FoodieQA / README.md
lyan62's picture
Update README.md
df10383 verified
---
license: cc-by-nc-nd-4.0
task_categories:
- visual-question-answering
language:
- en
- zh
tags:
- food
- culture
- multilingual
size_categories:
- n<1K
pretty_name: Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture
---
# FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture
![](foodie-img.jpeg)
## Github Repo
๐Ÿ˜‹ We release all tools and code used to create the dataset at https://github.com/lyan62/FoodieQA.
## Paper
For more details about the dataset, please refer to ๐Ÿ“„ [FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture](https://arxiv.org/abs/2406.11030)
## Dataset Download
**!!Note!!** **The Json files are in the FoodieQA.zip (click on the Files and Versions tab to download), or download the dataset directly with git clone.**
## Terms and Conditions for Data Usage
By downloading and using the data, you acknowledge that you have read, understood, and agreed to the following terms and conditions.
1. **Research Purpose**: The data is provided solely for research purposes and must not be used for any commercial activities.
2. **Evaluation Only**: The data may only be used for evaluation purposes and not for training models or systems.
3. **Compliance**: Users must comply with all applicable laws and regulations when using the data.
4. **Attribution**: Proper attribution must be given in any publications or presentations resulting from the use of this data.
5. **License**: The data is released under the CC BY-NC-ND 4.0 license. Users must adhere to the terms of this license.
## Data Structure
- `/images`: contains all images needed for multi-image VQA and single-image VQA task.
- `mivqa_tidy.json` questions for Multi-image VQA task.
- data format
```
{
"question": "ๅ“ชไธ€้“่œ้€‚ๅˆๅ–œๆฌขๅƒ่‚ ็š„ไบบ๏ผŸ",
"choices": "",
"answer": "0",
"question_type": "ingredients",
"question_id": qid,
"ann_group": "้—ฝ",
"images": [
img1_path, img2_path, img3_path, img4_path
],
"question_en": "Which dish is for people who like intestine?"
}
```
- `sivqa_tidy.json` question for Single-image VQA task.
- data format
```
{
"question": "ๅ›พ็‰‡ไธญ็š„้ฃŸ็‰ฉๆ˜ฏๅ“ชไธชๅœฐๅŒบ็š„็‰น่‰ฒ็พŽ้ฃŸ?",
"choices": [
...
],
"answer": "3",
"question_type": "region-2",
"food_name": "ๆข…่œๆ‰ฃ่‚‰",
"question_id": "vqa-34",
"food_meta": {
"main_ingredient": [
"่‚‰"
],
"id": 253,
"food_name": "ๆข…่œๆ‰ฃ่‚‰",
"food_type": "ๅฎขๅฎถ่œ",
"food_location": "้ค้ฆ†",
"food_file": img_path
},
"question_en": translated_question,
"choices_en": [
translated_choices1,
...
]
}
```
- `textqa_tidy.json`
- data format
```
{
"question": "้…’้…ฟๅœ†ๅญๅฑžไบŽๅ“ชไธช่œ็ณป?",
"choices": [
...
],
"answer": "1",
"question_type": "cuisine_type",
"food_name": "้…’้…ฟๅœ†ๅญ",
"cuisine_type": "่‹่œ",
"question_id": "textqa-101"
},
```
### Models and results for the VQA tasks
| Evaluation | Multi-image VQA (ZH) | Multi-image VQA (EN) | Single-image VQA (ZH) | Single-image VQA (EN) |
|---------------------|:--------------------:|:--------------------:|:---------------------:|:---------------------:|
| **Human** | 91.69 | 77.22โ€  | 74.41 | 46.53โ€  |
| **Phi-3-vision-4.2B** | 29.03 | 33.75 | 42.58 | 44.53 |
| **Idefics2-8B** | **50.87** | 41.69 | 46.87 | **52.73** |
| **Mantis-8B** | 46.65 | **43.67** | 41.80 | 47.66 |
| **Qwen-VL-12B** | 32.26 | 27.54 | 48.83 | 42.97 |
| **Yi-VL-6B** | - | - | **49.61** | 41.41 |
| **Yi-VL-34B** | - | - | 52.73 | 48.05 |
| **GPT-4V** | 78.92 | 69.23 | 63.67 | 60.16 |
| **GPT-4o** | **86.35** | **80.64** | **72.66** | **67.97** |
### Models and results for the TextQA task
| Model | Best Accuracy | Prompt |
|---------------------|:-------------:|:------:|
| Phi-3-medium | 41.28 | 1 |
| Mistral-7B-instruct | 35.18 | 1 |
| Llama3-8B-Chinese | 47.38 | 1 |
| YI-6B | 25.53 | 3 |
| YI-34B | 46.38 | 3 |
| Qwen2-7B-instruct | 68.23 | 3 |
| GPT-4 | 60.99 | 1 |
## BibTeX Citation
```
@article{li2024foodieqa,
title={FoodieQA: A Multimodal Dataset for Fine-Grained Understanding of Chinese Food Culture},
author={Li, Wenyan and Zhang, Xinyu and Li, Jiaang and Peng, Qiwei and Tang, Raphael and Zhou, Li and Zhang, Weijia and Hu, Guimin and Yuan, Yifei and S{\o}gaard, Anders and others},
journal={arXiv preprint arXiv:2406.11030},
year={2024}
}
```