False, 'from baseline_model import create_ffn\n'), ((5766, 5824), 'baseline_model.create_ffn', 'create_ffn', (['hidden_units', 'dropout_rate'], {'name': '"""postprocess"""'}), "(hidden_units, dropout_rate, name='postprocess')\n", (5776, 5824), False, 'from baseline_model import create_ffn\n'), ((5888, 5934), 'tensorflow.keras.layers.Dense', 'layers.Dense', ([], {'units': 'num_classes', 'name': '"""logits"""'}), "(units=num_classes, name='logits')\n", (5900, 5934), False, 'from tensorflow.keras import layers\n'), ((6492, 6524), 'tensorflow.gather', 'tf.gather', (['x', 'input_node_indices'], {}), '(x, input_node_indices)\n', (6501, 6524), True, 'import tensorflow as tf\n'), ((803, 967), 'tensorflow.keras.layers.GRU', 'layers.GRU', ([], {'units': 'hidden_units', 'activation': '"""tanh"""', 'recurrent_activation': '"""sigmoid"""', 'dropout': 'dropout_rate', 'return_state': '(True)', 'recurrent_dropout': 'dropout_rate'}), "(units=hidden_units, activation='tanh', recurrent_activation=\n 'sigmoid', dropout=dropout_rate, return_state=True, recurrent_dropout=\n dropout_rate)\n", (813, 967), False, 'from tensorflow.keras import layers\n'), ((1060, 1098), 'baseline_model.create_ffn', 'create_ffn', (['hidden_units', 'dropout_rate'], {}), '(hidden_units, dropout_rate)\n', (1070, 1098), False, 'from baseline_model import create_ffn\n'), ((1560, 1592), 'tensorflow.math.reduce_max', 'tf.math.reduce_max', (['node_indices'], {}), '(node_indices)\n', (1578, 1592), True, 'import tensorflow as tf\n'), ((1664, 1755), 'tensorflow.math.unsorted_segment_sum', 'tf.math.unsorted_segment_sum', (['neighbour_messages', 'node_indices'], {'num_segments': 'num_nodes'}), '(neighbour_messages, node_indices, num_segments\n =num_nodes)\n', (1692, 1755), True, 'import tensorflow as tf\n'), ((2609, 2671), 'tensorflow.stack', 'tf.stack', (['[node_respresentations, aggregated_messages]'], {'axis': '(1)'}), '([node_respresentations, aggregated_messages], axis=1)\n', (2617, 2671), True, 'import tensorflow as tf\n'), ((3331, 3375), 'tensorflow.nn.l2_normalize', 'tf.nn.l2_normalize', (['node_embeddings'], {'axis': '(-1)'}), '(node_embeddings, axis=-1)\n', (3349, 3375), True, 'import tensorflow as tf\n'), ((5008, 5037), 'tensorflow.ones', 'tf.ones', ([], {'shape': 'edges.shape[1]'}), '(shape=edges.shape[1])\n', (5015, 5037), True, 'import tensorflow as tf\n'), ((5121, 5159), 'tensorflow.math.reduce_sum', 'tf.math.reduce_sum', (['self._edge_weights'], {}), '(self._edge_weights)\n', (5139, 5159), True, 'import tensorflow as tf\n'), ((1332, 1359), 'tensorflow.expand_dims', 'tf.expand_dims', (['weights', '(-1)'], {}), '(weights, -1)\n', (1346, 1359), True, 'import tensorflow as tf\n'), ((1859, 1950), 'tensorflow.math.unsorted_segment_mean', 'tf.math.unsorted_segment_mean', (['neighbour_messages', 'node_indices'], {'num_segments': 'num_nodes'}), '(neighbour_messages, node_indices,\n num_segments=num_nodes)\n', (1888, 1950), True, 'import tensorflow as tf\n'), ((2796, 2858), 'tensorflow.concat', 'tf.concat', (['[node_representations, aggregated_messages]'], {'axis': '(1)'}), '([node_representations, aggregated_messages], axis=1)\n', (2805, 2858), True, 'import tensorflow as tf\n'), ((3242, 3277), 'tensorflow.unstack', 'tf.unstack', (['node_embeddings'], {'axis': '(1)'}), '(node_embeddings, axis=1)\n', (3252, 3277), True, 'import tensorflow as tf\n'), ((2054, 2145), 'tensorflow.math.unsorted_segment_max', 'tf.math.unsorted_segment_max', (['neighbour_messages', 'node_indices'], {'num_segments': 'num_nodes'}), '(neighbour_messages, node_indices, num_segments\n =num_nodes)\n', (2082, 2145), True, 'import tensorflow as tf\n')]
from db import db class RisklayerPrognosis(db.Model): __tablename__ = 'risklayer_prognosis' datenbestand = db.Column(db.TIMESTAMP, primary_key=True, nullable=False) prognosis = db.Column(db.Float, nullable=False) # class RisklayerPrognosisSchema(SQLAlchemyAutoSchema): # class Meta: # strict = True # model = RisklayerPrognosis # # timestamp = fields.Timestamp(data_key="datenbestand") # prognosis = fields.Number(data_key="prognosis")
[ "db.db.Column" ]
[((118, 175), 'db.db.Column', 'db.Column', (['db.TIMESTAMP'], {'primary_key': '(True)', 'nullable': '(False)'}), '(db.TIMESTAMP, primary_key=True, nullable=False)\n', (127, 175), False, 'from db import db\n'), ((192, 227), 'db.db.Column', 'db.Column', (['db.Float'], {'nullable': '(False)'}), '(db.Float, nullable=False)\n', (201, 227), False, 'from db import db\n')]
# SPDX-FileCopyrightText: 2014 MicroPython & CircuitPython contributors (https://github.com/adafruit/circuitpython/graphs/contributors) # # SPDX-License-Identifier: MIT import argparse import os import sys sys.path.append("../../tools/usb_descriptor") from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util import hid_report_descriptors DEFAULT_INTERFACE_NAME = 'CircuitPython' ALL_DEVICES='CDC,MSC,AUDIO,HID' ALL_DEVICES_SET=frozenset(ALL_DEVICES.split(',')) DEFAULT_DEVICES='CDC,MSC,AUDIO,HID' ALL_HID_DEVICES='KEYBOARD,MOUSE,CONSUMER,SYS_CONTROL,GAMEPAD,DIGITIZER,XAC_COMPATIBLE_GAMEPAD,RAW' ALL_HID_DEVICES_SET=frozenset(ALL_HID_DEVICES.split(',')) # Digitizer works on Linux but conflicts with mouse, so omit it. DEFAULT_HID_DEVICES='KEYBOARD,MOUSE,CONSUMER,GAMEPAD' parser = argparse.ArgumentParser(description='Generate USB descriptors.') parser.add_argument('--highspeed', default=False, action='store_true', help='descriptor for highspeed device') parser.add_argument('--manufacturer', type=str, help='manufacturer of the device') parser.add_argument('--product', type=str, help='product name of the device') parser.add_argument('--vid', type=lambda x: int(x, 16), help='vendor id') parser.add_argument('--pid', type=lambda x: int(x, 16), help='product id') parser.add_argument('--serial_number_length', type=int, default=32, help='length needed for the serial number in digits') parser.add_argument('--devices', type=lambda l: tuple(l.split(',')), default=DEFAULT_DEVICES, help='devices to include in descriptor (AUDIO includes MIDI support)') parser.add_argument('--hid_devices', type=lambda l: tuple(l.split(',')), default=DEFAULT_HID_DEVICES, help='HID devices to include in HID report descriptor') parser.add_argument('--interface_name', type=str, help='The name/prefix to use in the interface descriptions', default=DEFAULT_INTERFACE_NAME) parser.add_argument('--no-renumber_endpoints', dest='renumber_endpoints', action='store_false', help='use to not renumber endpoint') parser.add_argument('--cdc_ep_num_notification', type=int, default=0, help='endpoint number of CDC NOTIFICATION') parser.add_argument('--cdc_ep_num_data_out', type=int, default=0, help='endpoint number of CDC DATA OUT') parser.add_argument('--cdc_ep_num_data_in', type=int, default=0, help='endpoint number of CDC DATA IN') parser.add_argument('--msc_ep_num_out', type=int, default=0, help='endpoint number of MSC OUT') parser.add_argument('--msc_ep_num_in', type=int, default=0, help='endpoint number of MSC IN') parser.add_argument('--hid_ep_num_out', type=int, default=0, help='endpoint number of HID OUT') parser.add_argument('--hid_ep_num_in', type=int, default=0, help='endpoint number of HID IN') parser.add_argument('--midi_ep_num_out', type=int, default=0, help='endpoint number of MIDI OUT') parser.add_argument('--midi_ep_num_in', type=int, default=0, help='endpoint number of MIDI IN') parser.add_argument('--output_c_file', type=argparse.FileType('w', encoding='UTF-8'), required=True) parser.add_argument('--output_h_file', type=argparse.FileType('w', encoding='UTF-8'), required=True) args = parser.parse_args() unknown_devices = list(frozenset(args.devices) - ALL_DEVICES_SET) if unknown_devices: raise ValueError("Unknown device(s)", unknown_devices) unknown_hid_devices = list(frozenset(args.hid_devices) - ALL_HID_DEVICES_SET) if unknown_hid_devices: raise ValueError("Unknown HID devices(s)", unknown_hid_devices) if not args.renumber_endpoints: if 'CDC' in args.devices: if args.cdc_ep_num_notification == 0: raise ValueError("CDC notification endpoint number must not be 0") elif args.cdc_ep_num_data_out == 0: raise ValueError("CDC data OUT endpoint number must not be 0") elif args.cdc_ep_num_data_in == 0: raise ValueError("CDC data IN endpoint number must not be 0") if 'MSC' in args.devices: if args.msc_ep_num_out == 0: raise ValueError("MSC endpoint OUT number must not be 0") elif args.msc_ep_num_in == 0: raise ValueError("MSC endpoint IN number must not be 0") if 'HID' in args.devices: if args.args.hid_ep_num_out == 0: raise ValueError("HID endpoint OUT number must not be 0") elif args.hid_ep_num_in == 0: raise ValueError("HID endpoint IN number must not be 0") if 'AUDIO' in args.devices: if args.args.midi_ep_num_out == 0: raise ValueError("MIDI endpoint OUT number must not be 0") elif args.midi_ep_num_in == 0: raise ValueError("MIDI endpoint IN number must not be 0") class StringIndex: """Assign a monotonically increasing index to each unique string. Start with 0.""" string_to_index = {} index_to_variable = {} strings = [] @classmethod def index(cls, string, *, variable_name = None): if string in cls.string_to_index: idx = cls.string_to_index[string] if not cls.index_to_variable[idx]: cls.index_to_variable[idx] = variable_name return idx else: idx = len(cls.strings) cls.string_to_index[string] = idx cls.strings.append(string) cls.index_to_variable[idx] = variable_name return idx @classmethod def strings_in_order(cls): return cls.strings # langid must be the 0th string descriptor LANGID_INDEX = StringIndex.index("\u0409", variable_name="language_id") assert LANGID_INDEX == 0 SERIAL_NUMBER_INDEX = StringIndex.index("S" * args.serial_number_length, variable_name="usb_serial_number") device = standard.DeviceDescriptor( description="top", idVendor=args.vid, idProduct=args.pid, iManufacturer=StringIndex.index(args.manufacturer), iProduct=StringIndex.index(args.product), iSerialNumber=SERIAL_NUMBER_INDEX) # Interface numbers are interface-set local and endpoints are interface local # until util.join_interfaces renumbers them. cdc_union = cdc.Union( description="CDC comm", bMasterInterface=0x00, # Adjust this after interfaces are renumbered. bSlaveInterface_list=[0x01]) # Adjust this after interfaces are renumbered. cdc_call_management = cdc.CallManagement( description="CDC comm", bmCapabilities=0x01, bDataInterface=0x01) # Adjust this after interfaces are renumbered. cdc_comm_interface = standard.InterfaceDescriptor( description="CDC comm", bInterfaceClass=cdc.CDC_CLASS_COMM, # Communications Device Class bInterfaceSubClass=cdc.CDC_SUBCLASS_ACM, # Abstract control model bInterfaceProtocol=cdc.CDC_PROTOCOL_NONE, iInterface=StringIndex.index("{} CDC control".format(args.interface_name)), subdescriptors=[ cdc.Header( description="CDC comm", bcdCDC=0x0110), cdc_call_management, cdc.AbstractControlManagement( description="CDC comm", bmCapabilities=0x02), cdc_union, standard.EndpointDescriptor( description="CDC comm in", bEndpointAddress=args.cdc_ep_num_notification | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, wMaxPacketSize=0x0040, bInterval=0x10) ]) cdc_data_interface = standard.InterfaceDescriptor( description="CDC data", bInterfaceClass=cdc.CDC_CLASS_DATA, iInterface=StringIndex.index("{} CDC data".format(args.interface_name)), subdescriptors=[ standard.EndpointDescriptor( description="CDC data out", bEndpointAddress=args.cdc_ep_num_data_out | standard.EndpointDescriptor.DIRECTION_OUT, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), standard.EndpointDescriptor( description="CDC data in", bEndpointAddress=args.cdc_ep_num_data_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), ]) cdc_interfaces = [cdc_comm_interface, cdc_data_interface] msc_interfaces = [ standard.InterfaceDescriptor( description="MSC", bInterfaceClass=msc.MSC_CLASS, bInterfaceSubClass=msc.MSC_SUBCLASS_TRANSPARENT, bInterfaceProtocol=msc.MSC_PROTOCOL_BULK, iInterface=StringIndex.index("{} Mass Storage".format(args.interface_name)), subdescriptors=[ standard.EndpointDescriptor( description="MSC in", bEndpointAddress=args.msc_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), standard.EndpointDescriptor( description="MSC out", bEndpointAddress=(args.msc_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT), bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), ] ) ] # When there's only one hid_device, it shouldn't have a report id. # Otherwise, report ids are assigned sequentially: # args.hid_devices[0] has report_id 1 # args.hid_devices[1] has report_id 2 # etc. report_ids = {} if len(args.hid_devices) == 1: name = args.hid_devices[0] combined_hid_report_descriptor = hid.ReportDescriptor( description=name, report_descriptor=bytes(hid_report_descriptors.REPORT_DESCRIPTOR_FUNCTIONS[name](0))) report_ids[name] = 0 else: report_id = 1 concatenated_descriptors = bytearray() for name in args.hid_devices: concatenated_descriptors.extend( bytes(hid_report_descriptors.REPORT_DESCRIPTOR_FUNCTIONS[name](report_id))) report_ids[name] = report_id report_id += 1 combined_hid_report_descriptor = hid.ReportDescriptor( description="MULTIDEVICE", report_descriptor=bytes(concatenated_descriptors)) # ASF4 expects keyboard and generic devices to have both in and out endpoints, # and will fail (possibly silently) if both are not supplied. hid_endpoint_in_descriptor = standard.EndpointDescriptor( description="HID in", bEndpointAddress=args.hid_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8) hid_endpoint_out_descriptor = standard.EndpointDescriptor( description="HID out", bEndpointAddress=args.hid_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT, bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8) hid_interfaces = [ standard.InterfaceDescriptor( description="HID Multiple Devices", bInterfaceClass=hid.HID_CLASS, bInterfaceSubClass=hid.HID_SUBCLASS_NOBOOT, bInterfaceProtocol=hid.HID_PROTOCOL_NONE, iInterface=StringIndex.index("{} HID".format(args.interface_name)), subdescriptors=[ hid.HIDDescriptor( description="HID", wDescriptorLength=len(bytes(combined_hid_report_descriptor))), hid_endpoint_in_descriptor, hid_endpoint_out_descriptor, ] ), ] # Audio! # In and out here are relative to CircuitPython # USB OUT -> midi_in_jack_emb -> midi_out_jack_ext -> CircuitPython midi_in_jack_emb = midi.InJackDescriptor( description="MIDI PC -> {}".format(args.interface_name), bJackType=midi.JACK_TYPE_EMBEDDED, iJack=StringIndex.index("{} usb_midi.ports[0]".format(args.interface_name))) midi_out_jack_ext = midi.OutJackDescriptor( description="MIDI data out to user code.", bJackType=midi.JACK_TYPE_EXTERNAL, input_pins=[(midi_in_jack_emb, 1)], iJack=0) # USB IN <- midi_out_jack_emb <- midi_in_jack_ext <- CircuitPython midi_in_jack_ext = midi.InJackDescriptor( description="MIDI data in from user code.", bJackType=midi.JACK_TYPE_EXTERNAL, iJack=0) midi_out_jack_emb = midi.OutJackDescriptor( description="MIDI PC <- {}".format(args.interface_name), bJackType=midi.JACK_TYPE_EMBEDDED, input_pins=[(midi_in_jack_ext, 1)], iJack=StringIndex.index("{} usb_midi.ports[1]".format(args.interface_name))) audio_midi_interface = standard.InterfaceDescriptor( description="Midi goodness", bInterfaceClass=audio.AUDIO_CLASS_DEVICE, bInterfaceSubClass=audio.AUDIO_SUBCLASS_MIDI_STREAMING, bInterfaceProtocol=audio.AUDIO_PROTOCOL_V1, iInterface=StringIndex.index("{} MIDI".format(args.interface_name)), subdescriptors=[ midi.Header( jacks_and_elements=[ midi_in_jack_emb, midi_in_jack_ext, midi_out_jack_emb, midi_out_jack_ext ], ), standard.EndpointDescriptor( description="MIDI data out to {}".format(args.interface_name), bEndpointAddress=args.midi_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if args.highspeed else 64), midi.DataEndpointDescriptor(baAssocJack=[midi_in_jack_emb]), standard.EndpointDescriptor( description="MIDI data in from {}".format(args.interface_name), bEndpointAddress=args.midi_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval = 0x0, wMaxPacketSize=512 if args.highspeed else 64), midi.DataEndpointDescriptor(baAssocJack=[midi_out_jack_emb]), ]) cs_ac_interface = audio10.AudioControlInterface( description="Empty audio control", audio_streaming_interfaces = [], midi_streaming_interfaces = [ audio_midi_interface ] ) audio_control_interface = standard.InterfaceDescriptor( description="All the audio", bInterfaceClass=audio.AUDIO_CLASS_DEVICE, bInterfaceSubClass=audio.AUDIO_SUBCLASS_CONTROL, bInterfaceProtocol=audio.AUDIO_PROTOCOL_V1, iInterface=StringIndex.index("{} Audio".format(args.interface_name)), subdescriptors=[ cs_ac_interface, ]) # Audio streaming interfaces must occur before MIDI ones. audio_interfaces = [audio_control_interface] + cs_ac_interface.audio_streaming_interfaces + cs_ac_interface.midi_streaming_interfaces interfaces_to_join = [] if 'CDC' in args.devices: interfaces_to_join.append(cdc_interfaces) if 'MSC' in args.devices: interfaces_to_join.append(msc_interfaces) if 'HID' in args.devices: interfaces_to_join.append(hid_interfaces) if 'AUDIO' in args.devices: interfaces_to_join.append(audio_interfaces) # util.join_interfaces() will renumber the endpoints to make them unique across descriptors, # and renumber the interfaces in order. But we still need to fix up certain # interface cross-references. interfaces = util.join_interfaces(interfaces_to_join, renumber_endpoints=args.renumber_endpoints) # Now adjust the CDC interface cross-references. cdc_union.bMasterInterface = cdc_comm_interface.bInterfaceNumber cdc_union.bSlaveInterface_list = [cdc_data_interface.bInterfaceNumber] cdc_call_management.bDataInterface = cdc_data_interface.bInterfaceNumber cdc_iad = standard.InterfaceAssociationDescriptor( description="CDC IAD", bFirstInterface=cdc_comm_interface.bInterfaceNumber, bInterfaceCount=len(cdc_interfaces), bFunctionClass=cdc.CDC_CLASS_COMM, # Communications Device Class bFunctionSubClass=cdc.CDC_SUBCLASS_ACM, # Abstract control model bFunctionProtocol=cdc.CDC_PROTOCOL_NONE) descriptor_list = [] if 'CDC' in args.devices: # Put the CDC IAD just before the CDC interfaces. # There appears to be a bug in the Windows composite USB driver that requests the # HID report descriptor with the wrong interface number if the HID interface is not given # first. However, it still fetches the descriptor anyway. We could reorder the interfaces but # the Windows 7 Adafruit_usbser.inf file thinks CDC is at Interface 0, so we'll leave it # there for backwards compatibility. descriptor_list.append(cdc_iad) descriptor_list.extend(cdc_interfaces) if 'MSC' in args.devices: descriptor_list.extend(msc_interfaces) if 'HID' in args.devices: descriptor_list.extend(hid_interfaces) if 'AUDIO' in args.devices: # Only add the control interface because other audio interfaces are managed by it to ensure the # correct ordering. descriptor_list.append(audio_control_interface) # Finally, build the composite descriptor. configuration = standard.ConfigurationDescriptor( description="Composite configuration", wTotalLength=(standard.ConfigurationDescriptor.bLength + sum([len(bytes(x)) for x in descriptor_list])), bNumInterfaces=len(interfaces)) descriptor_list.insert(0, configuration) string_descriptors = [standard.StringDescriptor(string) for string in StringIndex.strings_in_order()] serial_number_descriptor = string_descriptors[SERIAL_NUMBER_INDEX] c_file = args.output_c_file h_file = args.output_h_file c_file.write("""\ #include <stdint.h> #include "py/objtuple.h" #include "shared-bindings/usb_hid/Device.h" #include "{H_FILE_NAME}" """.format(H_FILE_NAME=h_file.name)) c_file.write("""\ // {DESCRIPTION} : {CLASS} """.format(DESCRIPTION=device.description, CLASS=device.__class__)) c_file.write("""\ const uint8_t usb_desc_dev[] = { """) for b in bytes(device): c_file.write("0x{:02x}, ".format(b)) c_file.write("""\ }; """) c_file.write("""\ const uint8_t usb_desc_cfg[] = { """) # Write out all the regular descriptors as one long array (that's how ASF4 does it). descriptor_length = 0 for descriptor in descriptor_list: c_file.write("""\ // {DESCRIPTION} : {CLASS} """.format(DESCRIPTION=descriptor.description, CLASS=descriptor.__class__)) b = bytes(descriptor) notes = descriptor.notes() i = 0 # This prints each subdescriptor on a separate line. n = 0 while i < len(b): length = b[i] for j in range(length): c_file.write("0x{:02x}, ".format(b[i + j])) c_file.write("// " + notes[n]) n += 1 c_file.write("\n") i += length descriptor_length += len(b) c_file.write("""\ }; """) pointers_to_strings = [] for idx, descriptor in enumerate(string_descriptors): c_file.write("""\ // {DESCRIPTION} : {CLASS} """.format(DESCRIPTION=descriptor.description, CLASS=descriptor.__class__)) b = bytes(descriptor) notes = descriptor.notes() i = 0 # This prints each subdescriptor on a separate line. variable_name = StringIndex.index_to_variable[idx] if not variable_name: variable_name = "string_descriptor{}".format(idx) const = "const " if variable_name == "usb_serial_number": const = "" c_file.write("""\ {const}uint16_t {NAME}[] = {{ """.format(const=const, NAME=variable_name)) pointers_to_strings.append("{name}".format(name=variable_name)) n = 0 while i < len(b): length = b[i] for j in range(length // 2): c_file.write("0x{:04x}, ".format(b[i + 2*j + 1] << 8 | b[i + 2*j])) n += 1 c_file.write("\n") i += length c_file.write("""\ }; """) c_file.write("""\ // array of pointer to string descriptors uint16_t const * const string_desc_arr [] = { """) c_file.write(""",\ """.join(pointers_to_strings)) c_file.write(""" }; """) c_file.write("\n") hid_descriptor_length = len(bytes(combined_hid_report_descriptor)) # Now we values we need for the .h file. h_file.write("""\ #ifndef MICROPY_INCLUDED_AUTOGEN_USB_DESCRIPTOR_H #define MICROPY_INCLUDED_AUTOGEN_USB_DESCRIPTOR_H #include <stdint.h> extern const uint8_t usb_desc_dev[{device_length}]; extern const uint8_t usb_desc_cfg[{configuration_length}]; extern uint16_t usb_serial_number[{serial_number_length}]; extern uint16_t const * const string_desc_arr [{string_descriptor_length}]; extern const uint8_t hid_report_descriptor[{hid_report_descriptor_length}]; #define CFG_TUSB_RHPORT0_MODE ({rhport0_mode}) #define USB_HID_NUM_DEVICES {hid_num_devices} // Vendor name included in Inquiry response, max 8 bytes #define CFG_TUD_MSC_VENDOR "{msc_vendor}" // Product name included in Inquiry response, max 16 bytes #define CFG_TUD_MSC_PRODUCT "{msc_product}" """ .format(serial_number_length=len(bytes(serial_number_descriptor)) // 2, device_length=len(bytes(device)), configuration_length=descriptor_length, max_configuration_length=max(hid_descriptor_length, descriptor_length), string_descriptor_length=len(pointers_to_strings), hid_report_descriptor_length=len(bytes(combined_hid_report_descriptor)), rhport0_mode='OPT_MODE_DEVICE | OPT_MODE_HIGH_SPEED' if args.highspeed else 'OPT_MODE_DEVICE', hid_num_devices=len(args.hid_devices), msc_vendor=args.manufacturer[:8], msc_product=args.product[:16])) # Write out the report descriptor and info c_file.write("""\ const uint8_t hid_report_descriptor[{HID_DESCRIPTOR_LENGTH}] = {{ """.format(HID_DESCRIPTOR_LENGTH=hid_descriptor_length)) for b in bytes(combined_hid_report_descriptor): c_file.write("0x{:02x}, ".format(b)) c_file.write("""\ }; """) # Write out USB HID report buffer definitions. for name in args.hid_devices: c_file.write("""\ static uint8_t {name}_report_buffer[{report_length}]; """.format(name=name.lower(), report_length=hid_report_descriptors.HID_DEVICE_DATA[name].report_length)) if hid_report_descriptors.HID_DEVICE_DATA[name].out_report_length > 0: c_file.write("""\ static uint8_t {name}_out_report_buffer[{report_length}]; """.format(name=name.lower(), report_length=hid_report_descriptors.HID_DEVICE_DATA[name].out_report_length)) # Write out table of device objects. c_file.write(""" usb_hid_device_obj_t usb_hid_devices[] = { """) for name in args.hid_devices: device_data = hid_report_descriptors.HID_DEVICE_DATA[name] out_report_buffer = '{}_out_report_buffer'.format(name.lower()) if device_data.out_report_length > 0 else 'NULL' c_file.write("""\ {{ .base = {{ .type = &usb_hid_device_type }}, .report_buffer = {name}_report_buffer, .report_id = {report_id}, .report_length = {report_length}, .usage_page = {usage_page:#04x}, .usage = {usage:#04x}, .out_report_buffer = {out_report_buffer}, .out_report_length = {out_report_length}, }}, """.format(name=name.lower(), report_id=report_ids[name], report_length=device_data.report_length, usage_page=device_data.usage_page, usage=device_data.usage, out_report_buffer=out_report_buffer, out_report_length=device_data.out_report_length)) c_file.write("""\ }; """) # Write out tuple of device objects. c_file.write(""" mp_obj_tuple_t common_hal_usb_hid_devices = {{ .base = {{ .type = &mp_type_tuple, }}, .len = {num_devices}, .items = {{ """.format(num_devices=len(args.hid_devices))) for idx in range(len(args.hid_devices)): c_file.write("""\ (mp_obj_t) &usb_hid_devices[{idx}], """.format(idx=idx)) c_file.write("""\ }, }; """) h_file.write("""\ #endif // MICROPY_INCLUDED_AUTOGEN_USB_DESCRIPTOR_H """)
[ "adafruit_usb_descriptor.cdc.CallManagement", "adafruit_usb_descriptor.midi.InJackDescriptor", "argparse.FileType", "adafruit_usb_descriptor.midi.OutJackDescriptor", "adafruit_usb_descriptor.midi.Header", "argparse.ArgumentParser", "adafruit_usb_descriptor.cdc.Header", "adafruit_usb_descriptor.cdc.Union", "adafruit_usb_descriptor.cdc.AbstractControlManagement", "adafruit_usb_descriptor.standard.EndpointDescriptor", "adafruit_usb_descriptor.audio10.AudioControlInterface", "adafruit_usb_descriptor.standard.StringDescriptor", "adafruit_usb_descriptor.midi.DataEndpointDescriptor", "adafruit_usb_descriptor.util.join_interfaces", "sys.path.append" ]
