code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
import json class TrainingSpecification: template = """ { "TrainingSpecification": { "TrainingImage": "IMAGE_REPLACE_ME", "SupportedHyperParameters": [ { "Description": "Grow a tree with max_leaf_nodes in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes", "Name": "max_leaf_nodes", "Type": "Integer", "Range": { "IntegerParameterRangeSpecification": { "MinValue": "1", "MaxValue": "100000" } }, "IsTunable": true, "IsRequired": false, "DefaultValue": "100" } ], "SupportedTrainingInstanceTypes": INSTANCES_REPLACE_ME, "SupportsDistributedTraining": false, "MetricDefinitions": METRICS_REPLACE_ME, "TrainingChannels": CHANNELS_REPLACE_ME, "SupportedTuningJobObjectiveMetrics": TUNING_OBJECTIVES_REPLACE_ME } } """ def get_training_specification_dict( self, ecr_image, supports_gpu, supported_channels=None, supported_metrics=None, supported_tuning_job_objective_metrics=None, ): return json.loads( self.get_training_specification_json( ecr_image, supports_gpu, supported_channels, supported_metrics, supported_tuning_job_objective_metrics, ) ) def get_training_specification_json( self, ecr_image, supports_gpu, supported_channels=None, supported_metrics=None, supported_tuning_job_objective_metrics=None, ): if supported_channels is None: print("Please provide at least one supported channel") raise ValueError("Please provide at least one supported channel") if supported_metrics is None: supported_metrics = [] if supported_tuning_job_objective_metrics is None: supported_tuning_job_objective_metrics = [] return ( self.template.replace("IMAGE_REPLACE_ME", ecr_image) .replace("INSTANCES_REPLACE_ME", self.get_supported_instances(supports_gpu)) .replace( "CHANNELS_REPLACE_ME", json.dumps([ob.__dict__ for ob in supported_channels], indent=4, sort_keys=True), ) .replace( "METRICS_REPLACE_ME", json.dumps([ob.__dict__ for ob in supported_metrics], indent=4, sort_keys=True), ) .replace( "TUNING_OBJECTIVES_REPLACE_ME", json.dumps( [ob.__dict__ for ob in supported_tuning_job_objective_metrics], indent=4, sort_keys=True, ), ) ) @staticmethod def get_supported_instances(supports_gpu): cpu_list = [ "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", ] gpu_list = [ "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", ] list_to_return = cpu_list if supports_gpu: list_to_return = cpu_list + gpu_list return json.dumps(list_to_return)
[ "json.dumps" ]
[((3938, 3964), 'json.dumps', 'json.dumps', (['list_to_return'], {}), '(list_to_return)\n', (3948, 3964), False, 'import json\n'), ((2725, 2829), 'json.dumps', 'json.dumps', (['[ob.__dict__ for ob in supported_tuning_job_objective_metrics]'], {'indent': '(4)', 'sort_keys': '(True)'}), '([ob.__dict__ for ob in supported_tuning_job_objective_metrics],\n indent=4, sort_keys=True)\n', (2735, 2829), False, 'import json\n'), ((2544, 2623), 'json.dumps', 'json.dumps', (['[ob.__dict__ for ob in supported_metrics]'], {'indent': '(4)', 'sort_keys': '(True)'}), '([ob.__dict__ for ob in supported_metrics], indent=4, sort_keys=True)\n', (2554, 2623), False, 'import json\n'), ((2372, 2457), 'json.dumps', 'json.dumps', (['[ob.__dict__ for ob in supported_channels]'], {'indent': '(4)', 'sort_keys': '(True)'}), '([ob.__dict__ for ob in supported_channels], indent=4, sort_keys=True\n )\n', (2382, 2457), False, 'import json\n')]
import sys import tkinter from .customtkinter_tk import CTk from .customtkinter_frame import CTkFrame from .appearance_mode_tracker import AppearanceModeTracker from .customtkinter_color_manager import CTkColorManager class CTkProgressBar(tkinter.Frame): """ tkinter custom progressbar, always horizontal, values are from 0 to 1 """ def __init__(self, *args, variable=None, bg_color=None, border_color="CTkColorManager", fg_color="CTkColorManager", progress_color="CTkColorManager", width=160, height=10, border_width=0, **kwargs): super().__init__(*args, **kwargs) # overwrite configure methods of master when master is tkinter widget, so that bg changes get applied on child CTk widget too if isinstance(self.master, (tkinter.Tk, tkinter.Frame)) and not isinstance(self.master, (CTk, CTkFrame)): master_old_configure = self.master.config def new_configure(*args, **kwargs): if "bg" in kwargs: self.configure(bg_color=kwargs["bg"]) elif "background" in kwargs: self.configure(bg_color=kwargs["background"]) # args[0] is dict when attribute gets changed by widget[<attribut>] syntax elif len(args) > 0 and type(args[0]) == dict: if "bg" in args[0]: self.configure(bg_color=args[0]["bg"]) elif "background" in args[0]: self.configure(bg_color=args[0]["background"]) master_old_configure(*args, **kwargs) self.master.config = new_configure self.master.configure = new_configure AppearanceModeTracker.add(self.change_appearance_mode, self) self.appearance_mode = AppearanceModeTracker.get_mode() # 0: "Light" 1: "Dark" self.bg_color = self.detect_color_of_master() if bg_color is None else bg_color self.border_color = CTkColorManager.PROGRESS_BG if border_color == "CTkColorManager" else border_color self.fg_color = CTkColorManager.PROGRESS_BG if fg_color == "CTkColorManager" else fg_color self.progress_color = CTkColorManager.MAIN if progress_color == "CTkColorManager" else progress_color self.variable = variable self.variable_callback_blocked = False self.variabel_callback_name = None self.width = width self.height = self.calc_optimal_height(height) self.border_width = round(border_width) self.value = 0.5 self.configure(width=self.width, height=self.height) self.canvas = tkinter.Canvas(master=self, highlightthicknes=0, width=self.width, height=self.height) self.canvas.place(x=0, y=0) # Each time an item is resized due to pack position mode, the binding Configure is called on the widget self.bind('<Configure>', self.update_dimensions) self.draw() # initial draw if self.variable is not None: self.variabel_callback_name = self.variable.trace_add("write", self.variable_callback) self.variable_callback_blocked = True self.set(self.variable.get(), from_variable_callback=True) self.variable_callback_blocked = False def destroy(self): AppearanceModeTracker.remove(self.change_appearance_mode) if self.variable is not None: self.variable.trace_remove("write", self.variabel_callback_name) super().destroy() def detect_color_of_master(self): if isinstance(self.master, CTkFrame): return self.master.fg_color else: return self.master.cget("bg") @staticmethod def calc_optimal_height(user_height): if sys.platform == "darwin": return user_height # on macOS just use given value (canvas has Antialiasing) else: # make sure the value is always with uneven for better rendering of the ovals if user_height == 0: return 0 elif user_height % 2 == 0: return user_height + 1 else: return user_height def update_dimensions(self, event): # only redraw if dimensions changed (for performance) if self.width != event.width or self.height != event.height: self.width = event.width self.height = event.height self.draw() def draw(self, no_color_updates=False): # decide the drawing method if sys.platform == "darwin": # on macOS draw button with polygons (positions are more accurate, macOS has Antialiasing) self.draw_with_polygon_shapes() else: # on Windows and other draw with ovals (corner_radius can be optimised to look better than with polygons) self.draw_with_ovals_and_rects() if no_color_updates is False: self.canvas.configure(bg=CTkColorManager.single_color(self.bg_color, self.appearance_mode)) self.canvas.itemconfig("border_parts", fill=CTkColorManager.single_color(self.border_color, self.appearance_mode)) self.canvas.itemconfig("inner_parts", fill=CTkColorManager.single_color(self.fg_color, self.appearance_mode)) self.canvas.itemconfig("progress_parts", fill=CTkColorManager.single_color(self.progress_color, self.appearance_mode)) def draw_with_polygon_shapes(self): """ draw the progress bar parts with just three polygons that have a rounded border """ coordinate_shift = -1 width_reduced = -1 # create border button parts (only if border exists) if self.border_width > 0: if not self.canvas.find_withtag("border_parts"): self.canvas.create_line((0, 0, 0, 0), tags=("border_line_1", "border_parts")) self.canvas.coords("border_line_1", (self.height / 2, self.height / 2, self.width - self.height / 2 + coordinate_shift, self.height / 2)) self.canvas.itemconfig("border_line_1", capstyle=tkinter.ROUND, width=self.height + width_reduced) self.canvas.lower("border_parts") # create inner button parts if not self.canvas.find_withtag("inner_parts"): self.canvas.create_line((0, 0, 0, 0), tags=("inner_line_1", "inner_parts")) self.canvas.coords("inner_line_1", (self.height / 2, self.height / 2, self.width - self.height / 2 + coordinate_shift, self.height / 2)) self.canvas.itemconfig("inner_line_1", capstyle=tkinter.ROUND, width=self.height - self.border_width * 2 + width_reduced) # progress parts if not self.canvas.find_withtag("progress_parts"): self.canvas.create_line((0, 0, 0, 0), tags=("progress_line_1", "progress_parts")) self.canvas.coords("progress_line_1", (self.height / 2, self.height / 2, self.height / 2 + (self.width + coordinate_shift - self.height) * self.value, self.height / 2)) self.canvas.itemconfig("progress_line_1", capstyle=tkinter.ROUND, width=self.height - self.border_width * 2 + width_reduced) def draw_with_ovals_and_rects(self): """ draw the progress bar parts with ovals and rectangles """ if sys.platform == "darwin": oval_bottom_right_shift = 0 rect_bottom_right_shift = 0 else: # ovals and rects are always rendered too large on Windows and need to be made smaller by -1 oval_bottom_right_shift = -1 rect_bottom_right_shift = -0 # frame_border if self.border_width > 0: if not self.canvas.find_withtag("border_parts"): self.canvas.create_oval((0, 0, 0, 0), tags=("border_oval_1", "border_parts"), width=0) self.canvas.create_rectangle((0, 0, 0, 0), tags=("border_rect_1", "border_parts"), width=0) self.canvas.create_oval((0, 0, 0, 0), tags=("border_oval_2", "border_parts"), width=0) self.canvas.coords("border_oval_1", (0, 0, self.height + oval_bottom_right_shift, self.height + oval_bottom_right_shift)) self.canvas.coords("border_rect_1", (self.height/2, 0, self.width-(self.height/2) + rect_bottom_right_shift, self.height + rect_bottom_right_shift)) self.canvas.coords("border_oval_2", (self.width-self.height, 0, self.width + oval_bottom_right_shift, self.height + oval_bottom_right_shift)) # foreground if not self.canvas.find_withtag("inner_parts"): self.canvas.create_oval((0, 0, 0, 0), tags=("inner_oval_1", "inner_parts"), width=0) self.canvas.create_rectangle((0, 0, 0, 0), tags=("inner_rect_1", "inner_parts"), width=0) self.canvas.create_oval((0, 0, 0, 0), tags=("inner_oval_2", "inner_parts"), width=0) self.canvas.coords("inner_oval_1", (self.border_width, self.border_width, self.height-self.border_width + oval_bottom_right_shift, self.height-self.border_width + oval_bottom_right_shift)) self.canvas.coords("inner_rect_1", (self.height/2, self.border_width, self.width-(self.height/2 + rect_bottom_right_shift), self.height-self.border_width + rect_bottom_right_shift)) self.canvas.coords("inner_oval_2", (self.width-self.height+self.border_width, self.border_width, self.width-self.border_width + oval_bottom_right_shift, self.height-self.border_width + oval_bottom_right_shift)) # progress parts if not self.canvas.find_withtag("progress_parts"): self.canvas.create_oval((0, 0, 0, 0), tags=("progress_oval_1", "progress_parts"), width=0) self.canvas.create_rectangle((0, 0, 0, 0), tags=("progress_rect_1", "progress_parts"), width=0) self.canvas.create_oval((0, 0, 0, 0), tags=("progress_oval_2", "progress_parts"), width=0) self.canvas.coords("progress_oval_1", (self.border_width, self.border_width, self.height - self.border_width + oval_bottom_right_shift, self.height - self.border_width + oval_bottom_right_shift)) self.canvas.coords("progress_rect_1", (self.height / 2, self.border_width, self.height / 2 + (self.width - self.height) * self.value + rect_bottom_right_shift, self.height - self.border_width + rect_bottom_right_shift)) self.canvas.coords("progress_oval_2", (self.height / 2 + (self.width - self.height) * self.value - self.height / 2 + self.border_width, self.border_width, self.height / 2 + (self.width - self.height) * self.value + self.height / 2 - self.border_width + oval_bottom_right_shift, self.height - self.border_width + oval_bottom_right_shift)) def configure(self, *args, **kwargs): require_redraw = False # some attribute changes require a call of self.draw() at the end if "bg_color" in kwargs: self.bg_color = kwargs["bg_color"] del kwargs["bg_color"] require_redraw = True if "fg_color" in kwargs: self.fg_color = kwargs["fg_color"] del kwargs["fg_color"] require_redraw = True if "border_color" in kwargs: self.border_color = kwargs["border_color"] del kwargs["border_color"] require_redraw = True if "progress_color" in kwargs: self.progress_color = kwargs["progress_color"] del kwargs["progress_color"] require_redraw = True if "border_width" in kwargs: self.border_width = kwargs["border_width"] del kwargs["border_width"] require_redraw = True if "variable" in kwargs: if self.variable is not None: self.variable.trace_remove("write", self.variabel_callback_name) self.variable = kwargs["variable"] if self.variable is not None and self.variable != "": self.variabel_callback_name = self.variable.trace_add("write", self.variable_callback) self.set(self.variable.get(), from_variable_callback=True) else: self.variable = None del kwargs["variable"] super().configure(*args, **kwargs) if require_redraw is True: self.draw() def variable_callback(self, var_name, index, mode): if not self.variable_callback_blocked: self.set(self.variable.get(), from_variable_callback=True) def set(self, value, from_variable_callback=False): self.value = value if self.value > 1: self.value = 1 elif self.value < 0: self.value = 0 self.draw(no_color_updates=True) if self.variable is not None and not from_variable_callback: self.variable_callback_blocked = True self.variable.set(round(self.value) if isinstance(self.variable, tkinter.IntVar) else self.value) self.variable_callback_blocked = False def change_appearance_mode(self, mode_string): if mode_string.lower() == "dark": self.appearance_mode = 1 elif mode_string.lower() == "light": self.appearance_mode = 0 if isinstance(self.master, CTkFrame): self.bg_color = self.master.fg_color else: self.bg_color = self.master.cget("bg") self.draw()
[ "tkinter.Canvas" ]
[((2757, 2848), 'tkinter.Canvas', 'tkinter.Canvas', ([], {'master': 'self', 'highlightthicknes': '(0)', 'width': 'self.width', 'height': 'self.height'}), '(master=self, highlightthicknes=0, width=self.width, height=\n self.height)\n', (2771, 2848), False, 'import tkinter\n')]
import pytest from backtest.strategy import BuyAndHoldEqualAllocation @pytest.fixture def strategy(): symbols = ('AAPL', 'GOOG') strategy = BuyAndHoldEqualAllocation(relevant_symbols=symbols) return strategy def test_strategy_execute(strategy): strategy.execute() assert len(strategy.holdings) > 0 assert len(strategy.trades) > 0 def test_holdings_at(strategy): strategy.execute() assert (strategy._holdings_at('2018-05-05') =={}) assert (strategy._holdings_at('2021-05-06') == {'AAPL': 7466}) assert (strategy._holdings_at('2021-05-07') == {'AAPL': 3862, 'GOOG': 209}) assert (strategy._holdings_at('2021-05-08') == {'AAPL': 3862, 'GOOG': 209})
[ "backtest.strategy.BuyAndHoldEqualAllocation" ]
[((150, 201), 'backtest.strategy.BuyAndHoldEqualAllocation', 'BuyAndHoldEqualAllocation', ([], {'relevant_symbols': 'symbols'}), '(relevant_symbols=symbols)\n', (175, 201), False, 'from backtest.strategy import BuyAndHoldEqualAllocation\n')]
# SPDX-License-Identifier: Apache-2.0 from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np import onnx from ..base import Base from . import expect class Constant(Base): @staticmethod def export(): # type: () -> None values = np.random.randn(5, 5).astype(np.float32) node = onnx.helper.make_node( 'Constant', inputs=[], outputs=['values'], value=onnx.helper.make_tensor( name='const_tensor', data_type=onnx.TensorProto.FLOAT, dims=values.shape, vals=values.flatten().astype(float), ), ) expect(node, inputs=[], outputs=[values], name='test_constant')
[ "numpy.random.randn" ]
[((364, 385), 'numpy.random.randn', 'np.random.randn', (['(5)', '(5)'], {}), '(5, 5)\n', (379, 385), True, 'import numpy as np\n')]
""" Date: 2021/09/23 Target: config utilities for yml file. implementation adapted from Slimmable: https://github.com/JiahuiYu/slimmable_networks.git """ import os import yaml class LoaderMeta(type): """ Constructor for supporting `!include`. """ def __new__(mcs, __name__, __bases__, __dict__): """Add include constructer to class.""" # register the include constructor on the class cls = super().__new__(mcs, __name__, __bases__, __dict__) cls.add_constructor('!include', cls.construct_include) return cls class Loader(yaml.Loader, metaclass=LoaderMeta): """ YAML Loader with `!include` constructor. """ def __init__(self, stream): try: self._root = os.path.split(stream.name)[0] except AttributeError: self._root = os.path.curdir super().__init__(stream) def construct_include(self, node): """ Include file referenced at node. """ filename = os.path.abspath( os.path.join(self._root, self.construct_scalar(node))) extension = os.path.splitext(filename)[1].lstrip('.') with open(filename, 'r') as f: if extension in ('yaml', 'yml'): return yaml.load(f, Loader) else: return ''.join(f.readlines()) class AttrDict(dict): """ Dict as attribute trick. """ def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self for key in self.__dict__: value = self.__dict__[key] if isinstance(value, dict): self.__dict__[key] = AttrDict(value) elif isinstance(value, list): if isinstance(value[0], dict): self.__dict__[key] = [AttrDict(item) for item in value] else: self.__dict__[key] = value def yaml(self): """ Convert object to yaml dict and return. """ yaml_dict = {} for key in self.__dict__: value = self.__dict__[key] if isinstance(value, AttrDict): yaml_dict[key] = value.yaml() elif isinstance(value, list): if isinstance(value[0], AttrDict): new_l = [] for item in value: new_l.append(item.yaml()) yaml_dict[key] = new_l else: yaml_dict[key] = value else: yaml_dict[key] = value return yaml_dict def __repr__(self): """ Print all variables. """ ret_str = [] for key in self.__dict__: value = self.__dict__[key] if isinstance(value, AttrDict): ret_str.append('{}:'.format(key)) child_ret_str = value.__repr__().split('\n') for item in child_ret_str: ret_str.append(' ' + item) elif isinstance(value, list): if isinstance(value[0], AttrDict): ret_str.append('{}:'.format(key)) for item in value: # treat as AttrDict above child_ret_str = item.__repr__().split('\n') for item in child_ret_str: ret_str.append(' ' + item) else: ret_str.append('{}: {}'.format(key, value)) else: ret_str.append('{}: {}'.format(key, value)) return '\n'.join(ret_str) class Config(AttrDict): def __init__(self, filename=None): try: with open(filename, 'r') as f: cfg_dict = yaml.load(f, Loader) except EnvironmentError: print('Please check the file with name of "%s"', filename) super(Config, self).__init__(cfg_dict) def get_config(config_file): assert os.path.exists(config_file), 'File {} not exist.'.format(config_file) return Config(config_file)
[ "os.path.exists", "os.path.splitext", "yaml.load", "os.path.split" ]
[((4014, 4041), 'os.path.exists', 'os.path.exists', (['config_file'], {}), '(config_file)\n', (4028, 4041), False, 'import os\n'), ((749, 775), 'os.path.split', 'os.path.split', (['stream.name'], {}), '(stream.name)\n', (762, 775), False, 'import os\n'), ((1260, 1280), 'yaml.load', 'yaml.load', (['f', 'Loader'], {}), '(f, Loader)\n', (1269, 1280), False, 'import yaml\n'), ((3801, 3821), 'yaml.load', 'yaml.load', (['f', 'Loader'], {}), '(f, Loader)\n', (3810, 3821), False, 'import yaml\n'), ((1111, 1137), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (1127, 1137), False, 'import os\n')]
# -*- coding: utf-8 -*- # # Copyright 2014 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ DRAC Management Driver """ from oslo.utils import excutils from oslo.utils import importutils from ironic.common import boot_devices from ironic.common import exception from ironic.common.i18n import _ from ironic.common.i18n import _LE from ironic.drivers import base from ironic.drivers.modules.drac import common as drac_common from ironic.drivers.modules.drac import resource_uris from ironic.openstack.common import log as logging pywsman = importutils.try_import('pywsman') LOG = logging.getLogger(__name__) _BOOT_DEVICES_MAP = { boot_devices.DISK: 'HardDisk', boot_devices.PXE: 'NIC', boot_devices.CDROM: 'Optical', } # IsNext constants PERSISTENT = '1' """ Is the next boot config the system will use. """ NOT_NEXT = '2' """ Is not the next boot config the system will use. """ ONE_TIME_BOOT = '3' """ Is the next boot config the system will use, one time boot only. """ def _get_next_boot_mode(node): """Get the next boot mode. To see a list of supported boot modes see: http://goo.gl/aEsvUH (Section 7.2) :param node: an ironic node object. :raises: DracClientError on an error from pywsman library. :returns: a dictionary containing: :instance_id: the instance id of the boot device. :is_next: whether it's the next device to boot or not. One of PERSISTENT, NOT_NEXT, ONE_TIME_BOOT constants. """ client = drac_common.get_wsman_client(node) options = pywsman.ClientOptions() filter_query = ('select * from DCIM_BootConfigSetting where IsNext=%s ' 'or IsNext=%s' % (PERSISTENT, ONE_TIME_BOOT)) try: doc = client.wsman_enumerate(resource_uris.DCIM_BootConfigSetting, options, filter_query=filter_query) except exception.DracClientError as exc: with excutils.save_and_reraise_exception(): LOG.error(_LE('DRAC driver failed to get next boot mode for ' 'node %(node_uuid)s. Reason: %(error)s.'), {'node_uuid': node.uuid, 'error': exc}) items = drac_common.find_xml(doc, 'DCIM_BootConfigSetting', resource_uris.DCIM_BootConfigSetting, find_all=True) # This list will have 2 items maximum, one for the persistent element # and another one for the OneTime if set boot_mode = None for i in items: instance_id = drac_common.find_xml(i, 'InstanceID', resource_uris.DCIM_BootConfigSetting).text is_next = drac_common.find_xml(i, 'IsNext', resource_uris.DCIM_BootConfigSetting).text boot_mode = {'instance_id': instance_id, 'is_next': is_next} # If OneTime is set we should return it, because that's # where the next boot device is if is_next == ONE_TIME_BOOT: break return boot_mode def _create_config_job(node): """Create a configuration job. This method is used to apply the pending values created by set_boot_device(). :param node: an ironic node object. :raises: DracClientError on an error from pywsman library. :raises: DracConfigJobCreationError on an error when creating the job. """ client = drac_common.get_wsman_client(node) options = pywsman.ClientOptions() options.add_selector('CreationClassName', 'DCIM_BIOSService') options.add_selector('Name', 'DCIM:BIOSService') options.add_selector('SystemCreationClassName', 'DCIM_ComputerSystem') options.add_selector('SystemName', 'DCIM:ComputerSystem') options.add_property('Target', 'BIOS.Setup.1-1') options.add_property('ScheduledStartTime', 'TIME_NOW') doc = client.wsman_invoke(resource_uris.DCIM_BIOSService, options, 'CreateTargetedConfigJob') return_value = drac_common.find_xml(doc, 'ReturnValue', resource_uris.DCIM_BIOSService).text # NOTE(lucasagomes): Possible return values are: RET_ERROR for error # or RET_CREATED job created (but changes will be # applied after the reboot) # Boot Management Documentation: http://goo.gl/aEsvUH (Section 8.4) if return_value == drac_common.RET_ERROR: error_message = drac_common.find_xml(doc, 'Message', resource_uris.DCIM_BIOSService).text raise exception.DracConfigJobCreationError(error=error_message) def _check_for_config_job(node): """Check if a configuration job is already created. :param node: an ironic node object. :raises: DracClientError on an error from pywsman library. :raises: DracConfigJobCreationError if the job is already created. """ client = drac_common.get_wsman_client(node) options = pywsman.ClientOptions() try: doc = client.wsman_enumerate(resource_uris.DCIM_LifecycleJob, options) except exception.DracClientError as exc: with excutils.save_and_reraise_exception(): LOG.error(_LE('DRAC driver failed to list the configuration jobs ' 'for node %(node_uuid)s. Reason: %(error)s.'), {'node_uuid': node.uuid, 'error': exc}) items = drac_common.find_xml(doc, 'DCIM_LifecycleJob', resource_uris.DCIM_LifecycleJob, find_all=True) for i in items: name = drac_common.find_xml(i, 'Name', resource_uris.DCIM_LifecycleJob) if 'BIOS.Setup.1-1' not in name.text: continue job_status = drac_common.find_xml(i, 'JobStatus', resource_uris.DCIM_LifecycleJob).text # If job is already completed or failed we can # create another one. # Job Control Documentation: http://goo.gl/o1dDD3 (Section 7.2.3.2) if job_status.lower() not in ('completed', 'failed'): job_id = drac_common.find_xml(i, 'InstanceID', resource_uris.DCIM_LifecycleJob).text reason = (_('Another job with ID "%s" is already created ' 'to configure the BIOS. Wait until existing job ' 'is completed or is cancelled') % job_id) raise exception.DracConfigJobCreationError(error=reason) class DracManagement(base.ManagementInterface): def get_properties(self): return drac_common.COMMON_PROPERTIES def validate(self, task): """Validate the driver-specific info supplied. This method validates whether the 'driver_info' property of the supplied node contains the required information for this driver to manage the node. :param task: a TaskManager instance containing the node to act on. :raises: InvalidParameterValue if required driver_info attribute is missing or invalid on the node. """ return drac_common.parse_driver_info(task.node) def get_supported_boot_devices(self): """Get a list of the supported boot devices. :returns: A list with the supported boot devices defined in :mod:`ironic.common.boot_devices`. """ return list(_BOOT_DEVICES_MAP.keys()) def set_boot_device(self, task, device, persistent=False): """Set the boot device for a node. Set the boot device to use on next reboot of the node. :param task: a task from TaskManager. :param device: the boot device, one of :mod:`ironic.common.boot_devices`. :param persistent: Boolean value. True if the boot device will persist to all future boots, False if not. Default: False. :raises: DracClientError on an error from pywsman library. :raises: InvalidParameterValue if an invalid boot device is specified. :raises: DracConfigJobCreationError on an error when creating the job. """ # Check for an existing configuration job _check_for_config_job(task.node) client = drac_common.get_wsman_client(task.node) options = pywsman.ClientOptions() filter_query = ("select * from DCIM_BootSourceSetting where " "InstanceID like '%%#%s%%'" % _BOOT_DEVICES_MAP[device]) try: doc = client.wsman_enumerate(resource_uris.DCIM_BootSourceSetting, options, filter_query=filter_query) except exception.DracClientError as exc: with excutils.save_and_reraise_exception(): LOG.error(_LE('DRAC driver failed to set the boot device ' 'for node %(node_uuid)s. Can\'t find the ID ' 'for the %(device)s type. Reason: %(error)s.'), {'node_uuid': task.node.uuid, 'error': exc, 'device': device}) instance_id = drac_common.find_xml(doc, 'InstanceID', resource_uris.DCIM_BootSourceSetting).text source = 'OneTime' if persistent: source = drac_common.find_xml(doc, 'BootSourceType', resource_uris.DCIM_BootSourceSetting).text # NOTE(lucasagomes): Don't ask me why 'BootSourceType' is set # for 'InstanceID' and 'InstanceID' is set for 'source'! You # know enterprisey... options = pywsman.ClientOptions() options.add_selector('InstanceID', source) options.add_property('source', instance_id) doc = client.wsman_invoke(resource_uris.DCIM_BootConfigSetting, options, 'ChangeBootOrderByInstanceID') return_value = drac_common.find_xml(doc, 'ReturnValue', resource_uris.DCIM_BootConfigSetting).text # NOTE(lucasagomes): Possible return values are: RET_ERROR for error, # RET_SUCCESS for success or RET_CREATED job # created (but changes will be applied after # the reboot) # Boot Management Documentation: http://goo.gl/aEsvUH (Section 8.7) if return_value == drac_common.RET_ERROR: error_message = drac_common.find_xml(doc, 'Message', resource_uris.DCIM_BootConfigSetting).text raise exception.DracOperationError(operation='set_boot_device', error=error_message) # Create a configuration job _create_config_job(task.node) def get_boot_device(self, task): """Get the current boot device for a node. Returns the current boot device of the node. :param task: a task from TaskManager. :raises: DracClientError on an error from pywsman library. :returns: a dictionary containing: :boot_device: the boot device, one of :mod:`ironic.common.boot_devices` or None if it is unknown. :persistent: Whether the boot device will persist to all future boots or not, None if it is unknown. """ client = drac_common.get_wsman_client(task.node) boot_mode = _get_next_boot_mode(task.node) persistent = boot_mode['is_next'] == PERSISTENT instance_id = boot_mode['instance_id'] options = pywsman.ClientOptions() filter_query = ('select * from DCIM_BootSourceSetting where ' 'PendingAssignedSequence=0 and ' 'BootSourceType="%s"' % instance_id) try: doc = client.wsman_enumerate(resource_uris.DCIM_BootSourceSetting, options, filter_query=filter_query) except exception.DracClientError as exc: with excutils.save_and_reraise_exception(): LOG.error(_LE('DRAC driver failed to get the current boot ' 'device for node %(node_uuid)s. ' 'Reason: %(error)s.'), {'node_uuid': task.node.uuid, 'error': exc}) instance_id = drac_common.find_xml(doc, 'InstanceID', resource_uris.DCIM_BootSourceSetting).text boot_device = next((key for (key, value) in _BOOT_DEVICES_MAP.items() if value in instance_id), None) return {'boot_device': boot_device, 'persistent': persistent} def get_sensors_data(self, task): """Get sensors data. :param task: a TaskManager instance. :raises: FailedToGetSensorData when getting the sensor data fails. :raises: FailedToParseSensorData when parsing sensor data fails. :returns: returns a consistent format dict of sensor data grouped by sensor type, which can be processed by Ceilometer. """ raise NotImplementedError()
[ "oslo.utils.excutils.save_and_reraise_exception", "ironic.common.exception.DracOperationError", "ironic.common.i18n._", "ironic.drivers.modules.drac.common.parse_driver_info", "ironic.drivers.modules.drac.common.get_wsman_client", "ironic.common.exception.DracConfigJobCreationError", "ironic.common.i18n._LE", "oslo.utils.importutils.try_import", "ironic.drivers.modules.drac.common.find_xml", "ironic.openstack.common.log.getLogger" ]
[((1108, 1141), 'oslo.utils.importutils.try_import', 'importutils.try_import', (['"""pywsman"""'], {}), "('pywsman')\n", (1130, 1141), False, 'from oslo.utils import importutils\n'), ((1149, 1176), 'ironic.openstack.common.log.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1166, 1176), True, 'from ironic.openstack.common import log as logging\n'), ((2069, 2103), 'ironic.drivers.modules.drac.common.get_wsman_client', 'drac_common.get_wsman_client', (['node'], {}), '(node)\n', (2097, 2103), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((2757, 2866), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""DCIM_BootConfigSetting"""', 'resource_uris.DCIM_BootConfigSetting'], {'find_all': '(True)'}), "(doc, 'DCIM_BootConfigSetting', resource_uris.\n DCIM_BootConfigSetting, find_all=True)\n", (2777, 2866), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((3967, 4001), 'ironic.drivers.modules.drac.common.get_wsman_client', 'drac_common.get_wsman_client', (['node'], {}), '(node)\n', (3995, 4001), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((5489, 5523), 'ironic.drivers.modules.drac.common.get_wsman_client', 'drac_common.get_wsman_client', (['node'], {}), '(node)\n', (5517, 5523), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((5974, 6073), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""DCIM_LifecycleJob"""', 'resource_uris.DCIM_LifecycleJob'], {'find_all': '(True)'}), "(doc, 'DCIM_LifecycleJob', resource_uris.\n DCIM_LifecycleJob, find_all=True)\n", (5994, 6073), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((4555, 4627), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""ReturnValue"""', 'resource_uris.DCIM_BIOSService'], {}), "(doc, 'ReturnValue', resource_uris.DCIM_BIOSService)\n", (4575, 4627), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((5143, 5200), 'ironic.common.exception.DracConfigJobCreationError', 'exception.DracConfigJobCreationError', ([], {'error': 'error_message'}), '(error=error_message)\n', (5179, 5200), False, 'from ironic.common import exception\n'), ((6170, 6234), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['i', '"""Name"""', 'resource_uris.DCIM_LifecycleJob'], {}), "(i, 'Name', resource_uris.DCIM_LifecycleJob)\n", (6190, 6234), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((7689, 7729), 'ironic.drivers.modules.drac.common.parse_driver_info', 'drac_common.parse_driver_info', (['task.node'], {}), '(task.node)\n', (7718, 7729), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((8878, 8917), 'ironic.drivers.modules.drac.common.get_wsman_client', 'drac_common.get_wsman_client', (['task.node'], {}), '(task.node)\n', (8906, 8917), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((12041, 12080), 'ironic.drivers.modules.drac.common.get_wsman_client', 'drac_common.get_wsman_client', (['task.node'], {}), '(task.node)\n', (12069, 12080), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((3111, 3186), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['i', '"""InstanceID"""', 'resource_uris.DCIM_BootConfigSetting'], {}), "(i, 'InstanceID', resource_uris.DCIM_BootConfigSetting)\n", (3131, 3186), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((3247, 3318), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['i', '"""IsNext"""', 'resource_uris.DCIM_BootConfigSetting'], {}), "(i, 'IsNext', resource_uris.DCIM_BootConfigSetting)\n", (3267, 3318), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((5012, 5080), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""Message"""', 'resource_uris.DCIM_BIOSService'], {}), "(doc, 'Message', resource_uris.DCIM_BIOSService)\n", (5032, 5080), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((6324, 6393), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['i', '"""JobStatus"""', 'resource_uris.DCIM_LifecycleJob'], {}), "(i, 'JobStatus', resource_uris.DCIM_LifecycleJob)\n", (6344, 6393), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((7024, 7074), 'ironic.common.exception.DracConfigJobCreationError', 'exception.DracConfigJobCreationError', ([], {'error': 'reason'}), '(error=reason)\n', (7060, 7074), False, 'from ironic.common import exception\n'), ((9778, 9855), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""InstanceID"""', 'resource_uris.DCIM_BootSourceSetting'], {}), "(doc, 'InstanceID', resource_uris.DCIM_BootSourceSetting)\n", (9798, 9855), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((10581, 10659), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""ReturnValue"""', 'resource_uris.DCIM_BootConfigSetting'], {}), "(doc, 'ReturnValue', resource_uris.DCIM_BootConfigSetting)\n", (10601, 10659), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((11254, 11332), 'ironic.common.exception.DracOperationError', 'exception.DracOperationError', ([], {'operation': '"""set_boot_device"""', 'error': 'error_message'}), "(operation='set_boot_device', error=error_message)\n", (11282, 11332), False, 'from ironic.common import exception\n'), ((13028, 13105), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""InstanceID"""', 'resource_uris.DCIM_BootSourceSetting'], {}), "(doc, 'InstanceID', resource_uris.DCIM_BootSourceSetting)\n", (13048, 13105), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((2500, 2537), 'oslo.utils.excutils.save_and_reraise_exception', 'excutils.save_and_reraise_exception', ([], {}), '()\n', (2535, 2537), False, 'from oslo.utils import excutils\n'), ((5708, 5745), 'oslo.utils.excutils.save_and_reraise_exception', 'excutils.save_and_reraise_exception', ([], {}), '()\n', (5743, 5745), False, 'from oslo.utils import excutils\n'), ((6681, 6751), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['i', '"""InstanceID"""', 'resource_uris.DCIM_LifecycleJob'], {}), "(i, 'InstanceID', resource_uris.DCIM_LifecycleJob)\n", (6701, 6751), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((6817, 6946), 'ironic.common.i18n._', '_', (['"""Another job with ID "%s" is already created to configure the BIOS. Wait until existing job is completed or is cancelled"""'], {}), '(\'Another job with ID "%s" is already created to configure the BIOS. Wait until existing job is completed or is cancelled\'\n )\n', (6818, 6946), False, 'from ironic.common.i18n import _\n'), ((9970, 10056), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""BootSourceType"""', 'resource_uris.DCIM_BootSourceSetting'], {}), "(doc, 'BootSourceType', resource_uris.\n DCIM_BootSourceSetting)\n", (9990, 10056), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((11119, 11193), 'ironic.drivers.modules.drac.common.find_xml', 'drac_common.find_xml', (['doc', '"""Message"""', 'resource_uris.DCIM_BootConfigSetting'], {}), "(doc, 'Message', resource_uris.DCIM_BootConfigSetting)\n", (11139, 11193), True, 'from ironic.drivers.modules.drac import common as drac_common\n'), ((2561, 2656), 'ironic.common.i18n._LE', '_LE', (['"""DRAC driver failed to get next boot mode for node %(node_uuid)s. Reason: %(error)s."""'], {}), "('DRAC driver failed to get next boot mode for node %(node_uuid)s. Reason: %(error)s.'\n )\n", (2564, 2656), False, 'from ironic.common.i18n import _LE\n'), ((5769, 5873), 'ironic.common.i18n._LE', '_LE', (['"""DRAC driver failed to list the configuration jobs for node %(node_uuid)s. Reason: %(error)s."""'], {}), "('DRAC driver failed to list the configuration jobs for node %(node_uuid)s. Reason: %(error)s.'\n )\n", (5772, 5873), False, 'from ironic.common.i18n import _LE\n'), ((9371, 9408), 'oslo.utils.excutils.save_and_reraise_exception', 'excutils.save_and_reraise_exception', ([], {}), '()\n', (9406, 9408), False, 'from oslo.utils import excutils\n'), ((12702, 12739), 'oslo.utils.excutils.save_and_reraise_exception', 'excutils.save_and_reraise_exception', ([], {}), '()\n', (12737, 12739), False, 'from oslo.utils import excutils\n'), ((9436, 9575), 'ironic.common.i18n._LE', '_LE', (['"""DRAC driver failed to set the boot device for node %(node_uuid)s. Can\'t find the ID for the %(device)s type. Reason: %(error)s."""'], {}), '("DRAC driver failed to set the boot device for node %(node_uuid)s. Can\'t find the ID for the %(device)s type. Reason: %(error)s."\n )\n', (9439, 9575), False, 'from ironic.common.i18n import _LE\n'), ((12767, 12871), 'ironic.common.i18n._LE', '_LE', (['"""DRAC driver failed to get the current boot device for node %(node_uuid)s. Reason: %(error)s."""'], {}), "('DRAC driver failed to get the current boot device for node %(node_uuid)s. Reason: %(error)s.'\n )\n", (12770, 12871), False, 'from ironic.common.i18n import _LE\n')]
import numpy as np import matplotlib.pyplot as plt #grid number on half space (without the origin) N=150 #total grid number = 2*N + 1 (with origin) N_g=2*N+1 #finite barrier potential value = 300 (meV) potential_value=300 #building potential: def potential(potential_value): V=np.zeros((1,N_g),dtype=float) V[0,0:100]=potential_value V[0,100:201]=0 V[0,201:]=potential_value return V # #Hamiltonian matrix: def Hamiltonian(V): H=np.zeros((N_g,N_g),dtype=float) dx=10 #0.1 (nanometer) for i in range(0,N_g): for j in range(0,N_g): if i==j: x=dx*(i-N) #position H[i,j]=1/(dx**2)+V[0,i] elif j==i-1 or j==i+1: H[i,j]=-0.5/(dx**2) return H V=potential(potential_value) H=Hamiltonian(V) #sort the eigenvalue and get the corresponding eigenvector eigenvalue,eigenvector=np.linalg.eig(H) idx=np.argsort(eigenvalue) eigenvalue=eigenvalue[idx] eigenvector=eigenvector[:,idx] #visualize fig=plt.figure(figsize=(18,6)) ax1=fig.add_subplot(131) x=np.linspace(0,10,11) ax1.plot(x,eigenvalue[0:11],'r.',label='numerical') ax1.set_xlabel('n') ax1.set_ylabel('$E_n (meV)$') ax1.set_title('eigen energies') ax1.grid(True) ax1.legend() ax2=fig.add_subplot(132) x=np.linspace(-5,5,301) #x/lamda_0 x=x/(np.sqrt(2)*10**(10-9)/np.pi) y1=eigenvector[:,0] y2=eigenvector[:,1] y3=eigenvector[:,2] y4=eigenvector[:,3] y5=eigenvector[:,4] ax2.plot(x,(y1),label='$Ψ_{n=0}(x)$') ax2.plot(x,(y2),label='$Ψ_{n=1}(x)$') ax2.plot(x,(y3),label='$Ψ_{n=2}(x)$') ax2.set_xlabel('position ($x/λ_0$) ') ax2.set_ylabel('wavefunction') ax2.set_title('wave function in different eigen state') ax2.legend() ax2.grid(True) ax3=fig.add_subplot(133) ax3.plot(x,(y1**2),label='$Ψ^2_{n=0}(x)$') ax3.plot(x,(y2**2),label='$Ψ^2_{n=1}(x)$') ax3.plot(x,(y3**2),label='$Ψ^2_{n=2}(x)$') ax3.set_xlabel('position ($x/λ_0$) ') ax3.set_ylabel('square wavefunction') ax3.set_title('probability distribution in finite barrier well') ax3.grid(True) ax3.legend() plt.show()
[ "numpy.sqrt", "numpy.linalg.eig", "numpy.argsort", "matplotlib.pyplot.figure", "numpy.linspace", "numpy.zeros", "matplotlib.pyplot.show" ]
[((886, 902), 'numpy.linalg.eig', 'np.linalg.eig', (['H'], {}), '(H)\n', (899, 902), True, 'import numpy as np\n'), ((907, 929), 'numpy.argsort', 'np.argsort', (['eigenvalue'], {}), '(eigenvalue)\n', (917, 929), True, 'import numpy as np\n'), ((1004, 1031), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(18, 6)'}), '(figsize=(18, 6))\n', (1014, 1031), True, 'import matplotlib.pyplot as plt\n'), ((1058, 1080), 'numpy.linspace', 'np.linspace', (['(0)', '(10)', '(11)'], {}), '(0, 10, 11)\n', (1069, 1080), True, 'import numpy as np\n'), ((1269, 1292), 'numpy.linspace', 'np.linspace', (['(-5)', '(5)', '(301)'], {}), '(-5, 5, 301)\n', (1280, 1292), True, 'import numpy as np\n'), ((2027, 2037), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2035, 2037), True, 'import matplotlib.pyplot as plt\n'), ((283, 314), 'numpy.zeros', 'np.zeros', (['(1, N_g)'], {'dtype': 'float'}), '((1, N_g), dtype=float)\n', (291, 314), True, 'import numpy as np\n'), ((456, 489), 'numpy.zeros', 'np.zeros', (['(N_g, N_g)'], {'dtype': 'float'}), '((N_g, N_g), dtype=float)\n', (464, 489), True, 'import numpy as np\n'), ((1307, 1317), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (1314, 1317), True, 'import numpy as np\n')]
import os import click import logging from pathlib import Path from dotenv import find_dotenv, load_dotenv from keras.callbacks import ModelCheckpoint, EarlyStopping import src.utils.utils as ut import src.utils.model_utils as mu import src.models.model as md import src.models.data_generator as dg import src.data.dataframe as dat def train(classmode, modelmode, batch_size, epochs, learning_rate): train = dat.read_df(os.path.join(ut.dirs.processed_dir, ut.df_names.train_df)) nclasses = mu.ref_n_classes(classmode) valid = dat.read_df(os.path.join(ut.dirs.processed_dir, ut.df_names.valid_df)) traindata = dg.DataSequence(train, ut.dirs.train_dir, batch_size=batch_size, classmode=classmode, modelmode=modelmode) validdata = dg.DataSequence(valid, ut.dirs.validation_dir, batch_size=batch_size, classmode=classmode, modelmode=modelmode) model = md.custom(classmode, modelmode, nclasses).make_compiled_model(learning_rate) model.summary() save_model_to = os.path.join(ut.dirs.model_dir, classmode + '_' + modelmode + '.h5') Checkpoint = ModelCheckpoint(save_model_to, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1) Earlystop = EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='auto', baseline=None) model.fit_generator(generator=traindata, steps_per_epoch=len(train)//batch_size, validation_data=validdata, validation_steps=len(valid)//batch_size, epochs=epochs, callbacks=[mu.TrainValTensorBoard(write_graph=False), Checkpoint], #verbose=1, use_multiprocessing=False, workers=1) @click.command() @click.option('--classmode', type=str, default=ut.params.classmode, help='choose a classmode:\n\ multilabel, multiclass\n\ (default: multilabel)') @click.option('--modelmode', type=str, default=ut.params.modelmode, help='choose a modelmode:\n\ image, text, combined\n\ (default: combined)') @click.option('--ep', type=float, default=ut.params.epochs, help='number of epochs (default: {})'. format(ut.params.epochs)) @click.option('--lr', type=float, default=ut.params.learning_rate, help='learning rate (default: {})'. format(ut.params.learning_rate)) @click.option('--bs', type=int, default=ut.params.batch_size, help='batch size (default: {})'. format(ut.params.batch_size)) def main(classmode, modelmode, bs, ep, lr): classmode, modelmode = ut.check_modes(classmode, modelmode) train(classmode, modelmode, bs, ep, lr) if __name__ == '__main__': log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.INFO, format=log_fmt) project_dir = Path(__file__).resolve().parents[2] load_dotenv(find_dotenv()) main()
[ "logging.basicConfig", "dotenv.find_dotenv", "keras.callbacks.ModelCheckpoint", "pathlib.Path", "click.option", "src.utils.model_utils.TrainValTensorBoard", "src.models.model.custom", "os.path.join", "src.utils.utils.check_modes", "src.utils.model_utils.ref_n_classes", "src.models.data_generator.DataSequence", "keras.callbacks.EarlyStopping", "click.command" ]
[((2450, 2465), 'click.command', 'click.command', ([], {}), '()\n', (2463, 2465), False, 'import click\n'), ((2467, 2676), 'click.option', 'click.option', (['"""--classmode"""'], {'type': 'str', 'default': 'ut.params.classmode', 'help': '"""choose a classmode:\n multilabel, multiclass\n (default: multilabel)"""'}), '(\'--classmode\', type=str, default=ut.params.classmode, help=\n """choose a classmode:\n multilabel, multiclass\n (default: multilabel)"""\n )\n', (2479, 2676), False, 'import click\n'), ((2690, 2896), 'click.option', 'click.option', (['"""--modelmode"""'], {'type': 'str', 'default': 'ut.params.modelmode', 'help': '"""choose a modelmode:\n image, text, combined\n (default: combined)"""'}), '(\'--modelmode\', type=str, default=ut.params.modelmode, help=\n """choose a modelmode:\n image, text, combined\n (default: combined)"""\n )\n', (2702, 2896), False, 'import click\n'), ((503, 530), 'src.utils.model_utils.ref_n_classes', 'mu.ref_n_classes', (['classmode'], {}), '(classmode)\n', (519, 530), True, 'import src.utils.model_utils as mu\n'), ((632, 743), 'src.models.data_generator.DataSequence', 'dg.DataSequence', (['train', 'ut.dirs.train_dir'], {'batch_size': 'batch_size', 'classmode': 'classmode', 'modelmode': 'modelmode'}), '(train, ut.dirs.train_dir, batch_size=batch_size, classmode=\n classmode, modelmode=modelmode)\n', (647, 743), True, 'import src.models.data_generator as dg\n'), ((883, 998), 'src.models.data_generator.DataSequence', 'dg.DataSequence', (['valid', 'ut.dirs.validation_dir'], {'batch_size': 'batch_size', 'classmode': 'classmode', 'modelmode': 'modelmode'}), '(valid, ut.dirs.validation_dir, batch_size=batch_size,\n classmode=classmode, modelmode=modelmode)\n', (898, 998), True, 'import src.models.data_generator as dg\n'), ((1254, 1322), 'os.path.join', 'os.path.join', (['ut.dirs.model_dir', "(classmode + '_' + modelmode + '.h5')"], {}), "(ut.dirs.model_dir, classmode + '_' + modelmode + '.h5')\n", (1266, 1322), False, 'import os\n'), ((1341, 1476), 'keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', (['save_model_to'], {'monitor': '"""val_loss"""', 'verbose': '(0)', 'save_best_only': '(False)', 'save_weights_only': '(False)', 'mode': '"""auto"""', 'period': '(1)'}), "(save_model_to, monitor='val_loss', verbose=0,\n save_best_only=False, save_weights_only=False, mode='auto', period=1)\n", (1356, 1476), False, 'from keras.callbacks import ModelCheckpoint, EarlyStopping\n'), ((1687, 1789), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'min_delta': '(0)', 'patience': '(5)', 'verbose': '(0)', 'mode': '"""auto"""', 'baseline': 'None'}), "(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode=\n 'auto', baseline=None)\n", (1700, 1789), False, 'from keras.callbacks import ModelCheckpoint, EarlyStopping\n'), ((3486, 3522), 'src.utils.utils.check_modes', 'ut.check_modes', (['classmode', 'modelmode'], {}), '(classmode, modelmode)\n', (3500, 3522), True, 'import src.utils.utils as ut\n'), ((3670, 3725), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': 'log_fmt'}), '(level=logging.INFO, format=log_fmt)\n', (3689, 3725), False, 'import logging\n'), ((429, 486), 'os.path.join', 'os.path.join', (['ut.dirs.processed_dir', 'ut.df_names.train_df'], {}), '(ut.dirs.processed_dir, ut.df_names.train_df)\n', (441, 486), False, 'import os\n'), ((556, 613), 'os.path.join', 'os.path.join', (['ut.dirs.processed_dir', 'ut.df_names.valid_df'], {}), '(ut.dirs.processed_dir, ut.df_names.valid_df)\n', (568, 613), False, 'import os\n'), ((3798, 3811), 'dotenv.find_dotenv', 'find_dotenv', ([], {}), '()\n', (3809, 3811), False, 'from dotenv import find_dotenv, load_dotenv\n'), ((1136, 1177), 'src.models.model.custom', 'md.custom', (['classmode', 'modelmode', 'nclasses'], {}), '(classmode, modelmode, nclasses)\n', (1145, 1177), True, 'import src.models.model as md\n'), ((2234, 2275), 'src.utils.model_utils.TrainValTensorBoard', 'mu.TrainValTensorBoard', ([], {'write_graph': '(False)'}), '(write_graph=False)\n', (2256, 2275), True, 'import src.utils.model_utils as mu\n'), ((3745, 3759), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (3749, 3759), False, 'from pathlib import Path\n')]
# Copyright (c) 2016-2019. Mount Sinai School of Medicine # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division, absolute_import import logging from Bio.Seq import reverse_complement from pyensembl import Transcript from ..common import groupby_field from .transcript_helpers import interval_offset_on_transcript from .effect_helpers import changes_exonic_splice_site from .effect_collection import EffectCollection from .effect_prediction_coding import predict_variant_coding_effect_on_transcript from .effect_classes import ( Failure, Intergenic, Intragenic, NoncodingTranscript, IncompleteTranscript, FivePrimeUTR, ThreePrimeUTR, Intronic, IntronicSpliceSite, SpliceAcceptor, SpliceDonor, StartLoss, ExonLoss, ExonicSpliceSite, ) logger = logging.getLogger(__name__) def predict_variant_effects(variant, raise_on_error=False): """Determine the effects of a variant on any transcripts it overlaps. Returns an EffectCollection object. Parameters ---------- variant : Variant raise_on_error : bool Raise an exception if we encounter an error while trying to determine the effect of this variant on a transcript, or simply log the error and continue. """ # if this variant isn't overlapping any genes, return a # Intergenic effect # TODO: look for nearby genes and mark those as Upstream and Downstream # effects try: gene_ids = variant.gene_ids transcripts = variant.transcripts except: if raise_on_error: raise else: return [] if len(gene_ids) == 0: effects = [Intergenic(variant)] else: # list of all MutationEffects for all genes & transcripts effects = [] # group transcripts by their gene ID transcripts_grouped_by_gene = \ groupby_field(transcripts, 'gene_id') # want effects in the list grouped by the gene they come from for gene_id in sorted(gene_ids): if gene_id not in transcripts_grouped_by_gene: # intragenic variant overlaps a gene but not any transcripts gene = variant.genome.gene_by_id(gene_id) effects.append(Intragenic(variant, gene)) else: # gene ID has transcripts overlapped by this variant for transcript in transcripts_grouped_by_gene[gene_id]: if raise_on_error: effect = predict_variant_effect_on_transcript( variant=variant, transcript=transcript) else: effect = predict_variant_effect_on_transcript_or_failure( variant=variant, transcript=transcript) effects.append(effect) return EffectCollection(effects) def predict_variant_effect_on_transcript_or_failure(variant, transcript): """ Try predicting the effect of a variant on a particular transcript but suppress raised exceptions by converting them into `Failure` effect values. """ try: return predict_variant_effect_on_transcript( variant=variant, transcript=transcript) except (AssertionError, ValueError) as error: logger.warn( "Encountered error annotating %s for %s: %s", variant, transcript, error) return Failure(variant, transcript) def predict_variant_effect_on_transcript(variant, transcript): """Return the transcript effect (such as FrameShift) that results from applying this genomic variant to a particular transcript. Parameters ---------- transcript : Transcript Transcript we're going to apply mutation to. """ if transcript.__class__ is not Transcript: raise TypeError( "Expected %s : %s to have type Transcript" % ( transcript, type(transcript))) # check for non-coding transcripts first, since # every non-coding transcript is "incomplete". if not transcript.is_protein_coding: return NoncodingTranscript(variant, transcript) if not transcript.complete: return IncompleteTranscript(variant, transcript) # since we're using inclusive base-1 coordinates, # checking for overlap requires special logic for insertions is_insertion = variant.is_insertion # determine if any exons are deleted, and if not, # what is the closest exon and how far is this variant # from that exon (overlapping the exon = 0 distance) completely_lost_exons = [] # list of which (exon #, Exon) pairs this mutation overlaps overlapping_exon_numbers_and_exons = [] distance_to_nearest_exon = float("inf") start_in_exon = False end_in_exon = False nearest_exon = None variant_start = variant.trimmed_base1_start variant_end = variant.trimmed_base1_end for i, exon in enumerate(transcript.exons): if variant_start <= exon.start and variant_end >= exon.end: completely_lost_exons.append(exon) if is_insertion and exon.strand == "+" and variant_end == exon.end: # insertions after an exon don't overlap the exon distance = 1 elif is_insertion and exon.strand == "-" and variant_start == exon.start: distance = 1 else: distance = exon.distance_to_interval(variant_start, variant_end) if distance == 0: overlapping_exon_numbers_and_exons.append((i + 1, exon)) # start is contained in current exon if exon.start <= variant_start <= exon.end: start_in_exon = True # end is contained in current exon if exon.end >= variant_end >= exon.start: end_in_exon = True elif distance < distance_to_nearest_exon: distance_to_nearest_exon = distance nearest_exon = exon if len(overlapping_exon_numbers_and_exons) == 0: intronic_effect_class = choose_intronic_effect_class( variant=variant, nearest_exon=nearest_exon, distance_to_exon=distance_to_nearest_exon) return intronic_effect_class( variant=variant, transcript=transcript, nearest_exon=nearest_exon, distance_to_exon=distance_to_nearest_exon) elif len(completely_lost_exons) > 0 or ( len(overlapping_exon_numbers_and_exons) > 1): # if spanning multiple exons, or completely deleted an exon # then consider that an ExonLoss mutation exons = [exon for (_, exon) in overlapping_exon_numbers_and_exons] return ExonLoss(variant, transcript, exons) assert len(overlapping_exon_numbers_and_exons) == 1 exon_number, exon = overlapping_exon_numbers_and_exons[0] exonic_effect_annotation = exonic_transcript_effect( variant, exon, exon_number, transcript) # simple case: both start and end are in the same if start_in_exon and end_in_exon: return exonic_effect_annotation elif isinstance(exonic_effect_annotation, ExonicSpliceSite): # if mutation bleeds over into intro but even just # the exonic portion got annotated as an exonic splice site # then return it return exonic_effect_annotation return ExonicSpliceSite( variant=variant, transcript=transcript, exon=exon, alternate_effect=exonic_effect_annotation) def choose_intronic_effect_class( variant, nearest_exon, distance_to_exon): """ Infer effect of variant which does not overlap any exon of the given transcript. """ assert distance_to_exon > 0, \ "Expected intronic effect to have distance_to_exon > 0, got %d" % ( distance_to_exon,) if nearest_exon.strand == "+": # if exon on positive strand start_before = variant.trimmed_base1_start < nearest_exon.start start_same = variant.trimmed_base1_start == nearest_exon.start before_exon = start_before or (variant.is_insertion and start_same) else: # if exon on negative strand end_after = variant.trimmed_base1_end > nearest_exon.end end_same = variant.trimmed_base1_end == nearest_exon.end before_exon = end_after or (variant.is_insertion and end_same) # distance cutoffs based on consensus splice sequences from # http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2947103/ # 5' splice site: MAG|GURAGU consensus # M is A or C; R is purine; | is the exon-intron boundary # 3' splice site: YAG|R if distance_to_exon <= 2: if before_exon: # 2 last nucleotides of intron before exon are the splice # acceptor site, typically "AG" return SpliceAcceptor else: # 2 first nucleotides of intron after exon are the splice donor # site, typically "GT" return SpliceDonor elif not before_exon and distance_to_exon <= 6: # variants in nucleotides 3-6 at start of intron aren't as certain # to cause problems as nucleotides 1-2 but still implicated in # alternative splicing return IntronicSpliceSite elif before_exon and distance_to_exon <= 3: # nucleotide -3 before exon is part of the 3' splicing # motif but allows for more degeneracy than the -2, -1 nucleotides return IntronicSpliceSite else: # intronic mutation unrelated to splicing return Intronic def exonic_transcript_effect(variant, exon, exon_number, transcript): """Effect of this variant on a Transcript, assuming we already know that this variant overlaps some exon of the transcript. Parameters ---------- variant : Variant exon : pyensembl.Exon Exon which this variant overlaps exon_number : int Index (starting from 1) of the given exon in the transcript's sequence of exons. transcript : pyensembl.Transcript """ genome_ref = variant.trimmed_ref genome_alt = variant.trimmed_alt variant_start = variant.trimmed_base1_start variant_end = variant.trimmed_base1_end # clip mutation to only affect the current exon if variant_start < exon.start: # if mutation starts before current exon then only look # at nucleotides which overlap the exon logger.info('Mutation in variant %s starts before exon %s', variant, exon) assert len(genome_ref) > 0, "Unexpected insertion into intron" n_skip_start = exon.start - variant_start genome_ref = genome_ref[n_skip_start:] genome_alt = genome_alt[n_skip_start:] genome_start = exon.start else: genome_start = variant_start if variant_end > exon.end: # if mutation goes past exon end then only look at nucleotides # which overlap the exon logger.info('Mutation in variant %s ends after exon %s', variant, exon) n_skip_end = variant_end - exon.end genome_ref = genome_ref[:-n_skip_end] genome_alt = genome_alt[:len(genome_ref)] genome_end = exon.end else: genome_end = variant_end transcript_offset = interval_offset_on_transcript( genome_start, genome_end, transcript) if transcript.on_backward_strand: cdna_ref = reverse_complement(genome_ref) cdna_alt = reverse_complement(genome_alt) else: cdna_ref = genome_ref cdna_alt = genome_alt n_ref = len(cdna_ref) expected_ref = str( transcript.sequence[transcript_offset:transcript_offset + n_ref]) if cdna_ref != expected_ref: raise ValueError( ("Found ref nucleotides '%s' in sequence" " of %s at offset %d (chromosome positions %d:%d)" " but variant %s has '%s'") % ( expected_ref, transcript, transcript_offset, genome_start, genome_end, variant, cdna_ref)) utr5_length = min(transcript.start_codon_spliced_offsets) # does the variant start inside the 5' UTR? if utr5_length > transcript_offset: # does the variant end after the 5' UTR, within the coding region? if utr5_length < transcript_offset + n_ref: # TODO: we *might* lose the Kozak sequence or the start codon # but without looking at the modified sequence how can we tell # for sure that this is a start-loss variant? return StartLoss(variant, transcript) else: # if variant contained within 5' UTR return FivePrimeUTR(variant, transcript) utr3_offset = max(transcript.stop_codon_spliced_offsets) + 1 if transcript_offset >= utr3_offset: return ThreePrimeUTR(variant, transcript) exon_start_offset = interval_offset_on_transcript( exon.start, exon.end, transcript) exon_end_offset = exon_start_offset + len(exon) - 1 # Further below we're going to try to predict exonic splice site # modifications, which will take this effect_annotation as their # alternative hypothesis for what happens if splicing doesn't change. # If the mutation doesn't affect an exonic splice site, then # we'll just return this effect. coding_effect_annotation = predict_variant_coding_effect_on_transcript( variant=variant, transcript=transcript, trimmed_cdna_ref=cdna_ref, trimmed_cdna_alt=cdna_alt, transcript_offset=transcript_offset) if changes_exonic_splice_site( transcript=transcript, transcript_ref=cdna_ref, transcript_alt=cdna_alt, transcript_offset=transcript_offset, exon_start_offset=exon_start_offset, exon_end_offset=exon_end_offset, exon_number=exon_number): return ExonicSpliceSite( variant=variant, transcript=transcript, exon=exon, alternate_effect=coding_effect_annotation) return coding_effect_annotation
[ "logging.getLogger", "Bio.Seq.reverse_complement" ]
[((1344, 1371), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1361, 1371), False, 'import logging\n'), ((12409, 12439), 'Bio.Seq.reverse_complement', 'reverse_complement', (['genome_ref'], {}), '(genome_ref)\n', (12427, 12439), False, 'from Bio.Seq import reverse_complement\n'), ((12459, 12489), 'Bio.Seq.reverse_complement', 'reverse_complement', (['genome_alt'], {}), '(genome_alt)\n', (12477, 12489), False, 'from Bio.Seq import reverse_complement\n')]
