text
stringlengths 18
378
| output
stringlengths 23
408
| prompt
stringclasses 1
value |
---|---|---|
ayo KPR BCA lagi murah | <product-KPR>KPR lagi murah</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Bunga KPR dari BCA yang paling kecil dibanding yang lain | <product-KPR>Bunga KPR paling kecil dibanding yang lain</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
persyaratan KPR kayak nya hampir sama saja ya semua bank .BCA paling ribet kata nya . | <product-KPR>persyaratan KPR paling ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Saya membutuhkan konfirmasi tertulis untuk outstanding , detail jaminan kpr namun susah nya konfirmasi bca @HaloBCA | <product-KPR>kpr susah konfirmasi</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
punya uang muka sendiri saja susah mau kpr di bca .bagaimana kalau ditalangi pemda ?berkas kpr yang ada cuma jadi bungkus gorengan | <product-KPR>susah kpr</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mau menghubungi BCA KPR cabang Surabaya tetapi kok susah ya | <product-KPR>menghubungi KPR susah</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
padahal masyarakat indonesia banyak yang jadi nasabah BCA tetapi Bca sangat pelit bantu masyarakat kredit KPR - nya saja susah | <general>masyarakat indonesia banyak yang jadi nasabah</general>
<product-KPR>sangat pelit bantu masyarakat kredit KPR susah</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Saya nasabah KPR BNI Fatmawati Jaksel , akan melunasi sebelum waktu nya minta info outstanding saja susah , bagaimana nih @BNICustomerCare @BNI @ojkindonesia . | <product-KPR>KPR info outstanding susah</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@BNI 2 minggu sudah lunas kpr tetapi tidak ada konfirmasi pengambilanan jaminan , ditelepon susah , dari pagi email pun enggak ada respons .PAYAH ! | <product-KPR>sudah lunas kpr tetapi tidak ada konfirmasi pengambilanan jaminan , ditelepon susah , dari pagi email pun enggak ada respons . PAYAH</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@BNI46 saya nasabah BNI Griya , marketing KPR minta saya langsung telepon bagian loan center tetapi LC - nya susah banget dihubungi !mengecewakan | <service-telemarketing>marketing KPR susah banget dihubungi ! mengecewakan</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
gue ambil KPR di @BNISyariah , Bunga nya datar sampai lunas .enggak ada keluhan . | <product-KPR>KPR Bunga datar sampai lunas . enggak ada keluhan</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
KPR di BNI pengurusan berkas nya enggak ribet . | <product-KPR>KPR pengurusan berkas enggak ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@BNI sudah seminggu menunggu tetapi enggak ada progres , zaman sudah canggih cuma cek info kpr saja ribet banget , Harus info ke pusat ! | <product-KPR>sudah seminggu menunggu tetapi enggak ada progres cek info kpr ribet banget</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@ofie_wahyudi @ervinay @Tasricha ya wajarlah BNI kalau ribet , KPR dia berstandar tinggi | <product-KPR>ribet KPR berstandar tinggi</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Proses KPR BNI sudah mulai ribet nih .- _ - | <product-KPR>Proses KPR mulai ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Bank BNI nih ribet amat ya urusan KPR - nya , kayak nya kemarin mengambil KPR di bank lain enggak sesusah ini deh sudah menabung bunga nya kecil juga > __ < | <product-KPR>ribet amat KPR</product-KPR>
<product-simpanan>menabung bunga kecil</product-simpanan> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
KPR melalui @BNISyariah dijamin Murah , cepat , enggak Ribet , terima kasih BNI Syariah | <product-KPR>KPR Murah , cepat , enggak Ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@DollySW Menyenangkan nih kayak nya KPR BNI , syarat nya sebener nya enggak ribet .Cuma plafon gue kurang dikit nih . | <product-KPR>Menyenangkan KPR syarat enggak ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
KPR BNI memang rada ribet .Cari bank lain saja | <product-KPR>KPR rada ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
ampun deh kak telepon divisi KPR BNI mau pelunasan .Sulit banget Sibuk terus . | <product-KPR>KPR pelunasan Sulit banget Sibuk terus</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Bukan hanya KPR syariah .KPR di bank pemerintah juga semua mahal .tidak percaya silakan cek ke BTN , BNI , MANDIRI , dan lain-lain | <product-KPR>KPR mahal</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BNI sudah mahal sekarang , sisa satu setengah tahun , ingin pindah KPR . | <product-KPR>sudah mahal KPR</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@BNICustomerCare @BNI pelayanan KPR BNI memang terkenal paling lamban di antara semua perbankan ! | <product-KPR>pelayanan KPR terkenal paling lamban di antara semua perbankan</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Saya pengajuan KPR di BNI Gowa Makassar .Bank BUMN paling PAYAH ! | <product-KPR>pengajuan KPR paling PAYAH</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@BNICustomerCare @BNI @kompascom pengajuan KPR di BNI benar-benar mengecewakan Nasabah Debitur . | <product-KPR>pengajuan KPR benar-benar mengecewakan Nasabah Debitur</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mengajuan KPR BNI proses sampai berbulan-bulan .Bank BUMN tetapi pelayanan untuk nasabah benar-benar PAYAH | <product-KPR>mengajuan KPR proses sampai berbulan-bulan pelayanan untuk nasabah benar-benar PAYAH</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
