code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
# encoding: utf-8 from __future__ import print_function import os import json from collections import OrderedDict import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.ticker import Formatter from jaqs.trade.analyze.report import Report from jaqs.data import RemoteDataService from jaqs.data.basic.instrument import InstManager from jaqs.trade import common import jaqs.util as jutil STATIC_FOLDER = jutil.join_relative_path("trade/analyze/static") TO_PCT = 100.0 MPL_RCPARAMS = {'figure.facecolor': '#F6F6F6', 'axes.facecolor': '#F6F6F6', 'axes.edgecolor': '#D3D3D3', 'text.color': '#555555', 'grid.color': '#B1B1B1', 'grid.alpha': 0.3, # scale 'axes.linewidth': 2.0, 'axes.titlepad': 12, 'grid.linewidth': 1.0, 'grid.linestyle': '-', # font size 'font.size': 13, 'axes.titlesize': 18, 'axes.labelsize': 14, 'legend.fontsize': 'small', 'lines.linewidth': 2.5, } class TradeRecordEmptyError(Exception): def __init__(self, *args): super(TradeRecordEmptyError, self).__init__(*args) class MyFormatter(Formatter): def __init__(self, dates, fmt='%Y%m'): self.dates = dates self.fmt = fmt def __call__(self, x, pos=0): """Return the label for time x at position pos""" ind = int(np.round(x)) if ind >= len(self.dates) or ind < 0: return '' # return self.dates[ind].strftime(self.fmt) return pd.to_datetime(self.dates[ind], format="%Y%m%d").strftime(self.fmt) class BaseAnalyzer(object): """ Attributes ---------- _trades : pd.DataFrame _configs : dict data_api : BaseDataServer _universe : set All securities that have been traded. """ def __init__(self): self.file_folder = "" self._trades = None self._configs = None self.data_api = None self.dataview = None self._universe = [] self._closes = None self._closes_adj = None self.daily_position = None self.adjust_mode = None self.inst_map = dict() self.performance_metrics = dict() self.risk_metrics = dict() self.report_dic = dict() @property def trades(self): """Read-only attribute""" return self._trades @property def universe(self): """Read-only attribute""" return self._universe @property def configs(self): """Read-only attribute""" return self._configs @property def closes(self): """Read-only attribute, close prices of securities in the universe""" return self._closes @property def closes_adj(self): """Read-only attribute, close prices of securities in the universe""" return self._closes_adj def initialize(self, data_api=None, dataview=None, file_folder='.'): """ Read trades from csv file to DataFrame of given data type. Parameters ---------- data_api : RemoteDataService dataview : DataView file_folder : str Directory path where trades and configs are stored. """ self.data_api = data_api self.dataview = dataview type_map = {'task_id': str, 'entrust_no': str, 'entrust_action': str, 'symbol': str, 'fill_price': float, 'fill_size': float, 'fill_date': np.integer, 'fill_time': np.integer, 'fill_no': str, 'commission': float} abs_path = os.path.abspath(file_folder) self.file_folder = abs_path trades = pd.read_csv(os.path.join(self.file_folder, 'trades.csv'), ',', dtype=type_map) if trades.empty: raise TradeRecordEmptyError("No trade records found in your 'trades.csv' file. Analysis stopped.") self._init_universe(trades.loc[:, 'symbol'].values) self._init_configs(self.file_folder) self._init_trades(trades) self._init_symbol_price() self._init_inst_data() def _init_inst_data(self): symbol_str = ','.join(self.universe) if self.dataview is not None: data_inst = self.dataview.data_inst self.inst_map = data_inst.to_dict(orient='index') elif self.data_api is not None: inst_mgr = InstManager(data_api=self.data_api, symbol=symbol_str) self.inst_map = {k: v.__dict__ for k, v in inst_mgr.inst_map.items()} del inst_mgr else: raise ValueError("no dataview or dataapi provided.") def _init_trades(self, df): """Add datetime column. """ df.loc[:, 'fill_dt'] = jutil.combine_date_time(df.loc[:, 'fill_date'], df.loc[:, 'fill_time']) df = df.set_index(['symbol', 'fill_dt']).sort_index(axis=0) # self._trades = jutil.group_df_to_dict(df, by='symbol') self._trades = df def _init_symbol_price(self): """Get close price of securities in the universe from data server.""" if self.dataview is not None: df_close = self.dataview.get_ts('close', start_date=self.start_date, end_date=self.end_date) df_close_adj = self.dataview.get_ts('close_adj', start_date=self.start_date, end_date=self.end_date) else: df, msg = self.data_api.daily(symbol=','.join(self.universe), fields='trade_date,symbol,close', start_date=self.start_date, end_date=self.end_date) if msg != '0,': print(msg) df_close = df.pivot(index='trade_date', columns='symbol', values='close') df_adj, msg = self.data_api.daily(symbol=','.join(self.universe), fields='trade_date,symbol,close', start_date=self.start_date, end_date=self.end_date) if msg != '0,': print(msg) df_close_adj = df_adj.pivot(index='trade_date', columns='symbol', values='close') self._closes = df_close self._closes_adj = df_close_adj def _init_universe(self, securities): """Return a set of securities.""" self._universe = set(securities) def _init_configs(self, folder): import codecs with codecs.open(os.path.join(folder, 'configs.json'), 'r', encoding='utf-8') as f: configs = json.load(f) self._configs = configs self.init_balance = self.configs['init_balance'] self.start_date = self.configs['start_date'] self.end_date = self.configs['end_date'] @staticmethod def _process_trades(df): """Add various statistics to trades DataFrame.""" from jaqs.trade import common # df = df.set_index('fill_date') # pre-process cols_to_drop = ['task_id', 'entrust_no', 'fill_no'] df = df.drop(cols_to_drop, axis=1) def _apply(gp_df): # calculation of non-cumulative fields direction = gp_df['entrust_action'].apply(lambda s: 1 if common.ORDER_ACTION.is_positive(s) else -1) fill_size, fill_price = gp_df['fill_size'], gp_df['fill_price'] turnover = fill_size * fill_price gp_df.loc[:, 'BuyVolume'] = (direction + 1) / 2 * fill_size gp_df.loc[:, 'SellVolume'] = (direction - 1) / -2 * fill_size # Calculation of cumulative fields gp_df.loc[:, 'CumVolume'] = fill_size.cumsum() gp_df.loc[:, 'CumTurnOver'] = turnover.cumsum() gp_df.loc[:, 'CumNetTurnOver'] = (turnover * -direction).cumsum() gp_df.loc[:, 'position'] = (fill_size * direction).cumsum() gp_df.loc[:, 'AvgPosPrice'] = calc_avg_pos_price(gp_df.loc[:, 'position'].values, fill_price.values) gp_df.loc[:, 'CumProfit'] = (gp_df.loc[:, 'CumNetTurnOver'] + gp_df.loc[:, 'position'] * fill_price) return gp_df gp = df.groupby(by='symbol') res = gp.apply(_apply) return res def process_trades(self): # self._trades = {k: self._process_trades(v) for k, v in self.trades.items()} self._trades = self._process_trades(self._trades) def get_pos_change_info(self): trades = pd.concat(self.trades.values(), axis=0) gp = trades.groupby(by=['fill_date'], as_index=False) res = OrderedDict() account = OrderedDict() for date, df in gp: df_mod = df.loc[:, ['symbol', 'entrust_action', 'fill_size', 'fill_price', 'position', 'AvgPosPrice']] df_mod.columns = ['symbol', 'action', 'size', 'price', 'position', 'cost price'] res[str(date)] = df_mod mv = sum(df_mod.loc[:, 'price'] * df.loc[:, 'position']) current_profit = sum(df.loc[:, 'CumProfit']) cash = self.configs['init_balance'] + current_profit - mv account[str(date)] = {'market_value': mv, 'cash': cash} self.position_change = res self.account = account def get_daily(self): close = self.closes trade = self.trades # pro-process trade_cols = ['fill_date', 'BuyVolume', 'SellVolume', 'commission', 'position', 'AvgPosPrice', 'CumNetTurnOver'] trade = trade.loc[:, trade_cols] gp = trade.groupby(by=['symbol', 'fill_date']) func_last = lambda ser: ser.iat[-1] trade = gp.agg({'BuyVolume': np.sum, 'SellVolume': np.sum, 'commission': np.sum, 'position': func_last, 'AvgPosPrice': func_last, 'CumNetTurnOver': func_last}) trade.index.names = ['symbol', 'trade_date'] # get daily position df_position = trade['position'].unstack('symbol').fillna(method='ffill').fillna(0.0) daily_position = df_position.reindex(close.index) daily_position = daily_position.fillna(method='ffill').fillna(0) self.daily_position = daily_position # calculate statistics close = pd.DataFrame(close.T.stack()) close.columns = ['close'] close.index.names = ['symbol', 'trade_date'] merge = pd.concat([close, trade], axis=1, join='outer') def _apply(gp_df): cols_nan_to_zero = ['BuyVolume', 'SellVolume', 'commission'] cols_nan_fill = ['close', 'position', 'AvgPosPrice', 'CumNetTurnOver'] # merge: pd.DataFrame gp_df.loc[:, cols_nan_fill] = gp_df.loc[:, cols_nan_fill].fillna(method='ffill') gp_df.loc[:, cols_nan_fill] = gp_df.loc[:, cols_nan_fill].fillna(0) gp_df.loc[:, cols_nan_to_zero] = gp_df.loc[:, cols_nan_to_zero].fillna(0) mask = gp_df.loc[:, 'AvgPosPrice'] < 1e-5 gp_df.loc[mask, 'AvgPosPrice'] = gp_df.loc[mask, 'close'] gp_df.loc[:, 'CumProfit'] = gp_df.loc[:, 'CumNetTurnOver'] + gp_df.loc[:, 'position'] * gp_df.loc[:, 'close'] gp_df.loc[:, 'CumProfitComm'] = gp_df['CumProfit'] - gp_df['commission'].cumsum() daily_net_turnover = gp_df['CumNetTurnOver'].diff(1).fillna(gp_df['CumNetTurnOver'].iat[0]) daily_position_change = gp_df['position'].diff(1).fillna(gp_df['position'].iat[0]) gp_df['trading_pnl'] = (daily_net_turnover + gp_df['close'] * daily_position_change) gp_df['holding_pnl'] = (gp_df['close'].diff(1) * gp_df['position'].shift(1)).fillna(0.0) gp_df.loc[:, 'total_pnl'] = gp_df['trading_pnl'] + gp_df['holding_pnl'] return gp_df gp = merge.groupby(by='symbol') res = gp.apply(_apply) self.daily = res ''' def get_daily(self): """Add various statistics to daily DataFrame.""" self.daily = self._get_daily(self.closes, self.trades) daily_dic = dict() for sec, df_trade in self.trades.items(): df_close = self.closes[sec].rename('close') res = self._get_daily(df_close, df_trade) daily_dic[sec] = res self.daily = daily_dic ''' def get_returns(self, compound_return=True, consider_commission=True): cols = ['trading_pnl', 'holding_pnl', 'total_pnl', 'commission', 'CumProfitComm', 'CumProfit'] ''' dic_symbol = {sec: self.inst_map[sec]['multiplier'] * df_daily.loc[:, cols] for sec, df_daily in self.daily.items()} df_profit = pd.concat(dic_symbol, axis=1) # this is cumulative profit df_profit = df_profit.fillna(method='ffill').fillna(0.0) df_pnl = df_profit.stack(level=1) df_pnl = df_pnl.sum(axis=1) df_pnl = df_pnl.unstack(level=1) ''' daily = self.daily.loc[:, cols] daily = daily.stack().unstack('symbol') df_pnl = daily.sum(axis=1) df_pnl = df_pnl.unstack(level=1) self.df_pnl = df_pnl # TODO temperary solution if consider_commission: strategy_value = (df_pnl['total_pnl'] - df_pnl['commission']).cumsum() + self.init_balance else: strategy_value = df_pnl['total_pnl'].cumsum() + self.init_balance market_values = pd.concat([strategy_value, self.data_benchmark], axis=1).fillna(method='ffill') market_values.columns = ['strat', 'bench'] df_returns = market_values.pct_change(periods=1).fillna(0.0) df_returns = df_returns.join((df_returns.loc[:, ['strat', 'bench']] + 1.0).cumprod(), rsuffix='_cum') if compound_return: df_returns.loc[:, 'active_cum'] = df_returns['strat_cum'] - df_returns['bench_cum'] + 1 df_returns.loc[:, 'active'] = df_returns['active_cum'].pct_change(1).fillna(0.0) else: df_returns.loc[:, 'active'] = df_returns['strat'] - df_returns['bench'] df_returns.loc[:, 'active_cum'] = df_returns['active'].add(1.0).cumprod(axis=0) start = pd.to_datetime(self.configs['start_date'], format="%Y%m%d") end = pd.to_datetime(self.configs['end_date'], format="%Y%m%d") years = (end - start).days / 365.0 self.performance_metrics['Annual Return (%)'] =\ 100 * (np.power(df_returns.loc[:, 'active_cum'].values[-1], 1. / years) - 1) self.performance_metrics['Annual Volatility (%)'] =\ 100 * (df_returns.loc[:, 'active'].std() * np.sqrt(common.CALENDAR_CONST.TRADE_DAYS_PER_YEAR)) self.performance_metrics['Sharpe Ratio'] = (self.performance_metrics['Annual Return (%)'] / self.performance_metrics['Annual Volatility (%)']) self.risk_metrics['Beta'] = np.corrcoef(df_returns.loc[:, 'bench'], df_returns.loc[:, 'strat'])[0, 1] # bt_strat_mv = pd.read_csv('bt_strat_mv.csv').set_index('trade_date') # df_returns = df_returns.join(bt_strat_mv, how='right') self.returns = df_returns def plot_pnl(self, save_folder=None): old_mpl_rcparams = {k: v for k, v in mpl.rcParams.items()} mpl.rcParams.update(MPL_RCPARAMS) if save_folder is None: save_folder = self.file_folder fig1 = plot_portfolio_bench_pnl(self.returns.loc[:, 'strat_cum'], self.returns.loc[:, 'bench_cum'], self.returns.loc[:, 'active_cum']) fig1.savefig(os.path.join(save_folder,'pnl_img.png'), facecolor=fig1.get_facecolor(), dpi=fig1.get_dpi()) fig2 = plot_daily_trading_holding_pnl(self.df_pnl['trading_pnl'], self.df_pnl['holding_pnl'], self.df_pnl['total_pnl'], self.df_pnl['total_pnl'].cumsum()) fig2.savefig(os.path.join(save_folder,'pnl_img_trading_holding.png'), facecolor=fig2.get_facecolor(), dpi=fig2.get_dpi()) mpl.rcParams.update(old_mpl_rcparams) def plot_pnl_OLD(self, save_folder=None): if save_folder is None: save_folder = self.file_folder fig, (ax0, ax1, ax2) = plt.subplots(3, 1, figsize=(21, 8), dpi=300, sharex=True) idx0 = self.returns.index idx = np.arange(len(idx0)) bar_width = 0.3 ax0.bar(idx-bar_width/2, self.df_pnl['trading_pnl'], width=bar_width, color='indianred', label='Trading PnL',) ax0.bar(idx+bar_width/2, self.df_pnl['holding_pnl'], width=bar_width, color='royalblue', label='Holding PnL') ax0.axhline(0.0, color='k', lw=1, ls='--') # ax0.plot(idx, self.pnl['total_pnl'], lw=1.5, color='violet', label='Total PnL') ax0.legend(loc='upper left') ax1.plot(idx, self.returns.loc[:, 'bench_cum'], label='Benchmark') ax1.plot(idx, self.returns.loc[:, 'strat_cum'], label='Strategy') ax1.legend(loc='upper left') ax2.plot(idx, self.returns.loc[:, 'active_cum'], label='Extra Return') ax2.legend(loc='upper left') ax2.set_xlabel("Date") ax2.set_ylabel("Net Value") ax1.set_ylabel("Net Value") ax2.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m-%d')) plt.tight_layout() fig.savefig(os.path.join(save_folder, 'pnl_img.png')) plt.close() def gen_report(self, source_dir, template_fn, out_folder='.', selected=None): """ Generate HTML (and PDF) report of the trade analysis. Parameters ---------- source_dir : str path of directory where HTML template and css files are stored. template_fn : str File name of HTML template. out_folder : str Output folder of report. selected : list of str or None List of symbols whose detailed PnL curve and position will be plotted. # TODO: this parameter should not belong to function """ dic = dict() dic['html_title'] = "Alpha Strategy Backtest Result" dic['selected_securities'] = selected # we do not want to show username / password in report dic['props'] = {k: v for k, v in self.configs.items() if ('username' not in k and 'password' not in k)} dic['performance_metrics'] = self.performance_metrics dic['risk_metrics'] = self.risk_metrics dic['position_change'] = self.position_change dic['account'] = self.account dic['df_daily'] = jutil.group_df_to_dict(self.daily, by='symbol') dic['daily_position'] = self.daily_position self.report_dic.update(dic) self.returns.to_csv(os.path.join(out_folder, 'returns.csv')) r = Report(self.report_dic, source_dir=source_dir, template_fn=template_fn, out_folder=out_folder) r.generate_html() r.output_html('report.html') def do_analyze(self, result_dir, selected_sec=None): if selected_sec is None: selected_sec = [] print("process trades...") self.process_trades() print("get daily stats...") self.get_daily() print("calc strategy return...") self.get_returns(consider_commission=False) if len(selected_sec) > 0: print("Plot single securities PnL") for symbol in selected_sec: df_daily = self.daily.loc[pd.IndexSlice[symbol, :], :] df_daily.index = df_daily.index.droplevel(0) if df_daily is not None: plot_trades(df_daily, symbol=symbol, save_folder=self.file_folder) print("Plot strategy PnL...") self.plot_pnl(result_dir) print("generate report...") self.gen_report(source_dir=STATIC_FOLDER, template_fn='report_template.html', out_folder=result_dir, selected=selected_sec) class EventAnalyzer(BaseAnalyzer): def __init__(self): super(EventAnalyzer, self).__init__() self.metrics = dict() self.daily = None self.data_benchmark = None self.returns = None # OrderedDict self.position_change = None # OrderedDict self.account = None # OrderedDict def initialize(self, data_server_=None, dataview=None, file_folder='.'): super(EventAnalyzer, self).initialize(data_api=data_server_, dataview=dataview, file_folder=file_folder) if self.dataview is not None and self.dataview.data_benchmark is not None: self.data_benchmark = self.dataview.data_benchmark.loc[(self.dataview.data_benchmark.index >= self.start_date) &(self.dataview.data_benchmark.index <= self.end_date)] else: benchmark = self.configs.get('benchmark', "") if benchmark and data_server_: df, msg = data_server_.daily(benchmark, start_date=self.closes.index[0], end_date=self.closes.index[-1]) self.data_benchmark = df.set_index('trade_date').loc[:, ['close']] self.data_benchmark.columns = ['bench'] else: self.data_benchmark = pd.DataFrame(index=self.closes.index, columns=['bench'], data=np.ones(len(self.closes), dtype=float)) class AlphaAnalyzer(BaseAnalyzer): def __init__(self): super(AlphaAnalyzer, self).__init__() self.metrics = dict() self.daily = None self.returns = None # OrderedDict self.position_change = None # OrderedDict self.account = None # OrderedDict self.df_brinson = None self.data_benchmark = None def initialize(self, data_api=None, dataview=None, file_folder='.'): super(AlphaAnalyzer, self).initialize(data_api=data_api, dataview=dataview, file_folder=file_folder) if self.dataview is not None and self.dataview.data_benchmark is not None: self.data_benchmark = self.dataview.data_benchmark.loc[(self.dataview.data_benchmark.index >= self.start_date) &(self.dataview.data_benchmark.index <= self.end_date)] @staticmethod def _to_pct_return(arr, cumulative=False): """Convert portfolio value to portfolio (linear) return.""" r = np.empty_like(arr) r[0] = 0.0 if cumulative: r[1:] = arr[1:] / arr[0] - 1 else: r[1:] = arr[1:] / arr[:-1] - 1 return r ''' def get_returns_OLD(self, compound_return=True, consider_commission=True): profit_col_name = 'CumProfitComm' if consider_commission else 'CumProfit' vp_list = {sec: df_profit.loc[:, profit_col_name] for sec, df_profit in self.daily.items()} df_profit = pd.concat(vp_list, axis=1) # this is cumulative profit # TODO temperary solution df_profit = df_profit.fillna(method='ffill').fillna(0.0) strategy_value = df_profit.sum(axis=1) + self.configs['init_balance'] market_values = pd.concat([strategy_value, self.data_benchmark], axis=1).fillna(method='ffill') market_values.columns = ['strat', 'bench'] df_returns = market_values.pct_change(periods=1).fillna(0.0) df_returns = df_returns.join((df_returns.loc[:, ['strat', 'bench']] + 1.0).cumprod(), rsuffix='_cum') if compound_return: df_returns.loc[:, 'active_cum'] = df_returns['strat_cum'] - df_returns['bench_cum'] + 1 df_returns.loc[:, 'active'] = df_returns['active_cum'].pct_change(1).fillna(0.0) else: df_returns.loc[:, 'active'] = df_returns['strat'] - df_returns['bench'] df_returns.loc[:, 'active_cum'] = df_returns['active'].add(1.0).cumprod(axis=0) start = pd.to_datetime(self.configs['start_date'], format="%Y%m%d") end = pd.to_datetime(self.configs['end_date'], format="%Y%m%d") years = (end - start).days / 365.0 self.metrics['yearly_return'] = np.power(df_returns.loc[:, 'active_cum'].values[-1], 1. / years) - 1 self.metrics['yearly_vol'] = df_returns.loc[:, 'active'].std() * np.sqrt(225.) self.metrics['beta'] = np.corrcoef(df_returns.loc[:, 'bench'], df_returns.loc[:, 'strat'])[0, 1] self.metrics['sharpe'] = self.metrics['yearly_return'] / self.metrics['yearly_vol'] # bt_strat_mv = pd.read_csv('bt_strat_mv.csv').set_index('trade_date') # df_returns = df_returns.join(bt_strat_mv, how='right') self.returns = df_returns ''' def _get_index_weight(self): if self.dataview is not None: res = self.dataview.get_ts('index_weight', start_date=self.start_date, end_date=self.end_date) else: res = self.data_api.get_index_weights_daily(self.universe, self.start_date, self.end_date) return res def _brinson(self, close, pos, index_weight, group): """ Brinson Attribution. Parameters ---------- close : pd.DataFrame Index is date, columns are symbols. pos : pd.DataFrame Index is date, columns are symbols. index_weight : pd.DataFrame Index is date, columns are symbols. group : pd.DataFrame Index is date, columns are symbols. Returns ------- dict """ def group_sum(df, group_daily): groups = np.unique(group_daily.values.flatten()) mask = np.isnan(groups.astype(float)) groups = groups[np.logical_not(mask)] res = pd.DataFrame(index=df.index, columns=groups, data=np.nan) for g in groups: mask = group_daily == g tmp = df[mask] res.loc[:, g] = tmp.sum(axis=1) return res ret = close.pct_change(1) pos_sum = pos.sum(axis=1) pf_weight = pos.div(pos_sum, axis=0) pf_weight.loc[pos_sum == 0, :] = 0.0 assert pf_weight.isnull().sum().sum() == 0 pf_weight = pf_weight.reindex(index=ret.index, columns=ret.columns) pf_weight = pf_weight.fillna(0.0) weighted_ret_pf = ret.mul(pf_weight) weighted_ret_index = ret.mul(index_weight) index_group_weight = group_sum(index_weight, group) pf_group_weight = group_sum(pf_weight, group) pf_group_ret = group_sum(weighted_ret_pf, group).div(pf_group_weight) index_group_ret = group_sum(weighted_ret_index, group).div(index_group_weight) allo_ret_group = (pf_group_weight - index_group_weight).mul(index_group_ret) allo_ret = allo_ret_group.sum(axis=1) selection_ret_group = (pf_group_ret - index_group_ret).mul(index_group_weight) selection_ret = selection_ret_group.sum(axis=1) active_ret = (weighted_ret_pf.sum(axis=1) - weighted_ret_index.sum(axis=1)) inter_ret = active_ret - selection_ret - allo_ret df_brinson = pd.DataFrame(index=allo_ret.index, data={'allocation': allo_ret, 'selection': selection_ret, 'interaction': inter_ret, 'total_active': active_ret}) return {'df_brinson': df_brinson, 'allocation': allo_ret_group, 'selection': selection_ret_group} def brinson(self, group): """ Parameters ---------- group : str or pd.DataFrame If group is string, this function will try to fetch the corresponding DataFrame from DataView. If group is pd.DataFrame, it will be used as-is. Returns ------- """ if isinstance(group, str): group = self.dataview.get_ts(group, start_date=self.start_date, end_date=self.end_date) elif isinstance(group, pd.DataFrame): pass else: raise ValueError("Group must be string or DataFrame. But {} is provided.".format(group)) if group is None or group.empty: raise ValueError("group is None or group is empty") close = self.closes_adj pos = self.daily_position index_weight = self._get_index_weight() res_dic = self._brinson(close, pos, index_weight, group) df_brinson = res_dic['df_brinson'] self.df_brinson = df_brinson self.report_dic['df_brinson'] = df_brinson plot_brinson(df_brinson, save_folder=self.file_folder) def do_analyze(self, result_dir, selected_sec=None, brinson_group=None): if selected_sec is None: selected_sec = [] print("process trades...") self.process_trades() print("get daily stats...") self.get_daily() print("calc strategy return...") self.get_returns(consider_commission=False) not_none_sec = [] if len(selected_sec) > 0: print("Plot single securities PnL") for symbol in selected_sec: df_daily = self.daily.loc[pd.IndexSlice[symbol, :], :] df_daily.index = df_daily.index.droplevel(0) if df_daily is not None: not_none_sec.append(symbol) plot_trades(df_daily, symbol=symbol, save_folder=self.file_folder) print("Plot strategy PnL...") self.plot_pnl(result_dir) if brinson_group is not None: print("Do brinson attribution.") group = self.dataview.get_ts(brinson_group) if group is None: raise ValueError("group data is None.") self.brinson(group) print("generate report...") self.gen_report(source_dir=STATIC_FOLDER, template_fn='report_template.html', out_folder=result_dir, selected=not_none_sec) def plot_daily_trading_holding_pnl(trading, holding, total, total_cum): """ Parameters ---------- Series """ idx0 = total.index n = len(idx0) idx = np.arange(n) fig, (ax0, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 13.5), sharex=True) ax1 = ax0.twinx() bar_width = 0.4 profit_color, lose_color = '#D63434', '#2DB635' curve_color = '#174F67' y_label = 'Profit / Loss ($)' color_arr_raw = np.array([profit_color] * n) color_arr = color_arr_raw.copy() color_arr[total < 0] = lose_color ax0.bar(idx, total, width=bar_width, color=color_arr) ax0.set(title='Daily PnL', ylabel=y_label, xlim=[-2, n+2],) ax0.xaxis.set_major_formatter(MyFormatter(idx0, '%y-%m-%d')) ax1.plot(idx, total_cum, lw=1.5, color=curve_color) ax1.set(ylabel='Cum. ' + y_label) ax1.yaxis.label.set_color(curve_color) color_arr = color_arr_raw.copy() color_arr[trading < 0] = lose_color ax2.bar(idx-bar_width/2, trading, width=bar_width, color=color_arr) ax2.set(title='Daily Trading PnL', ylabel=y_label) color_arr = color_arr_raw.copy() color_arr[holding < 0] = lose_color ax3.bar(idx+bar_width/2, holding, width=bar_width, color=color_arr) ax3.set(title='Daily Holding PnL', ylabel=y_label, xticks=idx[: : n//10]) return fig def plot_portfolio_bench_pnl(portfolio_cum_ret, benchmark_cum_ret, excess_cum_ret): """ Parameters ---------- Series """ fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 9), sharex=True) idx_dt = portfolio_cum_ret.index idx = np.arange(len(idx_dt)) y_label_ret = "Cumulative Return (%)" ax1.plot(idx, (benchmark_cum_ret-1) * TO_PCT, label='Benchmark', color='#174F67') ax1.plot(idx, (portfolio_cum_ret-1) * TO_PCT, label='Strategy', color='#198DD6') ax1.legend(loc='upper left') ax1.set(title="Absolute Return of Portfolio and Benchmark", #xlabel="Date", ylabel=y_label_ret) ax1.grid(axis='y') ax2.plot(idx, (excess_cum_ret-1) * TO_PCT, label='Extra Return', color='#C37051') ax2.set(title="Excess Return Compared to Benchmark", ylabel=y_label_ret #xlabel="Date", ) ax2.grid(axis='y') ax2.xaxis.set_major_formatter(MyFormatter(idx_dt, '%y-%m-%d')) # 17-09-31 fig.tight_layout() return fig def plot_brinson(df, save_folder): """ Parameters ---------- df : pd.DataFrame """ allo, selec, inter, total = df['allocation'], df['selection'], df['interaction'], df['total_active'] fig, ax1 = plt.subplots(1, 1, figsize=(21, 8)) idx0 = df.index idx = range(len(idx0)) ax1.plot(idx, selec, lw=1.5, color='indianred', label='Selection Return') ax1.plot(idx, allo, lw=1.5, color='royalblue', label='Allocation Return') ax1.plot(idx, inter, lw=1.5, color='purple', label='Interaction Return') # ax1.plot(idx, total, lw=1.5, ls='--', color='k', label='Total Active Return') ax1.axhline(0.0, color='k', lw=0.5, ls='--') ax1.legend(loc='upper left') ax1.set_xlabel("Date") ax1.set_ylabel("Return") ax1.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m-%d')) plt.tight_layout() fig.savefig(os.path.join(save_folder, 'brinson_attribution.png')) plt.close() def calc_avg_pos_price(pos_arr, price_arr): """ Calculate average cost price using position and fill price. When position = 0, cost price = symbol price. """ assert len(pos_arr) == len(price_arr) avg_price = np.zeros_like(pos_arr, dtype=float) avg_price[0] = price_arr[0] for i in range(pos_arr.shape[0] - 1): if pos_arr[i+1] == 0: avg_price[i+1] = 0.0 else: pos_diff = pos_arr[i+1] - pos_arr[i] if pos_arr[i] == 0 or pos_diff * pos_arr[i] > 0: count = True else: count = False if count: avg_price[i+1] = (avg_price[i] * pos_arr[i] + pos_diff * price_arr[i+1]) * 1. / pos_arr[i+1] else: avg_price[i+1] = avg_price[i] return avg_price def plot_trades(df, symbol="", save_folder='.', marker_size_adjust_ratio=0.1): old_mpl_rcparams = {k: v for k, v in mpl.rcParams.items()} mpl.rcParams.update(MPL_RCPARAMS) idx0 = df.index idx = range(len(idx0)) price = df.loc[:, 'close'] bv, sv = df.loc[:, 'BuyVolume'].values, df.loc[:, 'SellVolume'].values profit = df.loc[:, 'CumProfit'].values avgpx = df.loc[:, 'AvgPosPrice'] bv_m = np.max(bv) sv_m = np.max(sv) if bv_m > 0: bv = bv / bv_m * 100 if sv_m > 0: sv = sv / sv_m * 100 fig = plt.figure(figsize=(14, 10)) ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3) ax3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1, sharex=ax1) ax2 = ax1.twinx() ax1.plot(idx, price, label='Price', linestyle='-', lw=1, marker='', color='yellow') ax1.scatter(idx, price, label='buy', marker='o', s=bv, color='indianred') ax1.scatter(idx, price, label='sell', marker='o', s=sv, color='forestgreen') ax1.plot(idx, avgpx, lw=1, marker='', color='green') ax1.legend(loc='upper left') ax1.set(title="Price, Trades and PnL for {:s}".format(symbol), ylabel="Price ($)") ax1.xaxis.set_major_formatter(MyFormatter(idx0, '%Y-%m')) ax2.plot(idx, profit, label='PnL', color='k', lw=1, ls='--', alpha=.4) ax2.legend(loc='upper right') ax2.set(ylabel="Profit / Loss ($)") # ax1.xaxis.set_major_formatter(MyFormatter(df.index))#, '%H:%M')) ax3.plot(idx, df.loc[:, 'position'], marker='D', markersize=3, lw=2) ax3.axhline(0, color='k', lw=1, ls='--', alpha=0.8) ax3.set(title="Position of {:s}".format(symbol)) fig.tight_layout() fig.savefig(save_folder + '/' + "{}.png".format(symbol), facecolor=fig.get_facecolor(), dpi=fig.get_dpi()) mpl.rcParams.update(old_mpl_rcparams)
[ "numpy.sqrt", "numpy.logical_not", "numpy.array", "jaqs.data.basic.instrument.InstManager", "pandas.to_datetime", "numpy.arange", "jaqs.util.group_df_to_dict", "jaqs.trade.analyze.report.Report", "numpy.zeros_like", "numpy.max", "matplotlib.pyplot.close", "matplotlib.pyplot.subplots", "jaqs.util.join_relative_path", "pandas.DataFrame", "numpy.round", "collections.OrderedDict", "matplotlib.rcParams.update", "numpy.corrcoef", "jaqs.util.combine_date_time", "numpy.power", "jaqs.trade.common.ORDER_ACTION.is_positive", "os.path.join", "json.load", "matplotlib.pyplot.figure", "numpy.empty_like", "matplotlib.pyplot.tight_layout", "os.path.abspath", "matplotlib.rcParams.items", "pandas.concat", "matplotlib.pyplot.subplot2grid" ]
[((462, 510), 'jaqs.util.join_relative_path', 'jutil.join_relative_path', (['"""trade/analyze/static"""'], {}), "('trade/analyze/static')\n", (486, 510), True, 'import jaqs.util as jutil\n'), ((31059, 31071), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (31068, 31071), True, 'import numpy as np\n'), ((31104, 31155), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(1)'], {'figsize': '(16, 13.5)', 'sharex': '(True)'}), '(3, 1, figsize=(16, 13.5), sharex=True)\n', (31116, 31155), True, 'import matplotlib.pyplot as plt\n'), ((31337, 31365), 'numpy.array', 'np.array', (['([profit_color] * n)'], {}), '([profit_color] * n)\n', (31345, 31365), True, 'import numpy as np\n'), ((32410, 32458), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(1)'], {'figsize': '(16, 9)', 'sharex': '(True)'}), '(2, 1, figsize=(16, 9), sharex=True)\n', (32422, 32458), True, 'import matplotlib.pyplot as plt\n'), ((33525, 33560), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {'figsize': '(21, 8)'}), '(1, 1, figsize=(21, 8))\n', (33537, 33560), True, 'import matplotlib.pyplot as plt\n'), ((34149, 34167), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (34165, 34167), True, 'import matplotlib.pyplot as plt\n'), ((34242, 34253), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (34251, 34253), True, 'import matplotlib.pyplot as plt\n'), ((34493, 34528), 'numpy.zeros_like', 'np.zeros_like', (['pos_arr'], {'dtype': 'float'}), '(pos_arr, dtype=float)\n', (34506, 34528), True, 'import numpy as np\n'), ((35240, 35273), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (['MPL_RCPARAMS'], {}), '(MPL_RCPARAMS)\n', (35259, 35273), True, 'import matplotlib as mpl\n'), ((35524, 35534), 'numpy.max', 'np.max', (['bv'], {}), '(bv)\n', (35530, 35534), True, 'import numpy as np\n'), ((35546, 35556), 'numpy.max', 'np.max', (['sv'], {}), '(sv)\n', (35552, 35556), True, 'import numpy as np\n'), ((35664, 35692), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(14, 10)'}), '(figsize=(14, 10))\n', (35674, 35692), True, 'import matplotlib.pyplot as plt\n'), ((35703, 35746), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(4, 1)', '(0, 0)'], {'rowspan': '(3)'}), '((4, 1), (0, 0), rowspan=3)\n', (35719, 35746), True, 'import matplotlib.pyplot as plt\n'), ((35757, 35812), 'matplotlib.pyplot.subplot2grid', 'plt.subplot2grid', (['(4, 1)', '(3, 0)'], {'rowspan': '(1)', 'sharex': 'ax1'}), '((4, 1), (3, 0), rowspan=1, sharex=ax1)\n', (35773, 35812), True, 'import matplotlib.pyplot as plt\n'), ((36892, 36929), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (['old_mpl_rcparams'], {}), '(old_mpl_rcparams)\n', (36911, 36929), True, 'import matplotlib as mpl\n'), ((4001, 4029), 'os.path.abspath', 'os.path.abspath', (['file_folder'], {}), '(file_folder)\n', (4016, 4029), False, 'import os\n'), ((5152, 5223), 'jaqs.util.combine_date_time', 'jutil.combine_date_time', (["df.loc[:, 'fill_date']", "df.loc[:, 'fill_time']"], {}), "(df.loc[:, 'fill_date'], df.loc[:, 'fill_time'])\n", (5175, 5223), True, 'import jaqs.util as jutil\n'), ((8911, 8924), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (8922, 8924), False, 'from collections import OrderedDict\n'), ((8943, 8956), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (8954, 8956), False, 'from collections import OrderedDict\n'), ((10765, 10812), 'pandas.concat', 'pd.concat', (['[close, trade]'], {'axis': '(1)', 'join': '"""outer"""'}), "([close, trade], axis=1, join='outer')\n", (10774, 10812), True, 'import pandas as pd\n'), ((14599, 14658), 'pandas.to_datetime', 'pd.to_datetime', (["self.configs['start_date']"], {'format': '"""%Y%m%d"""'}), "(self.configs['start_date'], format='%Y%m%d')\n", (14613, 14658), True, 'import pandas as pd\n'), ((14673, 14730), 'pandas.to_datetime', 'pd.to_datetime', (["self.configs['end_date']"], {'format': '"""%Y%m%d"""'}), "(self.configs['end_date'], format='%Y%m%d')\n", (14687, 14730), True, 'import pandas as pd\n'), ((15720, 15753), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (['MPL_RCPARAMS'], {}), '(MPL_RCPARAMS)\n', (15739, 15753), True, 'import matplotlib as mpl\n'), ((16632, 16669), 'matplotlib.rcParams.update', 'mpl.rcParams.update', (['old_mpl_rcparams'], {}), '(old_mpl_rcparams)\n', (16651, 16669), True, 'import matplotlib as mpl\n'), ((16832, 16889), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(1)'], {'figsize': '(21, 8)', 'dpi': '(300)', 'sharex': '(True)'}), '(3, 1, figsize=(21, 8), dpi=300, sharex=True)\n', (16844, 16889), True, 'import matplotlib.pyplot as plt\n'), ((17912, 17930), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (17928, 17930), True, 'import matplotlib.pyplot as plt\n'), ((18001, 18012), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (18010, 18012), True, 'import matplotlib.pyplot as plt\n'), ((19170, 19217), 'jaqs.util.group_df_to_dict', 'jutil.group_df_to_dict', (['self.daily'], {'by': '"""symbol"""'}), "(self.daily, by='symbol')\n", (19192, 19217), True, 'import jaqs.util as jutil\n'), ((19410, 19508), 'jaqs.trade.analyze.report.Report', 'Report', (['self.report_dic'], {'source_dir': 'source_dir', 'template_fn': 'template_fn', 'out_folder': 'out_folder'}), '(self.report_dic, source_dir=source_dir, template_fn=template_fn,\n out_folder=out_folder)\n', (19416, 19508), False, 'from jaqs.trade.analyze.report import Report\n'), ((23184, 23202), 'numpy.empty_like', 'np.empty_like', (['arr'], {}), '(arr)\n', (23197, 23202), True, 'import numpy as np\n'), ((27894, 28049), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'allo_ret.index', 'data': "{'allocation': allo_ret, 'selection': selection_ret, 'interaction':\n inter_ret, 'total_active': active_ret}"}), "(index=allo_ret.index, data={'allocation': allo_ret,\n 'selection': selection_ret, 'interaction': inter_ret, 'total_active':\n active_ret})\n", (27906, 28049), True, 'import pandas as pd\n'), ((34184, 34236), 'os.path.join', 'os.path.join', (['save_folder', '"""brinson_attribution.png"""'], {}), "(save_folder, 'brinson_attribution.png')\n", (34196, 34236), False, 'import os\n'), ((1565, 1576), 'numpy.round', 'np.round', (['x'], {}), '(x)\n', (1573, 1576), True, 'import numpy as np\n'), ((4095, 4139), 'os.path.join', 'os.path.join', (['self.file_folder', '"""trades.csv"""'], {}), "(self.file_folder, 'trades.csv')\n", (4107, 4139), False, 'import os\n'), ((6863, 6875), 'json.load', 'json.load', (['f'], {}), '(f)\n', (6872, 6875), False, 'import json\n'), ((15341, 15408), 'numpy.corrcoef', 'np.corrcoef', (["df_returns.loc[:, 'bench']", "df_returns.loc[:, 'strat']"], {}), "(df_returns.loc[:, 'bench'], df_returns.loc[:, 'strat'])\n", (15352, 15408), True, 'import numpy as np\n'), ((16082, 16122), 'os.path.join', 'os.path.join', (['save_folder', '"""pnl_img.png"""'], {}), "(save_folder, 'pnl_img.png')\n", (16094, 16122), False, 'import os\n'), ((16506, 16562), 'os.path.join', 'os.path.join', (['save_folder', '"""pnl_img_trading_holding.png"""'], {}), "(save_folder, 'pnl_img_trading_holding.png')\n", (16518, 16562), False, 'import os\n'), ((17951, 17991), 'os.path.join', 'os.path.join', (['save_folder', '"""pnl_img.png"""'], {}), "(save_folder, 'pnl_img.png')\n", (17963, 17991), False, 'import os\n'), ((19352, 19391), 'os.path.join', 'os.path.join', (['out_folder', '"""returns.csv"""'], {}), "(out_folder, 'returns.csv')\n", (19364, 19391), False, 'import os\n'), ((26513, 26570), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'df.index', 'columns': 'groups', 'data': 'np.nan'}), '(index=df.index, columns=groups, data=np.nan)\n', (26525, 26570), True, 'import pandas as pd\n'), ((35214, 35234), 'matplotlib.rcParams.items', 'mpl.rcParams.items', ([], {}), '()\n', (35232, 35234), True, 'import matplotlib as mpl\n'), ((1714, 1762), 'pandas.to_datetime', 'pd.to_datetime', (['self.dates[ind]'], {'format': '"""%Y%m%d"""'}), "(self.dates[ind], format='%Y%m%d')\n", (1728, 1762), True, 'import pandas as pd\n'), ((4803, 4857), 'jaqs.data.basic.instrument.InstManager', 'InstManager', ([], {'data_api': 'self.data_api', 'symbol': 'symbol_str'}), '(data_api=self.data_api, symbol=symbol_str)\n', (4814, 4857), False, 'from jaqs.data.basic.instrument import InstManager\n'), ((6774, 6810), 'os.path.join', 'os.path.join', (['folder', '"""configs.json"""'], {}), "(folder, 'configs.json')\n", (6786, 6810), False, 'import os\n'), ((13847, 13903), 'pandas.concat', 'pd.concat', (['[strategy_value, self.data_benchmark]'], {'axis': '(1)'}), '([strategy_value, self.data_benchmark], axis=1)\n', (13856, 13903), True, 'import pandas as pd\n'), ((14855, 14920), 'numpy.power', 'np.power', (["df_returns.loc[:, 'active_cum'].values[-1]", '(1.0 / years)'], {}), "(df_returns.loc[:, 'active_cum'].values[-1], 1.0 / years)\n", (14863, 14920), True, 'import numpy as np\n'), ((15041, 15091), 'numpy.sqrt', 'np.sqrt', (['common.CALENDAR_CONST.TRADE_DAYS_PER_YEAR'], {}), '(common.CALENDAR_CONST.TRADE_DAYS_PER_YEAR)\n', (15048, 15091), True, 'import numpy as np\n'), ((15690, 15710), 'matplotlib.rcParams.items', 'mpl.rcParams.items', ([], {}), '()\n', (15708, 15710), True, 'import matplotlib as mpl\n'), ((26473, 26493), 'numpy.logical_not', 'np.logical_not', (['mask'], {}), '(mask)\n', (26487, 26493), True, 'import numpy as np\n'), ((7555, 7589), 'jaqs.trade.common.ORDER_ACTION.is_positive', 'common.ORDER_ACTION.is_positive', (['s'], {}), '(s)\n', (7586, 7589), False, 'from jaqs.trade import common\n')]
import io import sys import unittest import asyncio import random from contextlib import redirect_stdout from .utils import * from queuebot import QueueBot, QueueConfig, DiscordUser config = { "SECRET_TOKEN": "<PASSWORD>", "TA_ROLES": ["UGTA"], "LISTEN_CHANNELS": ["join-queue"], "CHECK_VOICE_WAITING": "False", "VOICE_WAITING": "waiting-room", "ALERT_ON_FIRST_JOIN": "True", "VOICE_OFFICES": ["Office Hours Room 1", "Office Hours Room 2", "Office Hours Room 3"], "ALERTS_CHANNEL": "queue-alerts", } config = QueueConfig(config, test_mode=True) # TODO Comment each test case class QueueTest(unittest.TestCase): def setUp(self): random.seed(SEED) self.config = config.copy() self.bot = QueueBot(self.config, None, testing=True) # self.bot.waiting_room = MockVoice(config.VOICE_WAITING) self.bot.logger = MockLogger() self.bot.office_rooms = [MockVoice(name) for name in config.VOICE_OFFICES] def reset_vc_queue(self): # Reset queue russ = get_rand_element(ALL_TAS) message = MockMessage("!q clear", russ) with io.StringIO() as buf, redirect_stdout(buf): run(self.bot.queue_command(message)) self.assertEqual(len(self.bot._queue), 0) # Empty voice channels for v in self.bot.office_rooms: v.members = [] def test_no_tas(self): # No TAs in rooms student = get_rand_element(ALL_STUDENTS) self.assertEqual(len(self.bot._queue), 0) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) self.assertTrue(buf.getvalue().strip().startswith( f"SEND: ✅ {student.get_mention()} you have been added at position #1")) self.assertEqual(len(self.bot._queue), 1) self.reset_vc_queue() def test_one_ta(self): ta = get_rand_element(ALL_TAS) office_room = get_rand_element(self.bot.office_rooms) office_room.members.append(ta) student = get_rand_element(ALL_STUDENTS) self.assertEqual(len(self.bot._queue), 0) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) self.assertTrue(buf.getvalue().strip().startswith( f"SEND: {ta.get_mention()} The queue is no longer empty")) self.assertEqual(len(self.bot._queue), 1) self.reset_vc_queue() def get_mentions_from_send(self, buf): send_str = buf.getvalue().strip().split("\n", 1)[0] assert send_str.startswith("SEND:") assert "<@" in send_str assert "The queue is no longer empty" in send_str return send_str.lstrip("SEND: ") \ .rstrip(" The queue is no longer empty") \ .split(" ") def test_many_tas_one_room(self): tas = get_n_rand(ALL_TAS, 3) office_room = get_rand_element(self.bot.office_rooms) office_room.members.extend(tas) mention_set = set() student = get_rand_element(ALL_STUDENTS) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) mention_set.update(mentions) for ta in tas: self.assertTrue(ta.get_mention() in mention_set) mention_set.remove(ta.get_mention()) self.assertEqual(len(mention_set), 0) self.reset_vc_queue() def test_many_tas_all_rooms(self): tas = get_n_rand(ALL_TAS, 5) tas_copy = tas.copy() while len(tas) > 0: for office_room in self.bot.office_rooms: # If we run out of TAs while going through all the rooms if len(tas) == 0: break office_room.add_member(tas.pop()) mention_set = set() student = get_rand_element(ALL_STUDENTS) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) mention_set.update(mentions) for ta in tas_copy: self.assertTrue(ta.get_mention() in mention_set) mention_set.remove(ta.get_mention()) self.assertEqual(len(mention_set), 0) self.reset_vc_queue() def test_ta_with_student(self): busy_room, open_room = get_n_rand(self.bot.office_rooms, 2) busy_ta, open_ta = get_n_rand(ALL_TAS, 2) busy_student, open_student = get_n_rand(ALL_STUDENTS, 2) busy_room.add_many_members(busy_ta, busy_student) open_room.add_member(open_ta) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", busy_student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) self.assertEqual(mentions, [open_ta.get_mention()]) def test_ta_with_student2(self): rooms = get_n_rand(self.bot.office_rooms, 3) busy_rooms = rooms[:-1] open_room = rooms[-1] busy_ta, open_ta = get_n_rand(ALL_TAS, 2) students = [ None ] open_student = None while open_student in students: students = get_n_rand(ALL_STUDENTS, 5) open_student = get_rand_element(ALL_STUDENTS) busy_rooms[0].add_many_members(busy_ta, *students[:-2]) busy_rooms[1].add_many_members(busy_ta, *students[-2:]) open_room.add_member(open_ta) with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", open_student) run(self.bot.queue_command(message)) mentions = self.get_mentions_from_send(buf) self.assertEqual(mentions, [open_ta.get_mention()]) def test_two_tas(self): tas = get_n_rand(ALL_TAS, 2) rooms = get_n_rand(self.bot.office_rooms, 2) rooms[0].add_member(tas[0]) rooms[1].add_member(tas[1]) students = get_n_rand(ALL_STUDENTS, 2) # Check for both alerted with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", students[0]) run(self.bot.queue_command(message)) ta_list = set(self.get_mentions_from_send(buf)) for ta in tas: ta_list.remove(ta.get_mention()) self.assertEqual(len(ta_list), 0) # Remove first student from queue with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q next", tas[0]) run(self.bot.queue_command(message)) self.assertEqual(len(self.bot._queue), 0) # First ta helps first student rooms[0].add_member(students[0]) # Another student joins with io.StringIO() as buf, redirect_stdout(buf): message = MockMessage("!q join", students[1]) run(self.bot.queue_command(message)) ta_list = self.get_mentions_from_send(buf) self.assertEqual(ta_list, [tas[1].get_mention()]) if __name__ == '__main__': unittest.main()
[ "queuebot.QueueBot", "queuebot.QueueConfig", "contextlib.redirect_stdout", "random.seed", "unittest.main", "io.StringIO" ]
[((543, 578), 'queuebot.QueueConfig', 'QueueConfig', (['config'], {'test_mode': '(True)'}), '(config, test_mode=True)\n', (554, 578), False, 'from queuebot import QueueBot, QueueConfig, DiscordUser\n'), ((7358, 7373), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7371, 7373), False, 'import unittest\n'), ((676, 693), 'random.seed', 'random.seed', (['SEED'], {}), '(SEED)\n', (687, 693), False, 'import random\n'), ((749, 790), 'queuebot.QueueBot', 'QueueBot', (['self.config', 'None'], {'testing': '(True)'}), '(self.config, None, testing=True)\n', (757, 790), False, 'from queuebot import QueueBot, QueueConfig, DiscordUser\n'), ((1134, 1147), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1145, 1147), False, 'import io\n'), ((1156, 1176), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (1171, 1176), False, 'from contextlib import redirect_stdout\n'), ((1545, 1558), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1556, 1558), False, 'import io\n'), ((1567, 1587), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (1582, 1587), False, 'from contextlib import redirect_stdout\n'), ((2207, 2220), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (2218, 2220), False, 'import io\n'), ((2229, 2249), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (2244, 2249), False, 'from contextlib import redirect_stdout\n'), ((3231, 3244), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (3242, 3244), False, 'import io\n'), ((3253, 3273), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (3268, 3273), False, 'from contextlib import redirect_stdout\n'), ((4151, 4164), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (4162, 4164), False, 'import io\n'), ((4173, 4193), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (4188, 4193), False, 'from contextlib import redirect_stdout\n'), ((4943, 4956), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (4954, 4956), False, 'import io\n'), ((4965, 4985), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (4980, 4985), False, 'from contextlib import redirect_stdout\n'), ((5801, 5814), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (5812, 5814), False, 'import io\n'), ((5823, 5843), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (5838, 5843), False, 'from contextlib import redirect_stdout\n'), ((6356, 6369), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (6367, 6369), False, 'import io\n'), ((6378, 6398), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (6393, 6398), False, 'from contextlib import redirect_stdout\n'), ((6734, 6747), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (6745, 6747), False, 'import io\n'), ((6756, 6776), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (6771, 6776), False, 'from contextlib import redirect_stdout\n'), ((7058, 7071), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (7069, 7071), False, 'import io\n'), ((7080, 7100), 'contextlib.redirect_stdout', 'redirect_stdout', (['buf'], {}), '(buf)\n', (7095, 7100), False, 'from contextlib import redirect_stdout\n')]
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from tests.common.tensorio import compare_tensor from tests.common.test_op import triangle from akg.utils import kernel_exec as utils from tests.common.gen_random import random_gaussian def triangle_execute(shape, const_value, lower, dtype, attrs): support_type = ['float16', 'float32'] assert dtype in support_type assert len(shape) <= 2 if attrs is None: attrs = {'enable_pre_poly_loop_partition': False} attrs['enable_pre_poly_loop_partition'] = False attrs['enable_post_poly_loop_partition'] = False attrs['enable_convert_if'] = True attrs['enable_double_buffer'] = False output_shape = shape if len(shape) == 1: output_shape = [shape[0], shape[0]] input, bench_mark = gen_data(shape, output_shape, const_value, lower, dtype) op_attrs = [const_value, lower] mod = triangle_compile(shape, dtype, op_attrs, attrs) source_code = mod.imported_modules[0].get_source() output = np.full(output_shape, np.nan, dtype) output = utils.mod_launch(mod, (input, output), expect=bench_mark) # compare result compare_result = compare_tensor(output, bench_mark, rtol=5e-3, equal_nan=True) return input, output, bench_mark, compare_result def triangle_compile(shape, dtype, op_attrs, attrs): return utils.op_build_test(triangle.triangle, [shape], [dtype], op_attrs, kernel_name='triangle', attrs=attrs) def gen_data(shape, output_shape, const_value, lower, dtype): input = random_gaussian(shape, miu=1, sigma=0.3).astype(dtype) if len(shape) == 2: bench_mark = input else: bench_mark = np.zeros(output_shape).astype(dtype) for i in range(output_shape[0]): bench_mark[i] = input if lower: for i in range(output_shape[0]): bench_mark[i][i + 1:] = const_value else: for i in range(output_shape[0]): bench_mark[i][:i] = const_value return input, bench_mark
[ "tests.common.gen_random.random_gaussian", "akg.utils.kernel_exec.mod_launch", "numpy.zeros", "numpy.full", "akg.utils.kernel_exec.op_build_test", "tests.common.tensorio.compare_tensor" ]
[((1566, 1602), 'numpy.full', 'np.full', (['output_shape', 'np.nan', 'dtype'], {}), '(output_shape, np.nan, dtype)\n', (1573, 1602), True, 'import numpy as np\n'), ((1616, 1673), 'akg.utils.kernel_exec.mod_launch', 'utils.mod_launch', (['mod', '(input, output)'], {'expect': 'bench_mark'}), '(mod, (input, output), expect=bench_mark)\n', (1632, 1673), True, 'from akg.utils import kernel_exec as utils\n'), ((1717, 1779), 'tests.common.tensorio.compare_tensor', 'compare_tensor', (['output', 'bench_mark'], {'rtol': '(0.005)', 'equal_nan': '(True)'}), '(output, bench_mark, rtol=0.005, equal_nan=True)\n', (1731, 1779), False, 'from tests.common.tensorio import compare_tensor\n'), ((1898, 2005), 'akg.utils.kernel_exec.op_build_test', 'utils.op_build_test', (['triangle.triangle', '[shape]', '[dtype]', 'op_attrs'], {'kernel_name': '"""triangle"""', 'attrs': 'attrs'}), "(triangle.triangle, [shape], [dtype], op_attrs,\n kernel_name='triangle', attrs=attrs)\n", (1917, 2005), True, 'from akg.utils import kernel_exec as utils\n'), ((2078, 2118), 'tests.common.gen_random.random_gaussian', 'random_gaussian', (['shape'], {'miu': '(1)', 'sigma': '(0.3)'}), '(shape, miu=1, sigma=0.3)\n', (2093, 2118), False, 'from tests.common.gen_random import random_gaussian\n'), ((2215, 2237), 'numpy.zeros', 'np.zeros', (['output_shape'], {}), '(output_shape)\n', (2223, 2237), True, 'import numpy as np\n')]
from transformer import * from logger import logger def find_missing(): from db import paients_source, paients_info import re for pi in paients_info.find(): if paients_source.find({'_id': re.compile(pi['住院号'], re.IGNORECASE)}).count()>0: pass else: print(pi['住院号']) def verify_data(collection): 'verify the data format is correct or not.' for d in collection.find(): info = d.get('d').get('info') if len(info) <12 and info[0] != '1': logger.error('invalid patient info:' + d['_id']+str(info)) if len(d.get('d').get('doctor_advice')) == 0: logger.error('invalid doctor advice:' + d['_id']) else: has_long = False has_short = False for a in d.get('d').get('doctor_advice'): if len(a) != 18: logger.error('invalid doctor advice:' + d['_id']) logger.error("invalid doctor advice: " + a) if a[3] == '长': has_long = True else: has_short = True if not (has_long and has_short): logger.error('invalid doctor advice: ' + d['_id'] + ', long/short: {}/{}'.format(has_long, has_short) ) def get_info(collection): 'count PE' for d in collection.find(): if len(d.get('d').get('doctor_advice')) == 0: print('invalid doctor advice:' + d['_id']) else: one_p = split_all_ad(d) print(one_p) break def main(): 'main entry' from datetime import datetime from db import paients_source start = datetime.now() print('hello..') # verify_data(paients_source) # get_info(collection) find_missing() print(datetime.now() - start) if __name__ == '__main__': main()
[ "datetime.datetime.now", "db.paients_info.find", "re.compile", "logger.logger.error" ]
[((149, 168), 'db.paients_info.find', 'paients_info.find', ([], {}), '()\n', (166, 168), False, 'from db import paients_source, paients_info\n'), ((1670, 1684), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1682, 1684), False, 'from datetime import datetime\n'), ((649, 698), 'logger.logger.error', 'logger.error', (["('invalid doctor advice:' + d['_id'])"], {}), "('invalid doctor advice:' + d['_id'])\n", (661, 698), False, 'from logger import logger\n'), ((1799, 1813), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1811, 1813), False, 'from datetime import datetime\n'), ((879, 928), 'logger.logger.error', 'logger.error', (["('invalid doctor advice:' + d['_id'])"], {}), "('invalid doctor advice:' + d['_id'])\n", (891, 928), False, 'from logger import logger\n'), ((949, 992), 'logger.logger.error', 'logger.error', (["('invalid doctor advice: ' + a)"], {}), "('invalid doctor advice: ' + a)\n", (961, 992), False, 'from logger import logger\n'), ((209, 245), 're.compile', 're.compile', (["pi['住院号']", 're.IGNORECASE'], {}), "(pi['住院号'], re.IGNORECASE)\n", (219, 245), False, 'import re\n')]
#!/usr/bin/env python import os import re import subprocess import sys # version -> classifier # '' means default classifier cuda_vers = { '11.2': ['cuda11', ''] } def check_classifier(classifier): ''' Check the mapping from cuda version to jar classifier. Used by maven build. ''' cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] if classifier not in classifier_list: raise Exception("Jar classifier '{}' mismatches the 'nvcc' version {} !".format(classifier, cu_ver)) def get_classifier(): cu_ver = detect_cuda_ver() classifier_list = cuda_vers[cu_ver] return classifier_list[0] def get_supported_vers(): ''' Get the supported cuda versions. ''' return cuda_vers.keys() def get_supported_vers_str(): ''' Get the supported cuda versions and join them as a string. Used by shell script. ''' return ' '.join(cuda_vers.keys()) def detect_cuda_ver(): ''' Detect the cuda version from current nvcc tool. ''' nvcc_ver_bin = subprocess.check_output('nvcc --version', shell=True) nvcc_ver = re.search('release ([.0-9]+), V([.0-9]+)', str(nvcc_ver_bin)).group(1) if nvcc_ver in get_supported_vers(): return nvcc_ver else: raise Exception("Unsupported cuda version: {}, Please check your 'nvcc' version.".format(nvcc_ver)) def cudaver(): return 'cuda{}'.format(detect_cuda_ver()) if __name__ == "__main__": num_args = len(sys.argv) action = sys.argv[1].lower() if num_args > 1 else 'l' if action =='c': classifier = sys.argv[2].lower() if num_args > 2 else '' check_classifier(classifier) elif action == 'd': print(detect_cuda_ver()) elif action == 'g': print(get_classifier()) elif action == 'l': print(get_supported_vers_str()) else: print("Unsupported action: " + action)
[ "subprocess.check_output" ]
[((1045, 1098), 'subprocess.check_output', 'subprocess.check_output', (['"""nvcc --version"""'], {'shell': '(True)'}), "('nvcc --version', shell=True)\n", (1068, 1098), False, 'import subprocess\n')]
# Generated by Django 3.0.2 on 2020-03-29 19:11 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('hitchhikeapp', '0010_userdata_userid'), ] operations = [ migrations.DeleteModel( name='Dog', ), ]
[ "django.db.migrations.DeleteModel" ]
[((229, 263), 'django.db.migrations.DeleteModel', 'migrations.DeleteModel', ([], {'name': '"""Dog"""'}), "(name='Dog')\n", (251, 263), False, 'from django.db import migrations\n')]
#!/usr/bin/env python3 import logging import torch.nn as nn from fairseq import checkpoint_utils from fairseq.models import BaseFairseqModel, register_model from pytorch_translate import rnn from pytorch_translate.rnn import ( LSTMSequenceEncoder, RNNDecoder, RNNEncoder, RNNModel, base_architecture, ) from pytorch_translate.tasks.pytorch_translate_task import PytorchTranslateTask logger = logging.getLogger(__name__) @register_model("dual_learning") class DualLearningModel(BaseFairseqModel): """ An architecture to jointly train primal model and dual model by leveraging distribution duality, which exist for both parallel data and monolingual data. """ def __init__(self, args, task, primal_model, dual_model, lm_model=None): super().__init__() self.args = args self.task_keys = ["primal", "dual"] self.models = nn.ModuleDict( {"primal": primal_model, "dual": dual_model, "lm": lm_model} ) def forward(self, src_tokens, src_lengths, prev_output_tokens=None): """ If batch is monolingual, need to run beam decoding to generate fake prev_output_tokens. """ # TODO: pass to dual model too primal_encoder_out = self.models["primal"].encoder(src_tokens, src_lengths) primal_decoder_out = self.models["primal"].decoder( prev_output_tokens, primal_encoder_out ) return primal_decoder_out def max_positions(self): return { "primal_source": ( self.models["primal"].encoder.max_positions(), self.models["primal"].decoder.max_positions(), ), "dual_source": ( self.models["dual"].encoder.max_positions(), self.models["dual"].decoder.max_positions(), ), "primal_parallel": ( self.models["primal"].encoder.max_positions(), self.models["primal"].decoder.max_positions(), ), "dual_parallel": ( self.models["dual"].encoder.max_positions(), self.models["dual"].decoder.max_positions(), ), } @register_model("dual_learning_rnn") class RNNDualLearningModel(DualLearningModel): """Train two models for a task and its duality jointly. This class uses RNN arch, but can be extended to take arch as an arument. This class takes translation as a task, but the framework is intended to be general enough to be applied to other tasks as well. """ def __init__(self, args, task, primal_model, dual_model, lm_model=None): super().__init__(args, task, primal_model, dual_model, lm_model) @staticmethod def add_args(parser): rnn.RNNModel.add_args(parser) parser.add_argument( "--unsupervised-dual", default=False, action="store_true", help="Train with dual loss from monolingual data.", ) parser.add_argument( "--supervised-dual", default=False, action="store_true", help="Train with dual loss from parallel data.", ) @classmethod def build_model(cls, args, task): """ Build both the primal and dual models. For simplicity, both models share the same arch, i.e. the same model params would be used to initialize both models. Support for different models/archs would be added in further iterations. """ base_architecture(args) if args.sequence_lstm: encoder_class = LSTMSequenceEncoder else: encoder_class = RNNEncoder decoder_class = RNNDecoder encoder_embed_tokens, decoder_embed_tokens = RNNModel.build_embed_tokens( args, task.primal_src_dict, task.primal_tgt_dict ) primal_encoder = encoder_class( task.primal_src_dict, embed_dim=args.encoder_embed_dim, embed_tokens=encoder_embed_tokens, cell_type=args.cell_type, num_layers=args.encoder_layers, hidden_dim=args.encoder_hidden_dim, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, residual_level=args.residual_level, bidirectional=bool(args.encoder_bidirectional), ) primal_decoder = decoder_class( src_dict=task.primal_src_dict, dst_dict=task.primal_tgt_dict, embed_tokens=decoder_embed_tokens, vocab_reduction_params=args.vocab_reduction_params, encoder_hidden_dim=args.encoder_hidden_dim, embed_dim=args.decoder_embed_dim, out_embed_dim=args.decoder_out_embed_dim, cell_type=args.cell_type, num_layers=args.decoder_layers, hidden_dim=args.decoder_hidden_dim, attention_type=args.attention_type, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, residual_level=args.residual_level, averaging_encoder=args.averaging_encoder, ) primal_task = PytorchTranslateTask( args, task.primal_src_dict, task.primal_tgt_dict ) primal_model = rnn.RNNModel(primal_task, primal_encoder, primal_decoder) if args.pretrained_forward_checkpoint: pretrained_forward_state = checkpoint_utils.load_checkpoint_to_cpu( args.pretrained_forward_checkpoint ) primal_model.load_state_dict(pretrained_forward_state["model"], strict=True) print( f"Loaded pretrained primal model from {args.pretrained_forward_checkpoint}" ) encoder_embed_tokens, decoder_embed_tokens = RNNModel.build_embed_tokens( args, task.dual_src_dict, task.dual_tgt_dict ) dual_encoder = encoder_class( task.dual_src_dict, embed_dim=args.encoder_embed_dim, embed_tokens=encoder_embed_tokens, cell_type=args.cell_type, num_layers=args.encoder_layers, hidden_dim=args.encoder_hidden_dim, dropout_in=args.encoder_dropout_in, dropout_out=args.encoder_dropout_out, residual_level=args.residual_level, bidirectional=bool(args.encoder_bidirectional), ) dual_decoder = decoder_class( src_dict=task.dual_src_dict, dst_dict=task.dual_tgt_dict, embed_tokens=decoder_embed_tokens, vocab_reduction_params=args.vocab_reduction_params, encoder_hidden_dim=args.encoder_hidden_dim, embed_dim=args.decoder_embed_dim, out_embed_dim=args.decoder_out_embed_dim, cell_type=args.cell_type, num_layers=args.decoder_layers, hidden_dim=args.decoder_hidden_dim, attention_type=args.attention_type, dropout_in=args.decoder_dropout_in, dropout_out=args.decoder_dropout_out, residual_level=args.residual_level, averaging_encoder=args.averaging_encoder, ) dual_task = PytorchTranslateTask(args, task.dual_src_dict, task.dual_tgt_dict) dual_model = rnn.RNNModel(dual_task, dual_encoder, dual_decoder) if args.pretrained_backward_checkpoint: pretrained_backward_state = checkpoint_utils.load_checkpoint_to_cpu( args.pretrained_backward_checkpoint ) dual_model.load_state_dict(pretrained_backward_state["model"], strict=True) print( f"Loaded pretrained dual model from {args.pretrained_backward_checkpoint}" ) # TODO (T36875783): instantiate a langauge model lm_model = None return RNNDualLearningModel(args, task, primal_model, dual_model, lm_model)
[ "logging.getLogger", "pytorch_translate.tasks.pytorch_translate_task.PytorchTranslateTask", "pytorch_translate.rnn.RNNModel.add_args", "pytorch_translate.rnn.RNNModel", "fairseq.models.register_model", "fairseq.checkpoint_utils.load_checkpoint_to_cpu", "pytorch_translate.rnn.base_architecture", "pytorch_translate.rnn.RNNModel.build_embed_tokens", "torch.nn.ModuleDict" ]
[((416, 443), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (433, 443), False, 'import logging\n'), ((447, 478), 'fairseq.models.register_model', 'register_model', (['"""dual_learning"""'], {}), "('dual_learning')\n", (461, 478), False, 'from fairseq.models import BaseFairseqModel, register_model\n'), ((2219, 2254), 'fairseq.models.register_model', 'register_model', (['"""dual_learning_rnn"""'], {}), "('dual_learning_rnn')\n", (2233, 2254), False, 'from fairseq.models import BaseFairseqModel, register_model\n'), ((900, 975), 'torch.nn.ModuleDict', 'nn.ModuleDict', (["{'primal': primal_model, 'dual': dual_model, 'lm': lm_model}"], {}), "({'primal': primal_model, 'dual': dual_model, 'lm': lm_model})\n", (913, 975), True, 'import torch.nn as nn\n'), ((2789, 2818), 'pytorch_translate.rnn.RNNModel.add_args', 'rnn.RNNModel.add_args', (['parser'], {}), '(parser)\n', (2810, 2818), False, 'from pytorch_translate import rnn\n'), ((3551, 3574), 'pytorch_translate.rnn.base_architecture', 'base_architecture', (['args'], {}), '(args)\n', (3568, 3574), False, 'from pytorch_translate.rnn import LSTMSequenceEncoder, RNNDecoder, RNNEncoder, RNNModel, base_architecture\n'), ((3797, 3874), 'pytorch_translate.rnn.RNNModel.build_embed_tokens', 'RNNModel.build_embed_tokens', (['args', 'task.primal_src_dict', 'task.primal_tgt_dict'], {}), '(args, task.primal_src_dict, task.primal_tgt_dict)\n', (3824, 3874), False, 'from pytorch_translate.rnn import LSTMSequenceEncoder, RNNDecoder, RNNEncoder, RNNModel, base_architecture\n'), ((5213, 5283), 'pytorch_translate.tasks.pytorch_translate_task.PytorchTranslateTask', 'PytorchTranslateTask', (['args', 'task.primal_src_dict', 'task.primal_tgt_dict'], {}), '(args, task.primal_src_dict, task.primal_tgt_dict)\n', (5233, 5283), False, 'from pytorch_translate.tasks.pytorch_translate_task import PytorchTranslateTask\n'), ((5329, 5386), 'pytorch_translate.rnn.RNNModel', 'rnn.RNNModel', (['primal_task', 'primal_encoder', 'primal_decoder'], {}), '(primal_task, primal_encoder, primal_decoder)\n', (5341, 5386), False, 'from pytorch_translate import rnn\n'), ((5847, 5920), 'pytorch_translate.rnn.RNNModel.build_embed_tokens', 'RNNModel.build_embed_tokens', (['args', 'task.dual_src_dict', 'task.dual_tgt_dict'], {}), '(args, task.dual_src_dict, task.dual_tgt_dict)\n', (5874, 5920), False, 'from pytorch_translate.rnn import LSTMSequenceEncoder, RNNDecoder, RNNEncoder, RNNModel, base_architecture\n'), ((7247, 7313), 'pytorch_translate.tasks.pytorch_translate_task.PytorchTranslateTask', 'PytorchTranslateTask', (['args', 'task.dual_src_dict', 'task.dual_tgt_dict'], {}), '(args, task.dual_src_dict, task.dual_tgt_dict)\n', (7267, 7313), False, 'from pytorch_translate.tasks.pytorch_translate_task import PytorchTranslateTask\n'), ((7335, 7386), 'pytorch_translate.rnn.RNNModel', 'rnn.RNNModel', (['dual_task', 'dual_encoder', 'dual_decoder'], {}), '(dual_task, dual_encoder, dual_decoder)\n', (7347, 7386), False, 'from pytorch_translate import rnn\n'), ((5473, 5548), 'fairseq.checkpoint_utils.load_checkpoint_to_cpu', 'checkpoint_utils.load_checkpoint_to_cpu', (['args.pretrained_forward_checkpoint'], {}), '(args.pretrained_forward_checkpoint)\n', (5512, 5548), False, 'from fairseq import checkpoint_utils\n'), ((7475, 7551), 'fairseq.checkpoint_utils.load_checkpoint_to_cpu', 'checkpoint_utils.load_checkpoint_to_cpu', (['args.pretrained_backward_checkpoint'], {}), '(args.pretrained_backward_checkpoint)\n', (7514, 7551), False, 'from fairseq import checkpoint_utils\n')]
# This code is part of Qiskit. # # (C) Copyright IBM 2018, 2022. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ Test Driver HDF5 """ import os import pathlib import shutil import tempfile import unittest import warnings from test import QiskitNatureTestCase from test.drivers.second_quantization.test_driver import TestDriver from qiskit_nature.drivers.second_quantization import HDF5Driver from qiskit_nature.drivers import QMolecule from qiskit_nature.properties.second_quantization.electronic import ElectronicStructureDriverResult class TestDriverHDF5(QiskitNatureTestCase, TestDriver): """HDF5 Driver tests.""" def setUp(self): super().setUp() driver = HDF5Driver( hdf5_input=self.get_resource_path( "test_driver_hdf5.hdf5", "drivers/second_quantization/hdf5d" ) ) self.driver_result = driver.run() def test_convert(self): """Test the legacy-conversion method.""" legacy_file_path = self.get_resource_path( "test_driver_hdf5_legacy.hdf5", "drivers/second_quantization/hdf5d" ) with self.subTest("replace=True"): # pylint: disable=consider-using-with tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".hdf5") tmp_file.close() os.unlink(tmp_file.name) shutil.copy(legacy_file_path, tmp_file.name) try: driver = HDF5Driver(tmp_file.name) # replacing file won't trigger deprecation on run driver.convert(replace=True) driver.run() finally: os.unlink(tmp_file.name) msg_mol_ref = ( "The HDF5Driver.run with legacy HDF5 file method is deprecated as of version 0.4.0 " "and will be removed no sooner than 3 months after the release " ". Your HDF5 file contains the legacy QMolecule object! You should " "consider converting it to the new property framework. See also HDF5Driver.convert." ) with self.subTest("replace=False"): # pylint: disable=consider-using-with tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".hdf5") tmp_file.close() new_file_name = pathlib.Path(tmp_file.name).with_name( str(pathlib.Path(tmp_file.name).stem) + "_new.hdf5" ) os.unlink(tmp_file.name) shutil.copy(legacy_file_path, tmp_file.name) try: driver = HDF5Driver(tmp_file.name) # not replacing file will trigger deprecation on run driver.convert(replace=False) with warnings.catch_warnings(record=True) as c_m: warnings.simplefilter("always") driver.run() self.assertEqual(str(c_m[0].message), msg_mol_ref) # using new file won't trigger deprecation HDF5Driver(new_file_name).run() finally: os.unlink(tmp_file.name) os.unlink(new_file_name) class TestDriverHDF5Legacy(QiskitNatureTestCase, TestDriver): """HDF5 Driver legacy file-support tests.""" def setUp(self): super().setUp() hdf5_file = self.get_resource_path( "test_driver_hdf5_legacy.hdf5", "drivers/second_quantization/hdf5d" ) # Using QMolecule directly here to avoid the deprecation on HDF5Driver.run method # to be triggered and let it be handled on the method test_convert # Those deprecation messages are shown only once and this one could prevent # the test_convert one to show if called first. molecule = QMolecule(hdf5_file) molecule.load() warnings.filterwarnings("ignore", category=DeprecationWarning) self.driver_result = ElectronicStructureDriverResult.from_legacy_driver_result(molecule) warnings.filterwarnings("default", category=DeprecationWarning) if __name__ == "__main__": unittest.main()
[ "qiskit_nature.properties.second_quantization.electronic.ElectronicStructureDriverResult.from_legacy_driver_result", "pathlib.Path", "qiskit_nature.drivers.second_quantization.HDF5Driver", "warnings.catch_warnings", "qiskit_nature.drivers.QMolecule", "warnings.simplefilter", "os.unlink", "shutil.copy", "tempfile.NamedTemporaryFile", "unittest.main", "warnings.filterwarnings" ]
[((4436, 4451), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4449, 4451), False, 'import unittest\n'), ((4118, 4138), 'qiskit_nature.drivers.QMolecule', 'QMolecule', (['hdf5_file'], {}), '(hdf5_file)\n', (4127, 4138), False, 'from qiskit_nature.drivers import QMolecule\n'), ((4171, 4233), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {'category': 'DeprecationWarning'}), "('ignore', category=DeprecationWarning)\n", (4194, 4233), False, 'import warnings\n'), ((4263, 4330), 'qiskit_nature.properties.second_quantization.electronic.ElectronicStructureDriverResult.from_legacy_driver_result', 'ElectronicStructureDriverResult.from_legacy_driver_result', (['molecule'], {}), '(molecule)\n', (4320, 4330), False, 'from qiskit_nature.properties.second_quantization.electronic import ElectronicStructureDriverResult\n'), ((4339, 4402), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""default"""'], {'category': 'DeprecationWarning'}), "('default', category=DeprecationWarning)\n", (4362, 4402), False, 'import warnings\n'), ((1600, 1657), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'delete': '(False)', 'suffix': '""".hdf5"""'}), "(delete=False, suffix='.hdf5')\n", (1627, 1657), False, 'import tempfile\n'), ((1699, 1723), 'os.unlink', 'os.unlink', (['tmp_file.name'], {}), '(tmp_file.name)\n', (1708, 1723), False, 'import os\n'), ((1736, 1780), 'shutil.copy', 'shutil.copy', (['legacy_file_path', 'tmp_file.name'], {}), '(legacy_file_path, tmp_file.name)\n', (1747, 1780), False, 'import shutil\n'), ((2555, 2612), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {'delete': '(False)', 'suffix': '""".hdf5"""'}), "(delete=False, suffix='.hdf5')\n", (2582, 2612), False, 'import tempfile\n'), ((2803, 2827), 'os.unlink', 'os.unlink', (['tmp_file.name'], {}), '(tmp_file.name)\n', (2812, 2827), False, 'import os\n'), ((2840, 2884), 'shutil.copy', 'shutil.copy', (['legacy_file_path', 'tmp_file.name'], {}), '(legacy_file_path, tmp_file.name)\n', (2851, 2884), False, 'import shutil\n'), ((1823, 1848), 'qiskit_nature.drivers.second_quantization.HDF5Driver', 'HDF5Driver', (['tmp_file.name'], {}), '(tmp_file.name)\n', (1833, 1848), False, 'from qiskit_nature.drivers.second_quantization import HDF5Driver\n'), ((2026, 2050), 'os.unlink', 'os.unlink', (['tmp_file.name'], {}), '(tmp_file.name)\n', (2035, 2050), False, 'import os\n'), ((2927, 2952), 'qiskit_nature.drivers.second_quantization.HDF5Driver', 'HDF5Driver', (['tmp_file.name'], {}), '(tmp_file.name)\n', (2937, 2952), False, 'from qiskit_nature.drivers.second_quantization import HDF5Driver\n'), ((3435, 3459), 'os.unlink', 'os.unlink', (['tmp_file.name'], {}), '(tmp_file.name)\n', (3444, 3459), False, 'import os\n'), ((3476, 3500), 'os.unlink', 'os.unlink', (['new_file_name'], {}), '(new_file_name)\n', (3485, 3500), False, 'import os\n'), ((2670, 2697), 'pathlib.Path', 'pathlib.Path', (['tmp_file.name'], {}), '(tmp_file.name)\n', (2682, 2697), False, 'import pathlib\n'), ((3089, 3125), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (3112, 3125), False, 'import warnings\n'), ((3154, 3185), 'warnings.simplefilter', 'warnings.simplefilter', (['"""always"""'], {}), "('always')\n", (3175, 3185), False, 'import warnings\n'), ((3366, 3391), 'qiskit_nature.drivers.second_quantization.HDF5Driver', 'HDF5Driver', (['new_file_name'], {}), '(new_file_name)\n', (3376, 3391), False, 'from qiskit_nature.drivers.second_quantization import HDF5Driver\n'), ((2729, 2756), 'pathlib.Path', 'pathlib.Path', (['tmp_file.name'], {}), '(tmp_file.name)\n', (2741, 2756), False, 'import pathlib\n')]
from openpyxl import Workbook wb = Workbook() ws = wb.active data = [ ["Fruit", "Quantity"], ["Kiwi", 3], ["Grape", 15], ["Apple", 3], ["Peach", 3], ["Pomegranate", 3], ["Pear", 3], ["Tangerine", 3], ["Blueberry", 3], ["Mango", 3], ["Watermelon", 3], ["Blackberry", 3], ["Orange", 3], ["Raspberry", 3], ["Banana", 3] ] for r in data: ws.append(r) ws.auto_filter.ref = "A1:B15" ws.auto_filter.add_filter_column(0, ["Kiwi", "Apple", "Mango"]) ws.auto_filter.add_sort_condition("B2:B15") wb.save("filtered.xlsx")
[ "openpyxl.Workbook" ]
[((36, 46), 'openpyxl.Workbook', 'Workbook', ([], {}), '()\n', (44, 46), False, 'from openpyxl import Workbook\n')]
from bleak import BleakClient import asyncio import functools notify_uuid = "00002a19-0000-1000-8000-00805f9b34fb".format(0x2A19) def callback(sender, data, mac_address): #data = bytearray(data) dataint = int.from_bytes(data, byteorder='little', signed=True) print(mac_address, dataint) def run(addresses): loop = asyncio.get_event_loop() tasks = asyncio.gather(*(connect_to_device(address) for address in addresses)) loop.run_until_complete(tasks) async def connect_to_device(address): print("starting", address, "loop") async with BleakClient(address, timeout=10.0) as client: print("connect to", address) try: #model_number = await client.read_gatt_char(address) await client.start_notify(notify_uuid, functools.partial(callback, mac_address=address)) await asyncio.sleep(1000.0) await client.stop_notify(notify_uuid) except Exception as e: print(e) print("disconnect from", address) if __name__ == "__main__": run( ["96E8409A-F2EB-4029-B3DC-615FADE0C838","D31CB0CA-890E-476B-80D9-80ED8A3AA69A"] )
[ "asyncio.get_event_loop", "functools.partial", "asyncio.sleep", "bleak.BleakClient" ]
[((334, 358), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (356, 358), False, 'import asyncio\n'), ((573, 607), 'bleak.BleakClient', 'BleakClient', (['address'], {'timeout': '(10.0)'}), '(address, timeout=10.0)\n', (584, 607), False, 'from bleak import BleakClient\n'), ((855, 876), 'asyncio.sleep', 'asyncio.sleep', (['(1000.0)'], {}), '(1000.0)\n', (868, 876), False, 'import asyncio\n'), ((787, 835), 'functools.partial', 'functools.partial', (['callback'], {'mac_address': 'address'}), '(callback, mac_address=address)\n', (804, 835), False, 'import functools\n')]
#!/usr/bin/python '''***************************************************************************************************************** Seeed Studio Relay Board Library V2 Test Application #2 By <NAME> (https://www.johnwargo.com) ********************************************************************************************************************''' import sys import time from seeed_relay_v1 import Relay def process_loop(): # turn all of the relays on relay.all_on() relay.print_status_all() # wait a second time.sleep(1) # turn all of the relays off relay.all_off() relay.print_status_all() # wait a second time.sleep(1) # now cycle each relay every second in an infinite loop while True: # test the on/off methods print('Testing on/off methods') for i in range(1, 5): relay.on(i) relay.print_status_all() time.sleep(1) relay.off(i) relay.print_status_all() time.sleep(1) # test the toggle method print('Testing the toggle methods') for i in range(1, 5): relay.toggle_port(i) relay.print_status_all() time.sleep(1) relay.toggle_port(i) relay.print_status_all() time.sleep(1) print('Repeating loop') # Now see what we're supposed to do next if __name__ == "__main__": # Create the relay object relay = Relay() try: process_loop() except KeyboardInterrupt: print("\nExiting application") # turn off all of the relays relay.all_off() # exit the application sys.exit(0)
[ "sys.exit", "time.sleep", "seeed_relay_v1.Relay" ]
[((545, 558), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (555, 558), False, 'import time\n'), ((665, 678), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (675, 678), False, 'import time\n'), ((1480, 1487), 'seeed_relay_v1.Relay', 'Relay', ([], {}), '()\n', (1485, 1487), False, 'from seeed_relay_v1 import Relay\n'), ((933, 946), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (943, 946), False, 'import time\n'), ((1021, 1034), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1031, 1034), False, 'import time\n'), ((1225, 1238), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1235, 1238), False, 'import time\n'), ((1321, 1334), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1331, 1334), False, 'import time\n'), ((1690, 1701), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1698, 1701), False, 'import sys\n')]
import requests keyword = "python" try: kv = {'q':keyword} r = requests.get('http://www.so.com/s', params=kv) print(r.request.url) r.raise_for_status() print(len(r.text)) except: print('爬取失败')
[ "requests.get" ]
[((72, 118), 'requests.get', 'requests.get', (['"""http://www.so.com/s"""'], {'params': 'kv'}), "('http://www.so.com/s', params=kv)\n", (84, 118), False, 'import requests\n')]
import torch.nn as nn class RODEncode(nn.Module): def __init__(self, in_channels=2): super(RODEncode, self).__init__() self.conv1a = nn.Conv3d( in_channels=in_channels, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1a_1 = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1a_2 = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv1b = nn.Conv3d( in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(2, 2, 2), padding=(4, 2, 2), ) self.conv2a = nn.Conv3d( in_channels=64, out_channels=128, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv2b = nn.Conv3d( in_channels=128, out_channels=128, kernel_size=(9, 5, 5), stride=(2, 2, 2), padding=(4, 2, 2), ) self.conv3a = nn.Conv3d( in_channels=128, out_channels=256, kernel_size=(9, 5, 5), stride=(1, 1, 1), padding=(4, 2, 2), ) self.conv3b = nn.Conv3d( in_channels=256, out_channels=256, kernel_size=(9, 5, 5), stride=(1, 2, 2), padding=(4, 2, 2), ) self.bn1a = nn.BatchNorm3d(num_features=64) self.bn1a_1 = nn.BatchNorm3d(num_features=64) self.bn1a_2 = nn.BatchNorm3d(num_features=64) self.bn1b = nn.BatchNorm3d(num_features=64) self.bn2a = nn.BatchNorm3d(num_features=128) self.bn2b = nn.BatchNorm3d(num_features=128) self.bn3a = nn.BatchNorm3d(num_features=256) self.bn3b = nn.BatchNorm3d(num_features=256) self.relu = nn.ReLU() def forward(self, x): x = self.relu( self.bn1a(self.conv1a(x)) ) # (B, 2, W, 128, 128) -> (B, 64, W, 128, 128) # additional x = self.relu( self.bn1a_1(self.conv1a_1(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W, 128, 128) x = self.relu( self.bn1a_2(self.conv1a_2(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W, 128, 128) x = self.relu( self.bn1b(self.conv1b(x)) ) # (B, 64, W, 128, 128) -> (B, 64, W/2, 64, 64) x = self.relu( self.bn2a(self.conv2a(x)) ) # (B, 64, W/2, 64, 64) -> (B, 128, W/2, 64, 64) x = self.relu( self.bn2b(self.conv2b(x)) ) # (B, 128, W/2, 64, 64) -> (B, 128, W/4, 32, 32) x = self.relu( self.bn3a(self.conv3a(x)) ) # (B, 128, W/4, 32, 32) -> (B, 256, W/4, 32, 32) x = self.relu( self.bn3b(self.conv3b(x)) ) # (B, 256, W/4, 32, 32) -> (B, 256, W/4, 16, 16) return x class RODDecode(nn.Module): def __init__(self, n_class): super(RODDecode, self).__init__() self.convt1 = nn.ConvTranspose3d( in_channels=256, out_channels=128, kernel_size=(4, 6, 6), stride=(2, 2, 2), padding=(1, 2, 2), ) self.convt2 = nn.ConvTranspose3d( in_channels=128, out_channels=64, kernel_size=(4, 6, 6), stride=(2, 2, 2), padding=(1, 2, 2), ) self.convt3 = nn.ConvTranspose3d( in_channels=64, out_channels=n_class, kernel_size=(3, 6, 6), stride=(1, 2, 2), padding=(1, 2, 2), ) self.prelu = nn.PReLU() self.sigmoid = nn.Sigmoid() # self.upsample = nn.Upsample(size=(rodnet_configs['win_size'], radar_configs['ramap_rsize'], # radar_configs['ramap_asize']), mode='nearest') def forward(self, x): x = self.prelu(self.convt1(x)) # (B, 256, W/4, 16, 16) -> (B, 128, W/2, 32, 32) x = self.prelu(self.convt2(x)) # (B, 128, W/2, 32, 32) -> (B, 64, W, 64, 64) x = self.convt3(x) # (B, 64, W, 64, 64) -> (B, 3, W, 128, 128) return x
[ "torch.nn.Sigmoid", "torch.nn.ReLU", "torch.nn.Conv3d", "torch.nn.PReLU", "torch.nn.BatchNorm3d", "torch.nn.ConvTranspose3d" ]
[((155, 270), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': 'in_channels', 'out_channels': '(64)', 'kernel_size': '(9, 5, 5)', 'stride': '(1, 1, 1)', 'padding': '(4, 2, 2)'}), '(in_channels=in_channels, out_channels=64, kernel_size=(9, 5, 5),\n stride=(1, 1, 1), padding=(4, 2, 2))\n', (164, 270), True, 'import torch.nn as nn\n'), ((362, 468), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': '(64)', 'out_channels': '(64)', 'kernel_size': '(9, 5, 5)', 'stride': '(1, 1, 1)', 'padding': '(4, 2, 2)'}), '(in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1,\n 1, 1), padding=(4, 2, 2))\n', (371, 468), True, 'import torch.nn as nn\n'), ((560, 666), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': '(64)', 'out_channels': '(64)', 'kernel_size': '(9, 5, 5)', 'stride': '(1, 1, 1)', 'padding': '(4, 2, 2)'}), '(in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(1,\n 1, 1), padding=(4, 2, 2))\n', (569, 666), True, 'import torch.nn as nn\n'), ((756, 862), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': '(64)', 'out_channels': '(64)', 'kernel_size': '(9, 5, 5)', 'stride': '(2, 2, 2)', 'padding': '(4, 2, 2)'}), '(in_channels=64, out_channels=64, kernel_size=(9, 5, 5), stride=(2,\n 2, 2), padding=(4, 2, 2))\n', (765, 862), True, 'import torch.nn as nn\n'), ((952, 1060), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': '(64)', 'out_channels': '(128)', 'kernel_size': '(9, 5, 5)', 'stride': '(1, 1, 1)', 'padding': '(4, 2, 2)'}), '(in_channels=64, out_channels=128, kernel_size=(9, 5, 5), stride=(\n 1, 1, 1), padding=(4, 2, 2))\n', (961, 1060), True, 'import torch.nn as nn\n'), ((1149, 1258), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': '(128)', 'out_channels': '(128)', 'kernel_size': '(9, 5, 5)', 'stride': '(2, 2, 2)', 'padding': '(4, 2, 2)'}), '(in_channels=128, out_channels=128, kernel_size=(9, 5, 5), stride=\n (2, 2, 2), padding=(4, 2, 2))\n', (1158, 1258), True, 'import torch.nn as nn\n'), ((1347, 1456), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': '(128)', 'out_channels': '(256)', 'kernel_size': '(9, 5, 5)', 'stride': '(1, 1, 1)', 'padding': '(4, 2, 2)'}), '(in_channels=128, out_channels=256, kernel_size=(9, 5, 5), stride=\n (1, 1, 1), padding=(4, 2, 2))\n', (1356, 1456), True, 'import torch.nn as nn\n'), ((1545, 1654), 'torch.nn.Conv3d', 'nn.Conv3d', ([], {'in_channels': '(256)', 'out_channels': '(256)', 'kernel_size': '(9, 5, 5)', 'stride': '(1, 2, 2)', 'padding': '(4, 2, 2)'}), '(in_channels=256, out_channels=256, kernel_size=(9, 5, 5), stride=\n (1, 2, 2), padding=(4, 2, 2))\n', (1554, 1654), True, 'import torch.nn as nn\n'), ((1741, 1772), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(64)'}), '(num_features=64)\n', (1755, 1772), True, 'import torch.nn as nn\n'), ((1795, 1826), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(64)'}), '(num_features=64)\n', (1809, 1826), True, 'import torch.nn as nn\n'), ((1849, 1880), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(64)'}), '(num_features=64)\n', (1863, 1880), True, 'import torch.nn as nn\n'), ((1901, 1932), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(64)'}), '(num_features=64)\n', (1915, 1932), True, 'import torch.nn as nn\n'), ((1953, 1985), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(128)'}), '(num_features=128)\n', (1967, 1985), True, 'import torch.nn as nn\n'), ((2006, 2038), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(128)'}), '(num_features=128)\n', (2020, 2038), True, 'import torch.nn as nn\n'), ((2059, 2091), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(256)'}), '(num_features=256)\n', (2073, 2091), True, 'import torch.nn as nn\n'), ((2112, 2144), 'torch.nn.BatchNorm3d', 'nn.BatchNorm3d', ([], {'num_features': '(256)'}), '(num_features=256)\n', (2126, 2144), True, 'import torch.nn as nn\n'), ((2165, 2174), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2172, 2174), True, 'import torch.nn as nn\n'), ((3336, 3453), 'torch.nn.ConvTranspose3d', 'nn.ConvTranspose3d', ([], {'in_channels': '(256)', 'out_channels': '(128)', 'kernel_size': '(4, 6, 6)', 'stride': '(2, 2, 2)', 'padding': '(1, 2, 2)'}), '(in_channels=256, out_channels=128, kernel_size=(4, 6, 6),\n stride=(2, 2, 2), padding=(1, 2, 2))\n', (3354, 3453), True, 'import torch.nn as nn\n'), ((3543, 3659), 'torch.nn.ConvTranspose3d', 'nn.ConvTranspose3d', ([], {'in_channels': '(128)', 'out_channels': '(64)', 'kernel_size': '(4, 6, 6)', 'stride': '(2, 2, 2)', 'padding': '(1, 2, 2)'}), '(in_channels=128, out_channels=64, kernel_size=(4, 6, 6),\n stride=(2, 2, 2), padding=(1, 2, 2))\n', (3561, 3659), True, 'import torch.nn as nn\n'), ((3749, 3869), 'torch.nn.ConvTranspose3d', 'nn.ConvTranspose3d', ([], {'in_channels': '(64)', 'out_channels': 'n_class', 'kernel_size': '(3, 6, 6)', 'stride': '(1, 2, 2)', 'padding': '(1, 2, 2)'}), '(in_channels=64, out_channels=n_class, kernel_size=(3, 6,\n 6), stride=(1, 2, 2), padding=(1, 2, 2))\n', (3767, 3869), True, 'import torch.nn as nn\n'), ((3958, 3968), 'torch.nn.PReLU', 'nn.PReLU', ([], {}), '()\n', (3966, 3968), True, 'import torch.nn as nn\n'), ((3992, 4004), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (4002, 4004), True, 'import torch.nn as nn\n')]
from django.contrib import admin from .models import File admin.site.register(File)
[ "django.contrib.admin.site.register" ]
[((59, 84), 'django.contrib.admin.site.register', 'admin.site.register', (['File'], {}), '(File)\n', (78, 84), False, 'from django.contrib import admin\n')]
# LSTM with Variable Length Input Sequences to One Character Output import numpy from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.utils import np_utils from keras.preprocessing.sequence import pad_sequences from theano.tensor.shared_randomstreams import RandomStreams # fix random seed for reproducibility numpy.random.seed(7) # define the raw dataset alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # create mapping of characters to integers (0-25) and the reverse char_to_int = dict((c, i) for i, c in enumerate(alphabet)) int_to_char = dict((i, c) for i, c in enumerate(alphabet)) # prepare the dataset of input to output pairs encoded as integers num_inputs = 16 max_len = 5 dataX = [] dataY = [] for i in range(num_inputs): start = numpy.random.randint(len(alphabet)-2) end = numpy.random.randint(start, min(start+max_len,len(alphabet)-1)) sequence_in = alphabet[start:end+1] sequence_out = alphabet[end + 1] dataX.append([char_to_int[char] for char in sequence_in]) dataY.append(char_to_int[sequence_out]) print( sequence_in, '->', sequence_out ) # convert list of lists to array and pad sequences if needed X = pad_sequences(dataX, maxlen=max_len, dtype='float32') # reshape X to be [samples, time steps, features] X = numpy.reshape(X, (X.shape[0], max_len, 1)) # normalize X = X / float(len(alphabet)) # one hot encode the output variable y = np_utils.to_categorical(dataY) # create and fit the model batch_size = 1 model = Sequential() model.add(LSTM(16, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) for i in range(1): model.fit(X, y, nb_epoch=1, batch_size=batch_size, verbose=2, shuffle=False) model.reset_states() # summarize performance of the model scores = model.evaluate(X, y, batch_size=batch_size, verbose=0) model.reset_states() print("Model Accuracy: %.2f%%" % (scores[1]*100)) # demonstrate some model predictions for i in range(1): pattern_index = numpy.random.randint(len(dataX)) pattern = dataX[pattern_index] x = pad_sequences([pattern], maxlen=max_len, dtype='float32') x = numpy.reshape(x, (1, max_len, 1)) x = x / float(len(alphabet)) prediction = model.predict(x, verbose=0) index = numpy.argmax(prediction) result = int_to_char[index] seq_in = [int_to_char[value] for value in pattern] print( seq_in, "->", result )
[ "numpy.reshape", "numpy.argmax", "keras.models.Sequential", "keras.layers.LSTM", "keras.utils.np_utils.to_categorical", "numpy.random.seed", "keras.layers.Dense", "keras.preprocessing.sequence.pad_sequences" ]
[((374, 394), 'numpy.random.seed', 'numpy.random.seed', (['(7)'], {}), '(7)\n', (391, 394), False, 'import numpy\n'), ((1226, 1279), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['dataX'], {'maxlen': 'max_len', 'dtype': '"""float32"""'}), "(dataX, maxlen=max_len, dtype='float32')\n", (1239, 1279), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((1336, 1378), 'numpy.reshape', 'numpy.reshape', (['X', '(X.shape[0], max_len, 1)'], {}), '(X, (X.shape[0], max_len, 1))\n', (1349, 1378), False, 'import numpy\n'), ((1465, 1495), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['dataY'], {}), '(dataY)\n', (1488, 1495), False, 'from keras.utils import np_utils\n'), ((1549, 1561), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1559, 1561), False, 'from keras.models import Sequential\n'), ((1573, 1652), 'keras.layers.LSTM', 'LSTM', (['(16)'], {'batch_input_shape': '(batch_size, X.shape[1], X.shape[2])', 'stateful': '(True)'}), '(16, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)\n', (1577, 1652), False, 'from keras.layers import LSTM\n'), ((1665, 1704), 'keras.layers.Dense', 'Dense', (['y.shape[1]'], {'activation': '"""softmax"""'}), "(y.shape[1], activation='softmax')\n", (1670, 1704), False, 'from keras.layers import Dense\n'), ((2255, 2312), 'keras.preprocessing.sequence.pad_sequences', 'pad_sequences', (['[pattern]'], {'maxlen': 'max_len', 'dtype': '"""float32"""'}), "([pattern], maxlen=max_len, dtype='float32')\n", (2268, 2312), False, 'from keras.preprocessing.sequence import pad_sequences\n'), ((2322, 2355), 'numpy.reshape', 'numpy.reshape', (['x', '(1, max_len, 1)'], {}), '(x, (1, max_len, 1))\n', (2335, 2355), False, 'import numpy\n'), ((2449, 2473), 'numpy.argmax', 'numpy.argmax', (['prediction'], {}), '(prediction)\n', (2461, 2473), False, 'import numpy\n')]
""" Direction prediction based on learning dataset from reactome PPI direction calculated from domain interaction directions """ # Imports import sqlite3, csv, os import pandas as pd import logging import pickle # # Initiating logger # logger = logging.getLogger() # handler = logging.FileHandler('../../workflow/SLK3.log') # logger.setLevel(logging.DEBUG) # handler.setLevel(logging.DEBUG) # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') # handler.setFormatter(formatter) # logger.addHandler(handler) class DirScore: def __init__(self): # Defining constants self.REACTOME_DB = '../../SLKlib/mapper/protein/output/reactome_mapped.db' self.PFAM_FILE = ['../prediction/direction/files/uniprot-pfam_human.tab', '../prediction/direction/files/uniprot-pfam_drosi.tab', '../prediction/direction/files/uniprot-pfam_danio.tab', '../prediction/direction/files/uniprot-pfam_celegans.tab'] logging.basicConfig(level=logging.DEBUG) self.pfam_dict = {} self.dir_score_dict = {} # Adding the two output dictionaries of test_score function to a pickle files # so that the next function can access them inbetween script executions # TODO: remove pickle files after each run self.PICKLE_FILE = 'dir_score.pickle' if os.path.isfile(self.PICKLE_FILE): self.pfam_dict, self.dir_score_dict = pickle.load(open(self.PICKLE_FILE, 'rb')) else: self.test_scores() pickle.dump((self.pfam_dict, self.dir_score_dict), open(self.PICKLE_FILE, 'wb')) def test_scores(self): # Setting as global so next script can access it df_all = pd.DataFrame(columns=['a_dom', 'b_dom']) conn = sqlite3.connect(self.REACTOME_DB) # Setting up learning data set logging.debug("Started connection to reactome dataset") for inpfam in self.PFAM_FILE: with open(inpfam) as infile: infile.readline() for line in infile: line = line.strip().split('\t') if len(line) == 4: self.pfam_dict[line[0]] = line[3].split(';')[0:-1] with conn: c = conn.cursor() counter = 0 # Getting PPI data logging.debug('Getting PPI data') c.execute("SELECT interactor_a_node_name, interactor_b_node_name FROM edge") while True: row = c.fetchone() counter += 1 if row is None: break else: a_node = row[0].split(':')[1] b_node = row[1].split(':')[1] if a_node not in self.pfam_dict or b_node not in self.pfam_dict: continue int_list = [self.pfam_dict[a_node], self.pfam_dict[b_node]] for id1, id2 in zip(int_list[0], int_list[1]): # Setting up dataframe for all domain-domain interactions # len(df_all) sets the name of the line df_all = df_all.set_value(len(df_all), col=['a_dom', 'b_dom'], value=[id1, id2]) # All domains in a dataframe, without direction all_domain_df = df_all['a_dom'].append(df_all['b_dom']).reset_index(name='domain') all_count = all_domain_df.groupby('domain').size().reset_index(name='counter') # Getting probability of each domain # Number of domain occurrence / Number of all domains logging.debug('Getting probability of each domain') prob_dom = {} # Number of all domain occurrences total_occurrence = all_count['counter'].sum() # Iterating over domains for index, domain in all_count['domain'].iteritems(): dom_count = all_count.loc[all_count['domain'] == domain, 'counter'].iloc[0] P_domain = dom_count / total_occurrence # Adding data into a dictionary prob_dom[domain] = P_domain #print(domain, P_domain) # Getting directed domain-domain interaction probabilities # Number of directed DDI / number of all DDIs logging.debug('Getting DDI probabilities') prob_inter = {} # Getting the occurrences for each directed interaction all_inter_counted = df_all.groupby(['a_dom', 'b_dom']).size().reset_index(name='counter') all_inter_counter = all_inter_counted['counter'].sum() # Iterating over interactions for index2, count in all_inter_counted['counter'].iteritems(): P_inter = count / all_inter_counter # Getting domain ids a_dom = all_inter_counted.loc[all_inter_counted['counter'] == count, 'a_dom'].iloc[0] b_dom = all_inter_counted.loc[all_inter_counted['counter'] == count, 'b_dom'].iloc[0] # Adding the into a dictionary prob_inter['->'.join((a_dom, b_dom))] = P_inter # Calculating direction score # (P_AtoB - P_BtoA) / P_A * P_B logging.debug('Calculating direction scores') for key in prob_inter.keys(): a = key.split('->')[0] b = key.split('->')[1] other_dir = '->'.join((b, a)) if other_dir in prob_inter.keys(): dir_score = (prob_inter[key] - prob_inter[other_dir]) / prob_dom[a] * prob_dom[b] self.dir_score_dict[key] = dir_score else: dir_score = (prob_inter[key] - 0) / prob_dom[a] * prob_dom[b] self.dir_score_dict[key] = dir_score #print(key, dir_score) #return self.dir_score_dict, self.pfam_dict # LAYER 3 def apply_to_db(self): #logger.debug(self.pfam_dict) #logger.debug(self.dir_score_dict) conn2 = sqlite3.connect('SLK3_layers.db') # logger.debug("Connected to '%s" % conn2) with conn2: c2 = conn2.cursor() c22 = conn2.cursor() c2.execute("SELECT interactor_a_node_name, interactor_b_node_name FROM ATG_Reg") while True: row = c2.fetchone() if row is None: break else: prot_a = row[0].split(':')[1] prot_b = row[1].split(':')[1] dir_score_sum = 0 # Summing DDI scores #logging.debug('Summing DDI scores') if prot_a in self.pfam_dict.keys() and prot_b in self.pfam_dict.keys(): for dom_a, dom_b in zip(self.pfam_dict[prot_a], self.pfam_dict[prot_b]): #print(dir_score_dict['->'.join((dom_a, dom_b))]) if '->'.join((dom_a, dom_b)) in self.dir_score_dict.keys(): dir_score_sum += self.dir_score_dict['->'.join((dom_a, dom_b))] # To get final direction score of the unknown PPIs we calculate # the average of each proteins' all domain interaction scores if len(self.pfam_dict[prot_a]) * len(self.pfam_dict[prot_b]) == 0: logging.debug(prot_a, len(self.pfam_dict[prot_a]), prot_b, len(self.pfam_dict[prot_b])) continue else: dir_score_final_PPI = dir_score_sum / (len(self.pfam_dict[prot_a]) * len(self.pfam_dict[prot_b])) #logging.debug("Updating scores") c22.execute("UPDATE ATG_Reg SET confidence_scores = '%s' " "WHERE ATG_Reg.interactor_a_node_name = '%s' AND ATG_Reg.interactor_b_node_name = '%s'" % ('|dir_pred:' + str(dir_score_final_PPI), row[0], row[1])) if __name__ == '__main__': test = DirScore() logger.debug('Creating test set') test.test_scores() logger.debug('Adding scores to dataset') test.apply_to_db() logger.debug('Direction prediction done')
[ "logging.basicConfig", "logging.debug", "sqlite3.connect", "os.path.isfile", "pandas.DataFrame" ]
[((1036, 1076), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (1055, 1076), False, 'import logging\n'), ((1412, 1444), 'os.path.isfile', 'os.path.isfile', (['self.PICKLE_FILE'], {}), '(self.PICKLE_FILE)\n', (1426, 1444), False, 'import sqlite3, csv, os\n'), ((1786, 1826), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['a_dom', 'b_dom']"}), "(columns=['a_dom', 'b_dom'])\n", (1798, 1826), True, 'import pandas as pd\n'), ((1847, 1880), 'sqlite3.connect', 'sqlite3.connect', (['self.REACTOME_DB'], {}), '(self.REACTOME_DB)\n', (1862, 1880), False, 'import sqlite3, csv, os\n'), ((1936, 1991), 'logging.debug', 'logging.debug', (['"""Started connection to reactome dataset"""'], {}), "('Started connection to reactome dataset')\n", (1949, 1991), False, 'import logging\n'), ((3823, 3874), 'logging.debug', 'logging.debug', (['"""Getting probability of each domain"""'], {}), "('Getting probability of each domain')\n", (3836, 3874), False, 'import logging\n'), ((4532, 4574), 'logging.debug', 'logging.debug', (['"""Getting DDI probabilities"""'], {}), "('Getting DDI probabilities')\n", (4545, 4574), False, 'import logging\n'), ((5460, 5505), 'logging.debug', 'logging.debug', (['"""Calculating direction scores"""'], {}), "('Calculating direction scores')\n", (5473, 5505), False, 'import logging\n'), ((6284, 6317), 'sqlite3.connect', 'sqlite3.connect', (['"""SLK3_layers.db"""'], {}), "('SLK3_layers.db')\n", (6299, 6317), False, 'import sqlite3, csv, os\n'), ((2474, 2507), 'logging.debug', 'logging.debug', (['"""Getting PPI data"""'], {}), "('Getting PPI data')\n", (2487, 2507), False, 'import logging\n')]
import json import os.path import sys from exceptions import * from create_folder_structure import create_folder_structure def main(): try: if len(sys.argv) != 3: raise InvalidArgumentCount if not os.path.exists(sys.argv[2]): raise InvalidFilePath if not os.path.exists(sys.argv[1]): raise InvalidFolderPath try: json_object = json.load(open(sys.argv[2])) except ValueError: raise InvalidJsonFile output_folder = sys.argv[1] create_folder_structure(output_folder, json_object) except InvalidArgumentCount: print(""" Invalid number of arguments Please make sure to use quotes for outputFolder and jsonFile if path includes spaces Valid paths may be: "file.json" "./file.json" "folder/file.json" "./folder/file.json" "absolute/path/to/file.json" Usage: main.py "<outputFolder>" "<jsonFile>" """) except InvalidFolderPath: print(""" Output folder does not exist """) except InvalidFilePath: print(""" Input json file does not exist """) except InvalidJsonFile: print(""" Input json file is invalid """) main()
[ "create_folder_structure.create_folder_structure" ]
[((547, 598), 'create_folder_structure.create_folder_structure', 'create_folder_structure', (['output_folder', 'json_object'], {}), '(output_folder, json_object)\n', (570, 598), False, 'from create_folder_structure import create_folder_structure\n')]
from flask import request from google.auth.transport import requests import google.oauth2.id_token from server.ApplikationsAdministration import ApplikationsAdministration #Benutzer.py, BenutzerMapper + BenutzerMethoden in ApplikationsAdministration def secured(function): """Decorator zur Google Firebase-basierten Authentifizierung von Benutzern Da es sich bei diesem System um eine basale Fallstudie zu Lehrzwecken handelt, wurde hier bewusst auf ein ausgefeiltes Berechtigungskonzept verzichtet. Vielmehr soll dieses Decorator einen Weg aufzeigen, wie man technisch mit vertretbarem Aufwand in eine Authentifizierung einsteigen kann. POLICY: Die hier demonstrierte Policy ist, dass jeder, der einen durch Firebase akzeptierten Account besitzt, sich an diesem System anmelden kann. Bei jeder Anmeldung werden Klarname, Mail-Adresse sowie die Google User ID in unserem System gespeichert bzw. geupdated. Auf diese Weise könnte dann für eine Erweiterung des Systems auf jene Daten zurückgegriffen werden. """ firebase_request_adapter = requests.Request() def wrapper(*args, **kwargs): # Verify Firebase auth. id_token = request.cookies.get("token") error_message = None claims = None objects = None if id_token: try: # Verify the token against the Firebase Auth API. This example # verifies the token on each page load. For improved performance, # some applications may wish to cache results in an encrypted # session store (see for instance # http://flask.pocoo.org/docs/1.0/quickstart/#sessions). claims = google.oauth2.id_token.verify_firebase_token( id_token, firebase_request_adapter) if claims is not None: adm = ApplikationsAdministration() google_user_id = claims.get("user_id") email = claims.get("email") name = claims.get("name") user = adm.get_user_by_google_user_id(google_user_id) # Benennen wie in ApplikationsAdministration if user is not None: """Fall: Der Benutzer ist unserem System bereits bekannt. Wir gehen davon aus, dass die google_user_id sich nicht ändert. Wohl aber können sich der zugehörige Klarname (name) und die E-Mail-Adresse ändern. Daher werden diese beiden Daten sicherheitshalber in unserem System geupdated.""" user.set_name(name) user.set_email(email) adm.update_benutzer(user) #set_name und set_email benennen wie in Benutzer.py #adm.save-user benennen wie in ApplikationsAdministration.py else: """Fall: Der Benutzer war bislang noch nicht eingelogged. Wir legen daher ein neues User-Objekt an, um dieses ggf. später nutzen zu können. """ user = adm.benutzer_anlegen(name, email, google_user_id) #Benennen wie in ApplikationsAdministration print(request.method, request.path, "angefragt durch:", name, email) objects = function(*args, **kwargs) return objects else: return '', 401 # UNAUTHORIZED !!! except ValueError as exc: # This will be raised if the token is expired or any other # verification checks fail. error_message = str(exc) return exc, 401 # UNAUTHORIZED !!! return '', 401 # UNAUTHORIZED !!! return wrapper
[ "flask.request.cookies.get", "server.ApplikationsAdministration.ApplikationsAdministration", "google.auth.transport.requests.Request" ]
[((1086, 1104), 'google.auth.transport.requests.Request', 'requests.Request', ([], {}), '()\n', (1102, 1104), False, 'from google.auth.transport import requests\n'), ((1191, 1219), 'flask.request.cookies.get', 'request.cookies.get', (['"""token"""'], {}), "('token')\n", (1210, 1219), False, 'from flask import request\n'), ((1888, 1916), 'server.ApplikationsAdministration.ApplikationsAdministration', 'ApplikationsAdministration', ([], {}), '()\n', (1914, 1916), False, 'from server.ApplikationsAdministration import ApplikationsAdministration\n')]
import FWCore.ParameterSet.Config as cms from RecoEgamma.ElectronIdentification.Identification.mvaElectronID_tools import * # Documentation of the MVA # https://twiki.cern.ch/twiki/bin/viewauth/CMS/MultivariateElectronIdentificationRun2 # https://rembserj.web.cern.ch/rembserj/notes/Electron_MVA_ID_2017_documentation # # In this file we define the locations of the MVA weights, cuts on the MVA values # for specific working points, and configure those cuts in VID # # The tag is an extra string attached to the names of the products # such as ValueMaps that needs to distinguish cases when the same MVA estimator # class is used with different tuning/weights mvaTag = "Fall17NoIsoV1" # There are 6 categories in this MVA. They have to be configured in this strict order # (cuts and weight files order): # 0 EB1 (eta<0.8) pt 5-10 GeV | pt < ptSplit && |eta| < ebSplit # 1 EB2 (eta>=0.8) pt 5-10 GeV | pt < ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 2 EE pt 5-10 GeV | pt < ptSplit && |eta| >= ebeeSplit # 3 EB1 (eta<0.8) pt 10-inf GeV | pt >= ptSplit && |eta| < ebSplit # 4 EB2 (eta>=0.8) pt 10-inf GeV | pt >= ptSplit && |eta| >= ebSplit && |eta| < ebeeSplit # 5 EE pt 10-inf GeV | pt >= ptSplit && |eta| >= ebeeSplit mvaFall17WeightFiles_V1 = cms.vstring( "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_5_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_10_2017_puinfo_BDT.weights.xml.gz", "RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_10_2017_puinfo_BDT.weights.xml.gz" ) ## The working point for this MVA that is expected to have about 90% signal # WP tuned to give about 90 and 80% signal efficiecny for electrons from Drell-Yan with pT > 25 GeV # The working point for the low pt categories is just taken over from the high pt idName90 = "mvaEleID-Fall17-noIso-V1-wp90" MVA_WP90 = EleMVA_WP( idName = idName90, mvaTag = mvaTag, cutCategory0 = "0.9165112826974601 - exp(-pt / 2.7381703555094217) * 1.03549199648109", # EB1 low pt cutCategory1 = "0.8655738322220173 - exp(-pt / 2.4027944652597073) * 0.7975615613282494", # EB2 low pt cutCategory2 = "-3016.035055227131 - exp(-pt / -52140.61856333602) * -3016.3029387236506", # EE low pt cutCategory3 = "0.9616542816132922 - exp(-pt / 8.757943837889817) * 3.1390200321591206", # EB1 cutCategory4 = "0.9319258011430132 - exp(-pt / 8.846057432565809) * 3.5985063793347787", # EB2 cutCategory5 = "0.8899260780999244 - exp(-pt / 10.124234115859881) * 4.352791250718547", # EE ) idName80 = "mvaEleID-Fall17-noIso-V1-wp80" MVA_WP80 = EleMVA_WP( idName = idName80, mvaTag = mvaTag, cutCategory0 = "0.9530240956555949 - exp(-pt / 2.7591425841003647) * 0.4669644718545271", # EB1 low pt cutCategory1 = "0.9336564763961019 - exp(-pt / 2.709276284272272) * 0.33512286599215946", # EB2 low pt cutCategory2 = "0.9313133688365339 - exp(-pt / 1.5821934800715558) * 3.8889462619659265", # EE low pt cutCategory3 = "0.9825268564943458 - exp(-pt / 8.702601455860762) * 1.1974861596609097", # EB1 cutCategory4 = "0.9727509457929913 - exp(-pt / 8.179525631018565) * 1.7111755094657688", # EB2 cutCategory5 = "0.9562619539540145 - exp(-pt / 8.109845366281608) * 3.013927699126942", # EE ) ### WP tuned for HZZ analysis with very high efficiency (about 98%) # The working points were found by requiring the same signal efficiencies in # each category as for the Spring 16 HZZ ID # (see RecoEgamma/ElectronIdentification/python/Identification/mvaElectronID_Spring16_HZZ_V1_cff.py) idNamewpLoose = "mvaEleID-Fall17-noIso-V1-wpLoose" MVA_WPLoose = EleMVA_WP( idName = idNamewpLoose, mvaTag = mvaTag, cutCategory0 = "-0.13285867293779202", # EB1 low pt cutCategory1 = "-0.31765300958836074", # EB2 low pt cutCategory2 = "-0.0799205914718861" , # EE low pt cutCategory3 = "-0.856871961305474" , # EB1 cutCategory4 = "-0.8107642141584835" , # EB2 cutCategory5 = "-0.7179265933023059" # EE ) # # Finally, set up VID configuration for all cuts # # Create the PSet that will be fed to the MVA value map producer mvaEleID_Fall17_noIso_V1_producer_config = cms.PSet( mvaName = cms.string(mvaClassName), mvaTag = cms.string(mvaTag), # Category parameters nCategories = cms.int32(6), categoryCuts = cms.vstring(*EleMVA_6CategoriesCuts), # Weight files and variable definitions weightFileNames = mvaFall17WeightFiles_V1, variableDefinition = cms.string("RecoEgamma/ElectronIdentification/data/ElectronMVAEstimatorRun2Fall17V1Variables.txt") ) # Create the VPset's for VID cuts mvaEleID_Fall17_V1_wpLoose = configureVIDMVAEleID( MVA_WPLoose ) mvaEleID_Fall17_V1_wp90 = configureVIDMVAEleID( MVA_WP90 ) mvaEleID_Fall17_V1_wp80 = configureVIDMVAEleID( MVA_WP80 ) mvaEleID_Fall17_V1_wpLoose.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp90.isPOGApproved = cms.untracked.bool(True) mvaEleID_Fall17_V1_wp80.isPOGApproved = cms.untracked.bool(True)
[ "FWCore.ParameterSet.Config.vstring", "FWCore.ParameterSet.Config.int32", "FWCore.ParameterSet.Config.untracked.bool", "FWCore.ParameterSet.Config.string" ]