# OS-Level Imports import os import sys import multiprocessing from multiprocessing import cpu_count # Library Imports import tensorflow as tf from tensorflow.keras import mixed_precision from tensorflow.python.distribute.distribute_lib import Strategy # Internal Imports from Utils.enums import Environment, Accelerator # Global Configuration Variables environment = Environment.GoogleColab accelerator = Accelerator.GPU strategy = None cpu_no = multiprocessing.cpu_count() batch_size = 64 latent_dim = 100 epochs = 10 supervised_samples_ratio = 0.05 save_interval = 17 super_batches = 1 unsuper_batches = 1 prefetch_no = tf.data.AUTOTUNE eager_execution = True model_summary = False resume_training = False result_path = './results/' dataset_path = './dataset/' def parse_args(): global environment global accelerator global batch_size global latent_dim global epochs global supervised_samples_ratio global save_interval global super_batches global unsuper_batches global prefetch_no global eager_execution global model_summary for arg in sys.argv: if arg.lower().__contains__("envi"): param = arg[arg.index("=") + 1:] if param.lower() == "local": environment = Environment.Local elif param.lower() == "colab": environment = Environment.GoogleColab elif param.lower() == "research": environment = Environment.GoogleResearch if arg.lower().__contains__("accel"): param = arg[arg.index("=") + 1:] if param.lower() == "gpu": accelerator = Accelerator.GPU elif param.lower() == "tpu": accelerator = Accelerator.TPU if arg.lower().__contains__("batch"): param = arg[arg.index("=") + 1:] batch_size = int(param) if arg.lower().__contains__("epoch"): param = arg[arg.index("=") + 1:] epochs = int(param) if arg.lower().__contains__("sample_ratio"): param = arg[arg.index("=") + 1:] supervised_samples_ratio = float(param) if arg.lower().__contains__("save_interval"): param = arg[arg.index("=") + 1:] save_interval = int(param) if arg.lower().__contains__("super_batches"): param = arg[arg.index("=") + 1:] super_batches = int(param) if arg.lower().__contains__("unsuper_batches"): param = arg[arg.index("=") + 1:] unsuper_batches = int(param) if arg.lower().__contains__("eager"): param = arg[arg.index("=") + 1:] if param.lower().__contains__("false"): eager_execution = False else: eager_execution = True if arg.lower().__contains__("model_sum"): param = arg[arg.index("=") + 1:] if param.lower().__contains__("false"): model_summery = False else: model_summery = True def print_args(): global environment global accelerator global batch_size global latent_dim global epochs global supervised_samples_ratio global save_interval global super_batches global unsuper_batches global prefetch_no global eager_execution global model_summary print(environment) print(accelerator) print("Batch Size: ", batch_size) print("Epochs: ", epochs) print("Supervised Ratio: ", supervised_samples_ratio) print("Save Interval: ", save_interval) print("Supervised Batches per Interval: ", super_batches) print("Unsupervised Batches per Interval: ", unsuper_batches) print("Eager Execution: ", eager_execution) print("Print Model Summery: ", model_summary) def configure(enable_xla: bool = True, print_device_placement: bool = False, enable_eager_execution: bool = True, only_cpu: bool = False, enable_memory_growth: bool = True, enable_mixed_float16: bool = False): global environment global accelerator global batch_size global latent_dim global epochs global supervised_samples_ratio global save_interval global super_batches global unsuper_batches global prefetch_no global eager_execution global model_summary global strategy global result_path global dataset_path # Configurations ######################################################### # To enable xla compiler if enable_xla: os.environ['TF_XLA_FLAGS'] = '--tf_xla_enable_xla_devices' ######################################################### # To print out on which device operation is taking place if print_device_placement: tf.debugging.set_log_device_placement(True) ######################################################### # To disable eager execution and use graph functions if not enable_eager_execution: tf.compat.v1.disable_eager_execution() ######################################################### # To disable GPUs if only_cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' ######################################################### # Setting memory growth gpus = tf.config.list_physical_devices('GPU') if enable_memory_growth and gpus: try: tf.config.experimental.set_memory_growth(gpus[0], True) except Exception as ex: # Invalid device or cannot modify virtual devices once initialized. pass ######################################################### # Create 2 virtual GPUs with 1GB memory each # if gpus: # try: # tf.config.experimental.set_virtual_device_configuration( # gpus[0], # [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024), # tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)]) # logical_gpus = tf.config.experimental.list_logical_devices('GPU') # print(len(gpus), "Physical GPU,", len(logical_gpus), "Logical GPUs") # except RuntimeError as e: # # Virtual devices must be set before GPUs have been initialized # print(e) ######################################################### # Using mixed_precision to activate Tensor Cores if enable_mixed_float16: mixed_precision.set_global_policy('mixed_float16') ######################################################### # Configurations # House keeping ######################################################### # Storing the default TF strategy, we will use it in case we don`t set our own strategy = tf.distribute.get_strategy() if environment == Environment.Local: accelerator = Accelerator.GPU if accelerator == Accelerator.TPU and \ (environment == Environment.GoogleColab or environment == Environment.GoogleResearch): resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='') tf.config.experimental_connect_to_cluster(resolver) # This is the TPU initialization code that has to be called at the beginning of program. tf.tpu.experimental.initialize_tpu_system(resolver) print("TPUs: ", tf.config.list_logical_devices('TPU')) strategy = tf.distribute.TPUStrategy(resolver) if environment == Environment.GoogleColab and accelerator == Accelerator.GPU: strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0") dataset_path = '/content/drive/MyDrive/Share/UM-PDD/dataset/' result_path = '/content/drive/MyDrive/Share/UM-PDD/results/' if environment == Environment.GoogleColab and accelerator == Accelerator.TPU: dataset_path = '/content/dataset/' result_path = '/content/drive/MyDrive/Share/UM-PDD/results/' ######################################################### # House keeping
[ "tensorflow.tpu.experimental.initialize_tpu_system", "tensorflow.distribute.OneDeviceStrategy", "tensorflow.distribute.cluster_resolver.TPUClusterResolver", "tensorflow.config.experimental.set_memory_growth", "tensorflow.distribute.TPUStrategy", "tensorflow.config.list_logical_devices", "multiprocessing.cpu_count", "tensorflow.config.experimental_connect_to_cluster", "tensorflow.compat.v1.disable_eager_execution", "tensorflow.config.list_physical_devices", "tensorflow.distribute.get_strategy", "tensorflow.keras.mixed_precision.set_global_policy", "tensorflow.debugging.set_log_device_placement" ]
[((471, 498), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (496, 498), False, 'import multiprocessing\n'), ((5486, 5524), 'tensorflow.config.list_physical_devices', 'tf.config.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (5517, 5524), True, 'import tensorflow as tf\n'), ((6988, 7016), 'tensorflow.distribute.get_strategy', 'tf.distribute.get_strategy', ([], {}), '()\n', (7014, 7016), True, 'import tensorflow as tf\n'), ((4978, 5021), 'tensorflow.debugging.set_log_device_placement', 'tf.debugging.set_log_device_placement', (['(True)'], {}), '(True)\n', (5015, 5021), True, 'import tensorflow as tf\n'), ((5188, 5226), 'tensorflow.compat.v1.disable_eager_execution', 'tf.compat.v1.disable_eager_execution', ([], {}), '()\n', (5224, 5226), True, 'import tensorflow as tf\n'), ((6666, 6716), 'tensorflow.keras.mixed_precision.set_global_policy', 'mixed_precision.set_global_policy', (['"""mixed_float16"""'], {}), "('mixed_float16')\n", (6699, 6716), False, 'from tensorflow.keras import mixed_precision\n'), ((7267, 7324), 'tensorflow.distribute.cluster_resolver.TPUClusterResolver', 'tf.distribute.cluster_resolver.TPUClusterResolver', ([], {'tpu': '""""""'}), "(tpu='')\n", (7316, 7324), True, 'import tensorflow as tf\n'), ((7334, 7385), 'tensorflow.config.experimental_connect_to_cluster', 'tf.config.experimental_connect_to_cluster', (['resolver'], {}), '(resolver)\n', (7375, 7385), True, 'import tensorflow as tf\n'), ((7493, 7544), 'tensorflow.tpu.experimental.initialize_tpu_system', 'tf.tpu.experimental.initialize_tpu_system', (['resolver'], {}), '(resolver)\n', (7534, 7544), True, 'import tensorflow as tf\n'), ((7629, 7664), 'tensorflow.distribute.TPUStrategy', 'tf.distribute.TPUStrategy', (['resolver'], {}), '(resolver)\n', (7654, 7664), True, 'import tensorflow as tf\n'), ((7770, 7818), 'tensorflow.distribute.OneDeviceStrategy', 'tf.distribute.OneDeviceStrategy', ([], {'device': '"""/gpu:0"""'}), "(device='/gpu:0')\n", (7801, 7818), True, 'import tensorflow as tf\n'), ((5591, 5646), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['gpus[0]', '(True)'], {}), '(gpus[0], True)\n', (5631, 5646), True, 'import tensorflow as tf\n'), ((7570, 7607), 'tensorflow.config.list_logical_devices', 'tf.config.list_logical_devices', (['"""TPU"""'], {}), "('TPU')\n", (7600, 7607), True, 'import tensorflow as tf\n')]
from turbo.flux import Mutation, register, dispatch, register_dispatch import mutation_types @register_dispatch('user', mutation_types.INCREASE) def increase(rank): pass def decrease(rank): return dispatch('user', mutation_types.DECREASE, rank)
[ "turbo.flux.register_dispatch", "turbo.flux.dispatch" ]
[((97, 147), 'turbo.flux.register_dispatch', 'register_dispatch', (['"""user"""', 'mutation_types.INCREASE'], {}), "('user', mutation_types.INCREASE)\n", (114, 147), False, 'from turbo.flux import Mutation, register, dispatch, register_dispatch\n'), ((210, 257), 'turbo.flux.dispatch', 'dispatch', (['"""user"""', 'mutation_types.DECREASE', 'rank'], {}), "('user', mutation_types.DECREASE, rank)\n", (218, 257), False, 'from turbo.flux import Mutation, register, dispatch, register_dispatch\n')]
import logging import os import io from fastapi import APIRouter, Depends, Header from fastapi.responses import FileResponse, StreamingResponse from fastapi import HTTPException, status import pyarrow as pa import pyarrow.parquet as pq from data_service.api.query_models import ( InputTimePeriodQuery, InputTimeQuery, InputFixedQuery ) from data_service.config import config from data_service.api.response_models import ErrorMessage from data_service.config.config import get_settings from data_service.config.dependencies import get_processor from data_service.core.processor import Processor from data_service.api.auth import authorize_user data_router = APIRouter() log = logging.getLogger(__name__) @data_router.get("/data/resultSet", responses={ 204: {}, 404: {"model": ErrorMessage}}) def retrieve_result_set(file_name: str, authorization: str = Header(None), settings: config.BaseSettings = Depends(get_settings)): """ Stream a generated result parquet file. """ log.info( f"Entering /data/resultSet with request for file name: {file_name}" ) user_id = authorize_user(authorization) log.info(f"Authorized token for user: {user_id}") file_path = ( f"{settings.RESULTSET_DIR}/{file_name}" ) if not os.path.isfile(file_path): log.warning(f"No file found for path: {file_path}") raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail='Result set not found' ) else: return FileResponse( file_path, media_type='application/octet-stream' ) @data_router.post("/data/event/generate-file", responses={404: {"model": ErrorMessage}}) def create_result_file_event(input_query: InputTimePeriodQuery, authorization: str = Header(None), processor: Processor = Depends(get_processor)): """ Create result set of data with temporality type event, and write result to file. Returns name of file in response. """ log.info( f'Entering /data/event/generate-file with input query: {input_query}' ) user_id = authorize_user(authorization) log.info(f"Authorized token for user: {user_id}") result_data = processor.process_event_request(input_query) resultset_file_name = processor.write_table(result_data) log.info(f'File name for event result set: {resultset_file_name}') return { 'filename': resultset_file_name, } @data_router.post("/data/status/generate-file", responses={404: {"model": ErrorMessage}}) def create_result_file_status(input_query: InputTimeQuery, authorization: str = Header(None), processor: Processor = Depends(get_processor)): """ Create result set of data with temporality type status, and write result to file. Returns name of file in response. """ log.info( f'Entering /data/status/generate-file with input query: {input_query}' ) user_id = authorize_user(authorization) log.info(f"Authorized token for user: {user_id}") result_data = processor.process_status_request(input_query) resultset_file_name = processor.write_table(result_data) log.info(f'File name for event result set: {resultset_file_name}') return { 'filename': resultset_file_name, } @data_router.post("/data/fixed/generate-file", responses={404: {"model": ErrorMessage}}) def create_file_result_fixed(input_query: InputFixedQuery, authorization: str = Header(None), processor: Processor = Depends(get_processor)): """ Create result set of data with temporality type fixed, and write result to file. Returns name of file in response. """ log.info( f'Entering /data/fixed/generate-file with input query: {input_query}' ) user_id = authorize_user(authorization) log.info(f"Authorized token for user: {user_id}") result_data = processor.process_fixed_request(input_query) resultset_file_name = processor.write_table(result_data) log.info(f'File name for event result set: {resultset_file_name}') return { 'filename': resultset_file_name, } @data_router.post("/data/event/stream", responses={404: {"model": ErrorMessage}}) def stream_result_event(input_query: InputTimePeriodQuery, authorization: str = Header(None), processor: Processor = Depends(get_processor)): """ Create Result set of data with temporality type event, and stream result as response. """ log.info(f'Entering /data/event/stream with input query: {input_query}') user_id = authorize_user(authorization) log.info(f"Authorized token for user: {user_id}") result_data = processor.process_event_request(input_query) buffer_stream = pa.BufferOutputStream() pq.write_table(result_data, buffer_stream) return StreamingResponse( io.BytesIO(buffer_stream.getvalue().to_pybytes()) ) @data_router.post("/data/status/stream", responses={404: {"model": ErrorMessage}}) def stream_result_status(input_query: InputTimeQuery, authorization: str = Header(None), processor: Processor = Depends(get_processor)): """ Create result set of data with temporality type status, and stream result as response. """ log.info(f'Entering /data/status/stream with input query: {input_query}') user_id = authorize_user(authorization) log.info(f"Authorized token for user: {user_id}") result_data = processor.process_status_request(input_query) buffer_stream = pa.BufferOutputStream() pq.write_table(result_data, buffer_stream) return StreamingResponse( io.BytesIO(buffer_stream.getvalue().to_pybytes()) ) @data_router.post("/data/fixed/stream", responses={404: {"model": ErrorMessage}}) def stream_result_fixed(input_query: InputFixedQuery, authorization: str = Header(None), processor: Processor = Depends(get_processor)): """ Create result set of data with temporality type fixed, and stream result as response. """ log.info(f'Entering /data/fixed/stream with input query: {input_query}') user_id = authorize_user(authorization) log.info(f"Authorized token for user: {user_id}") result_data = processor.process_fixed_request(input_query) buffer_stream = pa.BufferOutputStream() pq.write_table(result_data, buffer_stream) return StreamingResponse( io.BytesIO(buffer_stream.getvalue().to_pybytes()) )
[ "logging.getLogger", "fastapi.Header", "pyarrow.BufferOutputStream", "fastapi.HTTPException", "fastapi.responses.FileResponse", "data_service.api.auth.authorize_user", "os.path.isfile", "fastapi.APIRouter", "pyarrow.parquet.write_table", "fastapi.Depends" ]
[((664, 675), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (673, 675), False, 'from fastapi import APIRouter, Depends, Header\n'), ((682, 709), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (699, 709), False, 'import logging\n'), ((902, 914), 'fastapi.Header', 'Header', (['None'], {}), '(None)\n', (908, 914), False, 'from fastapi import APIRouter, Depends, Header\n'), ((972, 993), 'fastapi.Depends', 'Depends', (['get_settings'], {}), '(get_settings)\n', (979, 993), False, 'from fastapi import APIRouter, Depends, Header\n'), ((1166, 1195), 'data_service.api.auth.authorize_user', 'authorize_user', (['authorization'], {}), '(authorization)\n', (1180, 1195), False, 'from data_service.api.auth import authorize_user\n'), ((1886, 1898), 'fastapi.Header', 'Header', (['None'], {}), '(None)\n', (1892, 1898), False, 'from fastapi import APIRouter, Depends, Header\n'), ((1952, 1974), 'fastapi.Depends', 'Depends', (['get_processor'], {}), '(get_processor)\n', (1959, 1974), False, 'from fastapi import APIRouter, Depends, Header\n'), ((2229, 2258), 'data_service.api.auth.authorize_user', 'authorize_user', (['authorization'], {}), '(authorization)\n', (2243, 2258), False, 'from data_service.api.auth import authorize_user\n'), ((2790, 2802), 'fastapi.Header', 'Header', (['None'], {}), '(None)\n', (2796, 2802), False, 'from fastapi import APIRouter, Depends, Header\n'), ((2857, 2879), 'fastapi.Depends', 'Depends', (['get_processor'], {}), '(get_processor)\n', (2864, 2879), False, 'from fastapi import APIRouter, Depends, Header\n'), ((3136, 3165), 'data_service.api.auth.authorize_user', 'authorize_user', (['authorization'], {}), '(authorization)\n', (3150, 3165), False, 'from data_service.api.auth import authorize_user\n'), ((3696, 3708), 'fastapi.Header', 'Header', (['None'], {}), '(None)\n', (3702, 3708), False, 'from fastapi import APIRouter, Depends, Header\n'), ((3762, 3784), 'fastapi.Depends', 'Depends', (['get_processor'], {}), '(get_processor)\n', (3769, 3784), False, 'from fastapi import APIRouter, Depends, Header\n'), ((4039, 4068), 'data_service.api.auth.authorize_user', 'authorize_user', (['authorization'], {}), '(authorization)\n', (4053, 4068), False, 'from data_service.api.auth import authorize_user\n'), ((4586, 4598), 'fastapi.Header', 'Header', (['None'], {}), '(None)\n', (4592, 4598), False, 'from fastapi import APIRouter, Depends, Header\n'), ((4647, 4669), 'fastapi.Depends', 'Depends', (['get_processor'], {}), '(get_processor)\n', (4654, 4669), False, 'from fastapi import APIRouter, Depends, Header\n'), ((4874, 4903), 'data_service.api.auth.authorize_user', 'authorize_user', (['authorization'], {}), '(authorization)\n', (4888, 4903), False, 'from data_service.api.auth import authorize_user\n'), ((5042, 5065), 'pyarrow.BufferOutputStream', 'pa.BufferOutputStream', ([], {}), '()\n', (5063, 5065), True, 'import pyarrow as pa\n'), ((5070, 5112), 'pyarrow.parquet.write_table', 'pq.write_table', (['result_data', 'buffer_stream'], {}), '(result_data, buffer_stream)\n', (5084, 5112), True, 'import pyarrow.parquet as pq\n'), ((5410, 5422), 'fastapi.Header', 'Header', (['None'], {}), '(None)\n', (5416, 5422), False, 'from fastapi import APIRouter, Depends, Header\n'), ((5472, 5494), 'fastapi.Depends', 'Depends', (['get_processor'], {}), '(get_processor)\n', (5479, 5494), False, 'from fastapi import APIRouter, Depends, Header\n'), ((5701, 5730), 'data_service.api.auth.authorize_user', 'authorize_user', (['authorization'], {}), '(authorization)\n', (5715, 5730), False, 'from data_service.api.auth import authorize_user\n'), ((5870, 5893), 'pyarrow.BufferOutputStream', 'pa.BufferOutputStream', ([], {}), '()\n', (5891, 5893), True, 'import pyarrow as pa\n'), ((5898, 5940), 'pyarrow.parquet.write_table', 'pq.write_table', (['result_data', 'buffer_stream'], {}), '(result_data, buffer_stream)\n', (5912, 5940), True, 'import pyarrow.parquet as pq\n'), ((6236, 6248), 'fastapi.Header', 'Header', (['None'], {}), '(None)\n', (6242, 6248), False, 'from fastapi import APIRouter, Depends, Header\n'), ((6297, 6319), 'fastapi.Depends', 'Depends', (['get_processor'], {}), '(get_processor)\n', (6304, 6319), False, 'from fastapi import APIRouter, Depends, Header\n'), ((6523, 6552), 'data_service.api.auth.authorize_user', 'authorize_user', (['authorization'], {}), '(authorization)\n', (6537, 6552), False, 'from data_service.api.auth import authorize_user\n'), ((6691, 6714), 'pyarrow.BufferOutputStream', 'pa.BufferOutputStream', ([], {}), '()\n', (6712, 6714), True, 'import pyarrow as pa\n'), ((6719, 6761), 'pyarrow.parquet.write_table', 'pq.write_table', (['result_data', 'buffer_stream'], {}), '(result_data, buffer_stream)\n', (6733, 6761), True, 'import pyarrow.parquet as pq\n'), ((1334, 1359), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (1348, 1359), False, 'import os\n'), ((1435, 1523), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': 'status.HTTP_404_NOT_FOUND', 'detail': '"""Result set not found"""'}), "(status_code=status.HTTP_404_NOT_FOUND, detail=\n 'Result set not found')\n", (1448, 1523), False, 'from fastapi import HTTPException, status\n'), ((1578, 1640), 'fastapi.responses.FileResponse', 'FileResponse', (['file_path'], {'media_type': '"""application/octet-stream"""'}), "(file_path, media_type='application/octet-stream')\n", (1590, 1640), False, 'from fastapi.responses import FileResponse, StreamingResponse\n')]
import json import argparse from argus.callbacks import MonitorCheckpoint, \ EarlyStopping, LoggingToFile, ReduceLROnPlateau from torch.utils.data import DataLoader from src.datasets import FreesoundDataset, FreesoundNoisyDataset, RandomDataset from src.datasets import get_corrected_noisy_data, FreesoundCorrectedNoisyDataset from src.mixers import RandomMixer, AddMixer, SigmoidConcatMixer, UseMixerWithProb from src.transforms import get_transforms from src.argus_models import FreesoundModel from src.utils import load_noisy_data, load_folds_data from src import config parser = argparse.ArgumentParser() parser.add_argument('--experiment', required=True, type=str) args = parser.parse_args() BATCH_SIZE = 128 CROP_SIZE = 256 DATASET_SIZE = 128 * 256 NOISY_PROB = 0.01 CORR_NOISY_PROB = 0.42 MIXER_PROB = 0.8 WRAP_PAD_PROB = 0.5 CORRECTIONS = True if config.kernel: NUM_WORKERS = 2 else: NUM_WORKERS = 8 SAVE_DIR = config.experiments_dir / args.experiment PARAMS = { 'nn_module': ('AuxSkipAttention', { 'num_classes': len(config.classes), 'base_size': 64, 'dropout': 0.4, 'ratio': 16, 'kernel_size': 7, 'last_filters': 8, 'last_fc': 4 }), 'loss': ('OnlyNoisyLSoftLoss', { 'beta': 0.7, 'noisy_weight': 0.5, 'curated_weight': 0.5 }), 'optimizer': ('Adam', {'lr': 0.0009}), 'device': 'cuda', 'aux': { 'weights': [1.0, 0.4, 0.2, 0.1] }, 'amp': { 'opt_level': 'O2', 'keep_batchnorm_fp32': True, 'loss_scale': "dynamic" } } def train_fold(save_dir, train_folds, val_folds, folds_data, noisy_data, corrected_noisy_data): train_transfrom = get_transforms(train=True, size=CROP_SIZE, wrap_pad_prob=WRAP_PAD_PROB, resize_scale=(0.8, 1.0), resize_ratio=(1.7, 2.3), resize_prob=0.33, spec_num_mask=2, spec_freq_masking=0.15, spec_time_masking=0.20, spec_prob=0.5) mixer = RandomMixer([ SigmoidConcatMixer(sigmoid_range=(3, 12)), AddMixer(alpha_dist='uniform') ], p=[0.6, 0.4]) mixer = UseMixerWithProb(mixer, prob=MIXER_PROB) curated_dataset = FreesoundDataset(folds_data, train_folds, transform=train_transfrom, mixer=mixer) noisy_dataset = FreesoundNoisyDataset(noisy_data, transform=train_transfrom, mixer=mixer) corr_noisy_dataset = FreesoundCorrectedNoisyDataset(corrected_noisy_data, transform=train_transfrom, mixer=mixer) dataset_probs = [NOISY_PROB, CORR_NOISY_PROB, 1 - NOISY_PROB - CORR_NOISY_PROB] print("Dataset probs", dataset_probs) print("Dataset lens", len(noisy_dataset), len(corr_noisy_dataset), len(curated_dataset)) train_dataset = RandomDataset([noisy_dataset, corr_noisy_dataset, curated_dataset], p=dataset_probs, size=DATASET_SIZE) val_dataset = FreesoundDataset(folds_data, val_folds, get_transforms(False, CROP_SIZE)) train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=NUM_WORKERS) val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE * 2, shuffle=False, num_workers=NUM_WORKERS) model = FreesoundModel(PARAMS) callbacks = [ MonitorCheckpoint(save_dir, monitor='val_lwlrap', max_saves=1), ReduceLROnPlateau(monitor='val_lwlrap', patience=6, factor=0.6, min_lr=1e-8), EarlyStopping(monitor='val_lwlrap', patience=18), LoggingToFile(save_dir / 'log.txt'), ] model.fit(train_loader, val_loader=val_loader, max_epochs=700, callbacks=callbacks, metrics=['multi_accuracy', 'lwlrap']) if __name__ == "__main__": if not SAVE_DIR.exists(): SAVE_DIR.mkdir(parents=True, exist_ok=True) else: print(f"Folder {SAVE_DIR} already exists.") with open(SAVE_DIR / 'source.py', 'w') as outfile: outfile.write(open(__file__).read()) print("Model params", PARAMS) with open(SAVE_DIR / 'params.json', 'w') as outfile: json.dump(PARAMS, outfile) folds_data = load_folds_data(use_corrections=CORRECTIONS) noisy_data = load_noisy_data() corrected_noisy_data = get_corrected_noisy_data() for fold in config.folds: val_folds = [fold] train_folds = list(set(config.folds) - set(val_folds)) save_fold_dir = SAVE_DIR / f'fold_{fold}' print(f"Val folds: {val_folds}, Train folds: {train_folds}") print(f"Fold save dir {save_fold_dir}") train_fold(save_fold_dir, train_folds, val_folds, folds_data, noisy_data, corrected_noisy_data)
[ "src.transforms.get_transforms", "src.mixers.SigmoidConcatMixer", "src.mixers.AddMixer", "argus.callbacks.EarlyStopping", "src.datasets.get_corrected_noisy_data", "argparse.ArgumentParser", "src.utils.load_noisy_data", "argus.callbacks.ReduceLROnPlateau", "argus.callbacks.MonitorCheckpoint", "src.datasets.FreesoundCorrectedNoisyDataset", "src.argus_models.FreesoundModel", "src.datasets.RandomDataset", "src.utils.load_folds_data", "src.mixers.UseMixerWithProb", "src.datasets.FreesoundDataset", "torch.utils.data.DataLoader", "src.datasets.FreesoundNoisyDataset", "json.dump", "argus.callbacks.LoggingToFile" ]
[((592, 617), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (615, 617), False, 'import argparse\n'), ((1727, 1957), 'src.transforms.get_transforms', 'get_transforms', ([], {'train': '(True)', 'size': 'CROP_SIZE', 'wrap_pad_prob': 'WRAP_PAD_PROB', 'resize_scale': '(0.8, 1.0)', 'resize_ratio': '(1.7, 2.3)', 'resize_prob': '(0.33)', 'spec_num_mask': '(2)', 'spec_freq_masking': '(0.15)', 'spec_time_masking': '(0.2)', 'spec_prob': '(0.5)'}), '(train=True, size=CROP_SIZE, wrap_pad_prob=WRAP_PAD_PROB,\n resize_scale=(0.8, 1.0), resize_ratio=(1.7, 2.3), resize_prob=0.33,\n spec_num_mask=2, spec_freq_masking=0.15, spec_time_masking=0.2,\n spec_prob=0.5)\n', (1741, 1957), False, 'from src.transforms import get_transforms\n'), ((2430, 2470), 'src.mixers.UseMixerWithProb', 'UseMixerWithProb', (['mixer'], {'prob': 'MIXER_PROB'}), '(mixer, prob=MIXER_PROB)\n', (2446, 2470), False, 'from src.mixers import RandomMixer, AddMixer, SigmoidConcatMixer, UseMixerWithProb\n'), ((2494, 2580), 'src.datasets.FreesoundDataset', 'FreesoundDataset', (['folds_data', 'train_folds'], {'transform': 'train_transfrom', 'mixer': 'mixer'}), '(folds_data, train_folds, transform=train_transfrom, mixer=\n mixer)\n', (2510, 2580), False, 'from src.datasets import FreesoundDataset, FreesoundNoisyDataset, RandomDataset\n'), ((2674, 2747), 'src.datasets.FreesoundNoisyDataset', 'FreesoundNoisyDataset', (['noisy_data'], {'transform': 'train_transfrom', 'mixer': 'mixer'}), '(noisy_data, transform=train_transfrom, mixer=mixer)\n', (2695, 2747), False, 'from src.datasets import FreesoundDataset, FreesoundNoisyDataset, RandomDataset\n'), ((2857, 2954), 'src.datasets.FreesoundCorrectedNoisyDataset', 'FreesoundCorrectedNoisyDataset', (['corrected_noisy_data'], {'transform': 'train_transfrom', 'mixer': 'mixer'}), '(corrected_noisy_data, transform=\n train_transfrom, mixer=mixer)\n', (2887, 2954), False, 'from src.datasets import get_corrected_noisy_data, FreesoundCorrectedNoisyDataset\n'), ((3301, 3409), 'src.datasets.RandomDataset', 'RandomDataset', (['[noisy_dataset, corr_noisy_dataset, curated_dataset]'], {'p': 'dataset_probs', 'size': 'DATASET_SIZE'}), '([noisy_dataset, corr_noisy_dataset, curated_dataset], p=\n dataset_probs, size=DATASET_SIZE)\n', (3314, 3409), False, 'from src.datasets import FreesoundDataset, FreesoundNoisyDataset, RandomDataset\n'), ((3620, 3728), 'torch.utils.data.DataLoader', 'DataLoader', (['train_dataset'], {'batch_size': 'BATCH_SIZE', 'shuffle': '(True)', 'drop_last': '(True)', 'num_workers': 'NUM_WORKERS'}), '(train_dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=\n True, num_workers=NUM_WORKERS)\n', (3630, 3728), False, 'from torch.utils.data import DataLoader\n'), ((3801, 3895), 'torch.utils.data.DataLoader', 'DataLoader', (['val_dataset'], {'batch_size': '(BATCH_SIZE * 2)', 'shuffle': '(False)', 'num_workers': 'NUM_WORKERS'}), '(val_dataset, batch_size=BATCH_SIZE * 2, shuffle=False,\n num_workers=NUM_WORKERS)\n', (3811, 3895), False, 'from torch.utils.data import DataLoader\n'), ((3933, 3955), 'src.argus_models.FreesoundModel', 'FreesoundModel', (['PARAMS'], {}), '(PARAMS)\n', (3947, 3955), False, 'from src.argus_models import FreesoundModel\n'), ((4844, 4888), 'src.utils.load_folds_data', 'load_folds_data', ([], {'use_corrections': 'CORRECTIONS'}), '(use_corrections=CORRECTIONS)\n', (4859, 4888), False, 'from src.utils import load_noisy_data, load_folds_data\n'), ((4906, 4923), 'src.utils.load_noisy_data', 'load_noisy_data', ([], {}), '()\n', (4921, 4923), False, 'from src.utils import load_noisy_data, load_folds_data\n'), ((4951, 4977), 'src.datasets.get_corrected_noisy_data', 'get_corrected_noisy_data', ([], {}), '()\n', (4975, 4977), False, 'from src.datasets import get_corrected_noisy_data, FreesoundCorrectedNoisyDataset\n'), ((3567, 3599), 'src.transforms.get_transforms', 'get_transforms', (['(False)', 'CROP_SIZE'], {}), '(False, CROP_SIZE)\n', (3581, 3599), False, 'from src.transforms import get_transforms\n'), ((3983, 4045), 'argus.callbacks.MonitorCheckpoint', 'MonitorCheckpoint', (['save_dir'], {'monitor': '"""val_lwlrap"""', 'max_saves': '(1)'}), "(save_dir, monitor='val_lwlrap', max_saves=1)\n", (4000, 4045), False, 'from argus.callbacks import MonitorCheckpoint, EarlyStopping, LoggingToFile, ReduceLROnPlateau\n'), ((4055, 4132), 'argus.callbacks.ReduceLROnPlateau', 'ReduceLROnPlateau', ([], {'monitor': '"""val_lwlrap"""', 'patience': '(6)', 'factor': '(0.6)', 'min_lr': '(1e-08)'}), "(monitor='val_lwlrap', patience=6, factor=0.6, min_lr=1e-08)\n", (4072, 4132), False, 'from argus.callbacks import MonitorCheckpoint, EarlyStopping, LoggingToFile, ReduceLROnPlateau\n'), ((4141, 4189), 'argus.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_lwlrap"""', 'patience': '(18)'}), "(monitor='val_lwlrap', patience=18)\n", (4154, 4189), False, 'from argus.callbacks import MonitorCheckpoint, EarlyStopping, LoggingToFile, ReduceLROnPlateau\n'), ((4199, 4234), 'argus.callbacks.LoggingToFile', 'LoggingToFile', (["(save_dir / 'log.txt')"], {}), "(save_dir / 'log.txt')\n", (4212, 4234), False, 'from argus.callbacks import MonitorCheckpoint, EarlyStopping, LoggingToFile, ReduceLROnPlateau\n'), ((4799, 4825), 'json.dump', 'json.dump', (['PARAMS', 'outfile'], {}), '(PARAMS, outfile)\n', (4808, 4825), False, 'import json\n'), ((2315, 2356), 'src.mixers.SigmoidConcatMixer', 'SigmoidConcatMixer', ([], {'sigmoid_range': '(3, 12)'}), '(sigmoid_range=(3, 12))\n', (2333, 2356), False, 'from src.mixers import RandomMixer, AddMixer, SigmoidConcatMixer, UseMixerWithProb\n'), ((2366, 2396), 'src.mixers.AddMixer', 'AddMixer', ([], {'alpha_dist': '"""uniform"""'}), "(alpha_dist='uniform')\n", (2374, 2396), False, 'from src.mixers import RandomMixer, AddMixer, SigmoidConcatMixer, UseMixerWithProb\n')]
import pytest @pytest.fixture(scope="session") def test_data(): from pathlib import Path module_dir = Path(__file__).resolve().parent test_dir = module_dir / "test_data" return test_dir.resolve() @pytest.fixture(scope="session") def database(): return "jobflow_test" @pytest.fixture(scope="session") def mongo_jobstore(database): from maggma.stores import MongoStore from jobflow import JobStore store = JobStore(MongoStore(database, "outputs")) store.connect() return store @pytest.fixture(scope="function") def memory_jobstore(): from maggma.stores import MemoryStore from jobflow import JobStore store = JobStore(MemoryStore()) store.connect() return store @pytest.fixture(scope="function") def memory_data_jobstore(): from maggma.stores import MemoryStore from jobflow import JobStore store = JobStore(MemoryStore(), additional_stores={"data": MemoryStore()}) store.connect() return store @pytest.fixture def clean_dir(): import os import shutil import tempfile old_cwd = os.getcwd() newpath = tempfile.mkdtemp() os.chdir(newpath) yield os.chdir(old_cwd) shutil.rmtree(newpath) @pytest.fixture(scope="session") def debug_mode(): return False @pytest.fixture(scope="session") def lpad(database, debug_mode): from fireworks import LaunchPad lpad = LaunchPad(name=database) lpad.reset("", require_password=False) yield lpad if not debug_mode: lpad.reset("", require_password=False) for coll in lpad.db.list_collection_names(): lpad.db[coll].drop() @pytest.fixture def no_pydot(monkeypatch): import builtins import_orig = builtins.__import__ def mocked_import(name, *args, **kwargs): if name == "pydot": raise ImportError() return import_orig(name, *args, **kwargs) monkeypatch.setattr(builtins, "__import__", mocked_import) @pytest.fixture def no_matplotlib(monkeypatch): import builtins import_orig = builtins.__import__ def mocked_import(name, *args, **kwargs): if name == "matplotlib": raise ImportError() return import_orig(name, *args, **kwargs) monkeypatch.setattr(builtins, "__import__", mocked_import)
[ "pathlib.Path", "fireworks.LaunchPad", "os.getcwd", "os.chdir", "tempfile.mkdtemp", "maggma.stores.MemoryStore", "shutil.rmtree", "pytest.fixture", "maggma.stores.MongoStore" ]
[((17, 48), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (31, 48), False, 'import pytest\n'), ((218, 249), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (232, 249), False, 'import pytest\n'), ((295, 326), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (309, 326), False, 'import pytest\n'), ((527, 559), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (541, 559), False, 'import pytest\n'), ((737, 769), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (751, 769), False, 'import pytest\n'), ((1225, 1256), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1239, 1256), False, 'import pytest\n'), ((1295, 1326), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (1309, 1326), False, 'import pytest\n'), ((1094, 1105), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1103, 1105), False, 'import os\n'), ((1120, 1138), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (1136, 1138), False, 'import tempfile\n'), ((1143, 1160), 'os.chdir', 'os.chdir', (['newpath'], {}), '(newpath)\n', (1151, 1160), False, 'import os\n'), ((1177, 1194), 'os.chdir', 'os.chdir', (['old_cwd'], {}), '(old_cwd)\n', (1185, 1194), False, 'import os\n'), ((1199, 1221), 'shutil.rmtree', 'shutil.rmtree', (['newpath'], {}), '(newpath)\n', (1212, 1221), False, 'import shutil\n'), ((1407, 1431), 'fireworks.LaunchPad', 'LaunchPad', ([], {'name': 'database'}), '(name=database)\n', (1416, 1431), False, 'from fireworks import LaunchPad\n'), ((454, 485), 'maggma.stores.MongoStore', 'MongoStore', (['database', '"""outputs"""'], {}), "(database, 'outputs')\n", (464, 485), False, 'from maggma.stores import MongoStore\n'), ((681, 694), 'maggma.stores.MemoryStore', 'MemoryStore', ([], {}), '()\n', (692, 694), False, 'from maggma.stores import MemoryStore\n'), ((896, 909), 'maggma.stores.MemoryStore', 'MemoryStore', ([], {}), '()\n', (907, 909), False, 'from maggma.stores import MemoryStore\n'), ((113, 127), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (117, 127), False, 'from pathlib import Path\n'), ((938, 951), 'maggma.stores.MemoryStore', 'MemoryStore', ([], {}), '()\n', (949, 951), False, 'from maggma.stores import MemoryStore\n')]
# This script allows to download a single file from a remote ZIP archive # without downloading the whole ZIP file itself. # The hosting server needs to support the HTTP range header for it to work import zipfile import requests import argparse class HTTPIO(object): def __init__(self, url): self.url = url r = requests.head(self.url) self.size = int(r.headers['content-length']) assert self.size > 0 self.offset = 0 def seek(self, offset, whence=0): if whence == 0: self.offset = offset elif whence == 1: self.offset += offset elif whence == 2: self.offset = self.size + offset else: raise Exception('Unknown value for parameter whence') def read(self, size = None): if size is None: r = requests.get(self.url, headers={"range": "bytes={}-{}".format(self.offset, self.size - 1)}, stream=True) else: r = requests.get(self.url, headers={"range": "bytes={}-{}".format(self.offset, min(self.size - 1, self.offset+size - 1))}, stream=True) r.raise_for_status() r.raw.decode_content = True content = r.raw.read() self.offset += len(content) return content def tell(self): return self.offset def download_file(zip_url, relative_path, output_file): with zipfile.ZipFile(HTTPIO(zip_url)) as zz: with open(output_file, 'wb') as f: f.write(zz.read(relative_path)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('URL', type=str, help='URL to zip file, e.g. https://example.com/myfile.zip') parser.add_argument('FILE_PATH', type=str, help='Path of the desired file in the ZIP file, e.g. myfolder/mydocument.docx') parser.add_argument('OUTPUT_FILE', type=str, help='Local path to write the file to, e.g. /home/user/mydocument.docx') args = parser.parse_args() download_file(args.URL, args.FILE_PATH, args.OUTPUT_FILE)
[ "requests.head", "argparse.ArgumentParser" ]
[((1672, 1697), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1695, 1697), False, 'import argparse\n'), ((333, 356), 'requests.head', 'requests.head', (['self.url'], {}), '(self.url)\n', (346, 356), False, 'import requests\n')]
""" Example 035: Scheduled sending and delayed routing """ from os import path from docusign_esign.client.api_exception import ApiException from flask import render_template, session, Blueprint, request from ..examples.eg035_scheduled_sending import Eg035ScheduledSendingController from ...docusign import authenticate from ...ds_config import DS_CONFIG from ...error_handlers import process_error from ...consts import pattern eg = "eg035" # reference (and url) for this example eg035 = Blueprint("eg035", __name__) def get_args(): """Get request and session arguments""" # More data validation would be a good idea here # Strip anything other than characters listed signer_email = pattern.sub("", request.form.get("signer_email")) signer_name = pattern.sub("", request.form.get("signer_name")) resume_date = request.form.get("resume_date") envelope_args = { "signer_email": signer_email, "signer_name": signer_name, "resume_date": resume_date, "status": "sent", } args = { "account_id": session["ds_account_id"], "base_path": session["ds_base_path"], "access_token": session["ds_access_token"], "envelope_args": envelope_args } return args @eg035.route("/eg035", methods=["POST"]) @authenticate(eg=eg) def sign_by_email(): """ 1. Get required arguments 2. Call the worker method 3. Render success response with envelopeId """ # 1. Get required arguments args = get_args() try: # 1. Call the worker method results = Eg035ScheduledSendingController.worker(args) print(results) except ApiException as err: return process_error(err) # 2. Render success response with envelopeId return render_template( "example_done.html", title="Envelope sent", h1="Envelope sent", message=f"The envelope has been created and scheduled!<br/>Envelope ID: {results['envelope_id']}." ) @eg035.route("/eg035", methods=["GET"]) @authenticate(eg=eg) def get_view(): """responds with the form for the example""" return render_template( "eg035_scheduled_sending.html", title="Scheduled sending", source_file="eg035_scheduled_sending.py", source_url=DS_CONFIG["github_example_url"] + "eg035_scheduled_sending.py", documentation=DS_CONFIG["documentation"] + eg, show_doc=DS_CONFIG["documentation"], signer_name=DS_CONFIG["signer_name"], signer_email=DS_CONFIG["signer_email"] )
[ "flask.render_template", "flask.Blueprint", "flask.request.form.get" ]
[((494, 522), 'flask.Blueprint', 'Blueprint', (['"""eg035"""', '__name__'], {}), "('eg035', __name__)\n", (503, 522), False, 'from flask import render_template, session, Blueprint, request\n'), ((842, 873), 'flask.request.form.get', 'request.form.get', (['"""resume_date"""'], {}), "('resume_date')\n", (858, 873), False, 'from flask import render_template, session, Blueprint, request\n'), ((1779, 1973), 'flask.render_template', 'render_template', (['"""example_done.html"""'], {'title': '"""Envelope sent"""', 'h1': '"""Envelope sent"""', 'message': 'f"""The envelope has been created and scheduled!<br/>Envelope ID: {results[\'envelope_id\']}."""'}), '(\'example_done.html\', title=\'Envelope sent\', h1=\n \'Envelope sent\', message=\n f"The envelope has been created and scheduled!<br/>Envelope ID: {results[\'envelope_id\']}."\n )\n', (1794, 1973), False, 'from flask import render_template, session, Blueprint, request\n'), ((2137, 2513), 'flask.render_template', 'render_template', (['"""eg035_scheduled_sending.html"""'], {'title': '"""Scheduled sending"""', 'source_file': '"""eg035_scheduled_sending.py"""', 'source_url': "(DS_CONFIG['github_example_url'] + 'eg035_scheduled_sending.py')", 'documentation': "(DS_CONFIG['documentation'] + eg)", 'show_doc': "DS_CONFIG['documentation']", 'signer_name': "DS_CONFIG['signer_name']", 'signer_email': "DS_CONFIG['signer_email']"}), "('eg035_scheduled_sending.html', title='Scheduled sending',\n source_file='eg035_scheduled_sending.py', source_url=DS_CONFIG[\n 'github_example_url'] + 'eg035_scheduled_sending.py', documentation=\n DS_CONFIG['documentation'] + eg, show_doc=DS_CONFIG['documentation'],\n signer_name=DS_CONFIG['signer_name'], signer_email=DS_CONFIG[\n 'signer_email'])\n", (2152, 2513), False, 'from flask import render_template, session, Blueprint, request\n'), ((723, 755), 'flask.request.form.get', 'request.form.get', (['"""signer_email"""'], {}), "('signer_email')\n", (739, 755), False, 'from flask import render_template, session, Blueprint, request\n'), ((791, 822), 'flask.request.form.get', 'request.form.get', (['"""signer_name"""'], {}), "('signer_name')\n", (807, 822), False, 'from flask import render_template, session, Blueprint, request\n')]
## Unit 4 Project - Two Player Game ## <NAME> - Computer Programming II ## The Elder Scrolls X # A fan made 2 player game successor the The Elder Scrolls Series # Two players start off in an arena # Can choose starting items # Can choose classes ## Libraries import time # Self explanatory import random # Self explanatory import os # Used for Linux commands import os, platform # For Linux intro ## Functions def sleep(): # This function just automates what I usually do manually time.sleep(0.1) print("\n") return ## Code class Player1(object): # This is the class for Player 1 def __init__(self, name, health, attack, stamina, defense): self.name = name # Player's name self.health = health # Player's max health self.attack = attack # Player's attack power, can be changed self.stamina = stamina # How many attacks you can do self.defense = defense # How much damage you take def Stats(self): sleep() print(self.name + "'s currents stats are: ") sleep() print("Health = " + str(self.health)) print("Attack = " + str(self.attack)) print("Stamina = " + str(self.stamina)) print("Defense = " + str(self.defense)) sleep() class Player2(object): # This is the class for Player 2 def __init__(self, name, health, attack, stamina, defense): self.name = name self.health = health self.attack = attack self.stamina = stamina self.defense = defense def Stats(self): sleep() print(self.name + "'s currents stats are: ") sleep() print("Health = " + str(self.health)) print("Attack = " + str(self.attack)) print("Stamina = " + str(self.stamina)) print("Defense = " + str(self.defense)) sleep() def intro1(): # This is an intro for Linux sleep() os.system("figlet Elder Scrolls X") sleep() return def intro2(): # Intro for anything else sleep() print("\n\t Elder Scrolls X") sleep() return if platform.system() == "Linux": intro1() else: intro2() def CharCreation(): # Function to ask questions for class choosing sleep() print("=> What kind of class do you want?") sleep() print("> 1 - Knight") #sleep() print("> 2 - Thief") #sleep() print("> 3 - Lancer") sleep() return sleep() print("=> Player 1 : What is your name?") name1 = input("> ") # "name1" is Player 1's name sleep() print("=> Player 1,") CharCreation() CharCreationChoice1 = input("> ") if CharCreationChoice1 == ("1"): # Knight player1 = Player1(name1, 200, 150, 50, 200) if CharCreationChoice1 == ("2"): # Thief player1 = Player1(name1, 100, 200, 100, 50) if CharCreationChoice1 == ("3"): # Lancer player1 = Player1(name1, 100, 100, 100, 100) sleep() player1.Stats() # Prints the stats for Player 1 sleep() print("=> Player 2 : What is your name?") name2 = input("> ") # "name2" is Player 2's name CharCreation() CharCreationChoice2 = input("> ") if CharCreationChoice2 == ("1"): # Knight player2 = Player2(name2, 200, 150, 50, 200) if CharCreationChoice2 == ("2"): # Thief player2 = Player2(name2, 100, 200, 100, 50) if CharCreationChoice2 == ("3"): # Lancer player2 = Player2(name2, 100, 100, 100, 100) player2.Stats() # Prints Player 2's stats
[ "os.system", "platform.system", "time.sleep" ]
[((501, 516), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (511, 516), False, 'import time\n'), ((1911, 1946), 'os.system', 'os.system', (['"""figlet Elder Scrolls X"""'], {}), "('figlet Elder Scrolls X')\n", (1920, 1946), False, 'import os, platform\n'), ((2087, 2104), 'platform.system', 'platform.system', ([], {}), '()\n', (2102, 2104), False, 'import os, platform\n')]
#!/usr/bin/env python3 # =================================================================================== # Copyright (C) 2019 Fraunhofer Gesellschaft. All rights reserved. # =================================================================================== # This Acumos software file is distributed by Fraunhofer Gesellschaft # under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ===============LICENSE_END========================================================== """ Provides an example of Docker URI cli on-boarding """ import requests import os import json # properties of the model model_name = "my-model-1" dockerImageURI = "cicd.ai4eu-dev.eu:7444/myimages/onboardingtest:v3" #Docker image URI looks like: example.com:port/image-tag:version license_file = "./license-1.0.0.json" protobuf_file = "./model.proto" # setup parameters host = os.environ['ACUMOS_HOST'] # FQHN like aiexp-preprod.ai4europe.eu token = os.environ['ACUMOS_TOKEN'] # format is 'acumos_username:API_TOKEN' advanced_api = "https://" + host + ":443/onboarding-app/v2/advancedModel" files= {'license': ('license.json', open(license_file, 'rb'), 'application.json'), 'protobuf': ('model.proto', open(protobuf_file, 'rb'), 'text/plain')} headers = {"Accept": "application/json", "modelname": model_name, "Authorization": token, "dockerFileURL": dockerImageURI, 'isCreateMicroservice': 'false'} #send request response = requests.post(advanced_api, files=files, headers=headers) #check response if response.status_code == 201: body = json.loads(response.text) solution_id = body['result']['solutionId'] print("Docker uri is pushed successfully on {" + host + "}, response is: ", response.status_code, " - solutionId: ", solution_id) else: print("Docker uri is not pushed on {" + host + "}, response is: ", response.status_code)
[ "json.loads", "requests.post" ]
[((1846, 1903), 'requests.post', 'requests.post', (['advanced_api'], {'files': 'files', 'headers': 'headers'}), '(advanced_api, files=files, headers=headers)\n', (1859, 1903), False, 'import requests\n'), ((1964, 1989), 'json.loads', 'json.loads', (['response.text'], {}), '(response.text)\n', (1974, 1989), False, 'import json\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Jan 20 08:40:22 2017 @author: fabio """ import ee import ee.mapclient ee.Initialize() collection = ee.ImageCollection('MODIS/MCD43A4_NDVI') lista = collection.toList(10) #print lista.getInfo() image = ee.Image('LC8_L1T/LC81910312016217LGN00') #print image.getInfo() bandNames = image.bandNames() print('Band Names: ', bandNames.getInfo()) b1scale = image.select('B1').projection().nominalScale() print('Band 1 scale: ', b1scale.getInfo()) b8scale = image.select('B8').projection().nominalScale() print('Band 8 scale: ', b8scale.getInfo()) ndvi = image.normalizedDifference(['B5', 'B4']) ee.mapclient.addToMap(ndvi, {'min' : -1, "max": 1}, "NDVI") ee.mapclient.centerMap(12.3536,41.7686,9)
[ "ee.mapclient.addToMap", "ee.Image", "ee.ImageCollection", "ee.Initialize", "ee.mapclient.centerMap" ]
[((139, 154), 'ee.Initialize', 'ee.Initialize', ([], {}), '()\n', (152, 154), False, 'import ee\n'), ((169, 209), 'ee.ImageCollection', 'ee.ImageCollection', (['"""MODIS/MCD43A4_NDVI"""'], {}), "('MODIS/MCD43A4_NDVI')\n", (187, 209), False, 'import ee\n'), ((273, 314), 'ee.Image', 'ee.Image', (['"""LC8_L1T/LC81910312016217LGN00"""'], {}), "('LC8_L1T/LC81910312016217LGN00')\n", (281, 314), False, 'import ee\n'), ((667, 725), 'ee.mapclient.addToMap', 'ee.mapclient.addToMap', (['ndvi', "{'min': -1, 'max': 1}", '"""NDVI"""'], {}), "(ndvi, {'min': -1, 'max': 1}, 'NDVI')\n", (688, 725), False, 'import ee\n'), ((794, 837), 'ee.mapclient.centerMap', 'ee.mapclient.centerMap', (['(12.3536)', '(41.7686)', '(9)'], {}), '(12.3536, 41.7686, 9)\n', (816, 837), False, 'import ee\n')]
from django.contrib import admin from .models import Contato, Venda, FormaPagamento admin.site.register(Contato) admin.site.register(Venda) admin.site.register(FormaPagamento)
[ "django.contrib.admin.site.register" ]
[((85, 113), 'django.contrib.admin.site.register', 'admin.site.register', (['Contato'], {}), '(Contato)\n', (104, 113), False, 'from django.contrib import admin\n'), ((114, 140), 'django.contrib.admin.site.register', 'admin.site.register', (['Venda'], {}), '(Venda)\n', (133, 140), False, 'from django.contrib import admin\n'), ((141, 176), 'django.contrib.admin.site.register', 'admin.site.register', (['FormaPagamento'], {}), '(FormaPagamento)\n', (160, 176), False, 'from django.contrib import admin\n')]
from __future__ import unicode_literals from __future__ import print_function import moya from moya.compat import text_type from requests_oauthlib import OAuth1Session def get_credentials(provider, credentials): client_id = credentials.client_id or provider.get('client_id', None) client_secret = credentials.client_secret or provider.get('client_secret', None) return client_id, client_secret @moya.expose.macro('get_oauth_resource_owner') def get_oauth_resource_owner(app, provider, credentials): client_id, client_secret = get_credentials(provider, credentials) oauth = OAuth1Session(client_id, client_secret=client_secret) request_token_url = provider['request_token_url'] response = oauth.fetch_request_token(request_token_url) resource_owner_key = response.get('oauth_token') resource_owner_secret = response.get('oauth_token_secret') result = { "key": resource_owner_key, "secret": resource_owner_secret } return result @moya.expose.macro('get_oauth_authorize_url') def get_oauth_authorize_url(app, provider, credentials): context = moya.pilot.context client_id, client_secret = get_credentials(provider, credentials) resource_owner_key = context['.session.oauth1.resource_owner.key'] resource_owner_secret = context['.session.oauth1.resource_owner.secret'] oauth = OAuth1Session(client_id, client_secret=client_secret, resource_owner_key=resource_owner_key, resource_owner_secret=resource_owner_secret) authorization_url = oauth.authorization_url(provider['authorization_base_url']) return authorization_url @moya.expose.macro('get_oauth_access_token') def get_oauth_access_token(app, provider, credentials, verifier): context = moya.pilot.context client_id, client_secret = get_credentials(provider, credentials) resource_owner_key = context['.session.oauth1.resource_owner.key'] resource_owner_secret = context['.session.oauth1.resource_owner.secret'] oauth = OAuth1Session(client_id, client_secret=client_secret, resource_owner_key=resource_owner_key, resource_owner_secret=resource_owner_secret, verifier=verifier) access_token_url = provider['access_token_url'] oauth_tokens = oauth.fetch_access_token(access_token_url) return oauth_tokens @moya.expose.macro('get_oauth_profile') def get_oauth_profile(app, provider, credentials, verifier): context = moya.pilot.context client_id, client_secret = get_credentials(provider, credentials) resource_owner_key = context['.session.oauth1.resource_owner.key'] resource_owner_secret = context['.session.oauth1.resource_owner.secret'] resources = provider.get('resources', {}) session = OAuth1Session(client_id, client_secret=client_secret, resource_owner_key=resource_owner_key, resource_owner_secret=resource_owner_secret, verifier=verifier) access_token_url = provider['access_token_url'] try: oauth_tokens = session.fetch_access_token(access_token_url) except Exception as e: app.throw('moya.logins.access-fail', text_type(e)) info = {} for scope, scope_url in sorted(resources.items()): try: response = session.get(scope_url) except Exception as e: app.throw('moya.logins.get-scope-fail', text_type(e), diagnosis="There may be a connectivity issue getting scope information.", scope=scope, scope_url=scope_url) try: info[scope] = scope_data = response.json() #if(context['.debug']): # context['.console'].obj(context, scope_data) except: pass provider_profile = provider.get('profile', {}) profile = {} context['_oauth_info'] = info with context.frame('_oauth_info'): for k, v in provider_profile.items(): try: profile[k] = context.eval(v) except: pass return {'profile': profile, 'info': info}
[ "requests_oauthlib.OAuth1Session", "moya.compat.text_type", "moya.expose.macro" ]
[((413, 458), 'moya.expose.macro', 'moya.expose.macro', (['"""get_oauth_resource_owner"""'], {}), "('get_oauth_resource_owner')\n", (430, 458), False, 'import moya\n'), ((1003, 1047), 'moya.expose.macro', 'moya.expose.macro', (['"""get_oauth_authorize_url"""'], {}), "('get_oauth_authorize_url')\n", (1020, 1047), False, 'import moya\n'), ((1701, 1744), 'moya.expose.macro', 'moya.expose.macro', (['"""get_oauth_access_token"""'], {}), "('get_oauth_access_token')\n", (1718, 1744), False, 'import moya\n'), ((2477, 2515), 'moya.expose.macro', 'moya.expose.macro', (['"""get_oauth_profile"""'], {}), "('get_oauth_profile')\n", (2494, 2515), False, 'import moya\n'), ((599, 652), 'requests_oauthlib.OAuth1Session', 'OAuth1Session', (['client_id'], {'client_secret': 'client_secret'}), '(client_id, client_secret=client_secret)\n', (612, 652), False, 'from requests_oauthlib import OAuth1Session\n'), ((1368, 1510), 'requests_oauthlib.OAuth1Session', 'OAuth1Session', (['client_id'], {'client_secret': 'client_secret', 'resource_owner_key': 'resource_owner_key', 'resource_owner_secret': 'resource_owner_secret'}), '(client_id, client_secret=client_secret, resource_owner_key=\n resource_owner_key, resource_owner_secret=resource_owner_secret)\n', (1381, 1510), False, 'from requests_oauthlib import OAuth1Session\n'), ((2074, 2239), 'requests_oauthlib.OAuth1Session', 'OAuth1Session', (['client_id'], {'client_secret': 'client_secret', 'resource_owner_key': 'resource_owner_key', 'resource_owner_secret': 'resource_owner_secret', 'verifier': 'verifier'}), '(client_id, client_secret=client_secret, resource_owner_key=\n resource_owner_key, resource_owner_secret=resource_owner_secret,\n verifier=verifier)\n', (2087, 2239), False, 'from requests_oauthlib import OAuth1Session\n'), ((2888, 3053), 'requests_oauthlib.OAuth1Session', 'OAuth1Session', (['client_id'], {'client_secret': 'client_secret', 'resource_owner_key': 'resource_owner_key', 'resource_owner_secret': 'resource_owner_secret', 'verifier': 'verifier'}), '(client_id, client_secret=client_secret, resource_owner_key=\n resource_owner_key, resource_owner_secret=resource_owner_secret,\n verifier=verifier)\n', (2901, 3053), False, 'from requests_oauthlib import OAuth1Session\n'), ((3377, 3389), 'moya.compat.text_type', 'text_type', (['e'], {}), '(e)\n', (3386, 3389), False, 'from moya.compat import text_type\n'), ((3625, 3637), 'moya.compat.text_type', 'text_type', (['e'], {}), '(e)\n', (3634, 3637), False, 'from moya.compat import text_type\n')]
""" Cartesian genetic programming """ import operator as op import random import copy import math from settings import VERBOSE, N_COLS, LEVEL_BACK class Function: """ A general function """ def __init__(self, f, arity, name=None): self.f = f self.arity = arity self.name = f.__name__ if name is None else name def __call__(self, *args, **kwargs): return self.f(*args, **kwargs) class Node: """ A node in CGP graph """ def __init__(self, max_arity): """ Initialize this node randomly """ self.i_func = None self.i_inputs = [None] * max_arity self.weights = [None] * max_arity self.i_output = None self.output = None self.active = False class Individual: """ An individual (chromosome, genotype, etc.) in evolution """ function_set = None weight_range = [-1, 1] max_arity = 3 n_inputs = 3 n_outputs = 1 n_cols = N_COLS level_back = LEVEL_BACK def __init__(self): self.nodes = [] for pos in range(self.n_cols): self.nodes.append(self._create_random_node(pos)) for i in range(1, self.n_outputs + 1): self.nodes[-i].active = True self.fitness = None self._active_determined = False def _create_random_node(self, pos): node = Node(self.max_arity) node.i_func = random.randint(0, len(self.function_set) - 1) for i in range(self.function_set[node.i_func].arity): node.i_inputs[i] = random.randint(max(pos - self.level_back, -self.n_inputs), pos - 1) node.weights[i] = random.uniform(self.weight_range[0], self.weight_range[1]) node.i_output = pos return node def _determine_active_nodes(self): """ Determine which nodes in the CGP graph are active """ # check each node in reverse order n_active = 0 for node in reversed(self.nodes): if node.active: n_active += 1 for i in range(self.function_set[node.i_func].arity): i_input = node.i_inputs[i] if i_input >= 0: # a node (not an input) self.nodes[i_input].active = True if VERBOSE: print("# active genes: ", n_active) def eval(self, *args): """ Given inputs, evaluate the output of this CGP individual. :return the final output value """ if not self._active_determined: self._determine_active_nodes() self._active_determined = True # forward pass: evaluate for node in self.nodes: if node.active: inputs = [] for i in range(self.function_set[node.i_func].arity): i_input = node.i_inputs[i] w = node.weights[i] if i_input < 0: inputs.append(args[-i_input - 1] * w) else: inputs.append(self.nodes[i_input].output * w) node.output = self.function_set[node.i_func](*inputs) return self.nodes[-1].output def mutate(self, mut_rate=0.01): """ Mutate this individual. Each gene is varied with probability *mut_rate*. :param mut_rate: mutation probability :return a child after mutation """ child = copy.deepcopy(self) for pos, node in enumerate(child.nodes): # mutate the function gene if random.random() < mut_rate: node.i_func = random.choice(range(len(self.function_set))) # mutate the input genes (connection genes) arity = self.function_set[node.i_func].arity for i in range(arity): if node.i_inputs[i] is None or random.random() < mut_rate: # if the mutated function requires more arguments, then the last ones are None node.i_inputs[i] = random.randint(max(pos - self.level_back, -self.n_inputs), pos - 1) if node.weights[i] is None or random.random() < mut_rate: node.weights[i] = random.uniform(self.weight_range[0], self.weight_range[1]) # initially an individual is not active except the last output node node.active = False for i in range(1, self.n_outputs + 1): child.nodes[-i].active = True child.fitness = None child._active_determined = False return child def save(self): file_object = open(r"SavedBrain", 'w+') for pos, node in enumerate(self.nodes): file_object.write(str(node.i_func)) file_object.write("\n") file_object.write("\n") if not self._active_determined: self._determine_active_nodes() self._active_determined = True for pos, node in enumerate(self.nodes): if node.active: file_object.write(str(node.i_func)) file_object.write("\n") file_object.write("\n") activeNodes = [] for node in self.nodes: if node.active: activeNodes.append(node) file_object.write(str(self.function_set[node.i_func].f)) file_object.close() # function set def protected_div(a, b): if abs(b) < 1e-6: return a return a / b fs = [Function(op.add, 2), Function(op.sub, 2), Function(op.mul, 2), Function(protected_div, 2), Function(op.neg, 1), Function(math.cos, 1), Function(math.sin, 1), Function(math.tan, 1), Function(math.atan2, 2)] Individual.function_set = fs Individual.max_arity = max(f.arity for f in fs) def evolve(pop, mut_rate, mu, lambda_): """ Evolve the population *pop* using the mu + lambda evolutionary strategy :param pop: a list of individuals, whose size is mu + lambda. The first mu ones are previous parents. :param mut_rate: mutation rate :return: a new generation of individuals of the same size """ pop = sorted(pop, key=lambda ind: ind.fitness) # stable sorting parents = pop[-mu:] # generate lambda new children via mutation offspring = [] for _ in range(lambda_): parent = random.choice(parents) offspring.append(parent.mutate(mut_rate)) return parents + offspring def create_population(n): """ Create a random population composed of n individuals. """ return [Individual() for _ in range(n)]
[ "random.random", "random.uniform", "random.choice", "copy.deepcopy" ]
[((3494, 3513), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (3507, 3513), False, 'import copy\n'), ((6349, 6371), 'random.choice', 'random.choice', (['parents'], {}), '(parents)\n', (6362, 6371), False, 'import random\n'), ((1672, 1730), 'random.uniform', 'random.uniform', (['self.weight_range[0]', 'self.weight_range[1]'], {}), '(self.weight_range[0], self.weight_range[1])\n', (1686, 1730), False, 'import random\n'), ((3617, 3632), 'random.random', 'random.random', ([], {}), '()\n', (3630, 3632), False, 'import random\n'), ((4243, 4301), 'random.uniform', 'random.uniform', (['self.weight_range[0]', 'self.weight_range[1]'], {}), '(self.weight_range[0], self.weight_range[1])\n', (4257, 4301), False, 'import random\n'), ((3915, 3930), 'random.random', 'random.random', ([], {}), '()\n', (3928, 3930), False, 'import random\n'), ((4177, 4192), 'random.random', 'random.random', ([], {}), '()\n', (4190, 4192), False, 'import random\n')]
import torch as t import torch_geometric.utils as utils def qw_score(graph): """ 未实现qw_score,采用度数代替 :param graph: """ score = utils.degree(graph.edge_index[0]) return score.sort() def pre_processing(graph, m, score, trees): score, indices = score indices.squeeze_() old_edges = graph.edge_index trees[-1] = [-1] * m def graft(root): """ 找到分值最大的2阶节点并与源节点连接 和论文有一些不一样,会在加入二阶节点后把它视为一阶节点 :param root: 源节点(度小于m) """ nodes_1_hop, _, _, _ = utils.k_hop_subgraph(root, 1, graph.edge_index) if nodes_1_hop.shape[0] > m: return nodes_2_hop, _, _, _ = utils.k_hop_subgraph(root, 2, graph.edge_index) ma = 0 for node in nodes_2_hop: if node not in nodes_1_hop: node = int(node.item()) idx = t.nonzero(indices == node, as_tuple=False).item() ma = max(ma, idx) new_edge = t.tensor([[indices[ma], root], [root, indices[ma]]]) degree[root] += 1 graph.edge_index = t.cat((graph.edge_index, new_edge), dim=1) if degree[root] < m: graft(root) elif degree[root] == m: nodes_1_hop, _, _, _ = utils.k_hop_subgraph(root, 1, graph.edge_index) trees[root] = ([i.item() for i in nodes_1_hop if i != root]) graph.edge_index = old_edges def prune(root): """ 找到分值最小的1阶节点并删除连接 默认图为简单图 :param root: 源节点 """ nodes_1_hop, _, _, mask = utils.k_hop_subgraph(root, 1, graph.edge_index) if nodes_1_hop.shape[0] == m + 1: return mi = graph.num_nodes + 1 for node in nodes_1_hop: if node != root: node = int(node.item()) idx = t.nonzero(indices == node, as_tuple=False).item() mi = min(idx, mi) mask = mask.nonzero(as_tuple=False) edges = graph.edge_index l, r = 0, 0 for i in mask: i = i.item() if edges[0][i] == indices[mi] and edges[1][i] == root: l = i elif edges[1][i] == indices[mi] and edges[0][i] == root: r = i l, r = sorted([l, r]) graph.edge_index = t.cat((edges[:, :l], edges[:, l + 1:r], edges[:, r + 1:]), dim=1) degree[root] -= 1 if degree[root] > m: prune(root) elif degree[root] == m: nodes_1_hop, _, _, _ = utils.k_hop_subgraph(root, 1, graph.edge_index) trees[root] = ([i.item() for i in nodes_1_hop if i != root]) graph.edge_index = old_edges degree = utils.degree(graph.edge_index[0]) for node, d in enumerate(degree): tmp = degree[node] if d > m: prune(node) elif d < m: graft(node) else: nodes_1_hop, _, _, _ = utils.k_hop_subgraph(node, 1, graph.edge_index) trees[node] = ([i.item() for i in nodes_1_hop if i != node]) degree[node] = tmp for tree in trees: while len(trees[tree]) < m: trees[tree].append(-1) # 对于孤立点对它的子树加哑节点 graph.edge_index = old_edges return trees def construct_node_tree(graph, node, trees, opt): """ 生成目标节点的 K_level, m_ary 树 :param graph: :param node: :param opt: """ m = opt.m K = opt.K tree = [node] now = 0 for i in range(K - 1): for j in range(m ** i): root = tree[now] tree += trees[root] now += 1 zero = t.zeros(graph.x[-1].shape) x = graph.x graph.x = t.cat([graph.x, zero[None, :]], dim=0) tree = graph.x[tree] graph.x = x return tree
