|
--- |
|
|
|
tags: |
|
- pyterrier |
|
- pyterrier-artifact |
|
- pyterrier-artifact.sparse_index |
|
- pyterrier-artifact.sparse_index.pisa |
|
task_categories: |
|
- text-retrieval |
|
viewer: false |
|
--- |
|
|
|
# MS MARCO PISA Index |
|
|
|
## Description |
|
|
|
This is an index of the MS MARCO passage (v1) dataset with PISA. It can be used for passage retrieval using lexical methods. |
|
|
|
## Usage |
|
|
|
```python |
|
>>> from pyterrier_pisa import PisaIndex |
|
>>> index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') |
|
>>> bm25 = index.bm25() |
|
>>> bm25.search('terrier breeds') |
|
qid query docno score rank |
|
0 1 terrier breeds 1406578 22.686367 0 |
|
1 1 terrier breeds 5785957 22.611134 1 |
|
2 1 terrier breeds 7455374 22.592781 2 |
|
3 1 terrier breeds 3984886 22.242958 3 |
|
4 1 terrier breeds 3984893 22.009525 4 |
|
... |
|
``` |
|
|
|
## Benchmarks |
|
|
|
**TREC DL 2019** |
|
|
|
<details> |
|
<summary>Code</summary> |
|
|
|
```python |
|
from ir_measures import nDCG, RR, MAP, R |
|
import pyterrier as pt |
|
from pyterrier_pisa import PisaIndex |
|
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') |
|
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2019/judged') |
|
pt.Experiment( |
|
[index.bm25(), index.qld(), index.dph(), index.pl2()], |
|
dataset.get_topics(), |
|
dataset.get_qrels(), |
|
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000], |
|
['BM25', 'QLD', 'DPH', 'PL2'], |
|
round=4, |
|
) |
|
``` |
|
</details> |
|
|
|
| | name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |
|
|---:|:-------|----------:|-------:|------------:|------------:|----------------:| |
|
| 0 | BM25 | 0.4989 | 0.6023 | 0.6804 | 0.3031 | 0.7555 | |
|
| 1 | QLD | 0.468 | 0.5984 | 0.6047 | 0.3037 | 0.7601 | |
|
| 2 | DPH | 0.4975 | 0.5907 | 0.6674 | 0.3009 | 0.7436 | |
|
| 3 | PL2 | 0.4503 | 0.5681 | 0.6495 | 0.2679 | 0.7304 | |
|
|
|
**TREC DL 2020** |
|
|
|
<details> |
|
<summary>Code</summary> |
|
|
|
```python |
|
from ir_measures import nDCG, RR, MAP, R |
|
import pyterrier as pt |
|
from pyterrier_pisa import PisaIndex |
|
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') |
|
dataset = pt.get_dataset('irds:msmarco-passage/trec-dl-2020/judged') |
|
pt.Experiment( |
|
[index.bm25(), index.qld(), index.dph(), index.pl2()], |
|
dataset.get_topics(), |
|
dataset.get_qrels(), |
|
[nDCG@10, nDCG, RR(rel=2), MAP(rel=2), R(rel=2)@1000], |
|
['BM25', 'QLD', 'DPH', 'PL2'], |
|
round=4, |
|
) |
|
``` |
|
</details> |
|
|
|
| | name | nDCG@10 | nDCG | RR(rel=2) | AP(rel=2) | R(rel=2)@1000 | |
|
|---:|:-------|----------:|-------:|------------:|------------:|----------------:| |
|
| 0 | BM25 | 0.4793 | 0.5963 | 0.6529 | 0.2974 | 0.8048 | |
|
| 1 | QLD | 0.4511 | 0.587 | 0.5812 | 0.2879 | 0.8125 | |
|
| 2 | DPH | 0.4586 | 0.5704 | 0.6123 | 0.2779 | 0.798 | |
|
| 3 | PL2 | 0.4552 | 0.5609 | 0.5788 | 0.2666 | 0.7772 | |
|
|
|
**MS MARCO Dev (small)** |
|
|
|
<details> |
|
<summary>Code</summary> |
|
|
|
```python |
|
from ir_measures import RR, R |
|
import pyterrier as pt |
|
from pyterrier_pisa import PisaIndex |
|
index = PisaIndex.from_hf('macavaney/msmarco-passage.pisa') |
|
dataset = pt.get_dataset('irds:msmarco-passage/dev/small') |
|
pt.Experiment( |
|
[index.bm25(), index.qld(), index.dph(), index.pl2()], |
|
dataset.get_topics(), |
|
dataset.get_qrels(), |
|
[RR@10, R@1000], |
|
['BM25', 'QLD', 'DPH', 'PL2'], |
|
round=4, |
|
) |
|
``` |
|
</details> |
|
|
|
| | name | RR@10 | R@1000 | |
|
|---:|:-------|--------:|---------:| |
|
| 0 | BM25 | 0.185 | 0.8677 | |
|
| 1 | QLD | 0.1683 | 0.8542 | |
|
| 2 | DPH | 0.1782 | 0.8605 | |
|
| 3 | PL2 | 0.1741 | 0.8607 | |
|
|
|
## Reproduction |
|
|
|
```python |
|
>>> import pyterrier_pisa |
|
>>> import pyterrier as pt |
|
>>> idx = pyterrier_pisa.PisaIndex('msmarco-passage.pisa') |
|
>>> idx.indexer().index(pt.get_dataset('irds:msmarco-passage').get_corpus_iter()) |
|
``` |
|
|
|
## Metadata |
|
|
|
``` |
|
{ |
|
"type": "sparse_index", |
|
"format": "pisa", |
|
"package_hint": "pyterrier-pisa", |
|
"stemmer": "porter2" |
|
} |
|
``` |
|
|