bni payah ini .masa gangguan lama banget .bagaimana mau menabung zzz | <general>payah</general>
<facility-e-channel>gangguan lama banget menabung</facility-e-channel> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
@kontakBRI Kenapa ya Mau Top Up saja kok susah banget , pada hal sudah jadi costumer - nya BRI hampir 5 tahun dalam KPR BRI . | <facility-e-channel>Top Up susah banget</facility-e-channel>
<product-KPR>sudah jadi costumer - nya BRI hampir 5 tahun KPR</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
mana cicilan KPR naik lagi aduh bagaimana enggak susah .Tiap bulan mencicil BRI terus ! | <product-KPR>cicilan KPR naik lagi</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Susah amat menghubungi bri untuk selidiki kpr . | <service-customer center>Susah amat menghubungi selidiki kpr</service-customer center> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Susah banget ya menghubungi bank BRI .ada yang bisa infokan langsung nomor nya bagian KPR BRI | <service-customer center>Susah banget menghubungi</service-customer center> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kalau mau KPR sebaiknya jangan di Bank BRI , terlalu ribet birokrasi nya , proses nya juga lama | <product-KPR>KPR terlalu ribet birokrasi proses lama</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Dan hanya bank mandiri dan bri yang bisa terima berkas kpr untuk polisi , pengacara , jaksa .itu pun proses nya ribet saudara | <product-KPR>bisa terima berkas kpr untuk polisi , pengacara , jaksa proses ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Urusan jadi ribet soal KPR .BRI mau nya apa sih ?kata nya bank rakyat indonesia .tetapi untuk rakyat kecil dipersulit . | <product-KPR>ribet KPR untuk rakyat kecil dipersulit</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ribet banget KPR di BRI argh ! | <product-KPR>Ribet banget KPR</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
KPR BRI mahal .Murah Di BTN itu . | <product-KPR>KPR mahal Murah</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
sibuk mengurus KPR BRI admin Biaya kontrak nya mahal | <product-KPR>KPR admin Biaya kontrak mahal</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
kalau di BRISyariah KPR - nya pakai yang nomor 1 .Murah dan tetap :) | <product-KPR>KPR Murah dan tetap</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
KPR BTN masih favorit konsumen . | <product-KPR>KPR masih favorit konsumen</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
KPR Mandiri mah paling ribet .Kayak enggak perlu debitur saja . | <product-KPR>KPR paling ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
pakai KPR mandiri saja cepat , bunga ringan dan enggak ribet | <product-KPR>KPR cepat bunga ringan enggak ribet</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ribet mengurus KPR :( ( @Bank mandiri micro ) | <product-KPR>Ribet KPR</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Soal KPR enggak sesimpel yang dijelaskan pas seminar .Apa memang tiap bank beda sistem ya ?Kalau bank mandiri ribet banget | <product-KPR>KPR ribet banget</product-KPR> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Iklan Mandiri KPR bagus , agak kaget perlakuan iklan bank bisa begitu eksekusi nya .*Mandiri mantan klien *perasaan dulu ribet parah dan kaku | <general-iklan>Iklan KPR bagus</general-iklan>
<general>dulu ribet parah dan kaku</general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Resek banget telemarketing BCA akhir-akhir ini | <service-telemarketing>Resek banget telemarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Sudah bilang enggak tetapi telemarketing BCA tidak paham | <service-telemarketing>telemarketing tidak paham</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Telepon dari telemarketing BCA sumpah ganggu banget | <service-telemarketing>Telepon telemarketing ganggu banget</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Telemarketing BCA tangguh juga ya, sudah ditolak masih saja menawarkan, kan aku jadi tergoda deh | <service-telemarketing>Telemarketing tangguh</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Telemarketing BCA perangainya buruk kepada nasabah | <service-telemarketing>Telemarketing perangainya buruk</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
setiap sore ditelepon terus oleh telemarketing BCA yang tidak tahu waktu | <service-telemarketing>ditelepon telemarketing tidak tahu waktu</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
