id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
5079951
# -*- coding: UTF-8 -*- import logging from typing import Callable, Union from homeassistant.components.light import ( LightEntity, SUPPORT_EFFECT, ATTR_EFFECT, ) from homeassistant.config_entries import ConfigEntry from homeassistant.const import STATE_ON, CONF_HOST, CONF_PORT from homeassistant.helpers.restore_state import RestoreEntity from homeassistant.helpers.typing import ConfigType, HomeAssistantType from .pydigitalstrom.client import DSClient from .pydigitalstrom import constants as dsconst from .pydigitalstrom.devices.scene import DSScene, DSColorScene from .pydigitalstrom.websocket import DSWebsocketEventListener from .const import DOMAIN from .util import slugify_entry _LOGGER = logging.getLogger(__name__) async def async_setup_platform( hass: HomeAssistantType, config: ConfigType, async_add_devices: Callable, discovery_info: dict = None, ): """Platform uses config entry setup.""" pass async def async_setup_entry( hass: HomeAssistantType, entry: ConfigEntry, async_add_entities: Callable ) -> None: entry_slug: str = slugify_entry( host=entry.data[CONF_HOST], port=entry.data[CONF_PORT] ) client: DSClient = hass.data[DOMAIN][entry_slug]["client"] listener: DSWebsocketEventListener = hass.data[DOMAIN][entry_slug]["listener"] devices: dict = [] scenes: dict = client.get_scenes() scene: Union[DSScene, DSColorScene] for scene in scenes.values(): # only handle light (color 1) scenes if not isinstance(scene, DSColorScene) or scene.color != dsconst.GROUP_LIGHTS: continue # not an area or broadcast turn off scene if scene.scene_id not in ( dsconst.SCENES["PRESET"]["SCENE_PRESET0"], dsconst.SCENES["AREA"]["SCENE_AREA1_OFF"], dsconst.SCENES["AREA"]["SCENE_AREA2_OFF"], dsconst.SCENES["AREA"]["SCENE_AREA3_OFF"], dsconst.SCENES["AREA"]["SCENE_AREA4_OFF"], ): continue # get turn on counterpart scene_on: Union[DSScene, DSColorScene] = scenes.get( f"{scene.zone_id}_{scene.color}_{scene.scene_id + 5}", None, ) effects = dict() # get Preset X2-x4 if scene.scene_id == dsconst.SCENES["PRESET"]["SCENE_PRESET0"]: effects["preset2"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET2']}", None,) effects["preset3"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET3']}", None,) effects["preset4"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET4']}", None,) if scene.scene_id == dsconst.SCENES["PRESET"]["SCENE_PRESET10"]: effects["preset2"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET12']}", None,) effects["preset3"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET13']}", None,) effects["preset4"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET14']}", None,) if scene.scene_id == dsconst.SCENES["PRESET"]["SCENE_PRESET20"]: effects["preset2"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET22']}", None,) effects["preset3"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET23']}", None,) effects["preset4"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET24']}", None,) if scene.scene_id == dsconst.SCENES["PRESET"]["SCENE_PRESET30"]: effects["preset2"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET32']}", None,) effects["preset3"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET33']}", None,) effects["preset4"] = scenes.get(f"{scene.zone_id}_{scene.color}_{dsconst.SCENES['PRESET']['SCENE_PRESET34']}", None,) # no turn on scene found, skip if not scene_on: continue # add light _LOGGER.info(f"adding light {scene.scene_id}: Off: {scene.name}, On: {scene_on.name}, Preset2: {effects['preset2'].name}, Preset3: {effects['preset3'].name}, Preset4: {effects['preset4'].name}") devices.append( DigitalstromLight( hass=hass, scene_on=scene_on, scene_off=scene, listener=listener, effects=effects ) ) device: DigitalstromLight async_add_entities(device for device in devices) class DigitalstromLight(RestoreEntity, LightEntity): def __init__( self, hass: HomeAssistantType, scene_on: Union[DSScene, DSColorScene], scene_off: Union[DSScene, DSColorScene], listener: DSWebsocketEventListener, effects, *args, **kwargs, ): self._hass: HomeAssistantType = hass self._scene_on: Union[DSScene, DSColorScene] = scene_on self._scene_off: Union[DSScene, DSColorScene] = scene_off self._listener: DSWebsocketEventListener = listener self._state: bool = None self._scene_effects = effects self._effect = "" super().__init__(*args, **kwargs) self.register_callback() @property def supported_features(self): """Flag supported features.""" support = SUPPORT_EFFECT return support @property def effect(self): """Return the name of the currently running effect.""" return self._effect @property def effect_list(self): """Return the list of supported effects for this light.""" return ["PRESET1","PRESET2", "PRESET3", "PRESET4"] def register_callback(self): async def event_callback(event: dict) -> None: # sanity checks if "name" not in event: return if event["name"] != "callScene": return if "properties" not in event: return if "sceneID" not in event["properties"]: return if "groupID" not in event["properties"]: return if "zoneID" not in event["properties"]: return # cast event data zone_id: int = int(event["properties"]["zoneID"]) group_id: int = int(event["properties"]["groupID"]) scene_id: int = int(event["properties"]["sceneID"]) # device turned on or broadcast turned on if ( self._scene_on.zone_id == zone_id and self._scene_on.color == group_id and (self._scene_on.scene_id == scene_id or dsconst.SCENES["PRESET"]["SCENE_PRESET1"] == scene_id) ): self._state = True await self.async_update_ha_state() # device turned off or broadcast turned off elif ( self._scene_off.zone_id == zone_id and self._scene_off.color == group_id and (self._scene_off.scene_id == scene_id or dsconst.SCENES["PRESET"]["SCENE_PRESET0"] == scene_id) ): self._state = False await self.async_update_ha_state() _LOGGER.debug( f"Register callback for {self._scene_off.name}" ) self._listener.register(callback=event_callback) @property def name(self) -> str: return self._scene_off.name @property def unique_id(self) -> str: return f"dslight_{self._scene_off.unique_id}" @property def available(self) -> bool: return True @property def is_on(self) -> bool: return self._state async def async_turn_on(self, **kwargs) -> None: if ATTR_EFFECT in kwargs: _LOGGER.debug( f"call turn on with Effect {kwargs[ATTR_EFFECT]}" ) if kwargs[ATTR_EFFECT] == "PRESET1": await self._scene_on.turn_on() self._effect = "PRESET1" if kwargs[ATTR_EFFECT] == "PRESET2": await self._scene_effects["preset2"].turn_on() self._effect = "PRESET2" if kwargs[ATTR_EFFECT] == "PRESET3": await self._scene_effects["preset3"].turn_on() self._effect = "PRESET3" if kwargs[ATTR_EFFECT] == "PRESET4": await self._scene_effects["preset4"].turn_on() self._effect = "PRESET4" else: await self._scene_on.turn_on() self._effect = "PRESET1" self._state = True async def async_turn_off(self, **kwargs) -> None: await self._scene_off.turn_on() self._effect = "" self._state = False async def async_added_to_hass(self) -> None: await super().async_added_to_hass() state: bool = await self.async_get_last_state() if not state: return _LOGGER.debug( f"trying to restore state of entity {self.entity_id} to {state.state}" ) self._state = state.state == STATE_ON def should_poll(self) -> bool: return False @property def device_info(self) -> dict: """Return information about the device.""" return { "identifiers": {(DOMAIN, self._scene_off.unique_id)}, "name": self._scene_off.name, "model": "DSLight", "manufacturer": "digitalSTROM AG", }
StarcoderdataPython
6584538
<reponame>ryanstwrt/FRIDGE import fridge.Assembly.FuelAssembly as FuelAssembly import fridge.Assembly.SmearAssembly as SmearAssembly import fridge.Assembly.Assembly as Assembly import fridge.driver.global_variables as gb import numpy as np global_vars = gb.GlobalVariables() global_vars.read_input_file('A271_Assembly_Test') assembly_info = [global_vars.file_name, '01A01', global_vars, None] def test_assembly(): """Check the base assembly init""" baseAssembly = Assembly.Assembly(assembly_info) assert baseAssembly.assembly_file_name == 'A271_Test' assert baseAssembly.assemblyPosition == '01A01' assert baseAssembly.universe == 100 assert baseAssembly.cellNum == 100 assert baseAssembly.surfaceNum == 100 assert baseAssembly.materialNum == 100 assert baseAssembly.assemblyType == '' assert baseAssembly.pinsPerAssembly == 0 assert baseAssembly.assemblyPitch == 0 assert baseAssembly.ductInnerFlatToFlat == 0 assert baseAssembly.ductOuterFlatToFlat == 0 assert baseAssembly.ductOuterFlatToFlat == 0 assert baseAssembly.assemblyHeight == 0 assert baseAssembly.coolantMaterial == '' assert baseAssembly.assemblyMaterial == '' def test_updateIdentifiers(): """Check the updateIdentifiers function""" baseAssembly = Assembly.Assembly(assembly_info) assert baseAssembly.universe == 100 assert baseAssembly.cellNum == 100 assert baseAssembly.surfaceNum == 100 assert baseAssembly.materialNum == 100 baseAssembly.update_global_identifiers(False) assert baseAssembly.universe == 100 assert baseAssembly.cellNum == 101 assert baseAssembly.surfaceNum == 101 assert baseAssembly.materialNum == 101 def test_fuel_assembly(): """Check the Fuel Assembly subclass of Assembly.""" a = FuelAssembly.FuelAssembly(assembly_info) assert a.universe == 104 assert a.cellNum == 114 assert a.surfaceNum == 114 assert a.materialNum == 114 assert a.fuel is not None assert a.fuel is not None assert a.bond is not None assert a.clad is not None assert a.coolant is not None assert a.blankUniverse is not None assert a.blankCoolant is not None assert a.latticeUniverse is not None assert a.fuelUniverse is not None assert a.innerDuct is not None assert a.duct is not None assert a.plenum is not None assert a.upperReflector is not None assert a.lowerReflector is not None assert a.upperSodium is not None assert a.lowerSodium is not None assert a.assemblyShell is not None assert a.everythingElse is not None assert a.cladOD == 0.53 assert a.cladID == 0.53 - 0.037 * 2 assert np.allclose(a.fuelDiameter, 0.394907) assert a.fuelPitch == 0.66144 assert a.wireWrapDiameter == 0.126 assert a.fuelHeight == 60 assert a.fuelMaterial == '5Pu22U10Zr' assert a.cladMaterial == 'HT9' assert a.bondMaterial == 'LiquidNa' assert a.plenumHeight == 60 assert a.plenumMaterial == {'HT9': 0.25, 'Void': 0.25, 'LiquidNa': 0.5} assert a.plenumPosition == [0, 0, 60.6] assert a.reflectorHeight == 60 assert a.reflectorMaterial == {'LiquidNa': 0.20, 'HT9': 0.80} assert a.fuel.cellCard == '100 100 0.04574 -100 u=101 imp:n=1 $Pin: Fuel' assert a.fuel.surfaceCard == '100 RCC 0.0 0.0 0.0 0 0 60.0 0.19745 $Pin: Fuel' assert a.bond.cellCard == '101 101 0.02428 100 -101 u=101 imp:n=1 $Pin: Bond' assert a.bond.surfaceCard == '101 RCC 0.0 0.0 0.0 0 0 60.6 0.228 $Pin: Bond - 1% higher than fuel' assert a.clad.cellCard == '102 102 0.08598 101 -102 u=101 imp:n=1 $Pin: Clad' assert a.clad.surfaceCard == '102 RCC 0.0 0.0 0.0 0 0 60.6 0.265 $Pin: Clad - 1% higher than fuel' assert a.coolant.cellCard == '103 103 0.02929 102 u=101 imp:n=1 $Pin: Wirewrap + Coolant' assert a.coolant.surfaceCard == '103 RHP 0.0 0.0 0.0 0 0 60.6 0.66144 0 0 $Pin: Coolant - 1% higher than fuel' assert a.blankCoolant.cellCard == '104 104 0.02428 -103 u=102 imp:n=1 $Pin: Blank Pin Coolant' assert a.blankCoolant.surfaceCard == '104 RHP 0.0 0.0 0.0 0 0 60.6 0.33072 0 0 $Pin: Blank Pin - 1%\ higher than fuel' assert a.fuelUniverse.cellCard == '105 0 -104 lat=2 u=103 imp:n=1\n'\ ' fill=-10:10 -10:10 0:0\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 102 102 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 102 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 102 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102' assert a.innerDuct.cellCard == '106 0 -106 u=100 fill=103 imp:n=1 $Assembly: Inner Portion of Assembly' assert a.innerDuct.surfaceCard == '106 RHP 0.0 0.0 0.0 0 0 60.6 0 5.505 0 $Assembly: Duct Inner Surface' assert a.plenum.cellCard == '107 107 0.03364 -107 u=100 imp:n=1 $Assembly: Plenum' assert a.plenum.surfaceCard == '107 RHP 0.0 0.0 60.6 0 0 60.0 0 5.505 0 $Assembly: Plenum' assert a.upperReflector.cellCard == '108 108 0.07364 -108 u=100 imp:n=1 $Assembly: Upper Reflector' assert a.upperReflector.surfaceCard == '108 RHP 0.0 0.0 120.6 0 0 60.0 0 5.505 0 $Assembly: Upper Reflector' assert a.lowerReflector.cellCard == '109 109 0.07364 -109 u=100 imp:n=1 $Assembly: Lower Reflector' assert a.lowerReflector.surfaceCard == '109 RHP 0.0 0.0 -60.0 0 0 60.0 0 5.505 0 $Assembly: Lower Reflector' assert a.duct.cellCard == '110 110 0.08598 106 109 108 107 -110 u=100 imp:n=1 $Assembly: Assembly Duct' assert a.duct.surfaceCard == '110 RHP 0.0 0.0 -60.0 0 0 240.6 0 5.80529 0 $Assembly: Duct Outer Surface' assert a.lowerSodium.cellCard == '111 111 0.02428 -111 u=100 imp:n=1 $Assembly: Lower Coolant' assert a.lowerSodium.surfaceCard == '111 RHP 0.0 0.0 -99.8 0 0 39.8 0 5.80529 0 $Assembly: Lower Coolant' assert a.upperSodium.cellCard == '112 112 0.02428 -112 u=100 imp:n=1 $Assembly: Upper Coolant' assert a.upperSodium.surfaceCard == '112 RHP 0.0 0.0 180.6 0 0 39.7 0 5.80529 0 $Assembly: Upper Coolant' assert a.assemblyShell.cellCard == '113 0 -113 fill=100 imp:n=1 $Assembly' assert a.assemblyShell.surfaceCard == '113 RHP 0.0 0.0 -99.7 0 0 320.0 0 5.805 0 $Assembly: Full Assembly Surface' assert a.everythingElse.cellCard == '114 0 113 imp:n=0 $Everything Else' global_vars = gb.GlobalVariables() global_vars.read_input_file('Smear_Assembly_Test') assembly_info2 = [global_vars.file_name, '01A01', global_vars, None] def test_smearAssembly(): a = SmearAssembly.SmearAssembly(assembly_info2) assert a.assemblyPitch == 12 assert a.coolantMaterial == 'LiquidNa' assert a.assemblyMaterial == 'HT9' assert a.smearMaterial == {'LiquidNa': 0.3, 'HT9': 0.7} assert a.smearRegion.cellCard == "100 100 0.06747 -100 u=100 imp:n=1 $Assembly: Smear Region" assert a.smearRegion.surfaceCard == "100 RHP 0.0 0.0 -60.0 0 0 240 0 5.80529 0 $Assembly: Smear Region" assert a.lowerCoolant.cellCard == '101 101 0.02428 -101 u=100 imp:n=1 $Assembly: Lower Coolant' assert a.lowerCoolant.surfaceCard == '101 RHP 0.0 0.0 -100.1 0 0 40.1 0 5.80529 0 $Assembly: Lower Coolant' assert a.upperCoolant.cellCard == '102 102 0.02428 -102 u=100 imp:n=1 $Assembly: Upper Coolant' assert a.upperCoolant.surfaceCard == '102 RHP 0.0 0.0 180.0 0 0 40.0 0 5.80529 0 $Assembly: Upper Coolant' assert a.assemblyShell.cellCard == '103 0 -103 fill=100 imp:n=1 $Assembly' assert a.assemblyShell.surfaceCard == '103 RHP 0.0 0.0 -100.0 0 0 320.0 0 5.805 0 $Assembly: Full Assembly Surface' def test_getAssemblyLocation(): assembly_info1 = ['Nonsense', '01A01', global_vars, None] a = None try: a = Assembly.Assembly(assembly_info1) except IndexError: assert a is None global_vars = gb.GlobalVariables() global_vars.read_input_file('A271_Assembly_Shifted_Test') assembly_info3 = [global_vars.file_name, '01A01', global_vars, None] def test_shifted_fuel_assembly(): """Check the Fuel Assembly subclass of Assembly with a shifted Z position.""" a = FuelAssembly.FuelAssembly(assembly_info3) assert a.universe == 104 assert a.cellNum == 114 assert a.surfaceNum == 114 assert a.materialNum == 114 assert a.fuel is not None assert a.fuel is not None assert a.bond is not None assert a.clad is not None assert a.coolant is not None assert a.blankUniverse is not None assert a.blankCoolant is not None assert a.latticeUniverse is not None assert a.fuelUniverse is not None assert a.innerDuct is not None assert a.duct is not None assert a.plenum is not None assert a.upperReflector is not None assert a.lowerReflector is not None assert a.upperSodium is not None assert a.lowerSodium is not None assert a.assemblyShell is not None assert a.everythingElse is not None assert a.cladOD == 0.53 assert a.cladID == 0.53 - 0.037 * 2 assert np.allclose(a.fuelDiameter, 0.394907) assert a.fuelPitch == 0.66144 assert a.wireWrapDiameter == 0.126 assert a.fuelHeight == 60 assert a.fuelMaterial == '5Pu22U10Zr' assert a.cladMaterial == 'HT9' assert a.bondMaterial == 'LiquidNa' assert a.zPosition == -10 assert a.position == [0, 0, -10] assert a.plenumHeight == 60 assert a.plenumMaterial == {'HT9': 0.25, 'Void': 0.25, 'LiquidNa': 0.5} assert a.plenumPosition == [0, 0, 50.6] assert a.reflectorHeight == 60 assert a.reflectorMaterial == {'LiquidNa': 0.20, 'HT9': 0.80} assert a.fuel.cellCard == '100 100 0.04574 -100 u=101 imp:n=1 $Pin: Fuel' assert a.fuel.surfaceCard == '100 RCC 0.0 0.0 -10.0 0 0 60.0 0.19745 $Pin: Fuel' assert a.bond.cellCard == '101 101 0.02428 100 -101 u=101 imp:n=1 $Pin: Bond' assert a.bond.surfaceCard == '101 RCC 0.0 0.0 -10.0 0 0 60.6 0.228 $Pin: Bond - 1% higher than fuel' assert a.clad.cellCard == '102 102 0.08598 101 -102 u=101 imp:n=1 $Pin: Clad' assert a.clad.surfaceCard == '102 RCC 0.0 0.0 -10.0 0 0 60.6 0.265 $Pin: Clad - 1% higher than fuel' assert a.coolant.cellCard == '103 103 0.02929 102 u=101 imp:n=1 $Pin: Wirewrap + Coolant' assert a.coolant.surfaceCard == '103 RHP 0.0 0.0 -10.0 0 0 60.6 0.66144 0 0 $Pin: Coolant - 1% higher than fuel' assert a.blankCoolant.cellCard == '104 104 0.02428 -103 u=102 imp:n=1 $Pin: Blank Pin Coolant' assert a.blankCoolant.surfaceCard == '104 RHP 0.0 0.0 -10.0 0 0 60.6 0.33072 0 0 $Pin: Blank Pin - 1% \ higher than fuel' assert a.fuelUniverse.cellCard == '105 0 -104 lat=2 u=103 imp:n=1\n'\ ' fill=-10:10 -10:10 0:0\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 102 102 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 102 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 102 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 102 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 102 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 102 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 102 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 102 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 102\n'\ ' 102 101 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 101 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 101 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 101 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 101 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 101 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 101 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 101 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 102 101\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 101 101 101 101 101 101 101 101 101 101\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102 102 102 102 102 102 102 102 102 102\n'\ ' 102' assert a.innerDuct.cellCard == '106 0 -106 u=100 fill=103 imp:n=1 $Assembly: Inner Portion of Assembly' assert a.innerDuct.surfaceCard == '106 RHP 0.0 0.0 -10.0 0 0 60.6 0 5.505 0 $Assembly: Duct Inner Surface' assert a.plenum.cellCard == '107 107 0.03364 -107 u=100 imp:n=1 $Assembly: Plenum' assert a.plenum.surfaceCard == '107 RHP 0.0 0.0 50.6 0 0 60.0 0 5.505 0 $Assembly: Plenum' assert a.upperReflector.cellCard == '108 108 0.07364 -108 u=100 imp:n=1 $Assembly: Upper Reflector' assert a.upperReflector.surfaceCard == '108 RHP 0.0 0.0 110.6 0 0 60.0 0 5.505 0 $Assembly: Upper Reflector' assert a.lowerReflector.cellCard == '109 109 0.07364 -109 u=100 imp:n=1 $Assembly: Lower Reflector' assert a.lowerReflector.surfaceCard == '109 RHP 0.0 0.0 -70.0 0 0 60.0 0 5.505 0 $Assembly: Lower Reflector' assert a.duct.cellCard == '110 110 0.08598 106 109 108 107 -110 u=100 imp:n=1 $Assembly: Assembly Duct' assert a.duct.surfaceCard == '110 RHP 0.0 0.0 -70.0 0 0 240.6 0 5.80529 0 $Assembly: Duct Outer Surface' assert a.lowerSodium.cellCard == '111 111 0.02428 -111 u=100 imp:n=1 $Assembly: Lower Coolant' assert a.lowerSodium.surfaceCard == '111 RHP 0.0 0.0 -109.8 0 0 39.8 0 5.80529 0 $Assembly: Lower Coolant' assert a.upperSodium.cellCard == '112 112 0.02428 -112 u=100 imp:n=1 $Assembly: Upper Coolant' assert a.upperSodium.surfaceCard == '112 RHP 0.0 0.0 170.6 0 0 39.7 0 5.80529 0 $Assembly: Upper Coolant' assert a.assemblyShell.cellCard == '113 0 -113 fill=100 imp:n=1 $Assembly' assert a.assemblyShell.surfaceCard == '113 RHP 0.0 0.0 -109.7 0 0 320.0 0 5.805 0 $Assembly: Full Assembly Surface' assert a.everythingElse.cellCard == '114 0 113 imp:n=0 $Everything Else' global_vars = gb.GlobalVariables() core = 'A271_Assembly_Test' assem = 'A271_Test' global_vars.read_input_file(core, assembly_perturbations={assem: {'fuelMaterial': 'U10Zr', 'fuelDiameter': 0.1, 'cladMaterial': 'SS316'}}) assembly_info4 = [global_vars.file_name, '01A01', global_vars, None] def test_fueled_perturbation(): a = FuelAssembly.FuelAssembly(assembly_info4) assert a.fuelMaterial == 'U10Zr' assert a.fuelDiameter == 0.1 assert a.cladMaterial == 'SS316' global_vars = gb.GlobalVariables() core = 'Smear_Assembly_Test' assem = 'Smear_Test' global_vars.read_input_file(core, assembly_perturbations={assem: {'smearMaterial': {'LiquidPb': 1.0}, 'zPosition': 50, 'smearRegionHeight': 50}}) assembly_info5 = [global_vars.file_name, '01A01', global_vars, None] def test_smear_perturbation(): a = SmearAssembly.SmearAssembly(assembly_info5) assert a.smearMaterial == {'LiquidPb': 1.0} assert a.zPosition == 50 assert a.smearRegionHeight == 50 assert a.smearRegion.cellCard == "100 100 0.03103 -100 u=100 imp:n=1 $Assembly: Smear Region"
StarcoderdataPython
27761
<filename>forms/forms/constants.py """Stores constants used as numbers for readability that are used across all apps""" class AdminRoles: """ """ JCRTREASURER = 1 SENIORTREASURER = 2 BURSARY = 3 ASSISTANTBURSAR = 4 CHOICES = ( (JCRTREASURER, 'JCR Treasurer'), (SENIORTREASURER, 'Senior Treasurer'), (BURSARY, 'Bursary'), (ASSISTANTBURSAR, 'Assistant Bursar') )
StarcoderdataPython
1916647
<filename>nabu/processing/processors/__init__.py '''@package processors contains the data processors''' from . import processor, processor_factory, feature_computers
StarcoderdataPython
3331032
<filename>python/crawel/demo.py<gh_stars>0 l = [ ['Apple', 'Google', 'Microsoft'], ['Java', 'Python', 'Ruby', 'PHP'], ['Adam', 'Bart', 'Lisa'] ] for x in l: for i in x: print ("hello:" + i + "\t")
StarcoderdataPython
5067764
import os import re import json import time import hashlib import collections from lazyapi import ApiClient from lazycls import classproperty from .utils import * from .classes import * from .config import KctlContextCfg from kubernetes.client import ApiClient as KubernetesClient class KctlBaseClient: def __init__(self, host: str = "", api_version: str = None, *args, **kwargs): self._cfg = KctlContextCfg(host=host, api_version = api_version, *args, **kwargs) self.url = self._cfg.url self._client = ApiClient(headers = self._cfg.headers, verify = self._cfg.ssl_verify, module_name=f'kctl.{self._cfg.api_version}', default_resp = True) self.schema = None if self._cfg.is_enabled: self._load_schemas() def reset_config(self, host: str = None, api_version: str = None, reset_schema: bool = True, *args, **kwargs): self._cfg = KctlContextCfg(host=host, api_version = api_version, *args, **kwargs) self.url = self._cfg.url self._client = ApiClient(headers = self._cfg.headers, verify = self._cfg.ssl_verify, module_name=f'kctl.{self._cfg.api_version}', default_resp = True) if reset_schema: self.reload_schema() def set_cluster(self, cluster_name: str, reset_schema: bool = True): """ Sets the Base url property to the cluster""" self.url = self._cfg.get_url(cluster_name = cluster_name, set_default= True) if reset_schema: self.reload_schema() def reload_schema(self): self._load_schemas(force=True) def valid(self): return self.url is not None and self.schema is not None def object_hook(self, obj): if isinstance(obj, list): return [self.object_hook(x) for x in obj] if isinstance(obj, dict): result = RestObject() for k, v in obj.items(): setattr(result, k, self.object_hook(v)) for link in ['next', 'prev']: try: url = getattr(result.pagination, link) if url is not None: setattr(result, link, lambda url=url: self._get(url)) except AttributeError: pass if hasattr(result, 'type') and isinstance(getattr(result, 'type'), str): if hasattr(result, 'links'): for link_name, link in result.links.items(): def cb_link(_link=link, **kw): return self._get(_link, data=kw) if hasattr(result, link_name): setattr(result, link_name + '_link', cb_link) else: setattr(result, link_name, cb_link) if hasattr(result, 'actions'): for link_name, link in result.actions.items(): def cb_action(_link_name=link_name, _result=result, *args, **kw): return self.action(_result, _link_name, *args, **kw) if hasattr(result, link_name): setattr(result, link_name + '_action', cb_action) else: setattr(result, link_name, cb_action) return result return obj def object_pairs_hook(self, pairs): ret = collections.OrderedDict() for k, v in pairs: ret[k] = v return self.object_hook(ret) def _get(self, url: str, data=None): return self._unmarshall(self._get_raw(url, data=data)) async def _async_get(self, url: str, data=None): return self._unmarshall(await self._async_get_raw(url, data=data)) def _error(self, text): raise ApiError(self._unmarshall(text)) @timed_url def _get_raw(self, url: str, data=None): r = self._get_response(url, data) return r.text @timed_url async def _async_get_raw(self, url: str, data=None): r = await self._async_get_response(url, data) return r.text def _get_response(self, url: str, data=None): r = self._client.get(url, params=data, headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return r async def _async_get_response(self, url: str, data=None): r = await self._client.async_get(url, params=data, headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return r @timed_url def _post(self, url: str, data=None): r = self._client.post(url, data=self._marshall(data), headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return self._unmarshall(r.text) @timed_url async def _async_post(self, url: str, data=None): r = await self._client.async_post(url, data=self._marshall(data), headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return self._unmarshall(r.text) @timed_url def _put(self, url, data=None): r = self._client.put(url, data=self._marshall(data), headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return self._unmarshall(r.text) @timed_url async def _async_put(self, url, data=None): r = await self._client.async_put(url, data=self._marshall(data), headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return self._unmarshall(r.text) @timed_url def _delete(self, url): r = self._client.delete(url, headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return self._unmarshall(r.text) @timed_url async def _async_delete(self, url): r = await self._client.async_delete(url, headers=self._cfg.headers) if r.status_code < 200 or r.status_code >= 300: self._error(r.text) return self._unmarshall(r.text) def _unmarshall(self, text): if text is None or text == '': return text return json.loads(text, object_hook=self.object_hook, object_pairs_hook=self.object_pairs_hook) def _marshall(self, obj, indent=None, sort_keys=True): if obj is None: return None return json.dumps(self._to_dict(obj), indent=indent, sort_keys=sort_keys) def _load_schemas(self, force=False): if self.schema and not force: return schema_text = self._get_cached_schema() if force or not schema_text: response = self._get_response(self.url) schema_url = response.headers.get('X-API-Schemas') if schema_url is not None and self.url != schema_url: schema_text = self._get_raw(schema_url) else: schema_text = response.text self._cache_schema(schema_text) obj = self._unmarshall(schema_text) schema = Schema(schema_text, obj) if len(schema.types) > 0: self._bind_methods(schema) self.schema = schema ############################################################################# # Base Methods # ############################################################################# def by_id(self, type, id, **kw): id = str(id) type_name = convert_type_name(type) url = self.schema.types[type_name].links.collection if url.endswith('/'): url += id else: url = '/'.join([url, id]) try: return self._get(url, self._to_dict(**kw)) except ApiError as e: if e.error.status == 404: return None else: raise e def update_by_id(self, type, id, *args, **kw): type_name = convert_type_name(type) url = self.schema.types[type_name].links.collection url = url + id if url.endswith('/') else '/'.join([url, id]) return self._put_and_retry(url, *args, **kw) def update(self, obj, *args, **kw): url = obj.links.self return self._put_and_retry(url, *args, **kw) def update_data(self, obj, *args, **kw): url = obj.links.self return self._put_and_retry(url, obj, *args, **kw) def _put_and_retry(self, url, *args, **kw): retries = kw.get('retries', 3) for i in range(retries): try: return self._put(url, data=self._to_dict(*args, **kw)) except ApiError as e: if i == retries-1: raise e if e.error.status == 409: time.sleep(.1) else: raise e def _post_and_retry(self, url, *args, **kw): retries = kw.get('retries', 3) for i in range(retries): try: return self._post(url, data=self._to_dict(*args, **kw)) except ApiError as e: if i == retries-1: raise e if e.error.status == 409: time.sleep(.1) else: raise e def _validate_list(self, type, **kw): if not self._cfg.strict: return type_name = convert_type_name(type) collection_filters = self.schema.types[type_name].collectionFilters for k in kw: if hasattr(collection_filters, k): return for filter_name, filter_value in collection_filters.items(): for m in filter_value.modifiers: if k == '_'.join([filter_name, m]): return raise ClientApiError(k + ' is not searchable field') def list(self, type, **kw): type_name = convert_type_name(type) if type_name not in self.schema.types: raise ClientApiError(type_name + ' is not a valid type') self._validate_list(type_name, **kw) collection_url = self.schema.types[type_name].links.collection collection_url = self._cfg.validate_fleet_url(collection_url) return self._get(collection_url, data=self._to_dict(**kw)) def reload(self, obj): return self.by_id(obj.type, obj.id) def create(self, type, *args, **kw): type_name = convert_type_name(type) collection_url = self.schema.types[type_name].links.collection collection_url = self._cfg.validate_fleet_url(collection_url) return self._post(collection_url, data=self._to_dict(*args, **kw)) def delete(self, *args): for i in args: if isinstance(i, RestObject): return self._delete(i.links.self) def action(self, obj, action_name, *args, **kw): url = getattr(obj.actions, action_name) return self._post_and_retry(url, *args, **kw) ############################################################################# # Async Methods # ############################################################################# async def async_by_id(self, type, id, **kw): id = str(id) type_name = convert_type_name(type) url = self.schema.types[type_name].links.collection if url.endswith('/'): url += id else: url = '/'.join([url, id]) try: return await self._async_get(url, self._to_dict(**kw)) except ApiError as e: if e.error.status == 404: return None else: raise e async def async_update_by_id(self, type, id, *args, **kw): type_name = convert_type_name(type) url = self.schema.types[type_name].links.collection url = url + id if url.endswith('/') else '/'.join([url, id]) return await self._async_put_and_retry(url, *args, **kw) async def async_update(self, obj, *args, **kw): url = obj.links.self return await self._async_put_and_retry(url, *args, **kw) async def async_update_data(self, obj, *args, **kw): url = obj.links.self return await self._async_put_and_retry(url, obj, *args, **kw) async def _async_put_and_retry(self, url, *args, **kw): retries = kw.get('retries', 3) for i in range(retries): try: return await self._async_put(url, data=self._to_dict(*args, **kw)) except ApiError as e: if i == retries-1: raise e if e.error.status == 409: time.sleep(.1) else: raise e async def _async_post_and_retry(self, url, *args, **kw): retries = kw.get('retries', 3) for i in range(retries): try: return await self._async_post(url, data=self._to_dict(*args, **kw)) except ApiError as e: if i == retries-1: raise e if e.error.status == 409: time.sleep(.1) else: raise e async def async_list(self, type, **kw): type_name = convert_type_name(type) if type_name not in self.schema.types: raise ClientApiError(type_name + ' is not a valid type') self._validate_list(type_name, **kw) collection_url = self.schema.types[type_name].links.collection collection_url = self._cfg.validate_fleet_url(collection_url) return await self._async_get(collection_url, data=self._to_dict(**kw)) async def async_reload(self, obj): return await self.async_by_id(obj.type, obj.id) async def async_create(self, type, *args, **kw): type_name = convert_type_name(type) collection_url = self.schema.types[type_name].links.collection collection_url = self._cfg.validate_fleet_url(collection_url) return await self._async_post(collection_url, data=self._to_dict(*args, **kw)) async def async_delete(self, *args): for i in args: if isinstance(i, RestObject): return await self._async_delete(i.links.self) async def async_action(self, obj, action_name, *args, **kw): url = getattr(obj.actions, action_name) return await self._async_post_and_retry(url, *args, **kw) ############################################################################# # Class Funcs # ############################################################################# def _is_list(self, obj): if isinstance(obj, list): return True if isinstance(obj, RestObject) and 'type' in obj.__dict__ and obj.type == 'collection': return True return False def _to_value(self, value): if isinstance(value, dict): ret = {k: self._to_value(v) for k, v in value.items()} return ret if isinstance(value, list): ret = [self._to_value(v) for v in value] return ret if isinstance(value, RestObject): ret = {} for k, v in vars(value).items(): if not isinstance(v, RestObject) and not callable(v): if not k.startswith('_'): ret[k] = self._to_value(v) elif isinstance(v, RestObject): if not k.startswith('_'): ret[k] = self._to_dict(v) return ret return value def _to_dict(self, *args, **kw): if len(kw) == 0 and len(args) == 1 and self._is_list(args[0]): ret = [self._to_dict(i) for i in args[0]] return ret ret = {} for i in args: value = self._to_value(i) if isinstance(value, dict): for k, v in value.items(): ret[k] = v for k, v in kw.items(): ret[k] = self._to_value(v) return ret @staticmethod def _type_name_variants(name): ret = [name] python_name = re.sub(r'([a-z])([A-Z])', r'\1_\2', name) if python_name != name: ret.append(python_name.lower()) return ret def _bind_methods(self, schema): bindings = [ ('list', 'collectionMethods', GET_METHOD, self.list), ('by_id', 'collectionMethods', GET_METHOD, self.by_id), ('create', 'collectionMethods', POST_METHOD, self.create), #('update', 'resourceMethods', PUT_METHOD, self.update), ('update_by_id', 'resourceMethods', PUT_METHOD, self.update_by_id), #('update_data', 'resourceMethods', PUT_METHOD, self.update), ] async_bindings = [ ('async_list', 'collectionMethods', GET_METHOD, self.async_list), ('async_by_id', 'collectionMethods', GET_METHOD, self.async_by_id), ('async_create', 'collectionMethods', POST_METHOD, self.async_create), #('async_update', 'resourceMethods', PUT_METHOD, self.async_update), ('async_update_by_id', 'resourceMethods', PUT_METHOD, self.async_update_by_id), ] for type_name, typ in schema.types.items(): for name_variant in self._type_name_variants(type_name): for (method_name, type_collection, test_method, m), (async_method_name, async_type_collection, async_test_method, async_m) in zip(bindings, async_bindings): # double lambda for lexical binding hack, I'm sure there's # a better way to do this def cb_bind(type_name=type_name, method=m): def _cb(*args, **kw): return method(type_name, *args, **kw) return _cb def async_cb_bind(type_name=type_name, method=async_m): async def _cb(*args, **kw): return await method(type_name, *args, **kw) return _cb if test_method in getattr(typ, type_collection, []): setattr(self, '_'.join([method_name, name_variant]), cb_bind()) if async_test_method in getattr(typ, async_type_collection, []): setattr(self, '_'.join([async_method_name, name_variant]), async_cb_bind()) #for method_name, type_collection, test_method, m in async_bindings: # def cb_bind(type_name=type_name, method=m): # def _cb(*args, **kw): # return method(type_name, *args, **kw) # return _cb # if test_method in getattr(typ, type_collection, []): setattr(self, '_'.join([method_name, name_variant]), cb_bind()) def _get_schema_hash(self): h = hashlib.new('sha1') h.update(self.url.encode('utf-8')) if self._cfg.token is not None: h.update(self._cfg.token.encode('utf-8')) return h.hexdigest() def _get_cached_schema_file_name(self): h = self._get_schema_hash() return self._cfg.cache_dir.joinpath('schema-' + h + '.json') def _cache_schema(self, text): cached_schema = self._get_cached_schema_file_name() if not cached_schema: return None cached_schema.write_text(text, encoding='utf-8') def _get_cached_schema(self): cached_schema = self._get_cached_schema_file_name() if not cached_schema: return None if os.path.exists(cached_schema): mod_time = os.path.getmtime(cached_schema) if time.time() - mod_time < self._cfg.cache_time: return cached_schema.read_text(encoding='utf-8') return None def wait_success(self, obj, timeout=-1): obj = self.wait_transitioning(obj, timeout) if obj.transitioning != 'no': raise ClientApiError(obj.transitioningMessage) return obj def wait_transitioning(self, obj, timeout=-1, sleep=0.01): timeout = _get_timeout(timeout) start = time.time() obj = self.reload(obj) while obj.transitioning == 'yes': time.sleep(sleep) sleep *= 2 sleep = min(sleep, 2) obj = self.reload(obj) delta = time.time() - start if delta > timeout: msg = 'Timeout waiting for [{}:{}] to be done after {} seconds' msg = msg.format(obj.type, obj.id, delta) raise Exception(msg) return obj class KctlClient: v1: KctlBaseClient = KctlBaseClient(api_version='v1') v3: KctlBaseClient = KctlBaseClient(api_version='v3') @classmethod def build_rancher_ctx(cls): cls.v1._cfg.build_rancher_ctx(v1_client=cls.v1, v3_client=cls.v3) cls.v3._cfg.build_rancher_ctx(v1_client=cls.v1, v3_client=cls.v3) @classmethod def reset_context(cls, host: str = None, reset_schema: bool = True, *args, **kwargs): cls.v1.reset_config(host = host, api_version = 'v1', reset_schema = reset_schema, *args, **kwargs) cls.v3.reset_config(host = host, api_version = 'v3', reset_schema = reset_schema, *args, **kwargs) @classmethod def set_cluster(cls, cluster_name: str, *args, **kwargs): cls.v1.set_cluster(cluster_name = cluster_name, *args, **kwargs) #cls.v3.set_cluster(cluster_name = cluster_name, *args, **kwargs) @classproperty def api(cls) -> KubernetesClient: return KubernetesClient(cls.v1._cfg.config)
StarcoderdataPython
6430007
class Coffee: coffeeCupCounter = 0 def __init__(self, themilk, thesugar, thecoffeemate): self.milk = themilk self.sugar = thesugar self.coffeemate = thecoffeemate Coffee.coffeeCupCounter = Coffee.coffeeCupCounter +1 print(f"You now have your coffee with {self.milk} milk, {self.sugar} sugar {self.coffeemate} coffeemate") mySugarFreeCoffee = Coffee(2,0,1) print(mySugarFreeCoffee.sugar) myMuchSugarCoffee = Coffee(2, 10, 1) print(myMuchSugarCoffee.sugar) print(f"we have made {Coffee.coffeeCupCounter} coffee cups so farr!") print(f"we have made {mySugarFreeCoffee.coffeeCupCounter} coffee cups so farr!") print(f"we have made {myMuchSugarCoffee.milk} coffee cups so farr!") print(f"we have made {myMuchSugarCoffee.coffeeCupCounter} coffee cups so farr!")
StarcoderdataPython
4968654
import random import typing as t import spacy import pytest from spacy.util import minibatch from spacy.training import Example train_data: t.List[t.Tuple[str, t.Dict[str, t.List[t.Tuple[int, int, str]]]]] = [ ("Google has changed the logo of its apps", {"entities": [(0, 6, "ORG")]}), ("Facebook has introduced a new app!", {"entities": [(0, 8, "ORG")]}), ("Amazon has partnered with small businesses.", {"entities": [(0, 6, "ORG")]}), ] @pytest.fixture(scope="module") def spacy_model() -> spacy.language.Language: examples: t.List[t.Any] = [] model = spacy.blank("en") if "ner" not in model.pipe_names: ner = model.add_pipe("ner", last=True) else: ner = model.get_pipe("ner") for text, annotations in train_data: examples.append(Example.from_dict(model.make_doc(text), annotations)) # noqa for ent in annotations.get("entities"): ner.add_label(ent[2]) other_pipes = [pipe for pipe in model.pipe_names if pipe != "ner"] with model.disable_pipes(*other_pipes): optimizer = model.begin_training() for _ in range(10): random.shuffle(examples) for batch in minibatch(examples, size=8): model.update(batch, sgd=optimizer) return model
StarcoderdataPython
8070978
# Generated by Django 2.1 on 2019-02-18 21:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='historicalprofile', name='date_verified', field=models.DateTimeField(blank=True, null=True), ), migrations.AddField( model_name='profile', name='date_verified', field=models.DateTimeField(blank=True, null=True), ), ]
StarcoderdataPython
8045717
from fusion import * import torchvision.datasets as dset from lucchi import LucchiPPDataset, Resize, Scale from torch.utils import data import torch from torch.autograd import Variable from torchvision import utils as v_utils from torchvision import transforms import argparse, os from tqdm import tqdm from tensorboardX import SummaryWriter import numpy as np try: from evaluation.align.jaccard import jaccard_index except: raise ValueError('Download the evaluation package from https://github.com/mental689/evaluation') from PIL import Image def parse(): p = argparse.ArgumentParser('Training Fusion net') p.add_argument('--batch_size', type=int, default=16) p.add_argument('--lr', type=float, default=2e-04) p.add_argument('--epochs', type=int, default=1000) p.add_argument('--img_size', type=int, default=512) p.add_argument('--root', type=str, default='dataset') p.add_argument('--cuda', action='store_true') p.add_argument('--finetune', action='store_true') p.add_argument('--finetune_from', type=str, default='models/fusion_best.pt') p.add_argument('--logdir', type=str, default='logs') p.add_argument('--dataset', type=str, default='lucchipp') p.add_argument('--test', action='store_true') return p.parse_args() def train(args): if args.dataset == 'lucchipp': img_data = LucchiPPDataset(train=True, transforms=transforms.Compose([ Resize(size=(args.img_size, args.img_size)), Scale() ])) img_batch = data.DataLoader(img_data, batch_size=args.batch_size, shuffle=True, num_workers=2) fusion = nn.DataParallel(FusionGenerator(3, 3, 16)) if args.cuda: fusion.cuda() if args.finetune: try: fusion = torch.load(args.finetune_from) print("\n--------model restored--------\n") except: print("\n--------model not restored--------\n") pass # loss function & optimizer loss_func = nn.SmoothL1Loss() optimizer = torch.optim.Adam(fusion.parameters(), lr=args.lr) if not os.path.exists(args.logdir): os.makedirs(args.logdir) writer = SummaryWriter(log_dir=args.logdir) # training for i in range(args.epochs): pbar = tqdm(img_batch) num_iter = 0 for (image, label) in pbar: optimizer.zero_grad() x = Variable(image) y = Variable(label) if args.cuda: x = x.cuda() y = y.cuda() pred = fusion(x) loss = loss_func(pred, y) loss.backward() optimizer.step() num_iter += 1 pbar.set_description('Epoch {}, Iter {}, loss: {:.5f}'.format(i+1, num_iter, loss.item())) writer.add_scalars(main_tag='Training', tag_scalar_dict={ 'loss': loss.item() }, global_step=i*len(img_batch)+num_iter-1) if num_iter == len(img_batch): # v_utils.save_image(x[0].cpu().data, "./dataset/original_image_{}_{}.png".format(i, num_iter)) # v_utils.save_image(y[0].cpu().data, "./dataset/label_image_{}_{}.png".format(i, num_iter)) # v_utils.save_image(pred[0].cpu().data, "./dataset/gen_image_{}_{}.png".format(i, num_iter)) torch.save(fusion, args.finetune_from) writer.add_image(tag='Training orig', img_tensor=x[0], global_step=i*len(img_batch)+num_iter-1) writer.add_image(tag='Training label', img_tensor=y[0], global_step=i * len(img_batch) + num_iter - 1) writer.add_image(tag='Training gen', img_tensor=pred[0], global_step=i * len(img_batch) + num_iter - 1) def test(args, i=0): if args.dataset == 'lucchipp': img_data = LucchiPPDataset(train=False, transforms=transforms.Compose([ Resize(size=(args.img_size, args.img_size)), Scale() ])) img_batch = data.DataLoader(img_data, batch_size=args.batch_size, shuffle=False, num_workers=2) fusion = nn.DataParallel(FusionGenerator(3, 3, 16)) if args.cuda: fusion.cuda() fusion.train(False) fusion.eval() try: fusion = torch.load(args.finetune_from) print("\n--------model restored--------\n") except: print("\n--------model not restored--------\n") pass if not os.path.exists(args.logdir): os.makedirs(args.logdir) writer = SummaryWriter(log_dir=args.logdir) # testing pbar = tqdm(img_batch) num_iter = 0 jaccard = 0. scores = [] for (image, label) in pbar: x = Variable(image) y = Variable(label) if args.cuda: x = x.cuda() y = y.cuda() pred = fusion(x) #loss = jaccard_index(pred, y, smooth=100) jaccards = jaccard_index(y.cpu().data.numpy(), pred.cpu().data.numpy()) scores.extend(jaccards) num_iter += 1 pbar.set_description('Epoch {}, Iter {}, Jaccard Index: {:.5f}'.format(i + 1, num_iter, jaccards.mean())) writer.add_scalars(main_tag='Testing', tag_scalar_dict={ 'Jaccard index': np.array(scores).mean() }, global_step=i ) print('Testing Jaccard Index: {}'.format(np.array(scores).mean())) # v_utils.save_image(x[0].cpu().data, "./dataset/test_original_image_{}.png".format(i)) # v_utils.save_image(y[0].cpu().data, "./dataset/test_label_image_{}.png".format(i)) # v_utils.save_image(pred[0].cpu().data, "./dataset/test_gen_image_{}.png".format(i)) writer.add_image(tag='Testing orig', img_tensor=x[0], global_step=i) writer.add_image(tag='Testing label', img_tensor=y[0], global_step=i) writer.add_image(tag='Testing gen', img_tensor=pred[0], global_step=i) if __name__ == '__main__': args = parse() if not args.test: train(args) test(args, i=0)
StarcoderdataPython
3323796
import json import unittest from ExternalAPIs.NIH_NCBI import NIH_NCBI class TestNIH_NCBI(unittest.TestCase, NIH_NCBI): #---------------------------------------------------- # test_NIHFundingDetailsPayload: # Generate POST request payloads for 2 examples in the NIH reporter API documentation. # Check whether our generated payload matches example in the documentatio. #---------------------------------------------------- def test_NIHFundingDetailsPayload (self): payload = self._generateFundingDetailsPayload('5UG1HD0784*') self.assertEquals(payload.replace(" ", ""), '{"criteria":{"project_nums":"5UG1HD0784*"}}', msg='[ERROR] Generating payload failed.') payload = self._generateFundingDetailsPayload(['5UG1HD078437-07', '5R01DK102815-05']) self.assertEquals(payload.replace(" ", ""), '{"criteria":{"project_nums":["5UG1HD078437-07","5R01DK102815-05"]}}', msg='[ERROR] Generating payload failed.') return #---------------------------------------------------- # test_NIHFundingDetails: # Check whether we get correct data. If the number of results prescribed in the meta data # of the request matches the actual number of results returned, this test passes. #---------------------------------------------------- def test_NIHFundingDetails (self): proj_num = ['OT3OD025349'] data = self.getProjectFundingDetails(proj_num) self.assertEquals(len(data['results']), data['meta']['total']) return #---------------------------------------------------- # test_NIHRecord: # Check to see whether the generated record from the response data in 'test_response.txt' # is correct. #---------------------------------------------------- def test_NIHRecord (self): with open('./tests/test_response.txt', 'r') as f: jsonData = json.loads(f.read()) record = self.generateRecord(jsonData) for sub_proj in jsonData['results']: sub_record = record[sub_proj['project_num']] self.assertEquals(sub_proj['org_name'], sub_record['institute']) self.assertEquals(sub_proj['org_country'], sub_record['country']) self.assertEquals(sub_proj['award_amount'], sub_record['amount']) self.assertEquals(sub_proj['fiscal_year'], sub_record['year']) self.assertEquals(sub_proj['terms'], sub_record['keywords']) return #---------------------------------------------------- # test_NIHPublications: # Check to see whether the publications retrieved from the test NIH reponse data in test_response_2.txt # matches the number of publications shown in the website (which is 5). #---------------------------------------------------- def test_NIHPublications (self): with open('./tests/test_response_2.txt', 'r') as f: jsonData = json.loads(f.read()) record = self.generateRecord(jsonData) publications = {} for k in record: item = record[k] pubRecord = self.getPublications(item['appl_id']) publications.update(pubRecord) self.assertEquals(len(publications), 5) return #---------------------------------------------------- # test_PublicationsOfDatasets: # Check whether the publications retrieved from the NCBI eutils API for a known # dataset doi matches the result we found from a web search. #---------------------------------------------------- def test_PublicationsOfDatasets (self): pubData = self.getPublicationWithSearchTerm('"10.26275/DUZ8-MQ3N"') self.assertEquals(len(pubData), 1) for k in pubData: self.assertEquals(pubData[k]['title'], 'Computational analysis of mechanical stress in colonic diverticulosis') return #---------------------------------------------------- # test_getCitedBy: # Check whether we can retrieve citations of a given paper #---------------------------------------------------- def test_getCitedBy (self): # Check whether we can retrieve citations of a pm_id records = self.getCitedBy('pm_id', '32265489') self.assertEquals(len(records), 1) for k in records: self.assertEquals(records[k]['title'], 'Mechanotransduction in gastrointestinal smooth muscle cells: role of mechanosensitive ion channels') # Check whether we can retrieve citations of a pmc_id records = self.getCitedBy('pmc_id', '7138845') self.assertEquals(len(records), 1) for k in records: self.assertEquals(records[k]['title'], 'Mechanotransduction in gastrointestinal smooth muscle cells: role of mechanosensitive ion channels') return if __name__ == '__main__': unittest.main()
StarcoderdataPython
159769
<filename>reviewboard/accounts/tests/test_privacy_form.py """Unit tests for reviewboard.accounts.forms.pages.PrivacyForm.""" from __future__ import unicode_literals from django.contrib.auth.models import User from django.test.client import RequestFactory from reviewboard.accounts.forms.pages import PrivacyForm from reviewboard.accounts.pages import PrivacyPage from reviewboard.accounts.views import MyAccountView from reviewboard.testing import TestCase class PrivacyFormTests(TestCase): """Unit tests for reviewboard.accounts.forms.pages.PrivacyForm.""" def setUp(self): super(PrivacyFormTests, self).setUp() self.user = User.objects.create(username='test-user') self.request = RequestFactory().get('/account/preferences/') self.request.user = self.user self.page = PrivacyPage(config_view=MyAccountView(), request=self.request, user=self.user) def test_init_with_privacy_enable_user_consent_true(self): """Testing PrivacyForm with privacy_enable_user_consent=True""" with self.siteconfig_settings({'privacy_enable_user_consent': True}): form = PrivacyForm(page=self.page, request=self.request, user=self.user) self.assertIn('consent', form.fields) self.assertEqual(form.save_label, 'Save') def test_init_with_privacy_enable_user_consent_false(self): """Testing PrivacyForm with privacy_enable_user_consent=False""" with self.siteconfig_settings({'privacy_enable_user_consent': False}): form = PrivacyForm(page=self.page, request=self.request, user=self.user) self.assertNotIn('consent', form.fields) self.assertIsNone(form.save_label) def test_is_visible_with_no_privacy(self): """Testing PrivacyForm.is_visible with no privacy details""" settings = { 'privacy_enable_user_consent': False, 'privacy_info_html': '', } with self.siteconfig_settings(settings): form = PrivacyForm(page=self.page, request=self.request, user=self.user) self.assertFalse(form.is_visible()) def test_is_visible_with_consent(self): """Testing PrivacyForm.is_visible with consent option enabled""" settings = { 'privacy_enable_user_consent': True, 'privacy_info_html': '', } with self.siteconfig_settings(settings): form = PrivacyForm(page=self.page, request=self.request, user=self.user) self.assertTrue(form.is_visible()) def test_is_visible_with_privacy_info(self): """Testing PrivacyForm.is_visible with privacy_info_html set""" settings = { 'privacy_enable_user_consent': False, 'privacy_info_html': 'Test.', } with self.siteconfig_settings(settings): form = PrivacyForm(page=self.page, request=self.request, user=self.user) self.assertTrue(form.is_visible())
StarcoderdataPython
1664122
<gh_stars>0 from django.shortcuts import render, redirect, get_object_or_404 from rezerwacje.models import Rezerwacja from .forms import RezerwacjaForm from django.utils import timezone import json def index(request): res = Rezerwacja.objects.all() days = [[], [], [], []] for r in res: if r.data_przyjazdu.month == 6: start_end = [] start_end.append(r.data_przyjazdu.day) start_end.append(r.data_wyjazdu.day) days[0].append(start_end) elif r.data_przyjazdu.month == 7: start_end = [] start_end.append(r.data_przyjazdu.day) start_end.append(r.data_wyjazdu.day) days[1].append(start_end) elif r.data_przyjazdu.month == 8: start_end = [] start_end.append(r.data_przyjazdu.day) start_end.append(r.data_wyjazdu.day) days[2].append(start_end) else: start_end = [] start_end.append(r.data_przyjazdu.day) start_end.append(r.data_wyjazdu.day) days[3].append(start_end) day_list = json.dumps(days) if request.method == 'POST': form = RezerwacjaForm(request.POST) if form.is_valid(): date_from = form.cleaned_data['data_przyjazdu'] date_to = form.cleaned_data['data_wyjazdu'] if date_to > timezone.now().date() and date_from > timezone.now().date() and date_to > date_from: form.save() cd = form.cleaned_data reservation = get_object_or_404(Rezerwacja, imię=cd['imię'], nazwisko=cd['nazwisko'], email=cd['email'], wiadomość=cd['wiadomość']) return render(request, 'views/reservation_confirm.html', {'reservation': reservation}) else: message = 'Podano błędne daty' return render(request, 'views/reservation_index.html', {'form': form, 'message': message}) else: message = 'Formularz wypełniono błędnie.' return render(request, 'views/reservation_index.html', {'form': form, 'message': message}) else: form = RezerwacjaForm() return render(request, 'views/reservation_index.html', {'form': form, 'day_list': day_list})
StarcoderdataPython
9645193