[((1339, 1964), 'FWCore.ParameterSet.Config.vstring', 'cms.vstring', (['"""RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_5_2017_puinfo_BDT.weights.xml.gz"""', '"""RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_5_2017_puinfo_BDT.weights.xml.gz"""', '"""RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_5_2017_puinfo_BDT.weights.xml.gz"""', '"""RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_10_2017_puinfo_BDT.weights.xml.gz"""', '"""RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_10_2017_puinfo_BDT.weights.xml.gz"""', '"""RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_10_2017_puinfo_BDT.weights.xml.gz"""'], {}), "(\n 'RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_5_2017_puinfo_BDT.weights.xml.gz'\n ,\n 'RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_5_2017_puinfo_BDT.weights.xml.gz'\n ,\n 'RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_5_2017_puinfo_BDT.weights.xml.gz'\n ,\n 'RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB1_10_2017_puinfo_BDT.weights.xml.gz'\n ,\n 'RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EB2_10_2017_puinfo_BDT.weights.xml.gz'\n ,\n 'RecoEgamma/ElectronIdentification/data/Fall17/EIDmva_EE_10_2017_puinfo_BDT.weights.xml.gz'\n )\n", (1350, 1964), True, 'import FWCore.ParameterSet.Config as cms\n'), ((5293, 5317), 'FWCore.ParameterSet.Config.untracked.bool', 'cms.untracked.bool', (['(True)'], {}), '(True)\n', (5311, 5317), True, 'import FWCore.ParameterSet.Config as cms\n'), ((5358, 5382), 'FWCore.ParameterSet.Config.untracked.bool', 'cms.untracked.bool', (['(True)'], {}), '(True)\n', (5376, 5382), True, 'import FWCore.ParameterSet.Config as cms\n'), ((5423, 5447), 'FWCore.ParameterSet.Config.untracked.bool', 'cms.untracked.bool', (['(True)'], {}), '(True)\n', (5441, 5447), True, 'import FWCore.ParameterSet.Config as cms\n'), ((4604, 4628), 'FWCore.ParameterSet.Config.string', 'cms.string', (['mvaClassName'], {}), '(mvaClassName)\n', (4614, 4628), True, 'import FWCore.ParameterSet.Config as cms\n'), ((4656, 4674), 'FWCore.ParameterSet.Config.string', 'cms.string', (['mvaTag'], {}), '(mvaTag)\n', (4666, 4674), True, 'import FWCore.ParameterSet.Config as cms\n'), ((4728, 4740), 'FWCore.ParameterSet.Config.int32', 'cms.int32', (['(6)'], {}), '(6)\n', (4737, 4740), True, 'import FWCore.ParameterSet.Config as cms\n'), ((4768, 4804), 'FWCore.ParameterSet.Config.vstring', 'cms.vstring', (['*EleMVA_6CategoriesCuts'], {}), '(*EleMVA_6CategoriesCuts)\n', (4779, 4804), True, 'import FWCore.ParameterSet.Config as cms\n'), ((4927, 5035), 'FWCore.ParameterSet.Config.string', 'cms.string', (['"""RecoEgamma/ElectronIdentification/data/ElectronMVAEstimatorRun2Fall17V1Variables.txt"""'], {}), "(\n 'RecoEgamma/ElectronIdentification/data/ElectronMVAEstimatorRun2Fall17V1Variables.txt'\n )\n", (4937, 5035), True, 'import FWCore.ParameterSet.Config as cms\n')]
from typing import Union, List import pexpect from figcli.utils.utils import Utils import sys class FiggyAction: """ Actions prevent cyclic dependencies, and are designed for leveraging FiggyCli for cleanup steps when running inside of tests. """ def __init__(self, command, extra_args=""): self.c = Utils.default_colors() self.command = command self.extra_args = extra_args self._child = self.spawn(command) print(f"{self.c.fg_yl}Executing action: {self._child.args}{self.c.rs}") self._child.logfile = sys.stdout self._child.delaybeforesend = .5 def spawn(self, command: str): return pexpect.spawn(command, timeout=10, encoding='utf-8') def expect_multiple(self, regexes: List[str]): print(f'Expecting: {regexes}') return self._child.expect(regexes) def expect(self, regex: Union[List[str], str], retry=True): print(f'Expecting: {regex}') expect_list = [regex] + [pexpect.TIMEOUT] if isinstance(regex, str) else regex + [pexpect.TIMEOUT] result = self._child.expect(expect_list) if result == len(expect_list) - 1 and retry: self.alert(f"EXPECT FAILED: {regex} initiating retry!") self._child = self.spawn(self.command) return self.expect(regex, retry=False) else: return result def sendline(self, line: str): print(f'Sending: {line}') self._child.sendline(line) def wait(self): self._child.wait() def alert(self, msg: str): print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}") print(f"{self.c.fg_rd} ALERT: {msg}{self.c.rs}") print(f"{self.c.fg_yl}-----------------------------------------{self.c.rs}")
[ "pexpect.spawn", "figcli.utils.utils.Utils.default_colors" ]
[((333, 355), 'figcli.utils.utils.Utils.default_colors', 'Utils.default_colors', ([], {}), '()\n', (353, 355), False, 'from figcli.utils.utils import Utils\n'), ((679, 731), 'pexpect.spawn', 'pexpect.spawn', (['command'], {'timeout': '(10)', 'encoding': '"""utf-8"""'}), "(command, timeout=10, encoding='utf-8')\n", (692, 731), False, 'import pexpect\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME>. @mail: <EMAIL> """ # from qc.__version__ import __version__ import georinex as gr import numpy as np from matplotlib.pyplot import figure, show import matplotlib.pyplot as plt obs = gr.load( 'tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx', # tlim=['2021-11-03T12:00', '2021-11-03T12:30']) tlim=['2021-11-03T05:30', '2021-11-03T07:30']) # tlim=['2021-11-03T15:00', '2021-11-03T18:00']) # hdr = gr.rinexheader( # 'tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx') # rnx_version = 3 # %% Starting test # Copying helper functions from Multipath class - later on, it could be turned # into a separate class with helper functions # Pick GPS satellites svG = [] for i in range(0, len(obs.sv)): if str(obs.sv[i].values)[0] == 'G': svG.append(str(obs.sv[i].values)) else: continue # %% # 5:30 to 7:30, G08 and G21 give 2 cycle slips # [290:300] # 'G01','G06','G08','G10','G12','G14','G17','G19','G21','G22','G24','G30','G32' sat = 'G21' sattest = obs.sel(sv=sat).dropna(dim='time', how='all') # G02 data vars with no-nan: C1C, D1C, L1C, S1C, C1W, C2W, D2W, L2W, S1W, S2W I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor L1 = sattest['L1C'] # GPS L2 = sattest['L2W'] # GPS # L1 = sattest['L1C'] # Galileo # L2 = sattest['L8Q'] # Galileo L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for i in range(1, len(L4)): L4_diff.append(np.abs(L4[i] - L4[i-1])) if (np.abs(L4[i] - L4[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L4_diff, label=sat) plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L4') plt.title('Single-frequency Melbourne-Wuebbena') show() print('Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% # Plot all loaded sats, L1 and L2 ax = figure(figsize=(10, 6)).gca() for i in range(0, len(svG)): test = obs.sel(sv=svG[i]).dropna(dim='time', how='all') L1test = test['L1C'] L2test = test['L2W'] ax.plot(L1test.time, L1test, label=svG[i], linewidth=2.0) #ax.plot(L2test.time, L2test, label='L2', linewidth=0.5) ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('Carrier phases') show() # %% # Plot separate sats, L1 and L2 ax = figure(figsize=(10, 6)).gca() test = obs.sel(sv='E21').dropna(dim='time', how='all') L1test = test['L1C'] L2test = test['L2W'] ax.plot(L1test.time, L1test, label='L1', linewidth=2.0) ax.plot(L2test.time, L2test, label='L2', linewidth=1.0) ax.grid() # ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('Carrier phases') show() # %% Dual-frequency Melbourne-Wuebbena testing # 'G01','G06','G08','G10','G12','G14','G17','G19','G21','G22','G24','G30','G32' sat = 'G21' sattest = obs.sel(sv=sat).dropna(dim='time', how='all') # G02 data vars with no-nan: C1C, D1C, L1C, S1C, C1W, C2W, D2W, L2W, S1W, S2W freq = [1575.42, 1227.60, 1176.45] # L1, L2, L5 for GPS f1 = freq[0]*1e6 f2 = freq[1]*1e6 P1 = sattest['C1C'] P2 = sattest['C2W'] L1 = sattest['L1C'] # GPS L2 = sattest['L2W'] # GPS # L1 = sattest['L1C'] # Galileo # L2 = sattest['L8Q'] # Galileo L6 = (1/(f1-f2))*(f1*L1 - f2*L2) - (1/(f1+f2))*(f1*P1 + f2*P2) sigma_L6 = np.std(L6) k = 4 # criterion factor criterion = k*sigma_L6 slips_nr = 0 L6_diff = [] for i in range(1, len(L6)): L6_diff.append(np.abs(L6[i] - L6[i-1])) if (np.abs(L6[i] - L6[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L6_diff, label=sat) plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L6') plt.title('Dual-frequency Melbourne-Wuebbena') show() print('Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% Work in Progress class Slips: """ Class for cycle slip detection of RINEX files. Provides options for different detection algorithms. Parameters ---------- L1 : TYPE DESCRIPTION. Returns ------- L4 : TYPE DESCRIPTION. """ def __init__(self): pass def slips_MW_single_freq(self, obs): """ Cycle slip detection algorithm 1. Based on Melbourne-Wuebbena, but only on carrier phase data (single-frequency) (from Vaclavovic-Dousa 2016 article) Parameters ---------- obs : TYPE DESCRIPTION. Returns ------- None. """ # Select a list of GPS satellites svG = [] for i in range(0, len(obs.sv)): if str(obs.sv[i].values)[0] == 'G': svG.append(str(obs.sv[i].values)) else: continue # Melbourne-Wuebbena parameters (predetermined) I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor # For each tracked satellite for i in range(0, len(svG)): current_sat = obs.sel(sv=svG[i]).dropna(dim='time', how='all') L1 = current_sat['L1C'] L2 = current_sat['L2W'] L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for j in range(1, len(L4)): L4_diff.append(np.abs(L4[j] - L4[j-1])) if (np.abs(L4[j] - L4[j-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 print('Sat:', svG[i], ', Slips:', slips_nr, ', Slip criterion:', criterion.values) def plot_slips(self, obs, sat_nr: str): """ Plot cycle slips for one satellite vehicle. Parameters ---------- obs : TYPE DESCRIPTION. sat_nr : str DESCRIPTION. Returns ------- None. """ sat = obs.sel(sv=sat_nr).dropna(dim='time', how='all') I_max = 0.4 # Maximal ionospheric delay [m/h] k = 4 # criterion factor L1 = sat['L1C'] L2 = sat['L2W'] L4 = np.abs(L1 - L2) sigma_L4 = np.std(L4) criterion = k*sigma_L4 + I_max slips_nr = 0 L4_diff = [] for i in range(1, len(L4)): L4_diff.append(np.abs(L4[i] - L4[i-1])) if (np.abs(L4[i] - L4[i-1]) > criterion): # If satisfied, raise cycle-slip flag slips_nr = slips_nr + 1 ax = figure(figsize=(10, 6)).gca() ax.plot(L2.time[1:], L4_diff, label=sat_nr, linewidth=1.0) # labelfull = 'Slip limit: ', criterion.values plt.axhline(y=criterion, label='Slip limit', linestyle='-', color='r') ax.grid() ax.legend() plt.xlabel('Time [epochs]') plt.ylabel('L4') show() print('Sat:', sat_nr, ', Slips:', slips_nr, ', Slip criterion:', criterion.values) # %% Testing first algorithm sliptest = Slips().slips_MW_single_freq(obs) # %% Testing plot function sliptest = Slips().plot_slips(obs, 'G08')
[ "numpy.abs", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "georinex.load", "matplotlib.pyplot.axhline", "matplotlib.pyplot.figure", "numpy.std", "matplotlib.pyplot.title", "matplotlib.pyplot.show" ]
[((254, 377), 'georinex.load', 'gr.load', (['"""tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx"""'], {'tlim': "['2021-11-03T05:30', '2021-11-03T07:30']"}), "('tests/test_data/Rinex3/KLSQ00GRL_R_20213070000_01D_15S_MO.rnx',\n tlim=['2021-11-03T05:30', '2021-11-03T07:30'])\n", (261, 377), True, 'import georinex as gr\n'), ((1410, 1425), 'numpy.abs', 'np.abs', (['(L1 - L2)'], {}), '(L1 - L2)\n', (1416, 1425), True, 'import numpy as np\n'), ((1438, 1448), 'numpy.std', 'np.std', (['L4'], {}), '(L4)\n', (1444, 1448), True, 'import numpy as np\n'), ((1781, 1851), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': 'criterion', 'label': '"""Slip limit"""', 'linestyle': '"""-"""', 'color': '"""r"""'}), "(y=criterion, label='Slip limit', linestyle='-', color='r')\n", (1792, 1851), True, 'import matplotlib.pyplot as plt\n'), ((1874, 1901), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [epochs]"""'], {}), "('Time [epochs]')\n", (1884, 1901), True, 'import matplotlib.pyplot as plt\n'), ((1902, 1918), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""L4"""'], {}), "('L4')\n", (1912, 1918), True, 'import matplotlib.pyplot as plt\n'), ((1919, 1967), 'matplotlib.pyplot.title', 'plt.title', (['"""Single-frequency Melbourne-Wuebbena"""'], {}), "('Single-frequency Melbourne-Wuebbena')\n", (1928, 1967), True, 'import matplotlib.pyplot as plt\n'), ((1968, 1974), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (1972, 1974), False, 'from matplotlib.pyplot import figure, show\n'), ((2402, 2429), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [epochs]"""'], {}), "('Time [epochs]')\n", (2412, 2429), True, 'import matplotlib.pyplot as plt\n'), ((2430, 2458), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Carrier phases"""'], {}), "('Carrier phases')\n", (2440, 2458), True, 'import matplotlib.pyplot as plt\n'), ((2459, 2465), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (2463, 2465), False, 'from matplotlib.pyplot import figure, show\n'), ((2772, 2799), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [epochs]"""'], {}), "('Time [epochs]')\n", (2782, 2799), True, 'import matplotlib.pyplot as plt\n'), ((2800, 2828), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Carrier phases"""'], {}), "('Carrier phases')\n", (2810, 2828), True, 'import matplotlib.pyplot as plt\n'), ((2829, 2835), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (2833, 2835), False, 'from matplotlib.pyplot import figure, show\n'), ((3441, 3451), 'numpy.std', 'np.std', (['L6'], {}), '(L6)\n', (3447, 3451), True, 'import numpy as np\n'), ((3802, 3872), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': 'criterion', 'label': '"""Slip limit"""', 'linestyle': '"""-"""', 'color': '"""r"""'}), "(y=criterion, label='Slip limit', linestyle='-', color='r')\n", (3813, 3872), True, 'import matplotlib.pyplot as plt\n'), ((3895, 3922), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [epochs]"""'], {}), "('Time [epochs]')\n", (3905, 3922), True, 'import matplotlib.pyplot as plt\n'), ((3923, 3939), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""L6"""'], {}), "('L6')\n", (3933, 3939), True, 'import matplotlib.pyplot as plt\n'), ((3940, 3986), 'matplotlib.pyplot.title', 'plt.title', (['"""Dual-frequency Melbourne-Wuebbena"""'], {}), "('Dual-frequency Melbourne-Wuebbena')\n", (3949, 3986), True, 'import matplotlib.pyplot as plt\n'), ((3987, 3993), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (3991, 3993), False, 'from matplotlib.pyplot import figure, show\n'), ((1555, 1580), 'numpy.abs', 'np.abs', (['(L4[i] - L4[i - 1])'], {}), '(L4[i] - L4[i - 1])\n', (1561, 1580), True, 'import numpy as np\n'), ((1588, 1613), 'numpy.abs', 'np.abs', (['(L4[i] - L4[i - 1])'], {}), '(L4[i] - L4[i - 1])\n', (1594, 1613), True, 'import numpy as np\n'), ((1710, 1733), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (1716, 1733), False, 'from matplotlib.pyplot import figure, show\n'), ((2088, 2111), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (2094, 2111), False, 'from matplotlib.pyplot import figure, show\n'), ((2509, 2532), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (2515, 2532), False, 'from matplotlib.pyplot import figure, show\n'), ((3576, 3601), 'numpy.abs', 'np.abs', (['(L6[i] - L6[i - 1])'], {}), '(L6[i] - L6[i - 1])\n', (3582, 3601), True, 'import numpy as np\n'), ((3609, 3634), 'numpy.abs', 'np.abs', (['(L6[i] - L6[i - 1])'], {}), '(L6[i] - L6[i - 1])\n', (3615, 3634), True, 'import numpy as np\n'), ((3731, 3754), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (3737, 3754), False, 'from matplotlib.pyplot import figure, show\n'), ((6444, 6459), 'numpy.abs', 'np.abs', (['(L1 - L2)'], {}), '(L1 - L2)\n', (6450, 6459), True, 'import numpy as np\n'), ((6480, 6490), 'numpy.std', 'np.std', (['L4'], {}), '(L4)\n', (6486, 6490), True, 'import numpy as np\n'), ((6984, 7054), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': 'criterion', 'label': '"""Slip limit"""', 'linestyle': '"""-"""', 'color': '"""r"""'}), "(y=criterion, label='Slip limit', linestyle='-', color='r')\n", (6995, 7054), True, 'import matplotlib.pyplot as plt\n'), ((7101, 7128), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time [epochs]"""'], {}), "('Time [epochs]')\n", (7111, 7128), True, 'import matplotlib.pyplot as plt\n'), ((7137, 7153), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""L4"""'], {}), "('L4')\n", (7147, 7153), True, 'import matplotlib.pyplot as plt\n'), ((7162, 7168), 'matplotlib.pyplot.show', 'show', ([], {}), '()\n', (7166, 7168), False, 'from matplotlib.pyplot import figure, show\n'), ((5396, 5411), 'numpy.abs', 'np.abs', (['(L1 - L2)'], {}), '(L1 - L2)\n', (5402, 5411), True, 'import numpy as np\n'), ((5436, 5446), 'numpy.std', 'np.std', (['L4'], {}), '(L4)\n', (5442, 5446), True, 'import numpy as np\n'), ((6637, 6662), 'numpy.abs', 'np.abs', (['(L4[i] - L4[i - 1])'], {}), '(L4[i] - L4[i - 1])\n', (6643, 6662), True, 'import numpy as np\n'), ((6678, 6703), 'numpy.abs', 'np.abs', (['(L4[i] - L4[i - 1])'], {}), '(L4[i] - L4[i - 1])\n', (6684, 6703), True, 'import numpy as np\n'), ((6824, 6847), 'matplotlib.pyplot.figure', 'figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (6830, 6847), False, 'from matplotlib.pyplot import figure, show\n'), ((5613, 5638), 'numpy.abs', 'np.abs', (['(L4[j] - L4[j - 1])'], {}), '(L4[j] - L4[j - 1])\n', (5619, 5638), True, 'import numpy as np\n'), ((5658, 5683), 'numpy.abs', 'np.abs', (['(L4[j] - L4[j - 1])'], {}), '(L4[j] - L4[j - 1])\n', (5664, 5683), True, 'import numpy as np\n')]
from collections import OrderedDict from datetime import datetime, timezone import unittest from os.path import join from tinydb import TinyDB, storages from goldfinchsong import utils IMAGE_NAMES = ['goldfinch1.jpg', 'goldfinch2.jpg', 'goldfinch3.jpg', 'goldfinch4.jpg', 'goldfinch5.jpg'] TEST_TEXT1 = 'This is a test of the goldfinchsong project. This test checks ' \ 'abbreviations, vowel elision, length checking, and other logic. ' \ 'Tests are important!' TEST_TEXT2 = 'This is a test of the goldfinchsong project. Tests ' \ 'abbreviations, vowel elision, length checking, and other logic. ' \ 'Tests are important!' class LoadContentTests(unittest.TestCase): def test_basic_load(self): image_directory = 'tests/images/' db = TinyDB(storage=storages.MemoryStorage) content = utils.load_content(db, image_directory) full_image_path = content[0] image_file = full_image_path.replace(image_directory, '') status_text = content[1] self.assertTrue(image_file in IMAGE_NAMES) self.assertEqual(image_file.replace('.jpg', ''), status_text) def test_storage_in_db(self): image_directory = 'tests/images/' # let's load a list of tweets into the db db = TinyDB(storage=storages.MemoryStorage) image_names = [ 'goldfinch1.jpg', 'goldfinch2.jpg', 'goldfinch3.jpg', 'goldfinch4.jpg' ] for image_name in image_names: delivery_timestamp = datetime.now(tz=timezone.utc).isoformat() tweet = {'image': image_name, 'delivered_on': delivery_timestamp} db.insert(tweet) content = utils.load_content(db, image_directory) self.assertEqual(content[2], 'goldfinch5.jpg') tweets = db.all() self.assertEqual(len(tweets), 4, msg=tweets) class UtilitiesTests(unittest.TestCase): def test_apply_abbreviations(self): text_conversions = { 'abbreviations': 'abbr', 'goldfinchsong': 'gf', 'important': 'impt' } # exhausts all conversions before reaching limit new_text1 = utils.apply_abbreviations(TEST_TEXT1, text_conversions) expected_text1 = 'This is a test of the gf project. This test checks ' \ 'abbr, vowel elision, length checking, and other logic. ' \ 'Tests are impt!' self.assertEqual(expected_text1, new_text1) new_text2 = utils.apply_abbreviations(TEST_TEXT2, text_conversions) self.assertTrue(len(new_text2) <= 117) def test_apply_vowel_elision(self): result_text = utils.apply_vowel_elision(TEST_TEXT1) expected_text = 'This is a tst of the gldfnchsng prjct. Ths tst chcks ' \ 'abbrvtns, vwl elsn, lngth chckng, and othr lgc. Tsts ' \ 'are imprtnt!' self.assertEqual(expected_text, result_text) def test_assemble_elided_status(self): complete_words = ['test', 'a', 'is', 'This'] elided_words = ['systm', 'gldfnch', 'the', 'of'] result = utils.assemble_elided_status(complete_words, elided_words) self.assertEqual('This is a test of the gldfnch systm', result) def test_chop_words(self): result_text = utils.chop_words(TEST_TEXT1) expected_text = 'This is a test of the goldfinchsong project. This test checks ' \ 'abbreviations, vowel elision, length checking, and' self.assertEqual(expected_text, result_text) def test_is_image(self): image_files = [ 'image.gif', 'image.jpg', 'image.jpeg', 'image.png', 'image.GIF', 'image.JPG', 'image.JPEG', 'image.PNG', 'image.GiF', 'image.JpG', 'image.JpEg', 'image.PnG' ] for image_file in image_files: self.assertTrue(utils.is_image_file(image_file)) def test_is_not_image(self): image_files = [ 'image.docx', 'image.pdf', 'image.md', 'image.html', 'image.css', 'image.odt', 'image.sh', 'image.xlsx', 'image.txt', 'image.c', 'image.py', 'image' ] for image_file in image_files: self.assertFalse(utils.is_image_file(image_file)) def test_trim_file_extensions(self): image_files = [ 'image.gif', 'image.jpg', 'image.jpeg', 'image.png', 'image.GIF', 'image.JPG', 'image.JPEG', 'image.PNG', 'image.GiF', 'image.JpG', 'image.JpEg', 'image.PnG' ] for image_file in image_files: self.assertEqual(utils.trim_file_extension(image_file), 'image') def test_to_compact_text(self): text_conversions = { 'abbreviations': 'abbrs', 'goldfinchsong': 'gfnch', 'important': 'importnt' } candidate_text1 = utils.to_compact_text(TEST_TEXT1, 100, text_conversions) expected_text1 = 'Ths is a tst of the gfnch prjct. Ths tst chcks abbrs, ' \ 'vwl elsn, lngth chckng, and othr lgc. Tsts are' self.assertEqual(expected_text1, candidate_text1) candidate_text2 = utils.to_compact_text(TEST_TEXT1, 50, text_conversions) expected_text2 = 'Ths is a tst of the gfnch prjct. Ths tst chcks' self.assertEqual(expected_text2, candidate_text2) candidate_text3 = utils.to_compact_text(TEST_TEXT1, 20, text_conversions) expected_text3 = 'Ths is a tst of the' self.assertEqual(expected_text3, candidate_text3) def test_extract_status_text(self): conversion_data = ( ('abbreviations', 'abbrs'), ('goldfinchsong', 'gfnch'), ('important', 'importnt'), ) text_conversions = OrderedDict(conversion_data) file = 'Some_goldfinchsong_image-file_with_a_very_long_set_of_' \ 'characters_and_abbreviations_that_conveys_important_info.png' candidate_text1 = utils.extract_status_text(file, text_conversions, maximum_length=100,) expected_text1 = 'Some gfnch image-file with a very long set of characters and abbrs that conveys important info' self.assertEqual(expected_text1, candidate_text1) candidate_text2 = utils.extract_status_text(file, text_conversions, maximum_length=70,) expected_text2 = 'Sme gfnch imge-fle wth a vry lng st of chrctrs and abbrs tht cnvys' self.assertEqual(expected_text2, candidate_text2) def test_get_unused_files(self): available_files = list() for index in range(1,101): image_name = 'image{0}.png'.format(index) available_files.append(image_name) db = TinyDB(storage=storages.MemoryStorage) for id in range(1,52): image_name = 'image{0}.png'.format(id) db.insert({'image': image_name}) unused_files = utils.get_unused_files(db, available_files) self.assertEqual(len(unused_files), 49) self.assertEqual(unused_files[0], 'image52.png') self.assertEqual(unused_files[5], 'image57.png') self.assertEqual(unused_files[10], 'image62.png') self.assertEqual(unused_files[15], 'image67.png') self.assertEqual(unused_files[20], 'image72.png') self.assertEqual(unused_files[33], 'image85.png') self.assertEqual(unused_files[48], 'image100.png') def test_db_purge_when_all_posted(self): available_files = list() for index in range(1,101): image_name = 'image{0}.png'.format(index) available_files.append(image_name) db = TinyDB(storage=storages.MemoryStorage) for id in range(1,106): image_name = 'image{0}.png'.format(id) db.insert({'image': image_name}) self.assertEqual(len(db.all()), 105) unused_files = utils.get_unused_files(db, available_files) self.assertEqual(len(unused_files), 100) self.assertEqual(unused_files[0], 'image1.png') self.assertEqual(unused_files[5], 'image6.png') self.assertEqual(unused_files[10], 'image11.png') self.assertEqual(unused_files[33], 'image34.png') self.assertEqual(unused_files[50], 'image51.png')
[ "collections.OrderedDict", "tinydb.TinyDB", "goldfinchsong.utils.apply_abbreviations", "goldfinchsong.utils.is_image_file", "goldfinchsong.utils.to_compact_text", "goldfinchsong.utils.load_content", "goldfinchsong.utils.chop_words", "goldfinchsong.utils.extract_status_text", "goldfinchsong.utils.trim_file_extension", "datetime.datetime.now", "goldfinchsong.utils.assemble_elided_status", "goldfinchsong.utils.apply_vowel_elision", "goldfinchsong.utils.get_unused_files" ]
[((821, 859), 'tinydb.TinyDB', 'TinyDB', ([], {'storage': 'storages.MemoryStorage'}), '(storage=storages.MemoryStorage)\n', (827, 859), False, 'from tinydb import TinyDB, storages\n'), ((878, 917), 'goldfinchsong.utils.load_content', 'utils.load_content', (['db', 'image_directory'], {}), '(db, image_directory)\n', (896, 917), False, 'from goldfinchsong import utils\n'), ((1315, 1353), 'tinydb.TinyDB', 'TinyDB', ([], {'storage': 'storages.MemoryStorage'}), '(storage=storages.MemoryStorage)\n', (1321, 1353), False, 'from tinydb import TinyDB, storages\n'), ((1746, 1785), 'goldfinchsong.utils.load_content', 'utils.load_content', (['db', 'image_directory'], {}), '(db, image_directory)\n', (1764, 1785), False, 'from goldfinchsong import utils\n'), ((2224, 2279), 'goldfinchsong.utils.apply_abbreviations', 'utils.apply_abbreviations', (['TEST_TEXT1', 'text_conversions'], {}), '(TEST_TEXT1, text_conversions)\n', (2249, 2279), False, 'from goldfinchsong import utils\n'), ((2551, 2606), 'goldfinchsong.utils.apply_abbreviations', 'utils.apply_abbreviations', (['TEST_TEXT2', 'text_conversions'], {}), '(TEST_TEXT2, text_conversions)\n', (2576, 2606), False, 'from goldfinchsong import utils\n'), ((2717, 2754), 'goldfinchsong.utils.apply_vowel_elision', 'utils.apply_vowel_elision', (['TEST_TEXT1'], {}), '(TEST_TEXT1)\n', (2742, 2754), False, 'from goldfinchsong import utils\n'), ((3182, 3240), 'goldfinchsong.utils.assemble_elided_status', 'utils.assemble_elided_status', (['complete_words', 'elided_words'], {}), '(complete_words, elided_words)\n', (3210, 3240), False, 'from goldfinchsong import utils\n'), ((3367, 3395), 'goldfinchsong.utils.chop_words', 'utils.chop_words', (['TEST_TEXT1'], {}), '(TEST_TEXT1)\n', (3383, 3395), False, 'from goldfinchsong import utils\n'), ((5253, 5309), 'goldfinchsong.utils.to_compact_text', 'utils.to_compact_text', (['TEST_TEXT1', '(100)', 'text_conversions'], {}), '(TEST_TEXT1, 100, text_conversions)\n', (5274, 5309), False, 'from goldfinchsong import utils\n'), ((5552, 5607), 'goldfinchsong.utils.to_compact_text', 'utils.to_compact_text', (['TEST_TEXT1', '(50)', 'text_conversions'], {}), '(TEST_TEXT1, 50, text_conversions)\n', (5573, 5607), False, 'from goldfinchsong import utils\n'), ((5766, 5821), 'goldfinchsong.utils.to_compact_text', 'utils.to_compact_text', (['TEST_TEXT1', '(20)', 'text_conversions'], {}), '(TEST_TEXT1, 20, text_conversions)\n', (5787, 5821), False, 'from goldfinchsong import utils\n'), ((6152, 6180), 'collections.OrderedDict', 'OrderedDict', (['conversion_data'], {}), '(conversion_data)\n', (6163, 6180), False, 'from collections import OrderedDict\n'), ((6359, 6428), 'goldfinchsong.utils.extract_status_text', 'utils.extract_status_text', (['file', 'text_conversions'], {'maximum_length': '(100)'}), '(file, text_conversions, maximum_length=100)\n', (6384, 6428), False, 'from goldfinchsong import utils\n'), ((6636, 6704), 'goldfinchsong.utils.extract_status_text', 'utils.extract_status_text', (['file', 'text_conversions'], {'maximum_length': '(70)'}), '(file, text_conversions, maximum_length=70)\n', (6661, 6704), False, 'from goldfinchsong import utils\n'), ((7078, 7116), 'tinydb.TinyDB', 'TinyDB', ([], {'storage': 'storages.MemoryStorage'}), '(storage=storages.MemoryStorage)\n', (7084, 7116), False, 'from tinydb import TinyDB, storages\n'), ((7267, 7310), 'goldfinchsong.utils.get_unused_files', 'utils.get_unused_files', (['db', 'available_files'], {}), '(db, available_files)\n', (7289, 7310), False, 'from goldfinchsong import utils\n'), ((7992, 8030), 'tinydb.TinyDB', 'TinyDB', ([], {'storage': 'storages.MemoryStorage'}), '(storage=storages.MemoryStorage)\n', (7998, 8030), False, 'from tinydb import TinyDB, storages\n'), ((8227, 8270), 'goldfinchsong.utils.get_unused_files', 'utils.get_unused_files', (['db', 'available_files'], {}), '(db, available_files)\n', (8249, 8270), False, 'from goldfinchsong import utils\n'), ((4050, 4081), 'goldfinchsong.utils.is_image_file', 'utils.is_image_file', (['image_file'], {}), '(image_file)\n', (4069, 4081), False, 'from goldfinchsong import utils\n'), ((4512, 4543), 'goldfinchsong.utils.is_image_file', 'utils.is_image_file', (['image_file'], {}), '(image_file)\n', (4531, 4543), False, 'from goldfinchsong import utils\n'), ((4991, 5028), 'goldfinchsong.utils.trim_file_extension', 'utils.trim_file_extension', (['image_file'], {}), '(image_file)\n', (5016, 5028), False, 'from goldfinchsong import utils\n'), ((1579, 1608), 'datetime.datetime.now', 'datetime.now', ([], {'tz': 'timezone.utc'}), '(tz=timezone.utc)\n', (1591, 1608), False, 'from datetime import datetime, timezone\n')]
# Lint as: python3 # Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Input generator for image data.""" import os import lingvo.compat as tf from lingvo.core import base_input_generator from tensorflow.python.ops import io_ops class _MnistInputBase(base_input_generator.BaseTinyDatasetInput): """Base input params for MNIST.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data_dtype = tf.uint8 p.data_shape = (28, 28, 1) p.label_dtype = tf.uint8 return p def _Preprocess(self, raw): data = tf.stack([ tf.image.per_image_standardization(img) for img in tf.unstack(raw) ]) data.set_shape(raw.shape) return data class MnistTrainInput(_MnistInputBase): """MNist training set.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data = 'x_train' p.label = 'y_train' p.num_samples = 60000 p.batch_size = 256 p.repeat = True return p class MnistTestInput(_MnistInputBase): """MNist test set.""" @classmethod def Params(cls): """Defaults params.""" p = super().Params() p.data = 'x_test' p.label = 'y_test' p.num_samples = 10000 p.batch_size = 256 p.repeat = False return p def _GetRandomImages(batch_size): images = tf.random.uniform((batch_size, 28, 28, 1), 0, 255, tf.int32) return tf.cast(images, tf.uint8) def _GetRandomLabels(batch_size): labels = tf.random.categorical(0.1 * tf.ones((1, 10)), batch_size) return tf.cast(labels, tf.uint8) def FakeMnistData(tmpdir, train_size=60000, test_size=10000): """Fake Mnist data for unit tests.""" data_path = os.path.join(tmpdir, 'ckpt') with tf.Graph().as_default(): tf.random.set_seed(91) with tf.Session() as sess: sess.run( io_ops.save_v2( data_path, tensor_names=['x_train', 'y_train', 'x_test', 'y_test'], shape_and_slices=['', '', '', ''], tensors=[ _GetRandomImages(train_size), _GetRandomLabels(train_size), _GetRandomImages(test_size), _GetRandomLabels(test_size) ])) return data_path
[ "lingvo.compat.random.uniform", "lingvo.compat.image.per_image_standardization", "lingvo.compat.cast", "lingvo.compat.ones", "os.path.join", "lingvo.compat.unstack", "lingvo.compat.Session", "lingvo.compat.random.set_seed", "lingvo.compat.Graph" ]
[((1958, 2018), 'lingvo.compat.random.uniform', 'tf.random.uniform', (['(batch_size, 28, 28, 1)', '(0)', '(255)', 'tf.int32'], {}), '((batch_size, 28, 28, 1), 0, 255, tf.int32)\n', (1975, 2018), True, 'import lingvo.compat as tf\n'), ((2028, 2053), 'lingvo.compat.cast', 'tf.cast', (['images', 'tf.uint8'], {}), '(images, tf.uint8)\n', (2035, 2053), True, 'import lingvo.compat as tf\n'), ((2168, 2193), 'lingvo.compat.cast', 'tf.cast', (['labels', 'tf.uint8'], {}), '(labels, tf.uint8)\n', (2175, 2193), True, 'import lingvo.compat as tf\n'), ((2312, 2340), 'os.path.join', 'os.path.join', (['tmpdir', '"""ckpt"""'], {}), "(tmpdir, 'ckpt')\n", (2324, 2340), False, 'import os\n'), ((2377, 2399), 'lingvo.compat.random.set_seed', 'tf.random.set_seed', (['(91)'], {}), '(91)\n', (2395, 2399), True, 'import lingvo.compat as tf\n'), ((2129, 2145), 'lingvo.compat.ones', 'tf.ones', (['(1, 10)'], {}), '((1, 10))\n', (2136, 2145), True, 'import lingvo.compat as tf\n'), ((2409, 2421), 'lingvo.compat.Session', 'tf.Session', ([], {}), '()\n', (2419, 2421), True, 'import lingvo.compat as tf\n'), ((1225, 1264), 'lingvo.compat.image.per_image_standardization', 'tf.image.per_image_standardization', (['img'], {}), '(img)\n', (1259, 1264), True, 'import lingvo.compat as tf\n'), ((2348, 2358), 'lingvo.compat.Graph', 'tf.Graph', ([], {}), '()\n', (2356, 2358), True, 'import lingvo.compat as tf\n'), ((1276, 1291), 'lingvo.compat.unstack', 'tf.unstack', (['raw'], {}), '(raw)\n', (1286, 1291), True, 'import lingvo.compat as tf\n')]
from src.base.solution import Solution from src.tests.part1.q389_test_find_diff import FindDiffTestCases class FindDiff(Solution): def verify_output(self, test_output, output): return test_output[0] == output[0] def run_test(self, input): return self.findTheDifference(input[0], input[1]) def gen_test_cases(self): return FindDiffTestCases() def print_output(self, output): super(FindDiff, self).print_output(output) def findTheDifference(self, s, t): """ :type s: str :type t: str :rtype: str """ lkp = dict() for ch in s: lkp[ch] = lkp.get(ch, 0) + 1 for ch in t: lkp[ch] = lkp.get(ch, 0) - 1 if lkp[ch] < 0: return ch if __name__ == '__main__': solution = FindDiff() solution.run_tests()
[ "src.tests.part1.q389_test_find_diff.FindDiffTestCases" ]
[((361, 380), 'src.tests.part1.q389_test_find_diff.FindDiffTestCases', 'FindDiffTestCases', ([], {}), '()\n', (378, 380), False, 'from src.tests.part1.q389_test_find_diff import FindDiffTestCases\n')]
import contextlib import os import tempfile import warnings from enum import Enum import mip class IISFinderAlgorithm(Enum): DELETION_FILTER = 1 ADDITIVE_ALGORITHM = 2 class SubRelaxationInfeasible(Exception): pass class NonRelaxableModel(Exception): pass class ConflictFinder: """This class groups some IIS (Irreducible Infeasible Set) search algorithms""" def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model def find_iis( self, method: IISFinderAlgorithm = IISFinderAlgorithm.DELETION_FILTER, cbc_verbose: bool = False ) -> mip.ConstrList: """main method to find an IIS, this method is just a grouping of the other implementations Args: model (mip.Model): Infeasible model where to find the IIS method (str, optional): name of the method to use ["deletion-filter", "additive_algorithm"]. Defaults to 'deletion-filter". Returns: mip.ConstrList: IIS constraint list """ # assert ,is not because time limit with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: if method == IISFinderAlgorithm.DELETION_FILTER: return self.deletion_filter() if method == IISFinderAlgorithm.ADDITIVE_ALGORITHM: return self.additive_algorithm() def deletion_filter(self) -> mip.ConstrList: """deletion filter algorithm for search an IIS Args: model (mip.Model): Infeasible model Returns: mip.ConstrList: IIS """ # 1. create a model with all constraints but one aux_model = self.model.copy() aux_model.objective = 1 aux_model.emphasis = 1 # feasibility aux_model.preprocess = 1 # -1 automatic, 0 off, 1 on. print("starting deletion_filter algorithm") for inc_crt in self.model.constrs: aux_model_inc_crt = aux_model.constr_by_name( inc_crt.name ) # find constraint by name aux_model.remove(aux_model_inc_crt) # temporally remove inc_crt aux_model.optimize() status = aux_model.status # 2. test feasibility, if feasible, return dropped constraint to the set # 2.1 else removed it permanently # print('status {}'.format(status)) if status == mip.OptimizationStatus.INFEASIBLE: # print("removing permanently {}".format(inc_crt.name)) continue elif status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: aux_model.add_constr( inc_crt.expr, name=inc_crt.name, priority=inc_crt.priority ) iis = aux_model.constrs return iis def additive_algorithm(self) -> mip.ConstrList: """Additive algorithm to find an IIS Returns: mip.ConstrList: IIS """ # Create some aux models to test feasibility of the set of constraints aux_model_testing = mip.Model() for var in self.model.vars: aux_model_testing.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, # obj= var.obj, # column=var.column #!! libc++abi.dylib: terminating with uncaught exception of type CoinError ) aux_model_testing.objective = 1 aux_model_testing.emphasis = 1 # feasibility aux_model_testing.preprocess = 1 # -1 automatic, 0 off, 1 on. aux_model_iis = ( aux_model_testing.copy() ) # a second aux model to test feasibility of the incumbent iis # algorithm start all_constraints = self.model.constrs testing_crt_set = mip.ConstrList(model=aux_model_testing) # T iis = mip.ConstrList(model=aux_model_iis) # I while True: for crt in all_constraints: testing_crt_set.add(crt.expr, name=crt.name) aux_model_testing.constrs = testing_crt_set aux_model_testing.optimize() if aux_model_testing.status == mip.OptimizationStatus.INFEASIBLE: iis.add(crt.expr, name=crt.name) aux_model_iis.constrs = iis aux_model_iis.optimize() if aux_model_iis.status == mip.OptimizationStatus.INFEASIBLE: return iis elif aux_model_iis.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: testing_crt_set = mip.ConstrList(model=aux_model_testing) for ( crt ) in ( iis ): # basically this loop is for set T=I // aux_model_iis = iis.copy() testing_crt_set.add(crt.expr, name=crt.name) break def deletion_filter_milp_ir_lc_bd(self) -> mip.ConstrList: """Integer deletion filter algorithm (milp_ir_lc_bd) Raises: NotImplementedError: [description] Returns: mip.ConstrList: [description] """ raise NotImplementedError("WIP") # major constraint sets definition t_aux_model = mip.Model(name="t_auxiliary_model") iis_aux_model = mip.Model(name="t_auxiliary_model") linear_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constraints variable_bound_constraints = mip.ConstrList( model=t_aux_model ) # all the linear model constrants related specifically for the variable bounds integer_varlist_crt = mip.VarList( model=t_aux_model ) # the nature vars constraints for vartype in Integer/Binary # fill the above sets with the constraints for crt in self.model.constrs: linear_constraints.add(crt.expr, name=crt.name) for var in self.model.vars: if var.lb != -mip.INF: variable_bound_constraints.add( var >= var.lb, name="{}_lb_crt".format(var.name) ) if var.ub != mip.INF: variable_bound_constraints.add( var <= var.ub, name="{}_ub_crt".format(var.name) ) for var in self.model.vars: if var.var_type in (mip.INTEGER, mip.BINARY): integer_varlist_crt.add(var) status = "IIS" # add all LC,BD to the incumbent, T= LC + BD for ( var ) in ( self.model.vars ): # add all variables as if they where CONTINUOUS and without bonds (because this will be separated) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS ) for crt in linear_constraints + variable_bound_constraints: iis_aux_model.add_constr(crt.expr, name=crt.name, priority=crt.priority) iis_aux_model.optimize() if iis_aux_model.status == mip.OptimizationStatus.INFEASIBLE: # if infeasible means that this is a particular version of an LP return self.deletion_filter() # (STEP 2) # add all the integer constraints to the model iis_aux_model.vars.remove( [var for var in integer_varlist_crt] ) # remove all integer variables for var in integer_varlist_crt: iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=var.var_type, # this will add the var with his original type ) # filter IR constraints that create infeasibility (STEP 1) for var in integer_varlist_crt: iis_aux_model.vars.remove(iis_aux_model.var_by_name(var.name)) iis_aux_model.add_var( name=var.name, lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, # relax the integer constraint over var ) iis_aux_model.optimize() # if infeasible then update incumbent T = T-{ir_var_crt} # else continue # STEP 2 filter lc constraints # STEP 3 filter BD constraints # return IS o IIS def deletion_filter_milp_lc_ir_bd(self) -> mip.ConstrList: raise NotImplementedError # TODO class ConflictRelaxer: def __init__(self, model: mip.Model): if model.status == mip.OptimizationStatus.LOADED: print("model not runned yet, checking if feasible or not") model.emphasis = 1 # feasibility model.preprocess = 1 # -1 automatic, 0 off, 1 on. model.optimize() assert ( model.status == mip.OptimizationStatus.INFEASIBLE ), "model is not linear infeasible" self.model = model self.iis_num_iterations = 0 self.iis_iterations = [] self.relax_slack_iterations = [] @property def slack_by_crt(self) -> dict: answ = {} for slack_dict_iter in self.relax_slack_iterations: for crt_name in slack_dict_iter.keys(): if crt_name in answ.keys(): answ[crt_name] += slack_dict_iter[crt_name] else: answ[crt_name] = slack_dict_iter[crt_name] return answ def hierarchy_relaxer( self, relaxer_objective: str = "min_abs_slack_val", default_priority: mip.constants.ConstraintPriority = mip.constants.ConstraintPriority.MANDATORY, cbc_verbose: bool = False ) -> mip.Model: """hierarchy relaxer algorithm, it's gonna find a IIS and then relax it using the objective function defined (`relaxer_objective`) and then update the model with the relaxed constraints. This process runs until there's not more IIS on the model. Args: relaxer_objective (str, optional): objective function of the relaxer model (IIS relaxer model). Defaults to 'min_abs_slack_val'. default_priority (ConstraintPriority, optional): If a constraint does not have a supported substring priority in the name, it will assign a default priority. Defaults to ConstraintPriority.MANDATORY. Raises: NonRelaxableModel: [description] Returns: mip.Model: relaxed model """ relaxed_model = self.model.copy() relaxed_model._status = self.model._status # TODO solve this in a different way # map unmaped constraitns to default for crt in relaxed_model.constrs: if not crt.priority: crt.priority = default_priority iis_it = 0 iis_dict = {} taboo_list_iis = [] cf = ConflictFinder(relaxed_model) while True: # 1. find iis iis = cf.find_iis(IISFinderAlgorithm.DELETION_FILTER) self.iis_iterations.append([crt.name for crt in iis]) # track iteration self.iis_num_iterations += 1 # track iteration iis_priority_set = set([crt.priority for crt in iis]) # check if "relaxable" model mapping if iis_priority_set == set([mip.constants.ConstraintPriority.MANDATORY]): raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") # 2. relax iis with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: for level, relaxing_level in enumerate(sorted(iis_priority_set, key=lambda x: x.value)): # highest case (raise exception) if relaxing_level == mip.constants.ConstraintPriority.MANDATORY: raise NonRelaxableModel("Infeasible model, is not possible to relax MANDATORY constraints") try: slack_dict = self.relax_iis(iis, relaxer_objective=relaxer_objective, lowest_priority=relaxing_level) except SubRelaxationInfeasible as e: warnings.warn(f'Warning relaxing more than one level, currently on l{level} : {relaxing_level}') continue else: # relaxable iis, this is will continue with the next iteration then break self.relax_slack_iterations.append(slack_dict) # 3. add the slack variables to the original problem with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model = self.relax_constraints(relaxed_model, slack_dict) # 4. check if feasible relaxed_model.emphasis = 1 # feasibility with contextlib.nullcontext() if cbc_verbose else ignore_output() as iow: relaxed_model.optimize() if relaxed_model.status in [ mip.OptimizationStatus.FEASIBLE, mip.OptimizationStatus.OPTIMAL, ]: print("finished relaxation process !") break else: print( "relaxed the current IIS, still infeasible, searching for a new IIS to relax" ) print("relaxed constraints {0}".format(list(slack_dict.keys()))) iis_it += 1 # print(f'found iis_{iis_it} = {[crt.name for crt in iis]}') iis_dict[iis_it] = {} iis_crt = [crt.name for crt in iis] iis_dict[iis_it]['iis'] = [{'name': crt.name, 'priority': str(crt.priority).split('.')[1]} for crt in iis] print(f'found iis_{iis_it} : len = {len(iis_crt)} in_taboo = {(iis_crt in taboo_list_iis)}') taboo_list_iis.append(iis_crt) iis_dict[iis_it]['slack'] = slack_dict return relaxed_model @classmethod def relax_iis( cls, iis: mip.ConstrList, relaxer_objective: str = "min_abs_slack_val", lowest_priority: 'mip.constants.ConstraintPriority' = None ) -> dict: """This function is the sub module that finds the optimum relaxation for an IIS, given a crt priority mapping and a objective function Args: iis (mip.ConstrList): IIS constraint list relaxer_objective (str, optional): objective function to use when relaxing. Defaults to 'min_abs_slack_val'. Returns: dict: a slack variable dictionary with the value of the {constraint_name:slack.value} pair to be added to each constraint in order to make the IIS feasible """ relax_iis_model = mip.Model() if lowest_priority is None: lowest_priority = min([crt.priority for crt in iis]) to_relax_crts = [crt for crt in iis if crt.priority == lowest_priority or crt.priority < lowest_priority] # create a model that only contains the iis slack_vars = {} abs_slack_vars = {} abs_slack_cod_vars = {} for crt in iis: # print(crt.name, crt.priority) for var in crt._Constr__model.vars: relax_iis_model.add_var( name=var.name, lb=var.lb, ub=var.ub, var_type=var.var_type, obj=var.obj, ) if crt in to_relax_crts: # if this is a -to be relax- constraint slack_vars[crt.name] = relax_iis_model.add_var( name="{0}__{1}".format(crt.name, "slack"), lb=-mip.INF, ub=mip.INF, var_type=mip.CONTINUOUS, ) abs_slack_vars[crt.name] = relax_iis_model.add_var( name="{0}_abs".format(slack_vars[crt.name].name), lb=0, ub=mip.INF, var_type=mip.CONTINUOUS, ) # add relaxed constraint to model relax_expr = crt.expr + slack_vars[crt.name] relax_iis_model.add_constr( relax_expr, name="{}_relaxed".format(crt.name), ) # add abs(slack) variable encoding constraints relax_iis_model.add_constr( abs_slack_vars[crt.name] >= slack_vars[crt.name], name="{}_positive_min_bound".format(slack_vars[crt.name].name), ) relax_iis_model.add_constr( abs_slack_vars[crt.name] >= -slack_vars[crt.name], name="{}_negative_min_bound".format(slack_vars[crt.name].name), ) else: # if not to be relaxed we added directly to the model relax_iis_model.add_constr( crt.expr, name="{}_original".format(crt.name), priority=crt.priority ) # find the min abs value of the slack variables relax_iis_model.objective = mip.xsum(list(abs_slack_vars.values())) relax_iis_model.sense = mip.MINIMIZE relax_iis_model.optimize() if relax_iis_model.status == mip.OptimizationStatus.INFEASIBLE: raise SubRelaxationInfeasible("sub relaxation model infeasible, this could mean that in the IIS the mandatory constraints are infeasible sometimes") slack_dict = {} for crt in to_relax_crts: slack_dict[crt.name] = slack_vars[crt.name].x return slack_dict @classmethod def relax_constraints(cls, relaxed_model: mip.Model, slack_dict: dict) -> mip.Model: """this method creates a modification of the model `relaxed_model` where all the constraints in the slack_dict are modified in order to add the slack values to make the IIS disappear Args: relaxed_model (mip.Model): model to relax slack_dict (dict): pairs {constraint_name: slack_var.value} Returns: mip.Model: a modification of the original model where all the constraints are modified with the slack values """ for crt_name in slack_dict.keys(): crt_original = relaxed_model.constr_by_name(crt_name) relax_expr = crt_original.expr + slack_dict[crt_name] relaxed_model.add_constr( relax_expr, name=crt_original.name, priority=crt_original.priority ) relaxed_model.remove(crt_original) # remove constraint return relaxed_model @contextlib.contextmanager def ignore_output(): with tempfile.TemporaryFile() as f: orig_std_out = os.dup(1) os.dup2(f.fileno(), 1) yield # pause the coroutine to execute the with code os.dup2(orig_std_out, 1) os.close(orig_std_out)
[ "os.dup2", "os.close", "os.dup", "mip.VarList", "warnings.warn", "tempfile.TemporaryFile", "contextlib.nullcontext", "mip.ConstrList", "mip.Model" ]
[((3533, 3544), 'mip.Model', 'mip.Model', ([], {}), '()\n', (3542, 3544), False, 'import mip\n'), ((4305, 4344), 'mip.ConstrList', 'mip.ConstrList', ([], {'model': 'aux_model_testing'}), '(model=aux_model_testing)\n', (4319, 4344), False, 'import mip\n'), ((4364, 4399), 'mip.ConstrList', 'mip.ConstrList', ([], {'model': 'aux_model_iis'}), '(model=aux_model_iis)\n', (4378, 4399), False, 'import mip\n'), ((5945, 5980), 'mip.Model', 'mip.Model', ([], {'name': '"""t_auxiliary_model"""'}), "(name='t_auxiliary_model')\n", (5954, 5980), False, 'import mip\n'), ((6005, 6040), 'mip.Model', 'mip.Model', ([], {'name': '"""t_auxiliary_model"""'}), "(name='t_auxiliary_model')\n", (6014, 6040), False, 'import mip\n'), ((6071, 6104), 'mip.ConstrList', 'mip.ConstrList', ([], {'model': 't_aux_model'}), '(model=t_aux_model)\n', (6085, 6104), False, 'import mip\n'), ((6200, 6233), 'mip.ConstrList', 'mip.ConstrList', ([], {'model': 't_aux_model'}), '(model=t_aux_model)\n', (6214, 6233), False, 'import mip\n'), ((6366, 6396), 'mip.VarList', 'mip.VarList', ([], {'model': 't_aux_model'}), '(model=t_aux_model)\n', (6377, 6396), False, 'import mip\n'), ((15430, 15441), 'mip.Model', 'mip.Model', ([], {}), '()\n', (15439, 15441), False, 'import mip\n'), ((19403, 19427), 'tempfile.TemporaryFile', 'tempfile.TemporaryFile', ([], {}), '()\n', (19425, 19427), False, 'import tempfile\n'), ((19457, 19466), 'os.dup', 'os.dup', (['(1)'], {}), '(1)\n', (19463, 19466), False, 'import os\n'), ((19568, 19592), 'os.dup2', 'os.dup2', (['orig_std_out', '(1)'], {}), '(orig_std_out, 1)\n', (19575, 19592), False, 'import os\n'), ((19601, 19623), 'os.close', 'os.close', (['orig_std_out'], {}), '(orig_std_out)\n', (19609, 19623), False, 'import os\n'), ((1472, 1496), 'contextlib.nullcontext', 'contextlib.nullcontext', ([], {}), '()\n', (1494, 1496), False, 'import contextlib\n'), ((12232, 12256), 'contextlib.nullcontext', 'contextlib.nullcontext', ([], {}), '()\n', (12254, 12256), False, 'import contextlib\n'), ((13313, 13337), 'contextlib.nullcontext', 'contextlib.nullcontext', ([], {}), '()\n', (13335, 13337), False, 'import contextlib\n'), ((13571, 13595), 'contextlib.nullcontext', 'contextlib.nullcontext', ([], {}), '()\n', (13593, 13595), False, 'import contextlib\n'), ((5208, 5247), 'mip.ConstrList', 'mip.ConstrList', ([], {'model': 'aux_model_testing'}), '(model=aux_model_testing)\n', (5222, 5247), False, 'import mip\n'), ((12892, 12999), 'warnings.warn', 'warnings.warn', (['f"""Warning relaxing more than one level, currently on l{level} : {relaxing_level}"""'], {}), "(\n f'Warning relaxing more than one level, currently on l{level} : {relaxing_level}'\n )\n", (12905, 12999), False, 'import warnings\n')]
import re import xlsxwriter def parse_menu_to_excel(filename,menu_dict,days_dict,results,goal_dict,food_database,reversed_ingredient_dict,grocery_dict): # making a temporary dict to map dates and columns in excel: temp_dates_dict = {} i=0 for key in days_dict.keys(): temp_dates_dict[days_dict[key]['date_var'].get()] = i i += 1 temp_meals_dict = {} i = 0 for meal in ['Breakfast', 'Lunch','Dinner']: temp_meals_dict[meal] = i i += 1 # converting the menu-dict to dates and lunches for item in list(menu_dict.keys()): new_key = tuple(tuple(elem.replace('M1', 'Breakfast').replace('M2', 'Lunch').replace('M3', 'Dinner').replace('D1', days_dict['D1']['date_var'].get()).replace('D2',days_dict['D2']['date_var'].get()).replace('D3',days_dict['D3']['date_var'].get()).replace('D4',days_dict['D4']['date_var'].get()).replace('D5',days_dict['D5']['date_var'].get()).replace('D6',days_dict['D6']['date_var'].get()).replace('D7',days_dict['D7']['date_var'].get()) for elem in tup) for tup in item) menu_dict[new_key] = menu_dict[item] menu_dict.pop(item) # putting it into an excel file: workbook = xlsxwriter.Workbook(filename) separator_format = workbook.add_format({'bg_color': '#000000'}) # make worksheets menu_worksheet = workbook.add_worksheet(f"Menu - {days_dict['D1']['date_var'].get()} to {days_dict['D7']['date_var'].get()}") # for menu temp_worksheet_dict = {} global_groceries_worksheet = workbook.add_worksheet("your grocery list") for group in list(menu_dict.keys()): temp_worksheet_dict[group] = workbook.add_worksheet(f"{list(menu_dict[group].keys())[0][:31]}") # print the menu to menu-sheet col = 0 for key in temp_dates_dict: menu_worksheet.write(0, col, key) col += 1 row = 1 for key in temp_meals_dict: menu_worksheet.write(row, 0, key) row += 1 for group in menu_dict.keys(): for slot in group: menu_worksheet.write(temp_meals_dict[slot[1]] + 1,temp_dates_dict[slot[0]] + 1, str(list(menu_dict[group].keys())[0])) for i in range(0,8): menu_worksheet.write(4,i,"",separator_format) menu_worksheet.write(5,0, "Results:") row = 5 for metric in results.keys(): menu_worksheet.write(row,1,str(f"{metric}: {round(results[metric],2)}")) row += 1 menu_worksheet.write(5,2, "Goals:") row = 6 for metric in goal_dict.keys(): menu_worksheet.write(row,3,str(f"{metric}: {round(goal_dict[metric],2)}")) row += 1 # writing the global grocery-list: row = 1 col = 0 global_groceries_worksheet.write(0,0,"Your grocery list:") for ingredient in grocery_dict.keys(): ingredient_id = reversed_ingredient_dict[ingredient] global_groceries_worksheet.write(row, col, ingredient) global_groceries_worksheet.write(row, col + 1, str(grocery_dict[ingredient])) global_groceries_worksheet.write(row, col + 2, str(food_database['ingredients'][ingredient_id]['unit'])) row += 1 # writing the recipe-lists: for group in menu_dict.keys(): temp_worksheet_dict[group].write(0,0, f"Ingredient list for {list(menu_dict[group].keys())[0]}:") row = 1 col = 0 for recipe in menu_dict[group].keys(): for ingredient in menu_dict[group][recipe].keys(): ingredient_id = reversed_ingredient_dict[ingredient] temp_worksheet_dict[group].write(row, col, ingredient) temp_worksheet_dict[group].write(row, col + 1, str(menu_dict[group][recipe][ingredient])) temp_worksheet_dict[group].write(row, col + 2, str(food_database['ingredients'][ingredient_id]['unit'])) row += 1 workbook.close()
[ "xlsxwriter.Workbook" ]
[((1222, 1251), 'xlsxwriter.Workbook', 'xlsxwriter.Workbook', (['filename'], {}), '(filename)\n', (1241, 1251), False, 'import xlsxwriter\n')]
from channels import Group # websocket.connect def ws_add(message): Group("chat").add(message.reply_channel) # websocket.receive def ws_message(message): Group("chat").send({ "text": message.content['text'], }) # websocket.disconnect def ws_disconnect(message): Group("chat").discard(message.reply_channel)
[ "channels.Group" ]
[((73, 86), 'channels.Group', 'Group', (['"""chat"""'], {}), "('chat')\n", (78, 86), False, 'from channels import Group\n'), ((164, 177), 'channels.Group', 'Group', (['"""chat"""'], {}), "('chat')\n", (169, 177), False, 'from channels import Group\n'), ((289, 302), 'channels.Group', 'Group', (['"""chat"""'], {}), "('chat')\n", (294, 302), False, 'from channels import Group\n')]
from copy import deepcopy import numpy as np import pybullet as p import gym from gym import spaces from env.robot import Manipulator from env.work import Work class Env(): def __init__(self, reward, step_max_pos = 0.002, step_max_orn = 0.02, initial_pos_noise = 0.001, initial_orn_noise = 0.001, step_pos_noise = 0.0002, step_orn_noise = 0.0002): p.connect(p.GUI) p.setPhysicsEngineParameter(enableFileCaching=0) p.setRealTimeSimulation(False) p.setGravity(0, 0, -9.8) p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) p.setPhysicsEngineParameter(contactBreakingThreshold=0.001) # Init self._is_init_env = False # Plane self.plane_pos = [0, 0, -0.1] p.loadURDF("urdf/plane/plane.urdf", self.plane_pos) self.reward = reward self.max_initial_pos_noise = initial_pos_noise self.max_initial_orn_noise = initial_orn_noise self.max_step_pos_noise = step_pos_noise self.max_step_orn_noise = step_orn_noise # robot self.step_max_pos = step_max_pos self.step_max_orn = step_max_orn self.inv_scaled_force_coef = 5000 # for learning self.action_space = spaces.Box( low=-1, high=1, shape=(6,), dtype=np.float32 ) self.observation_space = spaces.Box( low=-1, high=1, shape=(12,), dtype=np.float32 ) self._act_rel_tcp_pose = [0, 0, 0, 0, 0, 0] def init_env(self, mode = 'rel', robot_tcp_pose = [0, 0, 0, 0, 0, 0], robot_base_pose = [0, 0, 0, 0, 0, 0], robot_tool_pose = [0, 0, 0, 0, 0, 0], work_base_pose = [0, 0, 0, 0, 0, 0]): if self._is_init_env == False: # Load work self.work = Work(base_pose = work_base_pose) self.act_abs_work_pose = work_base_pose # Load robot self.robot = Manipulator(tool_pose=robot_tool_pose, base_pose=robot_base_pose) self._reset_robot_pose(mode=mode, tcp_pose=robot_tcp_pose) self.initial_pos_noise = np.random.uniform(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3) self.initial_orn_noise = np.random.uniform(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3) self._is_init_env = True return self.observe_state(mode = mode) def _reset_robot_pose(self, mode='rel', tcp_pose=[0, 0, 0, 0, 0, 0]): abs_tcp_pose = np.zeros(6) if mode == 'rel': abs_tcp_pose = np.array(self.act_abs_work_pose) + np.array(tcp_pose) elif mode == 'abs': abs_tcp_pose = tcp_pose else: print("ERROR(enviroment.py): mode is not correct.") abs_tcp_pose = [0, 0, 0, 0, 0, 0] self.robot.reset_pose(abs_tcp_pose=abs_tcp_pose) def reset(self, mode = 'rel', tcp_pose = [0, 0, 0, 0, 0, 0], base_pose = [0, 0, 0, 0, 0, 0], tool_pose = [0, 0, 0, 0, 0, 0], work_pose = [0, 0, 0, 0, 0, 0]): if self._is_init_env == False: return self.init_env(mode = mode, robot_tcp_pose = tcp_pose, robot_base_pose = base_pose, robot_tool_pose = tool_pose, work_base_pose = work_pose) # For 処理の高速化 ''' if np.linalg.norm( np.array(tool_pose) - self.prev_tool_pose ) < 1e-6: else: ''' # Reset env p.resetSimulation() # Load Plane p.loadURDF("urdf/plane/plane.urdf", self.plane_pos) # Reset work self.work.reset(base_pose = work_pose) # Reset Robot self.robot.reset_base(base_pose=base_pose, tool_pose=tool_pose) self._reset_robot_pose(mode='rel', tcp_pose=tcp_pose) self.initial_pos_noise = np.random.uniform(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3) self.initial_orn_noise = np.random.uniform(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3) self.prev_tool_pose = tool_pose return self.observe_state(mode = mode) def destory(self): p.disconnect() def step(self, action, step): # ここは指令値生成なので,真値が良い cmd_abs_tcp_pose = np.zeros(6) cmd_abs_tcp_pose[:3] = np.array(self._act_abs_tcp_pose[:3]) + np.array(action[:3]) cmd_abs_tcp_pose[3:6] = np.array(self._act_abs_tcp_pose[3:6]) + np.array(action[3:6]) print('next_pose:', cmd_abs_tcp_pose) self.robot.move_to_pose(cmd_abs_tcp_pose, mode='direct') pose, force, success, out_range = self.decision() r = self.calc_reward(relative_pose = pose, success = success, out_range = out_range, act_step = step) done = success or out_range return np.concatenate([pose, force]), r, done, success def decision(self): ''' observe act_abs_tcp_pose act_rel_tcp_pose act_abs_work_pose act_force ''' act_pose_noisy, act_force = self.observe_state(mode='rel') scaled_act_force = act_force / self.inv_scaled_force_coef # [Note] ここは真値で評価 success_range_of_pos = 0.003 success_range_of_orn = 0.04 success = (np.linalg.norm(self._act_rel_tcp_pose[:3]) <= success_range_of_pos and \ np.linalg.norm(self._act_rel_tcp_pose[3:]) <= success_range_of_orn) # [Note] ここは真値で評価は正しくない気がする. out_range_of_pos = 0.1 out_range_of_orn = 0.8 out_range = any([abs(pos) > out_range_of_pos for pos in act_pose_noisy[:3]]) \ or any([abs(orn) > out_range_of_orn for orn in act_pose_noisy[3:6]]) return act_pose_noisy, scaled_act_force, success, out_range def observe_state(self, mode='rel'): self._act_abs_tcp_pose, self.act_force, _ = self.robot.get_state() self._act_abs_work_pose = self.work.get_state() self._act_rel_tcp_pose = np.array(self._act_abs_tcp_pose) - np.array(self._act_abs_work_pose) ''' ノイズ処理 ''' act_rel_tcp_pose_noisy = np.zeros(6) act_rel_tcp_pose_noisy[:3] = self._act_rel_tcp_pose[:3] + self.initial_pos_noise act_rel_tcp_pose_noisy[3:6] = self._act_rel_tcp_pose[3:6] + self.initial_orn_noise act_rel_tcp_pose_noisy[:3] += np.random.uniform(-self.max_step_pos_noise, self.max_step_pos_noise, 3) act_rel_tcp_pose_noisy[3:6] += np.random.uniform(-self.max_step_orn_noise, self.max_step_orn_noise, 3) if mode == 'rel': return act_rel_tcp_pose_noisy, self.act_force elif mode == 'abs': act_abs_tcp_pose_noisy = np.zeros(6) act_abs_tcp_pose_noisy[:3] = self._act_abs_tcp_pose[:3] + self.initial_pos_noise act_abs_tcp_pose_noisy[3:6] = self._act_abs_tcp_pose[3:6] + self.initial_orn_noise act_abs_work_pose_noisy = np.zeros(6) act_abs_work_pose_noisy[:3] = self._act_abs_work_pose[:3] + self.initial_pos_noise act_abs_work_pose_noisy[3:6] = self._act_abs_work_pose[3:6] + self.initial_orn_noise return act_abs_tcp_pose_noisy, act_abs_work_pose_noisy, self.act_force def calc_reward(self, relative_pose, success, out_range, act_step): return self.reward.reward_function(relative_pose, success, out_range, act_step) def scale_action(self, action): scaled_action = deepcopy(action) scaled_action[:3]*=self.step_max_pos scaled_action[3:]*=self.step_max_orn return scaled_action
[ "env.work.Work", "pybullet.resetSimulation", "copy.deepcopy", "pybullet.connect", "numpy.linalg.norm", "pybullet.setGravity", "gym.spaces.Box", "numpy.array", "pybullet.setPhysicsEngineParameter", "pybullet.configureDebugVisualizer", "numpy.zeros", "pybullet.disconnect", "numpy.concatenate", "numpy.random.uniform", "pybullet.setRealTimeSimulation", "pybullet.loadURDF", "env.robot.Manipulator" ]
[((458, 474), 'pybullet.connect', 'p.connect', (['p.GUI'], {}), '(p.GUI)\n', (467, 474), True, 'import pybullet as p\n'), ((483, 531), 'pybullet.setPhysicsEngineParameter', 'p.setPhysicsEngineParameter', ([], {'enableFileCaching': '(0)'}), '(enableFileCaching=0)\n', (510, 531), True, 'import pybullet as p\n'), ((540, 570), 'pybullet.setRealTimeSimulation', 'p.setRealTimeSimulation', (['(False)'], {}), '(False)\n', (563, 570), True, 'import pybullet as p\n'), ((579, 603), 'pybullet.setGravity', 'p.setGravity', (['(0)', '(0)', '(-9.8)'], {}), '(0, 0, -9.8)\n', (591, 603), True, 'import pybullet as p\n'), ((612, 659), 'pybullet.configureDebugVisualizer', 'p.configureDebugVisualizer', (['p.COV_ENABLE_GUI', '(0)'], {}), '(p.COV_ENABLE_GUI, 0)\n', (638, 659), True, 'import pybullet as p\n'), ((668, 727), 'pybullet.setPhysicsEngineParameter', 'p.setPhysicsEngineParameter', ([], {'contactBreakingThreshold': '(0.001)'}), '(contactBreakingThreshold=0.001)\n', (695, 727), True, 'import pybullet as p\n'), ((841, 892), 'pybullet.loadURDF', 'p.loadURDF', (['"""urdf/plane/plane.urdf"""', 'self.plane_pos'], {}), "('urdf/plane/plane.urdf', self.plane_pos)\n", (851, 892), True, 'import pybullet as p\n'), ((1324, 1380), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-1)', 'high': '(1)', 'shape': '(6,)', 'dtype': 'np.float32'}), '(low=-1, high=1, shape=(6,), dtype=np.float32)\n', (1334, 1380), False, 'from gym import spaces\n'), ((1472, 1529), 'gym.spaces.Box', 'spaces.Box', ([], {'low': '(-1)', 'high': '(1)', 'shape': '(12,)', 'dtype': 'np.float32'}), '(low=-1, high=1, shape=(12,), dtype=np.float32)\n', (1482, 1529), False, 'from gym import spaces\n'), ((2752, 2763), 'numpy.zeros', 'np.zeros', (['(6)'], {}), '(6)\n', (2760, 2763), True, 'import numpy as np\n'), ((3800, 3819), 'pybullet.resetSimulation', 'p.resetSimulation', ([], {}), '()\n', (3817, 3819), True, 'import pybullet as p\n'), ((3849, 3900), 'pybullet.loadURDF', 'p.loadURDF', (['"""urdf/plane/plane.urdf"""', 'self.plane_pos'], {}), "('urdf/plane/plane.urdf', self.plane_pos)\n", (3859, 3900), True, 'import pybullet as p\n'), ((4160, 4237), 'numpy.random.uniform', 'np.random.uniform', (['(-self.max_initial_pos_noise)', 'self.max_initial_pos_noise', '(3)'], {}), '(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3)\n', (4177, 4237), True, 'import numpy as np\n'), ((4323, 4400), 'numpy.random.uniform', 'np.random.uniform', (['(-self.max_initial_orn_noise)', 'self.max_initial_orn_noise', '(3)'], {}), '(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3)\n', (4340, 4400), True, 'import numpy as np\n'), ((4575, 4589), 'pybullet.disconnect', 'p.disconnect', ([], {}), '()\n', (4587, 4589), True, 'import pybullet as p\n'), ((4681, 4692), 'numpy.zeros', 'np.zeros', (['(6)'], {}), '(6)\n', (4689, 4692), True, 'import numpy as np\n'), ((6605, 6616), 'numpy.zeros', 'np.zeros', (['(6)'], {}), '(6)\n', (6613, 6616), True, 'import numpy as np\n'), ((6836, 6907), 'numpy.random.uniform', 'np.random.uniform', (['(-self.max_step_pos_noise)', 'self.max_step_pos_noise', '(3)'], {}), '(-self.max_step_pos_noise, self.max_step_pos_noise, 3)\n', (6853, 6907), True, 'import numpy as np\n'), ((6999, 7070), 'numpy.random.uniform', 'np.random.uniform', (['(-self.max_step_orn_noise)', 'self.max_step_orn_noise', '(3)'], {}), '(-self.max_step_orn_noise, self.max_step_orn_noise, 3)\n', (7016, 7070), True, 'import numpy as np\n'), ((8019, 8035), 'copy.deepcopy', 'deepcopy', (['action'], {}), '(action)\n', (8027, 8035), False, 'from copy import deepcopy\n'), ((1964, 1994), 'env.work.Work', 'Work', ([], {'base_pose': 'work_base_pose'}), '(base_pose=work_base_pose)\n', (1968, 1994), False, 'from env.work import Work\n'), ((2099, 2164), 'env.robot.Manipulator', 'Manipulator', ([], {'tool_pose': 'robot_tool_pose', 'base_pose': 'robot_base_pose'}), '(tool_pose=robot_tool_pose, base_pose=robot_base_pose)\n', (2110, 2164), False, 'from env.robot import Manipulator\n'), ((2273, 2350), 'numpy.random.uniform', 'np.random.uniform', (['(-self.max_initial_pos_noise)', 'self.max_initial_pos_noise', '(3)'], {}), '(-self.max_initial_pos_noise, self.max_initial_pos_noise, 3)\n', (2290, 2350), True, 'import numpy as np\n'), ((2440, 2517), 'numpy.random.uniform', 'np.random.uniform', (['(-self.max_initial_orn_noise)', 'self.max_initial_orn_noise', '(3)'], {}), '(-self.max_initial_orn_noise, self.max_initial_orn_noise, 3)\n', (2457, 2517), True, 'import numpy as np\n'), ((4724, 4760), 'numpy.array', 'np.array', (['self._act_abs_tcp_pose[:3]'], {}), '(self._act_abs_tcp_pose[:3])\n', (4732, 4760), True, 'import numpy as np\n'), ((4763, 4783), 'numpy.array', 'np.array', (['action[:3]'], {}), '(action[:3])\n', (4771, 4783), True, 'import numpy as np\n'), ((4816, 4853), 'numpy.array', 'np.array', (['self._act_abs_tcp_pose[3:6]'], {}), '(self._act_abs_tcp_pose[3:6])\n', (4824, 4853), True, 'import numpy as np\n'), ((4856, 4877), 'numpy.array', 'np.array', (['action[3:6]'], {}), '(action[3:6])\n', (4864, 4877), True, 'import numpy as np\n'), ((5297, 5326), 'numpy.concatenate', 'np.concatenate', (['[pose, force]'], {}), '([pose, force])\n', (5311, 5326), True, 'import numpy as np\n'), ((6465, 6497), 'numpy.array', 'np.array', (['self._act_abs_tcp_pose'], {}), '(self._act_abs_tcp_pose)\n', (6473, 6497), True, 'import numpy as np\n'), ((6500, 6533), 'numpy.array', 'np.array', (['self._act_abs_work_pose'], {}), '(self._act_abs_work_pose)\n', (6508, 6533), True, 'import numpy as np\n'), ((2817, 2849), 'numpy.array', 'np.array', (['self.act_abs_work_pose'], {}), '(self.act_abs_work_pose)\n', (2825, 2849), True, 'import numpy as np\n'), ((2852, 2870), 'numpy.array', 'np.array', (['tcp_pose'], {}), '(tcp_pose)\n', (2860, 2870), True, 'import numpy as np\n'), ((5756, 5798), 'numpy.linalg.norm', 'np.linalg.norm', (['self._act_rel_tcp_pose[:3]'], {}), '(self._act_rel_tcp_pose[:3])\n', (5770, 5798), True, 'import numpy as np\n'), ((5849, 5891), 'numpy.linalg.norm', 'np.linalg.norm', (['self._act_rel_tcp_pose[3:]'], {}), '(self._act_rel_tcp_pose[3:])\n', (5863, 5891), True, 'import numpy as np\n'), ((7272, 7283), 'numpy.zeros', 'np.zeros', (['(6)'], {}), '(6)\n', (7280, 7283), True, 'import numpy as np\n'), ((7510, 7521), 'numpy.zeros', 'np.zeros', (['(6)'], {}), '(6)\n', (7518, 7521), True, 'import numpy as np\n')]
import _thread import time import threading # # def print_time(threadName,delay): # count = 0; # while count < 5: # time.sleep(delay) # count += 1; # print("%s: %s" % (threadName, time.ctime(time.time()))) # # try: # _thread.start_new(print_time,("Thread-1",2,)) # _thread.start_new(print_time("Thread-2",4)) # except: # print("error") # # while 1: # pass # Python3 通过两个标准库 _thread 和 threading 提供对线程的支持。 # _thread 提供了低级别的、原始的线程以及一个简单的锁,它相比于 threading 模块的功能还是比较有限的。 # threading 模块除了包含 _thread 模块中的所有方法外,还提供的其他方法: # threading.currentThread(): 返回当前的线程变量。 # threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。 # threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。 # 除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法: # run(): 用以表示线程活动的方法。 # start():启动线程活动。 # join([time]): 主线程中,创建了子线程B,并且在主线程A中调用了B.join(),那么,主线程A会在调用的地方等待, # 直到子线程B完成操作后,才接着往下执行。参数time代表线程运行最大时间,即如果超过这个时间,不管这个此线程有 # 没有执行完毕都会被回收,然后主线程或函数都会接着执行的。 # isAlive(): 返回线程是否活动的。 # getName(): 返回线程名。 # setName(): 设置线程名。 exitFlag = 0 class MyThread(threading.Thread): def __init__(self,threadID,name,counter): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.counter = counter def run(self): print ("开始线程:" + self.name) print_time(self.name, 2,self.counter) print ("退出线程:" + self.name) def print_time(threadName, delay, counter): while counter: # if exitFlag: # threadName.exit() time.sleep(delay) print("%s: %s" % (threadName, time.ctime(time.time()))) counter -= 1 # 创建新线程 thread1 = MyThread(1, "Thread-1", 5) thread2 = MyThread(2, "Thread-2", 5) # 开启新线程 thread1.start() thread2.start() thread1.join() thread2.join() print ("退出主线程")
[ "threading.Thread.__init__", "time.time", "time.sleep" ]
[((1161, 1192), 'threading.Thread.__init__', 'threading.Thread.__init__', (['self'], {}), '(self)\n', (1186, 1192), False, 'import threading\n'), ((1547, 1564), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1557, 1564), False, 'import time\n'), ((1614, 1625), 'time.time', 'time.time', ([], {}), '()\n', (1623, 1625), False, 'import time\n')]
import requests from bbdata.config import output_api_url from bbdata.util import handle_response class Objects: base_path = "/objects" auth = None def __init__(self, auth): self.auth = auth def get_all(self, tags=None, search=None, page=None, per_page=None, writable=False): """ Get the list of accessible objects. GET /objects https://bbdata.daplab.ch/api/#objects_get """ params = { "tags": tags, "search": search, "page": page, "perPage": per_page, "writable": writable, } url = output_api_url + self.base_path r = requests.get(url, params, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def put(self, name, unit_symbol, owner, description=None): """ Create a new object. PUT /objects https://bbdata.daplab.ch/api/#objects_put """ json = { "name": name, "description": description, "unitSymbol": unit_symbol, 'owner': owner } url = output_api_url + self.base_path r = requests.put(url, json=json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def get(self, object_id): """ Get an object. GET /objects/{objectIs} https://bbdata.daplab.ch/api/#objects__objectid__get """ url = output_api_url + self.base_path + "/" + str(object_id) r = requests.get(url, headers=self.auth.headers) # return ObjectResponse(r.json()) return handle_response(r.status_code, r.json()) def post(self, object_id, data): """ Edit the name and/or the description of the object. Only the properties appearing in the body will be modified. POST /objects/{objectId} https://bbdata.daplab.ch/api/#objects__objectid__post """ # TODO The data to send isn't define in the API Docs url = output_api_url + self.base_path + "/" + str(object_id) r = requests.post(url, data, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def delete(self, object_id): """ Delete the object with the given id POST /objects/{objectId} https://bbdata.daplab.ch/api/#objects__objectid__delete """ # TODO This method is in the Postman profile but isn't in the docs url = output_api_url + self.base_path + "/" + str(object_id) r = requests.delete(url, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def post_disable(self, object_id): """ Disable this object. All associated tokens will be removed. POST /objects/{objectId}/disable https://bbdata.daplab.ch/api/#objects__objectid__disable_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/disable" r = requests.post(url, headers=self.auth.headers) return handle_response(r.status_code, True) def post_enable(self, object_id): """ Enable this object. POST /objects/{objectId}/enable https://bbdata.daplab.ch/api/#objects__objectid__enable_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/enable" r = requests.post(url, headers=self.auth.headers) return handle_response(r.status_code, True) def get_tokens(self, object_id, description=None): """ Get the list of tokens for the object. A token is used to submit new measures (see input-api). An optional description can be passed in the body (max 65 characters). GET /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_get """ # TODO The API docs says it's possible to pass an optional description # but it looks like it's a mistake for a GET request... url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" json = { "description": description } r = requests.get(url, json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def put_tokens(self, object_id): """ Generate a new secured token. PUT /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_put """ # TODO The optional description should probably be added in this # method url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" r = requests.put(url, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def post_tokens(self, object_id, description): """ Edit the token's description. POST /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_post """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" json = { "description": description } r = requests.post(url, json=json, headers=self.auth.headers) return handle_response(r.status_code, r.json()) def delete_tokens(self, object_id, token_id): """ Revoke a token. DELETE /objects/{objectId}/tokens https://bbdata.daplab.ch/api/#objects__objectid__tokens_delete """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tokens" params = { "tokenId": token_id } r = requests.delete(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def put_tags(self, object_id, tags): """ Add tags to the object. PUT /objects/{objectId}/tags https://bbdata.daplab.ch/api/#objects__objectid__tags_put """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tags" params = { "tags": tags } r = requests.put(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def delete_tags(self, object_id, tags): """ Remove tags. DELETE /objects/{objectId}/tags https://bbdata.daplab.ch/api/#objects__objectid__tags_delete """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/tags" params = { "tags": tags } r = requests.put(url, params=params, headers=self.auth.headers) return handle_response(r.status_code, True) def get_comments(self, object_id): """ Get all comments attached to this object. Use the /comments endpoint for more actions. GET /objects/{objectId}/comments https://bbdata.daplab.ch/api/#objects__objectid__comments_get """ url = output_api_url + self.base_path + "/" + str(object_id) \ + "/comments" r = requests.get(url, headers=self.auth.headers) return handle_response(r.status_code, r.json())
[ "requests.post", "bbdata.util.handle_response", "requests.get", "requests.delete", "requests.put" ]
[((696, 748), 'requests.get', 'requests.get', (['url', 'params'], {'headers': 'self.auth.headers'}), '(url, params, headers=self.auth.headers)\n', (708, 748), False, 'import requests\n'), ((1211, 1266), 'requests.put', 'requests.put', (['url'], {'json': 'json', 'headers': 'self.auth.headers'}), '(url, json=json, headers=self.auth.headers)\n', (1223, 1266), False, 'import requests\n'), ((1576, 1620), 'requests.get', 'requests.get', (['url'], {'headers': 'self.auth.headers'}), '(url, headers=self.auth.headers)\n', (1588, 1620), False, 'import requests\n'), ((2147, 2198), 'requests.post', 'requests.post', (['url', 'data'], {'headers': 'self.auth.headers'}), '(url, data, headers=self.auth.headers)\n', (2160, 2198), False, 'import requests\n'), ((2611, 2658), 'requests.delete', 'requests.delete', (['url'], {'headers': 'self.auth.headers'}), '(url, headers=self.auth.headers)\n', (2626, 2658), False, 'import requests\n'), ((3067, 3112), 'requests.post', 'requests.post', (['url'], {'headers': 'self.auth.headers'}), '(url, headers=self.auth.headers)\n', (3080, 3112), False, 'import requests\n'), ((3128, 3164), 'bbdata.util.handle_response', 'handle_response', (['r.status_code', '(True)'], {}), '(r.status_code, True)\n', (3143, 3164), False, 'from bbdata.util import handle_response\n'), ((3473, 3518), 'requests.post', 'requests.post', (['url'], {'headers': 'self.auth.headers'}), '(url, headers=self.auth.headers)\n', (3486, 3518), False, 'import requests\n'), ((3534, 3570), 'bbdata.util.handle_response', 'handle_response', (['r.status_code', '(True)'], {}), '(r.status_code, True)\n', (3549, 3570), False, 'from bbdata.util import handle_response\n'), ((4276, 4326), 'requests.get', 'requests.get', (['url', 'json'], {'headers': 'self.auth.headers'}), '(url, json, headers=self.auth.headers)\n', (4288, 4326), False, 'import requests\n'), ((4789, 4833), 'requests.put', 'requests.put', (['url'], {'headers': 'self.auth.headers'}), '(url, headers=self.auth.headers)\n', (4801, 4833), False, 'import requests\n'), ((5287, 5343), 'requests.post', 'requests.post', (['url'], {'json': 'json', 'headers': 'self.auth.headers'}), '(url, json=json, headers=self.auth.headers)\n', (5300, 5343), False, 'import requests\n'), ((5781, 5843), 'requests.delete', 'requests.delete', (['url'], {'params': 'params', 'headers': 'self.auth.headers'}), '(url, params=params, headers=self.auth.headers)\n', (5796, 5843), False, 'import requests\n'), ((5859, 5895), 'bbdata.util.handle_response', 'handle_response', (['r.status_code', '(True)'], {}), '(r.status_code, True)\n', (5874, 5895), False, 'from bbdata.util import handle_response\n'), ((6257, 6316), 'requests.put', 'requests.put', (['url'], {'params': 'params', 'headers': 'self.auth.headers'}), '(url, params=params, headers=self.auth.headers)\n', (6269, 6316), False, 'import requests\n'), ((6332, 6368), 'bbdata.util.handle_response', 'handle_response', (['r.status_code', '(True)'], {}), '(r.status_code, True)\n', (6347, 6368), False, 'from bbdata.util import handle_response\n'), ((6728, 6787), 'requests.put', 'requests.put', (['url'], {'params': 'params', 'headers': 'self.auth.headers'}), '(url, params=params, headers=self.auth.headers)\n', (6740, 6787), False, 'import requests\n'), ((6803, 6839), 'bbdata.util.handle_response', 'handle_response', (['r.status_code', '(True)'], {}), '(r.status_code, True)\n', (6818, 6839), False, 'from bbdata.util import handle_response\n'), ((7228, 7272), 'requests.get', 'requests.get', (['url'], {'headers': 'self.auth.headers'}), '(url, headers=self.auth.headers)\n', (7240, 7272), False, 'import requests\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9.11 on 2016-11-15 07:06 from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('resolwe_bio_kb', '0001_initial'), ] operations = [ migrations.AlterField( model_name='feature', name='aliases', field=django.contrib.postgres.fields.ArrayField(base_field=models.CharField(max_length=256), blank=True, default=[], size=None), ), migrations.AlterField( model_name='feature', name='name', field=models.CharField(max_length=1024), ), migrations.AlterField( model_name='feature', name='sub_type', field=models.CharField(choices=[(b'protein-coding', b'Protein-coding'), (b'pseudo', b'Pseudo'), (b'rRNA', b'rRNA'), (b'ncRNA', b'ncRNA'), (b'snRNA', b'snRNA'), (b'snoRNA', b'snoRNA'), (b'tRNA', b'tRNA'), (b'asRNA', b'asRNA'), (b'other', b'Other'), (b'unknown', b'Unknown')], max_length=20), ), ]
[ "django.db.models.CharField" ]
[((679, 712), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1024)'}), '(max_length=1024)\n', (695, 712), False, 'from django.db import migrations, models\n'), ((837, 1139), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[(b'protein-coding', b'Protein-coding'), (b'pseudo', b'Pseudo'), (b'rRNA',\n b'rRNA'), (b'ncRNA', b'ncRNA'), (b'snRNA', b'snRNA'), (b'snoRNA',\n b'snoRNA'), (b'tRNA', b'tRNA'), (b'asRNA', b'asRNA'), (b'other',\n b'Other'), (b'unknown', b'Unknown')]", 'max_length': '(20)'}), "(choices=[(b'protein-coding', b'Protein-coding'), (\n b'pseudo', b'Pseudo'), (b'rRNA', b'rRNA'), (b'ncRNA', b'ncRNA'), (\n b'snRNA', b'snRNA'), (b'snoRNA', b'snoRNA'), (b'tRNA', b'tRNA'), (\n b'asRNA', b'asRNA'), (b'other', b'Other'), (b'unknown', b'Unknown')],\n max_length=20)\n", (853, 1139), False, 'from django.db import migrations, models\n'), ((490, 522), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)'}), '(max_length=256)\n', (506, 522), False, 'from django.db import migrations, models\n')]
import pytest from click.testing import CliRunner from secedgar.cli import daily, filing from secedgar.utils.exceptions import FilingTypeError def run_cli_command(cli, user_input, directory, catch_exceptions=False): runner = CliRunner() user_input = user_input + " --directory {}".format(directory) return runner.invoke(cli, user_input, catch_exceptions=catch_exceptions) def check_bad_inputs(cli, user_input, expected_exception, directory): # SystemExit does not raise exception by runner if expected_exception is SystemExit: result = run_cli_command(cli, user_input, directory) assert result.exit_code != 0 else: with pytest.raises(expected_exception): run_cli_command(cli, user_input, directory) class TestCLIFiling: @pytest.mark.parametrize( "user_input,expected_exception", [ ("-l aapl msft Facebook", SystemExit), # missing filing type ("-l aapl -t null", FilingTypeError), # unrecognized filing type ("-l aapl -t FILING_10Q -n abc", SystemExit), # count is not int ("-l aapl -t FILING_10Q -n 0", ValueError) # no filings available if 0 picked ] ) def test_filing_bad_inputs(self, user_input, expected_exception, tmp_data_directory): check_bad_inputs(filing, user_input, expected_exception, tmp_data_directory) @pytest.mark.parametrize( "user_input", [ "-l aapl msft fb FILING_10Q", "-l aapl msft fb FILING_10Q -n 10", "-l aapl msft fb FILING_10Q -n 1" ] ) def test_multiple_companies_input(self, user_input, tmp_data_directory): pass class TestCLIDaily: @pytest.mark.parametrize( "user_input,expected_exception", [ ("", SystemExit), ("-d 2020", ValueError) ] ) def test_daily_bad_inputs(self, user_input, expected_exception, tmp_data_directory): check_bad_inputs(daily, user_input, expected_exception, tmp_data_directory)
[ "pytest.mark.parametrize", "pytest.raises", "click.testing.CliRunner" ]
[((231, 242), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (240, 242), False, 'from click.testing import CliRunner\n'), ((792, 1031), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""user_input,expected_exception"""', "[('-l aapl msft Facebook', SystemExit), ('-l aapl -t null', FilingTypeError\n ), ('-l aapl -t FILING_10Q -n abc', SystemExit), (\n '-l aapl -t FILING_10Q -n 0', ValueError)]"], {}), "('user_input,expected_exception', [(\n '-l aapl msft Facebook', SystemExit), ('-l aapl -t null',\n FilingTypeError), ('-l aapl -t FILING_10Q -n abc', SystemExit), (\n '-l aapl -t FILING_10Q -n 0', ValueError)])\n", (815, 1031), False, 'import pytest\n'), ((1386, 1530), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""user_input"""', "['-l aapl msft fb FILING_10Q', '-l aapl msft fb FILING_10Q -n 10',\n '-l aapl msft fb FILING_10Q -n 1']"], {}), "('user_input', ['-l aapl msft fb FILING_10Q',\n '-l aapl msft fb FILING_10Q -n 10', '-l aapl msft fb FILING_10Q -n 1'])\n", (1409, 1530), False, 'import pytest\n'), ((1713, 1818), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""user_input,expected_exception"""', "[('', SystemExit), ('-d 2020', ValueError)]"], {}), "('user_input,expected_exception', [('', SystemExit),\n ('-d 2020', ValueError)])\n", (1736, 1818), False, 'import pytest\n'), ((672, 705), 'pytest.raises', 'pytest.raises', (['expected_exception'], {}), '(expected_exception)\n', (685, 705), False, 'import pytest\n')]
import os import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec nstep=200 nx=400 nv=3 u=np.zeros((nx,nv)) prim=np.zeros((nx,nv)) gam=5./3. dx=1./nx dt=1e-3 time=0 x=np.linspace(0,1,num=nx) def ptou(pri): u=np.zeros((nx,nv)) rho=pri[:,0] v=pri[:,1] prs=pri[:,2] mom=rho*v u[:,0]=rho u[:,1]=mom u[:,2]=0.5*mom*v+prs/(gam-1) return(u) def utop(u): pri=np.zeros((nx,nv)) rho=u[:,0] mom=u[:,1] ene=u[:,2] vel=mom/(rho+1e-6) pri[:,0]=rho pri[:,1]=vel pri[:,2]=(ene-0.5*mom*vel)*(gam-1) return(pri) def getmaxv(pri): rho=pri[:,0] vel=pri[:,1] prs=pri[:,2] cs=np.sqrt(gam*prs/rho) return(max(abs(vel)+cs)) def getflux(u): f=np.zeros((nx,nv)) pri=utop(u) rho=pri[:,0] v=pri[:,1] prs=pri[:,2] mom=u[:,1] ene=u[:,2] f[:,0]=mom f[:,1]=mom*v+prs f[:,2]=(ene+prs)*v return(f) prim[:,0]=1. prim[:,1]=0. prim[:,2]=1. for i in range(int(nx/2),nx): prim[i,0]=0.1 prim[i,1]=0. prim[i,2]=0.125 print (prim[:,2]) u=ptou(prim) uold=u pold=prim fig = plt.figure() gs = gridspec.GridSpec(nv,1) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[1,0]) ax3 = fig.add_subplot(gs[2,0]) ax1.plot(x,prim[:,0],'pres') ax2.plot(x,prim[:,1],'pres') ax3.plot(x,prim[:,2],'pres') fig.show() for nstep in range(0,nstep): print (time) um=np.roll(u, 1,axis=0) up=np.roll(u,-1,axis=0) um[0,:] =um[1,:] up[nx-1,:]=up[nx-2,:] fm=getflux(um) fp=getflux(up) cfl=0.49 dtdx=1./getmaxv(p) dt=dtdx*dx time=time+dt un=0.5*(um+up) - cfl*dtdx* (fp-fm) u=un p=utop(u) plt.close(fig) fig = plt.figure() gs = gridspec.GridSpec(nv,1) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[1,0]) ax3 = fig.add_subplot(gs[2,0]) ax1.plot(p[:,0]) ax2.plot(p[:,1]) ax3.plot(p[:,2]) fig.show()
[ "numpy.sqrt", "numpy.roll", "matplotlib.pyplot.close", "numpy.zeros", "numpy.linspace", "matplotlib.pyplot.figure", "matplotlib.gridspec.GridSpec" ]
[((118, 136), 'numpy.zeros', 'np.zeros', (['(nx, nv)'], {}), '((nx, nv))\n', (126, 136), True, 'import numpy as np\n'), ((141, 159), 'numpy.zeros', 'np.zeros', (['(nx, nv)'], {}), '((nx, nv))\n', (149, 159), True, 'import numpy as np\n'), ((195, 220), 'numpy.linspace', 'np.linspace', (['(0)', '(1)'], {'num': 'nx'}), '(0, 1, num=nx)\n', (206, 220), True, 'import numpy as np\n'), ((1105, 1117), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1115, 1117), True, 'import matplotlib.pyplot as plt\n'), ((1123, 1147), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['nv', '(1)'], {}), '(nv, 1)\n', (1140, 1147), False, 'from matplotlib import gridspec\n'), ((240, 258), 'numpy.zeros', 'np.zeros', (['(nx, nv)'], {}), '((nx, nv))\n', (248, 258), True, 'import numpy as np\n'), ((412, 430), 'numpy.zeros', 'np.zeros', (['(nx, nv)'], {}), '((nx, nv))\n', (420, 430), True, 'import numpy as np\n'), ((652, 676), 'numpy.sqrt', 'np.sqrt', (['(gam * prs / rho)'], {}), '(gam * prs / rho)\n', (659, 676), True, 'import numpy as np\n'), ((723, 741), 'numpy.zeros', 'np.zeros', (['(nx, nv)'], {}), '((nx, nv))\n', (731, 741), True, 'import numpy as np\n'), ((1399, 1420), 'numpy.roll', 'np.roll', (['u', '(1)'], {'axis': '(0)'}), '(u, 1, axis=0)\n', (1406, 1420), True, 'import numpy as np\n'), ((1432, 1454), 'numpy.roll', 'np.roll', (['u', '(-1)'], {'axis': '(0)'}), '(u, -1, axis=0)\n', (1439, 1454), True, 'import numpy as np\n'), ((1723, 1737), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (1732, 1737), True, 'import matplotlib.pyplot as plt\n'), ((1752, 1764), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1762, 1764), True, 'import matplotlib.pyplot as plt\n'), ((1778, 1802), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['nv', '(1)'], {}), '(nv, 1)\n', (1795, 1802), False, 'from matplotlib import gridspec\n')]
import unittest from pluralizer import Pluralizer import re # Standard singular/plural matches. # # @type {Array} BASIC_TESTS = [ # Uncountables. ['firmware', 'firmware'], ['fish', 'fish'], ['media', 'media'], ['moose', 'moose'], ['police', 'police'], ['sheep', 'sheep'], ['series', 'series'], ['agenda', 'agenda'], ['news', 'news'], ['reindeer', 'reindeer'], ['starfish', 'starfish'], ['smallpox', 'smallpox'], ['tennis', 'tennis'], ['chickenpox', 'chickenpox'], ['shambles', 'shambles'], ['garbage', 'garbage'], ['you', 'you'], ['wildlife', 'wildlife'], ['Staff', 'Staff'], ['STAFF', 'STAFF'], ['turquois', 'turquois'], ['carnivorous', 'carnivorous'], ['only', 'only'], ['aircraft', 'aircraft'], # Latin. ['veniam', 'veniam'], # Pluralization. ['this', 'these'], ['that', 'those'], ['is', 'are'], ['man', 'men'], ['superman', 'supermen'], ['ox', 'oxen'], ['bus', 'buses'], ['airbus', 'airbuses'], ['railbus', 'railbuses'], ['wife', 'wives'], ['guest', 'guests'], ['thing', 'things'], ['mess', 'messes'], ['guess', 'guesses'], ['person', 'people'], ['meteor', 'meteors'], ['chateau', 'chateaus'], ['lap', 'laps'], ['cough', 'coughs'], ['death', 'deaths'], ['coach', 'coaches'], ['boy', 'boys'], ['toy', 'toys'], ['guy', 'guys'], ['girl', 'girls'], ['chair', 'chairs'], ['toe', 'toes'], ['tiptoe', 'tiptoes'], ['tomato', 'tomatoes'], ['potato', 'potatoes'], ['tornado', 'tornadoes'], ['torpedo', 'torpedoes'], ['hero', 'heroes'], ['superhero', 'superheroes'], ['volcano', 'volcanoes'], ['canto', 'cantos'], ['hetero', 'heteros'], ['photo', 'photos'], ['portico', 'porticos'], ['quarto', 'quartos'], ['kimono', 'kimonos'], ['albino', 'albinos'], ['cherry', 'cherries'], ['piano', 'pianos'], ['pro', 'pros'], ['combo', 'combos'], ['turbo', 'turbos'], ['bar', 'bars'], ['crowbar', 'crowbars'], ['van', 'vans'], ['tobacco', 'tobaccos'], ['afficionado', 'afficionados'], ['monkey', 'monkeys'], ['neutrino', 'neutrinos'], ['rhino', 'rhinos'], ['steno', 'stenos'], ['latino', 'latinos'], ['casino', 'casinos'], ['avocado', 'avocados'], ['commando', 'commandos'], ['tuxedo', 'tuxedos'], ['speedo', 'speedos'], ['dingo', 'dingoes'], ['echo', 'echoes'], ['nacho', 'nachos'], ['motto', 'mottos'], ['psycho', 'psychos'], ['poncho', 'ponchos'], ['pass', 'passes'], ['ghetto', 'ghettos'], ['mango', 'mangos'], ['lady', 'ladies'], ['bath', 'baths'], ['professional', 'professionals'], ['dwarf', 'dwarves'], # Proper spelling is "dwarfs". ['encyclopedia', 'encyclopedias'], ['louse', 'lice'], ['roof', 'roofs'], ['woman', 'women'], ['formula', 'formulas'], ['polyhedron', 'polyhedra'], ['index', 'indices'], # Maybe "indexes". ['matrix', 'matrices'], ['vertex', 'vertices'], ['axe', 'axes'], # Could also be plural of "ax". ['pickaxe', 'pickaxes'], ['crisis', 'crises'], ['criterion', 'criteria'], ['phenomenon', 'phenomena'], ['addendum', 'addenda'], ['datum', 'data'], ['forum', 'forums'], ['millennium', 'millennia'], ['alumnus', 'alumni'], ['medium', 'mediums'], ['census', 'censuses'], ['genus', 'genera'], ['dogma', 'dogmata'], ['life', 'lives'], ['hive', 'hives'], ['kiss', 'kisses'], ['dish', 'dishes'], ['human', 'humans'], ['knife', 'knives'], ['phase', 'phases'], ['judge', 'judges'], ['class', 'classes'], ['witch', 'witches'], ['church', 'churches'], ['massage', 'massages'], ['prospectus', 'prospectuses'], ['syllabus', 'syllabi'], ['viscus', 'viscera'], ['cactus', 'cacti'], ['hippopotamus', 'hippopotamuses'], ['octopus', 'octopuses'], ['platypus', 'platypuses'], ['kangaroo', 'kangaroos'], ['atlas', 'atlases'], ['stigma', 'stigmata'], ['schema', 'schemata'], ['phenomenon', 'phenomena'], ['diagnosis', 'diagnoses'], ['mongoose', 'mongooses'], ['mouse', 'mice'], ['liturgist', 'liturgists'], ['box', 'boxes'], ['gas', 'gases'], ['self', 'selves'], ['chief', 'chiefs'], ['quiz', 'quizzes'], ['child', 'children'], ['shelf', 'shelves'], ['fizz', 'fizzes'], ['tooth', 'teeth'], ['thief', 'thieves'], ['day', 'days'], ['loaf', 'loaves'], ['fix', 'fixes'], ['spy', 'spies'], ['vertebra', 'vertebrae'], ['clock', 'clocks'], ['lap', 'laps'], ['cuff', 'cuffs'], ['leaf', 'leaves'], ['calf', 'calves'], ['moth', 'moths'], ['mouth', 'mouths'], ['house', 'houses'], ['proof', 'proofs'], ['hoof', 'hooves'], ['elf', 'elves'], ['turf', 'turfs'], ['craft', 'crafts'], ['die', 'dice'], ['penny', 'pennies'], ['campus', 'campuses'], ['virus', 'viri'], ['iris', 'irises'], ['bureau', 'bureaus'], ['kiwi', 'kiwis'], ['wiki', 'wikis'], ['igloo', 'igloos'], ['ninja', 'ninjas'], ['pizza', 'pizzas'], ['kayak', 'kayaks'], ['canoe', 'canoes'], ['tiding', 'tidings'], ['pea', 'peas'], ['drive', 'drives'], ['nose', 'noses'], ['movie', 'movies'], ['status', 'statuses'], ['alias', 'aliases'], ['memorandum', 'memorandums'], ['language', 'languages'], ['plural', 'plurals'], ['word', 'words'], ['multiple', 'multiples'], ['reward', 'rewards'], ['sandwich', 'sandwiches'], ['subway', 'subways'], ['direction', 'directions'], ['land', 'lands'], ['row', 'rows'], ['grow', 'grows'], ['flow', 'flows'], ['rose', 'roses'], ['raise', 'raises'], ['friend', 'friends'], ['follower', 'followers'], ['male', 'males'], ['nail', 'nails'], ['sex', 'sexes'], ['tape', 'tapes'], ['ruler', 'rulers'], ['king', 'kings'], ['queen', 'queens'], ['zero', 'zeros'], ['quest', 'quests'], ['goose', 'geese'], ['foot', 'feet'], ['ex', 'exes'], ['reflex', 'reflexes'], ['heat', 'heats'], ['train', 'trains'], ['test', 'tests'], ['pie', 'pies'], ['fly', 'flies'], ['eye', 'eyes'], ['lie', 'lies'], ['node', 'nodes'], ['trade', 'trades'], ['chinese', 'chinese'], ['please', 'pleases'], ['japanese', 'japanese'], ['regex', 'regexes'], ['license', 'licenses'], ['zebra', 'zebras'], ['general', 'generals'], ['corps', 'corps'], ['pliers', 'pliers'], ['flyer', 'flyers'], ['scissors', 'scissors'], ['fireman', 'firemen'], ['chirp', 'chirps'], ['harp', 'harps'], ['corpse', 'corpses'], ['dye', 'dyes'], ['move', 'moves'], ['zombie', 'zombies'], ['variety', 'varieties'], ['talkie', 'talkies'], ['walkie-talkie', 'walkie-talkies'], ['groupie', 'groupies'], ['goonie', 'goonies'], ['lassie', 'lassies'], ['genie', 'genies'], ['foodie', 'foodies'], ['faerie', 'faeries'], ['collie', 'collies'], ['obloquy', 'obloquies'], ['looey', 'looies'], ['osprey', 'ospreys'], ['cover', 'covers'], ['tie', 'ties'], ['groove', 'grooves'], ['bee', 'bees'], ['ave', 'aves'], ['wave', 'waves'], ['wolf', 'wolves'], ['airwave', 'airwaves'], ['archive', 'archives'], ['arch', 'arches'], ['dive', 'dives'], ['aftershave', 'aftershaves'], ['cave', 'caves'], ['grave', 'graves'], ['gift', 'gifts'], ['nerve', 'nerves'], ['nerd', 'nerds'], ['carve', 'carves'], ['rave', 'raves'], ['scarf', 'scarves'], ['sale', 'sales'], ['sail', 'sails'], ['swerve', 'swerves'], ['love', 'loves'], ['dove', 'doves'], ['glove', 'gloves'], ['wharf', 'wharves'], ['valve', 'valves'], ['werewolf', 'werewolves'], ['view', 'views'], ['emu', 'emus'], ['menu', 'menus'], ['wax', 'waxes'], ['fax', 'faxes'], ['nut', 'nuts'], ['crust', 'crusts'], ['lemma', 'lemmata'], ['anathema', 'anathemata'], ['analysis', 'analyses'], ['locus', 'loci'], ['uterus', 'uteri'], ['curriculum', 'curricula'], ['quorum', 'quora'], ['genius', 'geniuses'], ['flower', 'flowers'], ['crash', 'crashes'], ['soul', 'souls'], ['career', 'careers'], ['planet', 'planets'], ['son', 'sons'], ['sun', 'suns'], ['drink', 'drinks'], ['diploma', 'diplomas'], ['dilemma', 'dilemmas'], ['grandma', 'grandmas'], ['no', 'nos'], ['yes', 'yeses'], ['employ', 'employs'], ['employee', 'employees'], ['history', 'histories'], ['story', 'stories'], ['purchase', 'purchases'], ['order', 'orders'], ['key', 'keys'], ['bomb', 'bombs'], ['city', 'cities'], ['sanity', 'sanities'], ['ability', 'abilities'], ['activity', 'activities'], ['cutie', 'cuties'], ['validation', 'validations'], ['floaty', 'floaties'], ['nicety', 'niceties'], ['goalie', 'goalies'], ['crawly', 'crawlies'], ['duty', 'duties'], ['scrutiny', 'scrutinies'], ['deputy', 'deputies'], ['beauty', 'beauties'], ['bank', 'banks'], ['family', 'families'], ['tally', 'tallies'], ['ally', 'allies'], ['alley', 'alleys'], ['valley', 'valleys'], ['medley', 'medleys'], ['melody', 'melodies'], ['trolly', 'trollies'], ['thunk', 'thunks'], ['koala', 'koalas'], ['special', 'specials'], ['book', 'books'], ['knob', 'knobs'], ['crab', 'crabs'], ['plough', 'ploughs'], ['high', 'highs'], ['low', 'lows'], ['hiccup', 'hiccups'], ['bonus', 'bonuses'], ['circus', 'circuses'], ['abacus', 'abacuses'], ['phobia', 'phobias'], ['case', 'cases'], ['lace', 'laces'], ['trace', 'traces'], ['mage', 'mages'], ['lotus', 'lotuses'], ['motorbus', 'motorbuses'], ['cutlas', 'cutlases'], ['tequila', 'tequilas'], ['liar', 'liars'], ['delta', 'deltas'], ['visa', 'visas'], ['flea', 'fleas'], ['favela', 'favelas'], ['cobra', 'cobras'], ['finish', 'finishes'], ['gorilla', 'gorillas'], ['mass', 'masses'], ['face', 'faces'], ['rabbit', 'rabbits'], ['adventure', 'adventures'], ['breeze', 'breezes'], ['brew', 'brews'], ['canopy', 'canopies'], ['copy', 'copies'], ['spy', 'spies'], ['cave', 'caves'], ['charge', 'charges'], ['cinema', 'cinemas'], ['coffee', 'coffees'], ['favourite', 'favourites'], ['themself', 'themselves'], ['country', 'countries'], ['issue', 'issues'], ['authority', 'authorities'], ['force', 'forces'], ['objective', 'objectives'], ['present', 'presents'], ['industry', 'industries'], ['believe', 'believes'], ['century', 'centuries'], ['category', 'categories'], ['eve', 'eves'], ['fee', 'fees'], ['gene', 'genes'], ['try', 'tries'], ['currency', 'currencies'], ['pose', 'poses'], ['cheese', 'cheeses'], ['clue', 'clues'], ['cheer', 'cheers'], ['litre', 'litres'], ['money', 'monies'], ['attorney', 'attorneys'], ['balcony', 'balconies'], ['cockney', 'cockneys'], ['donkey', 'donkeys'], ['honey', 'honeys'], ['smiley', 'smilies'], ['survey', 'surveys'], ['whiskey', 'whiskeys'], ['whisky', 'whiskies'], ['volley', 'volleys'], ['tongue', 'tongues'], ['suit', 'suits'], ['suite', 'suites'], ['cruise', 'cruises'], ['eave', 'eaves'], ['consultancy', 'consultancies'], ['pouch', 'pouches'], ['wallaby', 'wallabies'], ['abyss', 'abysses'], ['weekly', 'weeklies'], ['whistle', 'whistles'], ['utilise', 'utilises'], ['utilize', 'utilizes'], ['mercy', 'mercies'], ['mercenary', 'mercenaries'], ['take', 'takes'], ['flush', 'flushes'], ['gate', 'gates'], ['evolve', 'evolves'], ['slave', 'slaves'], ['native', 'natives'], ['revolve', 'revolves'], ['twelve', 'twelves'], ['sleeve', 'sleeves'], ['subjective', 'subjectives'], ['stream', 'streams'], ['beam', 'beams'], ['foam', 'foams'], ['callus', 'calluses'], ['use', 'uses'], ['beau', 'beaus'], ['gateau', 'gateaus'], ['fetus', 'fetuses'], ['luau', 'luaus'], ['pilau', 'pilaus'], ['shoe', 'shoes'], ['sandshoe', 'sandshoes'], ['zeus', 'zeuses'], ['nucleus', 'nuclei'], ['sky', 'skies'], ['beach', 'beaches'], ['brush', 'brushes'], ['hoax', 'hoaxes'], ['scratch', 'scratches'], ['nanny', 'nannies'], ['negro', 'negroes'], ['taco', 'tacos'], ['cafe', 'cafes'], ['cave', 'caves'], ['giraffe', 'giraffes'], ['goodwife', 'goodwives'], ['housewife', 'housewives'], ['safe', 'safes'], ['save', 'saves'], ['pocketknife', 'pocketknives'], ['tartufe', 'tartufes'], ['tartuffe', 'tartuffes'], ['truffle', 'truffles'], ['jefe', 'jefes'], ['agrafe', 'agrafes'], ['agraffe', 'agraffes'], ['bouffe', 'bouffes'], ['carafe', 'carafes'], ['chafe', 'chafes'], ['pouffe', 'pouffes'], ['pouf', 'poufs'], ['piaffe', 'piaffes'], ['gaffe', 'gaffes'], ['executive', 'executives'], ['cove', 'coves'], ['dove', 'doves'], ['fave', 'faves'], ['positive', 'positives'], ['solve', 'solves'], ['trove', 'troves'], ['treasure', 'treasures'], ['suave', 'suaves'], ['bluff', 'bluffs'], ['half', 'halves'], ['knockoff', 'knockoffs'], ['handkerchief', 'handkerchiefs'], ['reed', 'reeds'], ['reef', 'reefs'], ['yourself', 'yourselves'], ['sunroof', 'sunroofs'], ['plateau', 'plateaus'], ['radius', 'radii'], ['stratum', 'strata'], ['stratus', 'strati'], ['focus', 'foci'], ['fungus', 'fungi'], ['appendix', 'appendices'], ['seraph', 'seraphim'], ['cherub', 'cherubim'], ['memo', 'memos'], ['cello', 'cellos'], ['automaton', 'automata'], ['button', 'buttons'], ['crayon', 'crayons'], ['captive', 'captives'], ['abrasive', 'abrasives'], ['archive', 'archives'], ['additive', 'additives'], ['hive', 'hives'], ['beehive', 'beehives'], ['olive', 'olives'], ['black olive', 'black olives'], ['chive', 'chives'], ['adjective', 'adjectives'], ['cattle drive', 'cattle drives'], ['explosive', 'explosives'], ['executive', 'executives'], ['negative', 'negatives'], ['fugitive', 'fugitives'], ['progressive', 'progressives'], ['laxative', 'laxatives'], ['incentive', 'incentives'], ['genesis', 'geneses'], ['surprise', 'surprises'], ['enterprise', 'enterprises'], ['relative', 'relatives'], ['positive', 'positives'], ['perspective', 'perspectives'], ['superlative', 'superlatives'], ['afterlife', 'afterlives'], ['native', 'natives'], ['detective', 'detectives'], ['collective', 'collectives'], ['lowlife', 'lowlives'], ['low-life', 'low-lives'], ['strife', 'strifes'], ['pony', 'ponies'], ['phony', 'phonies'], ['felony', 'felonies'], ['colony', 'colonies'], ['symphony', 'symphonies'], ['semicolony', 'semicolonies'], ['radiotelephony', 'radiotelephonies'], ['company', 'companies'], ['ceremony', 'ceremonies'], ['carnivore', 'carnivores'], ['emphasis', 'emphases'], ['abuse', 'abuses'], ['ass', 'asses'], ['mile', 'miles'], ['consensus', 'consensuses'], ['coatdress', 'coatdresses'], ['courthouse', 'courthouses'], ['playhouse', 'playhouses'], ['crispness', 'crispnesses'], ['racehorse', 'racehorses'], ['greatness', 'greatnesses'], ['demon', 'demons'], ['lemon', 'lemons'], ['pokemon', 'pokemon'], ['pokémon', 'pokémon'], ['christmas', 'christmases'], ['zymase', 'zymases'], ['accomplice', 'accomplices'], ['amice', 'amices'], ['titmouse', 'titmice'], ['slice', 'slices'], ['base', 'bases'], ['database', 'databases'], ['rise', 'rises'], ['uprise', 'uprises'], ['size', 'sizes'], ['prize', 'prizes'], ['booby', 'boobies'], ['hobby', 'hobbies'], ['baby', 'babies'], ['cookie', 'cookies'], ['budgie', 'budgies'], ['calorie', 'calories'], ['brownie', 'brownies'], ['lolly', 'lollies'], ['hippie', 'hippies'], ['smoothie', 'smoothies'], ['techie', 'techies'], ['specie', 'species'], ['quickie', 'quickies'], ['pixie', 'pixies'], ['rotisserie', 'rotisseries'], ['porkpie', 'porkpies'], ['newbie', 'newbies'], ['veggie', 'veggies'], ['bourgeoisie', 'bourgeoisies'], ['party', 'parties'], ['apology', 'apologies'], ['ancestry', 'ancestries'], ['anomaly', 'anomalies'], ['anniversary', 'anniversaries'], ['battery', 'batteries'], ['nappy', 'nappies'], ['hanky', 'hankies'], ['junkie', 'junkies'], ['hogtie', 'hogties'], ['footsie', 'footsies'], ['curry', 'curries'], ['fantasy', 'fantasies'], ['housefly', 'houseflies'], ['falsy', 'falsies'], ['doggy', 'doggies'], ['carny', 'carnies'], ['cabby', 'cabbies'], ['charlie', 'charlies'], ['bookie', 'bookies'], ['auntie', 'aunties'], # Prototype inheritance. ['constructor', 'constructors'], # Non-standard case. ['randomWord', 'randomWords'], ['camelCase', 'camelCases'], ['PascalCase', 'PascalCases'], ['Alumnus', 'Alumni'], ['CHICKEN', 'CHICKENS'], ['日本語', '日本語'], ['한국', '한국'], ['中文', '中文'], ['اللغة العربية', 'اللغة العربية'], ['四 chicken', '四 chickens'], ['Order2', 'Order2s'], ['Work Order2', 'Work Order2s'], ['SoundFX2', 'SoundFX2s'], ['oDonald', 'oDonalds'] ] # # Odd plural to singular tests. # # @type {Array} # SINGULAR_TESTS = [ ['dingo', 'dingos'], ['mango', 'mangoes'], ['echo', 'echos'], ['ghetto', 'ghettoes'], ['nucleus', 'nucleuses'], ['bureau', 'bureaux'], ['seraph', 'seraphs'] ] # # Odd singular to plural tests. # # @type {Array} # PLURAL_TESTS = [ ['plateaux', 'plateaux'], ['axis', 'axes'], ['basis', 'bases'], ['automatum', 'automata'], ['thou', 'you'], ['axiS', 'axes'], ['passerby', 'passersby'] ] class TestPluralize(unittest.TestCase): def test_methods_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertEqual(pluralizer.plural(test[0]), test[1]) def test_methods_is_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertTrue(pluralizer.isPlural(test[1]), f"isPlural('{test[1]}')") def test_methods_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertEqual(pluralizer.singular(test[1]), test[0]) def test_methods_is_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertTrue(pluralizer.isSingular(test[0])) def test_automatically_convert_plural(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *PLURAL_TESTS]: self.assertEqual(pluralizer.pluralize(test[1], 5), test[1]) self.assertEqual(pluralizer.pluralize(test[0], 5), test[1]) def test_automatically_convert_singular(self): pluralizer = Pluralizer() for test in [*BASIC_TESTS, *SINGULAR_TESTS]: self.assertEqual(pluralizer.pluralize(test[0], 1), test[0]) self.assertEqual(pluralizer.pluralize(test[1], 1), test[0]) def test_prepend_count_plural_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('test', 5, True), '5 tests') def test_prepend_count_singular_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('test', 1, True), '1 test') def test_add_new_uncountable_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('paper'), 'papers') pluralizer.addUncountableRule('paper') self.assertEqual(pluralizer.pluralize('paper'), 'paper') def test_add_new_irregular_words(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.pluralize('irregular'), 'irregulars') pluralizer.addIrregularRule('irregular', 'regular') self.assertEqual(pluralizer.pluralize('irregular'), 'regular') def test_return_false_for_irregular_words(self): pluralizer = Pluralizer() self.assertTrue(pluralizer.isPlural('irregulars')) pluralizer.addIrregularRule('irregulars', 'regular') self.assertFalse(pluralizer.isPlural('irregulars')) def test_add_new_plural_matching_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.plural('regex'), 'regexes') pluralizer.addPluralRule(re.compile(r'(?i)gex$'), 'gexii') self.assertEqual(pluralizer.plural('regex'), 'regexii') def test_add_new_singular_matching_rules(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.singular('singles'), 'single') pluralizer.addSingularRule(re.compile('singles$'), 'singular') self.assertEqual(pluralizer.singular('singles'), 'singular') def test_allow_new_plural_matching_rules_to_be_strings(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.plural('person'), 'people') pluralizer.addPluralRule('person', 'peeps') self.assertEqual(pluralizer.plural('person'), 'peeps') def test_allow_new_singular_matching_rules_to_be_strings(self): pluralizer = Pluralizer() self.assertEqual(pluralizer.singular('mornings'), 'morning') pluralizer.addSingularRule('mornings', 'suck') self.assertEqual(pluralizer.singular('mornings'), 'suck') if __name__ == '__main__': unittest.main()
[ "unittest.main", "re.compile", "pluralizer.Pluralizer" ]
[((22163, 22178), 'unittest.main', 'unittest.main', ([], {}), '()\n', (22176, 22178), False, 'import unittest\n'), ((18576, 18588), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (18586, 18588), False, 'from pluralizer import Pluralizer\n'), ((18766, 18778), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (18776, 18778), False, 'from pluralizer import Pluralizer\n'), ((18973, 18985), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (18983, 18985), False, 'from pluralizer import Pluralizer\n'), ((19169, 19181), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (19179, 19181), False, 'from pluralizer import Pluralizer\n'), ((19366, 19378), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (19376, 19378), False, 'from pluralizer import Pluralizer\n'), ((19647, 19659), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (19657, 19659), False, 'from pluralizer import Pluralizer\n'), ((19926, 19938), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (19936, 19938), False, 'from pluralizer import Pluralizer\n'), ((20085, 20097), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (20095, 20097), False, 'from pluralizer import Pluralizer\n'), ((20240, 20252), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (20250, 20252), False, 'from pluralizer import Pluralizer\n'), ((20497, 20509), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (20507, 20509), False, 'from pluralizer import Pluralizer\n'), ((20790, 20802), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (20800, 20802), False, 'from pluralizer import Pluralizer\n'), ((21055, 21067), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (21065, 21067), False, 'from pluralizer import Pluralizer\n'), ((21337, 21349), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (21347, 21349), False, 'from pluralizer import Pluralizer\n'), ((21645, 21657), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (21655, 21657), False, 'from pluralizer import Pluralizer\n'), ((21927, 21939), 'pluralizer.Pluralizer', 'Pluralizer', ([], {}), '()\n', (21937, 21939), False, 'from pluralizer import Pluralizer\n'), ((21165, 21187), 're.compile', 're.compile', (['"""(?i)gex$"""'], {}), "('(?i)gex$')\n", (21175, 21187), False, 'import re\n'), ((21452, 21474), 're.compile', 're.compile', (['"""singles$"""'], {}), "('singles$')\n", (21462, 21474), False, 'import re\n')]
# Copyright (c) 2017 LINE Corporation # These sources are released under the terms of the MIT license: see LICENSE import requests.sessions from django.db.models import F from promgen.version import __version__ from django.conf import settings # Wrappers around request api to ensure we always attach our user agent # https://github.com/requests/requests/blob/master/requests/api.py def post(url, data=None, json=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.post(url, data=data, json=json, **kwargs) def get(url, params=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.get(url, params=params, **kwargs) def delete(url, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.delete(url, **kwargs) def setting(key, default=None, domain=None): """ Settings helper based on saltstack's query Allows a simple way to query settings from YAML using the style `path:to:key` to represent path: to: key: value """ rtn = settings.PROMGEN if domain: rtn = rtn[domain] for index in key.split(":"): try: rtn = rtn[index] except KeyError: return default return rtn class HelpFor: # Wrap a model's lower level api so that we can easily # grab help_text for a specific field # help_text = HelpFor(DjangoModel) # help_test.field_name def __init__(self, model): self.model = model def __getattr__(self, name): return self.model._meta.get_field(name).help_text def inc_for_pk(model, pk, **kwargs): # key=F('key') + value model.objects.filter(pk=pk).update(**{key: F(key) + kwargs[key] for key in kwargs})
[ "django.db.models.F" ]
