text
stringlengths 18
378
| output
stringlengths 23
408
| prompt
stringclasses 1
value |
---|---|---|
Cepat bangkrut saja ATM BCA , jelek sekali pelayanan nya ! | <facility-atm>ATM jelek sekali pelayanan nya</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
saya tarik tunai di atm bca uang nya sobek dan ada solatip | <facility-atm>tarik tunai atm uang nya sobek dan ada solatip</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mengambil uang di atm BCA itu jelek banget .menyesal ! | <facility-atm>mengambil uang atm jelek banget . menyesal</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ini e - Banking - nya BNI susah banget diakses , ATM sistem - nya bagus cepat , malah e - Banking yang jelek | <facility-aplikasi>e - Banking susah banget diakses e - Banking jelek</facility-aplikasi>
<facility-atm>ATM sistem - nya bagus cepat</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
bca kok duit nya dari atm ada yang lusuh jelek benar . | <facility-atm>duit nya dari atm ada yang lusuh jelek benar</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Atm BNI memang sistem nya jelek enggak seperti atm BCA jauh lebih sama | <facility-atm>Atm sistem nya jelek enggak seperti atm BCA</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mesin ATM BCA selalu mengeluarkan uang yang jelek | <facility-atm>ATM selalu mengeluarkan uang yang jelek</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
ATM BCA di mercure hotel , Ancol jelek banget deh #infojakarta | <facility-atm>ATM jelek banget</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA mengecewakan , uang yang dikeluarkan dari atm - nya ada uang yang jelek dan bercoretan | <general>mengecewakan</general>
<facility-atm>atm uang yang jelek dan bercoretan</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@infobsd saya baru setor tunai di ATM BCA ITC 20 lembar @100 ribu baru semua , tiba-tiba satu ditolak yang muncul uang 100 ribu kumal dan jelek | <facility-atm>setor tunai ATM satu ditolak yang muncul uang 100 ribu kumal dan jelek</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
kartu ATM BCA desain nya jelek | <product-kartu debit>kartu ATM desain jelek</product-kartu debit> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Mbak CS BCA - nya perhatian amat , tahu kartu ATM gue sudah jelek eh dibuatkan yang baru | <service-cs>CS perhatian amat</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Tarik tunai di Atm BCA , selalu dapat uang yang Jelek , kusut Bahkan . | <facility-atm>Tarik tunai Atm</facility-atm>
<facility-aplikasi>selalu dapat uang yang Jelek , kusut Bahkan</facility-aplikasi> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Bca curang .gue ambil ATM dikasih duit yang jelek .Gue mau balikin ditolak | <general>curang</general>
<facility-atm>ATM dikasih duit yang jelek . Gue mau balikin ditolak</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA memang banyak ATM - nya di mana-mana , tetapi pelayanan nya JELEK bahkan MENGECEWAKAN ! | <facility-atm>banyak ATM di mana-mana</facility-atm>
<service-general>pelayanan JELEK bahkan MENGECEWAKAN</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mengambil uang di ATM BCA , kok dapat 1 lembar uang jelek dan pakai tambalan salotip sih | <facility-atm>mengambil uang ATM dapat 1 lembar uang jelek dan pakai tambalan salotip</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
asli jijik gue lihat kartu atm BCA !Awan-awan enggak jelas begitu .Nyaris gue enggak mau buka rekening BCA karena desain kartu nya jelek :) | <product-kartu debit>jijik gue kartu atm Awan-awan enggak jelas begitu desain kartu jelek</product-kartu debit> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ambil duit di ATM BCA .Buset !Duit nya jelek banget .Memalukan . | <facility-atm>Ambil duit ATM Duit nya jelek banget . Memalukan</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Atm bca jelek nih .Masa orang mau ambil uang enggak sesuai sih .Oi pelayan nya ! | <facility-atm>Atm jelek</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kartu ATM bca itu kualitas jelek ya .Plastik nya cepat banget lepas | <product-kartu debit>Kartu ATM kualitas jelek ya . Plastik nya cepat banget lepas</product-kartu debit> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kartu ATM bca plastik nya cepat banget lepas , jadi kadang-kadang sering gagal transaksi debit , beda dengan kartu bank lain | <product-kartu debit>Kartu ATM plastik nya cepat banget lepas , jadi kadang-kadang sering gagal transaksi debit</product-kartu debit> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