<gh_stars>1-10 # -*- coding: utf-8 -*- """Grammar definition for C files.""" from __future__ import annotations import logging from typing import Generator from pyparsing import * from ..abstract_grammar import AbstractGrammar class Grammar(AbstractGrammar): """Grammar definition for C files.""" logger = logging.getLogger('taintalyzing') def __init__(self, file_): """Constructor for a grammar object. Parameters ---------- file_ : InputFile The file to parse """ super().__init__(file_) ParserElement.enablePackrat() # Helpers self.attribute_separator = oneOf('. ->') self.ident = Word(alphas, alphanums + '_') self.ident = Combine(ZeroOrMore(self.ident + self.attribute_separator)('object_name*') + self.ident('ident*')) self.vartype = Suppress(Combine(Optional(oneOf('signed unsigned')) + self.ident + Optional(Word('*')), adjacent=False)) self.array_index = '[' + Word(nums) + ']' self.rvalue = Forward() self.func_call = Forward() self.operators = Suppress(oneOf('|| && | & ^ . -> + - * / % << >> == != < <= > >=')) self.expression = Group(self.rvalue + ZeroOrMore(self.operators + self.rvalue | self.func_call)) self.expression |= Group(self.func_call + ZeroOrMore(self.operators + (self.rvalue | self.func_call))) self.stmt = Forward() # Function calls self.param_list = Optional(delimitedList(self.expression)) self.func_call << self.ident('name') + Suppress('(') + self.param_list('args') + \ Suppress(')') # Control structures -> increase edge count self.control_structures = ((Keyword('case') + self.expression + ':') | (Keyword('default') + ':') | (Keyword('while') + '(' + self.expression + ')') | (Keyword('for') + '(' + Optional(self.expression) + ';' + Optional(self.expression) + ';' + Optional(self.expression) + ')') | (Keyword('goto') + self.ident))('control_structure') # Mutually exclusive combinations: else if-else if, else if-else, else-if, if-else if, if-else, if, # else self.mutually_exclusive_helper_expr = Suppress('(') + self.expression + Suppress(')') self.mutually_exclusive_helper_body = Suppress('{') + ZeroOrMore(self.stmt) + Suppress('}') self.mutually_exclusive_helper_body |= self.stmt self.mutually_exclusive = (Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body))('alternative') self.mutually_exclusive |= (Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else') + self.mutually_exclusive_helper_body))('alternative') self.mutually_exclusive |= (Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body)('alternative') self.mutually_exclusive |= (Keyword('if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body)) self.mutually_exclusive |= (Keyword('if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body + FollowedBy( Keyword('else') + self.mutually_exclusive_helper_body)) self.mutually_exclusive |= (Keyword('if') + self.mutually_exclusive_helper_expr + self.mutually_exclusive_helper_body) self.mutually_exclusive |= (Keyword('else') + self.mutually_exclusive_helper_body)('alternative-end') # Function body self.prototype = Forward() self.func_body = Group(OneOrMore(Group(SkipTo(self.stmt | self.control_structures, failOn=self.prototype, include=True)))) # Assignments self.assignment = self.ident('lvalue') + Optional(self.array_index) + \ Suppress(oneOf('= -= += ^= &= |= *= %= /=')) + self.expression('expression') self.assignment |= self.vartype + self.assignment # Return self.return_ = Suppress(Keyword('return')) + self.rvalue('return_value') # Statements self.stmt << (self.func_call('func_call') | self.assignment('assignment') | self.return_('return')) + Suppress(';') self.rvalue << (self.func_call | self.ident + Optional(self.array_index) | Word(nums) | quotedString) # Function definitions self.arg_list = Optional(delimitedList(Group(self.vartype + self.ident('name') + Suppress(ZeroOrMore('[]'))))) self.prototype << self.vartype('type') + self.ident('name') + Suppress('(') + \ self.arg_list('args') + Suppress(')') self.func_def = self.prototype + Suppress('{') + self.func_body('body') + Suppress('}') self.func_def.ignore(cppStyleComment) def get_statement_count(self, start: int, end: int) -> int: """Return the number of statements between `start` and `end`. Statements are all lines that have an actual effect on the program flow, e.g. method calls or loops. Parameters ---------- start : int The start column end : int The end column Returns ------- int The number of statements between `start` and `end`. """ return len(list(self.control_structures.scanString(self.file_contents[start:end]))) + \ len(list(self.mutually_exclusive.scanString(self.file_contents[start:end]))) + \ len(list(self.stmt.scanString(self.file_contents[start:end]))) def get_edge_count(self, start: int, end: int) -> int: """Return the edge count between `start` and `end`. Edges are all statements that can branch into two paths, e.g. loops, conditions etc. Parameters ---------- start : int Start column end : int End column Returns ------- int The edge count between `start` and `end`. """ # Loops have three edges: Going into the loop, skipping the loop and returning from the last # position in the loop to the start of the loop # Mutually exclusive blocks have two edges, entering or not entering them return len(list(self.control_structures.scanString(self.file_contents[start:end]))) * 3 + \ len(list(self.mutually_exclusive.scanString(self.file_contents[start:end]))) * 2 + \ len(list(self.stmt.scanString(self.file_contents[start:end]))) def get_mutually_exclusive_positions(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for all mutually exclusive positions from `start` to `end`. That is return the start and end position for all the statements where a mutually exclusive block begins and where it ends. Parameters ---------- start : int The start column end : int The end column Returns ------- Generator Generator for all mutually exclusive paths from `start` to `end`. """ return self.mutually_exclusive.scanString(self.file_contents[start:end]) def get_method_definitions(self) -> Generator[list, None, None]: """Return a generator for all methods with their bodies. Returns ------- Generator Generator for all function definitions with their bodies """ return self.func_def.scanString(self.file_contents) def get_method_calls(self, start, end) -> Generator[list, None, None]: """Return a generator for all function calls between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all function calls """ return self.func_call.scanString(self.file_contents[start:end]) def get_parameters(self, start: int, end: int) -> dict: """Return a dictionary of all parameters between `start` and `end` with their default value. Parameters ---------- start : int Start column end : int End column Returns ------- dict Dictionary with parameter: default value """ try: args = self.prototype.parseString(self.file_contents[start:end]).get('args', []) parameters = dict() for parameter in args: parameters[parameter['name']] = None # There are no default values in C return parameters except ParseException: Grammar.logger.error('Tried to parse parameters in "{file}", but no match at start ' 'column {start}.', file=self.file_.path, start=start) def get_declarations(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for variable declarations between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all declarations """ declarations = Suppress(self.ident) + self.ident + Suppress(Optional(self.array_index)) + \ Suppress(';') return declarations.scanString(self.file_contents[start:end]) def get_global_variables(self) -> list: """Return a list of all global variables. Returns ------- list List of all global variables """ # First step: Find all the functions func_defs = self.get_method_definitions() func_defs_positions = [(function[1], function[2]) for function in func_defs] # Second step: Globals are by definition outside of functions start = -1 outside_func_defs = [] for position in func_defs_positions: outside_func_defs.append([start + 1, position[0] - 1 if position[0] > 0 else 0]) start = position[1] if start + 1 <= len(self.file_contents): outside_func_defs.append([start + 1, len(self.file_contents)]) # Third step: Find declarations and assignments in these regions globals_ = list() for start, end in outside_func_defs: assignments = list(self.get_assignments(start, end)) assignments = [assignment[0] for assignment in assignments] globals_.extend(assignments) globals_.extend(list(self.get_declarations(start, end))) return globals_ def get_assignments(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for all assignments betweeen `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all assignments """ return self.assignment.scanString(self.file_contents[start:end]) def get_control_structures(self, start: int, end: int) -> Generator[list, None, None]: """Return a generator for all control structures between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all control structures """ return self.control_structures.scanString(self.file_contents[start:end]) def get_returns(self, start, end) -> Generator[list, None, None]: """Return a generator for all return values between `start` and `end`. Parameters ---------- start : int Start column end : int End column Returns ------- Generator Generator for all return values """ return self.return_.scanString(self.file_contents[start:end])
StarcoderdataPython
4963982
# engineer_number module # # Copyright (c) 2012-2017 梅濁酒(umedoblock) # # This software is released under the MIT License. # https://github.com/umedoblock/engineer_number import os import sys import unittest from test import support sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", "..")) from engineer_number import * from engineer_number.constants import * from engineer_number.lib import get_resistors, make_all_combinations, close_values class TestEngineerNumberUtil(unittest.TestCase): def test_make_all_combinations(self): exponent10s = range(ONE, MEGA + 1) combs = make_all_combinations("E12", exponent10s) tup_combs = tuple(str(x) for x in combs) expected = ( "1.000", "1.200", "1.500", "1.800", "2.200", "2.700", "3.300", "3.900", "4.700", "5.600", "6.800", "8.200", "10.000", "12.000", "15.000", "18.000", "22.000", "27.000", "33.000", "39.000", "47.000", "56.000", "68.000", "82.000", "100.000", "120.000", "150.000", "180.000", "220.000", "270.000", "330.000", "390.000", "470.000", "560.000", "680.000", "820.000", "1.000k", "1.200k", "1.500k", "1.800k", "2.200k", "2.700k", "3.300k", "3.900k", "4.700k", "5.600k", "6.800k", "8.200k", "10.000k", "12.000k", "15.000k", "18.000k", "22.000k", "27.000k", "33.000k", "39.000k", "47.000k", "56.000k", "68.000k", "82.000k", "100.000k", "120.000k", "150.000k", "180.000k", "220.000k", "270.000k", "330.000k", "390.000k", "470.000k", "560.000k", "680.000k", "820.000k", "1.000M", "1.200M", "1.500M", "1.800M", "2.200M", "2.700M", "3.300M", "3.900M", "4.700M", "5.600M", "6.800M", "8.200M") for x in combs: self.assertIsInstance(x, EngineerNumber) self.assertEqual(expected, tup_combs) def test_make_resistors(self): resistors = get_resistors("E12", ORDERS_RESISTOR) resistors_ = tuple(str(x) for x in resistors) expected = ( "1.000", "1.200", "1.500", "1.800", "2.200", "2.700", "3.300", "3.900", "4.700", "5.600", "6.800", "8.200", "10.000", "12.000", "15.000", "18.000", "22.000", "27.000", "33.000", "39.000", "47.000", "56.000", "68.000", "82.000", "100.000", "120.000", "150.000", "180.000", "220.000", "270.000", "330.000", "390.000", "470.000", "560.000", "680.000", "820.000", "1.000k", "1.200k", "1.500k", "1.800k", "2.200k", "2.700k", "3.300k", "3.900k", "4.700k", "5.600k", "6.800k", "8.200k", "10.000k", "12.000k", "15.000k", "18.000k", "22.000k", "27.000k", "33.000k", "39.000k", "47.000k", "56.000k", "68.000k", "82.000k", "100.000k", "120.000k", "150.000k", "180.000k", "220.000k", "270.000k", "330.000k", "390.000k", "470.000k", "560.000k", "680.000k", "820.000k", "1.000M", "1.200M", "1.500M", "1.800M", "2.200M", "2.700M", "3.300M", "3.900M", "4.700M", "5.600M", "6.800M", "8.200M", "10.000M") for x in resistors: self.assertIsInstance(x, EngineerNumber) self.assertEqual(expected, resistors_) def test_close_values_eq_up(self): resistors = get_resistors("E24", ORDERS_RESISTOR) k15 = EngineerNumber(15, 3) self.assertEqual(EngineerNumber(15, 3), close_values(k15, "up", resistors)) def test_close_values_eq_down(self): resistors = get_resistors("E24", ORDERS_RESISTOR) k15 = EngineerNumber(15, 3) self.assertEqual(EngineerNumber(15, 3), close_values(k15, "down", resistors)) def test_close_values_same_exponent(self): k47 = EngineerNumber(47, 3) k50 = EngineerNumber(50, 3) k56 = EngineerNumber(56, 3) resistors = get_resistors("E12", ORDERS_RESISTOR) self.assertEqual(k56, close_values(k50, "up", resistors)) self.assertEqual(k47, close_values(k50, "down", resistors)) def test_close_values_transfer_next_exponent(self): resistors = get_resistors("E12", ORDERS_RESISTOR) r83 = EngineerNumber(8.3, 1) r100 = EngineerNumber(1.0, 2) self.assertEqual(r100, close_values(r83, "up", resistors)) k094 = EngineerNumber(0.94, 3) r820 = EngineerNumber(8.2, 2) self.assertEqual(r820, close_values(k094, "down", resistors)) def test_close_values_out_of_range(self): resistors = get_resistors("E12", ORDERS_RESISTOR) r0_9 = EngineerNumber(0.9, ONE) M101 = EngineerNumber(10.1, MEGA) self.assertIsNone(close_values(r0_9, "down", resistors)) self.assertIsNone(close_values(M101, "up", resistors)) def test_close_values_at_limit(self): resistors = get_resistors("E12", ORDERS_RESISTOR) r0_9 = EngineerNumber(0.9, ONE) M101 = EngineerNumber(10.1, MEGA) self.assertEqual(EngineerNumber(1), close_values(r0_9, "up", resistors)) self.assertEqual(EngineerNumber("10M"), close_values(M101, "down", resistors)) if __name__ == "__main__": unittest.main()
StarcoderdataPython
3387646
<filename>fairseq/models/retrosys.py from argparse import ArgumentParser, ArgumentTypeError, ArgumentError, Namespace from dataclasses import dataclass, _MISSING_TYPE, MISSING from enum import Enum from fairseq.modules.multihead_attention import MultiheadAttention from fairseq.models.transformer import Embedding, TransformerDecoder, TransformerEncoder from fairseq.dataclass.utils import interpret_dc_type, eval_str_list, gen_parser_from_dataclass import inspect from fairseq.dataclass.configs import FairseqDataclass from fairseq.tasks import register_task import math from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn as nn from fairseq import utils from fairseq.distributed import fsdp_wrap from fairseq.models import ( FairseqEncoder, FairseqEncoderDecoderModel, FairseqIncrementalDecoder, register_model, register_model_architecture, ) from fairseq.modules import ( AdaptiveSoftmax, BaseLayer, FairseqDropout, LayerDropModuleList, LayerNorm, PositionalEmbedding, SinusoidalPositionalEmbedding, TransformerDecoderLayer, TransformerEncoderLayer, ) from fairseq.modules.quant_noise import quant_noise from fairseq.modules.checkpoint_activations import checkpoint_wrapper from torch import Tensor from fairseq.models.doublemodel import DoubleModel from random import uniform from fairseq.modules import GradMultiply DEFAULT_MAX_SOURCE_POSITIONS = 1024 DEFAULT_MAX_TARGET_POSITIONS = 1024 DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) def gen_plm_parser_from_dataclass( parser: ArgumentParser, dataclass_instance: FairseqDataclass, delete_default: bool = False ) -> None: def argparse_name(name: str): if name == "data": return name if name == "_name": return None return "--plm-" + name.replace("_", "-") def get_kwargs_from_dc(dataclass_instance: FairseqDataclass, k: str) -> Dict[str, Any]: kwargs = {} field_type = dataclass_instance._get_type(k) inter_type = interpret_dc_type(field_type) field_default = dataclass_instance._get_default(k) if isinstance(inter_type, type) and issubclass(inter_type, Enum): field_choices = [t.value for t in list(inter_type)] else: field_choices = None field_help = dataclass_instance._get_help(k) field_const = dataclass_instance._get_argparse_const(k) if isinstance(field_default, str) and field_default.startswith("${"): kwargs["default"] = field_default else: if field_default is MISSING: kwargs["required"] = True if field_choices is not None: kwargs["choices"] = field_choices if ( isinstance(inter_type, type) and (issubclass(inter_type, List) or issubclass(inter_type, Tuple)) ) or ("List" in str(inter_type) or "Tuple" in str(inter_type)): if "int" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, int) elif "float" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, float) elif "str" in str(inter_type): kwargs["type"] = lambda x: eval_str_list(x, str) else: raise NotImplementedError( "parsing of type " + str(inter_type) + " is not implemented" ) if field_default is not MISSING: kwargs["default"] = ( ",".join(map(str, field_default)) if field_default is not None else None ) elif (isinstance(inter_type, type) and issubclass(inter_type, Enum)) or "Enum" in str( inter_type ): kwargs["type"] = str if field_default is not MISSING: if isinstance(field_default, Enum): kwargs["default"] = field_default.value else: kwargs["default"] = field_default elif inter_type is bool: kwargs["action"] = "store_false" if field_default is True else "store_true" kwargs["default"] = field_default else: kwargs["type"] = inter_type if field_default is not MISSING: kwargs["default"] = field_default kwargs["help"] = field_help if field_const is not None: kwargs["const"] = field_const kwargs["nargs"] = "?" return kwargs for k in dataclass_instance._get_all_attributes(): field_name = argparse_name(dataclass_instance._get_name(k)) field_type = dataclass_instance._get_type(k) if field_name is None: continue elif inspect.isclass(field_type) and issubclass(field_type, FairseqDataclass): gen_parser_from_dataclass(parser, field_type(), delete_default) continue kwargs = get_kwargs_from_dc(dataclass_instance, k) field_args = [field_name] alias = dataclass_instance._get_argparse_alias(k) if alias is not None: field_args.append(alias) if "default" in kwargs: if isinstance(kwargs["default"], str) and kwargs["default"].startswith("${"): if kwargs["help"] is None: # this is a field with a name that will be added elsewhere continue else: del kwargs["default"] if delete_default and "default" in kwargs: del kwargs["default"] try: parser.add_argument(*field_args, **kwargs) except ArgumentError: pass def gen_plm_args(args: Namespace) -> Namespace: kwargs = {} for k, v in vars(args).items(): if k.startswith("plm_"): kwargs[k[len("plm_") :]] = v return Namespace(**kwargs) @register_model("retrosys") class RetroSysModel(FairseqEncoderDecoderModel): def __init__(self, args, encoder, decoder): super().__init__(encoder, decoder) self.args = args self.supports_align_args = True @staticmethod def add_args(parser: ArgumentParser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument('--activation-fn', choices=utils.get_available_activation_fns(), help='activation function to use') parser.add_argument('--dropout', type=float, metavar='D', help='dropout probability') parser.add_argument('--attention-dropout', type=float, metavar='D', help='dropout probability for attention weights') parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', help='dropout probability after activation in FFN.') parser.add_argument('--encoder-embed-path', type=str, metavar='STR', help='path to pre-trained encoder embedding') parser.add_argument('--encoder-embed-dim', type=int, metavar='N', help='encoder embedding dimension') parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', help='encoder embedding dimension for FFN') parser.add_argument('--encoder-layers', type=int, metavar='N', help='num encoder layers') parser.add_argument('--encoder-attention-heads', type=int, metavar='N', help='num encoder attention heads') parser.add_argument('--encoder-normalize-before', action='store_true', help='apply layernorm before each encoder block') parser.add_argument('--encoder-learned-pos', action='store_true', help='use learned positional embeddings in the encoder') parser.add_argument('--decoder-embed-path', type=str, metavar='STR', help='path to pre-trained decoder embedding') parser.add_argument('--decoder-embed-dim', type=int, metavar='N', help='decoder embedding dimension') parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', help='decoder embedding dimension for FFN') parser.add_argument('--decoder-layers', type=int, metavar='N', help='num decoder layers') parser.add_argument('--decoder-attention-heads', type=int, metavar='N', help='num decoder attention heads') parser.add_argument('--decoder-learned-pos', action='store_true', help='use learned positional embeddings in the decoder') parser.add_argument('--decoder-normalize-before', action='store_true', help='apply layernorm before each decoder block') parser.add_argument('--decoder-output-dim', type=int, metavar='N', help='decoder output dimension (extra linear layer ' 'if different from decoder embed dim') parser.add_argument('--share-decoder-input-output-embed', action='store_true', help='share decoder input and output embeddings') parser.add_argument('--share-all-embeddings', action='store_true', help='share encoder, decoder and output embeddings' ' (requires shared dictionary and embed dim)') parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', help='if set, disables positional embeddings (outside self attention)') parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', help='comma separated list of adaptive softmax cutoff points. ' 'Must be used with adaptive_loss criterion'), parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', help='sets adaptive softmax dropout for the tail projections') parser.add_argument('--layernorm-embedding', action='store_true', help='add layernorm to embedding') parser.add_argument('--no-scale-embedding', action='store_true', help='if True, dont scale embeddings') parser.add_argument('--checkpoint-activations', action='store_true', help='checkpoint activations at each layer, which saves GPU ' 'memory usage at the cost of some additional compute') parser.add_argument( '--offload-activations', action='store_true', help= 'checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.' ) # args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) parser.add_argument('--no-cross-attention', default=False, action='store_true', help='do not perform cross-attention') parser.add_argument('--cross-self-attention', default=False, action='store_true', help='perform cross+self-attention') # args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for encoder') parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, help='LayerDrop probability for decoder') parser.add_argument('--encoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') parser.add_argument('--decoder-layers-to-keep', default=None, help='which layers to *keep* when pruning as a comma-separated list') # args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, help='iterative PQ quantization noise at training time') parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, help='block size of quantization noise at training time') parser.add_argument( '--quant-noise-scalar', type=float, metavar='D', default=0, help='scalar quantization noise and scalar quantization at training time') # args for Fully Sharded Data Parallel (FSDP) training parser.add_argument( '--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, help=('minimum number of params for a layer to be wrapped with FSDP() when ' 'training with --ddp-backend=fully_sharded. Smaller values will ' 'improve memory efficiency, but may make torch.distributed ' 'communication less efficient due to smaller input sizes. This option ' 'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' '--offload-activations are passed.')) # args for doublemodel from fairseq.models.doublemodel import DoubleModelConfig gen_plm_parser_from_dataclass(parser, DoubleModelConfig()) # args for bertnmt parser.add_argument( "--dropnet", type=float, default=0 ) parser.add_argument( "--gradmultiply", type=float, default=1. ) parser.add_argument( "--finetune-plm", action="store_true", default=False ) parser.add_argument( "--plm-grad", type=float, default=None ) parser.add_argument( "--from-scratch", action='store_true', default=False ) parser.add_argument( "--plm-as-encoder", action="store_true", default=False ) # fmt: on def load_state_dict(self, state_dict, strict=True, model_cfg=None, args=None): keys_to_delete = [] cur_state = self.state_dict() for k in state_dict.keys(): if k.startswith("encoder.plm_encoder.projection_heads") or k.startswith( "encoder.plm_encoder.prediction_heads" ): keys_to_delete.append(k) for k in keys_to_delete: del state_dict[k] for k in cur_state.keys(): if k.startswith("encoder.plm_encoder.projection_heads") or k.startswith( "encoder.plm_encoder.prediction_heads" ): state_dict[k] = cur_state[k] if "plm_attn" in k: state_dict[k] = cur_state[k] elif self.args.from_scratch and not k.startswith("encoder.plm_encoder"): state_dict[k] = cur_state[k] super().load_state_dict(state_dict, strict=strict, model_cfg=model_cfg, args=args) @classmethod def build_model(cls, args, task): base_architecture(args) if args.encoder_layers_to_keep: args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) if args.decoder_layers_to_keep: args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) if getattr(args, "max_source_positions", None) is None: args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS if getattr(args, "max_target_positions", None) is None: args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS src_dict, tgt_dict = task.source_dictionary, task.target_dictionary if args.share_all_embeddings: if src_dict != tgt_dict: raise ValueError("--share-all-embeddings requires a joined dictionary") if args.encoder_embed_dim != args.decoder_embed_dim: raise ValueError( "--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" ) if args.decoder_embed_path and (args.decoder_embed_path != args.encoder_embed_path): raise ValueError("--share-all-embeddings not compatible with --decoder-embed-path") encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = encoder_embed_tokens args.share_decoder_input_output_embed = True else: encoder_embed_tokens = cls.build_embedding( args, src_dict, args.encoder_embed_dim, args.encoder_embed_path ) decoder_embed_tokens = cls.build_embedding( args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path ) if getattr(args, "offload_activations", False): args.checkpoint_activations = True # offloading implies checkpointing args_new = gen_plm_args(args) task_new = Namespace(source_dictionary=task.plm_dict) plm = DoubleModel.build_model(args_new, task_new) encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens, plm) decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) if not args.share_all_embeddings: min_params_to_wrap = getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) # fsdp_wrap is a no-op when --ddp-backend != fully_sharded encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) # plm = fsdp_wrap(plm, min_num_params=min_params_to_wrap) return cls(args, encoder, decoder) @classmethod def build_embedding(cls, args, dictionary, embed_dim, path=None): num_embeddings = len(dictionary) padding_idx = dictionary.pad() emb = Embedding(num_embeddings, embed_dim, padding_idx) if path: embed_dict = utils.parse_embedding(path) utils.load_embedding(embed_dict, dictionary, emb) return emb @classmethod def build_encoder(cls, args, src_dict, embed_tokens, plm_encoder): return Encoder(args, src_dict, embed_tokens, plm_encoder) @classmethod def build_decoder(cls, args, tgt_dict, embed_tokens): return Decoder( args, tgt_dict, embed_tokens, no_encoder_attn=getattr(args, "no_cross_attention", False), ) def forward( self, src_tokens, src_lengths, prev_output_tokens, plm_input, return_all_hiddens: bool = True, features_only: bool = False, alignment_layer: Optional[int] = None, alignment_heads: Optional[int] = None, ): encoder_out = self.encoder( src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, plm_input=plm_input, ) decoder_out = self.decoder( prev_output_tokens, encoder_out=encoder_out, features_only=features_only, alignment_layer=alignment_layer, alignment_heads=alignment_heads, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens, ) return decoder_out @torch.jit.export def get_normalized_probs( self, net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], log_probs: bool, sample: Optional[Dict[str, Tensor]] = None, ): """Get normalized probabilities (or log probs) from a net's output.""" return self.get_normalized_probs_scriptable(net_output, log_probs, sample) class Encoder(TransformerEncoder): def __init__(self, args, src_dict, embed_tokens, plm_encoder): super().__init__(args, src_dict, embed_tokens) self.plm_encoder = plm_encoder self.finetune_plm = getattr(args, "finetune_plm", False) if not self.finetune_plm: for p in self.plm_encoder.parameters(): p.requires_grad = False else: for n, p in self.plm_encoder.named_parameters(): if n.startswith("prediction_heads") or n.startswith("projection_heads"): p.requires_grad = False if n.startswith("encoder0.lm_head"): p.requires_grad = False if n.startswith("encoder1"): p.requires_grad = False self.gradmultiply = getattr(args, "plm_grad", None) if self.gradmultiply is None: self.gradmultiply = 1 / getattr(args, "gradmultiply", 1.) def build_encoder_layer(self, args): layer = EncoderLayer(args) checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer def forward( self, src_tokens, plm_input=None, src_lengths: Optional[torch.Tensor] = None, return_all_hiddens: bool = False, token_embeddings: Optional[torch.Tensor] = None, ): plm_input = plm_input["net_input0"]["src_tokens"] return self.forward_scriptable( src_tokens, plm_input, src_lengths, return_all_hiddens, token_embeddings, ) def forward_scriptable( self, src_tokens, plm_input: Optional[torch.Tensor], src_lengths: Optional[torch.Tensor], return_all_hiddens: bool, token_embeddings: Optional[torch.Tensor], ): plm_out = self.plm_encoder.forward_retrosys(plm_input) if self.finetune_plm: plm_out["encoder_out"][0] = GradMultiply.apply(plm_out["encoder_out"][0], self.gradmultiply) encoder_padding_mask = src_tokens.eq(self.padding_idx) has_pads = src_tokens.device.type == "xla" or encoder_padding_mask.any() x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings) if has_pads: x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = [] if return_all_hiddens: encoder_states.append(x) if plm_out is not None: plm_padding_mask = plm_out["encoder_padding_mask"][0] plm_out = plm_out["encoder_out"][0] plm_has_pads = plm_out.device.type == "xla" or plm_padding_mask.any() # encoder layers for layer in self.layers: x = layer( x, encoder_padding_mask=encoder_padding_mask if has_pads else None, plm_out=plm_out, plm_padding_mask=plm_padding_mask if plm_has_pads else None, ) if return_all_hiddens: assert encoder_states is not None encoder_states.append(x) if self.layer_norm is not None: x = self.layer_norm(x) # The Pytorch Mobile lite interpreter does not supports returning NamedTuple in # `forward` so we use a dictionary instead. # TorchScript does not support mixed values so the values are all lists. # The empty list is equivalent to None. return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [encoder_padding_mask], # B x T "plm_out": [plm_out], # T x B x C "plm_padding_mask": [plm_padding_mask], # B x T "encoder_embedding": [encoder_embedding], # B x T x C "encoder_states": encoder_states, # List[T x B x C] "src_tokens": [], "src_lengths": [], } @torch.jit.export def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): new_encoder_out = super().reorder_encoder_out(encoder_out, new_order) if len(encoder_out["plm_out"]) == 0: new_plm_out = [] else: new_plm_out = [encoder_out["plm_out"][0].index_select(1, new_order)] if len(encoder_out["plm_padding_mask"]) == 0: new_plm_paddding_mask = [] else: new_plm_paddding_mask = [encoder_out["plm_padding_mask"][0].index_select(0, new_order)] new_encoder_out.update({"plm_out": new_plm_out, "plm_padding_mask": new_plm_paddding_mask}) return new_encoder_out class Decoder(TransformerDecoder): def extract_features_scriptable( self, prev_output_tokens, encoder_out: Optional[Dict[str, List[Tensor]]], incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], full_context_alignment: bool, alignment_layer: Optional[int], alignment_heads: Optional[int], ): bs, slen = prev_output_tokens.size() if alignment_layer is None: alignment_layer = self.num_layers - 1 enc: Optional[Tensor] = None padding_mask: Optional[Tensor] = None plm: Optional[Tensor] = None plm_padding_mask: Optional[Tensor] = None if encoder_out is not None: enc = encoder_out["encoder_out"][0] padding_mask = encoder_out["encoder_padding_mask"][0] assert enc.size()[1] == bs, f"Expected enc.shape == (t, {bs}, c) got {enc.shape}" plm = encoder_out["plm_out"][0] plm_padding_mask = encoder_out["plm_padding_mask"][0] assert plm.size()[1] == bs, f"Expected plm.shape == (t, {bs}, c) got {plm.shape}" positions = None if self.embed_positions is not None: positions = self.embed_positions( prev_output_tokens, incremental_state=incremental_state ) if incremental_state is not None: prev_output_tokens = prev_output_tokens[:, -1:] if positions is not None: positions = positions[:, -1:] # embed tokens and positions x = self.embed_scale * self.embed_tokens(prev_output_tokens) if self.quant_noise is not None: x = self.quant_noise(x) if self.project_in_dim is not None: x = self.project_in_dim(x) if positions is not None: x += positions if self.layernorm_embedding is not None: x = self.layernorm_embedding(x) x = self.dropout_module(x) # B x T x C -> T x B x C x = x.transpose(0, 1) self_attn_padding_mask: Optional[Tensor] = None if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) # decoder layers attn: Optional[Tensor] = None inner_states: List[Optional[Tensor]] = [x] for idx, layer in enumerate(self.layers): if incremental_state is None and not full_context_alignment: self_attn_mask = self.buffered_future_mask(x) else: self_attn_mask = None x, layer_attn, _ = layer( x, enc, padding_mask, plm, plm_padding_mask, incremental_state, self_attn_mask=self_attn_mask, self_attn_padding_mask=self_attn_padding_mask, need_attn=bool((idx == alignment_layer)), need_head_weights=bool((idx == alignment_layer)), ) inner_states.append(x) if layer_attn is not None and idx == alignment_layer: attn = layer_attn.float().to(x) if attn is not None: if alignment_heads is not None: attn = attn[:alignment_heads] # average probabilities over heads attn = attn.mean(dim=0) if self.layer_norm is not None: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if self.project_out_dim is not None: x = self.project_out_dim(x) return x, {"attn": [attn], "inner_states": inner_states} def build_decoder_layer(self, args, no_encoder_attn=False): layer = DecoderLayer(args, no_encoder_attn=no_encoder_attn) checkpoint = getattr(args, "checkpoint_activations", False) if checkpoint: offload_to_cpu = getattr(args, "offload_activations", False) layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) # if we are checkpointing, enforce that FSDP always wraps the # checkpointed layer, regardless of layer size min_params_to_wrap = ( getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) if not checkpoint else 0 ) layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) return layer class EncoderLayer(nn.Module): def __init__(self, args): super().__init__() self.args = args self.embed_dim = args.encoder_embed_dim self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) or 8 self.self_attn = self.build_self_attention(self.embed_dim, args) self.plm_attn = self.build_encoder_plm_attention(self.embed_dim, args) self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.dropout_module = FairseqDropout(args.dropout, module_name=self.__class__.__name__) self.activation_fn = utils.get_activation_fn( activation=getattr(args, "activation_fn", "relu") or "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.encoder_normalize_before self.fc1 = self.build_fc1( self.embed_dim, args.encoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.encoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim) self.dropnet = getattr(args, "dropnet", 0.25) self.gradmultiply = getattr(args, "gradmultiply", 1.) self.plm_as_encoder = getattr(args, "plm_as_encoder", False) def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), p=q_noise, block_size=qn_block_size) def build_self_attention(self, embed_dim, args, add_bias_kv=False, add_zero_attn=False): return MultiheadAttention( embed_dim, args.encoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_encoder_plm_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.encoder_attention_heads, kdim=args.plm_encoder_embed_dim, vdim=args.plm_encoder_embed_dim, dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def residual_connection(self, x, residual): return residual + x def upgrade_state_dict_named(self, state_dict, name): layer_norm_map = {"0": "self_attn_layer_norm", "1": "final_layer_norm"} for old, new in layer_norm_map.items(): for m in ("weight", "bias"): k = "{}.layer_norms.{}.{}".format(name, old, m) if k in state_dict: state_dict["{}.{}.{}".format(name, new, m)] = state_dict[k] del state_dict[k] def get_ratio(self): if self.plm_as_encoder: return [0, 1] if self.dropnet > 0 and self.training: frand = float(uniform(0, 1)) if frand < self.dropnet: return [1, 0] elif frand > 1 - self.dropnet: return [0, 1] else: return [0.5, 0.5] else: return [0.5, 0.5] def forward( self, x, plm_out, encoder_padding_mask: Optional[Tensor], plm_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor] = None, ): if attn_mask is not None: attn_mask = attn_mask.masked_fill(attn_mask.to(torch.bool), -1e8) residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) x1, _ = self.self_attn( query=x, key=x, value=x, key_padding_mask=encoder_padding_mask, need_weights=False, attn_mask=attn_mask, ) x2, _ = self.plm_attn( query=x, key=plm_out, value=plm_out, key_padding_mask=plm_padding_mask, attn_mask=None ) x1 = self.dropout_module(x1) x2 = self.dropout_module(x2) x2 = GradMultiply.apply(x2, self.gradmultiply) dropnet = self.get_ratio() x = residual + dropnet[0] * x1 + dropnet[1] * x2 if not self.normalize_before: x = self.self_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) return x class DecoderLayer(nn.Module): def __init__(self, args, no_encoder_attn=False, add_bias_kv=False, add_zero_attn=False): super().__init__() self.embed_dim = args.decoder_embed_dim self.dropout_module = FairseqDropout(args.dropout, module_name=self.__class__.__name__) self.quant_noise = getattr(args, "quant_noise_pq", 0) self.quant_noise_block_size = getattr(args, "quant_noise_pq_block_size", 8) self.cross_self_attention = getattr(args, "cross_self_attention", False) self.self_attn = self.build_self_attention( self.embed_dim, args, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, ) self.plm_attn = self.build_decoder_plm_attention(self.embed_dim, args) self.activation_fn = utils.get_activation_fn( activation=str(args.activation_fn) if getattr(args, "activation_fn", None) is not None else "relu" ) activation_dropout_p = getattr(args, "activation_dropout", 0) or 0 if activation_dropout_p == 0: # for backwards compatibility with models that use args.relu_dropout activation_dropout_p = getattr(args, "relu_dropout", 0) or 0 self.activation_dropout_module = FairseqDropout( float(activation_dropout_p), module_name=self.__class__.__name__ ) self.normalize_before = args.decoder_normalize_before export = getattr(args, "char_inputs", False) self.self_attn_layer_norm = LayerNorm(self.embed_dim, export=export) if no_encoder_attn: self.encoder_attn = None self.encoder_attn_layer_norm = None else: self.encoder_attn = self.build_encoder_attention(self.embed_dim, args) self.encoder_attn_layer_norm = LayerNorm(self.embed_dim, export=export) self.fc1 = self.build_fc1( self.embed_dim, args.decoder_ffn_embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.fc2 = self.build_fc2( args.decoder_ffn_embed_dim, self.embed_dim, self.quant_noise, self.quant_noise_block_size, ) self.final_layer_norm = LayerNorm(self.embed_dim, export=export) self.need_attn = True self.onnx_trace = False self.dropnet = getattr(args, "dropnet", 0.25) self.gradmultiply = getattr(args, "gradmultiply", 1.) self.plm_as_encoder = getattr(args, "plm_as_encoder", False) def build_fc1(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_fc2(self, input_dim, output_dim, q_noise, qn_block_size): return quant_noise(nn.Linear(input_dim, output_dim), q_noise, qn_block_size) def build_self_attention(self, embed_dim, args, add_bias_kv=False, add_zero_attn=False): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, add_bias_kv=add_bias_kv, add_zero_attn=add_zero_attn, self_attention=not getattr(args, "cross_self_attention", False), q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_encoder_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, kdim=getattr(args, "encoder_embed_dim", None), vdim=getattr(args, "encoder_embed_dim", None), dropout=args.attention_dropout, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def build_decoder_plm_attention(self, embed_dim, args): return MultiheadAttention( embed_dim, args.decoder_attention_heads, dropout=args.attention_dropout, kdim=args.plm_encoder_embed_dim, vdim=args.plm_encoder_embed_dim, encoder_decoder_attention=True, q_noise=self.quant_noise, qn_block_size=self.quant_noise_block_size, ) def prepare_for_onnx_export_(self): self.onnx_trace = True def residual_connection(self, x, residual): return residual + x def make_generation_fast_(self, need_attn: bool = False, **kwargs): self.need_attn = need_attn def get_ratio(self): if self.plm_as_encoder: return [0, 1] if self.dropnet > 0 and self.training: frand = float(uniform(0, 1)) if frand < self.dropnet: return [1, 0] elif frand > 1 - self.dropnet: return [0, 1] else: return [0.5, 0.5] else: return [0.5, 0.5] def forward( self, x, encoder_out: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, plm_out: Optional[torch.Tensor] = None, plm_padding_mask: Optional[torch.Tensor] = None, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, prev_self_attn_state: Optional[List[torch.Tensor]] = None, prev_attn_state: Optional[List[torch.Tensor]] = None, self_attn_mask: Optional[torch.Tensor] = None, self_attn_padding_mask: Optional[torch.Tensor] = None, need_attn: bool = False, need_head_weights: bool = False, ): if need_head_weights: need_attn = True residual = x if self.normalize_before: x = self.self_attn_layer_norm(x) if prev_self_attn_state is not None: prev_key, prev_value = prev_self_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_self_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_self_attn_state[2] assert incremental_state is not None self.self_attn._set_input_buffer(incremental_state, saved_state) _self_attn_input_buffer = self.self_attn._get_input_buffer(incremental_state) if self.cross_self_attention and not ( incremental_state is not None and _self_attn_input_buffer is not None and "prev_key" in _self_attn_input_buffer ): if self_attn_mask is not None: assert encoder_out is not None self_attn_mask = torch.cat( (x.new_zeros(x.size(0), encoder_out.size(0)), self_attn_mask), dim=1 ) if self_attn_padding_mask is not None: if encoder_padding_mask is None: assert encoder_out is not None encoder_padding_mask = self_attn_padding_mask.new_zeros( encoder_out.size(1), encoder_out.size(0) ) self_attn_padding_mask = torch.cat( (encoder_padding_mask, self_attn_padding_mask), dim=1 ) assert encoder_out is not None y = torch.cat((encoder_out, x), dim=0) else: y = x x, attn = self.self_attn( query=x, key=y, value=y, key_padding_mask=self_attn_padding_mask, incremental_state=incremental_state, need_weights=False, attn_mask=self_attn_mask, ) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.self_attn_layer_norm(x) if self.encoder_attn is not None and encoder_out is not None: residual = x if self.normalize_before: x = self.encoder_attn_layer_norm(x) if prev_attn_state is not None: prev_key, prev_value = prev_attn_state[:2] saved_state: Dict[str, Optional[Tensor]] = { "prev_key": prev_key, "prev_value": prev_value, } if len(prev_attn_state) >= 3: saved_state["prev_key_padding_mask"] = prev_attn_state[2] assert incremental_state is not None self.encoder_attn._set_input_buffer(incremental_state, saved_state) x1, attn = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=need_attn or (not self.training and self.need_attn), need_head_weights=need_head_weights, ) x1 = self.dropout_module(x1) x2, _ = self.plm_attn( query=x, key=plm_out, value=plm_out, key_padding_mask=plm_padding_mask, incremental_state=incremental_state, static_kv=True, need_weights=False, need_head_weights=False, ) x2 = GradMultiply.apply(x2, self.gradmultiply) x2 = self.dropout_module(x2) dropnet = self.get_ratio() x = residual + dropnet[0] * x1 + dropnet[1] * x2 if not self.normalize_before: x = self.encoder_attn_layer_norm(x) residual = x if self.normalize_before: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = self.activation_dropout_module(x) x = self.fc2(x) x = self.dropout_module(x) x = self.residual_connection(x, residual) if not self.normalize_before: x = self.final_layer_norm(x) if self.onnx_trace and incremental_state is not None: saved_state = self.self_attn._get_input_buffer(incremental_state) assert saved_state is not None if self_attn_padding_mask is not None: self_attn_state = [ saved_state["prev_key"], saved_state["prev_value"], saved_state["prev_key_padding_mask"], ] else: self_attn_state = [saved_state["prev_key"], saved_state["prev_value"]] return x, attn, self_attn_state return x, attn, None @register_model_architecture("retrosys", "retrosys") def base_architecture(args): args.encoder_embed_path = getattr(args, "encoder_embed_path", None) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_layers = getattr(args, "encoder_layers", 6) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) args.decoder_embed_path = getattr(args, "decoder_embed_path", None) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim) args.decoder_layers = getattr(args, "decoder_layers", 6) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) args.attention_dropout = getattr(args, "attention_dropout", 0.0) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.activation_fn = getattr(args, "activation_fn", "relu") args.dropout = getattr(args, "dropout", 0.1) args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) args.share_decoder_input_output_embed = getattr(args, "share_decoder_input_output_embed", False) args.share_all_embeddings = getattr(args, "share_all_embeddings", False) args.no_token_positional_embeddings = getattr(args, "no_token_positional_embeddings", False) args.adaptive_input = getattr(args, "adaptive_input", False) args.no_cross_attention = getattr(args, "no_cross_attention", False) args.cross_self_attention = getattr(args, "cross_self_attention", False) args.decoder_output_dim = getattr(args, "decoder_output_dim", args.decoder_embed_dim) args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) args.no_scale_embedding = getattr(args, "no_scale_embedding", False) args.layernorm_embedding = getattr(args, "layernorm_embedding", False) args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) args.checkpoint_activations = getattr(args, "checkpoint_activations", False) args.offload_activations = getattr(args, "offload_activations", False) if args.offload_activations: args.checkpoint_activations = True args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) @register_model_architecture("retrosys", "transformer_iwslt_de_en_retrosys") def transformer_iwslt_de_en(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 1024) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4) args.encoder_layers = getattr(args, "encoder_layers", 6) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 1024) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4) args.decoder_layers = getattr(args, "decoder_layers", 6) base_architecture(args)
StarcoderdataPython
3480775
<filename>pysyrenn/frontend/tests/conv2d_layer.py """Tests the methods in conv2d_layer.py """ import numpy as np import torch from external.bazel_python.pytest_helper import main from pysyrenn.frontend.strided_window_data import StridedWindowData from pysyrenn.frontend.conv2d_layer import Conv2DLayer def test_compute(): """Tests that the Conv2D layer correctly computes a Conv2D. """ batch = 101 width = 32 height = 32 channels = 3 stride = (2, 2) pad = (0, 0) filter_height = 4 filter_width = 4 out_channels = 5 inputs = np.random.uniform(size=(101, height * width * channels)) # TODO(masotoud): use actual numbers for the filters and actually compute # true_outputs. filters = np.zeros(shape=(filter_height, filter_width, channels, out_channels)) biases = np.ones(shape=(out_channels)) # out height/width = (32 - 2) / 2 = 15 true_outputs = np.ones(shape=(batch, 15 * 15 * out_channels)) window_data = StridedWindowData((height, width, channels), (filter_height, filter_width), stride, pad, out_channels) conv2d_layer = Conv2DLayer(window_data, filters, biases) assert np.allclose(conv2d_layer.compute(inputs), true_outputs) assert np.allclose(conv2d_layer.compute(inputs, jacobian=True), np.zeros_like(true_outputs)) torch_inputs = torch.FloatTensor(inputs) torch_outputs = conv2d_layer.compute(torch_inputs).numpy() assert np.allclose(torch_outputs, true_outputs) def test_serialize(): """Tests Conv2D.{serialize, deserialize}.py. """ height, width, channels, out_channels = np.random.choice( [8, 16, 32, 64, 128], size=4) window_height, window_width = np.random.choice([2, 4, 8], size=2) pad = (0, 0) window_data = StridedWindowData((height, width, channels), (window_height, window_width), (window_height, window_width), pad, out_channels) filters = np.random.uniform(size=(window_height, window_width, channels, out_channels)) biases = np.random.uniform(size=(out_channels)) serialized = Conv2DLayer(window_data, filters, biases).serialize() assert serialized.WhichOneof("layer_data") == "conv2d_data" serialized_window_data = serialized.conv2d_data.window_data assert serialized_window_data.in_height == height assert serialized_window_data.in_width == width assert serialized_window_data.in_channels == channels assert serialized_window_data.window_height == window_height assert serialized_window_data.window_width == window_width assert serialized_window_data.stride_height == window_height assert serialized_window_data.stride_width == window_width assert serialized_window_data.pad_height == 0 assert serialized_window_data.pad_width == 0 assert serialized_window_data.out_channels == out_channels serialized_filters = np.array(serialized.conv2d_data.filters) assert np.allclose(serialized_filters.flatten(), filters.flatten()) serialized_biases = np.array(serialized.conv2d_data.biases) assert np.allclose(serialized_biases.flatten(), biases.flatten()) deserialized = Conv2DLayer.deserialize(serialized) assert deserialized.serialize() == serialized serialized.relu_data.SetInParent() assert Conv2DLayer.deserialize(serialized) is None main(__name__, __file__)
StarcoderdataPython
9686463
import numpy as np import matplotlib.gridspec as gridspec from matplotlib import pyplot as plt data_dict = pc._extract_powder_lines(fit_tth_tol=1.0) # %% sample plot to check fit line poistions ahead of fitting frows = int(np.ceil(np.sqrt(instr.num_panels))) fcols = int(np.floor(np.sqrt(instr.num_panels))) fig, ax = plt.subplots(frows, fcols) fig_row, fig_col = np.unravel_index(np.arange(instr.num_panels), (frows, fcols)) ifig = 0 for det_key, panel in instr.detectors.items(): all_pts = np.vstack(data_dict[det_key]) ''' pimg = equalize_adapthist( rescale_intensity(img_dict[det_key], out_range=(0, 1)), 10, clip_limit=0.2) ''' pimg = np.array(img_dict[det_key], dtype=float) # pimg[~panel.panel_buffer] = np.nan ax[fig_row[ifig], fig_col[ifig]].imshow( pimg, vmin=np.percentile(img_dict[det_key], 5), vmax=np.percentile(img_dict[det_key], 90), cmap=plt.cm.bone_r ) ideal_angs, ideal_xys = panel.make_powder_rings(plane_data, delta_eta=eta_tol) rijs = panel.cartToPixel(np.vstack(ideal_xys)) ax[fig_row[ifig], fig_col[ifig]].plot(rijs[:, 1], rijs[:, 0], 'cx') ax[fig_row[ifig], fig_col[ifig]].set_title(det_key) rijs = panel.cartToPixel(all_pts[:, :2]) ax[fig_row[ifig], fig_col[ifig]].plot(rijs[:, 1], rijs[:, 0], 'm+') ax[fig_row[ifig], fig_col[ifig]].set_title(det_key) ifig += 1
StarcoderdataPython
3217580
# ext/declarative/clsregistry.py # Copyright (C) 2005-2020 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Routines to handle the string class registry used by declarative. This system allows specification of classes and expressions used in :func:`_orm.relationship` using strings. """ import weakref from . import attributes from . import interfaces from .descriptor_props import SynonymProperty from .properties import ColumnProperty from .util import class_mapper from .. import exc from .. import inspection from .. import util from ..sql.schema import _get_table_key # strong references to registries which we place in # the _decl_class_registry, which is usually weak referencing. # the internal registries here link to classes with weakrefs and remove # themselves when all references to contained classes are removed. _registries = set() def add_class(classname, cls, decl_class_registry): """Add a class to the _decl_class_registry associated with the given declarative class. """ if classname in decl_class_registry: # class already exists. existing = decl_class_registry[classname] if not isinstance(existing, _MultipleClassMarker): existing = decl_class_registry[classname] = _MultipleClassMarker( [cls, existing] ) else: decl_class_registry[classname] = cls try: root_module = decl_class_registry["_sa_module_registry"] except KeyError: decl_class_registry[ "_sa_module_registry" ] = root_module = _ModuleMarker("_sa_module_registry", None) tokens = cls.__module__.split(".") # build up a tree like this: # modulename: myapp.snacks.nuts # # myapp->snack->nuts->(classes) # snack->nuts->(classes) # nuts->(classes) # # this allows partial token paths to be used. while tokens: token = tokens.pop(0) module = root_module.get_module(token) for token in tokens: module = module.get_module(token) module.add_class(classname, cls) def remove_class(classname, cls, decl_class_registry): if classname in decl_class_registry: existing = decl_class_registry[classname] if isinstance(existing, _MultipleClassMarker): existing.remove_item(cls) else: del decl_class_registry[classname] try: root_module = decl_class_registry["_sa_module_registry"] except KeyError: return tokens = cls.__module__.split(".") while tokens: token = tokens.pop(0) module = root_module.get_module(token) for token in tokens: module = module.get_module(token) module.remove_class(classname, cls) def _key_is_empty(key, decl_class_registry, test): """test if a key is empty of a certain object. used for unit tests against the registry to see if garbage collection is working. "test" is a callable that will be passed an object should return True if the given object is the one we were looking for. We can't pass the actual object itself b.c. this is for testing garbage collection; the caller will have to have removed references to the object itself. """ if key not in decl_class_registry: return True thing = decl_class_registry[key] if isinstance(thing, _MultipleClassMarker): for sub_thing in thing.contents: if test(sub_thing): return False else: return not test(thing) class _MultipleClassMarker(object): """refers to multiple classes of the same name within _decl_class_registry. """ __slots__ = "on_remove", "contents", "__weakref__" def __init__(self, classes, on_remove=None): self.on_remove = on_remove self.contents = set( [weakref.ref(item, self._remove_item) for item in classes] ) _registries.add(self) def remove_item(self, cls): self._remove_item(weakref.ref(cls)) def __iter__(self): return (ref() for ref in self.contents) def attempt_get(self, path, key): if len(self.contents) > 1: raise exc.InvalidRequestError( 'Multiple classes found for path "%s" ' "in the registry of this declarative " "base. Please use a fully module-qualified path." % (".".join(path + [key])) ) else: ref = list(self.contents)[0] cls = ref() if cls is None: raise NameError(key) return cls def _remove_item(self, ref): self.contents.discard(ref) if not self.contents: _registries.discard(self) if self.on_remove: self.on_remove() def add_item(self, item): # protect against class registration race condition against # asynchronous garbage collection calling _remove_item, # [ticket:3208] modules = set( [ cls.__module__ for cls in [ref() for ref in self.contents] if cls is not None ] ) if item.__module__ in modules: util.warn( "This declarative base already contains a class with the " "same class name and module name as %s.%s, and will " "be replaced in the string-lookup table." % (item.__module__, item.__name__) ) self.contents.add(weakref.ref(item, self._remove_item)) class _ModuleMarker(object): """Refers to a module name within _decl_class_registry. """ __slots__ = "parent", "name", "contents", "mod_ns", "path", "__weakref__" def __init__(self, name, parent): self.parent = parent self.name = name self.contents = {} self.mod_ns = _ModNS(self) if self.parent: self.path = self.parent.path + [self.name] else: self.path = [] _registries.add(self) def __contains__(self, name): return name in self.contents def __getitem__(self, name): return self.contents[name] def _remove_item(self, name): self.contents.pop(name, None) if not self.contents and self.parent is not None: self.parent._remove_item(self.name) _registries.discard(self) def resolve_attr(self, key): return getattr(self.mod_ns, key) def get_module(self, name): if name not in self.contents: marker = _ModuleMarker(name, self) self.contents[name] = marker else: marker = self.contents[name] return marker def add_class(self, name, cls): if name in self.contents: existing = self.contents[name] existing.add_item(cls) else: existing = self.contents[name] = _MultipleClassMarker( [cls], on_remove=lambda: self._remove_item(name) ) def remove_class(self, name, cls): if name in self.contents: existing = self.contents[name] existing.remove_item(cls) class _ModNS(object): __slots__ = ("__parent",) def __init__(self, parent): self.__parent = parent def __getattr__(self, key): try: value = self.__parent.contents[key] except KeyError: pass else: if value is not None: if isinstance(value, _ModuleMarker): return value.mod_ns else: assert isinstance(value, _MultipleClassMarker) return value.attempt_get(self.__parent.path, key) raise AttributeError( "Module %r has no mapped classes " "registered under the name %r" % (self.__parent.name, key) ) class _GetColumns(object): __slots__ = ("cls",) def __init__(self, cls): self.cls = cls def __getattr__(self, key): mp = class_mapper(self.cls, configure=False) if mp: if key not in mp.all_orm_descriptors: raise AttributeError( "Class %r does not have a mapped column named %r" % (self.cls, key) ) desc = mp.all_orm_descriptors[key] if desc.extension_type is interfaces.NOT_EXTENSION: prop = desc.property if isinstance(prop, SynonymProperty): key = prop.name elif not isinstance(prop, ColumnProperty): raise exc.InvalidRequestError( "Property %r is not an instance of" " ColumnProperty (i.e. does not correspond" " directly to a Column)." % key ) return getattr(self.cls, key) inspection._inspects(_GetColumns)( lambda target: inspection.inspect(target.cls) ) class _GetTable(object): __slots__ = "key", "metadata" def __init__(self, key, metadata): self.key = key self.metadata = metadata def __getattr__(self, key): return self.metadata.tables[_get_table_key(key, self.key)] def _determine_container(key, value): if isinstance(value, _MultipleClassMarker): value = value.attempt_get([], key) return _GetColumns(value) class _class_resolver(object): __slots__ = "cls", "prop", "arg", "fallback", "_dict", "_resolvers" def __init__(self, cls, prop, fallback, arg): self.cls = cls self.prop = prop self.arg = arg self.fallback = fallback self._dict = util.PopulateDict(self._access_cls) self._resolvers = () def _access_cls(self, key): cls = self.cls manager = attributes.manager_of_class(cls) decl_base = manager.registry decl_class_registry = decl_base._class_registry metadata = decl_base.metadata if key in decl_class_registry: return _determine_container(key, decl_class_registry[key]) elif key in metadata.tables: return metadata.tables[key] elif key in metadata._schemas: return _GetTable(key, cls.metadata) elif ( "_sa_module_registry" in decl_class_registry and key in decl_class_registry["_sa_module_registry"] ): registry = decl_class_registry["_sa_module_registry"] return registry.resolve_attr(key) elif self._resolvers: for resolv in self._resolvers: value = resolv(key) if value is not None: return value return self.fallback[key] def _raise_for_name(self, name, err): util.raise_( exc.InvalidRequestError( "When initializing mapper %s, expression %r failed to " "locate a name (%r). If this is a class name, consider " "adding this relationship() to the %r class after " "both dependent classes have been defined." % (self.prop.parent, self.arg, name, self.cls) ), from_=err, ) def _resolve_name(self): name = self.arg d = self._dict rval = None try: for token in name.split("."): if rval is None: rval = d[token] else: rval = getattr(rval, token) except KeyError as err: self._raise_for_name(name, err) except NameError as n: self._raise_for_name(n.args[0], n) else: if isinstance(rval, _GetColumns): return rval.cls else: return rval def __call__(self): try: x = eval(self.arg, globals(), self._dict) if isinstance(x, _GetColumns): return x.cls else: return x except NameError as n: self._raise_for_name(n.args[0], n) _fallback_dict = None def _resolver(cls, prop): global _fallback_dict if _fallback_dict is None: import sqlalchemy from sqlalchemy.orm import foreign, remote _fallback_dict = util.immutabledict(sqlalchemy.__dict__).union( {"foreign": foreign, "remote": remote} ) def resolve_arg(arg): return _class_resolver(cls, prop, _fallback_dict, arg) def resolve_name(arg): return _class_resolver(cls, prop, _fallback_dict, arg)._resolve_name return resolve_name, resolve_arg
StarcoderdataPython