[((1947, 1953), 'django.db.models.F', 'F', (['key'], {}), '(key)\n', (1948, 1953), False, 'from django.db.models import F\n')]
import time import kubernetes import pytest from dagster_k8s.client import DagsterK8sError, WaitForPodState from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod from dagster_k8s_test_infra.helm import get_helm_test_namespace def construct_pod_spec(name, cmd): return kubernetes.client.V1PodSpec( restart_policy="Never", containers=[ kubernetes.client.V1Container(name=name, image="busybox", args=["/bin/sh", "-c", cmd]) ], ) def construct_pod_manifest(name, cmd): return kubernetes.client.V1Pod( metadata=kubernetes.client.V1ObjectMeta(name=name), spec=construct_pod_spec(name, cmd), ) def construct_job_manifest(name, cmd): return kubernetes.client.V1Job( api_version="batch/v1", kind="Job", metadata=kubernetes.client.V1ObjectMeta(name=name), spec=kubernetes.client.V1JobSpec( template=kubernetes.client.V1PodTemplateSpec(spec=construct_pod_spec(name, cmd)), ), ) def test_wait_for_pod(cluster_provider): # pylint: disable=unused-argument api = kubernetes.client.CoreV1Api() with get_helm_test_namespace() as namespace: # Without this sleep, we get the following error on kind: # HTTP response body: # {"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"No API # token found for service account \"default\", retry after the token is automatically # created and added to the service # account","reason":"ServerTimeout","details":{"name":"create # pod","kind":"serviceaccounts","retryAfterSeconds":1},"code":500} time.sleep(5) try: api.create_namespaced_pod( body=construct_pod_manifest("sayhi1", 'echo "hello world"'), namespace=namespace ) wait_for_pod("sayhi1", namespace=namespace) assert retrieve_pod_logs("sayhi1", namespace=namespace) == "hello world\n" api.create_namespaced_pod( body=construct_pod_manifest("sayhi2", 'echo "hello world"'), namespace=namespace ) wait_for_pod("sayhi2", namespace=namespace, wait_for_state=WaitForPodState.Terminated) with pytest.raises( DagsterK8sError, match="Timed out while waiting for pod to become ready" ): api.create_namespaced_pod( body=construct_pod_manifest("sayhi3", 'sleep 5; echo "hello world"'), namespace=namespace, ) wait_for_pod("sayhi3", namespace=namespace, wait_timeout=1) with pytest.raises(DagsterK8sError) as exc_info: api.create_namespaced_pod( body=construct_pod_manifest("fail", 'echo "whoops!"; exit 1'), namespace=namespace, ) wait_for_pod("fail", namespace=namespace, wait_for_state=WaitForPodState.Terminated) # not doing total match because integration test. unit tests test full log message assert "Pod did not exit successfully." in str(exc_info.value) finally: for pod_name in ["sayhi1", "sayhi2", "sayhi3", "fail"]: try: api.delete_namespaced_pod(pod_name, namespace=namespace) except kubernetes.client.rest.ApiException: pass def test_wait_for_job(cluster_provider): # pylint: disable=unused-argument with get_helm_test_namespace() as namespace: # Without this sleep, we get the following error on kind: # HTTP response body: # {"kind":"Status","apiVersion":"v1","metadata":{},"status":"Failure","message":"No API # token found for service account \"default\", retry after the token is automatically # created and added to the service # account","reason":"ServerTimeout","details":{"name":"create # pod","kind":"serviceaccounts","retryAfterSeconds":1},"code":500} time.sleep(5) try: api = kubernetes.client.BatchV1Api() api.create_namespaced_job( body=construct_job_manifest("sayhi1", 'echo "hello world"'), namespace=namespace ) wait_for_job_success("sayhi1", namespace=namespace) with pytest.raises( DagsterK8sError, match="Timed out while waiting for job sayhi2 to complete" ): api.create_namespaced_job( body=construct_job_manifest("sayhi2", 'sleep 5; echo "hello world"'), namespace=namespace, ) wait_for_job_success("sayhi2", namespace=namespace, wait_timeout=1) with pytest.raises( DagsterK8sError, match="Encountered failed job pods for job fail with status:", ): api.create_namespaced_job( body=construct_job_manifest("fail", 'echo "whoops!"; exit 1'), namespace=namespace, ) wait_for_job_success("fail", namespace=namespace) finally: for job in ["sayhi1", "sayhi2", "fail"]: try: api.delete_namespaced_job( job, namespace=namespace, propagation_policy="Foreground" ) except kubernetes.client.rest.ApiException: pass
[ "kubernetes.client.BatchV1Api", "kubernetes.client.V1ObjectMeta", "kubernetes.client.CoreV1Api", "time.sleep", "dagster_k8s_test_infra.helm.get_helm_test_namespace", "pytest.raises", "dagster_k8s.utils.wait_for_job_success", "dagster_k8s.utils.wait_for_pod", "kubernetes.client.V1Container", "dagster_k8s.utils.retrieve_pod_logs" ]
[((1112, 1141), 'kubernetes.client.CoreV1Api', 'kubernetes.client.CoreV1Api', ([], {}), '()\n', (1139, 1141), False, 'import kubernetes\n'), ((1152, 1177), 'dagster_k8s_test_infra.helm.get_helm_test_namespace', 'get_helm_test_namespace', ([], {}), '()\n', (1175, 1177), False, 'from dagster_k8s_test_infra.helm import get_helm_test_namespace\n'), ((1674, 1687), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1684, 1687), False, 'import time\n'), ((3525, 3550), 'dagster_k8s_test_infra.helm.get_helm_test_namespace', 'get_helm_test_namespace', ([], {}), '()\n', (3548, 3550), False, 'from dagster_k8s_test_infra.helm import get_helm_test_namespace\n'), ((4047, 4060), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (4057, 4060), False, 'import time\n'), ((597, 638), 'kubernetes.client.V1ObjectMeta', 'kubernetes.client.V1ObjectMeta', ([], {'name': 'name'}), '(name=name)\n', (627, 638), False, 'import kubernetes\n'), ((828, 869), 'kubernetes.client.V1ObjectMeta', 'kubernetes.client.V1ObjectMeta', ([], {'name': 'name'}), '(name=name)\n', (858, 869), False, 'import kubernetes\n'), ((1864, 1907), 'dagster_k8s.utils.wait_for_pod', 'wait_for_pod', (['"""sayhi1"""'], {'namespace': 'namespace'}), "('sayhi1', namespace=namespace)\n", (1876, 1907), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n'), ((2158, 2249), 'dagster_k8s.utils.wait_for_pod', 'wait_for_pod', (['"""sayhi2"""'], {'namespace': 'namespace', 'wait_for_state': 'WaitForPodState.Terminated'}), "('sayhi2', namespace=namespace, wait_for_state=WaitForPodState.\n Terminated)\n", (2170, 2249), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n'), ((4093, 4123), 'kubernetes.client.BatchV1Api', 'kubernetes.client.BatchV1Api', ([], {}), '()\n', (4121, 4123), False, 'import kubernetes\n'), ((4287, 4338), 'dagster_k8s.utils.wait_for_job_success', 'wait_for_job_success', (['"""sayhi1"""'], {'namespace': 'namespace'}), "('sayhi1', namespace=namespace)\n", (4307, 4338), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n'), ((399, 489), 'kubernetes.client.V1Container', 'kubernetes.client.V1Container', ([], {'name': 'name', 'image': '"""busybox"""', 'args': "['/bin/sh', '-c', cmd]"}), "(name=name, image='busybox', args=['/bin/sh',\n '-c', cmd])\n", (428, 489), False, 'import kubernetes\n'), ((1927, 1975), 'dagster_k8s.utils.retrieve_pod_logs', 'retrieve_pod_logs', (['"""sayhi1"""'], {'namespace': 'namespace'}), "('sayhi1', namespace=namespace)\n", (1944, 1975), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n'), ((2263, 2355), 'pytest.raises', 'pytest.raises', (['DagsterK8sError'], {'match': '"""Timed out while waiting for pod to become ready"""'}), "(DagsterK8sError, match=\n 'Timed out while waiting for pod to become ready')\n", (2276, 2355), False, 'import pytest\n'), ((2590, 2649), 'dagster_k8s.utils.wait_for_pod', 'wait_for_pod', (['"""sayhi3"""'], {'namespace': 'namespace', 'wait_timeout': '(1)'}), "('sayhi3', namespace=namespace, wait_timeout=1)\n", (2602, 2649), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n'), ((2668, 2698), 'pytest.raises', 'pytest.raises', (['DagsterK8sError'], {}), '(DagsterK8sError)\n', (2681, 2698), False, 'import pytest\n'), ((2913, 3002), 'dagster_k8s.utils.wait_for_pod', 'wait_for_pod', (['"""fail"""'], {'namespace': 'namespace', 'wait_for_state': 'WaitForPodState.Terminated'}), "('fail', namespace=namespace, wait_for_state=WaitForPodState.\n Terminated)\n", (2925, 3002), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n'), ((4357, 4452), 'pytest.raises', 'pytest.raises', (['DagsterK8sError'], {'match': '"""Timed out while waiting for job sayhi2 to complete"""'}), "(DagsterK8sError, match=\n 'Timed out while waiting for job sayhi2 to complete')\n", (4370, 4452), False, 'import pytest\n'), ((4687, 4754), 'dagster_k8s.utils.wait_for_job_success', 'wait_for_job_success', (['"""sayhi2"""'], {'namespace': 'namespace', 'wait_timeout': '(1)'}), "('sayhi2', namespace=namespace, wait_timeout=1)\n", (4707, 4754), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n'), ((4773, 4871), 'pytest.raises', 'pytest.raises', (['DagsterK8sError'], {'match': '"""Encountered failed job pods for job fail with status:"""'}), "(DagsterK8sError, match=\n 'Encountered failed job pods for job fail with status:')\n", (4786, 4871), False, 'import pytest\n'), ((5100, 5149), 'dagster_k8s.utils.wait_for_job_success', 'wait_for_job_success', (['"""fail"""'], {'namespace': 'namespace'}), "('fail', namespace=namespace)\n", (5120, 5149), False, 'from dagster_k8s.utils import retrieve_pod_logs, wait_for_job_success, wait_for_pod\n')]
# Generated by Django 3.1.6 on 2021-02-15 08:52 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Service', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('short_name', models.CharField(max_length=8)), ('medium_name', models.CharField(max_length=16)), ], ), migrations.CreateModel( name='Bearer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('bearer_id', models.TextField()), ('cost', models.IntegerField()), ('mimeValue', models.CharField(max_length=255)), ('service', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='radioepg.service')), ], ), ]
[ "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.IntegerField", "django.db.models.AutoField", "django.db.models.CharField" ]
[((336, 429), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (352, 429), False, 'from django.db import migrations, models\n'), ((459, 489), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(8)'}), '(max_length=8)\n', (475, 489), False, 'from django.db import migrations, models\n'), ((524, 555), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(16)'}), '(max_length=16)\n', (540, 555), False, 'from django.db import migrations, models\n'), ((687, 780), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (703, 780), False, 'from django.db import migrations, models\n'), ((809, 827), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (825, 827), False, 'from django.db import migrations, models\n'), ((855, 876), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (874, 876), False, 'from django.db import migrations, models\n'), ((909, 941), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (925, 941), False, 'from django.db import migrations, models\n'), ((972, 1062), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""radioepg.service"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'radioepg.service')\n", (989, 1062), False, 'from django.db import migrations, models\n')]
from celery import Celery from clients.dobie_client import send_data_to_dobie app = Celery('qualichain_mediator') app.config_from_object('settings', namespace='CELERY_') @app.task() def consume_messages_async(message): """ This task is used to received job posting text and feed DOBIE component """ extracted_skills = send_data_to_dobie(message) print(extracted_skills, flush=True) return extracted_skills
[ "clients.dobie_client.send_data_to_dobie", "celery.Celery" ]
[((86, 115), 'celery.Celery', 'Celery', (['"""qualichain_mediator"""'], {}), "('qualichain_mediator')\n", (92, 115), False, 'from celery import Celery\n'), ((338, 365), 'clients.dobie_client.send_data_to_dobie', 'send_data_to_dobie', (['message'], {}), '(message)\n', (356, 365), False, 'from clients.dobie_client import send_data_to_dobie\n')]
import json, math from ingest import ingest_json_body from housepy import config, log, strings, util def parse(request): log.info("ambit_geo.parse") sample = ingest_json_body(request) if sample is None: return sample, "Could not parse" data = {} for key, value in sample.items(): if key == "UTC": dt = util.parse_date(sample['UTC']) # these are marked UTC in the data t = util.timestamp(dt) data['t_utc'] = t continue if key == "Longitude": data['longitude'] = math.degrees(float(sample['Longitude'])) continue if key == "Latitude": data['latitude'] = math.degrees(float(sample['Latitude'])) continue if key == "GPSAltitude": data['altitude'] = float(sample['GPSAltitude']) continue if type(value) != str: continue data[key] = strings.as_numeric(value) try: log.debug("%s %s %s" % (data['longitude'], data['latitude'], data['altitude'])) except: log.error("MISSING GEO") return data
[ "housepy.log.info", "housepy.util.timestamp", "housepy.util.parse_date", "housepy.log.debug", "housepy.log.error", "housepy.strings.as_numeric", "ingest.ingest_json_body" ]
[((126, 153), 'housepy.log.info', 'log.info', (['"""ambit_geo.parse"""'], {}), "('ambit_geo.parse')\n", (134, 153), False, 'from housepy import config, log, strings, util\n'), ((167, 192), 'ingest.ingest_json_body', 'ingest_json_body', (['request'], {}), '(request)\n', (183, 192), False, 'from ingest import ingest_json_body\n'), ((988, 1013), 'housepy.strings.as_numeric', 'strings.as_numeric', (['value'], {}), '(value)\n', (1006, 1013), False, 'from housepy import config, log, strings, util\n'), ((1033, 1112), 'housepy.log.debug', 'log.debug', (["('%s %s %s' % (data['longitude'], data['latitude'], data['altitude']))"], {}), "('%s %s %s' % (data['longitude'], data['latitude'], data['altitude']))\n", (1042, 1112), False, 'from housepy import config, log, strings, util\n'), ((352, 382), 'housepy.util.parse_date', 'util.parse_date', (["sample['UTC']"], {}), "(sample['UTC'])\n", (367, 382), False, 'from housepy import config, log, strings, util\n'), ((434, 452), 'housepy.util.timestamp', 'util.timestamp', (['dt'], {}), '(dt)\n', (448, 452), False, 'from housepy import config, log, strings, util\n'), ((1133, 1157), 'housepy.log.error', 'log.error', (['"""MISSING GEO"""'], {}), "('MISSING GEO')\n", (1142, 1157), False, 'from housepy import config, log, strings, util\n')]
#!/usr/bin/env python '''update gandi DNS domain entry, with LiveDNS v5 Cf. https://doc.livedns.gandi.net/#work-with-domains ''' import argparse import ipaddress import json import os from subprocess import check_output import requests parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('-v', '--verbose', action='store_true') parser.add_argument('domain') parser.add_argument('name') parser.add_argument('--ip', help="defaults to ifconfig.me's return") parser.add_argument('--api_key', help="defaults to GANDI_API_KEY env var, or the return of 'pass api/gandi'") args = parser.parse_args() if args.ip is None: args.ip = requests.get('http://ifconfig.me', headers={'User-Agent': 'curl/7.61.1'}).content.decode().strip() ip = ipaddress.ip_address(args.ip) if args.api_key is None: args.api_key = os.environ.get('GANDI_API_KEY', check_output(['pass', 'api/gandi'], text=True).strip()) key = {'X-Api-Key': args.api_key} r = requests.get(f'https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}', headers=key) r.raise_for_status() if r.json()[0]['rrset_values'][0] == args.ip: if args.verbose: print('ok') else: type_ = 'AAAA' if isinstance(ip, ipaddress.IPv6Address) else 'A' url = f'https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}/{type_}' data = {'rrset_values': [args.ip]} headers = {'Content-Type': 'application/json', **key} r = requests.put(url, data=json.dumps(data), headers=headers) if args.verbose: print(r.json()) else: r.raise_for_status()
[ "subprocess.check_output", "argparse.ArgumentParser", "json.dumps", "requests.get", "ipaddress.ip_address" ]
[((248, 292), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (271, 292), False, 'import argparse\n'), ((758, 787), 'ipaddress.ip_address', 'ipaddress.ip_address', (['args.ip'], {}), '(args.ip)\n', (778, 787), False, 'import ipaddress\n'), ((961, 1075), 'requests.get', 'requests.get', (['f"""https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}"""'], {'headers': 'key'}), "(\n f'https://dns.api.gandi.net/api/v5/domains/{args.domain}/records/{args.name}'\n , headers=key)\n", (973, 1075), False, 'import requests\n'), ((1474, 1490), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (1484, 1490), False, 'import json\n'), ((865, 911), 'subprocess.check_output', 'check_output', (["['pass', 'api/gandi']"], {'text': '(True)'}), "(['pass', 'api/gandi'], text=True)\n", (877, 911), False, 'from subprocess import check_output\n'), ((653, 726), 'requests.get', 'requests.get', (['"""http://ifconfig.me"""'], {'headers': "{'User-Agent': 'curl/7.61.1'}"}), "('http://ifconfig.me', headers={'User-Agent': 'curl/7.61.1'})\n", (665, 726), False, 'import requests\n')]
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right from collections import deque from collections import defaultdict class Solution(object): def verticalOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] queue = deque([(root, 0)]) verticalNodeMap = defaultdict(list) while queue: node, horrizotalDistace = queue.popleft() if node: verticalNodeMap[horrizotalDistace].append(node.val) queue.append((node.left, horrizotalDistace - 1)) queue.append((node.right, horrizotalDistace + 1)) minHorrizotalDistace, maxHorrizotalDistace = min(verticalNodeMap.keys()), max(verticalNodeMap.keys()) result = [] for key in range(minHorrizotalDistace, maxHorrizotalDistace + 1): result.append(verticalNodeMap[key]) return result # My solution during mock, getting TLE, don't know why from collections import defaultdict from collections import deque class Solution(object): def verticalOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] orderMap = defaultdict(list) queue = deque([(root, 0)]) while queue: currentNode, vLine = queue.popleft() if currentNode: orderMap[vLine].append(root.val) queue.append((root.left, vLine - 1)) queue.append((root.right, vLine + 1)) result = [] for i in range(min(orderMap.keys()), max(orderMap.keys()) + 1): result.append(orderMap[i]) return result
[ "collections.deque", "collections.defaultdict" ]
[((471, 489), 'collections.deque', 'deque', (['[(root, 0)]'], {}), '([(root, 0)])\n', (476, 489), False, 'from collections import deque\n'), ((516, 533), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (527, 533), False, 'from collections import defaultdict\n'), ((1434, 1451), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1445, 1451), False, 'from collections import defaultdict\n'), ((1468, 1486), 'collections.deque', 'deque', (['[(root, 0)]'], {}), '([(root, 0)])\n', (1473, 1486), False, 'from collections import deque\n')]
import colorsys import cv2 from PIL import Image import pkg_resources from .LivescoreBase import LivescoreBase from .details import Alliance, OngoingMatchDetails class LivescoreCommon(LivescoreBase): def __init__(self, game_year, **kwargs): super(LivescoreCommon, self).__init__(game_year, **kwargs) self._match_key = None self._match_name = None def _getMatchKeyName(self, img, debug_img): if self._match_key is None: tl = self._transformPoint((220, 6)) br = self._transformPoint((570, 43)) raw_match_name = self._parseRawMatchName(self._getImgCropThresh(img, tl, br)) self._match_key = self._getMatchKey(raw_match_name) if self._match_key: self._match_name = raw_match_name else: self._match_name = None if self._debug: box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) return self._match_key, self._match_name def _getTimeAndMode(self, img, debug_img): # Check for match under review review_point1 = self._transformPoint((624, 93)) review_sample1 = img[review_point1[1], review_point1[0], :] hsvL = colorsys.rgb_to_hsv(float(review_sample1[2])/255, float(review_sample1[1])/255, float(review_sample1[0])/255) review_point2 = self._transformPoint((1279 - 624, 93)) review_sample2 = img[review_point2[1], review_point2[0], :] hsvR = colorsys.rgb_to_hsv(float(review_sample2[2])/255, float(review_sample2[1])/255, float(review_sample2[0])/255) if 0.116 < hsvL[0] < 0.216 and 0.116 < hsvR[0] < 0.216: return 0, 'post_match' # Find time remaining horiz_center = self._TEMPLATE_SHAPE[0]/2 tl = self._transformPoint((horiz_center-25, 56)) br = self._transformPoint((horiz_center+25, 82)) time_remaining = self._parseDigits(self._getImgCropThresh(img, tl, br)) if self._debug: # draw a green box for time box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) # Determine mode: 'pre_match', 'auto', 'teleop', or 'post_match' mode_point = self._transformPoint((520, 70)) mode_point2 = self._transformPoint((581, 70)) mode_sample = img[mode_point[1], mode_point[0], :] mode_sample2 = img[mode_point2[1], mode_point2[0], :] hsv1 = colorsys.rgb_to_hsv(float(mode_sample[2])/255, float(mode_sample[1])/255, float(mode_sample[0])/255) hsv2 = colorsys.rgb_to_hsv(float(mode_sample2[2])/255, float(mode_sample2[1])/255, float(mode_sample2[0])/255) if time_remaining is None: return None, None if time_remaining == 0: if hsv1[1] > 0.6 and hsv2[1] > 0.6: # Both saturated mode = 'post_match' elif hsv1[1] > 0.6: # First saturated mode = 'auto' # End of auton else: mode = 'pre_match' elif time_remaining <= 15 and hsv2[1] < 0.6: mode = 'auto' else: mode = 'teleop' if self._debug: box = self._cornersToBox(tl, br) self._drawBox(debug_img, box, (0, 255, 0)) cv2.circle(debug_img, review_point1, 2, (0, 255, 0), -1) cv2.circle(debug_img, review_point2, 2, (0, 255, 0), -1) cv2.circle(debug_img, mode_point, 2, (0, 255, 0), -1) cv2.circle(debug_img, mode_point2, 2, (0, 255, 0), -1) return time_remaining, mode def _getFlipped(self, img, debug_img): # Sample point to determine red/blue side color_point = self._transformPoint((520, 95)) color_sample = img[color_point[1], color_point[0], :] is_flipped = color_sample[0] > color_sample[2] # More blue than red if self._debug: cv2.circle(debug_img, color_point, 2, (0, 255, 0), -1) return is_flipped def _getScores(self, img, debug_img, is_flipped): # Left score limits left_tl = self._transformPoint((520, 110)) left_br = self._transformPoint((634, 155)) # Right score limits right_tl = self._transformPoint((644, 110)) right_br = self._transformPoint((760, 155)) left_score = self._parseDigits(self._getImgCropThresh(img, left_tl, left_br, white=True)) right_score = self._parseDigits(self._getImgCropThresh(img, right_tl, right_br, white=True)) if is_flipped: red_score = right_score blue_score = left_score else: red_score = left_score blue_score = right_score if self._debug: left_box = self._cornersToBox(left_tl, left_br) right_box = self._cornersToBox(right_tl, right_br) self._drawBox(debug_img, left_box, (255, 255, 0) if is_flipped else (255, 0, 255)) self._drawBox(debug_img, right_box, (255, 0, 255) if is_flipped else (255, 255, 0)) return red_score, blue_score def _getMatchDetails(self, img, force_find_overlay): debug_img = None if self._debug: debug_img = img.copy() time_remaining, mode = self._getTimeAndMode(img, debug_img) if self._is_new_overlay or force_find_overlay: self._match_key = None match_key, match_name = self._getMatchKeyName(img, debug_img) is_flipped = self._getFlipped(img, debug_img) red_score, blue_score = self._getScores(img, debug_img, is_flipped) box = self._cornersToBox(self._transformPoint((0, 0)), self._transformPoint((1280, 170))) self._drawBox(debug_img, box, (255, 255, 0)) if self._debug: cv2.imshow("Match Details", debug_img) cv2.waitKey() if match_key is not None and red_score is not None \ and blue_score is not None and time_remaining is not None: return OngoingMatchDetails( match_key=match_key, match_name=match_name, mode=mode, time=time_remaining, red=Alliance( score=red_score, ), blue=Alliance( score=blue_score, ) ) else: return None
[ "cv2.circle", "cv2.waitKey", "cv2.imshow" ]
[((3319, 3375), 'cv2.circle', 'cv2.circle', (['debug_img', 'review_point1', '(2)', '(0, 255, 0)', '(-1)'], {}), '(debug_img, review_point1, 2, (0, 255, 0), -1)\n', (3329, 3375), False, 'import cv2\n'), ((3388, 3444), 'cv2.circle', 'cv2.circle', (['debug_img', 'review_point2', '(2)', '(0, 255, 0)', '(-1)'], {}), '(debug_img, review_point2, 2, (0, 255, 0), -1)\n', (3398, 3444), False, 'import cv2\n'), ((3457, 3510), 'cv2.circle', 'cv2.circle', (['debug_img', 'mode_point', '(2)', '(0, 255, 0)', '(-1)'], {}), '(debug_img, mode_point, 2, (0, 255, 0), -1)\n', (3467, 3510), False, 'import cv2\n'), ((3523, 3577), 'cv2.circle', 'cv2.circle', (['debug_img', 'mode_point2', '(2)', '(0, 255, 0)', '(-1)'], {}), '(debug_img, mode_point2, 2, (0, 255, 0), -1)\n', (3533, 3577), False, 'import cv2\n'), ((3939, 3993), 'cv2.circle', 'cv2.circle', (['debug_img', 'color_point', '(2)', '(0, 255, 0)', '(-1)'], {}), '(debug_img, color_point, 2, (0, 255, 0), -1)\n', (3949, 3993), False, 'import cv2\n'), ((5788, 5826), 'cv2.imshow', 'cv2.imshow', (['"""Match Details"""', 'debug_img'], {}), "('Match Details', debug_img)\n", (5798, 5826), False, 'import cv2\n'), ((5839, 5852), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (5850, 5852), False, 'import cv2\n')]
"""Test API utilities.""" import json from pytradfri.api.libcoap_api import APIFactory from pytradfri.gateway import Gateway def test_constructor_timeout_passed_to_subprocess(monkeypatch): """Test that original timeout is passed to subprocess.""" capture = {} def capture_args(*args, **kwargs): capture.update(kwargs) return json.dumps([]) monkeypatch.setattr("subprocess.check_output", capture_args) api = APIFactory("anything", timeout=20, psk="abc") api.request(Gateway().get_devices()) assert capture["timeout"] == 20 def test_custom_timeout_passed_to_subprocess(monkeypatch): """Test that custom timeout is passed to subprocess.""" capture = {} def capture_args(*args, **kwargs): capture.update(kwargs) return json.dumps([]) monkeypatch.setattr("subprocess.check_output", capture_args) api = APIFactory("anything", psk="abc") api.request(Gateway().get_devices(), timeout=1) assert capture["timeout"] == 1
[ "json.dumps", "pytradfri.api.libcoap_api.APIFactory", "pytradfri.gateway.Gateway" ]
[((449, 494), 'pytradfri.api.libcoap_api.APIFactory', 'APIFactory', (['"""anything"""'], {'timeout': '(20)', 'psk': '"""abc"""'}), "('anything', timeout=20, psk='abc')\n", (459, 494), False, 'from pytradfri.api.libcoap_api import APIFactory\n'), ((888, 921), 'pytradfri.api.libcoap_api.APIFactory', 'APIFactory', (['"""anything"""'], {'psk': '"""abc"""'}), "('anything', psk='abc')\n", (898, 921), False, 'from pytradfri.api.libcoap_api import APIFactory\n'), ((357, 371), 'json.dumps', 'json.dumps', (['[]'], {}), '([])\n', (367, 371), False, 'import json\n'), ((796, 810), 'json.dumps', 'json.dumps', (['[]'], {}), '([])\n', (806, 810), False, 'import json\n'), ((511, 520), 'pytradfri.gateway.Gateway', 'Gateway', ([], {}), '()\n', (518, 520), False, 'from pytradfri.gateway import Gateway\n'), ((938, 947), 'pytradfri.gateway.Gateway', 'Gateway', ([], {}), '()\n', (945, 947), False, 'from pytradfri.gateway import Gateway\n')]
# scrapes Townes van Zandt lyrics # sample code so I don't have to remember all of this stuff # the next time I want to source some verses from bs4 import BeautifulSoup as soup import requests import string punctuation_trans_table = str.maketrans("", "", string.punctuation) def strip_punctuation(s): return s.translate(punctuation_trans_table) base_url = "http://ippc2.orst.edu/coopl/lyrics/" index = requests.get(base_url + "albums.html") parsed_index = soup(index.text) all_links = parsed_index.find_all("a") # get all <a> tags links = [l for l in all_links if l.text] # filter out image links def to_filename(s, path="texts/townes_van_zandt/"): '''Quick and dirty snake-casing''' s = s.replace("&amp;", "and") # special case, "Poncho & Lefty" s = strip_punctuation(s) s = s.lower() s = s.replace(" ", "_") s = path + s + ".txt" return s def process_link(link): title = link.text f = open(to_filename(title), "w") remote_file = link.get("href") song_file = requests.get(base_url + remote_file) verses = [l for l in soup(song_file.text).find_all("font") if l.get("size")] for verse in verses: if verse.text: f.writelines("\n".join(verse.stripped_strings)) f.write("\n\n")
[ "bs4.BeautifulSoup", "requests.get" ]
[((413, 451), 'requests.get', 'requests.get', (["(base_url + 'albums.html')"], {}), "(base_url + 'albums.html')\n", (425, 451), False, 'import requests\n'), ((467, 483), 'bs4.BeautifulSoup', 'soup', (['index.text'], {}), '(index.text)\n', (471, 483), True, 'from bs4 import BeautifulSoup as soup\n'), ((1025, 1061), 'requests.get', 'requests.get', (['(base_url + remote_file)'], {}), '(base_url + remote_file)\n', (1037, 1061), False, 'import requests\n'), ((1087, 1107), 'bs4.BeautifulSoup', 'soup', (['song_file.text'], {}), '(song_file.text)\n', (1091, 1107), True, 'from bs4 import BeautifulSoup as soup\n')]
# Copyright 2017 The Forseti Security Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KE Version Rule Scanner Tests.""" import unittest import mock from tests import unittest_utils from google.cloud.security.common.gcp_type import ( ke_cluster as ke_cluster_type) from google.cloud.security.common.gcp_type import ( organization as organization_type) from google.cloud.security.common.gcp_type import project as project_type from google.cloud.security.scanner.scanners import ke_version_scanner # pylint: disable=bad-indentation class FakeProjectDao(object): def get_project(self, project_id, snapshot_timestamp=0): return project_type.Project(project_id=project_id) class FakeOrgDao(object): def find_ancestors(self, resource_id, snapshot_timestamp=0): return [organization_type.Organization(organization_id=123456)] class KeVersionScannerTest(unittest_utils.ForsetiTestCase): def tearDown(self): self.org_patcher.stop() self.project_patcher.stop() def setUp(self): # patch the daos self.org_patcher = mock.patch( 'google.cloud.security.common.data_access.' 'org_resource_rel_dao.OrgResourceRelDao') self.mock_org_rel_dao = self.org_patcher.start() self.mock_org_rel_dao.return_value = FakeOrgDao() self.project_patcher = mock.patch( 'google.cloud.security.common.data_access.' 'project_dao.ProjectDao') self.mock_project_dao = self.project_patcher.start() self.mock_project_dao.return_value = FakeProjectDao() self.server_config = { 'defaultClusterVersion': '1.7.11-gke.1', 'validNodeVersions': [ '1.8.6-gke.0', '1.7.11-gke.1', '1.7.10-gke.1', '1.6.13-gke.1', ], 'defaultImageType': 'COS', 'validImageTypes': [ 'UBUNTU', 'COS' ], 'validMasterVersions': [ '1.8.6-gke.0', '1.7.11-gke.1' ] } self.ke_clusters = { # The main backend service. 'master-version-invalid': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'master-version-invalid', 'nodePools': [{ 'name': 'default-pool', 'version': '1.6.13-gke.1' }], 'initialClusterVersion': '1.6.13-gke.1', 'currentMasterVersion': '1.6.13-gke.1', 'currentNodeVersion': '1.6.13-gke.1' }), 'node-version-invalid': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'node-version-invalid', 'nodePools': [{ 'name': 'default-pool', 'version': '1.8.4-gke.1' }], 'initialClusterVersion': '1.8.4-gke.1', 'currentMasterVersion': '1.8.6-gke.0', 'currentNodeVersion': '1.8.4-gke.1' }), 'node-version-not-allowed': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'node-version-not-allowed', 'nodePools': [{ 'name': 'default-pool', 'version': '1.7.10-gke.1' }], 'initialClusterVersion': '1.7.10-gke.1', 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion': '1.7.10-gke.1' }), 'multiple-node-pools': ke_cluster_type.KeCluster.from_dict( 'foo', self.server_config, { 'name': 'multiple-node-pools', 'nodePools': [{ 'name': 'default-pool', 'version': '1.7.11-gke.1' }, { 'name': 'secondary-pool', 'version': '1.7.11-gke.1' }], 'initialClusterVersion': '1.7.11-gke.1', 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion': '1.7.11-gke.1' }) } self.scanner = ke_version_scanner.KeVersionScanner( {}, {}, '', unittest_utils.get_datafile_path( __file__, 'ke_version_scanner_test_data.yaml')) self.scanner._retrieve = mock.Mock( return_value=self.ke_clusters.values()) @mock.patch.object( ke_version_scanner.KeVersionScanner, '_output_results_to_db', autospec=True) def test_run_scanner(self, mock_output_results): self.scanner.run() expected_violations = [ {'resource_id': 'node-version-not-allowed', 'resource_type': 'ke', 'rule_index': 2, 'rule_name': 'Disallowed node pool version', 'violation_data': {'cluster_name': 'node-version-not-allowed', 'node_pool_name': 'default-pool', 'project_id': 'foo', 'violation_reason': ( "Node pool version 1.7.10-gke.1 is not " "allowed (['>= 1.6.13-gke.1', " "'>= 1.7.11-gke.1', '>= 1.8.4-gke.1', " "'>= 1.9.*']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}, {'resource_id': 'master-version-invalid', 'resource_type': 'ke', 'rule_index': 1, 'rule_name': 'Unsupported master version', 'violation_data': {'cluster_name': 'master-version-invalid', 'node_pool_name': '', 'project_id': 'foo', 'violation_reason': ( "Master version 1.6.13-gke.1 is not " "supported (['1.7.11-gke.1', " "'1.8.6-gke.0']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}, {'resource_id': 'node-version-invalid', 'resource_type': 'ke', 'rule_index': 0, 'rule_name': 'Unsupported node pool version', 'violation_data': {'cluster_name': 'node-version-invalid', 'node_pool_name': 'default-pool', 'project_id': 'foo', 'violation_reason': ( "Node pool version 1.8.4-gke.1 is not " "supported (['1.6.13-gke.1', " "'1.7.10-gke.1', '1.7.11-gke.1', " "'1.8.6-gke.0']).")}, 'violation_type': 'KE_VERSION_VIOLATION'}] mock_output_results.assert_called_once_with(mock.ANY, expected_violations) if __name__ == '__main__': unittest.main()
[ "mock.patch", "tests.unittest_utils.get_datafile_path", "google.cloud.security.common.gcp_type.organization.Organization", "google.cloud.security.common.gcp_type.project.Project", "mock.patch.object", "google.cloud.security.common.gcp_type.ke_cluster.KeCluster.from_dict", "unittest.main" ]
[((5310, 5408), 'mock.patch.object', 'mock.patch.object', (['ke_version_scanner.KeVersionScanner', '"""_output_results_to_db"""'], {'autospec': '(True)'}), "(ke_version_scanner.KeVersionScanner,\n '_output_results_to_db', autospec=True)\n", (5327, 5408), False, 'import mock\n'), ((7879, 7894), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7892, 7894), False, 'import unittest\n'), ((1179, 1222), 'google.cloud.security.common.gcp_type.project.Project', 'project_type.Project', ([], {'project_id': 'project_id'}), '(project_id=project_id)\n', (1199, 1222), True, 'from google.cloud.security.common.gcp_type import project as project_type\n'), ((1618, 1721), 'mock.patch', 'mock.patch', (['"""google.cloud.security.common.data_access.org_resource_rel_dao.OrgResourceRelDao"""'], {}), "(\n 'google.cloud.security.common.data_access.org_resource_rel_dao.OrgResourceRelDao'\n )\n", (1628, 1721), False, 'import mock\n'), ((1887, 1964), 'mock.patch', 'mock.patch', (['"""google.cloud.security.common.data_access.project_dao.ProjectDao"""'], {}), "('google.cloud.security.common.data_access.project_dao.ProjectDao')\n", (1897, 1964), False, 'import mock\n'), ((1333, 1387), 'google.cloud.security.common.gcp_type.organization.Organization', 'organization_type.Organization', ([], {'organization_id': '(123456)'}), '(organization_id=123456)\n', (1363, 1387), True, 'from google.cloud.security.common.gcp_type import organization as organization_type\n'), ((2744, 3045), 'google.cloud.security.common.gcp_type.ke_cluster.KeCluster.from_dict', 'ke_cluster_type.KeCluster.from_dict', (['"""foo"""', 'self.server_config', "{'name': 'master-version-invalid', 'nodePools': [{'name': 'default-pool',\n 'version': '1.6.13-gke.1'}], 'initialClusterVersion': '1.6.13-gke.1',\n 'currentMasterVersion': '1.6.13-gke.1', 'currentNodeVersion':\n '1.6.13-gke.1'}"], {}), "('foo', self.server_config, {'name':\n 'master-version-invalid', 'nodePools': [{'name': 'default-pool',\n 'version': '1.6.13-gke.1'}], 'initialClusterVersion': '1.6.13-gke.1',\n 'currentMasterVersion': '1.6.13-gke.1', 'currentNodeVersion':\n '1.6.13-gke.1'})\n", (2779, 3045), True, 'from google.cloud.security.common.gcp_type import ke_cluster as ke_cluster_type\n'), ((3288, 3584), 'google.cloud.security.common.gcp_type.ke_cluster.KeCluster.from_dict', 'ke_cluster_type.KeCluster.from_dict', (['"""foo"""', 'self.server_config', "{'name': 'node-version-invalid', 'nodePools': [{'name': 'default-pool',\n 'version': '1.8.4-gke.1'}], 'initialClusterVersion': '1.8.4-gke.1',\n 'currentMasterVersion': '1.8.6-gke.0', 'currentNodeVersion': '1.8.4-gke.1'}"], {}), "('foo', self.server_config, {'name':\n 'node-version-invalid', 'nodePools': [{'name': 'default-pool',\n 'version': '1.8.4-gke.1'}], 'initialClusterVersion': '1.8.4-gke.1',\n 'currentMasterVersion': '1.8.6-gke.0', 'currentNodeVersion': '1.8.4-gke.1'}\n )\n", (3323, 3584), True, 'from google.cloud.security.common.gcp_type import ke_cluster as ke_cluster_type\n'), ((3830, 4133), 'google.cloud.security.common.gcp_type.ke_cluster.KeCluster.from_dict', 'ke_cluster_type.KeCluster.from_dict', (['"""foo"""', 'self.server_config', "{'name': 'node-version-not-allowed', 'nodePools': [{'name': 'default-pool',\n 'version': '1.7.10-gke.1'}], 'initialClusterVersion': '1.7.10-gke.1',\n 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion':\n '1.7.10-gke.1'}"], {}), "('foo', self.server_config, {'name':\n 'node-version-not-allowed', 'nodePools': [{'name': 'default-pool',\n 'version': '1.7.10-gke.1'}], 'initialClusterVersion': '1.7.10-gke.1',\n 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion':\n '1.7.10-gke.1'})\n", (3865, 4133), True, 'from google.cloud.security.common.gcp_type import ke_cluster as ke_cluster_type\n'), ((4375, 4728), 'google.cloud.security.common.gcp_type.ke_cluster.KeCluster.from_dict', 'ke_cluster_type.KeCluster.from_dict', (['"""foo"""', 'self.server_config', "{'name': 'multiple-node-pools', 'nodePools': [{'name': 'default-pool',\n 'version': '1.7.11-gke.1'}, {'name': 'secondary-pool', 'version':\n '1.7.11-gke.1'}], 'initialClusterVersion': '1.7.11-gke.1',\n 'currentMasterVersion': '1.7.11-gke.1', 'currentNodeVersion':\n '1.7.11-gke.1'}"], {}), "('foo', self.server_config, {'name':\n 'multiple-node-pools', 'nodePools': [{'name': 'default-pool', 'version':\n '1.7.11-gke.1'}, {'name': 'secondary-pool', 'version': '1.7.11-gke.1'}],\n 'initialClusterVersion': '1.7.11-gke.1', 'currentMasterVersion':\n '1.7.11-gke.1', 'currentNodeVersion': '1.7.11-gke.1'})\n", (4410, 4728), True, 'from google.cloud.security.common.gcp_type import ke_cluster as ke_cluster_type\n'), ((5110, 5189), 'tests.unittest_utils.get_datafile_path', 'unittest_utils.get_datafile_path', (['__file__', '"""ke_version_scanner_test_data.yaml"""'], {}), "(__file__, 'ke_version_scanner_test_data.yaml')\n", (5142, 5189), False, 'from tests import unittest_utils\n')]
import math def lognormal_mean(m, stddev): """ compute mean of log x with mean and std. of x Args: m: mean of x stddev: standard deviation of x Returns: mean of log x """ return math.log(m) - (0.5 * math.log(1.0 + (stddev * stddev) / (m * m))) def lognormal_stddev(m, stddev): """ compute std. of log x with mean and std. of x Args: m: mean of x stddev: standard deviation of x Returns: std. of log x """ return math.sqrt(math.log((stddev * stddev) / (m * m) + 1)) def lognormal_underlying_mean(m, stddev): """ compute mean of x with mean and std of log x Args: m: mean of log x stddev: std of log x Returns: """ # if m == 0 or stddev == 0: # print '{}'.format('why ???') # return 0 return math.exp(m + 0.5 * stddev * stddev) def lognormal_underlying_stddev(m, stddev): """ compute std of x with mean and std of log x Args: m: mean of log x stddev: std of log x Returns: std of x """ # if m == 0 or stddev == 0: # print '{}'.format('strange why???') # return 0 return math.sqrt((math.exp(stddev**2.0) - 1.0) * math.exp(2.0*m + stddev**2.0)) #return lognormal_underlying_mean(m, stddev) * \ # math.sqrt((math.exp(stddev * stddev) - 1.0))
[ "math.exp", "math.log" ]
[((873, 908), 'math.exp', 'math.exp', (['(m + 0.5 * stddev * stddev)'], {}), '(m + 0.5 * stddev * stddev)\n', (881, 908), False, 'import math\n'), ((230, 241), 'math.log', 'math.log', (['m'], {}), '(m)\n', (238, 241), False, 'import math\n'), ((528, 567), 'math.log', 'math.log', (['(stddev * stddev / (m * m) + 1)'], {}), '(stddev * stddev / (m * m) + 1)\n', (536, 567), False, 'import math\n'), ((251, 292), 'math.log', 'math.log', (['(1.0 + stddev * stddev / (m * m))'], {}), '(1.0 + stddev * stddev / (m * m))\n', (259, 292), False, 'import math\n'), ((1292, 1325), 'math.exp', 'math.exp', (['(2.0 * m + stddev ** 2.0)'], {}), '(2.0 * m + stddev ** 2.0)\n', (1300, 1325), False, 'import math\n'), ((1239, 1262), 'math.exp', 'math.exp', (['(stddev ** 2.0)'], {}), '(stddev ** 2.0)\n', (1247, 1262), False, 'import math\n')]
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #To suppress warnings thrown by tensorflow from time import sleep import numpy as np from cv2 import cv2 import pyautogui as pg import Sudoku_Core as SC import OCR s = 513//9 #Size of board//9 fs = 25 #Size of the final image def getBoard(): pg.click(266, 740) sleep(1) pg.click(266, 930) #Changing the difficulty to expert sleep(2) image = pg.screenshot(region=(10, 187, 513, 513)) image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2GRAY) _,image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV) return image def readBoard(image): for i in range(9): for j in range(9): subImage = image[i*s + 3: (i+1)*s - 3, j*s + 3: (j+1)*s - 3] #(+3, -3) is a hack to remove border contours contour, _ = cv2.findContours(subImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contour != []: (x, y, w, h) = cv2.boundingRect(contour[0]) img = cv2.resize(subImage[y: y+h, x: x+w], (fs, fs), interpolation=cv2.INTER_AREA) else: img = np.zeros((fs,fs), dtype='uint8') SC.board[i][j] = OCR.model.predict(img.reshape(1, fs, fs, 1)).argmax() def outputBoard(): for ((posY, posX), v) in SC.moves.items(): posX = 42 + posX * 57 posY = 216 + posY * 57 pg.moveTo(posX, posY, 0.1) pg.click() # vX = 42 + 55*(v-1) # vY = 843 # pg.moveTo(vX, vY, 0.1) #To use the numpad in the app # pg.click() pg.typewrite(str(v)) #To send numbers from the keyboard def main(): image = getBoard() readBoard(image) print('Got the board, now solving') if SC.solve(0, 0): outputBoard() else: print('Couldn\'t solve') input('Press any key to exit') if __name__ == '__main__': main()
[ "cv2.cv2.threshold", "pyautogui.moveTo", "pyautogui.screenshot", "cv2.cv2.findContours", "numpy.asarray", "time.sleep", "pyautogui.click", "Sudoku_Core.solve", "cv2.cv2.resize", "numpy.zeros", "Sudoku_Core.moves.items", "cv2.cv2.boundingRect" ]
[((298, 316), 'pyautogui.click', 'pg.click', (['(266)', '(740)'], {}), '(266, 740)\n', (306, 316), True, 'import pyautogui as pg\n'), ((318, 326), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (323, 326), False, 'from time import sleep\n'), ((328, 346), 'pyautogui.click', 'pg.click', (['(266)', '(930)'], {}), '(266, 930)\n', (336, 346), True, 'import pyautogui as pg\n'), ((383, 391), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (388, 391), False, 'from time import sleep\n'), ((402, 443), 'pyautogui.screenshot', 'pg.screenshot', ([], {'region': '(10, 187, 513, 513)'}), '(region=(10, 187, 513, 513))\n', (415, 443), True, 'import pyautogui as pg\n'), ((516, 569), 'cv2.cv2.threshold', 'cv2.threshold', (['image', '(127)', '(255)', 'cv2.THRESH_BINARY_INV'], {}), '(image, 127, 255, cv2.THRESH_BINARY_INV)\n', (529, 569), False, 'from cv2 import cv2\n'), ((1180, 1196), 'Sudoku_Core.moves.items', 'SC.moves.items', ([], {}), '()\n', (1194, 1196), True, 'import Sudoku_Core as SC\n'), ((1551, 1565), 'Sudoku_Core.solve', 'SC.solve', (['(0)', '(0)'], {}), '(0, 0)\n', (1559, 1565), True, 'import Sudoku_Core as SC\n'), ((466, 483), 'numpy.asarray', 'np.asarray', (['image'], {}), '(image)\n', (476, 483), True, 'import numpy as np\n'), ((1249, 1275), 'pyautogui.moveTo', 'pg.moveTo', (['posX', 'posY', '(0.1)'], {}), '(posX, posY, 0.1)\n', (1258, 1275), True, 'import pyautogui as pg\n'), ((1278, 1288), 'pyautogui.click', 'pg.click', ([], {}), '()\n', (1286, 1288), True, 'import pyautogui as pg\n'), ((776, 846), 'cv2.cv2.findContours', 'cv2.findContours', (['subImage', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(subImage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)\n', (792, 846), False, 'from cv2 import cv2\n'), ((887, 915), 'cv2.cv2.boundingRect', 'cv2.boundingRect', (['contour[0]'], {}), '(contour[0])\n', (903, 915), False, 'from cv2 import cv2\n'), ((926, 1004), 'cv2.cv2.resize', 'cv2.resize', (['subImage[y:y + h, x:x + w]', '(fs, fs)'], {'interpolation': 'cv2.INTER_AREA'}), '(subImage[y:y + h, x:x + w], (fs, fs), interpolation=cv2.INTER_AREA)\n', (936, 1004), False, 'from cv2 import cv2\n'), ((1026, 1059), 'numpy.zeros', 'np.zeros', (['(fs, fs)'], {'dtype': '"""uint8"""'}), "((fs, fs), dtype='uint8')\n", (1034, 1059), True, 'import numpy as np\n')]
from app import db, login from flask_login import UserMixin from datetime import datetime from flask import url_for, redirect from werkzeug.security import generate_password_hash, check_password_hash class users(UserMixin, db.Model): __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True, autoincrement=True) username = db.Column(db.String(100), nullable=False, unique=True) password = db.Column(db.String(96), nullable=False) email = db.Column(db.String(128), nullable=False, unique=True) firstname = db.Column(db.String(130), nullable=False) lastname = db.Column(db.String(130), nullable=False) lastLogin = db.Column(db.DateTime) isActive = db.Column(db.Boolean) isAdmin = db.Column(db.Boolean) noteHighScore = db.Column(db.Integer) KeyHighScore = db.Column(db.Integer) submit = db.relationship("submission", backref="submitter") ################################################### def __init__(self): self.isActive = True self.isAdmin = False self.noteHighScore = 0 self.lastLogin = None self.KeyHighScore = 0 def set_password(self, pwd): self.password = generate_password_hash(pwd, method="<PASSWORD>") def check_password(self, pwd): return check_password_hash(self.password, pwd) def is_active(self): return self.isActive def validate(self): if self.username and self.email and self.firstname and self.lastname: return True else: return False def getSubmissions(self): res = submission.query.filter_by(creater_id=self.id).all() return res def __repr__(self): return '<user %r>' % self.username class submission(db.Model): __tablename__ = 'submission' id = db.Column(db.Integer, primary_key=True, autoincrement=True) createdAt = db.Column(db.DateTime, nullable=False) markedAt = db.Column(db.DateTime) feedback = db.Column(db.Boolean) totalmark = db.Column(db.Integer) difficulty = db.Column(db.String(30), nullable=False) passed = db.Column(db.Boolean) creater_id = db.Column(db.Integer, db.ForeignKey("users.id"), nullable=False) answers = db.relationship("answer", backref="submission") def __init__(self): self.createdAt = datetime.utcnow() self.markedAt = None self.feedback = False self.totalmark = None self.marked = False self.passed = False def validate(self): if self.difficulty and self.creater_id and self.createdAt: return True def __repr__(self): return '<submission %r>' % self.id class answer(db.Model): __tablename__ = 'answer' id = db.Column(db.Integer, primary_key=True, autoincrement=True) answerSeq = db.Column(db.Integer) submittedAnswer = db.Column(db.String(400)) feedback = db.Column(db.String(400)) markreceived = db.Column(db.Boolean) submissionId = db.Column(db.Integer, db.ForeignKey("submission.id")) def __init__(self): self.feedback = None self.markreceived = False def validate(self): if self.answerSeq and self.submittedAnswer and self.submissionId: return True else: print("missingfield") return False def __repr__(self): return '<ans>' @login.user_loader def load_user(usr_id): return users.query.get(int(usr_id)) @login.unauthorized_handler def unauthorized(): return redirect(url_for("auth.login"))
[ "datetime.datetime.utcnow", "app.db.String", "flask.url_for", "werkzeug.security.generate_password_hash", "app.db.Column", "app.db.ForeignKey", "app.db.relationship", "werkzeug.security.check_password_hash" ]
[((273, 332), 'app.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)', 'autoincrement': '(True)'}), '(db.Integer, primary_key=True, autoincrement=True)\n', (282, 332), False, 'from app import db, login\n'), ((657, 679), 'app.db.Column', 'db.Column', (['db.DateTime'], {}), '(db.DateTime)\n', (666, 679), False, 'from app import db, login\n'), ((695, 716), 'app.db.Column', 'db.Column', (['db.Boolean'], {}), '(db.Boolean)\n', (704, 716), False, 'from app import db, login\n'), ((731, 752), 'app.db.Column', 'db.Column', (['db.Boolean'], {}), '(db.Boolean)\n', (740, 752), False, 'from app import db, login\n'), ((773, 794), 'app.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (782, 794), False, 'from app import db, login\n'), ((814, 835), 'app.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (823, 835), False, 'from app import db, login\n'), ((849, 899), 'app.db.relationship', 'db.relationship', (['"""submission"""'], {'backref': '"""submitter"""'}), "('submission', backref='submitter')\n", (864, 899), False, 'from app import db, login\n'), ((1821, 1880), 'app.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)', 'autoincrement': '(True)'}), '(db.Integer, primary_key=True, autoincrement=True)\n', (1830, 1880), False, 'from app import db, login\n'), ((1897, 1935), 'app.db.Column', 'db.Column', (['db.DateTime'], {'nullable': '(False)'}), '(db.DateTime, nullable=False)\n', (1906, 1935), False, 'from app import db, login\n'), ((1951, 1973), 'app.db.Column', 'db.Column', (['db.DateTime'], {}), '(db.DateTime)\n', (1960, 1973), False, 'from app import db, login\n'), ((1989, 2010), 'app.db.Column', 'db.Column', (['db.Boolean'], {}), '(db.Boolean)\n', (1998, 2010), False, 'from app import db, login\n'), ((2027, 2048), 'app.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (2036, 2048), False, 'from app import db, login\n'), ((2120, 2141), 'app.db.Column', 'db.Column', (['db.Boolean'], {}), '(db.Boolean)\n', (2129, 2141), False, 'from app import db, login\n'), ((2238, 2285), 'app.db.relationship', 'db.relationship', (['"""answer"""'], {'backref': '"""submission"""'}), "('answer', backref='submission')\n", (2253, 2285), False, 'from app import db, login\n'), ((2764, 2823), 'app.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)', 'autoincrement': '(True)'}), '(db.Integer, primary_key=True, autoincrement=True)\n', (2773, 2823), False, 'from app import db, login\n'), ((2840, 2861), 'app.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (2849, 2861), False, 'from app import db, login\n'), ((2970, 2991), 'app.db.Column', 'db.Column', (['db.Boolean'], {}), '(db.Boolean)\n', (2979, 2991), False, 'from app import db, login\n'), ((358, 372), 'app.db.String', 'db.String', (['(100)'], {}), '(100)\n', (367, 372), False, 'from app import db, login\n'), ((428, 441), 'app.db.String', 'db.String', (['(96)'], {}), '(96)\n', (437, 441), False, 'from app import db, login\n'), ((481, 495), 'app.db.String', 'db.String', (['(128)'], {}), '(128)\n', (490, 495), False, 'from app import db, login\n'), ((552, 566), 'app.db.String', 'db.String', (['(130)'], {}), '(130)\n', (561, 566), False, 'from app import db, login\n'), ((609, 623), 'app.db.String', 'db.String', (['(130)'], {}), '(130)\n', (618, 623), False, 'from app import db, login\n'), ((1197, 1245), 'werkzeug.security.generate_password_hash', 'generate_password_hash', (['pwd'], {'method': '"""<PASSWORD>"""'}), "(pwd, method='<PASSWORD>')\n", (1219, 1245), False, 'from werkzeug.security import generate_password_hash, check_password_hash\n'), ((1297, 1336), 'werkzeug.security.check_password_hash', 'check_password_hash', (['self.password', 'pwd'], {}), '(self.password, pwd)\n', (1316, 1336), False, 'from werkzeug.security import generate_password_hash, check_password_hash\n'), ((2076, 2089), 'app.db.String', 'db.String', (['(30)'], {}), '(30)\n', (2085, 2089), False, 'from app import db, login\n'), ((2181, 2206), 'app.db.ForeignKey', 'db.ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (2194, 2206), False, 'from app import db, login\n'), ((2336, 2353), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2351, 2353), False, 'from datetime import datetime\n'), ((2894, 2908), 'app.db.String', 'db.String', (['(400)'], {}), '(400)\n', (2903, 2908), False, 'from app import db, login\n'), ((2935, 2949), 'app.db.String', 'db.String', (['(400)'], {}), '(400)\n', (2944, 2949), False, 'from app import db, login\n'), ((3033, 3063), 'app.db.ForeignKey', 'db.ForeignKey', (['"""submission.id"""'], {}), "('submission.id')\n", (3046, 3063), False, 'from app import db, login\n'), ((3550, 3571), 'flask.url_for', 'url_for', (['"""auth.login"""'], {}), "('auth.login')\n", (3557, 3571), False, 'from flask import url_for, redirect\n')]
# AUTOGENERATED! DO NOT EDIT! File to edit: source_nbs/12_top.ipynb (unless otherwise specified). __all__ = ['empty_tensor_handling_loss', 'nan_loss_handling', 'create_dummy_if_empty', 'BaseTop', 'SequenceLabel', 'Classification', 'PreTrain', 'Seq2Seq', 'MultiLabelClassification', 'MaskLM'] # Cell import logging from functools import partial from typing import Dict, Tuple, Union import tensorflow as tf import tensorflow_addons as tfa import transformers from transformers.modeling_tf_utils import TFSharedEmbeddings from tensorflow_addons.layers.crf import CRF from tensorflow_addons.text.crf import crf_log_likelihood from .params import BaseParams from .utils import gather_indexes @tf.function def empty_tensor_handling_loss(labels, logits, loss_fn): if tf.equal(tf.size(labels), 0): return 0.0 if tf.equal(tf.size(tf.shape(labels)), 0): return 0.0 if tf.equal(tf.shape(labels)[0], 0): return 0.0 else: return tf.reduce_mean(loss_fn( labels, logits, from_logits=True)) @tf.function def nan_loss_handling(loss): if tf.math.is_nan(loss): return 0.0 else: return loss @tf.function def create_dummy_if_empty(inp_tensor: tf.Tensor) -> tf.Tensor: shape_tensor = tf.shape(inp_tensor) if tf.equal(shape_tensor[0], 0): data_type = inp_tensor.dtype dummy_shape_first_dim = tf.convert_to_tensor([1], dtype=tf.int32) dummy_shape = tf.concat( [dummy_shape_first_dim, shape_tensor[1:]], axis=0) dummy_tensor = tf.zeros(dummy_shape, dtype=data_type) return dummy_tensor else: return inp_tensor class BaseTop(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str) -> None: super(BaseTop, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name def call(self, inputs: Tuple[Dict], mode: str): raise NotImplementedError # Cell class SequenceLabel(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str): super(SequenceLabel, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name num_classes = self.params.num_classes[self.problem_name] self.dense = tf.keras.layers.Dense(num_classes, activation=None) self.dropout = tf.keras.layers.Dropout(1-params.dropout_keep_prob) if self.params.crf: self.crf = CRF(num_classes) self.metric_fn = tf.keras.metrics.Accuracy( name='{}_acc'.format(self.problem_name) ) else: self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( name='{}_acc'.format(self.problem_name)) def return_crf_result(self, labels: tf.Tensor, logits: tf.Tensor, mode: str, input_mask: tf.Tensor): input_mask.set_shape([None, None]) logits = create_dummy_if_empty(logits) input_mask = create_dummy_if_empty(input_mask) viterbi_decoded, potentials, sequence_length, chain_kernel = self.crf( logits, input_mask) if mode != tf.estimator.ModeKeys.PREDICT: loss = -crf_log_likelihood(potentials, labels, sequence_length, chain_kernel)[0] loss = tf.reduce_mean(loss) loss = nan_loss_handling(loss) self.add_loss(loss) acc = self.metric_fn( labels, viterbi_decoded, sample_weight=input_mask) self.add_metric(acc) # make the crf prediction has the same shape as non-crf prediction return tf.one_hot(viterbi_decoded, name='%s_predict' % self.problem_name, depth=self.params.num_classes[self.problem_name]) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['seq'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] # sometimes the length of labels dose not equal to length of inputs # that's caused by tf.data.experimental.bucket_by_sequence_length in multi problem scenario pad_len = tf.shape(input=hidden_feature)[ 1] - tf.shape(input=labels)[1] # top, bottom, left, right pad_tensor = [[0, 0], [0, pad_len]] labels = tf.pad(tensor=labels, paddings=pad_tensor) else: labels = None hidden_feature = self.dropout(hidden_feature, training) if self.params.crf: return self.return_crf_result(labels, hidden_feature, mode, feature['model_input_mask']) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: loss = empty_tensor_handling_loss( labels, logits, tf.keras.losses.sparse_categorical_crossentropy) self.add_loss(loss) acc = self.metric_fn( labels, logits, sample_weight=feature['model_input_mask']) self.add_metric(acc) return tf.nn.softmax( logits, name='%s_predict' % self.problem_name) # Cell class Classification(tf.keras.layers.Layer): def __init__(self, params: BaseParams, problem_name: str) -> None: super(Classification, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name num_classes = self.params.num_classes[self.problem_name] self.dense = tf.keras.layers.Dense(num_classes, activation=None) self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( name='{}_acc'.format(self.problem_name)) self.dropout = tf.keras.layers.Dropout(1-params.dropout_keep_prob) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['pooled'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] else: labels = None hidden_feature = self.dropout(hidden_feature, training) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: # labels = tf.squeeze(labels) # convert labels to one-hot to use label_smoothing one_hot_labels = tf.one_hot( labels, depth=self.params.num_classes[self.problem_name]) loss_fn = partial(tf.keras.losses.categorical_crossentropy, from_logits=True, label_smoothing=self.params.label_smoothing) loss = empty_tensor_handling_loss( one_hot_labels, logits, loss_fn) loss = nan_loss_handling(loss) self.add_loss(loss) acc = self.metric_fn(labels, logits) self.add_metric(acc) return tf.nn.softmax( logits, name='%s_predict' % self.problem_name) # Cell class PreTrain(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.Tensor=None, share_embedding=True): super(PreTrain, self).__init__(name=problem_name) self.params = params self.nsp = transformers.models.bert.modeling_tf_bert.TFBertNSPHead( self.params.bert_config) if share_embedding is False: self.vocab_size = self.params.bert_config.vocab_size self.share_embedding = False else: word_embedding_weight = input_embeddings.word_embeddings self.vocab_size = word_embedding_weight.shape[0] embedding_size = word_embedding_weight.shape[-1] share_valid = (self.params.bert_config.hidden_size == embedding_size) if not share_valid and self.params.share_embedding: logging.warning( 'Share embedding is enabled but hidden_size != embedding_size') self.share_embedding = self.params.share_embedding & share_valid if self.share_embedding: self.share_embedding_layer = TFSharedEmbeddings( vocab_size=word_embedding_weight.shape[0], hidden_size=word_embedding_weight.shape[1]) self.share_embedding_layer.build([1]) self.share_embedding_layer.weight = word_embedding_weight else: self.share_embedding_layer = tf.keras.layers.Dense(self.vocab_size) def call(self, inputs: Tuple[Dict[str, Dict[str, tf.Tensor]], Dict[str, Dict[str, tf.Tensor]]], mode: str) -> Tuple[tf.Tensor, tf.Tensor]: features, hidden_features = inputs # compute logits nsp_logits = self.nsp(hidden_features['pooled']) # masking is done inside the model seq_hidden_feature = hidden_features['seq'] if mode != tf.estimator.ModeKeys.PREDICT: positions = features['masked_lm_positions'] # gather_indexes will flatten the seq hidden_states, we need to reshape # back to 3d tensor input_tensor = gather_indexes(seq_hidden_feature, positions) shape_tensor = tf.shape(positions) shape_list = tf.concat( [shape_tensor, [seq_hidden_feature.shape.as_list()[-1]]], axis=0) input_tensor = tf.reshape(input_tensor, shape=shape_list) # set_shape to determin rank input_tensor.set_shape( [None, None, seq_hidden_feature.shape.as_list()[-1]]) else: input_tensor = seq_hidden_feature if self.share_embedding: mlm_logits = self.share_embedding_layer( input_tensor, mode='linear') else: mlm_logits = self.share_embedding_layer(input_tensor) if mode != tf.estimator.ModeKeys.PREDICT: nsp_labels = features['next_sentence_label_ids'] mlm_labels = features['masked_lm_ids'] mlm_labels.set_shape([None, None]) # compute loss nsp_loss = empty_tensor_handling_loss( nsp_labels, nsp_logits, tf.keras.losses.sparse_categorical_crossentropy) mlm_loss_layer = transformers.modeling_tf_utils.TFMaskedLanguageModelingLoss() # mlm_loss = tf.reduce_mean( # mlm_loss_layer.compute_loss(mlm_labels, mlm_logits)) # add a useless from_logits argument to match the function signature of keras losses. def loss_fn_wrapper(labels, logits, from_logits=True): return mlm_loss_layer.compute_loss(labels, logits) mlm_loss = empty_tensor_handling_loss( mlm_labels, mlm_logits, loss_fn_wrapper ) loss = nsp_loss + mlm_loss self.add_loss(loss) return (tf.sigmoid(nsp_logits), tf.nn.softmax(mlm_logits)) # Cell class Seq2Seq(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.keras.layers.Layer): super(Seq2Seq, self).__init__(name=problem_name) # self.params = params # self.problem_name = problem_name # # if self.params.init_weight_from_huggingface: # # self.decoder = load_transformer_model( # # self.params.transformer_decoder_model_name, # # self.params.transformer_decoder_model_loading) # # else: # # self.decoder = load_transformer_model( # # self.params.bert_decoder_config, self.params.transformer_decoder_model_loading) # # TODO: better implementation # logging.warning( # 'Seq2Seq model is not well supported yet. Bugs are expected.') # config = self.params.bert_decoder_config # # some hacky approach to share embeddings from encoder to decoder # word_embedding_weight = input_embeddings.word_embeddings # self.vocab_size = word_embedding_weight.shape[0] # self.share_embedding_layer = TFSharedEmbeddings( # vocab_size=word_embedding_weight.shape[0], hidden_size=word_embedding_weight.shape[1]) # self.share_embedding_layer.build([1]) # self.share_embedding_layer.weight = word_embedding_weight # # self.decoder = TFBartDecoder( # # config=config, embed_tokens=self.share_embedding_layer) # self.decoder = TFBartDecoderForConditionalGeneration( # config=config, embedding_layer=self.share_embedding_layer) # self.decoder.set_bos_id(self.params.bos_id) # self.decoder.set_eos_id(self.params.eos_id) # self.metric_fn = tf.keras.metrics.SparseCategoricalAccuracy( # name='{}_acc'.format(self.problem_name)) raise NotImplementedError def _seq2seq_label_shift_right(self, labels: tf.Tensor, eos_id: int) -> tf.Tensor: batch_eos_ids = tf.fill([tf.shape(labels)[0], 1], eos_id) batch_eos_ids = tf.cast(batch_eos_ids, dtype=tf.int64) decoder_lable = labels[:, 1:] decoder_lable = tf.concat([decoder_lable, batch_eos_ids], axis=1) return decoder_lable def call(self, inputs: Tuple[Dict[str, Dict[str, tf.Tensor]], Dict[str, Dict[str, tf.Tensor]]], mode: str): features, hidden_features = inputs encoder_mask = features['model_input_mask'] if mode == tf.estimator.ModeKeys.PREDICT: input_ids = None decoder_padding_mask = None else: input_ids = features['%s_label_ids' % self.problem_name] decoder_padding_mask = features['{}_mask'.format( self.problem_name)] if mode == tf.estimator.ModeKeys.PREDICT: return self.decoder.generate(eos_token_id=self.params.eos_id, encoder_hidden_states=hidden_features['seq']) else: decoder_output = self.decoder(input_ids=input_ids, encoder_hidden_states=hidden_features['seq'], encoder_padding_mask=encoder_mask, decoder_padding_mask=decoder_padding_mask, decode_max_length=self.params.decode_max_seq_len, mode=mode) loss = decoder_output.loss logits = decoder_output.logits self.add_loss(loss) decoder_label = self._seq2seq_label_shift_right( features['%s_label_ids' % self.problem_name], eos_id=self.params.eos_id) acc = self.metric_fn(decoder_label, logits) self.add_metric(acc) return logits # Cell class MultiLabelClassification(tf.keras.Model): def __init__(self, params: BaseParams, problem_name: str) -> None: super(MultiLabelClassification, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name self.dense = tf.keras.layers.Dense( self.params.num_classes[problem_name]) self.dropout = tf.keras.layers.Dropout( 1-self.params.dropout_keep_prob ) # self.metric_fn = tfa.metrics.F1Score( # num_classes=self.params.num_classes[problem_name], # threshold=self.params.multi_cls_threshold, # average='macro', # name='{}_f1'.format(problem_name)) def call(self, inputs, mode): training = (mode == tf.estimator.ModeKeys.TRAIN) feature, hidden_feature = inputs hidden_feature = hidden_feature['pooled'] if mode != tf.estimator.ModeKeys.PREDICT: labels = feature['{}_label_ids'.format(self.problem_name)] else: labels = None hidden_feature = self.dropout(hidden_feature, training) logits = self.dense(hidden_feature) if mode != tf.estimator.ModeKeys.PREDICT: labels = tf.cast(labels, tf.float32) # use weighted loss label_weights = self.params.multi_cls_positive_weight def _loss_fn_wrapper(x, y, from_logits=True): return tf.nn.weighted_cross_entropy_with_logits(x, y, pos_weight=label_weights, name='{}_loss'.format(self.problem_name)) loss = empty_tensor_handling_loss( labels, logits, _loss_fn_wrapper) loss = nan_loss_handling(loss) self.add_loss(loss) # labels = create_dummy_if_empty(labels) # logits = create_dummy_if_empty(logits) # f1 = self.metric_fn(labels, logits) # self.add_metric(f1) return tf.nn.sigmoid( logits, name='%s_predict' % self.problem_name) # Cell class MaskLM(tf.keras.Model): """Multimodal MLM top layer. """ def __init__(self, params: BaseParams, problem_name: str, input_embeddings: tf.keras.layers.Layer=None, share_embedding=True) -> None: super(MaskLM, self).__init__(name=problem_name) self.params = params self.problem_name = problem_name if share_embedding is False: self.vocab_size = self.params.bert_config.vocab_size self.share_embedding = False else: word_embedding_weight = input_embeddings.word_embeddings self.vocab_size = word_embedding_weight.shape[0] embedding_size = word_embedding_weight.shape[-1] share_valid = (self.params.bert_config.hidden_size == embedding_size) if not share_valid and self.params.share_embedding: logging.warning( 'Share embedding is enabled but hidden_size != embedding_size') self.share_embedding = self.params.share_embedding & share_valid if self.share_embedding: self.share_embedding_layer = TFSharedEmbeddings( vocab_size=self.vocab_size, hidden_size=word_embedding_weight.shape[1]) self.share_embedding_layer.build([1]) self.share_embedding_layer.weight = word_embedding_weight else: self.share_embedding_layer = tf.keras.layers.Dense(self.vocab_size) def call(self, inputs, mode): features, hidden_features = inputs # masking is done inside the model seq_hidden_feature = hidden_features['seq'] if mode != tf.estimator.ModeKeys.PREDICT: positions = features['masked_lm_positions'] # gather_indexes will flatten the seq hidden_states, we need to reshape # back to 3d tensor input_tensor = gather_indexes(seq_hidden_feature, positions) shape_tensor = tf.shape(positions) shape_list = tf.concat([shape_tensor, [seq_hidden_feature.shape.as_list()[-1]]], axis=0) input_tensor = tf.reshape(input_tensor, shape=shape_list) # set_shape to determin rank input_tensor.set_shape( [None, None, seq_hidden_feature.shape.as_list()[-1]]) else: input_tensor = seq_hidden_feature if self.share_embedding: mlm_logits = self.share_embedding_layer( input_tensor, mode='linear') else: mlm_logits = self.share_embedding_layer(input_tensor) if mode != tf.estimator.ModeKeys.PREDICT: mlm_labels = features['masked_lm_ids'] mlm_labels.set_shape([None, None]) # compute loss mlm_loss = empty_tensor_handling_loss( mlm_labels, mlm_logits, tf.keras.losses.sparse_categorical_crossentropy ) loss = nan_loss_handling(mlm_loss) self.add_loss(loss) return tf.nn.softmax(mlm_logits)
[ "tensorflow.equal", "tensorflow.shape", "tensorflow.pad", "tensorflow.keras.layers.Dense", "tensorflow.nn.softmax", "tensorflow.reduce_mean", "tensorflow.cast", "tensorflow_addons.layers.crf.CRF", "tensorflow.concat", "tensorflow.nn.sigmoid", "transformers.modeling_tf_utils.TFMaskedLanguageModelingLoss", "tensorflow.convert_to_tensor", "tensorflow.size", "tensorflow.zeros", "tensorflow.one_hot", "transformers.models.bert.modeling_tf_bert.TFBertNSPHead", "tensorflow.keras.layers.Dropout", "logging.warning", "tensorflow.sigmoid", "tensorflow.reshape", "tensorflow_addons.text.crf.crf_log_likelihood", "functools.partial", "tensorflow.math.is_nan", "transformers.modeling_tf_utils.TFSharedEmbeddings" ]
[((1106, 1126), 'tensorflow.math.is_nan', 'tf.math.is_nan', (['loss'], {}), '(loss)\n', (1120, 1126), True, 'import tensorflow as tf\n'), ((1274, 1294), 'tensorflow.shape', 'tf.shape', (['inp_tensor'], {}), '(inp_tensor)\n', (1282, 1294), True, 'import tensorflow as tf\n'), ((1302, 1330), 'tensorflow.equal', 'tf.equal', (['shape_tensor[0]', '(0)'], {}), '(shape_tensor[0], 0)\n', (1310, 1330), True, 'import tensorflow as tf\n'), ((793, 808), 'tensorflow.size', 'tf.size', (['labels'], {}), '(labels)\n', (800, 808), True, 'import tensorflow as tf\n'), ((1401, 1442), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['[1]'], {'dtype': 'tf.int32'}), '([1], dtype=tf.int32)\n', (1421, 1442), True, 'import tensorflow as tf\n'), ((1465, 1525), 'tensorflow.concat', 'tf.concat', (['[dummy_shape_first_dim, shape_tensor[1:]]'], {'axis': '(0)'}), '([dummy_shape_first_dim, shape_tensor[1:]], axis=0)\n', (1474, 1525), True, 'import tensorflow as tf\n'), ((1562, 1600), 'tensorflow.zeros', 'tf.zeros', (['dummy_shape'], {'dtype': 'data_type'}), '(dummy_shape, dtype=data_type)\n', (1570, 1600), True, 'import tensorflow as tf\n'), ((2311, 2362), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['num_classes'], {'activation': 'None'}), '(num_classes, activation=None)\n', (2332, 2362), True, 'import tensorflow as tf\n'), ((2387, 2440), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(1 - params.dropout_keep_prob)'], {}), '(1 - params.dropout_keep_prob)\n', (2410, 2440), True, 'import tensorflow as tf\n'), ((3662, 3783), 'tensorflow.one_hot', 'tf.one_hot', (['viterbi_decoded'], {'name': "('%s_predict' % self.problem_name)", 'depth': 'self.params.num_classes[self.problem_name]'}), "(viterbi_decoded, name='%s_predict' % self.problem_name, depth=\n self.params.num_classes[self.problem_name])\n", (3672, 3783), True, 'import tensorflow as tf\n'), ((5181, 5241), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {'name': "('%s_predict' % self.problem_name)"}), "(logits, name='%s_predict' % self.problem_name)\n", (5194, 5241), True, 'import tensorflow as tf\n'), ((5601, 5652), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['num_classes'], {'activation': 'None'}), '(num_classes, activation=None)\n', (5622, 5652), True, 'import tensorflow as tf\n'), ((5799, 5852), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(1 - params.dropout_keep_prob)'], {}), '(1 - params.dropout_keep_prob)\n', (5822, 5852), True, 'import tensorflow as tf\n'), ((7024, 7084), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {'name': "('%s_predict' % self.problem_name)"}), "(logits, name='%s_predict' % self.problem_name)\n", (7037, 7084), True, 'import tensorflow as tf\n'), ((7365, 7450), 'transformers.models.bert.modeling_tf_bert.TFBertNSPHead', 'transformers.models.bert.modeling_tf_bert.TFBertNSPHead', (['self.params.bert_config'], {}), '(self.params.bert_config\n )\n', (7420, 7450), False, 'import transformers\n'), ((13110, 13148), 'tensorflow.cast', 'tf.cast', (['batch_eos_ids'], {'dtype': 'tf.int64'}), '(batch_eos_ids, dtype=tf.int64)\n', (13117, 13148), True, 'import tensorflow as tf\n'), ((13211, 13260), 'tensorflow.concat', 'tf.concat', (['[decoder_lable, batch_eos_ids]'], {'axis': '(1)'}), '([decoder_lable, batch_eos_ids], axis=1)\n', (13220, 13260), True, 'import tensorflow as tf\n'), ((15141, 15201), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['self.params.num_classes[problem_name]'], {}), '(self.params.num_classes[problem_name])\n', (15162, 15201), True, 'import tensorflow as tf\n'), ((15238, 15296), 'tensorflow.keras.layers.Dropout', 'tf.keras.layers.Dropout', (['(1 - self.params.dropout_keep_prob)'], {}), '(1 - self.params.dropout_keep_prob)\n', (15261, 15296), True, 'import tensorflow as tf\n'), ((16792, 16852), 'tensorflow.nn.sigmoid', 'tf.nn.sigmoid', (['logits'], {'name': "('%s_predict' % self.problem_name)"}), "(logits, name='%s_predict' % self.problem_name)\n", (16805, 16852), True, 'import tensorflow as tf\n'), ((19885, 19910), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['mlm_logits'], {}), '(mlm_logits)\n', (19898, 19910), True, 'import tensorflow as tf\n'), ((857, 873), 'tensorflow.shape', 'tf.shape', (['labels'], {}), '(labels)\n', (865, 873), True, 'import tensorflow as tf\n'), ((915, 931), 'tensorflow.shape', 'tf.shape', (['labels'], {}), '(labels)\n', (923, 931), True, 'import tensorflow as tf\n'), ((2491, 2507), 'tensorflow_addons.layers.crf.CRF', 'CRF', (['num_classes'], {}), '(num_classes)\n', (2494, 2507), False, 'from tensorflow_addons.layers.crf import CRF\n'), ((3341, 3361), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['loss'], {}), '(loss)\n', (3355, 3361), True, 'import tensorflow as tf\n'), ((4474, 4516), 'tensorflow.pad', 'tf.pad', ([], {'tensor': 'labels', 'paddings': 'pad_tensor'}), '(tensor=labels, paddings=pad_tensor)\n', (4480, 4516), True, 'import tensorflow as tf\n'), ((6488, 6556), 'tensorflow.one_hot', 'tf.one_hot', (['labels'], {'depth': 'self.params.num_classes[self.problem_name]'}), '(labels, depth=self.params.num_classes[self.problem_name])\n', (6498, 6556), True, 'import tensorflow as tf\n'), ((6596, 6712), 'functools.partial', 'partial', (['tf.keras.losses.categorical_crossentropy'], {'from_logits': '(True)', 'label_smoothing': 'self.params.label_smoothing'}), '(tf.keras.losses.categorical_crossentropy, from_logits=True,\n label_smoothing=self.params.label_smoothing)\n', (6603, 6712), False, 'from functools import partial\n'), ((8247, 8357), 'transformers.modeling_tf_utils.TFSharedEmbeddings', 'TFSharedEmbeddings', ([], {'vocab_size': 'word_embedding_weight.shape[0]', 'hidden_size': 'word_embedding_weight.shape[1]'}), '(vocab_size=word_embedding_weight.shape[0], hidden_size=\n word_embedding_weight.shape[1])\n', (8265, 8357), False, 'from transformers.modeling_tf_utils import TFSharedEmbeddings\n'), ((8545, 8583), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['self.vocab_size'], {}), '(self.vocab_size)\n', (8566, 8583), True, 'import tensorflow as tf\n'), ((9299, 9318), 'tensorflow.shape', 'tf.shape', (['positions'], {}), '(positions)\n', (9307, 9318), True, 'import tensorflow as tf\n'), ((9464, 9506), 'tensorflow.reshape', 'tf.reshape', (['input_tensor'], {'shape': 'shape_list'}), '(input_tensor, shape=shape_list)\n', (9474, 9506), True, 'import tensorflow as tf\n'), ((10347, 10408), 'transformers.modeling_tf_utils.TFMaskedLanguageModelingLoss', 'transformers.modeling_tf_utils.TFMaskedLanguageModelingLoss', ([], {}), '()\n', (10406, 10408), False, 'import transformers\n'), ((10995, 11017), 'tensorflow.sigmoid', 'tf.sigmoid', (['nsp_logits'], {}), '(nsp_logits)\n', (11005, 11017), True, 'import tensorflow as tf\n'), ((11019, 11044), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['mlm_logits'], {}), '(mlm_logits)\n', (11032, 11044), True, 'import tensorflow as tf\n'), ((16091, 16118), 'tensorflow.cast', 'tf.cast', (['labels', 'tf.float32'], {}), '(labels, tf.float32)\n', (16098, 16118), True, 'import tensorflow as tf\n'), ((18002, 18097), 'transformers.modeling_tf_utils.TFSharedEmbeddings', 'TFSharedEmbeddings', ([], {'vocab_size': 'self.vocab_size', 'hidden_size': 'word_embedding_weight.shape[1]'}), '(vocab_size=self.vocab_size, hidden_size=\n word_embedding_weight.shape[1])\n', (18020, 18097), False, 'from transformers.modeling_tf_utils import TFSharedEmbeddings\n'), ((18285, 18323), 'tensorflow.keras.layers.Dense', 'tf.keras.layers.Dense', (['self.vocab_size'], {}), '(self.vocab_size)\n', (18306, 18323), True, 'import tensorflow as tf\n'), ((18821, 18840), 'tensorflow.shape', 'tf.shape', (['positions'], {}), '(positions)\n', (18829, 18840), True, 'import tensorflow as tf\n'), ((18969, 19011), 'tensorflow.reshape', 'tf.reshape', (['input_tensor'], {'shape': 'shape_list'}), '(input_tensor, shape=shape_list)\n', (18979, 19011), True, 'import tensorflow as tf\n'), ((7994, 8073), 'logging.warning', 'logging.warning', (['"""Share embedding is enabled but hidden_size != embedding_size"""'], {}), "('Share embedding is enabled but hidden_size != embedding_size')\n", (8009, 8073), False, 'import logging\n'), ((17749, 17828), 'logging.warning', 'logging.warning', (['"""Share embedding is enabled but hidden_size != embedding_size"""'], {}), "('Share embedding is enabled but hidden_size != embedding_size')\n", (17764, 17828), False, 'import logging\n'), ((3210, 3279), 'tensorflow_addons.text.crf.crf_log_likelihood', 'crf_log_likelihood', (['potentials', 'labels', 'sequence_length', 'chain_kernel'], {}), '(potentials, labels, sequence_length, chain_kernel)\n', (3228, 3279), False, 'from tensorflow_addons.text.crf import crf_log_likelihood\n'), ((4286, 4316), 'tensorflow.shape', 'tf.shape', ([], {'input': 'hidden_feature'}), '(input=hidden_feature)\n', (4294, 4316), True, 'import tensorflow as tf\n'), ((4339, 4361), 'tensorflow.shape', 'tf.shape', ([], {'input': 'labels'}), '(input=labels)\n', (4347, 4361), True, 'import tensorflow as tf\n'), ((13053, 13069), 'tensorflow.shape', 'tf.shape', (['labels'], {}), '(labels)\n', (13061, 13069), True, 'import tensorflow as tf\n')]
import re regex = re.compile('[^a-zA-Z]') def score_word(word, corpus=None): word = regex.sub('', word) # leave only alpha score = 0 consec_bonus = 2 for i, letter in enumerate(word): if letter.islower(): continue if i > 0 and word[i-1].upper(): score += consec_bonus if i == 0: score += 10 elif (i == 1) or (i == len(word)-1): score += 3 else: score += 1 if (i >= 1) and (corpus is not None) and (word[i:].lower() in corpus): score += len(word[i:])-1 return score def score_acronym(capitalized_acronym, corpus=None): """ For each capitalized letter in the acronym: * 10 points if first letter in a word (with exception of first letter) * 3 point if second or last letter in a word * 1 point otherwise * N bonus points if begins an N-length valid sub-word (ex: multiVariable -> 8 bonus points) * 2 bonus points if immediately following a capitalizd letter """ return sum([score_word(word, corpus=corpus) for word in capitalized_acronym.split(' ')]) - 10
[ "re.compile" ]
[((19, 42), 're.compile', 're.compile', (['"""[^a-zA-Z]"""'], {}), "('[^a-zA-Z]')\n", (29, 42), False, 'import re\n')]
"""Extension for built-in Sass functionality.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from itertools import product import math import os.path from pathlib import PurePosixPath from six.moves import xrange from scss.extension import Extension from scss.namespace import Namespace from scss.source import SourceFile from scss.types import ( Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type) class CoreExtension(Extension): name = 'core' namespace = Namespace() def handle_import(self, name, compilation, rule): """Implementation of the core Sass import mechanism, which just looks for files on disk. """ # TODO virtually all of this is the same as the django stuff, except # for the bit that actually looks for and tries to open the file. # would be much easier if you could just stick an object in the search # path that implements the pathlib API. the only problem is what to do # when one path is a child of another, so the same file has two names, # but tbh i'm not actually sure that's something worth protecting # against...? like, the only cost is that we'll parse twice (or, later # on, not respect single-import), and the fix is to just Not Do That # TODO i think with the new origin semantics, i've made it possible to # import relative to the current file even if the current file isn't # anywhere in the search path. is that right? path = PurePosixPath(name) if path.suffix: search_exts = [path.suffix] else: search_exts = ['.scss', '.sass'] relative_to = path.parent basename = path.stem search_path = [] # tuple of (origin, start_from) if relative_to.is_absolute(): relative_to = PurePosixPath(*relative_to.parts[1:]) elif rule.source_file.origin: # Search relative to the current file first, only if not doing an # absolute import search_path.append( rule.source_file.origin / rule.source_file.relpath.parent) search_path.extend(compilation.compiler.search_path) for prefix, suffix in product(('_', ''), search_exts): filename = prefix + basename + suffix for origin in search_path: relpath = relative_to / filename # Lexically (ignoring symlinks!) eliminate .. from the part # of the path that exists within Sass-space. pathlib # deliberately doesn't do this, but os.path does. relpath = PurePosixPath(os.path.normpath(str(relpath))) if rule.source_file.key == (origin, relpath): # Avoid self-import # TODO is this what ruby does? continue path = origin / relpath if not path.exists(): continue # All good! # TODO if this file has already been imported, we'll do the # source preparation twice. make it lazy. return SourceFile.read(origin, relpath) # Alias to make the below declarations less noisy ns = CoreExtension.namespace # ------------------------------------------------------------------------------ # Color creation def _interpret_percentage(n, relto=1., clamp=True): expect_type(n, Number, unit='%') if n.is_unitless: ret = n.value / relto else: ret = n.value / 100 if clamp: if ret < 0: return 0 elif ret > 1: return 1 return ret @ns.declare def rgba(r, g, b, a): r = _interpret_percentage(r, relto=255) g = _interpret_percentage(g, relto=255) b = _interpret_percentage(b, relto=255) a = _interpret_percentage(a, relto=1) return Color.from_rgb(r, g, b, a) @ns.declare def rgb(r, g, b, type='rgb'): return rgba(r, g, b, Number(1.0)) @ns.declare def rgba_(color, a=None): if a is None: alpha = 1 else: alpha = _interpret_percentage(a) return Color.from_rgb(*color.rgba[:3], alpha=alpha) @ns.declare def rgb_(color): return rgba_(color, a=Number(1)) @ns.declare def hsla(h, s, l, a): return Color.from_hsl( h.value / 360 % 1, # Ruby sass treats plain numbers for saturation and lightness as though # they were percentages, just without the % _interpret_percentage(s, relto=100), _interpret_percentage(l, relto=100), alpha=a.value, ) @ns.declare def hsl(h, s, l): return hsla(h, s, l, Number(1)) @ns.declare def hsla_(color, a=None): return rgba_(color, a) @ns.declare def hsl_(color): return rgba_(color, a=Number(1)) @ns.declare def mix(color1, color2, weight=Number(50, "%")): """ Mixes together two colors. Specifically, takes the average of each of the RGB components, optionally weighted by the given percentage. The opacity of the colors is also considered when weighting the components. Specifically, takes the average of each of the RGB components, optionally weighted by the given percentage. The opacity of the colors is also considered when weighting the components. The weight specifies the amount of the first color that should be included in the returned color. 50%, means that half the first color and half the second color should be used. 25% means that a quarter of the first color and three quarters of the second color should be used. For example: mix(#f00, #00f) => #7f007f mix(#f00, #00f, 25%) => #3f00bf mix(rgba(255, 0, 0, 0.5), #00f) => rgba(63, 0, 191, 0.75) """ # This algorithm factors in both the user-provided weight # and the difference between the alpha values of the two colors # to decide how to perform the weighted average of the two RGB values. # # It works by first normalizing both parameters to be within [-1, 1], # where 1 indicates "only use color1", -1 indicates "only use color 0", # and all values in between indicated a proportionately weighted average. # # Once we have the normalized variables w and a, # we apply the formula (w + a)/(1 + w*a) # to get the combined weight (in [-1, 1]) of color1. # This formula has two especially nice properties: # # * When either w or a are -1 or 1, the combined weight is also that # number (cases where w * a == -1 are undefined, and handled as a # special case). # # * When a is 0, the combined weight is w, and vice versa # # Finally, the weight of color1 is renormalized to be within [0, 1] # and the weight of color2 is given by 1 minus the weight of color1. # # Algorithm from the Sass project: http://sass-lang.com/ p = _interpret_percentage(weight) # Scale weight to [-1, 1] w = p * 2 - 1 # Compute difference in alpha channels a = color1.alpha - color2.alpha # Weight of first color if w * a == -1: # Avoid zero-div case scaled_weight1 = w else: scaled_weight1 = (w + a) / (1 + w * a) # Unscale back to [0, 1] and get the weight of the other color w1 = (scaled_weight1 + 1) / 2 w2 = 1 - w1 # Do the scaling. Note that alpha isn't scaled by alpha, as that wouldn't # make much sense; it uses the original untwiddled weight, p. channels = [ ch1 * w1 + ch2 * w2 for (ch1, ch2) in zip(color1.rgba[:3], color2.rgba[:3])] alpha = color1.alpha * p + color2.alpha * (1 - p) return Color.from_rgb(*channels, alpha=alpha) # ------------------------------------------------------------------------------ # Color inspection @ns.declare def red(color): r, g, b, a = color.rgba return Number(r * 255) @ns.declare def green(color): r, g, b, a = color.rgba return Number(g * 255) @ns.declare def blue(color): r, g, b, a = color.rgba return Number(b * 255) @ns.declare_alias('opacity') @ns.declare def alpha(color): return Number(color.alpha) @ns.declare def hue(color): h, s, l = color.hsl return Number(h * 360, "deg") @ns.declare def saturation(color): h, s, l = color.hsl return Number(s * 100, "%") @ns.declare def lightness(color): h, s, l = color.hsl return Number(l * 100, "%") @ns.declare def ie_hex_str(color): c = Color(color).value return String("#{3:02X}{0:02X}{1:02X}{2:02X}".format( int(round(c[0])), int(round(c[1])), int(round(c[2])), int(round(c[3] * 255)), )) # ------------------------------------------------------------------------------ # Color modification @ns.declare_alias('fade-in') @ns.declare_alias('fadein') @ns.declare def opacify(color, amount): r, g, b, a = color.rgba if amount.is_simple_unit('%'): amt = amount.value / 100 else: amt = amount.value return Color.from_rgb( r, g, b, alpha=a + amt) @ns.declare_alias('fade-out') @ns.declare_alias('fadeout') @ns.declare def transparentize(color, amount): r, g, b, a = color.rgba if amount.is_simple_unit('%'): amt = amount.value / 100 else: amt = amount.value return Color.from_rgb( r, g, b, alpha=a - amt) @ns.declare def lighten(color, amount): return adjust_color(color, lightness=amount) @ns.declare def darken(color, amount): return adjust_color(color, lightness=-amount) @ns.declare def saturate(color, amount): return adjust_color(color, saturation=amount) @ns.declare def desaturate(color, amount): return adjust_color(color, saturation=-amount) @ns.declare def greyscale(color): h, s, l = color.hsl return Color.from_hsl(h, 0, l, alpha=color.alpha) @ns.declare def grayscale(color): if isinstance(color, Number): # grayscale(n) and grayscale(n%) are CSS3 filters and should be left # intact, but only when using the "a" spelling return String.unquoted("grayscale(%s)" % (color.render(),)) else: return greyscale(color) @ns.declare_alias('spin') @ns.declare def adjust_hue(color, degrees): h, s, l = color.hsl delta = degrees.value / 360 return Color.from_hsl((h + delta) % 1, s, l, alpha=color.alpha) @ns.declare def complement(color): h, s, l = color.hsl return Color.from_hsl((h + 0.5) % 1, s, l, alpha=color.alpha) @ns.declare def invert(color): """Returns the inverse (negative) of a color. The red, green, and blue values are inverted, while the opacity is left alone. """ r, g, b, a = color.rgba return Color.from_rgb(1 - r, 1 - g, 1 - b, alpha=a) @ns.declare def adjust_lightness(color, amount): return adjust_color(color, lightness=amount) @ns.declare def adjust_saturation(color, amount): return adjust_color(color, saturation=amount) @ns.declare def scale_lightness(color, amount): return scale_color(color, lightness=amount) @ns.declare def scale_saturation(color, amount): return scale_color(color, saturation=amount) @ns.declare def adjust_color( color, red=None, green=None, blue=None, hue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = hue or saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't adjust both RGB and HSL channels at the same time") zero = Number(0) a = color.alpha + (alpha or zero).value if do_rgb: r, g, b = color.rgba[:3] channels = [ current + (adjustment or zero).value / 255 for (current, adjustment) in zip(color.rgba, (red, green, blue))] return Color.from_rgb(*channels, alpha=a) else: h, s, l = color.hsl h = (h + (hue or zero).value / 360) % 1 s += _interpret_percentage(saturation or zero, relto=100, clamp=False) l += _interpret_percentage(lightness or zero, relto=100, clamp=False) return Color.from_hsl(h, s, l, a) def _scale_channel(channel, scaleby): if scaleby is None: return channel expect_type(scaleby, Number) if not scaleby.is_simple_unit('%'): raise ValueError("Expected percentage, got %r" % (scaleby,)) factor = scaleby.value / 100 if factor > 0: # Add x% of the remaining range, up to 1 return channel + (1 - channel) * factor else: # Subtract x% of the existing channel. We add here because the factor # is already negative return channel * (1 + factor) @ns.declare def scale_color( color, red=None, green=None, blue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't scale both RGB and HSL channels at the same time") scaled_alpha = _scale_channel(color.alpha, alpha) if do_rgb: channels = [ _scale_channel(channel, scaleby) for channel, scaleby in zip(color.rgba, (red, green, blue))] return Color.from_rgb(*channels, alpha=scaled_alpha) else: channels = [ _scale_channel(channel, scaleby) for channel, scaleby in zip(color.hsl, (None, saturation, lightness))] return Color.from_hsl(*channels, alpha=scaled_alpha) @ns.declare def change_color( color, red=None, green=None, blue=None, hue=None, saturation=None, lightness=None, alpha=None): do_rgb = red or green or blue do_hsl = hue or saturation or lightness if do_rgb and do_hsl: raise ValueError( "Can't change both RGB and HSL channels at the same time") if alpha is None: alpha = color.alpha else: alpha = alpha.value if do_rgb: channels = list(color.rgba[:3]) if red: channels[0] = _interpret_percentage(red, relto=255) if green: channels[1] = _interpret_percentage(green, relto=255) if blue: channels[2] = _interpret_percentage(blue, relto=255) return Color.from_rgb(*channels, alpha=alpha) else: channels = list(color.hsl) if hue: expect_type(hue, Number, unit=None) channels[0] = (hue.value / 360) % 1 # Ruby sass treats plain numbers for saturation and lightness as though # they were percentages, just without the % if saturation: channels[1] = _interpret_percentage(saturation, relto=100) if lightness: channels[2] = _interpret_percentage(lightness, relto=100) return Color.from_hsl(*channels, alpha=alpha) # ------------------------------------------------------------------------------ # String functions @ns.declare_alias('e') @ns.declare_alias('escape') @ns.declare def unquote(*args): arg = List.from_maybe_starargs(args).maybe() if isinstance(arg, String): return String(arg.value, quotes=None) else: return String(arg.render(), quotes=None) @ns.declare def quote(*args): arg = List.from_maybe_starargs(args).maybe() if isinstance(arg, String): return String(arg.value, quotes='"') else: return String(arg.render(), quotes='"') @ns.declare def str_length(string): expect_type(string, String) # nb: can't use `len(string)`, because that gives the Sass list length, # which is 1 return Number(len(string.value)) # TODO this and several others should probably also require integers # TODO and assert that the indexes are valid @ns.declare def str_insert(string, insert, index): expect_type(string, String) expect_type(insert, String) expect_type(index, Number, unit=None) py_index = index.to_python_index(len(string.value), check_bounds=False) return String( string.value[:py_index] + insert.value + string.value[py_index:], quotes=string.quotes) @ns.declare def str_index(string, substring): expect_type(string, String) expect_type(substring, String) # 1-based indexing, with 0 for failure return Number(string.value.find(substring.value) + 1) @ns.declare def str_slice(string, start_at, end_at=None): expect_type(string, String) expect_type(start_at, Number, unit=None) py_start_at = start_at.to_python_index(len(string.value)) if end_at is None: py_end_at = None else: expect_type(end_at, Number, unit=None) # Endpoint is inclusive, unlike Python py_end_at = end_at.to_python_index(len(string.value)) + 1 return String( string.value[py_start_at:py_end_at], quotes=string.quotes) @ns.declare def to_upper_case(string): expect_type(string, String) return String(string.value.upper(), quotes=string.quotes) @ns.declare def to_lower_case(string): expect_type(string, String) return String(string.value.lower(), quotes=string.quotes) # ------------------------------------------------------------------------------ # Number functions @ns.declare def percentage(value): expect_type(value, Number, unit=None) return value * Number(100, unit='%') ns.set_function('abs', 1, Number.wrap_python_function(abs)) ns.set_function('round', 1, Number.wrap_python_function(round)) ns.set_function('ceil', 1, Number.wrap_python_function(math.ceil)) ns.set_function('floor', 1, Number.wrap_python_function(math.floor)) # ------------------------------------------------------------------------------ # List functions def __parse_separator(separator, default_from=None): if separator is None: separator = 'auto' separator = String.unquoted(separator).value if separator == 'comma': return True elif separator == 'space': return False elif separator == 'auto': if not default_from: return True elif len(default_from) < 2: return True else: return default_from.use_comma else: raise ValueError('Separator must be auto, comma, or space') # TODO get the compass bit outta here @ns.declare_alias('-compass-list-size') @ns.declare def length(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return Number(len(lst)) @ns.declare def set_nth(list, n, value): expect_type(n, Number, unit=None) py_n = n.to_python_index(len(list)) return List( tuple(list[:py_n]) + (value,) + tuple(list[py_n + 1:]), use_comma=list.use_comma) # TODO get the compass bit outta here @ns.declare_alias('-compass-nth') @ns.declare def nth(lst, n): """Return the nth item in the list.""" expect_type(n, (String, Number), unit=None) if isinstance(n, String): if n.value.lower() == 'first': i = 0 elif n.value.lower() == 'last': i = -1 else: raise ValueError("Invalid index %r" % (n,)) else: # DEVIATION: nth treats lists as circular lists i = n.to_python_index(len(lst), circular=True) return lst[i] @ns.declare def join(lst1, lst2, separator=String.unquoted('auto')): expect_type(separator, String) ret = [] ret.extend(List.from_maybe(lst1)) ret.extend(List.from_maybe(lst2)) if separator.value == 'comma': use_comma = True elif separator.value == 'space': use_comma = False elif separator.value == 'auto': # The Sass docs are slightly misleading here, but the algorithm is: use # the delimiter from the first list that has at least 2 items, or # default to spaces. if len(lst1) > 1: use_comma = lst1.use_comma elif len(lst2) > 1: use_comma = lst2.use_comma else: use_comma = False else: raise ValueError("separator for join() must be comma, space, or auto") return List(ret, use_comma=use_comma) @ns.declare def min_(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return min(lst) @ns.declare def max_(*lst): if len(lst) == 1 and isinstance(lst[0], (list, tuple, List)): lst = lst[0] return max(lst) @ns.declare def append(lst, val, separator=None): ret = [] ret.extend(List.from_maybe(lst)) ret.append(val) use_comma = __parse_separator(separator, default_from=lst) return List(ret, use_comma=use_comma) @ns.declare def index(lst, val): for i in xrange(len(lst)): if lst.value[i] == val: return Number(i + 1) return Boolean(False) @ns.declare def zip_(*lists): return List( [List(zipped) for zipped in zip(*lists)], use_comma=True) # TODO need a way to use "list" as the arg name without shadowing the builtin @ns.declare def list_separator(list): if list.use_comma: return String.unquoted('comma') else: return String.unquoted('space') # ------------------------------------------------------------------------------ # Map functions @ns.declare def map_get(map, key): return map.to_dict().get(key, Null()) @ns.declare def map_merge(*maps): key_order = [] index = {} for map in maps: for key, value in map.to_pairs(): if key not in index: key_order.append(key) index[key] = value pairs = [(key, index[key]) for key in key_order] return Map(pairs, index=index) @ns.declare def map_keys(map): return List( [k for (k, v) in map.to_pairs()], use_comma=True) @ns.declare def map_values(map): return List( [v for (k, v) in map.to_pairs()], use_comma=True) @ns.declare def map_has_key(map, key): return Boolean(key in map.to_dict()) # DEVIATIONS: these do not exist in ruby sass @ns.declare def map_get3(map, key, default): return map.to_dict().get(key, default) @ns.declare def map_get_nested3(map, keys, default=Null()): for key in keys: map = map.to_dict().get(key, None) if map is None: return default return map @ns.declare def map_merge_deep(*maps): pairs = [] keys = set() for map in maps: for key, value in map.to_pairs(): keys.add(key) for key in keys: values = [map.to_dict().get(key, None) for map in maps] values = [v for v in values if v is not None] if all(isinstance(v, Map) for v in values): pairs.append((key, map_merge_deep(*values))) else: pairs.append((key, values[-1])) return Map(pairs) # ------------------------------------------------------------------------------ # Meta functions @ns.declare def type_of(obj): # -> bool, number, string, color, list return String(obj.sass_type_name) @ns.declare def unit(number): # -> px, em, cm, etc. numer = '*'.join(sorted(number.unit_numer)) denom = '*'.join(sorted(number.unit_denom)) if denom: ret = numer + '/' + denom else: ret = numer return String.unquoted(ret) @ns.declare def unitless(value): if not isinstance(value, Number): raise TypeError("Expected number, got %r" % (value,)) return Boolean(value.is_unitless) @ns.declare def comparable(number1, number2): left = number1.to_base_units() right = number2.to_base_units() return Boolean( left.unit_numer == right.unit_numer and left.unit_denom == right.unit_denom) @ns.declare def keywords(value): """Extract named arguments, as a map, from an argument list.""" expect_type(value, Arglist) return value.extract_keywords() # ------------------------------------------------------------------------------ # Miscellaneous @ns.declare def if_(condition, if_true, if_false=Null()): return if_true if condition else if_false
[ "scss.types.Color.from_rgb", "scss.source.SourceFile.read", "scss.types.List.from_maybe_starargs", "scss.types.expect_type", "scss.namespace.Namespace", "scss.types.Number", "itertools.product", "scss.types.Color", "scss.types.Number.wrap_python_function", "scss.types.String.unquoted", "scss.types.Color.from_hsl", "scss.types.List", "scss.types.String", "scss.types.Boolean", "scss.types.Map", "pathlib.PurePosixPath", "scss.types.List.from_maybe", "scss.types.Null" ]
[((598, 609), 'scss.namespace.Namespace', 'Namespace', ([], {}), '()\n', (607, 609), False, 'from scss.namespace import Namespace\n'), ((3545, 3577), 'scss.types.expect_type', 'expect_type', (['n', 'Number'], {'unit': '"""%"""'}), "(n, Number, unit='%')\n", (3556, 3577), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((4006, 4032), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['r', 'g', 'b', 'a'], {}), '(r, g, b, a)\n', (4020, 4032), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((4254, 4298), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['*color.rgba[:3]'], {'alpha': 'alpha'}), '(*color.rgba[:3], alpha=alpha)\n', (4268, 4298), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((4956, 4971), 'scss.types.Number', 'Number', (['(50)', '"""%"""'], {}), "(50, '%')\n", (4962, 4971), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((7771, 7809), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['*channels'], {'alpha': 'alpha'}), '(*channels, alpha=alpha)\n', (7785, 7809), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((7980, 7995), 'scss.types.Number', 'Number', (['(r * 255)'], {}), '(r * 255)\n', (7986, 7995), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((8067, 8082), 'scss.types.Number', 'Number', (['(g * 255)'], {}), '(g * 255)\n', (8073, 8082), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((8153, 8168), 'scss.types.Number', 'Number', (['(b * 255)'], {}), '(b * 255)\n', (8159, 8168), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((8241, 8260), 'scss.types.Number', 'Number', (['color.alpha'], {}), '(color.alpha)\n', (8247, 8260), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((8326, 8348), 'scss.types.Number', 'Number', (['(h * 360)', '"""deg"""'], {}), "(h * 360, 'deg')\n", (8332, 8348), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((8421, 8441), 'scss.types.Number', 'Number', (['(s * 100)', '"""%"""'], {}), "(s * 100, '%')\n", (8427, 8441), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((8513, 8533), 'scss.types.Number', 'Number', (['(l * 100)', '"""%"""'], {}), "(l * 100, '%')\n", (8519, 8533), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((9119, 9157), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['r', 'g', 'b'], {'alpha': '(a + amt)'}), '(r, g, b, alpha=a + amt)\n', (9133, 9157), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((9427, 9465), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['r', 'g', 'b'], {'alpha': '(a - amt)'}), '(r, g, b, alpha=a - amt)\n', (9441, 9465), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((9925, 9967), 'scss.types.Color.from_hsl', 'Color.from_hsl', (['h', '(0)', 'l'], {'alpha': 'color.alpha'}), '(h, 0, l, alpha=color.alpha)\n', (9939, 9967), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((10419, 10475), 'scss.types.Color.from_hsl', 'Color.from_hsl', (['((h + delta) % 1)', 's', 'l'], {'alpha': 'color.alpha'}), '((h + delta) % 1, s, l, alpha=color.alpha)\n', (10433, 10475), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((10548, 10602), 'scss.types.Color.from_hsl', 'Color.from_hsl', (['((h + 0.5) % 1)', 's', 'l'], {'alpha': 'color.alpha'}), '((h + 0.5) % 1, s, l, alpha=color.alpha)\n', (10562, 10602), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((10817, 10861), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['(1 - r)', '(1 - g)', '(1 - b)'], {'alpha': 'a'}), '(1 - r, 1 - g, 1 - b, alpha=a)\n', (10831, 10861), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((11619, 11628), 'scss.types.Number', 'Number', (['(0)'], {}), '(0)\n', (11625, 11628), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((12304, 12332), 'scss.types.expect_type', 'expect_type', (['scaleby', 'Number'], {}), '(scaleby, Number)\n', (12315, 12332), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15533, 15560), 'scss.types.expect_type', 'expect_type', (['string', 'String'], {}), '(string, String)\n', (15544, 15560), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15863, 15890), 'scss.types.expect_type', 'expect_type', (['string', 'String'], {}), '(string, String)\n', (15874, 15890), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15895, 15922), 'scss.types.expect_type', 'expect_type', (['insert', 'String'], {}), '(insert, String)\n', (15906, 15922), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15927, 15964), 'scss.types.expect_type', 'expect_type', (['index', 'Number'], {'unit': 'None'}), '(index, Number, unit=None)\n', (15938, 15964), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16053, 16151), 'scss.types.String', 'String', (['(string.value[:py_index] + insert.value + string.value[py_index:])'], {'quotes': 'string.quotes'}), '(string.value[:py_index] + insert.value + string.value[py_index:],\n quotes=string.quotes)\n', (16059, 16151), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16217, 16244), 'scss.types.expect_type', 'expect_type', (['string', 'String'], {}), '(string, String)\n', (16228, 16244), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16249, 16279), 'scss.types.expect_type', 'expect_type', (['substring', 'String'], {}), '(substring, String)\n', (16260, 16279), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16446, 16473), 'scss.types.expect_type', 'expect_type', (['string', 'String'], {}), '(string, String)\n', (16457, 16473), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16478, 16518), 'scss.types.expect_type', 'expect_type', (['start_at', 'Number'], {'unit': 'None'}), '(start_at, Number, unit=None)\n', (16489, 16518), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16812, 16877), 'scss.types.String', 'String', (['string.value[py_start_at:py_end_at]'], {'quotes': 'string.quotes'}), '(string.value[py_start_at:py_end_at], quotes=string.quotes)\n', (16818, 16877), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16940, 16967), 'scss.types.expect_type', 'expect_type', (['string', 'String'], {}), '(string, String)\n', (16951, 16967), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17076, 17103), 'scss.types.expect_type', 'expect_type', (['string', 'String'], {}), '(string, String)\n', (17087, 17103), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17309, 17346), 'scss.types.expect_type', 'expect_type', (['value', 'Number'], {'unit': 'None'}), '(value, Number, unit=None)\n', (17320, 17346), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17416, 17448), 'scss.types.Number.wrap_python_function', 'Number.wrap_python_function', (['abs'], {}), '(abs)\n', (17443, 17448), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17478, 17512), 'scss.types.Number.wrap_python_function', 'Number.wrap_python_function', (['round'], {}), '(round)\n', (17505, 17512), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17541, 17579), 'scss.types.Number.wrap_python_function', 'Number.wrap_python_function', (['math.ceil'], {}), '(math.ceil)\n', (17568, 17579), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17609, 17648), 'scss.types.Number.wrap_python_function', 'Number.wrap_python_function', (['math.floor'], {}), '(math.floor)\n', (17636, 17648), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((18557, 18590), 'scss.types.expect_type', 'expect_type', (['n', 'Number'], {'unit': 'None'}), '(n, Number, unit=None)\n', (18568, 18590), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((18897, 18940), 'scss.types.expect_type', 'expect_type', (['n', '(String, Number)'], {'unit': 'None'}), '(n, (String, Number), unit=None)\n', (18908, 18940), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((19343, 19366), 'scss.types.String.unquoted', 'String.unquoted', (['"""auto"""'], {}), "('auto')\n", (19358, 19366), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((19373, 19403), 'scss.types.expect_type', 'expect_type', (['separator', 'String'], {}), '(separator, String)\n', (19384, 19403), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((20114, 20144), 'scss.types.List', 'List', (['ret'], {'use_comma': 'use_comma'}), '(ret, use_comma=use_comma)\n', (20118, 20144), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((20616, 20646), 'scss.types.List', 'List', (['ret'], {'use_comma': 'use_comma'}), '(ret, use_comma=use_comma)\n', (20620, 20646), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((20789, 20803), 'scss.types.Boolean', 'Boolean', (['(False)'], {}), '(False)\n', (20796, 20803), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((21636, 21659), 'scss.types.Map', 'Map', (['pairs'], {'index': 'index'}), '(pairs, index=index)\n', (21639, 21659), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((22166, 22172), 'scss.types.Null', 'Null', ([], {}), '()\n', (22170, 22172), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((22787, 22797), 'scss.types.Map', 'Map', (['pairs'], {}), '(pairs)\n', (22790, 22797), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((22980, 23006), 'scss.types.String', 'String', (['obj.sass_type_name'], {}), '(obj.sass_type_name)\n', (22986, 23006), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((23248, 23268), 'scss.types.String.unquoted', 'String.unquoted', (['ret'], {}), '(ret)\n', (23263, 23268), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((23416, 23442), 'scss.types.Boolean', 'Boolean', (['value.is_unitless'], {}), '(value.is_unitless)\n', (23423, 23442), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((23573, 23662), 'scss.types.Boolean', 'Boolean', (['(left.unit_numer == right.unit_numer and left.unit_denom == right.unit_denom)'], {}), '(left.unit_numer == right.unit_numer and left.unit_denom == right.\n unit_denom)\n', (23580, 23662), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((23782, 23809), 'scss.types.expect_type', 'expect_type', (['value', 'Arglist'], {}), '(value, Arglist)\n', (23793, 23809), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((23995, 24001), 'scss.types.Null', 'Null', ([], {}), '()\n', (23999, 24001), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((1628, 1647), 'pathlib.PurePosixPath', 'PurePosixPath', (['name'], {}), '(name)\n', (1641, 1647), False, 'from pathlib import PurePosixPath\n'), ((2341, 2372), 'itertools.product', 'product', (["('_', '')", 'search_exts'], {}), "(('_', ''), search_exts)\n", (2348, 2372), False, 'from itertools import product\n'), ((4102, 4113), 'scss.types.Number', 'Number', (['(1.0)'], {}), '(1.0)\n', (4108, 4113), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((4765, 4774), 'scss.types.Number', 'Number', (['(1)'], {}), '(1)\n', (4771, 4774), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((8579, 8591), 'scss.types.Color', 'Color', (['color'], {}), '(color)\n', (8584, 8591), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((11891, 11925), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['*channels'], {'alpha': 'a'}), '(*channels, alpha=a)\n', (11905, 11925), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((12185, 12211), 'scss.types.Color.from_hsl', 'Color.from_hsl', (['h', 's', 'l', 'a'], {}), '(h, s, l, a)\n', (12199, 12211), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((13300, 13345), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['*channels'], {'alpha': 'scaled_alpha'}), '(*channels, alpha=scaled_alpha)\n', (13314, 13345), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((13533, 13578), 'scss.types.Color.from_hsl', 'Color.from_hsl', (['*channels'], {'alpha': 'scaled_alpha'}), '(*channels, alpha=scaled_alpha)\n', (13547, 13578), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((14331, 14369), 'scss.types.Color.from_rgb', 'Color.from_rgb', (['*channels'], {'alpha': 'alpha'}), '(*channels, alpha=alpha)\n', (14345, 14369), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((14862, 14900), 'scss.types.Color.from_hsl', 'Color.from_hsl', (['*channels'], {'alpha': 'alpha'}), '(*channels, alpha=alpha)\n', (14876, 14900), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15184, 15214), 'scss.types.String', 'String', (['arg.value'], {'quotes': 'None'}), '(arg.value, quotes=None)\n', (15190, 15214), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15403, 15432), 'scss.types.String', 'String', (['arg.value'], {'quotes': '"""\\""""'}), '(arg.value, quotes=\'"\')\n', (15409, 15432), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((16648, 16686), 'scss.types.expect_type', 'expect_type', (['end_at', 'Number'], {'unit': 'None'}), '(end_at, Number, unit=None)\n', (16659, 16686), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17366, 17387), 'scss.types.Number', 'Number', (['(100)'], {'unit': '"""%"""'}), "(100, unit='%')\n", (17372, 17387), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((17873, 17899), 'scss.types.String.unquoted', 'String.unquoted', (['separator'], {}), '(separator)\n', (17888, 17899), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((19433, 19454), 'scss.types.List.from_maybe', 'List.from_maybe', (['lst1'], {}), '(lst1)\n', (19448, 19454), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((19471, 19492), 'scss.types.List.from_maybe', 'List.from_maybe', (['lst2'], {}), '(lst2)\n', (19486, 19492), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((20499, 20519), 'scss.types.List.from_maybe', 'List.from_maybe', (['lst'], {}), '(lst)\n', (20514, 20519), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((21083, 21107), 'scss.types.String.unquoted', 'String.unquoted', (['"""comma"""'], {}), "('comma')\n", (21098, 21107), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((21133, 21157), 'scss.types.String.unquoted', 'String.unquoted', (['"""space"""'], {}), "('space')\n", (21148, 21157), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((21327, 21333), 'scss.types.Null', 'Null', ([], {}), '()\n', (21331, 21333), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((1958, 1995), 'pathlib.PurePosixPath', 'PurePosixPath', (['*relative_to.parts[1:]'], {}), '(*relative_to.parts[1:])\n', (1971, 1995), False, 'from pathlib import PurePosixPath\n'), ((4356, 4365), 'scss.types.Number', 'Number', (['(1)'], {}), '(1)\n', (4362, 4365), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((4900, 4909), 'scss.types.Number', 'Number', (['(1)'], {}), '(1)\n', (4906, 4909), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((14444, 14479), 'scss.types.expect_type', 'expect_type', (['hue', 'Number'], {'unit': 'None'}), '(hue, Number, unit=None)\n', (14455, 14479), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15097, 15127), 'scss.types.List.from_maybe_starargs', 'List.from_maybe_starargs', (['args'], {}), '(args)\n', (15121, 15127), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((15316, 15346), 'scss.types.List.from_maybe_starargs', 'List.from_maybe_starargs', (['args'], {}), '(args)\n', (15340, 15346), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((20764, 20777), 'scss.types.Number', 'Number', (['(i + 1)'], {}), '(i + 1)\n', (20770, 20777), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((20862, 20874), 'scss.types.List', 'List', (['zipped'], {}), '(zipped)\n', (20866, 20874), False, 'from scss.types import Arglist, Boolean, Color, List, Null, Number, String, Map, expect_type\n'), ((3274, 3306), 'scss.source.SourceFile.read', 'SourceFile.read', (['origin', 'relpath'], {}), '(origin, relpath)\n', (3289, 3306), False, 'from scss.source import SourceFile\n')]