[((209, 254), 'sys.path.append', 'sys.path.append', (['"""../../tools/usb_descriptor"""'], {}), "('../../tools/usb_descriptor')\n", (224, 254), False, 'import sys\n'), ((821, 885), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate USB descriptors."""'}), "(description='Generate USB descriptors.')\n", (844, 885), False, 'import argparse\n'), ((6439, 6518), 'adafruit_usb_descriptor.cdc.Union', 'cdc.Union', ([], {'description': '"""CDC comm"""', 'bMasterInterface': '(0)', 'bSlaveInterface_list': '[1]'}), "(description='CDC comm', bMasterInterface=0, bSlaveInterface_list=[1])\n", (6448, 6518), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((6661, 6739), 'adafruit_usb_descriptor.cdc.CallManagement', 'cdc.CallManagement', ([], {'description': '"""CDC comm"""', 'bmCapabilities': '(1)', 'bDataInterface': '(1)'}), "(description='CDC comm', bmCapabilities=1, bDataInterface=1)\n", (6679, 6739), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((10800, 11009), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""HID in"""', 'bEndpointAddress': '(args.hid_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_INTERRUPT', 'bInterval': '(8)'}), "(description='HID in', bEndpointAddress=args.\n hid_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=\n standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8)\n", (10827, 11009), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((11048, 11259), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""HID out"""', 'bEndpointAddress': '(args.hid_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_INTERRUPT', 'bInterval': '(8)'}), "(description='HID out', bEndpointAddress=args.\n hid_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT,\n bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, bInterval=8)\n", (11075, 11259), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((12235, 12385), 'adafruit_usb_descriptor.midi.OutJackDescriptor', 'midi.OutJackDescriptor', ([], {'description': '"""MIDI data out to user code."""', 'bJackType': 'midi.JACK_TYPE_EXTERNAL', 'input_pins': '[(midi_in_jack_emb, 1)]', 'iJack': '(0)'}), "(description='MIDI data out to user code.', bJackType\n =midi.JACK_TYPE_EXTERNAL, input_pins=[(midi_in_jack_emb, 1)], iJack=0)\n", (12257, 12385), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((12549, 12663), 'adafruit_usb_descriptor.midi.InJackDescriptor', 'midi.InJackDescriptor', ([], {'description': '"""MIDI data in from user code."""', 'bJackType': 'midi.JACK_TYPE_EXTERNAL', 'iJack': '(0)'}), "(description='MIDI data in from user code.', bJackType\n =midi.JACK_TYPE_EXTERNAL, iJack=0)\n", (12570, 12663), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((14416, 14570), 'adafruit_usb_descriptor.audio10.AudioControlInterface', 'audio10.AudioControlInterface', ([], {'description': '"""Empty audio control"""', 'audio_streaming_interfaces': '[]', 'midi_streaming_interfaces': '[audio_midi_interface]'}), "(description='Empty audio control',\n audio_streaming_interfaces=[], midi_streaming_interfaces=[\n audio_midi_interface])\n", (14445, 14570), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((15741, 15830), 'adafruit_usb_descriptor.util.join_interfaces', 'util.join_interfaces', (['interfaces_to_join'], {'renumber_endpoints': 'args.renumber_endpoints'}), '(interfaces_to_join, renumber_endpoints=args.\n renumber_endpoints)\n', (15761, 15830), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((17753, 17786), 'adafruit_usb_descriptor.standard.StringDescriptor', 'standard.StringDescriptor', (['string'], {}), '(string)\n', (17778, 17786), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((3370, 3410), 'argparse.FileType', 'argparse.FileType', (['"""w"""'], {'encoding': '"""UTF-8"""'}), "('w', encoding='UTF-8')\n", (3387, 3410), False, 'import argparse\n'), ((3471, 3511), 'argparse.FileType', 'argparse.FileType', (['"""w"""'], {'encoding': '"""UTF-8"""'}), "('w', encoding='UTF-8')\n", (3488, 3511), False, 'import argparse\n'), ((7191, 7237), 'adafruit_usb_descriptor.cdc.Header', 'cdc.Header', ([], {'description': '"""CDC comm"""', 'bcdCDC': '(272)'}), "(description='CDC comm', bcdCDC=272)\n", (7201, 7237), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((7304, 7375), 'adafruit_usb_descriptor.cdc.AbstractControlManagement', 'cdc.AbstractControlManagement', ([], {'description': '"""CDC comm"""', 'bmCapabilities': '(2)'}), "(description='CDC comm', bmCapabilities=2)\n", (7333, 7375), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((7432, 7680), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""CDC comm in"""', 'bEndpointAddress': '(args.cdc_ep_num_notification | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_INTERRUPT', 'wMaxPacketSize': '(64)', 'bInterval': '(16)'}), "(description='CDC comm in', bEndpointAddress=\n args.cdc_ep_num_notification | standard.EndpointDescriptor.DIRECTION_IN,\n bmAttributes=standard.EndpointDescriptor.TYPE_INTERRUPT, wMaxPacketSize\n =64, bInterval=16)\n", (7459, 7680), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((7967, 8233), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""CDC data out"""', 'bEndpointAddress': '(args.cdc_ep_num_data_out | standard.EndpointDescriptor.DIRECTION_OUT)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='CDC data out', bEndpointAddress=\n args.cdc_ep_num_data_out | standard.EndpointDescriptor.DIRECTION_OUT,\n bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0,\n wMaxPacketSize=512 if args.highspeed else 64)\n", (7994, 8233), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((8291, 8554), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""CDC data in"""', 'bEndpointAddress': '(args.cdc_ep_num_data_in | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='CDC data in', bEndpointAddress=\n args.cdc_ep_num_data_in | standard.EndpointDescriptor.DIRECTION_IN,\n bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0,\n wMaxPacketSize=512 if args.highspeed else 64)\n", (8318, 8554), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((13329, 13439), 'adafruit_usb_descriptor.midi.Header', 'midi.Header', ([], {'jacks_and_elements': '[midi_in_jack_emb, midi_in_jack_ext, midi_out_jack_emb, midi_out_jack_ext]'}), '(jacks_and_elements=[midi_in_jack_emb, midi_in_jack_ext,\n midi_out_jack_emb, midi_out_jack_ext])\n', (13340, 13439), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((13901, 13960), 'adafruit_usb_descriptor.midi.DataEndpointDescriptor', 'midi.DataEndpointDescriptor', ([], {'baAssocJack': '[midi_in_jack_emb]'}), '(baAssocJack=[midi_in_jack_emb])\n', (13928, 13960), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((14328, 14388), 'adafruit_usb_descriptor.midi.DataEndpointDescriptor', 'midi.DataEndpointDescriptor', ([], {'baAssocJack': '[midi_out_jack_emb]'}), '(baAssocJack=[midi_out_jack_emb])\n', (14355, 14388), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((9019, 9273), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""MSC in"""', 'bEndpointAddress': '(args.msc_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='MSC in', bEndpointAddress=args.\n msc_ep_num_in | standard.EndpointDescriptor.DIRECTION_IN, bmAttributes=\n standard.EndpointDescriptor.TYPE_BULK, bInterval=0, wMaxPacketSize=512 if\n args.highspeed else 64)\n", (9046, 9273), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n'), ((9354, 9610), 'adafruit_usb_descriptor.standard.EndpointDescriptor', 'standard.EndpointDescriptor', ([], {'description': '"""MSC out"""', 'bEndpointAddress': '(args.msc_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT)', 'bmAttributes': 'standard.EndpointDescriptor.TYPE_BULK', 'bInterval': '(0)', 'wMaxPacketSize': '(512 if args.highspeed else 64)'}), "(description='MSC out', bEndpointAddress=args.\n msc_ep_num_out | standard.EndpointDescriptor.DIRECTION_OUT,\n bmAttributes=standard.EndpointDescriptor.TYPE_BULK, bInterval=0,\n wMaxPacketSize=512 if args.highspeed else 64)\n", (9381, 9610), False, 'from adafruit_usb_descriptor import audio, audio10, cdc, hid, midi, msc, standard, util\n')]
from tqdm import tqdm import pandas as pd import numpy as np, argparse, time, pickle, random, os, datetime import torch import torch.optim as optim from model import MaskedNLLLoss, BC_LSTM from dataloader import MELDDataLoader from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report def setup_seed(seed): """ Manually Fix the random seed to get deterministic results. """ torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.benchmark = False torch.backends.cudnn.deterministic = True def train_or_eval_model(model, loss_function, dataloader, epoch, optimizer=None, mode='train'): losses, preds, labels, masks, losses_sense = [], [], [], [], [] max_sequence_len = [] assert mode != 'train' or optimizer != None if mode == 'train': model.train() else: model.eval() with tqdm(dataloader) as td: for data in td: if mode == 'train': optimizer.zero_grad() textf, acouf, mask, label = [d.cuda() for d in data[:-1]] if args.cuda else data[:-1] log_prob, _ = model(textf, None, acouf, None, mask) lp_ = log_prob.transpose(0,1).contiguous().view(-1, log_prob.size()[2]) # batch*seq_len, n_classes labels_ = label.view(-1) # batch*seq_len loss = loss_function(lp_, labels_, mask) pred_ = torch.argmax(lp_,1) # batch*seq_len preds.append(pred_.data.cpu().numpy()) labels.append(labels_.data.cpu().numpy()) masks.append(mask.view(-1).cpu().numpy()) losses.append(loss.item()*masks[-1].sum()) if mode == 'train': total_loss = loss total_loss.backward() optimizer.step() if preds!=[]: preds = np.concatenate(preds) labels = np.concatenate(labels) masks = np.concatenate(masks) else: return float('nan'), float('nan'), float('nan'), [], [], [], float('nan'),[] avg_loss = round(np.sum(losses)/np.sum(masks), 4) avg_sense_loss = round(np.sum(losses_sense)/np.sum(masks), 4) avg_accuracy = round(accuracy_score(labels,preds, sample_weight=masks)*100, 2) avg_fscore = round(f1_score(labels,preds, sample_weight=masks, average='weighted')*100, 2) if mode == 'test': class_report = classification_report(labels, preds, sample_weight=masks, target_names=['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger'], digits=6) print(class_report) return avg_loss, avg_accuracy, labels, preds, masks, [avg_fscore] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--num_workers', type=int, default=0, help='num workers of loading data') # dataloader settings parser.add_argument('--batch-size', type=int, default=32, metavar='BS', help='batch size') parser.add_argument('--data_path', type=str, default='../TextCnn/dataset/MELD_features_raw.pkl') # model settings. parser.add_argument('--attention_type', type=str, default='general2') parser.add_argument('--utterance_dim', type=int, default=600, help='embedding dims to use') parser.add_argument('--emotion_state_dim', type=int, default=100) parser.add_argument('--hidden_layer_dim', type=int, default=100) parser.add_argument('--dropout', type=float, default=0.25) parser.add_argument('--n_classes', type=int, default=7) # late fusion module. parser.add_argument('--lateFusionModule', type=str, default='concat') parser.add_argument('--input_features', type=tuple, default=(100, 300)) parser.add_argument('--pre_fusion_hidden_dims', type=tuple, default=(24, 7)) parser.add_argument('--pre_fusion_dropout', type=float, default=0.4) parser.add_argument('--post_fusion_dropout', type=float, default=0.3) # train settings. parser.add_argument('--lr', type=float, default=1e-4, metavar='LR', help='learning rate') parser.add_argument('--l2', type=float, default=1e-5, metavar='L2', help='L2 regularization weight') parser.add_argument('--epochs', type=int, default=100, metavar='E', help='number of epochs') return parser.parse_args() if __name__ == '__main__': args = parse_args() args.cuda = torch.cuda.is_available() if args.cuda: print('Running on GPU') else: print('Running on CPU') for seed in [1, 11, 111, 1111, 11111]: setup_seed(seed) args.seed = seed print(args) model = BC_LSTM(args) print('MELD BC_LSTM MODULE ...') if args.cuda: model.cuda() loss_weights = torch.FloatTensor([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) loss_function = MaskedNLLLoss(loss_weights.cuda() if args.cuda else loss_weights) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2) lf = open('logs/cnn_meld_logs.txt', 'a') dataloader = MELDDataLoader(args) valid_losses, valid_fscores = [], [] test_fscores, test_accuracys, test_losses = [], [], [] best_loss, best_label, best_pred, best_mask = None, None, None, None for e in range(args.epochs): start_time = time.time() train_loss, train_acc, _, _, _, train_fscore = train_or_eval_model(model, loss_function, dataloader['train'], e, optimizer, mode='train') valid_loss, valid_acc, _, _, _, valid_fscore = train_or_eval_model(model, loss_function, dataloader['valid'], e, mode='valid') test_loss, test_acc, test_label, test_pred, test_mask, test_fscore = train_or_eval_model(model, loss_function, dataloader['test'], e, mode='test') valid_losses.append(valid_loss) valid_fscores.append(valid_fscore) test_losses.append(test_loss) test_accuracys.append(test_acc) test_fscores.append(test_fscore) x = 'epoch: {}, train_loss: {}, acc: {}, fscore: {}, valid_loss: {}, acc: {}, fscore: {}, test_loss: {}, acc: {}, fscore: {}, time: {} sec'.format(e+1, train_loss, train_acc, train_fscore, valid_loss, valid_acc, valid_fscore, test_loss, test_acc, test_fscore, round(time.time()-start_time, 2)) print (x) lf.write(x + '\n') valid_fscores = np.array(valid_fscores).transpose() test_fscores = np.array(test_fscores).transpose() # [1, epoches] test_accuracys = np.array(test_accuracys).transpose() # [epoches] f1_score1 = test_fscores[0][np.argmin(valid_losses)] acc_score1 = test_accuracys[np.argmin(valid_losses)] f1_score2 = test_fscores[0][np.argmax(valid_fscores[0])] acc_score2 = test_accuracys[np.argmax(valid_fscores[0])] scores = [acc_score1, f1_score1, acc_score2, f1_score2] scores = [str(item) for item in scores] print ('Test Scores: Weighted F1') print('@Best Valid Loss: Test Acc: {}, Test F1: {}'.format(acc_score1, f1_score1)) print('@Best Valid F1: Test Acc: {}, Test F1: {}'.format(acc_score2, f1_score2)) rf = open('results/cnn_meld_results.txt', 'a') rf.write('\t'.join(scores) + '\t' + str(args) + '\n') rf.close()
[ "sklearn.metrics.classification_report", "numpy.array", "torch.cuda.is_available", "argparse.ArgumentParser", "model.BC_LSTM", "dataloader.MELDDataLoader", "numpy.random.seed", "numpy.concatenate", "numpy.argmin", "torch.argmax", "numpy.argmax", "time.time", "sklearn.metrics.accuracy_score", "torch.cuda.manual_seed_all", "torch.manual_seed", "sklearn.metrics.f1_score", "tqdm.tqdm", "random.seed", "numpy.sum", "torch.cuda.manual_seed", "torch.FloatTensor" ]
[((427, 450), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (444, 450), False, 'import torch\n'), ((455, 483), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['seed'], {}), '(seed)\n', (477, 483), False, 'import torch\n'), ((488, 520), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['seed'], {}), '(seed)\n', (514, 520), False, 'import torch\n'), ((525, 545), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (539, 545), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((550, 567), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (561, 567), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2807, 2832), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2830, 2832), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((4486, 4511), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4509, 4511), False, 'import torch\n'), ((978, 994), 'tqdm.tqdm', 'tqdm', (['dataloader'], {}), '(dataloader)\n', (982, 994), False, 'from tqdm import tqdm\n'), ((1982, 2003), 'numpy.concatenate', 'np.concatenate', (['preds'], {}), '(preds)\n', (1996, 2003), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2021, 2043), 'numpy.concatenate', 'np.concatenate', (['labels'], {}), '(labels)\n', (2035, 2043), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2061, 2082), 'numpy.concatenate', 'np.concatenate', (['masks'], {}), '(masks)\n', (2075, 2082), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2524, 2684), 'sklearn.metrics.classification_report', 'classification_report', (['labels', 'preds'], {'sample_weight': 'masks', 'target_names': "['neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger']", 'digits': '(6)'}), "(labels, preds, sample_weight=masks, target_names=[\n 'neutral', 'surprise', 'fear', 'sadness', 'joy', 'disgust', 'anger'],\n digits=6)\n", (2545, 2684), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((4744, 4757), 'model.BC_LSTM', 'BC_LSTM', (['args'], {}), '(args)\n', (4751, 4757), False, 'from model import MaskedNLLLoss, BC_LSTM\n'), ((4879, 4933), 'torch.FloatTensor', 'torch.FloatTensor', (['[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])\n', (4896, 4933), False, 'import torch\n'), ((5207, 5227), 'dataloader.MELDDataLoader', 'MELDDataLoader', (['args'], {}), '(args)\n', (5221, 5227), False, 'from dataloader import MELDDataLoader\n'), ((1541, 1561), 'torch.argmax', 'torch.argmax', (['lp_', '(1)'], {}), '(lp_, 1)\n', (1553, 1561), False, 'import torch\n'), ((2200, 2214), 'numpy.sum', 'np.sum', (['losses'], {}), '(losses)\n', (2206, 2214), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2215, 2228), 'numpy.sum', 'np.sum', (['masks'], {}), '(masks)\n', (2221, 2228), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2260, 2280), 'numpy.sum', 'np.sum', (['losses_sense'], {}), '(losses_sense)\n', (2266, 2280), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2281, 2294), 'numpy.sum', 'np.sum', (['masks'], {}), '(masks)\n', (2287, 2294), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((2325, 2375), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['labels', 'preds'], {'sample_weight': 'masks'}), '(labels, preds, sample_weight=masks)\n', (2339, 2375), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((2406, 2470), 'sklearn.metrics.f1_score', 'f1_score', (['labels', 'preds'], {'sample_weight': 'masks', 'average': '"""weighted"""'}), "(labels, preds, sample_weight=masks, average='weighted')\n", (2414, 2470), False, 'from sklearn.metrics import f1_score, confusion_matrix, accuracy_score, classification_report\n'), ((5478, 5489), 'time.time', 'time.time', ([], {}), '()\n', (5487, 5489), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6811, 6834), 'numpy.argmin', 'np.argmin', (['valid_losses'], {}), '(valid_losses)\n', (6820, 6834), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6872, 6895), 'numpy.argmin', 'np.argmin', (['valid_losses'], {}), '(valid_losses)\n', (6881, 6895), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6933, 6960), 'numpy.argmax', 'np.argmax', (['valid_fscores[0]'], {}), '(valid_fscores[0])\n', (6942, 6960), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6998, 7025), 'numpy.argmax', 'np.argmax', (['valid_fscores[0]'], {}), '(valid_fscores[0])\n', (7007, 7025), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6591, 6614), 'numpy.array', 'np.array', (['valid_fscores'], {}), '(valid_fscores)\n', (6599, 6614), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6650, 6672), 'numpy.array', 'np.array', (['test_fscores'], {}), '(test_fscores)\n', (6658, 6672), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6725, 6749), 'numpy.array', 'np.array', (['test_accuracys'], {}), '(test_accuracys)\n', (6733, 6749), True, 'import numpy as np, argparse, time, pickle, random, os, datetime\n'), ((6472, 6483), 'time.time', 'time.time', ([], {}), '()\n', (6481, 6483), False, 'import numpy as np, argparse, time, pickle, random, os, datetime\n')]
# noinspection PyUnresolvedReferences import os import re # TODO I'm going to need to make a dictionary for my big list of stuff i care about and what's needed for # every file type.... RAF = ['EXIF:LensModel', 'MakerNotes:RawImageHeight', 'MakerNotes:RawImageWidth', 'EXIF:CreateDate', 'EXIF:ModifyDate', 'EXIF:SerialNumber', 'Composite:Aperture', 'EXIF:FocalLength', 'EXIF:Make', 'EXIF:Model', 'EXIF:LensMake'] MOV = ['EXIF:LensModel', 'MakerNotes:RawImageHeight', 'MakerNotes:RawImageWidth', 'EXIF:CreateDate', 'EXIF:ModifyDate', 'EXIF:SerialNumber', 'Composite:Aperture', 'EXIF:FocalLength', 'EXIF:Make', 'EXIF:Model', 'EXIF:LensMake', 'QuickTime:VideoFrameRate', 'QuickTime:Duration'] R3D = ['ClipName', 'EdgeTC', 'EndEdgeTC', 'TotalFrames', 'FrameHeight', 'FrameWidth', 'Aperture', 'ISO', 'Date', 'AudioSlate', 'VideoSlate', 'Camera', 'CameraModel', 'CameraPIN', 'MediaSerialNumber', 'LensSerialNumber', 'FPS', 'AspectRatio', 'Kelvin', 'LensName', 'LensBrand', 'FocalLength', 'Shutter(deg)', 'SensorID', 'SensorName', 'Take'] def check_exiftool(): """ checks if exiftool is installed. :return: """ pass def check_redline(): """ checks if redline is installed :return: """ pass def check_ffprobe(): """ checks if ffprobe is installed :return: """ pass def get(filein, tool='exiftool', print_output=False): """ Due to issues with the exiftool module this is provided as a way to parse output directly from exiftool through the system commands and cglexecute. For the moment it's only designed to get the lumberdata for a single file. :param filein: :return: dictionary containing lumberdata from exiftool """ ext = os.path.splitext(filein)[-1] d = {} if tool == 'exiftool': command = r'exiftool %s' % filein output = cgl_execute(command=command, verbose=False, print_output=print_output) for each in output['printout']: key, value = re.split("\s+:\s+", each) d[key] = value return d elif tool == 'ffprobe': command = r'%s %s' % ('ffprobe', filein) output = cgl_execute(command=command) for each in output['printout']: try: values = re.split(":\s+", each) key = values[0] values.pop(0) if 'Stream' in key: split_v = values[1].split(',') d['Image Size'] = split_v[2].split()[0] d['Source Image Width'], d['Source Image Height'] = d['Image Size'].split('x') d['Video Frame Rate'] = split_v[4].split(' fps')[0].replace(' ', '') if 'Duration' in key: d['Track Duration'] = '%s s' % values[0].split(',')[0] value = ' '.join(values) d[key] = value except ValueError: print('skipping %s' % each) return d def get_red_data(filein): """ method for pulling lumberdata from r3d files. REDLINE is a command line interface from RED that is required for this https://www.red.com/downloads/options?itemInternalId=16144 :param filein: :return: """ file_, ext_ = os.path.splitext(filein) if ext_.upper() == '.R3D': command = r'REDLINE --i %s --printMeta 1' % filein d = {} for line in os.popen(command).readlines(): line = line.strip('\n') line = line.replace('\t', '') line = line.replace(' ', '') try: key_, value = line.split(':', 1) if key_ != 'None': d[key_] = value except ValueError: pass return d
[ "re.split", "os.popen", "os.path.splitext" ]
[((3281, 3305), 'os.path.splitext', 'os.path.splitext', (['filein'], {}), '(filein)\n', (3297, 3305), False, 'import os\n'), ((1764, 1788), 'os.path.splitext', 'os.path.splitext', (['filein'], {}), '(filein)\n', (1780, 1788), False, 'import os\n'), ((2026, 2053), 're.split', 're.split', (['"""\\\\s+:\\\\s+"""', 'each'], {}), "('\\\\s+:\\\\s+', each)\n", (2034, 2053), False, 'import re\n'), ((3431, 3448), 'os.popen', 'os.popen', (['command'], {}), '(command)\n', (3439, 3448), False, 'import os\n'), ((2301, 2324), 're.split', 're.split', (['""":\\\\s+"""', 'each'], {}), "(':\\\\s+', each)\n", (2309, 2324), False, 'import re\n')]