kata nyokap gue bca jelek , yang punya orang cina sedangkan kita orang islam .haha | <general>jelek</general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
jelek nih masa mengambil duit dari BCA pakai ATM CIMB NIAGA pajak nya 25 ribu | <facility-atm>jelek mengambil duit ATM pajak nya 25 ribu</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ini atm bca kenapa lagi sih , enggak bisa transaksi .Makin lama makin jelek saja ini bank | <facility-atm>atm enggak bisa transaksi</facility-atm>
<general>Makin lama makin jelek saja ini bank</general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
jelek banget ini atm bca enggak bisa transfer langsung ke bni . | <facility-atm>jelek banget atm enggak bisa transfer langsung ke bni</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Untuk ke sekian kalinya gue mengurus kartu ATM BCA gue yang patah , kartu atm nya yang jelek | <product-kartu debit>kartu ATM jelek</product-kartu debit> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Asem nih BCA !Siapa sih yang kerja di bca .Jelek nih pelayanan nya ! | <general>Asem</general>
<service-general>Jelek pelayanan</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA pelayan nya jelek ah | <service-karyawan>pelayan jelek</service-karyawan> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Dari semua ATM yang gue punya , perasaan yang paling Jelek adalah ATM BCA . | <product-kartu debit>paling Jelek ATM</product-kartu debit> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
atm setor tunai bca sombong banget !uang jelek enggak di terima | <facility-atm>atm setor tunai sombong banget ! uang jelek enggak di terima</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Pembayaran Bpjs lewat atm bca kok gagal terus | <facility-atm>Pembayaran atm gagal terus</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Bahkan sekelas BCA pun saat migrasi ke debit dengan cip banyak yang mengeluh gagal menarik dana via ATM | <facility-atm>gagal menarik dana ATM</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
registrasi bca mobile di aplikasi gagal terus ya . | <facility-BCA Mobile>registrasi bca mobile gagal terus</facility-BCA Mobile> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kesal sekali m - BCA saya keluar sendiri Selalu gagal | <facility-m-bca>Kesal sekali m - BCA keluar sendiri Selalu gagal</facility-m-bca> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ambil uang di ATM BCA pas haji gagal tetapi saldo terpotong | <facility-atm>Ambil uang ATM gagal tetapi saldo terpotong</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
atm bca banyak yang eror ah | <facility-atm>atm banyak yang eror</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA kena sibuk .atm dan pembayaran daring gagal terus . | <facility-e-channel>atm dan pembayaran daring gagal terus</facility-e-channel> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
EDC BCA memang bermasalah .kemaren gue juga ke debit 2 kali .langsung buru-buru gue cek saldo | <facility-EDC>EDC bermasalah ke debit 2 kali</facility-EDC> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Mesin edc bca sering rusak .mesin penjual otomatis enggak efektif .Antrean masih panjang , harus tukar-tukar uang dulu | <facility-EDC>Mesin edc sering rusak</facility-EDC> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kadang-kadang EDC BCA - nya rusak ( atau dibuat pura-pura ) rusak .Hahaha | <facility-EDC>EDC rusak ( atau dibuat pura-pura ) rusak</facility-EDC> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
edc bca rusak wkwkwk | <facility-EDC>edc rusak</facility-EDC> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mesin setoran di Kantor BNI kota Pasuruan sering banget macet ( bermasalah ) | <facility-atm>mesin setoran sering banget macet ( bermasalah )</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Hari ini ke 3 ATM BNI Semuanya bermasalah . | <facility-atm>ATM Semuanya bermasalah</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Yg paling sering rusak ATM BRI .Payah ! | <facility-atm>paling sering rusak ATM Payah</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
ATM setoran tunai BNI kenapa pada rusak . | <facility-atm>ATM setoran tunai pada rusak</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
bagaimana sih Bank segede @kontakBRI kartu ATM habis ( Di Bank BRI Demak ) Pelayanan buruk untuk konsumen :( | <product-kartu debit>kartu ATM habis</product-kartu debit>