# Copyright 2021 Internet Corporation for Assigned Names and Numbers. # # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, you can obtain one at https://mozilla.org/MPL/2.0/. # # Developed by Sinodun IT (sinodun.com) # # Aggregation client subnet statistics import textwrap import grafanalib.core as GCore import grafanacommon as GCommon def query_classification_chart(chart_title, yaxis_label, prefix_field, agginfo, nodesel): return GCommon.BarChart( title = chart_title, orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = yaxis_label, ), ), traces = [ GCommon.BarChartTrace( name = 'AForA', x = 'AForA', y = 'AForAPrefix', text = 'AForA', ), GCommon.BarChartTrace( name = 'AForRoot', x = 'AForRoot', y = 'AForRootPrefix', text = 'AForRoot', ), GCommon.BarChartTrace( name = 'FunnyQueryClass', x = 'FunnyQueryClass', y = 'FunnyQueryClassPrefix', text = 'FunnyQueryClass', ), GCommon.BarChartTrace( name = 'FunnyQueryType', x = 'FunnyQueryType', y = 'FunnyQueryTypePrefix', text = 'FunnyQueryType', ), GCommon.BarChartTrace( name = 'Localhost', x = 'Localhost', y = 'LocalhostPrefix', text = 'Localhost', ), GCommon.BarChartTrace( name = 'NonAuthTld', x = 'NonAuthTld', y = 'NonAuthTldPrefix', text = 'NonAuthTld', ), GCommon.BarChartTrace( name = 'Ok', x = 'Ok', y = 'OkPrefix', text = 'Ok', ), GCommon.BarChartTrace( name = 'RFC1918Ptr', x = 'RFC1918Ptr', y = 'RFC1918PtrPrefix', text = 'RFC1918Ptr', ), GCommon.BarChartTrace( name = 'RootServersNet', x = 'RootServersNet', y = 'RootServersNetPrefix', text = 'RootServersNet', ), GCommon.BarChartTrace( name = 'SrcPortZero', x = 'SrcPortZero', y = 'SrcPortZeroPrefix', text = 'SrcPortZero', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForAPrefix, AForA, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForACount)/($to - $from) AS AForA FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS AForRootPrefix, AForRoot, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(AForRootCount)/($to - $from) AS AForRoot FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'B' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryClassPrefix, FunnyQueryClass, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryClassCount)/($to - $from) AS FunnyQueryClass FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'C' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS FunnyQueryTypePrefix, FunnyQueryType, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(FunnyQueryTypeCount)/($to - $from) AS FunnyQueryType FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count DESC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'D' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS LocalhostPrefix, Localhost, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(LocalhostCount)/($to - $from) AS Localhost FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'E' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS NonAuthTldPrefix, NonAuthTld, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(NonAuthTldCount)/($to - $from) AS NonAuthTld FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'F' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS OkPrefix, Ok, TotalCount FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS TotalCount, sum(Count - (AForACount + AForRootCount + FunnyQueryClassCount + FunnyQueryTypeCount + LocalhostCount + NonAuthTldCount + RFC1918PtrCount + RootServersNetCount + SrcPortZeroCount))/($to - $from) AS Ok FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY TotalCount DESC LIMIT 40 ) ORDER BY TotalCount ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'G' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RFC1918PtrPrefix, RFC1918Ptr, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RFC1918PtrCount)/($to - $from) AS RFC1918Ptr FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'H' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS RootServersNetPrefix, RootServersNet, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(RootServersNetCount)/($to - $from) AS RootServersNet FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'I' ), GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Prefix AS SrcPortZeroPrefix, SrcPortZero, Count FROM ( SELECT {prefix_field} AS Prefix, sum(Count) AS Count, sum(SrcPortZeroCount)/($to - $from) AS SrcPortZero FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY Count DESC LIMIT 40 ) ORDER BY Count ASC """.format( prefix_field=prefix_field, nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'J' ), ], ) def dash(myuid, agginfo, nodesel, **kwargs): return GCommon.Dashboard( title = "Client subnet statistics detail", tags = [ agginfo['graph_tag'] ], uid = myuid, rows = [ GCore.Row( height = GCore.Pixels(50), panels = [ GCommon.HTMLPanel('grafana/common/dashboards/aggregated/client_subnet_statistics_header.html', transparent=True), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT Prefix AS Subnet, sum(Count)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY QPS DESC LIMIT 30 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by ASN', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'ASN', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, ClientASN FROM ( SELECT ClientASN, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT ClientASN, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ORDER BY sCount DESC, ClientASN ASC LIMIT 30 ) AS ClientASNCounts ALL LEFT JOIN ( SELECT ClientASN, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN, rcode UNION ALL ( SELECT ClientASN, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, ClientASN FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY ClientASN ) AS ZeroClientASN ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS ClientASNRcodeCounts USING ClientASN GROUP BY ClientASN, rcode ) AS ClientASNRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS ClientASNNameCountsTotal USING rcode GROUP BY ClientASN, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, ClientASN DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by AS subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'AS Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BGPPrefix' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefox ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'RCODE by clients by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( barmode = GCommon.BAR_CHART_LAYOUT_MODE_STACK, showlegend = True, xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), autotrace = True, targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'BusiestClientSubnets' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT notEmpty(rcodeText) ? rcodeText : concat('RCODE', toString(rcode)) AS DisplayRcode, sum(rcodeCount) / ($to - $from) AS rcodeCount, Prefix FROM ( SELECT Prefix, rcode, sum(rcodeCount) AS rcodeCount, any(sCount) AS sCount FROM ( SELECT Prefix, sum(RcodeMap.Count) AS sCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ORDER BY sCount DESC, Prefix ASC LIMIT 30 ) AS PrefixCount ALL LEFT JOIN ( SELECT Prefix, RcodeMap.ResponseRcode AS rcode, sum(RcodeMap.Count) AS rcodeCount FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix, rcode UNION ALL ( SELECT Prefix, rcode, CAST(0 AS UInt64) AS rcodeCount FROM ( SELECT 0 AS Zero, Prefix FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY Prefix ) AS ZeroPrefix ALL LEFT JOIN ( SELECT 0 AS Zero, RcodeMap.ResponseRcode AS rcode FROM $table ARRAY JOIN RcodeMap WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY rcode ) AS ZeroRcode USING Zero ) ) AS PrefixRcodeCounts USING Prefix GROUP BY Prefix, rcode ) AS PrefixRcodeCountsTotal ALL INNER JOIN ( SELECT value_name AS rcodeText, toUInt16(value) AS rcode FROM {nodeinfo_database}.iana_text WHERE registry_name = 'RCODE' ) AS PrefixNameCountsTotal USING rcode GROUP BY Prefix, rcode, rcodeText ORDER BY sum(sCount) ASC, rcodeText ASC, Prefix DESC""".format( nodesel=nodesel, nodeinfo_database=agginfo['nodeinfo_database'])), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ GCommon.BarChart( title = 'Root abusers by fixed subnet', orientation = GCommon.BAR_CHART_ORIENTATION_HORIZONTAL, layout = GCommon.BarChartLayout( xaxis = GCommon.BarChartAxis( title = 'Queries per second', ), yaxis = GCommon.BarChartAxis( autotick = False, axtype = GCommon.BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin = 110, title = 'Fixed Subnet', ), ), traces = [ GCommon.BarChartTrace( name = 'Subnet', color = '#A352CC', x = 'QPS', y = 'Subnet', text = 'QPS', ), ], targets = [ GCommon.ClickHouseTableTarget( database = agginfo['database'], table = 'QueryClassifications' + agginfo['table_suffix'], round = agginfo['round'], query = textwrap.dedent("""\ SELECT Subnet, QPS FROM ( SELECT FixedPrefix AS Subnet, sum(RootAbuseCount)/($to - $from) AS QPS FROM $table WHERE $timeFilter AND NodeID IN {nodesel} GROUP BY FixedPrefix ORDER BY QPS DESC LIMIT 40 ) ORDER BY QPS ASC""".format( nodesel=nodesel)), refId = 'A' ) ], ), ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest fixed subnet', 'Fixed Subnet', 'FixedPrefix', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest ASN', 'ASN', 'ClientASN', agginfo, nodesel) ], ), GCore.Row( height = GCore.Pixels(GCore.DEFAULT_ROW_HEIGHT.num * 2), panels = [ query_classification_chart( 'Query classification by busiest AS subnet', 'AS subnet', 'ASPrefix', agginfo, nodesel) ], ), ] )
[ "grafanacommon.BarChartTrace", "grafanacommon.BarChartAxis", "grafanacommon.HTMLPanel", "grafanalib.core.Pixels" ]
[((1152, 1229), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""AForA"""', 'x': '"""AForA"""', 'y': '"""AForAPrefix"""', 'text': '"""AForA"""'}), "(name='AForA', x='AForA', y='AForAPrefix', text='AForA')\n", (1173, 1229), True, 'import grafanacommon as GCommon\n'), ((1330, 1423), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""AForRoot"""', 'x': '"""AForRoot"""', 'y': '"""AForRootPrefix"""', 'text': '"""AForRoot"""'}), "(name='AForRoot', x='AForRoot', y='AForRootPrefix',\n text='AForRoot')\n", (1351, 1423), True, 'import grafanacommon as GCommon\n'), ((1520, 1642), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""FunnyQueryClass"""', 'x': '"""FunnyQueryClass"""', 'y': '"""FunnyQueryClassPrefix"""', 'text': '"""FunnyQueryClass"""'}), "(name='FunnyQueryClass', x='FunnyQueryClass', y=\n 'FunnyQueryClassPrefix', text='FunnyQueryClass')\n", (1541, 1642), True, 'import grafanacommon as GCommon\n'), ((1738, 1856), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""FunnyQueryType"""', 'x': '"""FunnyQueryType"""', 'y': '"""FunnyQueryTypePrefix"""', 'text': '"""FunnyQueryType"""'}), "(name='FunnyQueryType', x='FunnyQueryType', y=\n 'FunnyQueryTypePrefix', text='FunnyQueryType')\n", (1759, 1856), True, 'import grafanacommon as GCommon\n'), ((1952, 2049), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""Localhost"""', 'x': '"""Localhost"""', 'y': '"""LocalhostPrefix"""', 'text': '"""Localhost"""'}), "(name='Localhost', x='Localhost', y='LocalhostPrefix',\n text='Localhost')\n", (1973, 2049), True, 'import grafanacommon as GCommon\n'), ((2146, 2248), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""NonAuthTld"""', 'x': '"""NonAuthTld"""', 'y': '"""NonAuthTldPrefix"""', 'text': '"""NonAuthTld"""'}), "(name='NonAuthTld', x='NonAuthTld', y=\n 'NonAuthTldPrefix', text='NonAuthTld')\n", (2167, 2248), True, 'import grafanacommon as GCommon\n'), ((2344, 2409), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""Ok"""', 'x': '"""Ok"""', 'y': '"""OkPrefix"""', 'text': '"""Ok"""'}), "(name='Ok', x='Ok', y='OkPrefix', text='Ok')\n", (2365, 2409), True, 'import grafanacommon as GCommon\n'), ((2510, 2612), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""RFC1918Ptr"""', 'x': '"""RFC1918Ptr"""', 'y': '"""RFC1918PtrPrefix"""', 'text': '"""RFC1918Ptr"""'}), "(name='RFC1918Ptr', x='RFC1918Ptr', y=\n 'RFC1918PtrPrefix', text='RFC1918Ptr')\n", (2531, 2612), True, 'import grafanacommon as GCommon\n'), ((2708, 2826), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""RootServersNet"""', 'x': '"""RootServersNet"""', 'y': '"""RootServersNetPrefix"""', 'text': '"""RootServersNet"""'}), "(name='RootServersNet', x='RootServersNet', y=\n 'RootServersNetPrefix', text='RootServersNet')\n", (2729, 2826), True, 'import grafanacommon as GCommon\n'), ((2922, 3028), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""SrcPortZero"""', 'x': '"""SrcPortZero"""', 'y': '"""SrcPortZeroPrefix"""', 'text': '"""SrcPortZero"""'}), "(name='SrcPortZero', x='SrcPortZero', y=\n 'SrcPortZeroPrefix', text='SrcPortZero')\n", (2943, 3028), True, 'import grafanacommon as GCommon\n'), ((802, 850), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'title': '"""Queries per second"""'}), "(title='Queries per second')\n", (822, 850), True, 'import grafanacommon as GCommon\n'), ((905, 1026), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'autotick': '(False)', 'axtype': 'GCommon.BAR_CHART_AXIS_TYPE_CATEGORY', 'tickmargin': '(110)', 'title': 'yaxis_label'}), '(autotick=False, axtype=GCommon.\n BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin=110, title=yaxis_label)\n', (925, 1026), True, 'import grafanacommon as GCommon\n'), ((15236, 15252), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(50)'], {}), '(50)\n', (15248, 15252), True, 'import grafanalib.core as GCore\n'), ((15501, 15547), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (15513, 15547), True, 'import grafanalib.core as GCore\n'), ((18132, 18178), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (18144, 18178), True, 'import grafanalib.core as GCore\n'), ((25122, 25168), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (25134, 25168), True, 'import grafanalib.core as GCore\n'), ((32055, 32101), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (32067, 32101), True, 'import grafanalib.core as GCore\n'), ((39005, 39051), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (39017, 39051), True, 'import grafanalib.core as GCore\n'), ((41660, 41706), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (41672, 41706), True, 'import grafanalib.core as GCore\n'), ((42082, 42128), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (42094, 42128), True, 'import grafanalib.core as GCore\n'), ((42484, 42530), 'grafanalib.core.Pixels', 'GCore.Pixels', (['(GCore.DEFAULT_ROW_HEIGHT.num * 2)'], {}), '(GCore.DEFAULT_ROW_HEIGHT.num * 2)\n', (42496, 42530), True, 'import grafanalib.core as GCore\n'), ((15301, 15423), 'grafanacommon.HTMLPanel', 'GCommon.HTMLPanel', (['"""grafana/common/dashboards/aggregated/client_subnet_statistics_header.html"""'], {'transparent': '(True)'}), "(\n 'grafana/common/dashboards/aggregated/client_subnet_statistics_header.html'\n , transparent=True)\n", (15318, 15423), True, 'import grafanacommon as GCommon\n'), ((16375, 16465), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""Subnet"""', 'color': '"""#A352CC"""', 'x': '"""QPS"""', 'y': '"""Subnet"""', 'text': '"""QPS"""'}), "(name='Subnet', color='#A352CC', x='QPS', y='Subnet',\n text='QPS')\n", (16396, 16465), True, 'import grafanacommon as GCommon\n'), ((39884, 39974), 'grafanacommon.BarChartTrace', 'GCommon.BarChartTrace', ([], {'name': '"""Subnet"""', 'color': '"""#A352CC"""', 'x': '"""QPS"""', 'y': '"""Subnet"""', 'text': '"""QPS"""'}), "(name='Subnet', color='#A352CC', x='QPS', y='Subnet',\n text='QPS')\n", (39905, 39974), True, 'import grafanacommon as GCommon\n'), ((15846, 15894), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'title': '"""Queries per second"""'}), "(title='Queries per second')\n", (15866, 15894), True, 'import grafanacommon as GCommon\n'), ((15997, 16121), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'autotick': '(False)', 'axtype': 'GCommon.BAR_CHART_AXIS_TYPE_CATEGORY', 'tickmargin': '(110)', 'title': '"""Fixed Subnet"""'}), "(autotick=False, axtype=GCommon.\n BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin=110, title='Fixed Subnet')\n", (16017, 16121), True, 'import grafanacommon as GCommon\n'), ((18599, 18647), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'title': '"""Queries per second"""'}), "(title='Queries per second')\n", (18619, 18647), True, 'import grafanacommon as GCommon\n'), ((18750, 18865), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'autotick': '(False)', 'axtype': 'GCommon.BAR_CHART_AXIS_TYPE_CATEGORY', 'tickmargin': '(110)', 'title': '"""ASN"""'}), "(autotick=False, axtype=GCommon.\n BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin=110, title='ASN')\n", (18770, 18865), True, 'import grafanacommon as GCommon\n'), ((25595, 25643), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'title': '"""Queries per second"""'}), "(title='Queries per second')\n", (25615, 25643), True, 'import grafanacommon as GCommon\n'), ((25746, 25867), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'autotick': '(False)', 'axtype': 'GCommon.BAR_CHART_AXIS_TYPE_CATEGORY', 'tickmargin': '(110)', 'title': '"""AS Subnet"""'}), "(autotick=False, axtype=GCommon.\n BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin=110, title='AS Subnet')\n", (25766, 25867), True, 'import grafanacommon as GCommon\n'), ((32531, 32579), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'title': '"""Queries per second"""'}), "(title='Queries per second')\n", (32551, 32579), True, 'import grafanacommon as GCommon\n'), ((32682, 32806), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'autotick': '(False)', 'axtype': 'GCommon.BAR_CHART_AXIS_TYPE_CATEGORY', 'tickmargin': '(110)', 'title': '"""Fixed Subnet"""'}), "(autotick=False, axtype=GCommon.\n BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin=110, title='Fixed Subnet')\n", (32702, 32806), True, 'import grafanacommon as GCommon\n'), ((39355, 39403), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'title': '"""Queries per second"""'}), "(title='Queries per second')\n", (39375, 39403), True, 'import grafanacommon as GCommon\n'), ((39506, 39630), 'grafanacommon.BarChartAxis', 'GCommon.BarChartAxis', ([], {'autotick': '(False)', 'axtype': 'GCommon.BAR_CHART_AXIS_TYPE_CATEGORY', 'tickmargin': '(110)', 'title': '"""Fixed Subnet"""'}), "(autotick=False, axtype=GCommon.\n BAR_CHART_AXIS_TYPE_CATEGORY, tickmargin=110, title='Fixed Subnet')\n", (39526, 39630), True, 'import grafanacommon as GCommon\n')]
import re class lexical(object): '''Lexical Features: Top Level domain (str) Number of dots in hostname (int) Average token length of hostname (float) Max token length of hostname (int) Average token length of path (float) Max token length of path (int) ''' def __init__(self): pass def lexical(self,hostname,path): dot_num=self.dots(hostname) arr_host=self.split(hostname) arr_path=self.split(path) avg_host=self.avg(arr_host) max_host=self.max(arr_host) avg_path=self.avg(arr_path) max_path=self.max(arr_path) return dot_num,avg_host,max_host,avg_path,max_path def dots(self,hostname): # returns number of dots return hostname.count('.') def split(self,string): # returns a list split by ‘/’, ‘?’, ‘.’, ‘=’, ‘-’ and ‘_’ return re.split('/|\?|\.|=|-|_', string) def avg(self,arr): # returns average token length return sum(len(token) for token in arr)/len(arr) def max(self,arr): # returns max token length return max(len(token) for token in arr)
[ "re.split" ]
[((876, 911), 're.split', 're.split', (['"""/|\\\\?|\\\\.|=|-|_"""', 'string'], {}), "('/|\\\\?|\\\\.|=|-|_', string)\n", (884, 911), False, 'import re\n')]
from setuptools import setup, find_packages def readme(): with open('README.rst') as f: return f.read() setup( name='digicert-express', version='1.1dev2', description='Express Install for DigiCert, Inc.', long_description=readme(), classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Information Technology', 'License :: OSI Approved :: MIT License', 'Topic :: Security', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], url='https://github.com/digicert/digicert_express', author='DigiCert, Inc.', author_email='<EMAIL>', license='MIT', zip_safe=False, packages=find_packages(exclude=['tests.*', '*.tests.*', '*.tests', 'tests', 'scripts']), include_package_data=True, install_requires=[ 'python-augeas', 'requests>=2.8.1', 'ndg-httpsclient', 'pyasn1', 'pyOpenSSL' # prefer OS install but we can try here, too ], )
[ "setuptools.find_packages" ]
[((727, 805), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['tests.*', '*.tests.*', '*.tests', 'tests', 'scripts']"}), "(exclude=['tests.*', '*.tests.*', '*.tests', 'tests', 'scripts'])\n", (740, 805), False, 'from setuptools import setup, find_packages\n')]
import argparse import json import numpy as np import os import torch import data_ import models import utils from matplotlib import cm, pyplot as plt from tensorboardX import SummaryWriter from torch import optim from torch.utils import data from tqdm import tqdm from utils import io parser = argparse.ArgumentParser() # CUDA parser.add_argument('--use_gpu', type=bool, default=True, help='Whether to use GPU.') # data parser.add_argument('--dataset_name', type=str, default='spirals', help='Name of dataset to use.') parser.add_argument('--n_data_points', default=int(1e6), help='Number of unique data points in training set.') parser.add_argument('--batch_size', type=int, default=256, help='Size of batch used for training.') parser.add_argument('--num_workers', type=int, default=0, help='Number of workers used in data loaders.') # MADE parser.add_argument('--n_residual_blocks_made', default=4, help='Number of residual blocks in MADE.') parser.add_argument('--hidden_dim_made', default=256, help='Dimensionality of hidden layers in MADE.') parser.add_argument('--activation_made', default='relu', help='Activation function for MADE.') parser.add_argument('--use_batch_norm_made', default=False, help='Whether to use batch norm in MADE.') parser.add_argument('--dropout_probability_made', default=None, help='Dropout probability for MADE.') # energy net parser.add_argument('--context_dim', default=64, help='Dimensionality of context vector.') parser.add_argument('--n_residual_blocks_energy_net', default=4, help='Number of residual blocks in energy net.') parser.add_argument('--hidden_dim_energy_net', default=128, help='Dimensionality of hidden layers in energy net.') parser.add_argument('--energy_upper_bound', default=0, help='Max value for output of energy net.') parser.add_argument('--activation_energy_net', default='relu', help='Activation function for energy net.') parser.add_argument('--use_batch_norm_energy_net', default=False, help='Whether to use batch norm in energy net.') parser.add_argument('--dropout_probability_energy_net', default=None, help='Dropout probability for energy net.') parser.add_argument('--scale_activation', default='softplus', help='Activation to use for scales in proposal mixture components.') parser.add_argument('--apply_context_activation', default=False, help='Whether to apply activation to context vector.') # proposal parser.add_argument('--n_mixture_components', default=10, help='Number of proposal mixture components (per dimension).') parser.add_argument('--proposal_component', default='gaussian', help='Type of location-scale family distribution ' 'to use in proposal mixture.') parser.add_argument('--n_proposal_samples_per_input', default=20, help='Number of proposal samples used to estimate ' 'normalizing constant during training.') parser.add_argument('--n_proposal_samples_per_input_validation', default=100, help='Number of proposal samples used to estimate ' 'normalizing constant during validation.') parser.add_argument('--mixture_component_min_scale', default=1e-3, help='Minimum scale for proposal mixture components.') # optimization parser.add_argument('--learning_rate', default=5e-4, help='Learning rate for Adam.') parser.add_argument('--n_total_steps', default=int(4e5), help='Number of total training steps.') parser.add_argument('--alpha_warm_up_steps', default=5000, help='Number of warm-up steps for AEM density.') parser.add_argument('--hard_alpha_warm_up', default=True, help='Whether to use a hard warm up for alpha') # logging and checkpoints parser.add_argument('--monitor_interval', default=100, help='Interval in steps at which to report training stats.') parser.add_argument('--visualize_interval', default=10000, help='Interval in steps at which to report training stats.') parser.add_argument('--save_interval', default=10000, help='Interval in steps at which to save model.') # reproducibility parser.add_argument('--seed', default=1638128, help='Random seed for PyTorch and NumPy.') args = parser.parse_args() torch.manual_seed(args.seed) np.random.seed(args.seed) if args.use_gpu and torch.cuda.is_available(): device = torch.device('cuda') torch.set_default_tensor_type('torch.cuda.FloatTensor') else: device = torch.device('cpu') # Generate data train_dataset = data_.load_plane_dataset(args.dataset_name, args.n_data_points) train_loader = data_.InfiniteLoader( dataset=train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, num_epochs=None ) # Generate test grid data n_points_per_axis = 512 bounds = np.array([ [-4, 4], [-4, 4] ]) grid_dataset = data_.TestGridDataset(n_points_per_axis=n_points_per_axis, bounds=bounds) grid_loader = data.DataLoader( dataset=grid_dataset, batch_size=1000, drop_last=False ) # various dimensions for autoregressive and energy nets dim = 2 # D output_dim_multiplier = args.context_dim + 3 * args.n_mixture_components # K + 3M # Create MADE made = models.ResidualMADE( input_dim=dim, n_residual_blocks=args.n_residual_blocks_made, hidden_dim=args.hidden_dim_made, output_dim_multiplier=output_dim_multiplier, conditional=False, activation=utils.parse_activation(args.activation_made), use_batch_norm=args.use_batch_norm_made, dropout_probability=args.dropout_probability_made ).to(device) # create energy net energy_net = models.ResidualEnergyNet( input_dim=(args.context_dim + 1), n_residual_blocks=args.n_residual_blocks_energy_net, hidden_dim=args.hidden_dim_energy_net, energy_upper_bound=args.energy_upper_bound, activation=utils.parse_activation(args.activation_energy_net), use_batch_norm=args.use_batch_norm_energy_net, dropout_probability=args.dropout_probability_energy_net ).to(device) # create AEM aem = models.AEM( autoregressive_net=made, energy_net=energy_net, context_dim=args.context_dim, n_proposal_mixture_components=args.n_mixture_components, proposal_component_family=args.proposal_component, n_proposal_samples_per_input=args.n_proposal_samples_per_input, mixture_component_min_scale=args.mixture_component_min_scale, apply_context_activation=args.apply_context_activation ).to(device) # make optimizer parameters = list(made.parameters()) + list(energy_net.parameters()) optimizer = optim.Adam(parameters, lr=args.learning_rate) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.n_total_steps) # create summary writer and write to log directory timestamp = io.get_timestamp() log_dir = os.path.join(io.get_log_root(), args.dataset_name, timestamp) writer = SummaryWriter(log_dir=log_dir) filename = os.path.join(log_dir, 'config.json') with open(filename, 'w') as file: json.dump(vars(args), file) # Training loop tbar = tqdm(range(args.n_total_steps)) alpha = 0 for step in tbar: aem.train() scheduler.step(step) optimizer.zero_grad() # training step batch = next(train_loader).to(device) log_density, log_proposal_density, _, log_normalizer = aem(batch) mean_log_density = torch.mean(log_density) mean_log_proposal_density = torch.mean(log_proposal_density) mean_log_normalizer = torch.mean(log_normalizer) if args.alpha_warm_up_steps is not None: if args.hard_alpha_warm_up: alpha = float(step > args.alpha_warm_up_steps) else: alpha = torch.Tensor([min(step / args.alpha_warm_up_steps, 1)]) loss = - (alpha * mean_log_density + mean_log_proposal_density) else: loss = - (mean_log_density + mean_log_proposal_density) loss.backward() optimizer.step() if (step + 1) % args.monitor_interval == 0: s = 'Loss: {:.4f}, log p: {:.4f}, log q: {:.4f}'.format( loss.item(), mean_log_density.item(), mean_log_proposal_density.item() ) tbar.set_description(s) # write summaries summaries = { 'loss': loss.detach(), 'log-prob-aem': mean_log_density.detach(), 'log-prob-proposal': mean_log_proposal_density.detach(), 'log-normalizer': mean_log_normalizer.detach(), 'learning-rate': torch.Tensor(scheduler.get_lr()), } for summary, value in summaries.items(): writer.add_scalar(tag=summary, scalar_value=value, global_step=step) if (step + 1) % args.visualize_interval == 0: # Plotting aem.eval() aem.set_n_proposal_samples_per_input_validation( args.n_proposal_samples_per_input_validation) log_density_np = [] log_proposal_density_np = [] for batch in grid_loader: batch = batch.to(device) log_density, log_proposal_density, unnormalized_log_density, log_normalizer = aem( batch) log_density_np = np.concatenate(( log_density_np, utils.tensor2numpy(log_density) )) log_proposal_density_np = np.concatenate(( log_proposal_density_np, utils.tensor2numpy(log_proposal_density) )) fig, axs = plt.subplots(1, 3, figsize=(7.5, 2.5)) axs[0].hist2d(train_dataset.data[:, 0], train_dataset.data[:, 1], range=bounds, bins=512, cmap=cm.viridis, rasterized=False) axs[0].set_xticks([]) axs[0].set_yticks([]) axs[1].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_proposal_density_np).reshape(grid_dataset.X.shape)) axs[1].set_xlim(bounds[0]) axs[1].set_ylim(bounds[1]) axs[1].set_xticks([]) axs[1].set_yticks([]) axs[2].pcolormesh(grid_dataset.X, grid_dataset.Y, np.exp(log_density_np).reshape(grid_dataset.X.shape)) axs[2].set_xlim(bounds[0]) axs[2].set_ylim(bounds[1]) axs[2].set_xticks([]) axs[2].set_yticks([]) plt.tight_layout() path = os.path.join(io.get_output_root(), 'pytorch', '{}.png'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_output_root()) plt.savefig(path, dpi=300) writer.add_figure(tag='test-grid', figure=fig, global_step=step) plt.close() if (step + 1) % args.save_interval == 0: path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}.t'.format(args.dataset_name)) if not os.path.exists(path): os.makedirs(io.get_checkpoint_root()) torch.save(aem.state_dict(), path) path = os.path.join(io.get_checkpoint_root(), 'pytorch', '{}-{}.t'.format(args.dataset_name, timestamp)) torch.save(aem.state_dict(), path)
[ "numpy.array", "utils.io.get_checkpoint_root", "torch.cuda.is_available", "data_.TestGridDataset", "os.path.exists", "tensorboardX.SummaryWriter", "argparse.ArgumentParser", "torch.mean", "torch.set_default_tensor_type", "matplotlib.pyplot.close", "numpy.exp", "utils.parse_activation", "numpy.random.seed", "matplotlib.pyplot.savefig", "utils.io.get_output_root", "utils.io.get_log_root", "torch.device", "torch.manual_seed", "torch.optim.Adam", "torch.optim.lr_scheduler.CosineAnnealingLR", "os.path.join", "models.AEM", "data_.InfiniteLoader", "matplotlib.pyplot.tight_layout", "torch.utils.data.DataLoader", "utils.tensor2numpy", "utils.io.get_timestamp", "matplotlib.pyplot.subplots", "data_.load_plane_dataset" ]
[((299, 324), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (322, 324), False, 'import argparse\n'), ((4721, 4749), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (4738, 4749), False, 'import torch\n'), ((4750, 4775), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (4764, 4775), True, 'import numpy as np\n'), ((4990, 5053), 'data_.load_plane_dataset', 'data_.load_plane_dataset', (['args.dataset_name', 'args.n_data_points'], {}), '(args.dataset_name, args.n_data_points)\n', (5014, 5053), False, 'import data_\n'), ((5069, 5191), 'data_.InfiniteLoader', 'data_.InfiniteLoader', ([], {'dataset': 'train_dataset', 'batch_size': 'args.batch_size', 'shuffle': '(True)', 'drop_last': '(True)', 'num_epochs': 'None'}), '(dataset=train_dataset, batch_size=args.batch_size,\n shuffle=True, drop_last=True, num_epochs=None)\n', (5089, 5191), False, 'import data_\n'), ((5270, 5298), 'numpy.array', 'np.array', (['[[-4, 4], [-4, 4]]'], {}), '([[-4, 4], [-4, 4]])\n', (5278, 5298), True, 'import numpy as np\n'), ((5324, 5397), 'data_.TestGridDataset', 'data_.TestGridDataset', ([], {'n_points_per_axis': 'n_points_per_axis', 'bounds': 'bounds'}), '(n_points_per_axis=n_points_per_axis, bounds=bounds)\n', (5345, 5397), False, 'import data_\n'), ((5412, 5483), 'torch.utils.data.DataLoader', 'data.DataLoader', ([], {'dataset': 'grid_dataset', 'batch_size': '(1000)', 'drop_last': '(False)'}), '(dataset=grid_dataset, batch_size=1000, drop_last=False)\n', (5427, 5483), False, 'from torch.utils import data\n'), ((7026, 7071), 'torch.optim.Adam', 'optim.Adam', (['parameters'], {'lr': 'args.learning_rate'}), '(parameters, lr=args.learning_rate)\n', (7036, 7071), False, 'from torch import optim\n'), ((7084, 7151), 'torch.optim.lr_scheduler.CosineAnnealingLR', 'optim.lr_scheduler.CosineAnnealingLR', (['optimizer', 'args.n_total_steps'], {}), '(optimizer, args.n_total_steps)\n', (7120, 7151), False, 'from torch import optim\n'), ((7216, 7234), 'utils.io.get_timestamp', 'io.get_timestamp', ([], {}), '()\n', (7232, 7234), False, 'from utils import io\n'), ((7316, 7346), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'log_dir'}), '(log_dir=log_dir)\n', (7329, 7346), False, 'from tensorboardX import SummaryWriter\n'), ((7358, 7394), 'os.path.join', 'os.path.join', (['log_dir', '"""config.json"""'], {}), "(log_dir, 'config.json')\n", (7370, 7394), False, 'import os\n'), ((4797, 4822), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4820, 4822), False, 'import torch\n'), ((4837, 4857), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (4849, 4857), False, 'import torch\n'), ((4862, 4917), 'torch.set_default_tensor_type', 'torch.set_default_tensor_type', (['"""torch.cuda.FloatTensor"""'], {}), "('torch.cuda.FloatTensor')\n", (4891, 4917), False, 'import torch\n'), ((4937, 4956), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (4949, 4956), False, 'import torch\n'), ((7258, 7275), 'utils.io.get_log_root', 'io.get_log_root', ([], {}), '()\n', (7273, 7275), False, 'from utils import io\n'), ((7768, 7791), 'torch.mean', 'torch.mean', (['log_density'], {}), '(log_density)\n', (7778, 7791), False, 'import torch\n'), ((7824, 7856), 'torch.mean', 'torch.mean', (['log_proposal_density'], {}), '(log_proposal_density)\n', (7834, 7856), False, 'import torch\n'), ((7883, 7909), 'torch.mean', 'torch.mean', (['log_normalizer'], {}), '(log_normalizer)\n', (7893, 7909), False, 'import torch\n'), ((11252, 11276), 'utils.io.get_checkpoint_root', 'io.get_checkpoint_root', ([], {}), '()\n', (11274, 11276), False, 'from utils import io\n'), ((6503, 6902), 'models.AEM', 'models.AEM', ([], {'autoregressive_net': 'made', 'energy_net': 'energy_net', 'context_dim': 'args.context_dim', 'n_proposal_mixture_components': 'args.n_mixture_components', 'proposal_component_family': 'args.proposal_component', 'n_proposal_samples_per_input': 'args.n_proposal_samples_per_input', 'mixture_component_min_scale': 'args.mixture_component_min_scale', 'apply_context_activation': 'args.apply_context_activation'}), '(autoregressive_net=made, energy_net=energy_net, context_dim=args\n .context_dim, n_proposal_mixture_components=args.n_mixture_components,\n proposal_component_family=args.proposal_component,\n n_proposal_samples_per_input=args.n_proposal_samples_per_input,\n mixture_component_min_scale=args.mixture_component_min_scale,\n apply_context_activation=args.apply_context_activation)\n', (6513, 6902), False, 'import models\n'), ((9817, 9855), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(3)'], {'figsize': '(7.5, 2.5)'}), '(1, 3, figsize=(7.5, 2.5))\n', (9829, 9855), True, 'from matplotlib import cm, pyplot as plt\n'), ((10628, 10646), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10644, 10646), True, 'from matplotlib import cm, pyplot as plt\n'), ((10836, 10862), 'matplotlib.pyplot.savefig', 'plt.savefig', (['path'], {'dpi': '(300)'}), '(path, dpi=300)\n', (10847, 10862), True, 'from matplotlib import cm, pyplot as plt\n'), ((10944, 10955), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (10953, 10955), True, 'from matplotlib import cm, pyplot as plt\n'), ((10676, 10696), 'utils.io.get_output_root', 'io.get_output_root', ([], {}), '()\n', (10694, 10696), False, 'from utils import io\n'), ((10760, 10780), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (10774, 10780), False, 'import os\n'), ((11030, 11054), 'utils.io.get_checkpoint_root', 'io.get_checkpoint_root', ([], {}), '()\n', (11052, 11054), False, 'from utils import io\n'), ((11116, 11136), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (11130, 11136), False, 'import os\n'), ((5888, 5932), 'utils.parse_activation', 'utils.parse_activation', (['args.activation_made'], {}), '(args.activation_made)\n', (5910, 5932), False, 'import utils\n'), ((6307, 6357), 'utils.parse_activation', 'utils.parse_activation', (['args.activation_energy_net'], {}), '(args.activation_energy_net)\n', (6329, 6357), False, 'import utils\n'), ((10806, 10826), 'utils.io.get_output_root', 'io.get_output_root', ([], {}), '()\n', (10824, 10826), False, 'from utils import io\n'), ((11162, 11186), 'utils.io.get_checkpoint_root', 'io.get_checkpoint_root', ([], {}), '()\n', (11184, 11186), False, 'from utils import io\n'), ((9598, 9629), 'utils.tensor2numpy', 'utils.tensor2numpy', (['log_density'], {}), '(log_density)\n', (9616, 9629), False, 'import utils\n'), ((9741, 9781), 'utils.tensor2numpy', 'utils.tensor2numpy', (['log_proposal_density'], {}), '(log_proposal_density)\n', (9759, 9781), False, 'import utils\n'), ((10157, 10188), 'numpy.exp', 'np.exp', (['log_proposal_density_np'], {}), '(log_proposal_density_np)\n', (10163, 10188), True, 'import numpy as np\n'), ((10435, 10457), 'numpy.exp', 'np.exp', (['log_density_np'], {}), '(log_density_np)\n', (10441, 10457), True, 'import numpy as np\n')]
import argparse PROJROOTDIR = {'mac': '/Users/taehapark/SLAB/speedplusbaseline', 'linux': '/home/somrita/Documents/Satellite_Pose_Estimation/speedplusbaseline'} DATAROOTDIR = {'mac': '/Users/taehapark/SLAB/speedplus/data/datasets', 'linux': '/home/somrita/Documents/Satellite_Pose_Estimation/dataset'} parser = argparse.ArgumentParser('Configurations for SPEED+ Baseline Study') # ------------------------------------------------------------------------------------------ # Basic directories and names parser.add_argument('--seed', type=int, default=2021) parser.add_argument('--projroot', type=str, default=PROJROOTDIR['linux']) parser.add_argument('--dataroot', type=str, default=DATAROOTDIR['linux']) parser.add_argument('--dataname', type=str, default='speedplus') parser.add_argument('--savedir', type=str, default='checkpoints/synthetic/krn') parser.add_argument('--resultfn', type=str, default='') parser.add_argument('--logdir', type=str, default='log/synthetic/krn') parser.add_argument('--pretrained', type=str, default='') # ------------------------------------------------------------------------------------------ # Model config. parser.add_argument('--model_name', type=str, default='krn') parser.add_argument('--input_shape', nargs='+', type=int, default=(224, 224)) parser.add_argument('--num_keypoints', type=int, default=11) # KRN-specific parser.add_argument('--num_classes', type=int, default=5000) # SPN-specific parser.add_argument('--num_neighbors', type=int, default=5) # SPN-specific parser.add_argument('--keypts_3d_model', type=str, default='src/utils/tangoPoints.mat') parser.add_argument('--attitude_class', type=str, default='src/utils/attitudeClasses.mat') # ------------------------------------------------------------------------------------------ # Training config. parser.add_argument('--start_over', dest='auto_resume', action='store_false', default=True) parser.add_argument('--randomize_texture', dest='randomize_texture', action='store_true', default=False) parser.add_argument('--perform_dann', dest='dann', action='store_true', default=False) parser.add_argument('--texture_alpha', type=float, default=0.5) parser.add_argument('--texture_ratio', type=float, default=0.5) parser.add_argument('--use_fp16', dest='fp16', action='store_true', default=False) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--max_epochs', type=int, default=75) parser.add_argument('--num_workers', type=int, default=8) parser.add_argument('--test_epoch', type=int, default=-1) parser.add_argument('--optimizer', type=str, default='rmsprop') parser.add_argument('--lr', type=float, default=0.001) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight_decay', type=float, default=5e-5) parser.add_argument('--lr_decay_alpha', type=float, default=0.96) parser.add_argument('--lr_decay_step', type=int, default=1) # ------------------------------------------------------------------------------------------ # Dataset-related inputs parser.add_argument('--train_domain', type=str, default='synthetic') parser.add_argument('--test_domain', type=str, default='lightbox') parser.add_argument('--train_csv', type=str, default='train.csv') parser.add_argument('--test_csv', type=str, default='lightbox.csv') # ------------------------------------------------------------------------------------------ # Other miscellaneous settings parser.add_argument('--gpu_id', type=int, default=0) parser.add_argument('--no_cuda', dest='use_cuda', action='store_false', default=True) # End cfg = parser.parse_args()
[ "argparse.ArgumentParser" ]
[((346, 413), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Configurations for SPEED+ Baseline Study"""'], {}), "('Configurations for SPEED+ Baseline Study')\n", (369, 413), False, 'import argparse\n')]
""" HyperOne HyperOne API # noqa: E501 The version of the OpenAPI document: 0.1.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from h1.api_client import ApiClient, Endpoint as _Endpoint from h1.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from h1.model.event import Event from h1.model.inline_response400 import InlineResponse400 from h1.model.insight_project_journal_create import InsightProjectJournalCreate from h1.model.insight_project_journal_credential_patch import InsightProjectJournalCredentialPatch from h1.model.insight_project_journal_transfer import InsightProjectJournalTransfer from h1.model.insight_project_journal_update import InsightProjectJournalUpdate from h1.model.journal import Journal from h1.model.journal_credential import JournalCredential from h1.model.resource_service import ResourceService from h1.model.tag import Tag from h1.model.tag_array import TagArray class InsightProjectJournalApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __insight_project_journal_create( self, project_id, location_id, insight_project_journal_create, **kwargs ): """Create insight/journal # noqa: E501 Create journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_create(project_id, location_id, insight_project_journal_create, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id insight_project_journal_create (InsightProjectJournalCreate): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['insight_project_journal_create'] = \ insight_project_journal_create return self.call_with_http_info(**kwargs) self.insight_project_journal_create = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'insight_project_journal_create', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'insight_project_journal_create', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'insight_project_journal_create': (InsightProjectJournalCreate,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'insight_project_journal_create': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_create ) def __insight_project_journal_credential_create( self, project_id, location_id, journal_id, journal_credential, **kwargs ): """Create insight/journal.credential # noqa: E501 Create insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_create(project_id, location_id, journal_id, journal_credential, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id journal_credential (JournalCredential): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['journal_credential'] = \ journal_credential return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_create = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'journal_credential', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'journal_credential': (JournalCredential,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'journal_credential': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_create ) def __insight_project_journal_credential_delete( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Delete insight/journal.credential # noqa: E501 Delete insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_delete(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_delete = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_delete ) def __insight_project_journal_credential_get( self, project_id, location_id, journal_id, credential_id, **kwargs ): """Get insight/journal.credential # noqa: E501 Get insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_get(project_id, location_id, journal_id, credential_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_get = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_get ) def __insight_project_journal_credential_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.credential # noqa: E501 List insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [JournalCredential] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_list = _Endpoint( settings={ 'response_type': ([JournalCredential],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential', 'operation_id': 'insight_project_journal_credential_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_credential_list ) def __insight_project_journal_credential_patch( self, project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, **kwargs ): """Update insight/journal.credential # noqa: E501 Update insight/journal.credential # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_credential_patch(project_id, location_id, journal_id, credential_id, insight_project_journal_credential_patch, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id credential_id (str): credentialId insight_project_journal_credential_patch (InsightProjectJournalCredentialPatch): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: JournalCredential If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['credential_id'] = \ credential_id kwargs['insight_project_journal_credential_patch'] = \ insight_project_journal_credential_patch return self.call_with_http_info(**kwargs) self.insight_project_journal_credential_patch = _Endpoint( settings={ 'response_type': (JournalCredential,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}', 'operation_id': 'insight_project_journal_credential_patch', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'credential_id', 'insight_project_journal_credential_patch', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,), 'insight_project_journal_credential_patch': (InsightProjectJournalCredentialPatch,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'credential_id': 'credentialId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path', 'insight_project_journal_credential_patch': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_credential_patch ) def __insight_project_journal_delete( self, project_id, location_id, journal_id, **kwargs ): """Delete insight/journal # noqa: E501 Delete journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_delete(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_delete ) def __insight_project_journal_event_get( self, project_id, location_id, journal_id, event_id, **kwargs ): """Get insight/journal.event # noqa: E501 Get insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_get(project_id, location_id, journal_id, event_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id event_id (str): eventId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Event If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['event_id'] = \ event_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_get = _Endpoint( settings={ 'response_type': (Event,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event/{eventId}', 'operation_id': 'insight_project_journal_event_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'event_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'event_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'event_id': 'eventId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'event_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_get ) def __insight_project_journal_event_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.event # noqa: E501 List insight/journal.event # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_event_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: limit (float): $limit. [optional] if omitted the server will use the default value of 100 skip (float): $skip. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Event] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_event_list = _Endpoint( settings={ 'response_type': ([Event],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/event', 'operation_id': 'insight_project_journal_event_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'limit', 'skip', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ 'limit', ] }, root_map={ 'validations': { ('limit',): { 'inclusive_maximum': 1000, 'inclusive_minimum': 1, }, }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'limit': (float,), 'skip': (float,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'limit': '$limit', 'skip': '$skip', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'limit': 'query', 'skip': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_event_list ) def __insight_project_journal_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal # noqa: E501 Returns a single journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_get = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_get ) def __insight_project_journal_list( self, project_id, location_id, **kwargs ): """List insight/journal # noqa: E501 List journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_list(project_id, location_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id Keyword Args: name (str): Filter by name. [optional] tag_value (str): Filter by tag.value. [optional] tag_key (str): Filter by tag.key. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Journal] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id return self.call_with_http_info(**kwargs) self.insight_project_journal_list = _Endpoint( settings={ 'response_type': ([Journal],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal', 'operation_id': 'insight_project_journal_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'name', 'tag_value', 'tag_key', ], 'required': [ 'project_id', 'location_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'name': (str,), 'tag_value': (str,), 'tag_key': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'name': 'name', 'tag_value': 'tag.value', 'tag_key': 'tag.key', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'name': 'query', 'tag_value': 'query', 'tag_key': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_list ) def __insight_project_journal_log_get( self, project_id, location_id, journal_id, **kwargs ): """Get insight/journal.log # noqa: E501 websocket is also supported # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_log_get(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: since (datetime): since. [optional] until (datetime): until. [optional] follow (bool): follow. [optional] if omitted the server will use the default value of False tail (float): tail. [optional] tag (TagArray): tag. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_log_get = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/log', 'operation_id': 'insight_project_journal_log_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'since', 'until', 'follow', 'tail', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'since': (datetime,), 'until': (datetime,), 'follow': (bool,), 'tail': (float,), 'tag': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'since': 'since', 'until': 'until', 'follow': 'follow', 'tail': 'tail', 'tag': 'tag', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'since': 'query', 'until': 'query', 'follow': 'query', 'tail': 'query', 'tag': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_log_get ) def __insight_project_journal_service_get( self, project_id, location_id, journal_id, service_id, **kwargs ): """Get insight/journal.service # noqa: E501 Get insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_get(project_id, location_id, journal_id, service_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id service_id (str): serviceId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: ResourceService If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['service_id'] = \ service_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_get = _Endpoint( settings={ 'response_type': (ResourceService,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service/{serviceId}', 'operation_id': 'insight_project_journal_service_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'service_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'service_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'service_id': 'serviceId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'service_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_get ) def __insight_project_journal_service_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.service # noqa: E501 List insight/journal.service # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_service_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [ResourceService] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_service_list = _Endpoint( settings={ 'response_type': ([ResourceService],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/service', 'operation_id': 'insight_project_journal_service_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_service_list ) def __insight_project_journal_tag_create( self, project_id, location_id, journal_id, tag, **kwargs ): """Create insight/journal.tag # noqa: E501 Create insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_create(project_id, location_id, journal_id, tag, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag (Tag): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag'] = \ tag return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_create = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_create', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag': (Tag,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_create ) def __insight_project_journal_tag_delete( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Delete insight/journal.tag # noqa: E501 Delete insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_delete(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: None If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_delete = _Endpoint( settings={ 'response_type': None, 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_delete', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_delete ) def __insight_project_journal_tag_get( self, project_id, location_id, journal_id, tag_id, **kwargs ): """Get insight/journal.tag # noqa: E501 Get insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_get(project_id, location_id, journal_id, tag_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_id (str): tagId Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Tag If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_id'] = \ tag_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_get = _Endpoint( settings={ 'response_type': (Tag,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}', 'operation_id': 'insight_project_journal_tag_get', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_get ) def __insight_project_journal_tag_list( self, project_id, location_id, journal_id, **kwargs ): """List insight/journal.tag # noqa: E501 List insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_list(project_id, location_id, journal_id, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_list = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', ], 'required': [ 'project_id', 'location_id', 'journal_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [], }, api_client=api_client, callable=__insight_project_journal_tag_list ) def __insight_project_journal_tag_put( self, project_id, location_id, journal_id, tag_array, **kwargs ): """Replace insight/journal.tag # noqa: E501 Replace insight/journal.tag # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_tag_put(project_id, location_id, journal_id, tag_array, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id tag_array (TagArray): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [Tag] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['tag_array'] = \ tag_array return self.call_with_http_info(**kwargs) self.insight_project_journal_tag_put = _Endpoint( settings={ 'response_type': ([Tag],), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag', 'operation_id': 'insight_project_journal_tag_put', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'tag_array', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'tag_array': (TagArray,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_array': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_tag_put ) def __insight_project_journal_transfer( self, project_id, location_id, journal_id, insight_project_journal_transfer, **kwargs ): """Transfer insight/journal # noqa: E501 action transfer # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_transfer(project_id, location_id, journal_id, insight_project_journal_transfer, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_transfer (InsightProjectJournalTransfer): Keyword Args: x_idempotency_key (str): Idempotency key. [optional] x_dry_run (str): Dry run. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_transfer'] = \ insight_project_journal_transfer return self.call_with_http_info(**kwargs) self.insight_project_journal_transfer = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}/actions/transfer', 'operation_id': 'insight_project_journal_transfer', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', 'x_idempotency_key', 'x_dry_run', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_transfer', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_transfer': (InsightProjectJournalTransfer,), 'x_idempotency_key': (str,), 'x_dry_run': (str,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_transfer': 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_transfer ) def __insight_project_journal_update( self, project_id, location_id, journal_id, insight_project_journal_update, **kwargs ): """Update insight/journal # noqa: E501 Returns modified journal # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.insight_project_journal_update(project_id, location_id, journal_id, insight_project_journal_update, async_req=True) >>> result = thread.get() Args: project_id (str): Project Id location_id (str): Location Id journal_id (str): Journal Id insight_project_journal_update (InsightProjectJournalUpdate): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: Journal If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['project_id'] = \ project_id kwargs['location_id'] = \ location_id kwargs['journal_id'] = \ journal_id kwargs['insight_project_journal_update'] = \ insight_project_journal_update return self.call_with_http_info(**kwargs) self.insight_project_journal_update = _Endpoint( settings={ 'response_type': (Journal,), 'auth': [ 'BearerAuth' ], 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal/{journalId}', 'operation_id': 'insight_project_journal_update', 'http_method': 'PATCH', 'servers': None, }, params_map={ 'all': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'required': [ 'project_id', 'location_id', 'journal_id', 'insight_project_journal_update', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,), 'insight_project_journal_update': (InsightProjectJournalUpdate,), }, 'attribute_map': { 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId', }, 'location_map': { 'project_id': 'path', 'location_id': 'path', 'journal_id': 'path', 'insight_project_journal_update': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/json' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__insight_project_journal_update )
[ "h1.api_client.Endpoint", "h1.api_client.ApiClient" ]
[((4796, 6054), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Journal,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal', 'operation_id':\n 'insight_project_journal_create', 'http_method': 'POST', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'insight_project_journal_create',\n 'x_idempotency_key', 'x_dry_run'], 'required': ['project_id',\n 'location_id', 'insight_project_journal_create'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'insight_project_journal_create': (\n InsightProjectJournalCreate,), 'x_idempotency_key': (str,), 'x_dry_run':\n (str,)}, 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run':\n 'x-dry-run'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'insight_project_journal_create': 'body', 'x_idempotency_key':\n 'header', 'x_dry_run': 'header'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': ['application/json']}", 'api_client': 'api_client', 'callable': '__insight_project_journal_create'}), "(settings={'response_type': (Journal,), 'auth': ['BearerAuth'],\n 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal',\n 'operation_id': 'insight_project_journal_create', 'http_method': 'POST',\n 'servers': None}, params_map={'all': ['project_id', 'location_id',\n 'insight_project_journal_create', 'x_idempotency_key', 'x_dry_run'],\n 'required': ['project_id', 'location_id',\n 'insight_project_journal_create'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'insight_project_journal_create': (InsightProjectJournalCreate,),\n 'x_idempotency_key': (str,), 'x_dry_run': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId',\n 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run': 'x-dry-run'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'insight_project_journal_create': 'body', 'x_idempotency_key': 'header',\n 'x_dry_run': 'header'}, 'collection_format_map': {}}, headers_map={\n 'accept': ['application/json'], 'content_type': ['application/json']},\n api_client=api_client, callable=__insight_project_journal_create)\n", (4805, 6054), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((10692, 11840), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (JournalCredential,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential',\n 'operation_id': 'insight_project_journal_credential_create',\n 'http_method': 'POST', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'journal_credential'],\n 'required': ['project_id', 'location_id', 'journal_id',\n 'journal_credential'], 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,),\n 'journal_credential': (JournalCredential,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'journal_credential': 'body'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': ['application/json']}", 'api_client': 'api_client', 'callable': '__insight_project_journal_credential_create'}), "(settings={'response_type': (JournalCredential,), 'auth': [\n 'BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential',\n 'operation_id': 'insight_project_journal_credential_create',\n 'http_method': 'POST', 'servers': None}, params_map={'all': [\n 'project_id', 'location_id', 'journal_id', 'journal_credential'],\n 'required': ['project_id', 'location_id', 'journal_id',\n 'journal_credential'], 'nullable': [], 'enum': [], 'validation': []},\n root_map={'validations': {}, 'allowed_values': {}, 'openapi_types': {\n 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,),\n 'journal_credential': (JournalCredential,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'journal_credential': 'body'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': ['application/json']}, api_client=\n api_client, callable=__insight_project_journal_credential_create)\n", (10701, 11840), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((16358, 17491), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Journal,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}'\n , 'operation_id': 'insight_project_journal_credential_delete',\n 'http_method': 'DELETE', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'credential_id'],\n 'required': ['project_id', 'location_id', 'journal_id', 'credential_id'\n ], 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (\n str,)}, 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'credential_id':\n 'credentialId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'credential_id': 'path'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_credential_delete'}), "(settings={'response_type': (Journal,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}'\n , 'operation_id': 'insight_project_journal_credential_delete',\n 'http_method': 'DELETE', 'servers': None}, params_map={'all': [\n 'project_id', 'location_id', 'journal_id', 'credential_id'], 'required':\n ['project_id', 'location_id', 'journal_id', 'credential_id'],\n 'nullable': [], 'enum': [], 'validation': []}, root_map={'validations':\n {}, 'allowed_values': {}, 'openapi_types': {'project_id': (str,),\n 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'credential_id':\n 'credentialId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'credential_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_credential_delete)\n", (16367, 17491), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((21990, 23125), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (JournalCredential,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}'\n , 'operation_id': 'insight_project_journal_credential_get',\n 'http_method': 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'credential_id'],\n 'required': ['project_id', 'location_id', 'journal_id', 'credential_id'\n ], 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (\n str,)}, 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'credential_id':\n 'credentialId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'credential_id': 'path'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_credential_get'}), "(settings={'response_type': (JournalCredential,), 'auth': [\n 'BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}'\n , 'operation_id': 'insight_project_journal_credential_get',\n 'http_method': 'GET', 'servers': None}, params_map={'all': [\n 'project_id', 'location_id', 'journal_id', 'credential_id'], 'required':\n ['project_id', 'location_id', 'journal_id', 'credential_id'],\n 'nullable': [], 'enum': [], 'validation': []}, root_map={'validations':\n {}, 'allowed_values': {}, 'openapi_types': {'project_id': (str,),\n 'location_id': (str,), 'journal_id': (str,), 'credential_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'credential_id':\n 'credentialId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'credential_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_credential_get)\n", (21999, 23125), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((27468, 28466), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': ([JournalCredential],), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential',\n 'operation_id': 'insight_project_journal_credential_list',\n 'http_method': 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id'], 'required': [\n 'project_id', 'location_id', 'journal_id'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_credential_list'}), "(settings={'response_type': ([JournalCredential],), 'auth': [\n 'BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential',\n 'operation_id': 'insight_project_journal_credential_list',\n 'http_method': 'GET', 'servers': None}, params_map={'all': [\n 'project_id', 'location_id', 'journal_id'], 'required': ['project_id',\n 'location_id', 'journal_id'], 'nullable': [], 'enum': [], 'validation':\n []}, root_map={'validations': {}, 'allowed_values': {}, 'openapi_types':\n {'project_id': (str,), 'location_id': (str,), 'journal_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_credential_list)\n", (27477, 28466), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((33178, 34580), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (JournalCredential,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}'\n , 'operation_id': 'insight_project_journal_credential_patch',\n 'http_method': 'PATCH', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'credential_id',\n 'insight_project_journal_credential_patch'], 'required': ['project_id',\n 'location_id', 'journal_id', 'credential_id',\n 'insight_project_journal_credential_patch'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'credential_id': (\n str,), 'insight_project_journal_credential_patch': (\n InsightProjectJournalCredentialPatch,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId',\n 'credential_id': 'credentialId'}, 'location_map': {'project_id': 'path',\n 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path',\n 'insight_project_journal_credential_patch': 'body'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': ['application/json']}", 'api_client': 'api_client', 'callable': '__insight_project_journal_credential_patch'}), "(settings={'response_type': (JournalCredential,), 'auth': [\n 'BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/credential/{credentialId}'\n , 'operation_id': 'insight_project_journal_credential_patch',\n 'http_method': 'PATCH', 'servers': None}, params_map={'all': [\n 'project_id', 'location_id', 'journal_id', 'credential_id',\n 'insight_project_journal_credential_patch'], 'required': ['project_id',\n 'location_id', 'journal_id', 'credential_id',\n 'insight_project_journal_credential_patch'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'credential_id': (str,),\n 'insight_project_journal_credential_patch': (\n InsightProjectJournalCredentialPatch,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId',\n 'credential_id': 'credentialId'}, 'location_map': {'project_id': 'path',\n 'location_id': 'path', 'journal_id': 'path', 'credential_id': 'path',\n 'insight_project_journal_credential_patch': 'body'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': ['application/json']}, api_client=\n api_client, callable=__insight_project_journal_credential_patch)\n", (33187, 34580), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((38978, 39932), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': None, 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}',\n 'operation_id': 'insight_project_journal_delete', 'http_method':\n 'DELETE', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id'], 'required': [\n 'project_id', 'location_id', 'journal_id'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_delete'}), "(settings={'response_type': None, 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}',\n 'operation_id': 'insight_project_journal_delete', 'http_method':\n 'DELETE', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id'], 'required': ['project_id', 'location_id',\n 'journal_id'], 'nullable': [], 'enum': [], 'validation': []}, root_map=\n {'validations': {}, 'allowed_values': {}, 'openapi_types': {\n 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_delete)\n", (38987, 39932), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((44248, 45317), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Event,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/event/{eventId}'\n , 'operation_id': 'insight_project_journal_event_get', 'http_method':\n 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'event_id'], 'required':\n ['project_id', 'location_id', 'journal_id', 'event_id'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'event_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'event_id': 'eventId'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'event_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_event_get'}), "(settings={'response_type': (Event,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/event/{eventId}'\n , 'operation_id': 'insight_project_journal_event_get', 'http_method':\n 'GET', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'event_id'], 'required': ['project_id',\n 'location_id', 'journal_id', 'event_id'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'event_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId', 'event_id': 'eventId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path', 'event_id': 'path'\n }, 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_event_get)\n", (44257, 45317), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((49781, 50959), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': ([Event],), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/event',\n 'operation_id': 'insight_project_journal_event_list', 'http_method':\n 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'limit', 'skip'],\n 'required': ['project_id', 'location_id', 'journal_id'], 'nullable': [],\n 'enum': [], 'validation': ['limit']}", 'root_map': "{'validations': {('limit',): {'inclusive_maximum': 1000,\n 'inclusive_minimum': 1}}, 'allowed_values': {}, 'openapi_types': {\n 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,),\n 'limit': (float,), 'skip': (float,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId',\n 'limit': '$limit', 'skip': '$skip'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path', 'limit': 'query',\n 'skip': 'query'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_event_list'}), "(settings={'response_type': ([Event],), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/event',\n 'operation_id': 'insight_project_journal_event_list', 'http_method':\n 'GET', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'limit', 'skip'], 'required': [\n 'project_id', 'location_id', 'journal_id'], 'nullable': [], 'enum': [],\n 'validation': ['limit']}, root_map={'validations': {('limit',): {\n 'inclusive_maximum': 1000, 'inclusive_minimum': 1}}, 'allowed_values':\n {}, 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'limit': (float,), 'skip': (float,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'limit': '$limit', 'skip':\n '$skip'}, 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'limit': 'query', 'skip': 'query'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_event_list)\n", (49790, 50959), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((55432, 56377), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Journal,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}',\n 'operation_id': 'insight_project_journal_get', 'http_method': 'GET',\n 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id'], 'required': [\n 'project_id', 'location_id', 'journal_id'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_get'}), "(settings={'response_type': (Journal,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}',\n 'operation_id': 'insight_project_journal_get', 'http_method': 'GET',\n 'servers': None}, params_map={'all': ['project_id', 'location_id',\n 'journal_id'], 'required': ['project_id', 'location_id', 'journal_id'],\n 'nullable': [], 'enum': [], 'validation': []}, root_map={'validations':\n {}, 'allowed_values': {}, 'openapi_types': {'project_id': (str,),\n 'location_id': (str,), 'journal_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path'}, 'collection_format_map': {}},\n headers_map={'accept': ['application/json'], 'content_type': []},\n api_client=api_client, callable=__insight_project_journal_get)\n", (55441, 56377), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((60574, 61630), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': ([Journal],), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal', 'operation_id':\n 'insight_project_journal_list', 'http_method': 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'name', 'tag_value', 'tag_key'],\n 'required': ['project_id', 'location_id'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'name': (str,), 'tag_value': (str,),\n 'tag_key': (str,)}, 'attribute_map': {'project_id': 'projectId',\n 'location_id': 'locationId', 'name': 'name', 'tag_value': 'tag.value',\n 'tag_key': 'tag.key'}, 'location_map': {'project_id': 'path',\n 'location_id': 'path', 'name': 'query', 'tag_value': 'query', 'tag_key':\n 'query'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_list'}), "(settings={'response_type': ([Journal],), 'auth': ['BearerAuth'],\n 'endpoint_path': '/insight/{locationId}/project/{projectId}/journal',\n 'operation_id': 'insight_project_journal_list', 'http_method': 'GET',\n 'servers': None}, params_map={'all': ['project_id', 'location_id',\n 'name', 'tag_value', 'tag_key'], 'required': ['project_id',\n 'location_id'], 'nullable': [], 'enum': [], 'validation': []}, root_map\n ={'validations': {}, 'allowed_values': {}, 'openapi_types': {\n 'project_id': (str,), 'location_id': (str,), 'name': (str,),\n 'tag_value': (str,), 'tag_key': (str,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'name': 'name', 'tag_value':\n 'tag.value', 'tag_key': 'tag.key'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'name': 'query', 'tag_value': 'query',\n 'tag_key': 'query'}, 'collection_format_map': {}}, headers_map={\n 'accept': ['application/json'], 'content_type': []}, api_client=\n api_client, callable=__insight_project_journal_list)\n", (60583, 61630), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((66301, 67590), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': None, 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/log',\n 'operation_id': 'insight_project_journal_log_get', 'http_method': 'GET',\n 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'since', 'until',\n 'follow', 'tail', 'tag'], 'required': ['project_id', 'location_id',\n 'journal_id'], 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'since': (datetime,\n ), 'until': (datetime,), 'follow': (bool,), 'tail': (float,), 'tag': (\n TagArray,)}, 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'since': 'since', 'until':\n 'until', 'follow': 'follow', 'tail': 'tail', 'tag': 'tag'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'since': 'query', 'until': 'query', 'follow':\n 'query', 'tail': 'query', 'tag': 'query'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_log_get'}), "(settings={'response_type': None, 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/log',\n 'operation_id': 'insight_project_journal_log_get', 'http_method': 'GET',\n 'servers': None}, params_map={'all': ['project_id', 'location_id',\n 'journal_id', 'since', 'until', 'follow', 'tail', 'tag'], 'required': [\n 'project_id', 'location_id', 'journal_id'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'since': (datetime,), 'until': (datetime,),\n 'follow': (bool,), 'tail': (float,), 'tag': (TagArray,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'since': 'since', 'until':\n 'until', 'follow': 'follow', 'tail': 'tail', 'tag': 'tag'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'since': 'query', 'until': 'query', 'follow':\n 'query', 'tail': 'query', 'tag': 'query'}, 'collection_format_map': {}},\n headers_map={'accept': ['application/json'], 'content_type': []},\n api_client=api_client, callable=__insight_project_journal_log_get)\n", (66310, 67590), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((72444, 73543), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (ResourceService,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/service/{serviceId}'\n , 'operation_id': 'insight_project_journal_service_get', 'http_method':\n 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'service_id'],\n 'required': ['project_id', 'location_id', 'journal_id', 'service_id'],\n 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'service_id': (str,\n )}, 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'service_id': 'serviceId'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'service_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_service_get'}), "(settings={'response_type': (ResourceService,), 'auth': [\n 'BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/service/{serviceId}'\n , 'operation_id': 'insight_project_journal_service_get', 'http_method':\n 'GET', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'service_id'], 'required': ['project_id',\n 'location_id', 'journal_id', 'service_id'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'service_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId', 'service_id': 'serviceId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path', 'service_id':\n 'path'}, 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_service_get)\n", (72453, 73543), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((77873, 78861), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': ([ResourceService],), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/service',\n 'operation_id': 'insight_project_journal_service_list', 'http_method':\n 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id'], 'required': [\n 'project_id', 'location_id', 'journal_id'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_service_list'}), "(settings={'response_type': ([ResourceService],), 'auth': [\n 'BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/service',\n 'operation_id': 'insight_project_journal_service_list', 'http_method':\n 'GET', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id'], 'required': ['project_id', 'location_id',\n 'journal_id'], 'nullable': [], 'enum': [], 'validation': []}, root_map=\n {'validations': {}, 'allowed_values': {}, 'openapi_types': {\n 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_service_list)\n", (77882, 78861), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((83146, 84177), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Tag,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag',\n 'operation_id': 'insight_project_journal_tag_create', 'http_method':\n 'POST', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'tag'], 'required': [\n 'project_id', 'location_id', 'journal_id', 'tag'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'tag': (Tag,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path', 'tag': 'body'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': ['application/json']}", 'api_client': 'api_client', 'callable': '__insight_project_journal_tag_create'}), "(settings={'response_type': (Tag,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag',\n 'operation_id': 'insight_project_journal_tag_create', 'http_method':\n 'POST', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'tag'], 'required': ['project_id',\n 'location_id', 'journal_id', 'tag'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'tag': (Tag,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'tag': 'body'}, 'collection_format_map': {}},\n headers_map={'accept': ['application/json'], 'content_type': [\n 'application/json']}, api_client=api_client, callable=\n __insight_project_journal_tag_create)\n", (83155, 84177), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((88623, 89675), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': None, 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}'\n , 'operation_id': 'insight_project_journal_tag_delete', 'http_method':\n 'DELETE', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'tag_id'], 'required':\n ['project_id', 'location_id', 'journal_id', 'tag_id'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'tag_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_tag_delete'}), "(settings={'response_type': None, 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}'\n , 'operation_id': 'insight_project_journal_tag_delete', 'http_method':\n 'DELETE', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'tag_id'], 'required': ['project_id',\n 'location_id', 'journal_id', 'tag_id'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'tag_id': (str,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId',\n 'tag_id': 'tagId'}, 'location_map': {'project_id': 'path',\n 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_tag_delete)\n", (88632, 89675), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((94088, 95133), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Tag,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}'\n , 'operation_id': 'insight_project_journal_tag_get', 'http_method':\n 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'tag_id'], 'required':\n ['project_id', 'location_id', 'journal_id', 'tag_id'], 'nullable': [],\n 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'tag_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId', 'tag_id': 'tagId'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'tag_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_tag_get'}), "(settings={'response_type': (Tag,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag/{tagId}'\n , 'operation_id': 'insight_project_journal_tag_get', 'http_method':\n 'GET', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'tag_id'], 'required': ['project_id',\n 'location_id', 'journal_id', 'tag_id'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'tag_id': (str,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId',\n 'tag_id': 'tagId'}, 'location_map': {'project_id': 'path',\n 'location_id': 'path', 'journal_id': 'path', 'tag_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_tag_get)\n", (94097, 95133), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((99433, 100396), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': ([Tag],), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag',\n 'operation_id': 'insight_project_journal_tag_list', 'http_method':\n 'GET', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id'], 'required': [\n 'project_id', 'location_id', 'journal_id'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': []}", 'api_client': 'api_client', 'callable': '__insight_project_journal_tag_list'}), "(settings={'response_type': ([Tag],), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag',\n 'operation_id': 'insight_project_journal_tag_list', 'http_method':\n 'GET', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id'], 'required': ['project_id', 'location_id',\n 'journal_id'], 'nullable': [], 'enum': [], 'validation': []}, root_map=\n {'validations': {}, 'allowed_values': {}, 'openapi_types': {\n 'project_id': (str,), 'location_id': (str,), 'journal_id': (str,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': []}, api_client=api_client,\n callable=__insight_project_journal_tag_list)\n", (99442, 100396), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((104712, 105763), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': ([Tag],), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag',\n 'operation_id': 'insight_project_journal_tag_put', 'http_method': 'PUT',\n 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id', 'tag_array'],\n 'required': ['project_id', 'location_id', 'journal_id', 'tag_array'],\n 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,), 'tag_array': (\n TagArray,)}, 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path', 'tag_array':\n 'body'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': ['application/json']}", 'api_client': 'api_client', 'callable': '__insight_project_journal_tag_put'}), "(settings={'response_type': ([Tag],), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/tag',\n 'operation_id': 'insight_project_journal_tag_put', 'http_method': 'PUT',\n 'servers': None}, params_map={'all': ['project_id', 'location_id',\n 'journal_id', 'tag_array'], 'required': ['project_id', 'location_id',\n 'journal_id', 'tag_array'], 'nullable': [], 'enum': [], 'validation': [\n ]}, root_map={'validations': {}, 'allowed_values': {}, 'openapi_types':\n {'project_id': (str,), 'location_id': (str,), 'journal_id': (str,),\n 'tag_array': (TagArray,)}, 'attribute_map': {'project_id': 'projectId',\n 'location_id': 'locationId', 'journal_id': 'journalId'}, 'location_map':\n {'project_id': 'path', 'location_id': 'path', 'journal_id': 'path',\n 'tag_array': 'body'}, 'collection_format_map': {}}, headers_map={\n 'accept': ['application/json'], 'content_type': ['application/json']},\n api_client=api_client, callable=__insight_project_journal_tag_put)\n", (104721, 105763), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((110469, 111883), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Journal,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/actions/transfer'\n , 'operation_id': 'insight_project_journal_transfer', 'http_method':\n 'POST', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id',\n 'insight_project_journal_transfer', 'x_idempotency_key', 'x_dry_run'],\n 'required': ['project_id', 'location_id', 'journal_id',\n 'insight_project_journal_transfer'], 'nullable': [], 'enum': [],\n 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,),\n 'insight_project_journal_transfer': (InsightProjectJournalTransfer,),\n 'x_idempotency_key': (str,), 'x_dry_run': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run':\n 'x-dry-run'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'insight_project_journal_transfer':\n 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header'},\n 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': ['application/json']}", 'api_client': 'api_client', 'callable': '__insight_project_journal_transfer'}), "(settings={'response_type': (Journal,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}/actions/transfer'\n , 'operation_id': 'insight_project_journal_transfer', 'http_method':\n 'POST', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'insight_project_journal_transfer',\n 'x_idempotency_key', 'x_dry_run'], 'required': ['project_id',\n 'location_id', 'journal_id', 'insight_project_journal_transfer'],\n 'nullable': [], 'enum': [], 'validation': []}, root_map={'validations':\n {}, 'allowed_values': {}, 'openapi_types': {'project_id': (str,),\n 'location_id': (str,), 'journal_id': (str,),\n 'insight_project_journal_transfer': (InsightProjectJournalTransfer,),\n 'x_idempotency_key': (str,), 'x_dry_run': (str,)}, 'attribute_map': {\n 'project_id': 'projectId', 'location_id': 'locationId', 'journal_id':\n 'journalId', 'x_idempotency_key': 'x-idempotency-key', 'x_dry_run':\n 'x-dry-run'}, 'location_map': {'project_id': 'path', 'location_id':\n 'path', 'journal_id': 'path', 'insight_project_journal_transfer':\n 'body', 'x_idempotency_key': 'header', 'x_dry_run': 'header'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': ['application/json']}, api_client=\n api_client, callable=__insight_project_journal_transfer)\n", (110478, 111883), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((116638, 117803), 'h1.api_client.Endpoint', '_Endpoint', ([], {'settings': "{'response_type': (Journal,), 'auth': ['BearerAuth'], 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}',\n 'operation_id': 'insight_project_journal_update', 'http_method':\n 'PATCH', 'servers': None}", 'params_map': "{'all': ['project_id', 'location_id', 'journal_id',\n 'insight_project_journal_update'], 'required': ['project_id',\n 'location_id', 'journal_id', 'insight_project_journal_update'],\n 'nullable': [], 'enum': [], 'validation': []}", 'root_map': "{'validations': {}, 'allowed_values': {}, 'openapi_types': {'project_id': (\n str,), 'location_id': (str,), 'journal_id': (str,),\n 'insight_project_journal_update': (InsightProjectJournalUpdate,)},\n 'attribute_map': {'project_id': 'projectId', 'location_id':\n 'locationId', 'journal_id': 'journalId'}, 'location_map': {'project_id':\n 'path', 'location_id': 'path', 'journal_id': 'path',\n 'insight_project_journal_update': 'body'}, 'collection_format_map': {}}", 'headers_map': "{'accept': ['application/json'], 'content_type': ['application/json']}", 'api_client': 'api_client', 'callable': '__insight_project_journal_update'}), "(settings={'response_type': (Journal,), 'auth': ['BearerAuth'],\n 'endpoint_path':\n '/insight/{locationId}/project/{projectId}/journal/{journalId}',\n 'operation_id': 'insight_project_journal_update', 'http_method':\n 'PATCH', 'servers': None}, params_map={'all': ['project_id',\n 'location_id', 'journal_id', 'insight_project_journal_update'],\n 'required': ['project_id', 'location_id', 'journal_id',\n 'insight_project_journal_update'], 'nullable': [], 'enum': [],\n 'validation': []}, root_map={'validations': {}, 'allowed_values': {},\n 'openapi_types': {'project_id': (str,), 'location_id': (str,),\n 'journal_id': (str,), 'insight_project_journal_update': (\n InsightProjectJournalUpdate,)}, 'attribute_map': {'project_id':\n 'projectId', 'location_id': 'locationId', 'journal_id': 'journalId'},\n 'location_map': {'project_id': 'path', 'location_id': 'path',\n 'journal_id': 'path', 'insight_project_journal_update': 'body'},\n 'collection_format_map': {}}, headers_map={'accept': [\n 'application/json'], 'content_type': ['application/json']}, api_client=\n api_client, callable=__insight_project_journal_update)\n", (116647, 117803), True, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n'), ((1380, 1391), 'h1.api_client.ApiClient', 'ApiClient', ([], {}), '()\n', (1389, 1391), False, 'from h1.api_client import ApiClient, Endpoint as _Endpoint\n')]
from machine import Pin, ADC from network import LoRa import socket from utime import sleep # Use a pin for a 'config' mode configPin = Pin('P21', Pin.IN, Pin.PULL_UP) # Create an ADC object adc = ADC() # vbatt pin: vbatt = adc.channel(attn=1, pin='P16') def battConversion(): adcVoltage = vbatt() voltage = adcVoltage*3*1.334/4095 return voltage # Initialise LoRa in LoRa mode # For Europe, use LoRa.EU868 lora = LoRa(mode=LoRa.LORA, region=LoRa.EU868) # Create a raw LoRa socket s = socket.socket(socket.AF_LORA, socket.SOCK_RAW) # Check the Config pin: configMode = not configPin() if not configMode: print('Reading Battery') pycom.rgbled(0x0000FF) message = 'Battery Status: {}'.format(battConversion()) print(message) sleep(2) print('Sending battery status estimate...') pycom.rgbled(0xFF0000) sleep(2) s.setblocking(True) # Send some data s.send(message) print('Message Sent!') pycom.rgbled(0x00FF00) sleep(2) print('Going to sleep') machine.deepsleep(300000) # Otherwise, we are in 'config' so exit to REPL print('Config Mode')
[ "utime.sleep", "socket.socket", "machine.Pin", "network.LoRa", "machine.ADC" ]
[((137, 168), 'machine.Pin', 'Pin', (['"""P21"""', 'Pin.IN', 'Pin.PULL_UP'], {}), "('P21', Pin.IN, Pin.PULL_UP)\n", (140, 168), False, 'from machine import Pin, ADC\n'), ((199, 204), 'machine.ADC', 'ADC', ([], {}), '()\n', (202, 204), False, 'from machine import Pin, ADC\n'), ((433, 472), 'network.LoRa', 'LoRa', ([], {'mode': 'LoRa.LORA', 'region': 'LoRa.EU868'}), '(mode=LoRa.LORA, region=LoRa.EU868)\n', (437, 472), False, 'from network import LoRa\n'), ((505, 551), 'socket.socket', 'socket.socket', (['socket.AF_LORA', 'socket.SOCK_RAW'], {}), '(socket.AF_LORA, socket.SOCK_RAW)\n', (518, 551), False, 'import socket\n'), ((765, 773), 'utime.sleep', 'sleep', (['(2)'], {}), '(2)\n', (770, 773), False, 'from utime import sleep\n'), ((854, 862), 'utime.sleep', 'sleep', (['(2)'], {}), '(2)\n', (859, 862), False, 'from utime import sleep\n'), ((987, 995), 'utime.sleep', 'sleep', (['(2)'], {}), '(2)\n', (992, 995), False, 'from utime import sleep\n')]
""" A Lake Winnipeg Basin Information Network (BIN) harvester for the SHARE project Example API request: http://130.179.67.140/api/3/action/package_search?q= (problematic) http://130.179.67.140/api/3/action/current_package_list_with_resources (currently using) It oddly returns 5 more datasets than all searchable ones on LWBIN data hub. Known issues: 1 -- Five datasets can be searched but cannot be accessed via LWBIN. Clicking on the searching result would result in linking to a redirected page like this: http://172.16.58.3/user/login?came_from=http://130.179.67.140/dataset/mpca-surface-water-data-access-interactive-map Within each dataset there are resouces that contain urls to source pages. For future work considering using resources urls as canonical urls. 2 -- Resouces properties contained in raw metadata of the datasets are not added to the normalized metadata at this point. 3 -- Single name contributors can be used as filters or an invalid query will be returned. Has nothing to do with scrapi but the frontend. """ from __future__ import unicode_literals import json import logging from dateutil.parser import parse from scrapi import requests from scrapi.base import JSONHarvester from scrapi.linter.document import RawDocument from scrapi.base.helpers import build_properties, datetime_formatter, parse_name logger = logging.getLogger(__name__) ORGANIZATIONS = ( "organization", "fund", "canada", "agriculture", "commitee", "international", "council", "office", "of", "observation", "institute", "lwbin", "cocorahs", "usgs", "nsidc" ) def is_organization(name): """Return a boolean to indicate if the name passed to the function is an organization """ words = name.split(' ') return any(word.strip(";").lower() in ORGANIZATIONS for word in words) def clean_authors(authors): """Cleam authors list. """ authors = authors.strip().replace('<span class="author-names">', '').replace('</span>', '') authors = authors.split(',') new_authors = [] for author in authors: if is_organization(author): new_authors.append(author) else: if ' and ' in author or ' <em>et al.</em>' in author: split_name = author.replace(' <em>et al.</em>', '').split(' and ') new_authors.extend(split_name) else: new_authors.append(author) return new_authors def process_contributors(authors, emails): """Process authors and add author emails If multiple authors and one email, put email in a new author """ emails = emails.split(',') authors = clean_authors(authors) contributor_list = [] append_emails = len(authors) == 1 and len(emails) == 1 and not emails[0] == u'' # append the email to the author only when 1 record is observed for i, author in enumerate(authors): if is_organization(author): contributor = { 'name': author } else: contributor = parse_name(author) if append_emails: contributor['email'] = emails[i] contributor_list.append(contributor) if not append_emails and emails[0] != u'': for email in emails: contributor = { 'name': '', 'email': email } contributor_list.append(contributor) return contributor_list def process_licenses(license_title, license_url, license_id): """Process licenses to comply with the normalized schema """ if not license_url: return [] else: license = { 'uri': license_url, 'description': "{} ({})".format(license_title, license_id) or "" } return [license] def construct_url(url, dataset_path, end_point): """ :return: a url that directs back to the page on LBWIN Data Hub instead of the source page. :param url: host url :param dataset_path: parent path of all datasets :param end_point: name of datasets """ return "/".join([url, dataset_path, end_point]) def process_object_uris(url, extras): """Extract doi from /extras, and return a list of object uris including /url and doi if it exists. """ doi = [] for d in extras: if d['key'] == "DOI" or d['key'] == "DOI:": doi.append(d['value']) if doi == []: return [url] else: return [url].extend(doi) class LWBINHarvester(JSONHarvester): short_name = 'lwbin' long_name = 'Lake Winnipeg Basin Information Network' url = 'http://130.179.67.140' dataset_path = "dataset" # dataset base url for constructing urls that go back to LWBIN instead of source pages. DEFAULT_ENCODING = 'UTF-8' record_encoding = None @property def schema(self): return { 'title': ('/title', lambda x: x or ''), 'description': ('/notes'), 'providerUpdatedDateTime': ('/metadata_modified', datetime_formatter), 'uris': { 'canonicalUri': ('/name', lambda x: construct_url(self.url, self.dataset_path, x)), # Construct new urls directing to LWBIN 'objectUris': ('/url', '/extras', process_object_uris) # Default urls from the metadata directing to source pages }, 'contributors': ('/author', '/author_email', process_contributors), 'licenses': ('/license_title', '/license_url', '/license_id', process_licenses), 'tags': ('/tags', lambda x: [tag['name'].lower() for tag in (x or [])]), 'freeToRead': { 'startDate': ('/isopen', '/metadata_created', lambda x, y: parse(y).date().isoformat() if x else None) }, 'otherProperties': build_properties( ('maintainer', '/maintainer'), ('maintainerEmail', '/maintainer_email'), ('revisionTimestamp', ('/revision_timestamp', datetime_formatter)), ('id', '/id'), ('metadataCreated', ('/metadata_created', datetime_formatter)), ('state', '/state'), ('version', '/version'), ('creatorUserId', '/creator_user_id'), ('type', '/type'), ('numberOfResources', '/num_resources'), ('numberOfTags', '/num_tags'), ('name', '/name'), ('groups', '/groups'), ) } def harvest(self, start_date=None, end_date=None): """Returns a list of Rawdocuments (metadata) Searching by time is not supported by LWBIN CKAN API. all datasets have to be scanned each time. """ base_url = 'http://172.16.58.3/api/3/action/current_package_list_with_resources' records = requests.get(base_url).json()['result'] total = len(records) # Total number of documents logger.info('{} documents to be harvested'.format(total)) return [ RawDocument({ 'doc': json.dumps(record), 'source': self.short_name, 'docID': record['id'], 'filetype': 'json' }) for record in records ]
[ "logging.getLogger", "dateutil.parser.parse", "scrapi.base.helpers.parse_name", "json.dumps", "scrapi.base.helpers.build_properties", "scrapi.requests.get" ]
[((1347, 1374), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1364, 1374), False, 'import logging\n'), ((3013, 3031), 'scrapi.base.helpers.parse_name', 'parse_name', (['author'], {}), '(author)\n', (3023, 3031), False, 'from scrapi.base.helpers import build_properties, datetime_formatter, parse_name\n'), ((5765, 6245), 'scrapi.base.helpers.build_properties', 'build_properties', (["('maintainer', '/maintainer')", "('maintainerEmail', '/maintainer_email')", "('revisionTimestamp', ('/revision_timestamp', datetime_formatter))", "('id', '/id')", "('metadataCreated', ('/metadata_created', datetime_formatter))", "('state', '/state')", "('version', '/version')", "('creatorUserId', '/creator_user_id')", "('type', '/type')", "('numberOfResources', '/num_resources')", "('numberOfTags', '/num_tags')", "('name', '/name')", "('groups', '/groups')"], {}), "(('maintainer', '/maintainer'), ('maintainerEmail',\n '/maintainer_email'), ('revisionTimestamp', ('/revision_timestamp',\n datetime_formatter)), ('id', '/id'), ('metadataCreated', (\n '/metadata_created', datetime_formatter)), ('state', '/state'), (\n 'version', '/version'), ('creatorUserId', '/creator_user_id'), ('type',\n '/type'), ('numberOfResources', '/num_resources'), ('numberOfTags',\n '/num_tags'), ('name', '/name'), ('groups', '/groups'))\n", (5781, 6245), False, 'from scrapi.base.helpers import build_properties, datetime_formatter, parse_name\n'), ((6788, 6810), 'scrapi.requests.get', 'requests.get', (['base_url'], {}), '(base_url)\n', (6800, 6810), False, 'from scrapi import requests\n'), ((7019, 7037), 'json.dumps', 'json.dumps', (['record'], {}), '(record)\n', (7029, 7037), False, 'import json\n'), ((5675, 5683), 'dateutil.parser.parse', 'parse', (['y'], {}), '(y)\n', (5680, 5683), False, 'from dateutil.parser import parse\n')]