[ "torch_geometric.utils.degree", "torch.nonzero", "torch.tensor", "torch_geometric.utils.k_hop_subgraph", "torch.zeros", "torch.cat" ]
[((148, 181), 'torch_geometric.utils.degree', 'utils.degree', (['graph.edge_index[0]'], {}), '(graph.edge_index[0])\n', (160, 181), True, 'import torch_geometric.utils as utils\n'), ((2664, 2697), 'torch_geometric.utils.degree', 'utils.degree', (['graph.edge_index[0]'], {}), '(graph.edge_index[0])\n', (2676, 2697), True, 'import torch_geometric.utils as utils\n'), ((3577, 3603), 'torch.zeros', 't.zeros', (['graph.x[-1].shape'], {}), '(graph.x[-1].shape)\n', (3584, 3603), True, 'import torch as t\n'), ((3634, 3672), 'torch.cat', 't.cat', (['[graph.x, zero[None, :]]'], {'dim': '(0)'}), '([graph.x, zero[None, :]], dim=0)\n', (3639, 3672), True, 'import torch as t\n'), ((531, 578), 'torch_geometric.utils.k_hop_subgraph', 'utils.k_hop_subgraph', (['root', '(1)', 'graph.edge_index'], {}), '(root, 1, graph.edge_index)\n', (551, 578), True, 'import torch_geometric.utils as utils\n'), ((666, 713), 'torch_geometric.utils.k_hop_subgraph', 'utils.k_hop_subgraph', (['root', '(2)', 'graph.edge_index'], {}), '(root, 2, graph.edge_index)\n', (686, 713), True, 'import torch_geometric.utils as utils\n'), ((967, 1019), 'torch.tensor', 't.tensor', (['[[indices[ma], root], [root, indices[ma]]]'], {}), '([[indices[ma], root], [root, indices[ma]]])\n', (975, 1019), True, 'import torch as t\n'), ((1073, 1115), 'torch.cat', 't.cat', (['(graph.edge_index, new_edge)'], {'dim': '(1)'}), '((graph.edge_index, new_edge), dim=1)\n', (1078, 1115), True, 'import torch as t\n'), ((1544, 1591), 'torch_geometric.utils.k_hop_subgraph', 'utils.k_hop_subgraph', (['root', '(1)', 'graph.edge_index'], {}), '(root, 1, graph.edge_index)\n', (1564, 1591), True, 'import torch_geometric.utils as utils\n'), ((2276, 2341), 'torch.cat', 't.cat', (['(edges[:, :l], edges[:, l + 1:r], edges[:, r + 1:])'], {'dim': '(1)'}), '((edges[:, :l], edges[:, l + 1:r], edges[:, r + 1:]), dim=1)\n', (2281, 2341), True, 'import torch as t\n'), ((1236, 1283), 'torch_geometric.utils.k_hop_subgraph', 'utils.k_hop_subgraph', (['root', '(1)', 'graph.edge_index'], {}), '(root, 1, graph.edge_index)\n', (1256, 1283), True, 'import torch_geometric.utils as utils\n'), ((2488, 2535), 'torch_geometric.utils.k_hop_subgraph', 'utils.k_hop_subgraph', (['root', '(1)', 'graph.edge_index'], {}), '(root, 1, graph.edge_index)\n', (2508, 2535), True, 'import torch_geometric.utils as utils\n'), ((2898, 2945), 'torch_geometric.utils.k_hop_subgraph', 'utils.k_hop_subgraph', (['node', '(1)', 'graph.edge_index'], {}), '(node, 1, graph.edge_index)\n', (2918, 2945), True, 'import torch_geometric.utils as utils\n'), ((864, 906), 'torch.nonzero', 't.nonzero', (['(indices == node)'], {'as_tuple': '(False)'}), '(indices == node, as_tuple=False)\n', (873, 906), True, 'import torch as t\n'), ((1810, 1852), 'torch.nonzero', 't.nonzero', (['(indices == node)'], {'as_tuple': '(False)'}), '(indices == node, as_tuple=False)\n', (1819, 1852), True, 'import torch as t\n')]
#/* # * Copyright (C) 2017 - This file is part of libecc project # * # * Authors: # * <NAME> <<EMAIL>> # * <NAME> <<EMAIL>> # * <NAME> <<EMAIL>> # * # * Contributors: # * <NAME> <<EMAIL>> # * <NAME> <<EMAIL>> # * # * This software is licensed under a dual BSD and GPL v2 license. # * See LICENSE file at the root folder of the project. # */ import struct keccak_rc = [ 0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 ] keccak_rot = [ [ 0, 36, 3, 41, 18 ], [ 1, 44, 10, 45, 2 ], [ 62, 6, 43, 15, 61 ], [ 28, 55, 25, 21, 56 ], [ 27, 20, 39, 8, 14 ], ] # Keccak function def keccak_rotl(x, l): return (((x << l) ^ (x >> (64 - l))) & (2**64-1)) def keccakround(bytestate, rc): # Import little endian state state = [0] * 25 for i in range(0, 25): (state[i],) = struct.unpack('<Q', ''.join(bytestate[(8*i):(8*i)+8])) # Proceed with the KECCAK core bcd = [0] * 25 # Theta for i in range(0, 5): bcd[i] = state[i] ^ state[i + (5*1)] ^ state[i + (5*2)] ^ state[i + (5*3)] ^ state[i + (5*4)] for i in range(0, 5): tmp = bcd[(i+4)%5] ^ keccak_rotl(bcd[(i+1)%5], 1) for j in range(0, 5): state[i + (5 * j)] = state[i + (5 * j)] ^ tmp # Rho and Pi for i in range(0, 5): for j in range(0, 5): bcd[j + (5*(((2*i)+(3*j)) % 5))] = keccak_rotl(state[i + (5*j)], keccak_rot[i][j]) # Chi for i in range(0, 5): for j in range(0, 5): state[i + (5*j)] = bcd[i + (5*j)] ^ (~bcd[((i+1)%5) + (5*j)] & bcd[((i+2)%5) + (5*j)]) # Iota state[0] = state[0] ^ keccak_rc[rc] # Pack the output state output = [0] * (25 * 8) for i in range(0, 25): output[(8*i):(8*i)+1] = struct.pack('<Q', state[i]) return output def keccakf(bytestate): for rnd in range(0, 24): bytestate = keccakround(bytestate, rnd) return bytestate # SHA-3 context class class Sha3_ctx(object): def __init__(self, digest_size): self.digest_size = digest_size / 8 self.block_size = (25*8) - (2 * (digest_size / 8)) self.idx = 0 self.state = [chr(0)] * (25 * 8) def digest_size(self): return self.digest_size def block_size(self): return self.block_size def update(self, message): for i in range(0, len(message)): self.state[self.idx] = chr(ord(self.state[self.idx]) ^ ord(message[i])) self.idx = self.idx + 1 if (self.idx == self.block_size): self.state = keccakf(self.state) self.idx = 0 def digest(self): self.state[self.idx] = chr(ord(self.state[self.idx]) ^ 0x06) self.state[self.block_size - 1] = chr(ord(self.state[self.block_size - 1]) ^ 0x80) self.state = keccakf(self.state) return ''.join(self.state[:self.digest_size])
[ "struct.pack" ]
[((2141, 2168), 'struct.pack', 'struct.pack', (['"""<Q"""', 'state[i]'], {}), "('<Q', state[i])\n", (2152, 2168), False, 'import struct\n')]
import torch import torch.nn as nn import optflow.compute_tvl1_energy as compute_tvl1_energy def EPE(input_flow, target_flow, sparse=False, mean=True): EPE_map = torch.norm(target_flow-input_flow,2,1) if sparse: EPE_map = EPE_map[target_flow != 0] if mean: return EPE_map.mean() else: return EPE_map.sum() def multiscale_energy_loss(network_output_energy, target_flow,img1,img2, weights=None, sparse=False): def one_scale_mod(output, target, sparse,img1,img2): b, _, h, w = target.size() down_sample_img1 =nn.functional.adaptive_avg_pool2d(img1, (h, w)) down_sample_img2 = nn.functional.adaptive_avg_pool2d(img2, (h, w)) target_energy = compute_tvl1_energy.compute_tvl1_energy_optimized_batch(down_sample_img1, down_sample_img2, target) l1_loss = (output - target_energy).abs().sum() / target_energy.size(0) return l1_loss if type(network_output_energy) not in [tuple, list]: network_output_energy = [network_output_energy] if weights is None: weights = [0.46,0.23,0.23,0.46] # more preference for starting layers assert(len(weights) == len(network_output_energy)) loss = 0 flow_index = 0 for output, weight in zip(network_output_energy, weights): loss += weight * one_scale_mod(output, target_flow[flow_index], sparse,img1,img2) flow_index = flow_index + 1 return loss def realEPE(output, target, sparse=False): b, _, h, w = target.size() upsampled_output = nn.functional.upsample(output, size=(h,w), mode='bilinear') return EPE(upsampled_output, target, sparse, mean=True)
[ "torch.nn.functional.upsample", "torch.norm", "torch.nn.functional.adaptive_avg_pool2d", "optflow.compute_tvl1_energy.compute_tvl1_energy_optimized_batch" ]
[((167, 209), 'torch.norm', 'torch.norm', (['(target_flow - input_flow)', '(2)', '(1)'], {}), '(target_flow - input_flow, 2, 1)\n', (177, 209), False, 'import torch\n'), ((1656, 1716), 'torch.nn.functional.upsample', 'nn.functional.upsample', (['output'], {'size': '(h, w)', 'mode': '"""bilinear"""'}), "(output, size=(h, w), mode='bilinear')\n", (1678, 1716), True, 'import torch.nn as nn\n'), ((570, 617), 'torch.nn.functional.adaptive_avg_pool2d', 'nn.functional.adaptive_avg_pool2d', (['img1', '(h, w)'], {}), '(img1, (h, w))\n', (603, 617), True, 'import torch.nn as nn\n'), ((645, 692), 'torch.nn.functional.adaptive_avg_pool2d', 'nn.functional.adaptive_avg_pool2d', (['img2', '(h, w)'], {}), '(img2, (h, w))\n', (678, 692), True, 'import torch.nn as nn\n'), ((718, 821), 'optflow.compute_tvl1_energy.compute_tvl1_energy_optimized_batch', 'compute_tvl1_energy.compute_tvl1_energy_optimized_batch', (['down_sample_img1', 'down_sample_img2', 'target'], {}), '(down_sample_img1,\n down_sample_img2, target)\n', (773, 821), True, 'import optflow.compute_tvl1_energy as compute_tvl1_energy\n')]
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys from django.test import TestCase from django.utils.module_loading import import_string from pipeline.tests.mock import * # noqa from pipeline.tests.mock_settings import * # noqa class EngineDataAPITestCase(TestCase): @classmethod def setUpClass(cls): cls.mock_settings = MagicMock() cls.settings_patch = patch(ENGINE_DATA_API_SETTINGS, cls.mock_settings) cls.import_backend_patch = patch(ENGINE_DATA_API_IMPORT_BACKEND, MagicMock()) cls.settings_patch.start() cls.import_backend_patch.start() cls.api = import_string("pipeline.engine.core.data.api") cls.write_methods = ["set_object", "del_object", "expire_cache"] cls.read_methods = ["get_object", "cache_for"] cls.method_params = { "set_object": ["key", "obj"], "del_object": ["key"], "expire_cache": ["key", "obj", "expires"], "cache_for": ["key"], "get_object": ["key"], } @classmethod def tearDownClass(cls): cls.settings_patch.stop() cls.import_backend_patch.stop() def setUp(self): self.backend = MagicMock() self.candidate_backend = MagicMock() self.mock_settings.PIPELINE_DATA_BACKEND_AUTO_EXPIRE = False def test_write__without_candidate(self): for method in self.write_methods: with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, None): getattr(self.api, method)(*self.method_params[method]) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_not_called() sys.stdout.write( "{} pass test_write__without_candidate test\n".format(method) ) def test_write__without_candiate_raise_err(self): for method in self.write_methods: setattr(self.backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, None): self.assertRaises( Exception, getattr(self.api, method), *self.method_params[method] ) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_not_called() sys.stdout.write( "{} pass test_write__without_candiate_raise_err test\n".format(method) ) def test_write__with_candidate(self): for method in self.write_methods: with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): getattr(self.api, method)(*self.method_params[method]) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write("{} pass test_write__with_candidate test\n".format(method)) def test_write__with_candidate_main_raise_err(self): for method in self.write_methods: setattr(self.backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): getattr(self.api, method)(*self.method_params[method]) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_write__with_candidate_main_raise_err test\n".format( method ) ) def test_write__with_candidate_raise_err(self): for method in self.write_methods: setattr(self.candidate_backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): getattr(self.api, method)(*self.method_params[method]) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_write__with_candidate_raise_err test\n".format(method) ) def test_write__with_candidate_both_raise_err(self): for method in self.write_methods: setattr(self.backend, method, MagicMock(side_effect=Exception)) setattr(self.candidate_backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): self.assertRaises( Exception, getattr(self.api, method), *self.method_params[method] ) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_write__with_candidate_both_raise_err test\n".format( method ) ) def test_write__with_auto_expire(self): self.mock_settings.PIPELINE_DATA_BACKEND_AUTO_EXPIRE = True self.mock_settings.PIPELINE_DATA_BACKEND_AUTO_EXPIRE_SECONDS = 30 for method in self.write_methods: with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): getattr(self.api, method)(*self.method_params[method]) if method == "set_object": getattr(self.backend, "expire_cache").assert_called_once_with( *self.method_params[method], expires=30 ) self.backend.expire_cache.reset_mock() else: getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_write__with_candidate_both_raise_err test\n".format( method ) ) def test_read__without_candidate(self): for method in self.read_methods: with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, None): data = getattr(self.api, method)(*self.method_params[method]) self.assertIsNotNone(data) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_not_called() sys.stdout.write( "{} pass test_read__without_candidate test\n".format(method) ) def test_read__without_candidate_raise_err(self): for method in self.read_methods: setattr(self.backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, None): self.assertRaises( Exception, getattr(self.api, method), *self.method_params[method] ) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_not_called() sys.stdout.write( "{} pass test_read__without_candidate_raise_err test\n".format(method) ) def test_read__with_candidate_not_use(self): for method in self.read_methods: with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): data = getattr(self.api, method)(*self.method_params[method]) self.assertIsNotNone(data) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_not_called() sys.stdout.write( "{} pass test_read__with_candidate_not_use test\n".format(method) ) def test_read__with_candidate_use(self): for method in self.read_methods: setattr(self.backend, method, MagicMock(return_value=None)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): data = getattr(self.api, method)(*self.method_params[method]) self.assertIsNotNone(data) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_read__with_candidate_use test\n".format(method) ) def test_read__with_candidate_err(self): for method in self.read_methods: setattr(self.backend, method, MagicMock(return_value=None)) setattr(self.candidate_backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): data = getattr(self.api, method)(*self.method_params[method]) self.assertIsNone(data) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_read__with_candidate_err test\n".format(method) ) def test_read__with_candidate_main_raise_err(self): for method in self.read_methods: setattr(self.backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): data = getattr(self.api, method)(*self.method_params[method]) self.assertIsNotNone(data) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_read__with_candidate_main_raise_err test\n".format(method) ) def test_read__with_candidate_both_raise_err(self): for method in self.read_methods: setattr(self.backend, method, MagicMock(side_effect=Exception)) setattr(self.candidate_backend, method, MagicMock(side_effect=Exception)) with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): self.assertRaises( Exception, getattr(self.api, method), *self.method_params[method] ) getattr(self.backend, method).assert_called_once_with( *self.method_params[method] ) getattr(self.candidate_backend, method).assert_called_once_with( *self.method_params[method] ) sys.stdout.write( "{} pass test_read__with_candidate_both_raise_err test\n".format(method) ) def test_set_schedule_data(self): with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): self.api.set_schedule_data("key", "data") self.backend.set_object.assert_called_once_with( "key_schedule_parent_data", "data" ) self.candidate_backend.set_object.assert_called_once_with( "key_schedule_parent_data", "data" ) def test_delete_parent_data(self): with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): self.api.delete_parent_data("key") self.backend.del_object.assert_called_once_with( "key_schedule_parent_data" ) self.candidate_backend.del_object.assert_called_once_with( "key_schedule_parent_data" ) def test_get_schedule_parent_data(self): with patch(ENGINE_DATA_API_BACKEND, self.backend): with patch(ENGINE_DATA_API_CANDIDATE_BACKEND, self.candidate_backend): data = self.api.get_schedule_parent_data("key") self.assertIsNotNone(data) self.backend.get_object.assert_called_once_with( "key_schedule_parent_data" ) self.candidate_backend.get_object.assert_not_called()
[ "django.utils.module_loading.import_string" ]
[((1310, 1356), 'django.utils.module_loading.import_string', 'import_string', (['"""pipeline.engine.core.data.api"""'], {}), "('pipeline.engine.core.data.api')\n", (1323, 1356), False, 'from django.utils.module_loading import import_string\n')]
import numpy as np def _check_mne(name): """Helper to check if h5py is installed""" try: import mne except ImportError: raise ImportError('Please install MNE-python to use %s.' % name) return mne def raw_to_mask(raw, ixs, events=None, tmin=None, tmax=None): """ A function to transform MNE data into pactools input signals. It select the one channel on which you to estimate PAC, or two channels for cross-channel PAC. It also returns a mask generator, that mask the data outside a given window around an event. The mask generator returns a number of masks equal to the number of events times the number of windows (i.e. the number of pairs (tmin, tmax)). Warning: events is stored in indices, tmin and tmax are stored in seconds. Parameters ---------- raw : an instance of Raw, containing data of shape (n_channels, n_times) The data used to calculate PAC ixs : int or couple of int The indices for the low/high frequency channels. If only one is given, the same channel is used for both low_sig and high_sig. events : array, shape (n_events, 3) | array, shape (n_events,) | None MNE events array. To be supplied if data is 2D and output should be split by events. In this case, `tmin` and `tmax` must be provided. If `ndim == 1`, it is assumed to be event indices, and all events will be grouped together. Otherwise, events will be grouped along the third dimension. tmin : float | list of floats, shape (n_windows, ) | None If `events` is not provided, it is the start time to use in `raw`. If `events` is provided, it is the time (in seconds) to include before each event index. If a list of floats is given, then PAC is calculated for each pair of `tmin` and `tmax`. Defaults to `min(raw.times)`. tmax : float | list of floats, shape (n_windows, ) | None If `events` is not provided, it is the stop time to use in `raw`. If `events` is provided, it is the time (in seconds) to include after each event index. If a list of floats is given, then PAC is calculated for each pair of `tmin` and `tmax`. Defaults to `max(raw.times)`. Attributes ---------- low_sig : array, shape (1, n_points) Input data for the phase signal high_sig : array or None, shape (1, n_points) Input data for the amplitude signal. If None, we use low_sig for both signals. mask : MaskIterator instance Object that behaves like a list of mask, without storing them all. The PAC will only be evaluated where the mask is False. Examples -------- >>> from pactools import raw_to_mask >>> low_sig, high_sig, mask = raw_to_mask(raw, ixs, events, tmin, tmax) >>> n_masks = len(mask) >>> for one_mask in mask: ... pass """ mne = _check_mne('raw_to_mask') if not isinstance(raw, mne.io.BaseRaw): raise ValueError('Must supply Raw as input') ixs = np.atleast_1d(ixs) fs = raw.info['sfreq'] data = raw[:][0] n_channels, n_points = data.shape low_sig = data[ixs[0]][None, :] if ixs.shape[0] > 1: high_sig = data[ixs[1]][None, :] else: high_sig = None mask = MaskIterator(events, tmin, tmax, n_points, fs) return low_sig, high_sig, mask class MaskIterator(object): """Iterator that creates the masks one at a time. Examples -------- >>> from pactools import MaskIterator >>> all_masks = MaskIterator(events, tmin, tmax, n_points, fs) >>> n_masks = len(all_masks) >>> for one_mask in all_masks: ... pass """ def __init__(self, events, tmin, tmax, n_points, fs): self.events = events self.tmin = tmin self.tmax = tmax self.n_points = n_points self.fs = float(fs) self._init() def _init(self): self.tmin = np.atleast_1d(self.tmin) self.tmax = np.atleast_1d(self.tmax) if len(self.tmin) != len(self.tmax): raise ValueError('tmin and tmax have differing lengths') n_windows = len(self.tmin) if self.events is None: self.events = np.array([0.]) n_events = 1 if self.events.ndim == 1: n_events = 1 # number of different event kinds else: n_events = np.unique(self.events[:, -1]).shape[0] self._n_iter = n_windows * n_events def __iter__(self): return self.next() def __len__(self): return self._n_iter def next(self): if self.events.ndim == 1: event_names = [None, ] else: event_names = np.unique(self.events[:, -1]) mask = np.empty((1, self.n_points), dtype=bool) for event_name in event_names: if self.events.ndim == 1: # select all the events since their kind is not specified these_events = self.events else: # select the event indices of one kind of event these_events = self.events[self.events[:, -1] == event_name, 0] for tmin, tmax in zip(self.tmin, self.tmax): mask.fill(True) # it masks everything for event in these_events: start, stop = None, None if tmin is not None: start = int(event + tmin * self.fs) if tmax is not None: stop = int(event + tmax * self.fs) mask[:, start:stop] = False yield mask
[ "numpy.array", "numpy.empty", "numpy.unique", "numpy.atleast_1d" ]
[((3066, 3084), 'numpy.atleast_1d', 'np.atleast_1d', (['ixs'], {}), '(ixs)\n', (3079, 3084), True, 'import numpy as np\n'), ((3978, 4002), 'numpy.atleast_1d', 'np.atleast_1d', (['self.tmin'], {}), '(self.tmin)\n', (3991, 4002), True, 'import numpy as np\n'), ((4023, 4047), 'numpy.atleast_1d', 'np.atleast_1d', (['self.tmax'], {}), '(self.tmax)\n', (4036, 4047), True, 'import numpy as np\n'), ((4793, 4833), 'numpy.empty', 'np.empty', (['(1, self.n_points)'], {'dtype': 'bool'}), '((1, self.n_points), dtype=bool)\n', (4801, 4833), True, 'import numpy as np\n'), ((4257, 4272), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (4265, 4272), True, 'import numpy as np\n'), ((4747, 4776), 'numpy.unique', 'np.unique', (['self.events[:, -1]'], {}), '(self.events[:, -1])\n', (4756, 4776), True, 'import numpy as np\n'), ((4429, 4458), 'numpy.unique', 'np.unique', (['self.events[:, -1]'], {}), '(self.events[:, -1])\n', (4438, 4458), True, 'import numpy as np\n')]
import random async def magicEightBall(ctx, message=True): if message: eightBall = random.randint(0, 19) outlooks = [ "As I see it, yes.", "Ask again later.", "Better not tell you now.", "Cannot predict now.", "Concentrate and ask again.", "Don’t count on it.", "It is certain.", "It is decidedly so.", "Most likely.", "My reply is no.", "My sources say no.", "Outlook not so good.", "Outlook good.", "Reply hazy, try again.", "Signs point to yes.", "Very doubtful.", "Without a doubt.", "Yes.", "Yes – definitely.", "You may rely on it.", ] await ctx.send('Magic 8: ' + outlooks[eightBall])
[ "random.randint" ]
[((97, 118), 'random.randint', 'random.randint', (['(0)', '(19)'], {}), '(0, 19)\n', (111, 118), False, 'import random\n')]
import time import board import busio from digitalio import DigitalInOut from adafruit_esp32spi import adafruit_esp32spi from adafruit_esp32spi import adafruit_esp32spi_wifimanager import neopixel # Import Philips Hue Bridge from adafruit_hue import Bridge # Get wifi details and more from a secrets.py file try: from secrets import secrets except ImportError: print("WiFi and API secrets are kept in secrets.py, please add them there!") raise # ESP32 SPI esp32_cs = DigitalInOut(board.ESP_CS) esp32_ready = DigitalInOut(board.ESP_BUSY) esp32_reset = DigitalInOut(board.ESP_RESET) spi = busio.SPI(board.SCK, board.MOSI, board.MISO) esp = adafruit_esp32spi.ESP_SPIcontrol(spi, esp32_cs, esp32_ready, esp32_reset) status_light = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.2) wifi = adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager(esp, secrets, status_light) # Attempt to load bridge username and IP address from secrets.py try: username = secrets['hue_username'] bridge_ip = secrets['bridge_ip'] my_bridge = Bridge(wifi, bridge_ip, username) except: # Perform first-time bridge setup my_bridge = Bridge(wifi) ip = my_bridge.discover_bridge() username = my_bridge.register_username() print('ADD THESE VALUES TO SECRETS.PY: \ \n\t"bridge_ip":"{0}", \ \n\t"hue_username":"{1}"'.format(ip, username)) raise # Enumerate all lights on the bridge my_bridge.get_lights() # Turn on the light my_bridge.set_light(1, on=True) # RGB colors to Hue-Compatible HSL colors hsl_y = my_bridge.rgb_to_hsb([255, 255, 0]) hsl_b = my_bridge.rgb_to_hsb([0, 0, 255]) hsl_w = my_bridge.rgb_to_hsb([255, 255, 255]) hsl_colors = [hsl_y, hsl_b, hsl_w] # Set the light to Python colors! for color in hsl_colors: my_bridge.set_light(1, hue=int(color[0]), sat=int(color[1]), bri=int(color[2])) time.sleep(5) # Set a predefinedscene # my_bridge.set_group(1, scene='AB34EF5') # Turn off the light my_bridge.set_light(1, on=False)
[ "adafruit_esp32spi.adafruit_esp32spi.ESP_SPIcontrol", "adafruit_hue.Bridge", "busio.SPI", "time.sleep", "adafruit_esp32spi.adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager", "neopixel.NeoPixel", "digitalio.DigitalInOut" ]
[((499, 525), 'digitalio.DigitalInOut', 'DigitalInOut', (['board.ESP_CS'], {}), '(board.ESP_CS)\n', (511, 525), False, 'from digitalio import DigitalInOut\n'), ((541, 569), 'digitalio.DigitalInOut', 'DigitalInOut', (['board.ESP_BUSY'], {}), '(board.ESP_BUSY)\n', (553, 569), False, 'from digitalio import DigitalInOut\n'), ((585, 614), 'digitalio.DigitalInOut', 'DigitalInOut', (['board.ESP_RESET'], {}), '(board.ESP_RESET)\n', (597, 614), False, 'from digitalio import DigitalInOut\n'), ((622, 666), 'busio.SPI', 'busio.SPI', (['board.SCK', 'board.MOSI', 'board.MISO'], {}), '(board.SCK, board.MOSI, board.MISO)\n', (631, 666), False, 'import busio\n'), ((674, 747), 'adafruit_esp32spi.adafruit_esp32spi.ESP_SPIcontrol', 'adafruit_esp32spi.ESP_SPIcontrol', (['spi', 'esp32_cs', 'esp32_ready', 'esp32_reset'], {}), '(spi, esp32_cs, esp32_ready, esp32_reset)\n', (706, 747), False, 'from adafruit_esp32spi import adafruit_esp32spi\n'), ((764, 816), 'neopixel.NeoPixel', 'neopixel.NeoPixel', (['board.NEOPIXEL', '(1)'], {'brightness': '(0.2)'}), '(board.NEOPIXEL, 1, brightness=0.2)\n', (781, 816), False, 'import neopixel\n'), ((825, 901), 'adafruit_esp32spi.adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager', 'adafruit_esp32spi_wifimanager.ESPSPI_WiFiManager', (['esp', 'secrets', 'status_light'], {}), '(esp, secrets, status_light)\n', (873, 901), False, 'from adafruit_esp32spi import adafruit_esp32spi_wifimanager\n'), ((1071, 1104), 'adafruit_hue.Bridge', 'Bridge', (['wifi', 'bridge_ip', 'username'], {}), '(wifi, bridge_ip, username)\n', (1077, 1104), False, 'from adafruit_hue import Bridge\n'), ((1944, 1957), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1954, 1957), False, 'import time\n'), ((1170, 1182), 'adafruit_hue.Bridge', 'Bridge', (['wifi'], {}), '(wifi)\n', (1176, 1182), False, 'from adafruit_hue import Bridge\n')]
# # Copyright (c) 2013-2018 <NAME> <<EMAIL>> # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # import kore import socket class EchoServer: # Setup socket + wrap it inside of a kore socket so we can use it. def __init__(self): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setblocking(False) sock.bind(("127.0.0.1", 6969)) sock.listen() self.conn = kore.socket_wrap(sock) # Wait for a new client to connect, then create a new task # that calls handle_client with the ocnnected client as # the argument. async def run(self): while True: try: client = await self.conn.accept() kore.task_create(self.handle_client(client)) client = None except Exception as e: kore.fatal("exception %s" % e) # Each client will run as this co-routine. async def handle_client(self, client): while True: try: data = await client.recv(1024) if data is None: break await client.send(data) except Exception as e: print("client got exception %s" % e) client.close() # Setup the server object. server = EchoServer() # Create a task that will execute inside of Kore as a co-routine. kore.task_create(server.run())
[ "kore.socket_wrap", "kore.fatal", "socket.socket" ]
[((920, 969), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (933, 969), False, 'import socket\n'), ((1084, 1106), 'kore.socket_wrap', 'kore.socket_wrap', (['sock'], {}), '(sock)\n', (1100, 1106), False, 'import kore\n'), ((1505, 1535), 'kore.fatal', 'kore.fatal', (["('exception %s' % e)"], {}), "('exception %s' % e)\n", (1515, 1535), False, 'import kore\n')]
import asyncio import logging import traceback import uuid from typing import Optional, Tuple, Any, Callable from pesto.ws.core.payload_parser import PayloadParser, PestoConfig from pesto.ws.core.pesto_feature import PestoFeatures from pesto.ws.core.utils import load_class, async_exec from pesto.ws.features.algorithm_wrapper import AlgorithmWrapper from pesto.ws.features.converter.image.image_roi import ImageROI, DummyImageROI from pesto.ws.features.payload_converter import PayloadConverter from pesto.ws.features.payload_debug import PayloadDebug from pesto.ws.features.response_serializer import ResponseSerializer from pesto.ws.features.schema_validation import SchemaValidation from pesto.ws.features.stateful_response import StatefulResponse from pesto.ws.features.stateless_response import StatelessResponse from pesto.ws.service.describe import DescribeService from pesto.ws.service.job_result import ResultType log = logging.getLogger(__name__) class ProcessService: PROCESS_CLASS_NAME = 'algorithm.process.Process' _algorithm: Optional[Callable] = None _describe = None @staticmethod def init(): if ProcessService._algorithm is not None: raise ValueError('Process Service already loaded !') try: log.info('ProcessService.init() ...') ProcessService._algorithm = load_class(ProcessService.PROCESS_CLASS_NAME)() if hasattr(ProcessService._algorithm, 'on_start'): log.info('ProcessService.on_start() ...') ProcessService._algorithm.on_start() log.info('ProcessService.on_start() ... Done !') log.info('ProcessService.init() ... Done !') except: traceback.print_exc() log.warning('Algorithm {}.on_start() failure !'.format(ProcessService.PROCESS_CLASS_NAME)) def __init__(self, url_root: str): self.url_root = url_root @property def service_description(self): if ProcessService._describe is None: ProcessService._describe = DescribeService(self.url_root).compute_describe() return ProcessService._describe def process(self, payload: dict) -> dict: config = PayloadParser.parse(payload) image_roi: Optional[ImageROI] = config.get(PestoConfig.roi) # if no ROI: None active_roi: ImageROI = image_roi or DummyImageROI() # bypass compute crop info and remove margins in pipeline job_id = str(uuid.uuid4().time_low) is_stateful = self.service_description['asynchronous'] is True input_schema = self.service_description['input'] output_schema = self.service_description['output'] common_pipeline = filter(None, [ SchemaValidation(schema=input_schema), active_roi.compute_crop_infos(), PayloadConverter(image_roi=image_roi, schema=input_schema), PayloadDebug(schema=input_schema), AlgorithmWrapper(ProcessService._algorithm), active_roi.remove_margin(), ResponseSerializer(schema=output_schema, job_id=job_id), ]) if is_stateful: pipeline = [ *common_pipeline, StatefulResponse(self.url_root, job_id) ] else: pipeline = [ *common_pipeline, StatelessResponse(self.url_root, job_id, output_schema) ] return PestoFeatures(pipeline).process(payload) async def async_process(self, request_payload: dict) -> Tuple[Any, ResultType]: return await asyncio.wait_for( async_exec(lambda: self.process(request_payload)), timeout=None )
[ "logging.getLogger", "pesto.ws.core.utils.load_class", "pesto.ws.service.describe.DescribeService", "pesto.ws.features.payload_debug.PayloadDebug", "uuid.uuid4", "pesto.ws.features.payload_converter.PayloadConverter", "pesto.ws.features.converter.image.image_roi.DummyImageROI", "pesto.ws.core.payload_parser.PayloadParser.parse", "pesto.ws.features.algorithm_wrapper.AlgorithmWrapper", "pesto.ws.features.response_serializer.ResponseSerializer", "pesto.ws.features.stateful_response.StatefulResponse", "pesto.ws.core.pesto_feature.PestoFeatures", "traceback.print_exc", "pesto.ws.features.stateless_response.StatelessResponse", "pesto.ws.features.schema_validation.SchemaValidation" ]
[((932, 959), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (949, 959), False, 'import logging\n'), ((2215, 2243), 'pesto.ws.core.payload_parser.PayloadParser.parse', 'PayloadParser.parse', (['payload'], {}), '(payload)\n', (2234, 2243), False, 'from pesto.ws.core.payload_parser import PayloadParser, PestoConfig\n'), ((2376, 2391), 'pesto.ws.features.converter.image.image_roi.DummyImageROI', 'DummyImageROI', ([], {}), '()\n', (2389, 2391), False, 'from pesto.ws.features.converter.image.image_roi import ImageROI, DummyImageROI\n'), ((1355, 1400), 'pesto.ws.core.utils.load_class', 'load_class', (['ProcessService.PROCESS_CLASS_NAME'], {}), '(ProcessService.PROCESS_CLASS_NAME)\n', (1365, 1400), False, 'from pesto.ws.core.utils import load_class, async_exec\n'), ((1729, 1750), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (1748, 1750), False, 'import traceback\n'), ((2473, 2485), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2483, 2485), False, 'import uuid\n'), ((2738, 2775), 'pesto.ws.features.schema_validation.SchemaValidation', 'SchemaValidation', ([], {'schema': 'input_schema'}), '(schema=input_schema)\n', (2754, 2775), False, 'from pesto.ws.features.schema_validation import SchemaValidation\n'), ((2834, 2892), 'pesto.ws.features.payload_converter.PayloadConverter', 'PayloadConverter', ([], {'image_roi': 'image_roi', 'schema': 'input_schema'}), '(image_roi=image_roi, schema=input_schema)\n', (2850, 2892), False, 'from pesto.ws.features.payload_converter import PayloadConverter\n'), ((2906, 2939), 'pesto.ws.features.payload_debug.PayloadDebug', 'PayloadDebug', ([], {'schema': 'input_schema'}), '(schema=input_schema)\n', (2918, 2939), False, 'from pesto.ws.features.payload_debug import PayloadDebug\n'), ((2953, 2996), 'pesto.ws.features.algorithm_wrapper.AlgorithmWrapper', 'AlgorithmWrapper', (['ProcessService._algorithm'], {}), '(ProcessService._algorithm)\n', (2969, 2996), False, 'from pesto.ws.features.algorithm_wrapper import AlgorithmWrapper\n'), ((3050, 3105), 'pesto.ws.features.response_serializer.ResponseSerializer', 'ResponseSerializer', ([], {'schema': 'output_schema', 'job_id': 'job_id'}), '(schema=output_schema, job_id=job_id)\n', (3068, 3105), False, 'from pesto.ws.features.response_serializer import ResponseSerializer\n'), ((3218, 3257), 'pesto.ws.features.stateful_response.StatefulResponse', 'StatefulResponse', (['self.url_root', 'job_id'], {}), '(self.url_root, job_id)\n', (3234, 3257), False, 'from pesto.ws.features.stateful_response import StatefulResponse\n'), ((3361, 3416), 'pesto.ws.features.stateless_response.StatelessResponse', 'StatelessResponse', (['self.url_root', 'job_id', 'output_schema'], {}), '(self.url_root, job_id, output_schema)\n', (3378, 3416), False, 'from pesto.ws.features.stateless_response import StatelessResponse\n'), ((3447, 3470), 'pesto.ws.core.pesto_feature.PestoFeatures', 'PestoFeatures', (['pipeline'], {}), '(pipeline)\n', (3460, 3470), False, 'from pesto.ws.core.pesto_feature import PestoFeatures\n'), ((2061, 2091), 'pesto.ws.service.describe.DescribeService', 'DescribeService', (['self.url_root'], {}), '(self.url_root)\n', (2076, 2091), False, 'from pesto.ws.service.describe import DescribeService\n')]
# -*- coding: utf-8 -*- import logging import os import re import sys class Helpers: def __init__(self, logger=None): if logger is None: self.logger = logging.getLogger(__name__) else: self.logger = logger @staticmethod def extract_sequence_num(filename): sequence_num = re.search( '([0-9]+)[^0-9].+', os.path.basename(filename) ).group(1) return int(sequence_num) def append_migration(self, migrations, filename): try: migrations.append((self.extract_sequence_num(filename), filename)) except AttributeError: self.logger.error("Invalid filename found: {}".format(filename)) sys.exit(1) def find_migrations(self, sql_directory): migrations = [] for filename in os.listdir(sql_directory): if filename.endswith(".sql"): self.append_migration( migrations, str(os.path.join(sql_directory, filename)) ) return migrations @staticmethod def sort_migrations(migrations): if ( all(isinstance(tup, tuple) for tup in migrations) and all(isinstance(tup[0], int) for tup in migrations) and all(isinstance(tup[1], str) for tup in migrations) ): migrations.sort(key=lambda tup: tup[0]) else: raise TypeError( "Migrations list did not contain only tuple(int, str)") def populate_migrations(self, sql_directory): migrations = self.find_migrations(sql_directory) self.sort_migrations(migrations) return migrations @staticmethod def get_unprocessed_migrations(db_version, migrations): return [tup for tup in migrations if tup[0] > int(db_version)]
[ "logging.getLogger", "os.listdir", "os.path.join", "os.path.basename", "sys.exit" ]
[((843, 868), 'os.listdir', 'os.listdir', (['sql_directory'], {}), '(sql_directory)\n', (853, 868), False, 'import os\n'), ((177, 204), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (194, 204), False, 'import logging\n'), ((736, 747), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (744, 747), False, 'import sys\n'), ((389, 415), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (405, 415), False, 'import os\n'), ((1007, 1044), 'os.path.join', 'os.path.join', (['sql_directory', 'filename'], {}), '(sql_directory, filename)\n', (1019, 1044), False, 'import os\n')]
import configparser import os import typing from sitri.providers.base import ConfigProvider class IniConfigProvider(ConfigProvider): """Config provider for Initialization file (Ini).""" provider_code = "ini" def __init__( self, ini_path: str = "./config.ini", ): """ :param ini_path: path to ini file """ self.configparser = configparser.ConfigParser() with open(os.path.abspath(ini_path)) as f: self.configparser.read_file(f) self._sections = None @property def sections(self): if not self._sections: self._sections = list(self.configparser.keys()) return self._sections def get(self, key: str, section: str, **kwargs) -> typing.Optional[typing.Any]: # type: ignore """Get value from ini file. :param key: key or path for search :param section: section of ini file """ if section not in self.sections: return None return self.configparser[section].get(key) def keys(self, section: str, **kwargs) -> typing.List[str]: # type: ignore """Get keys of section. :param section: section of ini file """ if section not in self.sections: return [] return list(self.configparser[section].keys())
[ "os.path.abspath", "configparser.ConfigParser" ]
[((395, 422), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (420, 422), False, 'import configparser\n'), ((442, 467), 'os.path.abspath', 'os.path.abspath', (['ini_path'], {}), '(ini_path)\n', (457, 467), False, 'import os\n')]
# -*- coding: utf-8 -*- """ """ import scrapy from tennis_model.tennis_model_scraper.tennis_model_scraper import items class TennisDataCoUkSpider(scrapy.Spider): name = "tennis_data_co_uk" allowed_domains = ["www.tennis-data.co.uk"] start_urls = ["http://www.tennis-data.co.uk/alldata.php"] custom_settings = {'ITEM_PIPELINES': {'tennis_model_scraper.pipelines.TennisDataCoUkPipeline': 1}} def _correct_ext(self, link): if ".zip" in link: return link elif "zip" in link: return ".zip".join(link.split("zip")) else: raise Exception("Unknown file extension from url - {0}. 'zip' is expected".format(link)) def parse(self, response): archive_links = response.xpath("/html/body/table[5]/tr[2]/td[3]/a/@href") for link in archive_links: short_file_url = self._correct_ext(link.extract()) is_man_archives = 'w' not in short_file_url.split("/")[0] if is_man_archives: full_file_url = response.urljoin(short_file_url) item = items.TennisDataCoUkItem() item["file_urls"] = [full_file_url] yield item if __name__ == '__main__': pass
[ "tennis_model.tennis_model_scraper.tennis_model_scraper.items.TennisDataCoUkItem" ]
[((1093, 1119), 'tennis_model.tennis_model_scraper.tennis_model_scraper.items.TennisDataCoUkItem', 'items.TennisDataCoUkItem', ([], {}), '()\n', (1117, 1119), False, 'from tennis_model.tennis_model_scraper.tennis_model_scraper import items\n')]
import json import requests from .exceptions import ( RequestsError, RequestsTimeoutError, RPCError ) _default_endpoint = 'http://localhost:9500' _default_timeout = 30 def base_request(method, params=None, endpoint=_default_endpoint, timeout=_default_timeout) -> str: """ Basic RPC request Parameters --------- method: str RPC Method to call params: :obj:`list`, optional Parameters for the RPC method endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- str Raw output from the request Raises ------ TypeError If params is not a list or None RequestsTimeoutError If request timed out RequestsError If other request error occured """ if params is None: params = [] elif not isinstance(params, list): raise TypeError(f'invalid type {params.__class__}') try: payload = { "id": "1", "jsonrpc": "2.0", "method": method, "params": params } headers = { 'Content-Type': 'application/json' } resp = requests.request('POST', endpoint, headers=headers, data=json.dumps(payload), timeout=timeout, allow_redirects=True) return resp.content except requests.exceptions.Timeout as err: raise RequestsTimeoutError(endpoint) from err except requests.exceptions.RequestException as err: raise RequestsError(endpoint) from err def rpc_request(method, params=None, endpoint=_default_endpoint, timeout=_default_timeout) -> dict: """ RPC request Parameters --------- method: str RPC Method to call params: :obj:`list`, optional Parameters for the RPC method endpoint: :obj:`str`, optional Endpoint to send request to timeout: :obj:`int`, optional Timeout in seconds Returns ------- dict Returns dictionary representation of RPC response Example format: { "jsonrpc": "2.0", "id": 1, "result": ... } Raises ------ RPCError If RPC response returned a blockchain error See Also -------- base_request """ raw_resp = base_request(method, params, endpoint, timeout) try: resp = json.loads(raw_resp) if 'error' in resp: raise RPCError(method, endpoint, str(resp['error'])) return resp except json.decoder.JSONDecodeError as err: raise RPCError(method, endpoint, raw_resp) from err # TODO: Add GET requests
[ "json.loads", "json.dumps" ]
[((2470, 2490), 'json.loads', 'json.loads', (['raw_resp'], {}), '(raw_resp)\n', (2480, 2490), False, 'import json\n'), ((1302, 1321), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (1312, 1321), False, 'import json\n')]
import sys import numpy import numpy as np from snappy import Product from snappy import ProductData from snappy import ProductIO from snappy import ProductUtils from snappy import FlagCoding ############## import csv ###############MSVR from sklearn.svm import SVR from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline ######################## if len(sys.argv) != 2: print("usage: %s <file>" % sys.argv[0]) sys.exit(1) file = sys.argv[1] print("Reading...") product = ProductIO.readProduct(file) width = product.getSceneRasterWidth() height = product.getSceneRasterHeight() name = product.getName() description = product.getDescription() band_names = product.getBandNames() print("Product: %s, %s" % (name, description)) print("Raster size: %d x %d pixels" % (width, height)) print("Start time: " + str(product.getStartTime())) print("End time: " + str(product.getEndTime())) print("Bands: %s" % (list(band_names))) ##--------------------------------------------------------------------------------- with open('rice_LUT.csv','r') as dest_f: data_iter = csv.reader(dest_f, delimiter = ',', quotechar = '"') data = [data for data in data_iter] data_array = np.asarray(data, dtype = np.float32) VV = data_array[:,1] VH = data_array[:,2] PAI = data_array[:,0] X=np.column_stack((VV,VH)) Y = PAI #SVR training pipeline = make_pipeline(StandardScaler(), SVR(kernel='rbf', epsilon=0.105, C=250, gamma = 2.8), ) SVRmodel=pipeline.fit(X,Y) # Predictfor validation data valX = X; y_out = pipeline.predict(valX); ##--------------------------------------------------------------------------------- bandc11 = product.getBand('C11') bandc22 = product.getBand('C22') laiProduct = Product('LAI', 'LAI', width, height) laiBand = laiProduct.addBand('lai', ProductData.TYPE_FLOAT32) laiFlagsBand = laiProduct.addBand('lai_flags', ProductData.TYPE_UINT8) writer = ProductIO.getProductWriter('BEAM-DIMAP') ProductUtils.copyGeoCoding(product, laiProduct) ProductUtils.copyMetadata(product, laiProduct) ProductUtils.copyTiePointGrids(product, laiProduct) laiFlagCoding = FlagCoding('lai_flags') laiFlagCoding.addFlag("LAI_LOW", 1, "LAI below 0") laiFlagCoding.addFlag("LAI_HIGH", 2, "LAI above 5") group = laiProduct.getFlagCodingGroup() #print(dir(group)) group.add(laiFlagCoding) laiFlagsBand.setSampleCoding(laiFlagCoding) laiProduct.setProductWriter(writer) laiProduct.writeHeader('LAImap_output.dim') c11 = numpy.zeros(width, dtype=numpy.float32) c22 = numpy.zeros(width, dtype=numpy.float32) print("Writing...") for y in range(height): print("processing line ", y, " of ", height) c11 = bandc11.readPixels(0, y, width, 1, c11) c22 = bandc22.readPixels(0, y, width, 1, c22) Z=np.column_stack((c11,c22)) #ndvi = (r10 - r7) / (r10 + r7) lai = pipeline.predict(Z); laiBand.writePixels(0, y, width, 1, lai) laiLow = lai < 0.0 laiHigh = lai > 5.0 laiFlags = numpy.array(laiLow + 2 * laiHigh, dtype=numpy.int32) laiFlagsBand.writePixels(0, y, width, 1, laiFlags) laiProduct.closeIO() print("Done.")
[ "snappy.ProductIO.readProduct", "snappy.ProductUtils.copyGeoCoding", "snappy.Product", "snappy.ProductIO.getProductWriter", "numpy.asarray", "numpy.column_stack", "snappy.FlagCoding", "sklearn.preprocessing.StandardScaler", "numpy.zeros", "numpy.array", "snappy.ProductUtils.copyMetadata", "csv.reader", "sys.exit", "sklearn.svm.SVR", "snappy.ProductUtils.copyTiePointGrids" ]
[((520, 547), 'snappy.ProductIO.readProduct', 'ProductIO.readProduct', (['file'], {}), '(file)\n', (541, 547), False, 'from snappy import ProductIO\n'), ((1284, 1318), 'numpy.asarray', 'np.asarray', (['data'], {'dtype': 'np.float32'}), '(data, dtype=np.float32)\n', (1294, 1318), True, 'import numpy as np\n'), ((1389, 1414), 'numpy.column_stack', 'np.column_stack', (['(VV, VH)'], {}), '((VV, VH))\n', (1404, 1414), True, 'import numpy as np\n'), ((1806, 1842), 'snappy.Product', 'Product', (['"""LAI"""', '"""LAI"""', 'width', 'height'], {}), "('LAI', 'LAI', width, height)\n", (1813, 1842), False, 'from snappy import Product\n'), ((1985, 2025), 'snappy.ProductIO.getProductWriter', 'ProductIO.getProductWriter', (['"""BEAM-DIMAP"""'], {}), "('BEAM-DIMAP')\n", (2011, 2025), False, 'from snappy import ProductIO\n'), ((2027, 2074), 'snappy.ProductUtils.copyGeoCoding', 'ProductUtils.copyGeoCoding', (['product', 'laiProduct'], {}), '(product, laiProduct)\n', (2053, 2074), False, 'from snappy import ProductUtils\n'), ((2075, 2121), 'snappy.ProductUtils.copyMetadata', 'ProductUtils.copyMetadata', (['product', 'laiProduct'], {}), '(product, laiProduct)\n', (2100, 2121), False, 'from snappy import ProductUtils\n'), ((2122, 2173), 'snappy.ProductUtils.copyTiePointGrids', 'ProductUtils.copyTiePointGrids', (['product', 'laiProduct'], {}), '(product, laiProduct)\n', (2152, 2173), False, 'from snappy import ProductUtils\n'), ((2191, 2214), 'snappy.FlagCoding', 'FlagCoding', (['"""lai_flags"""'], {}), "('lai_flags')\n", (2201, 2214), False, 'from snappy import FlagCoding\n'), ((2535, 2574), 'numpy.zeros', 'numpy.zeros', (['width'], {'dtype': 'numpy.float32'}), '(width, dtype=numpy.float32)\n', (2546, 2574), False, 'import numpy\n'), ((2581, 2620), 'numpy.zeros', 'numpy.zeros', (['width'], {'dtype': 'numpy.float32'}), '(width, dtype=numpy.float32)\n', (2592, 2620), False, 'import numpy\n'), ((457, 468), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (465, 468), False, 'import sys\n'), ((1124, 1172), 'csv.reader', 'csv.reader', (['dest_f'], {'delimiter': '""","""', 'quotechar': '"""\\""""'}), '(dest_f, delimiter=\',\', quotechar=\'"\')\n', (1134, 1172), False, 'import csv\n'), ((1462, 1478), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1476, 1478), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1484, 1534), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""rbf"""', 'epsilon': '(0.105)', 'C': '(250)', 'gamma': '(2.8)'}), "(kernel='rbf', epsilon=0.105, C=250, gamma=2.8)\n", (1487, 1534), False, 'from sklearn.svm import SVR\n'), ((2827, 2854), 'numpy.column_stack', 'np.column_stack', (['(c11, c22)'], {}), '((c11, c22))\n', (2842, 2854), True, 'import numpy as np\n'), ((3034, 3086), 'numpy.array', 'numpy.array', (['(laiLow + 2 * laiHigh)'], {'dtype': 'numpy.int32'}), '(laiLow + 2 * laiHigh, dtype=numpy.int32)\n', (3045, 3086), False, 'import numpy\n')]
from __future__ import print_function import argparse, sys from .utils import is_textfile def contains_crlf(filename): with open(filename, mode='rb') as file_checked: for line in file_checked.readlines(): if line.endswith(b'\r\n'): return True return False def main(argv=None): parser = argparse.ArgumentParser() parser.add_argument('filenames', nargs='*', help='filenames to check') args = parser.parse_args(argv) text_files = [f for f in args.filenames if is_textfile(f)] files_with_crlf = [f for f in text_files if contains_crlf(f)] return_code = 0 for file_with_crlf in files_with_crlf: print('CRLF end-lines detected in file: {0}'.format(file_with_crlf)) return_code = 1 return return_code if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
[ "argparse.ArgumentParser" ]
[((337, 362), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (360, 362), False, 'import argparse, sys\n')]
from dataclasses import dataclass from typing import List from typing import Union from postmanparser.description import Description from postmanparser.exceptions import InvalidObjectException from postmanparser.exceptions import MissingRequiredFieldException @dataclass class FormParameter: key: str value: str = "" src: Union[List, str, None] = None disabled: bool = False form_param_type: str = "" content_type: str = "" # should override content-type in header description: Union[Description, None, str] = None @classmethod def parse(cls, data: dict): key = data.get("key") if key is None: raise MissingRequiredFieldException( "'formparameter' object should have 'key' property" ) value = data.get("value", "") src = data.get("src") if value and src is not None: raise InvalidObjectException( "'formparamter' object can eiher have src or value and not both." ) description = data.get("description") if isinstance(description, dict): description = Description.parse(description) return cls( key, value=value, src=src, disabled=data.get("disabled", False), form_param_type=data.get("type", ""), content_type=data.get("contentType", ""), description=description, )
[ "postmanparser.exceptions.MissingRequiredFieldException", "postmanparser.exceptions.InvalidObjectException", "postmanparser.description.Description.parse" ]
[((669, 756), 'postmanparser.exceptions.MissingRequiredFieldException', 'MissingRequiredFieldException', (['"""\'formparameter\' object should have \'key\' property"""'], {}), '(\n "\'formparameter\' object should have \'key\' property")\n', (698, 756), False, 'from postmanparser.exceptions import MissingRequiredFieldException\n'), ((906, 1000), 'postmanparser.exceptions.InvalidObjectException', 'InvalidObjectException', (['"""\'formparamter\' object can eiher have src or value and not both."""'], {}), '(\n "\'formparamter\' object can eiher have src or value and not both.")\n', (928, 1000), False, 'from postmanparser.exceptions import InvalidObjectException\n'), ((1140, 1170), 'postmanparser.description.Description.parse', 'Description.parse', (['description'], {}), '(description)\n', (1157, 1170), False, 'from postmanparser.description import Description\n')]
from __future__ import absolute_import, division, print_function import numpy as np import wx from dials.array_family import flex from dials_viewer_ext import rgb_img class wxbmp_from_np_array(object): def __init__( self, lst_data_in, show_nums=True, palette="black2white", lst_data_mask_in=None ): self.wx_bmp_arr = rgb_img() if lst_data_in is None and lst_data_mask_in is None: self._ini_wx_bmp_lst = None else: self._ini_wx_bmp_lst = [] for lst_pos in range(len(lst_data_in)): data_3d_in = lst_data_in[lst_pos] xmax = data_3d_in.shape[1] ymax = data_3d_in.shape[2] # remember to put here some assertion to check that # both arrays have the same shape if lst_data_mask_in is not None: data_3d_in_mask = lst_data_mask_in[lst_pos] self.vl_max = float(np.amax(data_3d_in)) self.vl_min = float(np.amin(data_3d_in)) tmp_data2d = np.zeros((xmax, ymax), "double") tmp_data2d_mask = np.zeros((xmax, ymax), "double") z_dp = data_3d_in.shape[0] single_block_lst_01 = [] for z in range(z_dp): # print "z =", z tmp_data2d[:, :] = data_3d_in[z : z + 1, :, :] if lst_data_mask_in is not None: tmp_data2d_mask[:, :] = data_3d_in_mask[z : z + 1, :, :] else: tmp_data2d_mask = None data_sigle_img = self._wx_img_w_cpp( tmp_data2d, show_nums, palette, tmp_data2d_mask ) single_block_lst_01.append(data_sigle_img) self._ini_wx_bmp_lst.append(single_block_lst_01) def bmp_lst_scaled(self, scale=1.0): if self._ini_wx_bmp_lst is None: NewW = 350 wx_image = wx.Image(NewW, NewW) wxBitmap = wx_image.ConvertToBitmap() dc = wx.MemoryDC(wxBitmap) text = "No Shoebox data" w, h = dc.GetSize() tw, th = dc.GetTextExtent(text) dc.Clear() dc.DrawText(text, (w - tw) / 2, (h - th) / 2) # display text in center dc.SelectObject(wxBitmap) del dc wx_bmp_lst = [[wxBitmap]] else: wx_bmp_lst = [] for data_3d in self._ini_wx_bmp_lst: single_block_lst = [] for sigle_img_data in data_3d: single_block_lst.append(self._wx_bmp_scaled(sigle_img_data, scale)) wx_bmp_lst.append(single_block_lst) return wx_bmp_lst def _wx_img_w_cpp(self, np_2d_tmp, show_nums, palette, np_2d_mask=None): xmax = np_2d_tmp.shape[1] ymax = np_2d_tmp.shape[0] if np_2d_mask is None: np_2d_mask = np.zeros((ymax, xmax), "double") transposed_data = np.zeros((ymax, xmax), "double") transposed_mask = np.zeros((ymax, xmax), "double") transposed_data[:, :] = np_2d_tmp transposed_mask[:, :] = np_2d_mask flex_data_in = flex.double(transposed_data) flex_mask_in = flex.double(transposed_mask) if palette == "black2white": palette_num = 1 elif palette == "white2black": palette_num = 2 elif palette == "hot ascend": palette_num = 3 else: # assuming "hot descend" palette_num = 4 img_array_tmp = self.wx_bmp_arr.gen_bmp( flex_data_in, flex_mask_in, show_nums, palette_num ) np_img_array = img_array_tmp.as_numpy_array() height = np.size(np_img_array[:, 0:1, 0:1]) width = np.size(np_img_array[0:1, :, 0:1]) img_array = np.empty((height, width, 3), "uint8") img_array[:, :, :] = np_img_array[:, :, :] self._wx_image = wx.Image(width, height) self._wx_image.SetData(img_array.tostring()) data_to_become_bmp = (self._wx_image, width, height) return data_to_become_bmp def _wx_bmp_scaled(self, data_to_become_bmp, scale): to_become_bmp = data_to_become_bmp[0] width = data_to_become_bmp[1] height = data_to_become_bmp[2] NewW = int(width * scale) NewH = int(height * scale) to_become_bmp = to_become_bmp.Scale(NewW, NewH, wx.IMAGE_QUALITY_NORMAL) wxBitmap = to_become_bmp.ConvertToBitmap() return wxBitmap
[ "numpy.amax", "numpy.amin", "dials_viewer_ext.rgb_img", "wx.MemoryDC", "numpy.size", "wx.Image", "numpy.zeros", "numpy.empty", "dials.array_family.flex.double" ]
[((345, 354), 'dials_viewer_ext.rgb_img', 'rgb_img', ([], {}), '()\n', (352, 354), False, 'from dials_viewer_ext import rgb_img\n'), ((3055, 3087), 'numpy.zeros', 'np.zeros', (['(ymax, xmax)', '"""double"""'], {}), "((ymax, xmax), 'double')\n", (3063, 3087), True, 'import numpy as np\n'), ((3114, 3146), 'numpy.zeros', 'np.zeros', (['(ymax, xmax)', '"""double"""'], {}), "((ymax, xmax), 'double')\n", (3122, 3146), True, 'import numpy as np\n'), ((3257, 3285), 'dials.array_family.flex.double', 'flex.double', (['transposed_data'], {}), '(transposed_data)\n', (3268, 3285), False, 'from dials.array_family import flex\n'), ((3309, 3337), 'dials.array_family.flex.double', 'flex.double', (['transposed_mask'], {}), '(transposed_mask)\n', (3320, 3337), False, 'from dials.array_family import flex\n'), ((3801, 3835), 'numpy.size', 'np.size', (['np_img_array[:, 0:1, 0:1]'], {}), '(np_img_array[:, 0:1, 0:1])\n', (3808, 3835), True, 'import numpy as np\n'), ((3852, 3886), 'numpy.size', 'np.size', (['np_img_array[0:1, :, 0:1]'], {}), '(np_img_array[0:1, :, 0:1])\n', (3859, 3886), True, 'import numpy as np\n'), ((3907, 3944), 'numpy.empty', 'np.empty', (['(height, width, 3)', '"""uint8"""'], {}), "((height, width, 3), 'uint8')\n", (3915, 3944), True, 'import numpy as np\n'), ((4022, 4045), 'wx.Image', 'wx.Image', (['width', 'height'], {}), '(width, height)\n', (4030, 4045), False, 'import wx\n'), ((2020, 2040), 'wx.Image', 'wx.Image', (['NewW', 'NewW'], {}), '(NewW, NewW)\n', (2028, 2040), False, 'import wx\n'), ((2109, 2130), 'wx.MemoryDC', 'wx.MemoryDC', (['wxBitmap'], {}), '(wxBitmap)\n', (2120, 2130), False, 'import wx\n'), ((2995, 3027), 'numpy.zeros', 'np.zeros', (['(ymax, xmax)', '"""double"""'], {}), "((ymax, xmax), 'double')\n", (3003, 3027), True, 'import numpy as np\n'), ((1074, 1106), 'numpy.zeros', 'np.zeros', (['(xmax, ymax)', '"""double"""'], {}), "((xmax, ymax), 'double')\n", (1082, 1106), True, 'import numpy as np\n'), ((1141, 1173), 'numpy.zeros', 'np.zeros', (['(xmax, ymax)', '"""double"""'], {}), "((xmax, ymax), 'double')\n", (1149, 1173), True, 'import numpy as np\n'), ((967, 986), 'numpy.amax', 'np.amax', (['data_3d_in'], {}), '(data_3d_in)\n', (974, 986), True, 'import numpy as np\n'), ((1024, 1043), 'numpy.amin', 'np.amin', (['data_3d_in'], {}), '(data_3d_in)\n', (1031, 1043), True, 'import numpy as np\n')]
import numpy as np def check_x_y(x, y): assert isinstance(x, np.ndarray) and isinstance(y, np.ndarray) assert np.ndim(x) <= 3 and np.ndim(y) <= 2 assert len(x) == len(y)
[ "numpy.ndim" ]
[((125, 135), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (132, 135), True, 'import numpy as np\n'), ((145, 155), 'numpy.ndim', 'np.ndim', (['y'], {}), '(y)\n', (152, 155), True, 'import numpy as np\n')]