277497
from __future__ import annotations import os import secrets import socket import stat from ipaddress import ip_address from typing import Optional def bind_socket(host: str, port: int, *, backlog=100) -> socket.socket: """Create TCP server socket. :param host: IPv4, IPv6 or hostname may be specified :param port: TCP port number :param backlog: Maximum number of connections to queue :return: socket.socket object """ try: # IP address: family must be specified for IPv6 at least ip = ip_address(host) host = str(ip) sock = socket.socket( socket.AF_INET6 if ip.version == 6 else socket.AF_INET ) except ValueError: # Hostname, may become AF_INET or AF_INET6 sock = socket.socket() sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) sock.listen(backlog) return sock def bind_unix_socket(path: str, *, mode=0o666, backlog=100) -> socket.socket: """Create unix socket. :param path: filesystem path :param backlog: Maximum number of connections to queue :return: socket.socket object """ """Open or atomically replace existing socket with zero downtime.""" # Sanitise and pre-verify socket path path = os.path.abspath(path) folder = os.path.dirname(path) if not os.path.isdir(folder): raise FileNotFoundError(f"Socket folder does not exist: {folder}") try: if not stat.S_ISSOCK(os.stat(path, follow_symlinks=False).st_mode): raise FileExistsError(f"Existing file is not a socket: {path}") except FileNotFoundError: pass # Create new socket with a random temporary name tmp_path = f"{path}.{secrets.token_urlsafe()}" sock = socket.socket(socket.AF_UNIX) try: # Critical section begins (filename races) sock.bind(tmp_path) try: os.chmod(tmp_path, mode) # Start listening before rename to avoid connection failures sock.listen(backlog) os.rename(tmp_path, path) except: # noqa: E722 try: os.unlink(tmp_path) finally: raise except: # noqa: E722 try: sock.close() finally: raise return sock def remove_unix_socket(path: Optional[str]) -> None: """Remove dead unix socket during server exit.""" if not path: return try: if stat.S_ISSOCK(os.stat(path, follow_symlinks=False).st_mode): # Is it actually dead (doesn't belong to a new server instance)? with socket.socket(socket.AF_UNIX) as testsock: try: testsock.connect(path) except ConnectionRefusedError: os.unlink(path) except FileNotFoundError: pass
StarcoderdataPython
380524
<reponame>mhubl/botrecon from botrecon import botrecon botrecon()
StarcoderdataPython
6436265
import math import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair, _quadruple class MedianPool2d(nn.Module): """ Median pool (usable as median filter when stride=1) module. Args: kernel_size: size of pooling kernel, int or 2-tuple stride: pool stride, int or 2-tuple padding: pool padding, int or 4-tuple (l, r, t, b) as in pytorch F.pad same: override padding and enforce same padding, boolean """ def __init__(self, kernel_size=3, stride=1, padding=0, same=False): super(MedianPool2d, self).__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.padding = _quadruple(padding) # convert to l, r, t, b self.same = same def _padding(self, x): if self.same: # 'same' yes: input dim = output dim --> add a n-pixel boarder of zero ih, iw = x.size()[2:] if ih % self.stride[0] == 0: ph = max(self.k[0] - self.stride[0], 0) else: ph = max(self.k[0] - (ih % self.stride[0]), 0) if iw % self.stride[1] == 0: pw = max(self.k[1] - self.stride[1], 0) else: pw = max(self.k[1] - (iw % self.stride[1]), 0) pl = pw // 2 pr = pw - pl pt = ph // 2 pb = ph - pt padding = (pl, pr, pt, pb) else: # 'same' no: input dim =/= output dim padding = self.padding return padding def forward(self, x): # x = adv_patch image # using existing pytorch functions and tensor ops so that we get autograd, # would likely be more efficient to implement from scratch at C/Cuda level # NB in F.pad (https://pytorch.org/docs/stable/nn.functional.html): # 2nd parameter is 'pad (tuple)', i.e. m-elements tuple, where m/2 <= input dimensions and m is even # here m = 4 (left, right, top, bottom) # PADDING: x = F.pad(x, self._padding(x), mode='reflect') # put the zeros according to self._padding(x) --> l, r, t, b # prepare to do MEDIAN: x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) # NB unfold: unfold(dimension, size, step) -> Tensor # Returns a tensor which contains all slices of size `size` from `self` tensor along the dimension `dimension` # Step between two slices is given by `step` # Here size = kernel, step = stride, dimensions 2 and 3 respectively x = x.contiguous().view(x.size()[:4] + (-1,)).median(dim=-1)[0] #[:4] --> prob. kernel_size = 3, so I take values at pos 0, 1, 2, 3 ?? return x
StarcoderdataPython
4936142
# Copyright 2014-2016 Insight Software Consortium. # Copyright 2004-2008 <NAME>. # Distributed under the Boost Software License, Version 1.0. # See http://www.boost.org/LICENSE_1_0.txt """ provides low-level functionality, needed to undecorate\demangle compiler generated unique names and map them to the declarations On Windows: ctypes package is used to call `UnDecorateSymbolName` function from `dbghelp.dll` On Linux: "nm" utility is used. """ import os import re import ctypes import warnings from .. import declarations class UNDECORATE_NAME_OPTIONS(object): """defines few constants for `UnDecorateSymbolName` function""" UNDNAME_COMPLETE = 0x0000 # Enables full undecoration. # Removes leading underscores from Microsoft extended keywords. UNDNAME_NO_LEADING_UNDERSCORES = 0x0001 # Disables expansion of Microsoft extended keywords. UNDNAME_NO_MS_KEYWORDS = 0x0002 # Disables expansion of return type for primary declaration. UNDNAME_NO_FUNCTION_RETURNS = 0x0004 # Disables expansion of the declaration model. UNDNAME_NO_ALLOCATION_MODEL = 0x0008 # Disables expansion of the declaration language specifier. UNDNAME_NO_ALLOCATION_LANGUAGE = 0x0010 UNDNAME_RESERVED1 = 0x0020 # RESERVED. UNDNAME_RESERVED2 = 0x0040 # RESERVED. UNDNAME_NO_THISTYPE = 0x0060 # Disables all modifiers on the this type. # Disables expansion of access specifiers for members. UNDNAME_NO_ACCESS_SPECIFIERS = 0x0080 # Disables expansion of "throw-signatures" for functions and pointers to # functions. UNDNAME_NO_THROW_SIGNATURES = 0x0100 # Disables expansion of static or virtual members. UNDNAME_NO_MEMBER_TYPE = 0x0200 # Disables expansion of the Microsoft model for UDT returns. UNDNAME_NO_RETURN_UDT_MODEL = 0x0400 UNDNAME_32_BIT_DECODE = 0x0800 # Undecorates 32-bit decorated names. # Gets only the name for primary declaration; returns just [scope::]name. # Expands template params. UNDNAME_NAME_ONLY = 0x1000 # Input is just a type encoding; composes an abstract declarator. UNDNAME_TYPE_ONLY = 0x2000 # The real template parameters are available. UNDNAME_HAVE_PARAMETERS = 0x4000 UNDNAME_NO_ECSU = 0x8000 # Suppresses enum/class/struct/union. # Suppresses check for valid identifier characters. UNDNAME_NO_IDENT_CHAR_CHECK = 0x10000 UNDNAME_NO_PTR64 = 0x20000 # Does not include ptr64 in output. UNDNAME_SCOPES_ONLY = UNDNAME_NO_LEADING_UNDERSCORES \ | UNDNAME_NO_MS_KEYWORDS \ | UNDNAME_NO_FUNCTION_RETURNS \ | UNDNAME_NO_ALLOCATION_MODEL \ | UNDNAME_NO_ALLOCATION_LANGUAGE \ | UNDNAME_NO_ACCESS_SPECIFIERS \ | UNDNAME_NO_THROW_SIGNATURES \ | UNDNAME_NO_MEMBER_TYPE \ | UNDNAME_NO_ECSU \ | UNDNAME_NO_IDENT_CHAR_CHECK SHORT_UNIQUE_NAME = UNDNAME_NO_MS_KEYWORDS \ | UNDNAME_NO_ACCESS_SPECIFIERS | UNDNAME_NO_ECSU class undname_creator_t(object): """implementation details - should not be used directly formats declarations string representation and exported symbols, so they could be matched later. The class formats variables, free and member functions, symbols exported from .dll, .map and .so files. On Windows, the class works with unique name produced by MSVC compiler and with undecorated names produced by `dbghelp.dll` On Linux, the class works with mangled names produced by GCC-XML ( GCC 4.2 ) compiler and demangled name produced by "nm" utility. """ def __init__(self): warnings.warn( "undname_creator_t is deprecated.\n" + "Please have a look at the changelog for an explanation " + "(since 1.8.0)", DeprecationWarning) if 'nt' == os.name: import ctypes.wintypes self.__undname = ctypes.windll.dbghelp.UnDecorateSymbolName self.__undname.argtypes = [ ctypes.c_char_p, ctypes.c_char_p, ctypes.c_uint, ctypes.c_uint] self.__clean_ecsu = ( re.compile(r'(?P<startswith>^|\W)(?:(class|enum|struct|union)\s)'), '%(startswith)s') self.__fundamental_types = ( ('short unsigned int', 'unsigned short'), ('short int', 'short'), ('long int', 'long'), ('long unsigned int', 'unsigned long')) self.__calling_conventions = ( re.compile(( r'(?P<startswith>^|\s)(?:__(cdecl|clrcall|stdcall|fastcall' + '|thiscall)\s)')), '%(startswith)s') def normalize_undecorated(self, undname, options=None): if options is None: options = UNDECORATE_NAME_OPTIONS.SHORT_UNIQUE_NAME if UNDECORATE_NAME_OPTIONS.UNDNAME_NO_ECSU & options: expr, substitute = self.__clean_ecsu undname = expr.sub(lambda m: substitute % m.groupdict(), undname) if UNDECORATE_NAME_OPTIONS.UNDNAME_NO_ACCESS_SPECIFIERS & options: for prefix in ('public: ', 'private: ', 'protected: '): if undname.startswith(prefix): undname = undname[len(prefix):] break if UNDECORATE_NAME_OPTIONS.UNDNAME_NO_MS_KEYWORDS & options: expr, substitute = self.__calling_conventions undname = expr.sub(lambda m: substitute % m.groupdict(), undname) return undname.strip() def undecorate_blob(self, name, options=None): if options is None: options = UNDECORATE_NAME_OPTIONS.SHORT_UNIQUE_NAME buffer = ctypes.create_string_buffer(1024 * 16) res = self.__undname(str(name), buffer, ctypes.sizeof(buffer), options) if res: return self.normalize_undecorated(str(buffer[:res])) else: return name def __remove_leading_scope(self, s): if s and s.startswith('::'): return s[2:] else: return s def __format_type_as_undecorated(self, type_, is_argument, hint): result = [] type_ = declarations.remove_alias(type_) if declarations.is_array(type_): result.append(declarations.array_item_type(type_).decl_string) result.append('*') if is_argument: result.append('const') else: result.append(self.__remove_leading_scope(type_.decl_string)) result = ' '.join(result) if hint == 'nm': for x in ('*', '&'): result = result.replace(' ' + x, x) return result def __normalize(self, name): for what, with_ in self.__fundamental_types: name = name.replace(what, with_) name = name.replace(', ', ',') return name def format_argtypes(self, argtypes, hint): if not argtypes: if hint == 'msvc': return 'void' else: return '' else: argsep = ',' if hint == 'nm': # ugly hack, later, I will replace ', ' with ',', so single # space will still exist argsep = ', ' return argsep.join( map(lambda type_: self.__format_type_as_undecorated( type_, True, hint), argtypes)) def format_calldef(self, calldef, hint): calldef_type = calldef.function_type() result = [] is_mem_fun = isinstance(calldef, declarations.member_calldef_t) if is_mem_fun and hint == 'msvc' and calldef.virtuality != \ declarations.VIRTUALITY_TYPES.NOT_VIRTUAL: result.append('virtual ') if is_mem_fun and hint == 'msvc'and calldef.has_static: result.append('static ') if hint == 'msvc' and calldef_type.return_type: # nm doesn't dump return type information result.append( self.__format_type_as_undecorated( calldef.return_type, False, hint)) result.append(' ') if is_mem_fun: result.append( self.__remove_leading_scope( calldef.parent.decl_string) + '::') result.append(calldef.name) if isinstance( calldef, (declarations.constructor_t, declarations.destructor_t)) \ and declarations.templates.is_instantiation(calldef.parent.name): if hint == 'msvc': result.append('<%s>' % ','.join( declarations.templates.args(calldef.parent.name))) result.append('(%s)' % self.format_argtypes( calldef_type.arguments_types, hint)) if is_mem_fun and calldef.has_const: if hint == 'nm': result.append(' ') result.append('const') return ''.join(result) def format_var(self, decl, hint): result = [] is_mem_var = isinstance(decl.parent, declarations.class_t) if is_mem_var and decl.type_qualifiers.has_static and hint == 'msvc': result.append('static ') if hint == 'msvc': result.append( self.__format_type_as_undecorated(decl.decl_type, False, hint)) result.append(' ') if is_mem_var: result.append( self.__remove_leading_scope(decl.parent.decl_string) + '::') result.append(decl.name) return ''.join(result) def format_decl(self, decl, hint=None): """returns string, which contains full function name formatted exactly as result of `dbghelp.UnDecorateSymbolName`, with UNDNAME_NO_MS_KEYWORDS | UNDNAME_NO_ACCESS_SPECIFIERS | UNDNAME_NO_ECSU options. Different compilers/utilities undecorate/demangle mangled string ( unique names ) in a different way. `hint` argument will tell pygccxml how to format declarations, so they could be mapped later to the blobs. The valid options are: "msvc" and "nm". """ if hint is None: if 'nt' == os.name: hint = 'msvc' else: hint = 'nm' if isinstance(decl, declarations.calldef_t): name = self.format_calldef(decl, hint) elif isinstance(decl, declarations.variable_t): name = self.format_var(decl, hint) else: raise NotImplementedError() return self.__normalize(name)
StarcoderdataPython
4985313
<gh_stars>0 import torch import numpy as np import torch.nn.functional as F from torch_scatter import scatter def _similarity(h1: torch.Tensor, h2: torch.Tensor): h1 = F.normalize(h1) h2 = F.normalize(h2) return h1 @ h2.t() def nt_xent_loss(h1: torch.FloatTensor, h2: torch.FloatTensor, tau: float, *args, **kwargs): f = lambda x: torch.exp(x / tau) inter_sim = f(_similarity(h1, h1)) intra_sim = f(_similarity(h1, h2)) pos = intra_sim.diag() neg = inter_sim.sum(dim=1) + intra_sim.sum(dim=1) - inter_sim.diag() loss = pos / neg loss = -torch.log(loss) return loss def debiased_nt_xent_loss(h1: torch.Tensor, h2: torch.Tensor, tau: float, tau_plus: float, *args, **kwargs): f = lambda x: torch.exp(x / tau) intra_sim = f(_similarity(h1, h1)) inter_sim = f(_similarity(h1, h2)) pos = inter_sim.diag() neg = intra_sim.sum(dim=1) - intra_sim.diag() \ + inter_sim.sum(dim=1) - inter_sim.diag() num_neg = h1.size()[0] * 2 - 2 ng = (-num_neg * tau_plus * pos + neg) / (1 - tau_plus) ng = torch.clamp(ng, min=num_neg * np.e ** (-1. / tau)) return -torch.log(pos / (pos + ng)) def hardness_nt_xent_loss(h1: torch.Tensor, h2: torch.Tensor, tau: float, tau_plus: float, beta: float, *args, **kwargs): f = lambda x: torch.exp(x / tau) intra_sim = f(_similarity(h1, h1)) inter_sim = f(_similarity(h1, h2)) pos = inter_sim.diag() neg = intra_sim.sum(dim=1) - intra_sim.diag() \ + inter_sim.sum(dim=1) - inter_sim.diag() num_neg = h1.size()[0] * 2 - 2 # imp = (beta * neg.log()).exp() imp = beta * neg reweight_neg = (imp * neg) / neg.mean() neg = (-num_neg * tau_plus * pos + reweight_neg) / (1 - tau_plus) neg = torch.clamp(neg, min=num_neg * np.e ** (-1. / tau)) return -torch.log(pos / (pos + neg)) def subsampling_nt_xent_loss(h1: torch.Tensor, h2: torch.Tensor, tau: float, sample_size: int, *args, **kwargs): f = lambda x: torch.exp(x / tau) cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6) device = h1.device num_nodes = h1.size(0) neg_indices = torch.randint(low=0, high=num_nodes * 2, size=(sample_size,), device=device) z_pool = torch.cat([h1, h2], dim=0) negatives = z_pool[neg_indices] pos = f(cos(h1, h2)) neg = f(_similarity(h1, negatives)).sum(dim=1) loss = -torch.log(pos / (pos + neg)) return loss def nt_xent_loss_en(anchor: torch.FloatTensor, samples: torch.FloatTensor, pos_mask: torch.FloatTensor, tau: float, *args, **kwargs): f = lambda x: torch.exp(x / tau) sim = f(_similarity(anchor, samples)) # anchor x sample assert sim.size() == pos_mask.size() # sanity check neg_mask = 1 - pos_mask pos = (sim * pos_mask).sum(dim=1) neg = (sim * neg_mask).sum(dim=1) loss = pos / (pos + neg) loss = -torch.log(loss) return loss.mean() class InfoNCELoss(torch.nn.Module): def __init__(self, loss_fn=nt_xent_loss): super(InfoNCELoss, self).__init__() self.loss_fn = loss_fn def forward(self, h1: torch.FloatTensor, h2: torch.FloatTensor, *args, **kwargs): l1 = self.loss_fn(h1, h2, *args, **kwargs) l2 = self.loss_fn(h2, h1, *args, **kwargs) ret = (l1 + l2) * 0.5 ret = ret.mean() return ret class InfoNCELossG2L(torch.nn.Module): def __init__(self): super(InfoNCELossG2L, self).__init__() def forward(self, h1: torch.FloatTensor, g1: torch.FloatTensor, h2: torch.FloatTensor, g2: torch.FloatTensor, batch: torch.LongTensor, tau: float, *args, **kwargs): num_nodes = h1.size()[0] # M := num_nodes ones = torch.eye(num_nodes, dtype=torch.float32, device=h1.device) # [M, M] pos_mask = scatter(ones, batch, dim=0, reduce='sum') # [M, N] l1 = nt_xent_loss_en(g1, h2, pos_mask=pos_mask, tau=tau) l2 = nt_xent_loss_en(g2, h1, pos_mask=pos_mask, tau=tau) return l1 + l2 class InfoNCELossG2LEN(torch.nn.Module): def __init__(self): super(InfoNCELossG2LEN, self).__init__() def forward(self, h1: torch.FloatTensor, g1: torch.FloatTensor, h2: torch.FloatTensor, g2: torch.FloatTensor, h3: torch.FloatTensor, h4: torch.FloatTensor, *args, **kwargs): num_nodes = h1.size()[0] device = h1.device pos_mask1 = torch.ones((1, num_nodes), dtype=torch.float32, device=device) pos_mask0 = torch.zeros((1, num_nodes), dtype=torch.float32, device=device) pos_mask = torch.cat([pos_mask1, pos_mask0], dim=1) samples1 = torch.cat([h2, h4], dim=0) samples2 = torch.cat([h1, h3], dim=0) l1 = nt_xent_loss_en(g1, samples1, pos_mask=pos_mask, *args, **kwargs) l2 = nt_xent_loss_en(g2, samples2, pos_mask=pos_mask, *args, **kwargs) return l1 + l2 class HardMixingLoss(torch.nn.Module): def __init__(self, projection): super(HardMixingLoss, self).__init__() self.projection = projection @staticmethod def tensor_similarity(z1, z2): z1 = F.normalize(z1, dim=-1) # [N, d] z2 = F.normalize(z2, dim=-1) # [N, s, d] return torch.bmm(z2, z1.unsqueeze(dim=-1)).squeeze() def forward(self, z1: torch.Tensor, z2: torch.Tensor, threshold=0.1, s=150, mixup=0.2, *args, **kwargs): f = lambda x: torch.exp(x / self.tau) num_samples = z1.shape[0] device = z1.device threshold = int(num_samples * threshold) refl1 = _similarity(z1, z1).diag() refl2 = _similarity(z2, z2).diag() pos_similarity = f(_similarity(z1, z2)) neg_similarity1 = torch.cat([_similarity(z1, z1), _similarity(z1, z2)], dim=1) # [n, 2n] neg_similarity2 = torch.cat([_similarity(z2, z1), _similarity(z2, z2)], dim=1) neg_similarity1, indices1 = torch.sort(neg_similarity1, descending=True) neg_similarity2, indices2 = torch.sort(neg_similarity2, descending=True) neg_similarity1 = f(neg_similarity1) neg_similarity2 = f(neg_similarity2) z_pool = torch.cat([z1, z2], dim=0) hard_samples1 = z_pool[indices1[:, :threshold]] # [N, k, d] hard_samples2 = z_pool[indices2[:, :threshold]] hard_sample_idx1 = torch.randint(hard_samples1.shape[1], size=[num_samples, 2 * s]).to(device) # [N, 2 * s] hard_sample_idx2 = torch.randint(hard_samples2.shape[1], size=[num_samples, 2 * s]).to(device) hard_sample_draw1 = hard_samples1[ torch.arange(num_samples).unsqueeze(-1), hard_sample_idx1] # [N, 2 * s, d] hard_sample_draw2 = hard_samples2[torch.arange(num_samples).unsqueeze(-1), hard_sample_idx2] hard_sample_mixing1 = mixup * hard_sample_draw1[:, :s, :] + (1 - mixup) * hard_sample_draw1[:, s:, :] hard_sample_mixing2 = mixup * hard_sample_draw2[:, :s, :] + (1 - mixup) * hard_sample_draw2[:, s:, :] h_m1 = self.projection(hard_sample_mixing1) h_m2 = self.projection(hard_sample_mixing2) neg_m1 = f(self.tensor_similarity(z1, h_m1)).sum(dim=1) neg_m2 = f(self.tensor_similarity(z2, h_m2)).sum(dim=1) pos = pos_similarity.diag() neg1 = neg_similarity1.sum(dim=1) neg2 = neg_similarity2.sum(dim=1) loss1 = -torch.log(pos / (neg1 + neg_m1 - refl1)) loss2 = -torch.log(pos / (neg2 + neg_m2 - refl2)) loss = (loss1 + loss2) * 0.5 loss = loss.mean() return loss class RingLoss(torch.nn.Module): def __init__(self): super(RingLoss, self).__init__() def forward(self, h1: torch.Tensor, h2: torch.Tensor, y: torch.Tensor, tau, threshold=0.1, *args, **kwargs): f = lambda x: torch.exp(x / tau) num_samples = h1.shape[0] device = h1.device threshold = int(num_samples * threshold) false_neg_mask = torch.zeros((num_samples, 2 * num_samples), dtype=torch.int).to(device) for i in range(num_samples): false_neg_mask[i] = (y == y[i]).repeat(2) pos_sim = f(_similarity(h1, h2)) neg_sim1 = torch.cat([_similarity(h1, h1), _similarity(h1, h2)], dim=1) # [n, 2n] neg_sim2 = torch.cat([_similarity(h2, h1), _similarity(h2, h2)], dim=1) neg_sim1, indices1 = torch.sort(neg_sim1, descending=True) neg_sim2, indices2 = torch.sort(neg_sim2, descending=True) y_repeated = y.repeat(2) false_neg_cnt = torch.zeros((num_samples)).to(device) for i in range(num_samples): false_neg_cnt[i] = (y_repeated[indices1[i, threshold:-threshold]] == y[i]).sum() neg_sim1 = f(neg_sim1[:, threshold:-threshold]) neg_sim2 = f(neg_sim2[:, threshold:-threshold]) pos = pos_sim.diag() neg1 = neg_sim1.sum(dim=1) neg2 = neg_sim2.sum(dim=1) loss1 = -torch.log(pos / neg1) loss2 = -torch.log(pos / neg2) loss = (loss1 + loss2) * 0.5 loss = loss.mean() return loss
StarcoderdataPython
3364307
<reponame>lextoumbourou/plugin.video.rsa import requests from BeautifulSoup import BeautifulSoup BASE_URL = 'http://comment.rsablogs.org.uk/videos/page/' VIDEO_PAGE_URL = ( 'http://www.thersa.org/events/video?result_4377_result_page={0}' ) RSA_ANIMATE_PAGE_URL = 'http://www.thersa.org/events/rsaanimate' RSA_SHORTS_PAGE_URL = 'http://www.thersa.org/events/rsashorts' def get_videos(page_no): """ Return videos from RSA > Events > Videos as a list of dicts """ contents = requests.get(VIDEO_PAGE_URL.format(page_no)) return scrape_video_list(contents.text) def get_rsa_animate_videos(): """ Return videos from RSA > RSA Animate as list of dicts """ contents = requests.get(RSA_ANIMATE_PAGE_URL) return scrape_video_list(contents.text.encode('utf-8', 'ignore')) def get_rsa_shorts_videos(): """ Return videos from RSA > RSA Shorts as list of dicts """ contents = requests.get(RSA_SHORTS_PAGE_URL) return scrape_video_list(contents.text.encode('utf-8', 'ignore')) def scrape_video_list(contents): """ Turn RSA Video HTML into list of dicts """ output = [] soup = BeautifulSoup(contents) posts = soup.findAll('div', 'video-result') for post in posts: h3 = post.find('h3') title_link = h3.find('a') thumbnail = post.find('img')['src'] output.append({ 'title': title_link.text, 'url': title_link['href'], 'thumbnail': thumbnail }) return output def get_youtube_id_from_video(url): """ Turn RSA Video page HTML into a youtube ID string """ contents = requests.get(url) return scrape_video_page(contents.text.encode('utf-8', 'ignore')) def scrape_video_page(contents): soup = BeautifulSoup(contents) youtube_id_meta = soup.find('meta', attrs={'name': 'youtube_url'}) if youtube_id_meta: # Occassionally the meta tags with the youtube id have # URLs in them, this extracts the Youtube ID in such cases if youtube_id_meta['content'].startswith('http://youtu.be/'): youtube_id = youtube_id_meta['content'].split('/')[-1] else: youtube_id = youtube_id_meta['content'] return youtube_id else: iframes = soup.findAll('iframe') if iframes: url = iframes[-1]['src'] youtube_id = url.split('/')[-1] return youtube_id return None
StarcoderdataPython
102481
<filename>test/testPicExif.py<gh_stars>1-10 # -*- coding: UTF-8 -*- import unittest from picture_category import pic_exif class TestPicExif(unittest.TestCase): def setUp(self): self.picFile = 'F:\\DCIM\\100ANDRO\\DSC_0004.JPG' def tearDown(self): self.picFile = None def testGetExif(self): self.assertIsNotNone(pic_exif.get_exif(self.picFile), 'test success') if __name__=='__main__': # unittest.main() suite = unittest.TestSuite() suite.addTest(TestPicExif("testGetExif")) # 执行测试 runner = unittest.TextTestRunner() runner.run(suite)
StarcoderdataPython
8198061
# -*- coding: utf-8 -*- # # (c) Copyright 2003-2015 HP Development Company, L.P. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Author: <NAME> # # Std Lib import sys import os import os.path # Local from base.g import * from base import utils from base.sixext import to_unicode from .ui_utils import load_pixmap try: from fax import fax except ImportError: # This can fail on Python < 2.3 due to the datetime module log.error("Fax address book disabled - Python 2.3+ required.") sys.exit(1) # Qt from qt import * from .faxaddrbookform_base import FaxAddrBookForm_base from .faxaddrbookeditform_base import FaxAddrBookEditForm_base from .faxaddrbookgroupsform_base import FaxAddrBookGroupsForm_base from .faxaddrbookgroupeditform_base import FaxAddrBookGroupEditForm_base # globals db = None # **************************************************************************** class AddressBookItem2(QListViewItem): def __init__(self, parent, entry): QListViewItem.__init__(self, parent) self.entry = entry self.setText(0, entry['name']) self.setText(1, entry['title']) self.setText(2, entry['firstname']) self.setText(3, entry['lastname']) self.setText(4, entry['fax']) self.setText(5, ', '.join(entry['groups'])) self.setText(6, entry['notes']) class GroupValidator(QValidator): def __init__(self, parent=None, name=None): QValidator.__init__(self, parent, name) def validate(self, input, pos): input = to_unicode(input) if input.find(',') > 0: return QValidator.Invalid, pos elif len(input) > 50: return QValidator.Invalid, pos else: return QValidator.Acceptable, pos class PhoneNumValidator(QValidator): def __init__(self, parent=None, name=None): QValidator.__init__(self, parent, name) def validate(self, input, pos): input = to_unicode(input) if not input: return QValidator.Acceptable, pos elif input[pos-1] not in '0123456789-(+) *#': return QValidator.Invalid, pos elif len(input) > 50: return QValidator.Invalid, pos else: return QValidator.Acceptable, pos # **************************************************************************** # class FaxAddrBookGroupEditForm(FaxAddrBookGroupEditForm_base): """ Called when clicking New... or Edit... from the Group Dialog """ def __init__(self,parent = None,name = None,modal = 0,fl = 0): FaxAddrBookGroupEditForm_base.__init__(self,parent,name,modal,fl) self.edit_mode = False self.okButton.setEnabled(True) self.all_groups = db.get_all_groups() self.groupnameEdit.setValidator(GroupValidator(self.groupnameEdit)) def setDlgData(self, group_name): self.edit_mode = True self.groupnameEdit.setText(group_name) self.groupnameEdit.setReadOnly(True) self.setEntries(group_name) def setEntries(self, group_name=''): self.entriesListView.clear() all_entries = db.get_all_records() for e, v in list(all_entries.items()): i = QCheckListItem(self.entriesListView, e, QCheckListItem.CheckBox) if group_name and group_name in v['groups']: i.setState(QCheckListItem.On) self.CheckOKButton() def getDlgData(self): group_name = to_unicode(self.groupnameEdit.text()) entries = [] i = self.entriesListView.firstChild() while i is not None: if i.isOn(): entries.append(to_unicode(i.text())) i = i.itemBelow() return group_name, entries def groupnameEdit_textChanged(self,a0): self.CheckOKButton() def entriesListView_clicked(self,a0): self.CheckOKButton() def CheckOKButton(self): group_name = to_unicode(self.groupnameEdit.text()) if not group_name or \ (not self.edit_mode and group_name in self.all_groups): self.okButton.setEnabled(False) return i = self.entriesListView.firstChild() while i is not None: if i.isOn(): break i = i.itemBelow() else: self.okButton.setEnabled(False) return self.okButton.setEnabled(True) def __tr(self,s,c = None): return qApp.translate("FaxAddrBookGroupEditForm",s,c) # **************************************************************************** # class FaxAddrBookGroupsForm(FaxAddrBookGroupsForm_base): def __init__(self,parent = None,name = None,modal = 0,fl = 0): FaxAddrBookGroupsForm_base.__init__(self,parent,name,modal,fl) self.current = None QTimer.singleShot(0, self.InitialUpdate) def InitialUpdate(self): self.UpdateList() def UpdateList(self): self.groupListView.clear() first_rec = None all_groups = db.get_all_groups() if all_groups: for group in all_groups: i = QListViewItem(self.groupListView, group, ', '.join(db.group_members(group))) if first_rec is None: first_rec = i self.groupListView.setCurrentItem(i) self.current = i self.editButton.setEnabled(True) self.deleteButton.setEnabled(True) else: self.editButton.setEnabled(False) self.deleteButton.setEnabled(False) def newButton_clicked(self): dlg = FaxAddrBookGroupEditForm(self) dlg.setEntries() if dlg.exec_loop() == QDialog.Accepted: group_name, entries = dlg.getDlgData() db.update_groups(group_name, entries) self.UpdateList() def editButton_clicked(self): dlg = FaxAddrBookGroupEditForm(self) group_name = to_unicode(self.current.text(0)) dlg.setDlgData(group_name) if dlg.exec_loop() == QDialog.Accepted: group_name, entries = dlg.getDlgData() db.update_groups(group_name, entries) self.UpdateList() def deleteButton_clicked(self): x = QMessageBox.critical(self, self.caption(), self.__tr("<b>Annoying Confirmation: Are you sure you want to delete this group?</b>"), QMessageBox.Yes, QMessageBox.No | QMessageBox.Default, QMessageBox.NoButton) if x == QMessageBox.Yes: db.delete_group(to_unicode(self.current.text(0))) self.UpdateList() def groupListView_currentChanged(self, a0): self.current = a0 def groupListView_doubleClicked(self, a0): self.editButton_clicked() def groupListView_rightButtonClicked(self, item, pos, a2): popup = QPopupMenu(self) popup.insertItem(self.__tr("New..."), self.newButton_clicked) if item is not None: popup.insertItem(self.__tr("Edit..."), self.editButton_clicked) popup.insertItem(self.__tr("Delete..."), self.deleteButton_clicked) popup.insertSeparator() popup.insertItem(self.__tr("Refresh List"), self.UpdateList) popup.popup(pos) def __tr(self,s,c = None): return qApp.translate("FaxAddrBookGroupsForm",s,c) # **************************************************************************** # class FaxAddrBookEditForm(FaxAddrBookEditForm_base): def __init__(self, editing=True, parent = None,name = None,modal = 0,fl = 0): FaxAddrBookEditForm_base.__init__(self,parent,name,modal,fl) self.editing = editing self.faxEdit.setValidator(PhoneNumValidator(self.faxEdit)) self.initial_nickname = '' self.OKButton.setEnabled(self.editing) def setDlgData(self, name, title, firstname, lastname, fax, group_list, notes): self.initial_nickname = name self.name = name self.titleEdit.setText(title) self.firstnameEdit.setText(firstname) self.lastnameEdit.setText(lastname) self.faxEdit.setText(fax) self.notesEdit.setText(notes) self.nicknameEdit.setText(name) self.setGroups(group_list) def setGroups(self, entry_groups=[]): self.groupListView.clear() for g in db.get_all_groups(): i = QCheckListItem(self.groupListView, g, QCheckListItem.CheckBox) if g in entry_groups: i.setState(QCheckListItem.On) def getDlgData(self): in_groups = [] i = self.groupListView.firstChild() while i is not None: if i.isOn(): in_groups.append(to_unicode(i.text())) i = i.itemBelow() return {'name': to_unicode(self.nicknameEdit.text()), 'title': to_unicode(self.titleEdit.text()), 'firstname': to_unicode(self.firstnameEdit.text()), 'lastname': to_unicode(self.lastnameEdit.text()), 'fax': to_unicode(self.faxEdit.text()), 'groups': in_groups, 'notes': to_unicode(self.notesEdit.text())} def firstnameEdit_textChanged(self,a0): pass def lastnameEdit_textChanged(self,a0): pass def nicknameEdit_textChanged(self, nickname): self.CheckOKButton(nickname, None) def faxEdit_textChanged(self, fax): self.CheckOKButton(None, fax) def CheckOKButton(self, nickname=None, fax=None): if nickname is None: nickname = to_unicode(self.nicknameEdit.text()) if fax is None: fax = to_unicode(self.faxEdit.text()) ok = bool(len(nickname) and len(fax)) if nickname: all_entries = db.get_all_records() for e, v in list(all_entries.items()): if nickname == e and nickname != self.initial_nickname: ok = False self.OKButton.setEnabled(ok) def __tr(self,s,c = None): return qApp.translate("FaxAddrBookEditForm",s,c) # **************************************************************************** # class FaxAddrBookForm(FaxAddrBookForm_base): def __init__(self,parent = None,name = None,modal = 0,fl = 0): FaxAddrBookForm_base.__init__(self,parent,name,modal,fl) self.setIcon(load_pixmap('hp_logo', '128x128')) global db db = fax.FaxAddressBook() self.init_problem = False QTimer.singleShot(0, self.InitialUpdate) def InitialUpdate(self): if self.init_problem: self.close() return self.UpdateList() def UpdateList(self): self.addressListView.clear() first_rec = None all_entries = db.get_all_records() log.debug("Number of records is: %d" % len(all_entries)) if all_entries: for e, v in list(all_entries.items()): if v['name'].startswith('__'): continue i = AddressBookItem2(self.addressListView, v) if first_rec is None: first_rec = i self.addressListView.setCurrentItem(i) self.current = i self.editButton.setEnabled(True) self.deleteButton.setEnabled(True) else: self.editButton.setEnabled(False) self.deleteButton.setEnabled(False) def groupButton_clicked(self): FaxAddrBookGroupsForm(self).exec_loop() self.sendUpdateEvent() self.UpdateList() def newButton_clicked(self): dlg = FaxAddrBookEditForm(False, self) dlg.setGroups() if dlg.exec_loop() == QDialog.Accepted: d = dlg.getDlgData() db.set(**d) self.sendUpdateEvent() self.UpdateList() def editButton_clicked(self): dlg = FaxAddrBookEditForm(True, self) c = self.current.entry dlg.setDlgData(c['name'], c['title'], c['firstname'], c['lastname'], c['fax'], c['groups'], c['notes']) prev_name = c['name'] if dlg.exec_loop() == QDialog.Accepted: d = dlg.getDlgData() if prev_name != d['name']: db.delete(prev_name) db.set(**d) self.sendUpdateEvent() self.UpdateList() def deleteButton_clicked(self): if QMessageBox.critical(self, self.caption(), self.__tr("<b>Annoying Confirmation: Are you sure you want to delete this address book entry?</b>"), QMessageBox.Yes, QMessageBox.No | QMessageBox.Default, QMessageBox.NoButton) == QMessageBox.Yes: db.delete(self.current.entry['name']) self.UpdateList() self.sendUpdateEvent() def addressListView_rightButtonClicked(self, item, pos, a2): popup = QPopupMenu(self) popup.insertItem(self.__tr("New..."), self.newButton_clicked) if item is not None: popup.insertItem(self.__tr("Edit..."), self.editButton_clicked) popup.insertItem(self.__tr("Delete..."), self.deleteButton_clicked) popup.insertSeparator() popup.insertItem(self.__tr("Refresh List"), self.UpdateList) popup.popup(pos) def addressListView_doubleClicked(self,a0): self.editButton_clicked() def addressListView_currentChanged(self,item): self.current = item def FailureUI(self, error_text): log.error(to_unicode(error_text).replace("<b>", "").replace("</b>", "").replace("<p>", " ")) QMessageBox.critical(self, self.caption(), QString(error_text), QMessageBox.Ok, QMessageBox.NoButton, QMessageBox.NoButton) def __tr(self,s,c = None): return qApp.translate("FaxAddrBookForm",s,c) def accept(self): self.sendUpdateEvent() FaxAddrBookForm_base.accept(self) def sendUpdateEvent(self): pass # TODO: def importPushButton_clicked(self): dlg = QFileDialog(user_conf.workingDirectory(), "LDIF (*.ldif *.ldi);;vCard (*.vcf)", None, None, True) dlg.setCaption("openfile") dlg.setMode(QFileDialog.ExistingFile) dlg.show() if dlg.exec_loop() == QDialog.Accepted: result = str(dlg.selectedFile()) working_directory = to_unicode(dlg.dir().absPath()) log.debug("result: %s" % result) user_conf.setWorkingDirectory(working_directory) if result: if result.endswith('.vcf'): ok, error_str = db.import_vcard(result) else: ok, error_str = db.import_ldif(result) if not ok: self.FailureUI(error_str) else: self.UpdateList()
StarcoderdataPython
3347900
import os import random as rnd from PIL import Image, ImageFilter from trdg import computer_text_generator, background_generator, distorsion_generator try: from trdg import handwritten_text_generator except ImportError as e: print("Missing modules for handwritten text generation.") class FakeTextDataGenerator(object): @classmethod def generate_from_tuple(cls, t): """ Same as generate, but takes all parameters as one tuple """ cls.generate(*t) @classmethod def generate( cls, index, text, font, out_dir, size, extension, skewing_angle, random_skew, blur, random_blur, background_type, distorsion_type, distorsion_orientation, is_handwritten, name_format, width, alignment, text_color, orientation, space_width, character_spacing, margins, fit, output_mask, word_split, image_dir, ): image = None margin_top, margin_left, margin_bottom, margin_right = margins horizontal_margin = margin_left + margin_right vertical_margin = margin_top + margin_bottom ########################## # Create picture of text # ########################## if is_handwritten: if orientation == 1: raise ValueError("Vertical handwritten text is unavailable") image, mask = handwritten_text_generator.generate(text, text_color) else: image, mask = computer_text_generator.generate( text, font, text_color, size, orientation, space_width, character_spacing, fit, word_split, ) random_angle = rnd.randint(0 - skewing_angle, skewing_angle) rotated_img = image.rotate( skewing_angle if not random_skew else random_angle, expand=1 ) rotated_mask = mask.rotate( skewing_angle if not random_skew else random_angle, expand=1 ) ############################# # Apply distorsion to image # ############################# if distorsion_type == 0: distorted_img = rotated_img # Mind = blown distorted_mask = rotated_mask elif distorsion_type == 1: distorted_img, distorted_mask = distorsion_generator.sin( rotated_img, rotated_mask, vertical=(distorsion_orientation == 0 or distorsion_orientation == 2), horizontal=(distorsion_orientation == 1 or distorsion_orientation == 2), ) elif distorsion_type == 2: distorted_img, distorted_mask = distorsion_generator.cos( rotated_img, rotated_mask, vertical=(distorsion_orientation == 0 or distorsion_orientation == 2), horizontal=(distorsion_orientation == 1 or distorsion_orientation == 2), ) else: distorted_img, distorted_mask = distorsion_generator.random( rotated_img, rotated_mask, vertical=(distorsion_orientation == 0 or distorsion_orientation == 2), horizontal=(distorsion_orientation == 1 or distorsion_orientation == 2), ) ################################## # Resize image to desired format # ################################## # Horizontal text if orientation == 0: new_width = int( distorted_img.size[0] * (float(size - vertical_margin) / float(distorted_img.size[1])) ) resized_img = distorted_img.resize( (new_width, size - vertical_margin), Image.ANTIALIAS ) resized_mask = distorted_mask.resize((new_width, size - vertical_margin)) background_width = width if width > 0 else new_width + horizontal_margin background_height = size # Vertical text elif orientation == 1: new_height = int( float(distorted_img.size[1]) * (float(size - horizontal_margin) / float(distorted_img.size[0])) ) resized_img = distorted_img.resize( (size - horizontal_margin, new_height), Image.ANTIALIAS ) resized_mask = distorted_mask.resize( (size - horizontal_margin, new_height), Image.ANTIALIAS ) background_width = size background_height = new_height + vertical_margin else: raise ValueError("Invalid orientation") ############################# # Generate background image # ############################# if background_type == 0: background_img = background_generator.gaussian_noise( background_height, background_width ) elif background_type == 1: background_img = background_generator.plain_white( background_height, background_width ) elif background_type == 2: background_img = background_generator.quasicrystal( background_height, background_width ) else: background_img = background_generator.image( background_height, background_width, image_dir ) background_mask = Image.new( "RGB", (background_width, background_height), (0, 0, 0) ) ############################# # Place text with alignment # ############################# new_text_width, _ = resized_img.size if alignment == 0 or width == -1: background_img.paste(resized_img, (margin_left, margin_top), resized_img) background_mask.paste(resized_mask, (margin_left, margin_top)) elif alignment == 1: background_img.paste( resized_img, (int(background_width / 2 - new_text_width / 2), margin_top), resized_img, ) background_mask.paste( resized_mask, (int(background_width / 2 - new_text_width / 2), margin_top), ) else: background_img.paste( resized_img, (background_width - new_text_width - margin_right, margin_top), resized_img, ) background_mask.paste( resized_mask, (background_width - new_text_width - margin_right, margin_top), ) ################################## # Apply gaussian blur # ################################## gaussian_filter = ImageFilter.GaussianBlur( radius=blur if not random_blur else rnd.randint(0, blur) ) final_image = background_img.filter(gaussian_filter) final_mask = background_mask.filter(gaussian_filter) ##################################### # Generate name for resulting image # ##################################### if name_format == 0: image_name = "{}_{}.{}".format(text, str(index), extension) mask_name = "{}_{}_mask.png".format(text, str(index)) elif name_format == 1: image_name = "{}_{}.{}".format(str(index), text, extension) mask_name = "{}_{}_mask.png".format(str(index), text) elif name_format == 2: image_name = "{}.{}".format(str(index), extension) mask_name = "{}_mask.png".format(str(index)) else: print("{} is not a valid name format. Using default.".format(name_format)) image_name = "{}_{}.{}".format(text, str(index), extension) mask_name = "{}_{}_mask.png".format(text, str(index)) # Save the image if out_dir is not None: final_image.convert("RGB").save(os.path.join(out_dir, image_name)) if output_mask == 1: final_mask.convert("RGB").save(os.path.join(out_dir, mask_name)) else: if output_mask == 1: return final_image.convert("RGB"), final_mask.convert("RGB") return final_image.convert("RGB")
StarcoderdataPython
3352835
<filename>elkm1_lib/lights.py """Definition of an ElkM1 Light""" from .const import Max, TextDescriptions from .elements import Element, Elements from .message import add_message_handler, ps_encode, pc_encode, pf_encode, \ pn_encode, pt_encode class Light(Element): """Class representing a Light""" def __init__(self, index, elk): super().__init__(index, elk) self.status = 0 def turn_off(self): """(Helper) Turn off light""" self._elk.send(pf_encode(self._index)) def turn_on(self, brightness=100, time=0): """(Helper) Turn on light""" if brightness == 100: self._elk.send(pn_encode(self._index)) else: self._elk.send(pc_encode(self._index, 9, brightness, time)) def toggle(self): """(Helper) Toggle light""" self._elk.send(pt_encode(self._index)) class Lights(Elements): """Handling for multiple lights""" def __init__(self, elk): super().__init__(elk, Light, Max.LIGHTS.value) add_message_handler('PC', self._pc_handler) add_message_handler('PS', self._ps_handler) def sync(self): """Retrieve lights from ElkM1""" for i in range(4): self.elk.send(ps_encode(i)) self.get_descriptions(TextDescriptions.LIGHT.value) # pylint: disable=unused-argument def _pc_handler(self, housecode, index, light_level): self.elements[index].setattr('status', light_level, True) def _ps_handler(self, bank, statuses): for i in range(bank*64, (bank+1)*64): self.elements[i].setattr('status', statuses[i-bank*64], True)
StarcoderdataPython
12804716
import torch from torch import nn class TextualEncoding(nn.Module): def __init__(self, cfg): super(TextualEncoding, self).__init__() self.cfg = cfg txt_input_size = cfg.TXT_INPUT_SIZE # 300 self.txt_hidden_size = cfg.TXT_HIDDEN_SIZE # 512 self.bidirectional = cfg.RNN.BIDIRECTIONAL self.textual_encoder = nn.LSTM(txt_input_size, self.txt_hidden_size, num_layers=cfg.RNN.NUM_LAYERS, bidirectional=self.bidirectional, # 3, False batch_first=True) if self.bidirectional: self.tex_linear = nn.Linear(self.txt_hidden_size * 2, self.txt_hidden_size) def forward(self, x, textual_mask): self.textual_encoder.flatten_parameters() txt_h = self.textual_encoder(x)[0] * textual_mask # batch * seq_len * txt_hidden_size if self.bidirectional: shape = txt_h.shape txt_h = txt_h.view(shape[0], shape[1], 2, self.txt_hidden_size) # txt_h = torch.stack( # [torch.cat([txt_h[i][torch.sum(mask).long() - 1][0], txt_h[i][0][1]], dim=0) for i, mask in # enumerate(textual_mask)]) txt_h = torch.stack( [torch.cat([txt_h[i][torch.sum(mask).long() - 1][0], txt_h[i][0][1]], dim=0) for i, mask in enumerate(textual_mask)]) txt_h = self.tex_linear(txt_h) # batchsize * 512 else: txt_h = torch.stack( [txt_h[i][torch.sum(mask).long() - 1] for i, mask in enumerate(textual_mask)]) return txt_h # batch * txt_hidden_size class WLTextualEncoding(nn.Module): def __init__(self, cfg): super(WLTextualEncoding, self).__init__() self.cfg = cfg txt_input_size = cfg.TXT_INPUT_SIZE # 300 self.txt_hidden_size = cfg.TXT_HIDDEN_SIZE # 512 self.bidirectional = cfg.RNN.BIDIRECTIONAL self.textual_encoder = nn.GRU(txt_input_size, self.txt_hidden_size, num_layers=cfg.RNN.NUM_LAYERS, bidirectional=self.bidirectional, # 3, False batch_first=True) def forward(self, x, textual_mask): ''' Bi LSTM :param x: text batch * seq_len * input_size :param textual_mask: batch * seq_len :return: ''' self.textual_encoder.flatten_parameters() text_length = torch.sum(textual_mask, dim=1).int().squeeze(1) # batch sorted_lengths, indices = torch.sort(text_length, descending=True) x = x[indices] inv_ix = indices.clone() inv_ix[indices] = torch.arange(0, len(indices)).type_as(inv_ix) packed = nn.utils.rnn.pack_padded_sequence(x, sorted_lengths.data.tolist(), batch_first=True) out = self.textual_encoder(packed)[0] # batch * seq_len * txt_hidden_size padded = nn.utils.rnn.pad_packed_sequence(out, batch_first=True) cap_emb, cap_len = padded cap_emb = cap_emb[inv_ix] # cap_len = cap_len[inv_ix] if self.bidirectional: cap_emb = cap_emb.view(cap_emb.size(0), cap_emb.size(1), 2, -1) # txt_h = torch.stack([cap_emb[i, l-1, 0, :] for i, l in enumerate(cap_len)]) + cap_emb[:, 0, 1, :] cap_emb = (cap_emb[:, :, 0, :] + cap_emb[:, :, 1, :]) / 2 # batch * seq_len * txt_hidden_size txt_h = torch.sum(cap_emb, dim=1) / text_length.unsqueeze(1) # txt_h = torch.norm(txt_h, dim=1) return txt_h, cap_emb # batch * txt_hidden_size class GRUTextualEncoding(nn.Module): def __init__(self, cfg): super(GRUTextualEncoding, self).__init__() self.cfg = cfg txt_input_size = cfg.TXT_INPUT_SIZE # 300 self.txt_hidden_size = cfg.TXT_HIDDEN_SIZE # 512 self.bidirectional = cfg.RNN.BIDIRECTIONAL self.textual_encoder = nn.GRU(txt_input_size, self.txt_hidden_size // 2 if self.bidirectional else self.txt_hidden_size, num_layers=cfg.RNN.NUM_LAYERS, bidirectional=self.bidirectional, # 3, False batch_first=True) def forward(self, x, textual_mask): self.textual_encoder.flatten_parameters() txt_h = self.textual_encoder(x)[0] * textual_mask # batch * seq_len * txt_hidden_size if self.bidirectional: shape = txt_h.shape txt_h = txt_h.view(shape[0], shape[1], 2, self.txt_hidden_size // 2) txt_h = torch.stack( [torch.cat([txt_h[i][torch.sum(mask).long() - 1][0], txt_h[i][0][1]], dim=0) for i, mask in enumerate(textual_mask)]) else: txt_h = torch.stack( [txt_h[i][torch.sum(mask).long() - 1] for i, mask in enumerate(textual_mask)]) return txt_h # batch * txt_hidden_size
StarcoderdataPython
4902746
import numpy as np import pandas as pd import collections import os import shutil from . import database, data_exploration, baseline, analysis """ use with command : nosetests --with-coverage --cover-package=. test.py """ # database tests TEST_SIZE = 50 TRAIN_SIZE = 280 VALID_SIZE = 139 import pkg_resources DATAFOLDER = pkg_resources.resource_filename(__name__, "/swissroads_images") print("DATAFOLDER : " + DATAFOLDER) def test_getimage_wrongFolder(): batches_data, batches_cat, batches_file, batches_folder = database.get_images( "fake_folder" ) assert batches_data == [], "Expected %r, but got %r" % ([], batches_data) assert batches_cat == [], "Expected %r, but got %r" % ([], batches_cat) assert batches_file == [], "Expected %r, but got %r" % ([], batches_file) assert batches_folder == [], "Expected %r, but got %r" % ([], batches_folder) def test_getimage(): batches_data, batches_cat, batches_file, batches_folder = database.get_images( DATAFOLDER ) # batches lenght data_lenght = 469 assert len(batches_data) == data_lenght, "Expected %r, but got %r" % ( [], len(batches_data), ) assert len(batches_cat) == data_lenght, "Expected %r, but got %r" % ( [], len(batches_cat), ) assert len(batches_file) == data_lenght, "Expected %r, but got %r" % ( [], len(batches_file), ) assert len(batches_folder) == data_lenght, "Expected %r, but got %r" % ( [], len(batches_folder), ) # label correspond to image name for i in range(len(batches_cat)): assert ( batches_cat[i] in batches_file[i] ), "Expected to contain %r, but got %r" % (batches_cat[i], batches_file[i]) # batches_folder size counter = collections.Counter(batches_folder) assert counter["test"] == TEST_SIZE, "Expected %r, but got %r" % ( TEST_SIZE, counter["test"], ) assert counter["train"] == TRAIN_SIZE, "Expected %r, but got %r" % ( TRAIN_SIZE, counter["train"], ) assert counter["valid"] == VALID_SIZE, "Expected %r, but got %r" % ( VALID_SIZE, counter["valid"], ) def test_get_batches(): list_lenght = 1357 # arbitrary number, can work with any int batch_size = 32 test_list = np.arange(list_lenght) expected_lengh = batch_size for id, batch in enumerate(database.get_batches(test_list, batch_size)): if id == int(list_lenght / batch_size): expected_lengh = list_lenght % batch_size assert len(batch) == expected_lengh, "Expected %r, but got %r" % ( expected_lengh, len(batch), ) assert batch[0] == test_list[id * batch_size], "Expected %r, but got %r" % ( test_list[id * batch_size], batch[0], ) def test_load_database(): # create local folder output_path = r"./output" if not os.path.exists(output_path): os.makedirs(output_path) # folder_name = "./swissroads_images" database.load_data(DATAFOLDER) database_path = "./output/images_data.npz" assert os.path.isfile(database_path), "File %r does not exist" % (database_path) # assert generated content with np.load("./output/images_data.npz", allow_pickle=True) as npz_file: df = pd.DataFrame(npz_file["values"], columns=npz_file["columns"]) df_test = df[df["imageSet"] == "test"] df_train = df[df["imageSet"] == "train"] df_valid = df[df["imageSet"] == "valid"] assert len(df_test) == TEST_SIZE, "Expected %r, but got %r" % ( TEST_SIZE, len(df_test), ) assert len(df_train) == TRAIN_SIZE, "Expected %r, but got %r" % ( TRAIN_SIZE, len(df_train), ) assert len(df_valid) == VALID_SIZE, "Expected %r, but got %r" % ( VALID_SIZE, len(df_valid), ) categories = ["bike", "car", "motorcycle", "other", "truck", "van"] for category in categories: path = DATAFOLDER + "/test/" + category list = os.listdir(path) df_categories = df_test[df_test["category"] == category] assert len(df_categories) == len(list), "Expected %r files, but got %r" % ( len(list), len(df_categories), ) # delete local folder # os.remove(database_path) # os.rmdir(output_path) shutil.rmtree(output_path, ignore_errors=True) # baseline tests def function_cat2num(input, expected): output = baseline.cat2num(input) assert output == expected, "Expected %r, but got %r" % (expected, output) def test_cat2num_1(): function_cat2num("bike", 0) def test_cat2num_2(): function_cat2num("other", 3) def test_analysis_create_data_sets_1(): # create a dataFrame and check the data split data = { "data1": [20, 21, 19, 18], "data2": [20, 21, 19, 18], "imageSet": ["train", "train", "test", "valid"], "category": ["bike", "car", "van", "truck"], "imageFileName": ["file1", "file2", "file3", "file4"], "category_num": [0, 1, 2, 3], } # Create DataFrame df = pd.DataFrame(data) X_tr, y_tr, X_te, y_te, X_va, y_va = analysis.create_data_sets(df) assert len(y_tr) == 2, "Expected %r, but got %r" % (2, len(y_tr)) assert len(y_te) == 1, "Expected %r, but got %r" % (1, len(y_te)) assert len(y_va) == 1, "Expected %r, but got %r" % (1, len(y_va)) assert X_tr.shape == (2, 3), "Expected %r, but got %r" % ((2, 3), X_tr.shape) def test_get_batches_1(): X_tr = np.random.rand(100, 2) y_tr = np.random.rand(100) i = 0 batch_size_ok = False for X_batch, y_batch in analysis.get_batches(X_tr, y_tr, 25): i += 1 if len(X_batch) == len(y_batch) and len(y_batch) == 25: batch_size_ok = True else: batch_size_ok = False # test if the batch amount is ok given the inputs and batch_size assert i == 4, "Expected %r, but got %r" % (4, i) assert batch_size_ok == True, "Expected %r, but got %r" % (True, False) def test_get_confusion_matrix_1(): y_true = ["cat", "ant", "cat", "cat", "ant", "bird"] y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"] labels = ["ant", "bird", "cat"] df = analysis.get_confusion_matrix(y_true, y_pred, labels, labels) expected_res = np.array([[2, 0, 0], [0, 0, 1], [1, 0, 2]]) assert (df.values == expected_res).all(), "Expected %r, but got %r" % ( res, df.values, ) def test_results(): output_path = r"./output" if not os.path.exists(output_path): os.makedirs(output_path) database.load_data(DATAFOLDER) df = data_exploration.main() data_path = output_path + "/images_data.npz" image_display_path = output_path + "/images_display.png" pca_path = output_path + "/PCA.png" assert os.path.isfile(data_path), "File images_data.npz does not exist" assert os.path.isfile(image_display_path), "File images_display.png does not exist" assert os.path.isfile(pca_path), "File PCA.png does not exist" baseline_acc_tr, baseline_acc_te = baseline.main(df) analysis_acc_tr, analysis_acc_te = analysis.main(df, 10) assert baseline_acc_tr == 1.0, "Expected %r, but got %r" % (1.0, baseline_acc_tr) assert baseline_acc_te >= 0.9, "Expected more than %r, but got %r" % ( 0.9, baseline_acc_te, ) assert analysis_acc_tr >= 0.9, "Expected more than %r, but got %r" % ( 0.9, analysis_acc_tr, ) assert analysis_acc_te >= 0.9, "Expected more than %r, but got %r" % ( 0.9, analysis_acc_te, ) # os.remove(data_path) # os.remove(image_display_path) # os.remove(pca_path) # os.rmdir(output_path) shutil.rmtree(output_path, ignore_errors=True)
StarcoderdataPython
11392209
from codecs import open from os import path from setuptools import setup, find_packages from subprocess import check_output import sphinx_markdown_parser here = path.abspath(path.dirname(__file__)) check_output( 'pandoc --from=markdown --to=rst --output=' + path.join(here, 'README.rst') + ' ' + path.join(here, 'README.md'), shell=True ) with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() install_requires = list() with open(path.join(here, 'requirements.txt'), 'r', encoding='utf-8') as f: for line in f.readlines(): install_requires.append(line) setup( name='sphinx_markdown_parser', version=sphinx_markdown_parser.__version__, description=( 'A docutils-compatibility bridge to markdown, ' 'enabling you to write markdown with support for tables ' 'inside of docutils & sphinx projects.' ), long_description=long_description, url='https://github.com/codejamninja/sphinx-markdown-parser', author='<NAME>', author_email='<EMAIL>', license='MIT', # https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Intended Audience :: Developers', 'Topic :: Utilities', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', ], keywords='sphinx docs documentation markdown', packages=['sphinx_markdown_parser'], install_requires=install_requires, include_package_data=True, entry_points={ 'console_scripts': [ 'cm2html = sphinx_markdown_parser.scripts:cm2html', 'cm2latex = sphinx_markdown_parser.scripts:cm2latex', 'cm2man = sphinx_markdown_parser.scripts:cm2man', 'cm2pseudoxml = sphinx_markdown_parser.scripts:cm2pseudoxml', 'cm2xetex = sphinx_markdown_parser.scripts:cm2xetex', 'cm2xml = sphinx_markdown_parser.scripts:cm2xml', ] } )
StarcoderdataPython
32402