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== '''Analysis file.''' import sys import os.path import tensorflow as tf from absl import app from absl import flags from absl import gfile import cPickle as pickle import matplotlib matplotlib.use('TkAgg') from matplotlib import pylab import matplotlib.pyplot as plt import numpy as np, h5py import scipy.io as sio from scipy import ndimage import random import re # regular expression matching FLAGS = flags.FLAGS flags.DEFINE_string('folder_name', 'experiment4', 'folder where to store all the data') flags.DEFINE_string('save_location', '/home/bhaishahster/', 'where to store logs and outputs?'); flags.DEFINE_string('data_location', '/home/bhaishahster/data_breakdown/', 'where to take data from?') flags.DEFINE_integer('n_b_in_c', 10, 'number of batches in one chunk of data') flags.DEFINE_integer('np_randseed', 23, 'numpy RNG seed') flags.DEFINE_integer('randseed', 65, 'python RNG seed') flags.DEFINE_integer('ratio_SU', 2, 'ratio of subunits/cells') flags.DEFINE_string('model_id', 'poisson', 'which model to fit') FLAGS = flags.FLAGS def main(argv): print('\nCode started') np.random.seed(FLAGS.np_randseed) random.seed(FLAGS.randseed) ## Load data summary filename = FLAGS.data_location + 'data_details.mat' summary_file = gfile.Open(filename, 'r') data_summary = sio.loadmat(summary_file) cells = np.squeeze(data_summary['cells']) if FLAGS.model_id == 'poisson' or FLAGS.model_id == 'logistic' or FLAGS.model_id == 'hinge': cells_choose = (cells ==3287) | (cells ==3318 ) | (cells ==3155) | (cells ==3066) if FLAGS.model_id == 'poisson_full': cells_choose = np.array(np.ones(np.shape(cells)), dtype='bool') n_cells = np.sum(cells_choose) tot_spks = np.squeeze(data_summary['tot_spks']) total_mask = np.squeeze(data_summary['totalMaskAccept_log']).T tot_spks_chosen_cells = tot_spks[cells_choose] chosen_mask = np.array(np.sum(total_mask[cells_choose,:],0)>0, dtype='bool') print(np.shape(chosen_mask)) print(np.sum(chosen_mask)) stim_dim = np.sum(chosen_mask) print('\ndataset summary loaded') # use stim_dim, chosen_mask, cells_choose, tot_spks_chosen_cells, n_cells # decide the number of subunits to fit n_su = FLAGS.ratio_SU*n_cells #batchsz = [100, 500, 1000, 100, 500, 1000, 100, 500, 1000, 1000, 1000, 5000, 10000, 5000, 10000] #n_b_in_c = [10, 2, 1, 10, 2, 1, 10, 2, 1, 1, 1, 1, 1, 1, 1 ] #step_sz = [0.0001, 0.0001, 0.0001, 0.01, 0.01, 0.01 , 1, 1, 1, 10, 100, 10, 10, 1, 1 ] batchsz = [100, 500, 1000, 5000, 1000, 100, 500, 1000, 5000, 10000, 100, 500, 1000, 5000, 10000, 100, 500, 1000, 5000, 10000] n_b_in_c = [10, 2, 1, 1, 1, 10, 2, 1, 1, 1, 10, 2, 1, 1, 1, 10, 2, 1, 1, 1 ] step_sz = [0.1, 0.1, 0.1, 0.1, 0.1, 1 , 1, 1, 1, 1, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10 ] with tf.Session() as sess: # Learn population model! stim = tf.placeholder(tf.float32, shape=[None, stim_dim], name='stim') resp = tf.placeholder(tf.float32, name='resp') data_len = tf.placeholder(tf.float32, name='data_len') # get filename if FLAGS.model_id == 'poisson' or FLAGS.model_id == 'poisson_full': w = tf.Variable(np.array(0.01 * np.random.randn(stim_dim, n_su), dtype='float32')) a = tf.Variable(np.array(0.1 * np.random.rand(n_cells, 1, n_su), dtype='float32')) if FLAGS.model_id == 'logistic' or FLAGS.model_id == 'hinge': w = tf.Variable(np.array(0.01 * np.random.randn(stim_dim, n_su), dtype='float32')) a = tf.Variable(np.array(0.01 * np.random.rand(n_su, n_cells), dtype='float32')) b_init = np.random.randn(n_cells) #np.log((np.sum(response,0))/(response.shape[0]-np.sum(response,0))) b = tf.Variable(b_init,dtype='float32') plt.figure() for icnt, ibatchsz in enumerate(batchsz): in_b_in_c = n_b_in_c[icnt] istep_sz = np.array(step_sz[icnt],dtype='double') print(icnt) if FLAGS.model_id == 'poisson': short_filename = ('data_model=ASM_pop_batch_sz='+ str(ibatchsz) + '_n_b_in_c' + str(in_b_in_c) + '_step_sz'+ str(istep_sz)+'_bg') else: short_filename = ('data_model='+ str(FLAGS.model_id) +'_batch_sz='+ str(ibatchsz) + '_n_b_in_c' + str(in_b_in_c) + '_step_sz'+ str(istep_sz)+'_bg') parent_folder = FLAGS.save_location + FLAGS.folder_name + '/' save_location = parent_folder +short_filename + '/' print(gfile.IsDirectory(save_location)) print(save_location) save_filename = save_location + short_filename #determine filelist file_list = gfile.ListDirectory(save_location) save_filename = save_location + short_filename print('\nLoading: ', save_filename) bin_files = [] meta_files = [] for file_n in file_list: if re.search(short_filename + '.', file_n): if re.search('.meta', file_n): meta_files += [file_n] else: bin_files += [file_n] #print(bin_files) print(len(meta_files), len(bin_files), len(file_list)) # get latest iteration iterations = np.array([]) for file_name in bin_files: try: iterations = np.append(iterations, int(file_name.split('/')[-1].split('-')[-1])) except: print('Could not load filename: ' + file_name) iterations.sort() print(iterations) iter_plot = iterations[-1] print(int(iter_plot)) # load tensorflow variables saver_var = tf.train.Saver(tf.all_variables()) restore_file = save_filename + '-' + str(int(iter_plot)) saver_var.restore(sess, restore_file) a_eval = a.eval() print(np.exp(np.squeeze(a_eval))) #print(np.shape(a_eval)) # get 2D region to plot mask2D = np.reshape(chosen_mask, [40, 80]) nz_idx = np.nonzero(mask2D) np.shape(nz_idx) print(nz_idx) ylim = np.array([np.min(nz_idx[0])-1, np.max(nz_idx[0])+1]) xlim = np.array([np.min(nz_idx[1])-1, np.max(nz_idx[1])+1]) w_eval = w.eval() #plt.figure() n_su = w_eval.shape[1] for isu in np.arange(n_su): xx = np.zeros((3200)) xx[chosen_mask] = w_eval[:, isu] fig = plt.subplot(20, n_su, n_su * icnt + isu+1) plt.imshow(np.reshape(xx, [40, 80]), interpolation='nearest', cmap='gray') plt.ylim(ylim) plt.xlim(xlim) fig.axes.get_xaxis().set_visible(False) fig.axes.get_yaxis().set_visible(False) #if FLAGS.model_id == 'logistic' or FLAGS.model_id == 'hinge': # plt.title(str(a_eval[isu, :])) #else: # plt.title(str(np.squeeze(np.exp(a_eval[:, 0, isu]))), fontsize=12) if isu == 4: plt.title('Iteration:' + str(int(iter_plot)) + ' batchSz:' + str(ibatchsz) + ' step size:' + str(istep_sz), fontsize=18) plt.show() plt.draw() if __name__ == '__main__': app.run()
[ "absl.gfile.Open", "numpy.random.rand", "scipy.io.loadmat", "numpy.array", "numpy.arange", "re.search", "numpy.reshape", "tensorflow.Session", "tensorflow.placeholder", "absl.gfile.IsDirectory", "absl.app.run", "numpy.max", "numpy.random.seed", "numpy.min", "matplotlib.pyplot.ylim", "tensorflow.all_variables", "tensorflow.Variable", "matplotlib.use", "numpy.squeeze", "numpy.nonzero", "numpy.shape", "matplotlib.pyplot.draw", "numpy.random.randn", "absl.flags.DEFINE_string", "matplotlib.pyplot.xlim", "matplotlib.pyplot.show", "absl.flags.DEFINE_integer", "random.seed", "numpy.sum", "matplotlib.pyplot.figure", "numpy.zeros", "absl.gfile.ListDirectory", "matplotlib.pyplot.subplot" ]
[((836, 859), 'matplotlib.use', 'matplotlib.use', (['"""TkAgg"""'], {}), "('TkAgg')\n", (850, 859), False, 'import matplotlib\n'), ((1072, 1163), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""folder_name"""', '"""experiment4"""', '"""folder where to store all the data"""'], {}), "('folder_name', 'experiment4',\n 'folder where to store all the data')\n", (1091, 1163), False, 'from absl import flags\n'), ((1161, 1260), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""save_location"""', '"""/home/bhaishahster/"""', '"""where to store logs and outputs?"""'], {}), "('save_location', '/home/bhaishahster/',\n 'where to store logs and outputs?')\n", (1180, 1260), False, 'from absl import flags\n'), ((1299, 1405), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""data_location"""', '"""/home/bhaishahster/data_breakdown/"""', '"""where to take data from?"""'], {}), "('data_location', '/home/bhaishahster/data_breakdown/',\n 'where to take data from?')\n", (1318, 1405), False, 'from absl import flags\n'), ((1442, 1520), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""n_b_in_c"""', '(10)', '"""number of batches in one chunk of data"""'], {}), "('n_b_in_c', 10, 'number of batches in one chunk of data')\n", (1462, 1520), False, 'from absl import flags\n'), ((1521, 1578), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""np_randseed"""', '(23)', '"""numpy RNG seed"""'], {}), "('np_randseed', 23, 'numpy RNG seed')\n", (1541, 1578), False, 'from absl import flags\n'), ((1579, 1634), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""randseed"""', '(65)', '"""python RNG seed"""'], {}), "('randseed', 65, 'python RNG seed')\n", (1599, 1634), False, 'from absl import flags\n'), ((1635, 1697), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""ratio_SU"""', '(2)', '"""ratio of subunits/cells"""'], {}), "('ratio_SU', 2, 'ratio of subunits/cells')\n", (1655, 1697), False, 'from absl import flags\n'), ((1698, 1762), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""model_id"""', '"""poisson"""', '"""which model to fit"""'], {}), "('model_id', 'poisson', 'which model to fit')\n", (1717, 1762), False, 'from absl import flags\n'), ((1829, 1862), 'numpy.random.seed', 'np.random.seed', (['FLAGS.np_randseed'], {}), '(FLAGS.np_randseed)\n', (1843, 1862), True, 'import numpy as np, h5py\n'), ((1865, 1892), 'random.seed', 'random.seed', (['FLAGS.randseed'], {}), '(FLAGS.randseed)\n', (1876, 1892), False, 'import random\n'), ((1989, 2014), 'absl.gfile.Open', 'gfile.Open', (['filename', '"""r"""'], {}), "(filename, 'r')\n", (1999, 2014), False, 'from absl import gfile\n'), ((2032, 2057), 'scipy.io.loadmat', 'sio.loadmat', (['summary_file'], {}), '(summary_file)\n', (2043, 2057), True, 'import scipy.io as sio\n'), ((2068, 2101), 'numpy.squeeze', 'np.squeeze', (["data_summary['cells']"], {}), "(data_summary['cells'])\n", (2078, 2101), True, 'import numpy as np, h5py\n'), ((2402, 2422), 'numpy.sum', 'np.sum', (['cells_choose'], {}), '(cells_choose)\n', (2408, 2422), True, 'import numpy as np, h5py\n'), ((2437, 2473), 'numpy.squeeze', 'np.squeeze', (["data_summary['tot_spks']"], {}), "(data_summary['tot_spks'])\n", (2447, 2473), True, 'import numpy as np, h5py\n'), ((2741, 2760), 'numpy.sum', 'np.sum', (['chosen_mask'], {}), '(chosen_mask)\n', (2747, 2760), True, 'import numpy as np, h5py\n'), ((7693, 7703), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7701, 7703), True, 'import matplotlib.pyplot as plt\n'), ((7706, 7716), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (7714, 7716), True, 'import matplotlib.pyplot as plt\n'), ((7756, 7765), 'absl.app.run', 'app.run', ([], {}), '()\n', (7763, 7765), False, 'from absl import app\n'), ((2489, 2536), 'numpy.squeeze', 'np.squeeze', (["data_summary['totalMaskAccept_log']"], {}), "(data_summary['totalMaskAccept_log'])\n", (2499, 2536), True, 'import numpy as np, h5py\n'), ((2675, 2696), 'numpy.shape', 'np.shape', (['chosen_mask'], {}), '(chosen_mask)\n', (2683, 2696), True, 'import numpy as np, h5py\n'), ((2706, 2725), 'numpy.sum', 'np.sum', (['chosen_mask'], {}), '(chosen_mask)\n', (2712, 2725), True, 'import numpy as np, h5py\n'), ((3709, 3721), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (3719, 3721), True, 'import tensorflow as tf\n'), ((3772, 3835), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, stim_dim]', 'name': '"""stim"""'}), "(tf.float32, shape=[None, stim_dim], name='stim')\n", (3786, 3835), True, 'import tensorflow as tf\n'), ((3847, 3886), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""resp"""'}), "(tf.float32, name='resp')\n", (3861, 3886), True, 'import tensorflow as tf\n'), ((3902, 3945), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""data_len"""'}), "(tf.float32, name='data_len')\n", (3916, 3945), True, 'import tensorflow as tf\n'), ((4619, 4631), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4629, 4631), True, 'import matplotlib.pyplot as plt\n'), ((2613, 2651), 'numpy.sum', 'np.sum', (['total_mask[cells_choose, :]', '(0)'], {}), '(total_mask[cells_choose, :], 0)\n', (2619, 2651), True, 'import numpy as np, h5py\n'), ((4474, 4498), 'numpy.random.randn', 'np.random.randn', (['n_cells'], {}), '(n_cells)\n', (4489, 4498), True, 'import numpy as np, h5py\n'), ((4578, 4614), 'tensorflow.Variable', 'tf.Variable', (['b_init'], {'dtype': '"""float32"""'}), "(b_init, dtype='float32')\n", (4589, 4614), True, 'import tensorflow as tf\n'), ((4728, 4767), 'numpy.array', 'np.array', (['step_sz[icnt]'], {'dtype': '"""double"""'}), "(step_sz[icnt], dtype='double')\n", (4736, 4767), True, 'import numpy as np, h5py\n'), ((5443, 5477), 'absl.gfile.ListDirectory', 'gfile.ListDirectory', (['save_location'], {}), '(save_location)\n', (5462, 5477), False, 'from absl import gfile\n'), ((5955, 5967), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (5963, 5967), True, 'import numpy as np, h5py\n'), ((6628, 6661), 'numpy.reshape', 'np.reshape', (['chosen_mask', '[40, 80]'], {}), '(chosen_mask, [40, 80])\n', (6638, 6661), True, 'import numpy as np, h5py\n'), ((6677, 6695), 'numpy.nonzero', 'np.nonzero', (['mask2D'], {}), '(mask2D)\n', (6687, 6695), True, 'import numpy as np, h5py\n'), ((6702, 6718), 'numpy.shape', 'np.shape', (['nz_idx'], {}), '(nz_idx)\n', (6710, 6718), True, 'import numpy as np, h5py\n'), ((6962, 6977), 'numpy.arange', 'np.arange', (['n_su'], {}), '(n_su)\n', (6971, 6977), True, 'import numpy as np, h5py\n'), ((2358, 2373), 'numpy.shape', 'np.shape', (['cells'], {}), '(cells)\n', (2366, 2373), True, 'import numpy as np, h5py\n'), ((5284, 5316), 'absl.gfile.IsDirectory', 'gfile.IsDirectory', (['save_location'], {}), '(save_location)\n', (5301, 5316), False, 'from absl import gfile\n'), ((5658, 5697), 're.search', 're.search', (["(short_filename + '.')", 'file_n'], {}), "(short_filename + '.', file_n)\n", (5667, 5697), False, 'import re\n'), ((6357, 6375), 'tensorflow.all_variables', 'tf.all_variables', ([], {}), '()\n', (6373, 6375), True, 'import tensorflow as tf\n'), ((6992, 7006), 'numpy.zeros', 'np.zeros', (['(3200)'], {}), '(3200)\n', (7000, 7006), True, 'import numpy as np, h5py\n'), ((7064, 7108), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(20)', 'n_su', '(n_su * icnt + isu + 1)'], {}), '(20, n_su, n_su * icnt + isu + 1)\n', (7075, 7108), True, 'import matplotlib.pyplot as plt\n'), ((7199, 7213), 'matplotlib.pyplot.ylim', 'plt.ylim', (['ylim'], {}), '(ylim)\n', (7207, 7213), True, 'import matplotlib.pyplot as plt\n'), ((7222, 7236), 'matplotlib.pyplot.xlim', 'plt.xlim', (['xlim'], {}), '(xlim)\n', (7230, 7236), True, 'import matplotlib.pyplot as plt\n'), ((5712, 5738), 're.search', 're.search', (['""".meta"""', 'file_n'], {}), "('.meta', file_n)\n", (5721, 5738), False, 'import re\n'), ((6530, 6548), 'numpy.squeeze', 'np.squeeze', (['a_eval'], {}), '(a_eval)\n', (6540, 6548), True, 'import numpy as np, h5py\n'), ((7127, 7151), 'numpy.reshape', 'np.reshape', (['xx', '[40, 80]'], {}), '(xx, [40, 80])\n', (7137, 7151), True, 'import numpy as np, h5py\n'), ((4076, 4107), 'numpy.random.randn', 'np.random.randn', (['stim_dim', 'n_su'], {}), '(stim_dim, n_su)\n', (4091, 4107), True, 'import numpy as np, h5py\n'), ((4164, 4196), 'numpy.random.rand', 'np.random.rand', (['n_cells', '(1)', 'n_su'], {}), '(n_cells, 1, n_su)\n', (4178, 4196), True, 'import numpy as np, h5py\n'), ((4320, 4351), 'numpy.random.randn', 'np.random.randn', (['stim_dim', 'n_su'], {}), '(stim_dim, n_su)\n', (4335, 4351), True, 'import numpy as np, h5py\n'), ((4409, 4438), 'numpy.random.rand', 'np.random.rand', (['n_su', 'n_cells'], {}), '(n_su, n_cells)\n', (4423, 4438), True, 'import numpy as np, h5py\n'), ((6762, 6779), 'numpy.min', 'np.min', (['nz_idx[0]'], {}), '(nz_idx[0])\n', (6768, 6779), True, 'import numpy as np, h5py\n'), ((6783, 6800), 'numpy.max', 'np.max', (['nz_idx[0]'], {}), '(nz_idx[0])\n', (6789, 6800), True, 'import numpy as np, h5py\n'), ((6828, 6845), 'numpy.min', 'np.min', (['nz_idx[1]'], {}), '(nz_idx[1])\n', (6834, 6845), True, 'import numpy as np, h5py\n'), ((6849, 6866), 'numpy.max', 'np.max', (['nz_idx[1]'], {}), '(nz_idx[1])\n', (6855, 6866), True, 'import numpy as np, h5py\n')]
import logging import os.path as path from typing import List, Optional, Tuple from psychopy import core, visual from bcipy.acquisition.marker_writer import NullMarkerWriter, MarkerWriter from bcipy.helpers.task import SPACE_CHAR from bcipy.helpers.stimuli import resize_image from bcipy.helpers.system_utils import get_screen_resolution from bcipy.helpers.triggers import TriggerCallback, _calibration_trigger class RSVPDisplay(object): """RSVP Display Object for inquiry Presentation. Animates a inquiry in RSVP. Mode should be determined outside. """ def __init__( self, window: visual.Window, static_clock, experiment_clock: core.Clock, marker_writer: Optional[MarkerWriter] = None, task_color: List[str] = ['white'], task_font: str = 'Times', task_pos: Tuple[float, float] = (-.8, .9), task_height: float = 0.2, task_text: str = '1/100', info_color: List[str] = ['white'], info_text: List[str] = ['Information Text'], info_font: List[str] = ['Times'], info_pos=[(.8, .9)], info_height=[0.2], stim_font='Times', stim_pos=(-.8, .9), stim_height=0.2, stim_inquiry: List[str] = ['a'] * 10, stim_colors: List[str] = ['white'] * 10, stim_timing: List[float] = [1] * 10, is_txt_stim: bool = True, static_time: float = .05, trigger_type: str = 'image', space_char: SPACE_CHAR = SPACE_CHAR): """Initialize RSVP window parameters and objects. PARAMETERS: ---------- # Experiment window(visual.Window): PsychoPy Window static_clock(TODO): no idea experiment_clock(core.Clock): Clock used to timestamp experiment marker_writer(MarkerWriter): object used to write triggers to the daq stream. # Task task_color(list[string]): Color of the task string. Shares the length of the task_text. If of length 1 the entire task bar shares the same color. task_font(string): Font of task string task_pos(tuple): position of task string task_height(float): height for task string task_text(string): text of the task bar # Info info_text(list[string]): Text list for information texts info_color(list[string]): Color of the information text string info_font(list[string]): Font of the information text string info_pos(list[tuple]): Position of the information text string info_height(list[float]): Height of the information text string # Stimuli stim_height(float): height of the stimuli object stim_pos(tuple): position of stimuli stim_font(string): font of the stimuli stim_inquiry(list[string]): list of elements to flash stim_colors(list[string]): list of colors for stimuli stim_timing(list[float]): timing for each letter flash """ self.window = window self.refresh_rate = window.getActualFrameRate() self.logger = logging.getLogger(__name__) self.stimuli_inquiry = stim_inquiry self.stimuli_colors = stim_colors self.stimuli_timing = stim_timing self.is_txt_stim = is_txt_stim self.staticPeriod = static_clock self.static_time = static_time self.experiment_clock = experiment_clock self.timing_clock = core.Clock() # Used to handle writing the marker stimulus self.marker_writer = marker_writer or NullMarkerWriter() # Length of the stimuli (number of flashes) self.stim_length = len(stim_inquiry) # Informational Parameters self.info_text = info_text # Stim parameters self.stimuli_font = stim_font self.stimuli_height = stim_height self.stimuli_pos = stim_pos # Trigger Items self.first_run = True self.trigger_type = trigger_type self.trigger_callback = TriggerCallback() # Callback used on presentation of first stimulus. self.first_stim_callback = lambda _sti: None self.size_list_sti = [] self.space_char = space_char self.task = visual.TextStim(win=self.window, color=task_color[0], height=task_height, text=task_text, font=task_font, pos=task_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) # Create multiple text objects based on input self.text = [] for idx in range(len(self.info_text)): self.text.append(visual.TextStim( win=self.window, color=info_color[idx], height=info_height[idx], text=self.info_text[idx], font=info_font[idx], pos=info_pos[idx], wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0)) # Create Stimuli Object if self.is_txt_stim: self.sti = visual.TextStim( win=self.window, color='white', height=self.stimuli_height, text='+', font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) else: self.sti = visual.ImageStim( win=self.window, image=None, mask=None, pos=self.stimuli_pos, ori=0.0) def draw_static(self): """Draw static elements in a stimulus.""" self.task.draw() for idx in range(len(self.text)): self.text[idx].draw() def schedule_to(self, ele_list=[], time_list=[], color_list=[]): """Schedule stimuli elements (works as a buffer). Args: ele_list(list[string]): list of elements of stimuli time_list(list[float]): list of timings of stimuli color_list(list[string]): colors of elements of stimuli """ self.stimuli_inquiry = ele_list self.stimuli_timing = time_list self.stimuli_colors = color_list def update_task(self, text: str, color_list: List[str], pos: Tuple[float]): """Update Task Object. PARAMETERS: ----------- text: text for task color_list: list of the colors for each char pos: position of task """ self.task.text = text self.task.color = color_list[0] self.task.pos = pos def do_inquiry(self): """Do inquiry. Animates a inquiry of flashing letters to achieve RSVP. """ # init an array for timing information timing = [] if self.first_run: # play a inquiry start sound to help orient triggers first_stim_timing = _calibration_trigger( self.experiment_clock, trigger_type=self.trigger_type, display=self.window, on_trigger=self.marker_writer.push_marker) timing.append(first_stim_timing) self.first_stim_time = first_stim_timing[-1] self.first_run = False # generate a inquiry (list of stimuli with meta information) inquiry = self._generate_inquiry() # do the inquiry for idx in range(len(inquiry)): self.is_first_stim = (idx == 0) # set a static period to do all our stim setting. # will warn if ISI value is violated. self.staticPeriod.name = 'Stimulus Draw Period' self.staticPeriod.start(self.stimuli_timing[idx]) # Reset the timing clock to start presenting self.window.callOnFlip( self.trigger_callback.callback, self.experiment_clock, inquiry[idx]['sti_label']) self.window.callOnFlip(self.marker_writer.push_marker, inquiry[idx]['sti_label']) if idx == 0 and callable(self.first_stim_callback): self.first_stim_callback(inquiry[idx]['sti']) # Draw stimulus for n frames inquiry[idx]['sti'].draw() self.draw_static() self.window.flip() core.wait((inquiry[idx]['time_to_present'] - 1) / self.refresh_rate) # End static period self.staticPeriod.complete() # append timing information if self.is_txt_stim: timing.append(self.trigger_callback.timing) else: timing.append(self.trigger_callback.timing) self.trigger_callback.reset() # draw in static and flip once more self.draw_static() self.window.flip() return timing def _generate_inquiry(self): """Generate inquiry. Generate stimuli for next RSVP inquiry. """ stim_info = [] for idx in range(len(self.stimuli_inquiry)): current_stim = {} # turn ms timing into frames! Much more accurate! current_stim['time_to_present'] = int(self.stimuli_timing[idx] * self.refresh_rate) # check if stimulus needs to use a non-default size if self.size_list_sti: this_stimuli_size = self.size_list_sti[idx] else: this_stimuli_size = self.stimuli_height # Set the Stimuli attrs if self.stimuli_inquiry[idx].endswith('.png'): current_stim['sti'] = self.create_stimulus(mode='image', height_int=this_stimuli_size) current_stim['sti'].image = self.stimuli_inquiry[idx] current_stim['sti'].size = resize_image( current_stim['sti'].image, current_stim['sti'].win.size, this_stimuli_size) current_stim['sti_label'] = path.splitext( path.basename(self.stimuli_inquiry[idx]))[0] else: # text stimulus current_stim['sti'] = self.create_stimulus(mode='text', height_int=this_stimuli_size) txt = self.stimuli_inquiry[idx] # customize presentation of space char. current_stim['sti'].text = txt if txt != SPACE_CHAR else self.space_char current_stim['sti'].color = self.stimuli_colors[idx] current_stim['sti_label'] = txt # test whether the word will be too big for the screen text_width = current_stim['sti'].boundingBox[0] if text_width > self.window.size[0]: monitor_width, monitor_height = get_screen_resolution() text_height = current_stim['sti'].boundingBox[1] # If we are in full-screen, text size in Psychopy norm units # is monitor width/monitor height if self.window.size[0] == monitor_width: new_text_width = monitor_width / monitor_height else: # If not, text width is calculated relative to both # monitor size and window size new_text_width = ( self.window.size[1] / monitor_height) * ( monitor_width / monitor_height) new_text_height = (text_height * new_text_width) / text_width current_stim['sti'].height = new_text_height stim_info.append(current_stim) return stim_info def update_task_state(self, text: str, color_list: List[str]) -> None: """Update task state. Removes letters or appends to the right. Args: text(string): new text for task state color_list(list[string]): list of colors for each """ task_state_text = visual.TextStim( win=self.window, font=self.task.font, text=text) x_task_position = task_state_text.boundingBox[0] / \ self.window.size[0] - 1 task_pos = (x_task_position, 1 - self.task.height) self.update_task(text=text, color_list=color_list, pos=task_pos) def wait_screen(self, message, color): """Wait Screen. Args: message(string): message to be displayed while waiting """ # Construct the wait message wait_message = visual.TextStim(win=self.window, font=self.stimuli_font, text=message, height=.1, color=color, pos=(0, -.5), wrapWidth=2, colorSpace='rgb', opacity=1, depth=-6.0) # Try adding our BCI logo. Pass if not found. try: wait_logo = visual.ImageStim( self.window, image='bcipy/static/images/gui_images/bci_cas_logo.png', pos=(0, .5), mask=None, ori=0.0) wait_logo.size = resize_image( 'bcipy/static/images/gui_images/bci_cas_logo.png', self.window.size, 1) wait_logo.draw() except Exception: self.logger.debug('Cannot load logo image') pass # Draw and flip the screen. wait_message.draw() self.window.flip() def create_stimulus(self, height_int: int, mode: str = 'text'): """Create Stimulus. Returns a TextStim or ImageStim object. Args: height_int: The height of the stimulus mode: "text" or "image", determines which to return """ if mode == 'text': return visual.TextStim( win=self.window, color='white', height=height_int, text='+', font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0) if mode == 'image': return visual.ImageStim( win=self.window, image=None, mask=None, units='', pos=self.stimuli_pos, size=(height_int, height_int), ori=0.0)
[ "logging.getLogger", "bcipy.helpers.triggers.TriggerCallback", "psychopy.core.Clock", "psychopy.core.wait", "psychopy.visual.TextStim", "os.path.basename", "bcipy.helpers.system_utils.get_screen_resolution", "bcipy.helpers.stimuli.resize_image", "bcipy.acquisition.marker_writer.NullMarkerWriter", "bcipy.helpers.triggers._calibration_trigger", "psychopy.visual.ImageStim" ]
[((3211, 3238), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (3228, 3238), False, 'import logging\n'), ((3565, 3577), 'psychopy.core.Clock', 'core.Clock', ([], {}), '()\n', (3575, 3577), False, 'from psychopy import core, visual\n'), ((4137, 4154), 'bcipy.helpers.triggers.TriggerCallback', 'TriggerCallback', ([], {}), '()\n', (4152, 4154), False, 'from bcipy.helpers.triggers import TriggerCallback, _calibration_trigger\n'), ((4359, 4543), 'psychopy.visual.TextStim', 'visual.TextStim', ([], {'win': 'self.window', 'color': 'task_color[0]', 'height': 'task_height', 'text': 'task_text', 'font': 'task_font', 'pos': 'task_pos', 'wrapWidth': 'None', 'colorSpace': '"""rgb"""', 'opacity': '(1)', 'depth': '(-6.0)'}), "(win=self.window, color=task_color[0], height=task_height,\n text=task_text, font=task_font, pos=task_pos, wrapWidth=None,\n colorSpace='rgb', opacity=1, depth=-6.0)\n", (4374, 4543), False, 'from psychopy import core, visual\n'), ((12188, 12252), 'psychopy.visual.TextStim', 'visual.TextStim', ([], {'win': 'self.window', 'font': 'self.task.font', 'text': 'text'}), '(win=self.window, font=self.task.font, text=text)\n', (12203, 12252), False, 'from psychopy import core, visual\n'), ((12719, 12891), 'psychopy.visual.TextStim', 'visual.TextStim', ([], {'win': 'self.window', 'font': 'self.stimuli_font', 'text': 'message', 'height': '(0.1)', 'color': 'color', 'pos': '(0, -0.5)', 'wrapWidth': '(2)', 'colorSpace': '"""rgb"""', 'opacity': '(1)', 'depth': '(-6.0)'}), "(win=self.window, font=self.stimuli_font, text=message,\n height=0.1, color=color, pos=(0, -0.5), wrapWidth=2, colorSpace='rgb',\n opacity=1, depth=-6.0)\n", (12734, 12891), False, 'from psychopy import core, visual\n'), ((3678, 3696), 'bcipy.acquisition.marker_writer.NullMarkerWriter', 'NullMarkerWriter', ([], {}), '()\n', (3694, 3696), False, 'from bcipy.acquisition.marker_writer import NullMarkerWriter, MarkerWriter\n'), ((5289, 5485), 'psychopy.visual.TextStim', 'visual.TextStim', ([], {'win': 'self.window', 'color': '"""white"""', 'height': 'self.stimuli_height', 'text': '"""+"""', 'font': 'self.stimuli_font', 'pos': 'self.stimuli_pos', 'wrapWidth': 'None', 'colorSpace': '"""rgb"""', 'opacity': '(1)', 'depth': '(-6.0)'}), "(win=self.window, color='white', height=self.stimuli_height,\n text='+', font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None,\n colorSpace='rgb', opacity=1, depth=-6.0)\n", (5304, 5485), False, 'from psychopy import core, visual\n'), ((5644, 5736), 'psychopy.visual.ImageStim', 'visual.ImageStim', ([], {'win': 'self.window', 'image': 'None', 'mask': 'None', 'pos': 'self.stimuli_pos', 'ori': '(0.0)'}), '(win=self.window, image=None, mask=None, pos=self.\n stimuli_pos, ori=0.0)\n', (5660, 5736), False, 'from psychopy import core, visual\n'), ((7169, 7312), 'bcipy.helpers.triggers._calibration_trigger', '_calibration_trigger', (['self.experiment_clock'], {'trigger_type': 'self.trigger_type', 'display': 'self.window', 'on_trigger': 'self.marker_writer.push_marker'}), '(self.experiment_clock, trigger_type=self.trigger_type,\n display=self.window, on_trigger=self.marker_writer.push_marker)\n', (7189, 7312), False, 'from bcipy.helpers.triggers import TriggerCallback, _calibration_trigger\n'), ((8558, 8626), 'psychopy.core.wait', 'core.wait', (["((inquiry[idx]['time_to_present'] - 1) / self.refresh_rate)"], {}), "((inquiry[idx]['time_to_present'] - 1) / self.refresh_rate)\n", (8567, 8626), False, 'from psychopy import core, visual\n'), ((13247, 13377), 'psychopy.visual.ImageStim', 'visual.ImageStim', (['self.window'], {'image': '"""bcipy/static/images/gui_images/bci_cas_logo.png"""', 'pos': '(0, 0.5)', 'mask': 'None', 'ori': '(0.0)'}), "(self.window, image=\n 'bcipy/static/images/gui_images/bci_cas_logo.png', pos=(0, 0.5), mask=\n None, ori=0.0)\n", (13263, 13377), False, 'from psychopy import core, visual\n'), ((13477, 13566), 'bcipy.helpers.stimuli.resize_image', 'resize_image', (['"""bcipy/static/images/gui_images/bci_cas_logo.png"""', 'self.window.size', '(1)'], {}), "('bcipy/static/images/gui_images/bci_cas_logo.png', self.window\n .size, 1)\n", (13489, 13566), False, 'from bcipy.helpers.stimuli import resize_image\n'), ((14153, 14340), 'psychopy.visual.TextStim', 'visual.TextStim', ([], {'win': 'self.window', 'color': '"""white"""', 'height': 'height_int', 'text': '"""+"""', 'font': 'self.stimuli_font', 'pos': 'self.stimuli_pos', 'wrapWidth': 'None', 'colorSpace': '"""rgb"""', 'opacity': '(1)', 'depth': '(-6.0)'}), "(win=self.window, color='white', height=height_int, text='+',\n font=self.stimuli_font, pos=self.stimuli_pos, wrapWidth=None,\n colorSpace='rgb', opacity=1, depth=-6.0)\n", (14168, 14340), False, 'from psychopy import core, visual\n'), ((14541, 14674), 'psychopy.visual.ImageStim', 'visual.ImageStim', ([], {'win': 'self.window', 'image': 'None', 'mask': 'None', 'units': '""""""', 'pos': 'self.stimuli_pos', 'size': '(height_int, height_int)', 'ori': '(0.0)'}), "(win=self.window, image=None, mask=None, units='', pos=self\n .stimuli_pos, size=(height_int, height_int), ori=0.0)\n", (14557, 14674), False, 'from psychopy import core, visual\n'), ((4870, 5082), 'psychopy.visual.TextStim', 'visual.TextStim', ([], {'win': 'self.window', 'color': 'info_color[idx]', 'height': 'info_height[idx]', 'text': 'self.info_text[idx]', 'font': 'info_font[idx]', 'pos': 'info_pos[idx]', 'wrapWidth': 'None', 'colorSpace': '"""rgb"""', 'opacity': '(1)', 'depth': '(-6.0)'}), "(win=self.window, color=info_color[idx], height=info_height[\n idx], text=self.info_text[idx], font=info_font[idx], pos=info_pos[idx],\n wrapWidth=None, colorSpace='rgb', opacity=1, depth=-6.0)\n", (4885, 5082), False, 'from psychopy import core, visual\n'), ((10013, 10105), 'bcipy.helpers.stimuli.resize_image', 'resize_image', (["current_stim['sti'].image", "current_stim['sti'].win.size", 'this_stimuli_size'], {}), "(current_stim['sti'].image, current_stim['sti'].win.size,\n this_stimuli_size)\n", (10025, 10105), False, 'from bcipy.helpers.stimuli import resize_image\n'), ((10950, 10973), 'bcipy.helpers.system_utils.get_screen_resolution', 'get_screen_resolution', ([], {}), '()\n', (10971, 10973), False, 'from bcipy.helpers.system_utils import get_screen_resolution\n'), ((10202, 10242), 'os.path.basename', 'path.basename', (['self.stimuli_inquiry[idx]'], {}), '(self.stimuli_inquiry[idx])\n', (10215, 10242), True, 'import os.path as path\n')]
# Copyright 2018 MassOpenCloud. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. __all__ = [ 'init', 'cleanup', 'set_defaults', 'add_extra_exmods', 'clear_extra_exmods', 'get_allowed_exmods', 'RequestContextSerializer', 'get_client', 'get_server', 'get_notifier', 'TRANSPORT_ALIASES', ] import functools from oslo_log import log as logging import oslo_messaging as messaging from oslo_serialization import jsonutils from oslo_service import periodic_task from oslo_utils import importutils from oslo_utils import timeutils import nova.conf import nova.context import nova.exception from nova.i18n import _ from nova import objects profiler = importutils.try_import("osprofiler.profiler") CONF = nova.conf.CONF LOG = logging.getLogger(__name__) TRANSPORT = None LEGACY_NOTIFIER = None NOTIFICATION_TRANSPORT = None NOTIFIER = None ALLOWED_EXMODS = [ nova.exception.__name__, ] EXTRA_EXMODS = [] # NOTE(markmc): The nova.openstack.common.rpc entries are for backwards compat # with Havana rpc_backend configuration values. The nova.rpc entries are for # compat with Essex values. TRANSPORT_ALIASES = { 'nova.openstack.common.rpc.impl_kombu': 'rabbit', 'nova.openstack.common.rpc.impl_qpid': 'qpid', 'nova.openstack.common.rpc.impl_zmq': 'zmq', 'nova.rpc.impl_kombu': 'rabbit', 'nova.rpc.impl_qpid': 'qpid', 'nova.rpc.impl_zmq': 'zmq', } class RequestContextSerializer(messaging.Serializer): """Request context serializer and deserializer from Nova.rpc. This is the original serializer from nova. Nothing is changed besides the docstring. """ def __init__(self, base): self._base = base def serialize_entity(self, context, entity): if not self._base: return entity return self._base.serialize_entity(context, entity) def deserialize_entity(self, context, entity): if not self._base: return entity return self._base.deserialize_entity(context, entity) def serialize_context(self, context): return context.to_dict() def deserialize_context(self, context): return nova.context.RequestContext.from_dict(context) class ProfilerRequestContextSerializer(RequestContextSerializer): """Serializer and deserializer impl. Serializer and deserializer impl based on Jaeger tracing metadata propagation. For usage check out docs/how-to.md . This is the only impl that is important. """ pass
[ "oslo_utils.importutils.try_import", "oslo_log.log.getLogger" ]
[((1216, 1261), 'oslo_utils.importutils.try_import', 'importutils.try_import', (['"""osprofiler.profiler"""'], {}), "('osprofiler.profiler')\n", (1238, 1261), False, 'from oslo_utils import importutils\n'), ((1293, 1320), 'oslo_log.log.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1310, 1320), True, 'from oslo_log import log as logging\n')]
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Transformer model components.""" from typing import Optional import haiku as hk import jax import jax.numpy as jnp import numpy as np class CausalSelfAttention(hk.MultiHeadAttention): """Self attention with a causal mask applied.""" def __call__( self, query: jnp.ndarray, key: Optional[jnp.ndarray] = None, value: Optional[jnp.ndarray] = None, mask: Optional[jnp.ndarray] = None, ) -> jnp.ndarray: key = key if key is not None else query value = value if value is not None else query if query.ndim != 3: raise ValueError('Expect queries of shape [B, T, D].') seq_len = query.shape[1] causal_mask = np.tril(np.ones((seq_len, seq_len))) mask = mask * causal_mask if mask is not None else causal_mask return super().__call__(query, key, value, mask) class DenseBlock(hk.Module): """A 2-layer MLP which widens then narrows the input.""" def __init__(self, init_scale: float, widening_factor: int = 4, name: Optional[str] = None): super().__init__(name=name) self._init_scale = init_scale self._widening_factor = widening_factor def __call__(self, x: jnp.ndarray) -> jnp.ndarray: hiddens = x.shape[-1] initializer = hk.initializers.VarianceScaling(self._init_scale) x = hk.Linear(self._widening_factor * hiddens, w_init=initializer)(x) x = jax.nn.gelu(x) return hk.Linear(hiddens, w_init=initializer)(x) class Transformer(hk.Module): """A transformer stack.""" def __init__(self, num_heads: int, num_layers: int, dropout_rate: float, name: Optional[str] = None): super().__init__(name=name) self._num_layers = num_layers self._num_heads = num_heads self._dropout_rate = dropout_rate def __call__(self, h: jnp.ndarray, mask: Optional[jnp.ndarray], is_training: bool) -> jnp.ndarray: """Connects the transformer. Args: h: Inputs, [B, T, D]. mask: Padding mask, [B, T]. is_training: Whether we're training or not. Returns: Array of shape [B, T, D]. """ init_scale = 2. / self._num_layers dropout_rate = self._dropout_rate if is_training else 0. if mask is not None: mask = mask[:, None, None, :] # Note: names chosen to approximately match those used in the GPT-2 code; # see https://github.com/openai/gpt-2/blob/master/src/model.py. for i in range(self._num_layers): h_norm = layer_norm(h, name=f'h{i}_ln_1') h_attn = CausalSelfAttention( num_heads=self._num_heads, key_size=32, w_init_scale=init_scale, name=f'h{i}_attn')(h_norm, mask=mask) h_attn = hk.dropout(hk.next_rng_key(), dropout_rate, h_attn) h = h + h_attn h_norm = layer_norm(h, name=f'h{i}_ln_2') h_dense = DenseBlock(init_scale, name=f'h{i}_mlp')(h_norm) h_dense = hk.dropout(hk.next_rng_key(), dropout_rate, h_dense) h = h + h_dense h = layer_norm(h, name='ln_f') return h def layer_norm(x: jnp.ndarray, name: Optional[str] = None) -> jnp.ndarray: """Apply a unique LayerNorm to x with default settings.""" return hk.LayerNorm(axis=-1, create_scale=True, create_offset=True, name=name)(x)
[ "numpy.ones", "jax.nn.gelu", "haiku.initializers.VarianceScaling", "haiku.next_rng_key", "haiku.LayerNorm", "haiku.Linear" ]
[((1964, 2013), 'haiku.initializers.VarianceScaling', 'hk.initializers.VarianceScaling', (['self._init_scale'], {}), '(self._init_scale)\n', (1995, 2013), True, 'import haiku as hk\n'), ((2096, 2110), 'jax.nn.gelu', 'jax.nn.gelu', (['x'], {}), '(x)\n', (2107, 2110), False, 'import jax\n'), ((3945, 4016), 'haiku.LayerNorm', 'hk.LayerNorm', ([], {'axis': '(-1)', 'create_scale': '(True)', 'create_offset': '(True)', 'name': 'name'}), '(axis=-1, create_scale=True, create_offset=True, name=name)\n', (3957, 4016), True, 'import haiku as hk\n'), ((1375, 1402), 'numpy.ones', 'np.ones', (['(seq_len, seq_len)'], {}), '((seq_len, seq_len))\n', (1382, 1402), True, 'import numpy as np\n'), ((2022, 2084), 'haiku.Linear', 'hk.Linear', (['(self._widening_factor * hiddens)'], {'w_init': 'initializer'}), '(self._widening_factor * hiddens, w_init=initializer)\n', (2031, 2084), True, 'import haiku as hk\n'), ((2122, 2160), 'haiku.Linear', 'hk.Linear', (['hiddens'], {'w_init': 'initializer'}), '(hiddens, w_init=initializer)\n', (2131, 2160), True, 'import haiku as hk\n'), ((3483, 3500), 'haiku.next_rng_key', 'hk.next_rng_key', ([], {}), '()\n', (3498, 3500), True, 'import haiku as hk\n'), ((3685, 3702), 'haiku.next_rng_key', 'hk.next_rng_key', ([], {}), '()\n', (3700, 3702), True, 'import haiku as hk\n')]
#!/usr/bin/env python import boto3 import cv2 import numpy import os import base64 import gspread from email.mime.base import MIMEBase from email.mime.image import MIMEImage from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from httplib2 import Http from time import localtime, strftime, time, sleep from oauth2client.service_account import ServiceAccountCredentials from apiclient import discovery, errors from apiclient.discovery import build from oauth2client import client from oauth2client import tools from oauth2client import file def compare_faces( bucket, key, bucket_target, key_target, threshold=80, region='us-east-1'): ''' Require for face comparision ''' rekognition = boto3.client('rekognition', region) response = rekognition.compare_faces( SourceImage={ 'S3Object': { 'Bucket': bucket, 'Name': key, } }, TargetImage={ 'S3Object': { 'Bucket': bucket_target, 'Name': key_target, } }, SimilarityThreshold=threshold, ) return response['SourceImageFace'], response['FaceMatches'] def upload_log(text): ''' Upload the Alert time to the google drive sheet ''' scope = ['https://spreadsheets.google.com/feeds'] credentials = ServiceAccountCredentials.from_json_keyfile_name( 'ProjectLog-41cafcffcf13.json', scope) gc = gspread.authorize(credentials) wks = gc.open('ISeeU_Log').sheet1 wks.append_row([text]) def send(service, user_id, message): ''' Send the mime email package ''' try: message = ( service.users().messages().send( userId=user_id, body=message).execute()) print('Message Id: %s' % message['id']) return message except errors.HttpError as error: print('An error occurred: %s' % error) def create_email(sender, to, subject, message_text, pic): ''' Create the email Included information: Sender, Receiver, Subject, Text, Attached Image ''' message = MIMEMultipart() message['to'] = to message['from'] = sender message['Subject'] = subject msg = MIMEText(message_text) message.attach(msg) fp = open(pic, 'rb') msg = MIMEImage(fp.read(), _subtype='jpeg') fp.close() imagename = os.path.basename(pic) msg.add_header('Content-Disposition', 'attachment', filename=imagename) message.attach(msg) return {'raw': base64.urlsafe_b64encode(message.as_string())} def authenticate(): ''' Using oauth2 to get the credentials. It will give all permission related to gmail. client_secret.json is the secret key you get from google. Reference: Gmail API python quickstart ''' SCOPES = 'https://mail.google.com' store = file.Storage('credentials.json') creds = store.get() if not creds or creds.invalid: flow = client.flow_from_clientsecrets('client_secret.json', SCOPES) creds = tools.run_flow(flow, store) service = discovery.build('gmail', 'v1', http=creds.authorize(Http())) return service def stranger_detected(pic): ''' Recore the date time and make them as the code for the user the trigger alarm ''' nowtime = strftime("%Y-%m-%d %H:%M:%S", localtime()) trigcode = strftime("%d%H%M%S", localtime()) # Upload log to Google drive text = 'Stranger show up at ' + nowtime upload_log(text) # Information of email # pic = 'guldan.jpg' # Attached Image sender = "<EMAIL>" to = "<EMAIL>" # User email address subject = "Alert from ISeeU!" text = text + '\nReply ' + trigcode + ' to trigger the alarm.' # Sending email to user service = authenticate() message = create_email(sender, to, subject, text, pic) send(service, 'me', message) return service, subject, trigcode def main(): while True: print('No face detected...') if os.path.isfile('face.jpg'): print('Face found!') bucket_name = 'ec500j1-project-iseeu' source_name = ['sh.jpg'] # User input faces target_name = 'face.jpg' # Temporary image s3 = boto3.client('s3') # Upload images to s3 server for img in source_name: s3.upload_file(img, bucket_name, img) s3.upload_file(target_name, bucket_name, target_name) while True: try: # Check if the images are successfully uploaded for img in source_name: boto3.resource('s3').Object(bucket_name, img).load() boto3.resource('s3').Object( bucket_name, target_name).load() except BaseException: continue break sources, matches = {}, {} for img in source_name: try: sources[img], matches[img] = compare_faces( bucket_name, img, bucket_name, target_name) except Exception as e: # If Rekognition failure print('Rekognition error: ' + e) os.remove('face.jpg') if len(matches[img]) == 0: # Send notification email service, target, trigcode = stranger_detected( 'face.jpg') user_id = 'me' flag = False # Flag for trigger alert st = time() while time() - st < 120: # Listen for 2 minutes ''' Check all the email for user's reply every 30 seconds. If the subject match, check if the trigcode match. If the trigcode match too, return True to set off alarm. ''' threads = service.users().threads().list( userId=user_id).execute().get('threads', []) for thread in threads: tdata = service.users().threads().get( userId=user_id, id=thread['id']).execute() nmsgs = len(tdata['messages']) msg = tdata['messages'][0]['payload'] subject = '' for header in msg['headers']: if header['name'] == 'Subject': subject = header['value'] break if subject == target: if thread[u'snippet'][0:8] == trigcode: # If user replies with trigcode flag = True break if flag: # If user replies with trigcode break nt = strftime('%Y-%m-%d %H:%M:%S', localtime()) print('Still listening: ' + nt) sleep(30) print('Alert!') # Emulated alert else: print('Not a stranger') # Do nothing # Delete all images from s3 server for img in source_name: s3.delete_object(Bucket=bucket_name, Key=img) s3.delete_object(Bucket=bucket_name, Key=target_name) os.remove('face.jpg') # Delete temperary image sleep(10) if __name__ == '__main__': main()
[ "boto3.client", "gspread.authorize", "oauth2client.client.flow_from_clientsecrets", "time.sleep", "os.path.isfile", "oauth2client.service_account.ServiceAccountCredentials.from_json_keyfile_name", "os.remove", "email.mime.multipart.MIMEMultipart", "boto3.resource", "os.path.basename", "oauth2client.file.Storage", "httplib2.Http", "oauth2client.tools.run_flow", "time.localtime", "time.time", "email.mime.text.MIMEText" ]
[((784, 819), 'boto3.client', 'boto3.client', (['"""rekognition"""', 'region'], {}), "('rekognition', region)\n", (796, 819), False, 'import boto3\n'), ((1421, 1513), 'oauth2client.service_account.ServiceAccountCredentials.from_json_keyfile_name', 'ServiceAccountCredentials.from_json_keyfile_name', (['"""ProjectLog-41cafcffcf13.json"""', 'scope'], {}), "('ProjectLog-41cafcffcf13.json'\n , scope)\n", (1469, 1513), False, 'from oauth2client.service_account import ServiceAccountCredentials\n'), ((1527, 1557), 'gspread.authorize', 'gspread.authorize', (['credentials'], {}), '(credentials)\n', (1544, 1557), False, 'import gspread\n'), ((2198, 2213), 'email.mime.multipart.MIMEMultipart', 'MIMEMultipart', ([], {}), '()\n', (2211, 2213), False, 'from email.mime.multipart import MIMEMultipart\n'), ((2309, 2331), 'email.mime.text.MIMEText', 'MIMEText', (['message_text'], {}), '(message_text)\n', (2317, 2331), False, 'from email.mime.text import MIMEText\n'), ((2461, 2482), 'os.path.basename', 'os.path.basename', (['pic'], {}), '(pic)\n', (2477, 2482), False, 'import os\n'), ((2935, 2967), 'oauth2client.file.Storage', 'file.Storage', (['"""credentials.json"""'], {}), "('credentials.json')\n", (2947, 2967), False, 'from oauth2client import file\n'), ((3042, 3102), 'oauth2client.client.flow_from_clientsecrets', 'client.flow_from_clientsecrets', (['"""client_secret.json"""', 'SCOPES'], {}), "('client_secret.json', SCOPES)\n", (3072, 3102), False, 'from oauth2client import client\n'), ((3119, 3146), 'oauth2client.tools.run_flow', 'tools.run_flow', (['flow', 'store'], {}), '(flow, store)\n', (3133, 3146), False, 'from oauth2client import tools\n'), ((3418, 3429), 'time.localtime', 'localtime', ([], {}), '()\n', (3427, 3429), False, 'from time import localtime, strftime, time, sleep\n'), ((3467, 3478), 'time.localtime', 'localtime', ([], {}), '()\n', (3476, 3478), False, 'from time import localtime, strftime, time, sleep\n'), ((4081, 4107), 'os.path.isfile', 'os.path.isfile', (['"""face.jpg"""'], {}), "('face.jpg')\n", (4095, 4107), False, 'import os\n'), ((7760, 7769), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (7765, 7769), False, 'from time import localtime, strftime, time, sleep\n'), ((4323, 4341), 'boto3.client', 'boto3.client', (['"""s3"""'], {}), "('s3')\n", (4335, 4341), False, 'import boto3\n'), ((7703, 7724), 'os.remove', 'os.remove', (['"""face.jpg"""'], {}), "('face.jpg')\n", (7712, 7724), False, 'import os\n'), ((3213, 3219), 'httplib2.Http', 'Http', ([], {}), '()\n', (3217, 3219), False, 'from httplib2 import Http\n'), ((5688, 5694), 'time.time', 'time', ([], {}), '()\n', (5692, 5694), False, 'from time import localtime, strftime, time, sleep\n'), ((5354, 5375), 'os.remove', 'os.remove', (['"""face.jpg"""'], {}), "('face.jpg')\n", (5363, 5375), False, 'import os\n'), ((7334, 7343), 'time.sleep', 'sleep', (['(30)'], {}), '(30)\n', (7339, 7343), False, 'from time import localtime, strftime, time, sleep\n'), ((5721, 5727), 'time.time', 'time', ([], {}), '()\n', (5725, 5727), False, 'from time import localtime, strftime, time, sleep\n'), ((7241, 7252), 'time.localtime', 'localtime', ([], {}), '()\n', (7250, 7252), False, 'from time import localtime, strftime, time, sleep\n'), ((4794, 4814), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (4808, 4814), False, 'import boto3\n'), ((4721, 4741), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (4735, 4741), False, 'import boto3\n')]
# -*- coding: utf-8 -*- """Implicitly reference attributes of an object.""" from ast import Name, Assign, Load, Call, Lambda, With, Str, arg, \ Attribute, Subscript, Store, Del from macropy.core.quotes import macros, q, u, name, ast_literal from macropy.core.hquotes import macros, hq from macropy.core.walkers import Walker from .util import wrapwith, AutorefMarker from .letdoutil import isdo, islet, ExpandedDoView, ExpandedLetView from ..dynassign import dyn from ..lazyutil import force1, mark_lazy # with autoref(o): # with autoref(scipy.loadmat("mydata.mat")): # evaluate once, assign to a gensym # with autoref(scipy.loadmat("mydata.mat")) as o: # evaluate once, assign to given name # # We need something like:: # # with autoref(o): # x # --> (o.x if hasattr(o, "x") else x) # x.a # --> (o.x.a if hasattr(o, "x") else x.a) # x[s] # --> (o.x[s] if hasattr(o, "x") else x[s]) # o # --> o # with autoref(p): # x # --> (p.x if hasattr(p, "x") else (o.x if hasattr(o, "x") else x)) # x.a # --> (p.x.a if hasattr(p, "x") else (o.x.a if hasattr(o, "x") else x.a)) # x[s] # --> (p.x[s] if hasattr(p, "x") else (o.x[s] if hasattr(o, "x") else x[s])) # o # --> (p.o if hasattr(p, "o") else o) # o.x # --> (p.o.x if hasattr(p, "o") else o.x) # o[s] # --> (p.o[s] if hasattr(p, "o") else o[s]) # # One possible clean-ish implementation is:: # # with AutorefMarker("o"): # no-op at runtime # x # --> (lambda _ar271: _ar271[1] if _ar271[0] else x)(_autoref_resolve((o, "x"))) # x.a # --> ((lambda _ar271: _ar271[1] if _ar271[0] else x)(_autoref_resolve((o, "x")))).a # x[s] # --> ((lambda _ar271: _ar271[1] if _ar271[0] else x)(_autoref_resolve((o, "x"))))[s] # o # --> o (can only occur if an asname is supplied) # with AutorefMarker("p"): # x # --> (lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x"))) # x.a # --> ((lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x"))).a # x[s] # --> ((lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x")))[s] # # when the inner autoref expands, it doesn't know about the outer one, so we will get this: # o # --> (lambda _ar314: _ar314[1] if _ar314[0] else o)(_autoref_resolve((p, "o"))) # o.x # --> ((lambda _ar314: _ar314[1] if _ar314[0] else o)(_autoref_resolve((p, "o")))).x # o[s] # --> ((lambda _ar314: _ar314[1] if _ar314[0] else o)(_autoref_resolve((p, "o"))))[s] # # the outer autoref needs the marker to know to skip this (instead of looking up o.p): # p # --> p # # The lambda is needed, because the lexical-variable lookup for ``x`` must occur at the use site, # and it can only be performed by Python itself. We could modify ``_autoref_resolve`` to take # ``locals()`` and ``globals()`` as arguments and look also in the ``builtins`` module, # but that way we get no access to the enclosing scopes (the "E" in LEGB). # # Recall the blocks expand from inside out. # # We must leave an AST marker in place of the each autoref block, so that any outer autoref block (when it expands) # understands that within that block, any read access to the name "p" is to be left alone. # # In ``_autoref_resolve``, we use a single args parameter to avoid dealing with ``*args`` # when analyzing the Call node, thus avoiding much special-case code for the AST differences # between Python 3.4 and 3.5+. # # In reality, we also capture-and-assign the autoref'd expr into a gensym'd variable (instead of referring # to ``o`` and ``p`` directly), so that arbitrary expressions can be autoref'd without giving them # a name in user code. @mark_lazy def _autoref_resolve(args): *objs, s = [force1(x) for x in args] for o in objs: if hasattr(o, s): return True, force1(getattr(o, s)) return False, None def autoref(block_body, args, asname): assert len(args) == 1, "expected exactly one argument, the expr to implicitly reference" assert block_body, "expected at least one statement inside the 'with autoref' block" gen_sym = dyn.gen_sym o = asname.id if asname else gen_sym("_o") # Python itself guarantees asname to be a bare Name. # with AutorefMarker("_o42"): def isexpandedautorefblock(tree): if not (type(tree) is With and len(tree.items) == 1): return False ctxmanager = tree.items[0].context_expr return type(ctxmanager) is Call and \ type(ctxmanager.func) is Name and ctxmanager.func.id == "AutorefMarker" and \ len(ctxmanager.args) == 1 and type(ctxmanager.args[0]) is Str def getreferent(tree): return tree.items[0].context_expr.args[0].s # (lambda _ar314: _ar314[1] if _ar314[0] else x)(_autoref_resolve((p, o, "x"))) def isautoreference(tree): return type(tree) is Call and \ len(tree.args) == 1 and type(tree.args[0]) is Call and \ type(tree.args[0].func) is Name and tree.args[0].func.id == "_autoref_resolve" and \ type(tree.func) is Lambda and len(tree.func.args.args) == 1 and \ tree.func.args.args[0].arg.startswith("_ar") def get_resolver_list(tree): # (p, o, "x") return tree.args[0].args[0].elts def add_to_resolver_list(tree, objnode): lst = get_resolver_list(tree) lst.insert(-1, objnode) # x --> the autoref code above. def makeautoreference(tree): assert type(tree) is Name and (type(tree.ctx) is Load or not tree.ctx) newtree = hq[(lambda __ar_: __ar_[1] if __ar_[0] else ast_literal[tree])(_autoref_resolve((name[o], u[tree.id])))] our_lambda_argname = gen_sym("_ar") @Walker def renametmp(tree, **kw): if type(tree) is Name and tree.id == "__ar_": tree.id = our_lambda_argname elif type(tree) is arg and tree.arg == "__ar_": tree.arg = our_lambda_argname return tree return renametmp.recurse(newtree) @Walker def transform(tree, *, referents, set_ctx, stop, **kw): if type(tree) in (Attribute, Subscript, Name) and type(tree.ctx) in (Store, Del): stop() # skip autoref lookup for let/do envs elif islet(tree): view = ExpandedLetView(tree) set_ctx(referents=referents + [view.body.args.args[0].arg]) # lambda e14: ... elif isdo(tree): view = ExpandedDoView(tree) set_ctx(referents=referents + [view.body[0].args.args[0].arg]) # lambda e14: ... elif isexpandedautorefblock(tree): set_ctx(referents=referents + [getreferent(tree)]) elif isautoreference(tree): # generated by an inner already expanded autoref block stop() thename = get_resolver_list(tree)[-1].s if thename in referents: # remove autoref lookup for an outer referent, inserted early by an inner autoref block # (that doesn't know that any outer block exists) tree = q[name[thename]] # (lambda ...)(_autoref_resolve((p, "o"))) --> o else: add_to_resolver_list(tree, q[name[o]]) # _autoref_resolve((p, "x")) --> _autoref_resolve((p, o, "x")) elif type(tree) is Call and type(tree.func) is Name and tree.func.id == "AutorefMarker": # nested autorefs stop() elif type(tree) is Name and (type(tree.ctx) is Load or not tree.ctx) and tree.id not in referents: stop() tree = makeautoreference(tree) # Attribute works as-is, because a.b.c --> Attribute(Attribute(a, "b"), "c"), so Name "a" gets transformed. # Subscript similarly, a[1][2] --> Subscript(Subscript(a, 1), 2), so Name "a" gets transformed. return tree # skip (by name) some common references inserted by other macros always_skip = ['letter', 'dof', 'namelambda', 'curry', 'currycall', 'lazy', 'lazyrec', 'lazycall'] newbody = [Assign(targets=[q[name[o]]], value=args[0])] for stmt in block_body: newbody.append(transform.recurse(stmt, referents=always_skip + [o])) return wrapwith(item=hq[AutorefMarker(u[o])], body=newbody, locref=block_body[0])
[ "ast.Assign" ]
[((8203, 8246), 'ast.Assign', 'Assign', ([], {'targets': '[q[name[o]]]', 'value': 'args[0]'}), '(targets=[q[name[o]]], value=args[0])\n', (8209, 8246), False, 'from ast import Name, Assign, Load, Call, Lambda, With, Str, arg, Attribute, Subscript, Store, Del\n')]
# -*- coding: utf-8 -*- """ This is part of HashBruteStation software Docs EN: http://hack4sec.pro/wiki/index.php/Hash_Brute_Station_en Docs RU: http://hack4sec.pro/wiki/index.php/Hash_Brute_Station License: MIT Copyright (c) <NAME> <http://anton-kuzmin.ru> (ru) <http://anton-kuzmin.pro> (en) Integration tests for HashlistsByAlgLoaderThread """ import sys import os import time import pytest sys.path.append('../../') from libs.common import file_get_contents, md5 from classes.HashlistsByAlgLoaderThread import HashlistsByAlgLoaderThread from CommonUnit import CommonUnit class Test_HashlistsByAlgLoaderThread(CommonUnit): """ Unit tests for HashlistsByAlgLoaderThread """ db = None thrd = None def setup(self): """ Tests setup """ self._clean_db() self.thrd = HashlistsByAlgLoaderThread() self.thrd.catch_exceptions = False def teardown(self): """ Tests teardown """ if isinstance(self.thrd, HashlistsByAlgLoaderThread): self.thrd.available = False time.sleep(1) del self.thrd self._clean_db() def test_get_common_hashlist_id_by_alg_get(self): """ Test get_common_hashlist_id_by_alg_get() """ self._add_hashlist(have_salts=1, common_by_alg=3) assert self.thrd.get_common_hashlist_id_by_alg(3) == 1 test_data = [ ( 1, {'hash': 'a', 'salt': '1', 'summ': md5('a:1')}, ), ( 0, {'hash': 'a', 'salt': '', 'summ': md5('a')}, ), ] @pytest.mark.parametrize("have_salt,_hash", test_data) def test_get_common_hashlist_id_by_alg_create(self, have_salt, _hash): """ Test get_common_hashlist_id_by_alg_create() :param have_salt: does hashlist has salt? :param _hash: hash data row :return: """ self._add_hashlist(have_salts=have_salt, common_by_alg=0) self._add_hash(hash=_hash['hash'], salt=_hash['salt'], summ=_hash['summ']) assert self.thrd.get_common_hashlist_id_by_alg(3) == 2 test_hashlist_data = {'id': 2, 'name': 'All-MD4', 'have_salts': have_salt, 'delimiter': self.thrd.DELIMITER, 'cracked': 0, 'uncracked': 0, 'errors': '', 'parsed': 0, 'status': 'ready', 'common_by_alg': 3} hashlist_data = self.db.fetch_row("SELECT * FROM hashlists WHERE id = 2") for field in test_hashlist_data: assert hashlist_data[field] == test_hashlist_data[field] def test_get_common_hashlist_id_by_alg_with_salt_create_one_salt_forget(self): """ Test get_common_hashlist_id_by_alg_create() """ self._add_hashlist(have_salts=1, common_by_alg=0) self._add_hash(hash='a', salt='b', summ='333') self._add_hashlist(id=2, have_salts=0, common_by_alg=0) self._add_hash(hashlist_id=2, hash='c', salt='d', summ='111') assert self.thrd.get_common_hashlist_id_by_alg(3) == 3 test_hashlist_data = {'id': 3, 'name': 'All-MD4', 'have_salts': 1, 'delimiter': self.thrd.DELIMITER, 'cracked': 0, 'uncracked': 0, 'errors': '', 'parsed': 0, 'status': 'ready', 'common_by_alg': 3} hashlist_data = self.db.fetch_row("SELECT * FROM hashlists WHERE id = 3") for field in test_hashlist_data: assert hashlist_data[field] == test_hashlist_data[field] def test_get_current_work_hashlist(self): """ Test get_current_work_hashlist() """ assert not self.thrd.get_current_work_hashlist() self.db.insert("task_works", {'hashlist_id': 3, 'status': 'work', 'task_id': 1}) assert self.thrd.get_current_work_hashlist() == 3 def test_get_hashlist_status(self): """ Test get_hashlist_status() """ self._add_hashlist(common_by_alg=1) assert self.thrd.get_hashlist_status(1) == 'ready' def test_is_alg_in_parse(self): """ Test is_alg_in_parse() """ assert self.thrd.is_alg_in_parse(3) is False self._add_hashlist(common_by_alg=1) self.db.insert("task_works", {'hashlist_id': 1, 'status': 'waitoutparse', 'task_id': 1}) assert self.thrd.is_alg_in_parse(3) is True assert self.thrd.is_alg_in_parse(4) is False self._add_hashlist(id=2, alg_id=4, common_by_alg=1) self.db.insert("task_works", {'hashlist_id': 2, 'status': 'outparsing', 'task_id': 1}) assert self.thrd.is_alg_in_parse(4) is True def test_hashes_count_in_hashlist(self): """ Test hashes_count_in_hashlist() """ assert self.thrd.hashes_count_in_hashlist(1) == 0 self._add_hash() assert self.thrd.hashes_count_in_hashlist(1) == 1 def test_hashes_count_by_algs(self): """ Test hashes_count_by_algs() """ assert self.thrd.hashes_count_by_algs() == {} self._add_hashlist() self._add_hash(summ='111') self._add_hash(summ='222', hash='a', salt='b') self._add_hashlist(id=2, alg_id=4) self._add_hash(hashlist_id=2, summ='333') assert self.thrd.hashes_count_by_algs() == {3: 2, 4: 1} def test_is_alg_have_salts(self): """ Test is_alg_have_salts() """ self._add_hashlist() assert self.thrd.is_alg_have_salts(3) is False self._add_hashlist(id=2, have_salts=1) # Forget salt bug assert self.thrd.is_alg_have_salts(3) is True def test_get_possible_hashlist_and_alg_simple(self): """ Test get_possible_hashlist_and_alg_simple() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') assert self.thrd.get_possible_hashlist_and_alg() == {'hashlist_id': 2, 'alg_id': 3} def test_get_possible_hashlist_and_alg_none_already(self): """ Test get_possible_hashlist_and_alg_none_already() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') self._add_hashlist(id=2, common_by_alg=3) self._add_hash(hashlist_id=2, hash='a', summ='111') self._add_hash(hashlist_id=2, hash='b', summ='222') assert self.thrd.get_possible_hashlist_and_alg() is None def test_get_possible_hashlist_and_alg_none_in_parse(self): """ Test get_possible_hashlist_and_alg_none_in_parse() """ self.db.insert("task_works", {'hashlist_id': 1, 'status': 'waitoutparse', 'task_id': 1}) self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') assert self.thrd.get_possible_hashlist_and_alg() is None self.db.update("task_works", {'status': 'outparsing'}, "id=1") assert self.thrd.get_possible_hashlist_and_alg() is None def test_get_possible_hashlist_and_alg_none_not_ready(self): """ Test get_possible_hashlist_and_alg_none_not_ready() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') self._add_hashlist(id=2, status='wait', common_by_alg=3) assert self.thrd.get_possible_hashlist_and_alg() is None def test_get_possible_hashlist_and_alg_none_in_work(self): """ Test get_possible_hashlist_and_alg_none_in_work() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') self._add_hashlist(id=2, common_by_alg=3) self.db.insert("task_works", {'hashlist_id': 2, 'status': 'work', 'task_id': 1}) assert self.thrd.get_possible_hashlist_and_alg() is None def test_clean_old_hashes(self): """ Test clean_old_hashes() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(hash='b', summ='222') assert self.db.fetch_one("SELECT COUNT(*) FROM hashes WHERE hashlist_id = 1") == 2 self.thrd.clean_old_hashes(1) assert self.db.fetch_one("SELECT COUNT(*) FROM hashes WHERE hashlist_id = 1") == 0 assert self.db.fetch_one("SELECT cracked+uncracked FROM hashlists WHERE id = 1") == 0 def test_put_all_hashes_of_alg_in_file(self): """ Test put_all_hashes_of_alg_in_file() """ self._add_hashlist() self._add_hash(hash='a', summ='111') self._add_hash(summ='222') self._add_hash(hash='b', summ='333') path = self.thrd.put_all_hashes_of_alg_in_file(3) assert os.path.exists(path) assert file_get_contents(path) == 'a\nb\n' self._add_hashlist(id=2, have_salts=1, alg_id=4) self._add_hash(hashlist_id=2, hash='a', salt='b', summ='111') self._add_hash(hashlist_id=2, summ='222') self._add_hash(hashlist_id=2, hash='c', salt='d', summ='333') path = self.thrd.put_all_hashes_of_alg_in_file(4) assert os.path.exists(path) assert file_get_contents(path) == 'a{0}b\nc{0}d\n'.format(self.thrd.DELIMITER)
[ "os.path.exists", "libs.common.md5", "libs.common.file_get_contents", "time.sleep", "pytest.mark.parametrize", "classes.HashlistsByAlgLoaderThread.HashlistsByAlgLoaderThread", "sys.path.append" ]
[((398, 423), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (413, 423), False, 'import sys\n'), ((1570, 1623), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""have_salt,_hash"""', 'test_data'], {}), "('have_salt,_hash', test_data)\n", (1593, 1623), False, 'import pytest\n'), ((811, 839), 'classes.HashlistsByAlgLoaderThread.HashlistsByAlgLoaderThread', 'HashlistsByAlgLoaderThread', ([], {}), '()\n', (837, 839), False, 'from classes.HashlistsByAlgLoaderThread import HashlistsByAlgLoaderThread\n'), ((8537, 8557), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (8551, 8557), False, 'import os\n'), ((8932, 8952), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (8946, 8952), False, 'import os\n'), ((1053, 1066), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1063, 1066), False, 'import time\n'), ((8573, 8596), 'libs.common.file_get_contents', 'file_get_contents', (['path'], {}), '(path)\n', (8590, 8596), False, 'from libs.common import file_get_contents, md5\n'), ((8968, 8991), 'libs.common.file_get_contents', 'file_get_contents', (['path'], {}), '(path)\n', (8985, 8991), False, 'from libs.common import file_get_contents, md5\n'), ((1442, 1452), 'libs.common.md5', 'md5', (['"""a:1"""'], {}), "('a:1')\n", (1445, 1452), False, 'from libs.common import file_get_contents, md5\n'), ((1537, 1545), 'libs.common.md5', 'md5', (['"""a"""'], {}), "('a')\n", (1540, 1545), False, 'from libs.common import file_get_contents, md5\n')]
from __future__ import absolute_import, division, print_function import json import logging import os import time import importlib import multiprocessing import cv2 import fire import logzero from logzero import logger import numpy as np from rmexp import config, cvutils, dbutils, gabriel_pb2, client from rmexp.schema import models logzero.formatter(logging.Formatter( fmt='%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', datefmt='%H:%M:%S')) logzero.loglevel(logging.DEBUG) def work_loop(job_queue, app, busy_wait=None): """[summary] Arguments: job_queue {[type]} -- [description] app {[type]} -- [description] Keyword Arguments: busy_wait {float} -- if not None, busy spin seconds instead of running actual app (default: {None}) """ handler = importlib.import_module(app).Handler() while True: get_ts = time.time() msg = job_queue.get()[0] get_wait = time.time() - get_ts if get_wait > 2e-3: logger.warn("[pid {}] took {} ms to get a new request. Maybe waiting".format( os.getpid(), int(1000 * get_wait))) arrival_ts = time.time() gabriel_msg = gabriel_pb2.Message() gabriel_msg.ParseFromString(msg) encoded_im, ts = gabriel_msg.data, gabriel_msg.timestamp logger.debug("[pid {}] about to process frame {}".format( os.getpid(), gabriel_msg.index)) cts = time.clock() if not busy_wait: # do real work encoded_im_np = np.frombuffer(encoded_im, dtype=np.uint8) img = cv2.imdecode(encoded_im_np, cv2.CV_LOAD_IMAGE_UNCHANGED) result = handler.process(img) else: # busy wait fixed time tic = time.time() while True: if time.time() - tic > busy_wait: break result = 'busy wait {}'.format(busy_wait) finished_ts = time.time() time_lapse = (finished_ts - ts) * 1000 cpu_proc_ms = round((time.clock() - cts) * 1000) if gabriel_msg.reply: reply = gabriel_pb2.Message() reply.data = str(result) reply.timestamp = gabriel_msg.timestamp reply.index = gabriel_msg.index reply.finished_ts = finished_ts reply.arrival_ts = arrival_ts reply.cpu_proc_ms = cpu_proc_ms job_queue.put([reply.SerializeToString(), ]) logger.debug('[pid {}] takes {} ms (cpu: {} ms) for frame {}: {}.'.format( os.getpid(), (time.time() - ts) * 1000, cpu_proc_ms, gabriel_msg.index, result)) class Sampler(object): """A Class to sample video stream. Designed to work with cam.read(). Sample once every sample_period calls """ def __init__(self, sample_period, sample_func=None): super(Sampler, self).__init__() self._sp = sample_period assert(type(sample_period) is int and sample_period > 0) self._sf = sample_func self._cnt = 0 def sample(self): while True: self._cnt = (self._cnt + 1) % self._sp if self._cnt == 0: return self._sf() self._sf() def process_and_time(img, app_handler): ts = time.time() result = app_handler.process(img) time_lapse = int(round((time.time() - ts) * 1000)) return result, time_lapse def store( data, session, store_result, store_latency, store_profile, **kwargs): name, trace, idx, result, time_lapse = data if store_result: rec, _ = dbutils.get_or_create( session, models.SS, name=name, index=idx, trace=trace) rec.val = str(result) if store_latency: rec, _ = dbutils.get_or_create( session, models.LegoLatency, name=name, index=idx) rec.val = int(time_lapse) if store_profile: rec = kwargs rec.update( {'trace': trace, 'index': idx, 'name': name, 'latency': time_lapse } ) dbutils.insert( session, models.ResourceLatency, rec ) def batch_process(video_uri, app, experiment_name, trace=None, store_result=False, store_latency=False, store_profile=False, **kwargs): """Batch process a video. Able to store both the result and the frame processing latency. Arguments: video_uri {string} -- Video URI app {string} -- Applicaiton name experiment_name {string} -- Experiment name Keyword Arguments: trace {string} -- Trace id store_result {bool} -- Whether to store result into database store_result {bool} -- [description] (default: {False}) store_latency {bool} -- [description] (default: {False}) cpu {string} -- No of CPUs used. Used to populate profile database memory {string} -- No of memory used. Used to populate profile database num_worker {int} -- No of simultaneous workers. Used to populate profile database """ if trace is None: trace = os.path.basename(os.path.dirname(video_uri)) app = importlib.import_module(app) app_handler = app.Handler() vc = client.VideoClient( app.__name__, video_uri, None, loop=False, random_start=False) idx = 1 with dbutils.session_scope() as session: for img in vc.get_frame_generator(): cpu_time_ts = time.clock() result, time_lapse = process_and_time(img, app_handler) logger.debug("[pid: {}] processing frame {} from {}. {} ms".format(os.getpid(), idx, video_uri, int(time_lapse))) logger.debug(result) store( (experiment_name, trace, idx, result, time_lapse), session, store_result, store_latency, store_profile, **kwargs ) idx += 1 def phash(video_uri): cam = cv2.VideoCapture(video_uri) has_frame = True with dbutils.session_scope(dry_run=False) as sess: trace_name = os.path.basename(os.path.dirname(video_uri)) idx = 1 while has_frame: has_frame, img = cam.read() if img is not None: cur_hash = cvutils.phash(img) sess.add(models.SS( name='{}-f{}-phash'.format(trace_name, idx), val=str(cur_hash), trace=trace_name)) idx += 1 def phash_diff_adjacent_frame(video_uri, output_dir): cam = cv2.VideoCapture(video_uri) os.makedirs(output_dir) has_frame = True prev_hash = None idx = 1 logger.debug('calculating phash diff for adjacent frames') while has_frame: has_frame, img = cam.read() if img is not None: cur_hash = cvutils.phash(img) if prev_hash is not None: diff = cur_hash - prev_hash cv2.putText(img, 'diff={}'.format( diff), (int(img.shape[1] / 3), img.shape[0] - 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=5) cv2.imwrite(os.path.join( output_dir, '{:010d}.jpg'.format(idx)), img) logger.debug(diff) prev_hash = cur_hash idx += 1 if __name__ == "__main__": fire.Fire()
[ "time.clock", "fire.Fire", "cv2.imdecode", "logzero.logger.debug", "rmexp.gabriel_pb2.Message", "rmexp.dbutils.insert", "rmexp.dbutils.get_or_create", "os.getpid", "numpy.frombuffer", "importlib.import_module", "os.path.dirname", "time.time", "rmexp.client.VideoClient", "os.makedirs", "logging.Formatter", "rmexp.dbutils.session_scope", "logzero.loglevel", "cv2.VideoCapture", "rmexp.cvutils.phash" ]
[((460, 491), 'logzero.loglevel', 'logzero.loglevel', (['logging.DEBUG'], {}), '(logging.DEBUG)\n', (476, 491), False, 'import logzero\n'), ((356, 458), 'logging.Formatter', 'logging.Formatter', ([], {'fmt': '"""%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s"""', 'datefmt': '"""%H:%M:%S"""'}), "(fmt=\n '%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s', datefmt='%H:%M:%S')\n", (373, 458), False, 'import logging\n'), ((3275, 3286), 'time.time', 'time.time', ([], {}), '()\n', (3284, 3286), False, 'import time\n'), ((5414, 5442), 'importlib.import_module', 'importlib.import_module', (['app'], {}), '(app)\n', (5437, 5442), False, 'import importlib\n'), ((5484, 5570), 'rmexp.client.VideoClient', 'client.VideoClient', (['app.__name__', 'video_uri', 'None'], {'loop': '(False)', 'random_start': '(False)'}), '(app.__name__, video_uri, None, loop=False, random_start=\n False)\n', (5502, 5570), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((6320, 6347), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_uri'], {}), '(video_uri)\n', (6336, 6347), False, 'import cv2\n'), ((6915, 6942), 'cv2.VideoCapture', 'cv2.VideoCapture', (['video_uri'], {}), '(video_uri)\n', (6931, 6942), False, 'import cv2\n'), ((6947, 6970), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (6958, 6970), False, 'import os\n'), ((7029, 7087), 'logzero.logger.debug', 'logger.debug', (['"""calculating phash diff for adjacent frames"""'], {}), "('calculating phash diff for adjacent frames')\n", (7041, 7087), False, 'from logzero import logger\n'), ((7703, 7714), 'fire.Fire', 'fire.Fire', ([], {}), '()\n', (7712, 7714), False, 'import fire\n'), ((883, 894), 'time.time', 'time.time', ([], {}), '()\n', (892, 894), False, 'import time\n'), ((1160, 1171), 'time.time', 'time.time', ([], {}), '()\n', (1169, 1171), False, 'import time\n'), ((1195, 1216), 'rmexp.gabriel_pb2.Message', 'gabriel_pb2.Message', ([], {}), '()\n', (1214, 1216), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((1450, 1462), 'time.clock', 'time.clock', ([], {}), '()\n', (1460, 1462), False, 'import time\n'), ((1959, 1970), 'time.time', 'time.time', ([], {}), '()\n', (1968, 1970), False, 'import time\n'), ((3627, 3703), 'rmexp.dbutils.get_or_create', 'dbutils.get_or_create', (['session', 'models.SS'], {'name': 'name', 'index': 'idx', 'trace': 'trace'}), '(session, models.SS, name=name, index=idx, trace=trace)\n', (3648, 3703), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((3834, 3906), 'rmexp.dbutils.get_or_create', 'dbutils.get_or_create', (['session', 'models.LegoLatency'], {'name': 'name', 'index': 'idx'}), '(session, models.LegoLatency, name=name, index=idx)\n', (3855, 3906), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((4204, 4256), 'rmexp.dbutils.insert', 'dbutils.insert', (['session', 'models.ResourceLatency', 'rec'], {}), '(session, models.ResourceLatency, rec)\n', (4218, 4256), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((5597, 5620), 'rmexp.dbutils.session_scope', 'dbutils.session_scope', ([], {}), '()\n', (5618, 5620), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((6378, 6414), 'rmexp.dbutils.session_scope', 'dbutils.session_scope', ([], {'dry_run': '(False)'}), '(dry_run=False)\n', (6399, 6414), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((810, 838), 'importlib.import_module', 'importlib.import_module', (['app'], {}), '(app)\n', (833, 838), False, 'import importlib\n'), ((947, 958), 'time.time', 'time.time', ([], {}), '()\n', (956, 958), False, 'import time\n'), ((1544, 1585), 'numpy.frombuffer', 'np.frombuffer', (['encoded_im'], {'dtype': 'np.uint8'}), '(encoded_im, dtype=np.uint8)\n', (1557, 1585), True, 'import numpy as np\n'), ((1604, 1660), 'cv2.imdecode', 'cv2.imdecode', (['encoded_im_np', 'cv2.CV_LOAD_IMAGE_UNCHANGED'], {}), '(encoded_im_np, cv2.CV_LOAD_IMAGE_UNCHANGED)\n', (1616, 1660), False, 'import cv2\n'), ((1770, 1781), 'time.time', 'time.time', ([], {}), '()\n', (1779, 1781), False, 'import time\n'), ((2126, 2147), 'rmexp.gabriel_pb2.Message', 'gabriel_pb2.Message', ([], {}), '()\n', (2145, 2147), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((5375, 5401), 'os.path.dirname', 'os.path.dirname', (['video_uri'], {}), '(video_uri)\n', (5390, 5401), False, 'import os\n'), ((5704, 5716), 'time.clock', 'time.clock', ([], {}), '()\n', (5714, 5716), False, 'import time\n'), ((6002, 6022), 'logzero.logger.debug', 'logger.debug', (['result'], {}), '(result)\n', (6014, 6022), False, 'from logzero import logger\n'), ((6462, 6488), 'os.path.dirname', 'os.path.dirname', (['video_uri'], {}), '(video_uri)\n', (6477, 6488), False, 'import os\n'), ((7196, 7214), 'rmexp.cvutils.phash', 'cvutils.phash', (['img'], {}), '(img)\n', (7209, 7214), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((1402, 1413), 'os.getpid', 'os.getpid', ([], {}), '()\n', (1411, 1413), False, 'import os\n'), ((2564, 2575), 'os.getpid', 'os.getpid', ([], {}), '()\n', (2573, 2575), False, 'import os\n'), ((6630, 6648), 'rmexp.cvutils.phash', 'cvutils.phash', (['img'], {}), '(img)\n', (6643, 6648), False, 'from rmexp import config, cvutils, dbutils, gabriel_pb2, client\n'), ((7597, 7615), 'logzero.logger.debug', 'logger.debug', (['diff'], {}), '(diff)\n', (7609, 7615), False, 'from logzero import logger\n'), ((1102, 1113), 'os.getpid', 'os.getpid', ([], {}), '()\n', (1111, 1113), False, 'import os\n'), ((2047, 2059), 'time.clock', 'time.clock', ([], {}), '()\n', (2057, 2059), False, 'import time\n'), ((3353, 3364), 'time.time', 'time.time', ([], {}), '()\n', (3362, 3364), False, 'import time\n'), ((5864, 5875), 'os.getpid', 'os.getpid', ([], {}), '()\n', (5873, 5875), False, 'import os\n'), ((1825, 1836), 'time.time', 'time.time', ([], {}), '()\n', (1834, 1836), False, 'import time\n'), ((2578, 2589), 'time.time', 'time.time', ([], {}), '()\n', (2587, 2589), False, 'import time\n')]
import random import sys # usage: python3 words_gen.py > list.txt N = int(sys.argv[1]) # how many words should be in the resulting list with open("scripts/words.txt", "r") as f: words = f.readlines() for i in range(N): print(words[random.randint(0, 466550 - 1)].rstrip())
[ "random.randint" ]
[((251, 280), 'random.randint', 'random.randint', (['(0)', '(466550 - 1)'], {}), '(0, 466550 - 1)\n', (265, 280), False, 'import random\n')]
import unittest from modules.Input import * class CommandInputTest(unittest.TestCase): def setUp(self): self.field_a_locations = ["gOtOFieldAroW8", " go to fieLDA RoW 18 ", "gOTOfield A rOW88"] self.field_b_locations = ["gOtOFieldBroW8", " go to fieLDB RoW 18 ", "gOTOfield B rOW88"] self.charger_locations = ["gotocharGeR", " goTo cHaRgeR ", " go toCHARGER "] self.planting_locations = ["plantPotaToes inFieLDA rOW7", " plANt caRRottsin fieldBRow 88"] def tearDown(self): self.field_a_locations = [] self.field_b_locations = [] self.charger_locations = [] self.planting_locations = [] def test_field_a_rows(self): self.assertEqual(user_input(self.field_a_locations[0])[0], "FAR8") self.assertEqual(user_input(self.field_a_locations[0])[1], "N/A") self.assertEqual(user_input(self.field_a_locations[1])[0], "FAR18") self.assertEqual(user_input(self.field_a_locations[1])[1], "N/A") self.assertEqual(user_input(self.field_a_locations[2])[0], "FAR88") self.assertEqual(user_input(self.field_a_locations[2])[1], "N/A") def test_field_b_rows(self): self.assertEqual(user_input(self.field_b_locations[0])[0], "FBR8") self.assertEqual(user_input(self.field_b_locations[0])[1], "N/A") self.assertEqual(user_input(self.field_b_locations[1])[0], "FBR18") self.assertEqual(user_input(self.field_b_locations[1])[1], "N/A") self.assertEqual(user_input(self.field_b_locations[2])[0], "FBR88") self.assertEqual(user_input(self.field_b_locations[2])[1], "N/A") def test_charger(self): self.assertEqual(user_input(self.charger_locations[0])[0], "Charger") self.assertEqual(user_input(self.charger_locations[0])[1], "N/A") self.assertEqual(user_input(self.charger_locations[1])[0], "Charger") self.assertEqual(user_input(self.charger_locations[1])[1], "N/A") self.assertEqual(user_input(self.charger_locations[2])[0], "Charger") self.assertEqual(user_input(self.charger_locations[2])[1], "N/A") def test_bad_input(self): self.assertEqual(user_input("")[0], "Invalid task") self.assertEqual(user_input("")[1], "N/A") self.assertEqual(user_input("fg73f37g")[0], "Invalid task") self.assertEqual(user_input("fg73f37g")[1], "N/A") def test_planting_instructions(self): self.assertEqual(user_input(self.planting_locations[0])[0], "FAR7") self.assertEqual(user_input(self.planting_locations[0])[1], "PotaToes") self.assertEqual(user_input(self.planting_locations[1])[0], "FBR88") self.assertEqual(user_input(self.planting_locations[1])[1], "caRRotts") if __name__ == '__main__': unittest.main()
[ "unittest.main" ]
[((3021, 3036), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3034, 3036), False, 'import unittest\n')]
""" ----------------------------------------------------------------------------- This source file is part of VPET - Virtual Production Editing Tools http://vpet.research.animationsinstitut.de/ http://github.com/FilmakademieRnd/VPET Copyright (c) 2021 <NAME>, Animationsinstitut R&D Lab This project has been initiated in the scope of the EU funded project Dreamspace under grant agreement no 610005 in the years 2014, 2015 and 2016. http://dreamspaceproject.eu/ Post Dreamspace the project has been further developed on behalf of the research and development activities of Animationsinstitut. The VPET component Blender Scene Distribution is intended for research and development purposes only. Commercial use of any kind is not permitted. There is no support by Filmakademie. Since the Blender Scene Distribution is available for free, Filmakademie shall only be liable for intent and gross negligence; warranty is limited to malice. Scene DistributiorUSD may under no circumstances be used for racist, sexual or any illegal purposes. In all non-commercial productions, scientific publications, prototypical non-commercial software tools, etc. using the Blender Scene Distribution Filmakademie has to be named as follows: “VPET-Virtual Production Editing Tool by <NAME>, Animationsinstitut (http://research.animationsinstitut.de)“. In case a company or individual would like to use the Blender Scene Distribution in a commercial surrounding or for commercial purposes, software based on these components or any part thereof, the company/individual will have to contact Filmakademie (research<at>filmakademie.de). ----------------------------------------------------------------------------- """ bl_info = { "name" : "VPET Blender", "author" : "<NAME>", "description" : "", "blender" : (2, 92, 2), "version" : (0, 5, 0), "location" : "VIEW3D", "warning" : "", "category" : "Animationsinstitut" } from typing import Set import bpy from .bl_op import DoDistribute from .bl_op import StopDistribute from .bl_op import SetupScene from .bl_op import InstallZMQ from .bl_panel import VPET_PT_Panel from .tools import initialize from .settings import VpetData from .settings import VpetProperties # imported classes to register classes = (DoDistribute, StopDistribute, SetupScene, VPET_PT_Panel, VpetProperties, InstallZMQ) ## Register classes and VpetSettings # def register(): bpy.types.WindowManager.vpet_data = VpetData() from bpy.utils import register_class for cls in classes: try: register_class(cls) print(f"Registering {cls.__name__}") except Exception as e: print(f"{cls.__name__} "+ str(e)) bpy.types.Scene.vpet_properties = bpy.props.PointerProperty(type=VpetProperties) initialize() print("Registered VPET Addon") ## Unregister for removal of Addon # def unregister(): del bpy.types.WindowManager.vpet_data from bpy.utils import unregister_class for cls in classes: try: unregister_class(cls) except Exception as e: print(f"{cls.__name__} "+ str(e)) print("Unregistered VPET Addon")
[ "bpy.props.PointerProperty", "bpy.utils.register_class", "bpy.utils.unregister_class" ]
[((2745, 2791), 'bpy.props.PointerProperty', 'bpy.props.PointerProperty', ([], {'type': 'VpetProperties'}), '(type=VpetProperties)\n', (2770, 2791), False, 'import bpy\n'), ((2556, 2575), 'bpy.utils.register_class', 'register_class', (['cls'], {}), '(cls)\n', (2570, 2575), False, 'from bpy.utils import register_class\n'), ((3039, 3060), 'bpy.utils.unregister_class', 'unregister_class', (['cls'], {}), '(cls)\n', (3055, 3060), False, 'from bpy.utils import unregister_class\n')]
# Unlike the other datasets, CIFAR-10 uses ResNet and suffers from # a variety of problems, including exploding gradients import torch import torch.nn as nn from tqdm.notebook import tnrange, tqdm # For loading model sanely import os.path import sys # This here actually adds the path sys.path.append("../../") import models.resnet as resnet # Define the `device` PyTorch will be running on, please hope it is CUDA device = "cuda" if torch.cuda.is_available() else "cpu" print("Notebook will use PyTorch Device: " + device.upper()) # Helps adjust learning rate for better results def adjust_learning_rate(optimizer, epoch, learning_rate, long_training): actual_learning_rate = learning_rate if long_training: first_update_threshold = 100 second_update_threshold = 150 else: first_update_threshold = 20 second_update_threshold = 25 if epoch >= first_update_threshold: actual_learning_rate = 0.01 if epoch >= second_update_threshold: actual_learning_rate = 0.001 for param_group in optimizer.param_groups: param_group["lr"] = actual_learning_rate # This method creates a new model and also trains it def standard_training( trainSetLoader, long_training=True, load_if_available=False, load_path="../models_data/CIFAR10/cifar10_standard" ): # Number of epochs is decided by training length if long_training: epochs = 200 else: epochs = 30 learning_rate = 0.1 # Network parameters loss_function = nn.CrossEntropyLoss() model = resnet.ResNet18() model = model.to(device) model = nn.DataParallel(model) model.train() # Consider using ADAM here as another gradient descent algorithm optimizer = torch.optim.SGD( model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=0.0002 ) # If a trained model already exists, give up the training part if load_if_available and os.path.isfile(load_path): print("Found already trained model...") model = torch.load(load_path) print("... loaded!") else: print("Training the model...") # Use a pretty progress bar to show updates for epoch in tnrange(epochs, desc="Training Progress"): # Print loss results total_epoch_loss = 0 # Adjust the learning rate adjust_learning_rate(optimizer, epoch, learning_rate, long_training) for _, (images, labels) in enumerate(tqdm(trainSetLoader, desc="Batches")): # Cast to proper tensors images, labels = images.to(device), labels.to(device) # Clean the gradients optimizer.zero_grad() # Predict logits = model(images) # Calculate loss loss = loss_function(logits, labels) # Gradient descent loss.backward() # Add total accumulated loss total_epoch_loss += loss.item() # Also clip the gradients (ReLU leads to vanishing or # exploding gradients) torch.nn.utils.clip_grad_norm_(model.parameters(), 10) optimizer.step() print("Loss at epoch {} is {}".format(epoch, total_epoch_loss)) print("... done!") # Make sure the model is in eval mode before returning model.eval() return model
[ "torch.nn.CrossEntropyLoss", "torch.load", "models.resnet.ResNet18", "tqdm.notebook.tnrange", "torch.nn.DataParallel", "torch.cuda.is_available", "tqdm.notebook.tqdm", "sys.path.append" ]
[((287, 312), 'sys.path.append', 'sys.path.append', (['"""../../"""'], {}), "('../../')\n", (302, 312), False, 'import sys\n'), ((437, 462), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (460, 462), False, 'import torch\n'), ((1530, 1551), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1549, 1551), True, 'import torch.nn as nn\n'), ((1564, 1581), 'models.resnet.ResNet18', 'resnet.ResNet18', ([], {}), '()\n', (1579, 1581), True, 'import models.resnet as resnet\n'), ((1623, 1645), 'torch.nn.DataParallel', 'nn.DataParallel', (['model'], {}), '(model)\n', (1638, 1645), True, 'import torch.nn as nn\n'), ((2042, 2063), 'torch.load', 'torch.load', (['load_path'], {}), '(load_path)\n', (2052, 2063), False, 'import torch\n'), ((2217, 2258), 'tqdm.notebook.tnrange', 'tnrange', (['epochs'], {'desc': '"""Training Progress"""'}), "(epochs, desc='Training Progress')\n", (2224, 2258), False, 'from tqdm.notebook import tnrange, tqdm\n'), ((2497, 2533), 'tqdm.notebook.tqdm', 'tqdm', (['trainSetLoader'], {'desc': '"""Batches"""'}), "(trainSetLoader, desc='Batches')\n", (2501, 2533), False, 'from tqdm.notebook import tnrange, tqdm\n')]
import os import numpy as np from montepython.likelihood_class import Likelihood import montepython.io_mp as io_mp import warnings import ccl_tools as tools import pyccl as ccl class covfefe(Likelihood): # initialization routine def __init__(self, path, data, command_line): Likelihood.__init__(self, path, data, command_line) self.nb = data.cosmo_arguments['n_bins'] self.cm = data.cosmo_arguments['cov'] n_sims = 20000 # Load Covariance matrix fn = 'cov_{}_{}.npz'.format(self.cm,self.nb) self.cov = np.load(os.path.join(self.data_directory, fn))['arr_0'] if self.cm=='sim': factor = (n_sims-self.cov.shape[0]-2.)/(n_sims-1.) else: factor = 1. self.icov = factor*np.linalg.inv(self.cov) # Load ell bandpowers self.ell_bp = np.load(os.path.join(self.data_directory, 'ell_bp.npz'))['lsims'].astype(int) self.nl = len(self.ell_bp) # Load photo_z fn = 'z_{}.npz'.format(self.nb) self.z = np.load(os.path.join(self.data_directory, fn))['arr_0'] fn = 'pz_{}.npz'.format(self.nb) self.pz = np.load(os.path.join(self.data_directory, fn))['arr_0'] fn = 'bz_{}.npz'.format(self.nb) self.bz = np.load(os.path.join(self.data_directory, fn))['arr_0'] # Load data fn = 'data_{}.npz'.format(self.nb) self.data = np.load(os.path.join(self.data_directory, fn))['arr_0'] # end of initialization # compute likelihood def loglkl(self, cosmo, data): # Get theory Cls cosmo_ccl = tools.get_cosmo_ccl(cosmo.pars) tracers = tools.get_tracers_ccl(cosmo_ccl, self.z, self.pz, self.bz) theory = tools.get_cls_ccl(cosmo_ccl, tracers, self.ell_bp) # Get chi2 chi2 = (self.data-theory).dot(self.icov).dot(self.data-theory) lkl = - 0.5 * chi2 return lkl
[ "montepython.likelihood_class.Likelihood.__init__", "ccl_tools.get_cls_ccl", "os.path.join", "ccl_tools.get_cosmo_ccl", "numpy.linalg.inv", "ccl_tools.get_tracers_ccl" ]
[((297, 348), 'montepython.likelihood_class.Likelihood.__init__', 'Likelihood.__init__', (['self', 'path', 'data', 'command_line'], {}), '(self, path, data, command_line)\n', (316, 348), False, 'from montepython.likelihood_class import Likelihood\n'), ((1625, 1656), 'ccl_tools.get_cosmo_ccl', 'tools.get_cosmo_ccl', (['cosmo.pars'], {}), '(cosmo.pars)\n', (1644, 1656), True, 'import ccl_tools as tools\n'), ((1675, 1733), 'ccl_tools.get_tracers_ccl', 'tools.get_tracers_ccl', (['cosmo_ccl', 'self.z', 'self.pz', 'self.bz'], {}), '(cosmo_ccl, self.z, self.pz, self.bz)\n', (1696, 1733), True, 'import ccl_tools as tools\n'), ((1751, 1801), 'ccl_tools.get_cls_ccl', 'tools.get_cls_ccl', (['cosmo_ccl', 'tracers', 'self.ell_bp'], {}), '(cosmo_ccl, tracers, self.ell_bp)\n', (1768, 1801), True, 'import ccl_tools as tools\n'), ((785, 808), 'numpy.linalg.inv', 'np.linalg.inv', (['self.cov'], {}), '(self.cov)\n', (798, 808), True, 'import numpy as np\n'), ((582, 619), 'os.path.join', 'os.path.join', (['self.data_directory', 'fn'], {}), '(self.data_directory, fn)\n', (594, 619), False, 'import os\n'), ((1064, 1101), 'os.path.join', 'os.path.join', (['self.data_directory', 'fn'], {}), '(self.data_directory, fn)\n', (1076, 1101), False, 'import os\n'), ((1179, 1216), 'os.path.join', 'os.path.join', (['self.data_directory', 'fn'], {}), '(self.data_directory, fn)\n', (1191, 1216), False, 'import os\n'), ((1294, 1331), 'os.path.join', 'os.path.join', (['self.data_directory', 'fn'], {}), '(self.data_directory, fn)\n', (1306, 1331), False, 'import os\n'), ((1434, 1471), 'os.path.join', 'os.path.join', (['self.data_directory', 'fn'], {}), '(self.data_directory, fn)\n', (1446, 1471), False, 'import os\n'), ((870, 917), 'os.path.join', 'os.path.join', (['self.data_directory', '"""ell_bp.npz"""'], {}), "(self.data_directory, 'ell_bp.npz')\n", (882, 917), False, 'import os\n')]
from __future__ import division import itertools import json import math import os import random import shutil import subprocess import sys durationA = str(5) durationB = str(4) durationC = str(1) def main(): if len(sys.argv) > 1: nbDepth = int(sys.argv[1]) if nbDepth < 2 : nbDepth =2 else : nbDepth =2 mainFolder = "depth" if not os.path.exists(mainFolder): subprocess.call(["mkdir", mainFolder]) generateDomain("depth", nbDepth) #print "Every file has been written. Exiting" def generateDomain(folderName, nbDepth): domainFilename = folderName + "/" + folderName + "-flat" + str(nbDepth) + ".dom.anml" printDomainToFile(domainFilename, nbDepth) domainFilename = folderName + "/" + folderName + "-hier" + str(nbDepth) + ".dom.anml" printDomainHierToFile(domainFilename, nbDepth) def printDomainToFile(domainFilename, nbDepth): with open(domainFilename, "w") as f: for i in range(0, nbDepth): f.write("predicate a" + str(i+1) +"();\n") f.write("predicate b" + str(i+1) +"();\n") f.write("predicate c" + str(i+1) +"();\n") f.write("predicate d" + str(i+1) +"();\n") f.write("predicate e" + str(i+1) +"();\n") f.write("\naction An" + str(i+1) + " () {\n") f.write("\tduration := " + durationA + ";\n") if i > 0: f.write("\t[start] {\n") f.write("\t\tb"+ str(i) +" == true;\n") f.write("\t\td"+ str(i) +" == true;\n") f.write("\t\te"+ str(i) +" == true;\n") f.write("\t};\n") f.write("\t[start] a" + str(i+1) + " := true;\n") f.write("\t[end] {\n") f.write("\t\ta" + str(i+1) + " := false;\n") f.write("\t\tb" + str(i+1) + " := true;\n") f.write("\t\td" + str(i+1) + " := false;\n") f.write("\t};\n") f.write("};\n") f.write("\naction Bn" + str(i+1) + " () {\n") f.write("\tduration := " + durationB + ";\n") f.write("\t[start] a" + str(i+1) + " == true;\n") f.write("\t[start] c" + str(i+1) + " := true;\n") f.write("\t[end] {\n") f.write("\t\tc" + str(i+1) + " := false;\n") f.write("\t\td" + str(i+1) + " := true;\n") f.write("\t};\n") f.write("};\n") f.write("\naction Cn" + str(i+1) + " () {\n") f.write("\tduration := " + durationC + ";\n") f.write("\t[start] c" + str(i+1) + " == true;\n") f.write("\t[end] {\n") f.write("\t\tb" + str(i+1) + " := false;\n") f.write("\t\te" + str(i+1) + " := true;\n") f.write("\t};\n") f.write("};\n") ######################## problem ############### f.write("\n/*******Problem************/\n") f.write("[all] contains{\n") f.write("\tCn" + str(nbDepth) +"();\n") f.write("};") def printDomainHierToFile(domainFilename, nbDepth): with open(domainFilename, "w") as f: for i in range(0, nbDepth): if i == 0: f.write("\naction An" + str(i+1) + " () {\n") f.write("\tmotivated;\n") f.write("\tduration := " + durationA + ";\n") f.write("};\n") else: f.write("\naction An" + str(i+1) + " () {\n") f.write("\tmotivated;\n") f.write("\tduration := " + durationA + ";\n") f.write("\ta : ABC" + str(i) + "();\n") f.write("\t end(a) < start;\n") f.write("};\n") f.write("\naction Bn" + str(i+1) + " () {\n") f.write("\tduration := " + durationB + ";\n") f.write("\tmotivated;\n") f.write("};\n") f.write("\naction Cn" + str(i+1) + " () {\n") f.write("\tduration := " + durationC + ";\n") f.write("\tmotivated;\n") f.write("};\n") f.write("\naction ABC" + str(i+1) + " () {\n") f.write("\t[all] contains {\n") f.write("\t\t b" + str(i+1) + " : An" + str(i+1) + "();\n") f.write("\t\t d" + str(i+1) + " : Bn" + str(i+1) + "();\n") f.write("\t\t e" + str(i+1) + " : Cn" + str(i+1) + "();\n") f.write("\t};\n") f.write("\tstart(b" + str(i+1) + ") < start(d" + str(i+1) + ");\n") f.write("\tend(d" + str(i+1) + ") < end(b" + str(i+1) + ");\n") f.write("\tstart(d" + str(i+1) + ") < start(e" + str(i+1) + ");\n") f.write("\tend(e" + str(i+1) + ") < end(d" + str(i+1) + ");\n") f.write("};\n") #################### problem ############# f.write("\n/*******Problem************/\n") f.write("[all] contains{\n") f.write("\tCn" + str(nbDepth) +"();\n") f.write("};") if __name__ == "__main__": main()
[ "os.path.exists", "subprocess.call" ]
[((394, 420), 'os.path.exists', 'os.path.exists', (['mainFolder'], {}), '(mainFolder)\n', (408, 420), False, 'import os\n'), ((430, 468), 'subprocess.call', 'subprocess.call', (["['mkdir', mainFolder]"], {}), "(['mkdir', mainFolder])\n", (445, 468), False, 'import subprocess\n')]
import decimal from django import template register = template.Library() @register.simple_tag def can_change_status(payment_request, user): return payment_request.can_user_change_status(user) @register.simple_tag def can_delete(payment_request, user): return payment_request.can_user_delete(user) @register.simple_tag def can_edit(payment_request, user): return payment_request.can_user_edit(user) @register.simple_tag def percentage(value, total): if not total: return decimal.Decimal(0) unrounded_total = (value / total) * 100 # round using Decimal since we're dealing with currency rounded_total = unrounded_total.quantize( decimal.Decimal('0.0'), rounding=decimal.ROUND_DOWN, ) return rounded_total
[ "decimal.Decimal", "django.template.Library" ]
[((56, 74), 'django.template.Library', 'template.Library', ([], {}), '()\n', (72, 74), False, 'from django import template\n'), ((504, 522), 'decimal.Decimal', 'decimal.Decimal', (['(0)'], {}), '(0)\n', (519, 522), False, 'import decimal\n'), ((683, 705), 'decimal.Decimal', 'decimal.Decimal', (['"""0.0"""'], {}), "('0.0')\n", (698, 705), False, 'import decimal\n')]
""" pylabnet measurement and service classes for Swabian Instruments TimeTagger which implements qudi's SlowCounter interface. This file contains pylabnet wrapper and service classes to allow qudi to access Swabian Instruments TT through pylabnet network as SlowCounter. Steps: - instantiate TimeTagger - instantiate pylabnet-SlowCtrWrap (pass ref to TimeTagger as tagger) - instantiate pylabnet-SlowCtrService and assign module to the created wrapper - start pylabnet-server for SlowCtrService - in qudi, instantiate SlowCtrClient as one of the hardware modules """ from pylabnet.network.core.service_base import ServiceBase import TimeTagger as TT import time import copy import pickle class Wrap: """ Measurement instance which implements qudi's SlowCounter interface. """ def __init__(self, tagger, channel_list, clock_frequency, buffer_size): # References to the device and to TT.Counter measurement self._tagger = tagger self._counter = None # Counter parameters self._channel_list = channel_list self._clock_frequency = clock_frequency self._buffer_size = buffer_size self._bin_width = 0 self._bin_width_sec = 0 def set_up_clock(self, clock_frequency=None, clock_channel=None): """ Sets sample clock frequency for the Counter measurement. :param clock_frequency: (float) sample clock frequency. If not given, configuration value is used :param clock_channel: ignored (internal timebase is used to generate sample clock signal) :return: (int) operation status code: 0 - OK -1 - Error """ # Use config value, if no clock_frequency is specified if clock_frequency is None: clock_frequency = self._clock_frequency # Calculate final bin width bin_width = int(1e12 / clock_frequency) # in picoseconds, for device bin_width_sec = bin_width * 1e-12 # is seconds, for software timing # Set new values param to internal variables self._bin_width = bin_width self._bin_width_sec = bin_width_sec return 0 def set_up_counter(self, counter_channels=None, sources=None, clock_channel=None, counter_buffer=None): """ Configures the actual counter with a given clock. (list of int) [optional] list of channels to count clicks on. If not given, config value is used. :param counter_buffer: (int) [optional] size of the memory buffer. If not given, config value is used. :param counter_channels: ignored This argument should not be used. Counter GUI initializes set of plot curves self.curves during its on_activate() method. It basically calls counter_hardware.get_counter_channels() and uses this list to init self.curves Only after that user can click "Start" button, which will call set_up_counter(). And since GUI already has inited set of curves, set of channels must not be modified here! It will case GUI to fail. :param sources: ignored :param clock_channel: ignored :return: (int) operation status code: 0 - OK -1 - Error """ # Set counter channels if counter_channels is not None: channel_list = counter_channels else: channel_list = self._channel_list # apply counter channel change self.set_counter_channels(channel_list=channel_list) # Set buffer size if counter_buffer is not None: buffer_size = counter_buffer else: buffer_size = self._buffer_size # sanity check: if not isinstance(buffer_size, int) or buffer_size <= 0: # self.log.error('set_up_counter(): invalid parameter value counter_buffer = {}.' # 'This parameter must be a positive integer.' # ''.format(buffer_size)) return -1 # apply buffer size change self._buffer_size = buffer_size # Create instance of Counter measurement try: self._counter = TT.Counter( tagger=self._tagger, channels=self._channel_list, binwidth=self._bin_width, n_values=self._buffer_size ) # handle initialization error (TT functions always produce NotImplementedError) except NotImplementedError: self._counter = None # self.log.error('set_up_counter(): failed to instantiate TT.Counter measurement') return -1 # Start Counter # (TT.Counter measurement starts running immediately after instantiation, # so it is necessary to erase all counts collected since instantiation) self._counter.stop() self._counter.clear() self._counter.start() return 0 def close_clock(self): """ Closes the clock. :return: (int) error code: 0 - OK -1 - Error """ # self._bin_width = 0 # self._bin_width_sec = 0 return 0 def close_counter(self): """ Closes the counter and cleans up afterwards. :return: (int) error code: 0 - OK -1 - Error """ # Try stopping and clearing TT.Counter measurement try: self._counter.stop() self._counter.clear() # Handle the case of exception in TT function call (NotImplementedError) # and the case of self._ctr = None (AttributeError) except (NotImplementedError, AttributeError): pass # Remove reference to the counter # self._ctr = None # Clear counter parameters # self._buffer_size = [] # Do not clear channel list: # Counter GUI inits its list of curves self.curves # by calling counter_hardware.get_counter_channels() before # calling counter_hardware.set_up_counter() # If one clears _channel_list here, GUI will fail at the next # "Start" button click after reloading. # # self._channel_list = [] return 0 def get_counter(self, samples=1): """ Returns the current counts per second of the counter. :param samples: (int) [optional] number of samples to read in one go (default is one sample) :return: numpy.array((samples, uint32), dtype=np.uint32) array of count rate [counts/second] arrays of length samples for each click channel Empty array [] is returned in the case of error. """ # Sanity check: samples has valid value if samples != 1: if not isinstance(samples, int) or samples <= 0: # self.log.error('get_counter(): invalid argument samples={0}. This argument must be a positive integer' # ''.format(samples)) return [] # MORE SOPHISTICATED VERSION # (WORKS TOO SLOWLY: PROBABLY BECAUSE OF SLOW INTEGER DIVISION OF LARGE INTEGERS) # # start_time = time.time() # while time.time() - start_time < self._timeout: # new_complete_bins = self._ctr.getCaptureDuration() // self._bin_width - self._last_read_bin # # self._overflow = new_complete_bins # # self.log.error('new_complete_bins = {}'.format(new_complete_bins)) # # if new_complete_bins < samples: # time.sleep(self._bin_width_sec/2) # continue # elif new_complete_bins == samples: # self._last_read_bin += new_complete_bins # break # else: # # self.log.warn('Counter is overflowing. \n' # # 'Software pulls data in too slowly and counter bins are too short, ' # # 'such that some bins are lost. \n' # # 'Try reducing sampling rate or increasing oversampling') # self._last_read_bin += new_complete_bins # break # Wait for specified number of samples (samples parameter) to be accumulated # # This approach is very naive and is more or less accurate for # clock frequency below 50 Hz. # # For higher frequencies, the actual time sampling interval is determined # by software delays (about 1 ms). Counter measurement overflows # (most of the samples are over-written before software reads them in) # but does not fail. The only problem here is that time axis on the count-trace # graph is no longer accurate: # the difference between consecutive tick labels is much smaller than the actual # time interval between measured samples (about 1 ms) time.sleep(samples * self._bin_width_sec) # read-in most recent 'samples' samples try: count_array = self._counter.getData()[:, -samples:] except NotImplementedError: # self.log.error('get_counter() reading operation failed') return [] except AttributeError: # self.log.error('get_counter(): counter was not initialized') return [] # Calculate count rate [count/sec] count_rate_array = count_array / self._bin_width_sec return count_rate_array def get_counter_channels(self): """ Returns the list of click channel numbers. :return: (list of int) list of click channel numbers """ return copy.deepcopy(self._channel_list) def set_counter_channels(self, channel_list=None): """ Set click channel list. Notice that this method only modifies internal variable _channel_list. To apply the change to the counter, one has to call set_up_counter() again. :param channel_list: (list of int) list of channels to count clicks on :return: (list of int) actual list of click channels """ if channel_list is None: return self.get_counter_channels() # Sanity check: all_channels = self._get_all_channels() if not set(channel_list).issubset(set(all_channels)): # self.log.error('set_counter_channels(): requested list of channels is invalid: ' # 'some channels are not present on the device.' # 'requested list: {0} \n' # 'available channels: {1}' # ''.format(channel_list, all_channels)) return self.get_counter_channels() # Apply changes to internal variable self._channel_list self._channel_list = channel_list # Sort channel numbers, such that channel order does not depend # on order of numbers in the config file self._channel_list.sort() return self.get_counter_channels() def _get_all_channels(self): """ Return list of all channels available on the device. Positive/negative values correspond to rising/falling edge detection. For example: 1 means 'rising edge on connector 1' -1 means 'falling edge on connector 1 :return: (list of int) list of all available channel numbers, including edge sign. """ try: available_channel_tuple = list( self._tagger.getChannelList(TT.TT_CHANNEL_RISING_AND_FALLING_EDGES) ) # handle exception in the call (TT functions normally produce NotImplementedError) except NotImplementedError: # self.log.error('_get_all_channels(): communication with the device failed') return [] # handle the case of self._tagger = None except AttributeError: # self.log.error('_get_all_channels(): _tagger is None. Initialize device first') return [] return list(available_channel_tuple) class Service(ServiceBase): def exposed_set_up_clock(self, clock_frequency=None, clock_channel=None): """ Sets sample clock frequency for the Counter measurement. :param clock_frequency: (float) sample clock frequency. If not given, configuration value is used :param clock_channel: ignored (internal timebase is used to generate sample clock signal) :return: (int) operation status code: 0 - OK -1 - Error """ return self._module.set_up_clock( clock_frequency=clock_frequency, clock_channel=clock_channel ) def exposed_set_up_counter(self, counter_channels=None, sources=None, clock_channel=None, counter_buffer=None): """ Configures the actual counter with a given clock. (list of int) [optional] list of channels to count clicks on. If not given, config value is used. :param counter_buffer: (int) [optional] size of the memory buffer. If not given, config value is used. :param counter_channels: ignored This argument should not be used. Counter GUI initializes set of plot curves self.curves during its on_activate() method. It basically calls counter_hardware.get_counter_channels() and uses this list to init self.curves Only after that user can click "Start" button, which will call set_up_counter(). And since GUI already has inited set of curves, set of channels must not be modified here! It will case GUI to fail. :param sources: ignored :param clock_channel: ignored :return: (int) operation status code: 0 - OK -1 - Error """ return self._module.set_up_counter( counter_channels=counter_channels, sources=sources, clock_channel=clock_channel, counter_buffer=counter_buffer ) def exposed_close_clock(self): """ Closes the clock. :return: (int) error code: 0 - OK -1 - Error """ return self._module.close_clock() def exposed_close_counter(self): """ Closes the counter and cleans up afterwards. :return: (int) error code: 0 - OK -1 - Error """ return self._module.close_ctr() def exposed_get_counter(self, samples=1): """ Returns the current counts per second of the counter. :param samples: (int) [optional] number of samples to read in one go (default is one sample) :return: numpy.array((samples, uint32), dtype=np.uint32) array of count rate [counts/second] arrays of length samples for each click channel Empty array [] is returned in the case of error. """ res = self._module.get_counter(samples=samples) return pickle.dumps(res) def exposed_get_counter_channels(self): """ Returns the list of click channel numbers. :return: (list of int) list of click channel numbers """ res = self._module.get_counter_channels() return pickle.dumps(res)