import logging from typing import List, Callable import numpy as np from pyquaternion import Quaternion from pyrep import PyRep from pyrep.errors import IKError from pyrep.objects import Dummy, Object from rlbench import utils from rlbench.action_modes import ArmActionMode, ActionMode from rlbench.backend.exceptions import BoundaryError, WaypointError from rlbench.backend.observation import Observation from rlbench.backend.robot import Robot from rlbench.backend.scene import Scene from rlbench.backend.task import Task from rlbench.demo import Demo from rlbench.observation_config import ObservationConfig _TORQUE_MAX_VEL = 9999 _DT = 0.05 _MAX_RESET_ATTEMPTS = 40 _MAX_DEMO_ATTEMPTS = 10 class InvalidActionError(Exception): pass class TaskEnvironmentError(Exception): pass class TaskEnvironment(object): def __init__(self, pyrep: PyRep, robot: Robot, scene: Scene, task: Task, action_mode: ActionMode, dataset_root: str, obs_config: ObservationConfig, static_positions: bool = False, attach_grasped_objects: bool = True): self._pyrep = pyrep self._robot = robot self._scene = scene self._task = task self._variation_number = 0 self._action_mode = action_mode self._dataset_root = dataset_root self._obs_config = obs_config self._static_positions = static_positions self._attach_grasped_objects = attach_grasped_objects self._reset_called = False self._prev_ee_velocity = None self._enable_path_observations = False self._scene.load(self._task) self._pyrep.start() self._target_workspace_check = Dummy.create() self._last_e = None def get_name(self) -> str: return self._task.get_name() def sample_variation(self) -> int: self._variation_number = np.random.randint( 0, self._task.variation_count()) return self._variation_number def set_variation(self, v: int) -> None: if v >= self.variation_count(): raise TaskEnvironmentError( 'Requested variation %d, but there are only %d variations.' % ( v, self.variation_count())) self._variation_number = v def variation_count(self) -> int: return self._task.variation_count() def reset(self) -> (List[str], Observation): self._scene.reset() try: desc = self._scene.init_episode( self._variation_number, max_attempts=_MAX_RESET_ATTEMPTS, randomly_place=not self._static_positions) except (BoundaryError, WaypointError) as e: raise TaskEnvironmentError( 'Could not place the task %s in the scene. This should not ' 'happen, please raise an issues on this task.' % self._task.get_name()) from e self._reset_called = True # redundancy resolution self._last_e = None # Returns a list of descriptions and the first observation return desc, self._scene.get_observation() def get_observation(self) -> Observation: return self._scene.get_observation() def get_joint_upper_velocity_limits(self): return self._robot.arm.get_joint_upper_velocity_limits() def get_all_graspable_objects(self): return self._task.get_graspable_objects() def get_robot_visuals(self): return self._robot.arm.get_visuals() def get_all_graspable_object_positions(self, relative_to_cameras=False): """ returns the positions of all graspable object relative to all enabled cameras """ objects = self._task.get_graspable_objects() positions = [] for ob in objects: if relative_to_camera: positions.append(self._scene.get_object_position_relative_to_cameras(ob)) else: positions.append({"left_shoulder_camera": ob.get_position(), "right_shoulder_camera": ob.get_position(), "front_camera": ob.get_position(), "wrist_camera": ob.get_position()}) return positions def get_all_graspable_object_poses(self, relative_to_cameras=False): """ returns the pose of all graspable object relative to all enabled cameras """ objects = self._task.get_graspable_objects() poses = [] for ob in objects: if relative_to_cameras: poses.append(self._scene.get_object_pose_relative_to_cameras(ob)) else: poses.append({"left_shoulder_camera": ob.get_pose(), "right_shoulder_camera": ob.get_pose(), "front_camera": ob.get_pose(), "wrist_camera": ob.get_pose()}) return poses def _assert_action_space(self, action, expected_shape): if np.shape(action) != expected_shape: raise RuntimeError( 'Expected the action shape to be: %s, but was shape: %s' % ( str(expected_shape), str(np.shape(action)))) def _assert_unit_quaternion(self, quat): if not np.isclose(np.linalg.norm(quat), 1.0): raise RuntimeError('Action contained non unit quaternion!') def _torque_action(self, action): self._robot.arm.set_joint_target_velocities( [(_TORQUE_MAX_VEL if t < 0 else -_TORQUE_MAX_VEL) for t in action]) self._robot.arm.set_joint_forces(np.abs(action)) def _ee_action(self, action, relative_to=None): self._assert_unit_quaternion(action[3:]) try: joint_positions = self._robot.arm.solve_ik( action[:3], quaternion=action[3:], relative_to=relative_to) self._robot.arm.set_joint_target_positions(joint_positions) except IKError as e: raise InvalidActionError('Could not find a path.') from e done = False prev_values = None # Move until reached target joint positions or until we stop moving # (e.g. when we collide wth something) while not done: self._scene.step() cur_positions = self._robot.arm.get_joint_positions() reached = np.allclose(cur_positions, joint_positions, atol=0.01) not_moving = False if prev_values is not None: not_moving = np.allclose( cur_positions, prev_values, atol=0.001) prev_values = cur_positions done = reached or not_moving def _path_action(self, action, relative_to=None): self._assert_unit_quaternion(action[3:]) try: # Check if the target is in the workspace; if not, then quick reject # Only checks position, not rotation pos_to_check = action[:3] if relative_to is not None: self._target_workspace_check.set_position( pos_to_check, relative_to) pos_to_check = self._target_workspace_check.get_position() valid = self._scene.check_target_in_workspace(pos_to_check) if not valid: raise InvalidActionError('Target is outside of workspace.') path = self._robot.arm.get_path( action[:3], quaternion=action[3:], ignore_collisions=True, relative_to=relative_to) done = False observations = [] while not done: done = path.step() self._scene.step() if self._enable_path_observations: observations.append(self._scene.get_observation()) success, terminate = self._task.success() # If the task succeeds while traversing path, then break early if success: break observations.append(self._scene.get_observation()) return observations except IKError as e: raise InvalidActionError('Could not find a path.') from e def step(self, action, camcorder=None) -> (Observation, int, bool): # returns observation, reward, done, info if not self._reset_called: raise RuntimeError( "Call 'reset' before calling 'step' on a task.") # action should contain 1 extra value for gripper open close state arm_action = np.array(action[:-1]) ee_action = action[-1] if 0.0 > ee_action > 1.0: raise ValueError('Gripper action expected to be within 0 and 1.') # Discretize the gripper action current_ee = (1.0 if self._robot.gripper.get_open_amount()[0] > 0.9 else 0.0) if ee_action > 0.5: ee_action = 1.0 elif ee_action < 0.5: ee_action = 0.0 if current_ee != ee_action: arm_action = np.array([0.0]*7) if self._action_mode.arm == ArmActionMode.ABS_JOINT_VELOCITY: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) self._robot.arm.set_joint_target_velocities(arm_action) self._scene.step() # if needed save some images if camcorder: obs = self._scene.get_observation() camcorder.save(obs, self.get_robot_visuals(), self.get_all_graspable_objects()) elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_VELOCITY: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) cur = np.array(self._robot.arm.get_joint_velocities()) self._robot.arm.set_joint_target_velocities(cur + arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_JOINT_POSITION: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) self._robot.arm.set_joint_target_positions(arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_POSITION: self._assert_action_space(arm_action, (len(self._robot.arm.joints),)) cur = np.array(self._robot.arm.get_joint_positions()) self._robot.arm.set_joint_target_positions(cur + arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_JOINT_TORQUE: self._assert_action_space( arm_action, (len(self._robot.arm.joints),)) self._torque_action(arm_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.DELTA_JOINT_TORQUE: cur = np.array(self._robot.arm.get_joint_forces()) new_action = cur + arm_action self._torque_action(new_action) self._scene.step() elif self._action_mode.arm == ArmActionMode.ABS_EE_POSE_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) self._ee_action(list(arm_action)) elif self._action_mode.arm == ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) self._path_observations = [] self._path_observations = self._path_action(list(arm_action)) elif self._action_mode.arm == ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) a_x, a_y, a_z, a_qx, a_qy, a_qz, a_qw = arm_action x, y, z, qx, qy, qz, qw = self._robot.arm.get_tip().get_pose() new_rot = Quaternion(a_qw, a_qx, a_qy, a_qz) * Quaternion(qw, qx, qy, qz) qw, qx, qy, qz = list(new_rot) new_pose = [a_x + x, a_y + y, a_z + z] + [qx, qy, qz, qw] self._path_observations = [] self._path_observations = self._path_action(list(new_pose)) elif self._action_mode.arm == ArmActionMode.DELTA_EE_POSE_WORLD_FRAME: self._assert_action_space(arm_action, (7,)) a_x, a_y, a_z, a_qx, a_qy, a_qz, a_qw = arm_action x, y, z, qx, qy, qz, qw = self._robot.arm.get_tip().get_pose() new_rot = Quaternion(a_qw, a_qx, a_qy, a_qz) * Quaternion( qw, qx, qy, qz) qw, qx, qy, qz = list(new_rot) new_pose = [a_x + x, a_y + y, a_z + z] + [qx, qy, qz, qw] self._ee_action(list(new_pose)) elif self._action_mode.arm == ArmActionMode.EE_POSE_EE_FRAME: self._assert_action_space(arm_action, (7,)) self._ee_action( list(arm_action), relative_to=self._robot.arm.get_tip()) elif self._action_mode.arm == ArmActionMode.EE_POSE_PLAN_EE_FRAME: self._assert_action_space(arm_action, (7,)) self._path_observations = [] self._path_observations = self._path_action( list(arm_action), relative_to=self._robot.arm.get_tip()) else: raise RuntimeError('Unrecognised action mode.') if current_ee != ee_action: done = False while not done: done = self._robot.gripper.actuate(ee_action, velocity=0.2) self._pyrep.step() self._task.step() # if needed save some images if camcorder: obs = self._scene.get_observation() camcorder.save(obs, self.get_robot_visuals(), self.get_all_graspable_objects()) if ee_action == 0.0 and self._attach_grasped_objects: # If gripper close action, the check for grasp. for g_obj in self._task.get_graspable_objects(): self._robot.gripper.grasp(g_obj) else: # If gripper open action, the check for ungrasp. self._robot.gripper.release() success, terminate = self._task.success() task_reward = self._task.reward() reward = float(success) if task_reward is None else task_reward return self._scene.get_observation(), reward, terminate def resolve_redundancy_joint_velocities(self, actions, setup): """ Resolves redundant self-motion into the nullspace without changing the gripper tip position :param actions: Current actions without redundancy resolution. :param setup: Setup for redundancy resolution defining the mode, weighting etc. :return: Array of joint velocities, which move the robot's tip according to the provided actions yet push the joint position towards a reference position. """ # get the Jacobian J = self._robot.arm.get_jacobian() J = np.transpose(J) J = np.flip(J) J = J[-3:] # compute the pseudo inverse J_plus = np.linalg.pinv(J) # weighting if type(setup["W"]) is list: W = np.array(setup["W"]) elif setup["W"] is None: # use default weighting later W = None else: raise TypeError("Unsupported type %s for weighting vector." % type(setup["W"])) # compute the error if setup["mode"] == "reference_position": dL, L = self.get_loss_reference_position(setup["ref_position"], W) elif setup["mode"] == "collision_avoidance": dL, L = self.get_loss_collision_avoidance(W, setup) # compute the joint velocities q_dot_redundancy = setup["alpha"] * np.matmul((np.identity(len(self._robot.arm.joints)) - np.matmul(J_plus, J)), dL) # the provided jacobian seems to be inaccurate resulting in slight movement of the ee. This is why # the velocites are set to 0 once the error stops changing much. e = dL if setup["cut-off_error"] is not None: if self._last_e is not None: e_dot = np.sum(np.abs(e - self._last_e)) if self._last_e is not None and e_dot < setup["cut-off_error"]: q_dot_redundancy = np.array([0.0] * 7) self._last_e = e else: self._last_e = e return actions - q_dot_redundancy, L def get_loss_reference_position(self, ref_pos, W): """ Calculates the summed squarred error between the current and the reference consfiguration as well as its partial derivatives with respect to al q's for redundancy resoltuion. -> L(q) = 1/2 sum_{i=1}^N w_i (q_i - \tilde{q}_i)^2 :param ref_pos: Reference position. :param W: Weighting vector. :return: 1: The partial derivatives of the summed squarred error between the current and the reference configuration -> -> \nabla_q L(q) 2: Summed squarred error between the current and the reference configuration. -> L(q) """ if W is None: # default weighting W = np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]) e = (self._robot.arm.get_joint_positions() - ref_pos) return e * W, 0.5*np.dot(e,e*W) def get_loss_collision_avoidance(self, W, setup): """ Calculates the loss as well as the respective partial derivatives for redundancy resoltuion with collision avoidance. This only works with tasks that include one obstacles! L(q) = \sum_{i=1}^N d(q)^{-1} :param W: Weighting vector. :return: 1: The partial derivatives of the loss above. -> \nable_q L(q) 2: The loss shown above.-> L(q) """ # get the position of the object p_obs = self._task.obstacle.get_position() + np.array([0, 0, 0.33]) - self._robot.arm.joints[0].get_position() #p_obs = self._task.obstacle.get_position() p_obs = np.append(p_obs, [1]) # get the transformation matrices, their derivatives, and the positions of the links A_1, A_2, A_3, A_4, A_5, A_6, A_7 = self._robot.get_transformation_matrices() dA_1, dA_2, dA_3, dA_4, dA_5, dA_6, dA_7 = self._robot.get_transformation_matrices_derivatives() p_1, p_2, p_3, p_4, p_5, p_6, p_7 = self._robot.get_link_positions_in_ref_frames() # we use reciprocal of the distance between each link and an obstacle as our Loss # the chain rule delivers: d/dq L = (p_i^0 (q_1,..., q_i) - p_obs)^T * d/dq (p_i^0 (q_1,..., q_i) - p_obs) # where p_i^0 = (\prod_{j=1}^i A_j^{j-1}(q_j)) * p_i # as the left side of d/dq L is used often, let's calculate it in advance d_1_T = np.transpose(A_1.dot(p_1) - p_obs) d_2_T = np.transpose(A_1.dot(A_2).dot(p_2) - p_obs) d_3_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(p_3) - p_obs) d_4_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(p_4) - p_obs) d_5_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5) - p_obs) d_6_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6) - p_obs) d_7_T = np.transpose(A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7) - p_obs) # now we can calculate the derivatives in each dimension dq_1 = -np.matmul(d_1_T, dA_1.dot(p_1)) + \ -np.matmul(d_2_T, dA_1.dot(A_2).dot(p_2)) + \ -np.matmul(d_3_T, dA_1.dot(A_2).dot(A_3).dot(p_3)) + \ -np.matmul(d_4_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, dA_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_2 = -np.matmul(d_2_T, A_1.dot(dA_2).dot(p_2)) + \ -np.matmul(d_3_T, A_1.dot(dA_2).dot(A_3).dot(p_3)) + \ -np.matmul(d_4_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(dA_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_3 = -np.matmul(d_3_T, A_1.dot(A_2).dot(dA_3).dot(p_3)) + \ -np.matmul(d_4_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(dA_3).dot(A_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_4 = -np.matmul(d_4_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(p_4)) + \ -np.matmul(d_5_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(dA_4).dot(A_5).dot(A_6).dot(A_7).dot(p_7)) dq_5 = -np.matmul(d_5_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(p_5)) + \ -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(A_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(dA_5).dot(A_6).dot(A_7).dot(p_7)) dq_6 = -np.matmul(d_6_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(dA_6).dot(p_6)) + \ -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(dA_6).dot(A_7).dot(p_7)) dq_7 = -np.matmul(d_7_T, A_1.dot(A_2).dot(A_3).dot(A_4).dot(A_5).dot(A_6).dot(dA_7).dot(p_7)) if W is None: # default weighting vector -> based on the reciprocal of the distance. The greater the distance the smaller # the weight. That is, it is concentrated on close objects. W = np.array([1 / np.sum(np.square(d_1_T)), 1 / np.sum(np.square(d_2_T)) , 1 / np.sum(np.square(d_3_T)) , 1 / np.sum(np.square(d_4_T)) , 1 / np.sum(np.square(d_5_T)) , 1 / np.sum(np.square(d_6_T)) , 1 / np.sum(np.square(d_7_T)) ]) * 0.1 # --- scaling to keep distance to joint limits --- # get the minimum distance of each joint to its limit joint_positions = np.array([j.get_joint_position() for j in self._robot.arm.joints]) lower_joint_limits = np.array(setup["lower_joint_pos_limit"]) upper_joint_limits = np.array(setup["upper_joint_pos_limit"]) min_j_distances = [np.minimum(u-j, j-l) for l,u,j in zip(lower_joint_limits, upper_joint_limits, joint_positions)] # start scaling down error when joint limit is 15° away. # Scaling is done linearly from 0 to 1 for 0° <= d <= 15° rad_thres = 15*(np.pi/180) W *= np.array([ np.minimum((1/rad_thres)*d, 1.0) for d in min_j_distances]) # concatenate the derivaties to vector and apply weightig dL = np.array([dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7])*W # calculate the loss L = np.sqrt(np.dot(d_1_T, d_1_T))*W[0] \ + np.sqrt(np.dot(d_2_T, d_2_T))*W[1] \ + np.sqrt(np.dot(d_3_T, d_3_T))*W[2] \ + np.sqrt(np.dot(d_4_T, d_4_T))*W[3] \ + np.sqrt(np.dot(d_5_T, d_5_T))*W[4] \ + np.sqrt(np.dot(d_6_T, d_6_T))*W[5] \ + np.sqrt(np.dot(d_7_T, d_7_T))*W[6] return dL, L def enable_path_observations(self, value: bool) -> None: if (self._action_mode.arm != ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.EE_POSE_PLAN_EE_FRAME): raise RuntimeError('Only available in DELTA_EE_POSE_PLAN or ' 'ABS_EE_POSE_PLAN action mode.') self._enable_path_observations = value def get_path_observations(self): if (self._action_mode.arm != ArmActionMode.DELTA_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.ABS_EE_POSE_PLAN_WORLD_FRAME and self._action_mode.arm != ArmActionMode.EE_POSE_PLAN_EE_FRAME): raise RuntimeError('Only available in DELTA_EE_POSE_PLAN or ' 'ABS_EE_POSE_PLAN action mode.') return self._path_observations def get_demos(self, amount: int, live_demos: bool = False, image_paths: bool = False, callable_each_step: Callable[[Observation], None] = None, max_attempts: int = _MAX_DEMO_ATTEMPTS, ) -> List[Demo]: """Negative means all demos""" if not live_demos and (self._dataset_root is None or len(self._dataset_root) == 0): raise RuntimeError( "Can't ask for a stored demo when no dataset root provided.") if not live_demos: if self._dataset_root is None or len(self._dataset_root) == 0: raise RuntimeError( "Can't ask for stored demo when no dataset root provided.") demos = utils.get_stored_demos( amount, image_paths, self._dataset_root, self._variation_number, self._task.get_name(), self._obs_config) else: ctr_loop = self._robot.arm.joints[0].is_control_loop_enabled() self._robot.arm.set_control_loop_enabled(True) demos = self._get_live_demos( amount, callable_each_step, max_attempts) self._robot.arm.set_control_loop_enabled(ctr_loop) return demos def _get_live_demos(self, amount: int, callable_each_step: Callable[ [Observation], None] = None, max_attempts: int = _MAX_DEMO_ATTEMPTS) -> List[Demo]: demos = [] for i in range(amount): attempts = max_attempts while attempts > 0: random_seed = np.random.get_state() self.reset() logging.info('Collecting demo %d' % i) try: demo = self._scene.get_demo( callable_each_step=callable_each_step) demo.random_seed = random_seed demos.append(demo) break except Exception as e: attempts -= 1 logging.info('Bad demo. ' + str(e)) if attempts <= 0: raise RuntimeError( 'Could not collect demos. Maybe a problem with the task?') return demos def reset_to_demo(self, demo: Demo) -> (List[str], Observation): demo.restore_state() return self.reset()
[ "numpy.flip", "numpy.abs", "numpy.allclose", "numpy.random.get_state", "numpy.linalg.pinv", "numpy.minimum", "pyquaternion.Quaternion", "numpy.square", "pyrep.objects.Dummy.create", "numpy.array", "numpy.append", "numpy.dot", "numpy.matmul", "numpy.linalg.norm", "numpy.shape", "numpy.transpose", "logging.info" ]
[((1721, 1735), 'pyrep.objects.Dummy.create', 'Dummy.create', ([], {}), '()\n', (1733, 1735), False, 'from pyrep.objects import Dummy, Object\n'), ((8536, 8557), 'numpy.array', 'np.array', (['action[:-1]'], {}), '(action[:-1])\n', (8544, 8557), True, 'import numpy as np\n'), ((14997, 15012), 'numpy.transpose', 'np.transpose', (['J'], {}), '(J)\n', (15009, 15012), True, 'import numpy as np\n'), ((15025, 15035), 'numpy.flip', 'np.flip', (['J'], {}), '(J)\n', (15032, 15035), True, 'import numpy as np\n'), ((15110, 15127), 'numpy.linalg.pinv', 'np.linalg.pinv', (['J'], {}), '(J)\n', (15124, 15127), True, 'import numpy as np\n'), ((18089, 18110), 'numpy.append', 'np.append', (['p_obs', '[1]'], {}), '(p_obs, [1])\n', (18098, 18110), True, 'import numpy as np\n'), ((22729, 22769), 'numpy.array', 'np.array', (["setup['lower_joint_pos_limit']"], {}), "(setup['lower_joint_pos_limit'])\n", (22737, 22769), True, 'import numpy as np\n'), ((22799, 22839), 'numpy.array', 'np.array', (["setup['upper_joint_pos_limit']"], {}), "(setup['upper_joint_pos_limit'])\n", (22807, 22839), True, 'import numpy as np\n'), ((5012, 5028), 'numpy.shape', 'np.shape', (['action'], {}), '(action)\n', (5020, 5028), True, 'import numpy as np\n'), ((5620, 5634), 'numpy.abs', 'np.abs', (['action'], {}), '(action)\n', (5626, 5634), True, 'import numpy as np\n'), ((6368, 6422), 'numpy.allclose', 'np.allclose', (['cur_positions', 'joint_positions'], {'atol': '(0.01)'}), '(cur_positions, joint_positions, atol=0.01)\n', (6379, 6422), True, 'import numpy as np\n'), ((9006, 9025), 'numpy.array', 'np.array', (['([0.0] * 7)'], {}), '([0.0] * 7)\n', (9014, 9025), True, 'import numpy as np\n'), ((15202, 15222), 'numpy.array', 'np.array', (["setup['W']"], {}), "(setup['W'])\n", (15210, 15222), True, 'import numpy as np\n'), ((17229, 17274), 'numpy.array', 'np.array', (['[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]'], {}), '([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])\n', (17237, 17274), True, 'import numpy as np\n'), ((22867, 22891), 'numpy.minimum', 'np.minimum', (['(u - j)', '(j - l)'], {}), '(u - j, j - l)\n', (22877, 22891), True, 'import numpy as np\n'), ((23356, 23408), 'numpy.array', 'np.array', (['[dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7]'], {}), '([dq_1, dq_2, dq_3, dq_4, dq_5, dq_6, dq_7])\n', (23364, 23408), True, 'import numpy as np\n'), ((5294, 5314), 'numpy.linalg.norm', 'np.linalg.norm', (['quat'], {}), '(quat)\n', (5308, 5314), True, 'import numpy as np\n'), ((6523, 6574), 'numpy.allclose', 'np.allclose', (['cur_positions', 'prev_values'], {'atol': '(0.001)'}), '(cur_positions, prev_values, atol=0.001)\n', (6534, 6574), True, 'import numpy as np\n'), ((16317, 16336), 'numpy.array', 'np.array', (['([0.0] * 7)'], {}), '([0.0] * 7)\n', (16325, 16336), True, 'import numpy as np\n'), ((17363, 17379), 'numpy.dot', 'np.dot', (['e', '(e * W)'], {}), '(e, e * W)\n', (17369, 17379), True, 'import numpy as np\n'), ((17954, 17976), 'numpy.array', 'np.array', (['[0, 0, 0.33]'], {}), '([0, 0, 0.33])\n', (17962, 17976), True, 'import numpy as np\n'), ((23216, 23250), 'numpy.minimum', 'np.minimum', (['(1 / rad_thres * d)', '(1.0)'], {}), '(1 / rad_thres * d, 1.0)\n', (23226, 23250), True, 'import numpy as np\n'), ((26437, 26458), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (26456, 26458), True, 'import numpy as np\n'), ((26504, 26542), 'logging.info', 'logging.info', (["('Collecting demo %d' % i)"], {}), "('Collecting demo %d' % i)\n", (26516, 26542), False, 'import logging\n'), ((15838, 15858), 'numpy.matmul', 'np.matmul', (['J_plus', 'J'], {}), '(J_plus, J)\n', (15847, 15858), True, 'import numpy as np\n'), ((16180, 16204), 'numpy.abs', 'np.abs', (['(e - self._last_e)'], {}), '(e - self._last_e)\n', (16186, 16204), True, 'import numpy as np\n'), ((23761, 23781), 'numpy.dot', 'np.dot', (['d_7_T', 'd_7_T'], {}), '(d_7_T, d_7_T)\n', (23767, 23781), True, 'import numpy as np\n'), ((23711, 23731), 'numpy.dot', 'np.dot', (['d_6_T', 'd_6_T'], {}), '(d_6_T, d_6_T)\n', (23717, 23731), True, 'import numpy as np\n'), ((5202, 5218), 'numpy.shape', 'np.shape', (['action'], {}), '(action)\n', (5210, 5218), True, 'import numpy as np\n'), ((23661, 23681), 'numpy.dot', 'np.dot', (['d_5_T', 'd_5_T'], {}), '(d_5_T, d_5_T)\n', (23667, 23681), True, 'import numpy as np\n'), ((22117, 22133), 'numpy.square', 'np.square', (['d_1_T'], {}), '(d_1_T)\n', (22126, 22133), True, 'import numpy as np\n'), ((22173, 22189), 'numpy.square', 'np.square', (['d_2_T'], {}), '(d_2_T)\n', (22182, 22189), True, 'import numpy as np\n'), ((22230, 22246), 'numpy.square', 'np.square', (['d_3_T'], {}), '(d_3_T)\n', (22239, 22246), True, 'import numpy as np\n'), ((22287, 22303), 'numpy.square', 'np.square', (['d_4_T'], {}), '(d_4_T)\n', (22296, 22303), True, 'import numpy as np\n'), ((22344, 22360), 'numpy.square', 'np.square', (['d_5_T'], {}), '(d_5_T)\n', (22353, 22360), True, 'import numpy as np\n'), ((22401, 22417), 'numpy.square', 'np.square', (['d_6_T'], {}), '(d_6_T)\n', (22410, 22417), True, 'import numpy as np\n'), ((22458, 22474), 'numpy.square', 'np.square', (['d_7_T'], {}), '(d_7_T)\n', (22467, 22474), True, 'import numpy as np\n'), ((23611, 23631), 'numpy.dot', 'np.dot', (['d_4_T', 'd_4_T'], {}), '(d_4_T, d_4_T)\n', (23617, 23631), True, 'import numpy as np\n'), ((23561, 23581), 'numpy.dot', 'np.dot', (['d_3_T', 'd_3_T'], {}), '(d_3_T, d_3_T)\n', (23567, 23581), True, 'import numpy as np\n'), ((23461, 23481), 'numpy.dot', 'np.dot', (['d_1_T', 'd_1_T'], {}), '(d_1_T, d_1_T)\n', (23467, 23481), True, 'import numpy as np\n'), ((23511, 23531), 'numpy.dot', 'np.dot', (['d_2_T', 'd_2_T'], {}), '(d_2_T, d_2_T)\n', (23517, 23531), True, 'import numpy as np\n'), ((11795, 11829), 'pyquaternion.Quaternion', 'Quaternion', (['a_qw', 'a_qx', 'a_qy', 'a_qz'], {}), '(a_qw, a_qx, a_qy, a_qz)\n', (11805, 11829), False, 'from pyquaternion import Quaternion\n'), ((11832, 11858), 'pyquaternion.Quaternion', 'Quaternion', (['qw', 'qx', 'qy', 'qz'], {}), '(qw, qx, qy, qz)\n', (11842, 11858), False, 'from pyquaternion import Quaternion\n'), ((12452, 12486), 'pyquaternion.Quaternion', 'Quaternion', (['a_qw', 'a_qx', 'a_qy', 'a_qz'], {}), '(a_qw, a_qx, a_qy, a_qz)\n', (12462, 12486), False, 'from pyquaternion import Quaternion\n'), ((12489, 12515), 'pyquaternion.Quaternion', 'Quaternion', (['qw', 'qx', 'qy', 'qz'], {}), '(qw, qx, qy, qz)\n', (12499, 12515), False, 'from pyquaternion import Quaternion\n')]