import logging import threading import time from pajbot.managers.db import DBManager from pajbot.managers.schedule import ScheduleManager from pajbot.models.songrequest import SongrequestQueue, SongrequestHistory, SongRequestSongInfo from pajbot.models.user import User log = logging.getLogger("pajbot") WIDGET_ID = 4 class SongrequestManager: def __init__(self, bot): self.bot = bot self.enabled = False self.current_song_id = None self.showVideo = None self.isVideoShowing = None self.youtube = None self.settings = None self.previously_playing_spotify = None self.paused = None self.module_opened = None self.previous_queue = None self.true_volume = None def enable(self, settings, youtube): self.enabled = True self.showVideo = False self.isVideoShowing = True self.youtube = youtube self.settings = settings self.current_song_id = None self.previously_playing_spotify = False self.paused = False self.module_opened = False self.previous_queue = 0 self.true_volume = int(self.settings["volume"]) thread = threading.Thread(target=self.inc_current_song, daemon=True) thread.start() def volume_val(self): return int(self.true_volume * (100 / int(self.settings["volume_multiplier"]))) def to_true_volume(self, multiplied_volume): return int(multiplied_volume * int(self.settings["volume_multiplier"]) / 100) def disable(self): self.enabled = False self.paused = False self.settings = None self.youtube = None self.current_song_id = None self.module_opened = False def open_module_function(self): if not self.enabled: return False if not self.module_opened: self.module_opened = True self.paused = False if not self.current_song_id: self.load_song() return True return False def close_module_function(self): if not self.enabled: return False if self.module_opened: self.module_opened = False self.paused = False return True return False def skip_function(self, skipped_by): with DBManager.create_session_scope() as db_session: skipped_by = User.find_by_user_input(db_session, skipped_by) if not skipped_by: return skipped_by_id = skipped_by.id if not self.enabled and self.current_song_id: return False self.load_song(skipped_by_id) return True def previous_function(self, requested_by): if not self.enabled: return False with DBManager.create_session_scope() as db_session: requested_by = User.find_by_user_input(db_session, requested_by) if not requested_by: return requested_by_id = requested_by.id SongrequestHistory._insert_previous(db_session, requested_by_id, self.previous_queue) db_session.commit() self.previous_queue += 1 self.load_song(requested_by_id) return True def pause_function(self): if not self.enabled or not self.current_song_id: return False if not self.paused: self.paused = True self._pause() return True return False def resume_function(self): if not self.enabled or not self.current_song_id: return False if self.paused: self.paused = False self._resume() if not self.current_song_id and self.module_opened: self.load_song() return True return False def seek_function(self, _time): if not self.enabled: return False if self.current_song_id: with DBManager.create_session_scope() as db_session: current_song = SongrequestQueue._from_id(db_session, self.current_song_id) current_song.current_song_time = _time self._seek(_time) return True return False def volume_function(self, volume): if not self.enabled: return False self.true_volume = self.to_true_volume(volume) self._volume() return True def play_function(self, database_id, skipped_by): if not self.enabled: return False with DBManager.create_session_scope() as db_session: skipped_by = User.find_by_user_input(db_session, skipped_by) if not skipped_by: return skipped_by_id = skipped_by.id song = SongrequestQueue._from_id(db_session, database_id) song._move_song(db_session, 1) db_session.commit() self.load_song(skipped_by_id) SongrequestQueue._update_queue() return True def move_function(self, database_id, to_id): if not self.enabled: return False with DBManager.create_session_scope() as db_session: song = SongrequestQueue._from_id(db_session, database_id) song._move_song(db_session, to_id) db_session.commit() self._playlist() SongrequestQueue._update_queue() return True def request_function(self, video_id, requested_by, queue=None): if not self.enabled: return False with DBManager.create_session_scope() as db_session: requested_by = User.find_by_user_input(db_session, requested_by) if not requested_by: return False requested_by_id = requested_by.id song_info = SongRequestSongInfo._create_or_get(db_session, video_id, self.youtube) if not song_info: log.error("There was an error!") return False skip_after = ( self.settings["max_song_length"] if song_info.duration > self.settings["max_song_length"] else None ) song = SongrequestQueue._create(db_session, video_id, skip_after, requested_by_id) if queue: song._move_song(db_session, queue) db_session.commit() SongrequestQueue._update_queue() return True def replay_function(self, requested_by): if not self.enabled: return False with DBManager.create_session_scope() as db_session: requested_by = User.find_by_user_input(db_session, requested_by) if not requested_by: return False requested_by_id = requested_by.id current_song = SongrequestQueue._from_id(db_session, self.current_song_id) self.request_function(current_song.video_id, current_song.requested_by_id, 1) db_session.commit() self.load_song(requested_by_id) SongrequestQueue._update_queue() return True def requeue_function(self, database_id, requested_by): if not self.enabled: return False with DBManager.create_session_scope() as db_session: requested_by = User.find_by_user_input(db_session, requested_by) if not requested_by: return False requested_by_id = requested_by.id SongrequestHistory._from_id(db_session, database_id).requeue(db_session, requested_by_id) db_session.commit() SongrequestQueue._update_queue() self._playlist() return True def show_function(self): if not self.enabled: return False if not self.showVideo: self.showVideo = True if not self.paused: self._show() return True return False def hide_function(self): if not self.enabled: return False if self.showVideo: self.showVideo = False self._hide() return True return False def remove_function(self, database_id): if not self.enabled: return False with DBManager.create_session_scope() as db_session: song = SongrequestQueue._from_id(db_session, database_id) song._remove(db_session) db_session.commit() SongrequestQueue._update_queue() self._playlist() return True def inc_current_song(self): while True: if not self.enabled: break if self.current_song_id: if not self.paused: try: with DBManager.create_session_scope() as db_session: current_song = SongrequestQueue._from_id(db_session, self.current_song_id) next_song = SongrequestQueue._get_next_song(db_session) if not current_song or ( current_song.skip_after and current_song.skip_after < current_song.current_song_time + 10 ): self.load_song() else: if (not current_song.requested_by) and next_song and next_song.requested_by: self.load_song() current_song.current_song_time += 1 except Exception as e: log.error(e) elif self.module_opened: self.load_song() time.sleep(1) def load_song(self, skipped_by_id=None): if not self.enabled: return False if self.current_song_id: with DBManager.create_session_scope() as db_session: current_song = SongrequestQueue._from_id(db_session, self.current_song_id) if current_song: if current_song.current_song_time > 5: self.previous_queue = 0 histroy = current_song._to_histroy(db_session, skipped_by_id) if not histroy: log.info("History not added because stream is offline!") else: current_song._remove(db_session) self._stop_video() self._hide() db_session.commit() self._playlist_history() SongrequestQueue._update_queue() self.current_song_id = None if not self.module_opened: return False with DBManager.create_session_scope() as db_session: current_song = SongrequestQueue._get_current_song(db_session) if not current_song: current_song = SongrequestQueue._get_next_song(db_session) if current_song: current_song.playing = True current_song.queue = 0 current_song.current_song_time = 0 self.current_song_id = current_song.id song_info = current_song.song_info self._play( current_song.video_id, song_info.title, current_song.requested_by.username_raw if current_song.requested_by else "Backup list", ) if self.settings["use_spotify"]: is_playing, song_name, artistsArr = self.bot.spotify_api.state(self.bot.spotify_token_manager) if is_playing: self.bot.spotify_api.pause(self.bot.spotify_token_manager) self.previously_playing_spotify = True if not current_song.requested_by_id: SongrequestQueue._create( db_session, current_song.video_id, current_song.skip_after, None, SongrequestQueue._get_next_queue(db_session), ) db_session.commit() self._playlist() SongrequestQueue._update_queue() return True if self.settings["use_spotify"]: if self.previously_playing_spotify: self.bot.spotify_api.play(self.bot.spotify_token_manager) self.previously_playing_spotify = False if self.isVideoShowing: self._hide() return False def _play(self, video_id, video_title, requested_by_name): self.bot.songrequest_websocket_manager.emit( "play", {"video_id": video_id, "video_title": video_title, "requested_by": requested_by_name} ) self.bot.websocket_manager.emit("songrequest_play", WIDGET_ID, {"video_id": video_id}) self.paused = True if self.showVideo: self._show() self._playlist() def ready(self): self.resume_function() ScheduleManager.execute_delayed(2, self._volume) def _pause(self): self.bot.songrequest_websocket_manager.emit("pause", {}) self.bot.websocket_manager.emit("songrequest_pause", WIDGET_ID, {}) self._hide() def _resume(self): self.bot.songrequest_websocket_manager.emit("resume", {}) self.bot.websocket_manager.emit("songrequest_resume", WIDGET_ID, {"volume": self.true_volume}) self.paused = False if self.showVideo: self._show() def _volume(self): self.bot.songrequest_websocket_manager.emit("volume", {"volume": self.volume_val()}) self.bot.websocket_manager.emit("songrequest_volume", WIDGET_ID, {"volume": self.true_volume}) def _seek(self, _time): self.bot.songrequest_websocket_manager.emit("seek", {"seek_time": _time}) self.bot.websocket_manager.emit("songrequest_seek", WIDGET_ID, {"seek_time": _time}) self.paused = True def _show(self): self.bot.websocket_manager.emit("songrequest_show", WIDGET_ID, {}) self.isVideoShowing = True def _hide(self): self.bot.websocket_manager.emit("songrequest_hide", WIDGET_ID, {}) self.isVideoShowing = False def _playlist(self): with DBManager.create_session_scope() as db_session: playlist = SongrequestQueue._get_playlist(db_session, 15) self.bot.songrequest_websocket_manager.emit("playlist", {"playlist": playlist}) def _playlist_history(self): with DBManager.create_session_scope() as db_session: self.bot.songrequest_websocket_manager.emit( "history", {"history": SongrequestHistory._get_history(db_session, 15)} ) def _stop_video(self): self.bot.songrequest_websocket_manager.emit("stop", {}) self.bot.websocket_manager.emit("songrequest_stop", WIDGET_ID, {})
StarcoderdataPython
5079539
from math import trunc n = float(input('Insira um número Real: ')) result = math.trunc(n) print('o valor digitado foi {} e sua porção inteira é : {}'.format(n, result))
StarcoderdataPython
9739338
"""Test SMHI component setup process.""" from smhi.smhi_lib import APIURL_TEMPLATE from homeassistant.components.smhi.const import DOMAIN from homeassistant.core import HomeAssistant from . import ENTITY_ID, TEST_CONFIG from tests.common import MockConfigEntry from tests.test_util.aiohttp import AiohttpClientMocker async def test_setup_entry( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker, api_response: str ) -> None: """Test setup entry.""" uri = APIURL_TEMPLATE.format(TEST_CONFIG["longitude"], TEST_CONFIG["latitude"]) aioclient_mock.get(uri, text=api_response) entry = MockConfigEntry(domain=DOMAIN, data=TEST_CONFIG) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() state = hass.states.get(ENTITY_ID) assert state async def test_remove_entry( hass: HomeAssistant, aioclient_mock: AiohttpClientMocker, api_response: str ) -> None: """Test remove entry.""" uri = APIURL_TEMPLATE.format(TEST_CONFIG["longitude"], TEST_CONFIG["latitude"]) aioclient_mock.get(uri, text=api_response) entry = MockConfigEntry(domain=DOMAIN, data=TEST_CONFIG) entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() state = hass.states.get(ENTITY_ID) assert state await hass.config_entries.async_remove(entry.entry_id) await hass.async_block_till_done() state = hass.states.get(ENTITY_ID) assert not state
StarcoderdataPython
9755196
<filename>day1/day1_part2.py #!/usr/bin/env python3 import os with open("input.txt") as f: texts = f.readlines() nums = [int(x) for x in texts] leng=len(nums) print("There are ", leng, " numbers in input." ) for i in range(0,leng): for j in range(i-1,leng): for k in range(j-1,leng): sum = nums[i] + nums[j] + nums[k] if sum == 2020: product = nums[i] * nums[j] * nums[k] print(nums[i], " and ", nums[j], " and ",nums[k], " szorozva ", product)
StarcoderdataPython
1991004
<reponame>kostik/vrs # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import birth_registration.fields import birth_registration.validators class Migration(migrations.Migration): dependencies = [ ('birth_registration', '0026_auto_20150921_1654'), ] operations = [ migrations.AlterField( model_name='f101', name='Father_name', field=birth_registration.fields.Char100Field(max_length=100, null=True, verbose_name="Father's name", blank=True), ), migrations.AlterField( model_name='f101', name='Mother_name', field=birth_registration.fields.Char100Field(max_length=100, null=True, verbose_name="Mother's name"), ), migrations.AlterField( model_name='f101', name='NCZN_F', field=birth_registration.fields.CitizenshipField(blank=True, null=True, verbose_name="Father's citizenship", choices=[(1, '01 - Myanmar'), (2, '02 - Indian'), (3, '03 - Pakistani'), (4, '04 - Bangladesh'), (5, '05 - Nepalese'), (6, '06 - Chinese'), (7, '07 - European/American'), (8, '08 - Other Asian'), (9, '09 - Others'), (10, '10 - Not stated')]), ), migrations.AlterField( model_name='f101', name='NOCC_F', field=birth_registration.fields.OccupationField(blank=True, null=True, verbose_name="Father's occupation", choices=[(1, '01 - Professional Technical and related workers'), (2, '02 - Administrative and managerial workers'), (3, '03 - Clerical and related workers'), (4, '04 - Sales workers'), (5, '05 - Services workers'), (6, '06 - Agriculture, Animal Husbandry and Forest workers, Fishermen, Hunters'), (7, '07 - Production and related workers, Transport equipment operators and labours'), (8, '08 - Not classified by occupation'), (9, '09 - Armed Forces'), (0, '00 - Economically inactive')]), ), migrations.AlterField( model_name='f101', name='NRACE_F', field=birth_registration.fields.RaceField(blank=True, null=True, verbose_name="Father's race", choices=[(1, '01 - Kachin'), (2, '02 - Kayah'), (3, '03 - Kayin'), (4, '04 - Chin'), (5, '05 - Bamar'), (6, '06 - Mon'), (7, '07 - Rakhine'), (8, '08 - Shan'), (9, '09 - Other indigenous Races'), (10, '10 - Myanmar/Foreigners'), (11, '11 - Chinese'), (12, '12 - Indian'), (13, '13 - Pakistani'), (14, '14 - Bangladesh'), (15, '15 - Nepal'), (16, '16 - Other Asian'), (17, '17 - Others'), (18, '18 - Not stated')]), ), migrations.AlterField( model_name='f101', name='NRACE_M', field=birth_registration.fields.RaceField(blank=True, null=True, verbose_name="Mother's race", choices=[(1, '01 - Kachin'), (2, '02 - Kayah'), (3, '03 - Kayin'), (4, '04 - Chin'), (5, '05 - Bamar'), (6, '06 - Mon'), (7, '07 - Rakhine'), (8, '08 - Shan'), (9, '09 - Other indigenous Races'), (10, '10 - Myanmar/Foreigners'), (11, '11 - Chinese'), (12, '12 - Indian'), (13, '13 - Pakistani'), (14, '14 - Bangladesh'), (15, '15 - Nepal'), (16, '16 - Other Asian'), (17, '17 - Others'), (18, '18 - Not stated')]), ), migrations.AlterField( model_name='f101', name='RCIR', field=birth_registration.fields.Char300Field(max_length=300, null=True, verbose_name='Address of mother', blank=True), ), migrations.AlterField( model_name='f101', name='RST_DV', field=birth_registration.fields.StateDivisionField(validators=[birth_registration.validators.validate_2digits], choices=[(1, '01 - Kachin'), (2, '02 - Kayh'), (3, '03 - Kayin'), (4, '04 - Chin'), (5, '05 - Sagaing'), (6, '06 - Tanintharyi'), (7, '07 - Bago'), (8, '08 - Magway'), (9, '09 - Mandalay'), (10, '10 - Mon'), (11, '11 - Rakhine'), (12, '12 - Yangon'), (13, '13 - Shan'), (14, '14 - Ayyarwaddy'), (15, '15 - NayPyiTaw')], blank=True, help_text='State Division', null=True, verbose_name='Usual Place of residence of mother:'), ), ]
StarcoderdataPython
6424568
""" default setting configurations each constant is set to its equivalent in environment variables or hardcoded default below """ import os import sys # --------------- Map -------------- # MAP_PATH = os.environ.get("MAP_PATH", None) or os.path.join( os.path.dirname(os.path.abspath(__file__)), "maps", "map9.json") # --------------- Logging -------------- # GAME_LOG_DESTINATION = os.environ.get("GAME_LOG_DESTINATION", None) or os.path.join( os.path.dirname(os.path.abspath(__file__)), '../gameLog') GAME_LOG_STATIC_FILENAME = os.environ.get("GAME_LOG_STATIC_FILENAME", None) ENGINE_LOG_LOGGER_LEVEL = os.environ.get("ENGINE_LOG_LOGGER_LEVEL", None) or 10 ENGINE_LOG_TO_STDERR = os.environ.get("ENGINE_LOG_TO_STDERR", None) or True ENGINE_LOG_TO_FILE = os.environ.get("ENGINE_LOG_TO_FILE", None) or True ENGINE_LOG_DESTINATION = os.environ.get("ENGINE_LOG_DESTINATION", None) or os.path.join( os.path.dirname(os.path.abspath(__file__)), '../') ENGINE_LOG_FILENAME = os.environ.get("ENGINE_LOG_FILENAME", None) or 'output.log' AGENT_LOG = os.environ.get("AGENT_LOG", None) or True AGENT_LOG_TO_FILE = os.environ.get("AGENT_LOG_TO_FILE", None) or True AGENT_LOG_DESTINATION = os.environ.get("AGENT_LOG_DESTINATION", None) or os.path.join( os.path.dirname(os.path.abspath(__file__)), '../agentLog') # --------------- Players -------------- # PLAYER_1_NAME = os.environ.get("PLAYER_1_NAME", None) or 'First player' PLAYER_2_NAME = os.environ.get("PLAYER_2_NAME", None) or 'Second player' # --------------- Turn -------------- # TURN_INIT = os.environ.get("TURN_INIT", None) or 0 # --------------- Timeout -------------- # TIME_OUT = os.environ.get("TIME_OUT", None) or 0.4 TIME_OUT_BEHAVIOUR = os.environ.get("TIME_OUT_BEHAVIOUR", None) or 'kill' # --------------- Python -------------- # exe = None if 'win' in sys.platform.lower(): exe = 'py' elif 'linux' in sys.platform.lower(): exe = 'python3' PYTHON_EXECUTABLE = os.environ.get("PYTHON_EXECUTABLE", None) or exe or sys.executable # --------------- Agent startup delay -------------- # AGENT_STARTUP_DELAY = os.environ.get("AGENT_STARTUP_DELAY", None) or 0
StarcoderdataPython
202290
constants.physical_constants["proton Compton wavelength"]
StarcoderdataPython
1789032
<reponame>muffinresearch/solitude # -*- coding: utf-8 -*- import mock from nose.tools import eq_ import test_utils from ..client import (Client, ClientMock, ClientProxy, dict_to_mock, get_client, response_to_dict) from ..constants import OK, ACCESS_DENIED from ..errors import AuthError, BangoError, ProxyError import samples class TestClient(test_utils.TestCase): def setUp(self): self.client = get_client() def test_create_package(self): res = self.client.CreatePackage(samples.good_address) eq_(res.responseCode, OK) assert res.packageId > 1 @mock.patch.object(ClientMock, 'mock_results') def test_auth_failure(self, mock_results): mock_results.return_value = {'responseCode': ACCESS_DENIED} with self.assertRaises(AuthError): self.client.CreatePackage(samples.good_address) @mock.patch.object(ClientMock, 'mock_results') def test_failure(self, mock_results): mock_results.return_value = {'responseCode': 'wat'} with self.assertRaises(BangoError): self.client.CreatePackage(samples.good_address) def test_update_support_email(self): res = self.client.UpdateSupportEmailAddress(samples.good_email) eq_(res.responseCode, OK) def test_update_financial_email(self): res = self.client.UpdateFinanceEmailAddress(samples.good_email) eq_(res.responseCode, OK) def test_create_bango_number(self): res = self.client.CreateBangoNumber(samples.good_bango_number) eq_(res.responseCode, OK) def test_make_premium(self): res = self.client.MakePremiumPerAccess(samples.good_make_premium) eq_(res.responseCode, OK) class TestRightClient(test_utils.TestCase): def test_no_proxy(self): with self.settings(BANGO_PROXY=None, SOLITUDE_PROXY=False): assert isinstance(get_client(), Client) def test_using_proxy(self): with self.settings(BANGO_MOCK=False, BANGO_PROXY='http://foo.com'): assert isinstance(get_client(), ClientProxy) def test_am_proxy(self): with self.settings(BANGO_PROXY='http://foo.com', SOLITUDE_PROXY=True): assert isinstance(get_client(), Client) def test_mock(self): with self.settings(BANGO_MOCK=True): assert isinstance(get_client(), ClientMock) class TestProxy(test_utils.TestCase): def setUp(self): self.bango = ClientProxy() self.url = 'http://foo.com' @mock.patch('lib.bango.client.post') def test_call(self, post): resp = mock.Mock() resp.status_code = 200 resp.content = samples.premium_response post.return_value = resp with self.settings(BANGO_PROXY=self.url): self.bango.MakePremiumPerAccess(samples.good_make_premium) args = post.call_args eq_(args[0][0], self.url) eq_(args[1]['headers']['x-solitude-service'], 'https://webservices.test.bango.org/mozillaexporter/service.asmx') @mock.patch('lib.bango.client.post') def test_failure(self, post): resp = mock.Mock() resp.status_code = 500 post.return_value = resp with self.settings(BANGO_PROXY=self.url): with self.assertRaises(ProxyError): self.bango.MakePremiumPerAccess(samples.good_make_premium) @mock.patch('lib.bango.client.post') def test_ok(self, post): resp = mock.Mock() resp.status_code = 200 resp.content = samples.package_response post.return_value = resp with self.settings(BANGO_PROXY=self.url): address = samples.good_address.copy() del address['seller'] res = self.bango.CreatePackage(address) eq_(res.packageId, 1) assert 'CreatePackageResponse' in str(res) def test_convert_data(): data = {'foo': 'bar'} eq_(data, response_to_dict(dict_to_mock(data))) def test_callable(): data = {'foo': lambda: 'x'} assert callable(dict_to_mock(data).foo) assert not callable(dict_to_mock(data, callables=True).foo)
StarcoderdataPython
1836691
#------------------------------------------------------------------------------- # Parser for ASDL [1] definition files. Reads in an ASDL description and parses # it into an AST that describes it. # # The EBNF we're parsing here: Figure 1 of the paper [1]. Extended to support # modules and attributes after a product. Words starting with Capital letters # are terminals. Literal tokens are in "double quotes". Others are # non-terminals. Id is either TokenId or ConstructorId. # # module ::= "module" Id "{" [definitions] "}" # definitions ::= { TypeId "=" type } # type ::= product | sum # product ::= fields ["attributes" fields] # fields ::= "(" { field, "," } field ")" # field ::= TypeId ["?" | "*"] [Id] # sum ::= constructor { "|" constructor } ["attributes" fields] # constructor ::= ConstructorId [fields] # # [1] "The Zephyr Abstract Syntax Description Language" by Wang, et. al. See # http://asdl.sourceforge.net/ #------------------------------------------------------------------------------- from __future__ import print_function import cStringIO # TODO: There should be SimpleSumType(_SumType) and CompoundSumType(_SumType) # That can be determined at compile time with this function. is_simple() # should move to front_end.py. # PATCH: Moved this function from asdl_c.py. def is_simple(sum): """Return True if a sum is a simple. A sum is simple if its types have no fields, e.g. unaryop = Invert | Not | UAdd | USub """ for t in sum.types: if t.fields: return False return True # The following classes are the AST for the ASDL schema, i.e. the "meta-AST". # See the EBNF at the top of the file to understand the logical connection # between the various node types. class AST(object): def Print(self, f, indent): raise NotImplementedError def __repr__(self): f = cStringIO.StringIO() self.Print(f, 0) return f.getvalue() class Module(AST): def __init__(self, name, dfns): self.name = name self.dfns = dfns def Print(self, f, indent): ind = indent * ' ' f.write('%sModule %s {\n' % (ind, self.name)) for d in self.dfns: d.Print(f, indent+1) f.write('\n') f.write('%s}\n' % ind) class Type(AST): def __init__(self, name, value): self.name = name self.value = value def Print(self, f, indent): ind = indent * ' ' f.write('%sType %s {\n' % (ind, self.name)) self.value.Print(f, indent+1) f.write('%s}\n' % ind) class Field(AST): def __init__(self, type, name=None, seq=False, opt=False): self.type = type self.name = name self.seq = seq self.opt = opt def Print(self, f, indent): extra = [] if self.seq: extra.append('seq=True') elif self.opt: extra.append('opt=True') else: extra = "" ind = indent * ' ' f.write('%sField %s %s' % (ind, self.name, self.type)) if extra: f.write(' (') f.write(', '.join(extra)) f.write(')') f.write('\n') class _CompoundAST(AST): """Either a Product or Constructor. encode.py and format.py need a reflection API. """ def __init__(self, fields): self.fields = fields or [] class Constructor(_CompoundAST): def __init__(self, name, fields=None): _CompoundAST.__init__(self, fields) self.name = name # Add fake spids field. # TODO: Only do this if 'attributes' are set. if self.fields: self.fields.append(Field('int', 'spids', seq=True)) def Print(self, f, indent): ind = indent * ' ' f.write('%sConstructor %s' % (ind, self.name)) if self.fields: f.write(' {\n') for field in self.fields: field.Print(f, indent+1) f.write('%s}' % ind) f.write('\n') class Sum(AST): def __init__(self, types, attributes=None): self.types = types # List[Constructor] self.attributes = attributes or [] def Print(self, f, indent): ind = indent * ' ' f.write('%sSum {\n' % ind) for t in self.types: t.Print(f, indent+1) if self.attributes: f.write('%s\n' % self.attributes) f.write('%s}\n' % ind) class Product(_CompoundAST): def __init__(self, fields, attributes=None): _CompoundAST.__init__(self, fields) self.attributes = attributes or [] def Print(self, f, indent): ind = indent * ' ' f.write('%sProduct {\n' % ind) for field in self.fields: field.Print(f, indent+1) if self.attributes: f.write('%s\n' % self.attributes) f.write('%s}\n' % ind)
StarcoderdataPython
5072277
<reponame>AutonomyLab/obzerver<gh_stars>1-10 #!/usr/bin/env python from __future__ import print_function import sys import string import numpy def main(): if len(sys.argv) < 2: print("Usage: ./analyze-perf-result.py perf_file1 perf_file_2 ...", file=sys.stderr) sys.exit(1) data = dict() for input_filename in sys.argv[1:]: print("Processing %s ..." % (input_filename, ), file=sys.stderr) with open(input_filename) as input_file: for line in input_file: if string.find(line, "(ms)") == -1: continue elements = string.split(line) #assert elements[2] == "(ms)" if not elements[2] == "(ms)": continue component = elements[0] #print(line, elements) exec_time = float(elements[1]) if not component in data: data[component] = list() data[component].append(exec_time) print("#component, mean exec time, stddev exec time, data points") for component, exec_time_list in data.items(): numd = len(exec_time_list) mean = numpy.mean(exec_time_list) stdd = numpy.std(exec_time_list) print("%s, %s, %s, %s " % (component, mean, stdd, numd)) if __name__ == "__main__": main()
StarcoderdataPython
1649993
# DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #172. Factorial Trailing Zeroes #Given an integer n, return the number of trailing zeroes in n!. #Note: Your solution should be in logarithmic time complexity. #Credits: #Special thanks to @ts for adding this problem and creating all test cases. #class Solution: # def trailingZeroes(self, n): # """ # :type n: int # :rtype: int # """ # Time Is Money
StarcoderdataPython
11260681
<reponame>ALFA-group/neural_program_comprehension ringos, orenjis = 3, 8 if ringos == orenjis: print(ringos + orenjis) elif abs(ringos - orenjis) == 5 or (ringos + orenjis) == 5: print(ringos*orenjis) else: print(ringos - orenjis)
StarcoderdataPython
6523037
# coding=utf-8 # Copyright 2022 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utils for deterministic ViT.""" import functools import logging import flax import jax import jax.numpy as jnp import input_utils # local file import from baselines.jft import train_utils # local file import from baselines.jft def get_total_steps(config): """Get total_steps of training. Args: config: The config of the experiment. Returns: Total_steps of training. """ local_batch_size = config.batch_size // jax.process_count() ntrain_img = input_utils.get_num_examples( config.dataset, split=config.train_split, process_batch_size=local_batch_size, data_dir=config.get('data_dir')) steps_per_epoch = ntrain_img // config.batch_size if config.get('num_epochs'): total_steps = int(config.num_epochs * steps_per_epoch) assert not config.get('total_steps'), 'Set either num_epochs or total_steps' else: total_steps = config.total_steps logging.info('Total train data points: %d', ntrain_img) logging.info( 'Running for %d steps, that means %f epochs and %d steps per epoch', total_steps, total_steps * config.batch_size / ntrain_img, steps_per_epoch) return total_steps def create_init(model, config, train_ds): """Create the initialization function for model parameters. Args: model: The model to be used in updates. config: The config of the experiment. train_ds: tf.data.Dataset. Returns: Function that returns initialized model parameters. """ local_batch_size = config.batch_size // jax.process_count() # We want all parameters to be created in host RAM, not on any device, they'll # be sent there later as needed, otherwise we already encountered two # situations where we allocate them twice. @functools.partial(jax.jit, backend='cpu') def init(rng): image_size = tuple(train_ds.element_spec['image'].shape[2:]) logging.info('image_size = %s', image_size) dummy_input = jnp.zeros((local_batch_size,) + image_size, jnp.float32) params = flax.core.unfreeze(model.init(rng, dummy_input, train=False))['params'] # Set bias in the head to a low value, such that loss is small initially. params['head']['bias'] = jnp.full_like(params['head']['bias'], config.get('init_head_bias', 0)) # init head kernel to all zeros for fine-tuning if config.get('model_init'): params['head']['kernel'] = jnp.full_like(params['head']['kernel'], 0) return params return init def create_update_fn(model, config): """Create the update function from model and config. Args: model: The model to be used in updates. config: The config of the experiment. Returns: The function that updates the model for one step. """ weight_decay_rules = config.get('weight_decay', []) or [] rescale_value = config.lr.base if config.get('weight_decay_decouple') else 1. weight_decay_fn = train_utils.get_weight_decay_fn( weight_decay_rules=weight_decay_rules, rescale_value=rescale_value) logging.info('weight_decay_rules = %s', weight_decay_rules) logging.info('rescale_value = %s', rescale_value) @functools.partial(jax.pmap, axis_name='batch', donate_argnums=(0,)) def update_fn(opt, lr, images, labels, rng): """Update step.""" measurements = {} # Split rng and return next_rng for the following step. rng, next_rng = jax.random.split(rng, 2) rng_local = jax.random.fold_in(rng, jax.lax.axis_index('batch')) logging.info(msg=f'images in loss_fn = {jnp.shape(images)}') logging.info(msg=f'labels in loss_fn = {jnp.shape(labels)}') def loss_fn(params, images, labels): logits, _ = model.apply({'params': flax.core.freeze(params)}, images, train=True, rngs={'dropout': rng_local}) logging.info(msg=f'logits={logits}') label_indices = config.get('label_indices') if label_indices: logits = logits[:, label_indices] loss = getattr(train_utils, config.get('loss', 'sigmoid_xent'))( logits=logits, labels=labels) return loss, logits # Implementation considerations compared and summarized at # https://docs.google.com/document/d/1g3kMEvqu1DOawaflKNyUsIoQ4yIVEoyE5ZlIPkIl4Lc/edit?hl=en# (l, logits), g = train_utils.accumulate_gradient( jax.value_and_grad(loss_fn, has_aux=True), opt.target, images, labels, config.get('grad_accum_steps')) l, g = jax.lax.pmean((l, g), axis_name='batch') measurements['training_loss'] = l logging.info(msg=f'measurements = {measurements}') # Log the gradient norm only if we need to compute it anyways (clipping) # or if we don't use grad_accum_steps, as they interact badly. if config.get('grad_accum_steps', 1) == 1 or config.get('grad_clip_norm'): grads, _ = jax.tree_flatten(g) l2_g = jnp.sqrt(sum([jnp.vdot(p, p) for p in grads])) measurements['l2_grads'] = l2_g logging.info(msg=f'measurements = {measurements}') # Optionally resize the global gradient to a maximum norm. We found this # useful in some cases across optimizers, hence it's in the main loop. if config.get('grad_clip_norm'): g_factor = jnp.minimum(1.0, config.grad_clip_norm / l2_g) g = jax.tree_util.tree_map(lambda p: g_factor * p, g) opt = opt.apply_gradient(g, learning_rate=lr) opt = opt.replace(target=weight_decay_fn(opt.target, lr)) params, _ = jax.tree_flatten(opt.target) measurements['l2_params'] = jnp.sqrt(sum([jnp.vdot(p, p) for p in params])) top1_idx = jnp.argmax(logits, axis=1) top1_correct = jnp.take_along_axis(labels, top1_idx[:, None], axis=1)[:, 0] prec1 = jax.lax.psum( jnp.sum(top1_correct), axis_name='batch') / config.batch_size measurements['training_prec@1'] = prec1 measurements['learning_rate'] = lr return opt, next_rng, measurements return update_fn def create_evaluation_fn(model, config): """Create the evaluation function from model and config. Args: model: The model to be used in updates. config: The config of the experiment. Returns: The function that evaluates the model for one step. """ @functools.partial(jax.pmap, axis_name='batch') def evaluation_fn(params, images, labels, mask): # Ignore the entries with all zero labels for evaluation. mask *= labels.max(axis=1) logits, out = model.apply({'params': flax.core.freeze(params)}, images, train=False) label_indices = config.get('label_indices') logging.info('!!! mask %s, label_indices %s', mask, label_indices) if label_indices: logits = logits[:, label_indices] # Note that logits and labels are usually of the shape [batch,num_classes]. # But for OOD data, when num_classes_ood > num_classes_ind, we need to # adjust labels to labels[:, :config.num_classes] to match the shape of # logits. That is just to avoid shape mismatch. The output losses does not # have any meaning for OOD data, because OOD not belong to any IND class. losses = getattr(train_utils, config.get('loss', 'sigmoid_xent'))( logits=logits, labels=labels[:, :( len(label_indices) if label_indices else config.num_classes)], reduction=False) loss = jax.lax.psum(losses * mask, axis_name='batch') top1_idx = jnp.argmax(logits, axis=1) # Extracts the label at the highest logit index for each image. top1_correct = jnp.take_along_axis(labels, top1_idx[:, None], axis=1)[:, 0] ncorrect = jax.lax.psum(top1_correct * mask, axis_name='batch') n = jax.lax.psum(mask, axis_name='batch') metric_args = jax.lax.all_gather([logits, labels, out['pre_logits'], mask], axis_name='batch') return ncorrect, loss, n, metric_args return evaluation_fn
StarcoderdataPython
1781651
<reponame>coverwallet/pysoni<gh_stars>1-10 from time import sleep from datetime import datetime from psycopg2.extras import execute_values from pandas import DataFrame, to_datetime, notnull from toolz import groupby from . import helpers from .connection import Connection class Postgre(object): """This class will contain special methods to perform over PostgreSQL. The arguments received on initialization are passed directly to Connection, you can find more information about them in its documentation """ def __init__(self, port=None, host=None, dbname=None, user=None, password=<PASSWORD>, uri=None, is_persistent=False, connection_options='-c statement_timeout=3600000'): self.db_connection = Connection(port=port, host=host, dbname=dbname, user=user, password=password, uri=uri, is_persistent=is_persistent, connection_options=connection_options) def connection(self): """Generate the DB connection object and connects to it The values used during the connection are obtained from the fields of the Postgre instance """ self.db_connection.connect() return self.db_connection def delete_batch_rows(self, delete_batch, table_name, column, batch_size=1000, timeout=True): """Delete rows from a table using batches when the table column match any value given in the delete_batch argument.""" helpers.validate_types(subject=delete_batch, expected_types=[list,tuple], contained_types=[str,int]) delete_batch, remaining_rows = delete_batch[:batch_size], delete_batch[batch_size:] while len(delete_batch) > 0: rows_string = ','.join(f"'{register}'" for register in delete_batch) self.postgre_statement(f"delete from {table_name} where {column} in ({rows_string})", timesleep=timeout) delete_batch, remaining_rows = remaining_rows[:batch_size], remaining_rows[batch_size:] def drop_tables(self, table_names, wait_time=0, batch=True): """Delete a set of DB tables. Arguments ---------- tablelist : list, tuple Iterable of strings representing the names of the tables to drop wait_time : int Number of seconds that we'll wait before committing the operation to the DB batch : boolean Defines if the operation should be done in a batch """ helpers.validate_types(table_names, expected_types=[list, tuple], contained_types=[str]) if batch: statement = f"DROP TABLES {', '.join(table_names)}" self.postgre_statement(statement, timesleep=wait_time) else: for table_name in table_names: self.postgre_statement(f"DROP TABLE {table_name}", timesleep=wait_time) def execute_batch_inserts(self, insert_rows, tablename, batch_size=1000, columns=None): """Insert rows in a table using batches. Arguments --------- insert_rows: list, tuple Iterable containing the values that we want to insert in the DB tablename: str Name of the table where the values will be inserted batch_size: int Size of each batch of values. The default batch size it is set to 1000. columns: list, tuple List containing the bame of the columns to be used in the insertion. They must be in the same order than the values. If it is not specified, it is assumed that the order of the values follow the order of the columns of the table. """ if columns: helpers.validate_types(subject=columns, expected_types=[list, tuple, str]) insert_columns = f" ({(helpers.format_sql_string(subject=columns))})" else: insert_columns = "" helpers.validate_types(subject=insert_rows, expected_types=[list, tuple], contained_types=[str, int, float, list, tuple]) conn = self.connection() cur = conn.cursor() try: insert = helpers.format_insert(insert_rows) batch_insert, insert = insert[:batch_size], insert[batch_size:] while batch_insert: execute_values(cur, f'INSERT INTO {tablename}{insert_columns} VALUES %s', batch_insert) batch_insert, insert = insert[:batch_size], insert[batch_size:] conn.commit() finally: conn.commit() cur.close() conn.close() def execute_query(self, queryname, types=False, path_sql_script=None): """This method is used to execute an sql query. With default parameters, it returns a dictionary with two keys: 'results' provides a list with the results of the query and 'keys' provides a list with the names of each of the columns returned. If types = true, it also returns a key 'types' inside the dictionary that contains the type of each of the columns. If a path in "path_sql_script" is specified, the query is read from the file named 'queryname' (with the SQL query) that is located in that specific path is used. If we want to make dynamic queries, the attributes should be passed as in the following example: place = "Madrid" f"select * from hotels where city='{place}'" """ conn = self.connection() cur = conn.cursor() column_name_index = 0 column_type_index = 1 try: query_results = {} if path_sql_script: cur.execute(helpers.read_query(queryname, path_sql_script)) else: cur.execute(queryname) cursor_info = cur.fetchall() columns_names = [cursor_metadata[column_name_index] for cursor_metadata in cur.description] if types: types_of_columns = [cursor_metadata[column_type_index] for cursor_metadata in cur.description] type_string = ','.join(str(type_code) for type_code in types_of_columns) cur.execute(f"select pg_type.oid, pg_type.typname from pg_type where pg_type.oid in ({type_string})") list_of_types = cur.fetchall() oid_name_type_dict = {type_column_tuple[0]: type_column_tuple[1] for type_column_tuple in list_of_types} type_name_list = [oid_name_type_dict.get(type_code, 'text') for type_code in types_of_columns] query_results = {'results': cursor_info, 'keys': columns_names, 'types': type_name_list} else: query_results = {'results': cursor_info, 'keys': columns_names} return query_results finally: cur.close() conn.close() def get_schema(self, schema, metadata=False): """This method it is perform to get all the schema information from postgresql.""" query = ( "SELECT table_name, column_name, data_type FROM " f"information_schema.columns WHERE table_schema='{schema}'" ) if not metadata: query += "AND table_name NOT LIKE 'pg_%'" tables_information = self.postgre_to_tuple(query) if not tables_information: raise ValueError('The schema is empty') schemas_metadata = [{ 'table_name': table_information[0], 'column_name': table_information[1], 'data_type': table_information[2] } for table_information in tables_information] final_results = [] for table_name, table_metadatas in groupby('table_name', schemas_metadata).items(): final_results.append({ table_name: { metadata['column_name']: metadata['data_type'] for metadata in table_metadatas } }) return final_results def postgre_statement(self, statement, timesleep=0): """Method to perform postgres transactions as an example rename columns, truncate tables, grant permissions to users etc,. Arguments ---------- statement : string String representing the transacion we want to execute timesleep : int Number with the seconds we want to wait between the transaction is executed and commited time. """ conn = self.connection() cur = conn.cursor() try: cur.execute(statement) sleep(timesleep) finally: conn.commit() cur.close() conn.close() def postgre_multiple_statements(self, statements, timesleep=0): """Method to perform multiple postgres transactions as an example rename columns, truncate tables, grant permissions to users etc..All transactions are commited at the same time. Arguments ---------- statements : list, tuple Iterable of strings representing the transacion. All transactions are executed following the order of the iterable timesleep : int Number with the seconds we want to wait between alls transactions are executed and commited time. """ helpers.validate_types(statements, expected_types=[list, tuple], contained_types=[str]) self.postgre_statement(";".join(statements), timesleep=timesleep) def dataframe_to_postgre(self, tablename, dataframe_object, method, batch_size, merge_key=None): """This method it is perform to insert a Dataframe python object into a DWH table. The insert method can be done by appending elements to a table for that purpose use the append opction in the method param. If you want to update a table by a column, you need to use the rebuilt method and select the merge_key column of your DWH table. """ dataframe_object = dataframe_object.where((notnull(dataframe_object)), None) df_columns = dataframe_object.columns[0:].tolist() df_values = dataframe_object.values[:, 0:].tolist() if method not in ('rebuild', 'append'): raise ValueError("""Invalid method. Select method='rebuild' if you want to update a table using a column. Select method='append' if you want just to update it.""") if method == 'rebuild': if not merge_key: raise ValueError("""To rebuilt a table you must select a merge_key with the table column""") df_delete_values = dataframe_object[merge_key].unique().tolist() self.update_table(tablename=tablename, merge_key=merge_key, insert_batch_size=batch_size, delete_batch_size=batch_size, insert_list=df_values, delete_list=df_delete_values, columns=df_columns) elif method == 'append': self.execute_batch_inserts( tablename=tablename, columns=df_columns, insert_rows=df_values, batch_size=batch_size) def postgre_to_dataframe(self, query, convert_types=True, path_sql_script=None): """This method is used to execute a sql query and return a pandas Dataframe with the results. If 'convert_types' = True, the time variables are converted to timestamp format and the date variables are converted to YYYY-MM-DD format. If we want to make dynamic queries the attributes should be pass as the following example place = "Madrid" f"select * from hotels where city='{place}'" """ results = self.execute_query(query, types=convert_types, path_sql_script=path_sql_script) df = DataFrame.from_records(results['results'], columns=results['keys']) if convert_types: for column_data_type, column_name in zip(results['types'], results['keys']): if column_data_type in ('timestamp', 'timestamptz'): df[column_name] = to_datetime(df[column_name]) elif column_data_type == 'date': df[column_name] = to_datetime( df[column_name], format='%Y-%m-%d') return df def postgre_to_dict(self, query, types=False, path_sql_script=None): """This method is used to execute an sql query and it would retrieve a list, corresponding each element to a different row of the resulted query. Each element is in turn made up of a list of dictionaries in which the keys are the name of the columns and the value is the the actual value of the row for that specific column. If types=True, it also returns the type of each column inside each dictionary.""" results = self.execute_query(query, types=types, path_sql_script=path_sql_script) columns = results['keys'] rows = results['results'] if types: types = results['types'] list_of_dict = [] for row in rows: list_of_dict.append([{column: {'value': value, 'type': type_}} for value, column, type_ in zip(row, columns, types)]) return list_of_dict else: rows = results['results'] list_of_dict = [] for row in rows: list_of_dict.append([{column: register} for register, column in zip(row, columns)]) return list_of_dict def postgre_to_dict_list(self, query, types=False, path_sql_script=False): """This method is used to execute an sql query and return a list of dictionaries. Each dictionary contais the information of each element of the result (value + column). If types=True, the dictionary also includes the type of the column. Different from 'postgre_to_dict', here each element of each row has its own dictionary, and inside the dictionary it is contained the value, the name of the column and the type of the column (if True)""" results = self.execute_query(query, types=types, path_sql_script=path_sql_script) columns, rows = results['keys'], results['results'] if types: types = results['types'] list_of_dict = [] for row in rows: for value, column, type_ in zip(row, columns, types): list_of_dict.append({column: {'value': value, 'type': type_}}) return list_of_dict else: list_of_dict = [] for row in rows: row_dict = {} for value, column in zip(row, columns): row_dict.update({column: value}) list_of_dict.append(row_dict) return list_of_dict def postgre_to_tuple(self, query, path_sql_script=False): """This method it is perform to execute an sql query and it would retrieve a list of tuples. If we want to make dynamic queries the attributes should be pass as the following example f"select * from hoteles where city='Madrid'")""" results = self.execute_query(query, path_sql_script=path_sql_script) return results['results'] def update_fields(self, tablename, column, values, wait_time=0): """Method to perform updates over a column. Arguments ---------- tablename : string String representing the table we want to update. column : int String representing the column we want to update the values. values : list, tuple Iterable of iterables representing the values we want to update. By default the first element of the value is corresponding with, the old value and the second element of the value corresponds with, the new value we are going to update. wait_time : int Sleep time between update transactions. """ helpers.validate_types(values, expected_types=[list, tuple], contained_types=[list,tuple]) OLD_RECORD_INDEX = 0 NEW_RECORD_INDEX = 1 for record in values: update = (f"UPDATE {tablename} " f"SET {column}='{record[NEW_RECORD_INDEX]}' " f"WHERE {column}='{record[OLD_RECORD_INDEX]}'") self.postgre_statement(update, timesleep=wait_time) def update_fields_in_batch(self, tablename, column, values, batch_size): """Method to perform postgres batch updates over a column. Arguments ---------- tablename : string String representing the table we want to update. column : int String representing the column we want to update the values. values : list, tuple Iterable of iterables representing the values we want to update. By default the first element of the value is corresponding with, the old value and the second element of the value corresponds with, the new value we are going to update. wait_time : int Sleep time between update transactions. """ helpers.validate_types(values, expected_types=[list, tuple], contained_types=[list, tuple]) conn = self.connection() cur = conn.cursor() try: batch_update, update = values[:batch_size], values[batch_size:] while len(batch_update) > 0: execute_values(cur, f"UPDATE {tablename} SET {column}" +"= data.new_value FROM (VALUES %s) " "AS data (old_value, new_value) " \ f"WHERE {column} = data.old_value", batch_update) batch_update, update = update[:batch_size], update[batch_size:] finally: conn.commit() cur.close() conn.close() def update_table(self, tablename, merge_key, delete_list, insert_list, insert_batch_size=5000, delete_batch_size=None, columns=None): """Update the records of a DB table in batches It follows the delete-and-insert pattern (first delete all the rows that will be updated, then insert them with the new values) because this greatly improves the speed over doing the update row by row, as this pattern enables batch operations on the DB. WARNING: It's important to consider that if only specific columns are updated (by using the 'columns' argument) the rest of the values of the row will be lost (as they won't be re-inserted after the deletion) Arguments --------- tablename : string Name of the table that will be updated merge_key : string Name of the column that will be updated delete_list : list, tuple Iterable containing the table PK of the rows that we want to remove insert_list : list, tuple Iterable of iterables, representing all the values that will be inserted in each row insert_batch_size : integer Size of the batch to insert in each DB transaction delete_batch_size : integer Size of the batch to delete in each DB transaction. If not specified, it's set to the same value as insert_batch_size columns : list, tuple Columns to update, in case we don't want to set all the values in the record. WARNING: If you use this option, the values on the missing columns will be lost """ if not delete_batch_size: delete_batch_size = insert_batch_size self.delete_batch_rows( delete_list, table_name=tablename, column=merge_key, batch_size=delete_batch_size, timeout=False ) self.execute_batch_inserts( insert_list, tablename=tablename, batch_size=insert_batch_size, columns=columns ) def update_table_with_temp_table(self, tablename, insert_list, schema=None, merge_key=None, insert_batch_size=5000, columns=None, truncate_table=False): """Use a temporary staging table to perform a merge (Upsert). It update and insert efficiently new data by loading your data into a staging table first. Then, in one single transaction, deletes all the rows in the target table using a merge key and inserts all the rows from the temporary table. The connection must be persistent (is_persistent=True) to use temporary tables. WARNING: It's important to consider that if only specific columns are updated (by using the 'columns' argument) the rest of the values of the row will be lost (as they won't be re-inserted after the deletion) Arguments --------- tablename: string Name of the table that will be updated merge_key: string (optional) Column used to make an inner join to delete rows that will be updated. If it is not specified, only an insert operation from the temporary table is done insert_list: list, tuple Iterable of iterables, representing all the values that will be inserted in each row schema: string Name of the schema that contains the table that will be updated (Optional). insert_batch_size: integer Size of the batch to insert in each DB transaction columns : list, tuple Columns to update, in case we don't want to set all the values in the record. WARNING: If you use this option, the values on the missing columns will be lost truncate_table : boolean If true, truncates the table before doing the insertion. False by default """ if not self.db_connection.is_persistent: raise ConnectionError("The connection must be persistent to use temporary tables") execution_time = datetime.now().strftime("%Y%m%d%H%M%S%f") tmp_table = f'{tablename}_TEMP_{execution_time}' table_name_with_schema = f"{schema}.{tablename}" if schema else tablename self.postgre_statement(f"CREATE TEMP TABLE {tmp_table} AS (SELECT * FROM {table_name_with_schema} LIMIT 0)") # Batch insert is done in temporary table self.execute_batch_inserts(insert_list, tablename=tmp_table, batch_size=insert_batch_size, columns=columns) sql_statements = [] if truncate_table: sql_statements.append(f"TRUNCATE TABLE {table_name_with_schema}") if merge_key: sql_statements.append( f"DELETE FROM {table_name_with_schema} USING {tmp_table} " f"WHERE {table_name_with_schema}.{merge_key}={tmp_table}.{merge_key};") # Table truncation, batch delete and insert happens in one single transaction sql_statements.append(f"INSERT INTO {table_name_with_schema} (SELECT * FROM {tmp_table})") self.postgre_multiple_statements(sql_statements)
StarcoderdataPython
3574014
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. and Epidemico Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### from __future__ import absolute_import import glob from ftplib import FTP import logging import os import datetime import re import shutil from django.conf import settings from dataqs.processor_base import GeoDataMosaicProcessor from dataqs.helpers import gdal_translate, style_exists logger = logging.getLogger("dataqs.processors") script_dir = os.path.dirname(os.path.realpath(__file__)) GPM_ACCOUNT = getattr(settings, 'GPM_ACCOUNT', 'anonymous') GS_DATA_DIR = getattr(settings, 'GS_DATA_DIR', '/data/geodata') GS_TMP_DIR = getattr(settings, 'GS_TMP_DIR', '/tmp') class GPMProcessor(GeoDataMosaicProcessor): """ Class for processing the latest NASA IMERG Rainfall estimates combining data from all passive-microwave instruments in the GPM Constellation. Uses the 'early' (possibly less accurate) images for most timely information (generated within 6-8 hours of observation). """ base_url = "jsimpson.pps.eosdis.nasa.gov" layername_prefix = 'nasa_gpm_' prefix = '3B-HHR-E.MS.MRG.3IMERG.' layer_name = 'nasa_gpm_24hr' archive_hours = ("T12:00:00.000Z", "T12:30:00.000Z") description = """NASA IMERG: Rainfall estimates combining data from all passive-microwave instruments in the GPM Constellation. This algorithm is intended to intercalibrate, merge, and interpolate "all" satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators at fine time and space scales for the TRMM and GPM eras over the entire globe. The system is run several times for each observation time, first giving a quick estimate (this image) and successively providing better estimates as more data arrive. \n\nSource: http://pmm.nasa.gov/data-access/downloads/gpm""" def download(self, auth_account=GPM_ACCOUNT, tmp_dir=GS_TMP_DIR, days=1): ftp = FTP(self.base_url) ftp.login(auth_account, auth_account) ftp.cwd('/NRTPUB/imerg/gis/early') file_list = ftp.nlst() pattern = '.+\.1day\.tif' if days == 1 else '.+\-S120000\-.+\.1day\.tif' re_1day = re.compile(pattern) files = sorted([x for x in file_list if re_1day.search(x)])[-days:] for file_1day in files: with open(os.path.join(self.tmp_dir, file_1day), 'wb') as outfile: ftp.retrbinary('RETR %s' % file_1day, outfile.write) tfw_file = file_1day.replace('.tif', '.tfw') with open(os.path.join(self.tmp_dir, tfw_file), 'wb') as outfile: ftp.retrbinary('RETR %s' % tfw_file, outfile.write) return files def parse_name(self, tifname): name_subs = re.search( 'IMERG\.(\d{8}-S\d{6}).+\.(3hr|30min|1day)\.tif', tifname) imgtime = datetime.datetime.strptime(name_subs.group(1), "%Y%m%d-S%H%M%S") imgstrtime = imgtime.strftime("%Y-%m-%d %H:00") layer_title = "NASA Global Precipitation Estimate ({}) - {} UTC".format( name_subs.group(2), imgstrtime) return layer_title, imgtime def convert(self, tif_file): layer_title, imgtime = self.parse_name(tif_file) time_format = imgtime.strftime('%Y%m%dT%H0000000Z') tif_out = "{prefix}_{time}.tif".format( prefix=self.layer_name, time=time_format) # Use gdal_translate to embed projection info gdal_translate(os.path.join(self.tmp_dir, tif_file), os.path.join(self.tmp_dir, tif_out), nodata=0, projection="EPSG:4326") return tif_out def run(self, days=1): tifs = self.download(days=days) for tif_file in tifs: projected_tif = self.convert(tif_file) dst_file = self.data_dir.format(gsd=GS_DATA_DIR, ws=self.workspace, layer=self.layer_name, file=projected_tif) dst_dir = os.path.dirname(dst_file) if not os.path.exists(dst_dir): os.makedirs(dst_dir) if dst_file.endswith('.tif'): shutil.move(os.path.join(self.tmp_dir, projected_tif), dst_file) self.post_geoserver(dst_file, self.layer_name) layer_title, imgtime = self.parse_name(tifs[-1]) self.drop_old_hourly_images(imgtime, self.layer_name) self.drop_old_daily_images(imgtime, self.layer_name) if not style_exists(self.layer_name): with open(os.path.join(script_dir, 'resources/gpm.sld')) as sld: self.set_default_style(self.layer_name, self.layer_name, sld.read()) self.update_geonode( self.layer_name, title=layer_title, description=self.description, store=self.layer_name, bounds=('-180.0', '180.0', '-90.0', '90.0', 'EPSG:4326'), extra_keywords=['category:Climatology Meteorology']) self.truncate_gs_cache(self.layer_name) self.cleanup() def cleanup(self): """ Remove any files in the temp directory matching the processor class prefix or layer name """ filelist = glob.glob("{}*.*".format( os.path.join(self.tmp_dir, self.layer_name))) for f in filelist: os.remove(f) super(GPMProcessor, self).cleanup() if __name__ == '__main__': processor = GPMProcessor() processor.run()
StarcoderdataPython
6531885
""" To install, change to this directory and do: sudo python setup.py install """ from distutils.core import setup setup(name='navboxplus', version='1.0', description="An Unscented Estimation and Adaptive Control Package", author="<NAME>", packages=['navboxplus'])
StarcoderdataPython
1844145