[ "pickle.dumps", "TimeTagger.Counter", "time.sleep", "copy.deepcopy" ]
[((9264, 9305), 'time.sleep', 'time.sleep', (['(samples * self._bin_width_sec)'], {}), '(samples * self._bin_width_sec)\n', (9274, 9305), False, 'import time\n'), ((10017, 10050), 'copy.deepcopy', 'copy.deepcopy', (['self._channel_list'], {}), '(self._channel_list)\n', (10030, 10050), False, 'import copy\n'), ((15586, 15603), 'pickle.dumps', 'pickle.dumps', (['res'], {}), '(res)\n', (15598, 15603), False, 'import pickle\n'), ((15852, 15869), 'pickle.dumps', 'pickle.dumps', (['res'], {}), '(res)\n', (15864, 15869), False, 'import pickle\n'), ((4459, 4578), 'TimeTagger.Counter', 'TT.Counter', ([], {'tagger': 'self._tagger', 'channels': 'self._channel_list', 'binwidth': 'self._bin_width', 'n_values': 'self._buffer_size'}), '(tagger=self._tagger, channels=self._channel_list, binwidth=self.\n _bin_width, n_values=self._buffer_size)\n', (4469, 4578), True, 'import TimeTagger as TT\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Must still be recoded with some cleaner code. """ # imports. from dev0s.classes.config import * from dev0s.classes import utils from dev0s.classes.defaults.color import color, symbol from dev0s.classes import console from dev0s.classes.defaults.exceptions import Exceptions # pip. from datetime import datetime, timezone import shutil, math from PIL import Image as _Image_ """ Notes. All default files & formats must exact the same as the default dict, bool, list etc in the native sense. There are lots additionals though. But a dict and Dictionary should be able to be used universally as if the user would not know the difference (which could very quickly in some instances). """ # the format classes. class Formats(): # variables. digits = [0,1,2,3,4,5,6,7,8,9,] str_digits = ["0","1","2","3","4","5","6","7","8","9"] alphabet, capitalized_alphabet = ["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"], [] for i in alphabet: capitalized_alphabet.append(i.upper()) special_characters = ["±","§","!","@","€","#","£","$","¢","%","∞","^","&","ª","(",")","–","_","+","=","{","}","[","]",";",":","'",'"',"|","\\","//","?",">",".",",","<"] # check & get format / instance. def check( nones=None, booleans=None, none_allowed_booleans=None, strings=None, none_allowed_strings=None, integers=None, none_allowed_integers=None, bytes_=None, none_allowed_bytes=None, arrays=None, none_allowed_arrays=None, dictionaries=None, none_allowed_dictionaries=None, ): if nones != None: for key,value in nones.items(): if value == None: raise ValueError(f"Invalid [{key}] format [{value}], required format is [!null].") if booleans != None: for key,value in booleans.items(): if not isinstance(value, bool): raise ValueError(f"Invalid [{key}] format [{value}], required format is [bool].") if none_allowed_booleans != None: for key,value in none_allowed_booleans.items(): if not isinstance(value, bool) and value != None: raise ValueError(f"Invalid [{key}] format [{value}], required format is [bool].") if strings != None: for key,value in strings.items(): if not isinstance(value, str): raise ValueError(f"Invalid [{key}] format [{value}], required format is [str].") if none_allowed_strings != None: for key,value in none_allowed_strings.items(): if not isinstance(value, str) and value != None: raise ValueError(f"Invalid [{key}] format [{value}], required format is [str].") if integers != None: for key,value in integers.items(): if not isinstance(value, int): raise ValueError(f"Invalid [{key}] format [{value}], required format is [int].") if none_allowed_integers != None: for key,value in none_allowed_integers.items(): if not isinstance(value, int) and value != None: raise ValueError(f"Invalid [{key}] format [{value}], required format is [int].") if bytes_ != None: for key,value in bytes_.items(): if not isinstance(value, bytes): raise ValueError(f"Invalid [{key}] format [{value}], required format is [bytes].") if none_allowed_bytes != None: for key,value in none_allowed_bytes.items(): if not isinstance(value, bytes) and value != None: raise ValueError(f"Invalid [{key}] format [{value}], required format is [bytes].") if arrays != None: for key,value in arrays.items(): if not isinstance(value, list): raise ValueError(f"Invalid [{key}] format [{value}], required format is [list].") if none_allowed_arrays != None: for key,value in none_allowed_arrays.items(): if not isinstance(value, list) and value != None: raise ValueError(f"Invalid [{key}] format [{value}], required format is [list].") if dictionaries != None: for key,value in dictionaries.items(): if not isinstance(value, dict): raise ValueError(f"Invalid [{key}] format [{value}], required format is [dict].") if none_allowed_dictionaries != None: for key,value in none_allowed_dictionaries.items(): if not isinstance(value, dict) and value != None: raise ValueError(f"Invalid [{key}] format [{value}], required format is [dict].") def get(value, serialize=False): if value == None: return None elif isinstance(value, bool): if not serialize: return bool else: return "bool" elif isinstance(value, str): if not serialize: return str else: return "str" elif isinstance(value, int): if not serialize: return int else: return "int" elif isinstance(value, bytes): if not serialize: return bytes else: return "bytes" elif isinstance(value, list): if not serialize: return list else: return "list" elif isinstance(value, dict): if not serialize: return dict else: return "dict" elif isinstance(value, Boolean) or value.__class__.__name__ == "Boolean": if not serialize: return Boolean else: return "Boolean" elif isinstance(value, String) or value.__class__.__name__ == "String": if not serialize: return String else: return "String" elif isinstance(value, Integer) or value.__class__.__name__ == "Integer": if not serialize: return Integer else: return "Integer" elif isinstance(value, Bytes) or value.__class__.__name__ == "Bytes": if not serialize: return Bytes else: return "Bytes" elif isinstance(value, Array) or value.__class__.__name__ == "Array": if not serialize: return Array else: return "Array" elif isinstance(value, Dictionary) or value.__class__.__name__ == "Dictionary": if not serialize: return Dictionary else: return "Dictionary" elif isinstance(value, FilePath) or value.__class__.__name__ == "FilePath": if not serialize: return FilePath else: return "FilePath" elif isinstance(value, object): if not serialize: return object else: return "object" else: raise ValueError(f"Unknown format [{value}].") # # try to parse variable to format, when failed it returns None. def parse( # the variable to parse (required) (#1). variable, # the expected format (required) (#2). format=None, # with safe disabled it throws a ParseError when the variable can't be parsed to the expected format. safe=True, # the default return value for when safe is enabled. default=None, ): if format in [bool, "bool", Boolean, "Boolean"]: try: return bool(variable) except: if safe: return default else: raise Exceptions.ParseError(f"Unable to parse a bool from ({variable.__class__.__name__}) [{variable}].") elif format in [int, "int"]: try: return int(variable) except: if safe: return default else: raise Exceptions.ParseError(f"Unable to parse a int from ({variable.__class__.__name__}) [{variable}].") elif format in [float, "float", Integer, "Integer"]: try: return float(variable) except: if safe: return default else: raise Exceptions.ParseError(f"Unable to parse a float from ({variable.__class__.__name__}) [{variable}].") elif format in [str, "str", String, "String"]: try: return str(variable) except: if safe: return default else: raise Exceptions.ParseError(f"Unable to parse a str from ({variable.__class__.__name__}) [{variable}].") elif format in [list, "list", Array, "Array"]: if isinstance(variable, (list,Array)): return variable elif not isinstance(variable, (str, String)): if safe: return default else: raise Exceptions.ParseError(f"Unable to parse an array from ({variable.__class__.__name__}) [{variable}].") try: return ast.literal_eval(variable) except: try: return json.loads(variable) except: if safe: return default else: raise Exceptions.ParseError(f"Unable to parse an array from ({variable.__class__.__name__}) [{variable}].") elif format in [dict, "dict", Dictionary, "Dictionary"]: if isinstance(variable, (dict,Dictionary)): return variable elif not isinstance(variable, (str, String)): raise Exceptions.ParseError(f"Unable to parse a dict from ({variable.__class__.__name__}) [{variable}].") try: return ast.literal_eval(variable) except: try: return json.loads(variable) except: if safe: return default else: raise Exceptions.ParseError(f"Unable to parse a dict from ({variable.__class__.__name__}) [{variable}].") else: raise Exceptions.InvalidUsage(f"Specified format [{format}] is not a valid format option.") # # initialize from default format to dev0s format. def initialize(variable, file_paths=True): if variable.__class__.__name__ in ["str","String"]: if file_paths and "/" in variable and Files.exists(variable): return FilePath(variable) else: return String(variable) elif variable.__class__.__name__ in ["bool","Boolean"]: return Boolean(variable) elif variable.__class__.__name__ in ["int","float","Integer"]: return Integer(variable) elif variable.__class__.__name__ in ["dict","Dictionary"]: return Dictionary(variable) elif variable.__class__.__name__ in ["list","Array"]: return Array(variable) else: return variable # # denitialize from dev0s formats to default format. def denitialize(variable, file_paths=True): if variable.__class__.__name__ in ["String"]: return str(variable) elif variable.__class__.__name__ in ["FilePath"]: return str(variable) elif variable.__class__.__name__ in ["Boolean"]: return bool(variable) elif variable.__class__.__name__ in ["Integer"]: return variable.value elif variable.__class__.__name__ in ["Dictionary", "ResponseObject", "OutputObject", "dict"]: new = {} for key,value in variable.items(): new[key] = Formats.denitialize(value, file_paths=file_paths) return new elif variable.__class__.__name__ in ["Array", "list"]: new = [] for value in variable: new.append(Formats.denitialize(value, file_paths=file_paths)) return new else: return variable # # the file path object class. class FilePath(object): def __init__(self, path, default=False, check=False, load=False): # docs. DOCS = { "module":"FilePath", "initialized":False, "description":[], "chapter": "Defaults", } # init. self.path = str(self.clean(path=str(path), raw=True)) if check == False and default == False and path != False: if Files.directory(self.path) and self.path[len(self.path)-1] != '/': self.path += '/' if check and os.path.exists(self.path) == False: raise FileNotFoundError(f"Path [{self.path}] does not exist.") self.ownership = self.Ownership(path=self.path, load=load) self.permission = self.Permission(path=self.path, load=load) # # - info: def join(self, name=None, type="/"): if type not in ["", "/"] and "." not in type: type = "." + type path = self.path if path[len(path)-1] != "/": path += '/' return FilePath("{}{}{}".format(path, name, type)) def name(self, path=None, remove_extension=False,): if path == None: path = self.path if path in [False, None]: return None x = 1 if path[len(path)-1] == '/': x += 1 name = path.split('/')[len(path.split('/'))-x] if remove_extension: count = len(name.split(".")) if count > 1: c, s = 0, None for i in name.split("."): if c < count-1: if s == None: s = i else: s += "."+i c += 1 name = s return name def extension(self, name=None, path=None): if path == None: path = self.path # - check directory: extension = None if name == None and Files.directory(path): extension = 'dir' else: # - get extension: try: if name == None: name = self.name(path=path) extension = name.split('.')[len(name.split('.'))-1] except: try: name = self.name(path=path) extension = name.split('.')[len(name.split('.'))-1] except: extension = None # - check image & video: if extension in ["jpg", "png", "gif", "webp", "tiff", "psd", "raw", "bmp", "heig", "indd", "jpeg", "svg", "ai", "eps", "pdf"]: extension = "img" elif extension in ["mp4", "m4a", "m4v", "f4v", "f4a", "m4b", "m4r", "f4b", "mov", "3gp", "3gp2", "3g2", "3gpp", "3gpp2", "h.263", "h.264", "hevc", "mpeg4", "theora", "3gp", "windows media 8", "quicktime", "mpeg-4", "vp8", "vp6", "mpeg1", "mpeg2", "mpeg-ts", "mpeg", "dnxhd", "xdcam", "dv", "dvcpro", "dvcprohd", "imx", "xdcam", "hd", "hd422"]: extension = "video" return extension def base(self, # the path (leave None to use self.path) (param #1). path=None, # the dirs back. back=1, ): if path == None: path = self.path return Files.base(path=path, back=back) # def basename(self, back=1, path=None): if path == None: path = self.path return self.name(path=self.base(back=back, path=path)) def size(self, format=str, mode="auto", path=None, options=["auto", "bytes", "kb", "mb", "gb", "tb"]): def __size__(path): total = 0 try: # print("[+] Getting the size of", directory) for entry in os.scandir(path): if entry.is_file(): # if it's a file, use stat() function total += entry.stat().st_size elif entry.is_dir(): # if it's a directory, recursively call this function total += __size__(entry.path) except NotADirectoryError: # if `directory` isn't a directory, get the file size then return os.path.getsize(path) except PermissionError: # if for whatever reason we can't open the folder, return 0 return 0 return total # if path == None: path = self.path if path != None: path = str(path) return self.convert_bytes(__size__(path), format=format, mode=mode) def space(self, format=str, mode="auto", path=None, options=["auto", "bytes", "kb", "mb", "gb", "tb"]): if path == None: path = self.path total, used, free = shutil.disk_usage(path) total, used, free = self.convert_bytes(total, format=format, mode=mode), self.convert_bytes(used, format=format, mode=mode), self.convert_bytes(free, format=format, mode=mode) return { "total":total, "used":used, "free":free, } def convert_bytes(self, bytes:int, format=str, mode="auto", options=["auto", "bytes", "kb", "mb", "gb", "tb"]): if format in [float, "float", "integer", "Integer", Integer]: format = float if (mode == "bytes" or mode == "bytes".upper()): return float(bytes) elif format in [int, "int", "integer", "Integer", Integer]: format = int if (mode == "bytes" or mode == "bytes".upper()): return int(round(bytes,0)) if mode == "auto": if int(bytes/1024**4) >= 10: bytes = round(bytes/1024**4,2) if format not in [int, float]: bytes = '{:,} TB'.format(bytes)#.replace(',', '.') elif int(bytes/1024**3) >= 10: bytes = round(bytes/1024**3,2) if format not in [int, float]: bytes = '{:,} GB'.format(bytes)#.replace(',', '.') elif int(bytes/1024**2) >= 10: bytes = round(bytes/1024**2,2) if format not in [int, float]: bytes = '{:,} MB'.format(bytes)#.replace(',', '.') elif int(bytes/1024) >= 10: bytes = round(bytes/1024,2) if format not in [int, float]: bytes = '{:,} KB'.format(bytes)#.replace(',', '.') else: bytes = int(round(bytes,0)) if format not in [int, float]: bytes = '{:,} Bytes'.format(bytes)#.replace(',', '.') elif (mode == "bytes" or mode == "bytes".upper()): bytes = int(round(bytes,0)) if format not in [int, float]: bytes = '{:,} Bytes'.format(bytes)#.replace(',', '.') elif mode == "kb" or mode == "kb".upper(): bytes = round(bytes/1024,2) if format not in [int, float]: bytes = '{:,} KB'.format(bytes)#.replace(',', '.') elif mode == "mb" or mode == "mb".upper(): bytes = round(bytes/1024**2,2) if format not in [int, float]: bytes = '{:,} MB'.format(bytes)#.replace(',', '.') elif mode == "gb" or mode == "gb".upper(): bytes = round(bytes/1024**3,2) if format not in [int, float]: bytes = '{:,} GB'.format(bytes)#.replace(',', '.') elif mode == "tb" or mode == "tb".upper(): bytes = round(bytes/1024**4,2) if format not in [int, float]: bytes = '{:,} TB'.format(bytes)#.replace(',', '.') else: raise Exceptions.InvalidUsage(f"Selected an invalid size format [{format}], options {options}.") return bytes def exists(self, # the path (leave None to use self.path) (#1). path=None, # root permission required. sudo=False, ): if path == None: path = self.path path = gfp.clean(path=path, remove_double_slash=True, remove_last_slash=True) path = str(path) if not sudo: return os.path.exists(str(path)) else: try: output = utils.__execute__(["sudo", "ls","-ld",path]) if "No such file or directory" in str(output): return False else: return True except: return False # def mount(self, # the path (leave None to use self.path) (#1). path=None, ): if path == None: path = self.path path = gfp.clean(path=path, remove_double_slash=True, remove_last_slash=True) return os.path.ismount(path) # def directory(self, # the path (leave None to use self.path) (#1). path=None, ): if path == None: path = self.path return Files.directory(path) # def mtime(self, format='%d-%m-%y %H:%M.%S', path=None): if path == None: path = self.path fname = pathlib.Path(path) try: mtime = fname.stat().st_mtime except: mtime = fname.stat().ct_mtime if format in ['s', "seconds"]: return mtime else: return Formats.Date().from_seconds(mtime, format=format) def clean(self, # the path (leave None to use self.path) (param #1). path=None, # the clean options. remove_double_slash=True, remove_first_slash=False, remove_last_slash=False, ensure_first_slash=False, ensure_last_slash=False, # return the path as a raw string. raw=False, ): if path == None: path = self.path if not isinstance(path, (str, String)): return path path = str(path).replace("~",HOME) while True: if remove_double_slash and "//" in path: path = path.replace("//","/") elif remove_first_slash and len(path) > 0 and path[0] == "/": path = path[1:] elif remove_last_slash and len(path) > 0 and path[len(path)-1] == "/": path = path[:-1] elif ensure_first_slash and len(path) > 0 and path[0] != "/": path = "/"+path elif ensure_last_slash and len(path) > 0 and path[len(path)-1] != "/": path += "/" else: break if raw: return path else: return FilePath(path) def absolute(self, # the path (leave None to use self.path) (param #1). path=None, ): if path == None: path = self.path return FilePath(os.path.abspath(path)) # path to python module path. def module(self, path=None): if path == None: path = self.path return gfp.clean(path=path, remove_double_slash=True, remove_last_slash=True, remove_first_slash=True).replace("/",".").replace(".py","").replace(".__init__", "").replace("__init__", "") # serialize a requirements file. def requirements(self, path=None, format="pip", include_version=True): if format in ["pip3"]: format = "pip" if format not in ["pip"]: raise ValueError(f"Invalid usage, format [{format}] is not a valid option, options: [pip].") # pip requirements. if format == "pip": requirements = [] for i in Files.load(path).split("\n"): if len(i) > 0 and i[0] != "#" and i not in [""," "]: while True: if len(i) > 0 and i[len(i)-1] in [" "]: i = i[:-1] else: break if " " not in i: sid = None for lid in ["==", ">=", "<="]: if lid in i: sid = lid ; break if sid != None: if include_version: requirements.append(i) else: requirements.append(i.split(sid)[0]) else: requirements.append(i) return requirements # - commands: def delete(self, # the path (leave None to use self.path) (param #1). path=None, # the options. forced=False, sudo=False, silent=False, ): if path == None: path = self.path if silent: silent = ' 2> /dev/null' else: silent = "" if sudo: sudo = "sudo " else: sudo = "" options = " " if forced: options = " -f " if Files.directory(path): options = " -fr " elif Files.directory(path): options = " -r " os.system(f"{sudo}rm{options}{path}{silent}") def move(self, # the to path (#1). path=None, # root permission required. sudo=False, # root permission required. log_level=0, ): return Files.move( # the from & to path (#1 & #2). self.path, path, # root permission required. sudo=sudo, # root permission required. log_level=log_level, ) self.path = gfp.clean(path=path) def copy(self, # the to path (#1). path=None, # root permission required. sudo=False, # the active log level. log_level=0, # the exclude patterns. exclude=[], # update deleted files. delete=True, ): return Files.copy( # the from & to path (#1 & #2). self.path, path, # root permission required. sudo=sudo, # the active log level. log_level=log_level, # the exclude patterns. exclude=exclude, # update deleted files. delete=delete,) def open(self, sudo=False): if sudo: sudo = "sudo " else: sudo = "" if OS in ["macos"]: os.system(f"{sudo}open {self.path}") elif OS in ["linux"]: os.system(f"{sudo}nautulis {self.path}") else: raise Exceptions.InvalidOperatingSystem(f"Unsupported operating system [{OS}].") def create(self, # Option 1: (creating a directory) # - boolean format: directory=False, # Option 2: (creating any file extension) # - string format: data="", # Options: # - integer format: permission=None, # - string format: owner=None, group=None, # - boolean format: sudo=False, ): # - option 1: if directory: if sudo: os.system('sudo mkdir -p '+self.path) else: os.system('mkdir -p '+self.path) # - option 2: elif data != None: if sudo: f = Files.File(path='/tmp/tmp_file', data=data) f.save() os.system(f"sudo mv {f.file_path.path} {self.path}") else: Files.File(path=self.path, data=data).save() #with open # - invalid option: else: raise ValueError("Invalid option, either enable the [directory] boolean to create a directory, or specify [path] and [data] to create any file sort.") # - default: if owner != None or group != None: self.ownership.set(owner=owner, group=group, sudo=sudo) if permission != None: self.permission.set(permission, sudo=sudo) # def check(self, # Option 1: (creating a directory) # - boolean format: directory=False, # Option 2: (creating any file extension) # - string format: data="", # Options: # - integer format: permission=None, # - string format: owner=None, group=None, # - boolean format: sudo=False, silent=False, recursive=False, # for directories only (for permission & ownership check) ): # - option 1: if not self.exists(sudo=sudo): self.create(directory=directory, data=data, permission=permission, owner=owner, group=group, sudo=sudo) else: # - default: self.ownership.check(owner=owner, group=group, sudo=sudo, silent=silent, recursive=recursive) self.permission.check(permission=permission, sudo=sudo, silent=silent, recursive=recursive) # # support default str functions. def split(self, path): return Files.Array(self.path.split(str(path))) def count(self, path): return Formats.Integer(self.path.count(str(path))) def replace(self, from_, to_): return self.path.replace(str(from_), str(to_)) def lower(self, path): return self.path.lower(str(path)) def upper(self, path): return self.path.upper(str(path)) # support subscriptionable. def __getitem__(self, index): return self.path[Formats.denitialize(index)] def __setitem__(self, index, value): self.path[Formats.denitialize(index)] = str(value) # support "+" & "-" . def __add__(self, path): if isinstance(path, str): a=1 elif isinstance(path, self.__class__): path = path.path elif not isinstance(path, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {path.__class__}.") return self.path + path def __sub__(self, path): if isinstance(path, str): a=1 elif isinstance(path, self.__class__): path = path.path elif not isinstance(path, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {path.__class__}.") return self.path.replace(path, "") # support +. def __concat__(self, path): if isinstance(path, str): a=1 elif isinstance(path, self.__class__): path = path.path elif not isinstance(path, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {path.__class__}.") return self.path + path # support default iteration. def __iter__(self): return iter(self.path) # support '>=' & '>' operator. def __gt__(self, path): if not isinstance(path, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {path.__class__}.") return len(self.path) > len(path.path) def __ge__(self, path): if not isinstance(path, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {path.__class__}.") return len(self.path) >= len(path.path) # support '<=' & '<' operator. def __lt__(self, path): if not isinstance(path, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {path.__class__}.") return len(self.path) < len(path.path) def __le__(self, path): if not isinstance(path, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {path.__class__}.") return len(self.path) <= len(path.path) # support '==' & '!=' operator. def __eq__(self, path): if isinstance(path, str): return self.path == path elif not isinstance(path, self.__class__): return False return self.path == path.path def __ne__(self, path): if isinstance(path, str): return self.path != path elif not isinstance(path, self.__class__): return True return self.path != path.path # support 'in' operator. def __contains__(self, path): if isinstance(path, (list, Files.Array)): for i in path: if i in self.path: return True return False else: return path in self.path # # int representation. def __repr__(self): return str(self) # str representation. def __str__(self): return str(self.path) # int representation. def __int__(self): return int(self.path) # float representation. def __float__(self): return float(self.path) # bool representation. def __bool__(self): if self.path in [1.0, 1, "true", "True", "TRUE", True]: return True elif self.path in [0, 0.0, "false", "False", "FALSE", False]: return False else: raise Exceptions.FormatError(f"Could not parse a bool from {self.__id__()}.") # content count. def __len__(self): return len(self.path) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "FilePath" # @property def __name__(self): return self.instance() # support self assignment. def assign(self, path, load=False): if isinstance(path, self.__class__): path = path.path self.path = gfp.clean(path=path) self.ownership = self.Ownership(path=self.path, load=load) self.permission = self.Permission(path=self.path, load=load) return self # return raw data. def raw(self): return self.path # - objects: class Ownership(object): def __init__(self, path=None, load=False): # docs. DOCS = { "module":"FilePath.Ownership", "initialized":False, "description":[], "chapter": "Defaults", } # init. self.path = path self.owner = None self.group = None if load: get = self.get() self.owner = get["owner"] self.group = get["permission"] # - info: def get(self, path=None): if path == None: path = self.path owner = pwd.getpwuid(os.stat(path).st_uid).pw_name try: group = grp.getgrgid(os.stat(path).st_gid).gr_name except KeyError: # unknown group likely from different os / machine. group = os.stat(path).st_gid except Exception as e: raise ValueError(f"Unable to retrieve the group of file {path}, error: {e}.") return owner, group def set(self, # the permission (str) (#1). owner=None, # the group (str) (optional) (#2). group=None, # the path (optional) (overwrites self.path) (#3). path=None, # root permission required. sudo=False, # recursive. recursive=False, # silent. silent=False, ): if path == None: path = self.path if group == None: if OS in ["macos"]: group = "wheel" elif OS in ["linux"]: group = "root" else: raise ValueError("Unsupported operating system [{}].".format(OS)) silent_option = "" if silent: silent_option = ' 2> /dev/null' if recursive: if sudo: os.system("sudo chown -R {} {} {}".format(owner+":"+group, path, silent_option)) else: os.system("chown -R {} {}".format(owner+":"+group, path)) else: if sudo: os.system("sudo chown {} {} {}".format(owner+":"+group, path, silent_option)) else: os.system("chown {} {} {}".format(owner+":"+group, path, silent_option)) def check(self, owner=None, group=None, sudo=False, silent=False, iterate=False, recursive=False, path=None): # combine [recursive] and [iterate] to walk all set all files in an directory and check it with the given permission. if path == None: path = self.path if group == None: if OS in ["macos"]: group = "wheel" elif OS in ["linux"]: group = "root" else: raise ValueError("Unsupported operating system [{}].".format(OS)) _owner_, _group_ = self.get(path=path) if _owner_ != owner or _group_ != group: self.set(owner=owner, group=group, sudo=sudo, silent=silent, recursive=recursive, path=path) if recursive and iterate and Files.directory(self.path): for dirpath, subdirs, files in os.walk(self.path): for path in subdirs: #print("DIRECTORY:",path) #print("> FULL PATH NAME:",dirpath+"/"+path) if path not in ["lost+found"]: file_path = Formats.FilePath(dirpath+"/"+path) file_path.ownership.check(owner=owner, group=group, sudo=sudo, silent=silent) for path in files: #print("FILE NAME:",path) #print("> FULL PATH:",dirpath+"/"+path) file_path = Formats.FilePath(dirpath+"/"+path) file_path.ownership.check(owner=owner, group=group, sudo=sudo, silent=silent) class Permission(object): def __init__(self, path=None, load=False): # docs. DOCS = { "module":"FilePath.Permission", "initialized":False, "description":[], "chapter": "Defaults", } # defaults. #self.__class__.__name__ = "Permission" # init. self.path = path self.permission = None if load: self.permission = self.get() # - info: def get(self, path=None): if path == None: path = self.path status = os.stat(path) permission = oct(status.st_mode)[-3:] return permission def set(self, # the permission (int) (#1). permission=None, # the path (optional) (overwrites self.path) (#2). path=None, # root permission required. sudo=False, # recursive. recursive=False, # silent. silent=False, ): if path == None: path = self.path silent_option = "" if silent: silent_option = ' 2> /dev/null' if recursive: if sudo: os.system("sudo chmod -R {} {} {}".format(permission, path, silent_option)) else: os.system("chmod -R {} {} {}".format(permission, path, silent_option)) else: if sudo: os.system("sudo chmod {} {} {}".format(permission, path, silent_option)) else: os.system("chmod {} {} {}".format(permission, path, silent_option)) def check(self, permission=None, sudo=False, silent=False, iterate=False, recursive=False, path=None): # combine [recursive] and [iterate] to walk all set all files in an directory and check it with the given permission. if path == None: path = self.path if self.get(path=path) != permission: self.set(permission=permission, sudo=sudo, silent=silent, recursive=recursive, path=path) if recursive and iterate and Files.directory(path): for dirpath, subdirs, files in os.walk(path): for path in subdirs: #print("DIR NAME:",path) #print("> FULL PATH:",dirpath+"/"+path) if path not in ["lost+found"]: file_path = Formats.FilePath(dirpath+"/"+path) file_path.permission.check(permission=permission, sudo=sudo, silent=silent) for path in files: #print("FILE NAME:",path) #print("> FULL PATH:",dirpath+"/"+path) file_path = Formats.FilePath(dirpath+"/"+path) file_path.permission.check(permission=permission, sudo=sudo, silent=silent) # # the string object class. class String(object): def __init__(self, # the string's value (str) (#1). string="", # the path (str, FilePath) (param #2). path=False, # load the data on initialization. load=False, # the default array (will be created if file path does not exist). default=None, ): # docs. DOCS = { "module":"String", "initialized":False, "description":[], "chapter": "Defaults", } # init. self.string = str(string) # path. if path == False: self.file_path = self.fp = None # used in local memory (not fysical) else: self.file_path = self.fp = Formats.FilePath(path) if default != None and not Files.exists(self.file_path.path): self.save(array=default) if load: self.load() # def save(self, string=None, path=None, sudo=False): if string == None: string = self.string if path == None: path = self.file_path.path utils.__check_memory_only__(path) self.string = str(string) return Files.save(path, str(string), format="str", sudo=sudo) def load(self, default=None, sudo=False): utils.__check_memory_only__(self.file_path.path) if not os.path.exists(self.file_path.path) and default != None: self.save(default, sudo=sudo) self.string = Files.load(self.file_path.path, format="str", sudo=sudo) return self.string def is_numerical(self): for i in ["q", "w", "e", "r", "t", "y", "u", "i", "o", "p", "a", "s", "d", "f", "g", "h", "j", "k", "l", "z", "x", "c", "v", "b", "n", "m"]: if i in self.string.lower(): return False return True def bash(self): a = self.string.replace('(','\(').replace(')','\)').replace("'","\'").replace(" ","\ ").replace("$","\$").replace("!","\!").replace("?","\?").replace("@","\@").replace("$","\$").replace("%","\%").replace("^","\^").replace("&","\&").replace("*","\*").replace("'","\'").replace('"','\"') return a def identifier(self): x = self.string.lower().replace(' ','-') return x def variable_format(self, exceptions={ "smart_card":"smartcard", "smart_cards":"smartcards" , "web_server":"webserver" , }, ): s, c = "", 0 for i in self.string: try: n = self.string[c+1] except: n = "none" try: p = self.string[c-1] except: p = "none" if s != "" and i.lower() != i and str(n).lower() == str(n) and str(p).lower() == str(p): s += "_" s += i.lower() c += 1 if s in list(exceptions.keys()): return exceptions[s] else: return s def class_format(self): s, next_capital = "", False for i in self.string: if i == "_": next_capital = True elif next_capital: s += i.upper() else: s += i return s def capitalized_scentence(self): x = self.string.split(" ") cap = [y.capitalize() for y in x] return " ".join(cap) def capitalized_word(self): try: new = self.string[0].upper() c = 0 for i in self.string: if c > 0: new += i c += 1 return new except IndexError: return self.string def generate(self, # the length of the generated string. length=6, # include digits. digits=False, # include capital letters. capitalize=False, # include special characters. special=False, ): charset = ["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"] if capitalize: for i in ["a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z"]: charset.append(i.upper()) if digits: digits = ["1","2","3","4","5","6","7","8","9","0"] else: digits = [] if special: special = ["!", "?", "&", "#","@", "*"] else: special = [] s = "" for i in range(length): if len(digits) > 0 and random.randrange(1,101) <= 40: s += digits[random.randrange(0, len(digits))] elif len(special) > 0 and random.randrange(1,101) <= 10: s += special[random.randrange(0, len(special))] else: s += charset[random.randrange(0, len(charset))] return s # # iterate a string (backwards) to check the first occurency of a specified charset. def first_occurence(self, charset=[" ", "\n"], reversed=False, string=None): if string == None: string = self.string if reversed: c, space_newline_id = len(string)-1, "" for _ in string: char = string[c] if char in charset: a = 0 for i in charset: if i == char: return i c -= 1 return None else: c, space_newline_id = 0, "" for _ in string: char = string[c] if char in charset: a = 0 for i in charset: if i == char: return i c += 1 return None # splice a string into before/after by a first occurence. # if include is True and both include_before and inluce_after are False it includes at before. def before_after_first_occurence(self, slicer=" ", include=True, include_before=False, include_after=False, string=None): if isinstance(slicer, list): first = self.first_occurence(charset=slicer, string=string) return self.before_after_first_occurence(slicer=first, include=include, include_before=include_before, include_after=include_after, string=string) else: if string == None: string = self.string before, after, slice_count, slices, _last_ = "", "", string.count(slicer), 0, "" for char in string: if len(_last_) >= len(slicer): _last_ = _last_[1:] _last_ += char if _last_ == slicer: slices += 1 if include: if slices != slice_count or include_before: before += char elif include_after: after += char else: before += char elif slices > 0: after += char else: before += char return before, after # splice a string into before/selected/after by a first occurence. def before_selected_after_first_occurence(self, slicer=" ", string=None): if string == None: string = self.string before, selected, after, slice_count, open, _last_ = "", "", "", string.count(slicer), False, "" selected_sliced_count = 0 for char in string: if isinstance(slicer, str) and len(_last_) >= len(slicer): _last_ = _last_[1:] elif isinstance(slicer, list) and len(_last_) >= len(slicer[selected_sliced_count]): _last_ = _last_[1:] _last_ += char if (isinstance(slicer, str) and _last_ == slicer) or (isinstance(slicer, list) and _last_ == slicer[selected_sliced_count]): selected_sliced_count += 1 selected += char if open: open = False else: open = True elif open: after += char else: before += char return before, selected, after # splice a string into before/after by a last occurence. # if include is True and both include_before and inluce_after are False it includes at before. def before_after_last_occurence(self, slicer=" ", include=True, include_before=False, include_after=False, string=None): if string == None: string = self.string before, after, slice_count, slices, _last_ = "", "", string.count(slicer), 0, "" for char in string: if len(_last_) >= len(slicer): _last_ = _last_[1:] _last_ += char if _last_ == slicer: slices += 1 if include: if slices != slice_count or include_before: before += char elif include_after: after += char else: before += char elif slices == slice_count: after += char else: before += char return before, after # splice a string into before/selected/after by a last occurence. def before_selected_after_last_occurence(self, slicer=" ", string=None): if string == None: string = self.string before, selected, after, slice_count, slices, _last_ = "", "", "", string.count(slicer), 0, "" for char in string: if len(_last_) >= len(slicer): _last_ = _last_[1:] _last_ += char if _last_ == slicer: slices += 1 selected += char elif slices == slice_count: after += char else: before += char return before, selected, after # get the first text between an 2 string identifiers [start,end] by depth. # identifiers must be parameter number 1. def between(self, identifiers=["{","}"], depth=1, include=True, string=None): # vars. if string == None: string = self.string keep_last = [len(identifiers[0]), len(identifiers[1])] last = ["", ""] unadded = "" s, open, opened, first_open = "", 0, False, False # iterate. for i in string: # set last & unadded. unadded += i last[0] += i last[1] += i if len(last[0]) > keep_last[0]: last[0] = str(String(last[0]).remove_first(1)) if len(last[1]) > keep_last[1]: last[1] = str(String(last[1]).remove_first(1)) # check ids. if last[0] == identifiers[0]: open += 1 first_open = True elif last[1] == identifiers[1]: open -= 1 if open >= depth: if include or open == depth: if include and first_open: s += identifiers[0] unadded = "" first_open = False else: s += unadded unadded = "" opened = True if opened and open < depth: if include: s += unadded unadded = "" break # remainders. if unadded != "" and opened and open < depth: if include: s += unadded unadded = "" # handler. return Formats.String(s) # # get the text with betwee & replace the inside between str with a new str. def replace_between(self, # the between identifiers (list) (#1). identifiers=["{","}"], # the new string (str) (#2). to="", # the identifiers depth. depth=1, # the optional string. string=None, ): update = False if string == None: update = True string = self.string sliced = self.between(identifiers, depth=depth, include=True, string=string) string = string.replace(str(sliced), to) if update: self.string = string return string # # increase version. def increase_version(self): # version 2. # path = "/tmp/increase_version" Files.save(path, f"""version='{self.string}"""+"""' && echo $version | awk -F. -v OFS=. 'NF==1{print ++$NF}; NF>1{if(length($NF+1)>length($NF))$(NF-1)++; $NF=sprintf("%0*d", length($NF), ($NF+1)%(10^length($NF))); print}'""") return subprocess.check_output([f"bash", path]).decode().replace("\n","") # version 1. # old_version = self.string base, _base_= [], old_version.split(".") increase = True for i in _base_: base.append(int(i)) count = len(base)-1 for i in range(len(base)): if increase: if base[count] >= 9: if count > 0: base[count-1] += 1 base[count] = 0 increase = False else: base[count] += 1 break else: base[count] += 1 break else: if count > 0 and int(base[count]) >= 10: base[count-1] += 1 base[count] = 0 increase = False elif count == 0: break count -= 1 version = "" for i in base: if version == "": version = str(i) else: version += "."+str(i) return version # slice dict from string. # get the first {} from the string by depth. def slice_dict(self, depth=1): return self.between(["{", "}"], depth=depth) # slice array from string. # get the first [] from the string by depth. def slice_array(self, depth=1): return self.between(["[", "]"], depth=depth) # slice tuple from string. # get the first () from the string by depth. def slice_tuple(self, depth=1): return self.between(["(", ")"], depth=depth) # iterate chars. # > for charcount, char in String.iterate_chars() def iterate_chars(self): charcount, items = 0, [] for char in self.string: items.append([charcount, char]) charcount += 1 return items def iterate_characters(self): return self.iterate_chars() # iterate lines. # > for linecount, line in String.iterate_lines() def iterate_lines(self): linecount, items = 0, [] for line in self.string.split("\n"): items.append([linecount, line]) linecount += 1 return items # slice indent from string. # get the content bewteen the \n{indent} def indent(self, indent=4): s = "" for i in range(indent): s += " " return s def line_indent(self, line=""): # get line indent. line = line.replace(" ", " ") if len(line) > 0 and " " in line: line_indent = 0 for c in line: if c in [" "]: line_indent += 1 else: break else: line_indent = 0 return Formats.Integer(line_indent) def slice_indent(self, indent=4, depth=1, string=None, remove_indent=True): if string == None: string = self.string string = string.replace(" ", " ") s, open, opened, d = "", 0, False, 0 for line in string.split("\n"): # get line indent. if len(line) > 0 and " " in line: line_indent = 0 for c in line: if c in [" "]: line_indent += 1 else: break else: line_indent = 0 # check indent match. if (not opened and line_indent == indent) or (opened and line_indent >= indent): if d >= depth: if remove_indent: s += line[indent:]+"\n" else: s += line+"\n" opened = True #elif len(line) > 0 and not opened and line_indent == indent: # d += 1 elif len(line) > 0 and line_indent <= indent: if opened: break else: d += 1 return s # get the first / last n characters of the string. def first(self, count): if isinstance(count, (int, float, Integer)): count = int(count) else: count = len(count) return self.string[:count] def last(self, count): if isinstance(count, (int, float, Integer)): count = int(count) else: count = len(count) if len(self.string) >= count: return self.string[count:] else: return None # # remove first / last n characters of the string. def remove_first(self, count): if isinstance(count, (int, float, Integer)): count = int(count) else: count = len(count) removed = self.first(count) self.string = self.string[count:] return self.string def remove_last(self, count): if isinstance(count, (int, float, Integer)): count = int(count) else: count = len(count) removed = self.last(count) self.string = self.string[:-count] return self.string # # support default str functions. def split(self, string): if isinstance(string, (list, Array)): if isinstance(string, Array): array = string.array else: array = string new, last, next_start = [], "", None for i in self.string: last += i newslice = False #l_next_start = None for test in array: if test in last: if str(last[-len(test):]) == str(test): #l_next_start = last[:-len(test)] last = last[:-len(test)] newslice = True break if newslice: new.append(last) last = "" #if next_start == None: new.append(last) #elif include: # new.append(next_start+last) # next_start = None #if include and l_next_start != None: # next_start = l_next_start if last != "": new.append(last) return new else: return Files.Array(self.string.split(str(string))) def count(self, string): return Formats.Integer(self.string.count(str(string))) def replace(self, from_, to_): return self.string.replace(str(from_), str(to_)) def lower(self, string): return self.string.lower(str(string)) def upper(self, string): return self.string.upper(str(string)) # support "+" & "-" . def __add__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {string.__class__}.") return self.string + string def __iadd__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {string.__class__}.") self.string = self.string + string return self def __sub__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {string.__class__}.") return self.string.replace(string, "") def __isub__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {string.__class__}.") self.string = self.string.replace(string, "") return self # support subscriptionable. def __getitem__(self, index): return self.string[Formats.denitialize(index)] def __setitem__(self, index, value): self.string[Formats.denitialize(index)] = str(value) # support default iteration. def __iter__(self): return iter(self.string) # support '>=' & '>' operator. def __gt__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self.string) > len(string) def __ge__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self.string) >= len(string) # support '<=' & '<' operator. def __lt__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self.string) < len(string) def __le__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self.string) <= len(string) # support '==' & '!=' operator. def __eq__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): return False return self.string == string def __ne__(self, string): if isinstance(string, str): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): return True return self.string != string # support +. def __concat__(self, string): if isinstance(string, (str)): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not concat object {self.__class__} & {string.__class__}.") return self.string + string # support 'in' operator. def __contains__(self, string): if isinstance(string, (list, Files.Array)): for i in string: if str(i) in str(self.string): return True return False else: return str(string) in str(self.string) # # representation. def __repr__(self): return str(self) # str representation. def __str__(self): return str(self.string) # int representation. def __int__(self): return int(self.string) # float representation. def __float__(self): return float(self.string) # bool representation. def __bool__(self): return len(self.string) > 0 #if self.string in [1.0, 1, "true", "True", "TRUE", True]: # return True #elif self.string in [0, 0.0, "false", "False", "FALSE", False]: # return False #else: # raise Exceptions.FormatError(f"Could not parse a bool from {self.__id__()}.") # content count. def __len__(self): return len(self.string) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # # object instance. def instance(self): return "String" # @property def __name__(self): return self.instance() # support self assignment. def assign(self, string): if isinstance(string, (int, float)): a=1 elif isinstance(string, self.__class__): string = string.string elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not assign object {self.__class__} & {string.__class__}.") self.string = str(string) return self # return raw data. def raw(self): return self.str # # the boolean object class. class Boolean(object): def __init__(self, # the boolean's value (bool) (#1). boolean=False, # the path (str, FilePath) (param #2). path=False, # load the data on initialization. load=False, # the default array (will be created if file path does not exist). default=None, ): # docs. DOCS = { "module":"Boolean", "initialized":False, "description":[], "chapter": "Defaults", } # check self instance. if isinstance(boolean, Formats.Boolean): boolean = boolean.bool # init. self.bool = boolean if self.bool in ["true", "True", "TRUE", True]: self.bool = True else: self.bool = False # path. if path == False: self.file_path = self.fp = None # used in local memory (not fysical) else: self.file_path = self.fp = Formats.FilePath(path) if default != None and not Files.exists(self.file_path.path): self.save(array=default) if load: self.load() # def save(self, bool=None, path=None, sudo=False): if bool != None: bool = self.bool if path == None: path = self.file_path.path utils.__check_memory_only__(path) self.bool = bool return Files.save(path, str(bool), format="str", sudo=sudo) def load(self, default=None, sudo=False): utils.__check_memory_only__(self.file_path.path) if not os.path.exists(self.file_path.path) and default != None: self.save(default, sudo=sudo) self.bool = Files.load(self.file_path.path, format="str", sudo=sudo) return self.bool def string(self, true="True", false="False"): if self.bool: return true else: return false # native support. def __index__(self): return int(self) # support '==' & '!=' operator. def __eq__(self, boolean): if isinstance(boolean, bool): return self.bool == boolean elif not isinstance(boolean, self.__class__): return False return self.bool == boolean.bool def __ne__(self, boolean): if isinstance(boolean, bool): return self.bool != boolean elif not isinstance(boolean, self.__class__): return True return self.bool != boolean.bool # support default iteration. def __iter__(self): return iter(str(self.bool)) # support 'in' operator. def __contains__(self, string): return string in str(self.bool) # # representation. def __repr__(self): return str(self) # # str representation. def __str__(self): return str(self.bool) # int representation. def __int__(self): if self.bool: return 1 else: return 0 # float representation. def __float__(self): if self.bool: return 1.0 else: return 0.0 # bool representation. def __bool__(self): return self.bool # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Boolean" # @property def __name__(self): return self.instance() # support self assignment. def assign(self, boolean): if isinstance(boolean, (int, float)): a=1 elif isinstance(value, self.__class__): boolean = boolean.bool elif not isinstance(boolean, self.__class__): raise Exceptions.FormatError(f"Can not assign object {self.__class__} & {boolean.__class__}.") self.bool = boolean return self # return raw data. def raw(self): return self.bool # # the integer object class. class Integer(object): def __init__(self, # the integers value (int, float) (param #1). value=0, # the path (str, FilePath) (param #2). path=False, # the integer format (str) (param #3). format="auto", # load the data on initialization. load=False, # the default array (will be created if file path does not exist). default=None, ): # docs. DOCS = { "module":"Integer", "initialized":False, "description":[], "chapter": "Defaults", } # check self instance. if isinstance(value, Formats.Integer): if "." in str(value): value = value.float else: value = value.int # init. if "." in str(value): self.format = "float" self.value = float(value) else: self.format = "int" self.value = int(value) self.int = int(value) self.float = float(value) # path. if path == False: self.file_path = self.fp = None # used in local memory (not fysical) else: self.file_path = self.fp = Formats.FilePath(path) if default != None and not Files.exists(self.file_path.path): self.save(array=default) if load: self.load() # def save(self, data=None, path=None, sudo=False): if data != None: data = self.raw() if path == None: path = self.file_path.path utils.__check_memory_only__(path) if data != self.raw(): self.assign(data) return Files.save(path, str(data), format="str", sudo=sudo) def load(self, default=None, sudo=False): utils.__check_memory_only__(self.file_path.path) if not os.path.exists(self.file_path.path) and default != None: self.save(default, sudo=sudo) data = Files.load(self.file_path.path, format="str", sudo=sudo) self.assign(data) return data def increase_version(self): # version 1. # old_version = self.value base, _base_= [], old_version.split(".") increase = True for i in _base_: base.append(int(i)) count = len(base)-1 for i in range(len(base)): if increase: if base[count] >= 9: if count > 0: base[count-1] += 1 base[count] = 0 increase = False else: base[count] += 1 break else: base[count] += 1 break else: if count > 0 and int(base[count]) >= 10: base[count-1] += 1 base[count] = 0 increase = False elif count == 0: break count -= 1 version = "" for i in base: if version == "": version = str(i) else: version += "."+str(i) return version def round(self, decimals): """ Returns a value rounded down to a specific number of decimal places. """ if not isinstance(decimals, int): raise TypeError("decimal places must be an integer") else: return round(self.value, decimals) def round_down(self, decimals): """ Returns a value rounded down to a specific number of decimal places. """ if not isinstance(decimals, int): raise TypeError("decimal places must be an integer") elif decimals < 0: raise ValueError("decimal places has to be 0 or more") elif decimals == 0: return math.ceil(self.value) factor = 10 ** decimals return math.floor(self.value * factor) / factor # def generate(self, length=6): return utils.generate.pincode(length=length) # # int format. def __index__(self): return self.value # support "+, -, *, %, @, /, //, **" . def __add__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value + value) def __sub__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not sub object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value - value) def __iadd__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {value.__class__}.") self.value += value return self def __isub__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not sub object {self.__class__} & {value.__class__}.") self.value -= value return self def __mod__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mod object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value % value) def __mul__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value * value) def __pow__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value ** value) def __div__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value / value) def __truediv__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value / value) def __floordiv__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value // value) def __concat__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value + value) # support "+=" & "-=". def __pos__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not mul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value + value) def __matmul__(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not matmul object {self.__class__} & {value.__class__}.") return Formats.Integer(self.value @ value) # support //. #def __floordiv__(a, b) # return a // b. # support default iteration. def __iter__(self): return iter(str(self.value)) # support '>=' & '>' operator. def __gt__(self, integer): if isinstance(integer, (int,float)): integer = integer elif not isinstance(integer, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {integer.__class__}.") else: integer = integer.value return self.value > integer def __ge__(self, integer): if isinstance(integer, (int,float)): integer = integer elif not isinstance(integer, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {integer.__class__}.") else: integer = integer.value return self.value >= integer # support '<=' & '<' operator. def __lt__(self, integer): if isinstance(integer, (int,float)): integer = integer elif not isinstance(integer, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {integer.__class__}.") else: integer = integer.value return self.value < integer def __le__(self, integer): if isinstance(integer, (int,float)): integer = integer elif not isinstance(integer, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {integer.__class__}.") else: integer = integer.value return self.value <= integer # support '==' & '!=' operator. def __eq__(self, integer): if isinstance(integer, (int,float)): return self.value == integer elif not isinstance(integer, self.__class__): return False return self.value == integer.value def __ne__(self, integer): if isinstance(integer, (int,float)): return self.value != integer elif not isinstance(integer, self.__class__): return True return self.value != integer.value # support 'in' operator. def __contains__(self, integer): if isinstance(integer, (list, Files.Array)): for i in integer: if str(integer) in str(self.value): return True return False else: return str(value) in str(self.value) # # representation. def __repr__(self): return str(self) # # str representation. def __str__(self): return str(self.value) # int representation. def __int__(self): return self.int # float representation. def __float__(self): if self.format == "float": return self.float else: return float(self.int) # bool representation. def __bool__(self): if self.value in [1.0, 1]: return True elif self.value in [0, 0.0]: return False else: raise Exceptions.FormatError(f"Could not parse a bool from {self.__id__()}.") # content count. def __len__(self): return len(str(self.value)) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Integer" # # support self assignment. def assign(self, value): if isinstance(value, (int, float)): a=1 elif isinstance(value, self.__class__): value = value.value elif not isinstance(value, self.__class__): raise Exceptions.FormatError(f"Can not assign object {self.__class__} & {value.__class__}.") self.value = value return self # return raw data. def raw(self): return self.value # # the date object class. class Date(object): def __init__(self, # # Leave all parameters None to initialize a Date() object with the current date. # Pass another Date object, str repr or timestamp in seconds to initialize a Date object from that timestamp. # # the date parameter (str, int, Date) (optional) (#1). date=None, # the format for the date (leave None to parse the date format automatically) (str). format=None, ): # docs. DOCS = { "module":"Date", "initialized":False, "description":[], "chapter": "Defaults", } # formats. self.default_format = "%d-%m-%y %H:%M:%S" # is Date() str repr self.seconds_format = '%S' self.minute_format = '%M' self.hour_format = '%H' self.day_format = '%d' self.day_name_format = '%A' self.week_format = '%V' self.month_format = '%m' self.month_name_format = '%h' self.year_format = '%Y' self.date_format = '%d-%m-%y' self.timestamp_format = '%d-%m-%y %H:%M' self.shell_timestamp_format = '%d_%m_%y-%H_%M' self.seconds_timestamp_format = '%d-%m-%y %H:%M:%S' self.shell_seconds_timestamp_format = '%d_%m_%y-%H_%M_%S' self.formats = [ self.shell_seconds_timestamp_format, self.seconds_timestamp_format, self.shell_timestamp_format, self.timestamp_format, self.date_format, self.year_format, self.seconds_format, self.minute_format, self.hour_format, self.day_format, self.day_name_format, self.week_format, self.month_format, self.month_name_format, ] # assign if date == None: self.initialize() else: self.assign(date, format=format) # def initialize(self, # # Leave all parameters None to initialize a Date() object with the current date. # # Initialize a future / previous date. # option 1: # specify the timestamp to initialize a previous / future date (format required). timestamp=None, # the timestamp format (leave None to parse). format=None, # options 2: # initialize by seconds. seconds=None, # option 3: # define the datetime object. datetime_obj=None, ): # defaults. #self.__class__.__name__ = "Date" # by datetime_obj if datetime_obj != None: seconds = time.mktime(datetime_obj.timetuple()) today = datetime.fromtimestamp(float(seconds)) # by timestamp & format. elif timestamp != None: if format == None: format = self.parse_format(timestamp) if format == None: raise Exceptions.ParseError(f"Unable to parse the date format from timestamp [{timestamp}]. Find out what the required format is and request a commit that updates the Date().parse_format() function with the required format (https://github.com/vandenberghinc/dev0s/).") seconds = time.mktime(datetime.strptime(str(timestamp), str(format)).timetuple()) today = datetime.fromtimestamp(float(seconds)) # by seconds. elif seconds != None: today = datetime.fromtimestamp(float(seconds)) # by current. else: today = datetime.today() # attributes. self.seconds = str(today.strftime(self.seconds_format)) self.minute = str(today.strftime(self.minute_format)) self.hour = str(today.strftime(self.hour_format)) self.day = str(today.strftime(self.day_format)) self.day_name = str(today.strftime(self.day_name_format)) self.week = str(today.strftime(self.week_format)) self.month = str(today.strftime(self.month_format)) self.month_name = str(today.strftime(self.month_name_format)) self.year = str(today.strftime(self.year_format)) self.date = str(today.strftime(self.date_format)) self.timestamp = str(today.strftime(self.timestamp_format)) self.shell_timestamp = str(today.strftime(self.shell_timestamp_format)) self.seconds_timestamp = str(today.strftime(self.seconds_timestamp_format)) self.shell_seconds_timestamp = str(today.strftime(self.shell_seconds_timestamp_format)) self.time = self.hour + ":" + self.minute return self def compare(self, comparison=None, current=None, format=None): if current == None: current = str(self) if isinstance(comparison, Formats.Date): comparison = str(comparison) if isinstance(current, Formats.Date): current = str(current) if format == None: comparison_format = self.parse_format(comparison) if comparison_format == None: raise Exceptions.ParseError(f"Unable to parse the date format from comparison [{comparison}].") else: comparison_format = format comparison = self.to_seconds(comparison, format=comparison_format) if format == None: current_format = self.parse_format(current) if current_format == None: raise Exceptions.ParseError(f"Unable to parse the date format from current [{current}].") else: current_format = format current = self.to_seconds(current, format=current_format) if comparison >= current: return "future" elif comparison <= current: return "past" elif comparison == current: return "present" else: raise ValueError(f"Unexpected error, comparison seconds: {comparison} current seconds: {current}.") def increase(self, string=None, weeks=0, days=0, hours=0, minutes=0, seconds=0, format=None): if string == None: string = str(self) if isinstance(string, Formats.Date): string = str(string) if format == None: format = self.parse_format(string) if format == None: raise Exceptions.ParseError(f"Unable to parse the date format from string [{string}].") seconds += 60*minutes seconds += 3600*hours seconds += 3600*24*days seconds += 3600*24*7*weeks s = self.to_seconds(string, format=format) s += seconds return self.from_seconds(s, format=format) def decrease(self, string=None, weeks=0, days=0, hours=0, minutes=0, seconds=0, format=None): if string == None: string = str(self) if isinstance(string, Formats.Date): string = str(string) if format == None: format = self.parse_format(string) if format == None: raise Exceptions.ParseError(f"Unable to parse the date format from string [{string}].") seconds += 60*minutes seconds += 3600*hours seconds += 3600*24*days seconds += 3600*24*7*weeks s = self.to_seconds(string, format=format) s -= seconds return self.from_seconds(s, format=format) def to_seconds(self, string=None, format=None): if string == None: string = str(self) if isinstance(string, Formats.Date): string = str(string) if format == None: format = self.default_format return time.mktime(datetime.strptime(str(string), str(format)).timetuple()) # def from_seconds(self, seconds, format=None): if isinstance(seconds, (str,String,Integer)): seconds = float(seconds) if format == None: format = self.default_format return Date(datetime.fromtimestamp(float(seconds)).strftime(format)) # def convert(self, string=None, datetime_obj=None, input=None, output="%Y%m%d"): if datetime_obj == None: if string == None: string = str(self) if isinstance(string, Formats.Date): string = str(string) if input == None: input = self.parse_format(string) datetime_obj = datetime.strptime(str(string), str(input)) return datetime_obj.strftime(str(output)) def parse_format(self, string): if isinstance(string, Formats.Date): return self.default_format elif isinstance(string, (int,float,Integer)): return self.seconds_format formats = [] if "-" in str(string): formats += [ self.shell_seconds_timestamp_format, self.seconds_timestamp_format, self.shell_timestamp_format, self.timestamp_format, self.date_format, ] else: formats += [ self.year_format, self.seconds_format, #self.minute_format, #self.hour_format, #self.day_format, #self.day_name_format, #self.week_format, #self.month_format, #self.month_name_format, ] # plus some custom formats. formats += [ "%d-%m-%y %H:%M.%S", # old default. "%Y-%m-%d %H:%M:%S", # stock market "%d-%m-%Y", # dd-mm-yyyy. "%d-%m-%y %H:%M:%S", # dd-mm-yy hh:mm:ss. "%d-%m-%Y %H:%M:%S", # dd-mm-yyyy hh:mm:ss. "%Y-%m-%dT%H:%M:%SZ", # rfc-3339. "%Y-%m-%d", ] for format in formats: try: datetime.strptime(str(string), str(format)) return format except Exception as e: a=1 return None def assign(self, string, format=None): if isinstance(string, Formats.Date): self = string return self else: if format == None: format = self.parse_format(string) if format == None: raise Exceptions.ParseError(f"Unable to parse a Date() object from string [{string}].") if format == self.seconds_format: self.initialize(seconds=float(string)) else: self.initialize(timestamp=string, format=format) return self # normalize seconds to 10s or 1m etc. def normalize_seconds(self, seconds:(int,float)): if seconds < 0: raise ValueError("Can not normalize negative seconds.") if seconds < 0.01: return f'{int(seconds*1000)}ms' elif seconds <= 60: return f'{int(seconds)}s' elif seconds <= 60*60: return f'{round(seconds/60,1)}m' elif seconds <= 60*60*24: return f'{round(seconds/(60*60),1)}h' elif seconds <= 60*60*24*30: return f'{round(seconds/(60*60*24),1)}d' elif seconds <= 60*60*24*30*12: return f'{round(seconds/(60*60*24*30),1)}m' else: return f'{round(seconds/(60*60*24*30*12),1)}y' # convert to datetime object. def datetime(self, timestamp=None): # set defaults. if timestamp == None: timestamp = str(self) # parse format. seconds = isinstance(timestamp, (int, float)) # by timestamp & format. if not seconds: format = self.parse_format(timestamp) if format == None: raise Exceptions.ParseError(f"Unable to parse the date format from timestamp [{timestamp}]. Find out what the required format is and request a commit that updates the Date().parse_format() function with the required format (https://github.com/vandenberghinc/dev0s/).") seconds = time.mktime(datetime.strptime(str(timestamp), str(format)).timetuple()) return datetime.fromtimestamp(float(seconds)) # by seconds. else: return datetime.fromtimestamp(float(seconds)) # convert to rfc_3339 format. def rfc_3339(self, timestamp=None): # convert. return self.datetime(timestamp=timestamp).isoformat('T') + "Z" # # convert to utc format. def utc(self, timestamp=None): # convert. return self.datetime(timestamp=timestamp).replace(tzinfo=timezone.utc) # # support default iteration. def __iter__(self): return iter([self.year, self.month, self.week, self.hour, self.minutes, self.seconds]) # support '>=' & '>' operator. def __gt__(self, date): if not isinstance(date, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {date.__class__}.") return float(self) > float(date) def __ge__(self, date): if not isinstance(date, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {date.__class__}.") return float(self) >= float(date) # support '<=' & '<' operator. def __lt__(self, date): if not isinstance(date, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {date.__class__}.") return float(self) < float(date) def __le__(self, date): if not isinstance(date, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {date.__class__}.") return float(self) <= float(date) # support '==' & '!=' operator. def __eq__(self, date): if not isinstance(date, self.__class__): return False return float(self) == float(date) def __ne__(self, date): if not isinstance(date, self.__class__): return True return float(self) != float(date) # support 'in' operator. def __contains__(self, string): if isinstance(string, (list, Files.Array)): for i in string: if i in str(self): return True return False else: return string in str(self) # support "+", -, =-, =+" . def __add__(self, add): if isinstance(add, (int,float)): add = float(add) elif isinstance(add, self.__class__): add = add.to_seconds() elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {add.__class__}.") return Date(self.to_seconds() + add) def __iadd__(self, add): if isinstance(add, (int,float)): add = float(add) elif isinstance(add, self.__class__): add = add.to_seconds() elif not isinstance(add, self.__class__): raise Exceptions.FormatError(f"Can not iadd object {self.__class__} & {add.__class__}.") self = Date(self.to_seconds() + add) return self def __sub__(self, add): if isinstance(add, (int,float)): add = float(add) elif isinstance(add, self.__class__): add = add.to_seconds() elif not isinstance(add, self.__class__): raise Exceptions.FormatError(f"Can not sub object {self.__class__} & {add.__class__}.") return Date(self.to_seconds() - add) def __isub__(self, add): if isinstance(add, (int,float)): add = float(add) elif isinstance(add, self.__class__): add = add.to_seconds() elif not isinstance(add, self.__class__): raise Exceptions.FormatError(f"Can not isub object {self.__class__} & {add.__class__}.") self = Date(self.to_seconds() - add) return self # support +. def __concat__(self, add): if isinstance(add, (int,float)): add = float(add) elif isinstance(add, self.__class__): add = add.to_seconds() elif not isinstance(add, self.__class__): raise Exceptions.FormatError(f"Can not sub object {self.__class__} & {add.__class__}.") return Date(self.to_seconds() - add) # representation. def __repr__(self): return str(self) # # int representation. def __int__(self): return int(self.to_seconds(self.seconds_timestamp, format=self.seconds_timestamp_format)) # float representation. def __float__(self): return float(self.to_seconds(self.seconds_timestamp, format=self.seconds_timestamp_format)) # str representation. def __str__(self): return str(self.seconds_timestamp) # content count. def __len__(self): return len(self.seconds_timestamp) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Date" # # # the files class. class Files(): # # functions. def join(path=None, name=None, type=""): if type not in ["", "/"] and "." not in type: type = "." + type path = str(path) if os.path.exists(path) and Files.directory(path) and path[len(path)-1] != "/": path += '/' return gfp.clean("{}{}{}".format(path, name, type), remove_double_slash=True, remove_last_slash=False) def load(path, data="not to be used", format="str", raw=False, sudo=False): # keep data as second param to prevent save load errors. # correct format. if format in [str, String, "String", "string", "file"]: format = "str" if format in [dict, Dictionary, "Dictionary", "dict", "array", "Array"]: format = "json" if format in [bytes, Bytes, "Bytes"]: format = "bytes" #format = str(format) # match format. path = str(path) data = None # sudo. if sudo: data = utils.__execute__(["sudo", "cat", path]) if "No such file or directory" in data: raise FileNotFoundError(f"File [{path}] does not exist.") # proceed. if format == "str": if not sudo: file = open(path,mode='rb') data = file.read().decode() file.close() elif format == "json": if not sudo: try: with open(path, 'r+') as json_file: data = json.load(json_file) except json.decoder.JSONDecodeError as e: try: data = ast.literal_eval(Files.load(path=path, format="str", raw=True, sudo=sudo)) except: e = f"Unable to decode file [{path}] (sudo: {sudo}), error: {e}." raise Exceptions.JSONDecodeError(e) else: try: data = json.loads(data) except json.decoder.JSONDecodeError as e: try: data = ast.literal_eval(Files.load(path=path, format="str", raw=True, sudo=sudo)) except: e = f"Unable to decode file [{path}] (sudo: {sudo}), error: {e}." raise Exceptions.JSONDecodeError(e) elif format == "bytes": if not sudo: with open(path, "rb") as file: data = file.read() else: data = data.encode() else: raise ValueError(f"Unknown format {format}.") if raw: return data else: return Formats.initialize(data) def save( # the path (str) (#1). path, # the data (str, dict, list) (#2). data, # the file format, options: [str, bytes, json]. format="str", # root permission required. sudo=False, # json options. indent=4, ensure_ascii=False, # create backups. backups=False, # warning: safe True keeps infinitely trying to save the doc when an KeyboardInterrupt is raised by the user. safe=True, # system functions. __loader__=None, __checks__=True, __keyboard_interrupt__=False, __attempt__=1, __real_path__=None, ): if __checks__: # correct format. if format in [str, String, "String", "string", "file"]: format = "str" if format in [dict, Dictionary, "Dictionary", "dict", "array"]: format = "json" if format in [bytes, Bytes, "Bytes"]: format = "bytes" #format = str(format) # match format. path = gfp.clean(str(path), remove_double_slash=True, remove_last_slash=False) if sudo: __real_path__ = str(path) tmp_path = path = f"/tmp/{String().generate(length=12)}" data = Formats.denitialize(data) if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") path = str(path) if format == "str": file = open(path, "w+") file.write(data) file.close() elif format == "json": if __checks__: try: test = json.dumps(data) except: raise Exceptions.JSONDecodeError(f"Unable to dump expected json data: {data}") try: with open(path, 'w+') as json_file: json.dump(data, json_file, ensure_ascii=ensure_ascii, indent=indent) except PermissionError: with open(path, 'w') as json_file: json.dump(data, json_file, ensure_ascii=ensure_ascii, indent=indent) except KeyboardInterrupt as e: if __loader__ == None: __loader__ = console.Loader(f"&RED&Do not interrupt!&END& Saving file [{path}] (attempt: {__attempt__}).") if __attempt__ >= 100: __loader__.stop(success=False) raise KeyboardInterrupt(e) return Files.save( path, data, format=format, sudo=sudo, indent=indent, ensure_ascii=ensure_ascii, backups=False, safe=safe, __loader__=__loader__, __checks__=False, __keyboard_interrupt__=str(e), __attempt__=__attempt__+1, __real_path__=__real_path__,) elif format == "bytes": with open(path, "wb") as file: file.write(data) else: raise ValueError(f"Unknown format {format}.") if sudo: if Files.directory(path) and path[len(path)-1] != "/": path += "/" if __real_path__[len(__real_path__)-1] != "/": __real_path__ += "/" os.system(f"sudo rsync -aq {gfp.clean(path)} {gfp.clean(__real_path__)} && rm -fr {tmp_path}") #print(f"sudo mv {gfp.clean(path)} {gfp.clean(__real_path__}") #os.system(f"sudo mv {gfp.clean(path)} {gfp.clean(__real_path__}") # os.system(f"sudo rsync -aq {gfp.clean(path)} {gfp.clean(__real_path__} && rm -fr {tmp_path}") #else: # os.system(f"sudo rsync -ogq {gfp.clean(path)} {gfp.clean(__real_path__} && rm -fr {tmp_path}") if __keyboard_interrupt__ != False: if __loader__ != None: __loader__.stop() raise KeyboardInterrupt(__keyboard_interrupt__) def delete( # the path (param #1). path=None, # root permission required. sudo=False, # forced mode. forced=False, # hide logs. silent=False, ): if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") path = str(path) return gfp.delete(path=path, forced=forced, sudo=sudo, silent=silent) def chmod( # the path (param #1). path=None, # the new permission. permission=None, # recursive for entire dir. recursive=False, # root permission required. sudo=False, ): if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") if permission == None: raise Exceptions.InvalidUsage("Define parameter: permission.") path = str(path) return gfp.permission.set(path=path, permission=permission, recursive=recursive, sudo=sudo) def chown( # the path (param #1). path=None, # the new owner. owner=None, # the new group (optional). group=None, # recursive for entire dir. recursive=False, # root permission required. sudo=False, ): if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") if owner == None: raise Exceptions.InvalidUsage("Define parameter: owner.") path = str(path) return gfp.ownership.set(path=path, owner=owner, group=group, recursive=recursive, sudo=sudo) def exists(path=None, sudo=False): if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") return gfp.exists(path=path, sudo=sudo) # def clean( # the path (leave None to use self.path) (param #1). path=None, # the clean options. remove_double_slash=True, remove_first_slash=False, remove_last_slash=False, ensure_first_slash=False, ensure_last_slash=False, ): if path == None: raise ValueError("Define parameter: path.") path = str(path).replace("~",HOME) while True: if remove_double_slash and "//" in path: path = path.replace("//","/") elif remove_first_slash and len(path) > 0 and path[0] == "/": path = path[1:] elif remove_last_slash and len(path) > 0 and path[len(path)-1] == "/": path = path[:-1] elif ensure_first_slash and len(path) > 0 and path[0] != "/": path = "/"+path elif ensure_last_slash and len(path) > 0 and path[len(path)-1] != "/": path += "/" else: break return path def directory( # the path (#1). path=None, # root permission required. sudo=False, ): if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") path = Files.clean(path=path, remove_double_slash=True, remove_last_slash=True) path = str(path) return os.path.isdir(path) # def mounted( # the path (#1). path=None, ): if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") path = gfp.clean(path=path, remove_double_slash=True, remove_last_slash=True) path = str(path) return os.path.ismount(path) # def create( # the path to the file (str) (required) (#1). path=None, # the data (str) (optional). data=None, # path is directory (bool). directory=False, # the owner (str) (optional). owner=None, # the group (str) (optional). group=None, # the permission (int) (optional). permission=None, # root permission required. sudo=False, ): if path == None: raise Exceptions.InvalidUsage("Define parameter: path.") elif Files.exists(path, sudo=sudo): Exceptions.DuplicateError(f"Path [{path}] already exists.") sudo_str = Boolean(sudo).string(true="sudo ", false="") if directory: os.system(f"{sudo_str}mkdir -p {path}") else: if isinstance(data, (list, Array, dict, Dictionary)): if isinstance(data, (Dictionary,Array)): data = data.raw() Files.save(path=path, data=data, format="json", sudo=sudo, ) else: Files.save(path=path, data=str(data), sudo=sudo) if not Files.exists(path, sudo=sudo): raise ValueError(f"Unable to create {Boolean(directory).string(true='directory', false='file')} [{path}] (sudo: {sudo}).") if permission != None: Files.chmod(path=path, permission=permission, sudo=sudo) if owner != None: Files.chown(path=path, owner=owner, group=group, sudo=sudo) def copy( # the from & to path (#1 & #2). from_, to_, # root permission required. sudo=False, # the active log level. log_level=0, # the exclude patterns. exclude=[], # update deleted files. delete=True, ): if not Files.exists(from_, sudo=sudo): raise FileNotFoundError(f"Specified copy path [{from_}] does not exist.") directory = False if Files.directory(from_, sudo=sudo): directory = True from_ += "/" to_ += "/" from_ = gfp.clean(from_) to_ = gfp.clean(to_) if not Files.exists(gfp.base(to_), sudo=sudo): Files.create(gfp.base(to_), sudo=sudo, directory=directory) exclude_str = "" for i in exclude: exclude_str += f" --exclude '{i}'" os.system(f"{Boolean(sudo).string(true='sudo ', false='')}rsync -azt{Boolean(log_level >= 1).string(true='P',false='')} {from_} {to_} {Boolean(delete).string(true='--delete', false='')}{exclude_str}") def move( # the from & to path (#1 & #2). from_, to_, # root permission required. sudo=False, # root permission required. log_level=0, ): if not Files.exists(from_, sudo=sudo): raise FileNotFoundError(f"Specified move path [{from_}] does not exist.") directory = False if Files.directory(from_, sudo=sudo): directory = True from_ += "/" to_ += "/" from_ = gfp.clean(from_) to_ = gfp.clean(to_) if not Files.exists(gfp.base(to_), sudo=sudo): Files.create(gfp.base(to_), sudo=sudo, directory=directory) os.system(f"{Boolean(sudo).string(true='sudo ', false='')}mv {from_} {to_}") def base( # the path (str, FilePath) (#1). path=None, # the dirs back. back=1, ): if path == None: raise ValueError("Define parameter: path:str.") path = str(path) base = path.replace('//','/') if base[len(base)-1] == '/': base = base[:-1] if len(base.split("/")) <= 1: raise ValueError("Path [{}] has no base.".format(base)) startslash = True if base[0] != "/": startslash = False base = base.split("/") m, c, s = len(base), 0, "" for i in base: if c >= m-back: break if c == 0: s = f"/{i}/" else: s += f"{i}/" c += 1 if startslash: return s else: return s[1:] # # # the file object class. class File(object): def __init__(self, path=None, data=None, load=False, default=None): # docs. DOCS = { "module":"File", "initialized":False, "description":[], "chapter": "Defaults", } # check self instance. if isinstance(data, Files.File): data = data.data # init. if path == False: self.file_path = self.fp = None # used in local memory (not fysical) else: self.file_path = self.fp = Formats.FilePath(path) self.data = data if default != None and not os.path.exists(self.file_path.path): self.save(data=default) if load: self.load() # can be filled with executing [self.x = x()]: def load(self, default=None, sudo=False): utils.__check_memory_only__(str(self.file_path.path)) if not os.path.exists(str(self.file_path.path)) and default != None: self.save(data=default, sudo=sudo) self.data = Files.load(self.file_path.path, format=str, sudo=sudo) return self.data def load_line(self, line_number, default=None, sudo=False): utils.__check_memory_only__(self.file_path.path) if not os.path.exists(self.file_path.path) and default != None: self.save(str(default), self.file_path.path, sudo=sudo) data = Files.load(self.file_path.path, format=str, sudo=sudo) return data.split('\n')[line_number] def save(self, data=None, path=None, overwrite_duplicates=True, sudo=False): if path == None: path = self.file_path.path if data == None: data = self.data utils.__check_memory_only__(path) if overwrite_duplicates: self.data = data return Files.save(path, data, sudo=sudo) else: file_name, original_path = Formats.FilePath(path).name(), path extension = file_name.split('.')[file_name.count('.')] file_name_without_extension = file_name.replace(extension, '') while True: if not os.path.exists(path): break else: path = original_path.replace(file_name, file_name_without_extension+'-'+str(index)+extension) self.data = data return Files.save(path, data, sudo=sudo) def check(self, default=None, save=True): if default != None and isinstance(default, (str, String)): if not self.fp.exists(): self.data = default if save: self.save(data=default) # support default iteration. def __iter__(self): return iter(self.data) # support '>=' & '>' operator. def __gt__(self, string): if not isinstance(string, str): return len(self) > len(string) elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self) > len(string.data) def __ge__(self, string): if not isinstance(string, str): return len(self) >= len(string) elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self) >= len(string.data) # support '<=' & '<' operator. def __lt__(self, string): if not isinstance(string, str): return len(self) < len(string) elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self) < len(string.data) def __le__(self, string): if not isinstance(string, str): return len(self) <= len(string) elif not isinstance(string, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {string.__class__}.") return len(self) <= len(string.data) # support '==' & '!=' operator. def __eq__(self, string): if not isinstance(string, str): return self.data == string elif not isinstance(string, self.__class__): return False return self.data == string.data def __ne__(self, string): if not isinstance(string, str): return self.data != string elif not isinstance(string, self.__class__): return True return self.data != string.data # support 'in' operator. def __contains__(self, key): if isinstance(key, (list, Files.Array)): for i in key: if i in self.data: return True return False else: return key in self.data # str representation. def __str__(self): return str(self.data) # content count. def __len__(self): return len(self.data) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "File" # # support self assignment. def assign(self, data): if isinstance(data, self.__class__): data = data.data self.data = data return self # return raw data. def raw(self): return self.data # # the array object class. class Array(object): def __init__(self, # the array (param #1). array=[], # the path (param #2). path=False, # load the data on initialization. load=False, # the default array (will be created if file path does not exist). default=None, ): # docs. DOCS = { "module":"Array", "initialized":False, "description":[], "chapter": "Defaults", } # check self instance. if isinstance(array, Files.Array): array = array.array elif not isinstance(array, list): raise Exceptions.InstanceError(f"Parameter [{self.__class__.__name__}.array] must be a [Array] or [list], not [{array.__class__.__name__}].") # initialize dictionary recursive. #new = [] #for i in array: new.append(Formats.initialize(i)) #array = new #if isinstance(array, Array): # array = array.array # init. if path in [False, None]: self.file_path = self.fp = None # used in local memory (not fysical) self.__path__ = None else: self.file_path = self.fp = Formats.FilePath(path) self.__path__ = self.file_path.path self.array = array if default != None and self.file_path != None and not os.path.exists(self.file_path.path): self.save(array=default) self.array = default if load: self.load() # # save to file. def save(self, array=None, path=None, ensure_ascii=False, indent=4, sudo=False): if array != None: array = self.array if path == None: path = self.file_path.path utils.__check_memory_only__(path) self.array = array return Files.save(path, Formats.denitialize(array), format="json", indent=indent, ensure_ascii=ensure_ascii, sudo=sudo) # load from file. def load(self, default=None, sudo=False): utils.__check_memory_only__(self.file_path.path) if not os.path.exists(self.file_path.path) and default != None: self.save(default, sudo=sudo) self.array = Files.load(self.file_path.path, format="json", sudo=sudo) return self.array # convert to string. def string(self, joiner=" ", sum_first=False): string = "" for x in self.array: if sum_first and string == "": string = joiner + str(x) elif string == '': string = str(x) else: string += joiner + str(x) return str(string) # divide into several arrays. def divide(self, into=2): avg = len(self.array) / float(into) out = [] last = 0.0 while last < len(self.array): out.append(self.array[int(last):int(last + avg)]) last += avg if len(out) > into: while len(out) > into: last = out.pop(len(out)-1) out[len(out)-1] += last return out # reomve indexes or values. def remove(self, indexes=[], values=[]): array = self.array for i in indexes: try: array.pop(i) except: a=1 if values != []: new = [] for v in array: if v not in values: new.append(v) array = new return Array(array, path=self.__path__) # default list functions. def append(self, var): array = list(self.array) return Array(array.append(var), path=self.__path__) def pop(self, index): array = list(self.array) return Array(array.pop(index), path=self.__path__) def count(self, item=None): if item == None: return Formats.Integer(len(self.array)) elif isinstance(item, (str, Formats.String)): c = 0 for i in self: if i == item: c += 1 return Formats.Integer(c) elif isinstance(item, (list, Files.Array)): c = 0 for x in self: for y in item: if x == y: c += 1 return Formats.Integer(c) else: raise Exceptions.InstanceError("Parameter [item] must either be None, String or Array.") # check. def check(self, default=None, save=True): if default != None and isinstance(default, (list, Array)): if not self.fp.exists(): self.array = default if save: self.save(data=default) else: for i in default: if i not in self.array: self.array.append(i) if save: self.save() # clean content. def clean(self, # the string replacements. # example: # { "Hello":"hello" } # [ ["Hello", "hello"] ] replacements={}, # the first characters to remove (String & Array). remove_first=[], # the last characters to remove (String & Array). remove_last=[], # the first characters that are ensured (String & Array) (List: check is one of the list is ensured). ensure_first=[], # the last characters that are ensured (String & Array) (List: check is one of the list is ensured). ensure_last=[], # remove all values within the list from the array. remove_values=[], # update the self array. update=True, # the dicionary (leave None to use self.array). array=None, ): if array == None: array = list(self.array) if isinstance(remove_first, (str, Formats.String)): remove_first = [remove_first] if isinstance(remove_last, (str, Formats.String)): remove_last = [remove_last] if isinstance(ensure_first, (str, Formats.String)): ensure_first = [ensure_first] if isinstance(ensure_last, (str, Formats.String)): ensure_last = [ensure_last] new = [] for item in list(array): if item not in remove_values: while True: edits = False for i in remove_first: if len(item) >= len(i) and item[:len(i)] == i: item = item[len(i):] edits = True for i in remove_last: if len(item) >= len(i) and item[len(i):] == i: item = item[:-len(i)] edits = True for i in ensure_first: if len(item) >= len(i) and item[:len(i)] != i: item = i+item edits = True for i in ensure_last: if len(item) >= len(i) and item[len(i):] != i: item += i edits = True for from_, to_ in replacements.items(): if isinstance(item, (str, Formats.String)) and from_ in item: item = item.replace(from_, to_) edits = True if not edits: break new.append(item) return Array(new, path=self.__path__) # iterations. def iterate(self, sorted=False, reversed=False, array=None): if array == None: array = list(self.array) return self.items(reversed=reversed, sorted=sorted, array=array) # iterate items. def items(self, sorted=False, reversed=False, array=None): if array == None: array = list(self.array) if sorted: array = self.sort(array=array) if reversed: return self.reversed(array=array) else: return Array(array, path=self.__path__) # reserse array. def reversed(self, array=None): if array == None: array = self.array reversed_keys = [] c = len(array)-1 for _ in range(len(array)): reversed_keys.append(array[c]) c -= 1 return Array(reversed_keys, path=self.__path__) # sort array. def sort(self, reversed=False, array=None): if array == None: array = self.array return Array(sorted(array, reverse=reversed), path=self.__path__) # dump json string. def json(self, sorted=False, reversed=False, indent=4, array=None, ): #return json.dumps(Formats.denitialize(self), indent=indent) if array == None: array = self.array return json.dumps(self.serialize(json=False, sorted=sorted, reversed=reversed, array=array), indent=indent) # serialize array. def serialize(self, sorted=False, reversed=False, json=False, array=None): if array == None: array = self.array if isinstance(array, Files.Array): array = array.array if sorted: items = self.items(reversed=reversed, array=self.sort(alphabetical=True, array=array)) else: items = self.items(reversed=reversed, array=array) new = [] for value in items: if isinstance(value, (dict, Files.Dictionary)): value = Files.Dictionary().serialize(json=json, sorted=sorted, reversed=reversed, dictionary=value) elif isinstance(value, (list, Files.Array)): value = self.serialize(json=json, sorted=sorted, reversed=reversed, array=value) elif isinstance(value, object): value = str(value) elif isinstance(value, str) or isinstance(value, bool) or value == None: if value in [True, "True", "True".lower()]: if json: value = "true" else: value = True elif value in [False, "False", "False".lower()]: if json: value = "false" else: value = False elif value in [None, "None", "None".lower()]: if json: value = "null" else: value = None new.append(value) return new # randomize the content of the array always non recursive. def randomize(self, # optionally pass the array (leave None to use self.array). array=None, ): if array == None: array = list(self.array) randomized = [] while len(array) > 0: index = random.randrange(0, len(array)) item = array.pop(index) randomized.append(item) return Array(randomized, path=self.__path__) # # limit the content of the array. def limit(self, # limit to the number of samples. limit:int, # the index to start from. start=0, # optionally pass the array (leave None to use self.array). array=None, ): if array == None: array = list(self.array) return Array(array[start:start+limit], path=self.__path__) # min of numerical array. def min(self): min = self.array[0] for item in self.array: if item < min: min = item return min # max of numerical array. def max(self): max = self.array[0] for item in self.array: if item > max: max = item return max # sum numerical array. def sum(self): return sum(self.array) # mean of numerical array. def mean(self, window=None): return self.sum() / len(self.array) # # variance of numerical array. def variance(self): mean = self.mean() deviations = [] for x in self.array: deviations.append((x - mean) ** 2) return sum(deviations) / len(self.array) # standard deviation of numerical array. def stdev(self): return math.sqrt(self.variance()) # copy. def copy(self): return Files.Array(self.array, path=self.__path__) # # support "+", -, =-, =+" . def __add__(self, array): if isinstance(array, list): a=1 elif isinstance(array, self.__class__): array = array.array elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {array.__class__}.") return Array(self.array + array) def __iadd__(self, array): if isinstance(array, list): a=1 elif isinstance(array, self.__class__): array = array.array elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {array.__class__}.") self.array += array def __sub__(self, array): if isinstance(array, list): a=1 elif isinstance(array, self.__class__): array = array.array elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {array.__class__}.") new = [] for i in self.array: if i not in array: new.append(i) return Array(new) def __isub__(self, array): if isinstance(array, list): a=1 elif isinstance(array, self.__class__): array = array.array elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {array.__class__}.") new = [] for i in self.array: if i not in array: new.append(i) self.array = new # support +. def __concat__(self, array): if isinstance(array, list): a=1 elif isinstance(array, self.__class__): array = array.array elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {array.__class__}.") return Array(self.array + array) # support default iteration. def __iter__(self): return iter(self.array) # support '>=' & '>' operator. def __gt__(self, array): if not isinstance(array, list): return len(self.array) > len(array) elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {array.__class__}.") return len(self.array) > len(array.array) def __ge__(self, array): if not isinstance(array, list): return len(self.array) >= len(array) elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {array.__class__}.") return len(self.array) >= len(array.array) # support '<=' & '<' operator. def __lt__(self, array): if not isinstance(array, list): return len(self.array) < len(array) elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {array.__class__}.") return len(self.array) < len(array.array) def __le__(self, array): if not isinstance(array, list): return len(self.array) <= len(array) elif not isinstance(array, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {array.__class__}.") return len(self.array) <= len(array.array) # support '==' & '!=' operator. def __eq__(self, array): if not isinstance(array, list): return self.array == array elif not isinstance(array, self.__class__): return False return self.array == array.array def __ne__(self, array): if not isinstance(array, list): return self.array != array elif not isinstance(array, self.__class__): return True return self.array != array.array # support 'in' operator. def __contains__(self, key): if isinstance(key, (list, Files.Array)): for i in key: if i in self.array: return True return False else: return key in self.array # support '*' operator. def __mul__(self, value): if isinstance(value, int): a=1 else: raise Exceptions.FormatError(f"Can not mul object {self.__class__.__name__} & {value.__class__.__name__}.") return Array(self.array * value) # support '/' operator. def __div__(self, value): if isinstance(value, int): a=1 else: raise Exceptions.FormatError(f"Can not div object {self.__class__.__name__} & {value.__class__.__name__}.") return Array(self.divide(into=value)) # support item assignment. def __setitem__(self, index, value): #if "/" in item try: self.array[Formats.denitialize(index)] = value except IndexError: self.array.append(value) def __getitem__(self, index): return self.array[Formats.denitialize(index)] def __delitem__(self, index): #if "/" in item return self.array.pop(Formats.denitialize(index)) # representation. def __repr__(self): return str(self) # # str representation. def __str__(self): return str(Formats.denitialize(self.array)) # content count. def __len__(self): return len(self.array) # object id. def __id__(self): if len(self.array) > 10: return f"({self.instance()}:[{self.array[0]}, {self.array[0]}, {self.array[0]}, ... {self.array[len(self.array)-3]}, {self.array[len(self.array)-2]}, {self.array[len(self.array)-1]}])" else: return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Array" # # support self assignment. def assign(self, array): if isinstance(array, self.__class__): array = array.array self.array = array # assign a new path. def assign_path(self, path): self.file_path = FilePath(path) self.__path__ = path # return raw data. def raw(self): return self.array # # the dictionary object class. class Dictionary(object): def __init__(self, # the dictionary (param #1). dictionary={}, # the file path (param #2). path=False, # load the file path dictionary on init. load=False, # specify default to check & create the dict. default=None, ): # docs. DOCS = { "module":"Dictionary", "initialized":False, "description":[], "chapter": "Defaults", } # check self instance. if isinstance(dictionary, Files.Dictionary): dictionary = dictionary.dictionary elif not isinstance(dictionary, dict): raise Exceptions.InstanceError(f"Parameter [{self.__class__.__name__}.dictionary] must be a [Dictionary] or [dict], not [{dictionary.__class__.__name__}].") """elif not isinstance(dictionary, dict): max_attempts = 2 for attempt in range(max_attempts): try: if 1+attempt == 1: dictionary = dictionary.dict() break elif 1+attempt == 2: dictionary = dictionary.json() break except: if 1+attempt >= max_attempts: raise Exceptions.InstanceError(f"Parameter [{self.__class__.__name__}.dictionary] must be a [Dictionary] or [dict], not [{dictionary.__class__.__name__}].") """ # initialize dictionary recursive. #for key in list(dictionary.keys()): # dictionary[key] = Formats.initialize(dictionary[key]) #if isinstance(dictionary, Dictionary): # dictionary = dictionary.dictionary # arguments. self.dictionary = dictionary self.path = gfp.clean(path=path) self.default = default self.file_path = self.fp = None self.__path__ = None # checks. if path not in [False, None]: self.file_path = self.fp = Formats.FilePath(path) self.__path__ = self.file_path.path if self.default != None: self.dictionary = self.check(default=self.default).dictionary if self.file_path != None and not self.file_path.exists(): self.save() if load: self.load() # # save to file. def save(self, dictionary=None, path=None, ensure_ascii=False, indent=4, sudo=False): utils.__check_memory_only__(self.file_path.path) if dictionary == None: dictionary = dict(self.dictionary) if path == None: path = self.file_path.path return Files.save(path, Formats.denitialize(dictionary), format="json", indent=indent, ensure_ascii=ensure_ascii, sudo=sudo) # load from file. def load(self, default=None, sudo=False): utils.__check_memory_only__(self.file_path.path) if not os.path.exists(self.file_path.path) and default != None: self.save(default, sudo=sudo) self.dictionary = Files.load(self.file_path.path, format="json", sudo=sudo) return self.dictionary # load a single line from file. def load_line(self, line_number, sudo=False): utils.__check_memory_only__(self.file_path.path) data = Files.load(str(self.file_path.path, sudo=sudo)) return data.split('\n')[line_number] # check the dictionary. def check(self, # Option 1: key=None, # check a certain key, it appends if not present value=None, # check a certain key, append the value if not present (no format check) # Option 2: default=None, # check based on a default dictionary, it appends it not present. # Optionals: dictionary=None, # overwrite the start dictionary, leave None to use self.dictionary. save=False, # saves the output & and sets the output to self.dictionary. ): # functions. def __iterate_dict__(dictionary, default): #print("\niterating new dictionary: [{}] & default [{}]\n".format(dictionary, default)) for identifier, item in default.items(): if isinstance(item, (dict,Dictionary)): try: dictionary[str(identifier)] = __iterate_dict__(dictionary[str(identifier)], item) except KeyError: dictionary[str(identifier)] = dict(item) elif isinstance(item, (list,Array)): if isinstance(item, (list)): item = list(item) elif isinstance(item, (Array)): item = item.array try: dictionary[str(identifier)] except KeyError: dictionary[str(identifier)] = item else: try: dictionary[str(identifier)] except KeyError: dictionary[str(identifier)] = item return dictionary # init. if dictionary == None: dictionary = dict(self.dictionary) if not isinstance(dictionary, (dict, Dictionary)): raise Exceptions.InvalidUsage(f"<Dictionary.check> parameter [dicionary] requires to be a [dict, Dictionary] not [{dictionary.__class__.__name__}].") # - option 1: if key == None and value != None: raise ValueError("Define both parameters: [key & value].") elif value == None and key != None: raise ValueError("Define both parameters: [key & value].") if key != None and value != None: try: dictionary[key] except KeyError: dictionary[key] = value return dictionary # - option 2: if default == None: default = self.default if default == None: raise ValueError("Define both parameters: [key & value] or parameter [default].") dictionary = __iterate_dict__(dictionary, default) return Dictionary(dictionary, path=self.__path__) # # divide dictionary into multiple arrays. def divide(self, into=2): return_list = [dict() for idx in range(into)] idx = 0 for k,v in self.dictionary.items(): return_list[idx][k] = v if idx < into-1: # indexes start at 0 idx += 1 else: idx = 0 return Array(return_list) # append to dict. def append(self, # by default it only overwrites if a key does not exist and sums the key if it is a str / int. # # a dictionary to append. dictionary, # the overwrite formats (add "*" for all). overwrite=[], # the sum formats (add "*" for all). sum=["int", "float"], # the banned dictionary keys. banned=[], # do not use. dictionary_=None, ): if dictionary_ == None: dictionary_ = dict(self.dictionary) if dictionary == dictionary_: return dictionary if dictionary_ == {}: return dictionary for key, value in dictionary.items(): if key not in banned: if isinstance(value, (dict, Dictionary)): found = True try: dictionary_[key] except: found = False if found: dictionary_[key] = self.append(value, overwrite=overwrite, sum=sum, banned=banned, dictionary_=dictionary_[key], save=False, update=False) else: dictionary_[key] = value else: format = value.__class__.__name__ if "*" in sum or format in sum: if format in ["str", "int", "float", "list", "Array"]: try: dictionary_[key] += value except KeyError: dictionary_[key] = value else: # cant be summed. dictionary_[key] = value elif "*" in overwrite or format in overwrite: dictionary_[key] = value else: try: dictionary_[key] except KeyError: dictionary_[key] = value return Dictionary(dictionary_, path=self.__path__) # edit. def edit(self, # the dictionary (leave None to use self.dictionary). dictionary=None, # the edits (dict). # adds / replaces the current (except the exceptions). edits={}, # the edits key Exceptions. exceptions=[], # the edits value Exceptions. value_exceptions=[None], # the instances to overwrite (list[str]) (missing stands for the keys that are missing in the dictionary). overwite=["missing"], # the instances to combine (list[str]) (dict is always recursive). combine=["int", "float", "Integer", "list", "Array"], # the log level. log_level=-1, ): def edit_dict(dictionary={}, edits={}): c = 0 for key, value in edits.items(): found = True try: dictionary[key] except KeyError: found = False # recursive. if key not in exceptions and value not in value_exceptions and isinstance(value, (dict, Dictionary)): if isinstance(value, (Dictionary)): value = value.dictionary if found: dictionary[key], lc = edit_dict(dictionary=dictionary[key], edits=value) c += lc else: if log_level >= 0: print(f"Editing {alias} config {key}: {value}.") dictionary[key] = value c += 1 elif key not in exceptions and value not in value_exceptions and not found and "missing" in overwrite: if log_level >= 0: print(f"Editing {alias} config {key}: {value}.") dictionary[key] = value c += 1 elif key not in exceptions and value not in value_exceptions and found and value.__class__.__name__ in combine: if log_level >= 0: print(f"Editing {alias} config {key}: {value}.") dictionary[key] = dictionary[key] + value c += 1 return dictionary, c # check specific. if dictionary == None: dictionary = dict(self.dictionary) dictionary, c = edit_dict(dictionary=dictionary, edits=edits) return Dictionary(dictionary, path=self.__path__) # unpack attribute(s). def unpack(self, # the key / keys / defaults parameter (#1). # str instance: # unpack the str key # list instance: # unpack all keys in the list. # dict instance: # unpack all keys from the dict & when not present return the key's value as default. keys, ): defaults_ = {} if isinstance(keys, (dict, Files.Dictionary)): if isinstance(keys, dict): defaults_ = dict(keys) keys = list(keys.keys()) else: defaults_ = keys.dict() keys = keys.keys() elif isinstance(keys, str): keys = [keys] unpacked = [] for key in keys: value, set = None, True try: value = self.dictionary[key] except KeyError: try: value = defaults_[key] except KeyError: set = False if not set: raise Exceptions.UnpackError(f"Dictionary does not contain attribute [{key}].") unpacked.append(value) if len(unpacked) == 1: return unpacked[0] else: return unpacked # remove. def remove(self, keys=[], values=[], update=True, save=False, dictionary=None): if dictionary == None: dictionary = dict(self.dictionary) for i in list(keys): try: del dictionary[i] except: a=1 if values != []: new = {} for k,v in dictionary.items(): if v not in values: new[k] = v dictionary = new return Dictionary(dictionary, path=self.__path__) # count keys or values. def count(self, item=None, values=False): if item == None: return Formats.Integer(len(self.dictionary)) elif isinstance(item, (str, Formats.String)): c, array = 0, [] if values: array = self.values() else: array = self.keys() for i in array: if i == item: c += 1 return Formats.Integer(c) elif isinstance(item, (list, Files.Array)): c, array = 0, [] if values: array = self.values() else: array = self.keys() for x in array: for y in item: if x == y: c += 1 return Formats.Integer(c) else: raise Exceptions.InstanceError(f"Parameter [item] must either be [None], [String] or [Array], not [{item.__class__}].") # insert new keys & values. def insert(self, dictionary={}, __dictionary__=None): if __dictionary__ == None: __dictionary__ = dict(self.dictionary) for key,value in dictionary.items(): if isinstance(value, (dict, Dictionary)): if key in __dictionary__: __dictionary__[key] = self.insert(value, __dictionary__=__dictionary__[key]) else: __dictionary__[key] = value elif isinstance(value, (list, Array)): if key in __dictionary__: for i in value: if i not in __dictionary__[key]: __dictionary__[key].append(i) else: __dictionary__[key] = value else: __dictionary__[key] = value return Dictionary(__dictionary__, path=self.