from django import forms from django.contrib.contenttypes.forms import generic_inlineformset_factory from django.contrib.contenttypes.models import ContentType from django.db import models from django.test import TestCase from django.test.utils import isolate_apps from .models import ( Animal, ForProxyModelModel, Gecko, Mineral, ProxyRelatedModel, TaggedItem, ) class CustomWidget(forms.TextInput): pass class TaggedItemForm(forms.ModelForm): class Meta: model = TaggedItem fields = '__all__' widgets = {'tag': CustomWidget} class GenericInlineFormsetTests(TestCase): def test_output(self): GenericFormSet = generic_inlineformset_factory(TaggedItem, extra=1) formset = GenericFormSet() self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_generic_relations-taggeditem-content_type-object_id-0-tag"> Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-0-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-0-tag" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-0-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-0-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-0-DELETE"> <input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" id="id_generic_relations-taggeditem-content_type-object_id-0-id"></p>""" ) formset = GenericFormSet(instance=Animal()) self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_generic_relations-taggeditem-content_type-object_id-0-tag"> Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-0-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-0-tag" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-0-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-0-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-0-DELETE"><input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" id="id_generic_relations-taggeditem-content_type-object_id-0-id"></p>""" ) platypus = Animal.objects.create( common_name='Platypus', latin_name='Ornithorhynchus anatinus', ) platypus.tags.create(tag='shiny') GenericFormSet = generic_inlineformset_factory(TaggedItem, extra=1) formset = GenericFormSet(instance=platypus) tagged_item_id = TaggedItem.objects.get(tag='shiny', object_id=platypus.id).id self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_generic_relations-taggeditem-content_type-object_id-0-tag">Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-0-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-0-tag" value="shiny" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-0-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-0-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-0-DELETE"> <input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" value="%s" id="id_generic_relations-taggeditem-content_type-object_id-0-id"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-1-tag">Tag:</label> <input id="id_generic_relations-taggeditem-content_type-object_id-1-tag" type="text" name="generic_relations-taggeditem-content_type-object_id-1-tag" maxlength="50"></p> <p><label for="id_generic_relations-taggeditem-content_type-object_id-1-DELETE">Delete:</label> <input type="checkbox" name="generic_relations-taggeditem-content_type-object_id-1-DELETE" id="id_generic_relations-taggeditem-content_type-object_id-1-DELETE"> <input type="hidden" name="generic_relations-taggeditem-content_type-object_id-1-id" id="id_generic_relations-taggeditem-content_type-object_id-1-id"></p>""" % tagged_item_id ) lion = Animal.objects.create(common_name='Lion', latin_name='Panthera leo') formset = GenericFormSet(instance=lion, prefix='x') self.assertHTMLEqual( ''.join(form.as_p() for form in formset.forms), """<p><label for="id_x-0-tag">Tag:</label> <input id="id_x-0-tag" type="text" name="x-0-tag" maxlength="50"></p> <p><label for="id_x-0-DELETE">Delete:</label> <input type="checkbox" name="x-0-DELETE" id="id_x-0-DELETE"> <input type="hidden" name="x-0-id" id="id_x-0-id"></p>""" ) def test_options(self): TaggedItemFormSet = generic_inlineformset_factory( TaggedItem, can_delete=False, exclude=['tag'], extra=3, ) platypus = Animal.objects.create(common_name='Platypus', latin_name='Ornithorhynchus anatinus') harmless = platypus.tags.create(tag='harmless') mammal = platypus.tags.create(tag='mammal') # Works without a queryset. formset = TaggedItemFormSet(instance=platypus) self.assertEqual(len(formset.forms), 5) self.assertHTMLEqual( formset.forms[0].as_p(), '<input type="hidden" name="generic_relations-taggeditem-content_type-object_id-0-id" value="%s" ' 'id="id_generic_relations-taggeditem-content_type-object_id-0-id">' % harmless.pk ) self.assertEqual(formset.forms[0].instance, harmless) self.assertEqual(formset.forms[1].instance, mammal) self.assertIsNone(formset.forms[2].instance.pk) # A queryset can be used to alter display ordering. formset = TaggedItemFormSet(instance=platypus, queryset=TaggedItem.objects.order_by('-tag')) self.assertEqual(len(formset.forms), 5) self.assertEqual(formset.forms[0].instance, mammal) self.assertEqual(formset.forms[1].instance, harmless) self.assertIsNone(formset.forms[2].instance.pk) # A queryset that omits items. formset = TaggedItemFormSet(instance=platypus, queryset=TaggedItem.objects.filter(tag__startswith='harm')) self.assertEqual(len(formset.forms), 4) self.assertEqual(formset.forms[0].instance, harmless) self.assertIsNone(formset.forms[1].instance.pk) def test_get_queryset_ordering(self): """ BaseGenericInlineFormSet.get_queryset() adds default ordering, if needed. """ inline_formset = generic_inlineformset_factory(TaggedItem, exclude=('tag',)) formset = inline_formset(instance=Gecko.objects.create()) self.assertIs(formset.get_queryset().ordered, True) def test_initial(self): quartz = Mineral.objects.create(name='Quartz', hardness=7) GenericFormSet = generic_inlineformset_factory(TaggedItem, extra=1) ctype = ContentType.objects.get_for_model(quartz) initial_data = [{ 'tag': 'lizard', 'content_type': ctype.pk, 'object_id': quartz.pk, }] formset = GenericFormSet(initial=initial_data) self.assertEqual(formset.forms[0].initial, initial_data[0]) def test_meta_widgets(self): """TaggedItemForm has a widget defined in Meta.""" Formset = generic_inlineformset_factory(TaggedItem, TaggedItemForm) form = Formset().forms[0] self.assertIsInstance(form['tag'].field.widget, CustomWidget) @isolate_apps('generic_relations') def test_incorrect_content_type(self): class BadModel(models.Model): content_type = models.PositiveIntegerField() msg = "fk_name 'generic_relations.BadModel.content_type' is not a ForeignKey to ContentType" with self.assertRaisesMessage(Exception, msg): generic_inlineformset_factory(BadModel, TaggedItemForm) def test_save_new_uses_form_save(self): class SaveTestForm(forms.ModelForm): def save(self, *args, **kwargs): self.instance.saved_by = 'custom method' return super().save(*args, **kwargs) Formset = generic_inlineformset_factory(ForProxyModelModel, fields='__all__', form=SaveTestForm) instance = ProxyRelatedModel.objects.create() data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', } formset = Formset(data, instance=instance, prefix='form') self.assertTrue(formset.is_valid()) new_obj = formset.save()[0] self.assertEqual(new_obj.saved_by, 'custom method') def test_save_new_for_proxy(self): Formset = generic_inlineformset_factory(ForProxyModelModel, fields='__all__', for_concrete_model=False) instance = ProxyRelatedModel.objects.create() data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', } formset = Formset(data, instance=instance, prefix='form') self.assertTrue(formset.is_valid()) new_obj, = formset.save() self.assertEqual(new_obj.obj, instance) def test_save_new_for_concrete(self): Formset = generic_inlineformset_factory(ForProxyModelModel, fields='__all__', for_concrete_model=True) instance = ProxyRelatedModel.objects.create() data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '', 'form-0-title': 'foo', } formset = Formset(data, instance=instance, prefix='form') self.assertTrue(formset.is_valid()) new_obj, = formset.save() self.assertNotIsInstance(new_obj.obj, ProxyRelatedModel) def test_initial_count(self): GenericFormSet = generic_inlineformset_factory(TaggedItem) data = { 'form-TOTAL_FORMS': '3', 'form-INITIAL_FORMS': '3', 'form-MAX_NUM_FORMS': '', } formset = GenericFormSet(data=data, prefix='form') self.assertEqual(formset.initial_form_count(), 3) formset = GenericFormSet(data=data, prefix='form', save_as_new=True) self.assertEqual(formset.initial_form_count(), 0) def test_save_as_new(self): """ The save_as_new parameter creates new items that are associated with the object. """ lion = Animal.objects.create(common_name='Lion', latin_name='Panthera leo') yellow = lion.tags.create(tag='yellow') hairy = lion.tags.create(tag='hairy') GenericFormSet = generic_inlineformset_factory(TaggedItem) data = { 'form-TOTAL_FORMS': '3', 'form-INITIAL_FORMS': '2', 'form-MAX_NUM_FORMS': '', 'form-0-id': str(yellow.pk), 'form-0-tag': 'hunts', 'form-1-id': str(hairy.pk), 'form-1-tag': 'roars', } formset = GenericFormSet(data, instance=lion, prefix='form', save_as_new=True) self.assertTrue(formset.is_valid()) tags = formset.save() self.assertEqual([tag.tag for tag in tags], ['hunts', 'roars']) hunts, roars = tags self.assertSequenceEqual(lion.tags.order_by('tag'), [hairy, hunts, roars, yellow])
[ "django.db.models.PositiveIntegerField", "django.contrib.contenttypes.models.ContentType.objects.get_for_model", "django.test.utils.isolate_apps", "django.contrib.contenttypes.forms.generic_inlineformset_factory" ]
[((7814, 7847), 'django.test.utils.isolate_apps', 'isolate_apps', (['"""generic_relations"""'], {}), "('generic_relations')\n", (7826, 7847), False, 'from django.test.utils import isolate_apps\n'), ((692, 742), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'extra': '(1)'}), '(TaggedItem, extra=1)\n', (721, 742), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((2634, 2684), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'extra': '(1)'}), '(TaggedItem, extra=1)\n', (2663, 2684), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((4952, 5041), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'can_delete': '(False)', 'exclude': "['tag']", 'extra': '(3)'}), "(TaggedItem, can_delete=False, exclude=['tag'],\n extra=3)\n", (4981, 5041), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((6834, 6893), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'exclude': "('tag',)"}), "(TaggedItem, exclude=('tag',))\n", (6863, 6893), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((7147, 7197), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {'extra': '(1)'}), '(TaggedItem, extra=1)\n', (7176, 7197), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((7215, 7256), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['quartz'], {}), '(quartz)\n', (7248, 7256), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((7642, 7699), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem', 'TaggedItemForm'], {}), '(TaggedItem, TaggedItemForm)\n', (7671, 7699), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((8490, 8581), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['ForProxyModelModel'], {'fields': '"""__all__"""', 'form': 'SaveTestForm'}), "(ForProxyModelModel, fields='__all__', form=\n SaveTestForm)\n", (8519, 8581), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((9085, 9182), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['ForProxyModelModel'], {'fields': '"""__all__"""', 'for_concrete_model': '(False)'}), "(ForProxyModelModel, fields='__all__',\n for_concrete_model=False)\n", (9114, 9182), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((9676, 9772), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['ForProxyModelModel'], {'fields': '"""__all__"""', 'for_concrete_model': '(True)'}), "(ForProxyModelModel, fields='__all__',\n for_concrete_model=True)\n", (9705, 9772), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((10282, 10323), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {}), '(TaggedItem)\n', (10311, 10323), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((11093, 11134), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['TaggedItem'], {}), '(TaggedItem)\n', (11122, 11134), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n'), ((7959, 7988), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {}), '()\n', (7986, 7988), False, 'from django.db import models\n'), ((8162, 8217), 'django.contrib.contenttypes.forms.generic_inlineformset_factory', 'generic_inlineformset_factory', (['BadModel', 'TaggedItemForm'], {}), '(BadModel, TaggedItemForm)\n', (8191, 8217), False, 'from django.contrib.contenttypes.forms import generic_inlineformset_factory\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (C) 2017, <NAME> <<EMAIL>> # vim: set ts=4 sts=4 sw=4 expandtab smartindent: # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from . import SubCommand __all__ = ['DemoCommand'] class DemoCommand(SubCommand): '''Create demo directory. ''' name = "demo" def run(self, *args, **kwargs): import os from os import path print(''' Jug will create a directory called 'jug-demo/' with a file called 'primes.py' inside. You can test jug by switching to that directory and running the commands: jug status primes.py followed by jug execute primes.py Upon termination of the process, results will be in a file called 'output.txt'. PARALLEL USAGE You can speed up the process by running several 'jug execute' in parallel: jug execute primes.py & jug execute primes.py & jug execute primes.py & jug execute primes.py & TROUBLE SHOOTING: Should you run into issues, you can run the internal tests for jug with jug test-jug FURTHER READING The online documentation contains further reading. You can read the next tutorial here: http://jug.readthedocs.io/en/latest/decrypt-example.html ''') if path.exists('jug-demo'): print("Jug-demo previously created") return os.mkdir('jug-demo') output = open('jug-demo/primes.py', 'wt') output.write(r''' from time import sleep from jug import TaskGenerator @TaskGenerator def is_prime(n): sleep(1.) for j in range(2, n - 1): if (n % j) == 0: return False return True @TaskGenerator def count_primes(ps): return sum(ps) @TaskGenerator def write_output(n): output = open('output.txt', 'wt') output.write("Found {0} primes <= 100.\n".format(n)) output.close() primes100 = [] for n in range(2, 101): primes100.append(is_prime(n)) n_primes = count_primes(primes100) write_output(n_primes) ''') output.close() demo = DemoCommand()
[ "os.path.exists", "os.mkdir" ]
[((2249, 2272), 'os.path.exists', 'path.exists', (['"""jug-demo"""'], {}), "('jug-demo')\n", (2260, 2272), False, 'from os import path\n'), ((2350, 2370), 'os.mkdir', 'os.mkdir', (['"""jug-demo"""'], {}), "('jug-demo')\n", (2358, 2370), False, 'import os\n')]
#!/usr/bin/env python # ROS Libraries import actionlib from actionlib_msgs.msg import GoalStatus from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal from kuri_wandering_robot.msg import Power from wandering_behavior.msg import WanderAction, WanderGoal import rospy from sensor_msgs.msg import CompressedImage from std_msgs.msg import Empty from trajectory_msgs.msg import JointTrajectoryPoint # Python Default Libraries import base64 import csv from enum import Enum import os import requests import threading import time import traceback # Custom Libraries from sent_messages_database import SentMessagesDatabase class KuriWanderingRobotState(Enum): """ During NORMAL, the base moves according to wandering_behavior. During CHARGING, the robot's eyes are closed and it is charging. The robot transitions from NORMAL to CHARGING if its battery is below a threshold and it is on the charger. It transitions from CHARGING to NORMAL if it's battery is above a threshold or it is off the charger. """ NORMAL = 1 CHARGING = 2 class KuriWanderingRobot(object): """ The central executive node. This node runs a control loop that manages the robot's state: turning on and monitoring progress of the wandering module in NORMAL, turning off wandering in CHARGING, and switching back to NORMAL when the robot is sufficiently charged. This node also runs anomaly detection to detect low battery; when it detects low battery, it sends a low battery request to the Slackbot, which then sends it to the helpers. This node can be extended with additional anomaly detection and help requests, as needed. This node also subscribes to a dummy `where_am_i_help` topic, which sends helpers the sample `where_am_i` help message. Note that that is only in place to illsutrate the sample `where_am_i` help message, and actually using that would require developing a custom anomaly detection system to trigger the robot asking for that type of help. Finally, this node has a separate thread that continually queries the Slackbot for responses to its help requests. """ def __init__(self): """ Initialize an instance of the KuriWanderingRobot class """ self.has_loaded = False # Get the Slackbot URL self.slackbot_url = rospy.get_param('~slackbot_url') # Initialize the state. self.state_lock = threading.Lock() self.state_changed = True self.state = KuriWanderingRobotState.NORMAL # Initialize the wandering module self.wandering_module_action = actionlib.SimpleActionClient('/wandering_behavior/navigate', WanderAction) # Initialize the eye controller self.eyelid_controller_action = actionlib.SimpleActionClient('/eyelids_controller/follow_joint_trajectory', FollowJointTrajectoryAction) self.eye_closed_position = 0.41 self.eye_open_position = 0.0 # Initialize the camera self.img_sub = rospy.Subscriber( '/upward_looking_camera/compressed', CompressedImage, self.image_callback, queue_size=1) self.latest_image = None self.latest_image_lock = threading.Lock() # Initialize low battery anomaly detector self.battery_sub = rospy.Subscriber( "/mobile_base/power", Power, self.power_callback, queue_size=1) self.previous_battery_lock = threading.Lock() self.previous_battery = None self.previous_dock_present = None self.battery_notification_thresholds = rospy.get_param('~battery_notification_thresholds', [40, 20, 10, 5, 4, 3, 2, 1]) # if the battery is less than this and Kuri is docked, charge self.to_charge_threshold = rospy.get_param('~to_charge_threshold', 50) # if the batter is greater than this and Kuri is charging, switch back to NORMAL self.charging_done_threshold = rospy.get_param('~charging_done_threshold', 90) # Whether the low battery message should include Kuri's current camera image self.low_battery_message_include_image = rospy.get_param('~low_battery_message_include_image', True) # Initialize the dummy `where_am_i` anomaly detector self.where_am_i_help_sub = rospy.Subscriber( "/where_am_i_help", Empty, self.where_am_i_help_callback, queue_size=1) # Initialize storing images and message IDs self.sent_messages_database_filepath = rospy.get_param('~send_messages_database_filepath') self.sent_messages_database = SentMessagesDatabase.load( self.sent_messages_database_filepath) self.database_save_interval = 1 self.database_updates_since_last_save = 0 # Initialize the head controller self.head_state_sub = rospy.Subscriber( "/head_controller/state", JointTrajectoryControllerState, self.head_state_callback, queue_size=1) self.head_controller_action = actionlib.SimpleActionClient('/head_controller/follow_joint_trajectory', FollowJointTrajectoryAction) self.head_tilt_speed = 0.2 # head tilt is in [-0.8, 0.3] self.head_pan_speed = 0.2 # head pan is in [-0.75, 0.75] # Initialize the Slackbot updates thread self.slackbot_responses_thread = threading.Thread( target=self.get_slackbot_updates, ) self.slackbot_responses_thread.start() # Initialize the state machine self.state_machine_thread = threading.Thread( target=self.state_machine_control_loop, ) self.state_machine_thread.start() self.has_centered_head = False self.has_loaded = True def database_updated(self, num_updates=1): """ Called everytime the database is updated. Saves the database every self.database_save_interval updates """ self.database_updates_since_last_save += num_updates if self.database_updates_since_last_save % self.database_save_interval == 0: self.sent_messages_database.save(self.sent_messages_database_filepath) rospy.logdebug("Saved sent_messages_database!") def open_eyes(self, duration_secs=0.2): """ Open the robot's eyes """ rospy.logdebug("Open Eyes") duration = rospy.Duration.from_sec(duration_secs) goal = FollowJointTrajectoryGoal() goal.trajectory.header.stamp = rospy.Time.now() goal.trajectory.joint_names = ["eyelids_joint"] point = JointTrajectoryPoint() point.positions = [self.eye_open_position] point.velocities = [] point.accelerations = [] point.effort = [] point.time_from_start = duration goal.trajectory.points = [point] # Send the goal self.eyelid_controller_action.wait_for_server() self.eyelid_controller_action.send_goal(goal) self.eyelid_controller_action.wait_for_result(duration) def close_eyes(self, duration_secs=0.2): """ Close the robot's eyes """ rospy.logdebug("Close Eyes") duration = rospy.Duration.from_sec(duration_secs) goal = FollowJointTrajectoryGoal() goal.trajectory.header.stamp = rospy.Time.now() goal.trajectory.joint_names = ["eyelids_joint"] point = JointTrajectoryPoint() point.positions = [self.eye_closed_position] point.velocities = [] point.accelerations = [] point.effort = [] point.time_from_start = duration goal.trajectory.points = [point] # Send the goal self.eyelid_controller_action.wait_for_server() self.eyelid_controller_action.send_goal(goal) self.eyelid_controller_action.wait_for_result(duration) def head_state_callback(self, head_state_msg): """ Get the head's current position """ if not self.has_loaded: return if not self.has_centered_head: self.center_head(head_state_msg.actual.positions[0], head_state_msg.actual.positions[1]) def center_head(self, current_pan, current_tilt): """ Center Kuri's head. This involves moving from the current pan and tilt to the centered values of (0.0, -0.3) """ pan_endpoint = 0.0 tilt_endpoint = -0.3 n_waypoints = 10 # Compute the actual endpoint and duration_secs duration_secs = max( abs(pan_endpoint-current_pan)/self.head_pan_speed, abs(tilt_endpoint-current_tilt)/self.head_tilt_speed) duration = rospy.Duration.from_sec(duration_secs) # Create the goal goal = FollowJointTrajectoryGoal() goal.trajectory.header.stamp = rospy.Time.now() goal.trajectory.joint_names = ["head_1_joint", "head_2_joint"] goal.trajectory.points = [] pan_interval = (pan_endpoint-current_pan)/(n_waypoints-1) tilt_interval = (tilt_endpoint-current_tilt)/(n_waypoints-1) time_interval = duration/n_waypoints for i in range(n_waypoints): point = JointTrajectoryPoint() point.positions = [current_pan + i*pan_interval, current_tilt + i*tilt_interval] point.velocities = [] point.accelerations = [] point.effort = [] point.time_from_start = (i+1)*time_interval goal.trajectory.points.append(point) # Send the goal self.head_controller_action.wait_for_server() self.head_controller_action.send_goal(goal) self.head_controller_action.wait_for_result(duration) self.has_centered_head = True def state_machine_control_loop(self, rate_hz=10): """ The control loop for the state machine. All of the state machine logic is handled in this function and the functions it calls. During NORMAL, the base moves according to wandering_behavior. During CHARGING, the robot's eyes are closed and it is charging. The robot transitions from NORMAL to CHARGING if its battery is below a threshold and it is on the charger. It transitions from CHARGING to NORMAL if it's battery is above a threshold or it is off the charger. """ rate = rospy.Rate(rate_hz) while not rospy.is_shutdown(): rate.sleep() with self.state_lock: state_at_start_of_loop = self.state if (self.state == KuriWanderingRobotState.NORMAL): goal_state = self.wandering_module_action.get_state() if (self.state_changed or goal_state == GoalStatus.ABORTED or goal_state == GoalStatus.SUCCEEDED): rospy.logdebug("Waiting for wandering_module_action server") self.wandering_module_action.wait_for_server() rospy.logdebug("Sending goal to wandering_module_action") # Effort -1 means "don't stop unless preempted" self.wandering_module_action.send_goal(WanderGoal(effort=-1)) self.open_eyes() with self.previous_battery_lock: if (self.previous_battery is not None and self.previous_battery < self.to_charge_threshold and self.previous_dock_present): self.close_eyes() self.state = KuriWanderingRobotState.CHARGING self.wandering_module_action.cancel_all_goals() rospy.loginfo("State: NORMAL ==> CHARGING") elif self.state == KuriWanderingRobotState.CHARGING: with self.previous_battery_lock: if (self.previous_battery is None or not self.previous_dock_present or self.previous_battery >= self.charging_done_threshold): self.state = KuriWanderingRobotState.NORMAL rospy.loginfo("State: CHARGING ==> NORMAL") state_at_end_of_loop = self.state self.state_changed = (state_at_start_of_loop != state_at_end_of_loop) def image_callback(self, img_msg): """ Store the latest image. """ if not self.has_loaded: return with self.latest_image_lock: self.latest_image = img_msg def power_callback(self, msg): """ Callback function for Kuri's power update. It Kuri's battery has crossed a battery_notification_threshold, notify the Slackbot. """ if not self.has_loaded: return with self.state_lock: with self.previous_battery_lock: self.previous_dock_present = msg.dock_present if self.state == KuriWanderingRobotState.CHARGING: self.previous_battery = msg.battery.pct