"""Module containing factory class for building uvicorn app for Galaxy. Information on uvicorn, its various settings, and how to invoke it can be found at https://www.uvicorn.org/. Galaxy can be launched with uvicorn using the following invocation: :: uvicorn --app-dir lib --factory galaxy.webapps.galaxy.fast_factory:factory Use the environment variable ``GALAXY_CONFIG_FILE`` to specify a Galaxy configuration file. Galaxy configuration can be loading from a YAML or an .ini file (reads app:main currently but can be overridden with GALAXY_CONFIG_SECTION). :: GALAXY_CONFIG_FILE=config/galaxy.yml uvicorn --app-dir lib --factory galaxy.webapps.galaxy.fast_factory:factory .. note:: Information on additional ways to configure uvicorn can be found at https://www.uvicorn.org/. .. warning:: If an ini file is supplied via GALAXY_CONFIG_FILE, the server properties such as host and port are not read from the file like older forms of configuring Galaxy. `Gunicorn <https://docs.gunicorn.org/en/stable/index.html>`__ is a server with more complex management options. This factory function can be executed as a uvicorn worker managed with gunicorn with the following command-line. :: gunicorn 'galaxy.webapps.galaxy.fast_factory:factory()' --env GALAXY_CONFIG_FILE=config/galaxy.ini --pythonpath lib -w 4 -k uvicorn.workers.UvicornWorker """ import os from galaxy.main_config import ( absolute_config_path, config_is_ini, DEFAULT_CONFIG_SECTION, DEFAULT_INI_APP, find_config, ) from galaxy.web_stack import get_app_kwds from galaxy.webapps.galaxy.buildapp import app_pair from .fast_app import initialize_fast_app def factory(): kwds = get_app_kwds("galaxy", "galaxy") config_file = kwds.get("config_file") if not config_file and "GALAXY_CONFIG_FILE" in os.environ: config_file = os.path.abspath(os.environ["GALAXY_CONFIG_FILE"]) else: galaxy_root = kwds.get("galaxy_root") config_file = find_config(config_file, galaxy_root) config_file = absolute_config_path(config_file, galaxy_root=galaxy_root) if "GALAXY_CONFIG_SECTION" in os.environ: config_section = os.environ["GALAXY_CONFIG_SECTION"] elif config_is_ini(config_file): config_section = "app:%s" % DEFAULT_INI_APP else: config_section = DEFAULT_CONFIG_SECTION if 'config_file' not in kwds: kwds['config_file'] = config_file if 'config_section' not in kwds: kwds['config_section'] = config_section global_conf = {} if config_is_ini(config_file): global_conf["__file__"] = config_file gx_webapp, gx_app = app_pair(global_conf=global_conf, load_app_kwds=kwds, wsgi_preflight=False) return initialize_fast_app(gx_webapp, gx_app)
StarcoderdataPython
1802433
from server.crud.base import CRUDBase from server.db.models import ProductsTable from server.schemas.product import ProductCreate, ProductUpdate class CRUDProduct(CRUDBase[ProductsTable, ProductCreate, ProductUpdate]): pass product_crud = CRUDProduct(ProductsTable)
StarcoderdataPython
6534681
<gh_stars>0 from typing import Union, Optional import networkx as nx import numpy as np import numpy.typing as npt def check_for_adjacency_matrix(adjacency_matrix: npt.NDArray[np.int_], ) -> bool: if not isinstance(adjacency_matrix, np.ndarray): raise TypeError(f"An adjacency_matrix of type numpy.ndarray is expected, " f"{type(adjacency_matrix)} is obtained instead.") if adjacency_matrix.ndim < 2: raise ValueError("Given adjacency_matrix has less then 2 dimensions.") if not adjacency_matrix.shape[-1] == adjacency_matrix.shape[-2]: raise ValueError("Given matrix or matrices are not square.") if np.any(adjacency_matrix > 1): raise NotImplementedError("Hypergraph mutation is not yet supported.") return True def from_adjacency_matrix(adjacency_matrix: npt.NDArray[np.int_], prob: Union[float, int] = 0.1, rng: Optional[np.random.Generator] = None, n: int = 1) -> npt.NDArray[np.int_]: """Generates mutations in the adjacency matrix with the given mutation probability. Parameters ---------- adjacency_matrix : The adjacency matrix to be mutated. prob : Edge mutation probability. Default is 0.1. Must satisfy the following inequality: float: 0.0 <= prob <= 1.0 int: 0 <= prob <= 100 If an integer value is given, it is interpreted as a percentage. rng : Numpy random generator. Default is np.random.default_rng. n : Number of mutations to generate. Returns ------- numpy.ndarray n mutated adjacency matrices of the same shape as an input matrix. """ if isinstance(prob, int): prob /= 100 if prob > 1: raise ValueError("Given probability is greater than 1 (or 100%)") if rng is None: rng = np.random.default_rng() if check_for_adjacency_matrix(adjacency_matrix): masks = rng.choice([0, 1], size=(n, *adjacency_matrix.shape), p=(1 - prob, prob)) masks = np.tril(masks, k=-1) transpose_order = np.arange(0, len(masks.shape)) masks += np.transpose(masks, axes=(*transpose_order[:-2], transpose_order[-1], transpose_order[-2])) mut_adjacency_matrices: npt.NDArray[np.int_] = adjacency_matrix.astype(int) ^ masks return mut_adjacency_matrices def from_graph(graph: nx.Graph, prob: Union[float, int] = 0.1, rng: Optional[np.random.Generator] = None) -> nx.Graph: """Generates mutated graph with the given mutation probability. Parameters ---------- graph The graph to be mutated. prob Edge mutation probability. Default is 0.1. Must satisfy the following inequality: float: 0.0 <= prob <= 1.0 int: 0 <= prob <= 100 If an integer value is given, it is interpreted as a percentage. rng Numpy random generator. Default is np.random.default_rng. Returns ------- networkx.Graph Mutated graph. """ if not isinstance(graph, nx.Graph): raise TypeError(f"A graph of type networkx.classes.graph.Graph is expected, " f"{type(graph)} is obtained instead.") elif isinstance(graph, (nx.DiGraph, nx.MultiGraph, nx.MultiDiGraph)): raise TypeError("Types DiGraph, MultiGraph and MultiDiGraph are not implemented yet.") adjacency_matrix = nx.to_numpy_array(graph, dtype=int) return nx.from_numpy_array(from_adjacency_matrix(adjacency_matrix, prob, rng)[0])
StarcoderdataPython
9715213
<reponame>dyllllll/tencentcloud-sdk-python<gh_stars>1-10 # -*- coding: utf8 -*- # Copyright (c) 2017-2018 THL A29 Limited, a Tencent company. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from tencentcloud.common.abstract_model import AbstractModel class AccessInfo(AbstractModel): """HTTP域名相关信息 """ def __init__(self): """ :param Host: 域名 :type Host: str :param Vip: VIP :type Vip: str """ self.Host = None self.Vip = None def _deserialize(self, params): self.Host = params.get("Host") self.Vip = params.get("Vip") class Alias(AbstractModel): """函数的版本别名 """ def __init__(self): """ :param FunctionVersion: 别名指向的主版本 :type FunctionVersion: str :param Name: 别名的名称 :type Name: str :param RoutingConfig: 别名的路由信息 注意:此字段可能返回 null,表示取不到有效值。 :type RoutingConfig: :class:`tencentcloud.scf.v20180416.models.RoutingConfig` :param Description: 描述信息 注意:此字段可能返回 null,表示取不到有效值。 :type Description: str :param AddTime: 创建时间 注意:此字段可能返回 null,表示取不到有效值。 :type AddTime: str :param ModTime: 更新时间 注意:此字段可能返回 null,表示取不到有效值。 :type ModTime: str """ self.FunctionVersion = None self.Name = None self.RoutingConfig = None self.Description = None self.AddTime = None self.ModTime = None def _deserialize(self, params): self.FunctionVersion = params.get("FunctionVersion") self.Name = params.get("Name") if params.get("RoutingConfig") is not None: self.RoutingConfig = RoutingConfig() self.RoutingConfig._deserialize(params.get("RoutingConfig")) self.Description = params.get("Description") self.AddTime = params.get("AddTime") self.ModTime = params.get("ModTime") class CfsConfig(AbstractModel): """文件系统(cfs)配置描述 """ def __init__(self): """ :param CfsInsList: 文件系统信息列表 :type CfsInsList: list of CfsInsInfo """ self.CfsInsList = None def _deserialize(self, params): if params.get("CfsInsList") is not None: self.CfsInsList = [] for item in params.get("CfsInsList"): obj = CfsInsInfo() obj._deserialize(item) self.CfsInsList.append(obj) class CfsInsInfo(AbstractModel): """云函数关联的cfs配置信息 """ def __init__(self): """ :param UserId: 用户id :type UserId: str :param UserGroupId: 用户组id :type UserGroupId: str :param CfsId: 文件系统实例id :type CfsId: str :param MountInsId: 文件系统挂载点id :type MountInsId: str :param LocalMountDir: 本地挂载点 :type LocalMountDir: str :param RemoteMountDir: 远程挂载点 :type RemoteMountDir: str :param IpAddress: 文件系统ip,配置 cfs 时无需填写。 注意:此字段可能返回 null,表示取不到有效值。 注意:此字段可能返回 null,表示取不到有效值。 :type IpAddress: str :param MountVpcId: 文件系统所在的私有网络id,配置 cfs 时无需填写。 注意:此字段可能返回 null,表示取不到有效值。 注意:此字段可能返回 null,表示取不到有效值。 :type MountVpcId: str :param MountSubnetId: 文件系统所在私有网络的子网id,配置 cfs 时无需填写。 注意:此字段可能返回 null,表示取不到有效值。 注意:此字段可能返回 null,表示取不到有效值。 :type MountSubnetId: str """ self.UserId = None self.UserGroupId = None self.CfsId = None self.MountInsId = None self.LocalMountDir = None self.RemoteMountDir = None self.IpAddress = None self.MountVpcId = None self.MountSubnetId = None def _deserialize(self, params): self.UserId = params.get("UserId") self.UserGroupId = params.get("UserGroupId") self.CfsId = params.get("CfsId") self.MountInsId = params.get("MountInsId") self.LocalMountDir = params.get("LocalMountDir") self.RemoteMountDir = params.get("RemoteMountDir") self.IpAddress = params.get("IpAddress") self.MountVpcId = params.get("MountVpcId") self.MountSubnetId = params.get("MountSubnetId") class Code(AbstractModel): """函数代码 """ def __init__(self): """ :param CosBucketName: 对象存储桶名称 :type CosBucketName: str :param CosObjectName: 对象存储对象路径 :type CosObjectName: str :param ZipFile: 包含函数代码文件及其依赖项的 zip 格式文件,使用该接口时要求将 zip 文件的内容转成 base64 编码,最大支持20M :type ZipFile: str :param CosBucketRegion: 对象存储的地域,地域为北京时需要传入ap-beijing,北京一区时需要传递ap-beijing-1,其他的地域不需要传递。 :type CosBucketRegion: str :param DemoId: 如果是通过Demo创建的话,需要传入DemoId :type DemoId: str :param TempCosObjectName: 如果是从TempCos创建的话,需要传入TempCosObjectName :type TempCosObjectName: str :param GitUrl: Git地址 :type GitUrl: str :param GitUserName: Git用户名 :type GitUserName: str :param GitPassword: Git密码 :type GitPassword: str :param GitPasswordSecret: 加密后的Git密码,一般无需指定 :type GitPasswordSecret: str :param GitBranch: Git分支 :type GitBranch: str :param GitDirectory: 代码在Git仓库中的路径 :type GitDirectory: str :param GitCommitId: 指定要拉取的版本 :type GitCommitId: str :param GitUserNameSecret: 加密后的Git用户名,一般无需指定 :type GitUserNameSecret: str """ self.CosBucketName = None self.CosObjectName = None self.ZipFile = None self.CosBucketRegion = None self.DemoId = None self.TempCosObjectName = None self.GitUrl = None self.GitUserName = None self.GitPassword = None self.GitPasswordSecret = None self.GitBranch = None self.GitDirectory = None self.GitCommitId = None self.GitUserNameSecret = None def _deserialize(self, params): self.CosBucketName = params.get("CosBucketName") self.CosObjectName = params.get("CosObjectName") self.ZipFile = params.get("ZipFile") self.CosBucketRegion = params.get("CosBucketRegion") self.DemoId = params.get("DemoId") self.TempCosObjectName = params.get("TempCosObjectName") self.GitUrl = params.get("GitUrl") self.GitUserName = params.get("GitUserName") self.GitPassword = params.get("GitPassword") self.GitPasswordSecret = params.get("GitPasswordSecret") self.GitBranch = params.get("GitBranch") self.GitDirectory = params.get("GitDirectory") self.GitCommitId = params.get("GitCommitId") self.GitUserNameSecret = params.get("GitUserNameSecret") class CopyFunctionRequest(AbstractModel): """CopyFunction请求参数结构体 """ def __init__(self): """ :param FunctionName: 要复制的函数的名称 :type FunctionName: str :param NewFunctionName: 新函数的名称 :type NewFunctionName: str :param Namespace: 要复制的函数所在的命名空间,默认为default :type Namespace: str :param TargetNamespace: 将函数复制到的命名空间,默认为default :type TargetNamespace: str :param Description: 新函数的描述 :type Description: str :param TargetRegion: 要将函数复制到的地域,不填则默认为当前地域 :type TargetRegion: str :param Override: 如果目标Namespace下已有同名函数,是否覆盖,默认为否 (注意:如果选择覆盖,会导致同名函数被删除,请慎重操作) TRUE:覆盖同名函数 FALSE:不覆盖同名函数 :type Override: bool :param CopyConfiguration: 是否复制函数的属性,包括环境变量、内存、超时、函数描述、标签、VPC等,默认为是。 TRUE:复制函数配置 FALSE:不复制函数配置 :type CopyConfiguration: bool """ self.FunctionName = None self.NewFunctionName = None self.Namespace = None self.TargetNamespace = None self.Description = None self.TargetRegion = None self.Override = None self.CopyConfiguration = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.NewFunctionName = params.get("NewFunctionName") self.Namespace = params.get("Namespace") self.TargetNamespace = params.get("TargetNamespace") self.Description = params.get("Description") self.TargetRegion = params.get("TargetRegion") self.Override = params.get("Override") self.CopyConfiguration = params.get("CopyConfiguration") class CopyFunctionResponse(AbstractModel): """CopyFunction返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class CreateAliasRequest(AbstractModel): """CreateAlias请求参数结构体 """ def __init__(self): """ :param Name: 别名的名称,在函数级别中唯一,只能包含字母、数字、'_'和‘-’,且必须以字母开头,长度限制为1-64 :type Name: str :param FunctionName: 函数名称 :type FunctionName: str :param FunctionVersion: 别名指向的主版本 :type FunctionVersion: str :param Namespace: 函数所在的命名空间 :type Namespace: str :param RoutingConfig: 别名的请求路由配置 :type RoutingConfig: :class:`tencentcloud.scf.v20180416.models.RoutingConfig` :param Description: 别名的描述信息 :type Description: str """ self.Name = None self.FunctionName = None self.FunctionVersion = None self.Namespace = None self.RoutingConfig = None self.Description = None def _deserialize(self, params): self.Name = params.get("Name") self.FunctionName = params.get("FunctionName") self.FunctionVersion = params.get("FunctionVersion") self.Namespace = params.get("Namespace") if params.get("RoutingConfig") is not None: self.RoutingConfig = RoutingConfig() self.RoutingConfig._deserialize(params.get("RoutingConfig")) self.Description = params.get("Description") class CreateAliasResponse(AbstractModel): """CreateAlias返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class CreateFunctionRequest(AbstractModel): """CreateFunction请求参数结构体 """ def __init__(self): """ :param FunctionName: 创建的函数名称,函数名称支持26个英文字母大小写、数字、连接符和下划线,第一个字符只能以字母开头,最后一个字符不能为连接符或者下划线,名称长度2-60 :type FunctionName: str :param Code: 函数代码. 注意:不能同时指定Cos、ZipFile或 DemoId。 :type Code: :class:`tencentcloud.scf.v20180416.models.Code` :param Handler: 函数处理方法名称,名称格式支持 "文件名称.方法名称" 形式(java 名称格式 包名.类名::方法名),文件名称和函数名称之间以"."隔开,文件名称和函数名称要求以字母开始和结尾,中间允许插入字母、数字、下划线和连接符,文件名称和函数名字的长度要求是 2-60 个字符 :type Handler: str :param Description: 函数描述,最大支持 1000 个英文字母、数字、空格、逗号、换行符和英文句号,支持中文 :type Description: str :param MemorySize: 函数运行时内存大小,默认为 128M,可选范围 64、128MB-3072MB,并且以 128MB 为阶梯 :type MemorySize: int :param Timeout: 函数最长执行时间,单位为秒,可选值范围 1-900 秒,默认为 3 秒 :type Timeout: int :param Environment: 函数的环境变量 :type Environment: :class:`tencentcloud.scf.v20180416.models.Environment` :param Runtime: 函数运行环境,目前仅支持 Python2.7,Python3.6,Nodejs6.10,Nodejs8.9,Nodejs10.15,Nodejs12.16, Php5, Php7,Go1,Java8 和 CustomRuntime,默认Python2.7 :type Runtime: str :param VpcConfig: 函数的私有网络配置 :type VpcConfig: :class:`tencentcloud.scf.v20180416.models.VpcConfig` :param Namespace: 函数所属命名空间 :type Namespace: str :param Role: 函数绑定的角色 :type Role: str :param ClsLogsetId: 函数日志投递到的CLS LogsetID :type ClsLogsetId: str :param ClsTopicId: 函数日志投递到的CLS TopicID :type ClsTopicId: str :param Type: 函数类型,默认值为Event,创建触发器函数请填写Event,创建HTTP函数级服务请填写HTTP :type Type: str :param CodeSource: CodeSource 代码来源,支持ZipFile, Cos, Demo 其中之一 :type CodeSource: str :param Layers: 函数要关联的Layer版本列表,Layer会按照在列表中顺序依次覆盖。 :type Layers: list of LayerVersionSimple :param DeadLetterConfig: 死信队列参数 :type DeadLetterConfig: :class:`tencentcloud.scf.v20180416.models.DeadLetterConfig` :param PublicNetConfig: 公网访问配置 :type PublicNetConfig: :class:`tencentcloud.scf.v20180416.models.PublicNetConfigIn` :param CfsConfig: 文件系统配置参数,用于云函数挂载文件系统 :type CfsConfig: :class:`tencentcloud.scf.v20180416.models.CfsConfig` :param InitTimeout: 函数初始化超时时间 :type InitTimeout: int :param Tags: 函数 Tag 参数,以键值对数组形式传入 :type Tags: list of Tag """ self.FunctionName = None self.Code = None self.Handler = None self.Description = None self.MemorySize = None self.Timeout = None self.Environment = None self.Runtime = None self.VpcConfig = None self.Namespace = None self.Role = None self.ClsLogsetId = None self.ClsTopicId = None self.Type = None self.CodeSource = None self.Layers = None self.DeadLetterConfig = None self.PublicNetConfig = None self.CfsConfig = None self.InitTimeout = None self.Tags = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") if params.get("Code") is not None: self.Code = Code() self.Code._deserialize(params.get("Code")) self.Handler = params.get("Handler") self.Description = params.get("Description") self.MemorySize = params.get("MemorySize") self.Timeout = params.get("Timeout") if params.get("Environment") is not None: self.Environment = Environment() self.Environment._deserialize(params.get("Environment")) self.Runtime = params.get("Runtime") if params.get("VpcConfig") is not None: self.VpcConfig = VpcConfig() self.VpcConfig._deserialize(params.get("VpcConfig")) self.Namespace = params.get("Namespace") self.Role = params.get("Role") self.ClsLogsetId = params.get("ClsLogsetId") self.ClsTopicId = params.get("ClsTopicId") self.Type = params.get("Type") self.CodeSource = params.get("CodeSource") if params.get("Layers") is not None: self.Layers = [] for item in params.get("Layers"): obj = LayerVersionSimple() obj._deserialize(item) self.Layers.append(obj) if params.get("DeadLetterConfig") is not None: self.DeadLetterConfig = DeadLetterConfig() self.DeadLetterConfig._deserialize(params.get("DeadLetterConfig")) if params.get("PublicNetConfig") is not None: self.PublicNetConfig = PublicNetConfigIn() self.PublicNetConfig._deserialize(params.get("PublicNetConfig")) if params.get("CfsConfig") is not None: self.CfsConfig = CfsConfig() self.CfsConfig._deserialize(params.get("CfsConfig")) self.InitTimeout = params.get("InitTimeout") if params.get("Tags") is not None: self.Tags = [] for item in params.get("Tags"): obj = Tag() obj._deserialize(item) self.Tags.append(obj) class CreateFunctionResponse(AbstractModel): """CreateFunction返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class CreateNamespaceRequest(AbstractModel): """CreateNamespace请求参数结构体 """ def __init__(self): """ :param Namespace: 命名空间名称 :type Namespace: str :param Description: 命名空间描述 :type Description: str """ self.Namespace = None self.Description = None def _deserialize(self, params): self.Namespace = params.get("Namespace") self.Description = params.get("Description") class CreateNamespaceResponse(AbstractModel): """CreateNamespace返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class CreateTriggerRequest(AbstractModel): """CreateTrigger请求参数结构体 """ def __init__(self): """ :param FunctionName: 新建触发器绑定的函数名称 :type FunctionName: str :param TriggerName: 新建触发器名称。如果是定时触发器,名称支持英文字母、数字、连接符和下划线,最长100个字符;如果是cos触发器,需要是对应cos存储桶适用于XML API的访问域名(例如:5401-5ff414-12345.cos.ap-shanghai.myqcloud.com);如果是其他触发器,见具体触发器绑定参数的说明 :type TriggerName: str :param Type: 触发器类型,目前支持 cos 、cmq、 timer、 ckafka、apigw类型 :type Type: str :param TriggerDesc: 触发器对应的参数,可见具体[触发器描述说明](https://cloud.tencent.com/document/product/583/39901) :type TriggerDesc: str :param Namespace: 函数的命名空间 :type Namespace: str :param Qualifier: 函数的版本 :type Qualifier: str :param Enable: 触发器的初始是能状态 OPEN表示开启 CLOSE表示关闭 :type Enable: str :param CustomArgument: 用户自定义参数,仅支持timer触发器 :type CustomArgument: str """ self.FunctionName = None self.TriggerName = None self.Type = None self.TriggerDesc = None self.Namespace = None self.Qualifier = None self.Enable = None self.CustomArgument = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.TriggerName = params.get("TriggerName") self.Type = params.get("Type") self.TriggerDesc = params.get("TriggerDesc") self.Namespace = params.get("Namespace") self.Qualifier = params.get("Qualifier") self.Enable = params.get("Enable") self.CustomArgument = params.get("CustomArgument") class CreateTriggerResponse(AbstractModel): """CreateTrigger返回参数结构体 """ def __init__(self): """ :param TriggerInfo: 触发器信息 :type TriggerInfo: :class:`tencentcloud.scf.v20180416.models.Trigger` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TriggerInfo = None self.RequestId = None def _deserialize(self, params): if params.get("TriggerInfo") is not None: self.TriggerInfo = Trigger() self.TriggerInfo._deserialize(params.get("TriggerInfo")) self.RequestId = params.get("RequestId") class DeadLetterConfig(AbstractModel): """死信队列参数 """ def __init__(self): """ :param Type: 死信队列模式 :type Type: str :param Name: 死信队列名称 :type Name: str :param FilterType: 死信队列主题模式的标签形式 :type FilterType: str """ self.Type = None self.Name = None self.FilterType = None def _deserialize(self, params): self.Type = params.get("Type") self.Name = params.get("Name") self.FilterType = params.get("FilterType") class DeleteAliasRequest(AbstractModel): """DeleteAlias请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数名称 :type FunctionName: str :param Name: 别名的名称 :type Name: str :param Namespace: 函数所在的命名空间 :type Namespace: str """ self.FunctionName = None self.Name = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Name = params.get("Name") self.Namespace = params.get("Namespace") class DeleteAliasResponse(AbstractModel): """DeleteAlias返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteFunctionRequest(AbstractModel): """DeleteFunction请求参数结构体 """ def __init__(self): """ :param FunctionName: 要删除的函数名称 :type FunctionName: str :param Namespace: 函数所属命名空间 :type Namespace: str :param Qualifier: 函数版本 :type Qualifier: str """ self.FunctionName = None self.Namespace = None self.Qualifier = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Namespace = params.get("Namespace") self.Qualifier = params.get("Qualifier") class DeleteFunctionResponse(AbstractModel): """DeleteFunction返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteLayerVersionRequest(AbstractModel): """DeleteLayerVersion请求参数结构体 """ def __init__(self): """ :param LayerName: 层名称 :type LayerName: str :param LayerVersion: 版本号 :type LayerVersion: int """ self.LayerName = None self.LayerVersion = None def _deserialize(self, params): self.LayerName = params.get("LayerName") self.LayerVersion = params.get("LayerVersion") class DeleteLayerVersionResponse(AbstractModel): """DeleteLayerVersion返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteNamespaceRequest(AbstractModel): """DeleteNamespace请求参数结构体 """ def __init__(self): """ :param Namespace: 命名空间名称 :type Namespace: str """ self.Namespace = None def _deserialize(self, params): self.Namespace = params.get("Namespace") class DeleteNamespaceResponse(AbstractModel): """DeleteNamespace返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteProvisionedConcurrencyConfigRequest(AbstractModel): """DeleteProvisionedConcurrencyConfig请求参数结构体 """ def __init__(self): """ :param FunctionName: 需要删除预置并发的函数的名称 :type FunctionName: str :param Qualifier: 函数的版本号 :type Qualifier: str :param Namespace: 函数所属命名空间,默认为default :type Namespace: str """ self.FunctionName = None self.Qualifier = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Qualifier = params.get("Qualifier") self.Namespace = params.get("Namespace") class DeleteProvisionedConcurrencyConfigResponse(AbstractModel): """DeleteProvisionedConcurrencyConfig返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteReservedConcurrencyConfigRequest(AbstractModel): """DeleteReservedConcurrencyConfig请求参数结构体 """ def __init__(self): """ :param FunctionName: 需要删除预置并发的函数的名称 :type FunctionName: str :param Namespace: 函数所属命名空间,默认为default :type Namespace: str """ self.FunctionName = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Namespace = params.get("Namespace") class DeleteReservedConcurrencyConfigResponse(AbstractModel): """DeleteReservedConcurrencyConfig返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class DeleteTriggerRequest(AbstractModel): """DeleteTrigger请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数的名称 :type FunctionName: str :param TriggerName: 要删除的触发器名称 :type TriggerName: str :param Type: 要删除的触发器类型,目前支持 cos 、cmq、 timer、ckafka 类型 :type Type: str :param Namespace: 函数所属命名空间 :type Namespace: str :param TriggerDesc: 如果删除的触发器类型为 COS 触发器,该字段为必填值,存放 JSON 格式的数据 {"event":"cos:ObjectCreated:*"},数据内容和 SetTrigger 接口中该字段的格式相同;如果删除的触发器类型为定时触发器或 CMQ 触发器,可以不指定该字段 :type TriggerDesc: str :param Qualifier: 函数的版本信息 :type Qualifier: str """ self.FunctionName = None self.TriggerName = None self.Type = None self.Namespace = None self.TriggerDesc = None self.Qualifier = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.TriggerName = params.get("TriggerName") self.Type = params.get("Type") self.Namespace = params.get("Namespace") self.TriggerDesc = params.get("TriggerDesc") self.Qualifier = params.get("Qualifier") class DeleteTriggerResponse(AbstractModel): """DeleteTrigger返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class EipConfigIn(AbstractModel): """公网访问固定ip配置 """ def __init__(self): """ :param EipStatus: Eip开启状态,取值['ENABLE','DISABLE'] :type EipStatus: str """ self.EipStatus = None def _deserialize(self, params): self.EipStatus = params.get("EipStatus") class EipConfigOut(AbstractModel): """公网访问固定ip配置 """ def __init__(self): """ :param EipStatus: 是否是固定IP,["ENABLE","DISABLE"] :type EipStatus: str :param EipAddress: IP列表 注意:此字段可能返回 null,表示取不到有效值。 :type EipAddress: list of str """ self.EipStatus = None self.EipAddress = None def _deserialize(self, params): self.EipStatus = params.get("EipStatus") self.EipAddress = params.get("EipAddress") class EipOutConfig(AbstractModel): """EipOutConfig """ def __init__(self): """ :param EipFixed: 是否是固定IP,["TRUE","FALSE"] :type EipFixed: str :param Eips: IP列表 :type Eips: list of str """ self.EipFixed = None self.Eips = None def _deserialize(self, params): self.EipFixed = params.get("EipFixed") self.Eips = params.get("Eips") class Environment(AbstractModel): """函数的环境变量参数 """ def __init__(self): """ :param Variables: 环境变量数组 :type Variables: list of Variable """ self.Variables = None def _deserialize(self, params): if params.get("Variables") is not None: self.Variables = [] for item in params.get("Variables"): obj = Variable() obj._deserialize(item) self.Variables.append(obj) class Filter(AbstractModel): """描述键值对过滤器,用于条件过滤查询。例如过滤ID、名称、状态等 若存在多个Filter时,Filter间的关系为逻辑与(AND)关系。 若同一个Filter存在多个Values,同一Filter下Values间的关系为逻辑或(OR)关系。 """ def __init__(self): """ :param Name: 需要过滤的字段。 :type Name: str :param Values: 字段的过滤值。 :type Values: list of str """ self.Name = None self.Values = None def _deserialize(self, params): self.Name = params.get("Name") self.Values = params.get("Values") class Function(AbstractModel): """函数列表 """ def __init__(self): """ :param ModTime: 修改时间 :type ModTime: str :param AddTime: 创建时间 :type AddTime: str :param Runtime: 运行时 :type Runtime: str :param FunctionName: 函数名称 :type FunctionName: str :param FunctionId: 函数ID :type FunctionId: str :param Namespace: 命名空间 :type Namespace: str :param Status: 函数状态,状态值及流转[参考此处](https://cloud.tencent.com/document/product/583/47175) :type Status: str :param StatusDesc: 函数状态详情 :type StatusDesc: str :param Description: 函数描述 :type Description: str :param Tags: 函数标签 :type Tags: list of Tag :param Type: 函数类型,取值为 HTTP 或者 Event :type Type: str :param StatusReasons: 函数状态失败原因 :type StatusReasons: list of StatusReason :param TotalProvisionedConcurrencyMem: 函数所有版本预置并发内存总和 注意:此字段可能返回 null,表示取不到有效值。 :type TotalProvisionedConcurrencyMem: int :param ReservedConcurrencyMem: 函数并发保留内存 注意:此字段可能返回 null,表示取不到有效值。 :type ReservedConcurrencyMem: int """ self.ModTime = None self.AddTime = None self.Runtime = None self.FunctionName = None self.FunctionId = None self.Namespace = None self.Status = None self.StatusDesc = None self.Description = None self.Tags = None self.Type = None self.StatusReasons = None self.TotalProvisionedConcurrencyMem = None self.ReservedConcurrencyMem = None def _deserialize(self, params): self.ModTime = params.get("ModTime") self.AddTime = params.get("AddTime") self.Runtime = params.get("Runtime") self.FunctionName = params.get("FunctionName") self.FunctionId = params.get("FunctionId") self.Namespace = params.get("Namespace") self.Status = params.get("Status") self.StatusDesc = params.get("StatusDesc") self.Description = params.get("Description") if params.get("Tags") is not None: self.Tags = [] for item in params.get("Tags"): obj = Tag() obj._deserialize(item) self.Tags.append(obj) self.Type = params.get("Type") if params.get("StatusReasons") is not None: self.StatusReasons = [] for item in params.get("StatusReasons"): obj = StatusReason() obj._deserialize(item) self.StatusReasons.append(obj) self.TotalProvisionedConcurrencyMem = params.get("TotalProvisionedConcurrencyMem") self.ReservedConcurrencyMem = params.get("ReservedConcurrencyMem") class FunctionLog(AbstractModel): """日志信息 """ def __init__(self): """ :param FunctionName: 函数的名称 :type FunctionName: str :param RetMsg: 函数执行完成后的返回值 :type RetMsg: str :param RequestId: 执行该函数对应的requestId :type RequestId: str :param StartTime: 函数开始执行时的时间点 :type StartTime: str :param RetCode: 函数执行结果,如果是 0 表示执行成功,其他值表示失败 :type RetCode: int :param InvokeFinished: 函数调用是否结束,如果是 1 表示执行结束,其他值表示调用异常 :type InvokeFinished: int :param Duration: 函数执行耗时,单位为 ms :type Duration: float :param BillDuration: 函数计费时间,根据 duration 向上取最近的 100ms,单位为ms :type BillDuration: int :param MemUsage: 函数执行时消耗实际内存大小,单位为 Byte :type MemUsage: int :param Log: 函数执行过程中的日志输出 :type Log: str :param Level: 日志等级 :type Level: str :param Source: 日志来源 :type Source: str :param RetryNum: 重试次数 :type RetryNum: int """ self.FunctionName = None self.RetMsg = None self.RequestId = None self.StartTime = None self.RetCode = None self.InvokeFinished = None self.Duration = None self.BillDuration = None self.MemUsage = None self.Log = None self.Level = None self.Source = None self.RetryNum = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.RetMsg = params.get("RetMsg") self.RequestId = params.get("RequestId") self.StartTime = params.get("StartTime") self.RetCode = params.get("RetCode") self.InvokeFinished = params.get("InvokeFinished") self.Duration = params.get("Duration") self.BillDuration = params.get("BillDuration") self.MemUsage = params.get("MemUsage") self.Log = params.get("Log") self.Level = params.get("Level") self.Source = params.get("Source") self.RetryNum = params.get("RetryNum") class FunctionVersion(AbstractModel): """函数版本信息 """ def __init__(self): """ :param Version: 函数版本名称 :type Version: str :param Description: 版本描述信息 注意:此字段可能返回 null,表示取不到有效值。 :type Description: str :param AddTime: 创建时间 注意:此字段可能返回 null,表示取不到有效值。 :type AddTime: str :param ModTime: 更新时间 注意:此字段可能返回 null,表示取不到有效值。 :type ModTime: str """ self.Version = None self.Description = None self.AddTime = None self.ModTime = None def _deserialize(self, params): self.Version = params.get("Version") self.Description = params.get("Description") self.AddTime = params.get("AddTime") self.ModTime = params.get("ModTime") class GetAliasRequest(AbstractModel): """GetAlias请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数名称 :type FunctionName: str :param Name: 别名的名称 :type Name: str :param Namespace: 函数所在的命名空间 :type Namespace: str """ self.FunctionName = None self.Name = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Name = params.get("Name") self.Namespace = params.get("Namespace") class GetAliasResponse(AbstractModel): """GetAlias返回参数结构体 """ def __init__(self): """ :param FunctionVersion: 别名指向的主版本 :type FunctionVersion: str :param Name: 别名的名称 :type Name: str :param RoutingConfig: 别名的路由信息 :type RoutingConfig: :class:`tencentcloud.scf.v20180416.models.RoutingConfig` :param Description: 别名的描述 注意:此字段可能返回 null,表示取不到有效值。 :type Description: str :param AddTime: 创建时间 注意:此字段可能返回 null,表示取不到有效值。 :type AddTime: str :param ModTime: 更新时间 注意:此字段可能返回 null,表示取不到有效值。 :type ModTime: str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.FunctionVersion = None self.Name = None self.RoutingConfig = None self.Description = None self.AddTime = None self.ModTime = None self.RequestId = None def _deserialize(self, params): self.FunctionVersion = params.get("FunctionVersion") self.Name = params.get("Name") if params.get("RoutingConfig") is not None: self.RoutingConfig = RoutingConfig() self.RoutingConfig._deserialize(params.get("RoutingConfig")) self.Description = params.get("Description") self.AddTime = params.get("AddTime") self.ModTime = params.get("ModTime") self.RequestId = params.get("RequestId") class GetFunctionAddressRequest(AbstractModel): """GetFunctionAddress请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数的名称 :type FunctionName: str :param Qualifier: 函数的版本 :type Qualifier: str :param Namespace: 函数的命名空间 :type Namespace: str """ self.FunctionName = None self.Qualifier = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Qualifier = params.get("Qualifier") self.Namespace = params.get("Namespace") class GetFunctionAddressResponse(AbstractModel): """GetFunctionAddress返回参数结构体 """ def __init__(self): """ :param Url: 函数的Cos地址 :type Url: str :param CodeSha256: 函数的SHA256编码 :type CodeSha256: str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Url = None self.CodeSha256 = None self.RequestId = None def _deserialize(self, params): self.Url = params.get("Url") self.CodeSha256 = params.get("CodeSha256") self.RequestId = params.get("RequestId") class GetFunctionLogsRequest(AbstractModel): """GetFunctionLogs请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数的名称 :type FunctionName: str :param Offset: 数据的偏移量,Offset+Limit不能大于10000 :type Offset: int :param Limit: 返回数据的长度,Offset+Limit不能大于10000 :type Limit: int :param Order: 以升序还是降序的方式对日志进行排序,可选值 desc和 asc :type Order: str :param OrderBy: 根据某个字段排序日志,支持以下字段:function_name, duration, mem_usage, start_time :type OrderBy: str :param Filter: 日志过滤条件。可用来区分正确和错误日志,filter.RetCode=not0 表示只返回错误日志,filter.RetCode=is0 表示只返回正确日志,不传,则返回所有日志 :type Filter: :class:`tencentcloud.scf.v20180416.models.LogFilter` :param Namespace: 函数的命名空间 :type Namespace: str :param Qualifier: 函数的版本 :type Qualifier: str :param FunctionRequestId: 执行该函数对应的requestId :type FunctionRequestId: str :param StartTime: 查询的具体日期,例如:2017-05-16 20:00:00,只能与endtime相差一天之内 :type StartTime: str :param EndTime: 查询的具体日期,例如:2017-05-16 20:59:59,只能与startTime相差一天之内 :type EndTime: str :param SearchContext: 该字段已下线 :type SearchContext: :class:`tencentcloud.scf.v20180416.models.LogSearchContext` """ self.FunctionName = None self.Offset = None self.Limit = None self.Order = None self.OrderBy = None self.Filter = None self.Namespace = None self.Qualifier = None self.FunctionRequestId = None self.StartTime = None self.EndTime = None self.SearchContext = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.Order = params.get("Order") self.OrderBy = params.get("OrderBy") if params.get("Filter") is not None: self.Filter = LogFilter() self.Filter._deserialize(params.get("Filter")) self.Namespace = params.get("Namespace") self.Qualifier = params.get("Qualifier") self.FunctionRequestId = params.get("FunctionRequestId") self.StartTime = params.get("StartTime") self.EndTime = params.get("EndTime") if params.get("SearchContext") is not None: self.SearchContext = LogSearchContext() self.SearchContext._deserialize(params.get("SearchContext")) class GetFunctionLogsResponse(AbstractModel): """GetFunctionLogs返回参数结构体 """ def __init__(self): """ :param TotalCount: 函数日志的总数 :type TotalCount: int :param Data: 函数日志信息 :type Data: list of FunctionLog :param SearchContext: 该字段已下线 :type SearchContext: :class:`tencentcloud.scf.v20180416.models.LogSearchContext` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.Data = None self.SearchContext = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("Data") is not None: self.Data = [] for item in params.get("Data"): obj = FunctionLog() obj._deserialize(item) self.Data.append(obj) if params.get("SearchContext") is not None: self.SearchContext = LogSearchContext() self.SearchContext._deserialize(params.get("SearchContext")) self.RequestId = params.get("RequestId") class GetFunctionRequest(AbstractModel): """GetFunction请求参数结构体 """ def __init__(self): """ :param FunctionName: 需要获取详情的函数名称 :type FunctionName: str :param Qualifier: 函数的版本号 :type Qualifier: str :param Namespace: 函数所属命名空间 :type Namespace: str :param ShowCode: 是否显示代码, TRUE表示显示代码,FALSE表示不显示代码,大于1M的入口文件不会显示 :type ShowCode: str """ self.FunctionName = None self.Qualifier = None self.Namespace = None self.ShowCode = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Qualifier = params.get("Qualifier") self.Namespace = params.get("Namespace") self.ShowCode = params.get("ShowCode") class GetFunctionResponse(AbstractModel): """GetFunction返回参数结构体 """ def __init__(self): """ :param ModTime: 函数的最后修改时间 :type ModTime: str :param CodeInfo: 函数的代码 :type CodeInfo: str :param Description: 函数的描述信息 :type Description: str :param Triggers: 函数的触发器列表 :type Triggers: list of Trigger :param Handler: 函数的入口 :type Handler: str :param CodeSize: 函数代码大小 :type CodeSize: int :param Timeout: 函数的超时时间 :type Timeout: int :param FunctionVersion: 函数的版本 :type FunctionVersion: str :param MemorySize: 函数的最大可用内存 :type MemorySize: int :param Runtime: 函数的运行环境 :type Runtime: str :param FunctionName: 函数的名称 :type FunctionName: str :param VpcConfig: 函数的私有网络 :type VpcConfig: :class:`tencentcloud.scf.v20180416.models.VpcConfig` :param UseGpu: 是否使用GPU :type UseGpu: str :param Environment: 函数的环境变量 :type Environment: :class:`tencentcloud.scf.v20180416.models.Environment` :param CodeResult: 代码是否正确 :type CodeResult: str :param CodeError: 代码错误信息 :type CodeError: str :param ErrNo: 代码错误码 :type ErrNo: int :param Namespace: 函数的命名空间 :type Namespace: str :param Role: 函数绑定的角色 :type Role: str :param InstallDependency: 是否自动安装依赖 :type InstallDependency: str :param Status: 函数状态,状态值及流转[参考说明](https://cloud.tencent.com/document/product/583/47175) :type Status: str :param StatusDesc: 状态描述 :type StatusDesc: str :param ClsLogsetId: 日志投递到的Cls日志集 :type ClsLogsetId: str :param ClsTopicId: 日志投递到的Cls Topic :type ClsTopicId: str :param FunctionId: 函数ID :type FunctionId: str :param Tags: 函数的标签列表 :type Tags: list of Tag :param EipConfig: EipConfig配置 :type EipConfig: :class:`tencentcloud.scf.v20180416.models.EipOutConfig` :param AccessInfo: 域名信息 :type AccessInfo: :class:`tencentcloud.scf.v20180416.models.AccessInfo` :param Type: 函数类型,取值为HTTP或者Event :type Type: str :param L5Enable: 是否启用L5 :type L5Enable: str :param Layers: 函数关联的Layer版本信息 :type Layers: list of LayerVersionInfo :param DeadLetterConfig: 函数关联的死信队列信息 :type DeadLetterConfig: :class:`tencentcloud.scf.v20180416.models.DeadLetterConfig` :param AddTime: 函数创建回见 :type AddTime: str :param PublicNetConfig: 公网访问配置 注意:此字段可能返回 null,表示取不到有效值。 :type PublicNetConfig: :class:`tencentcloud.scf.v20180416.models.PublicNetConfigOut` :param OnsEnable: 是否启用Ons 注意:此字段可能返回 null,表示取不到有效值。 :type OnsEnable: str :param CfsConfig: 文件系统配置参数,用于云函数挂载文件系统 注意:此字段可能返回 null,表示取不到有效值。 :type CfsConfig: :class:`tencentcloud.scf.v20180416.models.CfsConfig` :param AvailableStatus: 函数的计费状态,状态值[参考此处](https://cloud.tencent.com/document/product/583/47175#.E5.87.BD.E6.95.B0.E8.AE.A1.E8.B4.B9.E7.8A.B6.E6.80.81) 注意:此字段可能返回 null,表示取不到有效值。 :type AvailableStatus: str :param Qualifier: 函数版本 注意:此字段可能返回 null,表示取不到有效值。 :type Qualifier: str :param InitTimeout: 函数初始化超时时间 :type InitTimeout: int :param StatusReasons: 函数状态失败原因 注意:此字段可能返回 null,表示取不到有效值。 :type StatusReasons: list of StatusReason :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.ModTime = None self.CodeInfo = None self.Description = None self.Triggers = None self.Handler = None self.CodeSize = None self.Timeout = None self.FunctionVersion = None self.MemorySize = None self.Runtime = None self.FunctionName = None self.VpcConfig = None self.UseGpu = None self.Environment = None self.CodeResult = None self.CodeError = None self.ErrNo = None self.Namespace = None self.Role = None self.InstallDependency = None self.Status = None self.StatusDesc = None self.ClsLogsetId = None self.ClsTopicId = None self.FunctionId = None self.Tags = None self.EipConfig = None self.AccessInfo = None self.Type = None self.L5Enable = None self.Layers = None self.DeadLetterConfig = None self.AddTime = None self.PublicNetConfig = None self.OnsEnable = None self.CfsConfig = None self.AvailableStatus = None self.Qualifier = None self.InitTimeout = None self.StatusReasons = None self.RequestId = None def _deserialize(self, params): self.ModTime = params.get("ModTime") self.CodeInfo = params.get("CodeInfo") self.Description = params.get("Description") if params.get("Triggers") is not None: self.Triggers = [] for item in params.get("Triggers"): obj = Trigger() obj._deserialize(item) self.Triggers.append(obj) self.Handler = params.get("Handler") self.CodeSize = params.get("CodeSize") self.Timeout = params.get("Timeout") self.FunctionVersion = params.get("FunctionVersion") self.MemorySize = params.get("MemorySize") self.Runtime = params.get("Runtime") self.FunctionName = params.get("FunctionName") if params.get("VpcConfig") is not None: self.VpcConfig = VpcConfig() self.VpcConfig._deserialize(params.get("VpcConfig")) self.UseGpu = params.get("UseGpu") if params.get("Environment") is not None: self.Environment = Environment() self.Environment._deserialize(params.get("Environment")) self.CodeResult = params.get("CodeResult") self.CodeError = params.get("CodeError") self.ErrNo = params.get("ErrNo") self.Namespace = params.get("Namespace") self.Role = params.get("Role") self.InstallDependency = params.get("InstallDependency") self.Status = params.get("Status") self.StatusDesc = params.get("StatusDesc") self.ClsLogsetId = params.get("ClsLogsetId") self.ClsTopicId = params.get("ClsTopicId") self.FunctionId = params.get("FunctionId") if params.get("Tags") is not None: self.Tags = [] for item in params.get("Tags"): obj = Tag() obj._deserialize(item) self.Tags.append(obj) if params.get("EipConfig") is not None: self.EipConfig = EipOutConfig() self.EipConfig._deserialize(params.get("EipConfig")) if params.get("AccessInfo") is not None: self.AccessInfo = AccessInfo() self.AccessInfo._deserialize(params.get("AccessInfo")) self.Type = params.get("Type") self.L5Enable = params.get("L5Enable") if params.get("Layers") is not None: self.Layers = [] for item in params.get("Layers"): obj = LayerVersionInfo() obj._deserialize(item) self.Layers.append(obj) if params.get("DeadLetterConfig") is not None: self.DeadLetterConfig = DeadLetterConfig() self.DeadLetterConfig._deserialize(params.get("DeadLetterConfig")) self.AddTime = params.get("AddTime") if params.get("PublicNetConfig") is not None: self.PublicNetConfig = PublicNetConfigOut() self.PublicNetConfig._deserialize(params.get("PublicNetConfig")) self.OnsEnable = params.get("OnsEnable") if params.get("CfsConfig") is not None: self.CfsConfig = CfsConfig() self.CfsConfig._deserialize(params.get("CfsConfig")) self.AvailableStatus = params.get("AvailableStatus") self.Qualifier = params.get("Qualifier") self.InitTimeout = params.get("InitTimeout") if params.get("StatusReasons") is not None: self.StatusReasons = [] for item in params.get("StatusReasons"): obj = StatusReason() obj._deserialize(item) self.StatusReasons.append(obj) self.RequestId = params.get("RequestId") class GetLayerVersionRequest(AbstractModel): """GetLayerVersion请求参数结构体 """ def __init__(self): """ :param LayerName: 层名称 :type LayerName: str :param LayerVersion: 版本号 :type LayerVersion: int """ self.LayerName = None self.LayerVersion = None def _deserialize(self, params): self.LayerName = params.get("LayerName") self.LayerVersion = params.get("LayerVersion") class GetLayerVersionResponse(AbstractModel): """GetLayerVersion返回参数结构体 """ def __init__(self): """ :param CompatibleRuntimes: 适配的运行时 :type CompatibleRuntimes: list of str :param CodeSha256: 层中版本文件的SHA256编码 :type CodeSha256: str :param Location: 层中版本文件的下载地址 :type Location: str :param AddTime: 版本的创建时间 :type AddTime: str :param Description: 版本的描述 :type Description: str :param LicenseInfo: 许可证信息 :type LicenseInfo: str :param LayerVersion: 版本号 :type LayerVersion: int :param LayerName: 层名称 :type LayerName: str :param Status: 层的具体版本当前状态,可能取值: Active 正常 Publishing 发布中 PublishFailed 发布失败 Deleted 已删除 :type Status: str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.CompatibleRuntimes = None self.CodeSha256 = None self.Location = None self.AddTime = None self.Description = None self.LicenseInfo = None self.LayerVersion = None self.LayerName = None self.Status = None self.RequestId = None def _deserialize(self, params): self.CompatibleRuntimes = params.get("CompatibleRuntimes") self.CodeSha256 = params.get("CodeSha256") self.Location = params.get("Location") self.AddTime = params.get("AddTime") self.Description = params.get("Description") self.LicenseInfo = params.get("LicenseInfo") self.LayerVersion = params.get("LayerVersion") self.LayerName = params.get("LayerName") self.Status = params.get("Status") self.RequestId = params.get("RequestId") class GetProvisionedConcurrencyConfigRequest(AbstractModel): """GetProvisionedConcurrencyConfig请求参数结构体 """ def __init__(self): """ :param FunctionName: 需要获取预置并发详情的函数名称。 :type FunctionName: str :param Namespace: 函数所在的命名空间,默认为default。 :type Namespace: str :param Qualifier: 函数版本号,不传则返回函数所有版本的预置并发信息。 :type Qualifier: str """ self.FunctionName = None self.Namespace = None self.Qualifier = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Namespace = params.get("Namespace") self.Qualifier = params.get("Qualifier") class GetProvisionedConcurrencyConfigResponse(AbstractModel): """GetProvisionedConcurrencyConfig返回参数结构体 """ def __init__(self): """ :param UnallocatedConcurrencyNum: 该函数剩余可配置的预置并发数。 :type UnallocatedConcurrencyNum: int :param Allocated: 函数已预置的并发配置详情。 :type Allocated: list of VersionProvisionedConcurrencyInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.UnallocatedConcurrencyNum = None self.Allocated = None self.RequestId = None def _deserialize(self, params): self.UnallocatedConcurrencyNum = params.get("UnallocatedConcurrencyNum") if params.get("Allocated") is not None: self.Allocated = [] for item in params.get("Allocated"): obj = VersionProvisionedConcurrencyInfo() obj._deserialize(item) self.Allocated.append(obj) self.RequestId = params.get("RequestId") class GetReservedConcurrencyConfigRequest(AbstractModel): """GetReservedConcurrencyConfig请求参数结构体 """ def __init__(self): """ :param FunctionName: 需要获取预置并发详情的函数名称。 :type FunctionName: str :param Namespace: 函数所在的命名空间,默认为default。 :type Namespace: str """ self.FunctionName = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Namespace = params.get("Namespace") class GetReservedConcurrencyConfigResponse(AbstractModel): """GetReservedConcurrencyConfig返回参数结构体 """ def __init__(self): """ :param ReservedMem: 该函数的保留并发内存。 注意:此字段可能返回 null,表示取不到有效值。 :type ReservedMem: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.ReservedMem = None self.RequestId = None def _deserialize(self, params): self.ReservedMem = params.get("ReservedMem") self.RequestId = params.get("RequestId") class InvokeRequest(AbstractModel): """Invoke请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数名称 :type FunctionName: str :param InvocationType: RequestResponse(同步) 和 Event(异步),默认为同步 :type InvocationType: str :param Qualifier: 触发函数的版本号 :type Qualifier: str :param ClientContext: 运行函数时的参数,以json格式传入,最大支持的参数长度是 1M :type ClientContext: str :param LogType: 同步调用时指定该字段,返回值会包含4K的日志,可选值为None和Tail,默认值为None。当该值为Tail时,返回参数中的logMsg字段会包含对应的函数执行日志 :type LogType: str :param Namespace: 命名空间 :type Namespace: str :param RoutingKey: 函数灰度流量控制调用,以json格式传入,例如{"k":"v"},注意kv都需要是字符串类型,最大支持的参数长度是1024字节 :type RoutingKey: str """ self.FunctionName = None self.InvocationType = None self.Qualifier = None self.ClientContext = None self.LogType = None self.Namespace = None self.RoutingKey = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.InvocationType = params.get("InvocationType") self.Qualifier = params.get("Qualifier") self.ClientContext = params.get("ClientContext") self.LogType = params.get("LogType") self.Namespace = params.get("Namespace") self.RoutingKey = params.get("RoutingKey") class InvokeResponse(AbstractModel): """Invoke返回参数结构体 """ def __init__(self): """ :param Result: 函数执行结果 :type Result: :class:`tencentcloud.scf.v20180416.models.Result` :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Result = None self.RequestId = None def _deserialize(self, params): if params.get("Result") is not None: self.Result = Result() self.Result._deserialize(params.get("Result")) self.RequestId = params.get("RequestId") class LayerVersionInfo(AbstractModel): """层版本信息 """ def __init__(self): """ :param CompatibleRuntimes: 版本适用的运行时 注意:此字段可能返回 null,表示取不到有效值。 :type CompatibleRuntimes: list of str :param AddTime: 创建时间 :type AddTime: str :param Description: 版本描述 注意:此字段可能返回 null,表示取不到有效值。 :type Description: str :param LicenseInfo: 许可证信息 注意:此字段可能返回 null,表示取不到有效值。 :type LicenseInfo: str :param LayerVersion: 版本号 :type LayerVersion: int :param LayerName: 层名称 :type LayerName: str :param Status: 层的具体版本当前状态,状态值[参考此处](https://cloud.tencent.com/document/product/583/47175#.E5.B1.82.EF.BC.88layer.EF.BC.89.E7.8A.B6.E6.80.81) :type Status: str """ self.CompatibleRuntimes = None self.AddTime = None self.Description = None self.LicenseInfo = None self.LayerVersion = None self.LayerName = None self.Status = None def _deserialize(self, params): self.CompatibleRuntimes = params.get("CompatibleRuntimes") self.AddTime = params.get("AddTime") self.Description = params.get("Description") self.LicenseInfo = params.get("LicenseInfo") self.LayerVersion = params.get("LayerVersion") self.LayerName = params.get("LayerName") self.Status = params.get("Status") class LayerVersionSimple(AbstractModel): """指定某个Layer版本 """ def __init__(self): """ :param LayerName: layer名称 :type LayerName: str :param LayerVersion: 版本号 :type LayerVersion: int """ self.LayerName = None self.LayerVersion = None def _deserialize(self, params): self.LayerName = params.get("LayerName") self.LayerVersion = params.get("LayerVersion") class ListAliasesRequest(AbstractModel): """ListAliases请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数名称 :type FunctionName: str :param Namespace: 函数所在的命名空间 :type Namespace: str :param FunctionVersion: 如果提供此参数,则只返回与该函数版本有关联的别名 :type FunctionVersion: str :param Offset: 数据偏移量,默认值为 0 :type Offset: str :param Limit: 返回数据长度,默认值为 20 :type Limit: str """ self.FunctionName = None self.Namespace = None self.FunctionVersion = None self.Offset = None self.Limit = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Namespace = params.get("Namespace") self.FunctionVersion = params.get("FunctionVersion") self.Offset = params.get("Offset") self.Limit = params.get("Limit") class ListAliasesResponse(AbstractModel): """ListAliases返回参数结构体 """ def __init__(self): """ :param Aliases: 别名列表 :type Aliases: list of Alias :param TotalCount: 别名总数 注意:此字段可能返回 null,表示取不到有效值。 :type TotalCount: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Aliases = None self.TotalCount = None self.RequestId = None def _deserialize(self, params): if params.get("Aliases") is not None: self.Aliases = [] for item in params.get("Aliases"): obj = Alias() obj._deserialize(item) self.Aliases.append(obj) self.TotalCount = params.get("TotalCount") self.RequestId = params.get("RequestId") class ListFunctionsRequest(AbstractModel): """ListFunctions请求参数结构体 """ def __init__(self): """ :param Order: 以升序还是降序的方式返回结果,可选值 ASC 和 DESC :type Order: str :param Orderby: 根据哪个字段进行返回结果排序,支持以下字段:AddTime, ModTime, FunctionName :type Orderby: str :param Offset: 数据偏移量,默认值为 0 :type Offset: int :param Limit: 返回数据长度,默认值为 20 :type Limit: int :param SearchKey: 支持FunctionName模糊匹配 :type SearchKey: str :param Namespace: 命名空间 :type Namespace: str :param Description: 函数描述,支持模糊搜索 :type Description: str :param Filters: 过滤条件。 - tag:tag-key - String - 是否必填:否 - (过滤条件)按照标签键值对进行过滤。 tag-key使用具体的标签键进行替换。 每次请求的Filters的上限为10,Filter.Values的上限为5。 :type Filters: list of Filter """ self.Order = None self.Orderby = None self.Offset = None self.Limit = None self.SearchKey = None self.Namespace = None self.Description = None self.Filters = None def _deserialize(self, params): self.Order = params.get("Order") self.Orderby = params.get("Orderby") self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.SearchKey = params.get("SearchKey") self.Namespace = params.get("Namespace") self.Description = params.get("Description") if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) class ListFunctionsResponse(AbstractModel): """ListFunctions返回参数结构体 """ def __init__(self): """ :param Functions: 函数列表 :type Functions: list of Function :param TotalCount: 总数 :type TotalCount: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Functions = None self.TotalCount = None self.RequestId = None def _deserialize(self, params): if params.get("Functions") is not None: self.Functions = [] for item in params.get("Functions"): obj = Function() obj._deserialize(item) self.Functions.append(obj) self.TotalCount = params.get("TotalCount") self.RequestId = params.get("RequestId") class ListLayerVersionsRequest(AbstractModel): """ListLayerVersions请求参数结构体 """ def __init__(self): """ :param LayerName: 层名称 :type LayerName: str :param CompatibleRuntime: 适配的运行时 :type CompatibleRuntime: list of str """ self.LayerName = None self.CompatibleRuntime = None def _deserialize(self, params): self.LayerName = params.get("LayerName") self.CompatibleRuntime = params.get("CompatibleRuntime") class ListLayerVersionsResponse(AbstractModel): """ListLayerVersions返回参数结构体 """ def __init__(self): """ :param LayerVersions: 层版本列表 :type LayerVersions: list of LayerVersionInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.LayerVersions = None self.RequestId = None def _deserialize(self, params): if params.get("LayerVersions") is not None: self.LayerVersions = [] for item in params.get("LayerVersions"): obj = LayerVersionInfo() obj._deserialize(item) self.LayerVersions.append(obj) self.RequestId = params.get("RequestId") class ListLayersRequest(AbstractModel): """ListLayers请求参数结构体 """ def __init__(self): """ :param CompatibleRuntime: 适配的运行时 :type CompatibleRuntime: str :param Offset: 偏移位置 :type Offset: int :param Limit: 查询数目限制 :type Limit: int :param SearchKey: 查询key,模糊匹配名称 :type SearchKey: str """ self.CompatibleRuntime = None self.Offset = None self.Limit = None self.SearchKey = None def _deserialize(self, params): self.CompatibleRuntime = params.get("CompatibleRuntime") self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.SearchKey = params.get("SearchKey") class ListLayersResponse(AbstractModel): """ListLayers返回参数结构体 """ def __init__(self): """ :param Layers: 层列表 :type Layers: list of LayerVersionInfo :param TotalCount: 层总数 :type TotalCount: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Layers = None self.TotalCount = None self.RequestId = None def _deserialize(self, params): if params.get("Layers") is not None: self.Layers = [] for item in params.get("Layers"): obj = LayerVersionInfo() obj._deserialize(item) self.Layers.append(obj) self.TotalCount = params.get("TotalCount") self.RequestId = params.get("RequestId") class ListNamespacesRequest(AbstractModel): """ListNamespaces请求参数结构体 """ def __init__(self): """ :param Limit: 返回数据长度,默认值为 20 :type Limit: int :param Offset: 数据的偏移量,默认值为 0 :type Offset: int :param Orderby: 根据哪个字段进行返回结果排序,支持以下字段:Name,Updatetime :type Orderby: str :param Order: 以升序还是降序的方式返回结果,可选值 ASC 和 DESC :type Order: str """ self.Limit = None self.Offset = None self.Orderby = None self.Order = None def _deserialize(self, params): self.Limit = params.get("Limit") self.Offset = params.get("Offset") self.Orderby = params.get("Orderby") self.Order = params.get("Order") class ListNamespacesResponse(AbstractModel): """ListNamespaces返回参数结构体 """ def __init__(self): """ :param Namespaces: namespace详情 :type Namespaces: list of Namespace :param TotalCount: 返回的namespace数量 :type TotalCount: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.Namespaces = None self.TotalCount = None self.RequestId = None def _deserialize(self, params): if params.get("Namespaces") is not None: self.Namespaces = [] for item in params.get("Namespaces"): obj = Namespace() obj._deserialize(item) self.Namespaces.append(obj) self.TotalCount = params.get("TotalCount") self.RequestId = params.get("RequestId") class ListTriggersRequest(AbstractModel): """ListTriggers请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数名称 :type FunctionName: str :param Namespace: 命名空间,默认是default :type Namespace: str :param Offset: 数据偏移量,默认值为 0 :type Offset: int :param Limit: 返回数据长度,默认值为 20 :type Limit: int :param OrderBy: 根据哪个字段进行返回结果排序,支持以下字段:AddTime, ModTime,默认ModTime :type OrderBy: str :param Order: 以升序还是降序的方式返回结果,可选值 ASC 和 DESC,默认DESC :type Order: str :param Filters: * Qualifier: 函数版本,别名 :type Filters: list of Filter """ self.FunctionName = None self.Namespace = None self.Offset = None self.Limit = None self.OrderBy = None self.Order = None self.Filters = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Namespace = params.get("Namespace") self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.OrderBy = params.get("OrderBy") self.Order = params.get("Order") if params.get("Filters") is not None: self.Filters = [] for item in params.get("Filters"): obj = Filter() obj._deserialize(item) self.Filters.append(obj) class ListTriggersResponse(AbstractModel): """ListTriggers返回参数结构体 """ def __init__(self): """ :param TotalCount: 触发器总数 :type TotalCount: int :param Triggers: 触发器列表 :type Triggers: list of TriggerInfo :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.TotalCount = None self.Triggers = None self.RequestId = None def _deserialize(self, params): self.TotalCount = params.get("TotalCount") if params.get("Triggers") is not None: self.Triggers = [] for item in params.get("Triggers"): obj = TriggerInfo() obj._deserialize(item) self.Triggers.append(obj) self.RequestId = params.get("RequestId") class ListVersionByFunctionRequest(AbstractModel): """ListVersionByFunction请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数名 :type FunctionName: str :param Namespace: 函数所在命名空间 :type Namespace: str :param Offset: 数据偏移量,默认值为 0 :type Offset: int :param Limit: 返回数据长度,默认值为 20 :type Limit: int :param Order: 以升序还是降序的方式返回结果,可选值 ASC 和 DESC :type Order: str :param OrderBy: 根据哪个字段进行返回结果排序,支持以下字段:AddTime, ModTime :type OrderBy: str """ self.FunctionName = None self.Namespace = None self.Offset = None self.Limit = None self.Order = None self.OrderBy = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Namespace = params.get("Namespace") self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.Order = params.get("Order") self.OrderBy = params.get("OrderBy") class ListVersionByFunctionResponse(AbstractModel): """ListVersionByFunction返回参数结构体 """ def __init__(self): """ :param FunctionVersion: 函数版本。 :type FunctionVersion: list of str :param Versions: 函数版本列表。 注意:此字段可能返回 null,表示取不到有效值。 :type Versions: list of FunctionVersion :param TotalCount: 函数版本总数。 注意:此字段可能返回 null,表示取不到有效值。 :type TotalCount: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.FunctionVersion = None self.Versions = None self.TotalCount = None self.RequestId = None def _deserialize(self, params): self.FunctionVersion = params.get("FunctionVersion") if params.get("Versions") is not None: self.Versions = [] for item in params.get("Versions"): obj = FunctionVersion() obj._deserialize(item) self.Versions.append(obj) self.TotalCount = params.get("TotalCount") self.RequestId = params.get("RequestId") class LogFilter(AbstractModel): """日志过滤条件,用于区分正确与错误日志 """ def __init__(self): """ :param RetCode: filter.RetCode的取值有: not0 表示只返回错误日志, is0 表示只返回正确日志, TimeLimitExceeded 返回函数调用发生超时的日志, ResourceLimitExceeded 返回函数调用发生资源超限的日志, UserCodeException 返回函数调用发生用户代码错误的日志, 无输入则返回所有日志。 :type RetCode: str """ self.RetCode = None def _deserialize(self, params): self.RetCode = params.get("RetCode") class LogSearchContext(AbstractModel): """日志搜索上下文 """ def __init__(self): """ :param Offset: 偏移量 :type Offset: str :param Limit: 日志条数 :type Limit: int :param Keyword: 日志关键词 :type Keyword: str :param Type: 日志类型,支持Application和Platform,默认为Application :type Type: str """ self.Offset = None self.Limit = None self.Keyword = None self.Type = None def _deserialize(self, params): self.Offset = params.get("Offset") self.Limit = params.get("Limit") self.Keyword = params.get("Keyword") self.Type = params.get("Type") class Namespace(AbstractModel): """命名空间 """ def __init__(self): """ :param ModTime: 命名空间创建时间 :type ModTime: str :param AddTime: 命名空间修改时间 :type AddTime: str :param Description: 命名空间描述 :type Description: str :param Name: 命名空间名称 :type Name: str :param Type: 默认default,TCB表示是小程序云开发创建的 :type Type: str """ self.ModTime = None self.AddTime = None self.Description = None self.Name = None self.Type = None def _deserialize(self, params): self.ModTime = params.get("ModTime") self.AddTime = params.get("AddTime") self.Description = params.get("Description") self.Name = params.get("Name") self.Type = params.get("Type") class PublicNetConfigIn(AbstractModel): """公网访问配置 """ def __init__(self): """ :param PublicNetStatus: 是否开启公网访问能力取值['DISABLE','ENABLE'] :type PublicNetStatus: str :param EipConfig: Eip配置 :type EipConfig: :class:`tencentcloud.scf.v20180416.models.EipConfigIn` """ self.PublicNetStatus = None self.EipConfig = None def _deserialize(self, params): self.PublicNetStatus = params.get("PublicNetStatus") if params.get("EipConfig") is not None: self.EipConfig = EipConfigIn() self.EipConfig._deserialize(params.get("EipConfig")) class PublicNetConfigOut(AbstractModel): """公网访问配置 """ def __init__(self): """ :param PublicNetStatus: 是否开启公网访问能力取值['DISABLE','ENABLE'] :type PublicNetStatus: str :param EipConfig: Eip配置 :type EipConfig: :class:`tencentcloud.scf.v20180416.models.EipConfigOut` """ self.PublicNetStatus = None self.EipConfig = None def _deserialize(self, params): self.PublicNetStatus = params.get("PublicNetStatus") if params.get("EipConfig") is not None: self.EipConfig = EipConfigOut() self.EipConfig._deserialize(params.get("EipConfig")) class PublishLayerVersionRequest(AbstractModel): """PublishLayerVersion请求参数结构体 """ def __init__(self): """ :param LayerName: 层名称,支持26个英文字母大小写、数字、连接符和下划线,第一个字符只能以字母开头,最后一个字符不能为连接符或者下划线,名称长度1-64 :type LayerName: str :param CompatibleRuntimes: 层适用的运行时,可多选,可选的值对应函数的 Runtime 可选值。 :type CompatibleRuntimes: list of str :param Content: 层的文件来源或文件内容 :type Content: :class:`tencentcloud.scf.v20180416.models.Code` :param Description: 层的版本的描述 :type Description: str :param LicenseInfo: 层的软件许可证 :type LicenseInfo: str """ self.LayerName = None self.CompatibleRuntimes = None self.Content = None self.Description = None self.LicenseInfo = None def _deserialize(self, params): self.LayerName = params.get("LayerName") self.CompatibleRuntimes = params.get("CompatibleRuntimes") if params.get("Content") is not None: self.Content = Code() self.Content._deserialize(params.get("Content")) self.Description = params.get("Description") self.LicenseInfo = params.get("LicenseInfo") class PublishLayerVersionResponse(AbstractModel): """PublishLayerVersion返回参数结构体 """ def __init__(self): """ :param LayerVersion: 本次创建的层的版本号 :type LayerVersion: int :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.LayerVersion = None self.RequestId = None def _deserialize(self, params): self.LayerVersion = params.get("LayerVersion") self.RequestId = params.get("RequestId") class PublishVersionRequest(AbstractModel): """PublishVersion请求参数结构体 """ def __init__(self): """ :param FunctionName: 发布函数的名称 :type FunctionName: str :param Description: 函数的描述 :type Description: str :param Namespace: 函数的命名空间 :type Namespace: str """ self.FunctionName = None self.Description = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Description = params.get("Description") self.Namespace = params.get("Namespace") class PublishVersionResponse(AbstractModel): """PublishVersion返回参数结构体 """ def __init__(self): """ :param FunctionVersion: 函数的版本 :type FunctionVersion: str :param CodeSize: 代码大小 :type CodeSize: int :param MemorySize: 最大可用内存 :type MemorySize: int :param Description: 函数的描述 :type Description: str :param Handler: 函数的入口 :type Handler: str :param Timeout: 函数的超时时间 :type Timeout: int :param Runtime: 函数的运行环境 :type Runtime: str :param Namespace: 函数的命名空间 :type Namespace: str :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.FunctionVersion = None self.CodeSize = None self.MemorySize = None self.Description = None self.Handler = None self.Timeout = None self.Runtime = None self.Namespace = None self.RequestId = None def _deserialize(self, params): self.FunctionVersion = params.get("FunctionVersion") self.CodeSize = params.get("CodeSize") self.MemorySize = params.get("MemorySize") self.Description = params.get("Description") self.Handler = params.get("Handler") self.Timeout = params.get("Timeout") self.Runtime = params.get("Runtime") self.Namespace = params.get("Namespace") self.RequestId = params.get("RequestId") class PutProvisionedConcurrencyConfigRequest(AbstractModel): """PutProvisionedConcurrencyConfig请求参数结构体 """ def __init__(self): """ :param FunctionName: 需要设置预置并发的函数的名称 :type FunctionName: str :param Qualifier: 函数的版本号,注:$LATEST版本不支持预置并发 :type Qualifier: str :param VersionProvisionedConcurrencyNum: 预置并发数量,注:所有版本的预置并发数总和存在上限限制,当前的上限是:函数最大并发配额 - 100 :type VersionProvisionedConcurrencyNum: int :param Namespace: 函数所属命名空间,默认为default :type Namespace: str """ self.FunctionName = None self.Qualifier = None self.VersionProvisionedConcurrencyNum = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Qualifier = params.get("Qualifier") self.VersionProvisionedConcurrencyNum = params.get("VersionProvisionedConcurrencyNum") self.Namespace = params.get("Namespace") class PutProvisionedConcurrencyConfigResponse(AbstractModel): """PutProvisionedConcurrencyConfig返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class PutReservedConcurrencyConfigRequest(AbstractModel): """PutReservedConcurrencyConfig请求参数结构体 """ def __init__(self): """ :param FunctionName: 需要设置预置并发的函数的名称 :type FunctionName: str :param ReservedConcurrencyMem: 函数保留并发内存,注:函数的保留并发内存总和上限:用户总并发内存配额 - 12800 :type ReservedConcurrencyMem: int :param Namespace: 函数所属命名空间,默认为default :type Namespace: str """ self.FunctionName = None self.ReservedConcurrencyMem = None self.Namespace = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.ReservedConcurrencyMem = params.get("ReservedConcurrencyMem") self.Namespace = params.get("Namespace") class PutReservedConcurrencyConfigResponse(AbstractModel): """PutReservedConcurrencyConfig返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class PutTotalConcurrencyConfigRequest(AbstractModel): """PutTotalConcurrencyConfig请求参数结构体 """ def __init__(self): """ :param TotalConcurrencyMem: 账号并发内存配额,注:账号并发内存配额下限:用户已用并发内存总额 + 12800 :type TotalConcurrencyMem: int :param Namespace: 命名空间,默认为default :type Namespace: str """ self.TotalConcurrencyMem = None self.Namespace = None def _deserialize(self, params): self.TotalConcurrencyMem = params.get("TotalConcurrencyMem") self.Namespace = params.get("Namespace") class PutTotalConcurrencyConfigResponse(AbstractModel): """PutTotalConcurrencyConfig返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class Result(AbstractModel): """运行函数的返回 """ def __init__(self): """ :param Log: 表示执行过程中的日志输出,异步调用返回为空 :type Log: str :param RetMsg: 表示执行函数的返回,异步调用返回为空 :type RetMsg: str :param ErrMsg: 表示执行函数的错误返回信息,异步调用返回为空 :type ErrMsg: str :param MemUsage: 执行函数时的内存大小,单位为Byte,异步调用返回为空 :type MemUsage: int :param Duration: 表示执行函数的耗时,单位是毫秒,异步调用返回为空 :type Duration: float :param BillDuration: 表示函数的计费耗时,单位是毫秒,异步调用返回为空 :type BillDuration: int :param FunctionRequestId: 此次函数执行的Id :type FunctionRequestId: str :param InvokeResult: 0为正确,异步调用返回为空 :type InvokeResult: int """ self.Log = None self.RetMsg = None self.ErrMsg = None self.MemUsage = None self.Duration = None self.BillDuration = None self.FunctionRequestId = None self.InvokeResult = None def _deserialize(self, params): self.Log = params.get("Log") self.RetMsg = params.get("RetMsg") self.ErrMsg = params.get("ErrMsg") self.MemUsage = params.get("MemUsage") self.Duration = params.get("Duration") self.BillDuration = params.get("BillDuration") self.FunctionRequestId = params.get("FunctionRequestId") self.InvokeResult = params.get("InvokeResult") class RoutingConfig(AbstractModel): """别名的版本路由配置 """ def __init__(self): """ :param AdditionalVersionWeights: 随机权重路由附加版本 :type AdditionalVersionWeights: list of VersionWeight :param AddtionVersionMatchs: 规则路由附加版本 :type AddtionVersionMatchs: list of VersionMatch """ self.AdditionalVersionWeights = None self.AddtionVersionMatchs = None def _deserialize(self, params): if params.get("AdditionalVersionWeights") is not None: self.AdditionalVersionWeights = [] for item in params.get("AdditionalVersionWeights"): obj = VersionWeight() obj._deserialize(item) self.AdditionalVersionWeights.append(obj) if params.get("AddtionVersionMatchs") is not None: self.AddtionVersionMatchs = [] for item in params.get("AddtionVersionMatchs"): obj = VersionMatch() obj._deserialize(item) self.AddtionVersionMatchs.append(obj) class StatusReason(AbstractModel): """状态原因描述 """ def __init__(self): """ :param ErrorCode: 错误码 :type ErrorCode: str :param ErrorMessage: 错误描述 :type ErrorMessage: str """ self.ErrorCode = None self.ErrorMessage = None def _deserialize(self, params): self.ErrorCode = params.get("ErrorCode") self.ErrorMessage = params.get("ErrorMessage") class Tag(AbstractModel): """函数标签 """ def __init__(self): """ :param Key: 标签的key :type Key: str :param Value: 标签的value :type Value: str """ self.Key = None self.Value = None def _deserialize(self, params): self.Key = params.get("Key") self.Value = params.get("Value") class Trigger(AbstractModel): """触发器类型 """ def __init__(self): """ :param ModTime: 触发器最后修改时间 :type ModTime: str :param Type: 触发器类型 :type Type: str :param TriggerDesc: 触发器详细配置 :type TriggerDesc: str :param TriggerName: 触发器名称 :type TriggerName: str :param AddTime: 触发器创建时间 :type AddTime: str :param Enable: 使能开关 :type Enable: int :param CustomArgument: 客户自定义参数 :type CustomArgument: str :param AvailableStatus: 触发器状态 :type AvailableStatus: str :param ResourceId: 触发器最小资源ID :type ResourceId: str :param BindStatus: 触发器和云函数绑定状态 :type BindStatus: str :param TriggerAttribute: 触发器类型,双向表示两侧控制台均可操作,单向表示SCF控制台单向创建 :type TriggerAttribute: str """ self.ModTime = None self.Type = None self.TriggerDesc = None self.TriggerName = None self.AddTime = None self.Enable = None self.CustomArgument = None self.AvailableStatus = None self.ResourceId = None self.BindStatus = None self.TriggerAttribute = None def _deserialize(self, params): self.ModTime = params.get("ModTime") self.Type = params.get("Type") self.TriggerDesc = params.get("TriggerDesc") self.TriggerName = params.get("TriggerName") self.AddTime = params.get("AddTime") self.Enable = params.get("Enable") self.CustomArgument = params.get("CustomArgument") self.AvailableStatus = params.get("AvailableStatus") self.ResourceId = params.get("ResourceId") self.BindStatus = params.get("BindStatus") self.TriggerAttribute = params.get("TriggerAttribute") class TriggerInfo(AbstractModel): """触发器信息 """ def __init__(self): """ :param Enable: 使能开关 :type Enable: int :param Qualifier: 函数版本或别名 :type Qualifier: str :param TriggerName: 触发器名称 :type TriggerName: str :param Type: 触发器类型 :type Type: str :param TriggerDesc: 触发器详细配置 :type TriggerDesc: str :param AvailableStatus: 触发器是否可用 :type AvailableStatus: str :param CustomArgument: 客户自定义参数 注意:此字段可能返回 null,表示取不到有效值。 :type CustomArgument: str :param AddTime: 触发器创建时间 :type AddTime: str :param ModTime: 触发器最后修改时间 :type ModTime: str :param ResourceId: 触发器最小资源ID :type ResourceId: str :param BindStatus: 触发器和云函数绑定状态 :type BindStatus: str :param TriggerAttribute: 触发器类型,双向表示两侧控制台均可操作,单向表示SCF控制台单向创建 :type TriggerAttribute: str """ self.Enable = None self.Qualifier = None self.TriggerName = None self.Type = None self.TriggerDesc = None self.AvailableStatus = None self.CustomArgument = None self.AddTime = None self.ModTime = None self.ResourceId = None self.BindStatus = None self.TriggerAttribute = None def _deserialize(self, params): self.Enable = params.get("Enable") self.Qualifier = params.get("Qualifier") self.TriggerName = params.get("TriggerName") self.Type = params.get("Type") self.TriggerDesc = params.get("TriggerDesc") self.AvailableStatus = params.get("AvailableStatus") self.CustomArgument = params.get("CustomArgument") self.AddTime = params.get("AddTime") self.ModTime = params.get("ModTime") self.ResourceId = params.get("ResourceId") self.BindStatus = params.get("BindStatus") self.TriggerAttribute = params.get("TriggerAttribute") class UpdateAliasRequest(AbstractModel): """UpdateAlias请求参数结构体 """ def __init__(self): """ :param FunctionName: 函数名称 :type FunctionName: str :param Name: 别名的名称 :type Name: str :param FunctionVersion: 别名指向的主版本 :type FunctionVersion: str :param Namespace: 函数所在的命名空间 :type Namespace: str :param RoutingConfig: 别名的路由信息,需要为别名指定附加版本时,必须提供此参数 :type RoutingConfig: :class:`tencentcloud.scf.v20180416.models.RoutingConfig` :param Description: 别名的描述 :type Description: str """ self.FunctionName = None self.Name = None self.FunctionVersion = None self.Namespace = None self.RoutingConfig = None self.Description = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Name = params.get("Name") self.FunctionVersion = params.get("FunctionVersion") self.Namespace = params.get("Namespace") if params.get("RoutingConfig") is not None: self.RoutingConfig = RoutingConfig() self.RoutingConfig._deserialize(params.get("RoutingConfig")) self.Description = params.get("Description") class UpdateAliasResponse(AbstractModel): """UpdateAlias返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class UpdateFunctionCodeRequest(AbstractModel): """UpdateFunctionCode请求参数结构体 """ def __init__(self): """ :param Handler: 函数处理方法名称。名称格式支持“文件名称.函数名称”形式(java 名称格式 包名.类名::方法名),文件名称和函数名称之间以"."隔开,文件名称和函数名称要求以字母开始和结尾,中间允许插入字母、数字、下划线和连接符,文件名称和函数名字的长度要求 2-60 个字符 :type Handler: str :param FunctionName: 要修改的函数名称 :type FunctionName: str :param CosBucketName: 对象存储桶名称 :type CosBucketName: str :param CosObjectName: 对象存储对象路径 :type CosObjectName: str :param ZipFile: 包含函数代码文件及其依赖项的 zip 格式文件,使用该接口时要求将 zip 文件的内容转成 base64 编码,最大支持20M :type ZipFile: str :param Namespace: 函数所属命名空间 :type Namespace: str :param CosBucketRegion: 对象存储的地域,注:北京分为ap-beijing和ap-beijing-1 :type CosBucketRegion: str :param EnvId: 函数所属环境 :type EnvId: str :param Publish: 在更新时是否同步发布新版本,默认为:FALSE,不发布 :type Publish: str :param Code: 函数代码 :type Code: :class:`tencentcloud.scf.v20180416.models.Code` :param CodeSource: 代码来源方式,支持 ZipFile, Cos, Inline 之一 :type CodeSource: str """ self.Handler = None self.FunctionName = None self.CosBucketName = None self.CosObjectName = None self.ZipFile = None self.Namespace = None self.CosBucketRegion = None self.EnvId = None self.Publish = None self.Code = None self.CodeSource = None def _deserialize(self, params): self.Handler = params.get("Handler") self.FunctionName = params.get("FunctionName") self.CosBucketName = params.get("CosBucketName") self.CosObjectName = params.get("CosObjectName") self.ZipFile = params.get("ZipFile") self.Namespace = params.get("Namespace") self.CosBucketRegion = params.get("CosBucketRegion") self.EnvId = params.get("EnvId") self.Publish = params.get("Publish") if params.get("Code") is not None: self.Code = Code() self.Code._deserialize(params.get("Code")) self.CodeSource = params.get("CodeSource") class UpdateFunctionCodeResponse(AbstractModel): """UpdateFunctionCode返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class UpdateFunctionConfigurationRequest(AbstractModel): """UpdateFunctionConfiguration请求参数结构体 """ def __init__(self): """ :param FunctionName: 要修改的函数名称 :type FunctionName: str :param Description: 函数描述。最大支持 1000 个英文字母、数字、空格、逗号和英文句号,支持中文 :type Description: str :param MemorySize: 函数运行时内存大小,默认为 128 M,可选范64M、128 M-3072 M,以 128MB 为阶梯。 :type MemorySize: int :param Timeout: 函数最长执行时间,单位为秒,可选值范 1-900 秒,默认为 3 秒 :type Timeout: int :param Runtime: 函数运行环境,目前仅支持 Python2.7,Python3.6,Nodejs6.10,Nodejs8.9,Nodejs10.15,Nodejs12.16, PHP5, PHP7,Go1 , Java8和CustomRuntime :type Runtime: str :param Environment: 函数的环境变量 :type Environment: :class:`tencentcloud.scf.v20180416.models.Environment` :param Namespace: 函数所属命名空间 :type Namespace: str :param VpcConfig: 函数的私有网络配置 :type VpcConfig: :class:`tencentcloud.scf.v20180416.models.VpcConfig` :param Role: 函数绑定的角色 :type Role: str :param ClsLogsetId: 日志投递到的cls日志集ID :type ClsLogsetId: str :param ClsTopicId: 日志投递到的cls Topic ID :type ClsTopicId: str :param Publish: 在更新时是否同步发布新版本,默认为:FALSE,不发布新版本 :type Publish: str :param L5Enable: 是否开启L5访问能力,TRUE 为开启,FALSE为关闭 :type L5Enable: str :param Layers: 函数要关联的层版本列表,层的版本会按照在列表中顺序依次覆盖。 :type Layers: list of LayerVersionSimple :param DeadLetterConfig: 函数关联的死信队列信息 :type DeadLetterConfig: :class:`tencentcloud.scf.v20180416.models.DeadLetterConfig` :param PublicNetConfig: 公网访问配置 :type PublicNetConfig: :class:`tencentcloud.scf.v20180416.models.PublicNetConfigIn` :param CfsConfig: 文件系统配置入参,用于云函数绑定CFS文件系统 :type CfsConfig: :class:`tencentcloud.scf.v20180416.models.CfsConfig` :param InitTimeout: 函数初始化执行超时时间,默认15秒 :type InitTimeout: int """ self.FunctionName = None self.Description = None self.MemorySize = None self.Timeout = None self.Runtime = None self.Environment = None self.Namespace = None self.VpcConfig = None self.Role = None self.ClsLogsetId = None self.ClsTopicId = None self.Publish = None self.L5Enable = None self.Layers = None self.DeadLetterConfig = None self.PublicNetConfig = None self.CfsConfig = None self.InitTimeout = None def _deserialize(self, params): self.FunctionName = params.get("FunctionName") self.Description = params.get("Description") self.MemorySize = params.get("MemorySize") self.Timeout = params.get("Timeout") self.Runtime = params.get("Runtime") if params.get("Environment") is not None: self.Environment = Environment() self.Environment._deserialize(params.get("Environment")) self.Namespace = params.get("Namespace") if params.get("VpcConfig") is not None: self.VpcConfig = VpcConfig() self.VpcConfig._deserialize(params.get("VpcConfig")) self.Role = params.get("Role") self.ClsLogsetId = params.get("ClsLogsetId") self.ClsTopicId = params.get("ClsTopicId") self.Publish = params.get("Publish") self.L5Enable = params.get("L5Enable") if params.get("Layers") is not None: self.Layers = [] for item in params.get("Layers"): obj = LayerVersionSimple() obj._deserialize(item) self.Layers.append(obj) if params.get("DeadLetterConfig") is not None: self.DeadLetterConfig = DeadLetterConfig() self.DeadLetterConfig._deserialize(params.get("DeadLetterConfig")) if params.get("PublicNetConfig") is not None: self.PublicNetConfig = PublicNetConfigIn() self.PublicNetConfig._deserialize(params.get("PublicNetConfig")) if params.get("CfsConfig") is not None: self.CfsConfig = CfsConfig() self.CfsConfig._deserialize(params.get("CfsConfig")) self.InitTimeout = params.get("InitTimeout") class UpdateFunctionConfigurationResponse(AbstractModel): """UpdateFunctionConfiguration返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class UpdateNamespaceRequest(AbstractModel): """UpdateNamespace请求参数结构体 """ def __init__(self): """ :param Namespace: 命名空间名称 :type Namespace: str :param Description: 命名空间描述 :type Description: str """ self.Namespace = None self.Description = None def _deserialize(self, params): self.Namespace = params.get("Namespace") self.Description = params.get("Description") class UpdateNamespaceResponse(AbstractModel): """UpdateNamespace返回参数结构体 """ def __init__(self): """ :param RequestId: 唯一请求 ID,每次请求都会返回。定位问题时需要提供该次请求的 RequestId。 :type RequestId: str """ self.RequestId = None def _deserialize(self, params): self.RequestId = params.get("RequestId") class Variable(AbstractModel): """变量参数 """ def __init__(self): """ :param Key: 变量的名称 :type Key: str :param Value: 变量的值 :type Value: str """ self.Key = None self.Value = None def _deserialize(self, params): self.Key = params.get("Key") self.Value = params.get("Value") class VersionMatch(AbstractModel): """带有匹配规则的函数版本 """ def __init__(self): """ :param Version: 函数版本名称 :type Version: str :param Key: 匹配规则的key,调用时通过传key来匹配规则路由到指定版本 header方式: key填写"invoke.headers.User",并在 invoke 调用函数时传参 RoutingKey:{"User":"value"}规则匹配调用 :type Key: str :param Method: 匹配方式。取值范围: range:范围匹配 exact:字符串精确匹配 :type Method: str :param Expression: range 匹配规则要求: 需要为开区间或闭区间描述 (a,b) [a,b],其中 a、b 均为整数 exact 匹配规则要求: 字符串精确匹配 :type Expression: str """ self.Version = None self.Key = None self.Method = None self.Expression = None def _deserialize(self, params): self.Version = params.get("Version") self.Key = params.get("Key") self.Method = params.get("Method") self.Expression = params.get("Expression") class VersionProvisionedConcurrencyInfo(AbstractModel): """函数版本的预置并发信息,包括设置预置并发数、已完成预置的并发数和预置任务状态。 """ def __init__(self): """ :param AllocatedProvisionedConcurrencyNum: 设置的预置并发数。 :type AllocatedProvisionedConcurrencyNum: int :param AvailableProvisionedConcurrencyNum: 当前已完成预置的并发数。 :type AvailableProvisionedConcurrencyNum: int :param Status: 预置任务状态,Done表示已完成,InProgress表示进行中,Failed表示部分或全部失败。 :type Status: str :param StatusReason: 对预置任务状态Status的说明。 :type StatusReason: str :param Qualifier: 函数版本号 :type Qualifier: str """ self.AllocatedProvisionedConcurrencyNum = None self.AvailableProvisionedConcurrencyNum = None self.Status = None self.StatusReason = None self.Qualifier = None def _deserialize(self, params): self.AllocatedProvisionedConcurrencyNum = params.get("AllocatedProvisionedConcurrencyNum") self.AvailableProvisionedConcurrencyNum = params.get("AvailableProvisionedConcurrencyNum") self.Status = params.get("Status") self.StatusReason = params.get("StatusReason") self.Qualifier = params.get("Qualifier") class VersionWeight(AbstractModel): """带有权重的函数版本 """ def __init__(self): """ :param Version: 函数版本名称 :type Version: str :param Weight: 该版本的权重 :type Weight: float """ self.Version = None self.Weight = None def _deserialize(self, params): self.Version = params.get("Version") self.Weight = params.get("Weight") class VpcConfig(AbstractModel): """私有网络参数配置 """ def __init__(self): """ :param VpcId: 私有网络 的 Id :type VpcId: str :param SubnetId: 子网的 Id :type SubnetId: str """ self.VpcId = None self.SubnetId = None def _deserialize(self, params): self.VpcId = params.get("VpcId") self.SubnetId = params.get("SubnetId")
StarcoderdataPython
3308249
from glob import glob import matplotlib.pyplot as plt import numpy as np import os from os.path import join from fastsrm.utils import error_source os.makedirs("../figures", exist_ok=True) rc = { "pdf.fonttype": 42, "text.usetex": True, "font.size": 16, "xtick.labelsize": 16, "ytick.labelsize": 16, "text.latex.preview": True, "font.family": "serif", } plt.rcParams.update(rc) shared_dir = ( "../experiments/results/identifiability/shared/" ) def standardize(X): X_ = X - np.mean(X, axis=1) X_ = X_ / np.std(X_, axis=1) return X errors = [] for algo in ["brainiak", "fast"]: errors_ = [] for n_repeat in range(9): X, Y = ( join( shared_dir, "%i-%i-sherlock-10-%s.npy" % (n_repeat, split, algo), ) for split in (0, 1) ) X = np.load(X) Y = np.load(Y) errors_.append(np.mean(1 - error_source(X, Y))) errors.append(errors_) errors = np.array(errors) plt.figure(figsize=(3, 3)) plt.scatter(errors[0], errors[1]) plt.plot(np.arange(0, 2), np.arange(0, 2), color="black") plt.xlim(np.min(errors) - 0.1, np.max(errors) + 0.1) plt.ylim(np.min(errors) - 0.1, np.max(errors) + 0.1) plt.xlabel("Stability index \n (General covariance)") plt.ylabel("Stability index \n (Diagonal covariance)") plt.savefig("../figures/identifiability.pdf", bbox_inches="tight")
StarcoderdataPython
11245977
import mock import pytest import types from spackl.db import Postgres, QueryResult from sqlalchemy.engine import ResultProxy from comparator import comps from comparator import SourcePair, Comparator, ComparatorSet from comparator.compare import ComparatorResult from comparator.exceptions import InvalidCompSetException, QueryFormatError query = 'select * from nowhere' other_query = 'select count(*) from somewhere' left_query_results = [{'a': 1, 'b': 2, 'c': 3}, {'a': 4, 'b': 5, 'c': 6}] right_query_results = [{'a': 1, 'b': 2, 'c': 3}, {'a': 4, 'b': 5, 'c': 6}] mismatch_right_query_results = [{'a': 1, 'b': 2, 'c': 3}, {'a': 4, 'b': 5, 'c': 6}, {'a': 7, 'b': 8, 'c': 9}] string_query_results = [{'a': 'one', 'b': 'two', 'c': 'three'}, {'a': 'four', 'b': 'five', 'c': 'six'}] unicode_query_results = [{u'a': u'one', u'b': u'two', u'c': u'three'}, {u'a': u'four', u'b': u'five', u'c': u'six'}] def get_mock_query_result(values): mock_result = mock.MagicMock(spec=ResultProxy) mock_result.__iter__.return_value = values return QueryResult(mock_result) left_results = get_mock_query_result(left_query_results) right_results = get_mock_query_result(right_query_results) mismatch_right_results = get_mock_query_result(mismatch_right_query_results) string_results = get_mock_query_result(string_query_results) unicode_results = get_mock_query_result(unicode_query_results) expected_default_result = ('basic_comp', True) expected_multiple_result = [ ComparatorResult('test', 'first_eq_comp', True), ComparatorResult('test', 'len_comp', True)] expected_mismatch_result = [ ComparatorResult('test', 'first_eq_comp', True), ComparatorResult('test', 'len_comp', False)] def test_source_pair(): l, r = Postgres(), Postgres() sp = SourcePair(l, query, r) assert sp._lquery == sp._rquery assert sp.empty assert sp.query_results == (None, None) assert sp.lresult is None assert sp.rresult is None sp2 = SourcePair(l, query) assert sp2._lquery == query assert sp2._right is None assert sp2._rquery is None assert sp2.query_results == (None, ) with pytest.raises(TypeError): SourcePair(l, r, query) with pytest.raises(TypeError): SourcePair(l, query, r, 1234) def test_source_pair_queries(): l, r = Postgres(), Postgres() rquery = 'select * from somewhere where id in {{ a }}' sp = SourcePair(l, query, r, rquery) with mock.patch.object(sp._left, 'query', return_value=left_results): with mock.patch.object(sp._right, 'query', return_value=right_results): with mock.patch.object(sp, '_format_rquery') as mock_fmt: sp.get_query_results() assert mock_fmt.call_count == 1 sp._lresult = left_results formatted = sp._format_rquery() assert formatted == 'select * from somewhere where id in (1, 4)' sp._rquery = 'select * from somewhere where id in {{ notreal }}' with pytest.raises(QueryFormatError): sp._format_rquery() sp._rquery = rquery sp._lresult = string_results formatted = sp._format_rquery() assert formatted == "select * from somewhere where id in ('one', 'four')" sp._lresult = unicode_results formatted = sp._format_rquery() assert formatted == "select * from somewhere where id in ('one', 'four')" def test_comparator(): sp1 = SourcePair(Postgres(), query, Postgres()) sp2 = SourcePair(Postgres(), query, Postgres(), other_query) with pytest.raises(TypeError): Comparator(sp1) c = Comparator(sp=sp1) assert c._sp._lquery == query assert c._sp._rquery == query assert c._comps == [comps.COMPS.get(comps.DEFAULT_COMP)] assert c.name is None c = Comparator(sp=sp2, comps=comps.FIRST_COMP, name='Shirley') assert c._sp._lquery == query assert c._sp._rquery == other_query assert c._comps == [comps.COMPS.get(comps.FIRST_COMP)] assert c.name == 'Shirley' assert c.query_results == (None, None) assert c.results == list() def test_compare_defaults(): sp = SourcePair(Postgres(), query, Postgres()) c = Comparator(sp=sp) with mock.patch.object(c._sp._left, 'query', return_value=left_results): with mock.patch.object(c._sp._right, 'query', return_value=right_results): assert c.get_query_results() == (left_results, right_results) assert isinstance(c.compare(), types.GeneratorType) res = c.run_comparisons()[0] assert (res.name, res.result) == expected_default_result assert c._complete is True ln = len(c.results) c.run_comparisons() assert len(c.results) == ln for _ in c.compare(): pass assert len(c.results) == ln c._complete = False c.run_comparisons() assert len(c.results) == ln * 2 c._complete = True c.clear() assert c._complete is False assert c.query_results == (None, None) assert c.results == list() def test_left_only_compare(): sp = SourcePair(Postgres(), query) c = Comparator(sp=sp, comps=lambda x: bool(x[0])) with mock.patch.object(c._sp._left, 'query', return_value=left_results): assert c.get_query_results() == (left_results, ) expected_comp_result = ('lambda x: bool(x[0]))', True) res = c.run_comparisons()[0] assert (res.name, res.result) == expected_comp_result assert c._complete is True def test_comarison_result(): pass def test_compare_multiple(): sp = SourcePair(Postgres(), query, Postgres()) comparisons = [comps.FIRST_COMP, comps.LEN_COMP] c = Comparator(sp=sp, comps=comparisons) with mock.patch.object(c._sp._left, 'query', return_value=left_results): with mock.patch.object(c._sp._right, 'query', return_value=right_results): assert c.get_query_results() == (left_results, right_results) assert isinstance(c.lresult, QueryResult) assert str(c.lresult.a) == '(1, 4)' assert isinstance(c.rresult, QueryResult) assert str(c.lresult.b) == '(2, 5)' for i, result in enumerate(c.compare()): assert result == expected_multiple_result[i] def test_compare_mismatch(): sp = SourcePair(Postgres(), query, Postgres()) comparisons = [comps.FIRST_COMP, comps.LEN_COMP] c = Comparator(sp=sp, comps=comparisons) with mock.patch.object(c._sp._left, 'query', return_value=left_results): with mock.patch.object(c._sp._right, 'query', return_value=mismatch_right_results): res = c.run_comparisons() assert c.query_results == (left_results, mismatch_right_results) assert res == expected_mismatch_result def test_left_right_queries(): sp1 = SourcePair(Postgres(), query, Postgres()) sp2 = SourcePair(Postgres(), query, Postgres(), other_query) c1 = Comparator(sp=sp1) assert c1._sp._lquery == query assert c1._sp._rquery == query c = Comparator(sp=sp2) assert c._sp._lquery == query assert c._sp._rquery == other_query def test_results_run(): sp = SourcePair(Postgres(), query, Postgres()) c = Comparator(sp=sp) with mock.patch.object(c._sp._left, 'query', return_value=left_results) as lq: with mock.patch.object(c._sp._right, 'query', return_value=right_results) as rq: res = c.get_query_results(run=True) c.get_query_results(run=True) assert lq.call_count == 1 assert rq.call_count == 1 assert res == (left_results, right_results) def test_no_comps(): sp = SourcePair(Postgres(), query, Postgres()) c = Comparator(sp=sp, comps='notarealcomparison') assert c._comps == [comps.COMPS.get(comps.DEFAULT_COMP)] def test_custom_comparison(): def custom_comp(left, right): return len(left) < len(right) expected_result = [ComparatorResult('test', 'custom_comp', True), ComparatorResult('test', 'lambda x, y: len(x) < len(y)', True)] sp = SourcePair(Postgres(), query, Postgres()) c = Comparator(sp=sp, comps=[custom_comp, lambda x, y: len(x) < len(y)]) with mock.patch.object(c._sp._left, 'query', return_value=left_results): with mock.patch.object(c._sp._right, 'query', return_value=mismatch_right_results): res = c.run_comparisons() assert res == expected_result def test_non_bool_comparison(): def custom_comp(left, right): return len(right) - len(left) expected_result = [ComparatorResult('test', 'custom_comp', 1)] sp = SourcePair(Postgres(), query, Postgres()) c = Comparator(sp=sp, comps=custom_comp, name='test') with mock.patch.object(c._sp._left, 'query', return_value=left_results): with mock.patch.object(c._sp._right, 'query', return_value=mismatch_right_results): res = c.run_comparisons() assert res == expected_result comp = res[0] assert str(comp) == 'custom_comp : 1' assert comp.comparator_name == 'test' assert comp.name == 'custom_comp' assert comp['name'] == 'custom_comp' assert bool(comp) assert comp > 0 assert comp >= 0 assert comp < 2 assert comp <= 2 assert comp == 1 assert comp != 0 assert comp.result == 1 assert comp['result'] == 1 assert comp[0] == 'custom_comp' assert comp[1] == 1 with pytest.raises(IndexError): comp[2] with pytest.raises(KeyError): comp['cheesecake'] def test_comparatorset(): l, r = Postgres(), Postgres() sp1 = SourcePair(l, query, r) sp2 = SourcePair(l, query, r, other_query) with pytest.raises(TypeError): ComparatorSet() with pytest.raises(InvalidCompSetException): ComparatorSet('bananas') with pytest.raises(InvalidCompSetException): ComparatorSet(sp1, sp1) with pytest.raises(InvalidCompSetException): ComparatorSet([sp1, sp1], comps='not_a_callable') with pytest.raises(InvalidCompSetException): ComparatorSet([sp1, sp1], names='too_short') cs = ComparatorSet([sp1, sp1]) for c in cs: assert isinstance(c, Comparator) assert c._sp._left is l assert c._sp._right is r assert c._sp._lquery == query assert c._sp._rquery == query assert c._comps == [comps.COMPS.get(comps.DEFAULT_COMP)] assert c.name is None with pytest.raises(InvalidCompSetException): ComparatorSet( [sp2, sp2], comps=[comps.LEN_COMP, comps.FIRST_COMP], names='Shirley') names = ['Shirley', 'Eugene'] with pytest.raises(InvalidCompSetException): ComparatorSet( [sp2, sp2], comps=comps.COMPS.get(comps.LEN_COMP), names=names) with pytest.raises(InvalidCompSetException): ComparatorSet( [sp2, sp2], comps=[comps.LEN_COMP, 'nope'], names=names) cmps = [[comps.LEN_COMP], [comps.FIRST_COMP]] cs = ComparatorSet( [sp2, sp2], comps=cmps, names=names) for i, c in enumerate(cs): assert c._sp._left is l assert c._sp._right is r assert c._sp._lquery == query assert c._sp._rquery == other_query assert c._comps == [comps.COMPS.get(cmps[i][0])] assert c.name == names[i] assert cs[0] assert cs[1] with pytest.raises(IndexError): cs[2] with pytest.raises(TypeError): cs['what'] def test_comparatorset_from_dict(): l, r = Postgres(), Postgres() with pytest.raises(TypeError): ComparatorSet.from_dict() with pytest.raises(InvalidCompSetException): ComparatorSet.from_dict('what', l, r) cs = ComparatorSet.from_dict({'lquery': query, 'rquery': other_query}, l, r) assert isinstance(cs, ComparatorSet) sp = SourcePair(l, query, r, other_query) d1 = {'sp': sp} d2 = {'name': 'test', 'lquery': query, 'rquery': other_query, 'comps': comps.LEN_COMP} cs = ComparatorSet.from_dict([d1, d2], l, r, default_comp=comps.FIRST_COMP) for c in cs: assert c._sp._left is l assert c._sp._right is r assert c._sp._lquery == query assert c._sp._rquery == other_query assert cs[0].name is None assert cs[1].name == 'test' assert cs[0]._comps == [comps.COMPS.get(comps.FIRST_COMP)] assert cs[1]._comps == [comps.COMPS.get(comps.LEN_COMP)] with pytest.raises(IndexError): cs[2]
StarcoderdataPython
9601238
from setuptools import setup setup( name='clean-folder', version='1.0.0', description='Script sorting tree folders', url='https://github.com/Keshasan/clean-folder', author='<NAME>', author_email='<EMAIL>', license='', entry_points={'console_scripts': ['clean-folder = clean_folder.clean_folder:clean_folder_func']} )
StarcoderdataPython
3496712
<reponame>Leo-xxx/DenseNAS from tools.collections import AttrDict __C = AttrDict() cfg = __C __C.net_config="""[[16, 16], 'mbconv_k3_t1', [], 0, 1]| [[16, 24], 'mbconv_k5_t3', ['mbconv_k5_t3', 'mbconv_k3_t3'], 2, 2]| [[24, 48], 'mbconv_k5_t6', [], 0, 2]| [[48, 80], 'mbconv_k5_t6', ['mbconv_k7_t3', 'mbconv_k5_t3', 'mbconv_k3_t3'], 3, 2]| [[80, 112], 'mbconv_k3_t3', ['mbconv_k3_t3'], 1, 1]| [[112, 160], 'mbconv_k7_t6', ['mbconv_k7_t3', 'mbconv_k7_t3'], 2, 2]| [[160, 352], 'mbconv_k5_t6', ['mbconv_k3_t3'], 1, 1]| [[352, 416], 'mbconv_k3_t3', [], 0, 1]| [[416, 480], 'mbconv_k3_t3', [], 0, 1]""" __C.train_params=AttrDict() __C.train_params.batch_size=256 __C.train_params.num_workers=8 __C.optim=AttrDict() __C.optim.last_dim=1728 __C.optim.init_dim=16 __C.optim.bn_momentum=0.1 __C.optim.bn_eps=0.001 __C.data=AttrDict() __C.data.dataset='imagenet' # cifar10 imagenet __C.data.train_data_type='lmdb' __C.data.val_data_type='img' __C.data.patch_dataset=False __C.data.num_examples=1281167 __C.data.input_size=(3,224,224)
StarcoderdataPython
1733182
<gh_stars>0 #!/usr/bin/python # simple python socket sender import socket import time HOST = "localhost" # The remote host PORT = 8888 # The same port as used by the server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) print "Enter 'q' to quit" command = "" while (command != "q"): command = raw_input("alarmClock>> ") print command if command != "q": s.sendall(command + "\n") print (s.recv(1024)) s.close()
StarcoderdataPython
9794224
<reponame>antopen/alipay-sdk-python-all<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.TransferCredential import TransferCredential from alipay.aop.api.domain.TransferAddressInfo import TransferAddressInfo from alipay.aop.api.domain.TransferUserName import TransferUserName class TransferUser(object): def __init__(self): self._birth_date = None self._credential = None self._nationality = None self._user_address = None self._user_email = None self._user_id = None self._user_name = None self._user_phone_no = None @property def birth_date(self): return self._birth_date @birth_date.setter def birth_date(self, value): self._birth_date = value @property def credential(self): return self._credential @credential.setter def credential(self, value): if isinstance(value, TransferCredential): self._credential = value else: self._credential = TransferCredential.from_alipay_dict(value) @property def nationality(self): return self._nationality @nationality.setter def nationality(self, value): self._nationality = value @property def user_address(self): return self._user_address @user_address.setter def user_address(self, value): if isinstance(value, TransferAddressInfo): self._user_address = value else: self._user_address = TransferAddressInfo.from_alipay_dict(value) @property def user_email(self): return self._user_email @user_email.setter def user_email(self, value): self._user_email = value @property def user_id(self): return self._user_id @user_id.setter def user_id(self, value): self._user_id = value @property def user_name(self): return self._user_name @user_name.setter def user_name(self, value): if isinstance(value, TransferUserName): self._user_name = value else: self._user_name = TransferUserName.from_alipay_dict(value) @property def user_phone_no(self): return self._user_phone_no @user_phone_no.setter def user_phone_no(self, value): self._user_phone_no = value def to_alipay_dict(self): params = dict() if self.birth_date: if hasattr(self.birth_date, 'to_alipay_dict'): params['birth_date'] = self.birth_date.to_alipay_dict() else: params['birth_date'] = self.birth_date if self.credential: if hasattr(self.credential, 'to_alipay_dict'): params['credential'] = self.credential.to_alipay_dict() else: params['credential'] = self.credential if self.nationality: if hasattr(self.nationality, 'to_alipay_dict'): params['nationality'] = self.nationality.to_alipay_dict() else: params['nationality'] = self.nationality if self.user_address: if hasattr(self.user_address, 'to_alipay_dict'): params['user_address'] = self.user_address.to_alipay_dict() else: params['user_address'] = self.user_address if self.user_email: if hasattr(self.user_email, 'to_alipay_dict'): params['user_email'] = self.user_email.to_alipay_dict() else: params['user_email'] = self.user_email if self.user_id: if hasattr(self.user_id, 'to_alipay_dict'): params['user_id'] = self.user_id.to_alipay_dict() else: params['user_id'] = self.user_id if self.user_name: if hasattr(self.user_name, 'to_alipay_dict'): params['user_name'] = self.user_name.to_alipay_dict() else: params['user_name'] = self.user_name if self.user_phone_no: if hasattr(self.user_phone_no, 'to_alipay_dict'): params['user_phone_no'] = self.user_phone_no.to_alipay_dict() else: params['user_phone_no'] = self.user_phone_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = TransferUser() if 'birth_date' in d: o.birth_date = d['birth_date'] if 'credential' in d: o.credential = d['credential'] if 'nationality' in d: o.nationality = d['nationality'] if 'user_address' in d: o.user_address = d['user_address'] if 'user_email' in d: o.user_email = d['user_email'] if 'user_id' in d: o.user_id = d['user_id'] if 'user_name' in d: o.user_name = d['user_name'] if 'user_phone_no' in d: o.user_phone_no = d['user_phone_no'] return o
StarcoderdataPython
9734622
<filename>www/django/src/templates_django/templates_django/account/__init__.py default_app_config = "templates_django.account.apps.AccountConfig"
StarcoderdataPython
11288448
<gh_stars>0 import math from torchnlp.samplers.bptt_sampler import BPTTSampler class BPTTBatchSampler(object): """Samples sequentially a batch of source and target slices of size ``bptt_length``. Typically, such a sampler, is used for language modeling training with backpropagation through time (BPTT). **Reference:** https://github.com/pytorch/examples/blob/c66593f1699ece14a4a2f4d314f1afb03c6793d9/word_language_model/main.py#L61 Args: data (iterable): Iterable data. bptt_length (int): Length of the slice. batch_size (int): Size of mini-batch. drop_last (bool): If ``True``, the sampler will drop the last batch if its size would be less than ``batch_size``. type_ (str, optional): Type of batch ['source'|'target'] to load where a target batch is one timestep ahead Example: >>> sampler = BPTTBatchSampler(range(100), bptt_length=2, batch_size=3, drop_last=False) >>> list(sampler)[0] # First Batch [slice(0, 2, None), slice(34, 36, None), slice(67, 69, None)] """ def __init__(self, data, bptt_length, batch_size, drop_last, type_='source'): self.data = data self.batch_size = batch_size self.drop_last = drop_last # For each row in the batch, we iterate over a chunk of size `chunk_size` # Our chunks are similar to the columns in this PyTorch example: # https://github.com/pytorch/examples/blob/c66593f1699ece14a4a2f4d314f1afb03c6793d9/word_language_model/main.py#L61 chunk_sizes = [math.floor(len(data) / batch_size)] * batch_size # Distribute the remaining elements to some chunks if not self.drop_last: remainder = len(data) - sum(chunk_sizes) for i in range(remainder): chunk_sizes[i] += 1 self.samplers = [{ 'offset': sum(chunk_sizes[:i]), 'sampler': BPTTSampler(range(chunk_sizes[i]), bptt_length, type_=type_) } for i in range(batch_size)] def __iter__(self): # Samplers iterate over chunks similar to: # https://github.com/pytorch/examples/blob/c66593f1699ece14a4a2f4d314f1afb03c6793d9/word_language_model/main.py#L112 self.iterators = [iter(value['sampler']) for value in self.samplers] while True: batch = [] for i, iterator in enumerate(self.iterators): try: # Adjust the sampler indices to the offset offset = self.samplers[i]['offset'] slice_ = next(iterator) batch.append(slice(slice_.start + offset, slice_.stop + offset)) except StopIteration: pass # Samplers are all empty if (len(batch) == 0): break yield batch def __len__(self): return len(self.samplers[0]['sampler'])
StarcoderdataPython
4945068
# NsearchQuery # <NAME> from NFixedPointQuery import * from DSGRN.Query.NstableQuery import * class NsearchgoeQuery: def __init__(self, database, goe1, goe2 , bounds1, bounds2): self.database = database c = database.conn.cursor() NFP = NFixedPointQuery(database, *bounds1).matches() if goe1 == '=': N = len(bounds1) X1 = NstableQuery(database, N).matches() X2 = NstableQuery(database, N+1).matches() inter = set(X1.difference(X2)) MGset = [i for i in inter if i in NFP] if goe1 == '<': MGset = list(NFP) self.MGset = MGset # diff is all of the MG's with N1 stability in the database N1 = len(bounds2) X1 = NstableQuery(database, N1).matches() X2 = NstableQuery(database, N1+1).matches() diff = set(X1.difference(X2)) # PGI1 is the set of Parameter Index' assosiated to the Morse Graph inputs string = 'create temp table C as select * from Signatures where MorseGraphIndex in ({seq})'.format( seq=','.join(['?']*len(MGset))) c.execute(string, MGset) PGI1 = [ row[0] for row in c.execute('select ParameterIndex from C')] c.execute('drop table C') # PGIfinal is the set of tuples where first value in tuple is original Parameter Index, second value is the adjacent Parameter index, third is the MG index. Note that the tuples in this set are only those what have an original Parameter node in the bounds AND an adjacent parameter with =N (not >=N) fixed points. PGIfinal = set() new = NFixedPointQuery(database, *bounds2).matches() want = [i for i in new if i in diff] if goe2 == '=': for node in PGI1: adj_nodes = database.parametergraph.adjacencies(node) sql="create temp table C as select *, " + str(node) + " as ParentPGI" + " from Signatures where ParameterIndex in ({seq})".format( seq=','.join(['?']*len(adj_nodes))) c.execute(sql, adj_nodes) table2 = 'create temp table D as select * from C where MorseGraphIndex in ({seq})'.format( seq=','.join(['?']*len(want))) c.execute(table2, want) edges = set([ (row[2],row[0],row[1]) for row in c.execute('select * from D')]) PGIfinal = PGIfinal.union(edges) c.execute('drop table C') c.execute('drop table D') else: for node in PGI1: adj_nodes = database.parametergraph.adjacencies(node) sql="create temp table C as select *, " + str(node) + " as ParentPGI" + " from Signatures where ParameterIndex in ({seq})".format( seq=','.join(['?']*len(adj_nodes))) c.execute(sql, adj_nodes) table2 = 'create temp table D as select * from C where MorseGraphIndex in ({seq})'.format( seq=','.join(['?']*len(list(new)))) c.execute(table2, list(new)) edges = set([ (row[2],row[0],row[1]) for row in c.execute('select * from D')]) PGIfinal = PGIfinal.union(edges) c.execute('drop table C') c.execute('drop table D') self.PGIfinal = PGIfinal def matches(self): return set(self.PGIfinal) def stability_of_matches(self): # Return PGIfinal where the adj parameter node is in bounds. return self.PGIfinal
StarcoderdataPython
8076465
<reponame>alexandermerritt/tools #! /usr/bin/env python # Report sizes of all maps by procsses in their virtual address space. import os import re re_pid = re.compile('^[0-9]+') #re_map = re.compile('^([0-9]+|Size|Rss)') re_map = re.compile('^Size') def pids(): dirs = os.listdir('/proc/') dirs2 = [] for d in dirs: if re_pid.match(d): dirs2.append(d) return dirs2 def mapsizes(pid): sizes = [] # region sizes pname = '/proc/' + pid + '/smaps' try: f = open(pname, 'r') lines = f.readlines() except: return for line in lines: line = line.strip() if re_map.match(line): # size reported in kB sz = long(line.split()[1]) * 1024 sizes.append( sz ) f.close() return sizes print('pid nregions pgsize waste') def analyze(pid,sizes,pgsize): waste = 0 for sz in sizes: waste += pgsize - (sz % pgsize) print(pid + ' ' + str(len(sizes)) + ' ' + str(pgsize) + ' ' + str(waste)) for pid in pids(): sizes = mapsizes(pid) if not sizes: continue analyze(pid, sizes, 2**12) analyze(pid, sizes, 2**21)
StarcoderdataPython
11213493
import asyncio import json from aiocoap import * import time async def main(): uri = "coap://localhost:9100/act-coap" context = await Context.create_client_context() request = Message(code=GET, payload="", uri=uri) response = await context.request(request).response json_p = json.loads(response.payload.decode('utf-8')) # request = Message(code=PUT, # payload=(json.dumps({"state": "execute", "execution_time": 5}).encode('utf-8')), # uri=uri) # response = await context.request(request).response # json_p = json.loads(response.payload.decode('utf-8')) time.sleep(int(json_p["execution_time"]) + 1) request = Message(code=GET, payload="", uri=uri) # print(str(request.opt)) response = await context.request(request).response json_p = json.loads(response.payload.decode('utf-8')) print(str(json_p)) if __name__ == "__main__": asyncio.get_event_loop().run_until_complete(main())
StarcoderdataPython
8054695
<reponame>jimmycheng603/katrain import math import threading from kivy.lang import Builder from kivy.metrics import dp from kivy.properties import BooleanProperty, Clock, ListProperty, NumericProperty, StringProperty from kivy.uix.widget import Widget from kivymd.app import MDApp from katrain.gui.theme import Theme class Graph(Widget): marker_font_size = NumericProperty(0) background_image = StringProperty(Theme.GRAPH_TEXTURE) background_color = ListProperty([1, 1, 1, 1]) highlighted_index = NumericProperty(0) nodes = ListProperty([]) hidden = BooleanProperty(False) def __init__(self, **kwargs): super().__init__(**kwargs) self._lock = threading.Lock() self.bind(pos=self.update_graph, size=self.update_graph) self.redraw_trigger = Clock.create_trigger(self.update_graph, 0.1) def initialize_from_game(self, root): self.nodes = [root] node = root while node.children: node = node.ordered_children[0] self.nodes.append(node) self.highlighted_index = 0 self.redraw_trigger() def update_graph(self, *args): pass def update_value(self, node): with self._lock: self.highlighted_index = index = node.depth self.nodes.extend([None] * max(0, index - (len(self.nodes) - 1))) self.nodes[index] = node if index > 1 and node.parent: # sometimes there are gaps backfill, bfnode = index - 1, node.parent while bfnode is not None and self.nodes[backfill] != bfnode: self.nodes[backfill] = bfnode backfill -= 1 bfnode = bfnode.parent if index + 1 < len(self.nodes) and ( node is None or not node.children or self.nodes[index + 1] != node.ordered_children[0] ): self.nodes = self.nodes[: index + 1] # on branch switching, don't show history from other branch if index == len(self.nodes) - 1: # possibly just switched branch or the line above triggered while node.children: # add children back node = node.ordered_children[0] self.nodes.append(node) self.redraw_trigger() class ScoreGraph(Graph): show_score = BooleanProperty(True) show_winrate = BooleanProperty(True) score_points = ListProperty([]) winrate_points = ListProperty([]) score_dot_pos = ListProperty([0, 0]) winrate_dot_pos = ListProperty([0, 0]) highlight_size = NumericProperty(dp(6)) score_scale = NumericProperty(5) winrate_scale = NumericProperty(5) navigate_move = ListProperty([None, 0, 0, 0]) def on_touch_down(self, touch): if self.collide_point(*touch.pos) and "scroll" not in getattr(touch, "button", ""): ix, _ = min(enumerate(self.score_points[::2]), key=lambda ix_v: abs(ix_v[1] - touch.x)) self.navigate_move = [ self.nodes[ix], self.score_points[2 * ix], self.score_points[2 * ix + 1], self.winrate_points[2 * ix + 1], ] else: self.navigate_move = [None, 0, 0, 0] def on_touch_move(self, touch): return self.on_touch_down(touch) def on_touch_up(self, touch): if self.collide_point(*touch.pos) and self.navigate_move[0] and "scroll" not in getattr(touch, "button", ""): katrain = MDApp.get_running_app().gui if katrain and katrain.game: katrain.game.set_current_node(self.navigate_move[0]) katrain.update_state() self.navigate_move = [None, 0, 0, 0] def show_graphs(self, keys): self.show_score = keys["score"] self.show_winrate = keys["winrate"] def update_graph(self, *args): nodes = self.nodes if nodes: score_values = [n.score if n and n.score else math.nan for n in nodes] # score_values=[] # for n in nodes: # if n and n.score: # score_values.append(n.score) # else: # score_values.append(math.nan) score_nn_values = [n.score for n in nodes if n and n.score] score_values_range = min(score_nn_values or [0]), max(score_nn_values or [0]) winrate_values = [(n.winrate - 0.5) * 100 if n and n.winrate else math.nan for n in nodes] winrate_nn_values = [(n.winrate - 0.5) * 100 for n in nodes if n and n.winrate] winrate_values_range = min(winrate_nn_values or [0]), max(winrate_nn_values or [0]) score_granularity = 5 winrate_granularity = 10 self.score_scale = ( max(math.ceil(max(-score_values_range[0], score_values_range[1]) / score_granularity), 1) * score_granularity ) self.winrate_scale = ( max(math.ceil(max(-winrate_values_range[0], winrate_values_range[1]) / winrate_granularity), 1) * winrate_granularity ) xscale = self.width / max(len(score_values) - 1, 15) available_height = self.height score_line_points = [ [self.x + i * xscale, self.y + self.height / 2 + available_height / 2 * (val / self.score_scale)] for i, val in enumerate(score_values) ] winrate_line_points = [ [self.x + i * xscale, self.y + self.height / 2 + available_height / 2 * (val / self.winrate_scale)] for i, val in enumerate(winrate_values) ] self.score_points = sum(score_line_points, []) self.winrate_points = sum(winrate_line_points, []) if self.highlighted_index is not None: self.highlighted_index = min(self.highlighted_index, len(score_values) - 1) score_dot_point = score_line_points[self.highlighted_index] winrate_dot_point = winrate_line_points[self.highlighted_index] if math.isnan(score_dot_point[1]): score_dot_point[1] = ( self.y + self.height / 2 + available_height / 2 * ((score_nn_values or [0])[-1] / self.score_scale) ) self.score_dot_pos = score_dot_point if math.isnan(winrate_dot_point[1]): winrate_dot_point[1] = ( self.y + self.height / 2 + available_height / 2 * ((winrate_nn_values or [0])[-1] / self.winrate_scale) ) self.winrate_dot_pos = winrate_dot_point Builder.load_string( """ #:import Theme katrain.gui.theme.Theme <Graph>: background_color: Theme.BOX_BACKGROUND_COLOR marker_font_size: 0.1 * self.height canvas.before: Color: rgba: root.background_color Rectangle: size: self.size pos: self.pos Color: rgba: [1,1,1,1] Rectangle: pos: self.pos size: self.size source: root.background_image <ScoreGraph>: canvas: Color: rgba: Theme.SCORE_COLOR Line: points: root.score_points if root.show_score else [] width: dp(1.1) Color: rgba: Theme.WINRATE_COLOR Line: points: root.winrate_points if root.show_winrate else [] width: dp(1.1) Color: rgba: [0.5,0.5,0.5,1] if root.navigate_move[0] else [0,0,0,0] Line: points: root.navigate_move[1], root.y, root.navigate_move[1], root.y+root.height width: 1 Color: rgba: Theme.GRAPH_DOT_COLOR Ellipse: id: score_dot pos: [c - self.highlight_size / 2 for c in (self.score_dot_pos if not self.navigate_move[0] else [self.navigate_move[1],self.navigate_move[2]] ) ] size: (self.highlight_size,self.highlight_size) if root.show_score else (0.0001,0.0001) Color: rgba: Theme.GRAPH_DOT_COLOR Ellipse: id: winrate_dot pos: [c - self.highlight_size / 2 for c in (self.winrate_dot_pos if not self.navigate_move[0] else [self.navigate_move[1],self.navigate_move[3]] ) ] size: (self.highlight_size,self.highlight_size) if root.show_winrate else (0.0001,0.0001) # score ticks GraphMarkerLabel: font_size: root.marker_font_size color: Theme.SCORE_MARKER_COLOR pos: root.x + root.width - self.width-1, root.pos[1]+root.height - self.font_size - 1 text: 'B+{}'.format(root.score_scale) opacity: int(root.show_score) GraphMarkerLabel: font_size: root.marker_font_size color: Theme.SCORE_MARKER_COLOR pos: root.x + root.width - self.width-1, root.y + root.height*0.5 - self.height/2 + 2 text: i18n._('Jigo') opacity: int(root.show_score) GraphMarkerLabel: font_size: root.marker_font_size color: Theme.SCORE_MARKER_COLOR pos: root.x + root.width - self.width-1, root.pos[1] text: 'W+' + str(int(root.score_scale)) opacity: int(root.show_score) # wr ticks GraphMarkerLabel: font_size: root.marker_font_size color: Theme.WINRATE_MARKER_COLOR pos: root.pos[0]+1, root.pos[1] + root.height - self.font_size - 1 text: "{}%".format(50 + root.winrate_scale) opacity: int(root.show_winrate) GraphMarkerLabel: font_size: root.marker_font_size color: Theme.WINRATE_MARKER_COLOR pos:root.pos[0]+1, root.pos[1] text: "{}%".format(50 - root.winrate_scale) opacity: int(root.show_winrate) """ )
StarcoderdataPython
8033088
<reponame>smokah420/StakeCubeCoin<filename>contrib/auto_gdb/log_size.py #!/usr/bin/env python3 # try: import gdb except ImportError as e: raise ImportError("This script must be run in GDB: ", str(e)) import traceback import datetime import sys import os import common_helpers sys.path.append(os.getcwd()) class LogSizeCommand (gdb.Command): """calc size of the memory used by the object and write it to file""" def __init__ (self): super (LogSizeCommand, self).__init__ ("logsize", gdb.COMMAND_USER) def invoke(self, arg, from_tty): try: args = gdb.string_to_argv(arg) obj = gdb.parse_and_eval(args[0]) logfile = open(args[1], 'a', encoding="utf8") size = common_helpers.get_instance_size(obj) logfile.write("%s %s: %d\n" % (str(datetime.datetime.now()), args[0], size)) logfile.close() except Exception as e: print(traceback.format_exc()) raise e LogSizeCommand()
StarcoderdataPython
73034
<filename>wiki/admin.py<gh_stars>1-10 from django.contrib import admin from .models import WikiPage admin.site.register(WikiPage)
StarcoderdataPython
3263367