""" CSharp (С#) domain for sphinx ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Sphinxsharp Pro (with custom styling) :copyright: Copyright 2021 by MadTeddy """ import re import warnings from os import path from collections import defaultdict, namedtuple from docutils import nodes from docutils.parsers.rst import directives, Directive from sphinx.locale import get_translation from sphinx.domains import Domain, Index, ObjType from sphinx.roles import XRefRole from sphinx.directives import ObjectDescription from sphinx.util.docfields import DocFieldTransformer from sphinx.util.nodes import make_refnode from sphinx import addnodes from sphinx.util.fileutil import copy_asset MODIFIERS = ('public', 'private', 'protected', 'internal', 'static', 'sealed', 'abstract', 'const', 'partial', 'readonly', 'virtual', 'extern', 'new', 'override', 'unsafe', 'async', 'event', 'delegate') VALUE_KEYWORDS = ('char', 'ulong', 'byte', 'decimal', 'double', 'bool', 'int', 'null', 'sbyte', 'float', 'long', 'object', 'short', 'string', 'uint', 'ushort', 'void') PARAM_MODIFIERS = ('ref', 'out', 'params') MODIFIERS_RE = '|'.join(MODIFIERS) PARAM_MODIFIERS_RE = '|'.join(PARAM_MODIFIERS) TYPE_SIG_RE = re.compile(r'^((?:(?:' + MODIFIERS_RE + r')\s+)*)?(\w+)\s([\w\.]+)(?:<(.+)>)?(?:\s?\:\s?(.+))?$') REF_TYPE_RE = re.compile(r'^(?:(new)\s+)?([\w\.]+)\s*(?:<(.+)>)*(\[\])*\s?(?:\((.*)\))?$') METHOD_SIG_RE = re.compile(r'^((?:(?:' + MODIFIERS_RE + r')\s+)*)?([^\s=\(\)]+\s+)?([^\s=\(\)]+)\s?(?:\<(.+)\>)?\s?(?:\((.+)*\))$') PARAM_SIG_RE = re.compile(r'^(?:(?:(' + PARAM_MODIFIERS_RE + r')\s)*)?([^=]+)\s+([^=]+)\s*(?:=\s?(.+))?$') VAR_SIG_RE = re.compile(r'^((?:(?:' + MODIFIERS_RE + r')\s+)*)?([^=]+)\s+([^\s=]+)\s*(?:=\s*(.+))?$') PROP_SIG_RE = re.compile(r'^((?:(?:' + MODIFIERS_RE + r')\s+)*)?(.+)\s+([^\s]+)\s*(?:{(\s*get;\s*)?((?:' + MODIFIERS_RE + r')?\s*set;\s*)?})$') ENUM_SIG_RE = re.compile(r'^((?:(?:' + MODIFIERS_RE + r')\s+)*)?(?:enum)\s?(\w+)$') _ = get_translation('sphinxsharp') class CSharpObject(ObjectDescription): PARENT_ATTR_NAME = 'sphinxsharp:parent' PARENT_TYPE_NAME = 'sphinxsharp:type' ParentType = namedtuple('ParentType', ['parent', 'name', 'type', 'override']) option_spec = { 'noindex': directives.flag } def __init__(self, *args, **kwargs): super(CSharpObject, self).__init__(*args, **kwargs) self.parentname_set = None self.parentname_saved = None def run(self): if ':' in self.name: self.domain, self.objtype = self.name.split(':', 1) else: self.domain, self.objtype = '', self.name self.indexnode = addnodes.index(entries=[]) node = addnodes.desc() node.document = self.state.document node['domain'] = self.domain node['classes'].append('csharp') node['objtype'] = node['desctype'] = self.objtype node['noindex'] = noindex = ('noindex' in self.options) self.names = [] signatures = self.get_signatures() for i, sig in enumerate(signatures): beforesignode = CSNodes.EmptyNode() node.append(beforesignode) signode = addnodes.desc_signature(sig, '') signode['first'] = False node.append(signode) self.before_sig(beforesignode) try: name = self.handle_signature(sig, signode) except ValueError: signode.clear() signode += addnodes.desc_name(sig, sig) continue if name not in self.names: self.names.append(name) if not noindex: self.add_target_and_index(name, sig, signode) aftersignode = CSNodes.EmptyNode() node.append(aftersignode) self.after_sig(aftersignode) contentnode = addnodes.desc_content() node.append(contentnode) self.before_content_node(contentnode) if self.names: self.env.temp_data['object'] = self.names[0] self.before_content() self.state.nested_parse(self.content, self.content_offset, contentnode) self.after_content_node(contentnode) DocFieldTransformer(self).transform_all(contentnode) self.env.temp_data['object'] = None self.after_content() return [self.indexnode, node] def before_sig(self, signode): """ Called before main ``signode`` appends """ pass def after_sig(self, signode): """ Called after main ``signode`` appends """ pass def before_content_node(self, node): """ Get ``contentnode`` before main content will append """ pass def after_content_node(self, node): """ Get ``contentnode`` after main content was appended """ pass def before_content(self): obj = self.env.temp_data['object'] if obj: self.parentname_set = True self.parentname_saved = self.env.ref_context.get(self.PARENT_ATTR_NAME) self.env.ref_context[self.PARENT_ATTR_NAME] = obj else: self.parentname_set = False def after_content(self): if self.parentname_set: self.env.ref_context[self.PARENT_ATTR_NAME] = self.parentname_saved def has_parent(self): return self._check_parent(self.PARENT_ATTR_NAME) def has_parent_type(self): return self._check_parent(self.PARENT_TYPE_NAME) def _check_parent(self, attr): return attr in self.env.ref_context and \ self.env.ref_context[attr] is not None def get_parent(self): return self.env.ref_context.get(self.PARENT_ATTR_NAME) def get_type_parent(self): return self.env.ref_context.get(self.PARENT_TYPE_NAME) def get_index_text(self, sig, name, typ): raise NotImplementedError('Must be implemented in subclass') def parse_signature(self, sig): raise NotImplementedError('Must be implemented in subclass') def add_target_and_index(self, name, sig, signode): objname, objtype = self.get_obj_name(sig) type_parent = self.get_type_parent() if self.has_parent_type() else None if self.objtype != 'type' and type_parent: self.env.ref_context[self.PARENT_ATTR_NAME] = '{}{}'.format(type_parent.parent + '.' \ if type_parent.parent else '', type_parent.name) name = self.get_fullname(objname) self.names.clear() self.names.append(name) anchor = '{}-{}'.format(self.objtype, name) if anchor not in self.state.document.ids: signode['names'].append(anchor) signode['ids'].append(anchor) signode['first'] = (not self.names) self.state.document.note_explicit_target(signode) objects = self.env.domaindata['sphinxsharp']['objects'] key = (self.objtype, name) if key in objects: warnings.warn('duplicate description of {}, other instance in {}'.format( key, self.env.doc2path(objects[key][0])), Warning) objects[key] = (self.env.docname, 'delegate' if self.objtype == 'method' else objtype) index_text = self.get_index_text(sig, objname, objtype) if index_text: parent = self.get_parent() if self.has_parent() else None if type_parent and type_parent.override and type_parent.name != objname: type_parent = self.ParentType(parent=type_parent.parent, name=type_parent.name, type=type_parent.type, override=None) index_format = '{parent} (C# {namespace});{text}' \ if (type_parent and type_parent.parent and (type_parent.name == objname and self.objtype == 'type') \ and not type_parent.override) or (parent and not type_parent) \ else '{name} (C# {type} {in_text} {parent});{text}' if type_parent and type_parent.name else '{text}' self.indexnode['entries'].append(('single', index_format.format( parent=type_parent.parent if type_parent else parent if parent else '', namespace=_('namespace'), text=index_text, name=type_parent.override if type_parent and type_parent.override \ else type_parent.name if type_parent else '', type=_(type_parent.type) if type_parent else '', in_text=_('in') ), anchor, None, None)) def get_fullname(self, name): fullname = '{parent}{name}'.format( parent=self.get_parent() + '.' if self.has_parent() else '', name=name) return fullname def get_obj_name(self, sig): raise NotImplementedError('Must be implemented in subclass') def append_ref_signature(self, typname, signode, append_generic=True): match = REF_TYPE_RE.match(typname.strip()) if not match: raise Exception('Invalid reference type signature. Got: {}'.format(typname)) is_new, name, generic, is_array, constr = match.groups() tnode = addnodes.desc_type() if is_new: tnode += CSNodes.Keyword(text='new') tnode += CSNodes.TextNode(text=' ') types = name.split('.') explicit_path = [] i = 1 for t in types: styp = t.strip() refnode = None if styp not in VALUE_KEYWORDS: explicit_path.append(styp) refnode = addnodes.pending_xref('', refdomain='sphinxsharp', reftype=None, reftarget=styp, modname=None, classname=None) if not self.has_parent(): refnode[self.PARENT_ATTR_NAME] = None else: refnode[self.PARENT_ATTR_NAME] = self.get_parent() if len(explicit_path) > 1: target_path = '.'.join(explicit_path[:-1]) type_par = self.get_type_parent() if self.has_parent_type() else None refnode[self.PARENT_ATTR_NAME] = (type_par.parent + '.' \ if type_par and type_par.parent \ else '') + target_path refnode += CSNodes.UnknownType(typ=None, text=styp) else: refnode = CSNodes.Keyword(text=styp) tnode += refnode if i < len(types): tnode += CSNodes.TextNode(text='.') i += 1 if append_generic and generic: gnode = CSNodes.EmptyNode() gnode += CSNodes.TextNode(text='<') gen_groups = split_sig(generic) i = 1 for g in gen_groups: self.append_ref_signature(g, gnode, append_generic) if i < len(gen_groups): gnode += CSNodes.TextNode(text=', ') i += 1 gnode += CSNodes.TextNode(text='>') tnode += gnode if is_array: tnode += CSNodes.TextNode(text='[]') if constr is not None: tnode += CSNodes.TextNode(text='()') signode += tnode def append_generic(self, generic, signode): gnode = CSNodes.EmptyNode() gnode += CSNodes.TextNode(text='<') generics = generic.split(',') i = 1 for g in generics: gnode += CSNodes.Generic(text=g) if i < len(generics): gnode += CSNodes.TextNode(text=', ') i += 1 gnode += CSNodes.TextNode(text='>') signode += gnode class CSharpType(CSharpObject): option_spec = { **CSharpObject.option_spec, 'nonamespace': directives.flag, 'parent': directives.unchanged } def before_sig(self, signode): if 'nonamespace' not in self.options and self.has_parent(): signode += CSNodes.Description(title=_('namespace'), desc=self.get_parent()) def handle_signature(self, sig, signode): mod, typ, name, generic, inherits = self.parse_signature(sig) tnode = CSNodes.EmptyNode() tnode += CSNodes.Modificator(text='{}'.format(mod if mod else 'private')) tnode += CSNodes.TextNode(text=' ') tnode += CSNodes.Keyword(text='{}'.format(typ)) tnode += CSNodes.TextNode(text=' ') tnode += CSNodes.UnknownType(typ=typ, text=name) if generic: self.append_generic(generic, tnode) if inherits: inherits_node = CSNodes.EmptyNode() inherits_node += CSNodes.TextNode(text=' : ') inherit_types = split_sig(inherits) i = 1 for t in inherit_types: self.append_ref_signature(t, inherits_node) if i < len(inherit_types): inherits_node += CSNodes.TextNode(text=', ') i += 1 tnode += inherits_node signode += tnode opt_parent = self.options['parent'] if 'parent' in self.options else None form = '{}.{}' if self.has_parent() and opt_parent else '{}{}' parent = form.format(self.get_parent() if self.has_parent() else '', opt_parent if opt_parent else '') self.env.ref_context[CSharpObject.PARENT_TYPE_NAME] = self.ParentType( parent=parent, name=name, type=typ, override=opt_parent) if opt_parent: self.env.ref_context[self.PARENT_ATTR_NAME] = parent return self.get_fullname(name) def get_index_text(self, sig, name, typ): rname = '{} (C# {})'.format(name, _(typ)) return rname def parse_signature(self, sig): match = TYPE_SIG_RE.match(sig.strip()) if not match: raise Exception('Invalid type signature. Got: {}'.format(sig)) mod, typ, names, generic, inherits = match.groups() return mod, typ.strip(), names, generic, inherits def get_obj_name(self, sig): _, typ, name, _, _ = self.parse_signature(sig) return name, typ class CSharpEnum(CSharpObject): option_spec = {**CSharpObject.option_spec, 'values': directives.unchanged_required, **dict(zip([('val(' + str(i) + ')') for i in range(1, 21)], [directives.unchanged] * 20))} def handle_signature(self, sig, signode): mod, name = self.parse_signature(sig) node = CSNodes.EmptyNode() if mod: node += CSNodes.Modificator(text='{}'.format(mod.strip())) node += CSNodes.TextNode(text=' ') node += CSNodes.Keyword(text='enum') node += CSNodes.TextNode(text=' ') node += CSNodes.Enum(text='{}'.format(name.strip())) signode += node return self.get_fullname(name) def after_content_node(self, node): options = self.options['values'].split() node += CSNodes.Description(title=_('values').title(), desc=', '.join(options)) options_values = list(value for key, value in self.options.items() \ if key not in ('noindex', 'values') and value) if not options_values: return i = 0 for vname in options: if i < len(options_values): node += CSNodes.Description(title=vname, desc=options_values[i]) i += 1 def parse_signature(self, sig): match = ENUM_SIG_RE.match(sig.strip()) if not match: raise Exception('Invalid enum signature. Got: {}'.format(sig)) mod, name = match.groups() return mod, name.strip() def get_index_text(self, sig, name, typ): rname = '{} (C# {})'.format(name, _('enum')) return rname def get_obj_name(self, sig): _, name = self.parse_signature(sig) return name, 'enum' class CSharpVariable(CSharpObject): _default = '' def handle_signature(self, sig, signode): mod, typ, name, self._default = self.parse_signature(sig) node = CSNodes.EmptyNode() node += CSNodes.Modificator(text='{}'.format(mod if mod else 'private')) node += CSNodes.TextNode(text=' ') self.append_ref_signature(typ, node) node += CSNodes.TextNode(text=' ') node += CSNodes.VariableName(text='{}'.format(name)) signode += node return self.get_fullname(name) def before_content_node(self, node): if self._default: node += CSNodes.Description(title=_('value').title(), desc=self._default) def parse_signature(self, sig): match = VAR_SIG_RE.match(sig.strip()) if not match: raise Exception('Invalid variable signature. Got: {}'.format(sig)) mod, typ, name, default = match.groups() return mod, typ.strip(), name.strip(), default def get_index_text(self, sig, name, typ): rname = '{} (C# {})->{}'.format(name, _('variable'), typ) return rname def get_obj_name(self, sig): _, typ, name, _ = self.parse_signature(sig) return name, typ class CSharpProperty(CSharpObject): def handle_signature(self, sig, signode): mod, typ, name, getter, setter = self.parse_signature(sig) node = CSNodes.EmptyNode() node += CSNodes.Modificator(text='{}'.format(mod if mod else 'private')) node += CSNodes.TextNode(text=' ') self.append_ref_signature(typ, node) node += CSNodes.TextNode(text=' ') node += CSNodes.MethodName(text='{}'.format(name)) node += CSNodes.TextNode(text=' { ') accessors = [] if getter: accessors.append('get;') if setter: accessors.append(setter.strip()) node += CSNodes.Modificator(text=' '.join(accessors)) node += CSNodes.TextNode(text=' } ') signode += node return self.get_fullname(name) def parse_signature(self, sig): match = PROP_SIG_RE.match(sig.strip()) if not match: raise Exception('Invalid property signature. Got: {}'.format(sig)) mod, typ, name, getter, setter = match.groups() return mod, typ.strip(), name.strip(), getter, setter def get_index_text(self, sig, name, typ): rname = '{} (C# {})->{}'.format(name, _('property'), typ) return rname def get_obj_name(self, sig): _, typ, name, _, _ = self.parse_signature(sig) return name, typ class CSharpMethod(CSharpObject): option_spec = {**CSharpObject.option_spec, 'returns': directives.unchanged, **dict(zip([('param(' + str(i) + ')') for i in range(1, 8)], [directives.unchanged] * 7))} _params_list = () def handle_signature(self, sig, signode): mod, typ, name, generic, params = self.parse_signature(sig) node = CSNodes.EmptyNode() node += CSNodes.Modificator(text='{}'.format(mod if mod else 'private')) node += CSNodes.TextNode(text=' ') self.append_ref_signature(typ if typ else name, node) if typ: node += CSNodes.TextNode(text=' ') node += CSNodes.MethodName(text='{}'.format(name)) if generic: self.append_generic(generic, node) param_node = CSNodes.EmptyNode() param_node += CSNodes.TextNode(text='(') if params: self._params_list = self._get_params(params) i = 1 for (pmod, ptyp, pname, pvalue) in self._params_list: pnode = CSNodes.EmptyNode() if pmod: pnode += CSNodes.Keyword(text='{}'.format(pmod)) pnode += CSNodes.TextNode(text=' ') self.append_ref_signature(ptyp, pnode) pnode += CSNodes.TextNode(text=' ') pnode += CSNodes.TextNode(text='{}'.format(pname)) if pvalue: pnode += CSNodes.TextNode(text=' = ') self.append_ref_signature(pvalue, pnode) param_node += pnode if i < len(self._params_list): param_node += CSNodes.TextNode(text=', ') i += 1 param_node += CSNodes.TextNode(text=')') node += param_node signode += node return self.get_fullname(name) def before_content_node(self, node): if 'returns' in self.options: node += CSNodes.Description(title=_('returns').title(), desc=self.options['returns']) def after_content_node(self, node): options_values = list(value for key, value in self.options.items() if key != 'noindex') i = 0 for (_, _, pname, _) in self._params_list: if i < len(options_values): node += CSNodes.Description(title=pname, desc=options_values[i], lower=True) i += 1 def after_content(self): super().after_content() if self._params_list is not None and len(self._params_list) > 0: del self._params_list def parse_signature(self, sig): match = METHOD_SIG_RE.match(sig.strip()) if not match: raise Exception('Invalid method signature. Got: {}'.format(sig)) mod, typ, name, generic, params = match.groups() return mod, typ, name.strip(), generic, params @staticmethod def parse_param_signature(sig): match = PARAM_SIG_RE.match(sig.strip()) if not match: raise Exception('Invalid parameter signature. Got: {}'.format(sig)) mod, typ, name, value = match.groups() return mod, typ.strip(), name.strip(), value def _get_params(self, params): if not params: return None result = [] params_group = split_sig(params) for param in params_group: pmod, ptyp, pname, pvalue = self.parse_param_signature(param) result.append((pmod, ptyp, pname, pvalue)) return result def get_index_text(self, sig, name, typ): params_text = '' if self._params_list: names = [pname for _, _, pname, _ in self._params_list] params_text = '({})'.format(', '.join(names)) if typ: rname = '{}{} (C# {})->{}'.format(name, params_text, _('method'), typ) else: rname = '{}{} (C# {})->{}'.format(name, params_text, _('constructor'), name) return rname def get_obj_name(self, sig): _, typ, name, _, _ = self.parse_signature(sig) return name, typ class CSharpNamespace(Directive): required_arguments = 1 def run(self): env = self.state.document.settings.env namespace = self.arguments[0].strip() if namespace is None: env.ref_context.pop(CSharpObject.PARENT_ATTR_NAME, None) else: env.ref_context[CSharpObject.PARENT_ATTR_NAME] = namespace return [] class CSharpEndType(Directive): required_arguments = 0 def run(self): env = self.state.document.settings.env if CSharpObject.PARENT_TYPE_NAME in env.ref_context: env.ref_context.pop(CSharpObject.PARENT_TYPE_NAME, None) return [] class CSharpXRefRole(XRefRole): def process_link(self, env, refnode, has_explicit_title, title, target): refnode[CSharpObject.PARENT_ATTR_NAME] = env.ref_context.get( CSharpObject.PARENT_ATTR_NAME) return super(CSharpXRefRole, self).process_link(env, refnode, has_explicit_title, title, target) class CSharpIndex(Index): name = 'csharp' localname = 'CSharp Index' shortname = 'CSharp' def generate(self, docnames=None): content = defaultdict(list) objects = self.domain.get_objects() objects = sorted(objects, key=lambda obj: obj[0]) for name, dispname, objtype, docname, anchor, _ in objects: content[dispname.split('.')[-1][0].lower()].append( (dispname, 0, docname, anchor, docname, '', objtype)) content = sorted(content.items()) return content, True class CSharpDomain(Domain): name = 'sphinxsharp' label = 'C#' roles = { 'type': CSharpXRefRole(), 'var': CSharpXRefRole(), 'prop': CSharpXRefRole(), 'meth': CSharpXRefRole(), 'enum': CSharpXRefRole() } object_types = { 'type': ObjType(_('type'), 'type', 'obj'), 'variable': ObjType(_('variable'), 'var', 'obj'), 'property': ObjType(_('property'), 'prop', 'obj'), 'method': ObjType(_('method'), 'meth', 'obj'), 'enum': ObjType(_('enum'), 'enum', 'obj') } directives = { 'namespace': CSharpNamespace, 'end-type': CSharpEndType, 'type': CSharpType, 'variable': CSharpVariable, 'property': CSharpProperty, 'method': CSharpMethod, 'enum': CSharpEnum } indices = { CSharpIndex } initial_data = { 'objects': {} # (objtype, name) -> (docname, objtype(class, struct etc.)) } def clear_doc(self, docname): for (objtype, name), (doc, _) in self.data['objects'].copy().items(): if doc == docname: del self.data['objects'][(objtype, name)] def get_objects(self): for (objtype, name), (docname, _) in self.data['objects'].items(): yield (name, name, objtype, docname, '{}-{}'.format(objtype, name), 0) def resolve_xref(self, env, fromdocname, builder, typ, target, node, contnode): targets = get_targets(target, node) objects = self.data['objects'] roletypes = self.objtypes_for_role(typ) types = ('type', 'enum', 'method') if typ is None else roletypes for t in targets: for objtyp in types: key = (objtyp, t) if key in objects: obj = objects[key] if typ is not None: role = self.role_for_objtype(objtyp) node['reftype'] = role else: contnode = CSNodes.UnknownType(typ=obj[1], text=target) return make_refnode(builder, fromdocname, obj[0], '{}-{}'.format(objtyp, t), contnode, '{} {}'.format(obj[1], t)) if typ is None: contnode = CSNodes.UnknownType(text=target) return None def merge_domaindata(self, docnames, otherdata): for (objtype, name), (docname, typ) in otherdata['objects'].items(): if docname in docnames: self.data['objects'][(objtype, name)] = (docname, typ) def resolve_any_xref(self, env, fromdocname, builder, target, node, contnode): for typ in self.roles: xref = self.resolve_xref(env, fromdocname, builder, typ, target, node, contnode) if xref: return [('sphinxsharp:{}'.format(typ), xref)] return [] class CSNodes: _TYPES = ('class', 'struct', 'interface', 'enum', 'delegate') class BaseNode(nodes.Element): def __init__(self, rawsource='', *children, **attributes): super().__init__(rawsource, *children, **attributes) @staticmethod def visit_html(self, node): self.body.append(self.starttag(node, 'div')) @staticmethod def depart_html(self, node): self.body.append('</div>') class EmptyNode(BaseNode): def __init__(self, rawsource='', *children, **attributes): super().__init__(rawsource, *children, **attributes) @staticmethod def visit_html(self, node): pass @staticmethod def depart_html(self, node): pass class InlineText(BaseNode): def __init__(self, rawsource, type_class, text, *children, **attributes): super().__init__(rawsource, *children, **attributes) if type_class is None: return self['classes'].append(type_class) if text: self.append(nodes.raw(text=text, format='html')) @staticmethod def visit_html(self, node): self.body.append(self.starttag(node, 'span').replace('\n', '')) @staticmethod def depart_html(self, node): self.body.append('</span>') class Description(BaseNode): def __init__(self, rawsource='', title='', desc='', *children, **attributes): super().__init__(rawsource, *children, **attributes) self['classes'].append('desc') if title and desc: if 'lower' not in attributes: title = title[0].upper() + title[1:] node = nodes.raw( text='<strong class="first">{}:</strong><span class="last">{}</span>'.format(title, desc), format='html') self.append(node) else: raise Exception('Title and description must be assigned.') class Modificator(InlineText): def __init__(self, rawsource='', text='', *children, **attributes): super().__init__(rawsource, 'mod', text, *children, **attributes) class UnknownType(InlineText): def __init__(self, rawsource='', typ='', text='', *children, **attributes): objclass = typ if not text: super().__init__(rawsource, None, text, *children, **attributes) return if typ not in CSNodes._TYPES: objclass = 'kw' if typ not in VALUE_KEYWORDS: objclass = 'unknown' super().__init__(rawsource, objclass, text, *children, **attributes) class TextNode(InlineText): def __init__(self, rawsource='', text='', *children, **attributes): super().__init__(rawsource, 'text', text, *children, **attributes) class MethodName(InlineText): def __init__(self, rawsource='', text='', *children, **attributes): super().__init__(rawsource, 'meth-name', text, *children, **attributes) class VariableName(InlineText): def __init__(self, rawsource='', text='', *children, **attributes): super().__init__(rawsource, 'var-name', text, *children, **attributes) class Keyword(InlineText): def __init__(self, rawsource='', text='', *children, **attributes): super().__init__(rawsource, 'kw', text, *children, **attributes) class Enum(InlineText): def __init__(self, rawsource='', text='', *children, **attributes): super().__init__(rawsource, 'enum', text, *children, **attributes) class Generic(InlineText): def __init__(self, rawsource='', text='', *children, **attributes): super().__init__(rawsource, 'generic', text, *children, **attributes) @staticmethod def add_nodes(app): app.add_node(CSNodes.Description, html=(CSNodes.Description.visit_html, CSNodes.Description.depart_html)) app.add_node(CSNodes.Modificator, html=(CSNodes.Modificator.visit_html, CSNodes.Modificator.depart_html)) app.add_node(CSNodes.UnknownType, html=(CSNodes.UnknownType.visit_html, CSNodes.UnknownType.depart_html)) app.add_node(CSNodes.TextNode, html=(CSNodes.TextNode.visit_html, CSNodes.TextNode.depart_html)) app.add_node(CSNodes.Enum, html=(CSNodes.Enum.visit_html, CSNodes.Enum.depart_html)) app.add_node(CSNodes.Keyword, html=(CSNodes.Keyword.visit_html, CSNodes.Keyword.depart_html)) app.add_node(CSNodes.MethodName, html=(CSNodes.MethodName.visit_html, CSNodes.MethodName.depart_html)) app.add_node(CSNodes.VariableName, html=(CSNodes.VariableName.visit_html, CSNodes.VariableName.depart_html)) app.add_node(CSNodes.BaseNode, html=(CSNodes.BaseNode.visit_html, CSNodes.BaseNode.depart_html)) app.add_node(CSNodes.EmptyNode, html=(CSNodes.EmptyNode.visit_html, CSNodes.EmptyNode.depart_html)) app.add_node(CSNodes.Generic, html=(CSNodes.Generic.visit_html, CSNodes.Generic.depart_html)) def split_sig(params): if not params: return None result = [] current = '' level = 0 for char in params: if char in ('<', '{', '['): level += 1 elif char in ('>', '}', ']'): level -= 1 if char != ',' or level > 0: current += char elif char == ',' and level == 0: result.append(current) current = '' if current.strip() != '': result.append(current) return result def get_targets(target, node): targets = [target] if node[CSharpObject.PARENT_ATTR_NAME] is not None: parts = node[CSharpObject.PARENT_ATTR_NAME].split('.') while parts: targets.append('{}.{}'.format('.'.join(parts), target)) parts = parts[:-1] return targets def copy_asset_files(app, exc): package_dir = path.abspath(path.dirname(__file__)) asset_files = [path.join(package_dir, '_static/css/sphinxsharp.css')] if exc is None: # build succeeded for asset_path in asset_files: copy_asset(asset_path, path.join(app.outdir, '_static')) def setup(app): app.connect('build-finished', copy_asset_files) package_dir = path.abspath(path.dirname(__file__)) app.add_domain(CSharpDomain) app.add_css_file('sphinxsharp.css') override_file = path.join(app.confdir, '_static/sphinxsharp-override.css') if path.exists(override_file): app.add_css_file('sphinxsharp-override.css') CSNodes.add_nodes(app) locale_dir = path.join(package_dir, 'locales') app.add_message_catalog('sphinxsharp', locale_dir) return { 'version': '1.0.2', 'parallel_read_safe': True, 'parallel_write_safe': True, }
[ "sphinx.addnodes.desc_name", "os.path.exists", "sphinx.addnodes.index", "collections.namedtuple", "sphinx.addnodes.desc_type", "re.compile", "os.path.join", "sphinx.addnodes.desc_content", "os.path.dirname", "sphinx.addnodes.pending_xref", "sphinx.addnodes.desc", "collections.defaultdict", "sphinx.addnodes.desc_signature", "sphinx.util.docfields.DocFieldTransformer", "docutils.nodes.raw", "sphinx.locale.get_translation" ]
[((1293, 1400), 're.compile', 're.compile', (["('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?(\\\\w+)\\\\s([\\\\w\\\\.]+)(?:<(.+)>)?(?:\\\\s?\\\\:\\\\s?(.+))?$')"], {}), "('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?(\\\\w+)\\\\s([\\\\w\\\\.]+)(?:<(.+)>)?(?:\\\\s?\\\\:\\\\s?(.+))?$')\n", (1303, 1400), False, 'import re\n'), ((1430, 1519), 're.compile', 're.compile', (['"""^(?:(new)\\\\s+)?([\\\\w\\\\.]+)\\\\s*(?:<(.+)>)*(\\\\[\\\\])*\\\\s?(?:\\\\((.*)\\\\))?$"""'], {}), "(\n '^(?:(new)\\\\s+)?([\\\\w\\\\.]+)\\\\s*(?:<(.+)>)*(\\\\[\\\\])*\\\\s?(?:\\\\((.*)\\\\))?$')\n", (1440, 1519), False, 'import re\n'), ((1523, 1659), 're.compile', 're.compile', (["('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?([^\\\\s=\\\\(\\\\)]+\\\\s+)?([^\\\\s=\\\\(\\\\)]+)\\\\s?(?:\\\\<(.+)\\\\>)?\\\\s?(?:\\\\((.+)*\\\\))$'\n )"], {}), "('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?([^\\\\s=\\\\(\\\\)]+\\\\s+)?([^\\\\s=\\\\(\\\\)]+)\\\\s?(?:\\\\<(.+)\\\\>)?\\\\s?(?:\\\\((.+)*\\\\))$'\n )\n", (1533, 1659), False, 'import re\n'), ((1681, 1778), 're.compile', 're.compile', (["('^(?:(?:(' + PARAM_MODIFIERS_RE +\n ')\\\\s)*)?([^=]+)\\\\s+([^=]+)\\\\s*(?:=\\\\s?(.+))?$')"], {}), "('^(?:(?:(' + PARAM_MODIFIERS_RE +\n ')\\\\s)*)?([^=]+)\\\\s+([^=]+)\\\\s*(?:=\\\\s?(.+))?$')\n", (1691, 1778), False, 'import re\n'), ((1786, 1881), 're.compile', 're.compile', (["('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?([^=]+)\\\\s+([^\\\\s=]+)\\\\s*(?:=\\\\s*(.+))?$')"], {}), "('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?([^=]+)\\\\s+([^\\\\s=]+)\\\\s*(?:=\\\\s*(.+))?$')\n", (1796, 1881), False, 'import re\n'), ((1889, 2031), 're.compile', 're.compile', (["('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?(.+)\\\\s+([^\\\\s]+)\\\\s*(?:{(\\\\s*get;\\\\s*)?((?:' + MODIFIERS_RE +\n ')?\\\\s*set;\\\\s*)?})$')"], {}), "('^((?:(?:' + MODIFIERS_RE +\n ')\\\\s+)*)?(.+)\\\\s+([^\\\\s]+)\\\\s*(?:{(\\\\s*get;\\\\s*)?((?:' + MODIFIERS_RE +\n ')?\\\\s*set;\\\\s*)?})$')\n", (1899, 2031), False, 'import re\n'), ((2083, 2153), 're.compile', 're.compile', (["('^((?:(?:' + MODIFIERS_RE + ')\\\\s+)*)?(?:enum)\\\\s?(\\\\w+)$')"], {}), "('^((?:(?:' + MODIFIERS_RE + ')\\\\s+)*)?(?:enum)\\\\s?(\\\\w+)$')\n", (2093, 2153), False, 'import re\n'), ((2158, 2188), 'sphinx.locale.get_translation', 'get_translation', (['"""sphinxsharp"""'], {}), "('sphinxsharp')\n", (2173, 2188), False, 'from sphinx.locale import get_translation\n'), ((2334, 2398), 'collections.namedtuple', 'namedtuple', (['"""ParentType"""', "['parent', 'name', 'type', 'override']"], {}), "('ParentType', ['parent', 'name', 'type', 'override'])\n", (2344, 2398), False, 'from collections import defaultdict, namedtuple\n'), ((34371, 34429), 'os.path.join', 'path.join', (['app.confdir', '"""_static/sphinxsharp-override.css"""'], {}), "(app.confdir, '_static/sphinxsharp-override.css')\n", (34380, 34429), False, 'from os import path\n'), ((34437, 34463), 'os.path.exists', 'path.exists', (['override_file'], {}), '(override_file)\n', (34448, 34463), False, 'from os import path\n'), ((34563, 34596), 'os.path.join', 'path.join', (['package_dir', '"""locales"""'], {}), "(package_dir, 'locales')\n", (34572, 34596), False, 'from os import path\n'), ((2841, 2867), 'sphinx.addnodes.index', 'addnodes.index', ([], {'entries': '[]'}), '(entries=[])\n', (2855, 2867), False, 'from sphinx import addnodes\n'), ((2884, 2899), 'sphinx.addnodes.desc', 'addnodes.desc', ([], {}), '()\n', (2897, 2899), False, 'from sphinx import addnodes\n'), ((4062, 4085), 'sphinx.addnodes.desc_content', 'addnodes.desc_content', ([], {}), '()\n', (4083, 4085), False, 'from sphinx import addnodes\n'), ((9554, 9574), 'sphinx.addnodes.desc_type', 'addnodes.desc_type', ([], {}), '()\n', (9572, 9574), False, 'from sphinx import addnodes\n'), ((24286, 24303), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (24297, 24303), False, 'from collections import defaultdict, namedtuple\n'), ((33907, 33929), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (33919, 33929), False, 'from os import path\n'), ((33950, 34003), 'os.path.join', 'path.join', (['package_dir', '"""_static/css/sphinxsharp.css"""'], {}), "(package_dir, '_static/css/sphinxsharp.css')\n", (33959, 34003), False, 'from os import path\n'), ((34253, 34275), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (34265, 34275), False, 'from os import path\n'), ((3369, 3401), 'sphinx.addnodes.desc_signature', 'addnodes.desc_signature', (['sig', '""""""'], {}), "(sig, '')\n", (3392, 3401), False, 'from sphinx import addnodes\n'), ((4408, 4433), 'sphinx.util.docfields.DocFieldTransformer', 'DocFieldTransformer', (['self'], {}), '(self)\n', (4427, 4433), False, 'from sphinx.util.docfields import DocFieldTransformer\n'), ((9956, 10071), 'sphinx.addnodes.pending_xref', 'addnodes.pending_xref', (['""""""'], {'refdomain': '"""sphinxsharp"""', 'reftype': 'None', 'reftarget': 'styp', 'modname': 'None', 'classname': 'None'}), "('', refdomain='sphinxsharp', reftype=None, reftarget=\n styp, modname=None, classname=None)\n", (9977, 10071), False, 'from sphinx import addnodes\n'), ((34119, 34151), 'os.path.join', 'path.join', (['app.outdir', '"""_static"""'], {}), "(app.outdir, '_static')\n", (34128, 34151), False, 'from os import path\n'), ((3681, 3709), 'sphinx.addnodes.desc_name', 'addnodes.desc_name', (['sig', 'sig'], {}), '(sig, sig)\n', (3699, 3709), False, 'from sphinx import addnodes\n'), ((28775, 28810), 'docutils.nodes.raw', 'nodes.raw', ([], {'text': 'text', 'format': '"""html"""'}), "(text=text, format='html')\n", (28784, 28810), False, 'from docutils import nodes\n')]
from KratosMultiphysics import ParallelEnvironment, IsDistributedRun if IsDistributedRun(): from KratosMultiphysics.mpi import DataCommunicatorFactory import KratosMultiphysics.KratosUnittest as UnitTest import math class TestDataCommunicatorFactory(UnitTest.TestCase): def setUp(self): self.registered_comms = [] self.default_data_communicator = ParallelEnvironment.GetDefaultDataCommunicator() self.original_default = ParallelEnvironment.GetDefaultDataCommunicatorName() def tearDown(self): if len(self.registered_comms) > 0: ParallelEnvironment.SetDefaultDataCommunicator(self.original_default) for comm_name in self.registered_comms: ParallelEnvironment.UnregisterDataCommunicator(comm_name) def markForCleanUp(self,comm_name): self.registered_comms.append(comm_name) @UnitTest.skipUnless(IsDistributedRun(), "Test is distributed.") def testDataCommunicatorDuplication(self): duplicate_comm = DataCommunicatorFactory.DuplicateAndRegister(self.default_data_communicator, "Duplicate") self.markForCleanUp("Duplicate") # to clean up during tearDown self.assertEqual(duplicate_comm.Rank(), self.default_data_communicator.Rank()) self.assertEqual(duplicate_comm.Size(), self.default_data_communicator.Size()) @UnitTest.skipUnless(IsDistributedRun(), "Test is distributed.") def testDataCommunicatorSplit(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() split_comm = DataCommunicatorFactory.SplitAndRegister(self.default_data_communicator, rank % 2, 0, "EvenOdd") self.markForCleanUp("EvenOdd") # to clean up during tearDown expected_rank = rank // 2 if rank % 2 == 0: expected_size = math.ceil(size/2) else: expected_size = math.floor(size/2) self.assertEqual(split_comm.Rank(), expected_rank) self.assertEqual(split_comm.Size(), expected_size) @UnitTest.skipUnless(IsDistributedRun() and ParallelEnvironment.GetDefaultSize() > 1, "Test requires at least two ranks.") def testDataCommunicatorCreateFromRange(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() # Create a communicator using all ranks except the first ranks = [i for i in range(1,size)] range_comm = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, ranks, "AllExceptFirst") self.markForCleanUp("AllExceptFirst") # to clean up during tearDown if rank == 0: self.assertTrue(range_comm.IsNullOnThisRank()) self.assertFalse(range_comm.IsDefinedOnThisRank()) else: self.assertEqual(range_comm.Rank(), rank-1) self.assertEqual(range_comm.Size(), size-1) @UnitTest.skipUnless(IsDistributedRun() and ParallelEnvironment.GetDefaultSize() > 2, "Test requires at least three ranks.") def testDataCommunicatorCreateUnion(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() # Create a communicator using all ranks except the first all_except_first = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(1,size)], "AllExceptFirst") self.markForCleanUp("AllExceptFirst") # to clean up during tearDown all_except_last = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(0,size-1)], "AllExceptLast") self.markForCleanUp("AllExceptLast") # to clean up during tearDown # Create union communicator (should contain all ranks) union_comm = DataCommunicatorFactory.CreateUnionAndRegister(all_except_first, all_except_last, self.default_data_communicator, "Union") self.markForCleanUp("Union") # to clean up during tearDown self.assertFalse(union_comm.IsNullOnThisRank()) self.assertEqual(union_comm.Rank(), rank) self.assertEqual(union_comm.Size(), size) @UnitTest.skipUnless(IsDistributedRun() and ParallelEnvironment.GetDefaultSize() > 2, "Test requires at least three ranks.") def testDataCommunicatorCreateIntersection(self): rank = self.default_data_communicator.Rank() size = self.default_data_communicator.Size() # Create a communicator using all ranks except the first all_except_first = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(1,size)], "AllExceptFirst") self.markForCleanUp("AllExceptFirst") # to clean up during tearDown all_except_last = DataCommunicatorFactory.CreateFromRanksAndRegister(self.default_data_communicator, [i for i in range(0,size-1)], "AllExceptLast") self.markForCleanUp("AllExceptLast") # to clean up during tearDown intersection_comm = DataCommunicatorFactory.CreateIntersectionAndRegister( all_except_first, all_except_last, self.default_data_communicator, "Intersection") self.markForCleanUp("Intersection") # to clean up during tearDown if rank == 0 or rank == size - 1: # The first and last ranks do not participate in the intersection communicator self.assertTrue(intersection_comm.IsNullOnThisRank()) else: self.assertEqual(intersection_comm.Rank(), rank - 1 ) self.assertEqual(intersection_comm.Size(), size - 2 ) if __name__ == "__main__": UnitTest.main()
[ "KratosMultiphysics.ParallelEnvironment.GetDefaultDataCommunicator", "KratosMultiphysics.mpi.DataCommunicatorFactory.CreateUnionAndRegister", "math.ceil", "KratosMultiphysics.mpi.DataCommunicatorFactory.SplitAndRegister", "math.floor", "KratosMultiphysics.KratosUnittest.main", "KratosMultiphysics.mpi.DataCommunicatorFactory.DuplicateAndRegister", "KratosMultiphysics.mpi.DataCommunicatorFactory.CreateFromRanksAndRegister", "KratosMultiphysics.mpi.DataCommunicatorFactory.CreateIntersectionAndRegister", "KratosMultiphysics.ParallelEnvironment.UnregisterDataCommunicator", "KratosMultiphysics.ParallelEnvironment.GetDefaultSize", "KratosMultiphysics.IsDistributedRun", "KratosMultiphysics.ParallelEnvironment.SetDefaultDataCommunicator", "KratosMultiphysics.ParallelEnvironment.GetDefaultDataCommunicatorName" ]
[((72, 90), 'KratosMultiphysics.IsDistributedRun', 'IsDistributedRun', ([], {}), '()\n', (88, 90), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((5606, 5621), 'KratosMultiphysics.KratosUnittest.main', 'UnitTest.main', ([], {}), '()\n', (5619, 5621), True, 'import KratosMultiphysics.KratosUnittest as UnitTest\n'), ((374, 422), 'KratosMultiphysics.ParallelEnvironment.GetDefaultDataCommunicator', 'ParallelEnvironment.GetDefaultDataCommunicator', ([], {}), '()\n', (420, 422), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((455, 507), 'KratosMultiphysics.ParallelEnvironment.GetDefaultDataCommunicatorName', 'ParallelEnvironment.GetDefaultDataCommunicatorName', ([], {}), '()\n', (505, 507), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((1015, 1108), 'KratosMultiphysics.mpi.DataCommunicatorFactory.DuplicateAndRegister', 'DataCommunicatorFactory.DuplicateAndRegister', (['self.default_data_communicator', '"""Duplicate"""'], {}), "(self.default_data_communicator,\n 'Duplicate')\n", (1059, 1108), False, 'from KratosMultiphysics.mpi import DataCommunicatorFactory\n'), ((899, 917), 'KratosMultiphysics.IsDistributedRun', 'IsDistributedRun', ([], {}), '()\n', (915, 917), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((1589, 1690), 'KratosMultiphysics.mpi.DataCommunicatorFactory.SplitAndRegister', 'DataCommunicatorFactory.SplitAndRegister', (['self.default_data_communicator', '(rank % 2)', '(0)', '"""EvenOdd"""'], {}), "(self.default_data_communicator, \n rank % 2, 0, 'EvenOdd')\n", (1629, 1690), False, 'from KratosMultiphysics.mpi import DataCommunicatorFactory\n'), ((1377, 1395), 'KratosMultiphysics.IsDistributedRun', 'IsDistributedRun', ([], {}), '()\n', (1393, 1395), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((2457, 2569), 'KratosMultiphysics.mpi.DataCommunicatorFactory.CreateFromRanksAndRegister', 'DataCommunicatorFactory.CreateFromRanksAndRegister', (['self.default_data_communicator', 'ranks', '"""AllExceptFirst"""'], {}), "(self.\n default_data_communicator, ranks, 'AllExceptFirst')\n", (2507, 2569), False, 'from KratosMultiphysics.mpi import DataCommunicatorFactory\n'), ((3809, 3935), 'KratosMultiphysics.mpi.DataCommunicatorFactory.CreateUnionAndRegister', 'DataCommunicatorFactory.CreateUnionAndRegister', (['all_except_first', 'all_except_last', 'self.default_data_communicator', '"""Union"""'], {}), "(all_except_first,\n all_except_last, self.default_data_communicator, 'Union')\n", (3855, 3935), False, 'from KratosMultiphysics.mpi import DataCommunicatorFactory\n'), ((5004, 5144), 'KratosMultiphysics.mpi.DataCommunicatorFactory.CreateIntersectionAndRegister', 'DataCommunicatorFactory.CreateIntersectionAndRegister', (['all_except_first', 'all_except_last', 'self.default_data_communicator', '"""Intersection"""'], {}), "(all_except_first,\n all_except_last, self.default_data_communicator, 'Intersection')\n", (5057, 5144), False, 'from KratosMultiphysics.mpi import DataCommunicatorFactory\n'), ((588, 657), 'KratosMultiphysics.ParallelEnvironment.SetDefaultDataCommunicator', 'ParallelEnvironment.SetDefaultDataCommunicator', (['self.original_default'], {}), '(self.original_default)\n', (634, 657), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((1844, 1863), 'math.ceil', 'math.ceil', (['(size / 2)'], {}), '(size / 2)\n', (1853, 1863), False, 'import math\n'), ((1904, 1924), 'math.floor', 'math.floor', (['(size / 2)'], {}), '(size / 2)\n', (1914, 1924), False, 'import math\n'), ((2068, 2086), 'KratosMultiphysics.IsDistributedRun', 'IsDistributedRun', ([], {}), '()\n', (2084, 2086), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((2938, 2956), 'KratosMultiphysics.IsDistributedRun', 'IsDistributedRun', ([], {}), '()\n', (2954, 2956), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((4182, 4200), 'KratosMultiphysics.IsDistributedRun', 'IsDistributedRun', ([], {}), '()\n', (4198, 4200), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((726, 783), 'KratosMultiphysics.ParallelEnvironment.UnregisterDataCommunicator', 'ParallelEnvironment.UnregisterDataCommunicator', (['comm_name'], {}), '(comm_name)\n', (772, 783), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((2091, 2127), 'KratosMultiphysics.ParallelEnvironment.GetDefaultSize', 'ParallelEnvironment.GetDefaultSize', ([], {}), '()\n', (2125, 2127), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((2961, 2997), 'KratosMultiphysics.ParallelEnvironment.GetDefaultSize', 'ParallelEnvironment.GetDefaultSize', ([], {}), '()\n', (2995, 2997), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n'), ((4205, 4241), 'KratosMultiphysics.ParallelEnvironment.GetDefaultSize', 'ParallelEnvironment.GetDefaultSize', ([], {}), '()\n', (4239, 4241), False, 'from KratosMultiphysics import ParallelEnvironment, IsDistributedRun\n')]
from __future__ import print_function try: import vkaudiotoken except ImportError: import path_hack from vkaudiotoken import supported_clients import sys import requests import json token = sys.argv[1] user_agent = supported_clients.KATE.user_agent sess = requests.session() sess.headers.update({'User-Agent': user_agent}) def prettyprint(result): print(json.dumps(json.loads(result.content.decode('utf-8')), indent=2)) prettyprint(sess.get( "https://api.vk.com/method/audio.getById", params=[('access_token', token), ('audios', '371745461_456289486,-41489995_202246189'), ('v', '5.95')] ))
[ "requests.session" ]
[((268, 286), 'requests.session', 'requests.session', ([], {}), '()\n', (284, 286), False, 'import requests\n')]
# -*- coding: utf-8 -*- import os import sys from pprint import pprint root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(root + '/python') import ccxt # noqa: E402 exchange = ccxt.binance({ 'apiKey': '<KEY>', 'secret': '<KEY>', 'enableRateLimit': True, }) exchange.urls['api'] = exchange.urls['test'] # use the testnet symbol = 'BTC/USDT'; type = 'market' # or limit amount = 0.01; price = None; side = 'buy' # or sell # extra params and overrides if needed params = { 'test': True, # test if it's valid, but don't actually place it } order = exchange.create_order(symbol, type, side, amount, price) pprint(order)
[ "os.path.abspath", "ccxt.binance", "sys.path.append", "pprint.pprint" ]
[((156, 189), 'sys.path.append', 'sys.path.append', (["(root + '/python')"], {}), "(root + '/python')\n", (171, 189), False, 'import sys\n'), ((230, 307), 'ccxt.binance', 'ccxt.binance', (["{'apiKey': '<KEY>', 'secret': '<KEY>', 'enableRateLimit': True}"], {}), "({'apiKey': '<KEY>', 'secret': '<KEY>', 'enableRateLimit': True})\n", (242, 307), False, 'import ccxt\n'), ((679, 692), 'pprint.pprint', 'pprint', (['order'], {}), '(order)\n', (685, 692), False, 'from pprint import pprint\n'), ((127, 152), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (142, 152), False, 'import os\n')]
# Copyright 2018 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import itertools import os import re from . import base class OutProc(base.ExpectedOutProc): def __init__(self, expected_outcomes, basepath, expected_fail, expected_filename, regenerate_expected_files): super(OutProc, self).__init__(expected_outcomes, expected_filename, regenerate_expected_files) self._basepath = basepath self._expected_fail = expected_fail def _is_failure_output(self, output): fail = output.exit_code != 0 if fail != self._expected_fail: return True expected_lines = [] # Can't use utils.ReadLinesFrom() here because it strips whitespace. with open(self._basepath + '.out') as f: for line in f: if line.startswith("#") or not line.strip(): continue expected_lines.append(line) raw_lines = output.stdout.splitlines() actual_lines = [ s for s in raw_lines if not self._ignore_line(s) ] if len(expected_lines) != len(actual_lines): return True # Try .js first, and fall back to .mjs. # TODO(v8:9406): clean this up by never separating the path from # the extension in the first place. base_path = self._basepath + '.js' if not os.path.exists(base_path): base_path = self._basepath + '.mjs' env = { 'basename': os.path.basename(base_path), } for (expected, actual) in itertools.izip_longest( expected_lines, actual_lines, fillvalue=''): pattern = re.escape(expected.rstrip() % env) pattern = pattern.replace('\\*', '.*') pattern = pattern.replace('\\{NUMBER\\}', '\d+(?:\.\d*)?') pattern = '^%s$' % pattern if not re.match(pattern, actual): return True return False def _ignore_line(self, string): """Ignore empty lines, valgrind output, Android output.""" return ( not string or not string.strip() or string.startswith("==") or string.startswith("**") or string.startswith("ANDROID") or # Android linker warning. string.startswith('WARNING: linker:') )
[ "os.path.exists", "itertools.izip_longest", "re.match", "os.path.basename" ]
[((1542, 1608), 'itertools.izip_longest', 'itertools.izip_longest', (['expected_lines', 'actual_lines'], {'fillvalue': '""""""'}), "(expected_lines, actual_lines, fillvalue='')\n", (1564, 1608), False, 'import itertools\n'), ((1377, 1402), 'os.path.exists', 'os.path.exists', (['base_path'], {}), '(base_path)\n', (1391, 1402), False, 'import os\n'), ((1477, 1504), 'os.path.basename', 'os.path.basename', (['base_path'], {}), '(base_path)\n', (1493, 1504), False, 'import os\n'), ((1826, 1851), 're.match', 're.match', (['pattern', 'actual'], {}), '(pattern, actual)\n', (1834, 1851), False, 'import re\n')]
import pytest from Thycotic import Client, \ secret_password_get_command, secret_username_get_command, \ secret_get_command, secret_password_update_command, secret_checkout_command, secret_checkin_command, \ secret_delete_command, folder_create_command, folder_delete_command, folder_update_command from test_data.context import GET_PASSWORD_BY_ID_CONTEXT, GET_USERNAME_BY_ID_CONTENT, \ SECRET_GET_CONTENT, SECRET_PASSWORD_UPDATE_CONTEXT, SECRET_CHECKOUT_CONTEXT, SECRET_CHECKIN_CONTEXT, \ SECRET_DELETE_CONTEXT, FOLDER_CREATE_CONTEXT, FOLDER_DELETE_CONTEXT, FOLDER_UPDATE_CONTEXT from test_data.http_responses import GET_PASSWORD_BY_ID_RAW_RESPONSE, GET_USERNAME_BY_ID_RAW_RESPONSE, \ SECRET_GET_RAW_RESPONSE, SECRET_PASSWORD_UPDATE_RAW_RESPONSE, SECRET_CHECKOUT_RAW_RESPONSE, \ SECRET_CHECKIN_RAW_RESPONSE, SECRET_DELETE_RAW_RESPONSE, FOLDER_CREATE_RAW_RESPONSE, FOLDER_DELETE_RAW_RESPONSE, \ FOLDER_UPDATE_RAW_RESPONSE GET_PASSWORD_BY_ID_ARGS = {"secret_id": "4"} GET_USERNAME_BY_ID_ARGS = {"secret_id": "4"} SECRET_GET_ARGS = {"secret_id": "4"} SECRET_PASSWORD_UPDATE_ARGS = {"secret_id": "4", "newpassword": "<PASSWORD>"} SECRET_CHECKOUT_ARGS = {"secret_id": "4"} SECRET_CHECKIN_ARGS = {"secret_id": "4"} SECRET_DELETE_ARGS = {"id": "9"} FOLDER_CREATE_ARGS = {"folderName": "xsoarFolderTest3", "folderTypeId": "1", "parentFolderId": "3"} FOLDER_DELETE_ARGS = {"folder_id": "9"} FOLDER_UPDATE_ARGS = {"id": "12", "folderName": "xsoarTF3New"} @pytest.mark.parametrize('command, args, http_response, context', [ (secret_password_get_command, GET_PASSWORD_BY_ID_ARGS, GET_PASSWORD_BY_ID_RAW_RESPONSE, GET_PASSWORD_BY_ID_CONTEXT), (secret_username_get_command, GET_USERNAME_BY_ID_ARGS, GET_USERNAME_BY_ID_RAW_RESPONSE, GET_USERNAME_BY_ID_CONTENT), (secret_get_command, SECRET_GET_ARGS, SECRET_GET_RAW_RESPONSE, SECRET_GET_CONTENT), (secret_password_update_command, SECRET_PASSWORD_UPDATE_ARGS, SECRET_PASSWORD_UPDATE_RAW_RESPONSE, SECRET_PASSWORD_UPDATE_CONTEXT), (secret_checkout_command, SECRET_CHECKOUT_ARGS, SECRET_CHECKOUT_RAW_RESPONSE, SECRET_CHECKOUT_CONTEXT), (secret_checkin_command, SECRET_CHECKIN_ARGS, SECRET_CHECKIN_RAW_RESPONSE, SECRET_CHECKIN_CONTEXT), (secret_delete_command, SECRET_DELETE_ARGS, SECRET_DELETE_RAW_RESPONSE, SECRET_DELETE_CONTEXT), (folder_create_command, FOLDER_CREATE_ARGS, FOLDER_CREATE_RAW_RESPONSE, FOLDER_CREATE_CONTEXT), (folder_delete_command, FOLDER_DELETE_ARGS, FOLDER_DELETE_RAW_RESPONSE, FOLDER_DELETE_CONTEXT), (folder_update_command, FOLDER_UPDATE_ARGS, FOLDER_UPDATE_RAW_RESPONSE, FOLDER_UPDATE_CONTEXT) ]) def test_thycotic_commands(command, args, http_response, context, mocker): mocker.patch.object(Client, '_generate_token') client = Client(server_url="https://thss.softwarium.net/SecretServer", username="xsoar1", password="<PASSWORD>", proxy=False, verify=False) mocker.patch.object(Client, '_http_request', return_value=http_response) outputs = command(client, **args) results = outputs.to_context() assert results.get("EntryContext") == context
[ "pytest.mark.parametrize", "Thycotic.Client" ]
[((1483, 2660), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""command, args, http_response, context"""', '[(secret_password_get_command, GET_PASSWORD_BY_ID_ARGS,\n GET_PASSWORD_BY_ID_RAW_RESPONSE, GET_PASSWORD_BY_ID_CONTEXT), (\n secret_username_get_command, GET_USERNAME_BY_ID_ARGS,\n GET_USERNAME_BY_ID_RAW_RESPONSE, GET_USERNAME_BY_ID_CONTENT), (\n secret_get_command, SECRET_GET_ARGS, SECRET_GET_RAW_RESPONSE,\n SECRET_GET_CONTENT), (secret_password_update_command,\n SECRET_PASSWORD_UPDATE_ARGS, SECRET_PASSWORD_UPDATE_RAW_RESPONSE,\n SECRET_PASSWORD_UPDATE_CONTEXT), (secret_checkout_command,\n SECRET_CHECKOUT_ARGS, SECRET_CHECKOUT_RAW_RESPONSE,\n SECRET_CHECKOUT_CONTEXT), (secret_checkin_command, SECRET_CHECKIN_ARGS,\n SECRET_CHECKIN_RAW_RESPONSE, SECRET_CHECKIN_CONTEXT), (\n secret_delete_command, SECRET_DELETE_ARGS, SECRET_DELETE_RAW_RESPONSE,\n SECRET_DELETE_CONTEXT), (folder_create_command, FOLDER_CREATE_ARGS,\n FOLDER_CREATE_RAW_RESPONSE, FOLDER_CREATE_CONTEXT), (\n folder_delete_command, FOLDER_DELETE_ARGS, FOLDER_DELETE_RAW_RESPONSE,\n FOLDER_DELETE_CONTEXT), (folder_update_command, FOLDER_UPDATE_ARGS,\n FOLDER_UPDATE_RAW_RESPONSE, FOLDER_UPDATE_CONTEXT)]'], {}), "('command, args, http_response, context', [(\n secret_password_get_command, GET_PASSWORD_BY_ID_ARGS,\n GET_PASSWORD_BY_ID_RAW_RESPONSE, GET_PASSWORD_BY_ID_CONTEXT), (\n secret_username_get_command, GET_USERNAME_BY_ID_ARGS,\n GET_USERNAME_BY_ID_RAW_RESPONSE, GET_USERNAME_BY_ID_CONTENT), (\n secret_get_command, SECRET_GET_ARGS, SECRET_GET_RAW_RESPONSE,\n SECRET_GET_CONTENT), (secret_password_update_command,\n SECRET_PASSWORD_UPDATE_ARGS, SECRET_PASSWORD_UPDATE_RAW_RESPONSE,\n SECRET_PASSWORD_UPDATE_CONTEXT), (secret_checkout_command,\n SECRET_CHECKOUT_ARGS, SECRET_CHECKOUT_RAW_RESPONSE,\n SECRET_CHECKOUT_CONTEXT), (secret_checkin_command, SECRET_CHECKIN_ARGS,\n SECRET_CHECKIN_RAW_RESPONSE, SECRET_CHECKIN_CONTEXT), (\n secret_delete_command, SECRET_DELETE_ARGS, SECRET_DELETE_RAW_RESPONSE,\n SECRET_DELETE_CONTEXT), (folder_create_command, FOLDER_CREATE_ARGS,\n FOLDER_CREATE_RAW_RESPONSE, FOLDER_CREATE_CONTEXT), (\n folder_delete_command, FOLDER_DELETE_ARGS, FOLDER_DELETE_RAW_RESPONSE,\n FOLDER_DELETE_CONTEXT), (folder_update_command, FOLDER_UPDATE_ARGS,\n FOLDER_UPDATE_RAW_RESPONSE, FOLDER_UPDATE_CONTEXT)])\n", (1506, 2660), False, 'import pytest\n'), ((2775, 2910), 'Thycotic.Client', 'Client', ([], {'server_url': '"""https://thss.softwarium.net/SecretServer"""', 'username': '"""xsoar1"""', 'password': '"""<PASSWORD>"""', 'proxy': '(False)', 'verify': '(False)'}), "(server_url='https://thss.softwarium.net/SecretServer', username=\n 'xsoar1', password='<PASSWORD>', proxy=False, verify=False)\n", (2781, 2910), False, 'from Thycotic import Client, secret_password_get_command, secret_username_get_command, secret_get_command, secret_password_update_command, secret_checkout_command, secret_checkin_command, secret_delete_command, folder_create_command, folder_delete_command, folder_update_command\n')]
import os import glob import pandas as pd import xml.etree.ElementTree as ET def xml_to_csv(path): xml_list = [] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): value = (root.find('filename').text, member[0].text, int(member[4][0].text), int(member[4][2].text), int(member[4][1].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['image_names', 'cell_type', 'xmin', 'xmax', 'ymin', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def main(): for folder in ['train','test']: image_path = os.path.join(os.getcwd(), ('images/' + folder)) xml_df = xml_to_csv(image_path) xml_df.to_csv(('images/' + folder + '_labels.csv'), index=None) print('Successfully converted xml to csv.') main()
[ "pandas.DataFrame", "xml.etree.ElementTree.parse", "glob.glob", "os.getcwd" ]
[((139, 165), 'glob.glob', 'glob.glob', (["(path + '/*.xml')"], {}), "(path + '/*.xml')\n", (148, 165), False, 'import glob\n'), ((692, 735), 'pandas.DataFrame', 'pd.DataFrame', (['xml_list'], {'columns': 'column_name'}), '(xml_list, columns=column_name)\n', (704, 735), True, 'import pandas as pd\n'), ((182, 200), 'xml.etree.ElementTree.parse', 'ET.parse', (['xml_file'], {}), '(xml_file)\n', (190, 200), True, 'import xml.etree.ElementTree as ET\n'), ((838, 849), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (847, 849), False, 'import os\n')]
import sys, os, json, jinja2, redis from jinja2 import Template r_server = redis.StrictRedis('127.0.0.1', db=2) i_key = "owner-info" json_data = r_server.get(i_key) if json_data is not None: data = json.loads(json_data) main_domain = data['Hostname'] fqdn = sys.argv[1] + ".ext." + main_domain config_template = open('/opt/madcore/bin/templates/ingress.template').read() template = Template(config_template) config = (template.render(HOST=fqdn, SERVICE_NAME=sys.argv[2], SERVICE_PORT=sys.argv[3], NAMESPACE=sys.argv[4])) open("/opt/ingress/" + sys.argv[2] + ".yaml", "w").write(config)
[ "json.loads", "redis.StrictRedis", "jinja2.Template" ]
[((76, 112), 'redis.StrictRedis', 'redis.StrictRedis', (['"""127.0.0.1"""'], {'db': '(2)'}), "('127.0.0.1', db=2)\n", (93, 112), False, 'import sys, os, json, jinja2, redis\n'), ((393, 418), 'jinja2.Template', 'Template', (['config_template'], {}), '(config_template)\n', (401, 418), False, 'from jinja2 import Template\n'), ((203, 224), 'json.loads', 'json.loads', (['json_data'], {}), '(json_data)\n', (213, 224), False, 'import sys, os, json, jinja2, redis\n')]
# -*- coding: utf-8 -*- # snapshottest: v1 - https://goo.gl/zC4yUc from __future__ import unicode_literals from snapshottest import Snapshot snapshots = Snapshot() snapshots['test_keywords 1'] = '[{"lineno": 7, "source": [" a\\n"], "value": "1"}, {"lineno": 7, "source": [" a\\n"], "value": "2"}, {"lineno": 7, "source": [" a\\n"], "value": "3"}, {"lineno": 13, "source": [" i\\n"], "value": "0"}, {"lineno": 13, "source": [" i\\n"], "value": "1"}, {"lineno": 13, "source": [" i\\n"], "value": "2"}, {"lineno": 13, "source": [" i\\n"], "value": "3"}, {"lineno": 13, "source": [" i\\n"], "value": "4"}]'
[ "snapshottest.Snapshot" ]
[((156, 166), 'snapshottest.Snapshot', 'Snapshot', ([], {}), '()\n', (164, 166), False, 'from snapshottest import Snapshot\n')]
import numpy as np from radix import radixConvert c = radixConvert() a = np.load("../../data/5/layer4.npy") print(a.shape) a = a*128 a = np.around(a).astype(np.int16) print(a) a = np.load('../../data/6.npy') a = a*128 a = np.around(a).astype(np.int8) print(a.shape) for i in range(84): print(i) print(a[i]) ''' a = a*128 print(a) for i in range(a.shape[0]): for j in range(a.shape[1]): if a[i][j] > 127: a[i][j] = 127 a = np.around(a).astype(np.int8) print(a) print(a[4][17]) weight_file = open('f1_rom.coe', 'w') weight_file.write('MEMORY_INITIALIZATION_RADIX=2;\n') weight_file.write('MEMORY_INITIALIZATION_VECTOR=\n') for i in range(32): for j in range(32): if(i < 2 or i > 29): weight_file.write(c.dec2Bincmpmt('0', 8)+';\n') elif(j < 2 or j > 29): weight_file.write(c.dec2Bincmpmt('0', 8)+';\n') else: weight_file.write(c.dec2Bincmpmt(str(a[i-2][j-2]), 8)+',\n') '''
[ "numpy.load", "numpy.around", "radix.radixConvert" ]
[((54, 68), 'radix.radixConvert', 'radixConvert', ([], {}), '()\n', (66, 68), False, 'from radix import radixConvert\n'), ((74, 108), 'numpy.load', 'np.load', (['"""../../data/5/layer4.npy"""'], {}), "('../../data/5/layer4.npy')\n", (81, 108), True, 'import numpy as np\n'), ((183, 210), 'numpy.load', 'np.load', (['"""../../data/6.npy"""'], {}), "('../../data/6.npy')\n", (190, 210), True, 'import numpy as np\n'), ((139, 151), 'numpy.around', 'np.around', (['a'], {}), '(a)\n', (148, 151), True, 'import numpy as np\n'), ((225, 237), 'numpy.around', 'np.around', (['a'], {}), '(a)\n', (234, 237), True, 'import numpy as np\n')]
from saifooler.classifiers.classifier import Classifier import torch import json import os class ImageNetClassifier(Classifier): def __init__(self, model, *args, **kwargs): super().__init__(model, *args, **kwargs) self.std = torch.tensor([0.229, 0.224, 0.225], device=self.device) self.mean = torch.tensor([0.485, 0.456, 0.406], device=self.device) class_index_path = os.path.join( os.path.dirname(__file__), "imagenet_class_index.json" ) self.class_dict = { int(key): val[1] for key, val in json.load(open(class_index_path)).items() } def to(self, device): super().to(device) self.mean = self.mean.to(device) self.std = self.std.to(device) def get_class_label(self, class_id: int): return self.class_dict[class_id] def normalize_image(self, image): """ :param image: tensor of shape (N, W, H, C) :return: image normalized for ImageNet and permuted in the shape (N, C, W, H) which is the shape used by torchvision models """ image = (image - self.mean) / self.std image = image.permute(0, 3, 1, 2) return image
[ "os.path.dirname", "torch.tensor" ]
[((248, 303), 'torch.tensor', 'torch.tensor', (['[0.229, 0.224, 0.225]'], {'device': 'self.device'}), '([0.229, 0.224, 0.225], device=self.device)\n', (260, 303), False, 'import torch\n'), ((324, 379), 'torch.tensor', 'torch.tensor', (['[0.485, 0.456, 0.406]'], {'device': 'self.device'}), '([0.485, 0.456, 0.406], device=self.device)\n', (336, 379), False, 'import torch\n'), ((434, 459), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (449, 459), False, 'import os\n')]
#!/usr/bin/env python # coding: utf-8 # conda install pytorch>=1.6 cudatoolkit=10.2 -c pytorch # wandb login XXX import json import logging import os import re import sklearn import time from itertools import product import numpy as np import pandas as pd import wandb #from IPython import get_ipython from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.layers import Dense, Input, LSTM, Embedding, Dropout, Activation from keras.layers import Bidirectional, GlobalMaxPool1D from keras.models import Model from keras import initializers, regularizers, constraints, optimizers, layers from simpletransformers.classification import MultiLabelClassificationModel from sklearn.model_selection import train_test_split truthy_values = ("true", "1", "y", "yes") TAG = os.environ.get("TAG", "bertsification") LANGS = [lang.strip() for lang in os.environ.get("LANGS", "es,ge,en,multi").lower().split(",")] MODELNAMES = os.environ.get("MODELNAMES") EVAL = os.environ.get("EVAL", "True").lower() in truthy_values OVERWRITE = os.environ.get("OVERWRITE", "False").lower() in truthy_values logging.basicConfig(level=logging.INFO, filename=time.strftime("models/{}-%Y-%m-%dT%H%M%S.log".format(TAG))) with open('pid', 'w') as pid: pid.write(str(os.getpid())) logging.info("Experiment '{}' on {}, (eval = {}, pid = {})".format( TAG, LANGS, str(EVAL), str(os.getpid()), )) # SimpleTransformers (based on HuggingFace/Transformers) for Multilingual Scansion # We will be using `simpletransformers`, a wrapper of `huggingface/transformers` to fine-tune different BERT-based and other architecture models with support for Spanish. # Utils def clean_text(string): output = string.strip() # replacements = (("“", '"'), ("”", '"'), ("//", ""), ("«", '"'), ("»",'"')) replacements = ( ("“", ''), ("”", ''), ("//", ""), ("«", ''), ("»",''), (",", ''), (";", ''), (".", ''), # ("?", ''), ("¿", ''), ("¡", ''), ("!", ''), ("-", ' '), ) for replacement in replacements: output = output.replace(*replacement) # Any sequence of two or more spaces should be converted into one space output = re.sub(r'(?is)\s+', ' ', output) return output.strip() def metric2binary(meter, pad=11): return ([1 if syllable == "+" else 0 for syllable in meter] + [0] * (11 - len(meter)))[:pad] def label2metric(label): return "".join("+" if l else "-" for l in label) def flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) / len(labels_flat) # Spanish # if not os.path.isfile("adso100.json"): # get_ipython().system("averell export adso100 --filename adso100.json") # if not os.path.isfile("adso.json"): # get_ipython().system("averell export adso --filename adso.json") es_test = (pd .read_json(open("adso100.json")) .query("manually_checked == True")[["line_text", "metrical_pattern"]] .assign( line_text=lambda x: x["line_text"].apply(clean_text), length=lambda x: x["metrical_pattern"].str.len() ) .drop_duplicates("line_text") .rename(columns={"line_text": "text", "metrical_pattern": "meter"}) ) es_test = es_test[es_test["length"] == 11] es = (pd .read_json(open("adso.json")) .query("manually_checked == True")[["line_text", "metrical_pattern"]] .assign( line_text=lambda x: x["line_text"].apply(clean_text), length=lambda x: x["metrical_pattern"].str.len() ) .drop_duplicates("line_text") .rename(columns={"line_text": "text", "metrical_pattern": "meter"}) ) es = es[~es["text"].isin(es_test["text"])][es["length"] == 11] es["labels"] = es.meter.apply(metric2binary) es_train, es_eval = train_test_split( es[["text", "labels"]], test_size=0.25, random_state=42) logging.info("Spanish") logging.info("- Lines: {} train, {} eval, {} test".format(es_train.shape[0], es_eval.shape[0], es_test.shape[0])) # English en_test = (pd .read_csv("4b4v_prosodic_meter.csv") .assign( text=lambda x: x["text"].apply(clean_text), length=lambda x: x["meter"].str.len() ) .drop_duplicates("text") .rename(columns={"line_text": "text", "metrical_pattern": "meter", "prosodic_meter": "sota"}) ) en_test = en_test.query("length in (5,6,7,8,9,10,11)") # if not os.path.isfile("ecpa.json"): # get_ipython().system("averell export ecpa --filename ecpa.json") en = (pd .read_json(open("ecpa.json")) .query("manually_checked == True")[["line_text", "metrical_pattern"]] .assign( line_text=lambda x: x["line_text"].apply(clean_text), metrical_pattern=lambda x: x["metrical_pattern"].str.replace("|", "").str.replace("(", "").str.replace(")", "") ) .assign( length=lambda x: x["metrical_pattern"].str.len(), ) .drop_duplicates("line_text") .rename(columns={"line_text": "text", "metrical_pattern": "meter", "prosodic_meter": "sota"}) ) en = en[~en["text"].isin(en_test["text"])].query("length in (5,6,7,8,9,10,11)") en["labels"] = en.meter.apply(metric2binary) en_train, en_eval = train_test_split( en[["text", "labels"]], test_size=0.25, random_state=42) logging.info("English") logging.info("- Lines: {} train, {} eval, {} test".format(en_train.shape[0], en_eval.shape[0], en_test.shape[0])) # sota en_sota = sum(en_test.meter == en_test.sota) / en_test.meter.size # German ge = (pd .read_csv("po-emo-metricalizer.csv") .rename(columns={"verse": "text", "annotated_pattern": "meter", "metricalizer_pattern": "sota"}) .assign( text=lambda x: x["text"].apply(clean_text), length=lambda x: x["meter"].str.len() ) .drop_duplicates("text") .query("length in (5, 6, 7, 8, 9, 10, 11)") ) ge["labels"] = ge.meter.apply(metric2binary) ge_train_eval, ge_test = train_test_split(ge, test_size=0.15, random_state=42) ge_train, ge_eval = train_test_split( ge_train_eval[["text", "labels"]], test_size=0.176, random_state=42) logging.info("German") logging.info("- Lines: {} train, {} eval, {} test".format(ge_train.shape[0], ge_eval.shape[0], ge_test.shape[0])) # sota ge_sota = sum(ge_test.meter == ge_test.sota) / ge_test.meter.size # training # Multilingual inputs # - bert bert-base-multilingual-cased # - distilbert distilbert-base-multilingual-cased # - xlmroberta, xlm-roberta-base # - xlmroberta, xlm-roberta-large # Only English # - roberta roberta-base # - roberta roberta-large # - albert albert-xxlarge-v2 # You can set class weights by using the optional weight argument models = ( # ("xlnet", "xlnet-base-cased"), ("bert", "bert-base-multilingual-cased"), ("distilbert", "distilbert-base-multilingual-cased"), ("roberta", "roberta-base"), ("roberta", "roberta-large"), ("xlmroberta", "xlm-roberta-base"), ("xlmroberta", "xlm-roberta-large"), ("electra", "google/electra-base-discriminator"), ("albert", "albert-base-v2"), ("albert", "albert-large-v2"), ) if MODELNAMES: models = [list(map(str.strip, modelname.split(","))) for modelname in MODELNAMES.split(";")] langs = LANGS or ("es", "ge", "en", "multi") for lang, (model_type, model_name) in product(langs, models): model_output = 'models/{}-{}-{}-{}'.format(TAG, lang, model_type, model_name.replace("/", "-")) if OVERWRITE is False and os.path.exists(model_output): logging.info("Skipping training of {} for {}".format(model_name, lang)) continue logging.info("Starting training of {} for {}".format(model_name, lang)) run = wandb.init(project=model_output.split("/")[-1], reinit=True) model = MultiLabelClassificationModel( model_type, model_name, num_labels=11, args={ 'output_dir': model_output, 'best_model_dir': '{}/best'.format(model_output), 'reprocess_input_data': True, 'overwrite_output_dir': True, 'use_cached_eval_features': True, 'num_train_epochs': 100, # For BERT, 2, 3, 4 'save_steps': 10000, 'early_stopping_patience': 5, 'evaluate_during_training': EVAL, #'early_stopping_metric': "accuracy_score", 'evaluate_during_training_steps': 1000, 'early_stopping_delta': 0.00001, 'manual_seed': 42, # 'learning_rate': 2e-5, # For BERT, 5e-5, 3e-5, 2e-5 # For BERT 16, 32. It could be 128, but with gradient_acc_steps set to 2 is equivalent 'train_batch_size': 16 if "large" in model_name else 32, 'eval_batch_size': 16 if "large" in model_name else 32, # Doubles train_batch_size, but gradients and wrights are calculated once every 2 steps 'gradient_accumulation_steps': 2 if "large" in model_name else 1, 'max_seq_length': 32, 'use_early_stopping': True, 'wandb_project': model_output.split("/")[-1], #'wandb_kwargs': {'reinit': True}, # "adam_epsilon": 3e-5, # 1e-8 "silent": False, "fp16": False, "n_gpu": 2, }) # train the model if lang == "multi": train_df = pd.concat([es_train, en_train, ge_train], ignore_index=True) eval_df = pd.concat([es_eval, en_eval, ge_eval], ignore_index=True) elif lang == "es": train_df = es_train eval_df = es_eval elif lang == "en": train_df = en_train eval_df = en_eval elif lang == "ge": train_df = ge_train eval_df = ge_eval if EVAL: model.train_model(train_df, eval_df=eval_df) # evaluate the model result, model_outputs, wrong_predictions = model.eval_model(eval_df) logging.info(str(result)) #logging.info(str(model_outputs)) else: train_eval_df = pd.concat([train_df, eval_df, ge_train], ignore_index=True) model.train_model(train_eval_df) if lang in ("es", "multi"): es_test["predicted"], *_ = model.predict(es_test.text.values) es_test["predicted"] = es_test["predicted"].apply(label2metric) es_test["pred"] = es_test.apply(lambda x: str(x.predicted)[:int(x.length)], axis=1) es_bert = sum(es_test.meter == es_test.pred) / es_test.meter.size logging.info("Accuracy [{}:es]: {} ({})".format(lang, es_bert, model_name)) wandb.log({"accuracy_es": es_bert}) if lang in ("en", "multi"): en_test["predicted"], *_ = model.predict(en_test.text.values) en_test["predicted"] = en_test["predicted"].apply(label2metric) en_test["pred"] = en_test.apply(lambda x: str(x.predicted)[:int(x.length)], axis=1) en_bert = sum(en_test.meter == en_test.pred) / en_test.meter.size logging.info("Accuracy [{}:en]: {} ({})".format(lang, en_bert, model_name)) wandb.log({"accuracy_en": en_bert}) if lang in ("ge", "multi"): ge_test["predicted"], *_ = model.predict(ge_test.text.values) ge_test["predicted"] = ge_test["predicted"].apply(label2metric) ge_test["pred"] = ge_test.apply(lambda x: str(x.predicted)[:int(x.length)], axis=1) ge_bert = sum(ge_test.meter == ge_test.pred) / ge_test.meter.size logging.info("Accuracy [{}:ge]: {} ({})".format(lang, ge_bert, model_name)) wandb.log({"accuracy_ge": ge_bert}) if lang in ("multi", ): test_df = pd.concat([es_test, en_test, ge_test], ignore_index=True) test_df["predicted"], *_ = model.predict(test_df.text.values) test_df["predicted"] = test_df["predicted"].apply(label2metric) test_df["pred"] = test_df.apply(lambda x: str(x.predicted)[:int(x.length)], axis=1) multi_bert = sum(test_df.meter == test_df.pred) / test_df.meter.size logging.info("Accuracy [{}:multi]: {} ({})".format(lang, multi_bert, model_name)) wandb.log({"accuracy_multi": multi_bert}) run.finish() logging.info("Done training '{}'".format(model_output)) # get_ipython().system("rm -rf `ls -dt models/{}-*/checkpoint*/ | awk 'NR>5'`".format(TAG)) logging.info("Done training")