telemarketing BNi ribet telepon mulu padahal saya sudah tolak | <service-telemarketing>telemarketing ribet telepon mulu</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
penawaran telmarketing Mandiri sangat mengganggu privasi saya | <service-telemarketing>penawaran telmarketing sangat mengganggu privasi</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Enggak bisa dibilangin banget telemarketing Permata, dibilang enggak tertarik masih saja memaksa | <service-telemarketing>Enggak bisa dibilangin banget telemarketing masih saja memaksa</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Telemarketing @CIMBNiaga ini emang enggak tahu waktu, ganggu banget. | <service-telemarketing>Telemarketing enggak tahu waktu , ganggu banget</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ini telemarketing bank mandiri sudah keterlaluan ganggu ketenangan saya | <service-telemarketing>telemarketing keterlaluan ganggu ketenangan</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
saya senang banget sama keramahan telemarketing BNI | <service-telemarketing>senang banget sama keramahan telemarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
sudah 6 kali ditelepon hari ini sama telemarketing cim niaga parah | <service-telemarketing>ditelepon telemarketing parah</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Salut sama telemarketing bank BCA yang sopan banget saat menawarkan produk | <service-telemarketing>Salut telemarketing sopan banget saat menawarkan produk</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ini telemarketing @citibank enggak tahu sopan santun | <service-telemarketing>telemarketing enggak tahu sopan santun</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
telemarketing BNI suka maksa dan ganggu kalau telepon nasabah | <service-telemarketing>telemarketing suka maksa dan ganggu telepon</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Mantap juga penjelasan produk oleh marketing hsbc | <service-telemarketing>Mantap penjelasan produk marketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ganggu orang bekerja saja nih telemarketing bank permata | <service-telemarketing>Ganggu orang bekerja telemarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Payah banget telemarketing bank permata kalau menawarkan produk | <service-telemarketing>Payah banget telemarketing menawarkan produk</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Bank permata telemarketingnya terbata-bata saat telepon. Kurang kompeten | <service-telemarketing>telemarketingnya terbata-bata telepon Kurang kompeten</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Telemarketing BCA kelihatan banget tidak menguasai produknya sendiri | <service-telemarketing>Telemarketing tidak menguasai produknya sendiri</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Jam segini telemarketing bank niaga sudah bikin ribet tawarkan macam-macam program | <service-telemarketing>telemarketing ribet tawarkan macam-macam program</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
pagi buta telemarketing bank Danamon sudah menyusahkan saya | <service-telemarketing>telemarketing menyusahkan</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
telepon dari telemarketing mandiri sudah kayak teror | <service-telemarketing>telepon telemarketing kayak teror</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
pagi saya jadi ribet karena telemarketing bank niaga yang susah banget dikasih tahu | <service-telemarketing>ribet telemarketing susah banget dikasih tahu</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
repot banget tiap hari di telepon telemarketing bank permata bikin ribet | <service-telemarketing>repot banget telepon telemarketing ribet</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BCA punya telemarketing yang sangat sopan dan ramah | <service-telemarketing>telemarketing sangat sopan dan ramah</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
hebat bank mandiri, telemarketingnya sangat tahu sopan santun | <service-telemarketing>telemarketingnya sangat tahu sopan santun</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
enggak paham lagi sama telemarketing BCA yang tidak tahu tata krama | <service-telemarketing>telemarketing tidak tahu tata krama</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
telemarketing bank permata sumpah resek banget tawarkan cc terus | <service-telemarketing>telemarketing resek banget tawarkan cc</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Lama-lama telemarketing bank mandiri jadi super resek ya | <service-telemarketing>telemarketing super resek</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
tidak tahu etika banget telemarketing mandiri dan bri kalau telepon nasabah | <service-telemarketing>tidak tahu etika banget telemarketing telepon</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