#!/usr/bin/env python """ Multi-Resolution (2) Binary Classification with underline Gaussian Distributions <NAME> & <NAME>, Electrical and Computer Engineering Dept., University of Maryland """ #%% Import Modules import pickle import numpy as np # import pandas as pd import matplotlib.pyplot as plt # from scipy.stats import multivariate_normal # plt.ioff() # turn off interactive mode: only show figures with plt.show() plt.close('all') #%% save_file = 'data.pkl' # Gaussian Sampling? gauss_sampling = True # gauss_sampling = False # Number of samples per Gaussian ns = 120 test_ratio = 20.0/100 # Gaussian Density 2D, Symmetric def gauss_dens(c,s,X,Y): # pos = np.empty(X.shape + (2,)) # pos[:, :, 0] = X # pos[:, :, 1] = Y # dens = multivariate_normal.pdf(pos, mean=c, cov=np.diag((s,s))) dens = 1/(2*np.pi*s) * np.exp(-((X-c[0])**2 + (Y-c[1])**2)/(2.0*s**2)) return dens b = 3 c = 0 centers = [[b-1.4,b+0.4],[b+2.2,b+1.0],[b-0.4+c,b-1.4],[b+1.4+c,b-0.4],[b+0.4+c,b+2.0]] sigmas = [0.75, 0.5, 0.35, 0.75, 0.5] sigmas = [0.35, 0.25, 0.15, 0.35, 0.25] sigmas = [0.20, 0.15, 0.10, 0.20, 0.15] # Contour alpha aa = 0.05 # samples alpha aaa = 0.4 np.random.seed(0) # np.random.seed(13) #%% Sample Data Set data = [] labels = [] if gauss_sampling: # class o cx = np.array(centers[0]) sx = sigmas[0] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(0) # class o cx = np.array(centers[1]) sx = sigmas[1] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(0) # class o cx = np.array(centers[2]) sx = sigmas[2] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(0) # class x cx = np.array(centers[3]) sx = sigmas[3] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(1) # class x cx = np.array(centers[4]) sx = sigmas[4] for i in range(ns): data.append( np.random.multivariate_normal(cx, [[sx,0],[0,sx]]) ) labels.append(1) else: def arc_point(c, r, theta): c = np.array(c) d = np.array([r*np.cos(theta), r*np.sin(theta)]) return c + d # class o cx = np.array(centers[0]) for r in [0.5,1]: for theta in np.arange(0,2*np.pi,np.pi/5): data.append(arc_point(cx,r,theta)) labels.append(0) # class o cx = np.array(centers[1]) for r in [0.3,0.5]: for theta in np.arange(0,2*np.pi,np.pi/5): data.append(arc_point(cx,r,theta)) labels.append(0) # class o cx = np.array(centers[2]) for r in [0.1,0.3]: for theta in np.arange(0,2*np.pi,np.pi/5): data.append(arc_point(cx,r,theta)) labels.append(0) # class x cx = np.array(centers[3]) for r in [0.5,1]: for theta in np.arange(0,2*np.pi,np.pi/5): data.append(arc_point(cx,r,theta)) labels.append(1) # class x cx = np.array(centers[4]) for r in [0.3,0.5]: for theta in np.arange(0,2*np.pi,np.pi/5): data.append(arc_point(cx,r,theta)) labels.append(1) #% Convert Data # data = x_data + y_data # labels = [0]*len(x_data) + [1]*len(y_data) #%% Map to [0,1] and shuffle # map to [0,1] train_min = np.min(np.min(data,0)) #-0.1 train_max = np.max(np.max(data,0)) #+0.1 train_domain = train_max-train_min # add small margins so that we avoid 0.0 values (for KL divergence) train_min = train_min - 0.05*train_domain train_max = train_max + 0.05*train_domain train_domain = train_max-train_min # transform data = (data-train_min)/train_domain centers = (centers-train_min)/train_domain sigmas = sigmas/train_domain # shuffle data shi = np.arange(len(data)) np.random.shuffle(shi) data = [data[i] for i in shi] labels = [labels[i] for i in shi] # train_data = [data[i] for i in shi] # train_labels = [labels[i] for i in shi] # train_samples = len(train_data) # test_data = [] # test_labels = [] # test_samples = 1#len(test_data) # Split into training and testing sets train_samples = int(np.floor(len(data)*(1-test_ratio))) test_samples = int(len(data)-train_samples) train_data = data[:][:train_samples] train_labels = labels[:][:train_samples] test_data = data[:][train_samples:] test_labels = labels[:][train_samples:] #%% Algorithm Plot # Create new Figure fig = plt.figure() ax = fig.add_subplot(111, aspect='equal', autoscale_on=False, # xlim=(b-3, b+3), ylim=(b-3, b+3)) xlim=(0, 1), ylim=(0, 1)) # ax.grid(True) plt.xticks([0,1],'') plt.yticks([0,1],'') # data in 2D space x_plot = [data[i] for i in range(len(data)) if labels[i] == 0] y_plot = [data[i] for i in range(len(data)) if labels[i] == 1] ## plot data ax.plot([x_plot[i][0] for i in range(len(x_plot))], [x_plot[i][1] for i in range(len(x_plot))],'k.',alpha=aaa) ax.plot([y_plot[i][0] for i in range(len(y_plot))], [y_plot[i][1] for i in range(len(y_plot))],'r.',alpha=aaa) ## Contours delta = 0.005 # xm = np.arange(b-3.0, b+3.0, delta) # ym = np.arange(b-3.0, b+3.0, delta) xm = np.arange(0.0, 1.0, delta) ym = np.arange(0.0, 1.0, delta) Xm, Ym = np.meshgrid(xm, ym) test = gauss_dens((0.5,0.5),0.05,Xm,Ym) # class o cx = np.array(centers[0]) sx = sigmas[0] Zm = gauss_dens(cx,sx,Xm,Ym) ax.contour(Xm, Ym, Zm, alpha=aa, colors='k', levels=[1e-9, 1e-3, 1e-1, 1]) # class o cx = np.array(centers[1]) sx = sigmas[1] Zm = gauss_dens(cx,sx,Xm,Ym) ax.contour(Xm, Ym, Zm, alpha=aa, colors='k', levels=[1e-9, 1e-3, 1e-1, 1]) # class o cx = np.array(centers[2]) sx = sigmas[2] Zm = gauss_dens(cx,sx,Xm,Ym) ax.contour(Xm, Ym, Zm, alpha=aa, colors='k', levels=[1e-9, 1e-3, 1e-1, 1]) # class x cx = np.array(centers[3]) sx = sigmas[3] Zm = gauss_dens(cx,sx,Xm,Ym) ax.contour(Xm, Ym, Zm, alpha=aa, colors='r', levels=[1e-9, 1e-3, 1e-1, 1]) # class x cx = np.array(centers[4]) sx = sigmas[4] Zm = gauss_dens(cx,sx,Xm,Ym) ax.contour(Xm, Ym, Zm, alpha=aa, colors='r', levels=[1e-9, 1e-3, 1e-1, 1]) plt.show() #%% Save Data def proj(x): u = np.array([1,1]) u = u/np.linalg.norm(u) x = np.array(x) return np.dot(u,x) # def proj_back(x): # u = np.array([1,1]) # u = u/np.linalg.norm(u) # x = np.array(x) # return u*x train_data = [[np.array([proj(td)]),td] for td in train_data] test_data = [[np.array([proj(td)]),td] for td in test_data] # For high Resolution only: # train_data = [[np.array(td)] for td in train_data] # test_data = [[np.array(td)] for td in test_data] # Save results to file mydata = [train_data,train_labels,test_data,test_labels] with open(save_file, mode='wb') as file: pickle.dump(mydata, file)
StarcoderdataPython
8193413
<gh_stars>0 import pymongo import gridfs from .datastore import DataStore class MongoDBDataStore(pymongo.MongoClient, DataStore): db_name = 'librarypaste' @property def db(self): return self[self.db_name] @classmethod def from_uri(cls, uri): store = cls(uri) uri_p = pymongo.uri_parser.parse_uri(uri) if uri_p['database']: store.db_name = uri_p['database'] return store def _store(self, uid, content, data=None): """Store the given dict of content at uid. Nothing returned.""" doc = dict(uid=uid) if data: gfs = gridfs.GridFS(self.db) id = gfs.put(data, encoding='utf-8') doc.update(data_id=id) doc.update(content) self.db.pastes.insert_one(doc) def _storeLog(self, nick, time, uid): """Adds the nick & uid to the log for a given time/order. No return.""" query = dict(uid=uid) update = {'$set': dict(nick=nick, time=time)} self.db.pastes.update(query, update) def _retrieve(self, uid): """Return a dict with the contents of the paste, including the raw data, if any, as the key 'data'. Must pass in uid, not shortid.""" query = dict(uid=uid) doc = self.db.pastes.find_one(query) if 'data_id' in doc: data_id = doc.pop('data_id') gfs = gridfs.GridFS(self.db) doc.update(data=gfs.get(data_id).read()) return doc def _delete(self, uid): filter = dict(uid=uid) doc = self.db.pastes.find_one_and_delete(filter) if 'data_id' in doc: gfs = gridfs.GridFS(self.db) gfs.delete(doc['data_id']) return doc def lookup(self, nick): """Looks for the most recent paste by a given nick. Returns the uid or None""" query = dict(nick=nick) order = [('time', pymongo.DESCENDING)] recs = self.db.pastes.find(query).sort(order).limit(1) try: return next(recs)['uid'] except StopIteration: pass def _lookupUid(self, shortid): query = dict(shortid=shortid) rec = self.db.pastes.find_one(query) return rec['uid'] def list(self): return (doc['uid'] for doc in self.db.pastes.find(projection=['uid']))
StarcoderdataPython
3551391
<gh_stars>1-10 import xml.etree.ElementTree as ET import sys, csv tree = ET.parse(sys.argv[1]) root = tree.getroot() from constants import * relations = ['collectionobjects2storagelocations', 'collectionobjects2people'] cspaceCSV = csv.writer(open('entities.csv', 'wb'), delimiter='\t') entities = {} for cluedoElement, cspaceElement in mapping.items(): print 'looking for Cluedo %s elements' % cluedoElement for e in root.findall('.//' + cluedoElement): for c in e.findall('.//' + cspaceElement): print ' ', cluedoElement, c.tag, c.text slug = c.text.replace('.', '').replace(' ', '') print ' ', 'media', c.tag, slug + '_Full.jpg' entities[c.text] = cluedo2cspace[c.tag] cspaceCSV.writerow([cluedo2cspace[c.tag], c.tag, c.text]) cspaceCSV.writerow(['media', c.text, slug + '_Full.jpg']) cspaceRel = csv.writer(open('relations.csv', 'wb'), delimiter='\t') for object in [x for x in entities.keys() if entities[x] == 'collectionobject']: for location in [x for x in entities.keys() if entities[x] == 'storagelocation']: movement = '%s :: %s' % (location, object) cspaceCSV.writerow(['movement', 'movement', movement ]) cspaceRel.writerow(['relation', 'Movement', movement, 'CollectionObject', object ]) print location, object del entities[location] break
StarcoderdataPython
18968
<reponame>Kreastr/SmartAPI-HEILA import sys import site import os
StarcoderdataPython
394734
# Generated by Django 2.2.3 on 2019-08-01 17:35 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('app', '0021_auto_20190607_1706'), ] operations = [ migrations.RenameModel( old_name='Mot', new_name='Expression', ), ]
StarcoderdataPython
1745173
#!/usr/bin/env python # -*- coding: utf-8 -*- """Exercise 10.6 from Kane 1985.""" from __future__ import division from sympy import symbols from sympy.physics.mechanics import ReferenceFrame, RigidBody, Point from sympy.physics.mechanics import dot, dynamicsymbols, inertia, msprint q1, q2, q3 = dynamicsymbols('q1, q2 q3') #omega1, omega2, omega3 = dynamicsymbols('ω1 ω2 ω3') q1d, q2d = dynamicsymbols('q1, q2', level=1) m, I11, I22, I33 = symbols('m I11 I22 I33', real=True, positive=True) # reference frames A = ReferenceFrame('A') B = A.orientnew('B', 'body', [q1, q2, q3], 'xyz') # points B*, O pB_star = Point('B*') pB_star.set_vel(A, 0) # rigidbody B I_B_Bs = inertia(B, I11, I22, I33) rbB = RigidBody('rbB', pB_star, B, m, (I_B_Bs, pB_star)) # kinetic energy K = rbB.kinetic_energy(A) # velocity of point B* is zero print('K_ω = {0}'.format(msprint(K))) print('\nSince I11, I22, I33 are the central principal moments of inertia') print('let I_min = I11, I_max = I33') I_min = I11 I_max = I33 H = rbB.angular_momentum(pB_star, A) K_min = dot(H, H) / I_max / 2 K_max = dot(H, H) / I_min / 2 print('K_ω_min = {0}'.format(msprint(K_min))) print('K_ω_max = {0}'.format(msprint(K_max))) print('\nI11/I33, I22/I33 =< 1, since I33 >= I11, I22, so K_ω_min <= K_ω') print('Similarly, I22/I11, I33/I11 >= 1, ' 'since I11 <= I22, I33, so K_ω_max >= K_ω')
StarcoderdataPython
5143272
<reponame>Sheldongg/Led3D-master import math import numpy as np def rret(data,size_x,size_y): x = data[:, 0] y = data[:, 1] z = data[:, 2] x= np.array(x) max_x = max(x) min_x = min(x) max_y = max(y) min_y = min(y) min_z = min(z) max_z = max(z) range_x = max_x - min_x range_y = max_y - min_y ret = np.zeros((size_x, size_y)) ret[:,:] = min_z len =x.shape[0] for i in range(len) : X = math.floor((x[i] - min_x) / range_x * (size_x - 1)) Y = math.floor((y[i] - min_y) / range_y * (size_y - 1)) ret[X,Y] = max(ret[X, Y], z[i]) ret[X,Y]=max(ret[X,Y],min_z) min_z = min(min_z, ret[X, Y]) range_z = max_z - min_z # ret = max(ret, min_z) ret = np.round((ret - min_z) / range_z * 255) return ret
StarcoderdataPython
11247901
<reponame>JSzymanskiJS/trading-bot<gh_stars>0 API_KEY = '<your key>' API_SECRET = '<your secret>'
StarcoderdataPython
3272281
import numpy as np import pandas as pd import neurokit as nk import matplotlib.pyplot as plt import scipy import biosppy import mne import seaborn as sns df = pd.read_csv("https://raw.githubusercontent.com/neuropsychology/NeuroKit.py/master/examples/Bio/bio_100Hz.csv") ecg=df["ECG"] rsp=df["RSP"] sampling_rate=100 df = nk.bio_process(ecg=df["ECG"], rsp=df["RSP"], sampling_rate=100) df["df"].plot() #sampling_rate=100 #df["df"].plot() #rpeaks = df["ECG"]["R_Peaks"] # #rri = df["ECG_RR_Interval"] #rri = rri.dropna() ##df.plot() # #fbands = { # "ULF": [0.0001, 0.0033], # "VLF": [0.0033, 0.04], # "LF": [0.04, 0.15], # "HF": [0.15, 0.40], # "VHF": [0.4, 0.5] # } # #power, freq = mne.time_frequency.psd_array_multitaper(rri, sfreq=100, fmin=0, fmax=0.5, adaptive=False, normalization='length') # #freq, power = biosppy.signals.tools.power_spectrum(signal=rri, sampling_rate=sampling_rate) #plt.plot(freq,power) # #tf = {} #for band in fbands: # freqs = fbands[band] # # filtered, sampling_rate, params = biosppy.signals.tools.filter_signal(signal=rri, ftype='butter', band='bandpass', order=1, frequency=freqs, sampling_rate=sampling_rate) # amplitude, phase = biosppy.signals.tools.analytic_signal(filtered) # # tf[band] = amplitude # # # #tf = pd.DataFrame.from_dict(tf) #tf["RRi"] = rri.values #nk.z_score(tf).plot() # # #import numpy as np #import pandas as pd #import mne #import scipy #import biosppy #import neurokit as nk #import matplotlib.pyplot as plt #signal = pd.read_csv("signal_100Hz.txt")["Signal"] #sampling_rate=100 # ## Set frequencies with variable step to have approximately the same amount of values in each band #fbands = { ## "ULF": [0, 0.0033], # "VLF": [0.0033, 0.04], ## "LF": [0.04, 0.15], # "HF": [0.15, 0.42] ## "VHF": np.arange(0.4, 0.51, 0.01) # } # # # #freqs, power = biosppy.signals.tools.power_spectrum(signal=signal, sampling_rate=sampling_rate, pad=2) # #plt.plot(freqs, power) #biosppy.signals.tools.filter_signal(signal=None, ftype='FIR', band='lowpass', # # Initialize empty dict # hrv = {} # # # Preprocessing # # ================== # # Extract RR intervals (RRis) # RRis = np.diff(rpeaks) # # Basic resampling to 1Hz to standardize the scale # RRis = RRis/sampling_rate # RRis = RRis.astype(float) # # # # Artifact detection - Statistical # for index, rr in enumerate(RRis): # # Remove RR intervals that differ more than 25% from the previous one # if RRis[index] < RRis[index-1]*0.75: # RRis[index] = np.nan # if RRis[index] > RRis[index-1]*1.25: # RRis[index] = np.nan # # # Artifact detection - Physiological (http://emedicine.medscape.com/article/2172196-overview) # RRis = pd.Series(RRis) # RRis[RRis < 0.6] = np.nan # RRis[RRis > 1.3] = np.nan # # # Artifacts treatment # hrv["n_Artifacts"] = pd.isnull(RRis).sum()/len(RRis) # artifacts_indices = RRis.index[RRis.isnull()] # get the artifacts indices # RRis = RRis.drop(artifacts_indices) # remove the artifacts # # # Convert to continuous RR interval (RRi) # beats_times = rpeaks[1:] # the time at which each beat occured starting from the 2nd beat # beats_times -= beats_times[0] # beats_times = np.delete(beats_times, artifacts_indices) # delete also the artifact beat moments # try: # RRi = discrete_to_continuous(RRis, beats_times, sampling_rate) # Interpolation using 3rd order spline # except TypeError: # print("NeuroKit Warning: ecg_hrv(): Sequence too short to compute HRV.") # return(hrv) # # # # Rescale to 1000Hz # RRis = RRis*1000 # RRi = RRi*1000 # hrv["RR_Intervals"] = RRis # Values of RRis # hrv["df"] = RRi.to_frame("ECG_RR_Interval") # Continuous (interpolated) signal of RRi # # # Time Domain # # ================== # hrv["RMSSD"] = np.sqrt(np.mean(np.diff(RRis) ** 2)) # hrv["meanNN"] = np.mean(RRis) # hrv["sdNN"] = np.std(RRis, ddof=1) # make it calculate N-1 # hrv["cvNN"] = hrv["sdNN"] / hrv["meanNN"] # hrv["CVSD"] = hrv["RMSSD"] / hrv["meanNN"] * 100 # hrv["medianNN"] = np.median(abs(RRis)) # hrv["madNN"] = mad(RRis, constant=1) # hrv["mcvNN"] = hrv["madNN"] / hrv["medianNN"] # nn50 = sum(abs(np.diff(RRis)) > 50) # hrv["pNN50"] = nn50 / len(RRis) * 100 # nn20 = sum(abs(np.diff(RRis)) > 20) # hrv["pNN20"] = nn20 / len(RRis) * 100 # # # Geometrical Method # # ==================== # # TODO: This part needs to be checked by an expert. Also, it would be better to have Renyi entropy (a generalization of shannon's), but I don't know how to compute it. # try: # bin_number = 32 # Initialize bin_width value # # find the appropriate number of bins so the class width is approximately 8 ms (Voss, 2015) # for bin_number_current in range(2, 50): # bin_width = np.diff(np.histogram(RRi, bins=bin_number_current, density=True)[1])[0] # if abs(8 - bin_width) < abs(8 - np.diff(np.histogram(RRi, bins=bin_number, density=True)[1])[0]): # bin_number = bin_number_current # hrv["Triang"] = len(RRis)/np.max(np.histogram(RRi, bins=bin_number, density=True)[0]) # hrv["Shannon_h"] = entropy_shannon(np.histogram(RRi, bins=bin_number, density=True)[0]) # except ValueError: # hrv["Triang"] = np.nan # hrv["Shannon_h"] = np.nan # # # # Frequency Domain # # ================= # freq_bands = { # "ULF": [0.0001, 0.0033], # "VLF": [0.0033, 0.04], # "LF": [0.04, 0.15], # "HF": [0.15, 0.40], # "VHF": [0.4, 0.5]} # # # # Frequency-Domain Power over Time # freq_powers = {} # for band in freq_bands: # freqs = freq_bands[band] # # Filter to keep only the band of interest # filtered, sampling_rate, params = biosppy.signals.tools.filter_signal(signal=RRi, ftype='butter', band='bandpass', order=1, frequency=freqs, sampling_rate=sampling_rate) # # Apply Hilbert transform # amplitude, phase = biosppy.signals.tools.analytic_signal(filtered) # # Extract Amplitude of Envolope (power) # freq_powers["ECG_HRV_" + band] = amplitude # # freq_powers = pd.DataFrame.from_dict(freq_powers) # freq_powers.index = hrv["df"].index # hrv["df"] = pd.concat([hrv["df"], freq_powers]) # # # # Compute Power Spectral Density (PSD) using multitaper method # power, freq = mne.time_frequency.psd_array_multitaper(RRi, sfreq=sampling_rate, fmin=0, fmax=0.5, adaptive=False, normalization='length') # # def power_in_band(power, freq, band): # power = np.trapz(y=power[(freq >= band[0]) & (freq < band[1])], x=freq[(freq >= band[0]) & (freq < band[1])]) # return(power) # # # Extract Power according to frequency bands # hrv["ULF"] = power_in_band(power, freq, freq_bands["ULF"]) # hrv["VLF"] = power_in_band(power, freq, freq_bands["VLF"]) # hrv["LF"] = power_in_band(power, freq, freq_bands["LF"]) # hrv["HF"] = power_in_band(power, freq, freq_bands["HF"]) # hrv["VHF"] = power_in_band(power, freq, freq_bands["VHF"]) # hrv["Total_Power"] = power_in_band(power, freq, [0, 0.5]) # # hrv["LFn"] = hrv["LF"]/(hrv["LF"]+hrv["HF"]) # hrv["HFn"] = hrv["HF"]/(hrv["LF"]+hrv["HF"]) # hrv["LF/HF"] = hrv["LF"]/hrv["HF"] # hrv["LF/P"] = hrv["LF"]/hrv["Total_Power"] # hrv["HF/P"] = hrv["HF"]/hrv["Total_Power"] # # # # TODO: THIS HAS TO BE CHECKED BY AN EXPERT - Should it be applied on the interpolated on raw RRis? # # Non-Linear Dynamics # # ====================== # if len(RRis) > 17: # hrv["DFA_1"] = nolds.dfa(RRis, range(4, 17)) # if len(RRis) > 66: # hrv["DFA_2"] = nolds.dfa(RRis, range(16, 66)) # hrv["Shannon"] = entropy_shannon(RRis) # hrv["Sample_Entropy"] = nolds.sampen(RRis, emb_dim=2) # try: # hrv["Correlation_Dimension"] = nolds.corr_dim(RRis, emb_dim=2) # except AssertionError as error: # print("NeuroKit Warning: ecg_hrv(): Correlation Dimension. Error: " + str(error)) # hrv["Correlation_Dimension"] = np.nan # hrv["Entropy_Multiscale"] = entropy_multiscale(RRis, emb_dim=2) # hrv["Entropy_SVD"] = entropy_svd(RRis, emb_dim=2) # hrv["Entropy_Spectral_VLF"] = entropy_spectral(RRis, sampling_rate, bands=np.arange(0.0033, 0.04, 0.001)) # hrv["Entropy_Spectral_LF"] = entropy_spectral(RRis, sampling_rate, bands=np.arange(0.04, 0.15, 0.001)) # hrv["Entropy_Spectral_HF"] = entropy_spectral(RRis, sampling_rate, bands=np.arange(0.15, 0.40, 0.001)) # hrv["Fisher_Info"] = fisher_info(RRis, tau=1, emb_dim=2) # try: # Otherwise travis errors for some reasons :( # hrv["Lyapunov"] = np.max(nolds.lyap_e(RRis, emb_dim=58, matrix_dim=4)) # except Exception: # hrv["Lyapunov"] = np.nan # hrv["FD_Petrosian"] = fd_petrosian(RRis) # hrv["FD_Higushi"] = fd_higushi(RRis, k_max=16) # # # TO DO: # # Include many others (see Voss 2015) # # return(hrv) # # #tf = {} #for band in fbands: # freqs = fbands[band] # amplitude, phase = biosppy.signals.tools.analytic_signal(signal) ## filtered = mne.filter.filter_data(np.array([[signal]]), sfreq=sampling_rate, l_freq=freqs[0], h_freq=freqs[1], method="fir", verbose="CRITICAL")[0][0] ## analytic = scipy.signal.hilbert(filtered) ## amplitude_envelope = np.abs(analytic) ## instantaneous_phase = np.unwrap(np.angle(analytic)) ## instantaneous_frequency = (np.diff(instantaneous_phase) / (2.0*np.pi) * sampling_rate) # # ## tf[band + "_Signal"] = filtered # tf[band + "_Amplitude"] = amplitude # tf[band + "_Phase"] = phase # # ## freqs = tf[freqs_range] ## signal = mne.time_frequency.tfr_array_multitaper(np.array([[signal]]), sampling_rate, freqs, n_cycles=freqs/2, zero_mean=False, time_bandwidth=7)[0][0] ## signal = np.mean(signal, 0) # Average ## tf[freqs_range] = signal # Replace data in dict # #tf = pd.DataFrame.from_dict(tf) #tf["Raw_Signal"] = signal #nk.z_score(tf).plot() # # ## ## # # # # # # ##df = pd.read_csv('normal_ECG.csv') ##df = df.loc[10000:100000].reset_index(drop=True) # Select 10s of signal #sampling_rate=100 #ecg=df["ECG"] # # #df = nk.ecg_process(ecg=ecg, sampling_rate=100)["df"] #df["ECG_RR_Interval"].to_csv("signal_100Hz.txt", index=False) # #rri = df["ECG_RR_Interval"] #rri = rri.dropna() # #signal = pd.read_csv("signal_100Hz.txt") #sampling_rate=100 ## Set frequencies with variable step to have approximately the same amount of values in each band #tf = {"ULF": np.arange(0.0001, 0.0033, 0.001), # "VLF": np.arange(0.0033, 0.045, 0.005), # "LF": np.arange(0.04, 0.16, 0.01), # "HF": np.arange(0.15, 0.42, 0.02), # "VHF": np.arange(0.4, 0.51, 0.01)} # # #for freqs_range in tf: # freqs = tf[freqs_range]*1000 # signal = mne.time_frequency.tfr_array_multitaper(np.array([[signal]]), sampling_rate, freqs, n_cycles=freqs/2, zero_mean=False, time_bandwidth=7)[0][0] # signal = np.mean(signal, 0) # tf[freqs_range] = signal # #tf = pd.DataFrame.from_dict(tf) #tf["RRI"] = signal #nk.z_score(tf).plot() # #tf_HF = mne.time_frequency.tfr_array_morlet(np.array([[rri]]), 100, np.arange(0.15, 0.42, 0.2 ), n_cycles=np.arange(0.15, 0.42, 0.2)/2)[0][0] #tf_LF = mne.time_frequency.tfr_array_morlet(np.array([[rri]]), 100, np.arange(0.04, 0.16, 0.1), n_cycles=np.arange(0.04, 0.16, 0.1)/2)[0][0] #tf_LF = np.mean(tf_LF, 0) #tf_HF = np.mean(tf_HF, 0) ###tf_HF20 = np.mean(tf_HF20, 0) ### ### #pd.Series(tf_LF).plot() #pd.Series(tf_HF).plot() #pd.Series(tf_HF20).plot() #pd.Series(rri).plot() #hrv["VLF"] = power_in_band(power, freq, 0.0033, 0.04) #hrv["LF"] = power_in_band(power, freq, 0.04, 0.15) #hrv["HF"] = power_in_band(power, freq, 0.15, 0.4) #hrv["VHF"] = power_in_band(power, freq, 0.4, 0.5) #tfr = pd.DataFrame(tfr) #tfr.plot() #len(pd.Series(tfr[])).plot() # #sns.heatmap(tfr) #rsp=dict(biosppy.resp.resp(df["RSP"], sampling_rate, show=False))["filtered"] #rpeaks = dict(biosppy.ecg.ecg(ecg, sampling_rate, show=False))["rpeaks"] # # #bio = nk.bio_process(ecg=df["ECG"], rsp=df["RSP"], sampling_rate=1000) ##rsa_interpolated = nk.discrete_to_continuous(values=np.array(bio["ECG"]["RSA"]["RSA_P2T_Values"]), value_times=bio["ECG"]["RSA"]["value_times"], sampling_rate=sampling_rate) ##rsp = pd.Series(dict(biosppy.resp.resp(rsp, 100, show=False))["filtered"]) #bio["df"].plot() # ##nk.plot_events_in_signal(rsp, rsp_onsets) ##nk.z_score(df).plot() #
StarcoderdataPython
1783253
<gh_stars>1-10 # type: ignore ### Standard imports. ### import os import curses import pickle ### Local imports. ### from src_scripts.utilities import (reader, unpickler) if __name__ == '__main__': import argparse import textwrap ##################################################################################### parser = argparse.ArgumentParser( formatter_class = argparse.RawDescriptionHelpFormatter, usage = argparse.SUPPRESS, description = textwrap.dedent(''' ###################################### GHRSS Survey FFA Pipeline: The Monitor ###################################### Just like the cosmic being in the DC universe it is named after, the Monitor updates the user about both per-file and per-date progress of the pipeline. The only input is the particular date for which the user wishes to get an update or summary. To be run from the "GHRSS_FFA_Pipeline" directory only. usage: python the_monitor.py [date] ''')) parser.add_argument('date', type = str, help = textwrap.dedent( """ The date for which updates are required. """)) try: args = parser.parse_args() except: parser.print_help() parser.exit(1) date = args.date ##################################################################################### def build_record(config, summary): """ Build the summary of all processing done till now by the pipeline. """ record = [] # Record the configuration. descp_cfg = ('Current Pipeline Configuration\n' '------------------------------\n' 'Node(s): {nodes}\n' 'Machine configuration: {mach_config}\n' 'Dates to be analysed: {dates}\n' 'Number of cores per node: {cores}\n\n' 'DM range: {DM_lowest} to {DM_highest} pc cm^-3\n' 'Number of DM trials: {numDMs}\n' 'Period ranges searched by the FFA:\n' ' (0.2 to 0.5 s), (0.5 to 2s) and (2 to 100s)\n\n' '').format(nodes=config._config['pipeline_variables']['nodes'], mach_config=config.mach_config, dates=config._config['pipeline_variables']['dates'][config.backend], cores=config.cores, DM_lowest=config.ddplan['DM_lowest'], DM_highest=config.ddplan['DM_highest'], numDMs=config.ddplan['numDMs']) record.append(descp_cfg) # Then the summary. header = ['Filename', 'DM trials', 'Candidates', 'Folding Status', 'Archiving Status'] fmt_hdr = ('{:<50} {:<11} {:<11} {:<15} {}\n\n').format(*header) # Record table header. record.append(fmt_hdr) for meta in summary: # Check if folding has been carried out properly. if meta['num_fold_prfs']: if (meta['num_candidates'] == meta['num_fold_prfs']): fold_flag = 'Done.' else: fold_flag = 'Incomplete.' else: fold_flag = 'Not Done.' # Check if archiving has been carried out properly. if meta['num_arv_prfs']: if (meta['num_fold_prfs'] == meta['num_arv_prfs']): archive_flag = 'Done.' else: archive_flag = 'Incomplete.' else: archive_flag = 'Not Done.' # Construct each row of the table. row = ('{fname:<53}' '{proc_dm_trials:<13}' '{num_candidates:<13}' '{fd_flag:<16}' '{arv_flag}\n').format(fname=meta['fname'], proc_dm_trials=str(meta['proc_dm_trials']), num_candidates=str(meta['num_candidates']), fd_flag=fold_flag, arv_flag=archive_flag) # Record each row. record.append(row) return record def cli_updater(stdscr, date): """ Create a CLI where all summaries and updates are displayed. The CLI was built using the "curses" module in Python. """ if curses.has_colors(): curses.start_color() curses.use_default_colors() stdscr.keypad(1) curses.curs_set(0) # Initialise the color combinations we're going to use. curses.init_pair(1, curses.COLOR_RED, -1) curses.init_pair(2, curses.COLOR_GREEN, -1) # Begin the program. stdscr.addstr('GHRSS FFA Pipeline', curses.A_REVERSE) stdscr.chgat(-1, curses.A_REVERSE) stdscr.addstr(curses.LINES-1, 0, ('Press "U" to request a new update, ' 'Press "S" to request a summary, ' '"Q" to quit.')) # Change the U and the S to green and the Q to red. stdscr.chgat(curses.LINES-1, 7, 1, curses.A_BOLD | curses.color_pair(2)) stdscr.chgat(curses.LINES-1, 42, 1, curses.A_BOLD | curses.color_pair(2)) stdscr.chgat(curses.LINES-1, 68, 1, curses.A_BOLD | curses.color_pair(1)) # Set up the window to hold the updates. update_window = curses.newwin(curses.LINES-2, curses.COLS, 1, 0) # Create a sub-window so as to cleanly display the update without worrying # about over-writing the update window's borders. update_text_window = update_window.subwin(curses.LINES-6, curses.COLS-4, 3, 2) update_text_window.addstr('Press "U" to get an update. Press "S" to get a summary.') # Draw a border around the main update window. update_window.box() # Update the internal window data structures. stdscr.noutrefresh() update_window.noutrefresh() # Redraw the screen. curses.doupdate() # Start the event loop. while True: c = update_window.getch() ##################################################################################### # If user needs an update... if c == ord('u') or c == ord('U'): update_text_window.clear() update_text_window.addstr('Getting update...') update_text_window.refresh() update_text_window.clear() # Get updates from the hidden process log file. updates = reader('./{}.PIDS.log'.format(date)) # Print updates to screen. try: for line in updates: update_text_window.addstr(line) update_text_window.refresh() # If there are no updates to print, inform the user that there is a problem. except StopIteration: update_text_window.addstr('Houston, we may have a problem.') update_text_window.refresh() ##################################################################################### # If user needs a summary... elif c == ord('s') or c == ord('S'): update_text_window.clear() update_text_window.addstr('Getting summary...') update_text_window.refresh() update_text_window.clear() # Restore information about the state of the pipeline. # Read first line to get configuration. summ_log = unpickler('./{}.history.log'.format(date)) try: # Get the configuration. config = next(summ_log) # Get the summary. summary = summ_log # Build the record. record = build_record(config, summary) # Print the summary on the screen. for line in record: update_text_window.addstr(line) update_text_window.refresh() # Path where summary must be saved. _rec_ = os.path.join(config.state_path, date, '{}.rec'.format(date)) # Save the recorded summary. try: with open(_rec_, 'w+') as _save_: for line in record: _save_.write(line) except IOError: update_text_window.addstr('\n') update_text_window.addstr('Cannot write summary to file.') # Inform the user that the summary has been saved # and where it has been saved. update_text_window.addstr('\n') update_text_window.addstr('Summary saved at {}'.format(_rec_)) # Refresh window. update_text_window.refresh() except StopIteration: # Hold your horses, user! update_text_window.addstr('No files processed yet. Work ongoing.') update_text_window.refresh() ##################################################################################### elif c == ord('q') or c == ord('Q'): # Quit and exit event loop. break # Refresh the windows from the bottom up. stdscr.noutrefresh() update_window.noutrefresh() update_text_window.noutrefresh() curses.doupdate() ######################################################################### # Wrap the "cli_updater" in the curses "wrapper" function so that all # initialisations are handled appropriately and the terminal is restored # to its former glory without a hitch, even if there is an exception. curses.wrapper(cli_updater, date) #########################################################################
StarcoderdataPython
4852345
<reponame>the-gamecoders/TheGameHub<filename>src/signup.py # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'signup.ui' # # Created by: PyQt5 UI code generator 5.15.1 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QMessageBox import sqlite3 conn=sqlite3.connect('TheGameHub.db') curs=conn.cursor() class Ui_Dialog2(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(295, 275) Dialog.setStyleSheet("background-color: rgb(225, 255, 208);") self.formLayout = QtWidgets.QFormLayout(Dialog) self.formLayout.setContentsMargins(30, 30, 30, -1) self.formLayout.setHorizontalSpacing(20) self.formLayout.setVerticalSpacing(36) self.formLayout.setObjectName("formLayout") self.label_3 = QtWidgets.QLabel(Dialog) font = QtGui.QFont() font.setFamily("Comic Sans MS") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.label_3.setFont(font) self.label_3.setAlignment(QtCore.Qt.AlignCenter) self.label_3.setObjectName("label_3") self.formLayout.setWidget(0, QtWidgets.QFormLayout.SpanningRole, self.label_3) self.label = QtWidgets.QLabel(Dialog) font = QtGui.QFont() font.setPointSize(9) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName("label") self.formLayout.setWidget(1, QtWidgets.QFormLayout.LabelRole, self.label) self.uname_line = QtWidgets.QLineEdit(Dialog) self.uname_line.setStyleSheet("background-color: rgb(255, 255, 255);") self.uname_line.setText("") self.uname_line.setObjectName("uname_line") self.formLayout.setWidget(1, QtWidgets.QFormLayout.FieldRole, self.uname_line) self.label_2 = QtWidgets.QLabel(Dialog) font = QtGui.QFont() font.setPointSize(9) font.setBold(True) font.setWeight(75) self.label_2.setFont(font) self.label_2.setObjectName("label_2") self.formLayout.setWidget(2, QtWidgets.QFormLayout.LabelRole, self.label_2) self.password_line = QtWidgets.QLineEdit(Dialog) self.password_line.setStyleSheet("background-color: rgb(255, 255, 255);") self.password_line.setText("") self.password_line.setEchoMode(QtWidgets.QLineEdit.Password) self.password_line.setObjectName("password_line") self.formLayout.setWidget(2, QtWidgets.QFormLayout.FieldRole, self.password_line) self.signup = QtWidgets.QPushButton(Dialog) font = QtGui.QFont() font.setPointSize(9) self.signup.setFont(font) self.signup.setStyleSheet("background-color: rgb(197, 198, 255);") self.signup.setObjectName("signup") self.formLayout.setWidget(3, QtWidgets.QFormLayout.SpanningRole, self.signup) self.signup.clicked.connect(self.insertData) self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Sign Up")) self.label_3.setText(_translate("Dialog", "CREATE ACCOUNT")) self.label.setText(_translate("Dialog", "username:")) self.label_2.setText(_translate("Dialog", "password:")) self.signup.setText(_translate("Dialog", "sign up")) def insertData(self): username = self.uname_line.text() password = self.password_line.text() curs.execute('SELECT Username from Users;') users = curs.fetchall() user_list = [] for i in users: for Name in i: user_list.append(Name) if username in user_list or len(username) == 0 or len(password) == 0: if username in user_list: msg = QMessageBox() msg.setWindowTitle("Warning") msg.setText("Username already taken!") msg.setIcon(QMessageBox.Warning) x=msg.exec() self.uname_line.setText("") self.password_line.setText("") if len(username) == 0 and len(password) == 0: msg = QMessageBox() msg.setWindowTitle("Warning") msg.setText("please enter a username and password.") msg.setIcon(QMessageBox.Warning) x=msg.exec() elif len(username) == 0: msg = QMessageBox() msg.setWindowTitle("Warning") msg.setText("please enter a username.") msg.setIcon(QMessageBox.Warning) x=msg.exec() elif len(password) == 0: msg = QMessageBox() msg.setWindowTitle("Warning") msg.setText("please enter password.") msg.setIcon(QMessageBox.Warning) x=msg.exec() else: curs.execute("INSERT INTO Users VALUES(?,?);",(username,password)) conn.commit() msg1 = QMessageBox() msg1.setWindowTitle("Sign Up") msg1.setText('''Registered successfully. Now you can Login!''') msg1.setIcon(QMessageBox.Information) x=msg1.exec() if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Dialog = QtWidgets.QDialog() ui = Ui_Dialog2() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
StarcoderdataPython
8131122
<reponame>grahamguthrie99/ai-dfs-dff-scraper import connexion import six from datetime import date, datetime import pytz from swagger_server.models.player_list import PlayerList # noqa: E501 from swagger_server.models.dff_scraper import DFFScraper from swagger_server import util def get_date(): # noqa: E501 """Get contest date Get contest date # noqa: E501 :rtype: str """ tz_NY = pytz.timezone('America/New_York') datetime_NY = datetime.now(tz_NY) return datetime_NY.strftime('%Y-%m-%d') def get_player_list(provider, platform, sport, _date): # noqa: E501 """Get list of daily fantasy players for a specified sport, platform and slate Get list of valid players # noqa: E501 :param provider: Daily fatansy sports data provider :type provider: str :param platform: Daily fatansy sports contest website :type platform: str :param sport: Supported sport :type sport: str :param _date: Date :type _date: str :rtype: PlayerList """ return DFFScraper(sport, platform, _date).scrape() def get_supported_platforms(): # noqa: E501 """Get list of supported contest platforms Get list of supported daily fantasy contest platforms # noqa: E501 :rtype: List[str] """ return ["Draftkings", "Fanduel"] def get_supported_providers(): # noqa: E501 """Get list of supported data providers Get list of supported daily fantasy data providers # noqa: E501 :rtype: List[str] """ return ["Daily Fantasy Fuel"] def get_supported_sports(): # noqa: E501 """Get list of supported sports Get list of supported sport codes # noqa: E501 :rtype: List[str] """ return ["MLB", "NBA"]
StarcoderdataPython
5035091
<filename>malaria24/ona/tests/base.py import pkg_resources import random from datetime import datetime import pytz import responses from django.test import TestCase, override_settings from django.utils import timezone from malaria24.ona.models import ( ReportedCase, Actor, EHP, CASE_INVESTIGATOR, MIS, Facility) @override_settings(CELERY_ALWAYS_EAGER=True) class MalariaTestCase(TestCase): def setUp(self): responses.add( responses.PUT, ('http://go.vumi.org/api/v1/go/http_api_nostream/' 'VUMI_GO_CONVERSATION_KEY/messages.json'), status=200, content_type='application/json', body=pkg_resources.resource_string( 'malaria24', 'ona/fixtures/responses/send_sms.json')) def mk_random_date(self): random_year = random.choice(range(1950, timezone.now().year)) random_month = random.choice(range(1, 13)) random_day = random.choice(range(1, 29)) return datetime(random_year, random_month, random_day).strftime("%y%m%d") def mk_actor(self, **kwargs): defaults = { 'name': 'name', 'email_address': '<EMAIL>', 'phone_number': 'phone_number', 'facility_code': 'facility_code', } defaults.update(kwargs) return Actor.objects.create(**defaults) def mk_ehp(self, **kwargs): return self.mk_actor(role=EHP, **kwargs) def mk_ci(self, **kwargs): return self.mk_actor(role=CASE_INVESTIGATOR, **kwargs) def mk_mis(self, **kwargs): return self.mk_actor(role=MIS, **kwargs) def mk_facility(self, **kwargs): return Facility.objects.create(**kwargs) def mk_create_random_week_range(self): random_year = timezone.now().year return (datetime(random_year, 2, random.choice(range(3, 8)), 11, 30, 30, 0, pytz.timezone('US/Pacific')) .strftime('%Y-%m-%d %H:%M:%S.%f%z')) def mk_create_date(self): random_year = timezone.now().year e_month = random.choice(range(1, 13)) e_day = random.choice(range(1, 29)) e_hour = random.choice(range(0, 24)) e_minute = random.choice(range(0, 60)) e_second = random.choice(range(0, 60)) return (datetime(random_year, e_month, e_day, e_hour, e_minute, e_second, 0, pytz.timezone('US/Pacific')) .strftime('%Y-%m-%d %H:%M:%S.%f%z')) '''in order to view differents dates for testing, change create_date_time to self.mk_create_random_week_range()''' def mk_case(self, **kwargs): defaults = { 'first_name': 'first_name', 'last_name': 'last_name', 'locality': 'locality', 'date_of_birth': self.mk_random_date(), 'create_date_time': timezone.now(), 'sa_id_number': 'sa_id_number', 'msisdn': 'msisdn', 'id_type': 'id_type', 'abroad': 'abroad', 'reported_by': 'reported_by', 'gender': 'gender', 'facility_code': 'facility_code', 'landmark': 'landmark', 'landmark_description': 'landmark_description', '_id': '_id', '_uuid': '_uuid', '_xform_id_string': '_xform_id_string', 'digest': None, } defaults.update(kwargs) return ReportedCase.objects.create(**defaults)
StarcoderdataPython
3590154
"""Tests for functions generating random linear systems.""" import numpy as np import pytest import scipy.stats from probnum import randvars from probnum.problems.zoo.linalg import random_linear_system, random_spd_matrix def test_custom_random_matrix(rng: np.random.Generator): random_unitary_matrix = lambda rng, dim: scipy.stats.unitary_group.rvs( dim=dim, random_state=rng ) _ = random_linear_system(rng, random_unitary_matrix, dim=5) def test_custom_solution_randvar(rng: np.random.Generator): n = 5 x = randvars.Normal(mean=np.ones(n), cov=np.eye(n)) _ = random_linear_system(rng=rng, matrix=random_spd_matrix, solution_rv=x, dim=n) def test_incompatible_matrix_and_solution(rng: np.random.Generator): with pytest.raises(ValueError): _ = random_linear_system( rng=rng, matrix=random_spd_matrix, solution_rv=randvars.Normal(np.ones(2), np.eye(2)), dim=5, )
StarcoderdataPython
107011
from pickle import load from numpy import array from numpy import argmax from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.models import load_model from nltk.translate.bleu_score import corpus_bleu import sys import pika import os import urllib.parse # Parse CLODUAMQP_URL (fallback to localhost) url_str = os.environ.get('CLOUDAMQP_URL', 'amqp://guest:guest@localhost//') url = urllib.parse.urlparse(url_str) params = pika.ConnectionParameters(host=url.hostname, virtual_host=url.path[1:], credentials=pika.PlainCredentials(url.username, url.password)) connection = pika.BlockingConnection(params) # Connect to CloudAMQP #connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) #connection = pika.BlockingConnection(pika.ConnectionParameters('127.0.0.1')) channel = connection.channel() channel.queue_declare(queue='rpc_queue') # load a clean dataset def load_clean_sentences(filename): return load(open(filename, 'rb')) # fit a tokenizer def create_tokenizer(lines): tokenizer = Tokenizer(char_level=False) tokenizer.fit_on_texts(lines) return tokenizer # max sentence length def max_length(lines): return max(len(line.split()) for line in lines) # map an integer to a word def word_for_id(integer, tokenizer): for word, index in tokenizer.word_index.items(): if index == integer: return word return None # generate target given source sequence def predict_sequence(model, tokenizer, source): prediction = model.predict(source, verbose=0)[0] integers = [argmax(vector) for vector in prediction] target = list() for i in integers: word = word_for_id(i, tokenizer) if word is None: break target.append(word) return ' '.join(target) # translate def translate(model, tokenizer, sources): predicted = list() for i, source in enumerate(sources): # translate encoded source text source = source.reshape((1, source.shape[0])) translation = predict_sequence(model, all_tokenizer, source) return{'ANSWER':translation} #print('ANSWER: %s' % (translation)) predicted.append(translation.split()) # load datasets dataset = load_clean_sentences('both.pkl') dataset1=dataset.reshape(-1,1) # prepare tokenizer all_tokenizer = create_tokenizer(dataset1[:,0]) all_vocab_size = len(all_tokenizer.word_index) + 1 all_length = max_length(dataset1[:, 0]) # load model model = load_model('model1.h5') # Setting up the chat #question = str(sys.argv[1]) #print('arg: %s' % (q)) #question = question.strip().split('\n') #we tokenize #X = all_tokenizer.texts_to_sequences(question) #X = pad_sequences(X, maxlen=all_length, padding='post') # find reply and print it out #translate(model, all_tokenizer, X) def on_request(ch, method, props, body): question = body.decode("utf-8") print(" [.] question(%s)" % question) question = (question.strip().split('\n')) X = all_tokenizer.texts_to_sequences(question) X = pad_sequences(X, maxlen=all_length, padding='post') #response = fib(n) response = translate(model, all_tokenizer, X) ch.basic_publish(exchange='', routing_key=props.reply_to, properties=pika.BasicProperties(correlation_id = \ props.correlation_id), body=str(response)) ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(on_request, queue='rpc_queue') print(" [x] Awaiting RPC requests") channel.start_consuming()
StarcoderdataPython
216689
#! /usr/bin/python HOME_PATH = './' CACHE_PATH = '/var/cache/obmc/' FLASH_DOWNLOAD_PATH = "/tmp" GPIO_BASE = 320 SYSTEM_NAME = "Garrison" ## System states ## state can change to next state in 2 ways: ## - a process emits a GotoSystemState signal with state name to goto ## - objects specified in EXIT_STATE_DEPEND have started SYSTEM_STATES = [ 'BASE_APPS', 'BMC_STARTING', 'BMC_READY', 'HOST_POWERING_ON', 'HOST_POWERED_ON', 'HOST_BOOTING', 'HOST_BOOTED', 'HOST_POWERED_OFF', ] EXIT_STATE_DEPEND = { 'BASE_APPS' : { '/org/openbmc/sensors': 0, }, 'BMC_STARTING' : { '/org/openbmc/control/chassis0': 0, '/org/openbmc/control/power0' : 0, '/org/openbmc/control/host0' : 0, '/org/openbmc/control/flash/bios' : 0, }, } ## method will be called when state is entered ENTER_STATE_CALLBACK = { 'HOST_POWERED_ON' : { 'boot' : { 'bus_name' : 'org.openbmc.control.Host', 'obj_name' : '/org/openbmc/control/host0', 'interface_name' : 'org.openbmc.control.Host', }, }, 'HOST_POWERED_OFF' : { 'setOff' : { 'bus_name' : 'org.openbmc.control.led', 'obj_name' : '/org/openbmc/control/led/identify', 'interface_name' : 'org.openbmc.Led', } }, 'BMC_READY' : { 'setOn' : { 'bus_name' : 'org.openbmc.control.led', 'obj_name' : '/org/openbmc/control/led/beep', 'interface_name' : 'org.openbmc.Led', }, 'init' : { 'bus_name' : 'org.openbmc.control.Flash', 'obj_name' : '/org/openbmc/control/flash/bios', 'interface_name' : 'org.openbmc.Flash', } } } APPS = { 'startup_hacks' : { 'system_state' : 'BASE_APPS', 'start_process' : True, 'monitor_process' : False, 'process_name' : 'startup_hacks.sh', }, 'inventory' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'inventory_items.py', 'args' : [ SYSTEM_NAME ] }, 'hwmon' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'hwmon.py', 'args' : [ SYSTEM_NAME ] }, 'sensor_manager' : { 'system_state' : 'BASE_APPS', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'sensor_manager2.py', 'args' : [ SYSTEM_NAME ] }, 'host_watchdog' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'host_watchdog.exe', }, 'power_control' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'power_control.exe', 'args' : [ '3000', '10' ] }, 'power_button' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'button_power.exe', }, 'reset_button' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'button_reset.exe', }, 'led_control' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'led_controller.exe', }, 'flash_control' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'flash_bios.exe', }, 'bmc_flash_control' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'bmc_update.py', }, 'download_manager' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'download_manager.py', 'args' : [ SYSTEM_NAME ] }, 'host_control' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'control_host.exe', }, 'chassis_control' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'chassis_control.py', }, 'restore' : { 'system_state' : 'BMC_READY', 'start_process' : True, 'monitor_process' : False, 'process_name' : 'discover_system_state.py', }, 'bmc_control' : { 'system_state' : 'BMC_STARTING', 'start_process' : True, 'monitor_process' : True, 'process_name' : 'control_bmc.exe', }, } CACHED_INTERFACES = { "org.openbmc.InventoryItem" : True, "org.openbmc.control.Chassis" : True, } INVENTORY_ROOT = '/org/openbmc/inventory' FRU_INSTANCES = { '<inventory_root>/system' : { 'fru_type' : 'SYSTEM','is_fru' : True, 'present' : "True" }, '<inventory_root>/system/bios' : { 'fru_type' : 'SYSTEM','is_fru' : True, 'present' : "True" }, '<inventory_root>/system/misc' : { 'fru_type' : 'SYSTEM','is_fru' : False, }, '<inventory_root>/system/chassis' : { 'fru_type' : 'SYSTEM','is_fru' : True, 'present' : "True" }, '<inventory_root>/system/chassis/motherboard' : { 'fru_type' : 'MAIN_PLANAR','is_fru' : True, }, '<inventory_root>/system/systemevent' : { 'fru_type' : 'SYSTEM_EVENT', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/refclock' : { 'fru_type' : 'MAIN_PLANAR', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/pcieclock': { 'fru_type' : 'MAIN_PLANAR', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/todclock' : { 'fru_type' : 'MAIN_PLANAR', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/apss' : { 'fru_type' : 'MAIN_PLANAR', 'is_fru' : False, }, '<inventory_root>/system/chassis/fan0' : { 'fru_type' : 'FAN','is_fru' : True, }, '<inventory_root>/system/chassis/fan1' : { 'fru_type' : 'FAN','is_fru' : True, }, '<inventory_root>/system/chassis/fan2' : { 'fru_type' : 'FAN','is_fru' : True, }, '<inventory_root>/system/chassis/fan3' : { 'fru_type' : 'FAN','is_fru' : True, }, '<inventory_root>/system/chassis/motherboard/bmc' : { 'fru_type' : 'BMC','is_fru' : False, 'manufacturer' : 'ASPEED' }, '<inventory_root>/system/chassis/motherboard/cpu0' : { 'fru_type' : 'CPU', 'is_fru' : True, }, '<inventory_root>/system/chassis/motherboard/cpu1' : { 'fru_type' : 'CPU', 'is_fru' : True, }, '<inventory_root>/system/chassis/motherboard/cpu0/core0' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core1' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core2' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core3' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core4' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core5' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core6' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core7' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core8' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core9' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core10': { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu0/core11': { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core0' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core1' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core2' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core3' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core4' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core5' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core6' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core7' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core8' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core9' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core10' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/cpu1/core11' : { 'fru_type' : 'CORE', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf0' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf1' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf2' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf3' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf4' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf5' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf6' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/membuf7' : { 'fru_type' : 'MEMORY_BUFFER', 'is_fru' : False, }, '<inventory_root>/system/chassis/motherboard/dimm0' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm1' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm2' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm3' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm4' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm5' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm6' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm7' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm8' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm9' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm10' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm11' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm12' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm13' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm14' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm15' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm16' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm17' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm18' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm19' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm20' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm21' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm22' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm23' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm24' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm25' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm26' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm27' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm28' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm29' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm30' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, '<inventory_root>/system/chassis/motherboard/dimm31' : { 'fru_type' : 'DIMM', 'is_fru' : True,}, } ID_LOOKUP = { 'FRU' : { 0x01 : '<inventory_root>/system/chassis/motherboard/cpu0', 0x02 : '<inventory_root>/system/chassis/motherboard/cpu1', 0x03 : '<inventory_root>/system/chassis/motherboard', 0x04 : '<inventory_root>/system/chassis/motherboard/membuf0', 0x05 : '<inventory_root>/system/chassis/motherboard/membuf1', 0x06 : '<inventory_root>/system/chassis/motherboard/membuf2', 0x07 : '<inventory_root>/system/chassis/motherboard/membuf3', 0x08 : '<inventory_root>/system/chassis/motherboard/membuf4', 0x09 : '<inventory_root>/system/chassis/motherboard/membuf5', 0x0c : '<inventory_root>/system/chassis/motherboard/dimm0', 0x0d : '<inventory_root>/system/chassis/motherboard/dimm1', 0x0e : '<inventory_root>/system/chassis/motherboard/dimm2', 0x0f : '<inventory_root>/system/chassis/motherboard/dimm3', 0x10 : '<inventory_root>/system/chassis/motherboard/dimm4', 0x11 : '<inventory_root>/system/chassis/motherboard/dimm5', 0x12 : '<inventory_root>/system/chassis/motherboard/dimm6', 0x13 : '<inventory_root>/system/chassis/motherboard/dimm7', 0x14 : '<inventory_root>/system/chassis/motherboard/dimm8', 0x15 : '<inventory_root>/system/chassis/motherboard/dimm9', 0x16 : '<inventory_root>/system/chassis/motherboard/dimm10', 0x17 : '<inventory_root>/system/chassis/motherboard/dimm11', 0x18 : '<inventory_root>/system/chassis/motherboard/dimm12', 0x19 : '<inventory_root>/system/chassis/motherboard/dimm13', 0x1a : '<inventory_root>/system/chassis/motherboard/dimm14', 0x1b : '<inventory_root>/system/chassis/motherboard/dimm15', 0x1c : '<inventory_root>/system/chassis/motherboard/dimm16', 0x1d : '<inventory_root>/system/chassis/motherboard/dimm17', 0x1e : '<inventory_root>/system/chassis/motherboard/dimm18', 0x1f : '<inventory_root>/system/chassis/motherboard/dimm19', 0x20 : '<inventory_root>/system/chassis/motherboard/dimm20', 0x21 : '<inventory_root>/system/chassis/motherboard/dimm21', 0x22 : '<inventory_root>/system/chassis/motherboard/dimm22', 0x23 : '<inventory_root>/system/chassis/motherboard/dimm23', 0x24 : '<inventory_root>/system/chassis/motherboard/dimm24', 0x25 : '<inventory_root>/system/chassis/motherboard/dimm25', 0x26 : '<inventory_root>/system/chassis/motherboard/dimm26', 0x27 : '<inventory_root>/system/chassis/motherboard/dimm27', 0x28 : '<inventory_root>/system/chassis/motherboard/dimm28', 0x29 : '<inventory_root>/system/chassis/motherboard/dimm29', 0x2a : '<inventory_root>/system/chassis/motherboard/dimm30', 0x2b : '<inventory_root>/system/chassis/motherboard/dimm31', }, 'FRU_STR' : { 'PRODUCT_0' : '<inventory_root>/system/bios', 'BOARD_1' : '<inventory_root>/system/chassis/motherboard/cpu0', 'BOARD_2' : '<inventory_root>/system/chassis/motherboard/cpu1', 'CHASSIS_3' : '<inventory_root>/system/chassis/motherboard', 'BOARD_3' : '<inventory_root>/system/misc', 'BOARD_4' : '<inventory_root>/system/chassis/motherboard/membuf0', 'BOARD_5' : '<inventory_root>/system/chassis/motherboard/membuf1', 'BOARD_6' : '<inventory_root>/system/chassis/motherboard/membuf2', 'BOARD_7' : '<inventory_root>/system/chassis/motherboard/membuf3', 'BOARD_8' : '<inventory_root>/system/chassis/motherboard/membuf4', 'BOARD_9' : '<inventory_root>/system/chassis/motherboard/membuf5', 'BOARD_10' : '<inventory_root>/system/chassis/motherboard/membuf6', 'BOARD_11' : '<inventory_root>/system/chassis/motherboard/membuf7', 'PRODUCT_12' : '<inventory_root>/system/chassis/motherboard/dimm0', 'PRODUCT_13' : '<inventory_root>/system/chassis/motherboard/dimm1', 'PRODUCT_14' : '<inventory_root>/system/chassis/motherboard/dimm2', 'PRODUCT_15' : '<inventory_root>/system/chassis/motherboard/dimm3', 'PRODUCT_16' : '<inventory_root>/system/chassis/motherboard/dimm4', 'PRODUCT_17' : '<inventory_root>/system/chassis/motherboard/dimm5', 'PRODUCT_18' : '<inventory_root>/system/chassis/motherboard/dimm6', 'PRODUCT_19' : '<inventory_root>/system/chassis/motherboard/dimm7', 'PRODUCT_20' : '<inventory_root>/system/chassis/motherboard/dimm8', 'PRODUCT_21' : '<inventory_root>/system/chassis/motherboard/dimm9', 'PRODUCT_22' : '<inventory_root>/system/chassis/motherboard/dimm10', 'PRODUCT_23' : '<inventory_root>/system/chassis/motherboard/dimm11', 'PRODUCT_24' : '<inventory_root>/system/chassis/motherboard/dimm12', 'PRODUCT_25' : '<inventory_root>/system/chassis/motherboard/dimm13', 'PRODUCT_26' : '<inventory_root>/system/chassis/motherboard/dimm14', 'PRODUCT_27' : '<inventory_root>/system/chassis/motherboard/dimm15', 'PRODUCT_28' : '<inventory_root>/system/chassis/motherboard/dimm16', 'PRODUCT_29' : '<inventory_root>/system/chassis/motherboard/dimm17', 'PRODUCT_30' : '<inventory_root>/system/chassis/motherboard/dimm18', 'PRODUCT_31' : '<inventory_root>/system/chassis/motherboard/dimm19', 'PRODUCT_32' : '<inventory_root>/system/chassis/motherboard/dimm20', 'PRODUCT_33' : '<inventory_root>/system/chassis/motherboard/dimm21', 'PRODUCT_34' : '<inventory_root>/system/chassis/motherboard/dimm22', 'PRODUCT_35' : '<inventory_root>/system/chassis/motherboard/dimm23', 'PRODUCT_36' : '<inventory_root>/system/chassis/motherboard/dimm24', 'PRODUCT_37' : '<inventory_root>/system/chassis/motherboard/dimm25', 'PRODUCT_38' : '<inventory_root>/system/chassis/motherboard/dimm26', 'PRODUCT_39' : '<inventory_root>/system/chassis/motherboard/dimm27', 'PRODUCT_40' : '<inventory_root>/system/chassis/motherboard/dimm28', 'PRODUCT_41' : '<inventory_root>/system/chassis/motherboard/dimm29', 'PRODUCT_42' : '<inventory_root>/system/chassis/motherboard/dimm30', 'PRODUCT_43' : '<inventory_root>/system/chassis/motherboard/dimm31', 'PRODUCT_47' : '<inventory_root>/system/misc', }, 'SENSOR' : { 0x04 : '/org/openbmc/sensors/host/HostStatus', 0x05 : '/org/openbmc/sensors/host/BootProgress', 0x08 : '/org/openbmc/sensors/host/cpu0/OccStatus', 