else: update_previous_battery = True if msg.battery.pct <= self.battery_notification_thresholds[0]: # Send the low-battery helper notifications when the battery # crosses the thresholds defined in self.battery_notification_thresholds for i in range(len(self.battery_notification_thresholds)): if (self.previous_battery is None or (self.previous_battery > self.battery_notification_thresholds[i]) and msg.battery.pct <= self.battery_notification_thresholds[i]): try: # Send a low_battery_alert dict_to_send = {'battery_pct':msg.battery.pct} if self.low_battery_message_include_image: with self.latest_image_lock: if self.latest_image is not None: image_contents = base64.b64encode(bytearray(self.latest_image.data)).decode('ascii') dict_to_send['image'] = image_contents rospy.loginfo("Sending battery request for pct %s" % msg.battery.pct) res = requests.post( os.path.join(self.slackbot_url, 'low_battery'), json=dict_to_send, ) res_json = res.json() if not res_json['success']: update_previous_battery = False except Exception as e: rospy.logwarn("Error communicating with Slackbot /low_battery at URL %s." % self.slackbot_url) if "res" in locals(): rospy.logwarn("Response text %s." % res.text) rospy.logwarn(traceback.format_exc()) rospy.logwarn("Error %s." % e) update_previous_battery = False break if (update_previous_battery and (self.previous_battery is None or msg.battery.pct < self.previous_battery)): self.previous_battery = msg.battery.pct def where_am_i_help_callback(self, msg): """ A dummy callback that triggers sending a where_am_i help message to the Slackbot. This is merely intended to showcase some of the Slackbot's capabilities. Users who want a robot that autonomously asks the human to tell it where it is should implement their own anomaly detection system for triggering this help request. """ with self.latest_image_lock: if self.latest_image is None: rospy.loginfo("Attempted to send where_am_i help request but have no image.") return try: # Send a low_battery_alert rospy.loginfo("Sending where_am_i help request") with self.latest_image_lock: image_contents = base64.b64encode(bytearray(self.latest_image.data)).decode('ascii') res = requests.post( os.path.join(self.slackbot_url, 'where_am_i'), json={'image':image_contents, 'options':['Lounge', "Office#252", "200 Corridoor", "Atrium"]}, ) res_json = res.json() message_id = res_json['message_id'] self.sent_messages_database.add_respondable_message(message_id) self.database_updated() except Exception as e: rospy.logwarn("Error communicating with Slackbot /where_am_i at URL %s." % self.slackbot_url) if "res" in locals(): rospy.logwarn("Response text %s." % res.text) rospy.logwarn(traceback.format_exc()) rospy.logwarn("Error %s." % e) def get_slackbot_updates(self, refresh_secs=5.0): """ Once every refresh_secs seconds, request updates (e.g., human responses) from the Slackbot. Note that you can optionally request updates for partular message_ids (e.g., those that have not received responses yet) """ r = rospy.Rate(1.0/refresh_secs) while not rospy.is_shutdown(): if not self.has_loaded: r.sleep() try: message_ids_and_action_ts = self.sent_messages_database.get_message_ids_and_latest_action_ts() # Request responses for those message_ids res = requests.post( os.path.join(self.slackbot_url, 'get_updates'), json={'message_ids_and_action_ts':message_ids_and_action_ts}, ) res_json = res.json() rospy.logdebug("Got updates from Slackbot %s" % res_json) message_id_to_responses = res_json["message_id_to_responses"] if len(message_id_to_responses) > 0: num_updates = 0 # Insert reactions into the database for message_id in message_id_to_responses: for action_ts, response in message_id_to_responses[message_id]: rospy.loginfo("Got reaction %s from at ts %s" % (response, action_ts)) self.sent_messages_database.add_user_response(message_id, action_ts, response) num_updates += 1 self.database_updated(num_updates) except Exception as e: rospy.logwarn("Error communicating with Slackbot /get_updates at URL %s." % self.slackbot_url) if "res" in locals(): rospy.logwarn("Response text %s." % res.text) rospy.logwarn(traceback.format_exc()) rospy.logwarn("Error %s." % e) r.sleep() if __name__ == "__main__": rospy.init_node("kuri_wandering_robot") kuri_wandering_robot = KuriWanderingRobot() rospy.spin()
[ "rospy.logwarn", "rospy.init_node", "rospy.Rate", "threading.Lock", "wandering_behavior.msg.WanderGoal", "rospy.Duration.from_sec", "rospy.spin", "rospy.Subscriber", "sent_messages_database.SentMessagesDatabase.load", "actionlib.SimpleActionClient", "rospy.get_param", "rospy.Time.now", "rospy.logdebug", "rospy.loginfo", "traceback.format_exc", "control_msgs.msg.FollowJointTrajectoryGoal", "rospy.is_shutdown", "os.path.join", "threading.Thread", "trajectory_msgs.msg.JointTrajectoryPoint" ]
[((19163, 19202), 'rospy.init_node', 'rospy.init_node', (['"""kuri_wandering_robot"""'], {}), "('kuri_wandering_robot')\n", (19178, 19202), False, 'import rospy\n'), ((19257, 19269), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (19267, 19269), False, 'import rospy\n'), ((2419, 2451), 'rospy.get_param', 'rospy.get_param', (['"""~slackbot_url"""'], {}), "('~slackbot_url')\n", (2434, 2451), False, 'import rospy\n'), ((2511, 2527), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (2525, 2527), False, 'import threading\n'), ((2696, 2770), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['"""/wandering_behavior/navigate"""', 'WanderAction'], {}), "('/wandering_behavior/navigate', WanderAction)\n", (2724, 2770), False, 'import actionlib\n'), ((2852, 2960), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['"""/eyelids_controller/follow_joint_trajectory"""', 'FollowJointTrajectoryAction'], {}), "('/eyelids_controller/follow_joint_trajectory',\n FollowJointTrajectoryAction)\n", (2880, 2960), False, 'import actionlib\n'), ((3090, 3200), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/upward_looking_camera/compressed"""', 'CompressedImage', 'self.image_callback'], {'queue_size': '(1)'}), "('/upward_looking_camera/compressed', CompressedImage, self\n .image_callback, queue_size=1)\n", (3106, 3200), False, 'import rospy\n'), ((3275, 3291), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (3289, 3291), False, 'import threading\n'), ((3370, 3455), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/mobile_base/power"""', 'Power', 'self.power_callback'], {'queue_size': '(1)'}), "('/mobile_base/power', Power, self.power_callback, queue_size=1\n )\n", (3386, 3455), False, 'import rospy\n'), ((3501, 3517), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (3515, 3517), False, 'import threading\n'), ((3644, 3729), 'rospy.get_param', 'rospy.get_param', (['"""~battery_notification_thresholds"""', '[40, 20, 10, 5, 4, 3, 2, 1]'], {}), "('~battery_notification_thresholds', [40, 20, 10, 5, 4, 3, 2, 1]\n )\n", (3659, 3729), False, 'import rospy\n'), ((3830, 3873), 'rospy.get_param', 'rospy.get_param', (['"""~to_charge_threshold"""', '(50)'], {}), "('~to_charge_threshold', 50)\n", (3845, 3873), False, 'import rospy\n'), ((4002, 4049), 'rospy.get_param', 'rospy.get_param', (['"""~charging_done_threshold"""', '(90)'], {}), "('~charging_done_threshold', 90)\n", (4017, 4049), False, 'import rospy\n'), ((4184, 4243), 'rospy.get_param', 'rospy.get_param', (['"""~low_battery_message_include_image"""', '(True)'], {}), "('~low_battery_message_include_image', True)\n", (4199, 4243), False, 'import rospy\n'), ((4341, 4433), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/where_am_i_help"""', 'Empty', 'self.where_am_i_help_callback'], {'queue_size': '(1)'}), "('/where_am_i_help', Empty, self.where_am_i_help_callback,\n queue_size=1)\n", (4357, 4433), False, 'import rospy\n'), ((4543, 4594), 'rospy.get_param', 'rospy.get_param', (['"""~send_messages_database_filepath"""'], {}), "('~send_messages_database_filepath')\n", (4558, 4594), False, 'import rospy\n'), ((4633, 4696), 'sent_messages_database.SentMessagesDatabase.load', 'SentMessagesDatabase.load', (['self.sent_messages_database_filepath'], {}), '(self.sent_messages_database_filepath)\n', (4658, 4696), False, 'from sent_messages_database import SentMessagesDatabase\n'), ((4872, 4990), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/head_controller/state"""', 'JointTrajectoryControllerState', 'self.head_state_callback'], {'queue_size': '(1)'}), "('/head_controller/state', JointTrajectoryControllerState,\n self.head_state_callback, queue_size=1)\n", (4888, 4990), False, 'import rospy\n'), ((5038, 5143), 'actionlib.SimpleActionClient', 'actionlib.SimpleActionClient', (['"""/head_controller/follow_joint_trajectory"""', 'FollowJointTrajectoryAction'], {}), "('/head_controller/follow_joint_trajectory',\n FollowJointTrajectoryAction)\n", (5066, 5143), False, 'import actionlib\n'), ((5361, 5411), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.get_slackbot_updates'}), '(target=self.get_slackbot_updates)\n', (5377, 5411), False, 'import threading\n'), ((5558, 5614), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.state_machine_control_loop'}), '(target=self.state_machine_control_loop)\n', (5574, 5614), False, 'import threading\n'), ((6338, 6365), 'rospy.logdebug', 'rospy.logdebug', (['"""Open Eyes"""'], {}), "('Open Eyes')\n", (6352, 6365), False, 'import rospy\n'), ((6385, 6423), 'rospy.Duration.from_sec', 'rospy.Duration.from_sec', (['duration_secs'], {}), '(duration_secs)\n', (6408, 6423), False, 'import rospy\n'), ((6439, 6466), 'control_msgs.msg.FollowJointTrajectoryGoal', 'FollowJointTrajectoryGoal', ([], {}), '()\n', (6464, 6466), False, 'from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal\n'), ((6506, 6522), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (6520, 6522), False, 'import rospy\n'), ((6595, 6617), 'trajectory_msgs.msg.JointTrajectoryPoint', 'JointTrajectoryPoint', ([], {}), '()\n', (6615, 6617), False, 'from trajectory_msgs.msg import JointTrajectoryPoint\n'), ((7148, 7176), 'rospy.logdebug', 'rospy.logdebug', (['"""Close Eyes"""'], {}), "('Close Eyes')\n", (7162, 7176), False, 'import rospy\n'), ((7196, 7234), 'rospy.Duration.from_sec', 'rospy.Duration.from_sec', (['duration_secs'], {}), '(duration_secs)\n', (7219, 7234), False, 'import rospy\n'), ((7250, 7277), 'control_msgs.msg.FollowJointTrajectoryGoal', 'FollowJointTrajectoryGoal', ([], {}), '()\n', (7275, 7277), False, 'from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal\n'), ((7317, 7333), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (7331, 7333), False, 'import rospy\n'), ((7406, 7428), 'trajectory_msgs.msg.JointTrajectoryPoint', 'JointTrajectoryPoint', ([], {}), '()\n', (7426, 7428), False, 'from trajectory_msgs.msg import JointTrajectoryPoint\n'), ((8679, 8717), 'rospy.Duration.from_sec', 'rospy.Duration.from_sec', (['duration_secs'], {}), '(duration_secs)\n', (8702, 8717), False, 'import rospy\n'), ((8760, 8787), 'control_msgs.msg.FollowJointTrajectoryGoal', 'FollowJointTrajectoryGoal', ([], {}), '()\n', (8785, 8787), False, 'from control_msgs.msg import JointTrajectoryControllerState, FollowJointTrajectoryAction, FollowJointTrajectoryGoal\n'), ((8827, 8843), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (8841, 8843), False, 'import rospy\n'), ((10359, 10378), 'rospy.Rate', 'rospy.Rate', (['rate_hz'], {}), '(rate_hz)\n', (10369, 10378), False, 'import rospy\n'), ((17475, 17505), 'rospy.Rate', 'rospy.Rate', (['(1.0 / refresh_secs)'], {}), '(1.0 / refresh_secs)\n', (17485, 17505), False, 'import rospy\n'), ((6183, 6230), 'rospy.logdebug', 'rospy.logdebug', (['"""Saved sent_messages_database!"""'], {}), "('Saved sent_messages_database!')\n", (6197, 6230), False, 'import rospy\n'), ((9188, 9210), 'trajectory_msgs.msg.JointTrajectoryPoint', 'JointTrajectoryPoint', ([], {}), '()\n', (9208, 9210), False, 'from trajectory_msgs.msg import JointTrajectoryPoint\n'), ((10397, 10416), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (10414, 10416), False, 'import rospy\n'), ((16216, 16264), 'rospy.loginfo', 'rospy.loginfo', (['"""Sending where_am_i help request"""'], {}), "('Sending where_am_i help request')\n", (16229, 16264), False, 'import rospy\n'), ((17522, 17541), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (17539, 17541), False, 'import rospy\n'), ((16051, 16128), 'rospy.loginfo', 'rospy.loginfo', (['"""Attempted to send where_am_i help request but have no image."""'], {}), "('Attempted to send where_am_i help request but have no image.')\n", (16064, 16128), False, 'import rospy\n'), ((16456, 16501), 'os.path.join', 'os.path.join', (['self.slackbot_url', '"""where_am_i"""'], {}), "(self.slackbot_url, 'where_am_i')\n", (16468, 16501), False, 'import os\n'), ((16864, 16961), 'rospy.logwarn', 'rospy.logwarn', (["('Error communicating with Slackbot /where_am_i at URL %s.' % self.slackbot_url\n )"], {}), "('Error communicating with Slackbot /where_am_i at URL %s.' %\n self.slackbot_url)\n", (16877, 16961), False, 'import rospy\n'), ((17116, 17146), 'rospy.logwarn', 'rospy.logwarn', (["('Error %s.' % e)"], {}), "('Error %s.' % e)\n", (17129, 17146), False, 'import rospy\n'), ((18032, 18089), 'rospy.logdebug', 'rospy.logdebug', (["('Got updates from Slackbot %s' % res_json)"], {}), "('Got updates from Slackbot %s' % res_json)\n", (18046, 18089), False, 'import rospy\n'), ((17008, 17053), 'rospy.logwarn', 'rospy.logwarn', (["('Response text %s.' % res.text)"], {}), "('Response text %s.' % res.text)\n", (17021, 17053), False, 'import rospy\n'), ((17080, 17102), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (17100, 17102), False, 'import traceback\n'), ((17830, 17876), 'os.path.join', 'os.path.join', (['self.slackbot_url', '"""get_updates"""'], {}), "(self.slackbot_url, 'get_updates')\n", (17842, 17876), False, 'import os\n'), ((18821, 18919), 'rospy.logwarn', 'rospy.logwarn', (["('Error communicating with Slackbot /get_updates at URL %s.' % self.\n slackbot_url)"], {}), "('Error communicating with Slackbot /get_updates at URL %s.' %\n self.slackbot_url)\n", (18834, 18919), False, 'import rospy\n'), ((19078, 19108), 'rospy.logwarn', 'rospy.logwarn', (["('Error %s.' % e)"], {}), "('Error %s.' % e)\n", (19091, 19108), False, 'import rospy\n'), ((10813, 10873), 'rospy.logdebug', 'rospy.logdebug', (['"""Waiting for wandering_module_action server"""'], {}), "('Waiting for wandering_module_action server')\n", (10827, 10873), False, 'import rospy\n'), ((10969, 11026), 'rospy.logdebug', 'rospy.logdebug', (['"""Sending goal to wandering_module_action"""'], {}), "('Sending goal to wandering_module_action')\n", (10983, 11026), False, 'import rospy\n'), ((18968, 19013), 'rospy.logwarn', 'rospy.logwarn', (["('Response text %s.' % res.text)"], {}), "('Response text %s.' % res.text)\n", (18981, 19013), False, 'import rospy\n'), ((19041, 19063), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (19061, 19063), False, 'import traceback\n'), ((11162, 11183), 'wandering_behavior.msg.WanderGoal', 'WanderGoal', ([], {'effort': '(-1)'}), '(effort=-1)\n', (11172, 11183), False, 'from wandering_behavior.msg import WanderAction, WanderGoal\n'), ((11651, 11694), 'rospy.loginfo', 'rospy.loginfo', (['"""State: NORMAL ==> CHARGING"""'], {}), "('State: NORMAL ==> CHARGING')\n", (11664, 11694), False, 'import rospy\n'), ((18494, 18564), 'rospy.loginfo', 'rospy.loginfo', (["('Got reaction %s from at ts %s' % (response, action_ts))"], {}), "('Got reaction %s from at ts %s' % (response, action_ts))\n", (18507, 18564), False, 'import rospy\n'), ((12068, 12111), 'rospy.loginfo', 'rospy.loginfo', (['"""State: CHARGING ==> NORMAL"""'], {}), "('State: CHARGING ==> NORMAL')\n", (12081, 12111), False, 'import rospy\n'), ((14250, 14319), 'rospy.loginfo', 'rospy.loginfo', (["('Sending battery request for pct %s' % msg.battery.pct)"], {}), "('Sending battery request for pct %s' % msg.battery.pct)\n", (14263, 14319), False, 'import rospy\n'), ((14417, 14463), 'os.path.join', 'os.path.join', (['self.slackbot_url', '"""low_battery"""'], {}), "(self.slackbot_url, 'low_battery')\n", (14429, 14463), False, 'import os\n'), ((14847, 14945), 'rospy.logwarn', 'rospy.logwarn', (["('Error communicating with Slackbot /low_battery at URL %s.' % self.\n slackbot_url)"], {}), "('Error communicating with Slackbot /low_battery at URL %s.' %\n self.slackbot_url)\n", (14860, 14945), False, 'import rospy\n'), ((15196, 15226), 'rospy.logwarn', 'rospy.logwarn', (["('Error %s.' % e)"], {}), "('Error %s.' % e)\n", (15209, 15226), False, 'import rospy\n'), ((15040, 15085), 'rospy.logwarn', 'rospy.logwarn', (["('Response text %s.' % res.text)"], {}), "('Response text %s.' % res.text)\n", (15053, 15085), False, 'import rospy\n'), ((15136, 15158), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (15156, 15158), False, 'import traceback\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2010 <NAME> <<EMAIL>> # Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html """ Automated tests for checking transformation algorithms (the models package). """ import logging import unittest import numpy as np from gensim.corpora.mmcorpus import MmCorpus from gensim.models import rpmodel from gensim import matutils from gensim.test.utils import datapath, get_tmpfile class TestRpModel(unittest.TestCase): def setUp(self): self.corpus = MmCorpus(datapath('testcorpus.mm')) def test_transform(self): # create the transformation model # HACK; set fixed seed so that we always get the same random matrix (and can compare against expected results) np.random.seed(13) model = rpmodel.RpModel(self.corpus, num_topics=2) # transform one document doc = list(self.corpus)[0] transformed = model[doc] vec = matutils.sparse2full(transformed, 2) # convert to dense vector, for easier equality tests expected = np.array([-0.70710677, 0.70710677]) self.assertTrue(np.allclose(vec, expected)) # transformed entries must be equal up to sign def test_persistence(self): fname = get_tmpfile('gensim_models.tst') model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(np.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector def test_persistence_compressed(self): fname = get_tmpfile('gensim_models.tst.gz') model = rpmodel.RpModel(self.corpus, num_topics=2) model.save(fname) model2 = rpmodel.RpModel.load(fname, mmap=None) self.assertEqual(model.num_topics, model2.num_topics) self.assertTrue(np.allclose(model.projection, model2.projection)) tstvec = [] self.assertTrue(np.allclose(model[tstvec], model2[tstvec])) # try projecting an empty vector if __name__ == '__main__': logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.DEBUG) unittest.main()
[ "logging.basicConfig", "gensim.models.rpmodel.RpModel.load", "gensim.matutils.sparse2full", "numpy.allclose", "gensim.test.utils.get_tmpfile", "gensim.models.rpmodel.RpModel", "numpy.array", "numpy.random.seed", "gensim.test.utils.datapath", "unittest.main" ]
[((2218, 2314), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s : %(levelname)s : %(message)s"""', 'level': 'logging.DEBUG'}), "(format='%(asctime)s : %(levelname)s : %(message)s',\n level=logging.DEBUG)\n", (2237, 2314), False, 'import logging\n'), ((2315, 2330), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2328, 2330), False, 'import unittest\n'), ((779, 797), 'numpy.random.seed', 'np.random.seed', (['(13)'], {}), '(13)\n', (793, 797), True, 'import numpy as np\n'), ((814, 856), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (829, 856), False, 'from gensim.models import rpmodel\n'), ((973, 1009), 'gensim.matutils.sparse2full', 'matutils.sparse2full', (['transformed', '(2)'], {}), '(transformed, 2)\n', (993, 1009), False, 'from gensim import matutils\n'), ((1084, 1119), 'numpy.array', 'np.array', (['[-0.70710677, 0.70710677]'], {}), '([-0.70710677, 0.70710677])\n', (1092, 1119), True, 'import numpy as np\n'), ((1269, 1301), 'gensim.test.utils.get_tmpfile', 'get_tmpfile', (['"""gensim_models.tst"""'], {}), "('gensim_models.tst')\n", (1280, 1301), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1318, 1360), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (1333, 1360), False, 'from gensim.models import rpmodel\n'), ((1404, 1431), 'gensim.models.rpmodel.RpModel.load', 'rpmodel.RpModel.load', (['fname'], {}), '(fname)\n', (1424, 1431), False, 'from gensim.models import rpmodel\n'), ((1750, 1785), 'gensim.test.utils.get_tmpfile', 'get_tmpfile', (['"""gensim_models.tst.gz"""'], {}), "('gensim_models.tst.gz')\n", (1761, 1785), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1802, 1844), 'gensim.models.rpmodel.RpModel', 'rpmodel.RpModel', (['self.corpus'], {'num_topics': '(2)'}), '(self.corpus, num_topics=2)\n', (1817, 1844), False, 'from gensim.models import rpmodel\n'), ((1888, 1926), 'gensim.models.rpmodel.RpModel.load', 'rpmodel.RpModel.load', (['fname'], {'mmap': 'None'}), '(fname, mmap=None)\n', (1908, 1926), False, 'from gensim.models import rpmodel\n'), ((552, 577), 'gensim.test.utils.datapath', 'datapath', (['"""testcorpus.mm"""'], {}), "('testcorpus.mm')\n", (560, 577), False, 'from gensim.test.utils import datapath, get_tmpfile\n'), ((1144, 1170), 'numpy.allclose', 'np.allclose', (['vec', 'expected'], {}), '(vec, expected)\n', (1155, 1170), True, 'import numpy as np\n'), ((1518, 1566), 'numpy.allclose', 'np.allclose', (['model.projection', 'model2.projection'], {}), '(model.projection, model2.projection)\n', (1529, 1566), True, 'import numpy as np\n'), ((1612, 1654), 'numpy.allclose', 'np.allclose', (['model[tstvec]', 'model2[tstvec]'], {}), '(model[tstvec], model2[tstvec])\n', (1623, 1654), True, 'import numpy as np\n'), ((2013, 2061), 'numpy.allclose', 'np.allclose', (['model.projection', 'model2.projection'], {}), '(model.projection, model2.projection)\n', (2024, 2061), True, 'import numpy as np\n'), ((2107, 2149), 'numpy.allclose', 'np.allclose', (['model[tstvec]', 'model2[tstvec]'], {}), '(model[tstvec], model2[tstvec])\n', (2118, 2149), True, 'import numpy as np\n')]
import tensorflow as tf from tensorflow import keras class CondGeneratorModel(keras.Model): def __init__(self): super(CondGeneratorModel, self).__init__() # Expand 7*7*128 features into a (7,7,128) tensor self.dense_1 = keras.layers.Dense(7*7*256) self.reshape_1 = keras.layers.Reshape((7, 7, 256)) # Expand (10,) to (7,7,1) self.embedder = keras.layers.Embedding(10, 100) self.dense_2 = keras.layers.Dense(7*7*256) # From (7,7,256) to (7,7,128) self.convt_1 = keras.layers.Conv2DTranspose( 128, (5, 5), strides=1, padding='same', use_bias=False) self.convt_bn_1 = keras.layers.BatchNormalization() self.convt_relu_1 = keras.layers.LeakyReLU() # From (7,7,128) to (14,14,64) self.convt_2 = keras.layers.Conv2DTranspose( 64, (5, 5), strides=2, padding='same', use_bias=False) self.convt_bn_2 = keras.layers.BatchNormalization() self.convt_relu_2 = keras.layers.LeakyReLU() # From (14,14,64) to (28,28,1) self.convt_out = keras.layers.Conv2DTranspose( 1, (5, 5), strides=2, padding='same', use_bias=False) def call(self, inputs): feat_x = inputs[0] label = inputs[2] # Expand label input to be the same as latent feature label_x = self.embedder(label) label_x = self.dense_2(label_x) label_x = tf.squeeze(label_x, 1) # Expand features to image channels feat_x = self.dense_1(feat_x) # Combine latent feature and label input x = tf.math.multiply(feat_x, label_x) x = self.reshape_1(x) # From (7,7,256) to (7,7,128) x = self.convt_1(x) x = self.convt_bn_1(x) x = self.convt_relu_1(x) # From (7,7,128) to (14,14,64) x = self.convt_2(x) x = self.convt_bn_2(x) x = self.convt_relu_2(x) # From (14,14,64) to (28,28,1) x = self.convt_out(x) return [x, None, label] class CondDiscriminatorModel(keras.Model): def __init__(self): super(CondDiscriminatorModel, self).__init__() self.embedder = keras.layers.Embedding(10, 100) self.expand_layer = keras.layers.Dense(28*28*1) self.reshape_layer = keras.layers.Reshape((28, 28, 1)) self.conv_1 = keras.layers.Conv2D( 64, (5, 5), strides=2, padding='same', input_shape=(28, 28, 1)) self.relu_1 = keras.layers.LeakyReLU() self.drop_1 = keras.layers.Dropout(0.3) self.conv_2 = keras.layers.Conv2D( 128, (5, 5), strides=2, padding='same') self.relu_2 = keras.layers.LeakyReLU() self.drop_2 = keras.layers.Dropout(0.3) self.flatten = keras.layers.Flatten() self.out = keras.layers.Dense(1) def call(self, inputs): images_x = inputs[0] labels = inputs[2] labels_x = self.embedder(labels) labels_x = self.expand_layer(labels_x) labels_x = self.reshape_layer(labels_x) x = tf.math.multiply(images_x, labels_x) x = self.conv_1(x) x = self.relu_1(x) x = self.drop_1(x) x = self.conv_2(x) x = self.relu_2(x) x = self.drop_2(x) x = self.flatten(x) x = self.out(x) return x
[ "tensorflow.keras.layers.Reshape", "tensorflow.keras.layers.Conv2DTranspose", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.LeakyReLU", "tensorflow.keras.layers.BatchNormalization", "tensorflow.keras.layers.Embedding", "tensorflow.math.multiply", "tensorflow.keras.layers.Dense", "tensorflow.keras.layers.Flatten", "tensorflow.squeeze" ]