[ "os.path.exists", "wandb.log", "pandas.read_csv", "sklearn.model_selection.train_test_split", "itertools.product", "os.environ.get", "numpy.argmax", "numpy.sum", "pandas.concat", "os.getpid", "re.sub", "logging.info" ]
[((827, 866), 'os.environ.get', 'os.environ.get', (['"""TAG"""', '"""bertsification"""'], {}), "('TAG', 'bertsification')\n", (841, 866), False, 'import os\n'), ((976, 1004), 'os.environ.get', 'os.environ.get', (['"""MODELNAMES"""'], {}), "('MODELNAMES')\n", (990, 1004), False, 'import os\n'), ((3792, 3865), 'sklearn.model_selection.train_test_split', 'train_test_split', (["es[['text', 'labels']]"], {'test_size': '(0.25)', 'random_state': '(42)'}), "(es[['text', 'labels']], test_size=0.25, random_state=42)\n", (3808, 3865), False, 'from sklearn.model_selection import train_test_split\n'), ((3871, 3894), 'logging.info', 'logging.info', (['"""Spanish"""'], {}), "('Spanish')\n", (3883, 3894), False, 'import logging\n'), ((5159, 5232), 'sklearn.model_selection.train_test_split', 'train_test_split', (["en[['text', 'labels']]"], {'test_size': '(0.25)', 'random_state': '(42)'}), "(en[['text', 'labels']], test_size=0.25, random_state=42)\n", (5175, 5232), False, 'from sklearn.model_selection import train_test_split\n'), ((5238, 5261), 'logging.info', 'logging.info', (['"""English"""'], {}), "('English')\n", (5250, 5261), False, 'import logging\n'), ((5877, 5930), 'sklearn.model_selection.train_test_split', 'train_test_split', (['ge'], {'test_size': '(0.15)', 'random_state': '(42)'}), '(ge, test_size=0.15, random_state=42)\n', (5893, 5930), False, 'from sklearn.model_selection import train_test_split\n'), ((5951, 6040), 'sklearn.model_selection.train_test_split', 'train_test_split', (["ge_train_eval[['text', 'labels']]"], {'test_size': '(0.176)', 'random_state': '(42)'}), "(ge_train_eval[['text', 'labels']], test_size=0.176,\n random_state=42)\n", (5967, 6040), False, 'from sklearn.model_selection import train_test_split\n'), ((6042, 6064), 'logging.info', 'logging.info', (['"""German"""'], {}), "('German')\n", (6054, 6064), False, 'import logging\n'), ((7239, 7261), 'itertools.product', 'product', (['langs', 'models'], {}), '(langs, models)\n', (7246, 7261), False, 'from itertools import product\n'), ((12099, 12128), 'logging.info', 'logging.info', (['"""Done training"""'], {}), "('Done training')\n", (12111, 12128), False, 'import logging\n'), ((2189, 2221), 're.sub', 're.sub', (['"""(?is)\\\\s+"""', '""" """', 'output'], {}), "('(?is)\\\\s+', ' ', output)\n", (2195, 2221), False, 'import re\n'), ((2594, 2626), 'numpy.sum', 'np.sum', (['(pred_flat == labels_flat)'], {}), '(pred_flat == labels_flat)\n', (2600, 2626), True, 'import numpy as np\n'), ((7393, 7421), 'os.path.exists', 'os.path.exists', (['model_output'], {}), '(model_output)\n', (7407, 7421), False, 'import os\n'), ((9215, 9275), 'pandas.concat', 'pd.concat', (['[es_train, en_train, ge_train]'], {'ignore_index': '(True)'}), '([es_train, en_train, ge_train], ignore_index=True)\n', (9224, 9275), True, 'import pandas as pd\n'), ((9294, 9351), 'pandas.concat', 'pd.concat', (['[es_eval, en_eval, ge_eval]'], {'ignore_index': '(True)'}), '([es_eval, en_eval, ge_eval], ignore_index=True)\n', (9303, 9351), True, 'import pandas as pd\n'), ((9865, 9924), 'pandas.concat', 'pd.concat', (['[train_df, eval_df, ge_train]'], {'ignore_index': '(True)'}), '([train_df, eval_df, ge_train], ignore_index=True)\n', (9874, 9924), True, 'import pandas as pd\n'), ((10399, 10434), 'wandb.log', 'wandb.log', (["{'accuracy_es': es_bert}"], {}), "({'accuracy_es': es_bert})\n", (10408, 10434), False, 'import wandb\n'), ((10867, 10902), 'wandb.log', 'wandb.log', (["{'accuracy_en': en_bert}"], {}), "({'accuracy_en': en_bert})\n", (10876, 10902), False, 'import wandb\n'), ((11335, 11370), 'wandb.log', 'wandb.log', (["{'accuracy_ge': ge_bert}"], {}), "({'accuracy_ge': ge_bert})\n", (11344, 11370), False, 'import wandb\n'), ((11417, 11474), 'pandas.concat', 'pd.concat', (['[es_test, en_test, ge_test]'], {'ignore_index': '(True)'}), '([es_test, en_test, ge_test], ignore_index=True)\n', (11426, 11474), True, 'import pandas as pd\n'), ((11884, 11925), 'wandb.log', 'wandb.log', (["{'accuracy_multi': multi_bert}"], {}), "({'accuracy_multi': multi_bert})\n", (11893, 11925), False, 'import wandb\n'), ((1012, 1042), 'os.environ.get', 'os.environ.get', (['"""EVAL"""', '"""True"""'], {}), "('EVAL', 'True')\n", (1026, 1042), False, 'import os\n'), ((1080, 1116), 'os.environ.get', 'os.environ.get', (['"""OVERWRITE"""', '"""False"""'], {}), "('OVERWRITE', 'False')\n", (1094, 1116), False, 'import os\n'), ((1299, 1310), 'os.getpid', 'os.getpid', ([], {}), '()\n', (1308, 1310), False, 'import os\n'), ((1412, 1423), 'os.getpid', 'os.getpid', ([], {}), '()\n', (1421, 1423), False, 'import os\n'), ((2513, 2537), 'numpy.argmax', 'np.argmax', (['preds'], {'axis': '(1)'}), '(preds, axis=1)\n', (2522, 2537), True, 'import numpy as np\n'), ((901, 942), 'os.environ.get', 'os.environ.get', (['"""LANGS"""', '"""es,ge,en,multi"""'], {}), "('LANGS', 'es,ge,en,multi')\n", (915, 942), False, 'import os\n'), ((4031, 4069), 'pandas.read_csv', 'pd.read_csv', (['"""4b4v_prosodic_meter.csv"""'], {}), "('4b4v_prosodic_meter.csv')\n", (4042, 4069), True, 'import pandas as pd\n'), ((5465, 5503), 'pandas.read_csv', 'pd.read_csv', (['"""po-emo-metricalizer.csv"""'], {}), "('po-emo-metricalizer.csv')\n", (5476, 5503), True, 'import pandas as pd\n')]
if not __name__ == "__main__": print("Started <Pycraft_StartupAnimation>") class GenerateStartupScreen: def __init__(self): pass def Start(self): try: self.Display.fill(self.BackgroundCol) self.mod_Pygame__.display.flip() self.mod_Pygame__.display.set_caption(f"Pycraft: v{self.version}: Welcome") PresentsFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 35) PycraftFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 60) NameFont = self.mod_Pygame__.font.Font(self.mod_OS__.path.join(self.base_folder, ("Fonts\\Book Antiqua.ttf")), 45) NameText = NameFont.render("<NAME>", True, self.FontCol) NameTextWidth = NameText.get_width() NameTextHeight = NameText.get_height() PresentsText = PresentsFont.render("presents", True, self.FontCol) PycraftText = PycraftFont.render("Pycraft", True, self.FontCol) PycraftTextWidth = PycraftText.get_width() PycraftTextHeight = PycraftText.get_height() iteration = 0 clock = self.mod_Pygame__.time.Clock() if self.RunFullStartup == True: while iteration <= (60*3): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(NameText, ((self.realWidth-NameTextWidth)/2, (self.realHeight-NameTextHeight)/2)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() iteration = 0 while iteration <= (60*2): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(NameText, ((self.realWidth-NameTextWidth)/2, (self.realHeight-NameTextHeight)/2)) self.Display.blit(PresentsText, ((((self.realWidth-NameTextWidth)/2)+120), ((self.realHeight-NameTextHeight)/2)+30)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() iteration = 0 while iteration <= (60*3): self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(PycraftText, ((self.realWidth-PycraftTextWidth)/2, (self.realHeight-PycraftTextHeight)/2)) iteration += 1 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() y = 0 while True: self.realWidth, self.realHeight = self.mod_Pygame__.display.get_window_size() self.Display.fill(self.BackgroundCol) self.Display.blit(PycraftText, ((self.realWidth-PycraftTextWidth)/2, ((self.realHeight-PycraftTextHeight)/2)-y)) y += 2 if self.realWidth < 1280: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, 1280, self.SavedHeight) if self.realHeight < 720: self.mod_DisplayUtils__.DisplayUtils.GenerateMinDisplay(self, self.SavedWidth, 720) self.mod_Pygame__.display.flip() clock.tick(60) for event in self.mod_Pygame__.event.get(): if event.type == self.mod_Pygame__.QUIT: self.Stop_Thread_Event.set() self.Thread_StartLongThread.join() self.Thread_AdaptiveMode.join() self.Thread_StartLongThread.join() self.mod_Pygame__.quit() self.mod_Sys__.exit("Thanks for playing") quit() if ((self.realHeight-PycraftTextHeight)/2)-y <= 0: self.RunFullStartup = False return None except Exception as Message: self.RunFullStartup = False return Message else: print("You need to run this as part of Pycraft") import tkinter as tk from tkinter import messagebox root = tk.Tk() root.withdraw() messagebox.showerror("Startup Fail", "You need to run this as part of Pycraft, please run the 'main.py' file") quit()
[ "tkinter.messagebox.showerror", "tkinter.Tk" ]
[((7525, 7532), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (7530, 7532), True, 'import tkinter as tk\n'), ((7559, 7673), 'tkinter.messagebox.showerror', 'messagebox.showerror', (['"""Startup Fail"""', '"""You need to run this as part of Pycraft, please run the \'main.py\' file"""'], {}), '(\'Startup Fail\',\n "You need to run this as part of Pycraft, please run the \'main.py\' file")\n', (7579, 7673), False, 'from tkinter import messagebox\n')]
#!/usr/bin/env python3 """Script to do basic health checks of the system and turn on an LED on BCM pin 12 (pin 32 on header) if they pass, turn Off otherwise. """ import time import RPi.GPIO as GPIO import subprocess # The BCM pin number that the LED is wired to. When the pin # is at 3.3V the LED is On. LED_PIN = 12 GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(LED_PIN, GPIO.OUT) # ----- Test for Internet availability. # Try to ping for a minute before declaring that the Internet # is not available internet_available = False for i in range(12): if subprocess.call('/bin/ping -q -c1 8.8.8.8', shell=True) == 0: internet_available = True break time.sleep(5) # Set LED according to results of test GPIO.output(LED_PIN, internet_available)
[ "RPi.GPIO.setup", "RPi.GPIO.output", "RPi.GPIO.setwarnings", "time.sleep", "subprocess.call", "RPi.GPIO.setmode" ]
[((322, 344), 'RPi.GPIO.setmode', 'GPIO.setmode', (['GPIO.BCM'], {}), '(GPIO.BCM)\n', (334, 344), True, 'import RPi.GPIO as GPIO\n'), ((345, 368), 'RPi.GPIO.setwarnings', 'GPIO.setwarnings', (['(False)'], {}), '(False)\n', (361, 368), True, 'import RPi.GPIO as GPIO\n'), ((369, 398), 'RPi.GPIO.setup', 'GPIO.setup', (['LED_PIN', 'GPIO.OUT'], {}), '(LED_PIN, GPIO.OUT)\n', (379, 398), True, 'import RPi.GPIO as GPIO\n'), ((744, 784), 'RPi.GPIO.output', 'GPIO.output', (['LED_PIN', 'internet_available'], {}), '(LED_PIN, internet_available)\n', (755, 784), True, 'import RPi.GPIO as GPIO\n'), ((690, 703), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (700, 703), False, 'import time\n'), ((576, 631), 'subprocess.call', 'subprocess.call', (['"""/bin/ping -q -c1 8.8.8.8"""'], {'shell': '(True)'}), "('/bin/ping -q -c1 8.8.8.8', shell=True)\n", (591, 631), False, 'import subprocess\n')]
import json import numpy as np from tqdm import tqdm # Change these based on experiment #exp_dataset = 'mask_char_oov_test_set.db' #exp_name = 'results_test_mask_char' #exp_dataset = 'mask_2_oov_test_set.db' #exp_name = 'results_test_mask_2' #exp_dataset = 'mask_2_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_2_ensemble_all_5' #exp_dataset = 'synonyms_mask_char_l03_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_char_l03' #exp_dataset = 'synonyms_mask_char_03m_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_char_03m' #exp_dataset = 'synonyms_mask_2_03l_oov_test_set.db' #exp_name = 'results_test_synonyms_mask_2_03l' exp_dataset = 'mask_2_oov_test_set.db' exp_name = 'results_test_synonyms_mask_2_fixed' q_list_file = '/scratch/cluster/billyang/vqa_dataset/txt_db/oov_datasets/{}/questions_changed.json'.format(exp_dataset) exp_ans_file = '/scratch/cluster/billyang/uniter_image/vqa_joint_trained/{}/results_3000_all.json'.format(exp_name) #exp_ans_file = '/scratch/cluster/billyang/uniter_image/vqa_joint_fixed_trained/{}/results_3000_all.json'.format(exp_name) q_list = json.load(open(q_list_file)) exp_ans_list = json.load(open(exp_ans_file)) baseline_ans_list = json.load(open('/scratch/cluster/billyang/uniter_image/vqa_joint_trained/results_test_normal_test/results_3000_all.json')) #baseline_ans_list = json.load(open('/scratch/cluster/billyang/uniter_image/vqa_joint_fixed_trained/results_test_normal_test_fixed/results_3000_all.json')) exp_ans = {o['question_id']: o['answer'] for o in exp_ans_list} baseline_ans = {o['question_id']: o['answer'] for o in baseline_ans_list} gt_ans = json.load(open('oov_test_full_answers.json')) results = {} results['num_questions'] = len(q_list) exp_tot_score = 0 bl_tot_score = 0 rtw = [] wtr = [] def getscore(answer, answers, scores): if answer in answers: return scores[answers.index(answer)] return 0 for qid in tqdm(q_list): exp_score = getscore(exp_ans[qid], gt_ans[qid]['strings'], gt_ans[qid]['scores']) exp_tot_score += exp_score bl_score = getscore(baseline_ans[qid], gt_ans[qid]['strings'], gt_ans[qid]['scores']) bl_tot_score += bl_score if exp_score > 0 and bl_score == 0: wtr.append(qid) if bl_score > 0 and exp_score == 0: rtw.append(qid) results['exp_score'] = exp_tot_score / len(q_list) results['bl_score'] = bl_tot_score / len(q_list) results['rtw'] = rtw results['wtr'] = wtr results['rtw_count'] = len(rtw) results['wtr_count'] = len(wtr) print("dumping") json.dump(results, open('{}.json'.format(exp_name), 'w')) # get new scores # find answers wrong to right # find answers right to wrong
[ "tqdm.tqdm" ]
[((1923, 1935), 'tqdm.tqdm', 'tqdm', (['q_list'], {}), '(q_list)\n', (1927, 1935), False, 'from tqdm import tqdm\n')]
import bts.model as model import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') BATCH_SIZE = 6 FILTER_LIST = [16,32,64,128,256] unet_model = model.DynamicUNet(FILTER_LIST) unet_model.summary(batch_size=BATCH_SIZE, device=device)
[ "bts.model.DynamicUNet", "torch.cuda.is_available" ]
[((171, 201), 'bts.model.DynamicUNet', 'model.DynamicUNet', (['FILTER_LIST'], {}), '(FILTER_LIST)\n', (188, 201), True, 'import bts.model as model\n'), ((72, 97), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (95, 97), False, 'import torch\n')]
# -*- coding: utf-8 -*- import sphinx_rtd_theme # -- General configuration ----------------------------------------------- extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'bravado' copyright = u'2013, Digium, Inc.; 2014-2015, Yelp, Inc' exclude_patterns = [] pygments_style = 'sphinx' autoclass_content = 'both' # -- Options for HTML output --------------------------------------------- html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] html_static_path = ['_static'] htmlhelp_basename = 'bravado-pydoc' intersphinx_mapping = { 'python': ('http://docs.python.org/', None), 'bravado-core': ('https://bravado-core.readthedocs.io/en/latest/', None), }
[ "sphinx_rtd_theme.get_html_theme_path" ]
[((767, 805), 'sphinx_rtd_theme.get_html_theme_path', 'sphinx_rtd_theme.get_html_theme_path', ([], {}), '()\n', (803, 805), False, 'import sphinx_rtd_theme\n')]
import importlib import os import pytest from helpers import running_on_ci import janitor.biology # noqa: F403, F401 # Skip all tests if Biopython not installed pytestmark = pytest.mark.skipif( (importlib.util.find_spec("Bio") is None) & ~running_on_ci(), reason="Biology tests relying on Biopython only required for CI", ) @pytest.mark.biology def test_join_fasta(biodf): """Test adding sequence from FASTA file in ``sequence`` column.""" df = biodf.join_fasta( filename=os.path.join(pytest.TEST_DATA_DIR, "sequences.fasta"), id_col="sequence_accession", column_name="sequence", ) assert "sequence" in df.columns
[ "importlib.util.find_spec", "helpers.running_on_ci", "os.path.join" ]
[((203, 234), 'importlib.util.find_spec', 'importlib.util.find_spec', (['"""Bio"""'], {}), "('Bio')\n", (227, 234), False, 'import importlib\n'), ((247, 262), 'helpers.running_on_ci', 'running_on_ci', ([], {}), '()\n', (260, 262), False, 'from helpers import running_on_ci\n'), ((502, 555), 'os.path.join', 'os.path.join', (['pytest.TEST_DATA_DIR', '"""sequences.fasta"""'], {}), "(pytest.TEST_DATA_DIR, 'sequences.fasta')\n", (514, 555), False, 'import os\n')]
"""TilePyramid creation.""" import pytest from shapely.geometry import Point from shapely.ops import unary_union from types import GeneratorType from tilematrix import TilePyramid, snap_bounds def test_init(): """Initialize TilePyramids.""" for tptype in ["geodetic", "mercator"]: assert TilePyramid(tptype) with pytest.raises(ValueError): TilePyramid("invalid") with pytest.raises(ValueError): TilePyramid() assert hash(TilePyramid(tptype)) def test_metatiling(): """Metatiling setting.""" for metatiling in [1, 2, 4, 8, 16]: assert TilePyramid("geodetic", metatiling=metatiling) try: TilePyramid("geodetic", metatiling=5) raise Exception() except ValueError: pass def test_tile_size(): """Tile sizes.""" for tile_size in [128, 256, 512, 1024]: tp = TilePyramid("geodetic", tile_size=tile_size) assert tp.tile_size == tile_size def test_intersect(): """Get intersecting Tiles.""" # same metatiling tp = TilePyramid("geodetic") intersect_tile = TilePyramid("geodetic").tile(5, 1, 1) control = {(5, 1, 1)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles # smaller metatiling tp = TilePyramid("geodetic") intersect_tile = TilePyramid("geodetic", metatiling=2).tile(5, 1, 1) control = {(5, 2, 2), (5, 2, 3), (5, 3, 3), (5, 3, 2)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles # bigger metatiling tp = TilePyramid("geodetic", metatiling=2) intersect_tile = TilePyramid("geodetic").tile(5, 1, 1) control = {(5, 0, 0)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles intersect_tile = TilePyramid("geodetic").tile(4, 12, 31) control = {(4, 6, 15)} test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} assert control == test_tiles # different CRSes tp = TilePyramid("geodetic") intersect_tile = TilePyramid("mercator").tile(5, 1, 1) try: test_tiles = {tile.id for tile in tp.intersecting(intersect_tile)} raise Exception() except ValueError: pass def test_tilepyramid_compare(grid_definition_proj, grid_definition_epsg): """Comparison operators.""" gproj, gepsg = grid_definition_proj, grid_definition_epsg # predefined assert TilePyramid("geodetic") == TilePyramid("geodetic") assert TilePyramid("geodetic") != TilePyramid("geodetic", metatiling=2) assert TilePyramid("geodetic") != TilePyramid("geodetic", tile_size=512) assert TilePyramid("mercator") == TilePyramid("mercator") assert TilePyramid("mercator") != TilePyramid("mercator", metatiling=2) assert TilePyramid("mercator") != TilePyramid("mercator", tile_size=512) # epsg based assert TilePyramid(gepsg) == TilePyramid(gepsg) assert TilePyramid(gepsg) != TilePyramid(gepsg, metatiling=2) assert TilePyramid(gepsg) != TilePyramid(gepsg, tile_size=512) # proj based assert TilePyramid(gproj) == TilePyramid(gproj) assert TilePyramid(gproj) != TilePyramid(gproj, metatiling=2) assert TilePyramid(gproj) != TilePyramid(gproj, tile_size=512) # altered bounds abounds = dict(**gproj) abounds.update(bounds=(-5000000.0, -5000000.0, 5000000.0, 5000000.0)) assert TilePyramid(abounds) == TilePyramid(abounds) assert TilePyramid(gproj) != TilePyramid(abounds) # other type assert TilePyramid("geodetic") != "string" def test_grid_compare(grid_definition_proj, grid_definition_epsg): """Comparison operators.""" gproj, gepsg = grid_definition_proj, grid_definition_epsg # predefined assert TilePyramid("geodetic").grid == TilePyramid("geodetic").grid assert TilePyramid("geodetic").grid == TilePyramid("geodetic", metatiling=2).grid assert TilePyramid("geodetic").grid == TilePyramid("geodetic", tile_size=512).grid assert TilePyramid("mercator").grid == TilePyramid("mercator").grid assert TilePyramid("mercator").grid == TilePyramid("mercator", metatiling=2).grid assert TilePyramid("mercator").grid == TilePyramid("mercator", tile_size=512).grid # epsg based assert TilePyramid(gepsg).grid == TilePyramid(gepsg).grid assert TilePyramid(gepsg).grid == TilePyramid(gepsg, metatiling=2).grid assert TilePyramid(gepsg).grid == TilePyramid(gepsg, tile_size=512).grid # proj based assert TilePyramid(gproj).grid == TilePyramid(gproj).grid assert TilePyramid(gproj).grid == TilePyramid(gproj, metatiling=2).grid assert TilePyramid(gproj).grid == TilePyramid(gproj, tile_size=512).grid # altered bounds abounds = dict(**gproj) abounds.update(bounds=(-5000000.0, -5000000.0, 5000000.0, 5000000.0)) assert TilePyramid(abounds).grid == TilePyramid(abounds).grid assert TilePyramid(gproj).grid != TilePyramid(abounds).grid def test_tile_from_xy(): tp = TilePyramid("geodetic") zoom = 5 # point inside tile p_in = (0.5, 0.5, zoom) control_in = [ ((5, 15, 32), "rb"), ((5, 15, 32), "lb"), ((5, 15, 32), "rt"), ((5, 15, 32), "lt"), ] for tile_id, on_edge_use in control_in: tile = tp.tile_from_xy(*p_in, on_edge_use=on_edge_use) assert tile.id == tile_id assert Point(p_in[0], p_in[1]).within(tile.bbox()) # point is on tile edge p_edge = (0, 0, zoom) control_edge = [ ((5, 16, 32), "rb"), ((5, 16, 31), "lb"), ((5, 15, 32), "rt"), ((5, 15, 31), "lt"), ] for tile_id, on_edge_use in control_edge: tile = tp.tile_from_xy(*p_edge, on_edge_use=on_edge_use) assert tile.id == tile_id assert Point(p_edge[0], p_edge[1]).touches(tile.bbox()) with pytest.raises(ValueError): tp.tile_from_xy(180, -90, zoom, on_edge_use="rb") with pytest.raises(ValueError): tp.tile_from_xy(180, -90, zoom, on_edge_use="lb") tile = tp.tile_from_xy(180, -90, zoom, on_edge_use="rt") assert tile.id == (5, 31, 0) tile = tp.tile_from_xy(180, -90, zoom, on_edge_use="lt") assert tile.id == (5, 31, 63) with pytest.raises(TypeError): tp.tile_from_xy(-180, 90, zoom, on_edge_use="lt") with pytest.raises(TypeError): tp.tile_from_xy(-180, 90, zoom, on_edge_use="rt") tile = tp.tile_from_xy(-180, 90, zoom, on_edge_use="rb") assert tile.id == (5, 0, 0) tile = tp.tile_from_xy(-180, 90, zoom, on_edge_use="lb") assert tile.id == (5, 0, 63) with pytest.raises(ValueError): tp.tile_from_xy(-180, 90, zoom, on_edge_use="invalid") def test_tiles_from_bounds(grid_definition_proj): # global pyramids tp = TilePyramid("geodetic") parent = tp.tile(8, 5, 5) from_bounds = set([t.id for t in tp.tiles_from_bounds(parent.bounds(), 9)]) children = set([t.id for t in parent.get_children()]) assert from_bounds == children # non-global pyramids tp = TilePyramid(grid_definition_proj) parent = tp.tile(8, 0, 0) from_bounds = set([t.id for t in tp.tiles_from_bounds(parent.bounds(), 9)]) children = set([t.id for t in parent.get_children()]) assert from_bounds == children def test_tiles_from_bounds_batch_by_row(): tp = TilePyramid("geodetic") bounds = (0, 0, 90, 90) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="row") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_row = None tiles = 0 for tile_row in tp.tiles_from_bounds(bounds, zoom, batch_by="row"): assert isinstance(tile_row, GeneratorType) previous_tile = None for tile in tile_row: tiles += 1 if previous_row is None: if previous_tile is not None: assert tile.col == previous_tile.col + 1 else: if previous_tile is not None: assert tile.col == previous_tile.col + 1 assert tile.row == previous_tile.row assert tile.row == previous_row + 1 previous_tile = tile previous_row = tile.row assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_tiles_from_bounds_batch_by_column(): tp = TilePyramid("geodetic") bounds = (0, 0, 90, 90) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="column") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_column = None tiles = 0 for tile_column in tp.tiles_from_bounds(bounds, zoom, batch_by="column"): assert isinstance(tile_column, GeneratorType) previous_tile = None for tile in tile_column: tiles += 1 if previous_column is None: if previous_tile is not None: assert tile.row == previous_tile.row + 1 else: if previous_tile is not None: assert tile.row == previous_tile.row + 1 assert tile.col == previous_tile.col assert tile.col == previous_column + 1 previous_tile = tile previous_column = tile.col assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_tiles_from_bounds_batch_by_row_antimeridian_bounds(): tp = TilePyramid("geodetic") bounds = (0, 0, 185, 95) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="row") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_row = None tiles = 0 for tile_row in tp.tiles_from_bounds(bounds, zoom, batch_by="row"): assert isinstance(tile_row, GeneratorType) previous_tile = None for tile in tile_row: tiles += 1 if previous_row is None: if previous_tile is not None: assert tile.col > previous_tile.col else: if previous_tile is not None: assert tile.col > previous_tile.col assert tile.row == previous_tile.row assert tile.row > previous_row previous_tile = tile previous_row = tile.row assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_tiles_from_bounds_batch_by_row_both_antimeridian_bounds(): tp = TilePyramid("geodetic") bounds = (-185, 0, 185, 95) zoom = 8 tiles = tp.tiles_from_bounds(bounds, zoom, batch_by="row") assert isinstance(tiles, GeneratorType) assert list(tiles) previous_row = None tiles = 0 for tile_row in tp.tiles_from_bounds(bounds, zoom, batch_by="row"): assert isinstance(tile_row, GeneratorType) previous_tile = None for tile in tile_row: tiles += 1 if previous_row is None: if previous_tile is not None: assert tile.col == previous_tile.col + 1 else: if previous_tile is not None: assert tile.col == previous_tile.col + 1 assert tile.row == previous_tile.row assert tile.row == previous_row + 1 previous_tile = tile previous_row = tile.row assert tiles == len(list(tp.tiles_from_bounds(bounds, zoom))) def test_snap_bounds(): bounds = (0, 1, 2, 3) tp = TilePyramid("geodetic") zoom = 8 snapped = snap_bounds(bounds=bounds, tile_pyramid=tp, zoom=zoom) control = unary_union( [tile.bbox() for tile in tp.tiles_from_bounds(bounds, zoom)] ).bounds assert snapped == control pixelbuffer = 10 snapped = snap_bounds( bounds=bounds, tile_pyramid=tp, zoom=zoom, pixelbuffer=pixelbuffer ) control = unary_union( [tile.bbox(pixelbuffer) for tile in tp.tiles_from_bounds(bounds, zoom)] ).bounds assert snapped == control def test_deprecated(): tp = TilePyramid("geodetic") assert tp.type assert tp.srid assert tp.tile_x_size(0) assert tp.tile_y_size(0) assert tp.tile_height(0) assert tp.tile_width(0)
[ "shapely.geometry.Point", "tilematrix.TilePyramid", "tilematrix.snap_bounds", "pytest.raises" ]
[((1042, 1065), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (1053, 1065), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((1290, 1313), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (1301, 1313), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((1584, 1621), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'metatiling': '(2)'}), "('geodetic', metatiling=2)\n", (1595, 1621), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2035, 2058), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (2046, 2058), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((5005, 5028), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (5016, 5028), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((6780, 6803), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (6791, 6803), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((7042, 7075), 'tilematrix.TilePyramid', 'TilePyramid', (['grid_definition_proj'], {}), '(grid_definition_proj)\n', (7053, 7075), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((7333, 7356), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (7344, 7356), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((8346, 8369), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (8357, 8369), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((9403, 9426), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (9414, 9426), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((10424, 10447), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (10435, 10447), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((11445, 11468), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (11456, 11468), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((11497, 11551), 'tilematrix.snap_bounds', 'snap_bounds', ([], {'bounds': 'bounds', 'tile_pyramid': 'tp', 'zoom': 'zoom'}), '(bounds=bounds, tile_pyramid=tp, zoom=zoom)\n', (11508, 11551), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((11727, 11806), 'tilematrix.snap_bounds', 'snap_bounds', ([], {'bounds': 'bounds', 'tile_pyramid': 'tp', 'zoom': 'zoom', 'pixelbuffer': 'pixelbuffer'}), '(bounds=bounds, tile_pyramid=tp, zoom=zoom, pixelbuffer=pixelbuffer)\n', (11738, 11806), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((12005, 12028), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (12016, 12028), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((308, 327), 'tilematrix.TilePyramid', 'TilePyramid', (['tptype'], {}), '(tptype)\n', (319, 327), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((337, 362), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (350, 362), False, 'import pytest\n'), ((372, 394), 'tilematrix.TilePyramid', 'TilePyramid', (['"""invalid"""'], {}), "('invalid')\n", (383, 394), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((404, 429), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (417, 429), False, 'import pytest\n'), ((439, 452), 'tilematrix.TilePyramid', 'TilePyramid', ([], {}), '()\n', (450, 452), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((469, 488), 'tilematrix.TilePyramid', 'TilePyramid', (['tptype'], {}), '(tptype)\n', (480, 488), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((600, 646), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'metatiling': 'metatiling'}), "('geodetic', metatiling=metatiling)\n", (611, 646), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((664, 701), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'metatiling': '(5)'}), "('geodetic', metatiling=5)\n", (675, 701), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((867, 911), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'tile_size': 'tile_size'}), "('geodetic', tile_size=tile_size)\n", (878, 911), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2462, 2485), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (2473, 2485), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2489, 2512), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (2500, 2512), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2524, 2547), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (2535, 2547), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2551, 2588), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'metatiling': '(2)'}), "('geodetic', metatiling=2)\n", (2562, 2588), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2600, 2623), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (2611, 2623), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2627, 2665), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'tile_size': '(512)'}), "('geodetic', tile_size=512)\n", (2638, 2665), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2677, 2700), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (2688, 2700), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2704, 2727), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (2715, 2727), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2739, 2762), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (2750, 2762), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2766, 2803), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {'metatiling': '(2)'}), "('mercator', metatiling=2)\n", (2777, 2803), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2815, 2838), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (2826, 2838), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2842, 2880), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {'tile_size': '(512)'}), "('mercator', tile_size=512)\n", (2853, 2880), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2909, 2927), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (2920, 2927), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2931, 2949), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (2942, 2949), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2961, 2979), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (2972, 2979), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2983, 3015), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {'metatiling': '(2)'}), '(gepsg, metatiling=2)\n', (2994, 3015), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3027, 3045), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (3038, 3045), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3049, 3082), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {'tile_size': '(512)'}), '(gepsg, tile_size=512)\n', (3060, 3082), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3111, 3129), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (3122, 3129), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3133, 3151), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (3144, 3151), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3163, 3181), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (3174, 3181), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3185, 3217), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {'metatiling': '(2)'}), '(gproj, metatiling=2)\n', (3196, 3217), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3229, 3247), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (3240, 3247), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3251, 3284), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {'tile_size': '(512)'}), '(gproj, tile_size=512)\n', (3262, 3284), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3419, 3439), 'tilematrix.TilePyramid', 'TilePyramid', (['abounds'], {}), '(abounds)\n', (3430, 3439), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3443, 3463), 'tilematrix.TilePyramid', 'TilePyramid', (['abounds'], {}), '(abounds)\n', (3454, 3463), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3475, 3493), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (3486, 3493), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3497, 3517), 'tilematrix.TilePyramid', 'TilePyramid', (['abounds'], {}), '(abounds)\n', (3508, 3517), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3546, 3569), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (3557, 3569), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((5853, 5878), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (5866, 5878), False, 'import pytest\n'), ((5947, 5972), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (5960, 5972), False, 'import pytest\n'), ((6232, 6256), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (6245, 6256), False, 'import pytest\n'), ((6325, 6349), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (6338, 6349), False, 'import pytest\n'), ((6607, 6632), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (6620, 6632), False, 'import pytest\n'), ((1087, 1110), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (1098, 1110), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((1335, 1372), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'metatiling': '(2)'}), "('geodetic', metatiling=2)\n", (1346, 1372), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((1643, 1666), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (1654, 1666), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((1832, 1855), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (1843, 1855), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((2080, 2103), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (2091, 2103), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3773, 3796), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (3784, 3796), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3805, 3828), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (3816, 3828), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3845, 3868), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (3856, 3868), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3877, 3914), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'metatiling': '(2)'}), "('geodetic', metatiling=2)\n", (3888, 3914), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3931, 3954), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {}), "('geodetic')\n", (3942, 3954), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((3963, 4001), 'tilematrix.TilePyramid', 'TilePyramid', (['"""geodetic"""'], {'tile_size': '(512)'}), "('geodetic', tile_size=512)\n", (3974, 4001), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4018, 4041), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (4029, 4041), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4050, 4073), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (4061, 4073), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4090, 4113), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (4101, 4113), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4122, 4159), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {'metatiling': '(2)'}), "('mercator', metatiling=2)\n", (4133, 4159), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4176, 4199), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {}), "('mercator')\n", (4187, 4199), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4208, 4246), 'tilematrix.TilePyramid', 'TilePyramid', (['"""mercator"""'], {'tile_size': '(512)'}), "('mercator', tile_size=512)\n", (4219, 4246), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4280, 4298), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (4291, 4298), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4307, 4325), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (4318, 4325), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4342, 4360), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (4353, 4360), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4369, 4401), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {'metatiling': '(2)'}), '(gepsg, metatiling=2)\n', (4380, 4401), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4418, 4436), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {}), '(gepsg)\n', (4429, 4436), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4445, 4478), 'tilematrix.TilePyramid', 'TilePyramid', (['gepsg'], {'tile_size': '(512)'}), '(gepsg, tile_size=512)\n', (4456, 4478), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4512, 4530), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (4523, 4530), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4539, 4557), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (4550, 4557), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4574, 4592), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (4585, 4592), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4601, 4633), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {'metatiling': '(2)'}), '(gproj, metatiling=2)\n', (4612, 4633), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4650, 4668), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (4661, 4668), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4677, 4710), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {'tile_size': '(512)'}), '(gproj, tile_size=512)\n', (4688, 4710), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4850, 4870), 'tilematrix.TilePyramid', 'TilePyramid', (['abounds'], {}), '(abounds)\n', (4861, 4870), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4879, 4899), 'tilematrix.TilePyramid', 'TilePyramid', (['abounds'], {}), '(abounds)\n', (4890, 4899), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4916, 4934), 'tilematrix.TilePyramid', 'TilePyramid', (['gproj'], {}), '(gproj)\n', (4927, 4934), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((4943, 4963), 'tilematrix.TilePyramid', 'TilePyramid', (['abounds'], {}), '(abounds)\n', (4954, 4963), False, 'from tilematrix import TilePyramid, snap_bounds\n'), ((5392, 5415), 'shapely.geometry.Point', 'Point', (['p_in[0]', 'p_in[1]'], {}), '(p_in[0], p_in[1])\n', (5397, 5415), False, 'from shapely.geometry import Point\n'), ((5794, 5821), 'shapely.geometry.Point', 'Point', (['p_edge[0]', 'p_edge[1]'], {}), '(p_edge[0], p_edge[1])\n', (5799, 5821), False, 'from shapely.geometry import Point\n')]
# -*- coding: utf-8 -*- """ setup.py script """ import io from collections import OrderedDict from setuptools import setup, find_packages with io.open('README.md', 'rt', encoding='utf8') as f: README = f.read() setup( name='reportbuilder', version='0.0.1', url='http://github.com/giovannicuriel/report-builder', project_urls=OrderedDict(( ('Code', 'https://github.com/giovannicuriel/report-builder.git'), ('Issue tracker', 'https://github.com/giovannicuriel/report-builder/issues'), )), license='BSD-2-Clause', author='<NAME>', author_email='<EMAIL>', description='Sample package for Python training courses', long_description=README, packages=["reportbuilder"], include_package_data=True, zip_safe=False, platforms=[any], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", ], install_requires=[ 'flask==1.1.1' ], entry_points={ 'console_scripts': [ 'report-builder = reportbuilder.app:main' ] } )
[ "collections.OrderedDict", "io.open" ]
[((145, 188), 'io.open', 'io.open', (['"""README.md"""', '"""rt"""'], {'encoding': '"""utf8"""'}), "('README.md', 'rt', encoding='utf8')\n", (152, 188), False, 'import io\n'), ((348, 518), 'collections.OrderedDict', 'OrderedDict', (["(('Code', 'https://github.com/giovannicuriel/report-builder.git'), (\n 'Issue tracker', 'https://github.com/giovannicuriel/report-builder/issues')\n )"], {}), "((('Code',\n 'https://github.com/giovannicuriel/report-builder.git'), (\n 'Issue tracker',\n 'https://github.com/giovannicuriel/report-builder/issues')))\n", (359, 518), False, 'from collections import OrderedDict\n')]
from django.urls import path from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, \ LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, \ LocationUpdateView app_name = "locations" urlpatterns = [ path("", LocationListView.as_view(), name="list"), path("new/", LocationCreateView.as_view(), name="new"), path("edit/<int:pk>/", LocationUpdateView.as_view(), name="edit"), path("delete/<int:pk>/", LocationDeleteView.as_view(), name="delete"), path("<int:pk>/", LocationDetailView.as_view(), name="view"), path('<int:pk>/address-new/', LocationAddressCreateView.as_view(), name='address-new'), path('address/<int:pk>', LocationAddressDetailView.as_view(), name='address-view'), path('address/edit/<int:pk>', LocationAddressUpdateView.as_view(), name='address-edit'), ]
[ "itembase.core.views.location_views.LocationAddressUpdateView.as_view", "itembase.core.views.location_views.LocationDeleteView.as_view", "itembase.core.views.location_views.LocationListView.as_view", "itembase.core.views.location_views.LocationAddressDetailView.as_view", "itembase.core.views.location_views.LocationCreateView.as_view", "itembase.core.views.location_views.LocationDetailView.as_view", "itembase.core.views.location_views.LocationAddressCreateView.as_view", "itembase.core.views.location_views.LocationUpdateView.as_view" ]
[((320, 346), 'itembase.core.views.location_views.LocationListView.as_view', 'LocationListView.as_view', ([], {}), '()\n', (344, 346), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n'), ((379, 407), 'itembase.core.views.location_views.LocationCreateView.as_view', 'LocationCreateView.as_view', ([], {}), '()\n', (405, 407), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n'), ((449, 477), 'itembase.core.views.location_views.LocationUpdateView.as_view', 'LocationUpdateView.as_view', ([], {}), '()\n', (475, 477), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n'), ((522, 550), 'itembase.core.views.location_views.LocationDeleteView.as_view', 'LocationDeleteView.as_view', ([], {}), '()\n', (548, 550), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n'), ((590, 618), 'itembase.core.views.location_views.LocationDetailView.as_view', 'LocationDetailView.as_view', ([], {}), '()\n', (616, 618), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n'), ((668, 703), 'itembase.core.views.location_views.LocationAddressCreateView.as_view', 'LocationAddressCreateView.as_view', ([], {}), '()\n', (701, 703), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n'), ((755, 790), 'itembase.core.views.location_views.LocationAddressDetailView.as_view', 'LocationAddressDetailView.as_view', ([], {}), '()\n', (788, 790), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n'), ((848, 883), 'itembase.core.views.location_views.LocationAddressUpdateView.as_view', 'LocationAddressUpdateView.as_view', ([], {}), '()\n', (881, 883), False, 'from itembase.core.views.location_views import LocationAddressCreateView, LocationAddressDetailView, LocationAddressUpdateView, LocationCreateView, LocationDeleteView, LocationDetailView, LocationListView, LocationUpdateView\n')]
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import time from openerp.osv import fields, osv from openerp.tools.translate import _ class product_margin(osv.osv_memory): _name = 'product.margin' _description = 'Product Margin' _columns = { 'from_date': fields.date('From'), 'to_date': fields.date('To'), 'invoice_state': fields.selection([ ('paid', 'Paid'), ('open_paid', 'Open and Paid'), ('draft_open_paid', 'Draft, Open and Paid'), ], 'Invoice State', select=True, required=True), } _defaults = { 'from_date': time.strftime('%Y-01-01'), 'to_date': time.strftime('%Y-12-31'), 'invoice_state': "open_paid", } def action_open_window(self, cr, uid, ids, context=None): """ @param cr: the current row, from the database cursor, @param uid: the current user’s ID for security checks, @param ids: the ID or list of IDs if we want more than one @return: """ context = dict(context or {}) def ref(module, xml_id): proxy = self.pool.get('ir.model.data') return proxy.get_object_reference(cr, uid, module, xml_id) model, search_view_id = ref('product', 'product_search_form_view') model, graph_view_id = ref('product_margin', 'view_product_margin_graph') model, form_view_id = ref('product_margin', 'view_product_margin_form') model, tree_view_id = ref('product_margin', 'view_product_margin_tree') #get the current product.margin object to obtain the values from it records = self.browse(cr, uid, ids, context=context) record = records[0] context.update(invoice_state=record.invoice_state) if record.from_date: context.update(date_from=record.from_date) if record.to_date: context.update(date_to=record.to_date) views = [ (tree_view_id, 'tree'), (form_view_id, 'form'), (graph_view_id, 'graph') ] return { 'name': _('Product Margins'), 'context': context, 'view_type': 'form', "view_mode": 'tree,form,graph', 'res_model': 'product.product', 'type': 'ir.actions.act_window', 'views': views, 'view_id': False, 'search_view_id': search_view_id, } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
[ "openerp.osv.fields.selection", "time.strftime", "openerp.osv.fields.date", "openerp.tools.translate._" ]
[((1209, 1228), 'openerp.osv.fields.date', 'fields.date', (['"""From"""'], {}), "('From')\n", (1220, 1228), False, 'from openerp.osv import fields, osv\n'), ((1249, 1266), 'openerp.osv.fields.date', 'fields.date', (['"""To"""'], {}), "('To')\n", (1260, 1266), False, 'from openerp.osv import fields, osv\n'), ((1293, 1461), 'openerp.osv.fields.selection', 'fields.selection', (["[('paid', 'Paid'), ('open_paid', 'Open and Paid'), ('draft_open_paid',\n 'Draft, Open and Paid')]", '"""Invoice State"""'], {'select': '(True)', 'required': '(True)'}), "([('paid', 'Paid'), ('open_paid', 'Open and Paid'), (\n 'draft_open_paid', 'Draft, Open and Paid')], 'Invoice State', select=\n True, required=True)\n", (1309, 1461), False, 'from openerp.osv import fields, osv\n'), ((1546, 1571), 'time.strftime', 'time.strftime', (['"""%Y-01-01"""'], {}), "('%Y-01-01')\n", (1559, 1571), False, 'import time\n'), ((1592, 1617), 'time.strftime', 'time.strftime', (['"""%Y-12-31"""'], {}), "('%Y-12-31')\n", (1605, 1617), False, 'import time\n'), ((3053, 3073), 'openerp.tools.translate._', '_', (['"""Product Margins"""'], {}), "('Product Margins')\n", (3054, 3073), False, 'from openerp.tools.translate import _\n')]
"""Search-related testing utilities.""" import tempfile import time from contextlib import contextmanager import haystack from django.conf import settings from django.core.management import call_command from djblets.siteconfig.models import SiteConfiguration from reviewboard.admin.siteconfig import load_site_config def reindex_search(): """Rebuild the search index.""" call_command('rebuild_index', interactive=False) # On Whoosh, the above is asynchronous, and we can end up trying to read # before we end up writing, occasionally breaking tests. We need to # introduce just a bit of a delay. # # Yeah, this is still sketchy, but we can't turn off the async behavior # or receive notification that the write has completed. time.sleep(0.1) @contextmanager def search_enabled(on_the_fly_indexing=False, backend_id='whoosh'): """Temporarily enable indexed search. Args: on_the_fly_indexing (bool, optional): Whether or not to enable on-the-fly indexing. backend_id (unicode, optional): The search backend to enable. Valid options are "whoosh" (default) and "elasticsearch". """ siteconfig = SiteConfiguration.objects.get_current() old_backend_id = siteconfig.get('search_backend_id') old_backend_settings = siteconfig.get('search_backend_settings') if backend_id == 'whoosh': backend_settings = { 'PATH': tempfile.mkdtemp(suffix='search-index', dir=settings.SITE_DATA_DIR), 'STORAGE': 'file', } elif backend_id == 'elasticsearch': backend_settings = { 'INDEX_NAME': 'reviewboard-tests', 'URL': 'http://es.example.com:9200/', } else: raise NotImplementedError('Unexpected backend ID "%s"' % backend_id) siteconfig.settings.update({ 'search_enable': True, 'search_backend_id': backend_id, 'search_backend_settings': { backend_id: backend_settings, }, 'search_on_the_fly_indexing': on_the_fly_indexing, }) siteconfig.save(update_fields=('settings',)) load_site_config() try: yield haystack.connections['default'].reset_sessions() finally: siteconfig.settings.update({ 'search_enable': False, 'search_backend_id': old_backend_id, 'search_backend_settings': old_backend_settings, 'search_on_the_fly_indexing': False, }) siteconfig.save(update_fields=('settings',)) load_site_config()
[ "django.core.management.call_command", "reviewboard.admin.siteconfig.load_site_config", "time.sleep", "tempfile.mkdtemp", "djblets.siteconfig.models.SiteConfiguration.objects.get_current" ]
[((384, 432), 'django.core.management.call_command', 'call_command', (['"""rebuild_index"""'], {'interactive': '(False)'}), "('rebuild_index', interactive=False)\n", (396, 432), False, 'from django.core.management import call_command\n'), ((768, 783), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (778, 783), False, 'import time\n'), ((1205, 1244), 'djblets.siteconfig.models.SiteConfiguration.objects.get_current', 'SiteConfiguration.objects.get_current', ([], {}), '()\n', (1242, 1244), False, 'from djblets.siteconfig.models import SiteConfiguration\n'), ((2179, 2197), 'reviewboard.admin.siteconfig.load_site_config', 'load_site_config', ([], {}), '()\n', (2195, 2197), False, 'from reviewboard.admin.siteconfig import load_site_config\n'), ((2598, 2616), 'reviewboard.admin.siteconfig.load_site_config', 'load_site_config', ([], {}), '()\n', (2614, 2616), False, 'from reviewboard.admin.siteconfig import load_site_config\n'), ((1453, 1520), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {'suffix': '"""search-index"""', 'dir': 'settings.SITE_DATA_DIR'}), "(suffix='search-index', dir=settings.SITE_DATA_DIR)\n", (1469, 1520), False, 'import tempfile\n')]
# Copyright (C) 2015 <NAME> import json import os.path from remoot import pythonstarter, smartstarter import anycall from pydron.backend import worker from pydron.interpreter import scheduler, strategies from twisted.internet import defer preload_packages = [] def load_config(configfile=None): if not configfile: candidates = [] if "PYDRON_CONF" in os.environ: candidates.append(os.environ["PYDRON_CONF"]) candidates.append(os.path.abspath("pydron.conf")) candidates.append(os.path.expanduser("~/pydron.conf")) candidates.append("/etc/pydron.conf") for candidate in candidates: if os.path.exists(candidate): configfile = candidate break else: raise ValueError("Config file could not be found. Looked for %s" % repr(candidates)) with open(configfile, 'r') as f: cfg = json.load(f) def convert(obj): if isinstance(obj, dict): return {k:convert(v) for k,v in obj.iteritems()} elif isinstance(obj, list): return [convert(v) for v in obj] elif isinstance(obj, unicode): return str(obj) else: return obj cfg = convert(cfg) return cfg def create_scheduler(config, pool): if "scheduler" not in config: strategy_name = "trivial" else: strategy_name = config["scheduler"] if strategy_name == "trivial": strategy = strategies.TrivialSchedulingStrategy(pool) strategy = strategies.VerifySchedulingStrategy(strategy) else: raise ValueError("Unsupported scheduler: %s" % strategy_name) return scheduler.Scheduler(pool, strategy) def create_pool(config, rpcsystem, error_handler): """ starts workers and returns a pool of them. Returns two callbacks: * The first callbacks with the pool as soon as there is one worker. Errbacks if all starters failed to create a worker. * The second calls back once all workers have been started. This one can be cancelled. The given `error_handler` is invoked for every failed start. """ starters = [] for starter_conf in config["workers"]: starters.extend(_create_starters(starter_conf, rpcsystem)) pool = worker.Pool() ds = [] for i, starter in enumerate(starters): d = starter.start() def success(worker, i, starter): worker.nicename = "#%s" % i pool.add_worker(worker) def fail(failure): error_handler(failure) return failure d.addCallback(success, i, starter) ds.append(d) d = defer.DeferredList(ds, fireOnOneErrback=True, consumeErrors=True) def on_success(result): return pool def on_fail(firsterror): return firsterror.value.subFailure d.addCallbacks(on_success, on_fail) return d def create_rpc_system(conf): port_range = _parse_port_range(conf.get("data_ports", 0)) return anycall.create_tcp_rpc_system(port_range = port_range) def _create_starters(conf, rpcsystem): global preload_packages import pydron data_ports = _parse_port_range(conf.get("data_ports", 0)) preconnect = conf.get("preconnect", True) if 0 in data_ports: # use automatically selected ports. this is not compatible # with preconnect preconnect = False data_ports = [0] if data_ports != [0] and len(data_ports) <= conf["cores"]: if 0 not in data_ports: raise ValueError("Not enough ports configured for %r" % conf) starters = [] for i in range(conf["cores"]): starter_type = conf["type"] if starter_type == "multicore": starter = _multicore_starter(conf, rpcsystem) elif starter_type == "ssh": starter = _ssh_starter(conf, rpcsystem) elif starter_type == "cloud": starter = _ec2_starter(conf, rpcsystem) else: raise ValueError("Not supported worker type %s" % repr(starter_type)) if data_ports == [0]: port = 0 else: port = data_ports[i] smart = smartstarter.SmartStarter(starter, rpcsystem, anycall.create_tcp_rpc_system, list(preload_packages)+[pydron], preconnect = preconnect, data_port = port) starters.append(worker.WorkerStarter(smart)) return starters def _multicore_starter(conf, rpcsystem): return pythonstarter.LocalStarter() def _ssh_starter(conf, rpcsystem): starter = pythonstarter.SSHStarter(conf["hostname"], username=conf["username"], password=conf.get("password", None), private_key_files=conf.get("private_key_files", []), private_keys=conf.get("private_keys", []), tmp_dir=conf.get("tmp_dir", "/tmp")) return starter def _ec2_starter(conf, rpcsystem): starter = pythonstarter.EC2Starter(username=conf["username"], provider=conf["provider"], provider_keyid=conf["accesskeyid"], provider_key=conf["accesskey"], image_id=conf["imageid"], size_id=conf["sizeid"], public_key_file=conf["publickey"], private_key_file=conf["privatekey"], tmp_dir=conf.get("tmp_dir", "/tmp")) return starter def _parse_port_range(ports): try: return [int(ports)] except ValueError: pass if isinstance(ports, list): return [int(x) for x in ports] min_port, max_port = str(ports).split('-', 1) min_port = int(min_port) max_port = int(max_port) return range(min_port, max_port + 1)
[ "anycall.create_tcp_rpc_system", "pydron.backend.worker.Pool", "pydron.interpreter.scheduler.Scheduler", "remoot.pythonstarter.LocalStarter", "twisted.internet.defer.DeferredList", "pydron.backend.worker.WorkerStarter", "json.load", "pydron.interpreter.strategies.TrivialSchedulingStrategy", "pydron.interpreter.strategies.VerifySchedulingStrategy" ]
[((1718, 1753), 'pydron.interpreter.scheduler.Scheduler', 'scheduler.Scheduler', (['pool', 'strategy'], {}), '(pool, strategy)\n', (1737, 1753), False, 'from pydron.interpreter import scheduler, strategies\n'), ((2372, 2385), 'pydron.backend.worker.Pool', 'worker.Pool', ([], {}), '()\n', (2383, 2385), False, 'from pydron.backend import worker\n'), ((2776, 2841), 'twisted.internet.defer.DeferredList', 'defer.DeferredList', (['ds'], {'fireOnOneErrback': '(True)', 'consumeErrors': '(True)'}), '(ds, fireOnOneErrback=True, consumeErrors=True)\n', (2794, 2841), False, 'from twisted.internet import defer\n'), ((3129, 3181), 'anycall.create_tcp_rpc_system', 'anycall.create_tcp_rpc_system', ([], {'port_range': 'port_range'}), '(port_range=port_range)\n', (3158, 3181), False, 'import anycall\n'), ((4850, 4878), 'remoot.pythonstarter.LocalStarter', 'pythonstarter.LocalStarter', ([], {}), '()\n', (4876, 4878), False, 'from remoot import pythonstarter, smartstarter\n'), ((925, 937), 'json.load', 'json.load', (['f'], {}), '(f)\n', (934, 937), False, 'import json\n'), ((1514, 1556), 'pydron.interpreter.strategies.TrivialSchedulingStrategy', 'strategies.TrivialSchedulingStrategy', (['pool'], {}), '(pool)\n', (1550, 1556), False, 'from pydron.interpreter import scheduler, strategies\n'), ((1576, 1621), 'pydron.interpreter.strategies.VerifySchedulingStrategy', 'strategies.VerifySchedulingStrategy', (['strategy'], {}), '(strategy)\n', (1611, 1621), False, 'from pydron.interpreter import scheduler, strategies\n'), ((4735, 4762), 'pydron.backend.worker.WorkerStarter', 'worker.WorkerStarter', (['smart'], {}), '(smart)\n', (4755, 4762), False, 'from pydron.backend import worker\n')]
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ This plugin provides customization of the header displayed by pytest for reporting purposes. """ import os import sys import datetime import locale import math from collections import OrderedDict from astropy.tests.helper import ignore_warnings from astropy.utils.introspection import resolve_name PYTEST_HEADER_MODULES = OrderedDict([('Numpy', 'numpy'), ('Scipy', 'scipy'), ('Matplotlib', 'matplotlib'), ('h5py', 'h5py'), ('Pandas', 'pandas')]) # This always returns with Astropy's version from astropy import __version__ TESTED_VERSIONS = OrderedDict([('Astropy', __version__)]) def pytest_report_header(config): try: stdoutencoding = sys.stdout.encoding or 'ascii' except AttributeError: stdoutencoding = 'ascii' args = config.args # TESTED_VERSIONS can contain the affiliated package version, too if len(TESTED_VERSIONS) > 1: for pkg, version in TESTED_VERSIONS.items(): if pkg not in ['Astropy', 'astropy_helpers']: s = "\nRunning tests with {} version {}.\n".format( pkg, version) else: s = "\nRunning tests with Astropy version {}.\n".format( TESTED_VERSIONS['Astropy']) # Per https://github.com/astropy/astropy/pull/4204, strip the rootdir from # each directory argument if hasattr(config, 'rootdir'): rootdir = str(config.rootdir) if not rootdir.endswith(os.sep): rootdir += os.sep dirs = [arg[len(rootdir):] if arg.startswith(rootdir) else arg for arg in args] else: dirs = args s += "Running tests in {}.\n\n".format(" ".join(dirs)) s += "Date: {}\n\n".format(datetime.datetime.now().isoformat()[:19]) from platform import platform plat = platform() if isinstance(plat, bytes): plat = plat.decode(stdoutencoding, 'replace') s += f"Platform: {plat}\n\n" s += f"Executable: {sys.executable}\n\n" s += f"Full Python Version: \n{sys.version}\n\n" s += "encodings: sys: {}, locale: {}, filesystem: {}".format( sys.getdefaultencoding(), locale.getpreferredencoding(), sys.getfilesystemencoding()) s += '\n' s += f"byteorder: {sys.byteorder}\n" s += "float info: dig: {0.dig}, mant_dig: {0.dig}\n\n".format( sys.float_info) for module_display, module_name in PYTEST_HEADER_MODULES.items(): try: with ignore_warnings(DeprecationWarning): module = resolve_name(module_name) except ImportError: s += f"{module_display}: not available\n" else: try: version = module.__version__ except AttributeError: version = 'unknown (no __version__ attribute)' s += f"{module_display}: {version}\n" # Helpers version if 'astropy_helpers' in TESTED_VERSIONS: astropy_helpers_version = TESTED_VERSIONS['astropy_helpers'] else: try: from astropy.version import astropy_helpers_version except ImportError: astropy_helpers_version = None if astropy_helpers_version: s += f"astropy_helpers: {astropy_helpers_version}\n" special_opts = ["remote_data", "pep8"] opts = [] for op in special_opts: op_value = getattr(config.option, op, None) if op_value: if isinstance(op_value, str): op = ': '.join((op, op_value)) opts.append(op) if opts: s += "Using Astropy options: {}.\n".format(", ".join(opts)) return s def pytest_terminal_summary(terminalreporter): """Output a warning to IPython users in case any tests failed.""" try: get_ipython() except NameError: return if not terminalreporter.stats.get('failed'): # Only issue the warning when there are actually failures return terminalreporter.ensure_newline() terminalreporter.write_line( 'Some tests are known to fail when run from the IPython prompt; ' 'especially, but not limited to tests involving logging and warning ' 'handling. Unless you are certain as to the cause of the failure, ' 'please check that the failure occurs outside IPython as well. See ' 'http://docs.astropy.org/en/stable/known_issues.html#failing-logging-' 'tests-when-running-the-tests-in-ipython for more information.', yellow=True, bold=True)