<service-general>Pelayanan buruk untuk konsumen</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Lagi-lagi BRI luring dari mulai atm - nya dan semuanya !enggak bisa menarik di semua atm Bank paling buruk dari segi kualitas dan pelayanan nya | <facility-atm>luring atm</facility-atm>
<product-kartu debit>enggak bisa menarik di semua atm</product-kartu debit>
<general>Bank paling buruk dari segi kualitas dan pelayanan nya</general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Pelayanan bank BRI makin ke sini makin buruk yah kelihatannya | <service-general>Pelayanan makin ke sini makin buruk</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@ojkindonesia Mohon di Audit BRI , banyak pungutan , Transfer sesama via ATM bayar .berdalih peningkatan kualitas tetapi tetap buruk | <general>banyak pungutan berdalih peningkatan kualitas tetapi tetap buruk</general>
<facility-atm>Transfer sesama ATM bayar</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Untuk pertama kalinya memakai atm BRI , kinerja nya sangat buruk .di mana-mana luring melulu , jaringan eror lah | <facility-atm>atm kinerja nya sangat buruk . di mana-mana luring melulu , jaringan eror</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Layanan ATM Bank BRI di Kota Bandung Sangat Buruk | <facility-atm>ATM Sangat Buruk</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@BRISyariah untuk wilayah depok ATM BRI syariah sekarang luring , kapan akan diperbaiki , pelayanan benar-benar buruk | <facility-atm>ATM sekarang luring pelayanan benar-benar buruk</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Saya juga suka sama pelayanan BCA .Saat menunggu antrean di cs , diberi minum & biskuit , | <service-general>suka pelayanan</service-general>
<service-cs>antrean cs diberi minum & biskuit</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Sedih deh .telepon ke BCA dengan customer care bernama ARI menjelaskan cepat dan dengan nada tinggi . | <service-haloBCA>Sedih customer care menjelaskan cepat dan dengan nada tinggi</service-haloBCA> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Aku baru sebulan jadi nasabah bca Pelayanan buka rekening di cabang tambun Penuh , tetapi sangat cepat pelayanan nya . | <service-cs>buka rekening sangat cepat pelayanan nya</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
begitu datang kita sudah disapa ramah oleh satpam dan CS .Ditanya keperluan nya apa .Saya malah sampai diantarkan ke meja CS - nya .Pelayanan ramah dan cepat .Bravo BCA ! | <service-satpam>begitu datang kita sudah disapa ramah satpam Saya malah sampai diantarkan ke meja CS - nya</service-satpam>
<service-cs>begitu datang kita sudah disapa ramah CS Pelayanan ramah dan cepat</service-cs>
<general>Bravo</general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@HaloBCA internet banking BCA menyebalkan ! | <facility-klikbca>internet banking menyebalkan</facility-klikbca> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@HaloBCA ini kok saya mau daftar m - bca sudah 15 kali gagal terus karena koneksi internet terputus padahal internet nya cepat . | <facility-m-bca>daftar m - bca sudah 15 kali gagal terus</facility-m-bca> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA menyadari bahwa inovasi berbasis teknologi mampu menjawab kebutuhan masyarakat melaui layanan keuangan yang mudah , cepat dan murah . | <general>menyadari bahwa inovasi berbasis teknologi mampu menjawab kebutuhan masyarakat melaui layanan keuangan yang mudah , cepat dan murah</general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
menurut saya dari beberapa kali menggunakan produk perbankan BCA merupakan yang terbaik , | <product-general>produk yang terbaik</product-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Bca bisa punya teller sampe 6 sekali buka .Meski antre panjang sambil berdiri ku tak ragu , sigap cepat . | <service-teller>teller sampe 6 sekali buka antre panjang sambil berdiri</service-teller>
<service-cs>sigap cepat</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
pelayanan si Mbak Teller BCA bagus , ramah , dan cepat kok . | <service-teller>Teller bagus , ramah , dan cepat</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ini teller BCA - nya enggak bisa pada cepat begitu transaksi nya . | <service-teller>teller enggak bisa pada cepat begitu transaksi nya</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Saya harap BRI berbenahlah , mencontoh bank swasta , BCA Saya perhatikan kalau antrean panjang , Teller dibuka semua Pak , dan pegawai nya gesit & cepat , Terima kasih | <general>berbenahlah</general>