__path__) # iterate keys and values. def iterate(self, sorted=False, reversed=False, dictionary=None): if dictionary == None: dictionary = self.dictionary return self.items(reversed=reversed, sorted=sorted, dictionary=dictionary) def items(self, sorted=False, reversed=False, dictionary=None): if dictionary == None: dictionary = self.dictionary if sorted: dictionary = self.sort(dictionary=dictionary) if reversed: return self.reversed(dictionary=dictionary).items() else: return dictionary.items() # iterate keys. def keys(self, dictionary=None): if dictionary == None: dictionary = self.dictionary return Array(list(dictionary.keys())) # iterate values. def values(self, dictionary=None): if dictionary == None: dictionary = dict(self.dictionary) values = [] for key, value in dictionary.items(): values.append(value) return Array(values) # reverse dictionary. def reversed(self, dictionary=None): if dictionary == None: dictionary = dict(self.dictionary) keys = list(dictionary.keys()) reversed_keys = [] c = len(keys)-1 for _ in range(len(keys)): reversed_keys.append(keys[c]) c -= 1 reversed_dict = {} for key in reversed_keys: reversed_dict[key] = dictionary[key] return Dictionary(reversed_dict, path=self.__path__) # sort ascending dictionary. def sort(self, # reverse ascending to descending. reversed=False, # sort the keys or sort the values. sort="keys", # system parameters. dictionary=None, ): if dictionary == None: dictionary = dict(self.dictionary) if sort == "values": new = {} for key in sorted(dictionary, key=dictionary.get, reverse=reversed): new[key] = dictionary[key] elif sort == "keys": new = {} for key in sorted(dictionary, reverse=reversed): new[key] = dictionary[key] else: raise ValueError(f"Selected an invalid sort mode [{sort}].") return Dictionary(new, path=self.__path__) # dump json string. def json(self, indent=4, dictionary=None, ): if dictionary == None: dictionary = self.dictionary return json.dumps(self.serialize(json=False, dictionary=dictionary), indent=indent) # serialize dict. def serialize(self, json=False, dictionary=None): if dictionary == None: dictionary = dict(self.dictionary) if isinstance(dictionary, Files.Dictionary): dictionary = dictionary.dictionary items = self.items(dictionary=dictionary) dictionary = {} for key, value in items: if isinstance(value, (dict, Files.Dictionary)): value = self.serialize(json=json, dictionary=value) elif isinstance(value, (list, Files.Array)): value = Files.Array(value).serialize(json=json) elif isinstance(value, object): value = str(value) elif isinstance(value, str) or isinstance(value, bool) or value == None: if value in [True, "True", "True".lower()]: if json: value = "true" else: value = True elif value in [False, "False", "False".lower()]: if json: value = "false" else: value = False elif value in [None, "None", "None".lower()]: if json: value = "null" else: value = None dictionary[key] = value return dictionary # copy. def copy(self): return Files.Dictionary(self.dictionary, path=self.__path__) # # system functions. def __reverse_keys_and_values__(self, dictionary=None): if dictionary == None: dictionary = self.dictionary new = {} for key,value in dictionary.items(): new[value] = key return new def __serialize_string__(self, string, banned_characters=["@"]): c, s, l = 0, "", False for char in string: if char not in banned_characters: # regular letter. if char.lower() == char: s += char.lower() l = False # capital letter. else: if c == 0: s += char.lower() else: if l: s += char.lower() else: s += "_"+char.lower() l = True c += 1 return s def __serialize_dictionary__(self, response): _response_ = {} for key,value in response.items(): s_key = self.__serialize_string__(key) if isinstance(value, dict): _response_[s_key] = self.__serialize_dictionary__(value) elif isinstance(value, str): try: integer = int(value) except: integer = False if integer != False: _response_[s_key] = integer elif value in ["false", "False", "FALSE", "DISABLED"]: _response_[s_key] = False elif value in ["true", "True", "TRUE", "ENABLED"]: _response_[s_key] = True else: _response_[s_key] = value else: _response_[s_key] = value return _response_ # support "+", -, =-, =+" . def __add__(self, dictionary): if isinstance(dictionary, dict): a=1 elif isinstance(dictionary, self.__class__): dictionary = dictionary.dictionary elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {dictionary.__class__}.") return self.append(dictionary=dictionary, overwrite=["*"], sum=[]) def __iadd__(self, dictionary): if isinstance(dictionary, dict): a=1 elif isinstance(dictionary, self.__class__): dictionary = dictionary.dictionary elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {dictionary.__class__}.") self.dictionary = self.append(dictionary=dictionary, overwrite=["*"], sum=[]).dictionary def __sub__(self, dictionary): if isinstance(dictionary, dict): keys = list(dictionary.keys()) elif isinstance(dictionary, list): keys = dictionary elif isinstance(dictionary, Files.Array): keys = dictionary.array elif isinstance(dictionary, self.__class__): keys = dictionary.keys() elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {dictionary.__class__}.") return self.remove(keys=keys) def __isub__(self, dictionary): if isinstance(dictionary, dict): keys = list(dictionary.keys()) elif isinstance(dictionary, list): keys = dictionary elif isinstance(dictionary, Files.Array): keys = dictionary.array elif isinstance(dictionary, self.__class__): keys = dictionary.keys() elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {dictionary.__class__}.") self.dictionary = self.remove(keys=keys, update=True).dictionary # support +. def __concat__(self, string): if isinstance(dictionary, dict): a=1 elif isinstance(dictionary, self.__class__): dictionary = dictionary.dictionary elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not add object {self.__class__} & {dictionary.__class__}.") return self.append(dictionary=dictionary, sum=[], overwrite=["*"]) # support default iteration. def __iter__(self): return iter(self.dictionary) # support '>=' & '>' operator. def __gt__(self, dictionary): if isinstance(dictionary, dict): return len(self.dictionary) > len(dictionary) elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {dictionary.__class__}.") return len(self.dictionary) > len(dictionary.dictionary) def __ge__(self, dictionary): if isinstance(dictionary, dict): return len(self.dictionary) >= len(dictionary) elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {dictionary.__class__}.") return len(self.dictionary) >= len(dictionary.dictionary) # support '<=' & '<' operator. def __lt__(self, dictionary): if isinstance(dictionary, dict): return len(self.dictionary) < len(dictionary) elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {dictionary.__class__}.") return len(self.dictionary) < len(dictionary.dictionary) def __le__(self, dictionary): if isinstance(dictionary, dict): return len(self.dictionary) <= len(dictionary) elif not isinstance(dictionary, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {dictionary.__class__}.") return len(self.dictionary) <= len(dictionary.dictionary) # support '==' & '!=' operator. def __eq__(self, dictionary): if isinstance(dictionary, dict): return str(self.sort()) == str(Dictionary(dictionary).sort()) elif isinstance(dictionary, Dictionary): return str(self.sort()) == str(dictionary.sort()) else: try: return str(self.sort()) == str(dictionary.sort()) except: return False def __ne__(self, dictionary): if isinstance(dictionary, dict): return str(self.sort()) != str(Dictionary(dictionary).sort()) elif isinstance(dictionary, Dictionary): return str(self.sort()) != str(dictionary.sort()) else: try: return str(self.sort()) != str(dictionary.sort()) except: return False # support 'in' operator. def __contains__(self, key): keys = list(self.dictionary.keys()) if isinstance(key, (list, Files.Array)): for i in key: if i in keys: return True return False else: return key in keys # support item assignment. def __setitem__(self, key, value): if isinstance(key, (int, Integer)): key = self.keys()[key] self.dictionary[Formats.denitialize(key)] = value def __getitem__(self, key): if isinstance(key, slice): raise ValueError("Coming soon.") elif isinstance(key, (int, Integer)): key = self.keys()[key] return self.dictionary[Formats.denitialize(key)] # def __delitem__(self, key): if isinstance(key, (int, Integer)): key = self.keys()[key] del self.dictionary[Formats.denitialize(key)] def __splitkey__(self, key): if key in self: return [key] return gfp.clean(path=key, remove_last_slash=True, remove_double_slash=True, remove_first_slash=True).split("/") # representation. def __repr__(self): return str(self) # # str representation. def __str__(self): return str(Formats.denitialize(self.dictionary)) # content count. def __len__(self): return len(self.dictionary) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self, serialize=False): return "Dictionary" @property def __name__(self): return self.instance() # support self assignment. def assign(self, dictionary): if isinstance(dictionary, self.__class__): dictionary = dictionary.dictionary self.dictionary = dictionary # assign a new path. def assign_path(self, path): self.file_path = FilePath(path) self.__path__ = path # return raw data. def raw(self): return self.dictionary # # # the directory object class. class Directory(object): def __init__(self, # the dirs file path (param #1). path=None, # the hierarchy to check / create. hierarchy={}, # load the content. #load=False, # load recursive. #recursive=False, ): # docs. DOCS = { "module":"Directory", "initialized":False, "description":[], "chapter": "Defaults", } # check self instance. if isinstance(path, Files.Directory): path = path.fp.path # init. if path == False: self.file_path = self.fp = None # used in local memory (not fysical) else: if path[len(path)-1] != "/": path += "/" self.file_path = self.fp = Formats.FilePath(path) self.hierarchy = hierarchy if self.hierarchy != {}: self.check(hierarchy=hierarchy) # load. #self.content = {} #if load: # self.content = {} # can be filled with executing [self.x = x()]: # executable functions. # actions. def create(self, file_paths=[], path=None, sudo=False, owner=None, group=None, permission=None): # - init: if path == None: path = self.file_path.path # - create dir: if not os.path.exists(path): if sudo: os.system('sudo mkdir -p '+path) else: os.system('mkdir -p '+path) # - copy files: commands = [] for l_path in file_paths: if sudo: command = None if Files.directory(l_path): command = 'sudo cp -r {0} {1} '.format(l_path, path+Formats.FilePath(l_path).name()) else: command = 'sudo cp {0} {1}'.format(l_path, path+Formats.FilePath(l_path).name()) commands.append(command) else: command = None if Files.directory(l_path): command = 'cp -r {0} {1} '.format(l_path, path+Formats.FilePath(l_path).name()) else: command = 'cp {0} {1}'.format(l_path, path+Formats.FilePath(l_path).name()) commands.append(command) if len(commands) > 0: if sudo: script = Files.ShellScript( data=command, path='/tmp/shell_script-'+str(random.randrange(23984792,23427687323))+'.sh' ) script.save() script.setPermission(755) script.execute(sudo=sudo) script.delete() else: os.system(Files.Array(array=commands,path=False).string(joiner=" \n ")) if owner != None or group!=None: self.file_path.ownership.set(owner=owner, group=group, sudo=sudo) if permission != None: self.file_path.permission.set(permission=permission, sudo=sudo) def delete(self, forced=False): if forced: os.system('rm -fr {}'.format(self.file_path.path)) else: os.system('rm -r {}'.format(self.file_path.path)) def check(self, # Required: # - dictionary format: hierarchy=None, # Optionals: # - string format: owner=None, group=None, # - boolean format: sudo=False, # - integer format: permission=None, # (octal format) recursive=False, # for permission/ownership silent=False, ): format = { "my_directory_name":{ # Required: "path":"my_directory_name/", # Optionals: "permission":755, "owner":"daanvandenbergh", "group":None, "sudo":False, "directory":True, "recursive":False, # for permission & ownership (directories). "default_data":None, # makes it a file "default":None, # makes it a dictionary } } def checkPermissionOwnership(file_path, dictionary, silent=False, recursive=False): if dictionary["permission"] != None and dictionary["permission"] != file_path.permission.permission: #print("editing file [{}] permission [{}] to [{}]...".format(file_path.path, file_path.permission.permission, dictionary["permission"])) file_path.permission.set(permission=dictionary["permission"], sudo=dictionary["sudo"], recursive=recursive, silent=silent) if dictionary["owner"] != None and dictionary["owner"] != file_path.ownership.owner: #print("editing file [{}] owner [{}] to [{}]...".format(file_path.path, file_path.ownership.owner, dictionary["owner"])) file_path.ownership.set(owner=dictionary["owner"], group=file_path.ownership.group, sudo=dictionary["sudo"], recursive=recursive, silent=silent) #print("file [{}] current group [{}] wanted group [{}]".format(file_path.path, file_path.ownership.group, dictionary["group"])) if dictionary["group"] != None and dictionary["group"] != file_path.ownership.group: #print("editing file [{}] group [{}] to [{}]...".format(file_path.path, file_path.ownership.group, dictionary["group"])) file_path.ownership.set(owner=file_path.ownership.owner, group=dictionary["group"], sudo=dictionary["sudo"], recursive=recursive, silent=silent) if hierarchy == None: hierarchy = self.hierarchy #if owner == None: owner = self.owner #if group == None: group = self.group #if permission == None: permission = self.permission file_path = Formats.FilePath(self.file_path.path) if file_path.exists(sudo=sudo) == False: file_path.create( directory=True, permission=permission, group=group, owner=owner, sudo=sudo) elif group != None or owner != None or permission != None: file_path.permission.permission = file_path.permission.get() _owner_,_group_ = file_path.ownership.get() file_path.ownership.group = _group_ file_path.ownership.owner = _owner_ checkPermissionOwnership(file_path, {"sudo":sudo, "owner":owner, "group":group, "permission":permission}, recursive=recursive, silent=silent) if hierarchy == None: raise ValueError("Define dictionary parameter: hierarchy") for identifier, dictionary in hierarchy.items(): # - check: try: dictionary["path"] = self.file_path.path + dictionary["path"] except: raise ValueError("Invalid hierarchy item [{} : {}]. Specify the [path].".format(identifier, "?")) try: dictionary["permission"] except KeyError: dictionary["permission"] = None try: dictionary["owner"] except KeyError: dictionary["owner"] = None try: dictionary["group"] except KeyError: dictionary["group"] = None try: dictionary["directory"] except KeyError: dictionary["directory"] = False try: dictionary["sudo"] except KeyError: dictionary["sudo"] = False try: dictionary["default_data"] except KeyError: dictionary["default_data"] = None try: dictionary["default"] except KeyError: dictionary["default"] = None try: dictionary["recursive"] except KeyError: dictionary["recursive"] = False # - directory: if dictionary["directory"]: file_path = Formats.FilePath(dictionary["path"]) if file_path.exists(sudo=dictionary["sudo"]) == False: file_path.create( directory=True, permission=dictionary["permission"], group=dictionary["group"], owner=dictionary["owner"], sudo=dictionary["sudo"],) else: file_path.permission.permission = file_path.permission.get() _owner_,_group_ = file_path.ownership.get() file_path.ownership.group = _group_ file_path.ownership.owner = _owner_ #if 'back_up_requests/requests' in file_path.path: # print("file: {}, owner: {}, group: {}, permission: {}".format(file_path.path, file_path.ownership.owner, file_path.ownership.group, file_path.permission.permission)) checkPermissionOwnership(file_path, dictionary, silent=silent, recursive=dictionary["recursive"]) # - file: elif dictionary["default_data"] != None: file = Files.File(path=dictionary["path"]) if file.file_path.exists(sudo=dictionary["sudo"]) == False: file.file_path.create( data=dictionary["default_data"], permission=dictionary["permission"], group=dictionary["group"], owner=dictionary["owner"], sudo=dictionary["sudo"]) else: file.file_path.permission.permission = file_path.permission.get() _owner_,_group_ = file_path.ownership.get() file.file_path.ownership.group = _group_ file.file_path.ownership.owner = _owner_ checkPermissionOwnership(file.file_path, dictionary, silent=silent) # - dictionary: elif dictionary["default"] != None: file = Files.Dictionary(path=dictionary["path"]) if file.file_path.exists(sudo=dictionary["sudo"]) == False: file.save(dictionary["default"]) file.file_path.permission.check( permission=dictionary["permission"], sudo=dictionary["sudo"]) file.file_path.ownership.check( group=dictionary["group"], owner=dictionary["owner"], sudo=dictionary["sudo"]) else: file.file_path.permission.permission = file_path.permission.get() _owner_,_group_ = file_path.ownership.get() file.file_path.ownership.group = _group_ file.file_path.ownership.owner = _owner_ checkPermissionOwnership(file.file_path, dictionary, silent=silent) file.check(default=default, save=True) else: raise ValueError("Invalid hierarchy item [{} : {}]. Either [directory] must be enabled, or [default_data / default] must be specified.".format(identifier, dictionary["path"])) # # load & save sub paths. def load(self, path=None, format=str, default=None, sudo=False): return Files.load(path=self.fullpath(path), format=format, sudo=sudo) def save(self, path=None, data=None, format=str, sudo=False): return Files.save(path=self.fullpath(path), data=data, format=format, sudo=sudo) # returnable functions. def paths(self, # get recursively (bool). recursive=False, # get files only (bool). files_only=False, # get firs only (bool). dirs_only=False, # also get empty dirs (bool). empty_dirs=True, # the banned full paths (list). banned=[], # the banned names (list). banned_names=[".DS_Store"], # the banend base names (list). banned_basenames=["__pycache__"], # the allowed extensions (list). extensions=["*"], # the path (leave None to use self.path) (str, FilePath). path=None, ): if dirs_only and files_only: raise ValueError("Both parameters dirs_only & piles_only are True.") if path == None: path = self.file_path.path path = str(path) if not Files.exists(path): return [] if isinstance(extensions, str): extensions = [extensions] if len(banned) > 0: l_banned = [] for i in banned: l_banned.append(gfp.clean(f"{path}/{i}")) banned = l_banned paths = [] if recursive: # does only work with recursive. for root, dirs, files in os.walk(path): if not dirs_only: for name in files: if name not in banned_names and ("*" in extensions or gfp.extension(name=name) in extensions ): l_path = gfp.clean(path=f"{root}/{name}") l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) if not files_only: for name in dirs: if name not in banned_names and (dirs_only or "*" in extensions or "dir" in extensions ): l_path = gfp.clean(path=f"{root}/{name}/") l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) if recursive: paths += self.paths(recursive=recursive, path=l_path, dirs_only=dirs_only, files_only=files_only, banned=banned, banned_names=banned_names, empty_dirs=empty_dirs) else: for name in os.listdir(path): l_path = gfp.clean(path=f"{path}/{name}") if not dirs_only and not Files.directory(l_path): if name not in banned_names and ("*" in extensions or gfp.extension(name=name) in extensions ): l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) if not files_only and Files.directory(l_path): l_path += "/" if name not in banned_names and (dirs_only or "*" in extensions or "dir" in extensions ): l_banned = False for i in banned_basenames: if f"/{i}/" in l_path: l_banned = True ; break if l_path not in banned and not l_banned and l_path+"/" not in banned: paths.append(l_path) return paths def names(self, # get recursively (bool). recursive=False, # get files only (bool). files_only=False, # get firs only (bool). dirs_only=False, # also get empty dirs (bool). empty_dirs=True, # remove the extension names (bool). remove_extensions=False, # the banned full paths (list). banned=[], # the banned names (list). banned_names=[".DS_Store"], # the banend base names (list). banned_basenames=["__pycache__"], # the allowed extensions (list). extensions=["*"], # the path (leave None to use self.path) (str, FilePath). path=None, ): names = [] for _path_ in self.paths(dirs_only=dirs_only, files_only=files_only, empty_dirs=empty_dirs, recursive=recursive, path=path, banned=banned, banned_names=banned_names, extensions=extensions): if remove_extensions: name = gfp.name(path=_path_) names.append(name[:-len(gfp.extension(name=name))]) else: names.append(gfp.name(path=_path_)) return names def oldest(self): files = [] for i in os.listdir(self.file_path.path): if i not in [".DS_Store"]: path = f'{self.file_path.path}/{i}'.replace("//",'/') files.append(path) if len(files) == 0: return False return min(files, key=os.path.getctime) # oldest is min (this is not a code error) def newest(self): files = [] for i in os.listdir(self.file_path.path): if i not in [".DS_Store"]: path = f'{self.file_path.path}/{i}'.replace("//",'/') files.append(path) if len(files) == 0: return False return max(files, key=os.path.getctime) # newest is max (this is not a code error) def random(self): files = [] for i in os.listdir(self.file_path.path): if i not in [".DS_Store"]: path = f'{self.file_path.path}/{i}'.replace("//",'/') files.append(path) if len(files) == 0: return False return files[random.randrange(0, len(files))] def generate(self, length=24, type="/"): path, paths = None, self.paths() for x in range(1000): path = self.join(utils.generate.shell_string(length=length), type) if path not in paths: break if path == None: __error__("Failed to generate a new random path inside directory [{}].".format(self.file_path.path)) return path def structured_join(self, name, type="", structure="alphabetical", create_base=False, sudo=False, owner=None, group=None, permission=None): if type not in ["/", ""]: type = "."+type if structure == "alphabetical": alphabetical = None try: alphabetical = name[0].upper() except: alphabetical = "SPECIAL" if str(alphabetical) not in ["A","B","C","D","E","F","G","H","I","J","K","L","M","N","O","P","Q","R","S","T","U","V","W","X","Z","0","1","2","3","4","5","6","7","8","9"]: aplhabetical = "SPECIAL" base = self.file_path.path + "/" + alphabetical + "/" if create_base and os.path.exists(base) == False: self.create(path=base, sudo=sudo, owner=owner, group=group, permission=permission) alph_dir = base + name + type return alph_dir else: raise ValueError("Invalid usage, parameter structure [{}], valid options: {}".format(structure, ["alphabetical"])) def contains(self, name=None, type="/", recursive=False): return self.join(name, type) in self.paths(recursive=recursive) # def subpath(self, fullpath): return self.fp.clean(path=fullpath.replace(self.fp.path, ""), remove_double_slash=True) def fullpath(self, subpath): return self.fp.clean(path=f"{self.fp.path}/{subpath}", remove_double_slash=True) # set the icon. def set_icon(self, # the path to the .png / .jpg icon. icon=None, # the directory path (leave None to use self.fp.path). path=None, ): if icon == None: raise Exceptions.InvalidUsage("Define parameter: icon.") if path == None: path = self.fp.path if OS in ["osx", "macos"]: utils.__execute_script__(f""" #!/bin/bash # settings. icon="{icon}" dest="{path}" # check inputs if [ ! -f $icon ]; then echo "ERROR: File $1 does not exists" exit 1 elif [[ ! $icon =~ .*\.(png|PNG|jpg|JPG) ]]; then echo "ERROR: Icon must be a .png|.jpg file" exit 1 elif [ -f $dest ]; then folder=false elif [ -d $dest ]; then folder=true else echo 'ERROR: File|Folder destination does not exists' exit 1 fi # create icns icon sips -i $icon > /dev/null DeRez -only icns $icon > /tmp/tmpicns.rsrc # set icon if [ "$folder" = true ]; then Rez -append /tmp/tmpicns.rsrc -o $dest$'/Icon\r' SetFile -a C $dest SetFile -a V $dest$'/Icon\r' else Rez -append /tmp/tmpicns.rsrc -o $dest SetFile -a C $dest fi # clean up rm /tmp/tmpicns.rsrc exit 0 """) else: raise OSError("Unsupported operating system.") # index the content. def index(self, # the wanted options. metrics=[], options=["size", "mtime", "content", "name", "basename", "extension", "mount", "directory"], # optional path (leave None to use self.path). path=None, ): def process(path): info = {} if "mtime" in metrics: info["mtime"] = gfp.mtime(path=path, format="seconds") if "size" in metrics: info["size"] = gfp.size(path=path, format=int) directory = None if "directory" in metcics: directory = info["directory"] = Files.directory(str(path)) if "content" in metrics: if directory == None: raise Exceptions.InvalidUsage("Metric [directory] is required when obtaining metric [content].") if not directory: info["content"] = Files.load(path) else: info["content"] = None if "mount" in metrics: info["mount"] = os.path.ismount(str(path)) if "name" in metrics: info["name"] = gfp.name(path=path) if "extension" in metrics: info["name"] = gfp.extension(path=path) if "basename" in metrics: info["basename"] = gfp.basename(path=path) return info # if path == None: path = self.path if metrics == []: raise Exceptions.InvalidUsage(f'No metrics are specified, metric options: [{Array(options).string(joiner=" ")}].') for i in metrics: if i not in options: raise Exceptions.InvalidUsage(f'Metric [{i}] is not a valid metric option, options: [{Array(options).string(joiner=" ")}].') indexed, dir, ids = Dictionary(path=False, dictionary={}), Files.Directory(path=path), [] for _path_ in dir.paths(recursive=True, files_only=True, banned=[gfp.clean(f"{path}/Icon\r")], banned_names=[".DS_Store", "__pycache__"]): if _path_ not in ids and "/__pycache__/" not in _path_ and "/.DS_Store" not in _path_: indexed[_path_] = process(_path_) ids.append(_path_) for _path_ in dir.paths(recursive=True, dirs_only=True, banned=[gfp.clean(f"{path}/Icon\r")], banned_names=[".DS_Store", "__pycache__"]): if _path_ not in ids and "/__pycache__/" not in _path_ and "/.DS_Store" not in _path_: indexed[_path_] = process(_path_) ids.append(_path_) return indexed.sort(alphabetical=True) # open for desktop. def open(self, path=None, sudo=False): if path == None: path = self.fp.path if sudo: sudo = "sudo " else: sudo = "" if OS in ["macos"]: os.system(f"{sudo}open {path}") elif OS in ["linux"]: os.system(f"{sudo}nautulis {path}") else: raise Exceptions.InvalidOperatingSystem(f"Unsupported operating system [{OS}].") # return references of each file that includes one of the matches. def find(self, matches:list, path=None, recursive=False, log_level=0): if path == None: path = self.path gfp = Formats.FilePath("") c, references = 0, {} for string in matches: if not os.path.exists(path): raise ValueError(f"Path {path} does not exist.") elif not Files.directory(path): raise ValueError(f"Path {path} is not a directory.") for i_path in self.paths(recursive=recursive, files_only=True, banned_names=[".DS_Store", ".git"], path=path): data = None try: data = Files.load(i_path) except: try: data = f"{Files.load(i_path, format=bytes)}" except: data = None if data != None and string in data: if log_level >= 0: print("") print(f"{i_path}:") lines, linecount = data.split("\n"), 0 for _ in lines: if string in lines[linecount]: try: before = lines[linecount-1] except: before = None try: after = lines[linecount+1] except: after = None if log_level >= 0: if before != None: print(" * "+before) print(" * "+lines[linecount]) if after != None: print(" * "+after) references[i_path] = lines[linecount] linecount += 1 c += 1 if log_level >= 0 and c > 0: print("") return references # replace str within all files. def replace(self, replacements:list, path=None, recursive=False, log_level=0): if path == None: path = self.path gfp = Formats.FilePath("") c, updates = 0, [] for from_, to in replacements: if not os.path.exists(path): raise ValueError(f"Path {path} does not exist.") elif not Files.directory(path): raise ValueError(f"Path {path} is not a directory.") for path in self.paths(recursive=recursive, banned_names=[".DS_Store", ".git"], path=path): if not Files.directory(path): try: data = Files.load(path) except UnicodeDecodeError: a=1 if from_ in data: if log_level >= 0: loader = console.Loader(f"Updating file {path}.") Files.save(path, data.replace(from_, to)) if log_level >= 0: loader.stop() updates.append(path) c += 1 return updates # filepath shortcuts. def join(self, name=None, type=""): return self.file_path.join(name, type) def name(self): return self.file_path.name() def base(self): return self.file_path.base() def basename(self): return self.file_path.basename() # support default iteration. def __iter__(self): return iter(self.paths()) # support '>=' & '>' operator. def __gt__(self, directory): if not isinstance(directory, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {directory.__class__}.") return len(self.paths()) > len(directory.paths()) def __ge__(self, directory): if not isinstance(directory, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {directory.__class__}.") return len(self.paths()) >= len(directory.paths()) # support '<=' & '<' operator. def __lt__(self, directory): if not isinstance(directory, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {directory.__class__}.") return len(self.paths()) < len(directory.paths()) def __le__(self, directory): if not isinstance(directory, self.__class__): raise Exceptions.FormatError(f"Can not compare object {self.__class__} & {directory.__class__}.") return len(self.paths()) <= len(directory.paths()) # support '==' & '!=' operator. def __eq__(self, directory): if not isinstance(directory, self.__class__): return False return len(self.paths()) == len(directory.paths()) def __ne__(self, directory): if not isinstance(directory, self.__class__): return True return len(self.paths()) != len(directory.paths()) # support 'in' operator. def __contains__(self, path): paths = self.paths() if isinstance(path, (list, Files.Array)): for i in path: if i in paths: return True return False else: return path in paths # representation. def __repr__(self): return str(self) # # system functions. def __str__(self): return str(self.fp.path) # content count. def __len__(self): return len(self.paths()) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Directory" # @property def __name__(self): return self.instance() # return raw data. def raw(self): return self.fp.path # # the image object class. class Image(object): def __init__(self, path=None, image=None, load=False): # docs. DOCS = { "module":"Image", "initialized":False, "description":[], "chapter": "Defaults", } # init. if path == False: self.file_path = self.fp = None # used in local memory (not fysical) else: self.file_path = self.fp = Formats.FilePath(path) self.image = image if load: self.load() # def load(self, path=None): if path == None: path = self.file_path.path self.image = Image.open(path) def edit_pixel(self, pixel=[0, 0], new_pixel_tuple=None): pixel = self.image.load() pix[15, 15] = value self.image.save(self.file_path.path) def convert(self, # the input path (str, FilePath) (#1). output=None, # the input path (str, FilePath) (leave None to use self.fp.path) input=None, ): if input == None: input = self.fp.path if output == None: raise Exceptions.InvalidUsage("Define parameter: [output].") img = _Image_.open(str(input)) img.save(str(output)) print(f"Successfully converted image {input} to {output}.") def replace_pixels(self, input_path=None, output_path=None, input_hex=None, output_hex=None): img = _Image_.open(input_path) pixels = img.load() input_rgb, output_rgb = input_hex, output_hex # self.hex_to_rgb(input_hex), self.hex_to_rgb(output_hex) for i in range(img.size[0]): for j in range(img.size[1]): print(pixels[i,j], "VS", input_rgb) if pixels[i,j] == input_rgb: pixels[i,j] = output_rgb img.save(output_path) def replace_colors(self, input_path=None, output_path=None, hex=None): img = _Image_.open(input_path) pixels = img.load() rgb = hex #self.hex_to_rgb(hex) for i in range(img.size[0]): for j in range(img.size[1]): if pixels[i,j] != rgb and pixels[i,j] != (0, 0, 0, 0): pixels[i,j] = rgb img.save(output_path) def rgb_to_hex(self, tuple): return '#%02x%02x%02x' % tuple def hex_to_rgb(self, _hex_): return tuple(int(_hex_[i:i+2], 16) for i in (0, 2, 4)) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Image" # @property def __name__(self): return self.instance() # return raw data. def raw(self): return self.fp.path # suport eq. def __eq__(self, var): if var.__class__.__name__ in ["NoneType"]: return False else: return str(var) == str(self) def __ne__(self, var): if var.__class__.__name__ in ["NoneType"]: return True else: return str(var) != str(self) # repr. def __str__(self): return str(self.fp) def __repr__(self): return str(self) # # # the zip object class. class Zip(object): def __init__(self, path=None, check=False): # docs. DOCS = { "module":"Zip", "initialized":False, "description":[], "chapter": "Defaults", } # init. self.file_path = self.fp = Formats.FilePath(path, check=check) # def create(self, # source can either be a string or an array. source=None, # remove the source file(s). remove=False, # sudo required to move/copy source files. sudo=False, ): # create tmp dir. name = self.file_path.name().replace('.encrypted.zip','').replace("."+self.file_path.extension(),'') tmp = Formats.FilePath(f'/tmp/zip-{utils.generate.shell_string(24)}') tmp_content = Formats.FilePath(tmp.join(name, "")) if tmp.exists(): tmp.delete(forced=True) if os.path.exists(tmp.path):os.system(f"rm -fr {tmp.path}") os.system(f"mkdir -p {tmp.path}") if isinstance(source, str): target = Formats.FilePath(source) name = target.name().replace('.encrypted.zip','').replace("."+target.extension(),'') if remove: target.move(tmp_content.path, sudo=sudo) else: target.copy(tmp_content.path, sudo=sudo) elif isinstance(source, list): tmp_content.create(directory=True) for path in source: file_path = Formats.FilePath(path) if remove: file_path.move("/"+tmp_content.join('/'+file_path.name(),"/"), sudo=sudo) else: file_path.copy("/"+tmp_content.join('/'+file_path.name(),"/"), sudo=sudo) else: raise ValueError("Parameter [source] must either be a str or list.") # write out zip. base = self.file_path.base() format = self.file_path.extension() archive_from = os.path.dirname(tmp_content.path) archive_to = os.path.basename(tmp_content.path.strip(os.sep)) zip_path = shutil.make_archive(name, format, archive_from, archive_to) os.system(f'mv {zip_path} {self.file_path.path}') tmp.delete(forced=True, sudo=sudo) # def extract(self, # the base extract directory. base=None, # remove the zip after extraction. remove=False, # if sudo required for removing file path. sudo=False,): # extract. if base == None: base = self.file_path.base() with zipfile.ZipFile(self.file_path.path, 'r') as zip_ref: zip_ref.extractall(base) if remove: self.file_path.delete(forced=True, sudo=sudo) # # representation. def __repr__(self): return str(self) # # system functions. def __str__(self): return self.fp.path # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Zip" # @property def __name__(self): return self.instance() # return raw data. def raw(self): return self.fp.path # # # the bytes object class. class Bytes(object): def __init__(self, # the bytes (param #1). data=b"", # the path (str, FilePath) (param #2). path=False, # load the data on initialization. load=False, # the default array (will be created if file path does not exist). default=None, ): # docs. DOCS = { "module":"Bytes", "initialized":False, "description":[], "chapter": "Defaults", } # check self instance. if isinstance(data, Files.Bytes): data = data.bytes # bytes. self.bytes = bytes # path. if path == False: self.file_path = self.fp = None # used in local memory (not fysical) else: self.file_path = self.fp = Formats.FilePath(path) if default != None and not Files.exists(self.file_path.path): self.save(array=default) if load: self.load() # def load(self, sudo=False): bytes = Files.load(self.file_path.path, format="bytes", sudo=sudo) self.bytes = bytes return bytes def save(self, bytes=None, sudo=False): if bytes == None: bytes = self.bytes bytes = Formats.denitialize(bytes) self.bytes = bytes return Files.save(self.fp.path, bytes, format="bytes", sudo=sudo) # suppor default iteration. def __iter__(self): return iter(self.bytes) # support '==' & '!=' operator. def __eq__(self, bytes_): if isinstance(bytes_, bytes): return self.bytes == bytes_ elif not isinstance(bytes_, self.__class__): return False return self.bytes == bytes_.bytes def __ne__(self, bytes_): if isinstance(bytes_, bytes): return self.bytes != bytes_ elif not isinstance(bytes_, self.__class__): return True return self.bytes != bytes_.bytes # support 'in' operator. def __contains__(self, bytes_): if isinstance(bytes_, (list, Files.Array)): for i in bytes_: if i == self.bytes: return True return False else: return bytes_ in self.bytes # # representation. def __repr__(self): return str(self) # # str representation. def __str__(self): return str(self.bytes) # content count. def __len__(self): return len(self.bytes) # object id. def __id__(self): return f"({self.instance()}:{str(self)})" # object instance. def instance(self): return "Bytes" # @property def __name__(self): return self.instance() # support self assignment. def assign(self, b): if isinstance(b, self.__class__): b = b.bytes self.bytes = b return self # return raw data. def raw(self): return self.bytes # # # # # some default classes. class Classes(): # the speed class. class Speed(): # the mark function, returns a timestamp used for calculation. def mark(): return time.time() # # calculate the difference between the marked timestamp & the current. def calculate( # the marked timestamp from Speed.mark. stamp, # the current timestamp (leave None to use Speed.mark) current=None, # round to decimals (Leave None to ignore). decimals=None, # normalize seconds. normalize=False, ): if current == None: current = Speed.mark() diff = current - stamp if decimals != None: diff = round(diff, decimals) if normalize: diff = Speed.normalize_seconds(diff) return diff # normalize seconds to 10s or 1m etc. def normalize_seconds(seconds:(int,float), decimals=1): if seconds < 0: raise ValueError("Can not normalize negative seconds.") if seconds < 0.01: return f'{int(seconds*1000)}ms' elif seconds <= 60: return f'{int(seconds)}s' elif seconds <= 60*60: return f'{round(seconds/60, decimals)}m' elif seconds <= 60*60*24: return f'{round(seconds/(60*60), decimals)}h' elif seconds <= 60*60*24*30: return f'{round(seconds/(60*60*24), decimals)}d' elif seconds <= 60*60*24*30*12: return f'{round(seconds/(60*60*24*30), decimals)}m' else: return f'{round(seconds/(60*60*24*30*12), decimals)}y' # some default objects. class Objects(): # the generate object class. class Generate(object): def __init__(self): # docs. DOCS = { "module":"Generate", "initialized":False, "description":[], "chapter": "Defaults", } # def int(self, length=6): charset = Array(Formats.digits).string(joiner="") return ''.join(random.choice(charset) for x in range(length)) # def string(self, length=6, capitalize=True, digits=True): charset = Array(Formats.alphabet).string(joiner="") if capitalize: charset += Array(Formats.capitalized_alphabet).string(joiner="") if digits: charset += Array(Formats.digits).string(joiner="") return ''.join(random.choice(charset) for x in range(length)) # # the interval object class. class Interval(object): def __init__(self, # the sleep time. sleeptime=1, # the timeout. timeout=60, ): # docs. DOCS = { "module":"Interval", "initialized":False, "description":[], "chapter": "Defaults", } # attributes. self.sleeptime = sleeptime self.timeout = timeout # def __int__(self): return int(self.sleeptime) def __iter__(self): l = [] for _ in range(int(self.timeout/self.sleeptime)): l.append(self) return iter(l) def sleep(self, chapters=1): for _ in range(chapters): time.sleep(int(self)/chapters) # #for interval in Interval(sleeptime=60, timeout=3600): # ... # interval.sleep() # # shortcuts. FilePath = Formats.FilePath String = Formats.String Boolean = Formats.Boolean Integer = Formats.Integer Date = Formats.Date File = Files.File Directory = Files.Directory Zip = Files.Zip Image = Files.Image Bytes = Files.Bytes Dictionary = Files.Dictionary Array = Files.Array Speed = Classes.Speed Generate = Objects.Generate Interval = Objects.Interval # initialized objects. gfp = Formats.FilePath("") # is required (do not remove). gd = gdate = Formats.Date() #
[ "dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage", "dev0s.classes.defaults.exceptions.Exceptions.FormatError", "math.floor", "dev0s.classes.defaults.exceptions.Exceptions.ParseError", "datetime.datetime.today", "dev0s.classes.defaults.exceptions.Exceptions.InstanceError", "dev0s.classes.utils.generate.shell_string", "dev0s.classes.utils.generate.pincode", "shutil.disk_usage", "dev0s.classes.defaults.exceptions.Exceptions.DuplicateError", "dev0s.classes.utils.__execute__", "dev0s.classes.defaults.exceptions.Exceptions.UnpackError", "dev0s.classes.defaults.exceptions.Exceptions.InvalidOperatingSystem", "dev0s.classes.utils.__execute_script__", "PIL.Image.open", "shutil.make_archive", "math.ceil", "dev0s.classes.defaults.exceptions.Exceptions.JSONDecodeError", "dev0s.classes.utils.__check_memory_only__", "dev0s.classes.console.Loader" ]
[((14111, 14134), 'shutil.disk_usage', 'shutil.disk_usage', (['path'], {}), '(path)\n', (14128, 14134), False, 'import shutil, math\n'), ((34670, 34703), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['path'], {}), '(path)\n', (34697, 34703), False, 'from dev0s.classes import utils\n'), ((34845, 34893), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (34872, 34893), False, 'from dev0s.classes import utils\n'), ((55859, 55892), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['path'], {}), '(path)\n', (55886, 55892), False, 'from dev0s.classes import utils\n'), ((56023, 56071), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (56050, 56071), False, 'from dev0s.classes import utils\n'), ((59403, 59436), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['path'], {}), '(path)\n', (59430, 59436), False, 'from dev0s.classes import utils\n'), ((59595, 59643), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (59622, 59643), False, 'from dev0s.classes import utils\n'), ((61349, 61386), 'dev0s.classes.utils.generate.pincode', 'utils.generate.pincode', ([], {'length': 'length'}), '(length=length)\n', (61371, 61386), False, 'from dev0s.classes import utils\n'), ((84618, 84658), 'dev0s.classes.utils.__execute__', 'utils.__execute__', (["['sudo', 'cat', path]"], {}), "(['sudo', 'cat', path])\n", (84635, 84658), False, 'from dev0s.classes import utils\n'), ((86956, 87006), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (86979, 87006), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((89201, 89251), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (89224, 89251), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((89561, 89611), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (89584, 89611), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((89643, 89699), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: permission."""'], {}), "('Define parameter: permission.')\n", (89666, 89699), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((90067, 90117), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (90090, 90117), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((90144, 90195), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: owner."""'], {}), "('Define parameter: owner.')\n", (90167, 90195), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((90372, 90422), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (90395, 90422), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((91399, 91449), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (91422, 91449), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((91660, 91710), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (91683, 91710), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((92233, 92283), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: path."""'], {}), "('Define parameter: path.')\n", (92256, 92283), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((96279, 96327), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (96306, 96327), False, 'from dev0s.classes import utils\n'), ((96727, 96760), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['path'], {}), '(path)\n', (96754, 96760), False, 'from dev0s.classes import utils\n'), ((101415, 101448), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['path'], {}), '(path)\n', (101442, 101448), False, 'from dev0s.classes import utils\n'), ((101662, 101710), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (101689, 101710), False, 'from dev0s.classes import utils\n'), ((117595, 117643), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (117622, 117643), False, 'from dev0s.classes import utils\n'), ((117948, 117996), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (117975, 117996), False, 'from dev0s.classes import utils\n'), ((118290, 118338), 'dev0s.classes.utils.__check_memory_only__', 'utils.__check_memory_only__', (['self.file_path.path'], {}), '(self.file_path.path)\n', (118317, 118338), False, 'from dev0s.classes import utils\n'), ((163975, 163999), 'PIL.Image.open', '_Image_.open', (['input_path'], {}), '(input_path)\n', (163987, 163999), True, 'from PIL import Image as _Image_\n'), ((164409, 164433), 'PIL.Image.open', '_Image_.open', (['input_path'], {}), '(input_path)\n', (164421, 164433), True, 'from PIL import Image as _Image_\n'), ((167242, 167301), 'shutil.make_archive', 'shutil.make_archive', (['name', 'format', 'archive_from', 'archive_to'], {}), '(name, format, archive_from, archive_to)\n', (167261, 167301), False, 'import shutil, math\n'), ((25609, 25700), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {path.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {path.__class__}.')\n", (25631, 25700), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((25818, 25909), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {path.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {path.__class__}.')\n", (25840, 25909), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((26061, 26152), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {path.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {path.__class__}.')\n", (26083, 26152), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((26270, 26361), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {path.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {path.__class__}.')\n", (26292, 26361), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((61256, 61287), 'math.floor', 'math.floor', (['(self.value * factor)'], {}), '(self.value * factor)\n', (61266, 61287), False, 'import shutil, math\n'), ((80096, 80187), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {date.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {date.__class__}.')\n", (80118, 80187), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((80299, 80390), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {date.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {date.__class__}.')\n", (80321, 80390), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((80536, 80627), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {date.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {date.__class__}.')\n", (80558, 80627), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((80739, 80830), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {date.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {date.__class__}.')\n", (80761, 80830), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((92322, 92381), 'dev0s.classes.defaults.exceptions.Exceptions.DuplicateError', 'Exceptions.DuplicateError', (['f"""Path [{path}] already exists."""'], {}), "(f'Path [{path}] already exists.')\n", (92347, 92381), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((113789, 113900), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__.__name__} & {value.__class__.__name__}."""'], {}), "(\n f'Can not mul object {self.__class__.__name__} & {value.__class__.__name__}.'\n )\n", (113811, 113900), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((114041, 114152), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not div object {self.__class__.__name__} & {value.__class__.__name__}."""'], {}), "(\n f'Can not div object {self.__class__.__name__} & {value.__class__.__name__}.'\n )\n", (114063, 114152), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((119855, 120008), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['f"""<Dictionary.check> parameter [dicionary] requires to be a [dict, Dictionary] not [{dictionary.__class__.__name__}]."""'], {}), "(\n f'<Dictionary.check> parameter [dicionary] requires to be a [dict, Dictionary] not [{dictionary.__class__.__name__}].'\n )\n", (119878, 120008), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((154360, 154410), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: icon."""'], {}), "('Define parameter: icon.')\n", (154383, 154410), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((154485, 155664), 'dev0s.classes.utils.__execute_script__', 'utils.__execute_script__', (['f\'\\n\\t\\t\\t\\t\\t#!/bin/bash\\n\\n\\t\\t\\t\\t\\t# settings.\\n\\t\\t\\t\\t\\ticon="{icon}"\\n\\t\\t\\t\\t\\tdest="{path}"\\n\\n\\t\\t\\t\\t\\t# check inputs\\n\\t\\t\\t\\t\\tif [ ! -f $icon ]; then \\n\\t\\t\\t\\t\\t\\techo "ERROR: File $1 does not exists"\\n\\t\\t\\t\\t\\t\\texit 1\\n\\t\\t\\t\\t\\telif [[ ! $icon =~ .*\\\\.(png|PNG|jpg|JPG) ]]; then\\n\\t\\t\\t\\t\\t\\techo "ERROR: Icon must be a .png|.jpg file"\\n\\t\\t\\t\\t\\t\\texit 1\\n\\t\\t\\t\\t\\telif [ -f $dest ]; then\\n\\t\\t\\t\\t\\t\\tfolder=false\\n\\t\\t\\t\\t\\telif [ -d $dest ]; then\\n\\t\\t\\t\\t\\t\\tfolder=true\\n\\t\\t\\t\\t\\telse\\n\\t\\t\\t\\t\\t\\techo \\\'ERROR: File|Folder destination does not exists\\\'\\n\\t\\t\\t\\t\\t\\texit 1\\n\\t\\t\\t\\t\\tfi\\n\\n\\t\\t\\t\\t\\t# create icns icon\\n\\t\\t\\t\\t\\tsips -i $icon > /dev/null\\n\\t\\t\\t\\t\\tDeRez -only icns $icon > /tmp/tmpicns.rsrc\\n\\n\\t\\t\\t\\t\\t# set icon\\n\\t\\t\\t\\t\\tif [ "$folder" = true ]; then\\n\\t\\t\\t\\t\\t\\tRez -append /tmp/tmpicns.rsrc -o $dest$\\\'/Icon\\r\\\'\\n\\t\\t\\t\\t\\t\\tSetFile -a C $dest\\n\\t\\t\\t\\t\\t\\tSetFile -a V $dest$\\\'/Icon\\r\\\'\\n\\t\\t\\t\\t\\telse\\n\\t\\t\\t\\t\\t\\tRez -append /tmp/tmpicns.rsrc -o $dest\\n\\t\\t\\t\\t\\t\\tSetFile -a C $dest\\n\\t\\t\\t\\t\\tfi\\n\\n\\t\\t\\t\\t\\t# clean up\\n\\t\\t\\t\\t\\trm /tmp/tmpicns.rsrc\\n\\t\\t\\t\\t\\texit 0\\n\\t\\t\\t\\t\\t\''], {}), '(\n f\'\\n\\t\\t\\t\\t\\t#!/bin/bash\\n\\n\\t\\t\\t\\t\\t# settings.\\n\\t\\t\\t\\t\\ticon="{icon}"\\n\\t\\t\\t\\t\\tdest="{path}"\\n\\n\\t\\t\\t\\t\\t# check inputs\\n\\t\\t\\t\\t\\tif [ ! -f $icon ]; then \\n\\t\\t\\t\\t\\t\\techo "ERROR: File $1 does not exists"\\n\\t\\t\\t\\t\\t\\texit 1\\n\\t\\t\\t\\t\\telif [[ ! $icon =~ .*\\\\.(png|PNG|jpg|JPG) ]]; then\\n\\t\\t\\t\\t\\t\\techo "ERROR: Icon must be a .png|.jpg file"\\n\\t\\t\\t\\t\\t\\texit 1\\n\\t\\t\\t\\t\\telif [ -f $dest ]; then\\n\\t\\t\\t\\t\\t\\tfolder=false\\n\\t\\t\\t\\t\\telif [ -d $dest ]; then\\n\\t\\t\\t\\t\\t\\tfolder=true\\n\\t\\t\\t\\t\\telse\\n\\t\\t\\t\\t\\t\\techo \\\'ERROR: File|Folder destination does not exists\\\'\\n\\t\\t\\t\\t\\t\\texit 1\\n\\t\\t\\t\\t\\tfi\\n\\n\\t\\t\\t\\t\\t# create icns icon\\n\\t\\t\\t\\t\\tsips -i $icon > /dev/null\\n\\t\\t\\t\\t\\tDeRez -only icns $icon > /tmp/tmpicns.rsrc\\n\\n\\t\\t\\t\\t\\t# set icon\\n\\t\\t\\t\\t\\tif [ "$folder" = true ]; then\\n\\t\\t\\t\\t\\t\\tRez -append /tmp/tmpicns.rsrc -o $dest$\\\'/Icon\\r\\\'\\n\\t\\t\\t\\t\\t\\tSetFile -a C $dest\\n\\t\\t\\t\\t\\t\\tSetFile -a V $dest$\\\'/Icon\\r\\\'\\n\\t\\t\\t\\t\\telse\\n\\t\\t\\t\\t\\t\\tRez -append /tmp/tmpicns.rsrc -o $dest\\n\\t\\t\\t\\t\\t\\tSetFile -a C $dest\\n\\t\\t\\t\\t\\tfi\\n\\n\\t\\t\\t\\t\\t# clean up\\n\\t\\t\\t\\t\\trm /tmp/tmpicns.rsrc\\n\\t\\t\\t\\t\\texit 0\\n\\t\\t\\t\\t\\t\'\n )\n', (154509, 155664), False, 'from dev0s.classes import utils\n'), ((160807, 160903), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {directory.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {directory.__class__}.')\n", (160829, 160903), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((161042, 161138), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {directory.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {directory.__class__}.')\n", (161064, 161138), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((161311, 161407), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {directory.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {directory.__class__}.')\n", (161333, 161407), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((161546, 161642), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {directory.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {directory.__class__}.')\n", (161568, 161642), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((163693, 163747), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Define parameter: [output]."""'], {}), "('Define parameter: [output].')\n", (163716, 163747), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((16990, 17036), 'dev0s.classes.utils.__execute__', 'utils.__execute__', (["['sudo', 'ls', '-ld', path]"], {}), "(['sudo', 'ls', '-ld', path])\n", (17007, 17036), False, 'from dev0s.classes import utils\n'), ((21826, 21900), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidOperatingSystem', 'Exceptions.InvalidOperatingSystem', (['f"""Unsupported operating system [{OS}]."""'], {}), "(f'Unsupported operating system [{OS}].')\n", (21859, 21900), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((66130, 66224), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {integer.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {integer.__class__}.')\n", (66152, 66224), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((66438, 66532), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {integer.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {integer.__class__}.')\n", (66460, 66532), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((66780, 66874), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {integer.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {integer.__class__}.')\n", (66802, 66874), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((67088, 67182), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {integer.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {integer.__class__}.')\n", (67110, 67182), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((73585, 73679), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse the date format from comparison [{comparison}]."""'], {}), "(\n f'Unable to parse the date format from comparison [{comparison}].')\n", (73606, 73679), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((73899, 73987), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse the date format from current [{current}]."""'], {}), "(\n f'Unable to parse the date format from current [{current}].')\n", (73920, 73987), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((74643, 74729), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse the date format from string [{string}]."""'], {}), "(\n f'Unable to parse the date format from string [{string}].')\n", (74664, 74729), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((75239, 75325), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse the date format from string [{string}]."""'], {}), "(\n f'Unable to parse the date format from string [{string}].')\n", (75260, 75325), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((77836, 77922), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse a Date() object from string [{string}]."""'], {}), "(\n f'Unable to parse a Date() object from string [{string}].')\n", (77857, 77922), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((79049, 79321), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse the date format from timestamp [{timestamp}]. Find out what the required format is and request a commit that updates the Date().parse_format() function with the required format (https://github.com/vandenberghinc/dev0s/)."""'], {}), "(\n f'Unable to parse the date format from timestamp [{timestamp}]. Find out what the required format is and request a commit that updates the Date().parse_format() function with the required format (https://github.com/vandenberghinc/dev0s/).'\n )\n", (79070, 79321), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((97756, 97849), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (97778, 97849), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((98041, 98134), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (98063, 98134), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((98359, 98452), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (98381, 98452), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((98644, 98737), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (98666, 98737), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((100462, 100607), 'dev0s.classes.defaults.exceptions.Exceptions.InstanceError', 'Exceptions.InstanceError', (['f"""Parameter [{self.__class__.__name__}.array] must be a [Array] or [list], not [{array.__class__.__name__}]."""'], {}), "(\n f'Parameter [{self.__class__.__name__}.array] must be a [Array] or [list], not [{array.__class__.__name__}].'\n )\n", (100486, 100607), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((111985, 112077), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {array.__class__}.')\n", (112007, 112077), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((112278, 112370), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {array.__class__}.')\n", (112300, 112370), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((112607, 112699), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {array.__class__}.')\n", (112629, 112699), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((112900, 112992), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {array.__class__}.')\n", (112922, 112992), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((116098, 116258), 'dev0s.classes.defaults.exceptions.Exceptions.InstanceError', 'Exceptions.InstanceError', (['f"""Parameter [{self.__class__.__name__}.dictionary] must be a [Dictionary] or [dict], not [{dictionary.__class__.__name__}]."""'], {}), "(\n f'Parameter [{self.__class__.__name__}.dictionary] must be a [Dictionary] or [dict], not [{dictionary.__class__.__name__}].'\n )\n", (116122, 116258), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((125222, 125295), 'dev0s.classes.defaults.exceptions.Exceptions.UnpackError', 'Exceptions.UnpackError', (['f"""Dictionary does not contain attribute [{key}]."""'], {}), "(f'Dictionary does not contain attribute [{key}].')\n", (125244, 125295), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((134522, 134619), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {dictionary.__class__}.')\n", (134544, 134619), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((134856, 134953), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {dictionary.__class__}.')\n", (134878, 134953), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((135223, 135320), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {dictionary.__class__}.')\n", (135245, 135320), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((135557, 135654), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {dictionary.__class__}.')\n", (135579, 135654), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((152666, 152708), 'dev0s.classes.utils.generate.shell_string', 'utils.generate.shell_string', ([], {'length': 'length'}), '(length=length)\n', (152693, 152708), False, 'from dev0s.classes import utils\n'), ((157993, 158067), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidOperatingSystem', 'Exceptions.InvalidOperatingSystem', (['f"""Unsupported operating system [{OS}]."""'], {}), "(f'Unsupported operating system [{OS}].')\n", (158026, 158067), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((6640, 6749), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse a bool from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse a bool from ({variable.__class__.__name__}) [{variable}].'\n )\n", (6661, 6749), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((24692, 24779), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {path.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {path.__class__}.')\n", (24714, 24779), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((24985, 25072), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {path.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {path.__class__}.')\n", (25007, 25072), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((25307, 25394), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {path.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {path.__class__}.')\n", (25329, 25394), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((49539, 49628), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {string.__class__}.')\n", (49561, 49628), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((49853, 49942), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {string.__class__}.')\n", (49875, 49942), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((50188, 50277), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {string.__class__}.')\n", (50210, 50277), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((50513, 50602), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {string.__class__}.')\n", (50535, 50602), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((51179, 51272), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (51201, 51272), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((51505, 51598), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (51527, 51598), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((51865, 51958), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (51887, 51958), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((52191, 52284), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not compare object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not compare object {self.__class__} & {string.__class__}.')\n", (52213, 52284), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((53041, 53133), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not concat object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not concat object {self.__class__} & {string.__class__}.')\n", (53063, 53133), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((54549, 54641), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not assign object {self.__class__} & {string.__class__}."""'], {}), "(\n f'Can not assign object {self.__class__} & {string.__class__}.')\n", (54571, 54641), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((57897, 57990), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not assign object {self.__class__} & {boolean.__class__}."""'], {}), "(\n f'Can not assign object {self.__class__} & {boolean.__class__}.')\n", (57919, 57990), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((61197, 61218), 'math.ceil', 'math.ceil', (['self.value'], {}), '(self.value)\n', (61206, 61218), False, 'import shutil, math\n'), ((61692, 61780), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {value.__class__}.')\n", (61714, 61780), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((62021, 62109), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not sub object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not sub object {self.__class__} & {value.__class__}.')\n", (62043, 62109), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((62351, 62439), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {value.__class__}.')\n", (62373, 62439), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((62673, 62761), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not sub object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not sub object {self.__class__} & {value.__class__}.')\n", (62695, 62761), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((62994, 63082), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mod object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mod object {self.__class__} & {value.__class__}.')\n", (63016, 63082), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((63323, 63411), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mul object {self.__class__} & {value.__class__}.')\n", (63345, 63411), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((63652, 63740), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mul object {self.__class__} & {value.__class__}.')\n", (63674, 63740), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((63982, 64070), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mul object {self.__class__} & {value.__class__}.')\n", (64004, 64070), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((64315, 64403), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mul object {self.__class__} & {value.__class__}.')\n", (64337, 64403), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((64649, 64737), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mul object {self.__class__} & {value.__class__}.')\n", (64671, 64737), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((64982, 65070), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mul object {self.__class__} & {value.__class__}.')\n", (65004, 65070), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((65336, 65424), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not mul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not mul object {self.__class__} & {value.__class__}.')\n", (65358, 65424), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((65668, 65759), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not matmul object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not matmul object {self.__class__} & {value.__class__}.')\n", (65690, 65759), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((68973, 69064), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not assign object {self.__class__} & {value.__class__}."""'], {}), "(\n f'Can not assign object {self.__class__} & {value.__class__}.')\n", (68995, 69064), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((72234, 72250), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (72248, 72250), False, 'from datetime import datetime, timezone\n'), ((81610, 81696), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {add.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {add.__class__}.')\n", (81632, 81696), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((81939, 82026), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not iadd object {self.__class__} & {add.__class__}."""'], {}), "(\n f'Can not iadd object {self.__class__} & {add.__class__}.')\n", (81961, 82026), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((82283, 82369), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not sub object {self.__class__} & {add.__class__}."""'], {}), "(\n f'Can not sub object {self.__class__} & {add.__class__}.')\n", (82305, 82369), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((82612, 82699), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not isub object {self.__class__} & {add.__class__}."""'], {}), "(\n f'Can not isub object {self.__class__} & {add.__class__}.')\n", (82634, 82699), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((82974, 83060), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not sub object {self.__class__} & {add.__class__}."""'], {}), "(\n f'Can not sub object {self.__class__} & {add.__class__}.')\n", (82996, 83060), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((103473, 103560), 'dev0s.classes.defaults.exceptions.Exceptions.InstanceError', 'Exceptions.InstanceError', (['"""Parameter [item] must either be None, String or Array."""'], {}), "(\n 'Parameter [item] must either be None, String or Array.')\n", (103497, 103560), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((110208, 110296), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {array.__class__}.')\n", (110230, 110296), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((110520, 110608), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {array.__class__}.')\n", (110542, 110608), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((110818, 110906), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {array.__class__}.')\n", (110840, 110906), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((111193, 111281), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {array.__class__}.')\n", (111215, 111281), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((111587, 111675), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {array.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {array.__class__}.')\n", (111609, 111675), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((126423, 126546), 'dev0s.classes.defaults.exceptions.Exceptions.InstanceError', 'Exceptions.InstanceError', (['f"""Parameter [item] must either be [None], [String] or [Array], not [{item.__class__}]."""'], {}), "(\n f'Parameter [item] must either be [None], [String] or [Array], not [{item.__class__}].'\n )\n", (126447, 126546), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((132224, 132317), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {dictionary.__class__}.')\n", (132246, 132317), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((132610, 132703), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {dictionary.__class__}.')\n", (132632, 132703), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((134064, 134157), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {dictionary.__class__}.')\n", (134086, 134157), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((156110, 156205), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['"""Metric [directory] is required when obtaining metric [content]."""'], {}), "(\n 'Metric [directory] is required when obtaining metric [content].')\n", (156133, 156205), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((166131, 166162), 'dev0s.classes.utils.generate.shell_string', 'utils.generate.shell_string', (['(24)'], {}), '(24)\n', (166158, 166162), False, 'from dev0s.classes import utils\n'), ((6870, 6978), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse a int from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse a int from ({variable.__class__.__name__}) [{variable}].'\n )\n", (6891, 6978), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((71701, 71973), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse the date format from timestamp [{timestamp}]. Find out what the required format is and request a commit that updates the Date().parse_format() function with the required format (https://github.com/vandenberghinc/dev0s/)."""'], {}), "(\n f'Unable to parse the date format from timestamp [{timestamp}]. Find out what the required format is and request a commit that updates the Date().parse_format() function with the required format (https://github.com/vandenberghinc/dev0s/).'\n )\n", (71722, 71973), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((87216, 87288), 'dev0s.classes.defaults.exceptions.Exceptions.JSONDecodeError', 'Exceptions.JSONDecodeError', (['f"""Unable to dump expected json data: {data}"""'], {}), "(f'Unable to dump expected json data: {data}')\n", (87242, 87288), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((87630, 87733), 'dev0s.classes.console.Loader', 'console.Loader', (['f"""&RED&Do not interrupt!&END& Saving file [{path}] (attempt: {__attempt__})."""'], {}), "(\n f'&RED&Do not interrupt!&END& Saving file [{path}] (attempt: {__attempt__}).'\n )\n", (87644, 87733), False, 'from dev0s.classes import console\n'), ((7125, 7235), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse a float from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse a float from ({variable.__class__.__name__}) [{variable}].'\n )\n", (7146, 7235), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((8635, 8725), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['f"""Specified format [{format}] is not a valid format option."""'], {}), "(\n f'Specified format [{format}] is not a valid format option.')\n", (8658, 8725), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((133167, 133260), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {dictionary.__class__}.')\n", (133189, 133260), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((133666, 133759), 'dev0s.classes.defaults.exceptions.Exceptions.FormatError', 'Exceptions.FormatError', (['f"""Can not add object {self.__class__} & {dictionary.__class__}."""'], {}), "(\n f'Can not add object {self.__class__} & {dictionary.__class__}.')\n", (133688, 133759), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((160142, 160182), 'dev0s.classes.console.Loader', 'console.Loader', (['f"""Updating file {path}."""'], {}), "(f'Updating file {path}.')\n", (160156, 160182), False, 'from dev0s.classes import console\n'), ((7374, 7482), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse a str from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse a str from ({variable.__class__.__name__}) [{variable}].'\n )\n", (7395, 7482), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((16524, 16619), 'dev0s.classes.defaults.exceptions.Exceptions.InvalidUsage', 'Exceptions.InvalidUsage', (['f"""Selected an invalid size format [{format}], options {options}."""'], {}), "(\n f'Selected an invalid size format [{format}], options {options}.')\n", (16547, 16619), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((85260, 85289), 'dev0s.classes.defaults.exceptions.Exceptions.JSONDecodeError', 'Exceptions.JSONDecodeError', (['e'], {}), '(e)\n', (85286, 85289), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((85580, 85609), 'dev0s.classes.defaults.exceptions.Exceptions.JSONDecodeError', 'Exceptions.JSONDecodeError', (['e'], {}), '(e)\n', (85606, 85609), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((7687, 7798), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse an array from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse an array from ({variable.__class__.__name__}) [{variable}].'\n )\n", (7708, 7798), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((8247, 8356), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse a dict from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse a dict from ({variable.__class__.__name__}) [{variable}].'\n )\n", (8268, 8356), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((7960, 8071), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse an array from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse an array from ({variable.__class__.__name__}) [{variable}].'\n )\n", (7981, 8071), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n'), ((8518, 8627), 'dev0s.classes.defaults.exceptions.Exceptions.ParseError', 'Exceptions.ParseError', (['f"""Unable to parse a dict from ({variable.__class__.__name__}) [{variable}]."""'], {}), "(\n f'Unable to parse a dict from ({variable.__class__.__name__}) [{variable}].'\n )\n", (8539, 8627), False, 'from dev0s.classes.defaults.exceptions import Exceptions\n')]
import pygame from pygame.locals import * from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * def main(): pygame.init() glutInit() display = (800,600) pygame.display.set_mode(display, DOUBLEBUF|OPENGL) gluPerspective(45, (display[0]/display[1]), 0.1, 50.0) glTranslatef(0.0, 0.0, -5) while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() glRotatef(1, 0, 1, 0) glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT) glColor3f(0.0, 1.0, 0.0) glutWireTorus(0.2, 0.8, 50, 50) pygame.display.flip() pygame.time.wait(10) main()
[ "pygame.init", "pygame.quit", "pygame.event.get", "pygame.time.wait", "pygame.display.set_mode", "pygame.display.flip" ]
[((132, 145), 'pygame.init', 'pygame.init', ([], {}), '()\n', (143, 145), False, 'import pygame\n'), ((180, 232), 'pygame.display.set_mode', 'pygame.display.set_mode', (['display', '(DOUBLEBUF | OPENGL)'], {}), '(display, DOUBLEBUF | OPENGL)\n', (203, 232), False, 'import pygame\n'), ((346, 364), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (362, 364), False, 'import pygame\n'), ((567, 588), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (586, 588), False, 'import pygame\n'), ((591, 611), 'pygame.time.wait', 'pygame.time.wait', (['(10)'], {}), '(10)\n', (607, 611), False, 'import pygame\n'), ((403, 416), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (414, 416), False, 'import pygame\n')]
from django.db import models # Create your models here. ########################################################################## #投票 class Vote(models.Model): data=models.CharField(max_length=255) ##########################################################################
[ "django.db.models.CharField" ]
[((171, 203), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (187, 203), False, 'from django.db import models\n')]
import argparse import torch def get_args(): parser = argparse.ArgumentParser(description='RL') parser.add_argument('--algo', default='a2c', help='algorithm to use: a2c | ppo ') parser.add_argument('--lr', type=float, default=7e-5, help='learning rate (default: 7e-4)') parser.add_argument('--eps', type=float, default=1e-5, help='RMSprop optimizer epsilon (default: 1e-5)') parser.add_argument('--alpha', type=float, default=0.99, help='RMSprop optimizer apha (default: 0.99)') parser.add_argument('--gamma', type=float, default=0.99, help='discount factor for rewards (default: 0.99)') parser.add_argument('--max-grad-norm', type=float, default=0.5, help='max norm off gradients (default: 0.5)') parser.add_argument('--seed', type=int, default=1, help='random seed (default: 1)') parser.add_argument('--num-processes', type=int, default=1, help='how many training CPU processes to use (default: 16)') parser.add_argument('--num-steps', type=int, default=32, help='number of forward steps in A2C (default: 5)') parser.add_argument('--clip-param', type=float, default=0.2, help='clip parameter (default: 0.2)') parser.add_argument('--log-interval', type=int, default=50, help='log interval, one log per n updates (default: 10)') parser.add_argument('--num-frames', type=int, default=80000, help='number of frames to train (default: 10e6)') parser.add_argument('--cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--obs_size', type=int, default=200, help='observation vector size') parser.add_argument('--cycle_len', type=int, default=500, help='observation vector size') parser.add_argument('--debug', action='store_true', default=False, help='whether to record the logfile') parser.add_argument('--num_models', type=int, default=3, help='number of the model to use') parser.add_argument('--beta', type=float, default=1, help='balance the accuracy and latency when calculate the reward') parser.add_argument('--tau', type=float, default=2, help='max waiting time for enqueue') parser.add_argument('--max_latency', type=float, default=16, help='accept latency for each request') parser.add_argument('--policy', choices=['async', 'sync'], default='async', help='policy') args = parser.parse_args() print("cuda: %s" % str(args.cuda)) if args.cuda: assert torch.cuda.is_available(), 'CUDA is not available in this machine!' return args if __name__ == '__main__': get_args()
[ "torch.cuda.is_available", "argparse.ArgumentParser" ]
[((60, 101), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""RL"""'}), "(description='RL')\n", (83, 101), False, 'import argparse\n'), ((2889, 2914), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2912, 2914), False, 'import torch\n')]
# course: ICS3U1 2019 # exercise: Culminating Activity # date: 2019-12-06 # student number: 340926187 # name: <NAME> # description: Two players (Mr Chun & Mr Pileggi) running around the school # collecting food for the food drive. # sprite classes import pygame import random import math import os from settings import * class Player(pygame.sprite.Sprite): """ player class that contains all data and functions related to the player """ def __init__(self, game, x, y, playerNum): """ initalizes a player sprite when an instance is created in the game parameter, at the x and y paramters, and with the player number """ self.playerNum = playerNum self.groups = game.all_sprites, game.players pygame.sprite.Sprite.__init__(self, self.groups) self.game = game # image selection for each player if self.playerNum == 1: self.image = pygame.transform.rotate(self.game.player1_image, 90) else: self.image = pygame.transform.rotate(self.game.player2_image, 90) self.rect = self.image.get_rect() # setting the players base movement velocity self.velX, self.velY = 0, 0 # setting the players position on the grid self.x = x * tileSize - tileSize self.y = y * tileSize - tileSize # players starting score self.score = 0 # if joysticks are connected, enable joystick controls for the player self.joystick_count = pygame.joystick.get_count() if self.joystick_count > 0: self.joystick_enabled = True else: self.joystick_enabled = False def get_keys(self): """ checks for all keys pressed and changes the players velocity on that axis to the player speed varaiable """ self.velX, self.velY = 0, 0 keys = pygame.key.get_pressed() # player 1 controls if self.playerNum == 1: if keys[pygame.K_a]: self.velX = -player_speed if keys[pygame.K_d]: self.velX = player_speed if keys[pygame.K_w]: self.velY = -player_speed if keys[pygame.K_s]: self.velY = player_speed # player 2 controls else: if keys[pygame.K_LEFT]: self.velX = -player_speed if keys[pygame.K_RIGHT]: self.velX = player_speed if keys[pygame.K_UP]: self.velY = -player_speed if keys[pygame.K_DOWN]: self.velY = player_speed # if moving diagonally reduce the speed if self.velX > 0 and self.velY > 0: self.velX = player_speed * 0.701 self.velY = player_speed * 0.701 elif self.velX < 0 and self.velY < 0: self.velX = player_speed * -0.701 self.velY = player_speed * -0.701 def get_joystick_axis(self): """ changes the velocity of the character in the x and y based on joystick input """ # joystick controls for two seperate controllers if self.joystick_count == 2: # joystick control for player 1 if self.playerNum == 1: # joystick initialization joystick = pygame.joystick.Joystick(1) joystick.init() # different joystick settings for Xbox controllers if joystick.get_name() == 'Xbox Wireless Controller' or 'Controller (Xbox One For Windows)': # checks for axis movement and changes velX and velY if round(joystick.get_axis(0)) != 0 or round(joystick.get_axis(1)) != 0: self.velX += joystick.get_axis(0) * player_speed self.velY += joystick.get_axis(1) * player_speed else: if round(joystick.get_axis(1)) != 0 or round(joystick.get_axis(0)) != 0: self.velX += joystick.get_axis(1) * player_speed self.velY -= joystick.get_axis(0) * player_speed # joystick control for player 2 elif self.playerNum == 2: # joystick initialization joystick = pygame.joystick.Joystick(0) joystick.init() # Different joystick settings for Xbox controllers if joystick.get_name() == 'Xbox Wireless Controller' or 'Controller (Xbox One For Windows)': # checks for axis movement and changes velX and velY if round(joystick.get_axis(0)) != 0 or round(joystick.get_axis(1)) != 0: self.velX += joystick.get_axis(0) * player_speed self.velY += joystick.get_axis(1) * player_speed else: if round(joystick.get_axis(1)) != 0 or round(joystick.get_axis(0)) != 0: self.velX += joystick.get_axis(1) * player_speed self.velY -= joystick.get_axis(0) * player_speed # joystick controls for a single controller elif self.joystick_count == 1: # joystick control for player 1 if self.playerNum == 1: # joystick initialization joystick = pygame.joystick.Joystick(0) joystick.init() # different joystick settings for Xbox controllers if joystick.get_name() == 'Xbox Wireless Controller' or 'Controller (Xbox One For Windows)': # checks for axis movement and changes velX and velY if round(joystick.get_axis(0)) != 0 or round(joystick.get_axis(1)) != 0: self.velX += joystick.get_axis(0) * player_speed self.velY += joystick.get_axis(1) * player_speed else: if round(joystick.get_axis(1)) != 0 or round(joystick.get_axis(0)) != 0: self.velX += joystick.get_axis(1) * player_speed self.velY -= joystick.get_axis(0) * player_speed # joystick control for player 2 elif self.playerNum == 2: # joystick initialization joystick = pygame.joystick.Joystick(0) joystick.init() # different joystick settings for Xbox controllers if joystick.get_name() == 'Xbox Wireless Controller' or 'Controller (Xbox One For Windows)': # checks for axis movement and changes velX and velY if round(joystick.get_axis(4)) != 0 or round(joystick.get_axis(3)) != 0: self.velX += joystick.get_axis(4) * player_speed self.velY += joystick.get_axis(3) * player_speed else: if round(joystick.get_axis(1)) != 0 or round(joystick.get_axis(0)) != 0: self.velX += joystick.get_axis(2) * player_speed self.velY -= joystick.get_axis(3) * player_speed def direction(self): """ rotates the player sprite based on the current direction and new direction """ # player 1 rotation if self.playerNum == 1: if self.velX > 100: if self.velY < -100: self.image = pygame.transform.rotate(self.game.player1_image, 45) elif self.velY > 100: self.image = pygame.transform.rotate(self.game.player1_image, -45) else: self.image = pygame.transform.rotate(self.game.player1_image, 0) elif self.velX < -100: if self.velY < -100: self.image = pygame.transform.rotate(self.game.player1_image, 135) elif self.velY > 100: self.image = pygame.transform.rotate(self.game.player1_image, -135) else: self.image = pygame.transform.rotate(self.game.player1_image, 180) else: if self.velY < -100: self.image = pygame.transform.rotate(self.game.player1_image, 90) elif self.velY > 100: self.image = pygame.transform.rotate(self.game.player1_image, -90) # player 2 rotation else: if self.velX > 100: if self.velY < -100: self.image = pygame.transform.rotate(self.game.player2_image, 45) elif self.velY > 100: self.image = pygame.transform.rotate(self.game.player2_image, -45) else: self.image = pygame.transform.rotate(self.game.player2_image, 0) elif self.velX < -100: if self.velY < -100: self.image = pygame.transform.rotate(self.game.player2_image, 135) elif self.velY > 100: self.image = pygame.transform.rotate(self.game.player2_image, -135) else: self.image = pygame.transform.rotate(self.game.player2_image, 180) else: if self.velY < -100: self.image = pygame.transform.rotate(self.game.player2_image, 90) elif self.velY > 100: self.image = pygame.transform.rotate(self.game.player2_image, -90) def wall_collision(self, axis): """ checks for player collision with the all wall sprites on the axis given and prevents player movement onto it """ if axis == 'x': collides = pygame.sprite.spritecollide(self, self.game.walls, False) if collides: if self.velX > 0: self.x = collides[0].rect.left - self.rect.width if self.velX < 0: self.x = collides[0].rect.right self.velX = 0 self.rect.x = self.x if axis == 'y': collides = pygame.sprite.spritecollide(self, self.game.walls, False) if collides: if self.velY > 0: self.y = collides[0].rect.top - self.rect.height if self.velY < 0: self.y = collides[0].rect.bottom self.velY = 0 self.rect.y = self.y def player_collision(self, axis): """ checks for player collision with the all wall sprites on the axis given and prevents player movement onto it """ # checks for player 1 collision to player 2 if self.playerNum == 1: if axis == 'x': if self.rect.colliderect(self.game.player2): if self.velX > 0: self.x = self.game.player2.rect.left - self.rect.width if self.velX < 0: self.x = self.game.player2.rect.right self.velX = 0 self.rect.x = self.x if axis == 'y': if self.rect.colliderect(self.game.player2): if self.velY > 0: self.y = self.game.player2.rect.top - self.rect.height if self.velY < 0: self.y = self.game.player2.rect.bottom self.velY = 0 self.rect.y = self.y # checks for player 2 collision to player 1 else: if axis == 'x': if self.rect.colliderect(self.game.player1): if self.velX > 0: self.x = self.game.player1.rect.left - self.rect.width if self.velX < 0: self.x = self.game.player1.rect.right self.velX = 0 self.rect.x = self.x if axis == 'y': if self.rect.colliderect(self.game.player1): if self.velY > 0: self.y = self.game.player1.rect.top - self.rect.height if self.velY < 0: self.y = self.game.player1.rect.bottom self.velY = 0 self.rect.y = self.y def food_collision(self): """ checks for player collision with all food sprites killing any sprites it comes collides with and adding 1 to the players score value """ collides = pygame.sprite.spritecollide(self, self.game.food, True) if collides: self.score += 1 def update(self): """ updates the players position """ self.get_keys() if self.joystick_enabled == True: self.get_joystick_axis() self.direction() self.x += self.velX * self.game.dt self.y += self.velY * self.game.dt self.rect.x = self.x self.wall_collision('x') self.player_collision('x') self.rect.y = self.y self.wall_collision('y') self.player_collision('y') self.food_collision() class Wall(pygame.sprite.Sprite): """ class to contain all the data for wall sprites """ def __init__(self, game, x, y): """ initalizes a wall sprite when an instance is create in the game parameter, at the x and y paramters """ self.groups = game.all_sprites, game.walls pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = game.wall_image self.rect = self.image.get_rect() self.x = x self.y = y self.rect.x = x * tileSize self.rect.y = y * tileSize class Floor(pygame.sprite.Sprite): """ class to contain all the data for floor sprites """ def __init__(self, game, x, y): """ initalizes a floor sprite when an instance is created in the game parameter, at the x and y paramters """ self.groups = game.all_sprites, game.floor pygame.sprite.Sprite.__init__(self, self.groups) self.game = game self.image = game.floor_image self.rect = self.image.get_rect() self.x = x self.y = y self.rect.x = x * tileSize self.rect.y = y * tileSize class Food(pygame.sprite.Sprite): """ class to contain all the data for food sprites """ def __init__(self, game, x, y): """ initalizes a food sprite when an instance is created in the game parameter, at the x and y paramters """ self.groups = game.all_sprites, game.food pygame.sprite.Sprite.__init__(self, self.groups) self.game = game # picks random image for the sprite self.image = pygame.image.load(os.path.join(food_folder, (random.choice(food_images)))).convert_alpha() self.rect = self.image.get_rect() self.x = x self.y = y self.rect.x = x * tileSize self.rect.y = y * tileSize # checks if the sprite is allowed to spawn in the x and y self.spawnable = False collided = pygame.sprite.spritecollide(self, self.game.floor, False) for sprite in collided: if self.x == sprite.x and self.y == sprite.y: self.spawnable = True if self.spawnable == False: self.kill()
[ "pygame.joystick.get_count", "random.choice", "pygame.sprite.spritecollide", "pygame.sprite.Sprite.__init__", "pygame.joystick.Joystick", "pygame.transform.rotate", "pygame.key.get_pressed" ]
[((821, 869), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self', 'self.groups'], {}), '(self, self.groups)\n', (850, 869), False, 'import pygame\n'), ((1572, 1599), 'pygame.joystick.get_count', 'pygame.joystick.get_count', ([], {}), '()\n', (1597, 1599), False, 'import pygame\n'), ((1953, 1977), 'pygame.key.get_pressed', 'pygame.key.get_pressed', ([], {}), '()\n', (1975, 1977), False, 'import pygame\n'), ((12547, 12602), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['self', 'self.game.food', '(True)'], {}), '(self, self.game.food, True)\n', (12574, 12602), False, 'import pygame\n'), ((13513, 13561), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self', 'self.groups'], {}), '(self, self.groups)\n', (13542, 13561), False, 'import pygame\n'), ((14117, 14165), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self', 'self.groups'], {}), '(self, self.groups)\n', (14146, 14165), False, 'import pygame\n'), ((14718, 14766), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self', 'self.groups'], {}), '(self, self.groups)\n', (14747, 14766), False, 'import pygame\n'), ((15217, 15274), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['self', 'self.game.floor', '(False)'], {}), '(self, self.game.floor, False)\n', (15244, 15274), False, 'import pygame\n'), ((995, 1047), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(90)'], {}), '(self.game.player1_image, 90)\n', (1018, 1047), False, 'import pygame\n'), ((1087, 1139), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(90)'], {}), '(self.game.player2_image, 90)\n', (1110, 1139), False, 'import pygame\n'), ((9742, 9799), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['self', 'self.game.walls', '(False)'], {}), '(self, self.game.walls, False)\n', (9769, 9799), False, 'import pygame\n'), ((10128, 10185), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['self', 'self.game.walls', '(False)'], {}), '(self, self.game.walls, False)\n', (10155, 10185), False, 'import pygame\n'), ((3404, 3431), 'pygame.joystick.Joystick', 'pygame.joystick.Joystick', (['(1)'], {}), '(1)\n', (3428, 3431), False, 'import pygame\n'), ((4362, 4389), 'pygame.joystick.Joystick', 'pygame.joystick.Joystick', (['(0)'], {}), '(0)\n', (4386, 4389), False, 'import pygame\n'), ((5408, 5435), 'pygame.joystick.Joystick', 'pygame.joystick.Joystick', (['(0)'], {}), '(0)\n', (5432, 5435), False, 'import pygame\n'), ((7475, 7527), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(45)'], {}), '(self.game.player1_image, 45)\n', (7498, 7527), False, 'import pygame\n'), ((8564, 8616), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(45)'], {}), '(self.game.player2_image, 45)\n', (8587, 8616), False, 'import pygame\n'), ((6366, 6393), 'pygame.joystick.Joystick', 'pygame.joystick.Joystick', (['(0)'], {}), '(0)\n', (6390, 6393), False, 'import pygame\n'), ((7599, 7652), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(-45)'], {}), '(self.game.player1_image, -45)\n', (7622, 7652), False, 'import pygame\n'), ((7708, 7759), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(0)'], {}), '(self.game.player1_image, 0)\n', (7731, 7759), False, 'import pygame\n'), ((7865, 7918), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(135)'], {}), '(self.game.player1_image, 135)\n', (7888, 7918), False, 'import pygame\n'), ((8242, 8294), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(90)'], {}), '(self.game.player1_image, 90)\n', (8265, 8294), False, 'import pygame\n'), ((8688, 8741), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(-45)'], {}), '(self.game.player2_image, -45)\n', (8711, 8741), False, 'import pygame\n'), ((8797, 8848), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(0)'], {}), '(self.game.player2_image, 0)\n', (8820, 8848), False, 'import pygame\n'), ((8954, 9007), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(135)'], {}), '(self.game.player2_image, 135)\n', (8977, 9007), False, 'import pygame\n'), ((9331, 9383), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(90)'], {}), '(self.game.player2_image, 90)\n', (9354, 9383), False, 'import pygame\n'), ((14903, 14929), 'random.choice', 'random.choice', (['food_images'], {}), '(food_images)\n', (14916, 14929), False, 'import random\n'), ((7990, 8044), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(-135)'], {}), '(self.game.player1_image, -135)\n', (8013, 8044), False, 'import pygame\n'), ((8100, 8153), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(180)'], {}), '(self.game.player1_image, 180)\n', (8123, 8153), False, 'import pygame\n'), ((8366, 8419), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player1_image', '(-90)'], {}), '(self.game.player1_image, -90)\n', (8389, 8419), False, 'import pygame\n'), ((9079, 9133), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(-135)'], {}), '(self.game.player2_image, -135)\n', (9102, 9133), False, 'import pygame\n'), ((9189, 9242), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(180)'], {}), '(self.game.player2_image, 180)\n', (9212, 9242), False, 'import pygame\n'), ((9455, 9508), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.game.player2_image', '(-90)'], {}), '(self.game.player2_image, -90)\n', (9478, 9508), False, 'import pygame\n')]
from abc import ABCMeta, abstractmethod from collections import OrderedDict from math import inf from typing import Iterator, Any, List, Dict, Type, Optional EPSILON = 1e-4 class Error(Exception): pass class ConstraintError(Error): pass class Constraint(metaclass=ABCMeta): @abstractmethod def isvalid(self, schedule: "Schedule", chunk: "Chunk") -> bool: pass def geterror(self, schedule: "Schedule", chunk: "Chunk") -> str: return "'{}' constraint is not met".format(type(self).__name__) class Property(metaclass=ABCMeta): @abstractmethod def get(self, schedule: "Schedule") -> Any: pass class Operator(metaclass=ABCMeta): @abstractmethod def apply(self, schedule: "Schedule") -> Any: pass class Task: def __init__(self, name: str): self.name = name self.constraints = OrderedDict() def __contains__(self, constraint_cls: Type["Constraint"]) -> bool: return constraint_cls in self.constraints def __iter__(self) -> Iterator[Type["Constraint"]]: return iter(self.constraints) def __getitem__(self, constraint_cls: Type["Constraint"]) -> "Constraint": return self.constraints[constraint_cls] def __getattr__(self, attr: str): for ctr in self.constraints.values(): if attr in ctr.__dict__: return ctr.__dict__[attr] raise AttributeError("'{}' task has no attribute '{}'".format(self.name, attr)) def set(self, constraint: "Constraint") -> "Task": self.constraints[type(constraint)] = constraint return self class Chunk: def __init__(self, task: "Task", start_time: float, proctimes: Dict[Any, float]): self.task = task self.start_time = start_time self.proctimes = proctimes def completion_time(self, node: Any) -> float: if node in self.proctimes: return self.start_time + self.proctimes[node] else: return inf def isvalid(self, schedule: "Schedule") -> bool: for ctr in self.task.constraints.values(): if not ctr.isvalid(schedule, self): return False return True def append_to(self, schedule: "Schedule"): for ctr in self.task.constraints.values(): if not ctr.isvalid(schedule, self): raise ConstraintError(ctr.geterror(schedule, self)) if self.task in schedule.taskmap: schedule.taskmap[self.task].append(self) else: schedule.taskmap[self.task] = [self] for node in self.proctimes: if node in schedule.nodemap: schedule.nodemap[node].add(self) else: schedule.nodemap[node] = ChunkTree(node).add(self) def remove_from(self, schedule: "Schedule"): schedule.taskmap[self.task].remove(self) for node in self.proctimes: schedule.nodemap[node].remove(self) class ChunkNode: def __init__(self, chunk: "Chunk"): self.chunk = chunk self.height = 1 self.hi = -inf self.left = None self.right = None class ChunkTree: def __init__(self, node: Any): self.node = node self.root = None def __iter__(self) -> Optional[Iterator["ChunkNode"]]: return self._iter_from(self.root) def _iter_from(self, root: Optional["ChunkNode"]) -> Optional[Iterator["ChunkNode"]]: if root is None: return None else: yield from self._iter_from(root.left) yield root yield from self._iter_from(root.right) def at(self, time: float) -> List["ChunkNode"]: nodes = [] self._at_from(self.root, time, nodes) return nodes def _at_from(self, root: Optional["ChunkNode"], time: float, nodes: List["ChunkNode"]): if root is not None: if root.left is not None and time < root.left.hi: self._at_from(root.left, time, nodes) if root.chunk.start_time <= time < root.chunk.completion_time(self.node): nodes.append(root) self._at_from(root.right, time, nodes) def over(self, lo: float, hi: float) -> List["ChunkNode"]: nodes = [] self._over_from(self.root, lo, hi, nodes) return nodes def _over_from(self, root: Optional["ChunkNode"], lo: float, hi: float, nodes: List["ChunkNode"]): if root is not None: if root.left is not None and lo < root.left.hi: self._over_from(root.left, lo, hi, nodes) if lo < root.chunk.completion_time(self.node) and root.chunk.start_time < hi: nodes.append(root) self._over_from(root.right, lo, hi, nodes) def add(self, chunk: "Chunk") -> "ChunkTree": self.root = self._add_from(self.root, chunk) return self def _add_from(self, root: Optional["ChunkNode"], chunk: "Chunk") -> "ChunkNode": if root is None: treenode = ChunkNode(chunk) treenode.hi = chunk.completion_time(self.node) return treenode else: if chunk.start_time < root.chunk.start_time: root.left = self._add_from(root.left, chunk) else: root.right = self._add_from(root.right, chunk) root.height = 1 + max(self._height(root.left), self._height(root.right)) root.hi = max(self._hi(root), chunk.completion_time(self.node)) return self._rotate(root) def remove(self, chunk: "Chunk") -> "ChunkTree": self.root = self._remove_from(self.root, chunk) return self def _remove_from(self, root: Optional["ChunkNode"], chunk: "Chunk") -> Optional["ChunkNode"]: if root is None: return None else: if chunk.start_time < root.chunk.start_time: root.left = self._remove_from(root.left, chunk) elif chunk.start_time > root.chunk.start_time: root.right = self._remove_from(root.right, chunk) else: if root.left is None: return root.right elif root.right is None: return root.left else: successor = self._min_from(root.right) root.chunk = successor.chunk root.right = self._remove_from(root.right, successor.chunk) root.height = 1 + max(self._height(root.left), self._height(root.right)) root.hi = max(root.chunk.completion_time(self.node), self._hi(root.left), self._hi(root.right)) return self._rotate(root) def _rotate(self, root: "ChunkNode") -> "ChunkNode": balance = self._balance(root) if balance > 1 and self._balance(root.left) >= 0: return self._rotate_right(root) elif balance > 1 and self._balance(root.left) < 0: root.left = self._rotate_left(root.left) return self._rotate_right(root) elif balance < -1 and self._balance(root.right) <= 0: return self._rotate_left(root) elif balance < -1 and self._balance(root.right) > 0: root.right = self._rotate_right(root.right) return self._rotate_left(root) else: return root def _rotate_left(self, root: "ChunkNode") -> "ChunkNode": pivot = root.right child = pivot.left pivot.left = root root.right = child root.height = 1 + max(self._height(root.left), self._height(root.right)) root.hi = max(root.chunk.completion_time(self.node), self._hi(root.left), self._hi(root.right)) pivot.height = 1 + max(self._height(pivot.left), self._height(pivot.right)) pivot.hi = max(pivot.chunk.completion_time(self.node), self._hi(pivot.left), self._hi(pivot.right)) return pivot def _rotate_right(self, root: "ChunkNode") -> "ChunkNode": pivot = root.left child = pivot.right pivot.right = root root.left = child root.height = 1 + max(self._height(root.left), self._height(root.right)) root.hi = max(root.chunk.completion_time(self.node), self._hi(root.left), self._hi(root.right)) pivot.height = 1 + max(self._height(pivot.left), self._height(pivot.right)) pivot.hi = max(pivot.chunk.completion_time(self.node), self._hi(pivot.left), self._hi(pivot.right)) return pivot def _balance(self, root: "ChunkNode") -> int: if root is None: return 0 else: return self._height(root.left) - self._height(root.right) def _height(self, root: "ChunkNode") -> int: if root is None: return 0 else: return root.height def _hi(self, root: Optional["ChunkNode"]) -> float: if root is None: return -inf else: return root.hi def min(self) -> Optional["ChunkNode"]: return self._min_from(self.root) def _min_from(self, root: "ChunkNode") -> Optional["ChunkNode"]: if root is None: return None else: current = root while current.left is not None: current = current.left return current def max(self) -> Optional["ChunkNode"]: return self._max_from(self.root) def _max_from(self, root: "ChunkNode") -> Optional["ChunkNode"]: if root is None: return None else: current = root while current.right is not None: current = current.right return current class Schedule: def __init__(self): self.taskmap = {} self.nodemap = {} def tasks(self) -> Iterator["Task"]: return iter(self.taskmap) def hastask(self, task: "Task") -> bool: return task in self.taskmap def task(self, task: "Task") -> Optional[List["Chunk"]]: if task in self.taskmap: return self.taskmap[task] else: return None def nodes(self) -> Iterator[Any]: return iter(self.nodemap) def hasnode(self, node: Any) -> bool: return node in self.nodemap def node(self, node: Any) -> Optional["ChunkTree"]: if node in self.nodemap: return self.nodemap[node] else: return None # def copy(self): # chunk_map = self.taskmap.copy() # # for tsk in chunk_map: # chunk_map[tsk] = chunk_map[tsk].copy() # # return Schedule(chunk_map) def get(self, prop: "Property") -> Any: return prop.get(self) def apply(self, operator: "Operator") -> Any: return operator.apply(self)
[ "collections.OrderedDict" ]
[((872, 885), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (883, 885), False, 'from collections import OrderedDict\n')]
input = """154, 159 172, 84 235, 204 181, 122 161, 337 305, 104 128, 298 176, 328 146, 71 210, 87 341, 195 50, 96 225, 151 86, 171 239, 68 79, 50 191, 284 200, 122 282, 240 224, 282 327, 74 158, 289 331, 244 154, 327 317, 110 272, 179 173, 175 187, 104 44, 194 202, 332 249, 197 244, 225 52, 127 299, 198 123, 198 349, 75 233, 72 284, 130 119, 150 172, 355 147, 314 58, 335 341, 348 236, 115 185, 270 173, 145 46, 288 214, 127 158, 293 237, 311""" from collections import namedtuple Point = namedtuple("Point", ["id", "x", "y"]) points = set() for id, line in enumerate(input.splitlines()): words = line.split(",") x, y = [int(a) for a in words] points.add(Point(id, x, y)) # get bounds a_point = next(iter(points)) left_bound = a_point.x right_bound = a_point.x up_bound = a_point.y down_bound = a_point.y for p in points: if p.x < left_bound: left_bound = p.x if p.x > right_bound: right_bound = p.x if p.y < up_bound: up_bound = p.y if p.y > down_bound: down_bound = p.y # Find closest points within the bounds # Anything outside the bounds is uninteresting as it just leads off into infinite space def distance(p, q): return abs(p.x - q.x) + abs(p.y - q.y) def find_closest(p, points): closest_dist = None closest = set() for q in points: dist = distance(p, q) if closest_dist == None or dist < closest_dist: closest = {q.id} closest_dist = dist elif dist == closest_dist: closest.add(q.id) return closest grid = [ [0] * (right_bound - left_bound + 1) for i in range(down_bound - up_bound + 1) ] for y in range(up_bound, down_bound + 1): for x in range(left_bound, right_bound + 1): closest_points = find_closest(Point(id=None, x=x, y=y), points) if len(closest_points) > 1: grid[y-up_bound][x-left_bound] = -1 elif len(closest_points) == 0: print("wtf") exit(1) else: grid[y - up_bound][x - left_bound] = closest_points.pop() # We have our grid, we can remove any point ids that lie on the edge as they # will continue off to infinity candidate_ids = {p.id for p in points} for y in [0, down_bound - up_bound]: for x in [0, right_bound - left_bound]: if grid[y][x] in candidate_ids: candidate_ids.remove(grid[y][x]) # we have our contenders # now find which has the smallest finite space ids_to_count = {} for y in range(0, down_bound - up_bound + 1): for x in range(0, right_bound - left_bound + 1): if grid[y][x] in candidate_ids: if grid[y][x] not in ids_to_count: ids_to_count[grid[y][x]] = 0 ids_to_count[grid[y][x]] += 1 print(max(ids_to_count.values()))
[ "collections.namedtuple" ]
[((493, 530), 'collections.namedtuple', 'namedtuple', (['"""Point"""', "['id', 'x', 'y']"], {}), "('Point', ['id', 'x', 'y'])\n", (503, 530), False, 'from collections import namedtuple\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- # import logging logger = logging.getLogger(__name__) import multiprocessing as mp import tweetf0rm.handler from tweetf0rm.redis_helper import CrawlerQueue #MAX_QUEUE_SIZE = 32767 class CrawlerProcess(mp.Process): def __init__(self, node_id, crawler_id, redis_config, handlers): super(CrawlerProcess, self).__init__() self.node_id = node_id self.crawler_id = crawler_id self.redis_config = redis_config #self.queue = mp.Queue(maxsize=MAX_QUEUE_SIZE) self.crawler_queue = CrawlerQueue(node_id, crawler_id, redis_config=redis_config) self.crawler_queue.clear() #self.lock = mp.Lock() self.handlers = handlers logger.debug("number of handlers attached: %d"%(len(handlers))) def get_crawler_id(self): return self.crawler_id def enqueue(self, request): #self.queue.put(request, block=True) self.crawler_queue.put(request) return True def get_cmd(self): #return self.queue.get(block=True) return self.crawler_queue.get(block=True) def get_queue_size(self): self.crawler_queue.qsize() def run(self): pass
[ "logging.getLogger", "tweetf0rm.redis_helper.CrawlerQueue" ]
[((69, 96), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (86, 96), False, 'import logging\n'), ((534, 594), 'tweetf0rm.redis_helper.CrawlerQueue', 'CrawlerQueue', (['node_id', 'crawler_id'], {'redis_config': 'redis_config'}), '(node_id, crawler_id, redis_config=redis_config)\n', (546, 594), False, 'from tweetf0rm.redis_helper import CrawlerQueue\n')]