[ "collections.OrderedDict", "sys.getfilesystemencoding", "sys.getdefaultencoding", "platform.platform", "locale.getpreferredencoding", "datetime.datetime.now", "astropy.tests.helper.ignore_warnings", "astropy.utils.introspection.resolve_name" ]
[((394, 521), 'collections.OrderedDict', 'OrderedDict', (["[('Numpy', 'numpy'), ('Scipy', 'scipy'), ('Matplotlib', 'matplotlib'), (\n 'h5py', 'h5py'), ('Pandas', 'pandas')]"], {}), "([('Numpy', 'numpy'), ('Scipy', 'scipy'), ('Matplotlib',\n 'matplotlib'), ('h5py', 'h5py'), ('Pandas', 'pandas')])\n", (405, 521), False, 'from collections import OrderedDict\n'), ((762, 801), 'collections.OrderedDict', 'OrderedDict', (["[('Astropy', __version__)]"], {}), "([('Astropy', __version__)])\n", (773, 801), False, 'from collections import OrderedDict\n'), ((1989, 1999), 'platform.platform', 'platform', ([], {}), '()\n', (1997, 1999), False, 'from platform import platform\n'), ((2292, 2316), 'sys.getdefaultencoding', 'sys.getdefaultencoding', ([], {}), '()\n', (2314, 2316), False, 'import sys\n'), ((2326, 2355), 'locale.getpreferredencoding', 'locale.getpreferredencoding', ([], {}), '()\n', (2353, 2355), False, 'import locale\n'), ((2365, 2392), 'sys.getfilesystemencoding', 'sys.getfilesystemencoding', ([], {}), '()\n', (2390, 2392), False, 'import sys\n'), ((2642, 2677), 'astropy.tests.helper.ignore_warnings', 'ignore_warnings', (['DeprecationWarning'], {}), '(DeprecationWarning)\n', (2657, 2677), False, 'from astropy.tests.helper import ignore_warnings\n'), ((2704, 2729), 'astropy.utils.introspection.resolve_name', 'resolve_name', (['module_name'], {}), '(module_name)\n', (2716, 2729), False, 'from astropy.utils.introspection import resolve_name\n'), ((1901, 1924), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1922, 1924), False, 'import datetime\n')]
#!/usr/local/bin/python3.6 """ Copyright (c) 2015-2019 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -------------------------------------------------------------------------------------- query suricata alert log """ import sys import os.path import re import sre_constants import shlex import ujson sys.path.insert(0, "/usr/local/opnsense/site-python") from log_helper import reverse_log_reader from params import update_params from lib import suricata_alert_log if __name__ == '__main__': # handle parameters parameters = {'limit': '0', 'offset': '0', 'filter': '', 'fileid': ''} update_params(parameters) # choose logfile by number if parameters['fileid'].isdigit(): suricata_log = '%s.%d' % (suricata_alert_log, int(parameters['fileid'])) else: suricata_log = suricata_alert_log if parameters['limit'].isdigit(): limit = int(parameters['limit']) else: limit = 0 if parameters['offset'].isdigit(): offset = int(parameters['offset']) else: offset = 0 data_filters = {} data_filters_comp = {} for filter_txt in shlex.split(parameters['filter']): filterField = filter_txt.split('/')[0] if filter_txt.find('/') > -1: data_filters[filterField] = '/'.join(filter_txt.split('/')[1:]) filter_regexp = data_filters[filterField] filter_regexp = filter_regexp.replace('*', '.*') filter_regexp = filter_regexp.lower() try: data_filters_comp[filterField] = re.compile(filter_regexp) except sre_constants.error: # remove illegal expression # del data_filters[filterField] data_filters_comp[filterField] = re.compile('.*') # filter one specific log line if 'filepos' in data_filters and data_filters['filepos'].isdigit(): log_start_pos = int(data_filters['filepos']) else: log_start_pos = None # query suricata eve log result = {'filters': data_filters, 'rows': [], 'total_rows': 0, 'origin': suricata_log.split('/')[-1]} if os.path.exists(suricata_log): for line in reverse_log_reader(filename=suricata_log, start_pos=log_start_pos): try: record = ujson.loads(line['line']) except ValueError: # can not handle line record = {} # only process valid alert items if 'alert' in record: # add position in file record['filepos'] = line['pos'] record['fileid'] = parameters['fileid'] # flatten structure record['alert_sid'] = record['alert']['signature_id'] record['alert_action'] = record['alert']['action'] record['alert'] = record['alert']['signature'] # use filters on data (using regular expressions) do_output = True for filterKeys in data_filters: filter_hit = False for filterKey in filterKeys.split(','): if filterKey in record and data_filters_comp[filterKeys].match( ('%s' % record[filterKey]).lower()): filter_hit = True if not filter_hit: do_output = False if do_output: result['total_rows'] += 1 if (len(result['rows']) < limit or limit == 0) and result['total_rows'] >= offset: result['rows'].append(record) elif result['total_rows'] > offset + limit: # do not fetch data until end of file... break # only try to fetch one line when filepos is given if log_start_pos is not None: break # output results print(ujson.dumps(result))
[ "sys.path.insert", "re.compile", "shlex.split", "ujson.dumps", "params.update_params", "ujson.loads", "log_helper.reverse_log_reader" ]
[((1554, 1607), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""/usr/local/opnsense/site-python"""'], {}), "(0, '/usr/local/opnsense/site-python')\n", (1569, 1607), False, 'import sys\n'), ((1849, 1874), 'params.update_params', 'update_params', (['parameters'], {}), '(parameters)\n', (1862, 1874), False, 'from params import update_params\n'), ((2371, 2404), 'shlex.split', 'shlex.split', (["parameters['filter']"], {}), "(parameters['filter'])\n", (2382, 2404), False, 'import shlex\n'), ((3416, 3482), 'log_helper.reverse_log_reader', 'reverse_log_reader', ([], {'filename': 'suricata_log', 'start_pos': 'log_start_pos'}), '(filename=suricata_log, start_pos=log_start_pos)\n', (3434, 3482), False, 'from log_helper import reverse_log_reader\n'), ((5192, 5211), 'ujson.dumps', 'ujson.dumps', (['result'], {}), '(result)\n', (5203, 5211), False, 'import ujson\n'), ((2798, 2823), 're.compile', 're.compile', (['filter_regexp'], {}), '(filter_regexp)\n', (2808, 2823), False, 'import re\n'), ((3526, 3551), 'ujson.loads', 'ujson.loads', (["line['line']"], {}), "(line['line'])\n", (3537, 3551), False, 'import ujson\n'), ((3005, 3021), 're.compile', 're.compile', (['""".*"""'], {}), "('.*')\n", (3015, 3021), False, 'import re\n')]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import wx from cairis.core.armid import * from DictionaryEntryDialog import DictionaryEntryDialog class DictionaryListCtrl(wx.ListCtrl): def __init__(self,parent): wx.ListCtrl.__init__(self,parent,PROJECTSETTINGS_LISTDICTIONARY_ID,size=wx.DefaultSize,style=wx.LC_REPORT | wx.LC_SORT_ASCENDING) self.keys = [] self.InsertColumn(0,'Name') self.SetColumnWidth(0,150) self.InsertColumn(1,'Definition') self.SetColumnWidth(1,300) self.theSelectedIdx = -1 self.theMenu = wx.Menu() self.theMenu.Append(DICTIONARYLISTCTRL_MENUADD_ID,'Add') self.theMenu.Append(DICTIONARYLISTCTRL_MENUDELETE_ID,'Delete') self.Bind(wx.EVT_LIST_ITEM_RIGHT_CLICK,self.OnRightDown) self.Bind(wx.EVT_LIST_ITEM_SELECTED,self.OnItemSelected) self.Bind(wx.EVT_LIST_ITEM_DESELECTED,self.OnItemDeselected) self.Bind(wx.EVT_LIST_ITEM_ACTIVATED,self.onEntryActivated) wx.EVT_MENU(self.theMenu,DICTIONARYLISTCTRL_MENUADD_ID,self.onAddEntry) wx.EVT_MENU(self.theMenu,DICTIONARYLISTCTRL_MENUDELETE_ID,self.onDeleteEntry) def OnItemSelected(self,evt): self.theSelectedIdx = evt.GetIndex() def OnItemDeselected(self,evt): self.theSelectedIdx = -1 def OnRightDown(self,evt): self.PopupMenu(self.theMenu) def onAddEntry(self,evt): dlg = DictionaryEntryDialog(self) if (dlg.ShowModal() == DICTIONARYENTRY_BUTTONCOMMIT_ID): name = dlg.name() definition = dlg.definition() idx = self.GetItemCount() self.InsertStringItem(idx,name) self.SetStringItem(idx,1,definition) def onDeleteEntry(self,evt): if (self.theSelectedIdx == -1): errorText = 'No entry selected' errorLabel = 'Delete definition' dlg = wx.MessageDialog(self,errorText,errorLabel,wx.OK) dlg.ShowModal() dlg.Destroy() else: selectedValue = self.GetItemText(self.theSelectedIdx) self.DeleteItem(self.theSelectedIdx) def onEntryActivated(self,evt): self.theSelectedIdx = evt.GetIndex() name = self.GetItemText(self.theSelectedIdx) definition = self.GetItem(self.theSelectedIdx,1) dlg = DictionaryEntryDialog(self,name,definition.GetText()) if (dlg.ShowModal() == DICTIONARYENTRY_BUTTONCOMMIT_ID): self.SetStringItem(self.theSelectedIdx,0,dlg.name()) self.SetStringItem(self.theSelectedIdx,1,dlg.definition()) def load(self,entries): self.keys = entries.keys() self.keys.sort() for name in self.keys: idx = self.GetItemCount() self.InsertStringItem(idx,name) self.SetStringItem(idx,1,entries[name]) def dimensions(self): entries = [] for x in range(self.GetItemCount()): name = self.GetItemText(x) definition = self.GetItem(x,1) entries.append((name,definition.GetText())) return entries
[ "wx.ListCtrl.__init__", "DictionaryEntryDialog.DictionaryEntryDialog", "wx.Menu", "wx.MessageDialog", "wx.EVT_MENU" ]
[((970, 1108), 'wx.ListCtrl.__init__', 'wx.ListCtrl.__init__', (['self', 'parent', 'PROJECTSETTINGS_LISTDICTIONARY_ID'], {'size': 'wx.DefaultSize', 'style': '(wx.LC_REPORT | wx.LC_SORT_ASCENDING)'}), '(self, parent, PROJECTSETTINGS_LISTDICTIONARY_ID, size=\n wx.DefaultSize, style=wx.LC_REPORT | wx.LC_SORT_ASCENDING)\n', (990, 1108), False, 'import wx\n'), ((1299, 1308), 'wx.Menu', 'wx.Menu', ([], {}), '()\n', (1306, 1308), False, 'import wx\n'), ((1692, 1765), 'wx.EVT_MENU', 'wx.EVT_MENU', (['self.theMenu', 'DICTIONARYLISTCTRL_MENUADD_ID', 'self.onAddEntry'], {}), '(self.theMenu, DICTIONARYLISTCTRL_MENUADD_ID, self.onAddEntry)\n', (1703, 1765), False, 'import wx\n'), ((1768, 1847), 'wx.EVT_MENU', 'wx.EVT_MENU', (['self.theMenu', 'DICTIONARYLISTCTRL_MENUDELETE_ID', 'self.onDeleteEntry'], {}), '(self.theMenu, DICTIONARYLISTCTRL_MENUDELETE_ID, self.onDeleteEntry)\n', (1779, 1847), False, 'import wx\n'), ((2086, 2113), 'DictionaryEntryDialog.DictionaryEntryDialog', 'DictionaryEntryDialog', (['self'], {}), '(self)\n', (2107, 2113), False, 'from DictionaryEntryDialog import DictionaryEntryDialog\n'), ((2505, 2557), 'wx.MessageDialog', 'wx.MessageDialog', (['self', 'errorText', 'errorLabel', 'wx.OK'], {}), '(self, errorText, errorLabel, wx.OK)\n', (2521, 2557), False, 'import wx\n')]
from __future__ import print_function, division import numpy as np import Nio import time, os # # Creating a file # init_time = time.clock() ncfile = 'test-large.nc' if (os.path.exists(ncfile)): os.system("/bin/rm -f " + ncfile) opt = Nio.options() opt.Format = "LargeFile" opt.PreFill = False file = Nio.open_file(ncfile, 'w', options=opt) file.title = "Testing large files and dimensions" file.create_dimension('big', 2500000000) bigvar = file.create_variable('bigvar', "b", ('big',)) print("created bigvar") # note it is incredibly slow to write a scalar to a large file variable # so create an temporary variable x that will get assigned in steps x = np.empty(1000000,dtype = 'int8') #print x x[:] = 42 t = list(range(0,2500000000,1000000)) ii = 0 for i in t: if (i == 0): continue print(t[ii],i) bigvar[t[ii]:i] = x[:] ii += 1 x[:] = 84 bigvar[2499000000:2500000000] = x[:] bigvar[-1] = 84 bigvar.units = "big var units" #print bigvar[-1] print(bigvar.dimensions) # check unlimited status for dim in list(file.dimensions.keys()): print(dim, " unlimited: ",file.unlimited(dim)) print(file) print("closing file") print('elapsed time: ',time.clock() - init_time) file.close() #quit() # # Reading a file # print('opening file for read') print('elapsed time: ',time.clock() - init_time) file = Nio.open_file(ncfile, 'r') print('file is open') print('elapsed time: ',time.clock() - init_time) print(file.dimensions) print(list(file.variables.keys())) print(file) print("reading variable") print('elapsed time: ',time.clock() - init_time) x = file.variables['bigvar'] print(x[0],x[1000000],x[249000000],x[2499999999]) print("max and min") min = x[:].min() max = x[:].max() print(min, max) print('elapsed time: ',time.clock() - init_time) # check unlimited status for dim in list(file.dimensions.keys()): print(dim, " unlimited: ",file.unlimited(dim)) print("closing file") print('elapsed time: ',time.clock() - init_time) file.close()
[ "os.path.exists", "time.clock", "numpy.empty", "Nio.options", "Nio.open_file", "os.system" ]
[((129, 141), 'time.clock', 'time.clock', ([], {}), '()\n', (139, 141), False, 'import time, os\n'), ((171, 193), 'os.path.exists', 'os.path.exists', (['ncfile'], {}), '(ncfile)\n', (185, 193), False, 'import time, os\n'), ((238, 251), 'Nio.options', 'Nio.options', ([], {}), '()\n', (249, 251), False, 'import Nio\n'), ((304, 343), 'Nio.open_file', 'Nio.open_file', (['ncfile', '"""w"""'], {'options': 'opt'}), "(ncfile, 'w', options=opt)\n", (317, 343), False, 'import Nio\n'), ((662, 693), 'numpy.empty', 'np.empty', (['(1000000)'], {'dtype': '"""int8"""'}), "(1000000, dtype='int8')\n", (670, 693), True, 'import numpy as np\n'), ((1321, 1347), 'Nio.open_file', 'Nio.open_file', (['ncfile', '"""r"""'], {}), "(ncfile, 'r')\n", (1334, 1347), False, 'import Nio\n'), ((198, 231), 'os.system', 'os.system', (["('/bin/rm -f ' + ncfile)"], {}), "('/bin/rm -f ' + ncfile)\n", (207, 231), False, 'import time, os\n'), ((1166, 1178), 'time.clock', 'time.clock', ([], {}), '()\n', (1176, 1178), False, 'import time, os\n'), ((1288, 1300), 'time.clock', 'time.clock', ([], {}), '()\n', (1298, 1300), False, 'import time, os\n'), ((1394, 1406), 'time.clock', 'time.clock', ([], {}), '()\n', (1404, 1406), False, 'import time, os\n'), ((1539, 1551), 'time.clock', 'time.clock', ([], {}), '()\n', (1549, 1551), False, 'import time, os\n'), ((1738, 1750), 'time.clock', 'time.clock', ([], {}), '()\n', (1748, 1750), False, 'import time, os\n'), ((1926, 1938), 'time.clock', 'time.clock', ([], {}), '()\n', (1936, 1938), False, 'import time, os\n')]
#This file is part of ElectricEye. #SPDX-License-Identifier: Apache-2.0 #Licensed to the Apache Software Foundation (ASF) under one #or more contributor license agreements. See the NOTICE file #distributed with this work for additional information #regarding copyright ownership. The ASF licenses this file #to you under the Apache License, Version 2.0 (the #"License"); you may not use this file except in compliance #with the License. You may obtain a copy of the License at #http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, #software distributed under the License is distributed on an #"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #KIND, either express or implied. See the License for the #specific language governing permissions and limitations #under the License. import boto3 import datetime from check_register import CheckRegister registry = CheckRegister() # import boto3 clients ecs = boto3.client("ecs") # loop through ECS Clusters def list_clusters(cache): response = cache.get("list_clusters") if response: return response cache["list_clusters"] = ecs.list_clusters() return cache["list_clusters"] @registry.register_check("ecs") def ecs_cluster_container_insights_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.1] ECS clusters should have container insights enabled""" response = list_clusters(cache) myEcsClusters = response["clusterArns"] for clusters in myEcsClusters: clusterArn = str(clusters) try: response = ecs.describe_clusters(clusters=[clusterArn]) for clusterinfo in response["clusters"]: clusterName = str(clusterinfo["clusterName"]) ecsClusterArn = str(clusterinfo["clusterArn"]) for settings in clusterinfo["settings"]: contInsightsCheck = str(settings["value"]) # ISO Time iso8601Time = ( datetime.datetime.utcnow() .replace(tzinfo=datetime.timezone.utc) .isoformat() ) if contInsightsCheck == "disabled": finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-container-insights-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "LOW"}, "Confidence": 99, "Title": "[ECS.1] ECS clusters should have container insights enabled", "Description": "ECS cluster " + clusterName + " does not have container insights enabled. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "For information on configuring Container Insights for your cluster refer to the Setting Up Container Insights on Amazon ECS for Cluster- and Service-Level Metrics section of the Amazon CloudWatch User Guide", "Url": "https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-cluster.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF DE.AE-3", "NIST SP 800-53 AU-6", "NIST SP 800-53 CA-7", "NIST SP 800-53 IR-4", "NIST SP 800-53 IR-5", "NIST SP 800-53 IR-8", "NIST SP 800-53 SI-4", "AICPA TSC CC7.2", "ISO 27001:2013 A.12.4.1", "ISO 27001:2013 A.16.1.7", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-container-insights-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.1] ECS clusters should have container insights enabled", "Description": "ECS cluster " + clusterName + " has container insights enabled.", "Remediation": { "Recommendation": { "Text": "For information on configuring Container Insights for your cluster refer to the Setting Up Container Insights on Amazon ECS for Cluster- and Service-Level Metrics section of the Amazon CloudWatch User Guide", "Url": "https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-cluster.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF DE.AE-3", "NIST SP 800-53 AU-6", "NIST SP 800-53 CA-7", "NIST SP 800-53 IR-4", "NIST SP 800-53 IR-5", "NIST SP 800-53 IR-8", "NIST SP 800-53 SI-4", "AICPA TSC CC7.2", "ISO 27001:2013 A.12.4.1", "ISO 27001:2013 A.16.1.7", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) @registry.register_check("ecs") def ecs_cluster_default_provider_strategy_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.2] ECS clusters should have a default cluster capacity provider strategy configured""" response = list_clusters(cache) myEcsClusters = response["clusterArns"] for clusters in myEcsClusters: clusterArn = str(clusters) try: response = ecs.describe_clusters(clusters=[clusterArn]) for clusterinfo in response["clusters"]: clusterName = str(clusterinfo["clusterName"]) ecsClusterArn = str(clusterinfo["clusterArn"]) defaultProviderStratCheck = str(clusterinfo["defaultCapacityProviderStrategy"]) # ISO Time iso8601Time = ( datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat() ) if defaultProviderStratCheck == "[]": finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-default-provider-strategy-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.2] ECS clusters should have a default cluster capacity provider strategy configured", "Description": "ECS cluster " + clusterName + " does not have a default provider strategy configured. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "For information on cluster capacity provider strategies for your cluster refer to the Amazon ECS Cluster Capacity Providers section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": ecsClusterArn + "/ecs-cluster-default-provider-strategy-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": ecsClusterArn, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.2] ECS clusters should have a default cluster capacity provider strategy configured", "Description": "ECS cluster " + clusterName + " has a default provider strategy configured.", "Remediation": { "Recommendation": { "Text": "For information on cluster capacity provider strategies for your cluster refer to the Amazon ECS Cluster Capacity Providers section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsCluster", "Id": ecsClusterArn, "Partition": awsPartition, "Region": awsRegion, "Details": {"Other": {"ClusterName": clusterName}}, } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF ID.AM-2", "NIST SP 800-53 CM-8", "NIST SP 800-53 PM-5", "AICPA TSC CC3.2", "AICPA TSC CC6.1", "ISO 27001:2013 A.8.1.1", "ISO 27001:2013 A.8.1.2", "ISO 27001:2013 A.12.5.1", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) @registry.register_check("ecs") def ecs_task_definition_privileged_container_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.3] ECS Task Definitions should not run privileged containers if not required""" for taskdef in ecs.list_task_definitions(status='ACTIVE')['taskDefinitionArns']: try: response = ecs.describe_task_definition(taskDefinition=taskdef)["taskDefinition"] taskDefinitionArn = str(response['taskDefinitionArn']) tdefFamily = str(response["family"]) # Loop container definitions for cdef in response["containerDefinitions"]: # ISO Time iso8601Time = (datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat()) cdefName = str(cdef["name"]) # We are going to assume that if there is not a privileged flag...that it is ;) try: privCheck = str(cdef["privileged"]) except: privCheck = 'UNKNOWN' if privCheck != 'False': finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-privileged-container-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "TTPs/Privilege Escalation" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "MEDIUM"}, "Confidence": 99, "Title": "[ECS.3] ECS Task Definitions should not run privileged containers if not required", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " has defined a Privileged container, which should be avoided unless absolutely necessary. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "Containers running as Privileged will have Root permissions, this should be avoided if not needed. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName } } } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.AC-1", "NIST SP 800-53 AC-1", "NIST SP 800-53 AC-2", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-3", "NIST SP 800-53 IA-4", "NIST SP 800-53 IA-5", "NIST SP 800-53 IA-6", "NIST SP 800-53 IA-7", "NIST SP 800-53 IA-8", "NIST SP 800-53 IA-9", "NIST SP 800-53 IA-10", "NIST SP 800-53 IA-11", "AICPA TSC CC6.1", "AICPA TSC CC6.2", "ISO 27001:2013 A.9.2.1", "ISO 27001:2013 A.9.2.2", "ISO 27001:2013 A.9.2.3", "ISO 27001:2013 A.9.2.4", "ISO 27001:2013 A.9.2.6", "ISO 27001:2013 A.9.3.1", "ISO 27001:2013 A.9.4.2", "ISO 27001:2013 A.9.4.3", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE", } yield finding else: finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-privileged-container-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": [ "Software and Configuration Checks/AWS Security Best Practices", "TTPs/Privilege Escalation" ], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.3] ECS Task Definitions should not run privileged containers if not required", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " has not defined a Privileged container.", "Remediation": { "Recommendation": { "Text": "Containers running as Privileged will have Root permissions, this should be avoided if not needed. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions", } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName } } } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.AC-1", "NIST SP 800-53 AC-1", "NIST SP 800-53 AC-2", "NIST SP 800-53 IA-1", "NIST SP 800-53 IA-2", "NIST SP 800-53 IA-3", "NIST SP 800-53 IA-4", "NIST SP 800-53 IA-5", "NIST SP 800-53 IA-6", "NIST SP 800-53 IA-7", "NIST SP 800-53 IA-8", "NIST SP 800-53 IA-9", "NIST SP 800-53 IA-10", "NIST SP 800-53 IA-11", "AICPA TSC CC6.1", "AICPA TSC CC6.2", "ISO 27001:2013 A.9.2.1", "ISO 27001:2013 A.9.2.2", "ISO 27001:2013 A.9.2.3", "ISO 27001:2013 A.9.2.4", "ISO 27001:2013 A.9.2.6", "ISO 27001:2013 A.9.3.1", "ISO 27001:2013 A.9.4.2", "ISO 27001:2013 A.9.4.3", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED", } yield finding except Exception as e: print(e) @registry.register_check("ecs") def ecs_task_definition_security_labels_check(cache: dict, awsAccountId: str, awsRegion: str, awsPartition: str) -> dict: """[ECS.4] ECS Task Definitions for EC2 should have Docker Security Options (SELinux or AppArmor) configured""" for taskdef in ecs.list_task_definitions(status='ACTIVE')['taskDefinitionArns']: try: response = ecs.describe_task_definition(taskDefinition=taskdef)["taskDefinition"] taskDefinitionArn = str(response["taskDefinitionArn"]) tdefFamily = str(response["family"]) # If there is a network mode of "awsvpc" it is likely a Fargate task - even though EC2 compute can run with that... # time for some funky edge cases, keep that in mind before you yeet an issue at me, please ;) if str(response["networkMode"]) == 'awsvpc': continue else: # Loop container definitions for cdef in response["containerDefinitions"]: # ISO Time iso8601Time = (datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc).isoformat()) cdefName = str(cdef["name"]) try: # This is a passing check secOpts = str(cdef["dockerSecurityOptions"]) finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-security-labels-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "INFORMATIONAL"}, "Confidence": 99, "Title": "[ECS.4] ECS Task Definitions for EC2 should have Docker Security Options (SELinux or AppArmor) configured", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " has Docker Security Options configured.", "Remediation": { "Recommendation": { "Text": "Containers running on EC2 Compute-types should have Docker Security Options configured. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName, 'DockerSecurityOptions': secOpts } } } ], "Compliance": { "Status": "PASSED", "RelatedRequirements": [ "NIST CSF PR.IP-1", "NIST SP 800-53 CM-2", "NIST SP 800-53 CM-3", "NIST SP 800-53 CM-4", "NIST SP 800-53 CM-5", "NIST SP 800-53 CM-6", "NIST SP 800-53 CM-7", "NIST SP 800-53 CM-9", "NIST SP 800-53 SA-10", "AICPA TSC A1.3", "AICPA TSC CC1.4", "AICPA TSC CC5.3", "AICPA TSC CC6.2", "AICPA TSC CC7.1", "AICPA TSC CC7.3", "AICPA TSC CC7.4", "ISO 27001:2013 A.12.1.2", "ISO 27001:2013 A.12.5.1", "ISO 27001:2013 A.12.6.2", "ISO 27001:2013 A.14.2.2", "ISO 27001:2013 A.14.2.3", "ISO 27001:2013 A.14.2.4", ], }, "Workflow": {"Status": "RESOLVED"}, "RecordState": "ARCHIVED" } yield finding except: secOpts = str('["NO_OPTIONS"]') finding = { "SchemaVersion": "2018-10-08", "Id": taskDefinitionArn + "/" + cdefName + "/ecs-task-definition-security-labels-check", "ProductArn": f"arn:{awsPartition}:securityhub:{awsRegion}:{awsAccountId}:product/{awsAccountId}/default", "GeneratorId": taskDefinitionArn + "/" + cdefName, "AwsAccountId": awsAccountId, "Types": ["Software and Configuration Checks/AWS Security Best Practices"], "FirstObservedAt": iso8601Time, "CreatedAt": iso8601Time, "UpdatedAt": iso8601Time, "Severity": {"Label": "HIGH"}, "Confidence": 99, "Title": "[ECS.4] ECS Task Definitions for EC2 should have Docker Security Options (SELinux or AppArmor) configured", "Description": "ECS Container Definition " + cdefName + " in Task Definition " + taskDefinitionArn + " does not have any Docker Security Options configured. Refer to the remediation instructions to remediate this behavior", "Remediation": { "Recommendation": { "Text": "Containers running on EC2 Compute-types should have Docker Security Options configured. Refer to the Task definition parameters Security section of the Amazon Elastic Container Service Developer Guide", "Url": "https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html#container_definitions" } }, "ProductFields": {"Product Name": "ElectricEye"}, "Resources": [ { "Type": "AwsEcsTaskDefinition", "Id": taskDefinitionArn, "Partition": awsPartition, "Region": awsRegion, "Details": { "Other": { "Family": tdefFamily, "ContainerDefinitionName": cdefName, 'DockerSecurityOptions': secOpts } } } ], "Compliance": { "Status": "FAILED", "RelatedRequirements": [ "NIST CSF PR.IP-1", "NIST SP 800-53 CM-2", "NIST SP 800-53 CM-3", "NIST SP 800-53 CM-4", "NIST SP 800-53 CM-5", "NIST SP 800-53 CM-6", "NIST SP 800-53 CM-7", "NIST SP 800-53 CM-9", "NIST SP 800-53 SA-10", "AICPA TSC A1.3", "AICPA TSC CC1.4", "AICPA TSC CC5.3", "AICPA TSC CC6.2", "AICPA TSC CC7.1", "AICPA TSC CC7.3", "AICPA TSC CC7.4", "ISO 27001:2013 A.12.1.2", "ISO 27001:2013 A.12.5.1", "ISO 27001:2013 A.12.6.2", "ISO 27001:2013 A.14.2.2", "ISO 27001:2013 A.14.2.3", "ISO 27001:2013 A.14.2.4", ], }, "Workflow": {"Status": "NEW"}, "RecordState": "ACTIVE" } yield finding except Exception as e: print(e)
[ "check_register.CheckRegister", "boto3.client", "datetime.datetime.utcnow" ]
[((923, 938), 'check_register.CheckRegister', 'CheckRegister', ([], {}), '()\n', (936, 938), False, 'from check_register import CheckRegister\n'), ((969, 988), 'boto3.client', 'boto3.client', (['"""ecs"""'], {}), "('ecs')\n", (981, 988), False, 'import boto3\n'), ((9747, 9773), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (9771, 9773), False, 'import datetime\n'), ((16546, 16572), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (16570, 16572), False, 'import datetime\n'), ((2050, 2076), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2074, 2076), False, 'import datetime\n'), ((26839, 26865), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (26863, 26865), False, 'import datetime\n')]
import unittest from .mocks import BotoSessionMock from push_notification import apns class APNSTestCase(unittest.TestCase): def_apns_category = 'MGDailyDealCategory' # def setUp(self): # def tearDown(self): # push_notification # push_background # make_new_deal_message # make_delta_message def test_make_delta_comment_1(self): deal_id = 'a6k5A000000kP9LQAU' delta_type = 'commentCount' delta_value = 5 message = { 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } expected = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "commentCount", ' '"delta-value": 5}' ) result = apns.make_delta_message(message) self.assertEqual(result, expected) def test_make_delta_status_1(self): deal_id = 'a6k5A000000kP9LQAU' delta_type = 'launchStatus' delta_value = 'launch' message = { 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } expected = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) result = apns.make_delta_message(message) self.assertEqual(result, expected) # publish_message def test_publish_delta_status_prod(self): message = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) # deal_id = 'a6k5A000000kP9LQAU' # delta_type = 'launchStatus' # delta_value = 'launch' # message = ( # '{"aps": {"content-available": 1}, ' # f'"deal-id": "{deal_id}", ' # f'"delta-type": "{delta_type}", ' # f'"delta-value": "{delta_value}"' # '}' # ) session = BotoSessionMock() default_message='default message' apns_server = 'prod' apns.publish_message(session, topic_arn='fake_topic_arn', apns_server=apns_server, apns_message=message, default_message=default_message) expected = ( '{' '"default": "default message", ' '"APNS": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}"' '}' ) result = session.client.message self.assertEqual(result, expected) def test_publish_delta_status_dev(self): message = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) session = BotoSessionMock() default_message='default message' apns_server = 'dev' apns.publish_message(session, topic_arn='fake_topic_arn', apns_server=apns_server, apns_message=message, default_message=default_message) expected = ( '{' '"default": "default message", ' '"APNS_SANDBOX": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}"' '}' ) result = session.client.message self.assertEqual(result, expected) def test_publish_delta_status_both(self): message = ( '{"aps": {"content-available": 1}, ' '"deal-id": "a6k5A000000kP9LQAU", ' '"delta-type": "launchStatus", ' '"delta-value": "launch"}' ) session = BotoSessionMock() default_message='default message' apns_server = 'both' apns.publish_message(session, topic_arn='fake_topic_arn', apns_server=apns_server, apns_message=message, default_message=default_message) expected = ( '{' '"default": "default message", ' '"APNS": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}", ' '"APNS_SANDBOX": "{' '\\"aps\\": {' '\\"content-available\\": 1' '}, ' '\\"deal-id\\": \\"a6k5A000000kP9LQAU\\", ' '\\"delta-type\\": \\"launchStatus\\", ' '\\"delta-value\\": \\"launch\\"' '}"' '}' ) result = session.client.message self.assertEqual(result, expected) def test_publish_invalid_server(self): session = BotoSessionMock() topic_arn='fake_topic_arn' apns_server = 'meh' apns_message ='{"aps": {"content-available": 1}' default_message='default message' self.assertRaises( ValueError, apns.publish_message, session, topic_arn, apns_server, apns_message, default_message) # _make_background_notification def test_make_background_notification_no_additional(self): additional = None expected = { 'aps': { 'content-available': 1 } } result = apns._make_background_notification(additional) self.assertEqual(result, expected) def test_make_background_notification_with_additional(self): deal_id = 'a6k5A000000kP9LQAU' delta_type = 'commentCount' delta_value = 5 additional = { 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } expected = { 'aps': { 'content-available': 1 }, 'id': deal_id, 'delta_type': delta_type, 'delta_value': delta_value } result = apns._make_background_notification(additional) self.assertDictEqual(result, expected) # _make_notification # def test_make_notification_1(self): # raise_for_status
[ "push_notification.apns.publish_message", "push_notification.apns._make_background_notification", "push_notification.apns.make_delta_message" ]
[((836, 868), 'push_notification.apns.make_delta_message', 'apns.make_delta_message', (['message'], {}), '(message)\n', (859, 868), False, 'from push_notification import apns\n'), ((1442, 1474), 'push_notification.apns.make_delta_message', 'apns.make_delta_message', (['message'], {}), '(message)\n', (1465, 1474), False, 'from push_notification import apns\n'), ((2270, 2412), 'push_notification.apns.publish_message', 'apns.publish_message', (['session'], {'topic_arn': '"""fake_topic_arn"""', 'apns_server': 'apns_server', 'apns_message': 'message', 'default_message': 'default_message'}), "(session, topic_arn='fake_topic_arn', apns_server=\n apns_server, apns_message=message, default_message=default_message)\n", (2290, 2412), False, 'from push_notification import apns\n'), ((3373, 3515), 'push_notification.apns.publish_message', 'apns.publish_message', (['session'], {'topic_arn': '"""fake_topic_arn"""', 'apns_server': 'apns_server', 'apns_message': 'message', 'default_message': 'default_message'}), "(session, topic_arn='fake_topic_arn', apns_server=\n apns_server, apns_message=message, default_message=default_message)\n", (3393, 3515), False, 'from push_notification import apns\n'), ((4486, 4628), 'push_notification.apns.publish_message', 'apns.publish_message', (['session'], {'topic_arn': '"""fake_topic_arn"""', 'apns_server': 'apns_server', 'apns_message': 'message', 'default_message': 'default_message'}), "(session, topic_arn='fake_topic_arn', apns_server=\n apns_server, apns_message=message, default_message=default_message)\n", (4506, 4628), False, 'from push_notification import apns\n'), ((6141, 6187), 'push_notification.apns._make_background_notification', 'apns._make_background_notification', (['additional'], {}), '(additional)\n', (6175, 6187), False, 'from push_notification import apns\n'), ((6763, 6809), 'push_notification.apns._make_background_notification', 'apns._make_background_notification', (['additional'], {}), '(additional)\n', (6797, 6809), False, 'from push_notification import apns\n')]
import analyseGithub def test_containsGithubURL_empty(): assert not analyseGithub.containsGitHubURL("") def test_containsGithubURL_noUrl(): assert not analyseGithub.containsGitHubURL("Some test tweet") def test_containsGithubURL_url(): repo = "https://github.com/git/git" assert analyseGithub.containsGitHubURL(repo) def test_extractGitHubLink(): repo = "https://github.com/git/git" assert analyseGithub.extractGitHubLink(f"{repo} more tweet") == "git/git"
[ "analyseGithub.containsGitHubURL", "analyseGithub.extractGitHubLink" ]
[((298, 335), 'analyseGithub.containsGitHubURL', 'analyseGithub.containsGitHubURL', (['repo'], {}), '(repo)\n', (329, 335), False, 'import analyseGithub\n'), ((73, 108), 'analyseGithub.containsGitHubURL', 'analyseGithub.containsGitHubURL', (['""""""'], {}), "('')\n", (104, 108), False, 'import analyseGithub\n'), ((161, 211), 'analyseGithub.containsGitHubURL', 'analyseGithub.containsGitHubURL', (['"""Some test tweet"""'], {}), "('Some test tweet')\n", (192, 211), False, 'import analyseGithub\n'), ((418, 471), 'analyseGithub.extractGitHubLink', 'analyseGithub.extractGitHubLink', (['f"""{repo} more tweet"""'], {}), "(f'{repo} more tweet')\n", (449, 471), False, 'import analyseGithub\n')]
############################################################################### # Author: <NAME> # Project: ARC-II: Convolutional Matching Model # Date Created: 7/18/2017 # # File Description: This script contains ranking evaluation functions. ############################################################################### import torch, numpy def mean_average_precision(logits, target): """ Compute mean average precision. :param logits: 2d tensor [batch_size x num_clicks_per_query] :param target: 2d tensor [batch_size x num_clicks_per_query] :return: mean average precision [a float value] """ assert logits.size() == target.size() sorted, indices = torch.sort(logits, 1, descending=True) map = 0 for i in range(indices.size(0)): average_precision = 0 num_rel = 0 for j in range(indices.size(1)): if target[i, indices[i, j].data[0]].data[0] == 1: num_rel += 1 average_precision += num_rel / (j + 1) average_precision = average_precision / num_rel map += average_precision return map / indices.size(0) def NDCG(logits, target, k): """ Compute normalized discounted cumulative gain. :param logits: 2d tensor [batch_size x rel_docs_per_query] :param target: 2d tensor [batch_size x rel_docs_per_query] :return: mean average precision [a float value] """ assert logits.size() == target.size() assert logits.size(1) >= k, 'NDCG@K cannot be computed, invalid value of K.' sorted, indices = torch.sort(logits, 1, descending=True) NDCG = 0 for i in range(indices.size(0)): DCG_ref = 0 num_rel_docs = torch.nonzero(target[i].data).size(0) for j in range(indices.size(1)): if j == k: break if target[i, indices[i, j].data[0]].data[0] == 1: DCG_ref += 1 / numpy.log2(j + 2) DCG_gt = 0 for j in range(num_rel_docs): if j == k: break DCG_gt += 1 / numpy.log2(j + 2) NDCG += DCG_ref / DCG_gt return NDCG / indices.size(0) def MRR(logits, target): """ Compute mean reciprocal rank. :param logits: 2d tensor [batch_size x rel_docs_per_query] :param target: 2d tensor [batch_size x rel_docs_per_query] :return: mean reciprocal rank [a float value] """ assert logits.size() == target.size() sorted, indices = torch.sort(logits, 1, descending=True) total_reciprocal_rank = 0 for i in range(indices.size(0)): for j in range(indices.size(1)): if target[i, indices[i, j].data[0]].data[0] == 1: total_reciprocal_rank += 1.0 / (j + 1) break return total_reciprocal_rank / logits.size(0)
[ "torch.sort", "numpy.log2", "torch.nonzero" ]
[((708, 746), 'torch.sort', 'torch.sort', (['logits', '(1)'], {'descending': '(True)'}), '(logits, 1, descending=True)\n', (718, 746), False, 'import torch, numpy\n'), ((1603, 1641), 'torch.sort', 'torch.sort', (['logits', '(1)'], {'descending': '(True)'}), '(logits, 1, descending=True)\n', (1613, 1641), False, 'import torch, numpy\n'), ((2531, 2569), 'torch.sort', 'torch.sort', (['logits', '(1)'], {'descending': '(True)'}), '(logits, 1, descending=True)\n', (2541, 2569), False, 'import torch, numpy\n'), ((1739, 1768), 'torch.nonzero', 'torch.nonzero', (['target[i].data'], {}), '(target[i].data)\n', (1752, 1768), False, 'import torch, numpy\n'), ((2112, 2129), 'numpy.log2', 'numpy.log2', (['(j + 2)'], {}), '(j + 2)\n', (2122, 2129), False, 'import torch, numpy\n'), ((1961, 1978), 'numpy.log2', 'numpy.log2', (['(j + 2)'], {}), '(j + 2)\n', (1971, 1978), False, 'import torch, numpy\n')]
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import cv2 import math import numpy as np import paddle import yaml from det_keypoint_unite_utils import argsparser from preprocess import decode_image from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint from visualize import visualize_pose from benchmark_utils import PaddleInferBenchmark from utils import get_current_memory_mb from keypoint_postprocess import translate_to_ori_images KEYPOINT_SUPPORT_MODELS = { 'HigherHRNet': 'keypoint_bottomup', 'HRNet': 'keypoint_topdown' } def predict_with_given_det(image, det_res, keypoint_detector, keypoint_batch_size, run_benchmark): rec_images, records, det_rects = keypoint_detector.get_person_from_rect( image, det_res) keypoint_vector = [] score_vector = [] rect_vector = det_rects keypoint_results = keypoint_detector.predict_image( rec_images, run_benchmark, repeats=10, visual=False) keypoint_vector, score_vector = translate_to_ori_images(keypoint_results, np.array(records)) keypoint_res = {} keypoint_res['keypoint'] = [ keypoint_vector.tolist(), score_vector.tolist() ] if len(keypoint_vector) > 0 else [[], []] keypoint_res['bbox'] = rect_vector return keypoint_res def topdown_unite_predict(detector, topdown_keypoint_detector, image_list, keypoint_batch_size=1, save_res=False): det_timer = detector.get_timer() store_res = [] for i, img_file in enumerate(image_list): # Decode image in advance in det + pose prediction det_timer.preprocess_time_s.start() image, _ = decode_image(img_file, {}) det_timer.preprocess_time_s.end() if FLAGS.run_benchmark: results = detector.predict_image( [image], run_benchmark=True, repeats=10) cm, gm, gu = get_current_memory_mb() detector.cpu_mem += cm detector.gpu_mem += gm detector.gpu_util += gu else: results = detector.predict_image([image], visual=False) results = detector.filter_box(results, FLAGS.det_threshold) if results['boxes_num'] > 0: keypoint_res = predict_with_given_det( image, results, topdown_keypoint_detector, keypoint_batch_size, FLAGS.run_benchmark) if save_res: save_name = img_file if isinstance(img_file, str) else i store_res.append([ save_name, keypoint_res['bbox'], [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]] ]) else: results["keypoint"] = [[], []] keypoint_res = results if FLAGS.run_benchmark: cm, gm, gu = get_current_memory_mb() topdown_keypoint_detector.cpu_mem += cm topdown_keypoint_detector.gpu_mem += gm topdown_keypoint_detector.gpu_util += gu else: if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) visualize_pose( img_file, keypoint_res, visual_thresh=FLAGS.keypoint_threshold, save_dir=FLAGS.output_dir) if save_res: """ 1) store_res: a list of image_data 2) image_data: [imageid, rects, [keypoints, scores]] 3) rects: list of rect [xmin, ymin, xmax, ymax] 4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list 5) scores: mean of all joint conf """ with open("det_keypoint_unite_image_results.json", 'w') as wf: json.dump(store_res, wf, indent=4) def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id, keypoint_batch_size=1, save_res=False): video_name = 'output.mp4' if camera_id != -1: capture = cv2.VideoCapture(camera_id) else: capture = cv2.VideoCapture(FLAGS.video_file) video_name = os.path.split(FLAGS.video_file)[-1] # Get Video info : resolution, fps, frame count width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(capture.get(cv2.CAP_PROP_FPS)) frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print("fps: %d, frame_count: %d" % (fps, frame_count)) if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) out_path = os.path.join(FLAGS.output_dir, video_name) fourcc = cv2.VideoWriter_fourcc(* 'mp4v') writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) index = 0 store_res = [] while (1): ret, frame = capture.read() if not ret: break index += 1 print('detect frame: %d' % (index)) frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) results = detector.predict_image([frame2], visual=False) results = detector.filter_box(results, FLAGS.det_threshold) if results['boxes_num'] == 0: writer.write(frame) continue keypoint_res = predict_with_given_det( frame2, results, topdown_keypoint_detector, keypoint_batch_size, FLAGS.run_benchmark) im = visualize_pose( frame, keypoint_res, visual_thresh=FLAGS.keypoint_threshold, returnimg=True) if save_res: store_res.append([ index, keypoint_res['bbox'], [keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]] ]) writer.write(im) if camera_id != -1: cv2.imshow('Mask Detection', im) if cv2.waitKey(1) & 0xFF == ord('q'): break writer.release() print('output_video saved to: {}'.format(out_path)) if save_res: """ 1) store_res: a list of frame_data 2) frame_data: [frameid, rects, [keypoints, scores]] 3) rects: list of rect [xmin, ymin, xmax, ymax] 4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list 5) scores: mean of all joint conf """ with open("det_keypoint_unite_video_results.json", 'w') as wf: json.dump(store_res, wf, indent=4) def main(): deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml') with open(deploy_file) as f: yml_conf = yaml.safe_load(f) arch = yml_conf['arch'] detector_func = 'Detector' if arch == 'PicoDet': detector_func = 'DetectorPicoDet' detector = eval(detector_func)(FLAGS.det_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, threshold=FLAGS.det_threshold) topdown_keypoint_detector = KeyPointDetector( FLAGS.keypoint_model_dir, device=FLAGS.device, run_mode=FLAGS.run_mode, batch_size=FLAGS.keypoint_batch_size, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, use_dark=FLAGS.use_dark) keypoint_arch = topdown_keypoint_detector.pred_config.arch assert KEYPOINT_SUPPORT_MODELS[ keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.' # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: topdown_unite_predict_video(detector, topdown_keypoint_detector, FLAGS.camera_id, FLAGS.keypoint_batch_size, FLAGS.save_res) else: # predict from image img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) topdown_unite_predict(detector, topdown_keypoint_detector, img_list, FLAGS.keypoint_batch_size, FLAGS.save_res) if not FLAGS.run_benchmark: detector.det_times.info(average=True) topdown_keypoint_detector.det_times.info(average=True) else: mode = FLAGS.run_mode det_model_dir = FLAGS.det_model_dir det_model_info = { 'model_name': det_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(detector, img_list, det_model_info, name='Det') keypoint_model_dir = FLAGS.keypoint_model_dir keypoint_model_info = { 'model_name': keypoint_model_dir.strip('/').split('/')[-1], 'precision': mode.split('_')[-1] } bench_log(topdown_keypoint_detector, img_list, keypoint_model_info, FLAGS.keypoint_batch_size, 'KeyPoint') if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) FLAGS.device = FLAGS.device.upper() assert FLAGS.device in ['CPU', 'GPU', 'XPU' ], "device should be CPU, GPU or XPU" main()
[ "visualize.visualize_pose", "cv2.imshow", "numpy.array", "infer.bench_log", "os.path.exists", "infer.get_test_images", "cv2.VideoWriter", "paddle.enable_static", "os.path.split", "cv2.VideoWriter_fourcc", "cv2.waitKey", "utils.get_current_memory_mb", "cv2.cvtColor", "det_keypoint_unite_utils.argsparser", "infer.print_arguments", "os.makedirs", "keypoint_infer.KeyPointDetector", "os.path.join", "preprocess.decode_image", "yaml.safe_load", "cv2.VideoCapture", "json.dump" ]
[((5452, 5494), 'os.path.join', 'os.path.join', (['FLAGS.output_dir', 'video_name'], {}), '(FLAGS.output_dir, video_name)\n', (5464, 5494), False, 'import os\n'), ((5508, 5539), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (5530, 5539), False, 'import cv2\n'), ((5554, 5609), 'cv2.VideoWriter', 'cv2.VideoWriter', (['out_path', 'fourcc', 'fps', '(width, height)'], {}), '(out_path, fourcc, fps, (width, height))\n', (5569, 5609), False, 'import cv2\n'), ((7294, 7344), 'os.path.join', 'os.path.join', (['FLAGS.det_model_dir', '"""infer_cfg.yml"""'], {}), "(FLAGS.det_model_dir, 'infer_cfg.yml')\n", (7306, 7344), False, 'import os\n'), ((8232, 8616), 'keypoint_infer.KeyPointDetector', 'KeyPointDetector', (['FLAGS.keypoint_model_dir'], {'device': 'FLAGS.device', 'run_mode': 'FLAGS.run_mode', 'batch_size': 'FLAGS.keypoint_batch_size', 'trt_min_shape': 'FLAGS.trt_min_shape', 'trt_max_shape': 'FLAGS.trt_max_shape', 'trt_opt_shape': 'FLAGS.trt_opt_shape', 'trt_calib_mode': 'FLAGS.trt_calib_mode', 'cpu_threads': 'FLAGS.cpu_threads', 'enable_mkldnn': 'FLAGS.enable_mkldnn', 'use_dark': 'FLAGS.use_dark'}), '(FLAGS.keypoint_model_dir, device=FLAGS.device, run_mode=\n FLAGS.run_mode, batch_size=FLAGS.keypoint_batch_size, trt_min_shape=\n FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=\n FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=\n FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn, use_dark=FLAGS.\n use_dark)\n', (8248, 8616), False, 'from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint\n'), ((10364, 10386), 'paddle.enable_static', 'paddle.enable_static', ([], {}), '()\n', (10384, 10386), False, 'import paddle\n'), ((10400, 10412), 'det_keypoint_unite_utils.argsparser', 'argsparser', ([], {}), '()\n', (10410, 10412), False, 'from det_keypoint_unite_utils import argsparser\n'), ((10449, 10471), 'infer.print_arguments', 'print_arguments', (['FLAGS'], {}), '(FLAGS)\n', (10464, 10471), False, 'from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log\n'), ((1804, 1821), 'numpy.array', 'np.array', (['records'], {}), '(records)\n', (1812, 1821), True, 'import numpy as np\n'), ((2490, 2516), 'preprocess.decode_image', 'decode_image', (['img_file', '{}'], {}), '(img_file, {})\n', (2502, 2516), False, 'from preprocess import decode_image\n'), ((4876, 4903), 'cv2.VideoCapture', 'cv2.VideoCapture', (['camera_id'], {}), '(camera_id)\n', (4892, 4903), False, 'import cv2\n'), ((4932, 4966), 'cv2.VideoCapture', 'cv2.VideoCapture', (['FLAGS.video_file'], {}), '(FLAGS.video_file)\n', (4948, 4966), False, 'import cv2\n'), ((5365, 5397), 'os.path.exists', 'os.path.exists', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (5379, 5397), False, 'import os\n'), ((5407, 5436), 'os.makedirs', 'os.makedirs', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (5418, 5436), False, 'import os\n'), ((5813, 5851), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2RGB'], {}), '(frame, cv2.COLOR_BGR2RGB)\n', (5825, 5851), False, 'import cv2\n'), ((6249, 6344), 'visualize.visualize_pose', 'visualize_pose', (['frame', 'keypoint_res'], {'visual_thresh': 'FLAGS.keypoint_threshold', 'returnimg': '(True)'}), '(frame, keypoint_res, visual_thresh=FLAGS.keypoint_threshold,\n returnimg=True)\n', (6263, 6344), False, 'from visualize import visualize_pose\n'), ((7397, 7414), 'yaml.safe_load', 'yaml.safe_load', (['f'], {}), '(f)\n', (7411, 7414), False, 'import yaml\n'), ((9272, 9322), 'infer.get_test_images', 'get_test_images', (['FLAGS.image_dir', 'FLAGS.image_file'], {}), '(FLAGS.image_dir, FLAGS.image_file)\n', (9287, 9322), False, 'from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log\n'), ((2721, 2744), 'utils.get_current_memory_mb', 'get_current_memory_mb', ([], {}), '()\n', (2742, 2744), False, 'from utils import get_current_memory_mb\n'), ((3640, 3663), 'utils.get_current_memory_mb', 'get_current_memory_mb', ([], {}), '()\n', (3661, 3663), False, 'from utils import get_current_memory_mb\n'), ((3946, 4056), 'visualize.visualize_pose', 'visualize_pose', (['img_file', 'keypoint_res'], {'visual_thresh': 'FLAGS.keypoint_threshold', 'save_dir': 'FLAGS.output_dir'}), '(img_file, keypoint_res, visual_thresh=FLAGS.\n keypoint_threshold, save_dir=FLAGS.output_dir)\n', (3960, 4056), False, 'from visualize import visualize_pose\n'), ((4519, 4553), 'json.dump', 'json.dump', (['store_res', 'wf'], {'indent': '(4)'}), '(store_res, wf, indent=4)\n', (4528, 4553), False, 'import json\n'), ((4988, 5019), 'os.path.split', 'os.path.split', (['FLAGS.video_file'], {}), '(FLAGS.video_file)\n', (5001, 5019), False, 'import os\n'), ((6643, 6675), 'cv2.imshow', 'cv2.imshow', (['"""Mask Detection"""', 'im'], {}), "('Mask Detection', im)\n", (6653, 6675), False, 'import cv2\n'), ((7227, 7261), 'json.dump', 'json.dump', (['store_res', 'wf'], {'indent': '(4)'}), '(store_res, wf, indent=4)\n', (7236, 7261), False, 'import json\n'), ((9899, 9956), 'infer.bench_log', 'bench_log', (['detector', 'img_list', 'det_model_info'], {'name': '"""Det"""'}), "(detector, img_list, det_model_info, name='Det')\n", (9908, 9956), False, 'from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log\n'), ((10202, 10313), 'infer.bench_log', 'bench_log', (['topdown_keypoint_detector', 'img_list', 'keypoint_model_info', 'FLAGS.keypoint_batch_size', '"""KeyPoint"""'], {}), "(topdown_keypoint_detector, img_list, keypoint_model_info, FLAGS.\n keypoint_batch_size, 'KeyPoint')\n", (10211, 10313), False, 'from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log\n'), ((3854, 3886), 'os.path.exists', 'os.path.exists', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (3868, 3886), False, 'import os\n'), ((3904, 3933), 'os.makedirs', 'os.makedirs', (['FLAGS.output_dir'], {}), '(FLAGS.output_dir)\n', (3915, 3933), False, 'import os\n'), ((6691, 6705), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (6702, 6705), False, 'import cv2\n')]
import random import seaborn as sns import matplotlib.pyplot as plt import numpy as np from mla.base import BaseEstimator from mla.metrics.distance import euclidean_distance random.seed(1111) class KMeans(BaseEstimator): """Partition a dataset into K clusters. Finds clusters by repeatedly assigning each data point to the cluster with the nearest centroid and iterating until the assignments converge (meaning they don't change during an iteration) or the maximum number of iterations is reached. Parameters ---------- K : int The number of clusters into which the dataset is partitioned. max_iters: int The maximum iterations of assigning points to the nearest cluster. Short-circuited by the assignments converging on their own. init: str, default 'random' The name of the method used to initialize the first clustering. 'random' - Randomly select values from the dataset as the K centroids. '++' - Select a random first centroid from the dataset, then select K - 1 more centroids by choosing values from the dataset with a probability distribution proportional to the squared distance from each point's closest existing cluster. Attempts to create larger distances between initial clusters to improve convergence rates and avoid degenerate cases. """ y_required = False def __init__(self, K=5, max_iters=100, init='random'): self.K = K self.max_iters = max_iters self.clusters = [[] for _ in range(self.K)] self.centroids = [] self.init = init def _initialize_cetroids(self, init): """Set the initial centroids.""" if init == 'random': self.centroids = [self.X[x] for x in random.sample(range(self.n_samples), self.K)] elif init == '++': self.centroids = [random.choice(self.X)] while len(self.centroids) < self.K: self.centroids.append(self._choose_next_center()) else: raise ValueError('Unknown type of init parameter') def _predict(self, X=None): """Perform the clustering on the dataset.""" self._initialize_cetroids(self.init) centroids = self.centroids for _ in range(self.max_iters): self._assign(centroids) centroids_old = centroids centroids = [self._get_centroid(cluster) for cluster in self.clusters] if self._is_converged(centroids_old, centroids): break self.centroids = centroids return self._get_predictions() def _get_predictions(self): predictions = np.empty(self.n_samples) for i, cluster in enumerate(self.clusters): for index in cluster: predictions[index] = i return predictions def _assign(self, centroids): for row in range(self.n_samples): for i, cluster in enumerate(self.clusters): if row in cluster: self.clusters[i].remove(row) break closest = self._closest(row, centroids) self.clusters[closest].append(row) def _closest(self, fpoint, centroids): closest_index = None closest_distance = None for i, point in enumerate(centroids): dist = euclidean_distance(self.X[fpoint], point) if closest_index is None or dist < closest_distance: closest_index = i closest_distance = dist return closest_index def _get_centroid(self, cluster): """Get values by indices and take the mean.""" return [np.mean(np.take(self.X[:, i], cluster)) for i in range(self.n_features)] def _dist_from_centers(self): return np.array([min([euclidean_distance(x, c) for c in self.centroids]) for x in self.X]) def _choose_next_center(self): distances = self._dist_from_centers() probs = distances / distances.sum() cumprobs = probs.cumsum() r = random.random() ind = np.where(cumprobs >= r)[0][0] return self.X[ind] def _is_converged(self, centroids_old, centroids): return True if sum([euclidean_distance(centroids_old[i], centroids[i]) for i in range(self.K)]) == 0 else False def plot(self, data=None): sns.set(style="white") if data is None: data = self.X for i, index in enumerate(self.clusters): point = np.array(data[index]).T plt.scatter(*point, c=sns.color_palette("hls", self.K + 1)[i]) for point in self.centroids: plt.scatter(*point, marker='x', linewidths=10) plt.show()
[ "seaborn.set", "random.choice", "seaborn.color_palette", "mla.metrics.distance.euclidean_distance", "numpy.where", "random.seed", "numpy.take", "numpy.array", "numpy.empty", "matplotlib.pyplot.scatter", "random.random", "matplotlib.pyplot.show" ]
[((177, 194), 'random.seed', 'random.seed', (['(1111)'], {}), '(1111)\n', (188, 194), False, 'import random\n'), ((2761, 2785), 'numpy.empty', 'np.empty', (['self.n_samples'], {}), '(self.n_samples)\n', (2769, 2785), True, 'import numpy as np\n'), ((4152, 4167), 'random.random', 'random.random', ([], {}), '()\n', (4165, 4167), False, 'import random\n'), ((4455, 4477), 'seaborn.set', 'sns.set', ([], {'style': '"""white"""'}), "(style='white')\n", (4462, 4477), True, 'import seaborn as sns\n'), ((4806, 4816), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4814, 4816), True, 'import matplotlib.pyplot as plt\n'), ((3453, 3494), 'mla.metrics.distance.euclidean_distance', 'euclidean_distance', (['self.X[fpoint]', 'point'], {}), '(self.X[fpoint], point)\n', (3471, 3494), False, 'from mla.metrics.distance import euclidean_distance\n'), ((4750, 4796), 'matplotlib.pyplot.scatter', 'plt.scatter', (['*point'], {'marker': '"""x"""', 'linewidths': '(10)'}), "(*point, marker='x', linewidths=10)\n", (4761, 4796), True, 'import matplotlib.pyplot as plt\n'), ((3781, 3811), 'numpy.take', 'np.take', (['self.X[:, i]', 'cluster'], {}), '(self.X[:, i], cluster)\n', (3788, 3811), True, 'import numpy as np\n'), ((4182, 4205), 'numpy.where', 'np.where', (['(cumprobs >= r)'], {}), '(cumprobs >= r)\n', (4190, 4205), True, 'import numpy as np\n'), ((4601, 4622), 'numpy.array', 'np.array', (['data[index]'], {}), '(data[index])\n', (4609, 4622), True, 'import numpy as np\n'), ((1969, 1990), 'random.choice', 'random.choice', (['self.X'], {}), '(self.X)\n', (1982, 1990), False, 'import random\n'), ((3911, 3935), 'mla.metrics.distance.euclidean_distance', 'euclidean_distance', (['x', 'c'], {}), '(x, c)\n', (3929, 3935), False, 'from mla.metrics.distance import euclidean_distance\n'), ((4323, 4373), 'mla.metrics.distance.euclidean_distance', 'euclidean_distance', (['centroids_old[i]', 'centroids[i]'], {}), '(centroids_old[i], centroids[i])\n', (4341, 4373), False, 'from mla.metrics.distance import euclidean_distance\n'), ((4659, 4695), 'seaborn.color_palette', 'sns.color_palette', (['"""hls"""', '(self.K + 1)'], {}), "('hls', self.K + 1)\n", (4676, 4695), True, 'import seaborn as sns\n')]