bangga, telemarketing BCA sangat profesional | <service-telemarketing>bangga telemarketing sangat profesional</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Sopannya telemarketing BCA bikin saya mau jadi nasabahnya | <service-telemarketing>Sopannya telemarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
keren banget sumpah telamarketing Mandiri | <service-telemarketing>keren banget telamarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
nada suara mbak-mbak telemarketing Mandiri sangat enak | <service-telemarketing>nada suara telemarketing sangat enak</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ini telemarketing BCA halus banget kalau telepon saya | <service-telemarketing>telemarketing halus banget telepon</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
BNI harus tahu kalau telemarketingnya tidak memiliki sopan santun terhadap nasabah | <service-telemarketing>telemarketingnya tidak memiliki sopan santun</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Agak kurang sopan ya telemarketing @CIMBIndonesia akhir-akhir ini. | <service-telemarketing>Agak kurang sopan telemarketing</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
bodoh banget telemarketing danamon yang lupa sama kualifikasi produknya sendiri | <service-telemarketing>bodoh banget telemarketing lupa sama kualifikasi produknya</service-telemarketing> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kantor Cabang BCA di Surabaya tidak memiliki atm tunai | <service-kantor cabang>Kantor Cabang di Surabaya tidak memiliki atm tunai</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
kantor cabang BCA jatinangor enak juga nih, sambil nunggu dikasih makanan hahaha | <service-kantor cabang>kantor cabang jatinangor enak juga nih , sambil nunggu dikasih makanan</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Antre lama di kantor cabang bca sudah sampai 1 jam lebih | <service-kantor cabang>Antre lama kantor cabang</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Pelayanan kantor cabang BCA tebet buruk sekali | <service-kantor cabang>Pelayanan kantor cabang tebet buruk sekali</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Penanganan masalah mutasi di kantor cabang kemayoran terlalu lama | <service-kantor cabang>Penanganan masalah mutasi kantor cabang kemayoran terlalu lama</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Ribet banget kantor cabang bca jagakarsa kalau mau komplain | <service-kantor cabang>Ribet banget kantor cabang jagakarsa komplain</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
payah banget kantor cabang BNI depok, pegawainya telat datang melulu | <service-kantor cabang>payah banget kantor cabang depok</service-kantor cabang>
<service-general>pegawainya telat datang melulu</service-general> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kantor cabang BRI kebayoran fasilitas kursinya sangat dikit, banyak nasabah yang akhirnya menunggu lama sambil berdiri. | <service-kantor cabang>Kantor cabang kebayoran</service-kantor cabang>
<facility-kantor>kursinya sangat dikit</facility-kantor> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kantor cabang BRI ambon fasilitasnya tidak layak | <service-kantor cabang>Kantor cabang ambon</service-kantor cabang>
<facility-kantor>fasilitasnya tidak layak</facility-kantor> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
di kantor cabang mandiri di sawangan panas banget gila ruangannya | <service-kantor cabang>kantor cabang di sawangan</service-kantor cabang>
<facility-kantor>panas banget gila ruangannya</facility-kantor> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kantor cabang BCA citayam payah tidak kunjung memperbaiki mesin antrean | <service-kantor cabang>Kantor cabang citayam tidak kunjung memperbaiki mesin antrean</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kursi tunggu nasabah di kantor cabang BRI di Bogor tidak layak | <facility-kantor>Kursi tidak layak</facility-kantor>
<service-kantor cabang>kantor cabang di Bogor</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
nyaman banget masuk ke kantor cabang bca cibinong yang pelayanannya sopan | <service-kantor cabang>nyaman banget kantor cabang cibinong pelayanannya sopan</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Kantor cabang mandiri matraman fasilitasnya lengkap | <service-kantor cabang>Kantor cabang matraman</service-kantor cabang>
<facility-kantor>fasilitasnya lengkap</facility-kantor> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
Pendingin ruangan Kantor cabang BNI bogor rusak dan tidak diperbaiki | <facility-kantor>Pendingin ruangan rusak dan tidak diperbaiki</facility-kantor>
<service-kantor cabang>Kantor cabang bogor</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|
enak banget mau urus apa pun di kantor cabang BNI, tidak berbelit | <service-kantor cabang>enak banget kantor cabang tidak berbelit</service-kantor cabang> | Task: Extract aspects and corresponding text from the input sentence. Use the provided list of aspects to categorize the extracted text.