[((250, 281), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(7 * 7 * 256)'], {}), '(7 * 7 * 256)\n', (268, 281), False, 'from tensorflow import keras\n'), ((303, 336), 'tensorflow.keras.layers.Reshape', 'keras.layers.Reshape', (['(7, 7, 256)'], {}), '((7, 7, 256))\n', (323, 336), False, 'from tensorflow import keras\n'), ((395, 426), 'tensorflow.keras.layers.Embedding', 'keras.layers.Embedding', (['(10)', '(100)'], {}), '(10, 100)\n', (417, 426), False, 'from tensorflow import keras\n'), ((450, 481), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(7 * 7 * 256)'], {}), '(7 * 7 * 256)\n', (468, 481), False, 'from tensorflow import keras\n'), ((539, 627), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(128)', '(5, 5)'], {'strides': '(1)', 'padding': '"""same"""', 'use_bias': '(False)'}), "(128, (5, 5), strides=1, padding='same',\n use_bias=False)\n", (567, 627), False, 'from tensorflow import keras\n'), ((663, 696), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (694, 696), False, 'from tensorflow import keras\n'), ((725, 749), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (747, 749), False, 'from tensorflow import keras\n'), ((812, 899), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(64)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""', 'use_bias': '(False)'}), "(64, (5, 5), strides=2, padding='same',\n use_bias=False)\n", (840, 899), False, 'from tensorflow import keras\n'), ((935, 968), 'tensorflow.keras.layers.BatchNormalization', 'keras.layers.BatchNormalization', ([], {}), '()\n', (966, 968), False, 'from tensorflow import keras\n'), ((997, 1021), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (1019, 1021), False, 'from tensorflow import keras\n'), ((1086, 1173), 'tensorflow.keras.layers.Conv2DTranspose', 'keras.layers.Conv2DTranspose', (['(1)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""', 'use_bias': '(False)'}), "(1, (5, 5), strides=2, padding='same', use_bias\n =False)\n", (1114, 1173), False, 'from tensorflow import keras\n'), ((1423, 1445), 'tensorflow.squeeze', 'tf.squeeze', (['label_x', '(1)'], {}), '(label_x, 1)\n', (1433, 1445), True, 'import tensorflow as tf\n'), ((1589, 1622), 'tensorflow.math.multiply', 'tf.math.multiply', (['feat_x', 'label_x'], {}), '(feat_x, label_x)\n', (1605, 1622), True, 'import tensorflow as tf\n'), ((2163, 2194), 'tensorflow.keras.layers.Embedding', 'keras.layers.Embedding', (['(10)', '(100)'], {}), '(10, 100)\n', (2185, 2194), False, 'from tensorflow import keras\n'), ((2223, 2254), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(28 * 28 * 1)'], {}), '(28 * 28 * 1)\n', (2241, 2254), False, 'from tensorflow import keras\n'), ((2280, 2313), 'tensorflow.keras.layers.Reshape', 'keras.layers.Reshape', (['(28, 28, 1)'], {}), '((28, 28, 1))\n', (2300, 2313), False, 'from tensorflow import keras\n'), ((2336, 2423), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(64)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""', 'input_shape': '(28, 28, 1)'}), "(64, (5, 5), strides=2, padding='same', input_shape=(28,\n 28, 1))\n", (2355, 2423), False, 'from tensorflow import keras\n'), ((2455, 2479), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (2477, 2479), False, 'from tensorflow import keras\n'), ((2502, 2527), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(0.3)'], {}), '(0.3)\n', (2522, 2527), False, 'from tensorflow import keras\n'), ((2550, 2609), 'tensorflow.keras.layers.Conv2D', 'keras.layers.Conv2D', (['(128)', '(5, 5)'], {'strides': '(2)', 'padding': '"""same"""'}), "(128, (5, 5), strides=2, padding='same')\n", (2569, 2609), False, 'from tensorflow import keras\n'), ((2645, 2669), 'tensorflow.keras.layers.LeakyReLU', 'keras.layers.LeakyReLU', ([], {}), '()\n', (2667, 2669), False, 'from tensorflow import keras\n'), ((2692, 2717), 'tensorflow.keras.layers.Dropout', 'keras.layers.Dropout', (['(0.3)'], {}), '(0.3)\n', (2712, 2717), False, 'from tensorflow import keras\n'), ((2741, 2763), 'tensorflow.keras.layers.Flatten', 'keras.layers.Flatten', ([], {}), '()\n', (2761, 2763), False, 'from tensorflow import keras\n'), ((2783, 2804), 'tensorflow.keras.layers.Dense', 'keras.layers.Dense', (['(1)'], {}), '(1)\n', (2801, 2804), False, 'from tensorflow import keras\n'), ((3038, 3074), 'tensorflow.math.multiply', 'tf.math.multiply', (['images_x', 'labels_x'], {}), '(images_x, labels_x)\n', (3054, 3074), True, 'import tensorflow as tf\n')]
# -*- coding: utf-8 -*- from selectable.decorators import login_required from maestros.models import TiposMedidasActuacion, TiposLimitesCriticos, TiposMedidasVigilancia, TiposTemperaturas, TiposFrecuencias, Zonas, Terceros, CatalogoEquipos, Personal, Consumibles, ParametrosAnalisis, Actividades, Etapas, Peligros, TiposCursos, TiposLegislacion, Unidades, Firmas, HorarioTurnos from selectable.base import ModelLookup from selectable.registry import registry from maestros_generales.models import Empresas from siva import settings __author__ = 'julian' @login_required class TPActuacionPrevLookup(ModelLookup): model = TiposMedidasActuacion search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TPActuacionPrevLookup, self).get_query(request, term) results = results.filter(tipo="P",empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TPActuacionPrevLookup) @login_required class TPActuacionCorrLookup(ModelLookup): model = TiposMedidasActuacion search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TPActuacionCorrLookup, self).get_query(request, term) results = results.filter(tipo="C",empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TPActuacionCorrLookup) @login_required class TPLimitesCritLookup(ModelLookup): model = TiposLimitesCriticos search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TPLimitesCritLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TPLimitesCritLookup) @login_required class ActividadesLookup(ModelLookup): model = Actividades search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ActividadesLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ActividadesLookup) @login_required class TipoMedidasVigilanciaLookup(ModelLookup): model = TiposMedidasVigilancia search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TipoMedidasVigilanciaLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TipoMedidasVigilanciaLookup) @login_required class TiposTemperaturasLookup(ModelLookup): model = TiposTemperaturas search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposTemperaturasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposTemperaturasLookup) @login_required class TiposFrecuenciasLookup(ModelLookup): model = TiposFrecuencias search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposFrecuenciasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposFrecuenciasLookup) @login_required class ZonasLookup(ModelLookup): model = Zonas search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ZonasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ZonasLookup) @login_required class TercerosLookup(ModelLookup): model = Terceros search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TercerosLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TercerosLookup) @login_required class TercerosTiposLookup(ModelLookup): model = Terceros search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TercerosTiposLookup, self).get_query(request, term) results = results.filter(tipotercero__descripcion=settings.ASESORSANITARIO, empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TercerosTiposLookup) @login_required class CatalogoEquiposLookup(ModelLookup): model = CatalogoEquipos search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(CatalogoEquiposLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(CatalogoEquiposLookup) @login_required class PersonalLookup(ModelLookup): model = Personal search_fields = ('apellidos__icontains',) def get_query(self, request, term): results = super(PersonalLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.apellidos def get_item_label(self, item): return "%s %s" % (item.apellidos, item.nombres) registry.register(PersonalLookup) @login_required class TiposCursosLookup(ModelLookup): model = TiposCursos search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposCursosLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposCursosLookup) @login_required class TiposLegislacionLookup(ModelLookup): model = TiposLegislacion search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(TiposLegislacionLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(TiposLegislacionLookup) @login_required class ConsumiblesLookup(ModelLookup): model = Consumibles search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ConsumiblesLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ConsumiblesLookup) @login_required class ParametrosAnalisisLookup(ModelLookup): model = ParametrosAnalisis search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(ParametrosAnalisisLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(ParametrosAnalisisLookup) @login_required class EtapasLookup(ModelLookup): model = Etapas search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(EtapasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(EtapasLookup) @login_required class PeligrosLookup(ModelLookup): model = Peligros search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(PeligrosLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(PeligrosLookup) @login_required class UnidadesLookup(ModelLookup): model = Unidades search_fields = ('denominacion__icontains',) def get_query(self, request, term): results = super(UnidadesLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.denominacion def get_item_label(self, item): return "%s" % (item.denominacion) registry.register(UnidadesLookup) @login_required class FirmasLookup(ModelLookup): model = Firmas search_fields = ('personal__apellidos__icontains',) def get_query(self, request, term): results = super(FirmasLookup, self).get_query(request, term) results = results.filter(empresa__in=Empresas.objects.filter(usuario__username=request.user)) return results def get_item_value(self, item): return item.personal.apellidos def get_item_label(self, item): return "%s %s" % (item.personal__apellidos, item.personal__nombres) registry.register(FirmasLookup) @login_required class HorarioTurnoLookup(ModelLookup): model = HorarioTurnos search_fields = ('ihora__icontains','fhora__icontains') def get_query(self, request, term): results = super(HorarioTurnoLookup, self).get_query(request, term) idtpturno = request.GET.get('idtpturno', '') if idtpturno: results = results.filter(tpturnos_id=idtpturno) return results def get_item_value(self, item): return "%s - %s" % (item.ihora, item.fhora) def get_item_label(self, item): return "%s - %s" % (item.ihora, item.fhora) registry.register(HorarioTurnoLookup)
[ "selectable.registry.registry.register", "maestros_generales.models.Empresas.objects.filter" ]
[((1100, 1140), 'selectable.registry.registry.register', 'registry.register', (['TPActuacionPrevLookup'], {}), '(TPActuacionPrevLookup)\n', (1117, 1140), False, 'from selectable.registry import registry\n'), ((1686, 1726), 'selectable.registry.registry.register', 'registry.register', (['TPActuacionCorrLookup'], {}), '(TPActuacionCorrLookup)\n', (1703, 1726), False, 'from selectable.registry import registry\n'), ((2258, 2296), 'selectable.registry.registry.register', 'registry.register', (['TPLimitesCritLookup'], {}), '(TPLimitesCritLookup)\n', (2275, 2296), False, 'from selectable.registry import registry\n'), ((2816, 2852), 'selectable.registry.registry.register', 'registry.register', (['ActividadesLookup'], {}), '(ActividadesLookup)\n', (2833, 2852), False, 'from selectable.registry import registry\n'), ((3402, 3448), 'selectable.registry.registry.register', 'registry.register', (['TipoMedidasVigilanciaLookup'], {}), '(TipoMedidasVigilanciaLookup)\n', (3419, 3448), False, 'from selectable.registry import registry\n'), ((3985, 4027), 'selectable.registry.registry.register', 'registry.register', (['TiposTemperaturasLookup'], {}), '(TiposTemperaturasLookup)\n', (4002, 4027), False, 'from selectable.registry import registry\n'), ((4561, 4602), 'selectable.registry.registry.register', 'registry.register', (['TiposFrecuenciasLookup'], {}), '(TiposFrecuenciasLookup)\n', (4578, 4602), False, 'from selectable.registry import registry\n'), ((5103, 5133), 'selectable.registry.registry.register', 'registry.register', (['ZonasLookup'], {}), '(ZonasLookup)\n', (5120, 5133), False, 'from selectable.registry import registry\n'), ((5643, 5676), 'selectable.registry.registry.register', 'registry.register', (['TercerosLookup'], {}), '(TercerosLookup)\n', (5660, 5676), False, 'from selectable.registry import registry\n'), ((6247, 6285), 'selectable.registry.registry.register', 'registry.register', (['TercerosTiposLookup'], {}), '(TercerosTiposLookup)\n', (6264, 6285), False, 'from selectable.registry import registry\n'), ((6817, 6857), 'selectable.registry.registry.register', 'registry.register', (['CatalogoEquiposLookup'], {}), '(CatalogoEquiposLookup)\n', (6834, 6857), False, 'from selectable.registry import registry\n'), ((7375, 7408), 'selectable.registry.registry.register', 'registry.register', (['PersonalLookup'], {}), '(PersonalLookup)\n', (7392, 7408), False, 'from selectable.registry import registry\n'), ((7927, 7963), 'selectable.registry.registry.register', 'registry.register', (['TiposCursosLookup'], {}), '(TiposCursosLookup)\n', (7944, 7963), False, 'from selectable.registry import registry\n'), ((8498, 8539), 'selectable.registry.registry.register', 'registry.register', (['TiposLegislacionLookup'], {}), '(TiposLegislacionLookup)\n', (8515, 8539), False, 'from selectable.registry import registry\n'), ((9059, 9095), 'selectable.registry.registry.register', 'registry.register', (['ConsumiblesLookup'], {}), '(ConsumiblesLookup)\n', (9076, 9095), False, 'from selectable.registry import registry\n'), ((9636, 9679), 'selectable.registry.registry.register', 'registry.register', (['ParametrosAnalisisLookup'], {}), '(ParametrosAnalisisLookup)\n', (9653, 9679), False, 'from selectable.registry import registry\n'), ((10183, 10214), 'selectable.registry.registry.register', 'registry.register', (['EtapasLookup'], {}), '(EtapasLookup)\n', (10200, 10214), False, 'from selectable.registry import registry\n'), ((10724, 10757), 'selectable.registry.registry.register', 'registry.register', (['PeligrosLookup'], {}), '(PeligrosLookup)\n', (10741, 10757), False, 'from selectable.registry import registry\n'), ((11268, 11301), 'selectable.registry.registry.register', 'registry.register', (['UnidadesLookup'], {}), '(UnidadesLookup)\n', (11285, 11301), False, 'from selectable.registry import registry\n'), ((11853, 11884), 'selectable.registry.registry.register', 'registry.register', (['FirmasLookup'], {}), '(FirmasLookup)\n', (11870, 11884), False, 'from selectable.registry import registry\n'), ((12482, 12519), 'selectable.registry.registry.register', 'registry.register', (['HorarioTurnoLookup'], {}), '(HorarioTurnoLookup)\n', (12499, 12519), False, 'from selectable.registry import registry\n'), ((870, 925), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (893, 925), False, 'from maestros_generales.models import Empresas\n'), ((1456, 1511), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (1479, 1511), False, 'from maestros_generales.models import Empresas\n'), ((2028, 2083), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (2051, 2083), False, 'from maestros_generales.models import Empresas\n'), ((2586, 2641), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (2609, 2641), False, 'from maestros_generales.models import Empresas\n'), ((3172, 3227), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (3195, 3227), False, 'from maestros_generales.models import Empresas\n'), ((3755, 3810), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (3778, 3810), False, 'from maestros_generales.models import Empresas\n'), ((4331, 4386), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (4354, 4386), False, 'from maestros_generales.models import Empresas\n'), ((4873, 4928), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (4896, 4928), False, 'from maestros_generales.models import Empresas\n'), ((5413, 5468), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (5436, 5468), False, 'from maestros_generales.models import Empresas\n'), ((6017, 6072), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (6040, 6072), False, 'from maestros_generales.models import Empresas\n'), ((6587, 6642), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (6610, 6642), False, 'from maestros_generales.models import Empresas\n'), ((7134, 7189), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (7157, 7189), False, 'from maestros_generales.models import Empresas\n'), ((7697, 7752), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (7720, 7752), False, 'from maestros_generales.models import Empresas\n'), ((8268, 8323), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (8291, 8323), False, 'from maestros_generales.models import Empresas\n'), ((8829, 8884), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (8852, 8884), False, 'from maestros_generales.models import Empresas\n'), ((9406, 9461), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (9429, 9461), False, 'from maestros_generales.models import Empresas\n'), ((9953, 10008), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (9976, 10008), False, 'from maestros_generales.models import Empresas\n'), ((10494, 10549), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (10517, 10549), False, 'from maestros_generales.models import Empresas\n'), ((11038, 11093), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (11061, 11093), False, 'from maestros_generales.models import Empresas\n'), ((11583, 11638), 'maestros_generales.models.Empresas.objects.filter', 'Empresas.objects.filter', ([], {'usuario__username': 'request.user'}), '(usuario__username=request.user)\n', (11606, 11638), False, 'from maestros_generales.models import Empresas\n')]
"""Define commands for Python 2.7""" import argparse import traceback from . import util from .cmd import run from .cmd import extractpipenv def main(): """Main function""" print("This version is not supported! It has limitted analysis features") parser = argparse.ArgumentParser(description='Analyze Jupyter Notebooks') subparsers = parser.add_subparsers() run.create_subparsers(subparsers) extractpipenv.create_subparsers(subparsers) args, rest = parser.parse_known_args() try: if not getattr(args, 'func', None): parser.print_help() else: args.func(args, rest) if not util.EXITED: util.do_exit(0) except: # pylint: disable=bare-except if not util.EXITED: traceback.print_exc() util.do_exit(1)
[ "traceback.print_exc", "argparse.ArgumentParser" ]
[((270, 334), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Analyze Jupyter Notebooks"""'}), "(description='Analyze Jupyter Notebooks')\n", (293, 334), False, 'import argparse\n'), ((778, 799), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (797, 799), False, 'import traceback\n')]
# -*- coding: utf-8 -*- """This python module aims to manage `DokuWiki <https://www.dokuwiki.org/dokuwiki>`_ wikis by using the provided `XML-RPC API <https://www.dokuwiki.org/devel:xmlrpc>`_. It is compatible with python2.7 and python3+. Installation ------------ It is on `PyPi <https://pypi.python.org/pypi/dokuwiki>`_ so you can use the ``pip`` command to install it:: pip install dokuwiki Otherwise sources are in `github <https://github.com/fmenabe/python-dokuwiki>`_ """ import re import sys import base64 import weakref from xml.parsers.expat import ExpatError if sys.version_info[0] == 3: from xmlrpc.client import ServerProxy, Binary, Fault, Transport from urllib.parse import urlencode else: from xmlrpclib import ServerProxy, Binary, Fault, Transport from urllib import urlencode from datetime import datetime, timedelta ERR = 'XML or text declaration not at start of entity: line 2, column 0' _URL_RE = re.compile(r'(?P<proto>https?)://(?P<host>[^/]*)(?P<uri>/.*)?') def date(date): """DokuWiki returns dates of `xmlrpclib`/`xmlrpc.client` ``DateTime`` type and the format changes between DokuWiki versions ... This function convert *date* to a `datetime` object. """ date = date.value return (datetime.strptime(date[:-5], '%Y-%m-%dT%H:%M:%S') if len(date) == 24 else datetime.strptime(date, '%Y%m%dT%H:%M:%S')) def utc2local(date): """DokuWiki returns date with a +0000 timezone. This function convert *date* to the local time. """ date_offset = (datetime.now() - datetime.utcnow()) # Python < 2.7 don't have the 'total_seconds' method so calculate it by hand! date_offset = (date_offset.microseconds + (date_offset.seconds + date_offset.days * 24 * 3600) * 1e6) / 1e6 date_offset = int(round(date_offset / 60 / 60)) return date + timedelta(hours=date_offset) class DokuWikiError(Exception): """Exception raised by this module when there is an error.""" pass class CookiesTransport(Transport): """A Python3 xmlrpc.client.Transport subclass that retains cookies.""" def __init__(self): Transport.__init__(self) self._cookies = dict() def send_headers(self, connection, headers): if self._cookies: cookies = map(lambda x: x[0] + '=' + x[1], self._cookies.items()) connection.putheader("Cookie", "; ".join(cookies)) Transport.send_headers(self, connection, headers) def parse_response(self, response): """parse and store cookie""" try: for header in response.msg.get_all("Set-Cookie"): cookie = header.split(";", 1)[0] cookieKey, cookieValue = cookie.split("=", 1) self._cookies[cookieKey] = cookieValue finally: return Transport.parse_response(self, response) class CookiesTransport2(Transport): """A Python2 xmlrpclib.Transport subclass that retains cookies.""" def __init__(self): Transport.__init__(self) self._cookies = dict() def send_request(self, connection, handler, request_body): Transport.send_request(self, connection, handler, request_body) # set cookie below handler if self._cookies: cookies = map(lambda x: x[0] + '=' + x[1], self._cookies.items()) connection.putheader("Cookie", "; ".join(cookies)) def parse_response(self, response): """parse and store cookie""" try: for header in response.getheader("set-cookie").split(", "): # filter 'expire' information if not header.startswith("D"): continue cookie = header.split(";", 1)[0] cookieKey, cookieValue = cookie.split("=", 1) self._cookies[cookieKey] = cookieValue finally: return Transport.parse_response(self, response) class DokuWiki(object): """Initialize a connection to a DokuWiki wiki. *url*, *user* and *password* are respectively the URL, the login and the password for connecting to the wiki. *kwargs* are `xmlrpclib`/`xmlrpc.client` **ServerProxy** parameters. The exception `DokuWikiError` is raised if the authentification fails but others exceptions (like ``gaierror`` for invalid domain, ``ProtocolError`` for an invalid wiki, ...) are not catched. .. code:: try: wiki = dokuwiki.DokuWiki('URL', 'USER', 'PASSWORD', cookieAuth=False) except (DokuWikiError, Exception) as err: print('unable to connect: %s' % err) """ def __init__(self, url, user, password, cookieAuth=False, **kwargs): """Initialize the object by connecting to the XMLRPC server.""" # Initialize XMLRPC client. try: params = _URL_RE.search(url).groupdict() if cookieAuth == False: url = '%s://%s:%s@%s%s/lib/exe/xmlrpc.php' % ( params['proto'], user, password, params['host'], params['uri'] or '') else: url = '%s://%s%s/lib/exe/xmlrpc.php' % ( params['proto'], params['host'], params['uri'] or '') except AttributeError: raise DokuWikiError("invalid url '%s'" % url) if cookieAuth == False: self.proxy = ServerProxy(url, **kwargs) else: if sys.version_info[0] == 3: self.proxy = ServerProxy(url, CookiesTransport(), **kwargs) else: self.proxy = ServerProxy(url, CookiesTransport2(), **kwargs) # Force login to check the connection. if not self.login(user, password): raise DokuWikiError('invalid login or password!') # Set "namespaces" for pages and medias functions. self.pages = _Pages(weakref.ref(self)()) self.medias = _Medias(weakref.ref(self)()) def send(self, command, *args, **kwargs): """Generic method for executing an XML-RPC *command*. *args* and *kwargs* are the arguments and parameters needed by the command. """ args = list(args) if kwargs: args.append(kwargs) method = self.proxy for elt in command.split('.'): method = getattr(method, elt) try: return method(*args) except Fault as err: if err.faultCode == 121: return {} elif err.faultCode == 321: return [] raise DokuWikiError(err) except ExpatError as err: if str(err) != ERR: raise DokuWikiError(err) @property def version(self): """Property that returns the DokuWiki version of the remote Wiki.""" return self.send('dokuwiki.getVersion') @property def time(self): """Property that returns the current time at the remote wiki server as Unix timestamp. """ return self.send('dokuwiki.getTime') @property def xmlrpc_version(self): """Property that returns the XML RPC interface version of the remote Wiki. This is DokuWiki implementation specific and independent of the supported standard API version returned by ``wiki.getRPCVersionSupported``. """ return self.send('dokuwiki.getXMLRPCAPIVersion') @property def xmlrpc_supported_version(self): """Property that returns *2* with the supported RPC API version.""" return self.send('wiki.getRPCVersionSupported') @property def title(self): """Property that returns the title of the wiki.""" return self.send('dokuwiki.getTitle') def login(self, user, password): """Log to the wiki using *user* and *password* credentials. It returns a boolean that indicates if the user succesfully authenticate.""" return self.send('dokuwiki.login', user, password) def add_acl(self, scope, user, permission): """Add an `ACL <https://www.dokuwiki.org/acl>`_ rule that restricts the page/namespace *scope* to *user* (use *@group* syntax for groups) with *permission* level. It returns a boolean that indicate if the rule was correctly added. """ return self.send('plugin.acl.addAcl', scope, user, permission) def del_acl(self, scope, user): """Delete any ACL matching the given *scope* and *user* (or group if *@group* syntax is used). It returns a boolean that indicate if the rule was correctly removed. """ return self.send('plugin.acl.delAcl', scope, user) class _Pages(object): """This object regroup methods for managing pages of a DokuWiki. This object is accessible from the ``pages`` property of an `DokuWiki` instance:: wiki = dokuwiki.DokuWiki('URL', 'User', 'Password') wiki.pages.list() """ def __init__(self, dokuwiki): self._dokuwiki = dokuwiki def list(self, namespace='/', **options): """List all pages of the given *namespace*. Valid *options* are: * *depth*: (int) recursion level, 0 for all * *hash*: (bool) do an md5 sum of content * *skipacl*: (bool) list everything regardless of ACL """ return self._dokuwiki.send('dokuwiki.getPagelist', namespace, options) def changes(self, timestamp): """Returns a list of changes since given *timestamp*. For example, for returning all changes since *2016-01-01*:: from datetime import datetime wiki.pages.changes(datetime(2016, 1, 1).timestamp()) """ return self._dokuwiki.send('wiki.getRecentChanges', timestamp) def search(self, string): """Performs a fulltext search on *string* and returns the first 15 results. """ return self._dokuwiki.send('dokuwiki.search', string) def versions(self, page, offset=0): """Returns the available versions of *page*. *offset* can be used to list earlier versions in the history. """ return self._dokuwiki.send('wiki.getPageVersions', page, offset) def info(self, page, version=None): """Returns informations of *page*. Informations of the last version is returned if *version* is not set. """ return (self._dokuwiki.send('wiki.getPageInfoVersion', page, version) if version is not None else self._dokuwiki.send('wiki.getPageInfo', page)) def get(self, page, version=None): """Returns the content of *page*. The content of the last version is returned if *version* is not set. """ return (self._dokuwiki.send('wiki.getPageVersion', page, version) if version is not None else self._dokuwiki.send('wiki.getPage', page)) def append(self, page, content, **options): """Appends *content* text to *page*. Valid *options* are: * *sum*: (str) change summary * *minor*: (bool) whether this is a minor change """ return self._dokuwiki.send('dokuwiki.appendPage', page, content, options) def html(self, page, version=None): """Returns HTML content of *page*. The HTML content of the last version of the page is returned if *version* is not set. """ return (self._dokuwiki.send('wiki.getPageHTMLVersion', page, version) if version is not None else self._dokuwiki.send('wiki.getPageHTML', page)) def set(self, page, content, **options): """Set/replace the *content* of *page*. Valid *options* are: * *sum*: (str) change summary * *minor*: (bool) whether this is a minor change """ try: return self._dokuwiki.send('wiki.putPage', page, content, options) except ExpatError as err: # Sometime the first line of the XML response is blank which raise # the 'ExpatError' exception although the change has been done. This # allow to ignore the error. if str(err) != ERR: raise DokuWikiError(err) def delete(self, page): """Delete *page* by setting an empty content.""" return self.set(page, '') def lock(self, page): """Locks *page*.""" result = self._dokuwiki.send('dokuwiki.setLocks', lock=[page], unlock=[]) if result['lockfail']: raise DokuWikiError('unable to lock page') def unlock(self, page): """Unlocks *page*.""" result = self._dokuwiki.send('dokuwiki.setLocks', lock=[], unlock=[page]) if result['unlockfail']: raise DokuWikiError('unable to unlock page') def permission(self, page): """Returns the permission level of *page*.""" return self._dokuwiki.send('wiki.aclCheck', page) def links(self, page): """Returns a list of all links contained in *page*.""" return self._dokuwiki.send('wiki.listLinks', page) def backlinks(self, page): """Returns a list of all links referencing *page*.""" return self._dokuwiki.send('wiki.getBackLinks', page) class _Medias(object): """This object regroup methods for managing medias of a DokuWiki. This object is accessible from the ``medias`` property of an `DokuWiki` instance:: wiki = dokuwiki.DokuWiki('URL', 'User', 'Password') wiki.medias.list() """ def __init__(self, dokuwiki): self._dokuwiki = dokuwiki def list(self, namespace='/', **options): """Returns all medias of the given *namespace*. Valid *options* are: * *depth*: (int) recursion level, 0 for all * *skipacl*: (bool) skip acl checking * *pattern*: (str) check given pattern * *hash*: (bool) add hashes to result list """ return self._dokuwiki.send('wiki.getAttachments', namespace, options) def changes(self, timestamp): """Returns the list of medias changed since given *timestamp*. For example, for returning all changes since *2016-01-01*:: from datetime import datetime wiki.medias.changes(datetime(2016, 1, 1).timestamp()) """ return self._dokuwiki.send('wiki.getRecentMediaChanges', timestamp) def get(self, media, dirpath=None, filename=None, overwrite=False, b64decode=False): """Returns the binary data of *media* or save it to a file. If *dirpath* is not set the binary data is returned, otherwise the data is saved to a file. By default, the filename is the name of the media but it can be changed with *filename* parameter. *overwrite* parameter allow to overwrite the file if it already exists locally. """ import os data = self._dokuwiki.send('wiki.getAttachment', media) data = base64.b64decode(data) if b64decode else data.data if dirpath is None: return data if filename is None: filename = media.replace('/', ':').split(':')[-1] if not os.path.exists(dirpath): os.makedirs(dirpath) filepath = os.path.join(dirpath, filename) if os.path.exists(filepath) and not overwrite: raise FileExistsError("[Errno 17] File exists: '%s'" % filepath) with open(filepath, 'wb') as fhandler: fhandler.write(data) def info(self, media): """Returns informations of *media*.""" return self._dokuwiki.send('wiki.getAttachmentInfo', media) def add(self, media, filepath, overwrite=True): """Set *media* from local file *filepath*. *overwrite* parameter specify if the media must be overwrite if it exists remotely. """ with open(filepath, 'rb') as fhandler: self._dokuwiki.send('wiki.putAttachment', media, Binary(fhandler.read()), ow=overwrite) def set(self, media, _bytes, overwrite=True, b64encode=False): """Set *media* from *_bytes*. *overwrite* parameter specify if the media must be overwrite if it exists remotely. """ data = base64.b64encode(_bytes) if b64encode else Binary(_bytes) self._dokuwiki.send('wiki.putAttachment', media, data, ow=overwrite) def delete(self, media): """Delete *media*.""" return self._dokuwiki.send('wiki.deleteAttachment', media) class Dataentry(object): """Object that manage `data entries <https://www.dokuwiki.org/plugin:data>`_.""" @staticmethod def get(content, keep_order=False): """Get dataentry from *content*. *keep_order* indicates whether to return an ordered dictionnay.""" if keep_order: from collections import OrderedDict dataentry = OrderedDict() else: dataentry = {} found = False for line in content.split('\n'): if line.strip().startswith('---- dataentry'): found = True continue elif line == '----': break elif not found: continue line_split = line.split(':') key = line_split[0].strip() value = re.sub('#.*$', '', ':'.join(line_split[1:])).strip() dataentry.setdefault(key, value) if not found: raise DokuWikiError('no dataentry found') return dataentry @staticmethod def gen(name, data): """Generate dataentry *name* from *data*.""" return '---- dataentry %s ----\n%s\n----' % (name, '\n'.join( '%s:%s' % (attr, value) for attr, value in data.items())) @staticmethod def ignore(content): """Remove dataentry from *content*.""" page_content = [] start = False for line in content.split('\n'): if line == '----' and not start: start = True continue if start: page_content.append(line) return '\n'.join(page_content) if page_content else content
[ "os.path.exists", "collections.OrderedDict", "xmlrpclib.Binary", "os.makedirs", "datetime.datetime.utcnow", "datetime.datetime.strptime", "re.compile", "base64.b64encode", "os.path.join", "xmlrpclib.Transport.parse_response", "base64.b64decode", "datetime.datetime.now", "xmlrpclib.Transport.send_request", "xmlrpclib.Transport.send_headers", "datetime.timedelta", "weakref.ref", "xmlrpclib.Transport.__init__", "xmlrpclib.ServerProxy" ]
[((945, 1007), 're.compile', 're.compile', (['"""(?P<proto>https?)://(?P<host>[^/]*)(?P<uri>/.*)?"""'], {}), "('(?P<proto>https?)://(?P<host>[^/]*)(?P<uri>/.*)?')\n", (955, 1007), False, 'import re\n'), ((1261, 1310), 'datetime.datetime.strptime', 'datetime.strptime', (['date[:-5]', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(date[:-5], '%Y-%m-%dT%H:%M:%S')\n", (1278, 1310), False, 'from datetime import datetime, timedelta\n'), ((1359, 1401), 'datetime.datetime.strptime', 'datetime.strptime', (['date', '"""%Y%m%dT%H:%M:%S"""'], {}), "(date, '%Y%m%dT%H:%M:%S')\n", (1376, 1401), False, 'from datetime import datetime, timedelta\n'), ((1556, 1570), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1568, 1570), False, 'from datetime import datetime, timedelta\n'), ((1573, 1590), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (1588, 1590), False, 'from datetime import datetime, timedelta\n'), ((1875, 1903), 'datetime.timedelta', 'timedelta', ([], {'hours': 'date_offset'}), '(hours=date_offset)\n', (1884, 1903), False, 'from datetime import datetime, timedelta\n'), ((2156, 2180), 'xmlrpclib.Transport.__init__', 'Transport.__init__', (['self'], {}), '(self)\n', (2174, 2180), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((2437, 2486), 'xmlrpclib.Transport.send_headers', 'Transport.send_headers', (['self', 'connection', 'headers'], {}), '(self, connection, headers)\n', (2459, 2486), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((3023, 3047), 'xmlrpclib.Transport.__init__', 'Transport.__init__', (['self'], {}), '(self)\n', (3041, 3047), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((3151, 3214), 'xmlrpclib.Transport.send_request', 'Transport.send_request', (['self', 'connection', 'handler', 'request_body'], {}), '(self, connection, handler, request_body)\n', (3173, 3214), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((15357, 15388), 'os.path.join', 'os.path.join', (['dirpath', 'filename'], {}), '(dirpath, filename)\n', (15369, 15388), False, 'import os\n'), ((2842, 2882), 'xmlrpclib.Transport.parse_response', 'Transport.parse_response', (['self', 'response'], {}), '(self, response)\n', (2866, 2882), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((3904, 3944), 'xmlrpclib.Transport.parse_response', 'Transport.parse_response', (['self', 'response'], {}), '(self, response)\n', (3928, 3944), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((5369, 5395), 'xmlrpclib.ServerProxy', 'ServerProxy', (['url'], {}), '(url, **kwargs)\n', (5380, 5395), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((15070, 15092), 'base64.b64decode', 'base64.b64decode', (['data'], {}), '(data)\n', (15086, 15092), False, 'import base64\n'), ((15280, 15303), 'os.path.exists', 'os.path.exists', (['dirpath'], {}), '(dirpath)\n', (15294, 15303), False, 'import os\n'), ((15317, 15337), 'os.makedirs', 'os.makedirs', (['dirpath'], {}), '(dirpath)\n', (15328, 15337), False, 'import os\n'), ((15400, 15424), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (15414, 15424), False, 'import os\n'), ((16357, 16381), 'base64.b64encode', 'base64.b64encode', (['_bytes'], {}), '(_bytes)\n', (16373, 16381), False, 'import base64\n'), ((16400, 16414), 'xmlrpclib.Binary', 'Binary', (['_bytes'], {}), '(_bytes)\n', (16406, 16414), False, 'from xmlrpclib import ServerProxy, Binary, Fault, Transport\n'), ((17001, 17014), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (17012, 17014), False, 'from collections import OrderedDict\n'), ((5863, 5880), 'weakref.ref', 'weakref.ref', (['self'], {}), '(self)\n', (5874, 5880), False, 'import weakref\n'), ((5914, 5931), 'weakref.ref', 'weakref.ref', (['self'], {}), '(self)\n', (5925, 5931), False, 'import weakref\n')]
import setuptools import re with open("README.md", "r") as fh: long_description = fh.read() # get version from _version.py file, from below # https://stackoverflow.com/questions/458550/standard-way-to-embed-version-into-python-package VERSION_FILE = "test_aide/_version.py" version_file_str = open(VERSION_FILE, "rt").read() VERSION_STR_RE = r"^__version__ = ['\"]([^'\"]*)['\"]" mo = re.search(VERSION_STR_RE, version_file_str, re.M) if mo: version = mo.group(1) else: raise RuntimeError("Unable to find version string in %s." % (VERSION_FILE,)) def list_reqs(fname="requirements.txt"): with open(fname) as fd: return fd.read().splitlines() setuptools.setup( name="test-aide", version=version, author="LV GI Data Science Team", author_email="<EMAIL>", description="Package of helper functions to be used for unit testing", long_description=long_description, long_description_content_type="text/markdown", packages=setuptools.find_packages(), install_requires=list_reqs(), python_requires=">=3.6", classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Operating System :: OS Independent", "License :: OSI Approved :: BSD License", ], )
[ "setuptools.find_packages", "re.search" ]
[((391, 440), 're.search', 're.search', (['VERSION_STR_RE', 'version_file_str', 're.M'], {}), '(VERSION_STR_RE, version_file_str, re.M)\n', (400, 440), False, 'import re\n'), ((977, 1003), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (1001, 1003), False, 'import setuptools\n')]
#! /usr/bin/env python3 import importlib import logging import os import subprocess from setuptools import setup from setuptools.command.install import install as install from setuptools.command.develop import develop as develop logger = logging.getLogger(__name__) stan_model_files = [ os.path.join("nonperiodic", "no-periodicity.stan"), os.path.join("nonperiodic", "start-high-high-low.stan"), os.path.join("nonperiodic", "start-high-low-high.stan"), os.path.join("periodic", "start-high-low-low.stan"), os.path.join("untranslated", "gaussian-naive-bayes.stan"), os.path.join("translated", "periodic-gaussian-mixture.stan") ] stan_pickle_files = [ os.path.join("nonperiodic", "no-periodicity.pkl"), os.path.join("nonperiodic", "start-high-high-low.pkl"), os.path.join("nonperiodic", "start-high-low-high.pkl"), os.path.join("periodic", "start-high-low-low.pkl"), os.path.join("untranslated", "gaussian-naive-bayes.pkl"), os.path.join("translated", "periodic-gaussian-mixture.pkl") ] def _pickle_it(stan, pickle): import shlex dirname = os.path.dirname(pickle) if not os.path.exists(dirname): os.makedirs(dirname) cmd = "pickle-stan {} {}".format(shlex.quote(stan), shlex.quote(pickle)) logging.info(cmd) subprocess.call(cmd, shell=True) def _post_install(force_recompile): import site importlib.reload(site) import pbio.ribo.ribo_filenames as filenames import pbio.misc.shell_utils as shell_utils smf = [os.path.join("rpbp_models", s) for s in stan_model_files] models_base = filenames.get_default_models_base() spf = [os.path.join(models_base, s) for s in stan_pickle_files] # Compile and pickle the Stan models if force_recompile: for stan, pickle in zip(smf, spf): _pickle_it(stan, pickle) else: # default for stan, pickle in zip(smf, spf): if os.path.exists(pickle): msg = "A model already exists at: {}. Skipping.".format(pickle) logging.warning(msg) continue _pickle_it(stan, pickle) # Check for the prerequisite programs programs = ['flexbar'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='flexbar', logger=logger) programs = ['STAR'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='STAR', logger=logger) programs = ['bowtie2', 'bowtie2-build-s'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='bowtie2', logger=logger) programs = ['samtools'] shell_utils.check_programs_exist(programs, raise_on_error=False, package_name='SAMtools', logger=logger) class SetupInstall(install): user_options = install.user_options + [ ('force-recompile', None, 'Set this flag to recompile the Stan models'), ] def initialize_options(self): install.initialize_options(self) self.force_recompile = None def finalize_options(self): install.finalize_options(self) def run(self): force_recompile = self.force_recompile # 0 or 1 level = logging.getLevelName("INFO") logging.basicConfig(level=level, format='%(levelname)-8s : %(message)s') install.run(self) # skip if RTD if not os.environ.get('READTHEDOCS') == 'True': _post_install(force_recompile) class SetupDevelop(develop): user_options = develop.user_options + [ ('force-recompile', None, 'Set this flag to recompile the Stan models'), ] def initialize_options(self): develop.initialize_options(self) self.force_recompile = None def finalize_options(self): develop.finalize_options(self) def run(self): force_recompile = self.force_recompile # 0 or 1 level = logging.getLevelName("INFO") logging.basicConfig(level=level, format='%(levelname)-8s : %(message)s') develop.run(self) # skip if RTD if not os.environ.get('READTHEDOCS') == 'True': _post_install(force_recompile) setup( cmdclass={ 'install': SetupInstall, 'develop': SetupDevelop } )
[ "logging.getLogger", "setuptools.command.install.install.run", "setuptools.command.install.install.finalize_options", "logging.info", "pbio.misc.shell_utils.check_programs_exist", "os.path.exists", "subprocess.call", "shlex.quote", "setuptools.setup", "logging.warning", "os.path.dirname", "pbio.ribo.ribo_filenames.get_default_models_base", "logging.getLevelName", "logging.basicConfig", "os.makedirs", "setuptools.command.install.install.initialize_options", "setuptools.command.develop.develop.initialize_options", "os.path.join", "os.environ.get", "importlib.reload", "setuptools.command.develop.develop.finalize_options", "setuptools.command.develop.develop.run" ]
[((242, 269), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (259, 269), False, 'import logging\n'), ((4350, 4416), 'setuptools.setup', 'setup', ([], {'cmdclass': "{'install': SetupInstall, 'develop': SetupDevelop}"}), "(cmdclass={'install': SetupInstall, 'develop': SetupDevelop})\n", (4355, 4416), False, 'from setuptools import setup\n'), ((297, 347), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""no-periodicity.stan"""'], {}), "('nonperiodic', 'no-periodicity.stan')\n", (309, 347), False, 'import os\n'), ((353, 408), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-high-low.stan"""'], {}), "('nonperiodic', 'start-high-high-low.stan')\n", (365, 408), False, 'import os\n'), ((414, 469), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-low-high.stan"""'], {}), "('nonperiodic', 'start-high-low-high.stan')\n", (426, 469), False, 'import os\n'), ((475, 526), 'os.path.join', 'os.path.join', (['"""periodic"""', '"""start-high-low-low.stan"""'], {}), "('periodic', 'start-high-low-low.stan')\n", (487, 526), False, 'import os\n'), ((532, 589), 'os.path.join', 'os.path.join', (['"""untranslated"""', '"""gaussian-naive-bayes.stan"""'], {}), "('untranslated', 'gaussian-naive-bayes.stan')\n", (544, 589), False, 'import os\n'), ((595, 655), 'os.path.join', 'os.path.join', (['"""translated"""', '"""periodic-gaussian-mixture.stan"""'], {}), "('translated', 'periodic-gaussian-mixture.stan')\n", (607, 655), False, 'import os\n'), ((686, 735), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""no-periodicity.pkl"""'], {}), "('nonperiodic', 'no-periodicity.pkl')\n", (698, 735), False, 'import os\n'), ((741, 795), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-high-low.pkl"""'], {}), "('nonperiodic', 'start-high-high-low.pkl')\n", (753, 795), False, 'import os\n'), ((801, 855), 'os.path.join', 'os.path.join', (['"""nonperiodic"""', '"""start-high-low-high.pkl"""'], {}), "('nonperiodic', 'start-high-low-high.pkl')\n", (813, 855), False, 'import os\n'), ((861, 911), 'os.path.join', 'os.path.join', (['"""periodic"""', '"""start-high-low-low.pkl"""'], {}), "('periodic', 'start-high-low-low.pkl')\n", (873, 911), False, 'import os\n'), ((917, 973), 'os.path.join', 'os.path.join', (['"""untranslated"""', '"""gaussian-naive-bayes.pkl"""'], {}), "('untranslated', 'gaussian-naive-bayes.pkl')\n", (929, 973), False, 'import os\n'), ((979, 1038), 'os.path.join', 'os.path.join', (['"""translated"""', '"""periodic-gaussian-mixture.pkl"""'], {}), "('translated', 'periodic-gaussian-mixture.pkl')\n", (991, 1038), False, 'import os\n'), ((1106, 1129), 'os.path.dirname', 'os.path.dirname', (['pickle'], {}), '(pickle)\n', (1121, 1129), False, 'import os\n'), ((1277, 1294), 'logging.info', 'logging.info', (['cmd'], {}), '(cmd)\n', (1289, 1294), False, 'import logging\n'), ((1299, 1331), 'subprocess.call', 'subprocess.call', (['cmd'], {'shell': '(True)'}), '(cmd, shell=True)\n', (1314, 1331), False, 'import subprocess\n'), ((1391, 1413), 'importlib.reload', 'importlib.reload', (['site'], {}), '(site)\n', (1407, 1413), False, 'import importlib\n'), ((1605, 1640), 'pbio.ribo.ribo_filenames.get_default_models_base', 'filenames.get_default_models_base', ([], {}), '()\n', (1638, 1640), True, 'import pbio.ribo.ribo_filenames as filenames\n'), ((2211, 2318), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""flexbar"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='flexbar', logger=logger)\n", (2243, 2318), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((2389, 2493), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""STAR"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='STAR', logger=logger)\n", (2421, 2493), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((2578, 2685), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""bowtie2"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='bowtie2', logger=logger)\n", (2610, 2685), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((2752, 2860), 'pbio.misc.shell_utils.check_programs_exist', 'shell_utils.check_programs_exist', (['programs'], {'raise_on_error': '(False)', 'package_name': '"""SAMtools"""', 'logger': 'logger'}), "(programs, raise_on_error=False,\n package_name='SAMtools', logger=logger)\n", (2784, 2860), True, 'import pbio.misc.shell_utils as shell_utils\n'), ((1141, 1164), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (1155, 1164), False, 'import os\n'), ((1174, 1194), 'os.makedirs', 'os.makedirs', (['dirname'], {}), '(dirname)\n', (1185, 1194), False, 'import os\n'), ((1233, 1250), 'shlex.quote', 'shlex.quote', (['stan'], {}), '(stan)\n', (1244, 1250), False, 'import shlex\n'), ((1252, 1271), 'shlex.quote', 'shlex.quote', (['pickle'], {}), '(pickle)\n', (1263, 1271), False, 'import shlex\n'), ((1528, 1558), 'os.path.join', 'os.path.join', (['"""rpbp_models"""', 's'], {}), "('rpbp_models', s)\n", (1540, 1558), False, 'import os\n'), ((1652, 1680), 'os.path.join', 'os.path.join', (['models_base', 's'], {}), '(models_base, s)\n', (1664, 1680), False, 'import os\n'), ((3100, 3132), 'setuptools.command.install.install.initialize_options', 'install.initialize_options', (['self'], {}), '(self)\n', (3126, 3132), True, 'from setuptools.command.install import install as install\n'), ((3210, 3240), 'setuptools.command.install.install.finalize_options', 'install.finalize_options', (['self'], {}), '(self)\n', (3234, 3240), True, 'from setuptools.command.install import install as install\n'), ((3335, 3363), 'logging.getLevelName', 'logging.getLevelName', (['"""INFO"""'], {}), "('INFO')\n", (3355, 3363), False, 'import logging\n'), ((3372, 3444), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'level', 'format': '"""%(levelname)-8s : %(message)s"""'}), "(level=level, format='%(levelname)-8s : %(message)s')\n", (3391, 3444), False, 'import logging\n'), ((3482, 3499), 'setuptools.command.install.install.run', 'install.run', (['self'], {}), '(self)\n', (3493, 3499), True, 'from setuptools.command.install import install as install\n'), ((3827, 3859), 'setuptools.command.develop.develop.initialize_options', 'develop.initialize_options', (['self'], {}), '(self)\n', (3853, 3859), True, 'from setuptools.command.develop import develop as develop\n'), ((3937, 3967), 'setuptools.command.develop.develop.finalize_options', 'develop.finalize_options', (['self'], {}), '(self)\n', (3961, 3967), True, 'from setuptools.command.develop import develop as develop\n'), ((4062, 4090), 'logging.getLevelName', 'logging.getLevelName', (['"""INFO"""'], {}), "('INFO')\n", (4082, 4090), False, 'import logging\n'), ((4099, 4171), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'level', 'format': '"""%(levelname)-8s : %(message)s"""'}), "(level=level, format='%(levelname)-8s : %(message)s')\n", (4118, 4171), False, 'import logging\n'), ((4209, 4226), 'setuptools.command.develop.develop.run', 'develop.run', (['self'], {}), '(self)\n', (4220, 4226), True, 'from setuptools.command.develop import develop as develop\n'), ((1934, 1956), 'os.path.exists', 'os.path.exists', (['pickle'], {}), '(pickle)\n', (1948, 1956), False, 'import os\n'), ((2054, 2074), 'logging.warning', 'logging.warning', (['msg'], {}), '(msg)\n', (2069, 2074), False, 'import logging\n'), ((3537, 3566), 'os.environ.get', 'os.environ.get', (['"""READTHEDOCS"""'], {}), "('READTHEDOCS')\n", (3551, 3566), False, 'import os\n'), ((4264, 4293), 'os.environ.get', 'os.environ.get', (['"""READTHEDOCS"""'], {}), "('READTHEDOCS')\n", (4278, 4293), False, 'import os\n')]