import os import sys import argparse import time import random import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable # from sru import * import dataloader import modules class Model(nn.Module): def __init__(self, embedding, hidden_size=150, depth=1, dropout=0.3, cnn=False, nclasses=2, args=None): super(Model, self).__init__() self.cnn = cnn self.drop = nn.Dropout(dropout) self.args = args self.emb_layer = modules.EmbeddingLayer( embs = dataloader.load_embedding(embedding), dist_embeds = self.args.dist_embeds ) self.word2id = self.emb_layer.word2id if cnn: self.encoder = modules.CNN_Text( self.emb_layer.n_d, widths = [3,4,5], filters=hidden_size ) d_out = 3*hidden_size else: self.encoder = nn.LSTM( self.emb_layer.n_d, hidden_size//2, depth, dropout = dropout, # batch_first=True, bidirectional=True ) d_out = hidden_size # else: # self.encoder = SRU( # emb_layer.n_d, # args.d, # args.depth, # dropout = args.dropout, # ) # d_out = args.d self.out = nn.Linear(d_out, nclasses) def forward(self, input): if self.cnn: input = input.t() if self.args.dist_embeds: emb, kl_loss = self.emb_layer(input) else: emb = self.emb_layer(input) emb = self.drop(emb) if self.cnn: output = self.encoder(emb) else: output, hidden = self.encoder(emb) # output = output[-1] output = torch.max(output, dim=0)[0].squeeze() output = self.drop(output) if self.args.dist_embeds: return self.out(output), kl_loss else: return self.out(output) def text_pred(self, text, batch_size=32): batches_x = dataloader.create_batches_x( text, batch_size, ##TODO self.word2id ) outs = [] with torch.no_grad(): for x in batches_x: x = Variable(x) if self.cnn: x = x.t() emb = self.emb_layer(x) if self.cnn: output = self.encoder(emb) else: output, hidden = self.encoder(emb) # output = output[-1] output = torch.max(output, dim=0)[0] outs.append(F.softmax(self.out(output), dim=-1)) return torch.cat(outs, dim=0) def eval_model(niter, model, input_x, input_y): model.eval() # N = len(valid_x) # criterion = nn.CrossEntropyLoss() correct = 0.0 cnt = 0. # total_loss = 0.0 with torch.no_grad(): for x, y in zip(input_x, input_y): x, y = Variable(x, volatile=True), Variable(y) if model.args.dist_embeds: output, kl_loss = model(x) else: output = model(x) # loss = criterion(output, y) # total_loss += loss.item()*x.size(1) pred = output.data.max(1)[1] correct += pred.eq(y.data).cpu().sum() cnt += y.numel() model.train() return correct.item()/cnt def train_model(epoch, model, optimizer, train_x, train_y, test_x, test_y, best_test, save_path): model.train() niter = epoch*len(train_x) criterion = nn.CrossEntropyLoss() cnt = 0 for x, y in zip(train_x, train_y): niter += 1 cnt += 1 model.zero_grad() x, y = Variable(x), Variable(y) if model.args.dist_embeds: output, kl_loss = model(x) ce_loss = criterion(output, y) loss = ce_loss + model.args.kl_weight*kl_loss else: output = model(x) loss = criterion(output, y) loss.backward() optimizer.step() test_acc = eval_model(niter, model, test_x, test_y) if model.args.dist_embeds: sys.stdout.write("Epoch={} iter={} lr={:.6f} train_loss_class={:.6f} train_loss_kl={:.6f} train_loss_ovr = {:.6f} test_err={:.6f}\n".format( epoch, niter, optimizer.param_groups[0]['lr'], ce_loss.item(), kl_loss.item(), loss.item(), test_acc )) else: sys.stdout.write("Epoch={} iter={} lr={:.6f} train_loss = {:.6f} test_err={:.6f}\n".format( epoch, niter, optimizer.param_groups[0]['lr'], loss.item(), test_acc )) if test_acc > best_test: best_test = test_acc if save_path: torch.save(model.state_dict(), save_path) # test_err = eval_model(niter, model, test_x, test_y) sys.stdout.write("\n") return best_test def save_data(data, labels, path, type='train'): with open(os.path.join(path, type+'.txt'), 'w') as ofile: for text, label in zip(data, labels): ofile.write('{} {}\n'.format(label, ' '.join(text))) def main(args): if args.dataset == 'mr': # data, label = dataloader.read_MR(args.path) # train_x, train_y, test_x, test_y = dataloader.cv_split2( # data, label, # nfold=10, # valid_id=args.cv # ) # # if args.save_data_split: # save_data(train_x, train_y, args.path, 'train') # save_data(test_x, test_y, args.path, 'test') train_x, train_y = dataloader.read_corpus('data/mr/train.txt') test_x, test_y = dataloader.read_corpus('data/mr/test.txt') elif args.dataset == 'imdb': train_x, train_y = dataloader.read_corpus(os.path.join('/data/medg/misc/jindi/nlp/datasets/imdb', 'train_tok.csv'), clean=False, MR=True, shuffle=True) test_x, test_y = dataloader.read_corpus(os.path.join('/data/medg/misc/jindi/nlp/datasets/imdb', 'test_tok.csv'), clean=False, MR=True, shuffle=True) else: train_x, train_y = dataloader.read_corpus('/afs/csail.mit.edu/u/z/zhijing/proj/to_di/data/{}/' 'train_tok.csv'.format(args.dataset), clean=False, MR=False, shuffle=True) test_x, test_y = dataloader.read_corpus('/afs/csail.mit.edu/u/z/zhijing/proj/to_di/data/{}/' 'test_tok.csv'.format(args.dataset), clean=False, MR=False, shuffle=True) nclasses = max(train_y) + 1 # elif args.dataset == 'subj': # data, label = dataloader.read_SUBJ(args.path) # elif args.dataset == 'cr': # data, label = dataloader.read_CR(args.path) # elif args.dataset == 'mpqa': # data, label = dataloader.read_MPQA(args.path) # elif args.dataset == 'trec': # train_x, train_y, test_x, test_y = dataloader.read_TREC(args.path) # data = train_x + test_x # label = None # elif args.dataset == 'sst': # train_x, train_y, valid_x, valid_y, test_x, test_y = dataloader.read_SST(args.path) # data = train_x + valid_x + test_x # label = None # else: # raise Exception("unknown dataset: {}".format(args.dataset)) # if args.dataset == 'trec': # elif args.dataset != 'sst': # train_x, train_y, valid_x, valid_y, test_x, test_y = dataloader.cv_split( # data, label, # nfold = 10, # test_id = args.cv # ) model = Model(args.embedding, args.d, args.depth, args.dropout, args.cnn, nclasses, args=args).cuda() need_grad = lambda x: x.requires_grad optimizer = optim.Adam( filter(need_grad, model.parameters()), lr = args.lr ) train_x, train_y = dataloader.create_batches( train_x, train_y, args.batch_size, model.word2id, ) # valid_x, valid_y = dataloader.create_batches( # valid_x, valid_y, # args.batch_size, # emb_layer.word2id, # ) test_x, test_y = dataloader.create_batches( test_x, test_y, args.batch_size, model.word2id, ) best_test = 0 # test_err = 1e+8 for epoch in range(args.max_epoch): best_test = train_model(epoch, model, optimizer, train_x, train_y, # valid_x, valid_y, test_x, test_y, best_test, args.save_path ) if args.lr_decay>0: optimizer.param_groups[0]['lr'] *= args.lr_decay # sys.stdout.write("best_valid: {:.6f}\n".format( # best_valid # )) sys.stdout.write("test_err: {:.6f}\n".format( best_test )) if __name__ == "__main__": argparser = argparse.ArgumentParser(sys.argv[0], conflict_handler='resolve') argparser.add_argument("--cnn", action='store_true', help="whether to use cnn") argparser.add_argument("--lstm", action='store_true', help="whether to use lstm") argparser.add_argument("--dataset", type=str, default="mr", help="which dataset") argparser.add_argument("--embedding", type=str, required=True, help="word vectors") argparser.add_argument("--batch_size", "--batch", type=int, default=32) argparser.add_argument("--max_epoch", type=int, default=70) argparser.add_argument("--d", type=int, default=150) argparser.add_argument("--dropout", type=float, default=0.3) argparser.add_argument("--depth", type=int, default=1) argparser.add_argument("--lr", type=float, default=0.001) argparser.add_argument("--lr_decay", type=float, default=0) argparser.add_argument("--cv", type=int, default=0) argparser.add_argument("--save_path", type=str, default='') argparser.add_argument("--save_data_split", action='store_true', help="whether to save train/test split") argparser.add_argument("--gpu_id", type=int, default=0) argparser.add_argument("--kl_weight", type=float, default = 0.001) argparser.add_argument("--dist_embeds", action='store_true') args = argparser.parse_args() # args.save_path = os.path.join(args.save_path, args.dataset) print (args) torch.cuda.set_device(args.gpu_id) main(args)
[ "dataloader.create_batches_x", "torch.nn.Dropout", "dataloader.load_embedding", "torch.nn.CrossEntropyLoss", "argparse.ArgumentParser", "torch.nn.LSTM", "torch.max", "modules.CNN_Text", "os.path.join", "dataloader.create_batches", "dataloader.read_corpus", "torch.nn.Linear", "torch.no_grad", "torch.autograd.Variable", "torch.cuda.set_device", "torch.cat", "sys.stdout.write" ]
[((3781, 3802), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3800, 3802), True, 'import torch.nn as nn\n'), ((5099, 5121), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (5115, 5121), False, 'import sys\n'), ((8341, 8416), 'dataloader.create_batches', 'dataloader.create_batches', (['train_x', 'train_y', 'args.batch_size', 'model.word2id'], {}), '(train_x, train_y, args.batch_size, model.word2id)\n', (8366, 8416), False, 'import dataloader\n'), ((8613, 8686), 'dataloader.create_batches', 'dataloader.create_batches', (['test_x', 'test_y', 'args.batch_size', 'model.word2id'], {}), '(test_x, test_y, args.batch_size, model.word2id)\n', (8638, 8686), False, 'import dataloader\n'), ((9287, 9351), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['sys.argv[0]'], {'conflict_handler': '"""resolve"""'}), "(sys.argv[0], conflict_handler='resolve')\n", (9310, 9351), False, 'import argparse\n'), ((10691, 10725), 'torch.cuda.set_device', 'torch.cuda.set_device', (['args.gpu_id'], {}), '(args.gpu_id)\n', (10712, 10725), False, 'import torch\n'), ((482, 501), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (492, 501), True, 'import torch.nn as nn\n'), ((1479, 1505), 'torch.nn.Linear', 'nn.Linear', (['d_out', 'nclasses'], {}), '(d_out, nclasses)\n', (1488, 1505), True, 'import torch.nn as nn\n'), ((2203, 2262), 'dataloader.create_batches_x', 'dataloader.create_batches_x', (['text', 'batch_size', 'self.word2id'], {}), '(text, batch_size, self.word2id)\n', (2230, 2262), False, 'import dataloader\n'), ((2862, 2884), 'torch.cat', 'torch.cat', (['outs'], {'dim': '(0)'}), '(outs, dim=0)\n', (2871, 2884), False, 'import torch\n'), ((3078, 3093), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3091, 3093), False, 'import torch\n'), ((5816, 5859), 'dataloader.read_corpus', 'dataloader.read_corpus', (['"""data/mr/train.txt"""'], {}), "('data/mr/train.txt')\n", (5838, 5859), False, 'import dataloader\n'), ((5885, 5927), 'dataloader.read_corpus', 'dataloader.read_corpus', (['"""data/mr/test.txt"""'], {}), "('data/mr/test.txt')\n", (5907, 5927), False, 'import dataloader\n'), ((769, 844), 'modules.CNN_Text', 'modules.CNN_Text', (['self.emb_layer.n_d'], {'widths': '[3, 4, 5]', 'filters': 'hidden_size'}), '(self.emb_layer.n_d, widths=[3, 4, 5], filters=hidden_size)\n', (785, 844), False, 'import modules\n'), ((982, 1075), 'torch.nn.LSTM', 'nn.LSTM', (['self.emb_layer.n_d', '(hidden_size // 2)', 'depth'], {'dropout': 'dropout', 'bidirectional': '(True)'}), '(self.emb_layer.n_d, hidden_size // 2, depth, dropout=dropout,\n bidirectional=True)\n', (989, 1075), True, 'import torch.nn as nn\n'), ((2347, 2362), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2360, 2362), False, 'import torch\n'), ((3932, 3943), 'torch.autograd.Variable', 'Variable', (['x'], {}), '(x)\n', (3940, 3943), False, 'from torch.autograd import Variable\n'), ((3945, 3956), 'torch.autograd.Variable', 'Variable', (['y'], {}), '(y)\n', (3953, 3956), False, 'from torch.autograd import Variable\n'), ((5207, 5240), 'os.path.join', 'os.path.join', (['path', "(type + '.txt')"], {}), "(path, type + '.txt')\n", (5219, 5240), False, 'import os\n'), ((595, 631), 'dataloader.load_embedding', 'dataloader.load_embedding', (['embedding'], {}), '(embedding)\n', (620, 631), False, 'import dataloader\n'), ((2416, 2427), 'torch.autograd.Variable', 'Variable', (['x'], {}), '(x)\n', (2424, 2427), False, 'from torch.autograd import Variable\n'), ((3157, 3183), 'torch.autograd.Variable', 'Variable', (['x'], {'volatile': '(True)'}), '(x, volatile=True)\n', (3165, 3183), False, 'from torch.autograd import Variable\n'), ((3185, 3196), 'torch.autograd.Variable', 'Variable', (['y'], {}), '(y)\n', (3193, 3196), False, 'from torch.autograd import Variable\n'), ((6011, 6083), 'os.path.join', 'os.path.join', (['"""/data/medg/misc/jindi/nlp/datasets/imdb"""', '"""train_tok.csv"""'], {}), "('/data/medg/misc/jindi/nlp/datasets/imdb', 'train_tok.csv')\n", (6023, 6083), False, 'import os\n'), ((6282, 6353), 'os.path.join', 'os.path.join', (['"""/data/medg/misc/jindi/nlp/datasets/imdb"""', '"""test_tok.csv"""'], {}), "('/data/medg/misc/jindi/nlp/datasets/imdb', 'test_tok.csv')\n", (6294, 6353), False, 'import os\n'), ((1932, 1956), 'torch.max', 'torch.max', (['output'], {'dim': '(0)'}), '(output, dim=0)\n', (1941, 1956), False, 'import torch\n'), ((2752, 2776), 'torch.max', 'torch.max', (['output'], {'dim': '(0)'}), '(output, dim=0)\n', (2761, 2776), False, 'import torch\n')]
import datetime import io import os import tweepy from dotenv import load_dotenv from PIL import Image, ImageDraw, ImageFont class Twitter: """ A class used to manage the connection with the Twitter API ... Methods ------- post_tweet(solver_answers, nyt_answers, pangrams) Creates the tweet text and posts a picture with todays answers """ def __init__(self): load_dotenv() api_key = os.environ.get('TWITTER_API') api_key_secret = os.environ.get('TWITTER_API_SECRET') access_token = os.environ.get('TWITTER_ACCESS') access_token_secret = os.environ.get('TWITTER_ACCESS_SECRET') auth = tweepy.OAuthHandler(api_key, api_key_secret) auth.set_access_token(access_token, access_token_secret) self.api = tweepy.API(auth) def post_tweet(self, solver_answers, nyt_answers, pangrams): """Composes the tweet text and posts a picture with todays answers marked as NSFW to avoid spoilers Parameters ---------- solver_answers: list, required The answers returned by the solver nyt_answers: list, required The answers of todays New York Times Spelling Bee pangrams: list, required The pangrams in the answers of todays New York Times Spelling Bee """ pangrams.sort() nyt_answers.sort() text = ("Pangram(s):\n" + self.__make_rows(pangrams) + '\n\nAnswers:\n' + self.__make_rows(nyt_answers)) pic = self.__create_pic(text) media = self.api.media_upload( filename=str(datetime.date.today()), file=pic, possibly_sensitive=True) if len(solver_answers) == len(nyt_answers): tweet = "Cheating Bee got all {} answers on todays #SpellingBee!🐝🎓" tweet = tweet + "\n\nNeed help with todays puzzle? Click the image below!" tweet = tweet.format(len(nyt_answers)) else: tweet = "Cheating Bee got {}/{} answers on todays #SpellingBee!🐝" tweet = tweet + "\n\nNeed help with todays puzzle? Click the image below!" tweet = tweet.format(len(solver_answers), len(nyt_answers)) self.api.update_status(status=tweet, media_ids=[media.media_id]) def __make_rows(self, word_list): """Formats a list of words into a string with rows five words long Parameters ---------- word_list: list, required A list of words Returns ------- str The word list composed to a string with rows of five words """ text = '' for i in range(0, len(word_list), 5): if i + 5 < len(word_list): text = text + ', '.join(word_list[i:i+5]) + ',\n' else: text = text + ', '.join(word_list[i:len(word_list)]) return text def __create_pic(self, text): """Creates an image with and fills it with the text provided Parameters ---------- text: str, required The text string to be drawn on the picture Returns ------- file The picture as a file object """ font_size = 20 # number of lines plus 3 for padding height = (text.count('\n') + 3) * font_size # longest line in string length times font size at a ratio of .65 width = int( max([len(x) for x in text.splitlines()]) * font_size * 0.65) pic = Image.new("RGB", (width, height), (255, 255, 255)) font = ImageFont.truetype("Pillow/Tests/fonts/FreeMono.ttf", font_size) drawing = ImageDraw.Draw(pic) drawing.multiline_text((10, 10), text, font=font, fill=(0, 0, 0)) b = io.BytesIO() pic.save(b, 'png') b.seek(0) return b
[ "PIL.Image.new", "os.environ.get", "PIL.ImageFont.truetype", "io.BytesIO", "dotenv.load_dotenv", "tweepy.API", "PIL.ImageDraw.Draw", "datetime.date.today", "tweepy.OAuthHandler" ]
[((413, 426), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (424, 426), False, 'from dotenv import load_dotenv\n'), ((445, 474), 'os.environ.get', 'os.environ.get', (['"""TWITTER_API"""'], {}), "('TWITTER_API')\n", (459, 474), False, 'import os\n'), ((500, 536), 'os.environ.get', 'os.environ.get', (['"""TWITTER_API_SECRET"""'], {}), "('TWITTER_API_SECRET')\n", (514, 536), False, 'import os\n'), ((560, 592), 'os.environ.get', 'os.environ.get', (['"""TWITTER_ACCESS"""'], {}), "('TWITTER_ACCESS')\n", (574, 592), False, 'import os\n'), ((623, 662), 'os.environ.get', 'os.environ.get', (['"""TWITTER_ACCESS_SECRET"""'], {}), "('TWITTER_ACCESS_SECRET')\n", (637, 662), False, 'import os\n'), ((678, 722), 'tweepy.OAuthHandler', 'tweepy.OAuthHandler', (['api_key', 'api_key_secret'], {}), '(api_key, api_key_secret)\n', (697, 722), False, 'import tweepy\n'), ((807, 823), 'tweepy.API', 'tweepy.API', (['auth'], {}), '(auth)\n', (817, 823), False, 'import tweepy\n'), ((3601, 3651), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(width, height)', '(255, 255, 255)'], {}), "('RGB', (width, height), (255, 255, 255))\n", (3610, 3651), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3667, 3731), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""Pillow/Tests/fonts/FreeMono.ttf"""', 'font_size'], {}), "('Pillow/Tests/fonts/FreeMono.ttf', font_size)\n", (3685, 3731), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3750, 3769), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['pic'], {}), '(pic)\n', (3764, 3769), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((3856, 3868), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (3866, 3868), False, 'import io\n'), ((1670, 1691), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (1689, 1691), False, 'import datetime\n')]
# -*- coding: utf-8 -*- """ :Author: <NAME> """ import logging import numpy as np import scipy as sp import collections import itertools from model.modelTemplate import Model class BPE(Model): """The Bayesian predictor model Attributes ---------- Name : string The name of the class used when recording what has been used. Parameters ---------- alpha : float, optional Learning rate parameter epsilon : float, optional Noise parameter. The larger it is the less likely the model is to choose the highest expected reward number_actions : integer, optional The maximum number of valid actions the model can expect to receive. Default 2. number_cues : integer, optional The initial maximum number of stimuli the model can expect to receive. Default 1. number_critics : integer, optional The number of different reaction learning sets. Default number_actions*number_cues validRewards : list,np.ndarray, optional The different reward values that can occur in the task. Default ``array([0, 1])`` action_codes : dict with string or int as keys and int values, optional A dictionary used to convert between the action references used by the task or dataset and references used in the models to describe the order in which the action information is stored. dirichletInit : float, optional The initial values for values of the dirichlet distribution. Normally 0, 1/2 or 1. Default 1 prior : array of floats in ``[0, 1]``, optional Ignored in this case stimFunc : function, optional The function that transforms the stimulus into a form the model can understand and a string to identify it later. Default is blankStim rewFunc : function, optional The function that transforms the reward into a form the model can understand. Default is blankRew decFunc : function, optional The function that takes the internal values of the model and turns them in to a decision. Default is model.decision.discrete.weightProb See Also -------- model.BP : This model is heavily based on that one """ def __init__(self, alpha=0.3, epsilon=0.1, dirichletInit=1, validRewards=np.array([0, 1]), **kwargs): super(BPE, self).__init__(**kwargs) self.alpha = alpha self.epsilon = epsilon self.validRew = validRewards self.rewLoc = collections.OrderedDict(((k, v) for k, v in itertools.izip(self.validRew, range(len(self.validRew))))) self.dirichletVals = np.ones((self.number_actions, self.number_cues, len(self.validRew))) * dirichletInit self.expectations = self.updateExpectations(self.dirichletVals) self.parameters["epsilon"] = self.epsilon self.parameters["alpha"] = self.alpha self.parameters["dirichletInit"] = dirichletInit # Recorded information self.recDirichletVals = [] def returnTaskState(self): """ Returns all the relevant data for this model Returns ------- results : dict The dictionary contains a series of keys including Name, Probabilities, Actions and Events. """ results = self.standardResultOutput() results["dirichletVals"] = np.array(self.recDirichletVals) return results def storeState(self): """ Stores the state of all the important variables so that they can be accessed later """ self.storeStandardResults() self.recDirichletVals.append(self.dirichletVals.copy()) def rewardExpectation(self, observation): """Calculate the estimated reward based on the action and stimuli This contains parts that are task dependent Parameters ---------- observation : {int | float | tuple} The set of stimuli Returns ------- actionExpectations : array of floats The expected rewards for each action stimuli : list of floats The processed observations activeStimuli : list of [0, 1] mapping to [False, True] A list of the stimuli that were or were not present """ activeStimuli, stimuli = self.stimulus_shaper.processStimulus(observation) actionExpectations = self._actExpectations(self.dirichletVals, stimuli) return actionExpectations, stimuli, activeStimuli def delta(self, reward, expectation, action, stimuli): """ Calculates the comparison between the reward and the expectation Parameters ---------- reward : float The reward value expectation : float The expected reward value action : int The chosen action stimuli : {int | float | tuple | None} The stimuli received Returns ------- delta """ modReward = self.reward_shaper.processFeedback(reward, action, stimuli) return modReward def updateModel(self, delta, action, stimuli, stimuliFilter): """ Parameters ---------- delta : float The difference between the reward and the expected reward action : int The action chosen by the model in this trialstep stimuli : list of float The weights of the different stimuli in this trialstep stimuliFilter : list of bool A list describing if a stimulus cue is present in this trialstep """ # Find the new activities self._newExpect(action, delta, stimuli) # Calculate the new probabilities # We need to combine the expectations before calculating the probabilities actionExpectations = self._actExpectations(self.dirichletVals, stimuli) self.probabilities = self.calcProbabilities(actionExpectations) def _newExpect(self, action, delta, stimuli): self.dirichletVals[action, :, self.rewLoc[delta]] += self.alpha * stimuli/np.sum(stimuli) self.expectations = self.updateExpectations(self.dirichletVals) def _actExpectations(self, dirichletVals, stimuli): # If there are multiple possible stimuli, filter by active stimuli and calculate # calculate the expectations associated with each action. if self.number_cues > 1: actionExpectations = self.calcActExpectations(self.actStimMerge(dirichletVals, stimuli)) else: actionExpectations = self.calcActExpectations(dirichletVals[:, 0, :]) return actionExpectations def calcProbabilities(self, actionValues): # type: (np.ndarray) -> np.ndarray """ Calculate the probabilities associated with the actions Parameters ---------- actionValues : 1D ndArray of floats Returns ------- probArray : 1D ndArray of floats The probabilities associated with the actionValues """ cbest = actionValues == max(actionValues) deltaEpsilon = self.epsilon * (1 / self.number_actions) bestEpsilon = (1 - self.epsilon) / np.sum(cbest) + deltaEpsilon probArray = bestEpsilon * cbest + deltaEpsilon * (1 - cbest) return probArray def actorStimulusProbs(self): """ Calculates in the model-appropriate way the probability of each action. Returns ------- probabilities : 1D ndArray of floats The probabilities associated with the action choices """ probabilities = self.calcProbabilities(self.expectedRewards) return probabilities def actStimMerge(self, dirichletVals, stimuli): dirVals = dirichletVals * np.expand_dims(np.repeat([stimuli], self.number_actions, axis=0), 2) actDirVals = np.sum(dirVals, 1) return actDirVals def calcActExpectations(self, dirichletVals): actExpect = np.fromiter((np.sum(sp.stats.dirichlet(d).mean() * self.validRew) for d in dirichletVals), float, count=self.number_actions) return actExpect def updateExpectations(self, dirichletVals): def meanFunc(p, r=[]): return np.sum(sp.stats.dirichlet(p).mean() * r) expectations = np.apply_along_axis(meanFunc, 2, dirichletVals, r=self.validRew) return expectations
[ "numpy.repeat", "scipy.stats.dirichlet", "numpy.array", "numpy.sum", "numpy.apply_along_axis" ]
[((2391, 2407), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (2399, 2407), True, 'import numpy as np\n'), ((3481, 3512), 'numpy.array', 'np.array', (['self.recDirichletVals'], {}), '(self.recDirichletVals)\n', (3489, 3512), True, 'import numpy as np\n'), ((8204, 8222), 'numpy.sum', 'np.sum', (['dirVals', '(1)'], {}), '(dirVals, 1)\n', (8210, 8222), True, 'import numpy as np\n'), ((8654, 8718), 'numpy.apply_along_axis', 'np.apply_along_axis', (['meanFunc', '(2)', 'dirichletVals'], {'r': 'self.validRew'}), '(meanFunc, 2, dirichletVals, r=self.validRew)\n', (8673, 8718), True, 'import numpy as np\n'), ((6338, 6353), 'numpy.sum', 'np.sum', (['stimuli'], {}), '(stimuli)\n', (6344, 6353), True, 'import numpy as np\n'), ((7494, 7507), 'numpy.sum', 'np.sum', (['cbest'], {}), '(cbest)\n', (7500, 7507), True, 'import numpy as np\n'), ((8126, 8175), 'numpy.repeat', 'np.repeat', (['[stimuli]', 'self.number_actions'], {'axis': '(0)'}), '([stimuli], self.number_actions, axis=0)\n', (8135, 8175), True, 'import numpy as np\n'), ((8594, 8615), 'scipy.stats.dirichlet', 'sp.stats.dirichlet', (['p'], {}), '(p)\n', (8612, 8615), True, 'import scipy as sp\n'), ((8348, 8369), 'scipy.stats.dirichlet', 'sp.stats.dirichlet', (['d'], {}), '(d)\n', (8366, 8369), True, 'import scipy as sp\n')]
from django.db.models.signals import post_init from factory import DjangoModelFactory, Sequence, SubFactory from factory.django import mute_signals from affiliates.banners import models class CategoryFactory(DjangoModelFactory): FACTORY_FOR = models.Category name = Sequence(lambda n: 'test{0}'.format(n)) class BannerFactory(DjangoModelFactory): ABSTRACT_FACTORY = True category = SubFactory(CategoryFactory) name = Sequence(lambda n: 'test{0}'.format(n)) destination = 'https://mozilla.org/' visible = True class ImageBannerFactory(BannerFactory): FACTORY_FOR = models.ImageBanner @mute_signals(post_init) class ImageVariationFactory(DjangoModelFactory): ABSTRACT_FACTORY = True color = 'Blue' locale = 'en-us' image = 'uploads/image_banners/test.png' class ImageBannerVariationFactory(ImageVariationFactory): FACTORY_FOR = models.ImageBannerVariation banner = SubFactory(ImageBannerFactory) class TextBannerFactory(BannerFactory): FACTORY_FOR = models.TextBanner class TextBannerVariationFactory(DjangoModelFactory): FACTORY_FOR = models.TextBannerVariation banner = SubFactory(TextBannerFactory) locale = 'en-us' text = Sequence(lambda n: 'test{0}'.format(n)) class FirefoxUpgradeBannerFactory(BannerFactory): FACTORY_FOR = models.FirefoxUpgradeBanner @mute_signals(post_init) class FirefoxUpgradeBannerVariationFactory(ImageVariationFactory): FACTORY_FOR = models.FirefoxUpgradeBannerVariation banner = SubFactory(FirefoxUpgradeBannerFactory) image = 'uploads/firefox_upgrade_banners/test.png' upgrade_image = 'uploads/firefox_upgrade_banners/test_upgrade.png'
[ "factory.django.mute_signals", "factory.SubFactory" ]
[((628, 651), 'factory.django.mute_signals', 'mute_signals', (['post_init'], {}), '(post_init)\n', (640, 651), False, 'from factory.django import mute_signals\n'), ((1362, 1385), 'factory.django.mute_signals', 'mute_signals', (['post_init'], {}), '(post_init)\n', (1374, 1385), False, 'from factory.django import mute_signals\n'), ((406, 433), 'factory.SubFactory', 'SubFactory', (['CategoryFactory'], {}), '(CategoryFactory)\n', (416, 433), False, 'from factory import DjangoModelFactory, Sequence, SubFactory\n'), ((935, 965), 'factory.SubFactory', 'SubFactory', (['ImageBannerFactory'], {}), '(ImageBannerFactory)\n', (945, 965), False, 'from factory import DjangoModelFactory, Sequence, SubFactory\n'), ((1159, 1188), 'factory.SubFactory', 'SubFactory', (['TextBannerFactory'], {}), '(TextBannerFactory)\n', (1169, 1188), False, 'from factory import DjangoModelFactory, Sequence, SubFactory\n'), ((1522, 1561), 'factory.SubFactory', 'SubFactory', (['FirefoxUpgradeBannerFactory'], {}), '(FirefoxUpgradeBannerFactory)\n', (1532, 1561), False, 'from factory import DjangoModelFactory, Sequence, SubFactory\n')]
#! /usr/bin/env python """Toolbox for unbalanced dataset in machine learning.""" from setuptools import setup, find_packages import os import sys import setuptools from distutils.command.build_py import build_py if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins descr = """Toolbox for unbalanced dataset in machine learning.""" DISTNAME = 'unbalanced_dataset' DESCRIPTION = 'Toolbox for unbalanced dataset in machine learning.' LONG_DESCRIPTION = descr MAINTAINER = '<NAME>, <NAME>' MAINTAINER_EMAIL = '<EMAIL>, <EMAIL>' URL = 'https://github.com/fmfn/UnbalancedDataset' LICENSE = 'new BSD' DOWNLOAD_URL = 'https://github.com/fmfn/UnbalancedDataset' # This is a bit (!) hackish: we are setting a global variable so that the main # skimage __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by UnbalancedDataset to # recursively build the compiled extensions in sub-packages is based on # the Python import machinery. builtins.__UNBALANCED_DATASET_SETUP__ = True with open('unbalanced_dataset/__init__.py') as fid: for line in fid: if line.startswith('__version__'): VERSION = line.strip().split()[-1][1:-1] break with open('requirements.txt') as fid: INSTALL_REQUIRES = [l.strip() for l in fid.readlines() if l] # requirements for those browsing PyPI REQUIRES = [r.replace('>=', ' (>= ') + ')' for r in INSTALL_REQUIRES] REQUIRES = [r.replace('==', ' (== ') for r in REQUIRES] REQUIRES = [r.replace('[array]', '') for r in REQUIRES] def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) config.set_options( ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('unbalanced_dataset') return config if __name__ == "__main__": try: from numpy.distutils.core import setup extra = {'configuration': configuration} # Do not try and upgrade larger dependencies for lib in ['scipy', 'numpy', 'matplotlib']: try: __import__(lib) INSTALL_REQUIRES = [i for i in INSTALL_REQUIRES if lib not in i] except ImportError: pass except ImportError: if len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', '--version', 'clean')): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install UnbalancedDataset when Numpy is not yet # present in the system. from setuptools import setup extra = {} else: print('To install UnbalancedDataset from source, you need numpy.' + 'Install numpy with pip:\n' + 'pip install numpy\n' 'Or use your operating system package manager.') sys.exit(1) setup( name=DISTNAME, description=DESCRIPTION, long_description=LONG_DESCRIPTION, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, url=URL, license=LICENSE, download_url=DOWNLOAD_URL, version=VERSION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], install_requires=INSTALL_REQUIRES, requires=REQUIRES, packages=setuptools.find_packages(exclude=['doc']), include_package_data=True, zip_safe=False, # the package can run out of an .egg file cmdclass={'build_py': build_py}, **extra )
[ "os.path.exists", "setuptools.find_packages", "numpy.distutils.misc_util.Configuration", "sys.exit", "os.remove" ]
[((1708, 1734), 'os.path.exists', 'os.path.exists', (['"""MANIFEST"""'], {}), "('MANIFEST')\n", (1722, 1734), False, 'import os\n'), ((1836, 1881), 'numpy.distutils.misc_util.Configuration', 'Configuration', (['None', 'parent_package', 'top_path'], {}), '(None, parent_package, top_path)\n', (1849, 1881), False, 'from numpy.distutils.misc_util import Configuration\n'), ((1744, 1765), 'os.remove', 'os.remove', (['"""MANIFEST"""'], {}), "('MANIFEST')\n", (1753, 1765), False, 'import os\n'), ((4762, 4803), 'setuptools.find_packages', 'setuptools.find_packages', ([], {'exclude': "['doc']"}), "(exclude=['doc'])\n", (4786, 4803), False, 'import setuptools\n'), ((3442, 3453), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3450, 3453), False, 'import sys\n')]
#!/usr/bin/env python __author__ = "<NAME>" __copyright__ = "Copyright 2016, Rackspace Inc." __email__ = "<EMAIL>" from mongo_schema import schema_engine import os def get_schema_files(schemas_dirpath): """ get list of js / json files resided in dirpath param. """ res = [] for fname in os.listdir(schemas_dirpath): if fname.endswith('json') or fname.endswith('js'): res.append(fname) res.sort() return res def get_schema_engines_as_dict(schemas_dirpath): """ Load schema engines into dict. Basename of schema file should be the name of collection""" js_schema_files = get_schema_files(schemas_dirpath) schemas = {} for fname in js_schema_files: collection_name = os.path.splitext(os.path.basename(fname))[0] schema_path = os.path.join(schemas_dirpath, fname) schemas[collection_name] = \ schema_engine.create_schema_engine(collection_name, schema_path) return schemas
[ "mongo_schema.schema_engine.create_schema_engine", "os.listdir", "os.path.join", "os.path.basename" ]
[((302, 329), 'os.listdir', 'os.listdir', (['schemas_dirpath'], {}), '(schemas_dirpath)\n', (312, 329), False, 'import os\n'), ((803, 839), 'os.path.join', 'os.path.join', (['schemas_dirpath', 'fname'], {}), '(schemas_dirpath, fname)\n', (815, 839), False, 'import os\n'), ((889, 953), 'mongo_schema.schema_engine.create_schema_engine', 'schema_engine.create_schema_engine', (['collection_name', 'schema_path'], {}), '(collection_name, schema_path)\n', (923, 953), False, 'from mongo_schema import schema_engine\n'), ((753, 776), 'os.path.basename', 'os.path.basename', (['fname'], {}), '(fname)\n', (769, 776), False, 'import os\n')]
from random import randint from django.core.management.base import BaseCommand from django.db import transaction from faker import Faker from hn_users.models import HNUser, User from links.models import Link, Vote faker = Faker() class Command(BaseCommand): help = "Generate Links from a small user subset" def add_arguments(self, parser): parser.add_argument("no_of_users", type=int, nargs="?", default=4) parser.add_argument("no_of_links", type=int, nargs="?", default=20) @transaction.atomic() def handle(self, *args, **options): no_of_users = options.get("no_of_users") no_of_links = options.get("no_of_links") for user in range(no_of_users): user = self._create_user() hn_user = self._create_hn_user(django_user=user) for link in range(no_of_links): generated_link = self._create_link() generated_link.refresh_from_db() self.stdout.write( self.style.SUCCESS( f"Link {generated_link.url} generated with {generated_link.link_votes.count()} votes" ) ) def _create_link(self): all_users_count = HNUser.objects.count() number_of_users_who_voted = randint(1, all_users_count) # nosec randomly_ordered_users = HNUser.objects.all().order_by("?") # nosec random_users = randomly_ordered_users[:number_of_users_who_voted] hn_user = HNUser.objects.all().order_by("?").first() link = Link() link.posted_by = hn_user link.url = faker.url() link.description = faker.text() link.save() for random_user in random_users: vote = Vote() vote.link = link vote.user = random_user vote.save() return link def _create_user(self): simple_profile = faker.simple_profile() user = User() user.email = simple_profile["mail"] user.username = simple_profile["username"] user.first_name = simple_profile["name"].split(" ")[0] user.last_name = simple_profile["name"].split(" ")[-1] user.set_password(faker.password()) user.save() return user def _create_hn_user(self, django_user): hn_user = HNUser() hn_user.bio = faker.text() hn_user.django_user = django_user hn_user.save()
[ "django.db.transaction.atomic", "hn_users.models.HNUser", "links.models.Link", "links.models.Vote", "hn_users.models.HNUser.objects.count", "hn_users.models.User", "faker.Faker", "hn_users.models.HNUser.objects.all", "random.randint" ]
[((225, 232), 'faker.Faker', 'Faker', ([], {}), '()\n', (230, 232), False, 'from faker import Faker\n'), ((511, 531), 'django.db.transaction.atomic', 'transaction.atomic', ([], {}), '()\n', (529, 531), False, 'from django.db import transaction\n'), ((1207, 1229), 'hn_users.models.HNUser.objects.count', 'HNUser.objects.count', ([], {}), '()\n', (1227, 1229), False, 'from hn_users.models import HNUser, User\n'), ((1266, 1293), 'random.randint', 'randint', (['(1)', 'all_users_count'], {}), '(1, all_users_count)\n', (1273, 1293), False, 'from random import randint\n'), ((1531, 1537), 'links.models.Link', 'Link', ([], {}), '()\n', (1535, 1537), False, 'from links.models import Link, Vote\n'), ((1932, 1938), 'hn_users.models.User', 'User', ([], {}), '()\n', (1936, 1938), False, 'from hn_users.models import HNUser, User\n'), ((2307, 2315), 'hn_users.models.HNUser', 'HNUser', ([], {}), '()\n', (2313, 2315), False, 'from hn_users.models import HNUser, User\n'), ((1723, 1729), 'links.models.Vote', 'Vote', ([], {}), '()\n', (1727, 1729), False, 'from links.models import Link, Vote\n'), ((1336, 1356), 'hn_users.models.HNUser.objects.all', 'HNUser.objects.all', ([], {}), '()\n', (1354, 1356), False, 'from hn_users.models import HNUser, User\n'), ((1473, 1493), 'hn_users.models.HNUser.objects.all', 'HNUser.objects.all', ([], {}), '()\n', (1491, 1493), False, 'from hn_users.models import HNUser, User\n')]
# -*- coding: utf-8 -*- import scrapy import json from locations.items import GeojsonPointItem class CenexSpider(scrapy.Spider): name = "cenex" item_attributes = {"brand": "Cenex", "brand_wikidata": "Q5011381"} allowed_domains = ["www.cenex.com"] def start_requests(self): yield scrapy.http.JsonRequest( "https://www.cenex.com/Common/Services/InteractiveMap.svc/GetLocations", method="POST", data={ "SearchRequest": { "Metadata": {"MapId": "", "Categories": []}, "Query": { "SearchLat": 0, "SearchLong": 0, "LocationTypes": [1, 16, 15], "Amenities": [], "Organizations": ["28e93e82-edfa-418e-90aa-7ded057a0c68"], "NELat": 90, "NELong": 180, "SWLat": -90, "SWLong": -180, }, }, "MapItemId": "40381d43-1c05-43e0-8477-78737b9974df", "AllOrganizationIds": [ "b4ed9d2c-cc3b-4ce0-b642-79d75eac11fa", "cb27078e-9b6a-4f4d-ac81-eb1d163a5ff6", "68be9e56-ff49-4724-baf0-90fc833fb459", "28e93e82-edfa-418e-90aa-7ded057a0c68", ], "ServiceUrl": "https://locatorservice.chsinc.ds/api/search", }, ) def parse(self, response): result = json.loads(response.body_as_unicode()) for store in result["SearchResponse"]["Locations"]: amenities = "|".join([a["Name"] for a in store["Amenities"]]) yield GeojsonPointItem( lon=store["Long"], lat=store["Lat"], ref=store["LocationId"], name=store["Name"], addr_full=" ".join([store["Address1"], store["Address2"]]).strip(), city=store["City"], state=store["State"], postcode=store["Zip"], country="US", phone=store["Phone"], website=store["WebsiteUrl"], opening_hours="24/7" if "24-Hour" in amenities else None, extras={ "amenity:fuel": True, "atm": "ATM" in amenities, "car_wash": "Car Wash" in amenities, "fuel:biodiesel": "Biodiesel" in amenities or None, "fuel:diesel": "Diesel" in amenities or None, "fuel:e85": "Flex Fuels" in amenities or None, "fuel:HGV_diesel": "Truck Stop" in amenities or None, "fuel:propane": "Propane" in amenities or None, "hgv": "Truck Stop" in amenities or None, "shop": "convenience" if "Convenience Store" in amenities else None, }, )
[ "scrapy.http.JsonRequest" ]
[((306, 1045), 'scrapy.http.JsonRequest', 'scrapy.http.JsonRequest', (['"""https://www.cenex.com/Common/Services/InteractiveMap.svc/GetLocations"""'], {'method': '"""POST"""', 'data': "{'SearchRequest': {'Metadata': {'MapId': '', 'Categories': []}, 'Query': {\n 'SearchLat': 0, 'SearchLong': 0, 'LocationTypes': [1, 16, 15],\n 'Amenities': [], 'Organizations': [\n '28e93e82-edfa-418e-90aa-7ded057a0c68'], 'NELat': 90, 'NELong': 180,\n 'SWLat': -90, 'SWLong': -180}}, 'MapItemId':\n '40381d43-1c05-43e0-8477-78737b9974df', 'AllOrganizationIds': [\n 'b4ed9d2c-cc3b-4ce0-b642-79d75eac11fa',\n 'cb27078e-9b6a-4f4d-ac81-eb1d163a5ff6',\n '68be9e56-ff49-4724-baf0-90fc833fb459',\n '28e93e82-edfa-418e-90aa-7ded057a0c68'], 'ServiceUrl':\n 'https://locatorservice.chsinc.ds/api/search'}"}), "(\n 'https://www.cenex.com/Common/Services/InteractiveMap.svc/GetLocations',\n method='POST', data={'SearchRequest': {'Metadata': {'MapId': '',\n 'Categories': []}, 'Query': {'SearchLat': 0, 'SearchLong': 0,\n 'LocationTypes': [1, 16, 15], 'Amenities': [], 'Organizations': [\n '28e93e82-edfa-418e-90aa-7ded057a0c68'], 'NELat': 90, 'NELong': 180,\n 'SWLat': -90, 'SWLong': -180}}, 'MapItemId':\n '40381d43-1c05-43e0-8477-78737b9974df', 'AllOrganizationIds': [\n 'b4ed9d2c-cc3b-4ce0-b642-79d75eac11fa',\n 'cb27078e-9b6a-4f4d-ac81-eb1d163a5ff6',\n '68be9e56-ff49-4724-baf0-90fc833fb459',\n '28e93e82-edfa-418e-90aa-7ded057a0c68'], 'ServiceUrl':\n 'https://locatorservice.chsinc.ds/api/search'})\n", (329, 1045), False, 'import scrapy\n')]
import os import multiprocessing if os.name != "nt": # https://bugs.python.org/issue41567 import multiprocessing.popen_spawn_posix # type: ignore from pathlib import Path from typing import Optional # PROFILES_DIR must be set before the other flags # It also gets set in main.py and in set_from_args because the rpc server # doesn't go through exactly the same main arg processing. DEFAULT_PROFILES_DIR = os.path.join(os.path.expanduser("~"), ".dbt") PROFILES_DIR = os.path.expanduser(os.getenv("DBT_PROFILES_DIR", DEFAULT_PROFILES_DIR)) STRICT_MODE = False # Only here for backwards compatibility FULL_REFRESH = False # subcommand STORE_FAILURES = False # subcommand # Global CLI commands USE_EXPERIMENTAL_PARSER = None STATIC_PARSER = None WARN_ERROR = None WRITE_JSON = None PARTIAL_PARSE = None USE_COLORS = None DEBUG = None LOG_FORMAT = None VERSION_CHECK = None FAIL_FAST = None SEND_ANONYMOUS_USAGE_STATS = None PRINTER_WIDTH = 80 WHICH = None INDIRECT_SELECTION = None LOG_CACHE_EVENTS = None EVENT_BUFFER_SIZE = 100000 QUIET = None # Global CLI defaults. These flags are set from three places: # CLI args, environment variables, and user_config (profiles.yml). # Environment variables use the pattern 'DBT_{flag name}', like DBT_PROFILES_DIR flag_defaults = { "USE_EXPERIMENTAL_PARSER": False, "STATIC_PARSER": True, "WARN_ERROR": False, "WRITE_JSON": True, "PARTIAL_PARSE": True, "USE_COLORS": True, "PROFILES_DIR": DEFAULT_PROFILES_DIR, "DEBUG": False, "LOG_FORMAT": None, "VERSION_CHECK": True, "FAIL_FAST": False, "SEND_ANONYMOUS_USAGE_STATS": True, "PRINTER_WIDTH": 80, "INDIRECT_SELECTION": "eager", "LOG_CACHE_EVENTS": False, "EVENT_BUFFER_SIZE": 100000, "QUIET": False, } def env_set_truthy(key: str) -> Optional[str]: """Return the value if it was set to a "truthy" string value, or None otherwise. """ value = os.getenv(key) if not value or value.lower() in ("0", "false", "f"): return None return value def env_set_bool(env_value): if env_value in ("1", "t", "true", "y", "yes"): return True return False def env_set_path(key: str) -> Optional[Path]: value = os.getenv(key) if value is None: return value else: return Path(value) MACRO_DEBUGGING = env_set_truthy("DBT_MACRO_DEBUGGING") DEFER_MODE = env_set_truthy("DBT_DEFER_TO_STATE") ARTIFACT_STATE_PATH = env_set_path("DBT_ARTIFACT_STATE_PATH") ENABLE_LEGACY_LOGGER = env_set_truthy("DBT_ENABLE_LEGACY_LOGGER") def _get_context(): # TODO: change this back to use fork() on linux when we have made that safe return multiprocessing.get_context("spawn") # This is not a flag, it's a place to store the lock MP_CONTEXT = _get_context() def set_from_args(args, user_config): # N.B. Multiple `globals` are purely for line length. # Because `global` is a parser directive (as opposed to a language construct) # black insists in putting them all on one line global STRICT_MODE, FULL_REFRESH, WARN_ERROR, USE_EXPERIMENTAL_PARSER, STATIC_PARSER global WRITE_JSON, PARTIAL_PARSE, USE_COLORS, STORE_FAILURES, PROFILES_DIR, DEBUG, LOG_FORMAT global INDIRECT_SELECTION, VERSION_CHECK, FAIL_FAST, SEND_ANONYMOUS_USAGE_STATS global PRINTER_WIDTH, WHICH, LOG_CACHE_EVENTS, EVENT_BUFFER_SIZE, QUIET STRICT_MODE = False # backwards compatibility # cli args without user_config or env var option FULL_REFRESH = getattr(args, "full_refresh", FULL_REFRESH) STORE_FAILURES = getattr(args, "store_failures", STORE_FAILURES) WHICH = getattr(args, "which", WHICH) # global cli flags with env var and user_config alternatives USE_EXPERIMENTAL_PARSER = get_flag_value("USE_EXPERIMENTAL_PARSER", args, user_config) STATIC_PARSER = get_flag_value("STATIC_PARSER", args, user_config) WARN_ERROR = get_flag_value("WARN_ERROR", args, user_config) WRITE_JSON = get_flag_value("WRITE_JSON", args, user_config) PARTIAL_PARSE = get_flag_value("PARTIAL_PARSE", args, user_config) USE_COLORS = get_flag_value("USE_COLORS", args, user_config) PROFILES_DIR = get_flag_value("PROFILES_DIR", args, user_config) DEBUG = get_flag_value("DEBUG", args, user_config) LOG_FORMAT = get_flag_value("LOG_FORMAT", args, user_config) VERSION_CHECK = get_flag_value("VERSION_CHECK", args, user_config) FAIL_FAST = get_flag_value("FAIL_FAST", args, user_config) SEND_ANONYMOUS_USAGE_STATS = get_flag_value("SEND_ANONYMOUS_USAGE_STATS", args, user_config) PRINTER_WIDTH = get_flag_value("PRINTER_WIDTH", args, user_config) INDIRECT_SELECTION = get_flag_value("INDIRECT_SELECTION", args, user_config) LOG_CACHE_EVENTS = get_flag_value("LOG_CACHE_EVENTS", args, user_config) EVENT_BUFFER_SIZE = get_flag_value("EVENT_BUFFER_SIZE", args, user_config) QUIET = get_flag_value("QUIET", args, user_config) def get_flag_value(flag, args, user_config): lc_flag = flag.lower() flag_value = getattr(args, lc_flag, None) if flag_value is None: # Environment variables use pattern 'DBT_{flag name}' env_flag = f"DBT_{flag}" env_value = os.getenv(env_flag) if env_value is not None and env_value != "": env_value = env_value.lower() # non Boolean values if flag in [ "LOG_FORMAT", "PRINTER_WIDTH", "PROFILES_DIR", "INDIRECT_SELECTION", "EVENT_BUFFER_SIZE", ]: flag_value = env_value else: flag_value = env_set_bool(env_value) elif user_config is not None and getattr(user_config, lc_flag, None) is not None: flag_value = getattr(user_config, lc_flag) else: flag_value = flag_defaults[flag] if flag in ["PRINTER_WIDTH", "EVENT_BUFFER_SIZE"]: # must be ints flag_value = int(flag_value) if flag == "PROFILES_DIR": flag_value = os.path.abspath(flag_value) return flag_value def get_flag_dict(): return { "use_experimental_parser": USE_EXPERIMENTAL_PARSER, "static_parser": STATIC_PARSER, "warn_error": WARN_ERROR, "write_json": WRITE_JSON, "partial_parse": PARTIAL_PARSE, "use_colors": USE_COLORS, "profiles_dir": PROFILES_DIR, "debug": DEBUG, "log_format": LOG_FORMAT, "version_check": VERSION_CHECK, "fail_fast": FAIL_FAST, "send_anonymous_usage_stats": SEND_ANONYMOUS_USAGE_STATS, "printer_width": PRINTER_WIDTH, "indirect_selection": INDIRECT_SELECTION, "log_cache_events": LOG_CACHE_EVENTS, "event_buffer_size": EVENT_BUFFER_SIZE, "quiet": QUIET, }
[ "os.getenv", "pathlib.Path", "multiprocessing.get_context", "os.path.abspath", "os.path.expanduser" ]
[((429, 452), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (447, 452), False, 'import os\n'), ((496, 547), 'os.getenv', 'os.getenv', (['"""DBT_PROFILES_DIR"""', 'DEFAULT_PROFILES_DIR'], {}), "('DBT_PROFILES_DIR', DEFAULT_PROFILES_DIR)\n", (505, 547), False, 'import os\n'), ((1933, 1947), 'os.getenv', 'os.getenv', (['key'], {}), '(key)\n', (1942, 1947), False, 'import os\n'), ((2223, 2237), 'os.getenv', 'os.getenv', (['key'], {}), '(key)\n', (2232, 2237), False, 'import os\n'), ((2667, 2703), 'multiprocessing.get_context', 'multiprocessing.get_context', (['"""spawn"""'], {}), "('spawn')\n", (2694, 2703), False, 'import multiprocessing\n'), ((2306, 2317), 'pathlib.Path', 'Path', (['value'], {}), '(value)\n', (2310, 2317), False, 'from pathlib import Path\n'), ((5184, 5203), 'os.getenv', 'os.getenv', (['env_flag'], {}), '(env_flag)\n', (5193, 5203), False, 'import os\n'), ((6017, 6044), 'os.path.abspath', 'os.path.abspath', (['flag_value'], {}), '(flag_value)\n', (6032, 6044), False, 'import os\n')]
import os # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # os.environ["CUDA_VISIBLE_DEVICES"] = "1" from src.python.baselines import * from pymongo import MongoClient from tqdm import tqdm import tensorflow as tf ### Keras from keras import optimizers from keras.models import Model from keras.layers import Input, Dense, Embedding, Activation from keras.layers import Conv2D, Conv1D from keras.layers import Dropout, BatchNormalization from keras.layers import MaxPooling1D, MaxPooling2D, GlobalMaxPooling1D, GlobalAveragePooling1D from keras.layers import Concatenate, Flatten, Reshape from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint, LambdaCallback, LearningRateScheduler # from keras.losses import hinge, binary_crossentropy from keras import backend as K from sklearn.metrics import log_loss import math import argparse sess = tf.Session() K.set_session(sess) LR = 0.001 BATCH_SIZE = 32 LONG_EXPOSURE = True t0 = datetime(2014, 1, 1, 0, 0) t1 = datetime(2014, 9, 1, 0, 0) MAX_LENGTH = 2000 MIN_LENGTH = 30 def get_classes(db, onto, start=t0, end=t1): q1 = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$lte": start}, 'Aspect': ASPECT} q2 = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$gt": start, "$lte": end}, 'Aspect': ASPECT} def helper(q): seq2go, _ = GoAnnotationCollectionLoader( db.goa_uniprot.find(q), db.goa_uniprot.count(q), ASPECT).load() for i, (k, v) in enumerate(seq2go.items()): sys.stdout.write("\r{0:.0f}%".format(100.0 * i / len(seq2go))) seq2go[k] = onto.propagate(v) return reduce(lambda x, y: set(x) | set(y), seq2go.values(), set()) return onto.sort(helper(q1) | helper(q2)) def get_training_and_validation_streams(db, limit=None): q_train = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$lte": t0}, 'Aspect': ASPECT} seq2go_trn, _ = GoAnnotationCollectionLoader(db.goa_uniprot.find(q_train), db.goa_uniprot.count(q_train), ASPECT).load() query = {"_id": {"$in": unique(list(seq2go_trn.keys())).tolist()}} count = limit if limit else db.uniprot.count(query) source = db.uniprot.find(query).batch_size(10) if limit: source = source.limit(limit) stream_trn = DataStream(source, count, seq2go_trn) q_valid = {'DB': 'UniProtKB', 'Evidence': {'$in': exp_codes}, 'Date': {"$gt": t0, "$lte": t1}, 'Aspect': ASPECT} seq2go_tst, _ = GoAnnotationCollectionLoader(db.goa_uniprot.find(q_valid), db.goa_uniprot.count(q_valid), ASPECT).load() query = {"_id": {"$in": unique(list(seq2go_tst.keys())).tolist()}} count = limit if limit else db.uniprot.count(query) source = db.uniprot.find(query).batch_size(10) if limit: source = source.limit(limit) stream_tst = DataStream(source, count, seq2go_tst) return stream_trn, stream_tst class DataStream(object): def __init__(self, source, count, seq2go): self._count = count self._source = source self._seq2go = seq2go def __iter__(self): count = self._count source = self._source seq2go = self._seq2go for k, seq in UniprotCollectionLoader(source, count): if not MIN_LENGTH <= len(seq) <= MAX_LENGTH: continue x = [AA.aa2index[aa] for aa in seq] yield k, x, seq2go[k] def __len__(self): return self._count def step_decay(epoch): initial_lrate = LR drop = 0.5 epochs_drop = 1.0 lrate = max(0.0001, initial_lrate * math.pow(drop, math.floor((1 + epoch) / epochs_drop))) return lrate def OriginalIception(inpt, num_channels=64): # tower_0 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(num_channels, 3, padding='same', activation='relu')(tower_1) tower_2 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_2 = Conv1D(num_channels, 5, padding='same', activation='relu')(tower_2) # tower_3 = MaxPooling1D(3, padding='same')(inpt) # tower_3 = Conv1D(num_channels, 1, padding='same')(tower_3) return Concatenate(axis=2)([tower_1, tower_2,]) def LargeInception(inpt, num_channels=64): tower_1 = Conv1D(num_channels, 6, padding='same', activation='relu')(inpt) tower_1 = BatchNormalization()(tower_1) tower_1 = Conv1D(num_channels, 6, padding='same', activation='relu')(tower_1) tower_2 = Conv1D(num_channels, 10, padding='same', activation='relu')(inpt) tower_2 = BatchNormalization()(tower_2) tower_2 = Conv1D(num_channels, 10, padding='same', activation='relu')(tower_2) return Concatenate(axis=2)([tower_1, tower_2]) def SmallInception(inpt, num_channels=150): tower_1 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(num_channels, 5, padding='same', activation='relu')(tower_1) # tower_1 = BatchNormalization()(tower_1) tower_2 = Conv1D(num_channels, 1, padding='same', activation='relu')(inpt) tower_2 = Conv1D(num_channels, 15, padding='same', activation='relu')(tower_2) # tower_2 = BatchNormalization()(tower_2) return Concatenate(axis=2)([tower_1, tower_2]) def Classifier(inp1d, classes): out = Dense(len(classes))(inp1d) out = BatchNormalization()(out) out = Activation('sigmoid')(out) return out def MotifNet(classes, opt): inpt = Input(shape=(None,)) out = Embedding(input_dim=26, output_dim=23, embeddings_initializer='uniform')(inpt) out = Conv1D(250, 15, activation='relu', padding='valid')(out) out = Dropout(0.2)(out) out = Conv1D(100, 15, activation='relu', padding='valid')(out) out = SmallInception(out) out = Dropout(0.2)(out) out = SmallInception(out) out = Dropout(0.2)(out) out = Conv1D(250, 5, activation='relu', padding='valid')(out) out = Dropout(0.2)(out) out = Classifier(GlobalMaxPooling1D()(out), classes) model = Model(inputs=[inpt], outputs=[out]) model.compile(loss='binary_crossentropy', optimizer=opt) return model def Inception(inpt, tower1=6, tower2=10): tower_1 = Conv1D(64, 1, padding='same', activation='relu')(inpt) tower_1 = Conv1D(64, tower1, padding='same', activation='relu')(tower_1) tower_2 = Conv1D(64, 1, padding='same', activation='relu')(inpt) tower_2 = Conv1D(64, tower2, padding='same', activation='relu')(tower_2) # tower_3 = MaxPooling1D(3, strides=1, padding='same')(inpt) # tower_3 = Conv1D(64, 1, padding='same', activation='relu')(tower_3) return Concatenate(axis=2)([tower_1, tower_2]) def ProteinInception(classes, opt): inpt = Input(shape=(None,)) img = Embedding(input_dim=26, output_dim=23, embeddings_initializer='uniform')(inpt) feats = Inception(Inception(img)) out = Classifier(GlobalMaxPooling1D()(feats), classes) model = Model(inputs=[inpt], outputs=[out]) model.compile(loss='binary_crossentropy', optimizer=opt) return model def Features(inpt): feats = Embedding(input_dim=26, output_dim=23, embeddings_initializer='uniform')(inpt) feats = Conv1D(250, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = Conv1D(100, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = Conv1D(100, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = Conv1D(250, 15, activation='relu', padding='valid')(feats) feats = Dropout(0.3)(feats) feats = GlobalMaxPooling1D()(feats) return feats def DeeperSeq(classes, opt): inp = Input(shape=(None,)) out = Classifier(Features(inp), classes) model = Model(inputs=[inp], outputs=[out]) model.compile(loss='binary_crossentropy', optimizer=opt) return model def batch_generator(stream, onto, classes): s_cls = set(classes) data = dict() def labels2vec(lbl): y = np.zeros(len(classes)) for go in onto.propagate(lbl, include_root=False): if go not in s_cls: continue y[classes.index(go)] = 1 return y def pad_seq(seq, max_length=MAX_LENGTH): delta = max_length - len(seq) left = [PAD for _ in range(delta // 2)] right = [PAD for _ in range(delta - delta // 2)] seq = left + seq + right return np.asarray(seq) def prepare_batch(sequences, labels): b = max(map(len, sequences)) + 100 Y = np.asarray([labels2vec(lbl) for lbl in labels]) X = np.asarray([pad_seq(seq, b) for seq in sequences]) return X, Y for k, x, y in stream: lx = len(x) if lx in data: data[lx].append([k, x, y]) ids, seqs, lbls = zip(*data[lx]) if len(seqs) == BATCH_SIZE: yield ids, prepare_batch(seqs, lbls) del data[lx] else: data[lx] = [[k, x, y]] for packet in data.values(): ids, seqs, lbls = zip(*packet) yield ids, prepare_batch(seqs, lbls) class LossHistory(Callback): def __init__(self): self.losses = [] def on_batch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) def train(model, gen_xy, length_xy, epoch, num_epochs, history=LossHistory(), lrate=LearningRateScheduler(step_decay)): pbar = tqdm(total=length_xy) for _, (X, Y) in gen_xy: model.fit(x=X, y=Y, batch_size=BATCH_SIZE, epochs=num_epochs if LONG_EXPOSURE else epoch + 1, verbose=0, validation_data=None, initial_epoch=epoch, callbacks=[history]) pbar.set_description("Training Loss:%.5f" % np.mean(history.losses)) pbar.update(len(Y)) pbar.close() def zeroone2oneminusone(vec): return np.add(np.multiply(np.array(vec), 2), -1) def oneminusone2zeroone(vec): return np.divide(np.add(np.array(vec), 1), 2) def calc_loss(y_true, y_pred): return np.mean([log_loss(y, y_hat) for y, y_hat in zip(y_true, y_pred) if np.any(y)]) def predict(model, gen_xy, length_xy, classes): pbar = tqdm(total=length_xy, desc="Predicting...") i, m, n = 0, length_xy, len(classes) ids = list() y_pred, y_true = np.zeros((m, n)), np.zeros((m, n)) for i, (keys, (X, Y)) in enumerate(gen_xy): k = len(Y) ids.extend(keys) y_hat, y = model.predict(X), Y y_pred[i:i + k, ], y_true[i:i + k, ] = y_hat, y pbar.update(k) pbar.close() return ids, y_true, y_pred def evaluate(y_true, y_pred, classes): y_pred = y_pred[~np.all(y_pred == 0, axis=1)] y_true = y_true[~np.all(y_true == 0, axis=1)] prs, rcs, f1s = performance(y_pred, y_true, classes) return calc_loss(y_true, y_pred), prs, rcs, f1s def add_arguments(parser): parser.add_argument("--mongo_url", type=str, default='mongodb://localhost:27017/', help="Supply the URL of MongoDB"), parser.add_argument("--aspect", type=str, choices=['F', 'P', 'C'], default="F", help="Specify the ontology aspect.") parser.add_argument("--init_epoch", type=int, default=0, help="Which epoch to start training the model?") parser.add_argument("--arch", type=str, choices=['deepseq', 'motifnet', 'inception'], default="deepseq", help="Specify the model arch.") parser.add_argument('-r', '--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') if __name__ == "__main__": parser = argparse.ArgumentParser() add_arguments(parser) args = parser.parse_args() ASPECT = args.aspect # default: Molecular Function client = MongoClient(args.mongo_url) db = client['prot2vec'] print("Loading Ontology...") onto = get_ontology(ASPECT) # classes = get_classes(db, onto) classes = onto.classes classes.remove(onto.root) assert onto.root not in classes opt = optimizers.Adam(lr=LR, beta_1=0.9, beta_2=0.999, epsilon=1e-8) if args.arch == 'inception': model = ProteinInception(classes, opt) LONG_EXPOSURE = False num_epochs = 200 elif args.arch == 'deepseq': model = DeeperSeq(classes, opt) LONG_EXPOSURE = True num_epochs = 20 elif args.arch == 'motifnet': model = MotifNet(classes, opt) LONG_EXPOSURE = False num_epochs = 200 else: print('Unknown model arch') exit(0) if args.resume: model.load_weights(args.resume) print("Loaded model from disk") model.summary() for epoch in range(args.init_epoch, num_epochs): trn_stream, tst_stream = get_training_and_validation_streams(db) train(model, batch_generator(trn_stream, onto, classes), len(trn_stream), epoch, num_epochs) _, y_true, y_pred = predict(model, batch_generator(tst_stream, onto, classes), len(tst_stream), classes) loss, prs, rcs, f1s = evaluate(y_true, y_pred, classes) i = np.argmax(f1s) f_max = f1s[i] print("[Epoch %d/%d] (Validation Loss: %.5f, F_max: %.3f, precision: %.3f, recall: %.3f)" % (epoch + 1, num_epochs, loss, f1s[i], prs[i], rcs[i])) model_str = '%s-%d-%.5f-%.2f' % (args.arch, epoch + 1, loss, f_max) model.save_weights("checkpoints/%s.hdf5" % model_str) with open("checkpoints/%s.json" % model_str, "w+") as f: f.write(model.to_json()) np.save("checkpoints/%s.npy" % model_str, np.asarray(classes))
[ "keras.optimizers.Adam", "keras.callbacks.LearningRateScheduler", "argparse.ArgumentParser", "math.floor", "keras.layers.Concatenate", "tensorflow.Session", "tqdm.tqdm", "keras.backend.set_session", "keras.layers.GlobalMaxPooling1D", "keras.layers.Input", "sklearn.metrics.log_loss", "keras.models.Model", "keras.layers.Activation", "pymongo.MongoClient", "keras.layers.BatchNormalization", "keras.layers.Embedding", "keras.layers.Dropout", "keras.layers.Conv1D" ]