0x09 : '/org/openbmc/sensors/host/cpu1/OccStatus', 0x0c : '<inventory_root>/system/chassis/motherboard/cpu0', 0x0e : '<inventory_root>/system/chassis/motherboard/cpu1', 0x1e : '<inventory_root>/system/chassis/motherboard/dimm3', 0x1f : '<inventory_root>/system/chassis/motherboard/dimm2', 0x20 : '<inventory_root>/system/chassis/motherboard/dimm1', 0x21 : '<inventory_root>/system/chassis/motherboard/dimm0', 0x22 : '<inventory_root>/system/chassis/motherboard/dimm7', 0x23 : '<inventory_root>/system/chassis/motherboard/dimm6', 0x24 : '<inventory_root>/system/chassis/motherboard/dimm5', 0x25 : '<inventory_root>/system/chassis/motherboard/dimm4', 0x26 : '<inventory_root>/system/chassis/motherboard/dimm11', 0x27 : '<inventory_root>/system/chassis/motherboard/dimm10', 0x28 : '<inventory_root>/system/chassis/motherboard/dimm9', 0x29 : '<inventory_root>/system/chassis/motherboard/dimm8', 0x2a : '<inventory_root>/system/chassis/motherboard/dimm15', 0x2b : '<inventory_root>/system/chassis/motherboard/dimm14', 0x2c : '<inventory_root>/system/chassis/motherboard/dimm13', 0x2d : '<inventory_root>/system/chassis/motherboard/dimm12', 0x2e : '<inventory_root>/system/chassis/motherboard/dimm19', 0x2f : '<inventory_root>/system/chassis/motherboard/dimm18', 0x30 : '<inventory_root>/system/chassis/motherboard/dimm17', 0x31 : '<inventory_root>/system/chassis/motherboard/dimm16', 0x32 : '<inventory_root>/system/chassis/motherboard/dimm23', 0x33 : '<inventory_root>/system/chassis/motherboard/dimm22', 0x34 : '<inventory_root>/system/chassis/motherboard/dimm21', 0x35 : '<inventory_root>/system/chassis/motherboard/dimm20', 0x36 : '<inventory_root>/system/chassis/motherboard/dimm27', 0x37 : '<inventory_root>/system/chassis/motherboard/dimm26', 0x38 : '<inventory_root>/system/chassis/motherboard/dimm25', 0x39 : '<inventory_root>/system/chassis/motherboard/dimm24', 0x3a : '<inventory_root>/system/chassis/motherboard/dimm31', 0x3b : '<inventory_root>/system/chassis/motherboard/dimm30', 0x3c : '<inventory_root>/system/chassis/motherboard/dimm29', 0x3d : '<inventory_root>/system/chassis/motherboard/dimm28', 0x3e : '<inventory_root>/system/chassis/motherboard/cpu0/core0', 0x3f : '<inventory_root>/system/chassis/motherboard/cpu0/core1', 0x40 : '<inventory_root>/system/chassis/motherboard/cpu0/core2', 0x41 : '<inventory_root>/system/chassis/motherboard/cpu0/core3', 0x42 : '<inventory_root>/system/chassis/motherboard/cpu0/core4', 0x43 : '<inventory_root>/system/chassis/motherboard/cpu0/core5', 0x44 : '<inventory_root>/system/chassis/motherboard/cpu0/core6', 0x45 : '<inventory_root>/system/chassis/motherboard/cpu0/core7', 0x46 : '<inventory_root>/system/chassis/motherboard/cpu0/core8', 0x47 : '<inventory_root>/system/chassis/motherboard/cpu0/core9', 0x48 : '<inventory_root>/system/chassis/motherboard/cpu0/core10', 0x49 : '<inventory_root>/system/chassis/motherboard/cpu0/core11', 0x4a : '<inventory_root>/system/chassis/motherboard/cpu1/core0', 0x4b : '<inventory_root>/system/chassis/motherboard/cpu1/core1', 0x4c : '<inventory_root>/system/chassis/motherboard/cpu1/core2', 0x4d : '<inventory_root>/system/chassis/motherboard/cpu1/core3', 0x4e : '<inventory_root>/system/chassis/motherboard/cpu1/core4', 0x4f : '<inventory_root>/system/chassis/motherboard/cpu1/core5', 0x50 : '<inventory_root>/system/chassis/motherboard/cpu1/core6', 0x51 : '<inventory_root>/system/chassis/motherboard/cpu1/core7', 0x52 : '<inventory_root>/system/chassis/motherboard/cpu1/core8', 0x53 : '<inventory_root>/system/chassis/motherboard/cpu1/core9', 0x54 : '<inventory_root>/system/chassis/motherboard/cpu1/core10', 0x55 : '<inventory_root>/system/chassis/motherboard/cpu1/core11', 0x56 : '<inventory_root>/system/chassis/motherboard/membuf0', 0x57 : '<inventory_root>/system/chassis/motherboard/membuf1', 0x58 : '<inventory_root>/system/chassis/motherboard/membuf2', 0x59 : '<inventory_root>/system/chassis/motherboard/membuf3', 0x5a : '<inventory_root>/system/chassis/motherboard/membuf4', 0x5b : '<inventory_root>/system/chassis/motherboard/membuf5', 0x5c : '<inventory_root>/system/chassis/motherboard/membuf6', 0x5d : '<inventory_root>/system/chassis/motherboard/membuf7', 0x5f : '/org/openbmc/sensors/host/BootCount', 0x60 : '<inventory_root>/system/chassis/motherboard', 0x61 : '<inventory_root>/system/systemevent', 0x62 : '<inventory_root>/system/powerlimit', 0x63 : '<inventory_root>/system/chassis/motherboard/refclock', 0x64 : '<inventory_root>/system/chassis/motherboard/pcieclock', 0xb1 : '<inventory_root>/system/chassis/motherboard/todclock', 0xb2 : '<inventory_root>/system/chassis/motherboard/apss', 0xb3 : '/org/openbmc/sensors/host/powercap', 0xb5 : '/org/openbmc/sensors/host/OperatingSystemStatus', 0xb6 : '<inventory_root>/system/chassis/motherboard/pcielink', }, 'GPIO_PRESENT' : {} } GPIO_CONFIG = {} GPIO_CONFIG['BMC_POWER_UP'] = \ {'gpio_pin': 'D1', 'direction': 'out'} GPIO_CONFIG['SYS_PWROK_BUFF'] = \ {'gpio_pin': 'D2', 'direction': 'in'} GPIO_CONFIG['BMC_WD_CLEAR_PULSE_N'] = \ {'gpio_pin': 'N4', 'direction': 'out'} GPIO_CONFIG['CM1_OE_R_N'] = \ {'gpio_pin': 'Q6', 'direction': 'out'} GPIO_CONFIG['BMC_CP0_RESET_N'] = \ {'gpio_pin': 'O2', 'direction': 'out'} GPIO_CONFIG['BMC_CFAM_RESET_N_R'] = \ {'gpio_pin': 'J2', 'direction': 'out'} GPIO_CONFIG['PEX8718_DEVICES_RESET_N'] = \ {'gpio_pin': 'B6', 'direction': 'out'} GPIO_CONFIG['CP0_DEVICES_RESET_N'] = \ {'gpio_pin': 'N3', 'direction': 'out'} GPIO_CONFIG['CP1_DEVICES_RESET_N'] = \ {'gpio_pin': 'N5', 'direction': 'out'} GPIO_CONFIG['FSI_DATA'] = \ {'gpio_pin': 'A5', 'direction': 'out'} GPIO_CONFIG['FSI_CLK'] = \ {'gpio_pin': 'A4', 'direction': 'out'} GPIO_CONFIG['FSI_ENABLE'] = \ {'gpio_pin': 'D0', 'direction': 'out'} GPIO_CONFIG['CRONUS_SEL'] = \ {'gpio_pin': 'A6', 'direction': 'out'} GPIO_CONFIG['BMC_THROTTLE'] = \ {'gpio_pin': 'J3', 'direction': 'out'} GPIO_CONFIG['IDBTN'] = \ { 'gpio_pin': 'Q7', 'direction': 'out' } GPIO_CONFIG['POWER_BUTTON'] = \ {'gpio_pin': 'E0', 'direction': 'both'} GPIO_CONFIG['RESET_BUTTON'] = \ {'gpio_pin': 'E4', 'direction': 'both'} GPIO_CONFIG['PS0_PRES_N'] = \ {'gpio_pin': 'P7', 'direction': 'in'} GPIO_CONFIG['PS1_PRES_N'] = \ {'gpio_pin': 'N0', 'direction': 'in'} GPIO_CONFIG['CARD_PRES_N'] = \ {'gpio_pin': 'J0', 'direction': 'in'} def convertGpio(name): name = name.upper() c = name[0:1] offset = int(name[1:]) a = ord(c)-65 base = a*8+GPIO_BASE return base+offset HWMON_CONFIG = { '4-0050' : { 'names' : { 'caps_curr_powercap' : { 'object_path' : 'powercap/curr_cap','poll_interval' : 10000,'scale' : 1,'units' : 'W' }, 'caps_curr_powerreading' : { 'object_path' : 'powercap/system_power','poll_interval' : 10000,'scale' : 1,'units' : 'W' }, 'caps_max_powercap' : { 'object_path' : 'powercap/max_cap','poll_interval' : 10000,'scale' : 1,'units' : 'W' }, 'caps_min_powercap' : { 'object_path' : 'powercap/min_cap','poll_interval' : 10000,'scale' : 1,'units' : 'W' }, 'caps_norm_powercap' : { 'object_path' : 'powercap/n_cap','poll_interval' : 10000,'scale' : 1,'units' : 'W' }, 'caps_user_powerlimit' : { 'object_path' : 'powercap/user_cap','poll_interval' : 10000,'scale' : 1,'units' : 'W' }, }, 'labels' : { '176' : { 'object_path' : 'temperature/cpu0/core0','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '177' : { 'object_path' : 'temperature/cpu0/core1','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '178' : { 'object_path' : 'temperature/cpu0/core2','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '179' : { 'object_path' : 'temperature/cpu0/core3','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '180' : { 'object_path' : 'temperature/cpu0/core4','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '181' : { 'object_path' : 'temperature/cpu0/core5','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '182' : { 'object_path' : 'temperature/cpu0/core6','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '183' : { 'object_path' : 'temperature/cpu0/core7','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '184' : { 'object_path' : 'temperature/cpu0/core8','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '185' : { 'object_path' : 'temperature/cpu0/core9','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '186' : { 'object_path' : 'temperature/cpu0/core10','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '187' : { 'object_path' : 'temperature/cpu0/core11','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '102' : { 'object_path' : 'temperature/dimm0','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '103' : { 'object_path' : 'temperature/dimm1','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '104' : { 'object_path' : 'temperature/dimm2','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '105' : { 'object_path' : 'temperature/dimm3','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '106' : { 'object_path' : 'temperature/dimm4','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '107' : { 'object_path' : 'temperature/dimm5','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '108' : { 'object_path' : 'temperature/dimm6','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '109' : { 'object_path' : 'temperature/dimm7','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '110' : { 'object_path' : 'temperature/dimm8','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '111' : { 'object_path' : 'temperature/dimm9','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '112' : { 'object_path' : 'temperature/dimm10','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '113' : { 'object_path' : 'temperature/dimm11','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '114' : { 'object_path' : 'temperature/dimm12','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '115' : { 'object_path' : 'temperature/dimm13','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '116' : { 'object_path' : 'temperature/dimm14','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '117' : { 'object_path' : 'temperature/dimm15','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '94' : { 'object_path' : 'temperature/membuf0','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '95' : { 'object_path' : 'temperature/membuf1','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '96' : { 'object_path' : 'temperature/membuf2','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '97' : { 'object_path' : 'temperature/membuf3','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, } }, '5-0050' : { 'labels' : { '188' : { 'object_path' : 'temperature/cpu1/core0','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '189' : { 'object_path' : 'temperature/cpu1/core1','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '190' : { 'object_path' : 'temperature/cpu1/core2','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '191' : { 'object_path' : 'temperature/cpu1/core3','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '192' : { 'object_path' : 'temperature/cpu1/core4','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '193' : { 'object_path' : 'temperature/cpu1/core5','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '194' : { 'object_path' : 'temperature/cpu1/core6','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '195' : { 'object_path' : 'temperature/cpu1/core7','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '196' : { 'object_path' : 'temperature/cpu1/core8','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '197' : { 'object_path' : 'temperature/cpu1/core9','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '198' : { 'object_path' : 'temperature/cpu1/core10','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '199' : { 'object_path' : 'temperature/cpu1/core11','poll_interval' : 5000,'scale' : 1000,'units' : 'C', 'critical_upper' : 100, 'critical_lower' : -100, 'warning_upper' : 90, 'warning_lower' : -99, 'emergency_enabled' : True }, '118' : { 'object_path' : 'temperature/dimm16','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '119' : { 'object_path' : 'temperature/dimm17','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '120' : { 'object_path' : 'temperature/dimm18','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '121' : { 'object_path' : 'temperature/dimm19','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '122' : { 'object_path' : 'temperature/dimm20','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '123' : { 'object_path' : 'temperature/dimm21','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '124' : { 'object_path' : 'temperature/dimm22','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '125' : { 'object_path' : 'temperature/dimm23','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '126' : { 'object_path' : 'temperature/dimm24','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '127' : { 'object_path' : 'temperature/dimm25','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '128' : { 'object_path' : 'temperature/dimm26','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '129' : { 'object_path' : 'temperature/dimm27','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '130' : { 'object_path' : 'temperature/dimm28','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '131' : { 'object_path' : 'temperature/dimm29','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '132' : { 'object_path' : 'temperature/dimm30','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '133' : { 'object_path' : 'temperature/dimm31','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '98' : { 'object_path' : 'temperature/membuf4','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '99' : { 'object_path' : 'temperature/membuf5','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '100' : { 'object_path' : 'temperature/membuf6','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, '101' : { 'object_path' : 'temperature/membuf7','poll_interval' : 5000,'scale' : 1000,'units' : 'C' }, } }, } # Miscellaneous non-poll sensor with system specific properties. # The sensor id is the same as those defined in ID_LOOKUP['SENSOR']. MISC_SENSORS = { 0x5f : { 'class' : 'BootCountSensor' }, 0x05 : { 'class' : 'BootProgressSensor' }, 0x08 : { 'class' : 'OccStatusSensor', 'os_path' : '/sys/class/i2c-adapter/i2c-3/3-0050/online' }, 0x09 : { 'class' : 'OccStatusSensor', 'os_path' : '/sys/class/i2c-adapter/i2c-3/3-0051/online' }, 0xb5 : { 'class' : 'OperatingSystemStatusSensor' }, 0xb3 : { 'class' : 'PowerCap', 'os_path' : '/sys/class/hwmon/hwmon3/user_powercap' }, }
StarcoderdataPython
1989034
"""Question Class for quora question.""" from quora.content import Content class Question: def __init__(self, data_dict): self.id = data_dict.get("id") self.qid = data_dict.get("qid") self.url = "https://www.quora.com" + data_dict.get("url") self.title = Content(data_dict.get("title")) def __str__(self): return self.title.__str__() def __eq__(self, other): return self.qid == other.qid
StarcoderdataPython
6687612
<gh_stars>1-10 """ Compares the tables generated by makeMiniAppTable and the corresponding table from the original mini app. """ import csv import sys from tr55.tablelookup import lookup_nlcd # Generate keys from rows that will be used to match rows in the # old and new table. # If transform == True, convert values of row so that # land and soil_types are in the format of the data table # from the old mini-app def get_key(row, transform=False): P = row['P'] land = row['land'] soil = row['soil'] if transform: land = str(lookup_nlcd(row['land'])) new_soil_types = ['a', 'b', 'c', 'd'] old_soil_types = ['0', '1', '2', '3'] soil_types_map = dict(zip(new_soil_types, old_soil_types)) soil = soil_types_map[row['soil']] return (P, land, soil) def isClose(val1, val2): val1 = round(float(val1), 1) val2 = round(float(val2), 1) return val1 == val2 def rowsMatch(old_row, new_row): return isClose(old_row['ET'], new_row['ET']) and \ isClose(old_row['I'], new_row['I']) and \ isClose(old_row['R'], new_row['R']) def test_get_key(): old_row = {'land': '71', 'I': '1.6', 'soil': '2', 'P': '2.0', 'R': '0.2', 'ET': '0.1'} new_row = {'land': 'grassland', 'I': '1.6100773216841155', 'soil': 'c', 'P': '2.0', 'R': '0.2657226783158845', 'ET': '0.12419999999999999'} assert get_key(old_row) == get_key(new_row, transform=True) \ == ('2.0', '71', '2') test_get_key() if len(sys.argv) != 3: print ('Usage: python -m tr55.compareMiniAppTable ' + 'old_csv_file_name new_csv_file_name') sys.exit() else: old_csv_fn = sys.argv[1] new_csv_fn = sys.argv[2] with open(old_csv_fn, 'rb') as old_csv_file: with open(new_csv_fn, 'rb') as new_csv_file: old_reader = csv.DictReader(old_csv_file) new_reader = csv.DictReader(new_csv_file) old_row_dict = dict([(get_key(old_row), old_row) for old_row in old_reader]) new_row_dict = dict([(get_key(new_row, transform=True), new_row) for new_row in new_reader]) num_in_match_rows = 0 num_in_out_match_rows = 0 for key, new_row in new_row_dict.iteritems(): if key in old_row_dict: old_row = old_row_dict[key] if rowsMatch(old_row, new_row): num_in_out_match_rows += 1 else: print 'output does not match' print 'old row: ', old_row print 'new row: ', new_row print num_in_match_rows += 1 print '# rows in new table: ', len(new_row_dict) print '# rows where input matches: ', num_in_match_rows print '# rows where input and output match: ', num_in_out_match_rows
StarcoderdataPython
6513090
# __init__.py: Yet Another Bayes Net library # Contact: <NAME> ( <EMAIL> ) """ For detailed documentation and examples, see the README. """ # Make our dependencies explicit so compiled Cython code won't segfault trying # to load them. import networkx, matplotlib.pyplot, scipy import numpy as np import os import pyximport # Adapted from Cython docs https://github.com/cython/cython/wiki/ # InstallingOnWindows#mingw--numpy--pyximport-at-runtime if os.name == 'nt': if 'CPATH' in os.environ: os.environ['CPATH'] = os.environ['CPATH'] + np.get_include() else: os.environ['CPATH'] = np.get_include() # XXX: we're assuming that MinGW is installed in C:\MinGW (default) if 'PATH' in os.environ: os.environ['PATH'] = os.environ['PATH'] + ';C:\MinGW\bin' else: os.environ['PATH'] = 'C:\MinGW\bin' mingw_setup_args = { 'options': { 'build_ext': { 'compiler': 'mingw32' } } } pyximport.install(setup_args=mingw_setup_args) elif os.name == 'posix': if 'CFLAGS' in os.environ: os.environ['CFLAGS'] = os.environ['CFLAGS'] + ' -I' + np.get_include() else: os.environ['CFLAGS'] = ' -I' + np.get_include() pyximport.install() from yabn import * __version__ = '0.1.0'
StarcoderdataPython
4899653
<filename>Methods/Machine/LamSquirrelCage/build_geometry.py<gh_stars>1-10 # -*- coding: utf-8 -*- """@package build_geometry @date Created on août 10 10:42 2018 @author franco_i """ def build_geometry(self, sym=1, alpha=0, delta=0, is_simplified=False): """Build geometry of the LamSquirrelCage Parameters ---------- self : LamSquirrelCage Object sym : int Symmetry factor (1= full machine, 2= half of the machine...) alpha : float Angle for rotation [rad] delta : complex Complex value for translation is_simplified: bool True to avoid line superposition Returns ------- list surf_list: list of surfaces """ surf_list = super(type(self), self).build_geometry( sym=sym, is_simplified=is_simplified, alpha=alpha, delta=delta ) # Adapt the label for surf in surf_list: if "Wind" in surf.label: surf.label = surf.label.replace("Wind", "Bare") return surf_list
StarcoderdataPython
11397238
# -*- coding: utf-8 -*- # # Copyright © 2009 <NAME> # Licensed under the terms of the MIT License """ MatplotlibWidget ================ Example of matplotlib widget for PyQt4 Copyright © 2009 <NAME> This software is licensed under the terms of the MIT License Derived from 'embedding_in_pyqt4.py': Copyright © 2005 <NAME>, 2006 <NAME> """ __version__ = "1.0.0" from PyQt4.QtGui import QSizePolicy from PyQt4.QtCore import QSize from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as Canvas from matplotlib.figure import Figure from mpl_toolkits.mplot3d import Axes3D from matplotlib import rcParams rcParams['font.size'] = 9 class MatplotlibWidget(Canvas): """ MatplotlibWidget inherits PyQt4.QtGui.QWidget and matplotlib.backend_bases.FigureCanvasBase Options: option_name (default_value) ------- parent (None): parent widget title (''): figure title xlabel (''): X-axis label ylabel (''): Y-axis label xlim (None): X-axis limits ([min, max]) ylim (None): Y-axis limits ([min, max]) xscale ('linear'): X-axis scale yscale ('linear'): Y-axis scale width (4): width in inches height (3): height in inches dpi (100): resolution in dpi hold (False): if False, figure will be cleared each time plot is called Widget attributes: ----------------- figure: instance of matplotlib.figure.Figure axes: figure axes Example: ------- self.widget = MatplotlibWidget(self, yscale='log', hold=True) from numpy import linspace x = linspace(-10, 10) self.widget.axes.plot(x, x**2) self.wdiget.axes.plot(x, x**3) """ def __init__(self, parent=None, title='', xlabel='', ylabel='', xlim=None, ylim=None, xscale='linear', yscale='linear', width=4, height=3, dpi=100, hold=False): self.figure = Figure(figsize=(width, height), dpi=dpi) self.axes = self.figure.add_subplot(111) self.axes.set_title(title) self.axes.set_xlabel(xlabel) self.axes.set_ylabel(ylabel) if xscale is not None: self.axes.set_xscale(xscale) if yscale is not None: self.axes.set_yscale(yscale) if xlim is not None: self.axes.set_xlim(*xlim) if ylim is not None: self.axes.set_ylim(*ylim) #self.axes.hold(hold) Canvas.__init__(self, self.figure) self.setParent(parent) Canvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) Canvas.updateGeometry(self) def sizeHint(self): w, h = self.get_width_height() return QSize(w, h) def minimumSizeHint(self): return QSize(10, 10) class Matplotlib3DWidget(Canvas): """ MatplotlibWidget inherits PyQt4.QtGui.QWidget and matplotlib.backend_bases.FigureCanvasBase Options: option_name (default_value) ------- parent (None): parent widget title (''): figure title xlabel (''): X-axis label ylabel (''): Y-axis label xlim (None): X-axis limits ([min, max]) ylim (None): Y-axis limits ([min, max]) xscale ('linear'): X-axis scale yscale ('linear'): Y-axis scale width (4): width in inches height (3): height in inches dpi (100): resolution in dpi hold (False): if False, figure will be cleared each time plot is called Widget attributes: ----------------- figure: instance of matplotlib.figure.Figure axes: figure axes Example: ------- self.widget = MatplotlibWidget(self, yscale='log', hold=True) from numpy import linspace x = linspace(-10, 10) self.widget.axes.plot(x, x**2) self.wdiget.axes.plot(x, x**3) """ def __init__(self, parent=None, title='', xlabel='', ylabel='', zlabel='', xlim=None, ylim=None, zlim=None, xscale='linear', yscale='linear', width=4, height=3, dpi=100, hold=False): self.figure = Figure(figsize=(width, height), dpi=dpi) self.axes = self.figure.add_subplot(111, projection='3d') self.axes.set_title(title) self.axes.set_xlabel(xlabel) self.axes.set_ylabel(ylabel) self.axes.set_zlabel(zlabel) #self.axes.mouse_init() if xscale is not None: self.axes.set_xscale(xscale) if yscale is not None: self.axes.set_yscale(yscale) if xlim is not None: self.axes.set_xlim(*xlim) if ylim is not None: self.axes.set_ylim(*ylim) if zlim is not None: self.axes.set_zlim(*zlim) #self.axes.hold(hold) Canvas.__init__(self, self.figure) self.setParent(parent) Canvas.setSizePolicy(self, QSizePolicy.Expanding, QSizePolicy.Expanding) Canvas.updateGeometry(self) def sizeHint(self): w, h = self.get_width_height() return QSize(w, h) def minimumSizeHint(self): return QSize(10, 10) #=============================================================================== # Example #=============================================================================== if __name__ == '__main__': import sys from PyQt4.QtGui import QMainWindow, QApplication from numpy import linspace class ApplicationWindow(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.mplwidget = MatplotlibWidget(self, title='Example', xlabel='Linear scale', ylabel='Log scale', hold=True, yscale='log') self.mplwidget.setFocus() self.setCentralWidget(self.mplwidget) self.plot(self.mplwidget.axes) def plot(self, axes): x = linspace(-10, 10) axes.plot(x, x**2) axes.plot(x, x**3) app = QApplication(sys.argv) win = ApplicationWindow() win.show() sys.exit(app.exec_())
StarcoderdataPython
3547852
<reponame>loumir/modelinstanceinvot-code ''' Created on 31 mars 2020 @author: laurentmichel ''' from astropy.io.votable import parse from client.inst_builder import logger, table_mapper from client.translator.instance_from_votable import InstanceFromVotable from client.translator.json_mapping_builder import JsonMappingBuilder from client.inst_builder.table_mapper import TableMapper from client.inst_builder.json_block_extractor import JsonBlockExtractor class VodmlInstance(object): ''' This class manages the transformation of a VOTable mapping blocks into a model instance serialized in a Python {} ''' def __init__(self, votable_path, exit_validation=True): # # One table_mapper per TABLE_MAPPING # table ID or name taken as keys # self.table_mappers = {} self.votable_path = votable_path # # Dict translation of the <MODEL_INSTANCE> block # self.json_view = {} # Convert the XML mapping block in a dictionary self.build_json_view(exit_validation=exit_validation) # Make the dictionary compliant with JSON mapping syntax self.build_json_mapping() # Build the table_mapper self.build_table_mapper_map() def build_json_view(self, exit_validation=True): """ Convert the XML mapping block into a dictionary (XML2json transform) """ logger.info("Extracting the MODEL_INSTANCE block") instanceFromVotable = InstanceFromVotable(self.votable_path, exit_validation=exit_validation) instanceFromVotable._extract_vodml_block() logger.info("Validating the MODEL_INSTANCE block") instanceFromVotable._validate_vodml_block() logger.info("Extracting the raw JSON block") self.json_view = instanceFromVotable.json_block def build_json_mapping(self): """ Replace in the XML2json the elements related to the model (COLLECTION, INSTANCE, ATTRIBUTE) with their roles The other element, the parser directives (TABLE_ROW_TEMPLATE...), are kept in place """ logger.info("Formating the JSON view") builder = JsonMappingBuilder(json_dict=self.json_view) builder.revert_compositions("COLLECTION") builder.revert_templates() builder.revert_elements("INSTANCE") builder.revert_elements("ATTRIBUTE") self.json_view = builder.json def build_table_mapper_map(self): """ Build one TableMapper for each mapped table (TABLE_MAPPING) and store them in a map using the table ID (or name if no ID) as keys. TODO map the first table by default """ logger.info("Looking for tables matching TABLE_MAPPING ") votable = parse(self.votable_path) for template_key in self.json_view["MODEL_INSTANCE"]["TABLE_MAPPING"].keys(): logger.info("Looking for a table matching TABLE_MAPPING %s", template_key) name = None parsed_table = None for table in votable.iter_tables(): if template_key == table.ID: logger.info("Table with ID = %s found", template_key) name = table.ID parsed_table = table break if name == None: for table in votable.iter_tables(): if template_key == table.name: logger.info("Table with name = %s found", template_key) name = table.name parsed_table = table break if name == None: raise Exception("Cannot find table with name or ID equals to None") else: logger.info("Add TableMapper for table %s", name) self.table_mappers[template_key] = TableMapper( template_key, self.votable_path, parsed_table=parsed_table, json_inst_dict=self.json_view) def populate_templates(self, resolve_dmrefs=False): """ resolve all @ref with values read in the VOTable if resolve_dmrefs is true, the INSTANCE references are replaces with a copies of the actual objects """ for k, v in self.table_mappers.items(): logger.info("populate template %s", k) v.resolve_refs_and_values(resolve_dmrefs=resolve_dmrefs) v.map_columns() def connect_join_iterators(self): """ Connect the table iterators located in the mapping blocks (TABLE_RAW_TEMPLATE) with the VOTable parser """ logger.info("connect join iterators") parse_tables = {} for template, table_mapper in self.table_mappers.items(): parse_tables[template] = table_mapper.parsed_table for template, table_mapper in self.table_mappers.items(): for target, join_iterator in table_mapper.join_iterators.items(): logger.info("join template %s with template %s", template, target) join_iterator.connect_votable(parse_tables[target]) def get_root_element(self, root_class): """ Look for the table mapper (TABLE_MAPPING) having one child matching root_class The root element is selected accordiing one of these criteria - having no role attribute (should never occur actually) - having an empty dmrole - having dmrole = root :param root_class: dmtype of the root class :type root_class: string :return: the table mapper of the table containing the root element (or None) :rtype: TableMapper instance """ for template, table_mapper in self.table_mappers.items(): logger.info("Looking for %s instances in template %s", root_class, template) json_block_extract = JsonBlockExtractor(table_mapper.json) retour = json_block_extract.search_subelement_by_type(root_class) for block in retour: if "@dmrole" not in block.keys(): logger.info("found (no role)") return table_mapper role = block["@dmrole"] if role == "" or role == "root": logger.info("found with role=%s", role) return table_mapper return None
StarcoderdataPython
3372576
<reponame>guionardo/py-cache-guiosoft import os import unittest from unittest.mock import Mock, patch from cache_gs.cache_classes.cache_data_file import CacheData, CacheDataFile from tests.test_tools import raise_test_exception def force_exception(*args, **kwargs): raise_test_exception() class TestCacheDataFile(unittest.TestCase): def setUp(self): self.file_name = 'test.json' def tearDown(self): if os.path.isfile(self.file_name): os.unlink(self.file_name) def test_save(self): cd = CacheData("test_section", "test_key", "test_value", 0) cdf = CacheDataFile('test', cd) self.assertTrue(cdf.save(self.file_name)) cdf2 = CacheDataFile(self.file_name) self.assertEqual(cdf.data, cdf2.data) def test_repr(self): cd = CacheData('sec', 'key', 'value', 0) cdf = CacheDataFile('test', cd) self.assertEqual( repr(cdf), "CacheDataFile('test',CacheData('sec','key','value',0))") @patch("os.path.isfile", Mock()) def test_load_exception(self): os.path.isfile.return_value = True cdf = CacheDataFile() self.assertFalse(cdf.load('abcd')) @patch("json.dumps", force_exception) def test_save_exception(self): cd = CacheData("sec", "key", "value", 0) cdf = CacheDataFile(cache_data=cd) self.assertFalse(cdf.save('abcd')) if os.path.isfile('abcd'): os.unlink('abcd')
StarcoderdataPython
1858215
from forms.registerForm import UserForm from django.shortcuts import render, redirect from django.template.loader import render_to_string from django.contrib.auth import ( authenticate, login, logout, ) from django.views.generic import DetailView, ListView from forms.loginForm import UserLoginForm from Store.models.productModel import * from django.db.models import Min, Max from django.http import JsonResponse from django.contrib import messages # import messages to show flash message from forms.profileForm import * from Store.models.profileModel import Profile from django.views.generic import View from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator import math from forms.product_modificationForm import * from django.http import HttpResponseRedirect from django.urls import reverse from django.conf import settings import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText def base(request): return render(request, 'homepage.html') def login_view(request): next = request.GET.get('next') title = 'Login' form = UserLoginForm(request.POST or None) if form.is_valid(): username = form.cleaned_data.get('username') password = form.cleaned_data.get('password') user = authenticate(username=username, password=password) login(request, user) if next: return redirect(next) return redirect('/') return render(request, 'login.html', {'form': form, 'title': title}) def register(request): if request.method == 'POST': form = UserForm(request.POST) if form.is_valid(): form.save() return redirect('Store:Base') else: form = UserForm() return render(request, 'register.html', {'form': form}) @method_decorator(login_required(login_url='login'), name='dispatch') # login_required controlla che l'utente corrente sia loggato. # dispatch() → metodo presente in tutte le class-based view che si occupa di gestire le request e le response. class ProfileView(View): profile = None def dispatch(self, request, *args, **kwargs): self.profile, __ = Profile.objects.get_or_create(user=request.user) return super(ProfileView, self).dispatch(request, *args, **kwargs) def get(self, request): context = {'profile': self.profile} return render(request, 'profile.html', context) def post(self, request): form = ProfileForm(request.POST, request.FILES, instance=self.profile) if form.is_valid(): profile = form.save() # to save user model info profile.user.first_name = form.cleaned_data.get('first_name') profile.user.last_name = form.cleaned_data.get('last_name') profile.user.email = form.cleaned_data.get('email') profile.phone = form.cleaned_data.get('phone') profile.user.save() messages.success(request, 'Profile saved successfully') else: messages.error(request, form_validation_error(form)) return redirect('Store:profile') def logout_view(request): logout(request) return render(request, 'logout.html') def search_bar(request): if request.method == 'POST': # prende quello che c'è scritto nella search bar searched = request.POST['searched'] # query che contiene tutti i profumi con nome "searched" venues = Product.objects.filter(name__contains=searched) return render(request, 'search_bar.html', {'searched': searched, 'venues': venues}) else: return render(request, 'search_bar.html') def product_review(request, id): if request.method == 'POST' and request.user.is_authenticated: stars = request.POST.get('stars', 3) content = request.POST.get('content', '') product = Product.objects.get(id=id) review = ProductReviewModel.objects.create(product=product, user=request.user, stars=stars, content=content) return render(request, 'review_added.html') else: return render(request, 'review_added.html') class ProductList(DetailView): model = Product template_name = 'products.html' def price(request): # dizionario che contiene il prezzo minimo e massimo tra tutti i profumi minMaxPrice = Product.objects.aggregate(Min('price'), Max('price')) allProducts = Product.objects.all().order_by('-id').distinct() # tutti i profumi ordinati per id decrescente allProducts = allProducts.filter(price__gte=minMaxPrice['price__min']) allProducts = allProducts.filter(price__lte=minMaxPrice['price__max']) data = {'minMaxPrice': minMaxPrice, 'allProducts': allProducts} return render(request, 'price.html', data) def filter_price(request): minPrice = request.GET['minPrice'] # prezzo minimo maxPrice = request.GET['maxPrice'] # prezzo massimo impostato da interfaccia # tutti i profumi dal prezzo minimo al prezzo massimo filtered_products = Product.objects.filter(price__gte=minPrice).filter(price__lte=maxPrice).distinct() # restituisce tutto l'html in formato stringa t = render_to_string('ajax/filtered_products_price.html', {'data': filtered_products}) return JsonResponse({'data': t}) class MenPerfumes(ListView): model = Product template_name = 'men_perfumes.html' class WomenPerfumes(ListView): model = Product template_name = 'women_perfumes.html' def recommended_products_anonymous_helper(obj): queryset = ProductReviewModel.objects.all() products = {} for product in obj: # per ogni profumo in "profumi_finali" stars_splitting = {} count = 0 # serve per contare il numero di recensioni presenti in un profumo for recensione in queryset: # per ogni recensione if recensione.product == product: # se il profumo in queryset è uguale al profumo in "profumi_finali" if product not in products.keys(): # se il profumo in "profumi_finali" non è nel dizionario "products" # il dizionario "products" con chiave "product" prende come valore il numero di stelle della # singola recensione products[product] = recensione.stars else: products[product] = products[product] + recensione.stars # aggiungo il valore dell'altra recensione count += 1 if count != 0: # calcolo la media totale delle recensioni per quel profumo average_stars = float(products[product]) / count frazione, intero = math.modf(average_stars) # separo la parte frazionaria dall'intero stars_splitting['intero'] = intero stars_splitting['frazione'] = frazione # ora "products" avrà come chiave il profumo e come valore "stars_splitting" # (es: {'intero': 4.0, 'frazione': 0.0}) products[product] = stars_splitting if intero < 3: # elimino tutti i profumi < 3 stelle del products[product] return products def recommended_products_view(request): if request.user.is_authenticated: # query che filtra gli ordini effettuati da questo utente customer_orders = CustomerOrders.objects.filter(user=request.user) if customer_orders: # se l'utente ha effettuato un ordine profumi_con_ripetizione = [] profumi_finali = [] for order in customer_orders: # per tutti gli ordini che l'utente ha effettuato brand = order.product.brand # prendo il brand prezzo = order.product.price # prendo il prezzo # queryset filtra tutti i profumi presenti nel database per brand=brand degli ordini, e prezzo compreso # tra -50 e + 50 rispetto al prezzo del profumo queryset = Product.objects.filter(brand=brand, price__lte=prezzo + 50, price__gte=prezzo - 50) # lista che contiene tutti i profumi filtrati in base al profumo acquistato profumi_con_ripetizione.append(queryset) # questo ciclo innestato permette che per ogni lista di prodotti consigliati per ogni profumo acquistato, # aggiunge a "profumi_finali" tutti i profumi di "profumi_con_ripetizione" tranne quelli che si ripetono for perfume in profumi_con_ripetizione: for x in perfume: if x not in profumi_finali: profumi_finali.append(x) context = {'products': recommended_products_anonymous_helper(profumi_finali)} return render(request, 'recommended_products.html', context) # se l'utente non ha effettuato alcun ordine, allora viene mostrata una lista di profumi con le recensioni # più alte else: context = {'products': recommended_products_anonymous_helper(Product.objects.all())} else: context = {'products': recommended_products_anonymous_helper(Product.objects.all())} template_name = 'recommended_products.html' return render(request, template_name, context) def lista_prodotti_amministratore(request): listaProdotti = Product.objects.all() context = {'listaProdotti': listaProdotti} return render(request, 'tabella_prodotti.html', context) def modifica_prodotto(request, pk): if request.method == 'POST': modpro = Product.objects.get(pk=pk) form = ModificaProdotto(request.POST) old_qty = modpro.quantity if form.is_valid(): name = form.cleaned_data['name'] price = form.cleaned_data['price'] brand = form.cleaned_data['brand'] category = form.cleaned_data['category'] description = form.cleaned_data['description'] quantity = form.cleaned_data['quantity'] modpro = Product.objects.filter(pk=pk).update(name=name, price=price, brand=brand, category=category, description=description, quantity=quantity) if old_qty == 0 and old_qty != quantity: return redirect('Store:send-email', id=pk) return HttpResponseRedirect(reverse('Store:lista-prodotti')) else: modpro = Product.objects.filter(pk=pk) form = ModificaProdotto() context = {'form': form, 'modpro': modpro} return render(request, 'modifica_tabella_prodotti.html', context) def send_email(request, id): product = Product.objects.get(id=id) MY_ADDRESS = settings.EMAIL_HOST_USER PASSWORD = settings.EMAIL_HOST_PASSWORD s = smtplib.SMTP(host='smtp.gmail.com', port=587) # set up the SMTP server s.starttls() s.login(MY_ADDRESS, PASSWORD) message = f"Il profumo {product.name} è di nuovo disponibile! :)" waiting_list_users = WaitingListModel.objects.filter(product=product.id) for wait in waiting_list_users: user = wait.user msg = MIMEMultipart() # create a message # setup the parameters of the message msg['From'] = MY_ADDRESS msg['To'] = user.email msg['Subject'] = f"Profumo {product.name} disponibile!" # add in the message body msg.attach(MIMEText(message, 'plain')) # send the message via the server set up earlier. s.send_message(msg) del msg # Terminate the SMTP session and close the connection s.quit() WaitingListModel.objects.all().delete() return HttpResponseRedirect(reverse('Store:lista-prodotti'))
StarcoderdataPython
9660991
# -*- coding: utf-8 -*- # Define here the models for your spider middleware # # See documentation in: # https://docs.scrapy.org/en/latest/topics/spider-middleware.html import random from scrapy import signals from scrapy.exceptions import NotConfigured import redis class XpcSpiderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the spider middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_spider_input(self, response, spider): # Called for each response that goes through the spider # middleware and into the spider. # Should return None or raise an exception. return None def process_spider_output(self, response, result, spider): # Called with the results returned from the Spider, after # it has processed the response. # Must return an iterable of Request, dict or Item objects. for i in result: yield i def process_spider_exception(self, response, exception, spider): # Called when a spider or process_spider_input() method # (from other spider middleware) raises an exception. # Should return either None or an iterable of Request, dict # or Item objects. pass def process_start_requests(self, start_requests, spider): # Called with the start requests of the spider, and works # similarly to the process_spider_output() method, except # that it doesn’t have a response associated. # Must return only requests (not items). for r in start_requests: yield r def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class XpcDownloaderMiddleware: # Not all methods need to be defined. If a method is not defined, # scrapy acts as if the downloader middleware does not modify the # passed objects. @classmethod def from_crawler(cls, crawler): # This method is used by Scrapy to create your spiders. s = cls() crawler.signals.connect(s.spider_opened, signal=signals.spider_opened) return s def process_request(self, request, spider): # Called for each request that goes through the downloader # middleware. # Must either: # - return None: continue processing this request # - or return a Response object # - or return a Request object # - or raise IgnoreRequest: process_exception() methods of # installed downloader middleware will be called return None def process_response(self, request, response, spider): # Called with the response returned from the downloader. # Must either; # - return a Response object # - return a Request object # - or raise IgnoreRequest return response def process_exception(self, request, exception, spider): # Called when a download handler or a process_request() # (from other downloader middleware) raises an exception. # Must either: # - return None: continue processing this exception # - return a Response object: stops process_exception() chain # - return a Request object: stops process_exception() chain pass def spider_opened(self, spider): spider.logger.info('Spider opened: %s' % spider.name) class RandomProxyMiddleware(object): def __init__(self, settings): self.r = redis.Redis(host='127.0.0.1') self.proxy_key = settings.get('PROXY_REDIS_KEY') self.proxy_stats_key = self.proxy_key + "_stats" self.max_failed = 5 @property def proxies(self): return [i.decode('utf-8') for i in self.r.lrange(self.proxy_key, 0, -1)] @classmethod def from_crawler(cls, crawler): if not crawler.settings.getbool("HTTPPROXY_ENABLED"): raise NotConfigured return cls(crawler.settings) def process_request(self, request, spider): if not request.meta.get('proxy') \ and request.url not in spider.start_urls: request.meta['proxy'] = random.choice(self.proxies) def process_response(self, request, response, spider): cur_proxy = request.meta.get('proxy') if response.status in (401, 403): print('{} got wrong code {} times'. format(cur_proxy, self.r.hget(self.proxy_stats_key, cur_proxy))) self.r.hincrby(self.proxy_stats_key, cur_proxy, 1) failed_times = self.r.hget(self.proxy_stats_key, cur_proxy) or 0 if int(failed_times) >= self.max_failed: self.removeProxy(cur_proxy) del request.meta['proxy'] print('got wrong http code [{}] when use {}'.format( response.status, cur_proxy)) self.removeProxy(proxy=cur_proxy) del request.meta['proxy'] return request return response def process_exception(self, request, exception, spider): cur_proxy = request from twisted.internet.error import ConnectionRefusedError, TimeoutError if isinstance(exception, (ConnectionRefusedError, TimeoutError)): print('error occur when use proxy {}'.format(exception)) self.removeProxy(proxy=cur_proxy) del request.meta['proxy'] return request def removeProxy(self, proxy): if proxy in self.proxies: self.r.lrem(self.proxy_key, proxy) self.r.hdel(self.proxy_stats_key, proxy) print('remove {} from proxy list'.format(proxy))
StarcoderdataPython
1828798
<reponame>zeshinsei/sync-companion import configparser import sys import reddit ### Return the current subreddit name ### def get_subreddit(): return sys.argv[1] ### Read from the config ### def get_config(): config = configparser.ConfigParser() s = reddit.reddit.subreddit(get_subreddit()) configdata = s.wiki['sync_config'].content_md config.read_string(configdata) return config
StarcoderdataPython
1719862
# -*- coding: utf-8 -*- """ @brief: Extract judicial acts from `bsr.sudrf.ru` (update database) @package: judicial @file: settings.py @author: dmryutov (<EMAIL>) @version: 1.0 @date: 03.11.2017 -- 04.11.2017 """ import re import os # Links to all acts ALL_ACTS = r'https://bsr.sudrf.ru/bigs/portal.html#%7B%22mode%22:%22QUERY_HISTORY%22,%22historyQueryId%22:%22B6A74295-C7E2-4A42-B3A1-CB790A82DB22%22%7D' # pylint: disable=line-too-long # Defendant keywords KEYWORDS = { 'одсудимого', 'одсудимой', 'одсудимая', 'одсудимый', 'сужденный', 'сужденная', 'сужденного', 'сужденной', 'сужденого', 'сужденой' 'суждённый', 'суждённая', 'суждённого', 'суждённой', 'удимый', 'удимая', 'удимого ранее', 'удимой ранее', 'бвиняемого', 'бвиняемой', 'бвиняемый', 'бвиняемая', 'аявителя', 'в отношении' } # List of month names MONTH_LIST = { 'января', 'февраля', 'марта', 'апреля', 'мая', 'июня', 'июля', 'августа', 'сентября', 'октября', 'ноября', 'декабря' } # Name masks NAME_MASK = re.compile(r'('+ '|'.join(KEYWORDS) +r')[а-яё]*[ -:]*'+ r'(([А-ЯЁ][а-яё]{1,}\s*){3},|'+ # <NAME>, r'([А-ЯЁ][а-яё]{1,}\s*)([А-ЯЁ]\.\s*){1,2}|'+ # Багнюк Д.С. r'([А-ЯЁ]\.\s*){1,2}([А-ЯЁ][а-яё]{1,}\s*)|'+ # Д.С. Багнюк r'([А-ЯЁ]\.\s*){1,3}|'+ # К.Р.Н. r'[А-ЯЁ0-9]{2,})') # ФИО1 NAME_MASK2 = re.compile(r'(([А-ЯЁ][а-яё]{1,}\s*){3},|'+ # <NAME>, r'([А-ЯЁ][а-яё]{1,}\s*)([А-ЯЁ]\.\s*){1,2}|'+ # Багнюк Д.С. r'([А-ЯЁ]\.\s*){1,2}([А-ЯЁ][а-яё]{1,}\s*)|'+ # Д.С. Багнюк r'([А-ЯЁ]\.\s*){1,3})', # К.Р.Н. re.I) # pylint: disable=no-member FIO_N = re.compile(r'(ФИО|Ф\.И\.О\.)') NAME_AND_WORD = re.compile(r'^[А-ЯЁ]\. [а-яё]{1,}$') # Bad words and endings BAD_ENDINGS = [' по ', ' на ', ','] BAD_WORDS = {'посредством', 'характеризуется', 'избрана', 'меры', 'возбуждено', 'путем'} BAD_WORDS2 = { 'Судебная', 'Преступления совершены', 'Преступление совершено', 'Судья', '...', '**', 'по ', 'На основании', 'года. ', 'г. ', 'п. ' } BAD_WORDS3 = {'ДД.ММ.', 'судья', 'судьей', 'судью', 'судьи'} # Chrome browser driver path DRIVER_PATH = os.path.join(os.getcwd(), 'drivers', 'chromedriver') # Browser loading timeout TIMEOUT = 20 # Path to database file DATABASE_PATH = '/Users/dmryutov/Desktop/Judicial/db.sqlite' # Columns for fast search FAST_COLUMN_LIST = [ 'old_id', 'search_number', 'act_number', 'instance', 'article', 'document_type', 'region', 'court_name', 'result', 'judge', 'lawyer', 'victim_representative', 'defender', 'representative', 'prosecutor', 'receipt_date', 'decision_date', 'entry_date', 'defendant' ] # Columns for full search FULL_COLUMN_LIST = [ 'search_number', 'act_number', 'proceedings_type', 'instance', 'article', 'document_type', 'region', 'court_name', 'result', 'judge', 'lawyer', 'claimant', 'inquirer', 'debtor', 'another_participants', 'interested_person', 'victim_representative', 'defender', 'applicant', 'plaintiff', 'public_defender', 'inquiry', 'respondent', 'victim', 'representative', 'prosecutor', 'investigative_body_head', 'witness', 'investigator', 'third_party', 'document_registration_year', 'receipt_date', 'decision_date', 'entry_date', 'defendant' ]
StarcoderdataPython
9766330
<filename>gauto/common/protocol.py # -*- coding: UTF-8 -*- """ Tencent is pleased to support the open source community by making GAutomator available. Copyright (C) 2016 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __author__ = 'minhuaxu <EMAIL>,alexkan <EMAIL>' class Commands(object): GET_VERSION = 100 # 获取版本号 FIND_ELEMENTS = 101 # 查找节点 FIND_ELEMENT_PATH = 102 # 模糊查找 GET_ELEMENTS_BOUND = 103 # 获取节点的位置信息 GET_ELEMENT_WORLD_BOUND = 104 # 获取节点的世界坐标 GET_UI_INTERACT_STATUS = 105 # 获取游戏的可点击信息,包括scene、可点击节点,及位置信息 GET_CURRENT_SCENE = 106 # 获取Unity的Scene名称 GET_ELEMENT_TEXT = 107 # 获取节点的文字内容 GET_ELEMENT_IMAGE = 108 # 获取节点的图片名称 GET_REGISTERED_HANDLERS = 109 # 获取注册的函数的名称 CALL_REGISTER_HANDLER = 110 # 调用注册的函数 SET_INPUT_TEXT = 111 # input控件更换文字信息 GET_OBJECT_FIELD=112 # 通过反射获取gameobject中component的属性值 FIND_ELEMENTS_COMPONENT=113 #获取所有包含改组件的gameobject SET_CAMERA_NAME=114 #设置渲染的最佳的Camera GET_COMPONENT_METHODS = 115 # 反射获取组件上的方法 CALL_COMPONENT_MOTHOD = 116 # 通过反射调用组件的函数 LOAD_TEST_LIB=117 #初始化testlib服务 PRC_SET_METHOD=118#注册python端的方法 RPC_METHOD = 119#游戏内的接口可调用,python端的方法 #######################/ HANDLE_TOUCH_EVENTS = 200 # 发送down move up DUMP_TREE = 300 class TouchEvent(object): ACTION_DOWN = 0 ACTION_UP = 1 ACTION_MOVE = 2 def __init__(self, x, y, sleeptime, type): self.x = x self.y = y self.sleeptime = sleeptime self.type = type
StarcoderdataPython
6609283
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from enum import Enum class AzureRegionBaseUrl(Enum): westusapicognitivemicrosoftcom = "westus.api.cognitive.microsoft.com" westus2apicognitivemicrosoftcom = "westus2.api.cognitive.microsoft.com" eastusapicognitivemicrosoftcom = "eastus.api.cognitive.microsoft.com" eastus2apicognitivemicrosoftcom = "eastus2.api.cognitive.microsoft.com" westcentralusapicognitivemicrosoftcom = "westcentralus.api.cognitive.microsoft.com" southcentralusapicognitivemicrosoftcom = "southcentralus.api.cognitive.microsoft.com" westeuropeapicognitivemicrosoftcom = "westeurope.api.cognitive.microsoft.com" northeuropeapicognitivemicrosoftcom = "northeurope.api.cognitive.microsoft.com" southeastasiaapicognitivemicrosoftcom = "southeastasia.api.cognitive.microsoft.com" eastasiaapicognitivemicrosoftcom = "eastasia.api.cognitive.microsoft.com" australiaeastapicognitivemicrosoftcom = "australiaeast.api.cognitive.microsoft.com" brazilsouthapicognitivemicrosoftcom = "brazilsouth.api.cognitive.microsoft.com" contentmoderatortestazure_apinet = "contentmoderatortest.azure-api.net"
StarcoderdataPython
3368679
<reponame>jasonwbarnett/pycal-play #!/usr/bin/env python3 from datetime import datetime a_meetings = [['09:00', '10:30'], ['12:00', '13:00'], ['16:00', '18:00']] a_workday = ['09:00', '20:00'] a_meetings = [['10:00', '11:30'], ['12:30', '14:30'], ['14:30', '15:00'], ['16:00', '17:00']] a_workday = ['10:00', '18:30'] length = 30 output = [['11:30', '12:00'], ['15:00', '16:00'], ['18:00', '18:30']] def find_available(workday, meetings): free_time = [] num_of_meetings = len(meetings) first_meeting = meetings[0] last_meeting = meetings[-1] # find time between start of day and first meeting if workday.start < first_meeting.start: free_time.append([workday.start, first_meeting.start]) # find time between meetings for i, meeting in enumerate(meetings): if i < num_of_meetings && meetings[i].end < meetings[i+1].start: free_time.append([meetings[i].end, meetings[i+1].start]) # find time between last meeting and end of day if workday.end > last_meeting.end: free_time.append([last_meeting.end, workday.end]) return free_time def find_match(availability_a, availability_b, duration): # 1. remove availability less than duration, in both # 2. remove availability
StarcoderdataPython
1828140
<reponame>imranq2/SparkAutoMapper.FHIR from __future__ import annotations from spark_auto_mapper_fhir.fhir_types.uri import FhirUri from spark_auto_mapper_fhir.value_sets.generic_type import GenericTypeCode from spark_auto_mapper.type_definitions.defined_types import AutoMapperTextInputType # This file is auto-generated by generate_classes so do not edit manually # noinspection PyPep8Naming class TestReportParticipantTypeCode(GenericTypeCode): """ TestReportParticipantType From: http://hl7.org/fhir/report-participant-type in valuesets.xml The type of participant. """ def __init__(self, value: AutoMapperTextInputType): super().__init__(value=value) """ http://hl7.org/fhir/report-participant-type """ codeset: FhirUri = "http://hl7.org/fhir/report-participant-type" class TestReportParticipantTypeCodeValues: """ The test execution engine. From: http://hl7.org/fhir/report-participant-type in valuesets.xml """ TestEngine = TestReportParticipantTypeCode("test-engine") """ A FHIR Client. From: http://hl7.org/fhir/report-participant-type in valuesets.xml """ Client = TestReportParticipantTypeCode("client") """ A FHIR Server. From: http://hl7.org/fhir/report-participant-type in valuesets.xml """ Server = TestReportParticipantTypeCode("server")
StarcoderdataPython
11353657
from setuptools import setup, Extension import setuptools_scm # noqa Ensure it’s installed extensions = [ Extension("cutadapt._align", sources=["src/cutadapt/_align.pyx"]), Extension("cutadapt.qualtrim", sources=["src/cutadapt/qualtrim.pyx"]), ] setup(ext_modules=extensions)
StarcoderdataPython
12170
import asyncio import logging import traceback import uuid from typing import Optional, Tuple, Any, Callable from pesto.ws.core.payload_parser import PayloadParser, PestoConfig from pesto.ws.core.pesto_feature import PestoFeatures from pesto.ws.core.utils import load_class, async_exec from pesto.ws.features.algorithm_wrapper import AlgorithmWrapper from pesto.ws.features.converter.image.image_roi import ImageROI, DummyImageROI from pesto.ws.features.payload_converter import PayloadConverter from pesto.ws.features.payload_debug import PayloadDebug from pesto.ws.features.response_serializer import ResponseSerializer from pesto.ws.features.schema_validation import SchemaValidation from pesto.ws.features.stateful_response import StatefulResponse from pesto.ws.features.stateless_response import StatelessResponse from pesto.ws.service.describe import DescribeService from pesto.ws.service.job_result import ResultType log = logging.getLogger(__name__) class ProcessService: PROCESS_CLASS_NAME = 'algorithm.process.Process' _algorithm: Optional[Callable] = None _describe = None @staticmethod def init(): if ProcessService._algorithm is not None: raise ValueError('Process Service already loaded !') try: log.info('ProcessService.init() ...') ProcessService._algorithm = load_class(ProcessService.PROCESS_CLASS_NAME)() if hasattr(ProcessService._algorithm, 'on_start'): log.info('ProcessService.on_start() ...') ProcessService._algorithm.on_start() log.info('ProcessService.on_start() ... Done !') log.info('ProcessService.init() ... Done !') except: traceback.print_exc() log.warning('Algorithm {}.on_start() failure !'.format(ProcessService.PROCESS_CLASS_NAME)) def __init__(self, url_root: str): self.url_root = url_root @property def service_description(self): if ProcessService._describe is None: ProcessService._describe = DescribeService(self.url_root).compute_describe() return ProcessService._describe def process(self, payload: dict) -> dict: config = PayloadParser.parse(payload) image_roi: Optional[ImageROI] = config.get(PestoConfig.roi) # if no ROI: None active_roi: ImageROI = image_roi or DummyImageROI() # bypass compute crop info and remove margins in pipeline job_id = str(uuid.uuid4().time_low) is_stateful = self.service_description['asynchronous'] is True input_schema = self.service_description['input'] output_schema = self.service_description['output'] common_pipeline = filter(None, [ SchemaValidation(schema=input_schema), active_roi.compute_crop_infos(), PayloadConverter(image_roi=image_roi, schema=input_schema), PayloadDebug(schema=input_schema), AlgorithmWrapper(ProcessService._algorithm), active_roi.remove_margin(), ResponseSerializer(schema=output_schema, job_id=job_id), ]) if is_stateful: pipeline = [ *common_pipeline, StatefulResponse(self.url_root, job_id) ] else: pipeline = [ *common_pipeline, StatelessResponse(self.url_root, job_id, output_schema) ] return PestoFeatures(pipeline).process(payload) async def async_process(self, request_payload: dict) -> Tuple[Any, ResultType]: return await asyncio.wait_for( async_exec(lambda: self.process(request_payload)), timeout=None )
StarcoderdataPython
8038043
<filename>Chapter07/original_images_example.py from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt mnist = input_data.read_data_sets('MNIST_data', one_hot = True) class OriginalImages: def __init__(self): pass def main(self): X_train, X_test = self.standard_scale(mnist.train.images, mnist.test.images) original_imgs = X_test[:100] plt.figure(1, figsize=(10, 10)) for i in range(0, 100): im = original_imgs[i].reshape((28, 28)) ax = plt.subplot(10, 10, i + 1) for label in (ax.get_xticklabels() + ax.get_yticklabels()): label.set_fontsize(8) plt.imshow(im, cmap="gray", clim=(0.0, 1.0)) plt.suptitle(' Original Images', fontsize=15, y=0.95) plt.savefig('figures/original_images.png') plt.show() def main(): auto = OriginalImages() auto.main() if __name__ == '__main__': main()
StarcoderdataPython