import os import h5py import nibabel as nb import numpy as np import torch import torch.utils.data as data from torchvision import transforms import utils.preprocessor as preprocessor # transform_train = transforms.Compose([ # transforms.RandomCrop(200, padding=56), # transforms.ToTensor(), # ]) class ImdbData(data.Dataset): def __init__(self, X, y, w, transforms=None): self.X = X if len(X.shape) == 4 else X[:, np.newaxis, :, :] self.y = y self.w = w self.transforms = transforms def __getitem__(self, index): img = torch.from_numpy(self.X[index]) label = torch.from_numpy(self.y[index]) weight = torch.from_numpy(self.w[index]) return img, label, weight def __len__(self): return len(self.y) def get_imdb_dataset(data_params): data_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_data_file']), 'r') label_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_label_file']), 'r') class_weight_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_class_weights_file']), 'r') weight_train = h5py.File(os.path.join(data_params['data_dir'], data_params['train_weights_file']), 'r') data_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_data_file']), 'r') label_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_label_file']), 'r') class_weight_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_class_weights_file']), 'r') weight_test = h5py.File(os.path.join(data_params['data_dir'], data_params['test_weights_file']), 'r') return (ImdbData(data_train['data'][()], label_train['label'][()], class_weight_train['class_weights'][()]), ImdbData(data_test['data'][()], label_test['label'][()], class_weight_test['class_weights'][()])) def load_dataset(file_paths, orientation, remap_config, return_weights=False, reduce_slices=False, remove_black=False): print("Loading and preprocessing data...") volume_list, labelmap_list, headers, class_weights_list, weights_list = [], [], [], [], [] for file_path in file_paths: volume, labelmap, class_weights, weights, header = load_and_preprocess(file_path, orientation, remap_config=remap_config, reduce_slices=reduce_slices, remove_black=remove_black, return_weights=return_weights) volume_list.append(volume) labelmap_list.append(labelmap) if return_weights: class_weights_list.append(class_weights) weights_list.append(weights) headers.append(header) print("#", end='', flush=True) print("100%", flush=True) if return_weights: return volume_list, labelmap_list, class_weights_list, weights_list, headers else: return volume_list, labelmap_list, headers def load_and_preprocess(file_path, orientation, remap_config, reduce_slices=False, remove_black=False, return_weights=False): volume, labelmap, header = load_data(file_path, orientation) volume, labelmap, class_weights, weights = preprocess(volume, labelmap, remap_config=remap_config, reduce_slices=reduce_slices, remove_black=remove_black, return_weights=return_weights) return volume, labelmap, class_weights, weights, header def load_and_preprocess_eval(file_path, orientation, notlabel=True): volume_nifty = nb.load(file_path[0]) header = volume_nifty.header volume = volume_nifty.get_fdata() if notlabel: volume = (volume - np.min(volume)) / (np.max(volume) - np.min(volume)) else: volume = np.round(volume) if orientation == "COR": volume = volume.transpose((2, 0, 1)) elif orientation == "AXI": volume = volume.transpose((1, 2, 0)) return volume, header def load_data(file_path, orientation): volume_nifty, labelmap_nifty = nb.load(file_path[0]), nb.load(file_path[1]) volume, labelmap = volume_nifty.get_fdata(), labelmap_nifty.get_fdata() volume = (volume - np.min(volume)) / (np.max(volume) - np.min(volume)) volume, labelmap = preprocessor.rotate_orientation(volume, labelmap, orientation) return volume, labelmap, volume_nifty.header def preprocess(volume, labelmap, remap_config, reduce_slices=False, remove_black=False, return_weights=False): if reduce_slices: volume, labelmap = preprocessor.reduce_slices(volume, labelmap) if remap_config: labelmap = preprocessor.remap_labels(labelmap, remap_config) if remove_black: volume, labelmap = preprocessor.remove_black(volume, labelmap) if return_weights: class_weights, weights = preprocessor.estimate_weights_mfb(labelmap) return volume, labelmap, class_weights, weights else: return volume, labelmap, None, None # def load_file_paths(data_dir, label_dir, volumes_txt_file=None): # """ # This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. # It should be modified to suit the need of the project # :param data_dir: Directory which contains the data files # :param label_dir: Directory which contains the label files # :param volumes_txt_file: (Optional) Path to the a csv file, when provided only these data points will be read # :return: list of file paths as string # """ # # volume_exclude_list = ['IXI290', 'IXI423'] # if volumes_txt_file: # with open(volumes_txt_file) as file_handle: # volumes_to_use = file_handle.read().splitlines() # else: # volumes_to_use = [name for name in os.listdir(data_dir) if # name.startswith('IXI') and name not in volume_exclude_list] # # file_paths = [ # [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol, 'mri/aseg.auto_noCCseg.mgz')] # for # vol in volumes_to_use] # return file_paths def load_file_paths(data_dir, label_dir, data_id, volumes_txt_file=None): """ This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. It should be modified to suit the need of the project :param data_dir: Directory which contains the data files :param label_dir: Directory which contains the label files :param data_id: A flag indicates the name of Dataset for proper file reading :param volumes_txt_file: (Optional) Path to the a csv file, when provided only these data points will be read :return: list of file paths as string """ if volumes_txt_file: with open(volumes_txt_file) as file_handle: volumes_to_use = file_handle.read().splitlines() else: volumes_to_use = [name for name in os.listdir(data_dir)] if data_id == "MALC": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol + '_glm.mgz')] for vol in volumes_to_use] elif data_id == "ADNI": file_paths = [ [os.path.join(data_dir, vol, 'orig.mgz'), os.path.join(label_dir, vol, 'Lab_con.mgz')] for vol in volumes_to_use] elif data_id == "CANDI": file_paths = [ [os.path.join(data_dir, vol + '/' + vol + '_1.mgz'), os.path.join(label_dir, vol + '/' + vol + '_1_seg.mgz')] for vol in volumes_to_use] elif data_id == "IBSR": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz'), os.path.join(label_dir, vol + '_map.nii.gz')] for vol in volumes_to_use] elif data_id == "BORIS": #BORIS file_paths = [ [os.path.join(data_dir, vol), os.path.join(label_dir, vol.replace('.nii', '_seg.nii'))] for vol in volumes_to_use] else: raise ValueError("Invalid entry, valid options are MALC, ADNI, CANDI and IBSR") return file_paths def load_file_paths_eval(data_dir, volumes_txt_file, dir_struct): """ This function returns the file paths combined as a list where each element is a 2 element tuple, 0th being data and 1st being label. It should be modified to suit the need of the project :param data_dir: Directory which contains the data files :param volumes_txt_file: Path to the a csv file, when provided only these data points will be read :param dir_struct: If the id_list is in FreeSurfer style or normal :return: list of file paths as string """ with open(volumes_txt_file) as file_handle: volumes_to_use = file_handle.read().splitlines() if dir_struct == "FS": file_paths = [ [os.path.join(data_dir, vol, 'mri/orig.mgz')] for vol in volumes_to_use] elif dir_struct == "Linear": file_paths = [ [os.path.join(data_dir, vol)] for vol in volumes_to_use] elif dir_struct == "part_FS": file_paths = [ [os.path.join(data_dir, vol, 'orig.mgz')] for vol in volumes_to_use] else: raise ValueError("Invalid entry, valid options are FS and Linear") return file_paths
[ "os.listdir", "nibabel.load", "os.path.join", "torch.from_numpy", "utils.preprocessor.estimate_weights_mfb", "utils.preprocessor.remap_labels", "numpy.max", "utils.preprocessor.rotate_orientation", "numpy.min", "utils.preprocessor.reduce_slices", "utils.preprocessor.remove_black", "numpy.round" ]
[((4062, 4083), 'nibabel.load', 'nb.load', (['file_path[0]'], {}), '(file_path[0])\n', (4069, 4083), True, 'import nibabel as nb\n'), ((4766, 4828), 'utils.preprocessor.rotate_orientation', 'preprocessor.rotate_orientation', (['volume', 'labelmap', 'orientation'], {}), '(volume, labelmap, orientation)\n', (4797, 4828), True, 'import utils.preprocessor as preprocessor\n'), ((582, 613), 'torch.from_numpy', 'torch.from_numpy', (['self.X[index]'], {}), '(self.X[index])\n', (598, 613), False, 'import torch\n'), ((630, 661), 'torch.from_numpy', 'torch.from_numpy', (['self.y[index]'], {}), '(self.y[index])\n', (646, 661), False, 'import torch\n'), ((679, 710), 'torch.from_numpy', 'torch.from_numpy', (['self.w[index]'], {}), '(self.w[index])\n', (695, 710), False, 'import torch\n'), ((860, 929), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_data_file']"], {}), "(data_params['data_dir'], data_params['train_data_file'])\n", (872, 929), False, 'import os\n'), ((964, 1034), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_label_file']"], {}), "(data_params['data_dir'], data_params['train_label_file'])\n", (976, 1034), False, 'import os\n'), ((1076, 1154), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_class_weights_file']"], {}), "(data_params['data_dir'], data_params['train_class_weights_file'])\n", (1088, 1154), False, 'import os\n'), ((1190, 1262), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['train_weights_file']"], {}), "(data_params['data_dir'], data_params['train_weights_file'])\n", (1202, 1262), False, 'import os\n'), ((1296, 1364), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_data_file']"], {}), "(data_params['data_dir'], data_params['test_data_file'])\n", (1308, 1364), False, 'import os\n'), ((1398, 1467), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_label_file']"], {}), "(data_params['data_dir'], data_params['test_label_file'])\n", (1410, 1467), False, 'import os\n'), ((1508, 1585), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_class_weights_file']"], {}), "(data_params['data_dir'], data_params['test_class_weights_file'])\n", (1520, 1585), False, 'import os\n'), ((1620, 1691), 'os.path.join', 'os.path.join', (["data_params['data_dir']", "data_params['test_weights_file']"], {}), "(data_params['data_dir'], data_params['test_weights_file'])\n", (1632, 1691), False, 'import os\n'), ((4278, 4294), 'numpy.round', 'np.round', (['volume'], {}), '(volume)\n', (4286, 4294), True, 'import numpy as np\n'), ((4547, 4568), 'nibabel.load', 'nb.load', (['file_path[0]'], {}), '(file_path[0])\n', (4554, 4568), True, 'import nibabel as nb\n'), ((4570, 4591), 'nibabel.load', 'nb.load', (['file_path[1]'], {}), '(file_path[1])\n', (4577, 4591), True, 'import nibabel as nb\n'), ((5040, 5084), 'utils.preprocessor.reduce_slices', 'preprocessor.reduce_slices', (['volume', 'labelmap'], {}), '(volume, labelmap)\n', (5066, 5084), True, 'import utils.preprocessor as preprocessor\n'), ((5126, 5175), 'utils.preprocessor.remap_labels', 'preprocessor.remap_labels', (['labelmap', 'remap_config'], {}), '(labelmap, remap_config)\n', (5151, 5175), True, 'import utils.preprocessor as preprocessor\n'), ((5225, 5268), 'utils.preprocessor.remove_black', 'preprocessor.remove_black', (['volume', 'labelmap'], {}), '(volume, labelmap)\n', (5250, 5268), True, 'import utils.preprocessor as preprocessor\n'), ((5326, 5369), 'utils.preprocessor.estimate_weights_mfb', 'preprocessor.estimate_weights_mfb', (['labelmap'], {}), '(labelmap)\n', (5359, 5369), True, 'import utils.preprocessor as preprocessor\n'), ((4691, 4705), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4697, 4705), True, 'import numpy as np\n'), ((4710, 4724), 'numpy.max', 'np.max', (['volume'], {}), '(volume)\n', (4716, 4724), True, 'import numpy as np\n'), ((4727, 4741), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4733, 4741), True, 'import numpy as np\n'), ((4199, 4213), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4205, 4213), True, 'import numpy as np\n'), ((4218, 4232), 'numpy.max', 'np.max', (['volume'], {}), '(volume)\n', (4224, 4232), True, 'import numpy as np\n'), ((4235, 4249), 'numpy.min', 'np.min', (['volume'], {}), '(volume)\n', (4241, 4249), True, 'import numpy as np\n'), ((7469, 7489), 'os.listdir', 'os.listdir', (['data_dir'], {}), '(data_dir)\n', (7479, 7489), False, 'import os\n'), ((7554, 7597), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (7566, 7597), False, 'import os\n'), ((7599, 7640), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '_glm.mgz')"], {}), "(label_dir, vol + '_glm.mgz')\n", (7611, 7640), False, 'import os\n'), ((9395, 9438), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (9407, 9438), False, 'import os\n'), ((7757, 7796), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""orig.mgz"""'], {}), "(data_dir, vol, 'orig.mgz')\n", (7769, 7796), False, 'import os\n'), ((7798, 7841), 'os.path.join', 'os.path.join', (['label_dir', 'vol', '"""Lab_con.mgz"""'], {}), "(label_dir, vol, 'Lab_con.mgz')\n", (7810, 7841), False, 'import os\n'), ((9560, 9587), 'os.path.join', 'os.path.join', (['data_dir', 'vol'], {}), '(data_dir, vol)\n', (9572, 9587), False, 'import os\n'), ((7959, 8009), 'os.path.join', 'os.path.join', (['data_dir', "(vol + '/' + vol + '_1.mgz')"], {}), "(data_dir, vol + '/' + vol + '_1.mgz')\n", (7971, 8009), False, 'import os\n'), ((8024, 8079), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '/' + vol + '_1_seg.mgz')"], {}), "(label_dir, vol + '/' + vol + '_1_seg.mgz')\n", (8036, 8079), False, 'import os\n'), ((9710, 9749), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""orig.mgz"""'], {}), "(data_dir, vol, 'orig.mgz')\n", (9722, 9749), False, 'import os\n'), ((8196, 8239), 'os.path.join', 'os.path.join', (['data_dir', 'vol', '"""mri/orig.mgz"""'], {}), "(data_dir, vol, 'mri/orig.mgz')\n", (8208, 8239), False, 'import os\n'), ((8241, 8285), 'os.path.join', 'os.path.join', (['label_dir', "(vol + '_map.nii.gz')"], {}), "(label_dir, vol + '_map.nii.gz')\n", (8253, 8285), False, 'import os\n'), ((8410, 8437), 'os.path.join', 'os.path.join', (['data_dir', 'vol'], {}), '(data_dir, vol)\n', (8422, 8437), False, 'import os\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'design.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(650, 550) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(20, 10, 140, 13)) self.label.setObjectName("label") self.song_title = QtWidgets.QLineEdit(self.centralwidget) self.song_title.setGeometry(QtCore.QRect(90, 30, 113, 20)) self.song_title.setObjectName("song_title") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(20, 30, 60, 13)) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(220, 30, 80, 13)) self.label_3.setObjectName("label_3") self.song_autor = QtWidgets.QLineEdit(self.centralwidget) self.song_autor.setGeometry(QtCore.QRect(310, 30, 113, 20)) self.song_autor.setObjectName("song_autor") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(20, 90, 140, 13)) self.label_4.setObjectName("label_4") self.orig_text = QtWidgets.QPlainTextEdit(self.centralwidget) self.orig_text.setGeometry(QtCore.QRect(20, 150, 270, 340)) self.orig_text.setObjectName("orig_text") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(20, 120, 60, 13)) self.label_5.setObjectName("label_5") self.trans_text = QtWidgets.QPlainTextEdit(self.centralwidget) self.trans_text.setGeometry(QtCore.QRect(320, 150, 270, 340)) self.trans_text.setObjectName("trans_text") self.label_6 = QtWidgets.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(320, 120, 120, 13)) self.label_6.setObjectName("label_6") self.get_text = QtWidgets.QPushButton(self.centralwidget) self.get_text.setGeometry(QtCore.QRect(310, 70, 100, 23)) self.get_text.setObjectName("get_text") self.pretty_flag = QtWidgets.QCheckBox(self.centralwidget) self.pretty_flag.setGeometry(QtCore.QRect(20, 60, 250, 20)) self.pretty_flag.setObjectName("pretty_flag") self.info = QtWidgets.QLabel(self.centralwidget) self.info.setGeometry(QtCore.QRect(30, 500, 560, 13)) self.info.setText("") self.info.setObjectName("info") self.error_text = QtWidgets.QLabel(self.centralwidget) self.error_text.setGeometry(QtCore.QRect(30, 520, 560, 20)) self.error_text.setText("") self.error_text.setObjectName("error_text") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Проект 1")) self.label.setText(_translate("MainWindow", "Введите данные о песне:")) self.label_2.setText(_translate("MainWindow", "Название:")) self.label_3.setText(_translate("MainWindow", "Исполнитель:")) self.label_4.setText(_translate("MainWindow", "Полученный текст песни:")) self.label_5.setText(_translate("MainWindow", "Оригинал:")) self.label_6.setText(_translate("MainWindow", "Перевод на русский:")) self.get_text.setText(_translate("MainWindow", "Запрос текста")) self.pretty_flag.setText(_translate("MainWindow", "Красивый текст (без указания на припев)"))
[ "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QPlainTextEdit", "PyQt5.QtCore.QMetaObject.connectSlotsByName", "PyQt5.QtCore.QRect", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QCheckBox", "PyQt5.QtWidgets.QLineEdit" ]
[((527, 556), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['MainWindow'], {}), '(MainWindow)\n', (544, 556), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((638, 674), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (654, 674), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((808, 847), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (827, 847), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((993, 1029), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1009, 1029), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1165, 1201), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1181, 1201), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1341, 1380), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1360, 1380), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1527, 1563), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1543, 1563), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1702, 1746), 'PyQt5.QtWidgets.QPlainTextEdit', 'QtWidgets.QPlainTextEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1726, 1746), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1891, 1927), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1907, 1927), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2067, 2111), 'PyQt5.QtWidgets.QPlainTextEdit', 'QtWidgets.QPlainTextEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2091, 2111), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2260, 2296), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2276, 2296), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2436, 2477), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2457, 2477), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2622, 2661), 'PyQt5.QtWidgets.QCheckBox', 'QtWidgets.QCheckBox', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2641, 2661), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2807, 2843), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2823, 2843), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3006, 3042), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3022, 3042), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3310, 3359), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['MainWindow'], {}), '(MainWindow)\n', (3347, 3359), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((707, 736), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(10)', '(140)', '(13)'], {}), '(20, 10, 140, 13)\n', (719, 736), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((885, 914), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(90)', '(30)', '(113)', '(20)'], {}), '(90, 30, 113, 20)\n', (897, 914), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1064, 1092), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(30)', '(60)', '(13)'], {}), '(20, 30, 60, 13)\n', (1076, 1092), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1236, 1265), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(220)', '(30)', '(80)', '(13)'], {}), '(220, 30, 80, 13)\n', (1248, 1265), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1418, 1448), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(310)', '(30)', '(113)', '(20)'], {}), '(310, 30, 113, 20)\n', (1430, 1448), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1598, 1627), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(90)', '(140)', '(13)'], {}), '(20, 90, 140, 13)\n', (1610, 1627), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1783, 1814), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(150)', '(270)', '(340)'], {}), '(20, 150, 270, 340)\n', (1795, 1814), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1962, 1991), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(120)', '(60)', '(13)'], {}), '(20, 120, 60, 13)\n', (1974, 1991), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2149, 2181), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(320)', '(150)', '(270)', '(340)'], {}), '(320, 150, 270, 340)\n', (2161, 2181), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2331, 2362), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(320)', '(120)', '(120)', '(13)'], {}), '(320, 120, 120, 13)\n', (2343, 2362), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2513, 2543), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(310)', '(70)', '(100)', '(23)'], {}), '(310, 70, 100, 23)\n', (2525, 2543), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2700, 2729), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(60)', '(250)', '(20)'], {}), '(20, 60, 250, 20)\n', (2712, 2729), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2875, 2905), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(30)', '(500)', '(560)', '(13)'], {}), '(30, 500, 560, 13)\n', (2887, 2905), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3080, 3110), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(30)', '(520)', '(560)', '(20)'], {}), '(30, 520, 560, 20)\n', (3092, 3110), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
from simulation.car import spawn_drivers from simulation.passenger import spawn_passengers from simulation.core import World, Clock conf = { "x": 100, "y": 100, "drivers": 200, "users": 1000, "start": "2019-07-08T00:00:00", "end": "2019-07-08T00:01:00" } clock = Clock(conf["start"], conf["end"]) if __name__ == '__main__': world = World([conf['x'], conf['y']], clock=clock) world.register_drivers(spawn_drivers(conf["drivers"], conf['x'], conf['y'])) world.register_passengers(spawn_passengers(conf["users"], conf['x'], conf['y'])) world.run(log=False)
[ "simulation.passenger.spawn_passengers", "simulation.car.spawn_drivers", "simulation.core.World", "simulation.core.Clock" ]
[((289, 322), 'simulation.core.Clock', 'Clock', (["conf['start']", "conf['end']"], {}), "(conf['start'], conf['end'])\n", (294, 322), False, 'from simulation.core import World, Clock\n'), ((363, 405), 'simulation.core.World', 'World', (["[conf['x'], conf['y']]"], {'clock': 'clock'}), "([conf['x'], conf['y']], clock=clock)\n", (368, 405), False, 'from simulation.core import World, Clock\n'), ((433, 485), 'simulation.car.spawn_drivers', 'spawn_drivers', (["conf['drivers']", "conf['x']", "conf['y']"], {}), "(conf['drivers'], conf['x'], conf['y'])\n", (446, 485), False, 'from simulation.car import spawn_drivers\n'), ((517, 570), 'simulation.passenger.spawn_passengers', 'spawn_passengers', (["conf['users']", "conf['x']", "conf['y']"], {}), "(conf['users'], conf['x'], conf['y'])\n", (533, 570), False, 'from simulation.passenger import spawn_passengers\n')]
import json d1 = {} with open("/home/qinyuan/zs/out/bart-large-with-description-grouped-1e-5-outerbsz4-innerbsz32-adapterdim4-unfreeze-dec29/test_predictions.jsonl") as fin: for line in fin: d = json.loads(line) d1[d["id"]] = d["output"][0]["answer"] d2 = {} dq = {} with open("/home/qinyuan/zs/out/bart-large-zsre-with-description-LR2e-5-FREQ32-dec27/test_predictions_submitted.jsonl") as fin: for line in fin: d = json.loads(line) d2[d["id"]] = d["output"][0]["answer"] dq[d["id"]] = d["input"] d3 = {} with open("/home/qinyuan/zs/data/structured_zeroshot-test.jsonl") as fin: for line in fin: d = json.loads(line) d3[d["id"]] = [item["answer"] for item in d["output"]] count = 0 win1 = 0 win2 = 0 for key in d1.keys(): if d1[key]!= d2[key]: print("{}. {}. {}. {}. {}".format(key, dq[key], d1[key], d2[key], d3[key])) count += 1 if d1[key] in d3[key] and d2[key] not in d3[key]: win1 += 1 print(d1[key]) print(d2[key]) if d2[key] in d3[key] and d1[key] not in d3[key]: win2 += 1 print(d1[key]) print(d2[key]) print(count) print(win1) print(win2)
[ "json.loads" ]
[((208, 224), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (218, 224), False, 'import json\n'), ((450, 466), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (460, 466), False, 'import json\n'), ((663, 679), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (673, 679), False, 'import json\n')]