[((865, 877), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (875, 877), True, 'import tensorflow as tf\n'), ((878, 897), 'keras.backend.set_session', 'K.set_session', (['sess'], {}), '(sess)\n', (891, 897), True, 'from keras import backend as K\n'), ((5645, 5665), 'keras.layers.Input', 'Input', ([], {'shape': '(None,)'}), '(shape=(None,))\n', (5650, 5665), False, 'from keras.layers import Input, Dense, Embedding, Activation\n'), ((6196, 6231), 'keras.models.Model', 'Model', ([], {'inputs': '[inpt]', 'outputs': '[out]'}), '(inputs=[inpt], outputs=[out])\n', (6201, 6231), False, 'from keras.models import Model\n'), ((6889, 6909), 'keras.layers.Input', 'Input', ([], {'shape': '(None,)'}), '(shape=(None,))\n', (6894, 6909), False, 'from keras.layers import Input, Dense, Embedding, Activation\n'), ((7108, 7143), 'keras.models.Model', 'Model', ([], {'inputs': '[inpt]', 'outputs': '[out]'}), '(inputs=[inpt], outputs=[out])\n', (7113, 7143), False, 'from keras.models import Model\n'), ((7845, 7865), 'keras.layers.Input', 'Input', ([], {'shape': '(None,)'}), '(shape=(None,))\n', (7850, 7865), False, 'from keras.layers import Input, Dense, Embedding, Activation\n'), ((7923, 7957), 'keras.models.Model', 'Model', ([], {'inputs': '[inp]', 'outputs': '[out]'}), '(inputs=[inp], outputs=[out])\n', (7928, 7957), False, 'from keras.models import Model\n'), ((9549, 9582), 'keras.callbacks.LearningRateScheduler', 'LearningRateScheduler', (['step_decay'], {}), '(step_decay)\n', (9570, 9582), False, 'from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint, LambdaCallback, LearningRateScheduler\n'), ((9597, 9618), 'tqdm.tqdm', 'tqdm', ([], {'total': 'length_xy'}), '(total=length_xy)\n', (9601, 9618), False, 'from tqdm import tqdm\n'), ((10409, 10452), 'tqdm.tqdm', 'tqdm', ([], {'total': 'length_xy', 'desc': '"""Predicting..."""'}), "(total=length_xy, desc='Predicting...')\n", (10413, 10452), False, 'from tqdm import tqdm\n'), ((11891, 11916), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (11914, 11916), False, 'import argparse\n'), ((12045, 12072), 'pymongo.MongoClient', 'MongoClient', (['args.mongo_url'], {}), '(args.mongo_url)\n', (12056, 12072), False, 'from pymongo import MongoClient\n'), ((12311, 12374), 'keras.optimizers.Adam', 'optimizers.Adam', ([], {'lr': 'LR', 'beta_1': '(0.9)', 'beta_2': '(0.999)', 'epsilon': '(1e-08)'}), '(lr=LR, beta_1=0.9, beta_2=0.999, epsilon=1e-08)\n', (12326, 12374), False, 'from keras import optimizers\n'), ((3937, 3995), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(1)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 1, padding='same', activation='relu')\n", (3943, 3995), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4016, 4074), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 3, padding='same', activation='relu')\n", (4022, 4074), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4099, 4157), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(1)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 1, padding='same', activation='relu')\n", (4105, 4157), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4178, 4236), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(5)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 5, padding='same', activation='relu')\n", (4184, 4236), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4378, 4397), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(2)'}), '(axis=2)\n', (4389, 4397), False, 'from keras.layers import Concatenate, Flatten, Reshape\n'), ((4479, 4537), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(6)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 6, padding='same', activation='relu')\n", (4485, 4537), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4558, 4578), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4576, 4578), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((4602, 4660), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(6)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 6, padding='same', activation='relu')\n", (4608, 4660), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4685, 4744), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(10)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 10, padding='same', activation='relu')\n", (4691, 4744), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4765, 4785), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (4783, 4785), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((4809, 4868), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(10)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 10, padding='same', activation='relu')\n", (4815, 4868), False, 'from keras.layers import Conv2D, Conv1D\n'), ((4890, 4909), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(2)'}), '(axis=2)\n', (4901, 4909), False, 'from keras.layers import Concatenate, Flatten, Reshape\n'), ((4991, 5049), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(1)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 1, padding='same', activation='relu')\n", (4997, 5049), False, 'from keras.layers import Conv2D, Conv1D\n'), ((5070, 5128), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(5)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 5, padding='same', activation='relu')\n", (5076, 5128), False, 'from keras.layers import Conv2D, Conv1D\n'), ((5199, 5257), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(1)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 1, padding='same', activation='relu')\n", (5205, 5257), False, 'from keras.layers import Conv2D, Conv1D\n'), ((5278, 5337), 'keras.layers.Conv1D', 'Conv1D', (['num_channels', '(15)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(num_channels, 15, padding='same', activation='relu')\n", (5284, 5337), False, 'from keras.layers import Conv2D, Conv1D\n'), ((5405, 5424), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(2)'}), '(axis=2)\n', (5416, 5424), False, 'from keras.layers import Concatenate, Flatten, Reshape\n'), ((5526, 5546), 'keras.layers.BatchNormalization', 'BatchNormalization', ([], {}), '()\n', (5544, 5546), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((5562, 5583), 'keras.layers.Activation', 'Activation', (['"""sigmoid"""'], {}), "('sigmoid')\n", (5572, 5583), False, 'from keras.layers import Input, Dense, Embedding, Activation\n'), ((5676, 5748), 'keras.layers.Embedding', 'Embedding', ([], {'input_dim': '(26)', 'output_dim': '(23)', 'embeddings_initializer': '"""uniform"""'}), "(input_dim=26, output_dim=23, embeddings_initializer='uniform')\n", (5685, 5748), False, 'from keras.layers import Input, Dense, Embedding, Activation\n'), ((5765, 5816), 'keras.layers.Conv1D', 'Conv1D', (['(250)', '(15)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(250, 15, activation='relu', padding='valid')\n", (5771, 5816), False, 'from keras.layers import Conv2D, Conv1D\n'), ((5832, 5844), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (5839, 5844), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((5860, 5911), 'keras.layers.Conv1D', 'Conv1D', (['(100)', '(15)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(100, 15, activation='relu', padding='valid')\n", (5866, 5911), False, 'from keras.layers import Conv2D, Conv1D\n'), ((5957, 5969), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (5964, 5969), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((6015, 6027), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (6022, 6027), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((6043, 6093), 'keras.layers.Conv1D', 'Conv1D', (['(250)', '(5)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(250, 5, activation='relu', padding='valid')\n", (6049, 6093), False, 'from keras.layers import Conv2D, Conv1D\n'), ((6109, 6121), 'keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (6116, 6121), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((6369, 6417), 'keras.layers.Conv1D', 'Conv1D', (['(64)', '(1)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, 1, padding='same', activation='relu')\n", (6375, 6417), False, 'from keras.layers import Conv2D, Conv1D\n'), ((6438, 6491), 'keras.layers.Conv1D', 'Conv1D', (['(64)', 'tower1'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, tower1, padding='same', activation='relu')\n", (6444, 6491), False, 'from keras.layers import Conv2D, Conv1D\n'), ((6516, 6564), 'keras.layers.Conv1D', 'Conv1D', (['(64)', '(1)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, 1, padding='same', activation='relu')\n", (6522, 6564), False, 'from keras.layers import Conv2D, Conv1D\n'), ((6585, 6638), 'keras.layers.Conv1D', 'Conv1D', (['(64)', 'tower2'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, tower2, padding='same', activation='relu')\n", (6591, 6638), False, 'from keras.layers import Conv2D, Conv1D\n'), ((6800, 6819), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(2)'}), '(axis=2)\n', (6811, 6819), False, 'from keras.layers import Concatenate, Flatten, Reshape\n'), ((6920, 6992), 'keras.layers.Embedding', 'Embedding', ([], {'input_dim': '(26)', 'output_dim': '(23)', 'embeddings_initializer': '"""uniform"""'}), "(input_dim=26, output_dim=23, embeddings_initializer='uniform')\n", (6929, 6992), False, 'from keras.layers import Input, Dense, Embedding, Activation\n'), ((7256, 7328), 'keras.layers.Embedding', 'Embedding', ([], {'input_dim': '(26)', 'output_dim': '(23)', 'embeddings_initializer': '"""uniform"""'}), "(input_dim=26, output_dim=23, embeddings_initializer='uniform')\n", (7265, 7328), False, 'from keras.layers import Input, Dense, Embedding, Activation\n'), ((7347, 7398), 'keras.layers.Conv1D', 'Conv1D', (['(250)', '(15)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(250, 15, activation='relu', padding='valid')\n", (7353, 7398), False, 'from keras.layers import Conv2D, Conv1D\n'), ((7418, 7430), 'keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (7425, 7430), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((7450, 7501), 'keras.layers.Conv1D', 'Conv1D', (['(100)', '(15)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(100, 15, activation='relu', padding='valid')\n", (7456, 7501), False, 'from keras.layers import Conv2D, Conv1D\n'), ((7521, 7533), 'keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (7528, 7533), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((7553, 7604), 'keras.layers.Conv1D', 'Conv1D', (['(100)', '(15)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(100, 15, activation='relu', padding='valid')\n", (7559, 7604), False, 'from keras.layers import Conv2D, Conv1D\n'), ((7624, 7636), 'keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (7631, 7636), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((7656, 7707), 'keras.layers.Conv1D', 'Conv1D', (['(250)', '(15)'], {'activation': '"""relu"""', 'padding': '"""valid"""'}), "(250, 15, activation='relu', padding='valid')\n", (7662, 7707), False, 'from keras.layers import Conv2D, Conv1D\n'), ((7727, 7739), 'keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (7734, 7739), False, 'from keras.layers import Dropout, BatchNormalization\n'), ((7759, 7779), 'keras.layers.GlobalMaxPooling1D', 'GlobalMaxPooling1D', ([], {}), '()\n', (7777, 7779), False, 'from keras.layers import MaxPooling1D, MaxPooling2D, GlobalMaxPooling1D, GlobalAveragePooling1D\n'), ((6148, 6168), 'keras.layers.GlobalMaxPooling1D', 'GlobalMaxPooling1D', ([], {}), '()\n', (6166, 6168), False, 'from keras.layers import MaxPooling1D, MaxPooling2D, GlobalMaxPooling1D, GlobalAveragePooling1D\n'), ((7058, 7078), 'keras.layers.GlobalMaxPooling1D', 'GlobalMaxPooling1D', ([], {}), '()\n', (7076, 7078), False, 'from keras.layers import MaxPooling1D, MaxPooling2D, GlobalMaxPooling1D, GlobalAveragePooling1D\n'), ((10278, 10296), 'sklearn.metrics.log_loss', 'log_loss', (['y', 'y_hat'], {}), '(y, y_hat)\n', (10286, 10296), False, 'from sklearn.metrics import log_loss\n'), ((3736, 3773), 'math.floor', 'math.floor', (['((1 + epoch) / epochs_drop)'], {}), '((1 + epoch) / epochs_drop)\n', (3746, 3773), False, 'import math\n')]
import matplotlib.pyplot as plt import openpyxl import sys from fs import FS from journals import Journals from utils import load_sheet from utils import log from word import Word YEARS = [2017, 2018, 2019, 2020, 2021] class InBiMa(): def __init__(self, is_new_folder=False): self.fs = FS(is_new_folder) if is_new_folder: return self.wb = openpyxl.load_workbook(self.fs.get_path('cait.xlsx')) log('Excel file is opened', 'res') self.team = load_sheet(self.wb['team']) self.grants = load_sheet(self.wb['grants']) self.papers = load_sheet(self.wb['papers']) self.journals = Journals(load_sheet(self.wb['journals'])) # self.journals_ref = self.load_journals_ref() self.task = { 'authors': ['#cichocki'], 'grants': ['#megagrant1'], } log('Excel file is parsed', 'res') # log('Journal info is loaded', 'res') for uid in self.team.keys(): self.task['authors'] = [uid] self.export_word_cv() self.export_grant_papers() self.export_stat() def export_word_cv(self): if len(self.task.get('authors', [])) != 1: text = 'export_word_cv (task should contain only one author)' log(text, 'err') return person = self.team.get(self.task['authors'][0]) if person is None: text = 'export_word_cv (invalid team member uid in task)' log(text, 'err') return uid = person['id'] stat = self.get_papers_stat(uid, YEARS) photo_logo = self.fs.download_photo_logo() photo_person = self.fs.download_photo(uid[1:], person.get('photo')) self.word = Word(YEARS, self.get_papers) self.word.add_person_info(person, photo_person, photo_logo) self.word.add_person_stat(stat) self.word.add_note(is_grant=True) self.word.add_break() self.word.add_paper_list(stat, author=person['id']) fname = 'CAIT_' + person['surname'] + '_' + person['name'] + '.docx' fpath = self.fs.get_path(fname) self.word.save(fpath) log(f'Document "{fpath}" is saved', 'res') def export_grant_papers(self): if len(self.task.get('grants', [])) != 1: text = 'export_grant_papers (task should contain only one grant)' log(text, 'err') return grant = self.grants.get(self.task['grants'][0]) if grant is None: text = 'export_grant_papers (invalid grant uid in task)' log(text, 'err') return uid = grant['id'] stat = self.get_papers_stat(years=YEARS, grant=uid) photo_logo = self.fs.download_photo_logo() head = grant.get('head', '') head = self.team[head] self.word = Word(YEARS, self.get_papers) self.word.add_grant_info(grant, head, photo_logo) self.word.add_note(is_grant=True) self.word.add_break() self.word.add_paper_list(stat, grant=uid, with_links=True) fname = 'CAIT_' + uid[1:] + '.docx' fpath = self.fs.get_path(fname) self.word.save(fpath) log(f'Document "{fpath}" is saved', 'res') def export_stat(self): stats = {} for uid in self.team.keys(): if self.team[uid].get('active') != 'Yes': continue if self.team[uid].get('lead') != 'Yes': continue stats[uid] = self.get_papers_stat(uid, YEARS) for uid, stat in stats.items(): x = YEARS y = [stat[y]['total'] for y in YEARS] plt.plot(x, y, marker='o', label=uid) plt.legend(loc='best') fpath = self.fs.get_path('plot.png') plt.savefig(fpath) log(f'Figure "{fpath}" is saved', 'res') def get_papers(self, author=None, year=None, q=None, grant=None): res = {} for title, paper in self.papers.items(): if year and int(year) != int(paper['year']): continue if author and not author in paper['authors_parsed']: continue if grant and not grant in paper.get('grant', ''): continue if q is not None: journal = self.journals.data[paper['journal']] q1 = journal.get('sjr_q1', '') q2 = journal.get('sjr_q2', '') if q == 1 and len(q1) < 2: continue if q == 2 and (len(q1) >= 2 or len(q2) < 2): continue if q == 0 and (len(q1) >= 2 or len(q2) >= 2): continue res[title] = paper res[title]['journal_object'] = self.journals.data[paper['journal']] return res def get_papers_stat(self, author=None, years=[], grant=None): res = {} for year in years: res[year] = { 'q1': len(self.get_papers(author, year, q=1, grant=grant)), 'q2': len(self.get_papers(author, year, q=2, grant=grant)), 'q0': len(self.get_papers(author, year, q=0, grant=grant)), 'total': len(self.get_papers(author, year, grant=grant)) } res['total'] = { 'q1': sum(res[year]['q1'] for year in years), 'q2': sum(res[year]['q2'] for year in years), 'q0': sum(res[year]['q0'] for year in years), 'total': sum(res[year]['total'] for year in years), } return res if __name__ == '__main__': args = sys.argv[1:] if len(args) == 0: ibm = InBiMa() elif len(args) == 1 and args[0] == '-f': ibm = InBiMa(is_new_folder=True) elif len(args) == 2 and args[0] == '-j': journals = Journals() journals.load_ref() journals.log_ref(title=args[1]) else: raise ValueError('Invalid arguments for script')
[ "utils.log", "word.Word", "matplotlib.pyplot.savefig", "utils.load_sheet", "matplotlib.pyplot.plot", "fs.FS", "journals.Journals", "matplotlib.pyplot.legend" ]
[((304, 321), 'fs.FS', 'FS', (['is_new_folder'], {}), '(is_new_folder)\n', (306, 321), False, 'from fs import FS\n'), ((436, 470), 'utils.log', 'log', (['"""Excel file is opened"""', '"""res"""'], {}), "('Excel file is opened', 'res')\n", (439, 470), False, 'from utils import log\n'), ((492, 519), 'utils.load_sheet', 'load_sheet', (["self.wb['team']"], {}), "(self.wb['team'])\n", (502, 519), False, 'from utils import load_sheet\n'), ((542, 571), 'utils.load_sheet', 'load_sheet', (["self.wb['grants']"], {}), "(self.wb['grants'])\n", (552, 571), False, 'from utils import load_sheet\n'), ((594, 623), 'utils.load_sheet', 'load_sheet', (["self.wb['papers']"], {}), "(self.wb['papers'])\n", (604, 623), False, 'from utils import load_sheet\n'), ((862, 896), 'utils.log', 'log', (['"""Excel file is parsed"""', '"""res"""'], {}), "('Excel file is parsed', 'res')\n", (865, 896), False, 'from utils import log\n'), ((1750, 1778), 'word.Word', 'Word', (['YEARS', 'self.get_papers'], {}), '(YEARS, self.get_papers)\n', (1754, 1778), False, 'from word import Word\n'), ((2175, 2217), 'utils.log', 'log', (['f"""Document "{fpath}" is saved"""', '"""res"""'], {}), '(f\'Document "{fpath}" is saved\', \'res\')\n', (2178, 2217), False, 'from utils import log\n'), ((2858, 2886), 'word.Word', 'Word', (['YEARS', 'self.get_papers'], {}), '(YEARS, self.get_papers)\n', (2862, 2886), False, 'from word import Word\n'), ((3207, 3249), 'utils.log', 'log', (['f"""Document "{fpath}" is saved"""', '"""res"""'], {}), '(f\'Document "{fpath}" is saved\', \'res\')\n', (3210, 3249), False, 'from utils import log\n'), ((3720, 3742), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""'}), "(loc='best')\n", (3730, 3742), True, 'import matplotlib.pyplot as plt\n'), ((3797, 3815), 'matplotlib.pyplot.savefig', 'plt.savefig', (['fpath'], {}), '(fpath)\n', (3808, 3815), True, 'import matplotlib.pyplot as plt\n'), ((3824, 3864), 'utils.log', 'log', (['f"""Figure "{fpath}" is saved"""', '"""res"""'], {}), '(f\'Figure "{fpath}" is saved\', \'res\')\n', (3827, 3864), False, 'from utils import log\n'), ((657, 688), 'utils.load_sheet', 'load_sheet', (["self.wb['journals']"], {}), "(self.wb['journals'])\n", (667, 688), False, 'from utils import load_sheet\n'), ((1288, 1304), 'utils.log', 'log', (['text', '"""err"""'], {}), "(text, 'err')\n", (1291, 1304), False, 'from utils import log\n'), ((1490, 1506), 'utils.log', 'log', (['text', '"""err"""'], {}), "(text, 'err')\n", (1493, 1506), False, 'from utils import log\n'), ((2394, 2410), 'utils.log', 'log', (['text', '"""err"""'], {}), "(text, 'err')\n", (2397, 2410), False, 'from utils import log\n'), ((2594, 2610), 'utils.log', 'log', (['text', '"""err"""'], {}), "(text, 'err')\n", (2597, 2610), False, 'from utils import log\n'), ((3673, 3710), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'marker': '"""o"""', 'label': 'uid'}), "(x, y, marker='o', label=uid)\n", (3681, 3710), True, 'import matplotlib.pyplot as plt\n'), ((5831, 5841), 'journals.Journals', 'Journals', ([], {}), '()\n', (5839, 5841), False, 'from journals import Journals\n')]
from django.forms import ( Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField ) from django import forms from fb.models import UserProfile class UserPostForm(Form): text = CharField(widget=Textarea( attrs={'rows': 1, 'cols': 40, 'class': 'form-control','placeholder': "What's on your mind?"})) class UserPostCommentForm(Form): text = CharField(widget=Textarea( attrs={'rows': 1, 'cols': 50, 'class': 'form-control','placeholder': "Write a comment..."})) class UserLogin(Form): username = CharField(max_length=30) password = CharField(widget=PasswordInput) class UserProfileForm(Form): first_name = CharField(max_length=100, required=False) last_name = CharField(max_length=100, required=False) gender = ChoiceField(choices=UserProfile.GENDERS, required=False) date_of_birth = DateField(required=False) avatar = ImageField(required=False) OPTIONS = ( ("Cars", "Cars"), ("Dogs", "Dogs"), ("Sports", "Sports"), ) interests = MultipleChoiceField(widget=forms.CheckboxSelectMultiple, choices=OPTIONS, required=False) class QuestionFrom(Form): question_description = CharField(max_length=300) points = IntegerField() class AddAnswerForm(Form): answer_description = CharField(max_length=30) correct_answer = BooleanField(required=False)
[ "django.forms.BooleanField", "django.forms.CharField", "django.forms.DateField", "django.forms.ChoiceField", "django.forms.ImageField", "django.forms.IntegerField", "django.forms.Textarea", "django.forms.MultipleChoiceField" ]
[((606, 630), 'django.forms.CharField', 'CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (615, 630), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((646, 677), 'django.forms.CharField', 'CharField', ([], {'widget': 'PasswordInput'}), '(widget=PasswordInput)\n', (655, 677), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((726, 767), 'django.forms.CharField', 'CharField', ([], {'max_length': '(100)', 'required': '(False)'}), '(max_length=100, required=False)\n', (735, 767), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((784, 825), 'django.forms.CharField', 'CharField', ([], {'max_length': '(100)', 'required': '(False)'}), '(max_length=100, required=False)\n', (793, 825), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((839, 895), 'django.forms.ChoiceField', 'ChoiceField', ([], {'choices': 'UserProfile.GENDERS', 'required': '(False)'}), '(choices=UserProfile.GENDERS, required=False)\n', (850, 895), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((916, 941), 'django.forms.DateField', 'DateField', ([], {'required': '(False)'}), '(required=False)\n', (925, 941), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((955, 981), 'django.forms.ImageField', 'ImageField', ([], {'required': '(False)'}), '(required=False)\n', (965, 981), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((1123, 1216), 'django.forms.MultipleChoiceField', 'MultipleChoiceField', ([], {'widget': 'forms.CheckboxSelectMultiple', 'choices': 'OPTIONS', 'required': '(False)'}), '(widget=forms.CheckboxSelectMultiple, choices=OPTIONS,\n required=False)\n', (1142, 1216), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((1303, 1328), 'django.forms.CharField', 'CharField', ([], {'max_length': '(300)'}), '(max_length=300)\n', (1312, 1328), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((1342, 1356), 'django.forms.IntegerField', 'IntegerField', ([], {}), '()\n', (1354, 1356), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((1410, 1434), 'django.forms.CharField', 'CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (1419, 1434), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((1456, 1484), 'django.forms.BooleanField', 'BooleanField', ([], {'required': '(False)'}), '(required=False)\n', (1468, 1484), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((279, 386), 'django.forms.Textarea', 'Textarea', ([], {'attrs': '{\'rows\': 1, \'cols\': 40, \'class\': \'form-control\', \'placeholder\':\n "What\'s on your mind?"}'}), '(attrs={\'rows\': 1, \'cols\': 40, \'class\': \'form-control\',\n \'placeholder\': "What\'s on your mind?"})\n', (287, 386), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n'), ((455, 560), 'django.forms.Textarea', 'Textarea', ([], {'attrs': "{'rows': 1, 'cols': 50, 'class': 'form-control', 'placeholder':\n 'Write a comment...'}"}), "(attrs={'rows': 1, 'cols': 50, 'class': 'form-control',\n 'placeholder': 'Write a comment...'})\n", (463, 560), False, 'from django.forms import Form, CharField, Textarea, PasswordInput, ChoiceField, DateField, ImageField, BooleanField, IntegerField, MultipleChoiceField\n')]
from flask import Flask, jsonify, request, render_template, redirect from flask_pymongo import PyMongo from werkzeug import secure_filename import base64 app = Flask(__name__) app.config['MONGO_DBNAME'] = 'restdb' app.config['MONGO_URI'] = 'mongodb://localhost:27017/restdb' mongo = PyMongo(app) @app.route('/') def index(): return render_template("index.html") @app.route('/w') def webcam(): return render_template("webcam.html") @app.route('/img') def img(): i = request.query_string f = open('a.png','wb') f.write(i.decode('base64')) return "success <img src='" + i + "'>" @app.route('/hello') def hello(): return "hello world" @app.route('/star', methods=['GET']) def get_all_stars(): star = mongo.db.stars output = [] for s in star.find(): output.append({'name' : s['name'], 'distance' : s['distance']}) return jsonify(output) @app.route('/star/', methods=['GET']) def get_one_star(name): star = mongo.db.stars s = star.find_one({'name' : name}) if s: output = {'name': s['name'], 'distance': s['distance']} else: output = "No such name" return jsonify(output) @app.route('/star', methods=['POST']) def add_star(): star = mongo.db.stars name = request.json['name'] distance = request.json['distance'] star_id = star.insert({'name': name, 'distance': distance}) new_star = star.find_one({'_id': star_id}) output = {'name' : new_star['name'], 'distance' : new_star['distance']} return jsonify(output) @app.route('/uploader', methods=['POST']) def upload_file(): f = request.files['file'] f.save(secure_filename('1')) return "uploaded" if __name__ == '__main__': app.run(debug=True)
[ "flask.render_template", "flask.Flask", "flask_pymongo.PyMongo", "werkzeug.secure_filename", "flask.jsonify" ]
[((161, 176), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (166, 176), False, 'from flask import Flask, jsonify, request, render_template, redirect\n'), ((286, 298), 'flask_pymongo.PyMongo', 'PyMongo', (['app'], {}), '(app)\n', (293, 298), False, 'from flask_pymongo import PyMongo\n'), ((338, 367), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (353, 367), False, 'from flask import Flask, jsonify, request, render_template, redirect\n'), ((409, 439), 'flask.render_template', 'render_template', (['"""webcam.html"""'], {}), "('webcam.html')\n", (424, 439), False, 'from flask import Flask, jsonify, request, render_template, redirect\n'), ((850, 865), 'flask.jsonify', 'jsonify', (['output'], {}), '(output)\n', (857, 865), False, 'from flask import Flask, jsonify, request, render_template, redirect\n'), ((1103, 1118), 'flask.jsonify', 'jsonify', (['output'], {}), '(output)\n', (1110, 1118), False, 'from flask import Flask, jsonify, request, render_template, redirect\n'), ((1456, 1471), 'flask.jsonify', 'jsonify', (['output'], {}), '(output)\n', (1463, 1471), False, 'from flask import Flask, jsonify, request, render_template, redirect\n'), ((1571, 1591), 'werkzeug.secure_filename', 'secure_filename', (['"""1"""'], {}), "('1')\n", (1586, 1591), False, 'from werkzeug import secure_filename\n')]
""" Utilities :Author: <NAME> <<EMAIL>> :Date: 2016-11-10 :Copyright: 2016, Karr Lab :License: MIT """ from obj_tables import get_models as base_get_models from wc_lang import core from wc_lang import io from wc_utils.util import git def get_model_size(model): """ Get numbers of model components Args: model (:obj:`core.Model`): model Returns: :obj:`dict`: dictionary with numbers of each type of model component """ return { "submodels": len(model.get_submodels()), "compartments": len(model.get_compartments()), "species_types": len(model.get_species_types()), "species": len(model.get_species()), "parameters": len(model.get_parameters()), "references": len(model.get_references()), "reactions": len(model.get_reactions()), } def get_model_summary(model): """ Get textual summary of a model Args: model (:obj:`core.Model`): model Returns: :obj:`str`: textual summary of the model """ return "Model with:" \ + "\n{:d} submodels".format(len(model.get_submodels())) \ + "\n{:d} compartments".format(len(model.get_compartments())) \ + "\n{:d} species types".format(len(model.get_species_types())) \ + "\n{:d} species".format(len(model.get_species())) \ + "\n{:d} parameters".format(len(model.get_parameters())) \ + "\n{:d} references".format(len(model.get_references())) \ + "\n{:d} dFBA objective reactions".format(len(model.get_dfba_obj_reactions())) \ + "\n{:d} reactions".format(len(model.get_reactions())) \ + "\n{:d} rate laws".format(len(model.get_rate_laws())) def get_models(inline=True): """ Get list of models Args: inline (:obj:`bool`, optional): if true, return inline models Returns: :obj:`list` of :obj:`class`: list of models """ return base_get_models(module=core, inline=inline) def gen_ids(model): """ Generate ids for model objects Args: model (:obj:`core.Model`): model """ for obj in model.get_related(): if hasattr(obj, 'gen_id'): obj.id = obj.gen_id()
[ "obj_tables.get_models" ]
[((1907, 1950), 'obj_tables.get_models', 'base_get_models', ([], {'module': 'core', 'inline': 'inline'}), '(module=core, inline=inline)\n', (1922, 1950), True, 'from obj_tables import get_models as base_get_models\n')]
import synapse.common as s_common import synapse.tests.utils as s_t_utils import synapse.tools.autodoc as s_autodoc class TestAutoDoc(s_t_utils.SynTest): async def test_tools_autodoc_docmodel(self): with self.getTestDir() as path: argv = ['--doc-model', '--savedir', path] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'datamodel_types.rst') as fd: buf = fd.read() s = buf.decode() self.isin('Base types are defined via Python classes.', s) self.isin('synapse.models.inet.Addr', s) self.isin('Regular types are derived from BaseTypes.', s) self.isin(r'inet\:server', s) with s_common.genfile(path, 'datamodel_forms.rst') as fd: buf = fd.read() s = buf.decode() self.isin('Forms are derived from types, or base types. Forms represent node types in the graph.', s) self.isin(r'inet\:ipv4', s) self.notin(r'file\:bytes:.created', s) self.isin('Universal props are system level properties which may be present on every node.', s) self.isin('.created', s) self.notin('..created\n', s) self.isin('An example of ``inet:dns:a``\\:', s) async def test_tools_autodoc_confdefs(self): with self.getTestDir() as path: argv = ['--savedir', path, '--doc-conf', 'synapse.tests.test_lib_stormsvc.StormvarServiceCell'] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'conf_stormvarservicecell.rst') as fd: buf = fd.read() s = buf.decode() self.isin('autodoc-stormvarservicecell-conf', s) self.isin('StormvarServiceCell Configuration Options', s) self.isin('See :ref:`devops-cell-config` for', s) self.isin('auth\\:passwd', s) self.isin('Environment Variable\n ``SYN_STORMVARSERVICECELL_AUTH_PASSWD``', s) self.isin('``--auth-passwd``', s) argv.append('--doc-conf-reflink') argv.append('`Configuring a Cell Service <https://synapse.docs.vertex.link/en/latest/synapse/devguides/devops_cell.html>`_') # truncate the current file with s_common.genfile(path, 'conf_stormvarservicecell.rst') as fd: fd.truncate() outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'conf_stormvarservicecell.rst') as fd: buf = fd.read() s = buf.decode() self.isin('StormvarServiceCell Configuration Options', s) self.isin('See `Configuring a Cell Service <https://synapse', s) async def test_tools_autodoc_stormsvc(self): with self.getTestDir() as path: argv = ['--savedir', path, '--doc-storm', 'synapse.tests.test_lib_stormsvc.StormvarServiceCell'] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'stormsvc_stormvarservicecell.rst') as fd: buf = fd.read() s = buf.decode() self.isin('StormvarServiceCell Storm Service', s) self.isin('This documentation is generated for version 0.0.1 of the service.', s) self.isin('Storm Package\\: stormvar', s) self.isin('.. _stormcmd-stormvar-magic:\n', s) self.isin('magic\n-----', s) self.isin('Test stormvar support', s) self.isin('forms as input nodes', s) self.isin('``test:str``', s) self.isin('nodes in the graph', s) self.isin('``test:comp``', s) self.isin('nodedata with the following keys', s) self.isin('``foo`` on ``inet:ipv4``', s) async def test_tools_autodoc_stormtypes(self): with self.getTestDir() as path: argv = ['--savedir', path, '--doc-stormtypes'] outp = self.getTestOutp() self.eq(await s_autodoc.main(argv, outp=outp), 0) with s_common.genfile(path, 'stormtypes_libs.rst') as fd: libbuf = fd.read() libtext = libbuf.decode() self.isin('.. _stormlibs-lib-print:\n\n$lib.print(mesg, \\*\\*kwargs)\n============================', libtext) self.isin('Print a message to the runtime.', libtext) self.isin('\\*\\*kwargs (any): Keyword arguments to substitute into the mesg.', libtext) self.isin('.. _stormlibs-lib-time:\n\n*********\n$lib.time\n*********', libtext) self.isin('A Storm Library for interacting with timestamps.', libtext) with s_common.genfile(path, 'stormtypes_prims.rst') as fd: primbuf = fd.read() primstext = primbuf.decode() self.isin('.. _stormprims-storm-auth-user:\n\n*****************\nstorm\\:auth\\:user\n*****************', primstext) self.isin('iden\n====\n\nThe User iden.', primstext)
[ "synapse.tools.autodoc.main", "synapse.common.genfile" ]
[((422, 467), 'synapse.common.genfile', 's_common.genfile', (['path', '"""datamodel_types.rst"""'], {}), "(path, 'datamodel_types.rst')\n", (438, 467), True, 'import synapse.common as s_common\n'), ((791, 836), 'synapse.common.genfile', 's_common.genfile', (['path', '"""datamodel_forms.rst"""'], {}), "(path, 'datamodel_forms.rst')\n", (807, 836), True, 'import synapse.common as s_common\n'), ((1696, 1750), 'synapse.common.genfile', 's_common.genfile', (['path', '"""conf_stormvarservicecell.rst"""'], {}), "(path, 'conf_stormvarservicecell.rst')\n", (1712, 1750), True, 'import synapse.common as s_common\n'), ((2437, 2491), 'synapse.common.genfile', 's_common.genfile', (['path', '"""conf_stormvarservicecell.rst"""'], {}), "(path, 'conf_stormvarservicecell.rst')\n", (2453, 2491), True, 'import synapse.common as s_common\n'), ((2647, 2701), 'synapse.common.genfile', 's_common.genfile', (['path', '"""conf_stormvarservicecell.rst"""'], {}), "(path, 'conf_stormvarservicecell.rst')\n", (2663, 2701), True, 'import synapse.common as s_common\n'), ((3258, 3316), 'synapse.common.genfile', 's_common.genfile', (['path', '"""stormsvc_stormvarservicecell.rst"""'], {}), "(path, 'stormsvc_stormvarservicecell.rst')\n", (3274, 3316), True, 'import synapse.common as s_common\n'), ((4309, 4354), 'synapse.common.genfile', 's_common.genfile', (['path', '"""stormtypes_libs.rst"""'], {}), "(path, 'stormtypes_libs.rst')\n", (4325, 4354), True, 'import synapse.common as s_common\n'), ((4942, 4988), 'synapse.common.genfile', 's_common.genfile', (['path', '"""stormtypes_prims.rst"""'], {}), "(path, 'stormtypes_prims.rst')\n", (4958, 4988), True, 'import synapse.common as s_common\n'), ((368, 399), 'synapse.tools.autodoc.main', 's_autodoc.main', (['argv'], {'outp': 'outp'}), '(argv, outp=outp)\n', (382, 399), True, 'import synapse.tools.autodoc as s_autodoc\n'), ((1642, 1673), 'synapse.tools.autodoc.main', 's_autodoc.main', (['argv'], {'outp': 'outp'}), '(argv, outp=outp)\n', (1656, 1673), True, 'import synapse.tools.autodoc as s_autodoc\n'), ((2594, 2625), 'synapse.tools.autodoc.main', 's_autodoc.main', (['argv'], {'outp': 'outp'}), '(argv, outp=outp)\n', (2608, 2625), True, 'import synapse.tools.autodoc as s_autodoc\n'), ((3204, 3235), 'synapse.tools.autodoc.main', 's_autodoc.main', (['argv'], {'outp': 'outp'}), '(argv, outp=outp)\n', (3218, 3235), True, 'import synapse.tools.autodoc as s_autodoc\n'), ((4255, 4286), 'synapse.tools.autodoc.main', 's_autodoc.main', (['argv'], {'outp': 'outp'}), '(argv, outp=outp)\n', (4269, 4286), True, 'import synapse.tools.autodoc as s_autodoc\n')]
from abc import ABC, abstractmethod from django.test import TestCase from rest_framework.generics import GenericAPIView from rest_framework.test import APIRequestFactory from apps.cars.factory import UserFactory class AbstractBaseTest(object): class AbstractBaseApiTestCase(TestCase, ABC): """ Abstract Base TestCase class. """ def setUp(self) -> None: """Base setup""" self.user = UserFactory.create() self.request_factory = APIRequestFactory() self.view = self._view() self.endpoint = self._endpoint() @abstractmethod def _view(self) -> GenericAPIView.as_view(): """Abstract method that returns YourApiToTest.as_view()""" pass @abstractmethod def _endpoint(self) -> str: """Abstract method that return endpoint string E.g /cars/""" pass @abstractmethod def test_anonymous_request(self, *args, **kwargs) -> None: """test if anonymous user cannot access endpoint""" pass
[ "rest_framework.test.APIRequestFactory", "apps.cars.factory.UserFactory.create", "rest_framework.generics.GenericAPIView.as_view" ]
[((657, 681), 'rest_framework.generics.GenericAPIView.as_view', 'GenericAPIView.as_view', ([], {}), '()\n', (679, 681), False, 'from rest_framework.generics import GenericAPIView\n'), ((447, 467), 'apps.cars.factory.UserFactory.create', 'UserFactory.create', ([], {}), '()\n', (465, 467), False, 'from apps.cars.factory import UserFactory\n'), ((503, 522), 'rest_framework.test.APIRequestFactory', 'APIRequestFactory', ([], {}), '()\n', (520, 522), False, 'from rest_framework.test import APIRequestFactory\n')]
""" A simple templating tool for Dockerfiles """ import sys import os import click import jinja2 import yaml @click.group() def cli(): """ @Unimplemented """ pass @cli.command() @click.argument("template", required=True, type=str) @click.option("-y", "--yaml_file", required=True, help="Yaml file with keys for template", type=str) def from_yaml(template, yaml_file): """ Fills in template file fields using the yaml_file """ temp_path = os.path.expanduser( os.path.expandvars(template)) yml_path = os.path.expanduser( os.path.expandvars(yaml_file)) with open(temp_path, 'r') as tfile: temp_jin = jinja2.Template(tfile.read()) with open(yml_path, 'r') as yfile: yml_loaded = yaml.load(yfile, Loader=yaml.BaseLoader) temp_rend = temp_jin.render(**yml_loaded) sys.stdout.write(temp_rend) sys.stdout.flush() cli.add_command(from_yaml) if __name__ == '__main__': cli()
[ "click.argument", "click.group", "click.option", "os.path.expandvars", "yaml.load", "sys.stdout.flush", "sys.stdout.write" ]
[((114, 127), 'click.group', 'click.group', ([], {}), '()\n', (125, 127), False, 'import click\n'), ((193, 244), 'click.argument', 'click.argument', (['"""template"""'], {'required': '(True)', 'type': 'str'}), "('template', required=True, type=str)\n", (207, 244), False, 'import click\n'), ((246, 350), 'click.option', 'click.option', (['"""-y"""', '"""--yaml_file"""'], {'required': '(True)', 'help': '"""Yaml file with keys for template"""', 'type': 'str'}), "('-y', '--yaml_file', required=True, help=\n 'Yaml file with keys for template', type=str)\n", (258, 350), False, 'import click\n'), ((877, 904), 'sys.stdout.write', 'sys.stdout.write', (['temp_rend'], {}), '(temp_rend)\n', (893, 904), False, 'import sys\n'), ((909, 927), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (925, 927), False, 'import sys\n'), ((529, 557), 'os.path.expandvars', 'os.path.expandvars', (['template'], {}), '(template)\n', (547, 557), False, 'import os\n'), ((602, 631), 'os.path.expandvars', 'os.path.expandvars', (['yaml_file'], {}), '(yaml_file)\n', (620, 631), False, 'import os\n'), ((784, 824), 'yaml.load', 'yaml.load', (['yfile'], {'Loader': 'yaml.BaseLoader'}), '(yfile, Loader=yaml.BaseLoader)\n', (793, 824), False, 'import yaml\n')]
#!/usr/bin/env python # coding: utf-8 # In[18]: # this definition exposes all python module imports that should be available in all subsequent commands import json import numpy as np import pandas as pd from causalnex.structure import DAGRegressor from sklearn.model_selection import cross_val_score from sklearn.preprocessing import StandardScaler from sklearn.model_selection import KFold # ... # global constants MODEL_DIRECTORY = "/srv/app/model/data/" # In[22]: # this cell is not executed from MLTK and should only be used for staging data into the notebook environment def stage(name): with open("data/"+name+".csv", 'r') as f: df = pd.read_csv(f) with open("data/"+name+".json", 'r') as f: param = json.load(f) return df, param # In[24]: # initialize your model # available inputs: data and parameters # returns the model object which will be used as a reference to call fit, apply and summary subsequently def init(df,param): model = DAGRegressor( alpha=0.1, beta=0.9, fit_intercept=True, hidden_layer_units=None, dependent_target=True, enforce_dag=True, ) return model # In[26]: # train your model # returns a fit info json object and may modify the model object def fit(model,df,param): target=param['target_variables'][0] #Data prep for processing y_p = df[target] y = y_p.values X_p = df[param['feature_variables']] X = X_p.to_numpy() X_col = list(X_p.columns) #Scale the data ss = StandardScaler() X_ss = ss.fit_transform(X) y_ss = (y - y.mean()) / y.std() scores = cross_val_score(model, X_ss, y_ss, cv=KFold(shuffle=True, random_state=42)) print(f'MEAN R2: {np.mean(scores).mean():.3f}') X_pd = pd.DataFrame(X_ss, columns=X_col) y_pd = pd.Series(y_ss, name=target) model.fit(X_pd, y_pd) info = pd.Series(model.coef_, index=X_col) #info = pd.Series(model.coef_, index=list(df.drop(['_time'],axis=1).columns)) return info # In[28]: # apply your model # returns the calculated results def apply(model,df,param): data = [] for col in list(df.columns): s = model.get_edges_to_node(col) for i in s.index: data.append([i,col,s[i]]); graph = pd.DataFrame(data, columns=['src','dest','weight']) #results to send back to Splunk graph_output=graph[graph['weight']>0] return graph_output # In[ ]: # save model to name in expected convention "<algo_name>_<model_name>" def save(model,name): #with open(MODEL_DIRECTORY + name + ".json", 'w') as file: # json.dump(model, file) return model # In[ ]: # load model from name in expected convention "<algo_name>_<model_name>" def load(name): model = {} #with open(MODEL_DIRECTORY + name + ".json", 'r') as file: # model = json.load(file) return model # In[ ]: # return a model summary def summary(model=None): returns = {"version": {"numpy": np.__version__, "pandas": pd.__version__} } return returns
[ "pandas.Series", "numpy.mean", "pandas.read_csv", "sklearn.preprocessing.StandardScaler", "json.load", "pandas.DataFrame", "causalnex.structure.DAGRegressor", "sklearn.model_selection.KFold" ]
[((1022, 1146), 'causalnex.structure.DAGRegressor', 'DAGRegressor', ([], {'alpha': '(0.1)', 'beta': '(0.9)', 'fit_intercept': '(True)', 'hidden_layer_units': 'None', 'dependent_target': '(True)', 'enforce_dag': '(True)'}), '(alpha=0.1, beta=0.9, fit_intercept=True, hidden_layer_units=\n None, dependent_target=True, enforce_dag=True)\n', (1034, 1146), False, 'from causalnex.structure import DAGRegressor\n'), ((1653, 1669), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (1667, 1669), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1895, 1928), 'pandas.DataFrame', 'pd.DataFrame', (['X_ss'], {'columns': 'X_col'}), '(X_ss, columns=X_col)\n', (1907, 1928), True, 'import pandas as pd\n'), ((1940, 1968), 'pandas.Series', 'pd.Series', (['y_ss'], {'name': 'target'}), '(y_ss, name=target)\n', (1949, 1968), True, 'import pandas as pd\n'), ((2012, 2047), 'pandas.Series', 'pd.Series', (['model.coef_'], {'index': 'X_col'}), '(model.coef_, index=X_col)\n', (2021, 2047), True, 'import pandas as pd\n'), ((2416, 2469), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'columns': "['src', 'dest', 'weight']"}), "(data, columns=['src', 'dest', 'weight'])\n", (2428, 2469), True, 'import pandas as pd\n'), ((675, 689), 'pandas.read_csv', 'pd.read_csv', (['f'], {}), '(f)\n', (686, 689), True, 'import pandas as pd\n'), ((753, 765), 'json.load', 'json.load', (['f'], {}), '(f)\n', (762, 765), False, 'import json\n'), ((1793, 1829), 'sklearn.model_selection.KFold', 'KFold', ([], {'shuffle': '(True)', 'random_state': '(42)'}), '(shuffle=True, random_state=42)\n', (1798, 1829), False, 'from sklearn.model_selection import KFold\n'), ((1853, 1868), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (1860, 1868), True, 'import numpy as np\n')]
import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation matplotlib.use('Agg') import math import numpy as np import sys from os.path import join, isfile import warnings warnings.filterwarnings("ignore") def gda(x, y): x = x.T y = y.T # phi = P(y = 1) # mu[i] = mean of the feature vectors of the ith class # sigma = common co-variance matrix # M[i] = number of data points of class i phi, mu, sigma, M = 0, np.array([0., 0.]), 0, np.array([0, 0]) m = y.shape[0] M[1] = np.sum(y) M[0] = m - M[1] phi = M[1] / m mu = np.array([np.sum(np.array([x[j] for j in range(m) if y[j] == i]), axis=0) / M[i] for i in range(2)]) sigma = np.sum(np.array([np.outer(x[i] - mu[y[i]], x[i] - mu[y[i]]) for i in range(m)]), axis=0).astype(float) / m return phi, mu, sigma def gda_general(x, y): x = x.T y = y.T # phi = P(y = 1) # mu[i] = mean of the feature vectors of the ith class # sigma[i] = co-variance matrix for the ith class # M[i] = number of data points of class i phi, mu, sigma, M = 0, np.array([0., 0.]), 0, np.array([0, 0]) m = y.shape[0] M[1] = np.sum(y) M[0] = m - M[1] phi = M[1] / m mu = np.array([np.sum(np.array([x[j] for j in range(m) if y[j] == i]), axis=0) / M[i] for i in range(2)]) sigma = np.array([np.sum(np.array([np.outer(x[i] - mu[k], x[i] - mu[k]) for i in range(m) if y[i] == k]), axis=0) / M[k] for k in range(2)]).astype(float) return phi, mu, sigma def main(): # read command-line arguments data_dir = sys.argv[1] out_dir = sys.argv[2] part = sys.argv[3] # check for existence of input files for c in ['x', 'y']: if not isfile(join(data_dir, 'q4' + c + '.dat')): raise Exception('q4' + c + '.dat not found') # read from csv file x = np.array(np.genfromtxt(join(data_dir, 'q4x.dat'))).T y = np.array([0 if yi == 'Alaska' else 1 for yi in np.loadtxt(join(data_dir, 'q4y.dat'), dtype=str)]) # normalisation x_mean = np.array([0.0] * 2) x_stddev = np.array([0.0] * 2) for i in range(2): x_mean[i] = np.mean(x[i]) x[i] -= np.full_like(x[i], np.mean(x[i])) x_stddev[i] = np.sqrt(np.sum(x[i] ** 2) / x[i].shape[0]) x[i] /= np.sqrt(np.sum(x[i] ** 2) / x[i].shape[0]) # part A # running GDA with common co-variance matrix phi, mu, sigma = gda(x, y) if part == 'a': output_file = open(join(out_dir, '4aoutput.txt'), mode='w') output_file.write('phi = ' + str(phi) + '\n') output_file.write('mu[0] = ' + str(mu[0]) + '\n') output_file.write('mu[1] = ' + str(mu[1]) + '\n') output_file.write('sigma = \n' + str(sigma) + '\n') output_file.close() print('phi = ' + str(phi)) print('mu[0] = ' + str(mu[0])) print('mu[1] = ' + str(mu[1])) print('sigma = \n' + str(sigma)) return 0 # part B, C fig4b, ax4b = plt.subplots() # filter by y-values x0, x1 = [], [] for i in range(y.shape[0]): if y[i] == 0: x0.append([x[0][i], x[1][i]]) else: x1.append([x[0][i], x[1][i]]) x0 = np.array(x0).T x1 = np.array(x1).T # plot classes alaska = ax4b.scatter(x0[0] * x_stddev[0] + x_mean[0], x0[1] * x_stddev[1] + x_mean[1], c='red', s=6) canada = ax4b.scatter(x1[0] * x_stddev[0] + x_mean[0], x1[1] * x_stddev[1] + x_mean[1], c='blue', s=6) ax4b.set_xlabel('Fresh water ring dia.') ax4b.set_ylabel('Marine water ring dia.') fig4b.legend((alaska, canada), ('Alaska', 'Canada')) if part == 'b': fig4b.savefig(join(out_dir, '1b_plot.png')) plt.show() return 0 # linear boundary computation - equation in report sigma_inverse = np.linalg.inv(sigma) theta = np.array([0., 0., 0.]) theta[0] = np.log(phi / (1 - phi)) for i in range(2): mui = np.array([mu[i]]) theta[0] += ((-1) ** i) * np.matmul(np.matmul(mui, sigma_inverse), mui.T) theta[1:] = np.matmul(np.array([mu[1] - mu[0]]), sigma_inverse) # plotting the boundary rx = np.arange(-3, 4) ry = (-theta[0] - theta[1] * rx) / theta[2] ax4b.plot(rx * x_stddev[0] + x_mean[0], ry * x_stddev[1] + x_mean[1]) #plt.show() if part == 'c': fig4b.savefig(join(out_dir, '1c_plot.png')) plt.show() return 0 # part D # running generalised GDA phi, mu, sigma = gda_general(x, y) if part == 'd': output_file = open(join(out_dir, '4doutput.txt'), mode='w') output_file.write('phi = ' + str(phi) + '\n') output_file.write('mu[0] = ' + str(mu[0]) + '\n') output_file.write('mu[1] = ' + str(mu[1]) + '\n') output_file.write('sigma[0] = \n' + str(sigma[0]) + '\n') output_file.write('sigma[1] = \n' + str(sigma[1]) + '\n') output_file.close() print('phi = ' + str(phi)) print('mu[0] = ' + str(mu[0])) print('mu[1] = ' + str(mu[1])) print('sigma[0] = \n' + str(sigma[0])) print('sigma[1] = \n' + str(sigma[1])) return 0 # part E # quadratic boundary computation - equation in report constant = np.log(phi / (1 - phi)) + np.log(np.linalg.det(sigma[0]) / np.linalg.det(sigma[1])) / 2 linear = 0 quadratic = 0 for i in range(2): sigma_inverse = np.linalg.inv(sigma[i]) mui = np.array([mu[i]]) prod = np.matmul(mui, sigma_inverse) constant += ((-1) ** i) * np.matmul(prod, mui.T) / 2 linear += ((-1) ** (i + 1)) * prod quadratic += ((-1) ** i) * sigma_inverse / 2 constant = constant[0][0] linear = linear[0] # note that here x transposed is the feature vector (as x is a row vector) # and similarly mu[i] is also a row vector, which explains the equations above # equation is x * quadratic * x.T + linear * x.T + constant = 0 # plotting the quadratic boundary Z = 0 X, Y = np.meshgrid(np.linspace(-4, 4, 100), np.linspace(-4, 4, 100)) Z += quadratic[0, 0] * (X ** 2) + (quadratic[0, 1] + quadratic[1, 0]) * X * Y + (quadratic[1, 1]) * (Y ** 2) Z += linear[0] * X + linear[1] * Y Z += constant ax4b.contour(X * x_stddev[0] + x_mean[0], Y * x_stddev[1] + x_mean[1], Z, 0) if part == 'e': fig4b.savefig(join(out_dir, '1e_plot.png')) plt.show() # part F - in the report return 0 if __name__ == '__main__': main()
[ "warnings.filterwarnings", "numpy.mean", "matplotlib.use", "numpy.log", "os.path.join", "numpy.linalg.det", "numpy.sum", "numpy.array", "numpy.linalg.inv", "numpy.matmul", "numpy.linspace", "numpy.outer", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((91, 112), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (105, 112), False, 'import matplotlib\n'), ((206, 239), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (229, 239), False, 'import warnings\n'), ((547, 556), 'numpy.sum', 'np.sum', (['y'], {}), '(y)\n', (553, 556), True, 'import numpy as np\n'), ((1184, 1193), 'numpy.sum', 'np.sum', (['y'], {}), '(y)\n', (1190, 1193), True, 'import numpy as np\n'), ((2065, 2084), 'numpy.array', 'np.array', (['([0.0] * 2)'], {}), '([0.0] * 2)\n', (2073, 2084), True, 'import numpy as np\n'), ((2100, 2119), 'numpy.array', 'np.array', (['([0.0] * 2)'], {}), '([0.0] * 2)\n', (2108, 2119), True, 'import numpy as np\n'), ((3001, 3015), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (3013, 3015), True, 'import matplotlib.pyplot as plt\n'), ((3827, 3847), 'numpy.linalg.inv', 'np.linalg.inv', (['sigma'], {}), '(sigma)\n', (3840, 3847), True, 'import numpy as np\n'), ((3860, 3885), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (3868, 3885), True, 'import numpy as np\n'), ((3898, 3921), 'numpy.log', 'np.log', (['(phi / (1 - phi))'], {}), '(phi / (1 - phi))\n', (3904, 3921), True, 'import numpy as np\n'), ((4165, 4181), 'numpy.arange', 'np.arange', (['(-3)', '(4)'], {}), '(-3, 4)\n', (4174, 4181), True, 'import numpy as np\n'), ((475, 495), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (483, 495), True, 'import numpy as np\n'), ((498, 514), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (506, 514), True, 'import numpy as np\n'), ((1112, 1132), 'numpy.array', 'np.array', (['[0.0, 0.0]'], {}), '([0.0, 0.0])\n', (1120, 1132), True, 'import numpy as np\n'), ((1135, 1151), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (1143, 1151), True, 'import numpy as np\n'), ((2163, 2176), 'numpy.mean', 'np.mean', (['x[i]'], {}), '(x[i])\n', (2170, 2176), True, 'import numpy as np\n'), ((3223, 3235), 'numpy.array', 'np.array', (['x0'], {}), '(x0)\n', (3231, 3235), True, 'import numpy as np\n'), ((3247, 3259), 'numpy.array', 'np.array', (['x1'], {}), '(x1)\n', (3255, 3259), True, 'import numpy as np\n'), ((3723, 3733), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3731, 3733), True, 'import matplotlib.pyplot as plt\n'), ((3959, 3976), 'numpy.array', 'np.array', (['[mu[i]]'], {}), '([mu[i]])\n', (3967, 3976), True, 'import numpy as np\n'), ((4085, 4110), 'numpy.array', 'np.array', (['[mu[1] - mu[0]]'], {}), '([mu[1] - mu[0]])\n', (4093, 4110), True, 'import numpy as np\n'), ((4401, 4411), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4409, 4411), True, 'import matplotlib.pyplot as plt\n'), ((5244, 5267), 'numpy.log', 'np.log', (['(phi / (1 - phi))'], {}), '(phi / (1 - phi))\n', (5250, 5267), True, 'import numpy as np\n'), ((5412, 5435), 'numpy.linalg.inv', 'np.linalg.inv', (['sigma[i]'], {}), '(sigma[i])\n', (5425, 5435), True, 'import numpy as np\n'), ((5450, 5467), 'numpy.array', 'np.array', (['[mu[i]]'], {}), '([mu[i]])\n', (5458, 5467), True, 'import numpy as np\n'), ((5483, 5512), 'numpy.matmul', 'np.matmul', (['mui', 'sigma_inverse'], {}), '(mui, sigma_inverse)\n', (5492, 5512), True, 'import numpy as np\n'), ((6025, 6048), 'numpy.linspace', 'np.linspace', (['(-4)', '(4)', '(100)'], {}), '(-4, 4, 100)\n', (6036, 6048), True, 'import numpy as np\n'), ((6050, 6073), 'numpy.linspace', 'np.linspace', (['(-4)', '(4)', '(100)'], {}), '(-4, 4, 100)\n', (6061, 6073), True, 'import numpy as np\n'), ((6406, 6416), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6414, 6416), True, 'import matplotlib.pyplot as plt\n'), ((2212, 2225), 'numpy.mean', 'np.mean', (['x[i]'], {}), '(x[i])\n', (2219, 2225), True, 'import numpy as np\n'), ((2495, 2524), 'os.path.join', 'join', (['out_dir', '"""4aoutput.txt"""'], {}), "(out_dir, '4aoutput.txt')\n", (2499, 2524), False, 'from os.path import join, isfile\n'), ((3685, 3713), 'os.path.join', 'join', (['out_dir', '"""1b_plot.png"""'], {}), "(out_dir, '1b_plot.png')\n", (3689, 3713), False, 'from os.path import join, isfile\n'), ((4363, 4391), 'os.path.join', 'join', (['out_dir', '"""1c_plot.png"""'], {}), "(out_dir, '1c_plot.png')\n", (4367, 4391), False, 'from os.path import join, isfile\n'), ((4561, 4590), 'os.path.join', 'join', (['out_dir', '"""4doutput.txt"""'], {}), "(out_dir, '4doutput.txt')\n", (4565, 4590), False, 'from os.path import join, isfile\n'), ((6368, 6396), 'os.path.join', 'join', (['out_dir', '"""1e_plot.png"""'], {}), "(out_dir, '1e_plot.png')\n", (6372, 6396), False, 'from os.path import join, isfile\n'), ((1745, 1778), 'os.path.join', 'join', (['data_dir', "('q4' + c + '.dat')"], {}), "(data_dir, 'q4' + c + '.dat')\n", (1749, 1778), False, 'from os.path import join, isfile\n'), ((1895, 1920), 'os.path.join', 'join', (['data_dir', '"""q4x.dat"""'], {}), "(data_dir, 'q4x.dat')\n", (1899, 1920), False, 'from os.path import join, isfile\n'), ((2257, 2274), 'numpy.sum', 'np.sum', (['(x[i] ** 2)'], {}), '(x[i] ** 2)\n', (2263, 2274), True, 'import numpy as np\n'), ((2316, 2333), 'numpy.sum', 'np.sum', (['(x[i] ** 2)'], {}), '(x[i] ** 2)\n', (2322, 2333), True, 'import numpy as np\n'), ((4021, 4050), 'numpy.matmul', 'np.matmul', (['mui', 'sigma_inverse'], {}), '(mui, sigma_inverse)\n', (4030, 4050), True, 'import numpy as np\n'), ((5547, 5569), 'numpy.matmul', 'np.matmul', (['prod', 'mui.T'], {}), '(prod, mui.T)\n', (5556, 5569), True, 'import numpy as np\n'), ((1991, 2016), 'os.path.join', 'join', (['data_dir', '"""q4y.dat"""'], {}), "(data_dir, 'q4y.dat')\n", (1995, 2016), False, 'from os.path import join, isfile\n'), ((5277, 5300), 'numpy.linalg.det', 'np.linalg.det', (['sigma[0]'], {}), '(sigma[0])\n', (5290, 5300), True, 'import numpy as np\n'), ((5303, 5326), 'numpy.linalg.det', 'np.linalg.det', (['sigma[1]'], {}), '(sigma[1])\n', (5316, 5326), True, 'import numpy as np\n'), ((738, 780), 'numpy.outer', 'np.outer', (['(x[i] - mu[y[i]])', '(x[i] - mu[y[i]])'], {}), '(x[i] - mu[y[i]], x[i] - mu[y[i]])\n', (746, 780), True, 'import numpy as np\n'), ((1385, 1421), 'numpy.outer', 'np.outer', (['(x[i] - mu[k])', '(x[i] - mu[k])'], {}), '(x[i] - mu[k], x[i] - mu[k])\n', (1393, 1421), True, 'import numpy as np\n')]
import bcrypt salt = bcrypt.gensalt() def generate_hash(passwd, salt=salt): return str(bcrypt.hashpw(passwd, salt)) def match_password(req_pwd, db_pwd): db_pwd = db_pwd.replace('b\'','').replace('\'','').encode('utf-8') return db_pwd == bcrypt.hashpw(req_pwd, db_pwd)
[ "bcrypt.gensalt", "bcrypt.hashpw" ]
[((22, 38), 'bcrypt.gensalt', 'bcrypt.gensalt', ([], {}), '()\n', (36, 38), False, 'import bcrypt\n'), ((93, 120), 'bcrypt.hashpw', 'bcrypt.hashpw', (['passwd', 'salt'], {}), '(passwd, salt)\n', (106, 120), False, 'import bcrypt\n'), ((253, 283), 'bcrypt.hashpw', 'bcrypt.hashpw', (['req_pwd', 'db_pwd'], {}), '(req_pwd, db_pwd)\n', (266, 283), False, 'import bcrypt\n')]
""" Module for Serialization and Deserialization of a KNX Disconnect Request information. Disconnect requests are used to disconnect a tunnel from a KNX/IP device. """ from __future__ import annotations from typing import TYPE_CHECKING from xknx.exceptions import CouldNotParseKNXIP from .body import KNXIPBody from .hpai import HPAI from .knxip_enum import KNXIPServiceType if TYPE_CHECKING: from xknx.xknx import XKNX class DisconnectRequest(KNXIPBody): """Representation of a KNX Disconnect Request.""" SERVICE_TYPE = KNXIPServiceType.DISCONNECT_REQUEST def __init__( self, xknx: XKNX, communication_channel_id: int = 1, control_endpoint: HPAI = HPAI(), ): """Initialize DisconnectRequest object.""" super().__init__(xknx) self.communication_channel_id = communication_channel_id self.control_endpoint = control_endpoint def calculated_length(self) -> int: """Get length of KNX/IP body.""" return 2 + HPAI.LENGTH def from_knx(self, raw: bytes) -> int: """Parse/deserialize from KNX/IP raw data.""" if len(raw) < 2: raise CouldNotParseKNXIP("Disconnect info has wrong length") self.communication_channel_id = raw[0] # raw[1] is reserved return self.control_endpoint.from_knx(raw[2:]) + 2 def to_knx(self) -> bytes: """Serialize to KNX/IP raw data.""" return ( bytes((self.communication_channel_id, 0x00)) # 2nd byte is reserved + self.control_endpoint.to_knx() ) def __str__(self) -> str: """Return object as readable string.""" return ( "<DisconnectRequest " f'CommunicationChannelID="{self.communication_channel_id}" ' f'control_endpoint="{self.control_endpoint}" />' )
[ "xknx.exceptions.CouldNotParseKNXIP" ]
[((1172, 1226), 'xknx.exceptions.CouldNotParseKNXIP', 'CouldNotParseKNXIP', (['"""Disconnect info has wrong length"""'], {}), "('Disconnect info has wrong length')\n", (1190, 1226), False, 'from xknx.exceptions import CouldNotParseKNXIP\n')]
from src.sqlite_helper import create_message_table, drop_message_table """ This script will create a SQLite table for you, and should be one time setup The table name is message which will store all the Post message """ create_message_table() """ If you need to drop the message table, un-comment the following code by removing the # sign in the beginning """ # # drop_message_table() #
[ "src.sqlite_helper.create_message_table" ]
[((222, 244), 'src.sqlite_helper.create_message_table', 'create_message_table', ([], {}), '()\n', (242, 244), False, 'from src.sqlite_helper import create_message_table, drop_message_table\n')]
import typing as t from typing import TYPE_CHECKING import numpy as np import torch import pytest import imageio from detectron2 import model_zoo from detectron2.data import transforms as T from detectron2.config import get_cfg from detectron2.modeling import build_model import bentoml if TYPE_CHECKING: from detectron2.config import CfgNode from bentoml._internal.types import Tag from bentoml._internal.models import ModelStore IMAGE_URL: str = "./tests/utils/_static/detectron2_sample.jpg" def extract_result(raw_result: t.Dict[str, t.Any]) -> t.Dict[str, t.Any]: pred_instances = raw_result["instances"] boxes = pred_instances.pred_boxes.to("cpu").tensor.detach().numpy() scores = pred_instances.scores.to("cpu").detach().numpy() pred_classes = pred_instances.pred_classes.to("cpu").detach().numpy() result = { "boxes": boxes, "scores": scores, "classes": pred_classes, } return result def prepare_image( original_image: "np.ndarray[t.Any, np.dtype[t.Any]]", ) -> "np.ndarray[t.Any, np.dtype[t.Any]]": """Mainly to test on COCO dataset""" _aug = T.ResizeShortestEdge([800, 800], 1333) image = _aug.get_transform(original_image).apply_image(original_image) return image.transpose(2, 0, 1) def detectron_model_and_config() -> t.Tuple[torch.nn.Module, "CfgNode"]: model_url: str = "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" cfg: "CfgNode" = get_cfg() cfg.merge_from_file(model_zoo.get_config_file(model_url)) # set threshold for this model cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(model_url) cloned = cfg.clone() cloned.MODEL.DEVICE = "cpu" # running on CI model: torch.nn.Module = build_model(cloned) model.eval() return model, cfg @pytest.fixture(scope="module", name="image_array") def fixture_image_array() -> "np.ndarray[t.Any, np.dtype[t.Any]]": return np.asarray(imageio.imread(IMAGE_URL)) def save_procedure(metadata: t.Dict[str, t.Any], _modelstore: "ModelStore") -> "Tag": model, config = detectron_model_and_config() tag_info = bentoml.detectron.save( "test_detectron2_model", model, model_config=config, metadata=metadata, model_store=_modelstore, ) return tag_info @pytest.mark.parametrize("metadata", [{"acc": 0.876}]) def test_detectron2_save_load( metadata: t.Dict[str, t.Any], image_array: "np.ndarray[t.Any, np.dtype[t.Any]]", modelstore: "ModelStore", ) -> None: tag = save_procedure(metadata, _modelstore=modelstore) _model = bentoml.models.get(tag, _model_store=modelstore) assert _model.info.metadata is not None detectron_loaded = bentoml.detectron.load( _model.tag, device="cpu", model_store=modelstore, ) assert next(detectron_loaded.parameters()).device.type == "cpu" image = prepare_image(image_array) image = torch.as_tensor(image) input_data = [{"image": image}] raw_result = detectron_loaded(input_data) result = extract_result(raw_result[0]) assert result["scores"][0] > 0.9 def test_detectron2_setup_run_batch( image_array: "np.ndarray[t.Any, np.dtype[t.Any]]", modelstore: "ModelStore" ) -> None: tag = save_procedure({}, _modelstore=modelstore) runner = bentoml.detectron.load_runner(tag, model_store=modelstore) assert tag in runner.required_models assert runner.num_concurrency_per_replica == 1 assert runner.num_replica == 1 image = torch.as_tensor(prepare_image(image_array)) res = runner.run_batch(image) result = extract_result(res[0]) assert result["boxes"] is not None
[ "bentoml.detectron.save", "detectron2.modeling.build_model", "torch.as_tensor", "detectron2.config.get_cfg", "bentoml.models.get", "bentoml.detectron.load_runner", "imageio.imread", "pytest.mark.parametrize", "detectron2.model_zoo.get_checkpoint_url", "detectron2.model_zoo.get_config_file", "bentoml.detectron.load", "pytest.fixture", "detectron2.data.transforms.ResizeShortestEdge" ]
[((1848, 1898), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""', 'name': '"""image_array"""'}), "(scope='module', name='image_array')\n", (1862, 1898), False, 'import pytest\n'), ((2357, 2410), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""metadata"""', "[{'acc': 0.876}]"], {}), "('metadata', [{'acc': 0.876}])\n", (2380, 2410), False, 'import pytest\n'), ((1138, 1176), 'detectron2.data.transforms.ResizeShortestEdge', 'T.ResizeShortestEdge', (['[800, 800]', '(1333)'], {}), '([800, 800], 1333)\n', (1158, 1176), True, 'from detectron2.data import transforms as T\n'), ((1462, 1471), 'detectron2.config.get_cfg', 'get_cfg', ([], {}), '()\n', (1469, 1471), False, 'from detectron2.config import get_cfg\n'), ((1641, 1680), 'detectron2.model_zoo.get_checkpoint_url', 'model_zoo.get_checkpoint_url', (['model_url'], {}), '(model_url)\n', (1669, 1680), False, 'from detectron2 import model_zoo\n'), ((1785, 1804), 'detectron2.modeling.build_model', 'build_model', (['cloned'], {}), '(cloned)\n', (1796, 1804), False, 'from detectron2.modeling import build_model\n'), ((2167, 2290), 'bentoml.detectron.save', 'bentoml.detectron.save', (['"""test_detectron2_model"""', 'model'], {'model_config': 'config', 'metadata': 'metadata', 'model_store': '_modelstore'}), "('test_detectron2_model', model, model_config=config,\n metadata=metadata, model_store=_modelstore)\n", (2189, 2290), False, 'import bentoml\n'), ((2644, 2692), 'bentoml.models.get', 'bentoml.models.get', (['tag'], {'_model_store': 'modelstore'}), '(tag, _model_store=modelstore)\n', (2662, 2692), False, 'import bentoml\n'), ((2762, 2834), 'bentoml.detectron.load', 'bentoml.detectron.load', (['_model.tag'], {'device': '"""cpu"""', 'model_store': 'modelstore'}), "(_model.tag, device='cpu', model_store=modelstore)\n", (2784, 2834), False, 'import bentoml\n'), ((2986, 3008), 'torch.as_tensor', 'torch.as_tensor', (['image'], {}), '(image)\n', (3001, 3008), False, 'import torch\n'), ((3368, 3426), 'bentoml.detectron.load_runner', 'bentoml.detectron.load_runner', (['tag'], {'model_store': 'modelstore'}), '(tag, model_store=modelstore)\n', (3397, 3426), False, 'import bentoml\n'), ((1496, 1532), 'detectron2.model_zoo.get_config_file', 'model_zoo.get_config_file', (['model_url'], {}), '(model_url)\n', (1521, 1532), False, 'from detectron2 import model_zoo\n'), ((1988, 2013), 'imageio.imread', 'imageio.imread', (['IMAGE_URL'], {}), '(IMAGE_URL)\n', (2002, 2013), False, 'import imageio\n')]
import pytest from pypospack.potential import EamPotential symbols = ['Al'] func_pair_name = "bornmayer" func_density_name = "eam_dens_exp" func_embedding_name = "fs" expected_parameter_names_pair_potential = [] expected_parameter_names_density_function = [] expected_parameter_names_embedding_function = [] expected_parameter_names = [ 'p_AlAl_phi0', 'p_AlAl_gamma', 'p_AlAl_r0', 'd_Al_rho0', 'd_Al_beta', 'd_Al_r0', 'e_Al_F0', 'e_Al_p', 'e_Al_q', 'e_Al_F1', 'e_Al_rho0'] print(80*'-') print("func_pair_name={}".format(func_pair_name)) print("func_density_name={}".format(func_density_name)) print("func_embedding_name={}".format(func_density_name)) print(80*'-') def test____init__(): obj_pot = EamPotential( symbols=symbols, func_pair=func_pair_name, func_density=func_density_name, func_embedding=func_embedding_name) assert type(obj_pot) is EamPotential assert obj_pot.potential_type == 'eam' assert type(obj_pot.symbols) is list assert len(obj_pot.symbols) == len(symbols) for i,v in enumerate(symbols): obj_pot.symbols[i] = v assert obj_pot.is_charge is False assert type(obj_pot.parameter_names) is list assert len(obj_pot.parameter_names) == len(expected_parameter_names) for i,v in enumerate(expected_parameter_names): obj_pot.parameter_names = v if __name__ == "__main__": # CONSTRUCTOR TEST pot = EamPotential(symbols=symbols, func_pair=func_pair_name, func_density=func_density_name, func_embedding=func_embedding_name) print('pot.potential_type == {}'.format(\ pot.potential_type)) print('pot.symbols == {}'.format(\ pot.symbols)) print('pot.parameter_names == {}'.format(\ pot.parameter_names)) print('pot.is_charge == {}'.format(\ pot.is_charge))
[ "pypospack.potential.EamPotential" ]
[((733, 861), 'pypospack.potential.EamPotential', 'EamPotential', ([], {'symbols': 'symbols', 'func_pair': 'func_pair_name', 'func_density': 'func_density_name', 'func_embedding': 'func_embedding_name'}), '(symbols=symbols, func_pair=func_pair_name, func_density=\n func_density_name, func_embedding=func_embedding_name)\n', (745, 861), False, 'from pypospack.potential import EamPotential\n'), ((1459, 1587), 'pypospack.potential.EamPotential', 'EamPotential', ([], {'symbols': 'symbols', 'func_pair': 'func_pair_name', 'func_density': 'func_density_name', 'func_embedding': 'func_embedding_name'}), '(symbols=symbols, func_pair=func_pair_name, func_density=\n func_density_name, func_embedding=func_embedding_name)\n', (1471, 1587), False, 'from pypospack.potential import EamPotential\n')]
from typing import Dict from main.helpers.print_helper import PrintHelper class Enricher(object): def __init__(self, enricher_type: str, header: str) -> None: self.enricher_type = enricher_type self.header = header def get_information(self, packet: Dict[str, str], information_dict) -> None: pass def print(self) -> None: PrintHelper.print_nothing(self.enricher_type)
[ "main.helpers.print_helper.PrintHelper.print_nothing" ]
[((371, 416), 'main.helpers.print_helper.PrintHelper.print_nothing', 'PrintHelper.print_nothing', (['self.enricher_type'], {}), '(self.enricher_type)\n', (396, 416), False, 'from main.helpers.print_helper import PrintHelper\n')]
import coloredlogs coloredlogs.install() custom_logger = logging.getLogger(name) coloredlogs.install(level="INFO", logger=custom_logger)
[ "coloredlogs.install" ]
[((20, 41), 'coloredlogs.install', 'coloredlogs.install', ([], {}), '()\n', (39, 41), False, 'import coloredlogs\n'), ((82, 137), 'coloredlogs.install', 'coloredlogs.install', ([], {'level': '"""INFO"""', 'logger': 'custom_logger'}), "(level='INFO', logger=custom_logger)\n", (101, 137), False, 'import coloredlogs\n')]