Input format: A sentence or short paragraph in Indonesian.
Output format: XML-style tags containing the aspect and corresponding text.
Aspect list:
facility-BCA Mobile
facility-EDC
facility-NFC
facility-aplikasi
facility-atm
facility-deposit box
facility-e-channel
facility-general
facility-kantor
facility-keybca
facility-klikbca
facility-klikpay
facility-m-bca
facility-mesin cs digital
facility-payroll
facility-phone banking
general
general-iklan
general-promo
product-KKB
product-KMK
product-KPR
product-KUR
product-asuransi
product-deposito
product-e-money
product-flazz
product-general
product-giro
product-kartu debit
product-kartu kredit
product-kartu-kredit
product-pinjaman
product-sakuku
product-simpanan
service-cs
service-customer center
service-general
service-haloBCA
service-kantor cabang
service-karyawan
service-prioritas
service-satpam
service-telemarketing
service-teller
service-tukang parkir
Rules for extraction:
1. Identify the most relevant aspect(s) from the list for the given input.
2. Extract the minimal span of text that accurately represents the aspect.
3. If multiple aspects are present, extract each one separately.
4. If no relevant aspect is found, output "NONE"
Examples:
Input: BNI enggak menyediakan jalur teller khusus kliring giro / cek. Padahal kliring giro / cek ada batas waktu nya. Payah!
Output: <service-teller>enggak menyediakan jalur teller khusus kliring giro / cek</service-teller> <general>Payah</general>
Input: Teller Mandiri yang baru ini ribet sekali.
Output: <service-teller>Teller ribet sekali</service-teller>
Input: mau verifikasi kartu kredit saja susah ya, danamon danamon. sudah bagus dipakai lo ini dipersulit. mau nya apa T.T
Output: <product-kartu kredit>verifikasi kartu kredit susah</product-kartu kredit>
Input: Saya sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari.
Output: <facility-BCA Mobile>sangat puas dengan layanan BCA Mobile, sangat memudahkan transaksi sehari-hari</facility-BCA Mobile>
Input: Bank ini tidak memiliki fasilitas apa-apa yang berguna.
Output: <general>tidak memiliki fasilitas apa-apa yang berguna</general>
Input: Siang ini , baik mobile BCA enggak bisa digunakan @HaloBCA internet banking juga lelet .
Output: <facility-BCA Mobile>mobile BCA enggak bisa digunakan</facility-BCA Mobile> <facility-klikbca>internet banking lelet</facility-klikbca>
Input: Iya sih , aplikasi mobile - nya Mandiri lebih bagus dari BCA .
Output: <facility-aplikasi>aplikasi mobile lebih bagus dari</facility-aplikasi> <facility-BCA Mobile>lebih bagus</facility-BCA Mobile>
Input: Cuaca hari ini cerah sekali.
Output: NONE
Handling ambiguity:
- If a sentence could belong to multiple aspects, write all of them
Now, given the input text below, extract the relevant aspects and text:
Input: [text]
Output:
|