# Copyright (c) 2018 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ EC2.DhcpOptions ~~~~~~~~~~~~~~ AWS EC2 DhcpOptions interface """ # Boto from botocore.exceptions import ClientError # Cloudify from cloudify_aws.common import decorators, utils from cloudify_aws.ec2 import EC2Base from cloudify_aws.common.constants import EXTERNAL_RESOURCE_ID RESOURCE_TYPE = 'EC2 Dhcp Options' DHCPOPTIONS = 'DhcpOptions' DHCPOPTIONS_ID = 'DhcpOptionsId' DHCPOPTIONS_IDS = 'DhcpOptionsIds' VPC_ID = 'VpcId' VPC_TYPE = 'cloudify.nodes.aws.ec2.Vpc' VPC_TYPE_DEPRECATED = 'cloudify.aws.nodes.Vpc' class EC2DHCPOptions(EC2Base): """ EC2 DhcpOptions interface """ def __init__(self, ctx_node, resource_id=None, client=None, logger=None): EC2Base.__init__(self, ctx_node, resource_id, client, logger) self.type_name = RESOURCE_TYPE @property def properties(self): """Gets the properties of an external resource""" params = {DHCPOPTIONS_IDS: [self.resource_id]} try: resources = \ self.client.describe_dhcp_options(**params) except ClientError: pass else: return resources.get(DHCPOPTIONS)[0] if resources else None def create(self, params): """ Create a new AWS EC2 DhcpOptions. """ return self.make_client_call('create_dhcp_options', params) def delete(self, params=None): """ Deletes an existing AWS EC2 DhcpOptions. """ self.logger.debug('Deleting %s with parameters: %s' % (self.type_name, params)) res = self.client.delete_dhcp_options(**params) self.logger.debug('Response: %s' % res) return res def attach(self, params): ''' Attach an AWS EC2 DhcpOptions to a VPC. ''' self.logger.debug('Attaching %s with: %s' % (self.type_name, params.get(VPC_ID, None))) res = self.client.associate_dhcp_options(**params) self.logger.debug('Response: %s' % res) return res def detach(self, params): ''' Detach an AWS EC2 VPN Gateway from a VPC. ''' self.logger.debug('Detaching %s from: %s' % (self.type_name, params.get(VPC_ID, None))) self.logger.debug('Attaching default %s' % (self.type_name)) res = self.client.associate_dhcp_options(**params) self.logger.debug('Response: %s' % res) return res @decorators.aws_resource(EC2DHCPOptions, resource_type=RESOURCE_TYPE) def prepare(ctx, resource_config, **_): """Prepares an AWS EC2 DhcpOptions""" # Save the parameters ctx.instance.runtime_properties['resource_config'] = resource_config @decorators.aws_resource(EC2DHCPOptions, RESOURCE_TYPE) def create(ctx, iface, resource_config, **_): """Creates an AWS EC2 DhcpOptions""" # Create a copy of the resource config for clean manipulation. params = \ dict() if not resource_config else resource_config.copy() # Actually create the resource create_response = iface.create(params)[DHCPOPTIONS] ctx.instance.runtime_properties['create_response'] = \ utils.JsonCleanuper(create_response).to_dict() dhcp_options_id = create_response.get(DHCPOPTIONS_ID, '') iface.update_resource_id(dhcp_options_id) utils.update_resource_id(ctx.instance, dhcp_options_id) @decorators.aws_resource(EC2DHCPOptions, RESOURCE_TYPE, ignore_properties=True) def delete(ctx, iface, resource_config, **_): """Deletes an AWS EC2 DhcpOptions""" # Create a copy of the resource config for clean manipulation. params = \ dict() if not resource_config else resource_config.copy() dhcp_options_id = params.get(DHCPOPTIONS_ID) if not dhcp_options_id: params[DHCPOPTIONS_ID] = \ iface.resource_id or \ ctx.instance.runtime_properties.get(EXTERNAL_RESOURCE_ID) iface.delete(params) @decorators.aws_resource(EC2DHCPOptions, RESOURCE_TYPE) def attach(ctx, iface, resource_config, **_): '''Attaches an AWS EC2 DhcpOptions to a VPC''' params = dict() if not resource_config else resource_config.copy() dhcp_options_id = params.get(DHCPOPTIONS_ID) if not dhcp_options_id: dhcp_options_id = iface.resource_id params.update({DHCPOPTIONS_ID: dhcp_options_id}) params.pop('DhcpConfigurations') vpc_id = params.get(VPC_ID) if not vpc_id: targ = \ utils.find_rel_by_node_type(ctx.instance, VPC_TYPE) or \ utils.find_rel_by_node_type(ctx.instance, VPC_TYPE_DEPRECATED) # Attempt to use the VPC ID from parameters. # Fallback to connected VPC. params[VPC_ID] = \ vpc_id or \ targ.target.instance.runtime_properties.get(EXTERNAL_RESOURCE_ID) ctx.instance.runtime_properties['vpc_id'] = vpc_id # # Actually attach the resources iface.attach(params) @decorators.aws_resource(EC2DHCPOptions, RESOURCE_TYPE, ignore_properties=True) def detach(ctx, iface, resource_config, **_): '''Detach an AWS EC2 DhcpOptions from a VPC''' params = dict() if not resource_config else resource_config.copy() params.update({DHCPOPTIONS_ID: 'default'}) vpc_id = params.get(VPC_ID) or ctx.instance.runtime_properties['vpc_id'] if not vpc_id: targ = \ utils.find_rel_by_node_type(ctx.instance, VPC_TYPE) or \ utils.find_rel_by_node_type(ctx.instance, VPC_TYPE_DEPRECATED) # Attempt to use the VPC ID from parameters. # Fallback to connected VPC. params[VPC_ID] = \ vpc_id or \ targ.target.instance.runtime_properties.get(EXTERNAL_RESOURCE_ID) else: params.update({VPC_ID: vpc_id}) iface.detach(params)
[ "cloudify_aws.common.utils.find_rel_by_node_type", "cloudify_aws.common.utils.JsonCleanuper", "cloudify_aws.common.decorators.aws_resource", "cloudify_aws.common.utils.update_resource_id", "cloudify_aws.ec2.EC2Base.__init__" ]
[((3126, 3194), 'cloudify_aws.common.decorators.aws_resource', 'decorators.aws_resource', (['EC2DHCPOptions'], {'resource_type': 'RESOURCE_TYPE'}), '(EC2DHCPOptions, resource_type=RESOURCE_TYPE)\n', (3149, 3194), False, 'from cloudify_aws.common import decorators, utils\n'), ((3379, 3433), 'cloudify_aws.common.decorators.aws_resource', 'decorators.aws_resource', (['EC2DHCPOptions', 'RESOURCE_TYPE'], {}), '(EC2DHCPOptions, RESOURCE_TYPE)\n', (3402, 3433), False, 'from cloudify_aws.common import decorators, utils\n'), ((4047, 4125), 'cloudify_aws.common.decorators.aws_resource', 'decorators.aws_resource', (['EC2DHCPOptions', 'RESOURCE_TYPE'], {'ignore_properties': '(True)'}), '(EC2DHCPOptions, RESOURCE_TYPE, ignore_properties=True)\n', (4070, 4125), False, 'from cloudify_aws.common import decorators, utils\n'), ((4634, 4688), 'cloudify_aws.common.decorators.aws_resource', 'decorators.aws_resource', (['EC2DHCPOptions', 'RESOURCE_TYPE'], {}), '(EC2DHCPOptions, RESOURCE_TYPE)\n', (4657, 4688), False, 'from cloudify_aws.common import decorators, utils\n'), ((5626, 5704), 'cloudify_aws.common.decorators.aws_resource', 'decorators.aws_resource', (['EC2DHCPOptions', 'RESOURCE_TYPE'], {'ignore_properties': '(True)'}), '(EC2DHCPOptions, RESOURCE_TYPE, ignore_properties=True)\n', (5649, 5704), False, 'from cloudify_aws.common import decorators, utils\n'), ((3988, 4043), 'cloudify_aws.common.utils.update_resource_id', 'utils.update_resource_id', (['ctx.instance', 'dhcp_options_id'], {}), '(ctx.instance, dhcp_options_id)\n', (4012, 4043), False, 'from cloudify_aws.common import decorators, utils\n'), ((1312, 1373), 'cloudify_aws.ec2.EC2Base.__init__', 'EC2Base.__init__', (['self', 'ctx_node', 'resource_id', 'client', 'logger'], {}), '(self, ctx_node, resource_id, client, logger)\n', (1328, 1373), False, 'from cloudify_aws.ec2 import EC2Base\n'), ((3829, 3865), 'cloudify_aws.common.utils.JsonCleanuper', 'utils.JsonCleanuper', (['create_response'], {}), '(create_response)\n', (3848, 3865), False, 'from cloudify_aws.common import decorators, utils\n'), ((5151, 5202), 'cloudify_aws.common.utils.find_rel_by_node_type', 'utils.find_rel_by_node_type', (['ctx.instance', 'VPC_TYPE'], {}), '(ctx.instance, VPC_TYPE)\n', (5178, 5202), False, 'from cloudify_aws.common import decorators, utils\n'), ((5220, 5282), 'cloudify_aws.common.utils.find_rel_by_node_type', 'utils.find_rel_by_node_type', (['ctx.instance', 'VPC_TYPE_DEPRECATED'], {}), '(ctx.instance, VPC_TYPE_DEPRECATED)\n', (5247, 5282), False, 'from cloudify_aws.common import decorators, utils\n'), ((6072, 6123), 'cloudify_aws.common.utils.find_rel_by_node_type', 'utils.find_rel_by_node_type', (['ctx.instance', 'VPC_TYPE'], {}), '(ctx.instance, VPC_TYPE)\n', (6099, 6123), False, 'from cloudify_aws.common import decorators, utils\n'), ((6141, 6203), 'cloudify_aws.common.utils.find_rel_by_node_type', 'utils.find_rel_by_node_type', (['ctx.instance', 'VPC_TYPE_DEPRECATED'], {}), '(ctx.instance, VPC_TYPE_DEPRECATED)\n', (6168, 6203), False, 'from cloudify_aws.common import decorators, utils\n')]
# Copyright 2010 New Relic, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. try: from urllib2 import urlopen # Py2.X except ImportError: from urllib.request import urlopen # Py3.X import sqlite3 as db from newrelic.api.time_trace import record_exception from newrelic.api.transaction import (add_custom_parameter, get_browser_timing_header, get_browser_timing_footer, record_custom_event) from newrelic.api.wsgi_application import wsgi_application _custom_parameters = { 'user' : 'user-name', 'account' : 'account-name', 'product' : 'product-name', 'bytes' : b'bytes-value', 'string' : 'string-value', 'unicode' : u'unicode-value', 'integer' : 1, 'float' : 1.0, 'invalid-utf8' : b'\xe2', 'multibyte-utf8' : b'\xe2\x88\x9a', 'multibyte-unicode' : b'\xe2\x88\x9a'.decode('utf-8'), 'list' : [], 'tuple' : (), 'dict' : {}, } _err_param = { 'err-param' : 'value' } def user_attributes_added(): """Expected values when the custom parameters in this file are added as user attributes """ user_attributes = _custom_parameters.copy() user_attributes['list'] = '[]' user_attributes['tuple'] = '()' user_attributes['dict'] = '{}' return user_attributes def error_user_params_added(): return _err_param.copy() @wsgi_application() def fully_featured_app(environ, start_response): status = '200 OK' path = environ.get('PATH_INFO') use_user_attrs = environ.get('record_attributes', 'TRUE') == 'TRUE' if use_user_attrs: for attr, val in _custom_parameters.items(): add_custom_parameter(attr, val) if 'db' in environ and int(environ['db']) > 0: connection = db.connect(":memory:") for i in range(int(environ['db']) - 1): connection.execute("create table test_db%d (a, b, c)" % i) if 'external' in environ: for i in range(int(environ['external'])): r = urlopen('http://www.python.org') r.read(10) if 'err_message' in environ: n_errors = int(environ.get('n_errors', 1)) for i in range(n_errors): try: # append number to stats engine to get unique errors, so they # don't immediately get filtered out. raise ValueError(environ['err_message'] + str(i)) except ValueError: if use_user_attrs: record_exception(params=_err_param) else: record_exception() text = '<html><head>%s</head><body><p>RESPONSE</p>%s</body></html>' output = (text % (get_browser_timing_header(), get_browser_timing_footer())).encode('UTF-8') response_headers = [('Content-type', 'text/html; charset=utf-8'), ('Content-Length', str(len(output)))] start_response(status, response_headers) return [output] @wsgi_application() def simple_exceptional_app(environ, start_response): start_response('500 :(',[]) raise ValueError('Transaction had bad value') @wsgi_application() def simple_app(environ, start_response): status = '200 OK' start_response(status, response_headers=[]) return [] @wsgi_application() def simple_custom_event_app(environ, start_response): params = {'snowman': u'\u2603', 'foo': 'bar'} record_custom_event('SimpleAppEvent', params) start_response(status='200 OK', response_headers=[]) return []
[ "newrelic.api.transaction.get_browser_timing_footer", "sqlite3.connect", "newrelic.api.time_trace.record_exception", "newrelic.api.transaction.record_custom_event", "newrelic.api.wsgi_application.wsgi_application", "newrelic.api.transaction.add_custom_parameter", "newrelic.api.transaction.get_browser_timing_header", "urllib.request.urlopen" ]
[((1894, 1912), 'newrelic.api.wsgi_application.wsgi_application', 'wsgi_application', ([], {}), '()\n', (1910, 1912), False, 'from newrelic.api.wsgi_application import wsgi_application\n'), ((3486, 3504), 'newrelic.api.wsgi_application.wsgi_application', 'wsgi_application', ([], {}), '()\n', (3502, 3504), False, 'from newrelic.api.wsgi_application import wsgi_application\n'), ((3644, 3662), 'newrelic.api.wsgi_application.wsgi_application', 'wsgi_application', ([], {}), '()\n', (3660, 3662), False, 'from newrelic.api.wsgi_application import wsgi_application\n'), ((3792, 3810), 'newrelic.api.wsgi_application.wsgi_application', 'wsgi_application', ([], {}), '()\n', (3808, 3810), False, 'from newrelic.api.wsgi_application import wsgi_application\n'), ((3920, 3965), 'newrelic.api.transaction.record_custom_event', 'record_custom_event', (['"""SimpleAppEvent"""', 'params'], {}), "('SimpleAppEvent', params)\n", (3939, 3965), False, 'from newrelic.api.transaction import add_custom_parameter, get_browser_timing_header, get_browser_timing_footer, record_custom_event\n'), ((2288, 2310), 'sqlite3.connect', 'db.connect', (['""":memory:"""'], {}), "(':memory:')\n", (2298, 2310), True, 'import sqlite3 as db\n'), ((2183, 2214), 'newrelic.api.transaction.add_custom_parameter', 'add_custom_parameter', (['attr', 'val'], {}), '(attr, val)\n', (2203, 2214), False, 'from newrelic.api.transaction import add_custom_parameter, get_browser_timing_header, get_browser_timing_footer, record_custom_event\n'), ((2527, 2559), 'urllib.request.urlopen', 'urlopen', (['"""http://www.python.org"""'], {}), "('http://www.python.org')\n", (2534, 2559), False, 'from urllib.request import urlopen\n'), ((3198, 3225), 'newrelic.api.transaction.get_browser_timing_header', 'get_browser_timing_header', ([], {}), '()\n', (3223, 3225), False, 'from newrelic.api.transaction import add_custom_parameter, get_browser_timing_header, get_browser_timing_footer, record_custom_event\n'), ((3239, 3266), 'newrelic.api.transaction.get_browser_timing_footer', 'get_browser_timing_footer', ([], {}), '()\n', (3264, 3266), False, 'from newrelic.api.transaction import add_custom_parameter, get_browser_timing_header, get_browser_timing_footer, record_custom_event\n'), ((3005, 3040), 'newrelic.api.time_trace.record_exception', 'record_exception', ([], {'params': '_err_param'}), '(params=_err_param)\n', (3021, 3040), False, 'from newrelic.api.time_trace import record_exception\n'), ((3083, 3101), 'newrelic.api.time_trace.record_exception', 'record_exception', ([], {}), '()\n', (3099, 3101), False, 'from newrelic.api.time_trace import record_exception\n')]
from spydrnet.ir import Port, Instance, InnerPin from spydrnet_tmr.transformation.util import add_suffix_to_name IN = Port.Direction.IN OUT = Port.Direction.OUT INOUT = Port.Direction.INOUT def apply_nmr(ports_and_instances_to_replicate, degree, name_suffix='NMR', rename_original=True): """ Replicate the selected ports and instances to the n-th degree. :param ports_and_instances_to_replicate: :param degree: number of total copies :param name_suffix: string to append to each replicated element (e.g. 'TMR' or 'DWC') :param rename_original: rename orginal domain :type rename_original: bool :return: A map from an original element to its replicas """ nmr_agent = NMR.from_originals_degree_suffix_and_rename(ports_and_instances_to_replicate, degree, name_suffix, rename_original) replicas = nmr_agent.apply() return replicas class NMR: @staticmethod def from_originals_degree_suffix_and_rename(originals, degree, suffix, rename): nmr_agent = NMR(originals, degree, suffix, rename) return nmr_agent def __init__(self, originals, degree, suffix, rename): # Internal state self._applied = False self._wires_to_replicate = None self._additional_ports_to_replicate = None self._wiremap = None self._replicas = dict() # Inputs for original in originals: # if isinstance(original, HRef): # original = original.item if isinstance(original, (Port, Instance)): self._replicas[original] = None self.replication_degree = degree self.name_suffix = suffix self.rename_original = rename def apply(self): #self._validate_inputs() self._identify_additional_wires_and_ports_to_replicate() self._replicate_ports_and_instances() self._replicate_wires() self._connect_wires() return self._replicas def _identify_additional_wires_and_ports_to_replicate(self): src_pins, snk_pins = self._idenfity_src_and_snk_pins_that_will_be_replicated() wires_to_replicate = self.identify_additional_wires_to_replicate(src_pins, snk_pins) ports_to_replicate = self.identify_additional_ports_to_replicate(wires_to_replicate) self._wires_to_replicate = wires_to_replicate self._replicas.update((port, None) for port in ports_to_replicate) @staticmethod def identify_additional_ports_to_replicate(wires_to_replicate): ports_to_replicate = set() inner_pins = set() outer_pins = set() for wire in wires_to_replicate: for pin in wire.pins: if isinstance(pin, InnerPin): inner_pins.add(pin) else: outer_pins.add(pin) for outer_pin in outer_pins: inner_pin = outer_pin.inner_pin if inner_pin in inner_pins: port = inner_pin.port ports_to_replicate.add(port) for pin in port.pins: inner_pins.discard(pin) return ports_to_replicate @staticmethod def identify_additional_wires_to_replicate(src_pins, snk_pins): wires_to_replicate = set() wires_found = set() for src_pin in src_pins: wire = src_pin.wire if not wire or wire in wires_found: continue wires_found.add(wire) search_stack = [(wire, False)] while search_stack: wire, visited = search_stack.pop() if visited: continue search_stack.append((wire, True)) for pin in wire.pins: if pin in snk_pins: for path_member, part_of_path in reversed(search_stack): if part_of_path is True: if path_member not in wires_to_replicate: wires_to_replicate.add(path_member) else: break elif pin not in src_pins: other_wires = pin.get_wires(selection='OUTSIDE' if isinstance(pin, InnerPin) else 'INSIDE') for other_wire in other_wires: if other_wire not in wires_found: wires_found.add(other_wire) search_stack.append((other_wire, False)) return wires_to_replicate def _idenfity_src_and_snk_pins_that_will_be_replicated(self): src_pins = set() snk_pins = set() for original in self._replicas.keys(): if isinstance(original, Port): direction = original.direction if direction in {IN, INOUT}: src_pins.update(original.get_pins(selection='INSIDE')) snk_pins.update(original.get_pins(selection='OUTSIDE')) if direction in {OUT, INOUT}: src_pins.update(original.get_pins(selection='OUTSIDE')) snk_pins.update(original.get_pins(selection='INSIDE')) else: reference = original.reference for port in reference.ports: direction = port.direction if direction in {IN, INOUT}: snk_pins.update(map(original.pins.get, port.pins)) if direction in {OUT, INOUT}: src_pins.update(map(original.pins.get, port.pins)) return src_pins, snk_pins def _replicate_ports_and_instances(self): for original in self._replicas.keys(): if isinstance(original, Port): self._replicate_port(original) else: self._replicate_instance(original) self._reorder_ports_for_readability() self._reorder_instances_for_readability() def _replicate_port(self, port): replicas = list() for ii in range(1, self.replication_degree): port_clone = port.clone() add_suffix_to_name(port_clone, self.name_suffix + '_' + str(ii)) replicas.append(port_clone) port.definition.add_port(port_clone) if self.rename_original: add_suffix_to_name(port, self.name_suffix + '_' + '0') self._replicas[port] = replicas def _replicate_instance(self, inst): replicas = list() for ii in range(1, self.replication_degree): inst_clone = inst.clone() add_suffix_to_name(inst_clone, self.name_suffix + '_' + str(ii)) replicas.append(inst_clone) inst.parent.add_child(inst_clone) if self.rename_original: add_suffix_to_name(inst, self.name_suffix + '_' + '0') self._replicas[inst] = replicas def _reorder_ports_for_readability(self): reordered_definitions = set() for original in self._replicas.keys(): if isinstance(original, Port): definition = original.definition if definition not in reordered_definitions: reordered_definitions.add(definition) new_order = list() def_ports = definition.ports def_ports_len = len(def_ports) for def_port in def_ports: new_order.append(def_port) if def_port in self._replicas: new_order += self._replicas[def_port] if len(new_order) == def_ports_len: break definition.ports = new_order def _reorder_instances_for_readability(self): reordered_definitions = set() for original in self._replicas: if isinstance(original, Instance): definition = original.parent if definition not in reordered_definitions: reordered_definitions.add(definition) new_order = list() def_children = definition.children def_children_len = len(def_children) for def_child in def_children: new_order.append(def_child) if def_child in self._replicas: new_order += self._replicas[def_child] if len(new_order) == def_children_len: break definition.children = new_order def _replicate_wires(self): self._wiremap = dict() replicated_cables = set() for wire in self._wires_to_replicate: cable = wire.cable if cable not in replicated_cables: replicated_cables.add(cable) for ii in range(1, self.replication_degree): cable_clone = cable.clone() add_suffix_to_name(cable_clone, self.name_suffix + '_' + str(ii)) for wire_index, cable_wire in enumerate(cable.wires): if cable_wire in self._wires_to_replicate: if cable_wire not in self._wiremap: self._wiremap[cable_wire] = list() self._wiremap[cable_wire].append(cable_clone.wires[wire_index]) cable.definition.add_cable(cable_clone) if self.rename_original: add_suffix_to_name(cable, self.name_suffix + '_' + '0') self._reorder_cables_for_readibility() def _reorder_cables_for_readibility(self): reordered_definitions = set() for wire in self._wiremap: definition = wire.cable.definition if definition not in reordered_definitions: reordered_definitions.add(definition) new_order = list() visited_cables = set() def_cables = definition.cables for def_cable in def_cables: if def_cable in visited_cables: continue visited_cables.add(def_cable) new_order.append(def_cable) for wire in def_cable.wires: if wire in self._wiremap: other_cables = list(other_wire.cable for other_wire in self._wiremap[wire]) for other_cable in other_cables: if other_cable not in visited_cables: visited_cables.add(other_cable) new_order.append(other_cable) definition.cables = new_order def _connect_wires(self): self._connect_replicated_wires() self._connect_non_replicated_wires_to_replicated_pins() def _connect_replicated_wires(self): for wire, other_wires in self._wiremap.items(): for pin in wire.pins: if isinstance(pin, InnerPin): port = pin.port if port in self._replicas: other_ports = self._replicas[port] pin_index = port.pins.index(pin) for ii in range(self.replication_degree - 1): other_wires[ii].connect_pin(other_ports[ii].pins[pin_index]) else: inner_pin = pin.inner_pin instance = pin.instance if instance in self._replicas: other_instances = self._replicas[instance] for ii in range(self.replication_degree - 1): other_wires[ii].connect_pin(other_instances[ii].pins[inner_pin]) else: # TODO: if move this outside of the if does it do what we would expect? port = inner_pin.port if port in self._replicas: other_ports = self._replicas[port] pin_index = port.pins.index(inner_pin) for ii in range(self.replication_degree - 1): other_wires[ii].connect_pin(instance.pins[other_ports[ii].pins[pin_index]]) def _connect_non_replicated_wires_to_replicated_pins(self): pinmap = dict() for original in self._replicas: if isinstance(original, Instance): inst = original other_instances = self._replicas[inst] for pin in inst.pins: if pin.inner_pin.port.direction in {IN, INOUT}: wire = pin.wire if wire and wire not in self._wiremap: inner_pin = pin.inner_pin pinmap[pin] = list() for ii in range(self.replication_degree - 1): other_pin = other_instances[ii].pins[inner_pin] pinmap[pin].append(other_pin) wire.connect_pin(other_pin) elif isinstance(original, Port): port = original other_ports = self._replicas[port] for pin in port.pins: if port.direction in {OUT, INOUT}: wire = pin.wire if wire and wire not in self._wiremap: pin_index = pin.port.pins.index(pin) pinmap[pin] = list() for ii in range(self.replication_degree - 1): other_pin = other_ports[ii].pins[pin_index] pinmap[pin].append(other_pin) wire.connect_pin(other_pin) self._reorder_pins_for_readibility(pinmap) @staticmethod def _reorder_pins_for_readibility(pinmap): reordered_wires = set() for pin in pinmap: wire = pin.wire if wire not in reordered_wires: reordered_wires.add(wire) new_order = list() wire_pins = wire.pins wire_pins_len = len(wire_pins) for wire_pin in wire_pins: new_order.append(wire_pin) if wire_pin in pinmap: new_order += pinmap[wire_pin] if len(new_order) == wire_pins_len: break wire.pins = new_order
[ "spydrnet_tmr.transformation.util.add_suffix_to_name" ]
[((6451, 6505), 'spydrnet_tmr.transformation.util.add_suffix_to_name', 'add_suffix_to_name', (['port', "(self.name_suffix + '_' + '0')"], {}), "(port, self.name_suffix + '_' + '0')\n", (6469, 6505), False, 'from spydrnet_tmr.transformation.util import add_suffix_to_name\n'), ((6913, 6967), 'spydrnet_tmr.transformation.util.add_suffix_to_name', 'add_suffix_to_name', (['inst', "(self.name_suffix + '_' + '0')"], {}), "(inst, self.name_suffix + '_' + '0')\n", (6931, 6967), False, 'from spydrnet_tmr.transformation.util import add_suffix_to_name\n'), ((9665, 9720), 'spydrnet_tmr.transformation.util.add_suffix_to_name', 'add_suffix_to_name', (['cable', "(self.name_suffix + '_' + '0')"], {}), "(cable, self.name_suffix + '_' + '0')\n", (9683, 9720), False, 'from spydrnet_tmr.transformation.util import add_suffix_to_name\n')]
# Copyright 2016-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import absolute_import, division, print_function, unicode_literals import shlex import tests.utils class ShellTest(tests.utils.TestCase): includes = [("@fbcode_macros//build_defs:shell.bzl", "shell")] @tests.utils.with_project() def test_split_works_like_shlex_split(self, root): test_strings = [ r"", r"FOO BAR", " foo \t\nbar\n baz", r'foo -D"bar"', r'foo -D"\"something quoted\"" last\ string', r'foo -D"\n contains backslash still" ', r"""foo -D'something something \"dark side\"'""", r"""-DFOO -D"\ B'A'R=\"something here\""'something" else' -D\ BAZ -D\\some""", r'''-DFOO -DBAR="baz \"\\\"lots of quotes\\\"\""''', ] commands = ["shell.split(%r)" % s.encode("ascii") for s in test_strings] expected = [shlex.split(s) for s in test_strings] result = root.runUnitTests(self.includes, commands) self.assertSuccess(result) self.assertEqual( expected, [[x.encode("utf-8") for x in line] for line in result.debug_lines] )
[ "shlex.split" ]
[((1176, 1190), 'shlex.split', 'shlex.split', (['s'], {}), '(s)\n', (1187, 1190), False, 'import shlex\n')]
import openpnm as op import scipy as sp import pytest class SubdomainTest: def setup_class(self): ws = op.Workspace() ws.settings['local_data'] = True self.net = op.network.Cubic(shape=[3, 3, 3]) self.geo = op.geometry.GenericGeometry(network=self.net, pores=self.net.Ps, throats=self.net.Ts) self.geo['pore.diameter'] = sp.rand(self.net.Np) self.geo.add_model(propname='pore.volume', model=op.models.geometry.pore_volume.sphere) self.geo['throat.diameter'] = sp.rand(self.net.Nt) self.geo.add_model(propname='throat.area', model=op.models.geometry.throat_area.cylinder) self.geo.regenerate_models() self.phase1 = op.phases.GenericPhase(network=self.net) self.phase2 = op.phases.GenericPhase(network=self.net) self.phys1 = op.physics.GenericPhysics(network=self.net, geometry=self.geo, phase=self.phase1) self.phys1['pore.blah'] = 1.0 self.phys2 = op.physics.GenericPhysics(network=self.net, geometry=self.geo, phase=self.phase2) self.phys2['pore.blah'] = 2.0 def teardown_class(self): ws = op.Workspace() ws.clear() def test_drop_locations_from_geom_successively_with_single_geometry(self): assert self.geo.Np == 27 assert self.geo.Nt == 54 self.geo._drop_locations(pores=[0, 1, 2], throats=[0, 1, 2]) assert self.geo.Np == 24 assert self.geo.Nt == 51 self.geo._drop_locations(pores=[3, 4], throats=[3, 4]) assert self.geo.Np == 22 assert self.geo.Nt == 49 self.geo._add_locations(pores=[0, 1, 2, 3, 4], throats=[0, 1, 2, 3, 4]) assert self.geo.Np == 27 assert self.geo.Nt == 54 def test_drop_locations_from_physics_successively_with_two_physics(self): assert self.phys1.Np == 27 assert self.phys1.Nt == 54 self.phys1._drop_locations(pores=[0, 1], throats=[0, 1]) assert self.phys1.Np == 25 assert self.phys1.Nt == 52 self.phys1._drop_locations(pores=[3, 4], throats=[3, 4]) assert self.phys1.Np == 23 assert self.phys1.Nt == 50 self.phys1._add_locations(pores=[0, 1, 3, 4], throats=[0, 1, 3, 4]) assert self.phys1.Np == 27 assert self.phys1.Nt == 54 def test_drop_locations_all_but_not_complete(self): assert self.phys1.Np == 27 assert self.phys1.Nt == 54 assert 'pore.'+self.phys1.name in self.phase1.keys() assert 'throat.'+self.phys1.name in self.phase1.keys() self.phys1._drop_locations(pores=self.net.Ps) assert 'pore.'+self.phys1.name in self.phase1.keys() assert self.phase1.num_pores(self.phys1.name) == 0 assert 'throat.'+self.phys1.name in self.phase1.keys() self.phys1._drop_locations(throats=self.net.Ts) assert 'throat.'+self.phys1.name in self.phase1.keys() assert self.phase1.num_throats(self.phys1.name) == 0 self.phys1._add_locations(pores=self.net.Ps, throats=self.net.Ts) def test_writting_subdict_names_across_subdomains(self): ws = op.Workspace() proj = ws.new_project() pn = op.network.Cubic(shape=[10, 10, 10], spacing=1e-4, project=proj) Ps = pn['pore.coords'][:, 0] < pn['pore.coords'][:, 0].mean() Ts = pn.find_neighbor_throats(pores=Ps, mode='xnor') geo1 = op.geometry.StickAndBall(network=pn, pores=Ps, throats=Ts) Ps = pn['pore.coords'][:, 0] >= pn['pore.coords'][:, 0].mean() Ts = pn.find_neighbor_throats(pores=Ps, mode='or') geo2 = op.geometry.StickAndBall(network=pn, pores=Ps, throats=Ts) pn['pore.foo'] = 1 # Can't create a subdict below foo with pytest.raises(Exception): pn['pore.foo.bar'] = 1 # Can create a subdict directly pn['pore.baz.bar'] = 2 # Can't create a new item already used as subdict with pytest.raises(Exception): pn['pore.baz'] = 2 # Also works on subdomains geo1['pore.blah'] = 1 with pytest.raises(Exception): geo1['pore.blah.boo'] = 1 geo1['pore.bee.bop'] = 1 with pytest.raises(Exception): geo1['pore.bee'] = 1 # Now start looking across objects with pytest.raises(Exception): geo1['pore.foo'] = 1 # Already exists on pn with pytest.raises(Exception): geo1['pore.foo.bar'] = 1 # pore.foo already exists on pn with pytest.raises(Exception): geo1['pore.baz'] = 1 # pore.baz.bar already exists on pn # Now start looking across objects geo2['pore.blah'] = 1 geo2['pore.bee.bop'] = 1 with pytest.raises(Exception): geo1['pore.bee'] = 1 with pytest.raises(Exception): pn['pore.bee'] = 1 with pytest.raises(Exception): pn['pore.bee.bop'] = 1 if __name__ == '__main__': t = SubdomainTest() self = t t.setup_class() for item in t.__dir__(): if item.startswith('test'): print('running test: '+item) t.__getattribute__(item)()
[ "openpnm.Workspace", "openpnm.geometry.GenericGeometry", "openpnm.network.Cubic", "openpnm.geometry.StickAndBall", "pytest.raises", "openpnm.phases.GenericPhase", "openpnm.physics.GenericPhysics", "scipy.rand" ]
[((118, 132), 'openpnm.Workspace', 'op.Workspace', ([], {}), '()\n', (130, 132), True, 'import openpnm as op\n'), ((193, 226), 'openpnm.network.Cubic', 'op.network.Cubic', ([], {'shape': '[3, 3, 3]'}), '(shape=[3, 3, 3])\n', (209, 226), True, 'import openpnm as op\n'), ((246, 336), 'openpnm.geometry.GenericGeometry', 'op.geometry.GenericGeometry', ([], {'network': 'self.net', 'pores': 'self.net.Ps', 'throats': 'self.net.Ts'}), '(network=self.net, pores=self.net.Ps, throats=\n self.net.Ts)\n', (273, 336), True, 'import openpnm as op\n'), ((462, 482), 'scipy.rand', 'sp.rand', (['self.net.Np'], {}), '(self.net.Np)\n', (469, 482), True, 'import scipy as sp\n'), ((644, 664), 'scipy.rand', 'sp.rand', (['self.net.Nt'], {}), '(self.net.Nt)\n', (651, 664), True, 'import scipy as sp\n'), ((849, 889), 'openpnm.phases.GenericPhase', 'op.phases.GenericPhase', ([], {'network': 'self.net'}), '(network=self.net)\n', (871, 889), True, 'import openpnm as op\n'), ((912, 952), 'openpnm.phases.GenericPhase', 'op.phases.GenericPhase', ([], {'network': 'self.net'}), '(network=self.net)\n', (934, 952), True, 'import openpnm as op\n'), ((974, 1060), 'openpnm.physics.GenericPhysics', 'op.physics.GenericPhysics', ([], {'network': 'self.net', 'geometry': 'self.geo', 'phase': 'self.phase1'}), '(network=self.net, geometry=self.geo, phase=self.\n phase1)\n', (999, 1060), True, 'import openpnm as op\n'), ((1209, 1295), 'openpnm.physics.GenericPhysics', 'op.physics.GenericPhysics', ([], {'network': 'self.net', 'geometry': 'self.geo', 'phase': 'self.phase2'}), '(network=self.net, geometry=self.geo, phase=self.\n phase2)\n', (1234, 1295), True, 'import openpnm as op\n'), ((1467, 1481), 'openpnm.Workspace', 'op.Workspace', ([], {}), '()\n', (1479, 1481), True, 'import openpnm as op\n'), ((3439, 3453), 'openpnm.Workspace', 'op.Workspace', ([], {}), '()\n', (3451, 3453), True, 'import openpnm as op\n'), ((3500, 3566), 'openpnm.network.Cubic', 'op.network.Cubic', ([], {'shape': '[10, 10, 10]', 'spacing': '(0.0001)', 'project': 'proj'}), '(shape=[10, 10, 10], spacing=0.0001, project=proj)\n', (3516, 3566), True, 'import openpnm as op\n'), ((3711, 3769), 'openpnm.geometry.StickAndBall', 'op.geometry.StickAndBall', ([], {'network': 'pn', 'pores': 'Ps', 'throats': 'Ts'}), '(network=pn, pores=Ps, throats=Ts)\n', (3735, 3769), True, 'import openpnm as op\n'), ((3916, 3974), 'openpnm.geometry.StickAndBall', 'op.geometry.StickAndBall', ([], {'network': 'pn', 'pores': 'Ps', 'throats': 'Ts'}), '(network=pn, pores=Ps, throats=Ts)\n', (3940, 3974), True, 'import openpnm as op\n'), ((4059, 4083), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4072, 4083), False, 'import pytest\n'), ((4262, 4286), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4275, 4286), False, 'import pytest\n'), ((4398, 4422), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4411, 4422), False, 'import pytest\n'), ((4508, 4532), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4521, 4532), False, 'import pytest\n'), ((4624, 4648), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4637, 4648), False, 'import pytest\n'), ((4720, 4744), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4733, 4744), False, 'import pytest\n'), ((4829, 4853), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (4842, 4853), False, 'import pytest\n'), ((5045, 5069), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (5058, 5069), False, 'import pytest\n'), ((5118, 5142), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (5131, 5142), False, 'import pytest\n'), ((5189, 5213), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (5202, 5213), False, 'import pytest\n')]
import pandas as pd from shapely.geometry import Point import geopandas as gpd import math import osmnx import requests from io import BytesIO from zipfile import ZipFile def read_poi_csv(input_file, col_id='id', col_name='name', col_lon='lon', col_lat='lat', col_kwds='kwds', col_sep=';', kwds_sep=',', source_crs='EPSG:4326', target_crs='EPSG:4326', keep_other_cols=False): """Creates a POI GeoDataFrame from an input CSV file. Args: input_file (string): Path to the input csv file. col_id (string): Name of the column containing the POI id (default: `id`). col_name (string): Name of the column containing the POI name (default: `name`). col_lon (string): Name of the column containing the POI longitude (default: `lon`). col_lat (string): Name of the column containing the POI latitude (default: `lat`). col_kwds (string): Name of the column containing the POI keywords (default: `kwds`). col_sep (string): Column delimiter (default: `;`). kwds_sep (string): Keywords delimiter (default: `,`). source_crs (string): Coordinate Reference System of input data (default: `EPSG:4326`). target_crs (string): Coordinate Reference System of the GeoDataFrame to be created (default: `EPSG:4326`). keep_other_cols (bool): Whether to keep the rest of the columns in the csv file (default: `False`). Returns: A POI GeoDataFrame with columns `id`, `name` and `kwds`. """ def lon_lat_to_point(row, c_lon, c_lat): try: x_lon = float(row[c_lon]) y_lat = float(row[c_lat]) if math.isnan(x_lon) is False and math.isnan(y_lat) is False: return Point(x_lon, y_lat) else: return float('NaN') except: return float('NaN') pois = pd.read_csv(input_file, delimiter=col_sep, error_bad_lines=False) init_poi_size = pois.index.size columns = list(pois) subset_cols = [] # Columns to Check for N/A, Nulls if keep_other_cols: subset_cols.extend(columns) else: subset_cols = [col_id, col_lon, col_lat] if col_name in columns: subset_cols.append(col_name) if col_kwds in columns: subset_cols.append(col_kwds) # Geometry Column(Uncleaned) pois['geometry'] = pois.apply(lambda row: lon_lat_to_point(row, col_lon, col_lat), axis=1) subset_cols.append('geometry') # Drop Columns Not in subset Columns. drop_columns = set(columns) - set(subset_cols) pois.drop(drop_columns, inplace=True, axis=1) # Drop all N/A, Null rows from DataFrame. pois.dropna(inplace=True) if init_poi_size - pois.index.size > 0: print("Skipped", (init_poi_size - pois.index.size), "rows due to errors.") if col_kwds in columns: pois[col_kwds] = pois[col_kwds].map(lambda s: s.split(kwds_sep)) source_crs = {'init': source_crs} target_crs = {'init': target_crs} pois = gpd.GeoDataFrame(pois, crs=source_crs, geometry=pois['geometry']).to_crs(target_crs).drop(columns=[col_lon, col_lat]) print('Loaded ' + str(len(pois.index)) + ' POIs.') return pois def import_osmnx(bound, target_crs='EPSG:4326'): """Creates a POI GeoDataFrame from POIs retrieved by OSMNX (https://github.com/gboeing/osmnx). Args: bound (polygon): A polygon to be used as filter. target_crs (string): Coordinate Reference System of the GeoDataFrame to be created (default: `EPSG:4326`). Returns: A POI GeoDataFrame with columns `id`, `name` and `kwds`. """ # retrieve pois pois = osmnx.pois.pois_from_polygon(bound) if len(pois.index) > 0: # filter pois pois = pois[pois.amenity.notnull()] pois_filter = pois.element_type == 'node' pois = pois[pois_filter] # restructure gdf subset_cols = ['osmid', 'amenity', 'name', 'geometry'] columns = list(pois) drop_columns = set(columns) - set(subset_cols) pois.drop(drop_columns, inplace=True, axis=1) pois = pois.reset_index(drop=True) pois = pois.rename(columns={'osmid': 'id', 'amenity': 'kwds'}) pois['kwds'] = pois['kwds'].map(lambda s: [s]) if target_crs != 'EPSG:4326': target_crs = {'init': target_crs} pois = pois.to_crs(target_crs) print('Loaded ' + str(len(pois.index)) + ' POIs.') return pois def import_osmwrangle(osmwrangle_file, target_crs='EPSG:4326', bound=None): """Creates a POI GeoDataFrame from a file produced by OSMWrangle (https://github.com/SLIPO-EU/OSMWrangle). Args: osmwrangle_file (string): Path or URL to the input csv file. target_crs (string): Coordinate Reference System of the GeoDataFrame to be created (default: `EPSG:4326`). bound (polygon): A polygon to be used as filter. Returns: A POI GeoDataFrame with columns `id`, `name` and `kwds`. """ def lon_lat_to_point(row, c_lon, c_lat): x_lon = float(row[c_lon]) y_lat = float(row[c_lat]) if math.isnan(x_lon) is False and math.isnan(y_lat) is False: return Point(x_lon, y_lat) else: return float('NaN') col_sep = '|' col_id = 'ID' col_lon = 'LON' col_lat = 'LAT' col_name = 'NAME' col_cat = 'CATEGORY' col_subcat = 'SUBCATEGORY' source_crs = {'init': 'EPSG:4326'} # Load the file if osmwrangle_file.startswith('http') and osmwrangle_file.endswith('.zip'): response = requests.get(osmwrangle_file) zip_file = ZipFile(BytesIO(response.content)) with zip_file.open(zip_file.namelist()[0]) as csvfile: pois = pd.read_csv(csvfile, delimiter=col_sep, error_bad_lines=False) else: pois = pd.read_csv(osmwrangle_file, delimiter=col_sep, error_bad_lines=False) init_poi_size = pois.index.size columns = list(pois) subset_cols = [col_id, col_name, 'kwds', col_lon, col_lat] # Geometry Column(Uncleaned) pois['geometry'] = pois.apply(lambda row: lon_lat_to_point(row, col_lon, col_lat), axis=1) subset_cols.append('geometry') pois['kwds'] = pois[col_cat] + ',' + pois[col_subcat] pois['kwds'] = pois['kwds'].map(lambda s: s.split(',')) # Drop Columns Not in subset Columns. drop_columns = set(columns) - set(subset_cols) pois.drop(drop_columns, inplace=True, axis=1) # Drop all N/A, Null rows from DataFrame. pois.dropna(inplace=True) if init_poi_size - pois.index.size > 0: print("Skipped", (init_poi_size - pois.index.size), "rows due to errors.") pois = pois.rename(columns={col_id: 'id', col_name: 'name'}) pois = gpd.GeoDataFrame(pois, crs=source_crs, geometry=pois['geometry']).drop(columns=[col_lon, col_lat]) # Check whether location filter should be applied if bound is not None: spatial_filter = pois.geometry.intersects(bound) pois = pois[spatial_filter] if target_crs != 'EPSG:4326': target_crs = {'init': target_crs} pois = pois.to_crs(target_crs) print('Loaded ' + str(len(pois.index)) + ' POIs.') return pois def retrieve_osm_loc(name, buffer_dist=0): """Retrieves a polygon from an OSM location. Args: name (string): Name of the location to be resolved. buffer_dist (numeric): Buffer distance in meters. Returns: A polygon. """ geom = osmnx.core.gdf_from_place(name, buffer_dist=buffer_dist) if len(geom.index) > 0: geom = geom.iloc[0].geometry else: geom = None return geom def to_geojson(gdf, output_file): """Exports a GeoDataFrame to a GeoJSON file. Args: gdf (GeoDataFrame): The GeoDataFrame object to be exported. output_file (string): Path to the output file. """ gdf.to_file(output_file, driver='GeoJSON')
[ "osmnx.pois.pois_from_polygon", "pandas.read_csv", "io.BytesIO", "requests.get", "shapely.geometry.Point", "osmnx.core.gdf_from_place", "geopandas.GeoDataFrame", "math.isnan" ]
[((1861, 1926), 'pandas.read_csv', 'pd.read_csv', (['input_file'], {'delimiter': 'col_sep', 'error_bad_lines': '(False)'}), '(input_file, delimiter=col_sep, error_bad_lines=False)\n', (1872, 1926), True, 'import pandas as pd\n'), ((3769, 3804), 'osmnx.pois.pois_from_polygon', 'osmnx.pois.pois_from_polygon', (['bound'], {}), '(bound)\n', (3797, 3804), False, 'import osmnx\n'), ((7580, 7636), 'osmnx.core.gdf_from_place', 'osmnx.core.gdf_from_place', (['name'], {'buffer_dist': 'buffer_dist'}), '(name, buffer_dist=buffer_dist)\n', (7605, 7636), False, 'import osmnx\n'), ((5680, 5709), 'requests.get', 'requests.get', (['osmwrangle_file'], {}), '(osmwrangle_file)\n', (5692, 5709), False, 'import requests\n'), ((5934, 6004), 'pandas.read_csv', 'pd.read_csv', (['osmwrangle_file'], {'delimiter': 'col_sep', 'error_bad_lines': '(False)'}), '(osmwrangle_file, delimiter=col_sep, error_bad_lines=False)\n', (5945, 6004), True, 'import pandas as pd\n'), ((5300, 5319), 'shapely.geometry.Point', 'Point', (['x_lon', 'y_lat'], {}), '(x_lon, y_lat)\n', (5305, 5319), False, 'from shapely.geometry import Point\n'), ((5737, 5762), 'io.BytesIO', 'BytesIO', (['response.content'], {}), '(response.content)\n', (5744, 5762), False, 'from io import BytesIO\n'), ((5846, 5908), 'pandas.read_csv', 'pd.read_csv', (['csvfile'], {'delimiter': 'col_sep', 'error_bad_lines': '(False)'}), '(csvfile, delimiter=col_sep, error_bad_lines=False)\n', (5857, 5908), True, 'import pandas as pd\n'), ((6840, 6905), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (['pois'], {'crs': 'source_crs', 'geometry': "pois['geometry']"}), "(pois, crs=source_crs, geometry=pois['geometry'])\n", (6856, 6905), True, 'import geopandas as gpd\n'), ((1727, 1746), 'shapely.geometry.Point', 'Point', (['x_lon', 'y_lat'], {}), '(x_lon, y_lat)\n', (1732, 1746), False, 'from shapely.geometry import Point\n'), ((5222, 5239), 'math.isnan', 'math.isnan', (['x_lon'], {}), '(x_lon)\n', (5232, 5239), False, 'import math\n'), ((5253, 5270), 'math.isnan', 'math.isnan', (['y_lat'], {}), '(y_lat)\n', (5263, 5270), False, 'import math\n'), ((1645, 1662), 'math.isnan', 'math.isnan', (['x_lon'], {}), '(x_lon)\n', (1655, 1662), False, 'import math\n'), ((1676, 1693), 'math.isnan', 'math.isnan', (['y_lat'], {}), '(y_lat)\n', (1686, 1693), False, 'import math\n'), ((3016, 3081), 'geopandas.GeoDataFrame', 'gpd.GeoDataFrame', (['pois'], {'crs': 'source_crs', 'geometry': "pois['geometry']"}), "(pois, crs=source_crs, geometry=pois['geometry'])\n", (3032, 3081), True, 'import geopandas as gpd\n')]
import re import random from collections import defaultdict import src.settings as var from src.utilities import * from src import debuglog, errlog, plog from src.decorators import cmd, event_listener from src.messages import messages from src.events import Event KILLS = {} # type: Dict[str, List[str]] @cmd("kill", chan=False, pm=True, playing=True, phases=("night",)) def wolf_kill(cli, nick, chan, rest): """Kills one or more players as a wolf.""" role = get_role(nick) # eventually cub will listen on targeted_command and block kills that way if role not in var.WOLF_ROLES - {"wolf cub"}: return if nick in var.SILENCED: pm(cli, nick, messages["silenced"]) return if var.DISEASED_WOLVES: pm(cli, nick, messages["ill_wolves"]) return # eventually crow will listen on targeted_command and block kills that way # (or more likely, that restriction will be lifted and crow can do both) if role == "werecrow" and var.OBSERVED.get(nick): pm(cli, nick, messages["werecrow_transformed_nokill"]) return pieces = re.split(" +", rest) victims = [] orig = [] num_kills = 1 if var.ANGRY_WOLVES: num_kills = 2 i = 0 extra = 0 while i < num_kills + extra: try: victim = pieces[i] except IndexError: break if victim.lower() == "and": extra += 1 i += 1 victim = pieces[i] victim = get_victim(cli, nick, victim, False) if not victim: return if victim == nick: pm(cli, nick, messages["no_suicide"]) return if in_wolflist(nick, victim): pm(cli, nick, messages["wolf_no_target_wolf"]) return orig.append(victim) evt = Event("targeted_command", {"target": victim, "misdirection": True, "exchange": True}) evt.dispatch(cli, var, "kill", nick, victim, frozenset({"detrimental"})) if evt.prevent_default: return victim = evt.data["target"] victims.append(victim) i += 1 if len(set(victims)) < len(victims): pm(cli, nick, messages["wolf_must_target_multiple"]) return KILLS[nick] = victims if len(orig) > 1: # need to expand this eventually msg = messages["wolf_target_multiple"].format(orig[0], orig[1]) pm(cli, nick, messages["player"].format(msg)) debuglog("{0} ({1}) KILL: {2} ({3}) and {4} ({5})".format(nick, role, victims[0], get_role(victims[0]), victims[1], get_role(victims[1]))) else: msg = messages["wolf_target"].format(orig[0]) pm(cli, nick, messages["player"].format(msg)) if num_kills > 1: pm(cli, nick, messages["wolf_target_second"]) debuglog("{0} ({1}) KILL: {2} ({3})".format(nick, role, victims[0], get_role(victims[0]))) if in_wolflist(nick, nick): relay_wolfchat_command(cli, nick, messages["wolfchat"].format(nick, msg), var.WOLF_ROLES, is_wolf_command=True, is_kill_command=True) chk_nightdone(cli) @cmd("retract", "r", chan=False, pm=True, playing=True, phases=("night",)) def wolf_retract(cli, nick, chan, rest): """Removes a wolf's kill selection.""" if nick not in KILLS: return del KILLS[nick] pm(cli, nick, messages["retracted_kill"]) relay_wolfchat_command(cli, nick, messages["wolfchat_retracted_kill"].format(nick), var.WOLF_ROLES, is_wolf_command=True, is_kill_command=True) @event_listener("del_player") def on_del_player(evt, cli, var, nick, nickrole, nicktpls, death_triggers): for a,b in list(KILLS.items()): for n in b: if n == nick: KILLS[a].remove(nick) if a == nick or len(KILLS[a]) == 0: del KILLS[a] @event_listener("rename_player") def on_rename(evt, cli, var, prefix, nick): kvp = [] for a,b in KILLS.items(): nl = [] for n in b: if n == prefix: n = nick nl.append(n) if a == prefix: a = nick kvp.append((a,nl)) KILLS.update(kvp) if prefix in KILLS: del KILLS[prefix] @event_listener("night_acted") def on_acted(evt, cli, var, nick, sender): if nick in KILLS: evt.data["acted"] = True @event_listener("transition_day", priority=1) def on_transition_day(evt, cli, var): # figure out wolf target found = defaultdict(int) # split off into event + wolfcub.py num_kills = 1 if var.ANGRY_WOLVES: num_kills = 2 for v in KILLS.values(): for p in v: if p: # kill target starting with ! is invalid # right now nothing does this, but monster eventually will if p[0] == "!": continue found[p] += 1 for i in range(num_kills): maxc = 0 dups = [] for v, c in found.items(): if c > maxc: maxc = c dups = [v] elif c == maxc: dups.append(v) if maxc and dups: victim = random.choice(dups) evt.data["victims"].append(victim) evt.data["bywolves"].add(victim) evt.data["onlybywolves"].add(victim) # special key to let us know to randomly select a wolf in case of retribution totem evt.data["killers"][victim].append("@wolves") del found[victim] # this should be moved to an event in kill, where monster prefixes their nick with ! # and fallen angel subsequently removes the ! prefix if len(var.ROLES["fallen angel"]) == 0: for monster in var.ROLES["monster"]: if monster in victims: evt.data["victims"].remove(monster) evt.data["bywolves"].discard(monster) evt.data["onlybywolves"].discard(monster) @event_listener("exchange_roles") def on_exchange(evt, cli, var, actor, nick, actor_role, nick_role): if actor in KILLS: del KILLS[actor] if nick in KILLS: del KILLS[nick] @event_listener("chk_nightdone", priority=3) def on_chk_nightdone(evt, cli, var): if not var.DISEASED_WOLVES: evt.data["actedcount"] += len(KILLS) # eventually wolf cub will remove itself from nightroles in wolfcub.py evt.data["nightroles"].extend(list_players(var.WOLF_ROLES - {"wolf cub"})) @event_listener("chk_nightdone", priority=20) def on_chk_nightdone2(evt, cli, var): if not evt.prevent_default and not var.DISEASED_WOLVES: # flatten KILLS kills = set() for ls in KILLS.values(): kills.update(ls) # check if wolves are actually agreeing # allow len(kills) == 0 through as that means that crow was dumb and observed instead if not var.ANGRY_WOLVES and len(kills) > 1: evt.data["actedcount"] -= 1 elif var.ANGRY_WOLVES and (len(kills) == 1 or len(kills) > 2): evt.data["actedcount"] -= 1 @event_listener("transition_night_end", priority=2) def on_transition_night_end(evt, cli, var): ps = list_players() wolves = list_players(var.WOLFCHAT_ROLES) # roles in wolfchat (including those that can only listen in but not speak) wcroles = var.WOLFCHAT_ROLES # roles allowed to talk in wolfchat talkroles = var.WOLFCHAT_ROLES # condition imposed on talking in wolfchat (only during day/night, or None if talking is disabled) wccond = "" if var.RESTRICT_WOLFCHAT & var.RW_DISABLE_NIGHT: if var.RESTRICT_WOLFCHAT & var.RW_DISABLE_DAY: wccond = None else: wccond = " during day" elif var.RESTRICT_WOLFCHAT & var.RW_DISABLE_DAY: wccond = " during night" if var.RESTRICT_WOLFCHAT & var.RW_REM_NON_WOLVES: if var.RESTRICT_WOLFCHAT & var.RW_TRAITOR_NON_WOLF: wcroles = var.WOLF_ROLES talkroles = var.WOLF_ROLES else: wcroles = var.WOLF_ROLES | {"traitor"} talkroles = var.WOLF_ROLES | {"traitor"} elif var.RESTRICT_WOLFCHAT & var.RW_WOLVES_ONLY_CHAT: if var.RESTRICT_WOLFCHAT & var.RW_TRAITOR_NON_WOLF: talkroles = var.WOLF_ROLES else: talkroles = var.WOLF_ROLES | {"traitor"} for wolf in wolves: # should make the cursed information an event that cursedvillager can then add to # (e.g. an event to change what prefixes are sent with the role message, and a # 2nd event to change information in parens in player list) normal_notify = wolf in var.PLAYERS and not is_user_simple(wolf) role = get_role(wolf) cursed = "cursed " if wolf in var.ROLES["cursed villager"] and role in wcroles else "" if normal_notify: msg = "{0}_notify".format(role.replace(" ", "_")) cmsg = "cursed_" + msg try: if cursed: try: pm(cli, wolf, messages[cmsg]) except KeyError: pm(cli, wolf, messages[msg].format(cursed)) else: pm(cli, wolf, messages[msg].format(cursed)) except KeyError: # catchall in case we forgot something above an = 'n' if role.startswith(("a", "e", "i", "o", "u")) else "" pm(cli, wolf, messages["undefined_role_notify"].format(an, role)) if len(wolves) > 1 and wccond is not None and role in talkroles: pm(cli, wolf, messages["wolfchat_notify"].format(wccond)) else: an = "n" if cursed == "" and role.startswith(("a", "e", "i", "o", "u")) else "" pm(cli, wolf, messages["wolf_simple"].format(an, cursed, role)) # !simple pl = ps[:] random.shuffle(pl) pl.remove(wolf) # remove self from list if role in wcroles: for i, player in enumerate(pl): prole = get_role(player) if prole in wcroles: cursed = "" if player in var.ROLES["cursed villager"]: cursed = "cursed " pl[i] = "\u0002{0}\u0002 ({1}{2})".format(player, cursed, prole) elif player in var.ROLES["cursed villager"]: pl[i] = player + " (cursed)" elif role == "warlock": for i, player in enumerate(pl): if player in var.ROLES["cursed villager"]: pl[i] = player + " (cursed)" pm(cli, wolf, "Players: " + ", ".join(pl)) if role in var.WOLF_ROLES - {"wolf cub"} and var.DISEASED_WOLVES: pm(cli, wolf, messages["ill_wolves"]) # TODO: split the following out into their own files (mystic, cub and alpha) if role == "wolf mystic": # if adding this info to !myrole, you will need to save off this count so that they can't get updated info until the next night # # of special villagers = # of players - # of villagers - # of wolves - # of neutrals numvills = len(ps) - len(list_players(var.WOLFTEAM_ROLES)) - len(list_players(("villager", "vengeful ghost", "time lord", "amnesiac", "lycan"))) - len(list_players(var.TRUE_NEUTRAL_ROLES)) pm(cli, wolf, messages["wolf_mystic_info"].format("are" if numvills != 1 else "is", numvills, "s" if numvills != 1 else "")) if not var.DISEASED_WOLVES and var.ANGRY_WOLVES and role in var.WOLF_ROLES - {"wolf cub"}: pm(cli, wolf, messages["angry_wolves"]) if var.ALPHA_ENABLED and role == "alpha wolf" and wolf not in var.ALPHA_WOLVES: pm(cli, wolf, messages["wolf_bite"]) @event_listener("begin_day") def on_begin_day(evt, cli, var): KILLS.clear() @event_listener("reset") def on_reset(evt, var): KILLS.clear() # vim: set sw=4 expandtab:
[ "re.split", "random.choice", "random.shuffle", "src.events.Event", "src.decorators.event_listener", "src.settings.OBSERVED.get", "collections.defaultdict", "src.decorators.cmd" ]
[((308, 373), 'src.decorators.cmd', 'cmd', (['"""kill"""'], {'chan': '(False)', 'pm': '(True)', 'playing': '(True)', 'phases': "('night',)"}), "('kill', chan=False, pm=True, playing=True, phases=('night',))\n", (311, 373), False, 'from src.decorators import cmd, event_listener\n'), ((3121, 3194), 'src.decorators.cmd', 'cmd', (['"""retract"""', '"""r"""'], {'chan': '(False)', 'pm': '(True)', 'playing': '(True)', 'phases': "('night',)"}), "('retract', 'r', chan=False, pm=True, playing=True, phases=('night',))\n", (3124, 3194), False, 'from src.decorators import cmd, event_listener\n'), ((3536, 3564), 'src.decorators.event_listener', 'event_listener', (['"""del_player"""'], {}), "('del_player')\n", (3550, 3564), False, 'from src.decorators import cmd, event_listener\n'), ((3832, 3863), 'src.decorators.event_listener', 'event_listener', (['"""rename_player"""'], {}), "('rename_player')\n", (3846, 3863), False, 'from src.decorators import cmd, event_listener\n'), ((4211, 4240), 'src.decorators.event_listener', 'event_listener', (['"""night_acted"""'], {}), "('night_acted')\n", (4225, 4240), False, 'from src.decorators import cmd, event_listener\n'), ((4341, 4385), 'src.decorators.event_listener', 'event_listener', (['"""transition_day"""'], {'priority': '(1)'}), "('transition_day', priority=1)\n", (4355, 4385), False, 'from src.decorators import cmd, event_listener\n'), ((5943, 5975), 'src.decorators.event_listener', 'event_listener', (['"""exchange_roles"""'], {}), "('exchange_roles')\n", (5957, 5975), False, 'from src.decorators import cmd, event_listener\n'), ((6140, 6183), 'src.decorators.event_listener', 'event_listener', (['"""chk_nightdone"""'], {'priority': '(3)'}), "('chk_nightdone', priority=3)\n", (6154, 6183), False, 'from src.decorators import cmd, event_listener\n'), ((6462, 6506), 'src.decorators.event_listener', 'event_listener', (['"""chk_nightdone"""'], {'priority': '(20)'}), "('chk_nightdone', priority=20)\n", (6476, 6506), False, 'from src.decorators import cmd, event_listener\n'), ((7061, 7111), 'src.decorators.event_listener', 'event_listener', (['"""transition_night_end"""'], {'priority': '(2)'}), "('transition_night_end', priority=2)\n", (7075, 7111), False, 'from src.decorators import cmd, event_listener\n'), ((11763, 11790), 'src.decorators.event_listener', 'event_listener', (['"""begin_day"""'], {}), "('begin_day')\n", (11777, 11790), False, 'from src.decorators import cmd, event_listener\n'), ((11844, 11867), 'src.decorators.event_listener', 'event_listener', (['"""reset"""'], {}), "('reset')\n", (11858, 11867), False, 'from src.decorators import cmd, event_listener\n'), ((1107, 1127), 're.split', 're.split', (['""" +"""', 'rest'], {}), "(' +', rest)\n", (1115, 1127), False, 'import re\n'), ((4465, 4481), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (4476, 4481), False, 'from collections import defaultdict\n'), ((991, 1013), 'src.settings.OBSERVED.get', 'var.OBSERVED.get', (['nick'], {}), '(nick)\n', (1007, 1013), True, 'import src.settings as var\n'), ((1839, 1928), 'src.events.Event', 'Event', (['"""targeted_command"""', "{'target': victim, 'misdirection': True, 'exchange': True}"], {}), "('targeted_command', {'target': victim, 'misdirection': True,\n 'exchange': True})\n", (1844, 1928), False, 'from src.events import Event\n'), ((9866, 9884), 'random.shuffle', 'random.shuffle', (['pl'], {}), '(pl)\n', (9880, 9884), False, 'import random\n'), ((5161, 5180), 'random.choice', 'random.choice', (['dups'], {}), '(dups)\n', (5174, 5180), False, 'import random\n')]
import shutil from pathlib import Path from tempfile import mkdtemp import pytest from click.testing import CliRunner import ape # NOTE: Ensure that we don't use local paths for these ape.config.DATA_FOLDER = Path(mkdtemp()).resolve() ape.config.PROJECT_FOLDER = Path(mkdtemp()).resolve() @pytest.fixture(scope="session") def config(): yield ape.config @pytest.fixture(scope="session") def data_folder(config): yield config.DATA_FOLDER @pytest.fixture(scope="session") def plugin_manager(): yield ape.networks.plugin_manager @pytest.fixture(scope="session") def accounts(): yield ape.accounts @pytest.fixture(scope="session") def compilers(): yield ape.compilers @pytest.fixture(scope="session") def networks(): yield ape.networks @pytest.fixture(scope="session") def chain(): yield ape.chain @pytest.fixture(scope="session") def project_folder(config): yield config.PROJECT_FOLDER @pytest.fixture(scope="session") def project(config): yield ape.Project(config.PROJECT_FOLDER) @pytest.fixture def keyparams(): # NOTE: password is 'a' return { "address": "7e5f4552091a69125d5dfcb7b8c2659029395bdf", "crypto": { "cipher": "aes-128-ctr", "cipherparams": {"iv": "7bc492fb5dca4fe80fd47645b2aad0ff"}, "ciphertext": "43beb65018a35c31494f642ec535315897634b021d7ec5bb8e0e2172387e2812", "kdf": "scrypt", "kdfparams": { "dklen": 32, "n": 262144, "r": 1, "p": 8, "salt": "<PASSWORD>", }, "mac": "6a1d520975a031e11fc16cff610f5ae7476bcae4f2f598bc59ccffeae33b1caa", }, "id": "ee<PASSWORD>", "version": 3, } @pytest.fixture def temp_accounts_path(config): path = Path(config.DATA_FOLDER) / "accounts" path.mkdir(exist_ok=True, parents=True) yield path if path.exists(): shutil.rmtree(path) @pytest.fixture def runner(project): yield CliRunner()
[ "pathlib.Path", "ape.Project", "click.testing.CliRunner", "tempfile.mkdtemp", "shutil.rmtree", "pytest.fixture" ]
[((295, 326), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (309, 326), False, 'import pytest\n'), ((365, 396), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (379, 396), False, 'import pytest\n'), ((454, 485), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (468, 485), False, 'import pytest\n'), ((549, 580), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (563, 580), False, 'import pytest\n'), ((623, 654), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (637, 654), False, 'import pytest\n'), ((699, 730), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (713, 730), False, 'import pytest\n'), ((773, 804), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (787, 804), False, 'import pytest\n'), ((841, 872), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (855, 872), False, 'import pytest\n'), ((936, 967), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (950, 967), False, 'import pytest\n'), ((999, 1033), 'ape.Project', 'ape.Project', (['config.PROJECT_FOLDER'], {}), '(config.PROJECT_FOLDER)\n', (1010, 1033), False, 'import ape\n'), ((1828, 1852), 'pathlib.Path', 'Path', (['config.DATA_FOLDER'], {}), '(config.DATA_FOLDER)\n', (1832, 1852), False, 'from pathlib import Path\n'), ((1957, 1976), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (1970, 1976), False, 'import shutil\n'), ((2026, 2037), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2035, 2037), False, 'from click.testing import CliRunner\n'), ((217, 226), 'tempfile.mkdtemp', 'mkdtemp', ([], {}), '()\n', (224, 226), False, 'from tempfile import mkdtemp\n'), ((271, 280), 'tempfile.mkdtemp', 'mkdtemp', ([], {}), '()\n', (278, 280), False, 'from tempfile import mkdtemp\n')]
#pylint: disable=logging-fstring-interpolation #Standart library imports import shutil import os import time from typing import Tuple from pathlib import Path import re from shutil import copyfile import wget # Local imports from selenium_driver_updater.util.logger import logger from selenium_driver_updater.util.exceptions import DriverVersionInvalidException from selenium_driver_updater.driver_base import DriverBase class PhantomJS(DriverBase): "Class for working with Selenium phantomjs binary" _repo_name = 'ariya/phantomjs' _tmp_folder_path = 'tmp' def __init__(self, **kwargs): kwargs.update(repo_name=PhantomJS._repo_name) DriverBase.__init__(self, **kwargs) self.system_name = '' #assign of specific os specific_system = str(kwargs.get('system_name', '')) specific_system = specific_system.replace('linux64', 'linux-x86_64') specific_system = specific_system.replace('linux32', 'linux-i686').replace('macos', 'macosx') if specific_system: self.system_name = "phantomjs-{}-" + f"{specific_system}" if 'win' in specific_system: self.system_name = "phantomjs-{}-windows" if 'linux' in specific_system: self.system_name = self.system_name + '.tar.bz2' else: self.system_name = self.system_name + '.zip' self.phantomjs_path = self.driver_path def _get_latest_version_phantomjs(self) -> str: """Gets latest phantomjs version Returns: str latest_version (str) : Latest version of phantomjs. """ latest_version : str = '' repo_name = PhantomJS._repo_name latest_version = self.github_viewer.get_latest_release_tag_by_repo_name(repo_name=repo_name) logger.info(f'Latest version of phantomjs: {latest_version}') return latest_version def _compare_current_version_and_latest_version_phantomjs(self) -> Tuple[bool, str, str]: """Compares current version of phantomjs to latest version Returns: Tuple of bool, str and str is_driver_up_to_date (bool) : It true the driver is up to date. Defaults to False. current_version (str) : Current version of the driver. latest_version (str) : Latest version of the driver. """ is_driver_up_to_date : bool = False current_version : str = '' latest_version : str = '' current_version = super()._get_current_version_driver() if not current_version: return is_driver_up_to_date, current_version, latest_version latest_version = self._get_latest_version_phantomjs() if current_version == latest_version: is_driver_up_to_date = True message = ('Your existing phantomjs is up to date.' f'current_version: {current_version} latest_version: {latest_version}') logger.info(message) return is_driver_up_to_date, current_version, latest_version def _check_if_phantomjs_is_up_to_date(self) -> str: """Сhecks for the latest version, downloads or updates phantomjs binary Returns: str driver_path (str) : Path where phantomjs was downloaded or updated. """ driver_path : str = '' if self.check_driver_is_up_to_date and not self.system_name: is_driver_up_to_date, current_version, latest_version = self._compare_current_version_and_latest_version_phantomjs() if is_driver_up_to_date: return self.phantomjs_path driver_path = self._download_driver() if self.check_driver_is_up_to_date and not self.system_name: is_driver_up_to_date, current_version, latest_version = self._compare_current_version_and_latest_version_phantomjs() if not is_driver_up_to_date: message = ('Problem with updating phantomjs' f'current_version: {current_version} latest_version: {latest_version}') logger.error(message) message = 'Trying to download previous latest version of phantomjs' logger.info(message) driver_path = self._download_driver(previous_version=True) return driver_path def __rename_driver(self, archive_folder_path : str, archive_driver_path : str) -> None: """Renames phantomjs if it was given Args: archive_folder_path (str) : Path to the main folder archive_driver_path (str) : Path to the phantomjs archive """ renamed_driver_path : str = '' new_path = archive_folder_path + os.path.sep + self.filename if not archive_folder_path.endswith(os.path.sep) else archive_folder_path + self.filename if Path(new_path).exists(): Path(new_path).unlink() os.rename(archive_driver_path, new_path) renamed_driver_path = self.path + self.filename if Path(renamed_driver_path).exists(): Path(renamed_driver_path).unlink() copyfile(new_path, renamed_driver_path) def main(self) -> str: """Main function, checks for the latest version, downloads or updates phantomjs binary or downloads specific version of phantomjs. Returns: str driver_path (str) : Path where phantomjs was downloaded or updated. """ driver_path : str = '' if not self.version: driver_path = self._check_if_phantomjs_is_up_to_date() else: driver_path = self._download_driver(version=self.version) return driver_path def _get_latest_previous_version_phantomjs_via_requests(self) -> str: """Gets previous latest phantomjs version Returns: str latest_version_previous (str) : Latest previous version of phantomjs. """ latest_previous_version : str = '' all_versions = [] url = self.setting["PhantomJS"]["LinkAllReleases"] json_data = self.requests_getter.get_result_by_request(url=url, is_json=True) values = json_data.get('values') for value in values: value_name = value.get('name') if not 'beta' in value_name: find_string = re.findall(self.setting["Program"]["wedriverVersionPattern"], value_name) version = find_string[0] if len(find_string) > 0 else '' all_versions.append(version) all_versions = list(set(all_versions)) all_versions.sort(key=lambda s: list(map(int, s.split('.')))) latest_previous_version = all_versions[len(all_versions)-2] logger.info(f'Latest previous version of phantomjs: {latest_previous_version}') return latest_previous_version def _check_if_version_is_valid(self, url : str) -> None: """Checks the specified version for existence. Args: url (str) : Full download url of chromedriver. """ archive_name : str = url.split("/")[len(url.split("/"))-1] url_releases : str = self.setting["PhantomJS"]["LinkAllReleases"] is_found : bool = False while is_found is False: json_data = self.requests_getter.get_result_by_request(url=url_releases, is_json=True) for data in json_data.get('values'): if data.get('name') == archive_name: is_found = True break url_releases = json_data.get('next') if not url_releases: break if not is_found: message = f'Wrong version or system_name was specified. archive_name: {archive_name} url: {url}' raise DriverVersionInvalidException(message) def _download_driver(self, version : str = '', previous_version : bool = False) -> str: """Function to download, delete or upgrade current phantomjs Args: version (str) : Specific phantomjs version to download. Defaults to empty string. previous_version (boll) : If true, phantomjs latest previous version will be downloaded. Defaults to False. Returns: str driver_path (str) : Path to unzipped driver. """ url : str = '' latest_version : str = '' latest_previous_version : str = '' driver_path : str = '' if self.upgrade: super()._delete_current_driver_for_current_os() if version: logger.info(f'Started download phantomjs specific_version: {version}') url = self.setting["PhantomJS"]["LinkLastReleaseFile"].format(version) elif previous_version: latest_previous_version = self._get_latest_previous_version_phantomjs_via_requests() logger.info(f'Started download phantomjs latest_previous_version: {latest_previous_version}') url = self.setting["PhantomJS"]["LinkLastReleaseFile"].format(latest_previous_version) else: latest_version = self._get_latest_version_phantomjs() logger.info(f'Started download phantomjs latest_version: {latest_version}') url = self.setting["PhantomJS"]["LinkLastReleaseFile"].format(latest_version) if self.system_name: url = url.replace(url.split("/")[-1], '') version = [value for key,value in locals().items() if 'version' in key and value][0] url = url + self.system_name.format(version) logger.info(f'Started downloading geckodriver for specific system: {self.system_name}') if any([version, self.system_name ,latest_previous_version]): self._check_if_version_is_valid(url=url) archive_name = url.split("/")[-1] out_path = self.path + archive_name if Path(out_path).exists(): Path(out_path).unlink() logger.info(f'Started download phantomjs by url: {url}') if self.info_messages: archive_path = wget.download(url=url, out=out_path) else: archive_path = wget.download(url=url, out=out_path, bar=None) time.sleep(2) logger.info(f'PhantomJS was downloaded to path: {archive_path}') out_path = self.path parameters = dict(archive_path=archive_path, out_path=out_path) self.extractor.extract_and_detect_archive_format(**parameters) platform : str = self.setting["PhantomJS"]["LastReleasePlatform"] archive_path_folder = self.path + url.split("/")[-1].replace('.zip', '').replace(".tar.bz2", '') + os.path.sep archive_path_folder_bin = archive_path_folder + 'bin' + os.path.sep driver_archive_path = archive_path_folder_bin + platform if not self.filename: copyfile(driver_archive_path, self.path + platform) else: parameters = dict(archive_folder_path=archive_path_folder_bin, archive_driver_path=driver_archive_path) self.__rename_driver(**parameters) if Path(archive_path_folder).exists(): shutil.rmtree(archive_path_folder) driver_path = self.phantomjs_path logger.info(f'PhantomJS was successfully unpacked by path: {driver_path}') if self.chmod: super()._chmod_driver() return driver_path
[ "selenium_driver_updater.util.logger.logger.info", "wget.download", "pathlib.Path", "selenium_driver_updater.util.exceptions.DriverVersionInvalidException", "os.rename", "time.sleep", "shutil.rmtree", "shutil.copyfile", "selenium_driver_updater.util.logger.logger.error", "selenium_driver_updater.driver_base.DriverBase.__init__", "re.findall" ]
[((672, 707), 'selenium_driver_updater.driver_base.DriverBase.__init__', 'DriverBase.__init__', (['self'], {}), '(self, **kwargs)\n', (691, 707), False, 'from selenium_driver_updater.driver_base import DriverBase\n'), ((1842, 1903), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""Latest version of phantomjs: {latest_version}"""'], {}), "(f'Latest version of phantomjs: {latest_version}')\n", (1853, 1903), False, 'from selenium_driver_updater.util.logger import logger\n'), ((4991, 5031), 'os.rename', 'os.rename', (['archive_driver_path', 'new_path'], {}), '(archive_driver_path, new_path)\n', (5000, 5031), False, 'import os\n'), ((5192, 5231), 'shutil.copyfile', 'copyfile', (['new_path', 'renamed_driver_path'], {}), '(new_path, renamed_driver_path)\n', (5200, 5231), False, 'from shutil import copyfile\n'), ((6831, 6910), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""Latest previous version of phantomjs: {latest_previous_version}"""'], {}), "(f'Latest previous version of phantomjs: {latest_previous_version}')\n", (6842, 6910), False, 'from selenium_driver_updater.util.logger import logger\n'), ((10085, 10141), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""Started download phantomjs by url: {url}"""'], {}), "(f'Started download phantomjs by url: {url}')\n", (10096, 10141), False, 'from selenium_driver_updater.util.logger import logger\n'), ((10334, 10347), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (10344, 10347), False, 'import time\n'), ((10357, 10421), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""PhantomJS was downloaded to path: {archive_path}"""'], {}), "(f'PhantomJS was downloaded to path: {archive_path}')\n", (10368, 10421), False, 'from selenium_driver_updater.util.logger import logger\n'), ((11356, 11430), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""PhantomJS was successfully unpacked by path: {driver_path}"""'], {}), "(f'PhantomJS was successfully unpacked by path: {driver_path}')\n", (11367, 11430), False, 'from selenium_driver_updater.util.logger import logger\n'), ((3010, 3030), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['message'], {}), '(message)\n', (3021, 3030), False, 'from selenium_driver_updater.util.logger import logger\n'), ((7886, 7924), 'selenium_driver_updater.util.exceptions.DriverVersionInvalidException', 'DriverVersionInvalidException', (['message'], {}), '(message)\n', (7915, 7924), False, 'from selenium_driver_updater.util.exceptions import DriverVersionInvalidException\n'), ((8699, 8769), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""Started download phantomjs specific_version: {version}"""'], {}), "(f'Started download phantomjs specific_version: {version}')\n", (8710, 8769), False, 'from selenium_driver_updater.util.logger import logger\n'), ((9703, 9795), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""Started downloading geckodriver for specific system: {self.system_name}"""'], {}), "(\n f'Started downloading geckodriver for specific system: {self.system_name}')\n", (9714, 9795), False, 'from selenium_driver_updater.util.logger import logger\n'), ((10201, 10237), 'wget.download', 'wget.download', ([], {'url': 'url', 'out': 'out_path'}), '(url=url, out=out_path)\n', (10214, 10237), False, 'import wget\n'), ((10279, 10325), 'wget.download', 'wget.download', ([], {'url': 'url', 'out': 'out_path', 'bar': 'None'}), '(url=url, out=out_path, bar=None)\n', (10292, 10325), False, 'import wget\n'), ((10978, 11029), 'shutil.copyfile', 'copyfile', (['driver_archive_path', '(self.path + platform)'], {}), '(driver_archive_path, self.path + platform)\n', (10986, 11029), False, 'from shutil import copyfile\n'), ((11269, 11303), 'shutil.rmtree', 'shutil.rmtree', (['archive_path_folder'], {}), '(archive_path_folder)\n', (11282, 11303), False, 'import shutil\n'), ((4150, 4171), 'selenium_driver_updater.util.logger.logger.error', 'logger.error', (['message'], {}), '(message)\n', (4162, 4171), False, 'from selenium_driver_updater.util.logger import logger\n'), ((4272, 4292), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['message'], {}), '(message)\n', (4283, 4292), False, 'from selenium_driver_updater.util.logger import logger\n'), ((4921, 4935), 'pathlib.Path', 'Path', (['new_path'], {}), '(new_path)\n', (4925, 4935), False, 'from pathlib import Path\n'), ((5100, 5125), 'pathlib.Path', 'Path', (['renamed_driver_path'], {}), '(renamed_driver_path)\n', (5104, 5125), False, 'from pathlib import Path\n'), ((6442, 6515), 're.findall', 're.findall', (["self.setting['Program']['wedriverVersionPattern']", 'value_name'], {}), "(self.setting['Program']['wedriverVersionPattern'], value_name)\n", (6452, 6515), False, 'import re\n'), ((8997, 9100), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""Started download phantomjs latest_previous_version: {latest_previous_version}"""'], {}), "(\n f'Started download phantomjs latest_previous_version: {latest_previous_version}'\n )\n", (9008, 9100), False, 'from selenium_driver_updater.util.logger import logger\n'), ((9285, 9360), 'selenium_driver_updater.util.logger.logger.info', 'logger.info', (['f"""Started download phantomjs latest_version: {latest_version}"""'], {}), "(f'Started download phantomjs latest_version: {latest_version}')\n", (9296, 9360), False, 'from selenium_driver_updater.util.logger import logger\n'), ((10015, 10029), 'pathlib.Path', 'Path', (['out_path'], {}), '(out_path)\n', (10019, 10029), False, 'from pathlib import Path\n'), ((11221, 11246), 'pathlib.Path', 'Path', (['archive_path_folder'], {}), '(archive_path_folder)\n', (11225, 11246), False, 'from pathlib import Path\n'), ((4958, 4972), 'pathlib.Path', 'Path', (['new_path'], {}), '(new_path)\n', (4962, 4972), False, 'from pathlib import Path\n'), ((5148, 5173), 'pathlib.Path', 'Path', (['renamed_driver_path'], {}), '(renamed_driver_path)\n', (5152, 5173), False, 'from pathlib import Path\n'), ((10052, 10066), 'pathlib.Path', 'Path', (['out_path'], {}), '(out_path)\n', (10056, 10066), False, 'from pathlib import Path\n')]
from django.contrib import admin from .models import Distribution admin.site.register(Distribution) # Register your models here.
[ "django.contrib.admin.site.register" ]
[((67, 100), 'django.contrib.admin.site.register', 'admin.site.register', (['Distribution'], {}), '(Distribution)\n', (86, 100), False, 'from django.contrib import admin\n')]
from django.contrib.auth import authenticate, login from django.shortcuts import render, redirect from cart.models import Cart from django.views import View from .forms import LoginForm, RegistrationForm, CreateCompanyForm from customer.models import Customer, ShippingAddress from src.utils.mixins import CustomerMixin from checkout.models import ApplyOrganization class LoginView(CustomerMixin, View): def get(self, request, *args, **kwargs): if request.user.is_authenticated: return redirect('catalog') form = LoginForm() return render(request, 'customer/login.html', {'form': form}) def post(self, request, *args, **kwargs): form = LoginForm(request.POST or None) if form.is_valid(): email = form.cleaned_data['email'] password = form.cleaned_data['password'] user = authenticate(request, email=email, password=password) if user: login(request, user) return redirect('catalog') return render(request, 'customer/login.html', {'form': form}) class RegistrationView(View): def get(self, request, *args, **kwargs): if request.user.is_authenticated: return redirect('catalog') form = RegistrationForm() return render(request, 'customer/register.html', {'form': form}) def post(self, request, *args, **kwargs): form = RegistrationForm(request.POST or None, request.FILES or None) if form.is_valid(): new_user = form.save(commit=False) customer = Customer.objects.create(user=new_user, status="Unrecognized") customer.save() cart = Cart.objects.create(customer=customer) cart.save() address = ShippingAddress.objects.create(customer=customer) address.save() new_user.set_password(form.cleaned_data['<PASSWORD>']) new_user.save() return redirect('login') return render(request, 'customer/register.html', {'form': form}) class CreateCompany(View): def get(self, request, *args, **kwargs): if request.user.is_authenticated and request.user.STATUS_AUTH == "Recognized": form = CreateCompanyForm() return render(request, 'customer/create_company.html', {'form': form}) return redirect('catalog') def post(self, request, *args, **kwargs): if request.user.is_authenticated and request.user.STATUS_AUTH == "Recognized": form = CreateCompanyForm(request.POST or None, request.FILES or None) if form.is_valid(): new_company = form.save(commit=False) new_company.STATUS_COMPANY = "No verify" new_company.user = request.user new_company.save() return redirect('catalog') return render(request, 'customer/register.html', {'form': form})
[ "django.shortcuts.render", "django.contrib.auth.authenticate", "django.contrib.auth.login", "django.shortcuts.redirect", "cart.models.Cart.objects.create", "customer.models.Customer.objects.create", "customer.models.ShippingAddress.objects.create" ]
[((574, 628), 'django.shortcuts.render', 'render', (['request', '"""customer/login.html"""', "{'form': form}"], {}), "(request, 'customer/login.html', {'form': form})\n", (580, 628), False, 'from django.shortcuts import render, redirect\n'), ((1040, 1094), 'django.shortcuts.render', 'render', (['request', '"""customer/login.html"""', "{'form': form}"], {}), "(request, 'customer/login.html', {'form': form})\n", (1046, 1094), False, 'from django.shortcuts import render, redirect\n'), ((1302, 1359), 'django.shortcuts.render', 'render', (['request', '"""customer/register.html"""', "{'form': form}"], {}), "(request, 'customer/register.html', {'form': form})\n", (1308, 1359), False, 'from django.shortcuts import render, redirect\n'), ((2000, 2057), 'django.shortcuts.render', 'render', (['request', '"""customer/register.html"""', "{'form': form}"], {}), "(request, 'customer/register.html', {'form': form})\n", (2006, 2057), False, 'from django.shortcuts import render, redirect\n'), ((2356, 2375), 'django.shortcuts.redirect', 'redirect', (['"""catalog"""'], {}), "('catalog')\n", (2364, 2375), False, 'from django.shortcuts import render, redirect\n'), ((512, 531), 'django.shortcuts.redirect', 'redirect', (['"""catalog"""'], {}), "('catalog')\n", (520, 531), False, 'from django.shortcuts import render, redirect\n'), ((870, 923), 'django.contrib.auth.authenticate', 'authenticate', (['request'], {'email': 'email', 'password': 'password'}), '(request, email=email, password=password)\n', (882, 923), False, 'from django.contrib.auth import authenticate, login\n'), ((1233, 1252), 'django.shortcuts.redirect', 'redirect', (['"""catalog"""'], {}), "('catalog')\n", (1241, 1252), False, 'from django.shortcuts import render, redirect\n'), ((1582, 1643), 'customer.models.Customer.objects.create', 'Customer.objects.create', ([], {'user': 'new_user', 'status': '"""Unrecognized"""'}), "(user=new_user, status='Unrecognized')\n", (1605, 1643), False, 'from customer.models import Customer, ShippingAddress\n'), ((1691, 1729), 'cart.models.Cart.objects.create', 'Cart.objects.create', ([], {'customer': 'customer'}), '(customer=customer)\n', (1710, 1729), False, 'from cart.models import Cart\n'), ((1776, 1825), 'customer.models.ShippingAddress.objects.create', 'ShippingAddress.objects.create', ([], {'customer': 'customer'}), '(customer=customer)\n', (1806, 1825), False, 'from customer.models import Customer, ShippingAddress\n'), ((1967, 1984), 'django.shortcuts.redirect', 'redirect', (['"""login"""'], {}), "('login')\n", (1975, 1984), False, 'from django.shortcuts import render, redirect\n'), ((2277, 2340), 'django.shortcuts.render', 'render', (['request', '"""customer/create_company.html"""', "{'form': form}"], {}), "(request, 'customer/create_company.html', {'form': form})\n", (2283, 2340), False, 'from django.shortcuts import render, redirect\n'), ((2880, 2937), 'django.shortcuts.render', 'render', (['request', '"""customer/register.html"""', "{'form': form}"], {}), "(request, 'customer/register.html', {'form': form})\n", (2886, 2937), False, 'from django.shortcuts import render, redirect\n'), ((961, 981), 'django.contrib.auth.login', 'login', (['request', 'user'], {}), '(request, user)\n', (966, 981), False, 'from django.contrib.auth import authenticate, login\n'), ((1005, 1024), 'django.shortcuts.redirect', 'redirect', (['"""catalog"""'], {}), "('catalog')\n", (1013, 1024), False, 'from django.shortcuts import render, redirect\n'), ((2841, 2860), 'django.shortcuts.redirect', 'redirect', (['"""catalog"""'], {}), "('catalog')\n", (2849, 2860), False, 'from django.shortcuts import render, redirect\n')]
from flask import Flask, render_template, request # from .recommendation import * # import pickle import pandas as pd import numpy as np # import keras # from keras.models import load_model import pickle def create_app(): # initializes our app APP = Flask(__name__) @APP.route('/') def form(): return render_template('base.html') @APP.route('/data/', methods=['GET', 'POST']) def data(): if request.method == 'POST': # Get form data name = request.form.get('name') blurb = request.form.get('blurb', 'default') country = request.form.get('country', 'default') backers_count = request.form.get('backers_count', 'default') prediction = preprocessDataAndPredict(name, blurb, country, backers_count) # print(prediction[0]) return render_template('data.html', prediction=prediction[0]) def preprocessDataAndPredict(name, blurb, country, backers_count): # test_data = (blurb) test_data = (name, blurb, country, backers_count) # print(test_data) test_data = np.array(test_data) dftest = pd.DataFrame(test_data).T dftest.columns = ['name', 'blurb', 'country', 'backers_count'] print(dftest) print(dftest.shape) # test_data = test_data.reshape(1, -1) # print(test_data) #file = open("model.pkl", "wb") model = pickle.load( open('model_knn', 'rb')) # model = pickle.load( # open('Kickstarter2/kickstarter/kick_model(1)', 'rb')) prediction = model.predict(dftest) # print(prediction) return prediction # return prediction return APP
[ "flask.render_template", "flask.Flask", "flask.request.form.get", "numpy.array", "pandas.DataFrame" ]
[((259, 274), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (264, 274), False, 'from flask import Flask, render_template, request\n'), ((327, 355), 'flask.render_template', 'render_template', (['"""base.html"""'], {}), "('base.html')\n", (342, 355), False, 'from flask import Flask, render_template, request\n'), ((1163, 1182), 'numpy.array', 'np.array', (['test_data'], {}), '(test_data)\n', (1171, 1182), True, 'import numpy as np\n'), ((507, 531), 'flask.request.form.get', 'request.form.get', (['"""name"""'], {}), "('name')\n", (523, 531), False, 'from flask import Flask, render_template, request\n'), ((552, 588), 'flask.request.form.get', 'request.form.get', (['"""blurb"""', '"""default"""'], {}), "('blurb', 'default')\n", (568, 588), False, 'from flask import Flask, render_template, request\n'), ((611, 649), 'flask.request.form.get', 'request.form.get', (['"""country"""', '"""default"""'], {}), "('country', 'default')\n", (627, 649), False, 'from flask import Flask, render_template, request\n'), ((678, 722), 'flask.request.form.get', 'request.form.get', (['"""backers_count"""', '"""default"""'], {}), "('backers_count', 'default')\n", (694, 722), False, 'from flask import Flask, render_template, request\n'), ((899, 953), 'flask.render_template', 'render_template', (['"""data.html"""'], {'prediction': 'prediction[0]'}), "('data.html', prediction=prediction[0])\n", (914, 953), False, 'from flask import Flask, render_template, request\n'), ((1200, 1223), 'pandas.DataFrame', 'pd.DataFrame', (['test_data'], {}), '(test_data)\n', (1212, 1223), True, 'import pandas as pd\n')]
# Copyright 2018, <NAME> LLC # License: Apache License Version 2.0 # ------------------------------------------------------------------------- # registration.py - updates the database to say who is building something # and what the current settings are, which is used by the file serving # code to see if it is ok to serve up files in the buildroot. But also # for record keeping. # -------------------------------------------------------------------------- from datetime import datetime import random import fcntl import subprocess import os from django.utils import timezone from django.conf import settings from vespene.common.logger import Logger from vespene.models.worker import Worker LOG = Logger() WORKER_ID_FILE = "/etc/vespene/worker_id" # ============================================================================= class RegistrationManager(object): def __init__(self, builder, build): self.builder = builder self.build = build self.project = self.build.project def create_worker_id(self): wid = ''.join(random.SystemRandom().choice('abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)') for i in range(50)) fd = open(WORKER_ID_FILE, "w+") fd.write(wid) fd.close() return wid def get_worker_id(self, fd): return fd.readlines()[0].strip() def get_worker_record(self, worker_id): qs = Worker.objects.filter(worker_uid=worker_id) if not qs.exists(): return None return qs.first() # worker_pool = models.ForeignKey('WorkerPool', null=False, on_delete=models.SET_NULL) # hostname = models.CharField(max_length=1024, null=True) # port = models.IntField(null=False, default=8080) # working_dir = models.CharField(max_length=1024, null=True) # first_checkin = models.DateTimeField(null=True, blank=True) # last_checkin = models.DateTimeField(null=True, blank=True) # fileserving_enabled = models.BooleanField(null=False, default=False) def get_hostname(self): if settings.FILESERVING_HOSTNAME: return settings.FILESERVING_HOSTNAME return self.guess_hostname() def guess_hostname(self): return subprocess.check_output("hostname").decode('utf-8').strip() def get_port(self): if settings.FILESERVING_PORT: return settings.FILESERVING_PORT else: return 8000 def get_build_root(self): return settings.BUILD_ROOT def get_fileserving_enabled(self): return settings.FILESERVING_ENABLED def create_worker_record(self, worker_id): now = datetime.now(tz=timezone.utc) obj = Worker( worker_uid = worker_id, hostname = self.get_hostname(), port = self.get_port(), build_root = self.get_build_root(), first_checkin = now, last_checkin = now, fileserving_enabled = self.get_fileserving_enabled() ) obj.save() return obj def update_worker_record(self, worker): now = datetime.now(tz=timezone.utc) worker.hostname = self.get_hostname() worker.port = self.get_port() worker.build_root = self.get_build_root() worker.last_checkin = now worker.fileserving_enabled = self.get_fileserving_enabled() worker.save() return worker def go(self): """ Trigger next stage of pipeline if build was successful """ if not os.path.exists(WORKER_ID_FILE): worker_id = self.create_worker_id() fd = open(WORKER_ID_FILE, "r") fcntl.flock(fd, fcntl.LOCK_EX) worker_id = self.get_worker_id(fd) worker_record = self.get_worker_record(worker_id) if not worker_record: worker_record = self.create_worker_record(worker_id) else: worker_record = self.update_worker_record(worker_record) self.build.worker = worker_record self.build.save() fcntl.flock(fd, fcntl.LOCK_UN)
[ "subprocess.check_output", "os.path.exists", "fcntl.flock", "vespene.models.worker.Worker.objects.filter", "datetime.datetime.now", "vespene.common.logger.Logger", "random.SystemRandom" ]
[((712, 720), 'vespene.common.logger.Logger', 'Logger', ([], {}), '()\n', (718, 720), False, 'from vespene.common.logger import Logger\n'), ((1420, 1463), 'vespene.models.worker.Worker.objects.filter', 'Worker.objects.filter', ([], {'worker_uid': 'worker_id'}), '(worker_uid=worker_id)\n', (1441, 1463), False, 'from vespene.models.worker import Worker\n'), ((2643, 2672), 'datetime.datetime.now', 'datetime.now', ([], {'tz': 'timezone.utc'}), '(tz=timezone.utc)\n', (2655, 2672), False, 'from datetime import datetime\n'), ((3096, 3125), 'datetime.datetime.now', 'datetime.now', ([], {'tz': 'timezone.utc'}), '(tz=timezone.utc)\n', (3108, 3125), False, 'from datetime import datetime\n'), ((3664, 3694), 'fcntl.flock', 'fcntl.flock', (['fd', 'fcntl.LOCK_EX'], {}), '(fd, fcntl.LOCK_EX)\n', (3675, 3694), False, 'import fcntl\n'), ((4052, 4082), 'fcntl.flock', 'fcntl.flock', (['fd', 'fcntl.LOCK_UN'], {}), '(fd, fcntl.LOCK_UN)\n', (4063, 4082), False, 'import fcntl\n'), ((3528, 3558), 'os.path.exists', 'os.path.exists', (['WORKER_ID_FILE'], {}), '(WORKER_ID_FILE)\n', (3542, 3558), False, 'import os\n'), ((1084, 1105), 'random.SystemRandom', 'random.SystemRandom', ([], {}), '()\n', (1103, 1105), False, 'import random\n'), ((2225, 2260), 'subprocess.check_output', 'subprocess.check_output', (['"""hostname"""'], {}), "('hostname')\n", (2248, 2260), False, 'import subprocess\n')]
import os import json import logging from collections import defaultdict import numpy as np import networkx as nx import torch from torch.utils.data import DataLoader from torch.optim import Adam from tqdm import tqdm from milieu.util.util import place_on_cpu, place_on_gpu from milieu.paper.methods.method import DPPMethod class MilieuMethod(DPPMethod): """ GCN method class """ def __init__(self, network, diseases, params): super().__init__(network, diseases, params) self.dir = params["dir"] self.adjacency = self.network.adj_matrix self.diseases = diseases self.params = params print(self.params) if self.params.get("load", False): self.load_method() else: self.train_method(diseases) self.curr_fold = None def load_method(self): """ """ logging.info("Loading Params...") with open(os.path.join(self.dir, "params.json")) as f: params = json.load(f)["process_params"]["method_params"] params.update(self.params) self.params = params logging.info("Loading Models...") self.folds_to_models = {} for model_file in os.listdir(os.path.join(self.dir, "models")): split = parse.parse("model_{}.tar", model_file)[0] self.folds_to_models[split] = os.path.join(self.dir, "models", model_file) def train_method(self, diseases): """ """ logging.info("Training Models...") folds_to_diseases = defaultdict(set) for disease in diseases.values(): if disease.split == "none": continue folds_to_diseases[disease.split].add(disease) self.folds_to_models = {} if not(os.path.exists(os.path.join(self.dir, "models"))): os.mkdir(os.path.join(self.dir, "models")) for test_fold in folds_to_diseases.keys(): logging.info("Training model for test {}".format(test_fold)) val_fold = str((int(test_fold) - 1) % len(folds_to_diseases)) test_dataset = DiseaseDataset([disease for disease in folds_to_diseases[test_fold]], self.network) val_dataset = DiseaseDataset([disease for disease in folds_to_diseases[val_fold]], self.network) train_dataset = DiseaseDataset([disease for fold, diseases in folds_to_diseases.items() if fold != test_fold and fold != val_fold for disease in diseases], self.network) # ensure no data leakage assert(not set.intersection(*[test_dataset.get_ids(), train_dataset.get_ids()])) assert(not set.intersection(*[val_dataset.get_ids(), train_dataset.get_ids()])) model = self.train_model(train_dataset, val_dataset) path = os.path.join(self.dir, "models/model_{}.tar".format(test_fold)) torch.save(model.state_dict(), path) self.folds_to_models[test_fold] = path def train_model(self, train_dataset, val_dataset): """ Trains the underlying model """ train_dl = DataLoader(train_dataset, batch_size=self.params["batch_size"], shuffle=True, num_workers=self.params["num_workers"], pin_memory=self.params["cuda"]) dev_dl = DataLoader(val_dataset, batch_size=self.params["batch_size"], shuffle=True, num_workers=self.params["num_workers"], pin_memory=self.params["cuda"]) if self.params["model_class"] == "LCIEmbModule": model = LCIEmbModule(self.params["model_args"], self.network) else: model = LCIModule(self.params, self.adjacency) if self.params["cuda"]: model = model.cuda() optimizer = Adam(model.parameters(), lr=self.params["learning_rate"], weight_decay=self.params["weight_decay"]) logging.info("Starting training for {} epoch(s)".format(self.params["num_epochs"])) model.train() train_and_evaluate( model, train_dl, dev_dl, optimizer, bce_loss, metrics, self.params, self.dir ) model.eval() return model.cpu() def compute_scores(self, train_pos, disease): """ Compute the scores predicted by GCN. Args: """ val_pos = None # Adjacency: Get sparse representation of ppi_adj N, _ = self.adjacency.shape X = torch.zeros(1, N) X[0, train_pos] = 1 if self.params["cuda"]: X = X.cuda() if disease.split != self.curr_fold: if self.params["model_class"] == "LCIEmbModule": model = LCIEmbModule(self.params["model_args"], self.network) else: model = LCIModule(self.params, self.adjacency) model.load_state_dict(torch.load(self.folds_to_models[disease.split])) model.eval() model.cuda() self.curr_model = model self.curr_fold = disease.split Y = self.curr_model(X) scores = Y.cpu().detach().numpy().squeeze() return scores
[ "torch.load", "os.path.join", "collections.defaultdict", "torch.utils.data.DataLoader", "json.load", "logging.info", "torch.zeros" ]
[((901, 934), 'logging.info', 'logging.info', (['"""Loading Params..."""'], {}), "('Loading Params...')\n", (913, 934), False, 'import logging\n'), ((1148, 1181), 'logging.info', 'logging.info', (['"""Loading Models..."""'], {}), "('Loading Models...')\n", (1160, 1181), False, 'import logging\n'), ((1622, 1656), 'logging.info', 'logging.info', (['"""Training Models..."""'], {}), "('Training Models...')\n", (1634, 1656), False, 'import logging\n'), ((1685, 1701), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (1696, 1701), False, 'from collections import defaultdict\n'), ((3696, 3855), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': "self.params['batch_size']", 'shuffle': '(True)', 'num_workers': "self.params['num_workers']", 'pin_memory': "self.params['cuda']"}), "(train_dataset, batch_size=self.params['batch_size'], shuffle=\n True, num_workers=self.params['num_workers'], pin_memory=self.params[\n 'cuda'])\n", (3706, 3855), False, 'from torch.utils.data import DataLoader\n'), ((3990, 4141), 'torch.utils.data.DataLoader', 'DataLoader', (['val_dataset'], {'batch_size': "self.params['batch_size']", 'shuffle': '(True)', 'num_workers': "self.params['num_workers']", 'pin_memory': "self.params['cuda']"}), "(val_dataset, batch_size=self.params['batch_size'], shuffle=True,\n num_workers=self.params['num_workers'], pin_memory=self.params['cuda'])\n", (4000, 4141), False, 'from torch.utils.data import DataLoader\n'), ((5321, 5338), 'torch.zeros', 'torch.zeros', (['(1)', 'N'], {}), '(1, N)\n', (5332, 5338), False, 'import torch\n'), ((1253, 1285), 'os.path.join', 'os.path.join', (['self.dir', '"""models"""'], {}), "(self.dir, 'models')\n", (1265, 1285), False, 'import os\n'), ((1393, 1437), 'os.path.join', 'os.path.join', (['self.dir', '"""models"""', 'model_file'], {}), "(self.dir, 'models', model_file)\n", (1405, 1437), False, 'import os\n'), ((953, 990), 'os.path.join', 'os.path.join', (['self.dir', '"""params.json"""'], {}), "(self.dir, 'params.json')\n", (965, 990), False, 'import os\n'), ((1940, 1972), 'os.path.join', 'os.path.join', (['self.dir', '"""models"""'], {}), "(self.dir, 'models')\n", (1952, 1972), False, 'import os\n'), ((1997, 2029), 'os.path.join', 'os.path.join', (['self.dir', '"""models"""'], {}), "(self.dir, 'models')\n", (2009, 2029), False, 'import os\n'), ((5735, 5782), 'torch.load', 'torch.load', (['self.folds_to_models[disease.split]'], {}), '(self.folds_to_models[disease.split])\n', (5745, 5782), False, 'import torch\n'), ((1019, 1031), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1028, 1031), False, 'import json\n')]
import os import uuid from django.conf import settings from django.db import models from django.utils.translation import ugettext_lazy as _ def upload_avatar_to(instance, filename): filename, ext = os.path.splitext(filename) return os.path.join( 'avatar_images', 'avatar_{uuid}_{filename}{ext}'.format( uuid=uuid.uuid4(), filename=filename, ext=ext) ) class UserProfile(models.Model): user = models.OneToOneField( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, related_name='wagtail_userprofile' ) submitted_notifications = models.BooleanField( verbose_name=_('submitted notifications'), default=True, help_text=_("Receive notification when a page is submitted for moderation") ) approved_notifications = models.BooleanField( verbose_name=_('approved notifications'), default=True, help_text=_("Receive notification when your page edit is approved") ) rejected_notifications = models.BooleanField( verbose_name=_('rejected notifications'), default=True, help_text=_("Receive notification when your page edit is rejected") ) preferred_language = models.CharField( verbose_name=_('preferred language'), max_length=10, help_text=_("Select language for the admin"), default='' ) current_time_zone = models.CharField( verbose_name=_('current time zone'), max_length=40, help_text=_("Select your current time zone"), default='' ) avatar = models.ImageField( verbose_name=_('profile picture'), upload_to=upload_avatar_to, blank=True, ) @classmethod def get_for_user(cls, user): return cls.objects.get_or_create(user=user)[0] def get_preferred_language(self): return self.preferred_language or settings.LANGUAGE_CODE def get_current_time_zone(self): return self.current_time_zone or settings.TIME_ZONE def __str__(self): return self.user.get_username() class Meta: verbose_name = _('user profile') verbose_name_plural = _('user profiles')
[ "django.db.models.OneToOneField", "django.utils.translation.ugettext_lazy", "os.path.splitext", "uuid.uuid4" ]
[((205, 231), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (221, 231), False, 'import os\n'), ((441, 553), 'django.db.models.OneToOneField', 'models.OneToOneField', (['settings.AUTH_USER_MODEL'], {'on_delete': 'models.CASCADE', 'related_name': '"""wagtail_userprofile"""'}), "(settings.AUTH_USER_MODEL, on_delete=models.CASCADE,\n related_name='wagtail_userprofile')\n", (461, 553), False, 'from django.db import models\n'), ((2121, 2138), 'django.utils.translation.ugettext_lazy', '_', (['"""user profile"""'], {}), "('user profile')\n", (2122, 2138), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2169, 2187), 'django.utils.translation.ugettext_lazy', '_', (['"""user profiles"""'], {}), "('user profiles')\n", (2170, 2187), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((637, 665), 'django.utils.translation.ugettext_lazy', '_', (['"""submitted notifications"""'], {}), "('submitted notifications')\n", (638, 665), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((707, 772), 'django.utils.translation.ugettext_lazy', '_', (['"""Receive notification when a page is submitted for moderation"""'], {}), "('Receive notification when a page is submitted for moderation')\n", (708, 772), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((851, 878), 'django.utils.translation.ugettext_lazy', '_', (['"""approved notifications"""'], {}), "('approved notifications')\n", (852, 878), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((920, 977), 'django.utils.translation.ugettext_lazy', '_', (['"""Receive notification when your page edit is approved"""'], {}), "('Receive notification when your page edit is approved')\n", (921, 977), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1056, 1083), 'django.utils.translation.ugettext_lazy', '_', (['"""rejected notifications"""'], {}), "('rejected notifications')\n", (1057, 1083), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1125, 1182), 'django.utils.translation.ugettext_lazy', '_', (['"""Receive notification when your page edit is rejected"""'], {}), "('Receive notification when your page edit is rejected')\n", (1126, 1182), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1254, 1277), 'django.utils.translation.ugettext_lazy', '_', (['"""preferred language"""'], {}), "('preferred language')\n", (1255, 1277), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1320, 1354), 'django.utils.translation.ugettext_lazy', '_', (['"""Select language for the admin"""'], {}), "('Select language for the admin')\n", (1321, 1354), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1445, 1467), 'django.utils.translation.ugettext_lazy', '_', (['"""current time zone"""'], {}), "('current time zone')\n", (1446, 1467), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1510, 1544), 'django.utils.translation.ugettext_lazy', '_', (['"""Select your current time zone"""'], {}), "('Select your current time zone')\n", (1511, 1544), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1625, 1645), 'django.utils.translation.ugettext_lazy', '_', (['"""profile picture"""'], {}), "('profile picture')\n", (1626, 1645), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((347, 359), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (357, 359), False, 'import uuid\n')]
__author__ = '<NAME>, <EMAIL>' import uinput def Simulator(): def __init__(self): pass def test1(self): device = uinput.Device([uinput.KEY_E, uinput.KEY_H, uinput.KEY_L, uinput.KEY_O]) device.emit_click(uinput.KEY_H)
[ "uinput.Device" ]
[((122, 193), 'uinput.Device', 'uinput.Device', (['[uinput.KEY_E, uinput.KEY_H, uinput.KEY_L, uinput.KEY_O]'], {}), '([uinput.KEY_E, uinput.KEY_H, uinput.KEY_L, uinput.KEY_O])\n', (135, 193), False, 'import uinput\n')]
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Top-level presubmit script for catapult. See https://www.chromium.org/developers/how-tos/depottools/presubmit-scripts for more details about the presubmit API built into depot_tools. """ import re import sys _EXCLUDED_PATHS = ( r'(.*[\\/])?\.git[\\/].*', r'.+\.png$', r'.+\.svg$', r'.+\.skp$', r'.+\.gypi$', r'.+\.gyp$', r'.+\.gn$', r'.*\.gitignore$', r'.*codereview.settings$', r'.*AUTHOR$', r'^CONTRIBUTORS\.md$', r'.*LICENSE$', r'.*OWNERS$', r'.*README\.md$', r'^dashboard[\\/]dashboard[\\/]api[\\/]examples[\\/].*.js', r'^dashboard[\\/]dashboard[\\/]templates[\\/].*', r'^experimental[\\/]heatmap[\\/].*', r'^experimental[\\/]trace_on_tap[\\/]third_party[\\/].*', r'^perf_insights[\\/]test_data[\\/].*', r'^perf_insights[\\/]third_party[\\/].*', r'^telemetry[\\/]third_party[\\/].*', r'^third_party[\\/].*', r'^tracing[\\/]\.allow-devtools-save$', r'^tracing[\\/]bower\.json$', r'^tracing[\\/]\.bowerrc$', r'^tracing[\\/]tracing_examples[\\/]string_convert\.js$', r'^tracing[\\/]test_data[\\/].*', r'^tracing[\\/]third_party[\\/].*', r'^py_vulcanize[\\/]third_party[\\/].*', r'^common/py_vulcanize[\\/].*', # TODO(hjd): Remove after fixing long lines. ) _GITHUB_BUG_ID_RE = re.compile(r'#[1-9]\d*') _MONORAIL_BUG_ID_RE = re.compile(r'[1-9]\d*') _MONORAIL_PROJECT_NAMES = frozenset({'chromium', 'v8', 'angleproject'}) def CheckChangeLogBug(input_api, output_api): if not input_api.change.issue: # If there is no change issue, there won't be a bug yet. Skip the check. return [] # Show a presubmit message if there is no Bug line or an empty Bug line. if not input_api.change.BugsFromDescription(): return [output_api.PresubmitNotifyResult( 'If this change has associated bugs on GitHub or Monorail, add a ' '"Bug: <bug>(, <bug>)*" line to the patch description where <bug> can ' 'be one of the following: catapult:#NNNN, ' + ', '.join('%s:NNNNNN' % n for n in _MONORAIL_PROJECT_NAMES) + '.')] # Check that each bug in the BUG= line has the correct format. error_messages = [] catapult_bug_provided = False for index, bug in enumerate(input_api.change.BugsFromDescription()): # Check if the bug can be split into a repository name and a bug ID (e.g. # 'catapult:#1234' -> 'catapult' and '#1234'). bug_parts = bug.split(':') if len(bug_parts) != 2: error_messages.append('Invalid bug "%s". Bugs should be provided in the ' '"<project-name>:<bug-id>" format.' % bug) continue project_name, bug_id = bug_parts if project_name == 'catapult': if not _GITHUB_BUG_ID_RE.match(bug_id): error_messages.append('Invalid bug "%s". Bugs in the Catapult ' 'repository should be provided in the ' '"catapult:#NNNN" format.' % bug) catapult_bug_provided = True elif project_name in _MONORAIL_PROJECT_NAMES: if not _MONORAIL_BUG_ID_RE.match(bug_id): error_messages.append('Invalid bug "%s". Bugs in the Monorail %s ' 'project should be provided in the ' '"%s:NNNNNN" format.' % (bug, project_name, project_name)) else: error_messages.append('Invalid bug "%s". Unknown repository "%s".' % ( bug, project_name)) return map(output_api.PresubmitError, error_messages) def CheckChange(input_api, output_api): results = [] try: sys.path += [input_api.PresubmitLocalPath()] from catapult_build import bin_checks from catapult_build import html_checks from catapult_build import js_checks from catapult_build import repo_checks results += input_api.canned_checks.PanProjectChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) results += input_api.RunTests( input_api.canned_checks.CheckVPythonSpec(input_api, output_api)) results += CheckChangeLogBug(input_api, output_api) results += js_checks.RunChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) results += html_checks.RunChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) results += repo_checks.RunChecks(input_api, output_api) results += bin_checks.RunChecks( input_api, output_api, excluded_paths=_EXCLUDED_PATHS) finally: sys.path.remove(input_api.PresubmitLocalPath()) return results def CheckChangeOnUpload(input_api, output_api): return CheckChange(input_api, output_api) def CheckChangeOnCommit(input_api, output_api): return CheckChange(input_api, output_api)
[ "re.compile", "catapult_build.bin_checks.RunChecks", "catapult_build.repo_checks.RunChecks", "catapult_build.js_checks.RunChecks", "catapult_build.html_checks.RunChecks" ]
[((1468, 1492), 're.compile', 're.compile', (['"""#[1-9]\\\\d*"""'], {}), "('#[1-9]\\\\d*')\n", (1478, 1492), False, 'import re\n'), ((1515, 1538), 're.compile', 're.compile', (['"""[1-9]\\\\d*"""'], {}), "('[1-9]\\\\d*')\n", (1525, 1538), False, 'import re\n'), ((4285, 4359), 'catapult_build.js_checks.RunChecks', 'js_checks.RunChecks', (['input_api', 'output_api'], {'excluded_paths': '_EXCLUDED_PATHS'}), '(input_api, output_api, excluded_paths=_EXCLUDED_PATHS)\n', (4304, 4359), False, 'from catapult_build import js_checks\n'), ((4384, 4460), 'catapult_build.html_checks.RunChecks', 'html_checks.RunChecks', (['input_api', 'output_api'], {'excluded_paths': '_EXCLUDED_PATHS'}), '(input_api, output_api, excluded_paths=_EXCLUDED_PATHS)\n', (4405, 4460), False, 'from catapult_build import html_checks\n'), ((4485, 4529), 'catapult_build.repo_checks.RunChecks', 'repo_checks.RunChecks', (['input_api', 'output_api'], {}), '(input_api, output_api)\n', (4506, 4529), False, 'from catapult_build import repo_checks\n'), ((4545, 4620), 'catapult_build.bin_checks.RunChecks', 'bin_checks.RunChecks', (['input_api', 'output_api'], {'excluded_paths': '_EXCLUDED_PATHS'}), '(input_api, output_api, excluded_paths=_EXCLUDED_PATHS)\n', (4565, 4620), False, 'from catapult_build import bin_checks\n')]