<service-teller>antrean panjang Teller dibuka semua gesit & cepat</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
di bca enggak begitu , sudah antre di cs ke teller enggak perlu antre lagi .jadi cepat . | <service-general>antre cs ke teller enggak perlu antre lagi . jadi cepat</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Semua anggota keluarga ku sudah punya rekening BCA .Pelayanan teller cepat dibanding bank lain dan ATM - nya ada di mana-mana @HaloBCA | <service-teller>teller cepat dibanding bank lain</service-teller>
<facility-atm>ATM ada di mana-mana</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@HaloBCA mau info , minta tolong pelayanan teller di BCA Green Garden bisa lebih cepat .Terima kasih . | <general>kerenlah</general>
<service-general>Pelayanan cepat bikin tempramen buruk . Lama</service-general>
<service-teller>Teller ramah</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Nomor antrean BCA terlalu cepat 1 angka , salah teller .Dan enggak asik buat mengobrol .- _ - | <service-teller>Nomor antrean terlalu cepat 1 angka teller enggak asik buat mengobrol</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
menantu ideal adalah CSO dan Teller BCA .murah senyum , ramah , teliti dan cepat dalam bekerja | <service-cs>menantu ideal CSO murah senyum , ramah , teliti dan cepat dalam bekerja</service-cs>
<service-teller>menantu ideal Teller murah senyum , ramah , teliti dan cepat dalam bekerja</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kok teller Mandiri lama betul .kalo BCA cepat ! | <service-teller>teller lama betul cepat</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
enggak bisa disalahkan lama nya antrean di BCA karena teller BCA pun kerja dengan cepat & maksimal , hanya saja nasabah nya yang terlampau banyak | <service-teller>lama antrean teller kerja dengan cepat & maksimal</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Jalur antre nya sih jalur cepat , tetapi teller nya pelayanan nya lebih lambat dari jalur biasa #BCA | <service-teller>antre jalur cepat teller pelayanan nya lebih lambat dari jalur biasa</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Alangkah elok seandainya para teller di BCA ini tidak diperkenankan makan siang , dipasangkan infus saja , supaya pelayanan nya cepat .Terima kasih | <service-teller>antrean cepat kilat langsung ke depan teller</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Petugas layanan teller BCA cepat sangat . | <service-teller>teller cepat sangat</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA memang hebat !Antre panjang dengan pelayanan yang cepat para Teller ! | <general>hebat</general>
<service-teller>Antre panjang pelayanan yang cepat Teller</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
CIMB Niaga dibandingkan BCA , jauh lebih bagus dan cepat pelayanan nya BCA . | <service-general>jauh lebih bagus dan cepat pelayanan nya BCA</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Teller Niaga pada mengobrol santai saja begitu , padahal antrean panjang .hehe | <service-teller>Teller mengobrol santai saja begitu antrean panjang</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Aneh , teller di Bank Niaga jauh lebih sedikit tetapi antre nya jauh lebih cepat daripada BCA | <service-teller>teller jauh lebih sedikit antre jauh lebih cepat daripada</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@HaloBCA Waktu mencetak buku tabungan di CS , Pelayanan nya cekatan , ramah & selalu menanyakan ada yang bisa saya bantu lagi ? | <service-cs>mencetak buku tabungan CS Pelayanan nya cekatan , ramah & selalu menanyakan ada yang bisa saya bantu lagi</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
meskipun banyak yang menggunakan bank bca , sebenarnya ada beberapa kekurangan nya .macam cs - nya kurang cekatan , kalau buat tabungan baru harus setor tunai | <service-cs>cs kurang cekatan buat tabungan baru harus setor tunai</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@helorara @BANKBRI_ID lelet sekali pelayanan CS & teller nya , beda sama bank bca , mandiri , pada gesit , cekatan kerja nya ! | <service-cs>lelet sekali CS gesit , cekatan kerja nya</service-cs>
<service-teller>lelet sekali teller gesit , cekatan kerja nya</service-teller> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Pantes semua orang tetap pakai bca .Karena CS - nya pengalaman , banyak , dan cekatan . | <service-cs>CS pengalaman , banyak , dan cekatan</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Eh BCA dekat kantor ini CS - nya cekatan !Mandiri kalah .soal nya koneksi internet nya kacau ..Hari gini ? | <service-cs>CS cekatan kalah . soal nya koneksi internet nya kacau</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
sampai saat ini , cs paling handal adalah bca plaza PI deh .asli cekatan pol . | <service-cs>cs paling handal cekatan pol</service-cs> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
bri kantor cabang manukan ruangan nya luas sekali , tetapi antrean nya dan kursi nya bagusan mengikuti bca | <facility-kantor>ruangan luas sekali kursi bagusan mengikuti</facility-kantor>
<service-general>antrean bagusan mengikuti</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@e100ss saya sebagai salah satu nasabah BCA sangat salut dengan pelayanan BCA kantor cabang utama sidoarjo .Pelayanan nya cepat enggak bertele-tele | <service-general>Pelayanan cepat enggak bertele-tele</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mencari surat referensi bank dari bca itu bikin malas butuh 3 hari karena harus ke kantor cabang tempat buka rekening . | <service-general>surat referensi bank bikin malas butuh 3 hari</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA repot !mengurus token yang terblokir di kantor kas dekat rumah , disuruh ke cabang . | <facility-keybca>repot token terblokir</facility-keybca> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
3 ATM BCA di dalam kantor cabang enggak bisa tarik tunai .Gila ! | <facility-atm>ATM enggak bisa tarik tunai Gila</facility-atm> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kagum dengan pelayanan & keramahan dari SEMUA yang bertugas di kantor cabang @BankBCA di KCU Menara BCA .Baru di sini ketemu dengan cara yang keren | <service-general>Kagum pelayanan keramahan dari SEMUA yang bertugas keren</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Pelayanan di kantor cabang BCA margonda depok juara responsif dan cepat banget !Keren ! | <service-general>Pelayanan juara responsif dan cepat banget ! Keren</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Lagi di kantor cabang BCA , boulevard .Keren juga ya kantor nya . | <facility-kantor>Keren kantor</facility-kantor> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Telemarketing BCA rajin banget ya menawarkan CC . | <service-telemarketing>Telemarketing rajin banget menawarkan CC</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
ini telemarketing - nya sunlife bca lagi amnesia apa bagaimana , belum setengah jam menelepon , ditolak kasar , eh menelepon lagi . | <service-telemarketing>telemarketing amnesia apa bagaimana , belum setengah jam menelepon , ditolak kasar , eh menelepon lagi</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@HaloBCA Halo .Ini marketing bca - cigna kayak teror saya telepon sampai 10x lebih sehari . | <service-telemarketing>marketing kayak teror saya telepon sampai 10x lebih sehari</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ini BCA enggak bisa jaga data customer ya .suka benar membagikan data buat telemarketing asuransi .super menyebalkan | <general>enggak bisa jaga data customer ya . suka benar membagikan data buat telemarketing asuransi . super menyebalkan</general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Sebenarnya enggak tega menghentikan pembicaraan tadi dari telemarketing bca .Tetapi penjelasan bertele-tele via telepon itu , jadi enggak tertarik mendengarkan nya | <service-telemarketing>telemarketing penjelasan bertele-tele via telepon itu , jadi enggak tertarik mendengarkan nya</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Mantap nih BCA .Dengan sms saja , nanti telemarketing akan langsung hubungi cardholder | <service-telemarketing>Mantap telemarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@HaloBCA menyebalkan , kemaren saya ditelepon telemarketing BCA , disuruh ikut asuransi yang bekerja sama dengan CC BCA | <service-telemarketing>menyebalkan telemarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@HaloBCA sampaikan kepada seluruh telemarketing mohon untuk lebih sopan lagi dalam penyampaian nya ! | <service-telemarketing>telemarketing mohon untuk lebih sopan lagi dalam penyampaian nya</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|